core/array/
mod.rs

1//! Utilities for the array primitive type.
2//!
3//! *[See also the array primitive type](array).*
4
5#![stable(feature = "core_array", since = "1.35.0")]
6
7#[cfg(not(feature = "ferrocene_subset"))]
8use crate::borrow::{Borrow, BorrowMut};
9use crate::clone::TrivialClone;
10#[cfg(not(feature = "ferrocene_subset"))]
11use crate::cmp::Ordering;
12#[cfg(not(feature = "ferrocene_subset"))]
13use crate::convert::Infallible;
14#[cfg(not(feature = "ferrocene_subset"))]
15use crate::error::Error;
16#[cfg(not(feature = "ferrocene_subset"))]
17use crate::fmt;
18#[cfg(not(feature = "ferrocene_subset"))]
19use crate::hash::{self, Hash};
20#[cfg(not(feature = "ferrocene_subset"))]
21use crate::intrinsics::transmute_unchecked;
22#[cfg(not(feature = "ferrocene_subset"))]
23use crate::iter::{UncheckedIterator, repeat_n};
24use crate::marker::Destruct;
25use crate::mem::{self, ManuallyDrop, MaybeUninit};
26use crate::ops::{
27    ChangeOutputType, ControlFlow, FromResidual, Index, IndexMut, NeverShortCircuit, Residual, Try,
28};
29use crate::ptr;
30#[cfg(not(feature = "ferrocene_subset"))]
31use crate::ptr::{null, null_mut};
32use crate::slice::{Iter, IterMut};
33
34// Ferrocene addition: imports for certified subset
35#[cfg(feature = "ferrocene_subset")]
36#[rustfmt::skip]
37use crate::iter::UncheckedIterator;
38
39#[cfg(not(feature = "ferrocene_subset"))]
40mod ascii;
41mod drain;
42mod equality;
43mod iter;
44
45#[stable(feature = "array_value_iter", since = "1.51.0")]
46pub use iter::IntoIter;
47
48/// Creates an array of type `[T; N]` by repeatedly cloning a value.
49///
50/// This is the same as `[val; N]`, but it also works for types that do not
51/// implement [`Copy`].
52///
53/// The provided value will be used as an element of the resulting array and
54/// will be cloned N - 1 times to fill up the rest. If N is zero, the value
55/// will be dropped.
56///
57/// # Example
58///
59/// Creating multiple copies of a `String`:
60/// ```rust
61/// use std::array;
62///
63/// let string = "Hello there!".to_string();
64/// let strings = array::repeat(string);
65/// assert_eq!(strings, ["Hello there!", "Hello there!"]);
66/// ```
67#[inline]
68#[must_use = "cloning is often expensive and is not expected to have side effects"]
69#[stable(feature = "array_repeat", since = "1.91.0")]
70#[cfg(not(feature = "ferrocene_subset"))]
71pub fn repeat<T: Clone, const N: usize>(val: T) -> [T; N] {
72    from_trusted_iterator(repeat_n(val, N))
73}
74
75/// Creates an array where each element is produced by calling `f` with
76/// that element's index while walking forward through the array.
77///
78/// This is essentially the same as writing
79/// ```text
80/// [f(0), f(1), f(2), …, f(N - 2), f(N - 1)]
81/// ```
82/// and is similar to `(0..i).map(f)`, just for arrays not iterators.
83///
84/// If `N == 0`, this produces an empty array without ever calling `f`.
85///
86/// # Example
87///
88/// ```rust
89/// // type inference is helping us here, the way `from_fn` knows how many
90/// // elements to produce is the length of array down there: only arrays of
91/// // equal lengths can be compared, so the const generic parameter `N` is
92/// // inferred to be 5, thus creating array of 5 elements.
93///
94/// let array = core::array::from_fn(|i| i);
95/// // indexes are:    0  1  2  3  4
96/// assert_eq!(array, [0, 1, 2, 3, 4]);
97///
98/// let array2: [usize; 8] = core::array::from_fn(|i| i * 2);
99/// // indexes are:     0  1  2  3  4  5   6   7
100/// assert_eq!(array2, [0, 2, 4, 6, 8, 10, 12, 14]);
101///
102/// let bool_arr = core::array::from_fn::<_, 5, _>(|i| i % 2 == 0);
103/// // indexes are:       0     1      2     3      4
104/// assert_eq!(bool_arr, [true, false, true, false, true]);
105/// ```
106///
107/// You can also capture things, for example to create an array full of clones
108/// where you can't just use `[item; N]` because it's not `Copy`:
109/// ```
110/// # // TBH `array::repeat` would be better for this, but it's not stable yet.
111/// let my_string = String::from("Hello");
112/// let clones: [String; 42] = std::array::from_fn(|_| my_string.clone());
113/// assert!(clones.iter().all(|x| *x == my_string));
114/// ```
115///
116/// The array is generated in ascending index order, starting from the front
117/// and going towards the back, so you can use closures with mutable state:
118/// ```
119/// let mut state = 1;
120/// let a = std::array::from_fn(|_| { let x = state; state *= 2; x });
121/// assert_eq!(a, [1, 2, 4, 8, 16, 32]);
122/// ```
123#[inline]
124#[stable(feature = "array_from_fn", since = "1.63.0")]
125#[rustc_const_unstable(feature = "const_array", issue = "147606")]
126pub const fn from_fn<T: [const] Destruct, const N: usize, F>(f: F) -> [T; N]
127where
128    F: [const] FnMut(usize) -> T + [const] Destruct,
129{
130    try_from_fn(NeverShortCircuit::wrap_mut_1(f)).0
131}
132
133/// Creates an array `[T; N]` where each fallible array element `T` is returned by the `cb` call.
