core/
cell.rs

1//! Shareable mutable containers.
2//!
3//! Rust memory safety is based on this rule: Given an object `T`, it is only possible to
4//! have one of the following:
5//!
6//! - Several immutable references (`&T`) to the object (also known as **aliasing**).
7//! - One mutable reference (`&mut T`) to the object (also known as **mutability**).
8//!
9//! This is enforced by the Rust compiler. However, there are situations where this rule is not
10//! flexible enough. Sometimes it is required to have multiple references to an object and yet
11//! mutate it.
12//!
13//! Shareable mutable containers exist to permit mutability in a controlled manner, even in the
14//! presence of aliasing. [`Cell<T>`], [`RefCell<T>`], and [`OnceCell<T>`] allow doing this in
15//! a single-threaded way—they do not implement [`Sync`]. (If you need to do aliasing and
16//! mutation among multiple threads, [`Mutex<T>`], [`RwLock<T>`], [`OnceLock<T>`] or [`atomic`]
17//! types are the correct data structures to do so).
18//!
19//! Values of the `Cell<T>`, `RefCell<T>`, and `OnceCell<T>` types may be mutated through shared
20//! references (i.e. the common `&T` type), whereas most Rust types can only be mutated through
21//! unique (`&mut T`) references. We say these cell types provide 'interior mutability'
22//! (mutable via `&T`), in contrast with typical Rust types that exhibit 'inherited mutability'
23//! (mutable only via `&mut T`).
24//!
25//! Cell types come in four flavors: `Cell<T>`, `RefCell<T>`, `OnceCell<T>`, and `LazyCell<T>`.
26//! Each provides a different way of providing safe interior mutability.
27//!
28//! ## `Cell<T>`
29//!
30//! [`Cell<T>`] implements interior mutability by moving values in and out of the cell. That is, an
31//! `&mut T` to the inner value can never be obtained, and the value itself cannot be directly
32//! obtained without replacing it with something else. Both of these rules ensure that there is
33//! never more than one reference pointing to the inner value. This type provides the following
34//! methods:
35//!
36//!  - For types that implement [`Copy`], the [`get`](Cell::get) method retrieves the current
37//!    interior value by duplicating it.
38//!  - For types that implement [`Default`], the [`take`](Cell::take) method replaces the current
39//!    interior value with [`Default::default()`] and returns the replaced value.
40//!  - All types have:
41//!    - [`replace`](Cell::replace): replaces the current interior value and returns the replaced
42//!      value.
43//!    - [`into_inner`](Cell::into_inner): this method consumes the `Cell<T>` and returns the
44//!      interior value.
45//!    - [`set`](Cell::set): this method replaces the interior value, dropping the replaced value.
46//!
47//! `Cell<T>` is typically used for more simple types where copying or moving values isn't too
48//! resource intensive (e.g. numbers), and should usually be preferred over other cell types when
49//! possible. For larger and non-copy types, `RefCell` provides some advantages.
50//!
51//! ## `RefCell<T>`
52//!
53//! [`RefCell<T>`] uses Rust's lifetimes to implement "dynamic borrowing", a process whereby one can
54//! claim temporary, exclusive, mutable access to the inner value. Borrows for `RefCell<T>`s are
55//! tracked at _runtime_, unlike Rust's native reference types which are entirely tracked
56//! statically, at compile time.
57//!
58//! An immutable reference to a `RefCell`'s inner value (`&T`) can be obtained with
59//! [`borrow`](`RefCell::borrow`), and a mutable borrow (`&mut T`) can be obtained with
60//! [`borrow_mut`](`RefCell::borrow_mut`). When these functions are called, they first verify that
61//! Rust's borrow rules will be satisfied: any number of immutable borrows are allowed or a
62//! single mutable borrow is allowed, but never both. If a borrow is attempted that would violate
63//! these rules, the thread will panic.
64//!
65//! The corresponding [`Sync`] version of `RefCell<T>` is [`RwLock<T>`].
66//!
67//! ## `OnceCell<T>`
68//!
69//! [`OnceCell<T>`] is somewhat of a hybrid of `Cell` and `RefCell` that works for values that
70//! typically only need to be set once. This means that a reference `&T` can be obtained without
71//! moving or copying the inner value (unlike `Cell`) but also without runtime checks (unlike
72//! `RefCell`). However, its value can also not be updated once set unless you have a mutable
73//! reference to the `OnceCell`.
74//!
75//! `OnceCell` provides the following methods:
76//!
77//! - [`get`](OnceCell::get): obtain a reference to the inner value
78//! - [`set`](OnceCell::set): set the inner value if it is unset (returns a `Result`)
79//! - [`get_or_init`](OnceCell::get_or_init): return the inner value, initializing it if needed
80//! - [`get_mut`](OnceCell::get_mut): provide a mutable reference to the inner value, only available
81//!   if you have a mutable reference to the cell itself.
82//!
83//! The corresponding [`Sync`] version of `OnceCell<T>` is [`OnceLock<T>`].
84//!
85//! ## `LazyCell<T, F>`
86//!
87//! A common pattern with OnceCell is, for a given OnceCell, to use the same function on every
88//! call to [`OnceCell::get_or_init`] with that cell. This is what is offered by [`LazyCell`],
89//! which pairs cells of `T` with functions of `F`, and always calls `F` before it yields `&T`.
90//! This happens implicitly by simply attempting to dereference the LazyCell to get its contents,
91//! so its use is much more transparent with a place which has been initialized by a constant.
92//!
93//! More complicated patterns that don't fit this description can be built on `OnceCell<T>` instead.
94//!
95//! `LazyCell` works by providing an implementation of `impl Deref` that calls the function,
96//! so you can just use it by dereference (e.g. `*lazy_cell` or `lazy_cell.deref()`).
97//!
98//! The corresponding [`Sync`] version of `LazyCell<T, F>` is [`LazyLock<T, F>`].
99//!
100//! # When to choose interior mutability
101//!
102//! The more common inherited mutability, where one must have unique access to mutate a value, is
103//! one of the key language elements that enables Rust to reason strongly about pointer aliasing,
104//! statically preventing crash bugs. Because of that, inherited mutability is preferred, and
105//! interior mutability is something of a last resort. Since cell types enable mutation where it
106//! would otherwise be disallowed though, there are occasions when interior mutability might be
107//! appropriate, or even *must* be used, e.g.
108//!