134/// Unlike [`from_fn`], where the element creation can't fail, this version will return an error
135/// if any element creation was unsuccessful.
136///
137/// The return type of this function depends on the return type of the closure.
138/// If you return `Result<T, E>` from the closure, you'll get a `Result<[T; N], E>`.
139/// If you return `Option<T>` from the closure, you'll get an `Option<[T; N]>`.
140///
141/// # Arguments
142///
143/// * `cb`: Callback where the passed argument is the current array index.
144///
145/// # Example
146///
147/// ```rust
148/// #![feature(array_try_from_fn)]
149///
150/// let array: Result<[u8; 5], _> = std::array::try_from_fn(|i| i.try_into());
151/// assert_eq!(array, Ok([0, 1, 2, 3, 4]));
152///
153/// let array: Result<[i8; 200], _> = std::array::try_from_fn(|i| i.try_into());
154/// assert!(array.is_err());
155///
156/// let array: Option<[_; 4]> = std::array::try_from_fn(|i| i.checked_add(100));
157/// assert_eq!(array, Some([100, 101, 102, 103]));
158///
159/// let array: Option<[_; 4]> = std::array::try_from_fn(|i| i.checked_sub(100));
160/// assert_eq!(array, None);
161/// ```
162#[inline]
163#[unstable(feature = "array_try_from_fn", issue = "89379")]
164#[rustc_const_unstable(feature = "array_try_from_fn", issue = "89379")]
165pub const fn try_from_fn<R, const N: usize, F>(cb: F) -> ChangeOutputType<R, [R::Output; N]>
166where
167    R: [const] Try<Residual: [const] Residual<[R::Output; N]>, Output: [const] Destruct>,
168    F: [const] FnMut(usize) -> R + [const] Destruct,
169{
170    let mut array = [const { MaybeUninit::uninit() }; N];
171    match try_from_fn_erased(&mut array, cb) {
172        ControlFlow::Break(r) => FromResidual::from_residual(r),
173        ControlFlow::Continue(()) => {
174            // SAFETY: All elements of the array were populated.
175            try { unsafe { MaybeUninit::array_assume_init(array) } }
176        }
177    }
178}
179
180/// Converts a reference to `T` into a reference to an array of length 1 (without copying).
181#[stable(feature = "array_from_ref", since = "1.53.0")]
182#[rustc_const_stable(feature = "const_array_from_ref_shared", since = "1.63.0")]
183pub const fn from_ref<T>(s: &T) -> &[T; 1] {
184    // SAFETY: Converting `&T` to `&[T; 1]` is sound.
185    unsafe { &*(s as *const T).cast::<[T; 1]>() }
186}
187
188/// Converts a mutable reference to `T` into a mutable reference to an array of length 1 (without copying).
189#[stable(feature = "array_from_ref", since = "1.53.0")]
190#[rustc_const_stable(feature = "const_array_from_ref", since = "1.83.0")]
191pub const fn from_mut<T>(s: &mut T) -> &mut [T; 1] {
192    // SAFETY: Converting `&mut T` to `&mut [T; 1]` is sound.
193    unsafe { &mut *(s as *mut T).cast::<[T; 1]>() }
194}
195
196/// The error type returned when a conversion from a slice to an array fails.
197#[stable(feature = "try_from", since = "1.34.0")]
198#[cfg_attr(not(feature = "ferrocene_subset"), derive(Debug, Copy, Clone))]
199pub struct TryFromSliceError(());
200
201#[stable(feature = "core_array", since = "1.35.0")]
202#[cfg(not(feature = "ferrocene_subset"))]
203impl fmt::Display for TryFromSliceError {
204    #[inline]
205    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
206        "could not convert slice to array".fmt(f)
207    }
208}
209
210#[stable(feature = "try_from", since = "1.34.0")]
211#[cfg(not(feature = "ferrocene_subset"))]
212impl Error for TryFromSliceError {}
213
214#[stable(feature = "try_from_slice_error", since = "1.36.0")]
215#[rustc_const_unstable(feature = "const_convert", issue = "143773")]
216#[cfg(not(feature = "ferrocene_subset"))]
217impl const From<Infallible> for TryFromSliceError {
218    fn from(x: Infallible) -> TryFromSliceError {
219        match x {}
220    }
221}
222
223#[stable(feature = "rust1", since = "1.0.0")]
224#[rustc_const_unstable(feature = "const_convert", issue = "143773")]
225impl<T, const N: usize> const AsRef<[T]> for [T; N] {
226    #[inline]
227    fn as_ref(&self) -> &[T] {
228        &self[..]
229    }
230}
231
232#[stable(feature = "rust1", since = "1.0.0")]
233#[rustc_const_unstable(feature = "const_convert", issue = "143773")]
234#[cfg(not(feature = "ferrocene_subset"))]
235impl<T, const N: usize> const AsMut<[T]> for [T; N] {
236    #[inline]
237    fn as_mut(&mut self) -> &mut [T] {
238        &mut self[..]
239    }
240}
241
242#[stable(feature = "array_borrow", since = "1.4.0")]
243#[rustc_const_unstable(feature = "const_convert", issue = "143773")]
244#[cfg(not(feature = "ferrocene_subset"))]
245impl<T, const N: usize> const Borrow<[T]> for [T; N] {
246    fn borrow(&self) -> &[T] {
247        self
248    }
249}
250
251#[stable(feature = "array_borrow", since = "1.4.0")]
252#[rustc_const_unstable(feature = "const_convert", issue = "143773")]
253#[cfg(not(feature = "ferrocene_subset"))]
254impl<T, const N: usize> const BorrowMut<[T]> for [T; N] {
255    fn borrow_mut(&mut self) -> &mut [T] {
256        self
257    }
258}
259
260/// Tries to create an array `[T; N]` by copying from a slice `&[T]`.
261/// Succeeds if `slice.len() == N`.
262///
263/// ```
264/// let bytes: [u8; 3] = [1, 0, 2];
265///
266/// let bytes_head: [u8; 2] = <[u8; 2]>::try_from(&bytes[0..2]).unwrap();
267/// assert_eq!(1, u16::from_le_bytes(bytes_head));
268///
269/// let bytes_tail: [u8; 2] = bytes[1..3].try_into().unwrap();
270/// assert_eq!(512, u16::from_le_bytes(bytes_tail));
271/// ```
272#[stable(feature = "try_from", since = "1.34.0")]
273#[rustc_const_unstable(feature = "const_convert", issue = "143773")]
274impl<T, const N: usize> const TryFrom<&[T]> for [T; N]
275where
276    T: Copy,
277{
278    type Error = TryFromSliceError;
279
280    #[inline]
281    fn try_from(slice: &[T]) -> Result<[T; N], TryFromSliceError> {
282        <&Self>::try_from(slice).copied()
283    }
284}
285
286/// Tries to create an array `[T; N]` by copying from a mutable slice `&mut [T]`.
287/// Succeeds if `slice.len() == N`.
288///
289/// ```
290/// let mut bytes: [u8; 3] = [1, 0, 2];
291///
292/// let bytes_head: [u8; 2] = <[u8; 2]>::try_from(&mut bytes[0..2]).unwrap();
293/// assert_eq!(1, u16::from_le_bytes(bytes_head));
294///
295/// let bytes_tail: [u8; 2] = (&mut bytes[1..3]).try_into().unwrap();
296/// assert_eq!(512, u16::from_le_bytes(bytes_tail));
297/// ```
298#[stable(feature = "try_from_mut_slice_to_array", since = "1.59.0")]
299#[rustc_const_unstable(feature = "const_convert", issue = "143773")]
300impl<T, const N: usize> const TryFrom<&mut [T]> for [T; N]
301where
302    T: Copy,
303{
304    type Error = TryFromSliceError;
305
306    #[inline]
307    fn try_from(slice: &mut [T]) -> Result<[T; N], TryFromSliceError> {
308        <Self>::try_from(&*slice)
309    }
310}
311
312/// Tries to create an array ref `&[T; N]` from a slice ref `&[T]`. Succeeds if
313/// `slice.len() == N`.
314///
315/// ```
316/// let bytes: [u8; 3] = [1, 0, 2];
317///
318/// let bytes_head: &[u8; 2] = <&[u8; 2]>::try_from(&bytes[0..2]).unwrap();
319/// assert_eq!(1, u16::from_le_bytes(*bytes_head));
320///
321/// let bytes_tail: &[u8; 2] = bytes[1..3].try_into().unwrap();
322/// assert_eq!(512, u16::from_le_bytes(*bytes_tail));
323/// ```
324#[stable(feature = "try_from", since = "1.34.0")]
325#[rustc_const_unstable(feature = "const_convert", issue = "143773")]
326impl<'a, T, const N: usize> const TryFrom<&'a [T]> for &'a [T; N] {
327    type Error = TryFromSliceError;
328
329    #[inline]
330    fn try_from(slice: &'a [T]) -> Result<&'a [T; N], TryFromSliceError> {
331        slice.as_array().ok_or(TryFromSliceError(()))
332    }
333}
334
335/// Tries to create a mutable array ref `&mut [T; N]` from a mutable slice ref
336/// `&mut [T]`. Succeeds if `slice.len() == N`.
337///
338/// ```
339/// let mut bytes: [u8; 3] = [1, 0, 2];
340///
341/// let bytes_head: &mut [u8; 2] = <&mut [u8; 2]>::try_from(&mut bytes[0..2]).unwrap();
342/// assert_eq!(1, u16::from_le_bytes(*bytes_head));
343///
344/// let bytes_tail: &mut [u8; 2] = (&mut bytes[1..3]).try_into().unwrap();
345/// assert_eq!(512, u16::from_le_bytes(*bytes_tail));
346/// ```
347#[stable(feature = "try_from", since = "1.34.0")]
348#[rustc_const_unstable(feature = "const_convert", issue = "143773")]
349impl<'a, T, const N: usize> const TryFrom<&'a mut [T]> for &'a mut [T; N] {
350    type Error = TryFromSliceError;
351
352    #[inline]
353    fn try_from(slice: &'a mut [T]) -> Result<&'a mut [T; N], TryFromSliceError> {
354        slice.as_mut_array().ok_or(TryFromSliceError(()))
355    }
356}
357
358/// The hash of an array is the same as that of the corresponding slice,
359/// as required by the `Borrow` implementation.