109//! * Introducing mutability 'inside' of something immutable
110//! * Implementation details of logically-immutable methods.
111//! * Mutating implementations of [`Clone`].
112//!
113//! ## Introducing mutability 'inside' of something immutable
114//!
115//! Many shared smart pointer types, including [`Rc<T>`] and [`Arc<T>`], provide containers that can
116//! be cloned and shared between multiple parties. Because the contained values may be
117//! multiply-aliased, they can only be borrowed with `&`, not `&mut`. Without cells it would be
118//! impossible to mutate data inside of these smart pointers at all.
119//!
120//! It's very common then to put a `RefCell<T>` inside shared pointer types to reintroduce
121//! mutability:
122//!
123//! ```
124//! use std::cell::{RefCell, RefMut};
125//! use std::collections::HashMap;
126//! use std::rc::Rc;
127//!
128//! fn main() {
129//!     let shared_map: Rc<RefCell<_>> = Rc::new(RefCell::new(HashMap::new()));
130//!     // Create a new block to limit the scope of the dynamic borrow
131//!     {
132//!         let mut map: RefMut<'_, _> = shared_map.borrow_mut();
133//!         map.insert("africa", 92388);
134//!         map.insert("kyoto", 11837);
135//!         map.insert("piccadilly", 11826);
136//!         map.insert("marbles", 38);
137//!     }
138//!
139//!     // Note that if we had not let the previous borrow of the cache fall out
140//!     // of scope then the subsequent borrow would cause a dynamic thread panic.
141//!     // This is the major hazard of using `RefCell`.
142//!     let total: i32 = shared_map.borrow().values().sum();
143//!     println!("{total}");
144//! }
145//! ```
146//!
147//! Note that this example uses `Rc<T>` and not `Arc<T>`. `RefCell<T>`s are for single-threaded
148//! scenarios. Consider using [`RwLock<T>`] or [`Mutex<T>`] if you need shared mutability in a
149//! multi-threaded situation.
150//!
151//! ## Implementation details of logically-immutable methods
152//!
153//! Occasionally it may be desirable not to expose in an API that there is mutation happening
154//! "under the hood". This may be because logically the operation is immutable, but e.g., caching
155//! forces the implementation to perform mutation; or because you must employ mutation to implement
156//! a trait method that was originally defined to take `&self`.
157//!
158//! ```
159//! # #![allow(dead_code)]
160//! use std::cell::OnceCell;
161//!
162//! struct Graph {
163//!     edges: Vec<(i32, i32)>,
164//!     span_tree_cache: OnceCell<Vec<(i32, i32)>>
165//! }
166//!
167//! impl Graph {
168//!     fn minimum_spanning_tree(&self) -> Vec<(i32, i32)> {
169//!         self.span_tree_cache
170//!             .get_or_init(|| self.calc_span_tree())
171//!             .clone()
172//!     }
173//!
174//!     fn calc_span_tree(&self) -> Vec<(i32, i32)> {
175//!         // Expensive computation goes here
176//!         vec![]
177//!     }
178//! }
179//! ```
180//!
181//! ## Mutating implementations of `Clone`
182//!
183//! This is simply a special - but common - case of the previous: hiding mutability for operations
184//! that appear to be immutable. The [`clone`](Clone::clone) method is expected to not change the
185//! source value, and is declared to take `&self`, not `&mut self`. Therefore, any mutation that
186//! happens in the `clone` method must use cell types. For example, [`Rc<T>`] maintains its
187//! reference counts within a `Cell<T>`.
188//!
189//! ```
190//! use std::cell::Cell;
191//! use std::ptr::NonNull;
192//! use std::process::abort;
193//! use std::marker::PhantomData;
194//!
195//! struct Rc<T: ?Sized> {
196//!     ptr: NonNull<RcInner<T>>,
197//!     phantom: PhantomData<RcInner<T>>,
198//! }
199//!
200//! struct RcInner<T: ?Sized> {
201//!     strong: Cell<usize>,
202//!     refcount: Cell<usize>,
203//!     value: T,
204//! }
205//!
206//! impl<T: ?Sized> Clone for Rc<T> {
207//!     fn clone(&self) -> Rc<T> {
208//!         self.inc_strong();
209//!         Rc {
210//!             ptr: self.ptr,
211//!             phantom: PhantomData,
212//!         }
213//!     }
214//! }
215//!
216//! trait RcInnerPtr<T: ?Sized> {
217//!
218//!     fn inner(&self) -> &RcInner<T>;
219//!
220//!     fn strong(&self) -> usize {
221//!         self.inner().strong.get()
222//!     }
223//!
224//!     fn inc_strong(&self) {
225//!         self.inner()
226//!             .strong
227//!             .set(self.strong()
228//!                      .checked_add(1)
229//!                      .unwrap_or_else(|| abort() ));
230//!     }
231//! }
232//!
233//! impl<T: ?Sized> RcInnerPtr<T> for Rc<T> {
234//!    fn inner(&self) -> &RcInner<T> {
235//!        unsafe {
236//!            self.ptr.as_ref()
237//!        }
238//!    }
239//! }
240//! ```
241//!
242//! [`Arc<T>`]: ../../std/sync/struct.Arc.html
243//! [`Rc<T>`]: ../../std/rc/struct.Rc.html
244//! [`RwLock<T>`]: ../../std/sync/struct.RwLock.html
245//! [`Mutex<T>`]: ../../std/sync/struct.Mutex.html
246//! [`OnceLock<T>`]: ../../std/sync/struct.OnceLock.html
247//! [`LazyLock<T, F>`]: ../../std/sync/struct.LazyLock.html
248//! [`Sync`]: ../../std/marker/trait.Sync.html
249//! [`atomic`]: crate::sync::atomic
250
251#![stable(feature = "rust1", since = "1.0.0")]
252
253#[cfg(not(feature = "ferrocene_certified"))]
254use crate::cmp::Ordering;
255#[cfg(not(feature = "ferrocene_certified"))]
256use crate::fmt::{self, Debug, Display};
257#[cfg(not(feature = "ferrocene_certified"))]
258use crate::marker::{Destruct, PhantomData, Unsize};
259#[cfg(not(feature = "ferrocene_certified"))]
260use crate::mem::{self, ManuallyDrop};
261#[cfg(not(feature = "ferrocene_certified"))]
262use crate::ops::{self, CoerceUnsized, Deref, DerefMut, DerefPure, DispatchFromDyn};
263use crate::panic::const_panic;
264#[cfg(not(feature = "ferrocene_certified"))]
265use crate::pin::PinCoerceUnsized;
266#[cfg(not(feature = "ferrocene_certified"))]
267use crate::ptr::{self, NonNull};
268#[cfg(not(feature = "ferrocene_certified"))]
269use crate::range;
270
271// Ferrocene addition: imports for certified subset
272#[cfg(feature = "ferrocene_certified")]
273#[rustfmt::skip]
274use crate::{
275    marker::{Destruct, PhantomData},
276    mem,
277    ops::{Deref, DerefMut},
278    ptr::NonNull,
279};
280
281#[cfg(not(feature = "ferrocene_certified"))]
282mod lazy;
283#[cfg(not(feature = "ferrocene_certified"))]
284mod once;
285
286#[stable(feature = "lazy_cell", since = "1.80.0")]
287#[cfg(not(feature = "ferrocene_certified"))]
288pub use lazy::LazyCell;
289#[stable(feature = "once_cell", since = "1.70.0")]
290#[cfg(not(feature = "ferrocene_certified"))]
291pub use once::OnceCell;
292
293/// A mutable memory location.