360///
361/// ```
362/// use std::hash::BuildHasher;
363///
364/// let b = std::hash::RandomState::new();
365/// let a: [u8; 3] = [0xa8, 0x3c, 0x09];
366/// let s: &[u8] = &[0xa8, 0x3c, 0x09];
367/// assert_eq!(b.hash_one(a), b.hash_one(s));
368/// ```
369#[stable(feature = "rust1", since = "1.0.0")]
370#[cfg(not(feature = "ferrocene_subset"))]
371impl<T: Hash, const N: usize> Hash for [T; N] {
372    fn hash<H: hash::Hasher>(&self, state: &mut H) {
373        Hash::hash(&self[..], state)
374    }
375}
376
377#[stable(feature = "rust1", since = "1.0.0")]
378#[cfg(not(feature = "ferrocene_subset"))]
379impl<T: fmt::Debug, const N: usize> fmt::Debug for [T; N] {
380    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
381        fmt::Debug::fmt(&&self[..], f)
382    }
383}
384
385#[stable(feature = "rust1", since = "1.0.0")]
386impl<'a, T, const N: usize> IntoIterator for &'a [T; N] {
387    type Item = &'a T;
388    type IntoIter = Iter<'a, T>;
389
390    fn into_iter(self) -> Iter<'a, T> {
391        self.iter()
392    }
393}
394
395#[stable(feature = "rust1", since = "1.0.0")]
396impl<'a, T, const N: usize> IntoIterator for &'a mut [T; N] {
397    type Item = &'a mut T;
398    type IntoIter = IterMut<'a, T>;
399
400    fn into_iter(self) -> IterMut<'a, T> {
401        self.iter_mut()
402    }
403}
404
405#[stable(feature = "index_trait_on_arrays", since = "1.50.0")]
406#[rustc_const_unstable(feature = "const_index", issue = "143775")]
407impl<T, I, const N: usize> const Index<I> for [T; N]
408where
409    [T]: [const] Index<I>,
410{
411    type Output = <[T] as Index<I>>::Output;
412
413    #[inline]
414    fn index(&self, index: I) -> &Self::Output {
415        Index::index(self as &[T], index)
416    }
417}
418
419#[stable(feature = "index_trait_on_arrays", since = "1.50.0")]
420#[rustc_const_unstable(feature = "const_index", issue = "143775")]
421impl<T, I, const N: usize> const IndexMut<I> for [T; N]
422where
423    [T]: [const] IndexMut<I>,
424{
425    #[inline]
426    fn index_mut(&mut self, index: I) -> &mut Self::Output {
427        IndexMut::index_mut(self as &mut [T], index)
428    }
429}
430
431/// Implements comparison of arrays [lexicographically](Ord#lexicographical-comparison).
432#[stable(feature = "rust1", since = "1.0.0")]
433// blocked by PartialOrd
434#[cfg(not(feature = "ferrocene_subset"))]
435impl<T: PartialOrd, const N: usize> PartialOrd for [T; N] {
436    #[inline]
437    fn partial_cmp(&self, other: &[T; N]) -> Option<Ordering> {
438        PartialOrd::partial_cmp(&&self[..], &&other[..])
439    }
440    #[inline]
441    fn lt(&self, other: &[T; N]) -> bool {
442        PartialOrd::lt(&&self[..], &&other[..])
443    }
444    #[inline]
445    fn le(&self, other: &[T; N]) -> bool {
446        PartialOrd::le(&&self[..], &&other[..])
447    }
448    #[inline]
449    fn ge(&self, other: &[T; N]) -> bool {
450        PartialOrd::ge(&&self[..], &&other[..])
451    }
452    #[inline]
453    fn gt(&self, other: &[T; N]) -> bool {
454        PartialOrd::gt(&&self[..], &&other[..])
455    }
456}
457
458/// Implements comparison of arrays [lexicographically](Ord#lexicographical-comparison).
459#[stable(feature = "rust1", since = "1.0.0")]
460#[cfg(not(feature = "ferrocene_subset"))]
461impl<T: Ord, const N: usize> Ord for [T; N] {
462    #[inline]
463    fn cmp(&self, other: &[T; N]) -> Ordering {
464        Ord::cmp(&&self[..], &&other[..])
465    }
466}
467
468#[stable(feature = "copy_clone_array_lib", since = "1.58.0")]
469impl<T: Copy, const N: usize> Copy for [T; N] {}
470
471#[stable(feature = "copy_clone_array_lib", since = "1.58.0")]
472impl<T: Clone, const N: usize> Clone for [T; N] {
473    #[inline]
474    fn clone(&self) -> Self {
475        SpecArrayClone::clone(self)
476    }
477
478    #[inline]
479    #[cfg(not(feature = "ferrocene_subset"))]
480    fn clone_from(&mut self, other: &Self) {
481        self.clone_from_slice(other);
482    }
483}
484
485#[doc(hidden)]
486#[unstable(feature = "trivial_clone", issue = "none")]
487unsafe impl<T: TrivialClone, const N: usize> TrivialClone for [T; N] {}
488
489trait SpecArrayClone: Clone {
490    fn clone<const N: usize>(array: &[Self; N]) -> [Self; N];
491}
492
493impl<T: Clone> SpecArrayClone for T {
494    #[inline]
495    default fn clone<const N: usize>(array: &[T; N]) -> [T; N] {
496        from_trusted_iterator(array.iter().cloned())
497    }
498}
499
500impl<T: TrivialClone> SpecArrayClone for T {
501    #[inline]
502    fn clone<const N: usize>(array: &[T; N]) -> [T; N] {
503        // SAFETY: `TrivialClone` implies that this is equivalent to calling
504        // `Clone` on every element.
505        unsafe { ptr::read(array) }
506    }
507}
508
509// The Default impls cannot be done with const generics because `[T; 0]` doesn't
510// require Default to be implemented, and having different impl blocks for
511// different numbers isn't supported yet.
512//
513// Trying to improve the `[T; 0]` situation has proven to be difficult.