294///
295/// # Memory layout
296///
297/// `Cell<T>` has the same [memory layout and caveats as
298/// `UnsafeCell<T>`](UnsafeCell#memory-layout). In particular, this means that
299/// `Cell<T>` has the same in-memory representation as its inner type `T`.
300///
301/// # Examples
302///
303/// In this example, you can see that `Cell<T>` enables mutation inside an
304/// immutable struct. In other words, it enables "interior mutability".
305///
306/// ```
307/// use std::cell::Cell;
308///
309/// struct SomeStruct {
310///     regular_field: u8,
311///     special_field: Cell<u8>,
312/// }
313///
314/// let my_struct = SomeStruct {
315///     regular_field: 0,
316///     special_field: Cell::new(1),
317/// };
318///
319/// let new_value = 100;
320///
321/// // ERROR: `my_struct` is immutable
322/// // my_struct.regular_field = new_value;
323///
324/// // WORKS: although `my_struct` is immutable, `special_field` is a `Cell`,
325/// // which can always be mutated
326/// my_struct.special_field.set(new_value);
327/// assert_eq!(my_struct.special_field.get(), new_value);
328/// ```
329///
330/// See the [module-level documentation](self) for more.
331#[rustc_diagnostic_item = "Cell"]
332#[stable(feature = "rust1", since = "1.0.0")]
333#[repr(transparent)]
334#[rustc_pub_transparent]
335pub struct Cell<T: ?Sized> {
336    value: UnsafeCell<T>,
337}
338
339#[stable(feature = "rust1", since = "1.0.0")]
340unsafe impl<T: ?Sized> Send for Cell<T> where T: Send {}
341
342// Note that this negative impl isn't strictly necessary for correctness,
343// as `Cell` wraps `UnsafeCell`, which is itself `!Sync`.
344// However, given how important `Cell`'s `!Sync`-ness is,
345// having an explicit negative impl is nice for documentation purposes
346// and results in nicer error messages.
347#[stable(feature = "rust1", since = "1.0.0")]
348impl<T: ?Sized> !Sync for Cell<T> {}
349
350#[stable(feature = "rust1", since = "1.0.0")]
351#[cfg(not(feature = "ferrocene_certified"))]
352impl<T: Copy> Clone for Cell<T> {
353    #[inline]
354    fn clone(&self) -> Cell<T> {
355        Cell::new(self.get())
356    }
357}
358
359#[stable(feature = "rust1", since = "1.0.0")]
360#[rustc_const_unstable(feature = "const_default", issue = "143894")]
361#[cfg(not(feature = "ferrocene_certified"))]
362impl<T: [const] Default> const Default for Cell<T> {
363    /// Creates a `Cell<T>`, with the `Default` value for T.
364    #[inline]
365    fn default() -> Cell<T> {
366        Cell::new(Default::default())
367    }
368}
369
370#[stable(feature = "rust1", since = "1.0.0")]
371#[cfg(not(feature = "ferrocene_certified"))]
372impl<T: PartialEq + Copy> PartialEq for Cell<T> {
373    #[inline]
374    fn eq(&self, other: &Cell<T>) -> bool {
375        self.get() == other.get()
376    }
377}
378
379#[stable(feature = "cell_eq", since = "1.2.0")]
380#[cfg(not(feature = "ferrocene_certified"))]
381impl<T: Eq + Copy> Eq for Cell<T> {}
382
383#[stable(feature = "cell_ord", since = "1.10.0")]
384#[cfg(not(feature = "ferrocene_certified"))]
385impl<T: PartialOrd + Copy> PartialOrd for Cell<T> {
386    #[inline]
387    fn partial_cmp(&self, other: &Cell<T>) -> Option<Ordering> {
388        self.get().partial_cmp(&other.get())
389    }
390
391    #[inline]
392    fn lt(&self, other: &Cell<T>) -> bool {
393        self.get() < other.get()
394    }
395
396    #[inline]
397    fn le(&self, other: &Cell<T>) -> bool {
398        self.get() <= other.get()
399    }
400
401    #[inline]
402    fn gt(&self, other: &Cell<T>) -> bool {
403        self.get() > other.get()
404    }
405
406    #[inline]
407    fn ge(&self, other: &Cell<T>) -> bool {
408        self.get() >= other.get()
409    }
410}
411
412#[stable(feature = "cell_ord", since = "1.10.0")]
413#[cfg(not(feature = "ferrocene_certified"))]
414impl<T: Ord + Copy> Ord for Cell<T> {
415    #[inline]
416    fn cmp(&self, other: &Cell<T>) -> Ordering {
417        self.get().cmp(&other.get())
418    }
419}
420
421#[stable(feature = "cell_from", since = "1.12.0")]
422#[rustc_const_unstable(feature = "const_convert", issue = "143773")]
423#[cfg(not(feature = "ferrocene_certified"))]
424impl<T> const From<T> for Cell<T> {
425    /// Creates a new `Cell<T>` containing the given value.
426    fn from(t: T) -> Cell<T> {
427        Cell::new(t)
428    }
429}
430
431impl<T> Cell<T> {
432    /// Creates a new `Cell` containing the given value.
433    ///
434    /// # Examples
435    ///
436    /// ```
437    /// use std::cell::Cell;
438    ///
439    /// let c = Cell::new(5);
440    /// ```
441    #[stable(feature = "rust1", since = "1.0.0")]
442    #[rustc_const_stable(feature = "const_cell_new", since = "1.24.0")]
443    #[inline]
444    pub const fn new(value: T) -> Cell<T> {
445        Cell { value: UnsafeCell::new(value) }
446    }
447
448    /// Sets the contained value.
449    ///
450    /// # Examples
451    ///
452    /// ```
453    /// use std::cell::Cell;
454    ///
455    /// let c = Cell::new(5);
456    ///
457    /// c.set(10);
458    /// ```
459    #[inline]
460    #[stable(feature = "rust1", since = "1.0.0")]
461    #[rustc_const_unstable(feature = "const_cell_traits", issue = "147787")]
462    pub const fn set(&self, val: T)
463    where
464        T: [const] Destruct,
465    {
466        self.replace(val);
467    }
468
469    /// Swaps the values of two `Cell`s.
470    ///
471    /// The difference with `std::mem::swap` is that this function doesn't
472    /// require a `&mut` reference.
473    ///
474    /// # Panics
475    ///
476    /// This function will panic if `self` and `other` are different `Cell`s that partially overlap.
477    /// (Using just standard library methods, it is impossible to create such partially overlapping `Cell`s.
478    /// However, unsafe code is allowed to e.g. create two `&Cell<[i32; 2]>` that partially overlap.)
479    ///
480    /// # Examples
481    ///
482    /// ```
483    /// use std::cell::Cell;
484    ///
485    /// let c1 = Cell::new(5i32);
486    /// let c2 = Cell::new(10i32);
487    /// c1.swap(&c2);
488    /// assert_eq!(10, c1.get());
489    /// assert_eq!(5, c2.get());
490    /// ```
491    #[inline]
492    #[stable(feature = "move_cell", since = "1.17.0")]
493    #[cfg(not(feature = "ferrocene_certified"))]
494    pub fn swap(&self, other: &Self) {
495        // This function documents that it *will* panic, and intrinsics::is_nonoverlapping doesn't
496        // do the check in const, so trying to use it here would be inviting unnecessary fragility.
497        fn is_nonoverlapping<T>(src: *const T, dst: *const T) -> bool {
498            let src_usize = src.addr();
499            let dst_usize = dst.addr();
500            let diff = src_usize.abs_diff(dst_usize);
501            diff >= size_of::<T>()
502        }
503
504        if ptr::eq(self, other) {
505            // Swapping wouldn't change anything.
506            return;
507        }
508        if !is_nonoverlapping(self, other) {
509            // See <https://github.com/rust-lang/rust/issues/80778> for why we need to stop here.
510            panic!("`Cell::swap` on overlapping non-identical `Cell`s");
511        }
512        // SAFETY: This can be risky if called from separate threads, but `Cell`
513        // is `!Sync` so this won't happen. This also won't invalidate any
514        // pointers since `Cell` makes sure nothing else will be pointing into
515        // either of these `Cell`s. We also excluded shenanigans like partially overlapping `Cell`s,
516        // so `swap` will just properly copy two full values of type `T` back and forth.
517        unsafe {
518            mem::swap(&mut *self.value.get(), &mut *other.value.get());
519        }
520    }
521
522    /// Replaces the contained value with `val`, and returns the old contained value.
523    ///
524    /// # Examples
525    ///
526    /// ```
527    /// use std::cell::Cell;
528    ///
529    /// let cell = Cell::new(5);
530    /// assert_eq!(cell.get(), 5);
531    /// assert_eq!(cell.replace(10), 5);
532    /// assert_eq!(cell.get(), 10);
533    /// ```
534    #[inline]
535    #[stable(feature = "move_cell", since = "1.17.0")]
536    #[rustc_const_stable(feature = "const_cell", since = "1.88.0")]
537    #[rustc_confusables("swap")]
538    pub const fn replace(&self, val: T) -> T {
539        // SAFETY: This can cause data races if called from a separate thread,
540        // but `Cell` is `!Sync` so this won't happen.
541        mem::replace(unsafe { &mut *self.value.get() }, val)
542    }
543
544    /// Unwraps the value, consuming the cell.
545    ///
546    /// # Examples
547    ///
548    /// ```
549    /// use std::cell::Cell;
550    ///
551    /// let c = Cell::new(5);
552    /// let five = c.into_inner();
553    ///
554    /// assert_eq!(five, 5);
555    /// ```
556    #[stable(feature = "move_cell", since = "1.17.0")]
557    #[rustc_const_stable(feature = "const_cell_into_inner", since = "1.83.0")]
558    #[rustc_allow_const_fn_unstable(const_precise_live_drops)]
559    #[cfg(not(feature = "ferrocene_certified"))]
560    pub const fn into_inner(self) -> T {
561        self.value.into_inner()
562    }
563}
564
565impl<T: Copy> Cell<T> {
566    /// Returns a copy of the contained value.
567    ///
568    /// # Examples
569    ///
570    /// ```
571    /// use std::cell::Cell;
572    ///
573    /// let c = Cell::new(5);
574    ///
575    /// let five = c.get();
576    /// ```
577    #[inline]
578    #[stable(feature = "rust1", since = "1.0.0")]
579    #[rustc_const_stable(feature = "const_cell", since = "1.88.0")]
580    pub const fn get(&self) -> T {
581        // SAFETY: This can cause data races if called from a separate thread,
582        // but `Cell` is `!Sync` so this won't happen.
583        unsafe { *self.value.get() }
584    }
585
586    /// Updates the contained value using a function.
587    ///
588    /// # Examples
589    ///
590    /// ```
591    /// use std::cell::Cell;
592    ///
593    /// let c = Cell::new(5);
594    /// c.update(|x| x + 1);
595    /// assert_eq!(c.get(), 6);
596    /// ```
597    #[inline]
598    #[stable(feature = "cell_update", since = "1.88.0")]
599    #[rustc_const_unstable(feature = "const_cell_traits", issue = "147787")]
600    #[cfg(not(feature = "ferrocene_certified"))]
601    pub const fn update(&self, f: impl [const] FnOnce(T) -> T)
602    where
603        // FIXME(const-hack): `Copy` should imply `const Destruct`
604        T: [const] Destruct,
605    {
606        let old = self.get();
607        self.set(f(old));
608    }
609}
610
611#[cfg(not(feature = "ferrocene_certified"))]
612impl<T: ?Sized> Cell<T> {
613    /// Returns a raw pointer to the underlying data in this cell.