514// Please see these issues for more context on past attempts and crater runs:
515// - https://github.com/rust-lang/rust/issues/61415
516// - https://github.com/rust-lang/rust/pull/145457
517
518#[cfg(not(feature = "ferrocene_subset"))]
519macro_rules! array_impl_default {
520    {$n:expr, $t:ident $($ts:ident)*} => {
521        #[stable(since = "1.4.0", feature = "array_default")]
522        impl<T> Default for [T; $n] where T: Default {
523            fn default() -> [T; $n] {
524                [$t::default(), $($ts::default()),*]
525            }
526        }
527        array_impl_default!{($n - 1), $($ts)*}
528    };
529    {$n:expr,} => {
530        #[stable(since = "1.4.0", feature = "array_default")]
531        impl<T> Default for [T; $n] {
532            fn default() -> [T; $n] { [] }
533        }
534    };
535}
536
537#[cfg(not(feature = "ferrocene_subset"))]
538array_impl_default! {32, T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T}
539
540impl<T, const N: usize> [T; N] {
541    /// Returns an array of the same size as `self`, with function `f` applied to each element
542    /// in order.
543    ///
544    /// If you don't necessarily need a new fixed-size array, consider using
545    /// [`Iterator::map`] instead.
546    ///
547    ///
548    /// # Note on performance and stack usage
549    ///
550    /// Unfortunately, usages of this method are currently not always optimized
551    /// as well as they could be. This mainly concerns large arrays, as mapping
552    /// over small arrays seem to be optimized just fine. Also note that in
553    /// debug mode (i.e. without any optimizations), this method can use a lot
554    /// of stack space (a few times the size of the array or more).
555    ///
556    /// Therefore, in performance-critical code, try to avoid using this method
557    /// on large arrays or check the emitted code. Also try to avoid chained
558    /// maps (e.g. `arr.map(...).map(...)`).
559    ///
560    /// In many cases, you can instead use [`Iterator::map`] by calling `.iter()`
561    /// or `.into_iter()` on your array. `[T; N]::map` is only necessary if you
562    /// really need a new array of the same size as the result. Rust's lazy
563    /// iterators tend to get optimized very well.
564    ///
565    ///
566    /// # Examples
567    ///
568    /// ```
569    /// let x = [1, 2, 3];
570    /// let y = x.map(|v| v + 1);
571    /// assert_eq!(y, [2, 3, 4]);
572    ///
573    /// let x = [1, 2, 3];
574    /// let mut temp = 0;
575    /// let y = x.map(|v| { temp += 1; v * temp });
576    /// assert_eq!(y, [1, 4, 9]);
577    ///
578    /// let x = ["Ferris", "Bueller's", "Day", "Off"];
579    /// let y = x.map(|v| v.len());
580    /// assert_eq!(y, [6, 9, 3, 3]);
581    /// ```
582    #[must_use]
583    #[stable(feature = "array_map", since = "1.55.0")]
584    #[rustc_const_unstable(feature = "const_array", issue = "147606")]
585    pub const fn map<F, U>(self, f: F) -> [U; N]
586    where
587        F: [const] FnMut(T) -> U + [const] Destruct,
588        U: [const] Destruct,
589        T: [const] Destruct,
590    {
591        self.try_map(NeverShortCircuit::wrap_mut_1(f)).0
592    }
593
594    /// A fallible function `f` applied to each element on array `self` in order to
595    /// return an array the same size as `self` or the first error encountered.
596    ///
597    /// The return type of this function depends on the return type of the closure.
598    /// If you return `Result<T, E>` from the closure, you'll get a `Result<[T; N], E>`.
599    /// If you return `Option<T>` from the closure, you'll get an `Option<[T; N]>`.
600    ///
601    /// # Examples
602    ///
603    /// ```
604    /// #![feature(array_try_map)]
605    ///
606    /// let a = ["1", "2", "3"];
607    /// let b = a.try_map(|v| v.parse::<u32>()).unwrap().map(|v| v + 1);
608    /// assert_eq!(b, [2, 3, 4]);
609    ///
610    /// let a = ["1", "2a", "3"];
611    /// let b = a.try_map(|v| v.parse::<u32>());
612    /// assert!(b.is_err());
613    ///
614    /// use std::num::NonZero;
615    ///
616    /// let z = [1, 2, 0, 3, 4];
617    /// assert_eq!(z.try_map(NonZero::new), None);
618    ///
619    /// let a = [1, 2, 3];
620    /// let b = a.try_map(NonZero::new);
621    /// let c = b.map(|x| x.map(NonZero::get));
622    /// assert_eq!(c, Some(a));
623    /// ```
624    #[unstable(feature = "array_try_map", issue = "79711")]
625    #[rustc_const_unstable(feature = "array_try_map", issue = "79711")]
626    pub const fn try_map<R>(
627        self,
628        mut f: impl [const] FnMut(T) -> R + [const] Destruct,
629    ) -> ChangeOutputType<R, [R::Output; N]>
630    where
631        R: [const] Try<Residual: [const] Residual<[R::Output; N]>, Output: [const] Destruct>,
632        T: [const] Destruct,
633    {
634        let mut me = ManuallyDrop::new(self);
635        // SAFETY: try_from_fn calls `f` N times.
636        let mut f = unsafe { drain::Drain::new(&mut me, &mut f) };
637        try_from_fn(&mut f)
638    }
639
640    /// Returns a slice containing the entire array. Equivalent to `&s[..]`.
641    #[stable(feature = "array_as_slice", since = "1.57.0")]
642    #[rustc_const_stable(feature = "array_as_slice", since = "1.57.0")]
643    pub const fn as_slice(&self) -> &[T] {
644        self
645    }
646
647    /// Returns a mutable slice containing the entire array. Equivalent to
648    /// `&mut s[..]`.