614    ///
615    /// # Examples
616    ///
617    /// ```
618    /// use std::cell::Cell;
619    ///
620    /// let c = Cell::new(5);
621    ///
622    /// let ptr = c.as_ptr();
623    /// ```
624    #[inline]
625    #[stable(feature = "cell_as_ptr", since = "1.12.0")]
626    #[rustc_const_stable(feature = "const_cell_as_ptr", since = "1.32.0")]
627    #[rustc_as_ptr]
628    #[rustc_never_returns_null_ptr]
629    pub const fn as_ptr(&self) -> *mut T {
630        self.value.get()
631    }
632
633    /// Returns a mutable reference to the underlying data.
634    ///
635    /// This call borrows `Cell` mutably (at compile-time) which guarantees
636    /// that we possess the only reference.
637    ///
638    /// However be cautious: this method expects `self` to be mutable, which is
639    /// generally not the case when using a `Cell`. If you require interior
640    /// mutability by reference, consider using `RefCell` which provides
641    /// run-time checked mutable borrows through its [`borrow_mut`] method.
642    ///
643    /// [`borrow_mut`]: RefCell::borrow_mut()
644    ///
645    /// # Examples
646    ///
647    /// ```
648    /// use std::cell::Cell;
649    ///
650    /// let mut c = Cell::new(5);
651    /// *c.get_mut() += 1;
652    ///
653    /// assert_eq!(c.get(), 6);
654    /// ```
655    #[inline]
656    #[stable(feature = "cell_get_mut", since = "1.11.0")]
657    #[rustc_const_stable(feature = "const_cell", since = "1.88.0")]
658    pub const fn get_mut(&mut self) -> &mut T {
659        self.value.get_mut()
660    }
661
662    /// Returns a `&Cell<T>` from a `&mut T`
663    ///
664    /// # Examples
665    ///
666    /// ```
667    /// use std::cell::Cell;
668    ///
669    /// let slice: &mut [i32] = &mut [1, 2, 3];
670    /// let cell_slice: &Cell<[i32]> = Cell::from_mut(slice);
671    /// let slice_cell: &[Cell<i32>] = cell_slice.as_slice_of_cells();
672    ///
673    /// assert_eq!(slice_cell.len(), 3);
674    /// ```
675    #[inline]
676    #[stable(feature = "as_cell", since = "1.37.0")]
677    #[rustc_const_stable(feature = "const_cell", since = "1.88.0")]
678    pub const fn from_mut(t: &mut T) -> &Cell<T> {
679        // SAFETY: `&mut` ensures unique access.
680        unsafe { &*(t as *mut T as *const Cell<T>) }
681    }
682}
683
684#[cfg(not(feature = "ferrocene_certified"))]
685impl<T: Default> Cell<T> {
686    /// Takes the value of the cell, leaving `Default::default()` in its place.
687    ///
688    /// # Examples
689    ///
690    /// ```
691    /// use std::cell::Cell;
692    ///
693    /// let c = Cell::new(5);
694    /// let five = c.take();
695    ///
696    /// assert_eq!(five, 5);
697    /// assert_eq!(c.into_inner(), 0);
698    /// ```
699    #[stable(feature = "move_cell", since = "1.17.0")]
700    #[rustc_const_unstable(feature = "const_cell_traits", issue = "147787")]
701    pub const fn take(&self) -> T
702    where
703        T: [const] Default,
704    {
705        self.replace(Default::default())
706    }
707}
708
709#[unstable(feature = "coerce_unsized", issue = "18598")]
710#[cfg(not(feature = "ferrocene_certified"))]
711impl<T: CoerceUnsized<U>, U> CoerceUnsized<Cell<U>> for Cell<T> {}
712
713// Allow types that wrap `Cell` to also implement `DispatchFromDyn`
714// and become dyn-compatible method receivers.
715// Note that currently `Cell` itself cannot be a method receiver
716// because it does not implement Deref.
717// In other words:
718// `self: Cell<&Self>` won't work
719// `self: CellWrapper<Self>` becomes possible
720#[unstable(feature = "dispatch_from_dyn", issue = "none")]
721#[cfg(not(feature = "ferrocene_certified"))]
722impl<T: DispatchFromDyn<U>, U> DispatchFromDyn<Cell<U>> for Cell<T> {}
723
724#[cfg(not(feature = "ferrocene_certified"))]
725impl<T> Cell<[T]> {
726    /// Returns a `&[Cell<T>]` from a `&Cell<[T]>`
727    ///
728    /// # Examples
729    ///
730    /// ```
731    /// use std::cell::Cell;
732    ///
733    /// let slice: &mut [i32] = &mut [1, 2, 3];
734    /// let cell_slice: &Cell<[i32]> = Cell::from_mut(slice);
735    /// let slice_cell: &[Cell<i32>] = cell_slice.as_slice_of_cells();
736    ///
737    /// assert_eq!(slice_cell.len(), 3);
738    /// ```
739    #[stable(feature = "as_cell", since = "1.37.0")]
740    #[rustc_const_stable(feature = "const_cell", since = "1.88.0")]
741    pub const fn as_slice_of_cells(&self) -> &[Cell<T>] {
742        // SAFETY: `Cell<T>` has the same memory layout as `T`.
743        unsafe { &*(self as *const Cell<[T]> as *const [Cell<T>]) }
744    }
745}
746
747#[cfg(not(feature = "ferrocene_certified"))]
748impl<T, const N: usize> Cell<[T; N]> {
749    /// Returns a `&[Cell<T>; N]` from a `&Cell<[T; N]>`
750    ///
751    /// # Examples
752    ///
753    /// ```
754    /// use std::cell::Cell;
755    ///
756    /// let mut array: [i32; 3] = [1, 2, 3];
757    /// let cell_array: &Cell<[i32; 3]> = Cell::from_mut(&mut array);
758    /// let array_cell: &[Cell<i32>; 3] = cell_array.as_array_of_cells();
759    /// ```
760    #[stable(feature = "as_array_of_cells", since = "1.91.0")]
761    #[rustc_const_stable(feature = "as_array_of_cells", since = "1.91.0")]
762    pub const fn as_array_of_cells(&self) -> &[Cell<T>; N] {
763        // SAFETY: `Cell<T>` has the same memory layout as `T`.