649    #[stable(feature = "array_as_slice", since = "1.57.0")]
650    #[rustc_const_stable(feature = "const_array_as_mut_slice", since = "1.89.0")]
651    pub const fn as_mut_slice(&mut self) -> &mut [T] {
652        self
653    }
654
655    /// Borrows each element and returns an array of references with the same
656    /// size as `self`.
657    ///
658    ///
659    /// # Example
660    ///
661    /// ```
662    /// let floats = [3.1, 2.7, -1.0];
663    /// let float_refs: [&f64; 3] = floats.each_ref();
664    /// assert_eq!(float_refs, [&3.1, &2.7, &-1.0]);
665    /// ```
666    ///
667    /// This method is particularly useful if combined with other methods, like
668    /// [`map`](#method.map). This way, you can avoid moving the original
669    /// array if its elements are not [`Copy`].
670    ///
671    /// ```
672    /// let strings = ["Ferris".to_string(), "♥".to_string(), "Rust".to_string()];
673    /// let is_ascii = strings.each_ref().map(|s| s.is_ascii());
674    /// assert_eq!(is_ascii, [true, false, true]);
675    ///
676    /// // We can still access the original array: it has not been moved.
677    /// assert_eq!(strings.len(), 3);
678    /// ```
679    #[stable(feature = "array_methods", since = "1.77.0")]
680    #[rustc_const_stable(feature = "const_array_each_ref", since = "1.91.0")]
681    #[cfg(not(feature = "ferrocene_subset"))]
682    pub const fn each_ref(&self) -> [&T; N] {
683        let mut buf = [null::<T>(); N];
684
685        // FIXME(const_trait_impl): We would like to simply use iterators for this (as in the original implementation), but this is not allowed in constant expressions.
686        let mut i = 0;
687        while i < N {
688            buf[i] = &raw const self[i];
689
690            i += 1;
691        }
692
693        // SAFETY: `*const T` has the same layout as `&T`, and we've also initialised each pointer as a valid reference.
694        unsafe { transmute_unchecked(buf) }
695    }
696
697    /// Borrows each element mutably and returns an array of mutable references
698    /// with the same size as `self`.
699    ///
700    ///
701    /// # Example
702    ///
703    /// ```
704    ///
705    /// let mut floats = [3.1, 2.7, -1.0];
706    /// let float_refs: [&mut f64; 3] = floats.each_mut();
707    /// *float_refs[0] = 0.0;
708    /// assert_eq!(float_refs, [&mut 0.0, &mut 2.7, &mut -1.0]);
709    /// assert_eq!(floats, [0.0, 2.7, -1.0]);
710    /// ```
711    #[stable(feature = "array_methods", since = "1.77.0")]
712    #[rustc_const_stable(feature = "const_array_each_ref", since = "1.91.0")]
713    #[cfg(not(feature = "ferrocene_subset"))]
714    pub const fn each_mut(&mut self) -> [&mut T; N] {
715        let mut buf = [null_mut::<T>(); N];
716
717        // FIXME(const_trait_impl): We would like to simply use iterators for this (as in the original implementation), but this is not allowed in constant expressions.
718        let mut i = 0;
719        while i < N {
720            buf[i] = &raw mut self[i];
721
722            i += 1;
723        }
724
725        // SAFETY: `*mut T` has the same layout as `&mut T`, and we've also initialised each pointer as a valid reference.
726        unsafe { transmute_unchecked(buf) }
727    }
728
729    /// Divides one array reference into two at an index.
730    ///
731    /// The first will contain all indices from `[0, M)` (excluding
732    /// the index `M` itself) and the second will contain all
733    /// indices from `[M, N)` (excluding the index `N` itself).
734    ///
735    /// # Panics
736    ///
737    /// Panics if `M > N`.
738    ///
739    /// # Examples
740    ///
741    /// ```
742    /// #![feature(split_array)]
743    ///
744    /// let v = [1, 2, 3, 4, 5, 6];
745    ///
746    /// {
747    ///    let (left, right) = v.split_array_ref::<0>();
748    ///    assert_eq!(left, &[]);
749    ///    assert_eq!(right, &[1, 2, 3, 4, 5, 6]);
750    /// }
751    ///
752    /// {
753    ///     let (left, right) = v.split_array_ref::<2>();
754    ///     assert_eq!(left, &[1, 2]);
755    ///     assert_eq!(right, &[3, 4, 5, 6]);
756    /// }
757    ///
758    /// {
759    ///     let (left, right) = v.split_array_ref::<6>();
760    ///     assert_eq!(left, &[1, 2, 3, 4, 5, 6]);
761    ///     assert_eq!(right, &[]);
762    /// }
763    /// ```
764    #[unstable(
765        feature = "split_array",
766        reason = "return type should have array as 2nd element",
767        issue = "90091"
768    )]
769    #[inline]
770    #[cfg(not(feature = "ferrocene_subset"))]
771    pub fn split_array_ref<const M: usize>(&self) -> (&[T; M], &[T]) {
772        self.split_first_chunk::<M>().unwrap()
773    }
774
775    /// Divides one mutable array reference into two at an index.
776    ///
777    /// The first will contain all indices from `[0, M)` (excluding
778    /// the index `M` itself) and the second will contain all
779    /// indices from `[M, N)` (excluding the index `N` itself).
780    ///
781    /// # Panics
782    ///
783    /// Panics if `M > N`.
784    ///
785    /// # Examples
786    ///
787    /// ```
788    /// #![feature(split_array)]
789    ///
790    /// let mut v = [1, 0, 3, 0, 5, 6];
791    /// let (left, right) = v.split_array_mut::<2>();
792    /// assert_eq!(left, &mut [1, 0][..]);
793    /// assert_eq!(right, &mut [3, 0, 5, 6]);
794    /// left[1] = 2;
795    /// right[1] = 4;
796    /// assert_eq!(v, [1, 2, 3, 4, 5, 6]);
797    /// ```
798    #[unstable(
799        feature = "split_array",
800        reason = "return type should have array as 2nd element",
801        issue = "90091"
802    )]
803    #[inline]
804    #[cfg(not(feature = "ferrocene_subset"))]
805    pub fn split_array_mut<const M: usize>(&mut self) -> (&mut [T; M], &mut [T]) {
806        self.split_first_chunk_mut::<M>().unwrap()
807    }
808
809    /// Divides one array reference into two at an index from the end.
810    ///
811    /// The first will contain all indices from `[0, N - M)` (excluding
812    /// the index `N - M` itself) and the second will contain all
813    /// indices from `[N - M, N)` (excluding the index `N` itself).
814    ///
815    /// # Panics
816    ///
817    /// Panics if `M > N`.
818    ///
819    /// # Examples
820    ///
821    /// ```
822    /// #![feature(split_array)]
823    ///
824    /// let v = [1, 2, 3, 4, 5, 6];
825    ///
826    /// {
827    ///    let (left, right) = v.rsplit_array_ref::<0>();
828    ///    assert_eq!(left, &[1, 2, 3, 4, 5, 6]);
829    ///    assert_eq!(right, &[]);
830    /// }
831    ///
832    /// {
833    ///     let (left, right) = v.rsplit_array_ref::<2>();
834    ///     assert_eq!(left, &[1, 2, 3, 4]);
835    ///     assert_eq!(right, &[5, 6]);
836    /// }
837    ///
838    /// {
839    ///     let (left, right) = v.rsplit_array_ref::<6>();
840    ///     assert_eq!(left, &[]);
841    ///     assert_eq!(right, &[1, 2, 3, 4, 5, 6]);
842    /// }
843    /// ```
844    #[unstable(
845        feature = "split_array",
846        reason = "return type should have array as 2nd element",
847        issue = "90091"
848    )]
849    #[inline]
850    #[cfg(not(feature = "ferrocene_subset"))]
851    pub fn rsplit_array_ref<const M: usize>(&self) -> (&[T], &[T; M]) {
852        self.split_last_chunk::<M>().unwrap()
853    }
854
855    /// Divides one mutable array reference into two at an index from the end.
856    ///
857    /// The first will contain all indices from `[0, N - M)` (excluding
858    /// the index `N - M` itself) and the second will contain all
859    /// indices from `[N - M, N)` (excluding the index `N` itself).
860    ///
861    /// # Panics
862    ///
863    /// Panics if `M > N`.
864    ///
865    /// # Examples
866    ///
867    /// ```
868    /// #![feature(split_array)]
869    ///
870    /// let mut v = [1, 0, 3, 0, 5, 6];
871    /// let (left, right) = v.rsplit_array_mut::<4>();
872    /// assert_eq!(left, &mut [1, 0]);
873    /// assert_eq!(right, &mut [3, 0, 5, 6][..]);
874    /// left[1] = 2;
875    /// right[1] = 4;
876    /// assert_eq!(v, [1, 2, 3, 4, 5, 6]);
877    /// ```
878    #[unstable(
879        feature = "split_array",
880        reason = "return type should have array as 2nd element",
881        issue = "90091"
882    )]
883    #[inline]
884    #[cfg(not(feature = "ferrocene_subset"))]
885    pub fn rsplit_array_mut<const M: usize>(&mut self) -> (&mut [T], &mut [T; M]) {
886        self.split_last_chunk_mut::<M>().unwrap()
887    }
888}
889
890/// Populate an array from the first `N` elements of `iter`
891///
892/// # Panics
893///
894/// If the iterator doesn't actually have enough items.
895///
896/// By depending on `TrustedLen`, however, we can do that check up-front (where
897/// it easily optimizes away) so it doesn't impact the loop that fills the array.
898#[inline]
899fn from_trusted_iterator<T, const N: usize>(iter: impl UncheckedIterator<Item = T>) -> [T; N] {
900    try_from_trusted_iterator(iter.map(NeverShortCircuit)).0
901}
902
903#[inline]
904fn try_from_trusted_iterator<T, R, const N: usize>(
905    iter: impl UncheckedIterator<Item = R>,
906) -> ChangeOutputType<R, [T; N]>
907where
908    R: Try<Output = T>,
909    R::Residual: Residual<[T; N]>,
910{
911    assert!(iter.size_hint().0 >= N);
912    fn next<T>(mut iter: impl UncheckedIterator<Item = T>) -> impl FnMut(usize) -> T {
913        move |_| {
914            // SAFETY: We know that `from_fn` will call this at most N times,
915            // and we checked to ensure that we have at least that many items.
916            unsafe { iter.next_unchecked() }
917        }
918    }
919
920    try_from_fn(next(iter))
921}
922
923/// Version of [`try_from_fn`] using a passed-in slice in order to avoid
924/// needing to monomorphize for every array length.
925///
926/// This takes a generator rather than an iterator so that *at the type level*
927/// it never needs to worry about running out of items.  When combined with
928/// an infallible `Try` type, that means the loop canonicalizes easily, allowing
929/// it to optimize well.