764        unsafe { &*(self as *const Cell<[T; N]> as *const [Cell<T>; N]) }
765    }
766}
767
768/// Types for which cloning `Cell<Self>` is sound.
769///
770/// # Safety
771///
772/// Implementing this trait for a type is sound if and only if the following code is sound for T =
773/// that type.
774///
775/// ```
776/// #![feature(cell_get_cloned)]
777/// # use std::cell::{CloneFromCell, Cell};
778/// fn clone_from_cell<T: CloneFromCell>(cell: &Cell<T>) -> T {
779///     unsafe { T::clone(&*cell.as_ptr()) }
780/// }
781/// ```
782///
783/// Importantly, you can't just implement `CloneFromCell` for any arbitrary `Copy` type, e.g. the
784/// following is unsound:
785///
786/// ```rust
787/// #![feature(cell_get_cloned)]
788/// # use std::cell::Cell;
789///
790/// #[derive(Copy, Debug)]
791/// pub struct Bad<'a>(Option<&'a Cell<Bad<'a>>>, u8);
792///
793/// impl Clone for Bad<'_> {
794///     fn clone(&self) -> Self {
795///         let a: &u8 = &self.1;
796///         // when self.0 points to self, we write to self.1 while we have a live `&u8` pointing to
797///         // it -- this is UB
798///         self.0.unwrap().set(Self(None, 1));
799///         dbg!((a, self));
800///         Self(None, 0)
801///     }
802/// }
803///
804/// // this is not sound
805/// // unsafe impl CloneFromCell for Bad<'_> {}
806/// ```
807#[unstable(feature = "cell_get_cloned", issue = "145329")]
808// Allow potential overlapping implementations in user code
809#[marker]
810#[cfg(not(feature = "ferrocene_certified"))]
811pub unsafe trait CloneFromCell: Clone {}
812
813// `CloneFromCell` can be implemented for types that don't have indirection and which don't access
814// `Cell`s in their `Clone` implementation. A commonly-used subset is covered here.
815#[unstable(feature = "cell_get_cloned", issue = "145329")]
816#[cfg(not(feature = "ferrocene_certified"))]
817unsafe impl<T: CloneFromCell, const N: usize> CloneFromCell for [T; N] {}
818#[unstable(feature = "cell_get_cloned", issue = "145329")]
819#[cfg(not(feature = "ferrocene_certified"))]
820unsafe impl<T: CloneFromCell> CloneFromCell for Option<T> {}
821#[unstable(feature = "cell_get_cloned", issue = "145329")]
822#[cfg(not(feature = "ferrocene_certified"))]
823unsafe impl<T: CloneFromCell, E: CloneFromCell> CloneFromCell for Result<T, E> {}
824#[unstable(feature = "cell_get_cloned", issue = "145329")]
825#[cfg(not(feature = "ferrocene_certified"))]
826unsafe impl<T: ?Sized> CloneFromCell for PhantomData<T> {}
827#[unstable(feature = "cell_get_cloned", issue = "145329")]
828#[cfg(not(feature = "ferrocene_certified"))]
829unsafe impl<T: CloneFromCell> CloneFromCell for ManuallyDrop<T> {}
830#[unstable(feature = "cell_get_cloned", issue = "145329")]
831#[cfg(not(feature = "ferrocene_certified"))]
832unsafe impl<T: CloneFromCell> CloneFromCell for ops::Range<T> {}
833#[unstable(feature = "cell_get_cloned", issue = "145329")]
834#[cfg(not(feature = "ferrocene_certified"))]
835unsafe impl<T: CloneFromCell> CloneFromCell for range::Range<T> {}
836
837#[unstable(feature = "cell_get_cloned", issue = "145329")]
838#[cfg(not(feature = "ferrocene_certified"))]
839impl<T: CloneFromCell> Cell<T> {
840    /// Get a clone of the `Cell` that contains a copy of the original value.
841    ///
842    /// This allows a cheaply `Clone`-able type like an `Rc` to be stored in a `Cell`, exposing the
843    /// cheaper `clone()` method.
844    ///
845    /// # Examples
846    ///
847    /// ```
848    /// #![feature(cell_get_cloned)]
849    ///
850    /// use core::cell::Cell;
851    /// use std::rc::Rc;
852    ///
853    /// let rc = Rc::new(1usize);
854    /// let c1 = Cell::new(rc);
855    /// let c2 = c1.get_cloned();
856    /// assert_eq!(*c2.into_inner(), 1);
857    /// ```
858    pub fn get_cloned(&self) -> Self {
859        // SAFETY: T is CloneFromCell, which guarantees that this is sound.
860        Cell::new(T::clone(unsafe { &*self.as_ptr() }))
861    }
862}
863
864/// A mutable memory location with dynamically checked borrow rules
865///
866/// See the [module-level documentation](self) for more.
867#[rustc_diagnostic_item = "RefCell"]
868#[stable(feature = "rust1", since = "1.0.0")]
869pub struct RefCell<T: ?Sized> {
870    borrow: Cell<BorrowCounter>,
871    // Stores the location of the earliest currently active borrow.
872    // This gets updated whenever we go from having zero borrows
873    // to having a single borrow. When a borrow occurs, this gets included
874    // in the generated `BorrowError`/`BorrowMutError`
875    #[cfg(feature = "debug_refcell")]
876    borrowed_at: Cell<Option<&'static crate::panic::Location<'static>>>,
877    value: UnsafeCell<T>,
878}
879
880/// An error returned by [`RefCell::try_borrow`].
881#[stable(feature = "try_borrow", since = "1.13.0")]
882#[non_exhaustive]
883#[cfg_attr(not(feature = "ferrocene_certified"), derive(Debug))]
884pub struct BorrowError {
885    #[cfg(feature = "debug_refcell")]
886    location: &'static crate::panic::Location<'static>,
887}
888
889#[stable(feature = "try_borrow", since = "1.13.0")]
890#[cfg(not(feature = "ferrocene_certified"))]
891impl Display for BorrowError {
892    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
893        #[cfg(feature = "debug_refcell")]
894        let res = write!(
895            f,
896            "RefCell already mutably borrowed; a previous borrow was at {}",
897            self.location
898        );
899
900        #[cfg(not(feature = "debug_refcell"))]
901        let res = Display::fmt("RefCell already mutably borrowed", f);
902
903        res
904    }
905}
906
907/// An error returned by [`RefCell::try_borrow_mut`].
908#[stable(feature = "try_borrow", since = "1.13.0")]
909#[non_exhaustive]
910#[cfg_attr(not(feature = "ferrocene_certified"), derive(Debug))]
911pub struct BorrowMutError {
912    #[cfg(feature = "debug_refcell")]
913    location: &'static crate::panic::Location<'static>,
914}
915
916#[stable(feature = "try_borrow", since = "1.13.0")]
917#[cfg(not(feature = "ferrocene_certified"))]
918impl Display for BorrowMutError {
919    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
920        #[cfg(feature = "debug_refcell")]
921        let res = write!(f, "RefCell already borrowed; a previous borrow was at {}", self.location);
922
923        #[cfg(not(feature = "debug_refcell"))]
924        let res = Display::fmt("RefCell already borrowed", f);
925
926        res
927    }
928}
929
930// This ensures the panicking code is outlined from `borrow_mut` for `RefCell`.
931#[cfg_attr(not(panic = "immediate-abort"), inline(never))]
932#[track_caller]
933#[cold]
934const fn panic_already_borrowed(err: BorrowMutError) -> ! {
935    const_panic!(
936        "RefCell already borrowed",
937        "{err}",
938        err: BorrowMutError = err,
939    )
940}
941
942// This ensures the panicking code is outlined from `borrow` for `RefCell`.
943#[cfg_attr(not(panic = "immediate-abort"), inline(never))]
944#[track_caller]
945#[cold]
946const fn panic_already_mutably_borrowed(err: BorrowError) -> ! {
947    const_panic!(
948        "RefCell already mutably borrowed",
949        "{err}",
950        err: BorrowError = err,
951    )
952}
953
954// Positive values represent the number of `Ref` active. Negative values
955// represent the number of `RefMut` active. Multiple `RefMut`s can only be
956// active at a time if they refer to distinct, nonoverlapping components of a
957// `RefCell` (e.g., different ranges of a slice).
958//
959// `Ref` and `RefMut` are both two words in size, and so there will likely never
960// be enough `Ref`s or `RefMut`s in existence to overflow half of the `usize`
961// range. Thus, a `BorrowCounter` will probably never overflow or underflow.
962// However, this is not a guarantee, as a pathological program could repeatedly
963// create and then mem::forget `Ref`s or `RefMut`s. Thus, all code must
964// explicitly check for overflow and underflow in order to avoid unsafety, or at
965// least behave correctly in the event that overflow or underflow happens (e.g.,
966// see BorrowRef::new).
967type BorrowCounter = isize;
968const UNUSED: BorrowCounter = 0;
969
970#[inline(always)]
971const fn is_writing(x: BorrowCounter) -> bool {
972    x < UNUSED
973}
974
975#[inline(always)]
976const fn is_reading(x: BorrowCounter) -> bool {
977    x > UNUSED
978}
979
980impl<T> RefCell<T> {
981    /// Creates a new `RefCell` containing `value`.
982    ///
983    /// # Examples
984    ///
985    /// ```
986    /// use std::cell::RefCell;
987    ///
988    /// let c = RefCell::new(5);
989    /// ```
990    #[stable(feature = "rust1", since = "1.0.0")]
991    #[rustc_const_stable(feature = "const_refcell_new", since = "1.24.0")]
992    #[inline]
993    pub const fn new(value: T) -> RefCell<T> {
994        RefCell {
995            value: UnsafeCell::new(value),
996            borrow: Cell::new(UNUSED),
997            #[cfg(feature = "debug_refcell")]
998            borrowed_at: Cell::new(None),
999        }
1000    }
1001
1002    /// Consumes the `RefCell`, returning the wrapped value.
1003    ///
1004    /// # Examples
1005    ///
1006    /// ```
1007    /// use std::cell::RefCell;
1008    ///
1009    /// let c = RefCell::new(5);
1010    ///
1011    /// let five = c.into_inner();
1012    /// ```
1013    #[stable(feature = "rust1", since = "1.0.0")]
1014    #[rustc_const_stable(feature = "const_cell_into_inner", since = "1.83.0")]
1015    #[rustc_allow_const_fn_unstable(const_precise_live_drops)]
1016    #[inline]
1017    #[cfg(not(feature = "ferrocene_certified"))]
1018    pub const fn into_inner(self) -> T {
1019        // Since this function takes `self` (the `RefCell`) by value, the
1020        // compiler statically verifies that it is not currently borrowed.
1021        self.value.into_inner()
1022    }
1023
1024    /// Replaces the wrapped value with a new one, returning the old value,
1025    /// without deinitializing either one.
1026    ///
1027    /// This function corresponds to [`std::mem::replace`](../mem/fn.replace.html).
1028    ///
1029    /// # Panics
1030    ///
1031    /// Panics if the value is currently borrowed.
1032    ///
1033    /// # Examples
1034    ///
1035    /// ```
1036    /// use std::cell::RefCell;
1037    /// let cell = RefCell::new(5);
1038    /// let old_value = cell.replace(6);
1039    /// assert_eq!(old_value, 5);
1040    /// assert_eq!(cell, RefCell::new(6));
1041    /// ```
1042    #[inline]
1043    #[stable(feature = "refcell_replace", since = "1.24.0")]
1044    #[track_caller]
1045    #[rustc_confusables("swap")]
1046    #[rustc_const_unstable(feature = "const_ref_cell", issue = "137844")]
1047    pub const fn replace(&self, t: T) -> T {
1048        mem::replace(&mut self.borrow_mut(), t)
1049    }
1050
1051    /// Replaces the wrapped value with a new one computed from `f`, returning
1052    /// the old value, without deinitializing either one.
1053    ///
1054    /// # Panics
1055    ///
1056    /// Panics if the value is currently borrowed.
1057    ///
1058    /// # Examples
1059    ///
1060    /// ```
1061    /// use std::cell::RefCell;
1062    /// let cell = RefCell::new(5);
1063    /// let old_value = cell.replace_with(|&mut old| old + 1);
1064    /// assert_eq!(old_value, 5);
1065    /// assert_eq!(cell, RefCell::new(6));
1066    /// ```
1067    #[inline]
1068    #[stable(feature = "refcell_replace_swap", since = "1.35.0")]
1069    #[track_caller]
1070    #[cfg(not(feature = "ferrocene_certified"))]
1071    pub fn replace_with<F: FnOnce(&mut T) -> T>(&self, f: F) -> T {
1072        let mut_borrow = &mut *self.borrow_mut();
1073        let replacement = f(mut_borrow);
1074        mem::replace(mut_borrow, replacement)
1075    }
1076
1077    /// Swaps the wrapped value of `self` with the wrapped value of `other`,
1078    /// without deinitializing either one.