930///
931/// It would be *possible* to unify this and [`iter_next_chunk_erased`] into one
932/// function that does the union of both things, but last time it was that way
933/// it resulted in poor codegen from the "are there enough source items?" checks
934/// not optimizing away.  So if you give it a shot, make sure to watch what
935/// happens in the codegen tests.
936#[inline]
937#[rustc_const_unstable(feature = "array_try_from_fn", issue = "89379")]
938const fn try_from_fn_erased<R: [const] Try<Output: [const] Destruct>>(
939    buffer: &mut [MaybeUninit<R::Output>],
940    mut generator: impl [const] FnMut(usize) -> R + [const] Destruct,
941) -> ControlFlow<R::Residual> {
942    let mut guard = Guard { array_mut: buffer, initialized: 0 };
943
944    while guard.initialized < guard.array_mut.len() {
945        let item = generator(guard.initialized).branch()?;
946
947        // SAFETY: The loop condition ensures we have space to push the item
948        unsafe { guard.push_unchecked(item) };
949    }
950
951    mem::forget(guard);
952    ControlFlow::Continue(())
953}
954
955/// Panic guard for incremental initialization of arrays.
956///
957/// Disarm the guard with `mem::forget` once the array has been initialized.
958///
959/// # Safety
960///
961/// All write accesses to this structure are unsafe and must maintain a correct
962/// count of `initialized` elements.
963///
964/// To minimize indirection, fields are still pub but callers should at least use
965/// `push_unchecked` to signal that something unsafe is going on.
966struct Guard<'a, T> {
967    /// The array to be initialized.
968    pub array_mut: &'a mut [MaybeUninit<T>],
969    /// The number of items that have been initialized so far.
970    pub initialized: usize,
971}
972
973impl<T> Guard<'_, T> {
974    /// Adds an item to the array and updates the initialized item counter.
975    ///
976    /// # Safety
977    ///
978    /// No more than N elements must be initialized.
979    #[inline]
980    #[rustc_const_unstable(feature = "array_try_from_fn", issue = "89379")]
981    pub(crate) const unsafe fn push_unchecked(&mut self, item: T) {
982        // SAFETY: If `initialized` was correct before and the caller does not
983        // invoke this method more than N times, then writes will be in-bounds
984        // and slots will not be initialized more than once.
985        unsafe {
986            self.array_mut.get_unchecked_mut(self.initialized).write(item);
987            self.initialized = self.initialized.unchecked_add(1);
988        }
989    }
990}
991
992#[rustc_const_unstable(feature = "array_try_from_fn", issue = "89379")]
993impl<T: [const] Destruct> const Drop for Guard<'_, T> {
994    #[inline]
995    fn drop(&mut self) {
996        debug_assert!(self.initialized <= self.array_mut.len());
997        // SAFETY: this slice will contain only initialized objects.
998        unsafe {
999            self.array_mut.get_unchecked_mut(..self.initialized).assume_init_drop();
1000        }
1001    }
1002}
1003
1004/// Pulls `N` items from `iter` and returns them as an array. If the iterator
1005/// yields fewer than `N` items, `Err` is returned containing an iterator over
1006/// the already yielded items.
1007///
1008/// Since the iterator is passed as a mutable reference and this function calls
1009/// `next` at most `N` times, the iterator can still be used afterwards to
1010/// retrieve the remaining items.
1011///
1012/// If `iter.next()` panics, all items already yielded by the iterator are
1013/// dropped.
1014///
1015/// Used for [`Iterator::next_chunk`].
1016#[inline]
1017#[cfg(not(feature = "ferrocene_subset"))]
1018pub(crate) fn iter_next_chunk<T, const N: usize>(
1019    iter: &mut impl Iterator<Item = T>,
1020) -> Result<[T; N], IntoIter<T, N>> {
1021    let mut array = [const { MaybeUninit::uninit() }; N];
1022    let r = iter_next_chunk_erased(&mut array, iter);
1023    match r {
1024        Ok(()) => {
1025            // SAFETY: All elements of `array` were populated.
1026            Ok(unsafe { MaybeUninit::array_assume_init(array) })
1027        }
1028        Err(initialized) => {
1029            // SAFETY: Only the first `initialized` elements were populated
1030            Err(unsafe { IntoIter::new_unchecked(array, 0..initialized) })
1031        }
1032    }
1033}
1034
1035/// Version of [`iter_next_chunk`] using a passed-in slice in order to avoid
1036/// needing to monomorphize for every array length.
1037///
1038/// Unfortunately this loop has two exit conditions, the buffer filling up
1039/// or the iterator running out of items, making it tend to optimize poorly.
1040#[inline]
1041#[cfg(not(feature = "ferrocene_subset"))]
1042fn iter_next_chunk_erased<T>(
1043    buffer: &mut [MaybeUninit<T>],
1044    iter: &mut impl Iterator<Item = T>,
1045) -> Result<(), usize> {
1046    // if `Iterator::next` panics, this guard will drop already initialized items
1047    let mut guard = Guard { array_mut: buffer, initialized: 0 };
1048    while guard.initialized < guard.array_mut.len() {
1049        let Some(item) = iter.next() else {
1050            // Unlike `try_from_fn_erased`, we want to keep the partial results,
1051            // so we need to defuse the guard instead of using `?`.
1052            let initialized = guard.initialized;
1053            mem::forget(guard);
1054            return Err(initialized);
1055        };
1056
1057        // SAFETY: The loop condition ensures we have space to push the item
1058        unsafe { guard.push_unchecked(item) };
1059    }
1060
1061    mem::forget(guard);
1062    Ok(())
1063}