1079    ///
1080    /// This function corresponds to [`std::mem::swap`](../mem/fn.swap.html).
1081    ///
1082    /// # Panics
1083    ///
1084    /// Panics if the value in either `RefCell` is currently borrowed, or
1085    /// if `self` and `other` point to the same `RefCell`.
1086    ///
1087    /// # Examples
1088    ///
1089    /// ```
1090    /// use std::cell::RefCell;
1091    /// let c = RefCell::new(5);
1092    /// let d = RefCell::new(6);
1093    /// c.swap(&d);
1094    /// assert_eq!(c, RefCell::new(6));
1095    /// assert_eq!(d, RefCell::new(5));
1096    /// ```
1097    #[inline]
1098    #[stable(feature = "refcell_swap", since = "1.24.0")]
1099    #[rustc_const_unstable(feature = "const_ref_cell", issue = "137844")]
1100    #[cfg(not(feature = "ferrocene_certified"))]
1101    pub const fn swap(&self, other: &Self) {
1102        mem::swap(&mut *self.borrow_mut(), &mut *other.borrow_mut())
1103    }
1104}
1105
1106impl<T: ?Sized> RefCell<T> {
1107    /// Immutably borrows the wrapped value.
1108    ///
1109    /// The borrow lasts until the returned `Ref` exits scope. Multiple
1110    /// immutable borrows can be taken out at the same time.
1111    ///
1112    /// # Panics
1113    ///
1114    /// Panics if the value is currently mutably borrowed. For a non-panicking variant, use
1115    /// [`try_borrow`](#method.try_borrow).
1116    ///
1117    /// # Examples
1118    ///
1119    /// ```
1120    /// use std::cell::RefCell;
1121    ///
1122    /// let c = RefCell::new(5);
1123    ///
1124    /// let borrowed_five = c.borrow();
1125    /// let borrowed_five2 = c.borrow();
1126    /// ```
1127    ///
1128    /// An example of panic:
1129    ///
1130    /// ```should_panic
1131    /// use std::cell::RefCell;
1132    ///
1133    /// let c = RefCell::new(5);
1134    ///
1135    /// let m = c.borrow_mut();
1136    /// let b = c.borrow(); // this causes a panic
1137    /// ```
1138    #[stable(feature = "rust1", since = "1.0.0")]
1139    #[inline]
1140    #[track_caller]
1141    #[rustc_const_unstable(feature = "const_ref_cell", issue = "137844")]
1142    pub const fn borrow(&self) -> Ref<'_, T> {
1143        match self.try_borrow() {
1144            Ok(b) => b,
1145            Err(err) => panic_already_mutably_borrowed(err),
1146        }
1147    }
1148
1149    /// Immutably borrows the wrapped value, returning an error if the value is currently mutably
1150    /// borrowed.
1151    ///
1152    /// The borrow lasts until the returned `Ref` exits scope. Multiple immutable borrows can be
1153    /// taken out at the same time.
1154    ///
1155    /// This is the non-panicking variant of [`borrow`](#method.borrow).
1156    ///
1157    /// # Examples
1158    ///
1159    /// ```
1160    /// use std::cell::RefCell;
1161    ///
1162    /// let c = RefCell::new(5);
1163    ///
1164    /// {
1165    ///     let m = c.borrow_mut();
1166    ///     assert!(c.try_borrow().is_err());
1167    /// }
1168    ///
1169    /// {
1170    ///     let m = c.borrow();
1171    ///     assert!(c.try_borrow().is_ok());
1172    /// }
1173    /// ```
1174    #[stable(feature = "try_borrow", since = "1.13.0")]
1175    #[inline]
1176    #[cfg_attr(feature = "debug_refcell", track_caller)]
1177    #[rustc_const_unstable(feature = "const_ref_cell", issue = "137844")]
1178    pub const fn try_borrow(&self) -> Result<Ref<'_, T>, BorrowError> {
1179        match BorrowRef::new(&self.borrow) {
1180            Some(b) => {
1181                #[cfg(feature = "debug_refcell")]
1182                {
1183                    // `borrowed_at` is always the *first* active borrow
1184                    if b.borrow.get() == 1 {
1185                        self.borrowed_at.replace(Some(crate::panic::Location::caller()));
1186                    }
1187                }
1188
1189                // SAFETY: `BorrowRef` ensures that there is only immutable access
1190                // to the value while borrowed.
1191                let value = unsafe { NonNull::new_unchecked(self.value.get()) };
1192                Ok(Ref { value, borrow: b })
1193            }
1194            None => Err(BorrowError {
1195                // If a borrow occurred, then we must already have an outstanding borrow,
1196                // so `borrowed_at` will be `Some`
1197                #[cfg(feature = "debug_refcell")]
1198                location: self.borrowed_at.get().unwrap(),
1199            }),
1200        }
1201    }
1202
1203    /// Mutably borrows the wrapped value.
1204    ///
1205    /// The borrow lasts until the returned `RefMut` or all `RefMut`s derived
1206    /// from it exit scope. The value cannot be borrowed while this borrow is
1207    /// active.
1208    ///
1209    /// # Panics
1210    ///
1211    /// Panics if the value is currently borrowed. For a non-panicking variant, use
1212    /// [`try_borrow_mut`](#method.try_borrow_mut).
1213    ///
1214    /// # Examples
1215    ///
1216    /// ```
1217    /// use std::cell::RefCell;
1218    ///
1219    /// let c = RefCell::new("hello".to_owned());
1220    ///
1221    /// *c.borrow_mut() = "bonjour".to_owned();
1222    ///
1223    /// assert_eq!(&*c.borrow(), "bonjour");
1224    /// ```
1225    ///
1226    /// An example of panic:
1227    ///
1228    /// ```should_panic
1229    /// use std::cell::RefCell;
1230    ///
1231    /// let c = RefCell::new(5);
1232    /// let m = c.borrow();
1233    ///
1234    /// let b = c.borrow_mut(); // this causes a panic
1235    /// ```
1236    #[stable(feature = "rust1", since = "1.0.0")]
1237    #[inline]
1238    #[track_caller]
1239    #[rustc_const_unstable(feature = "const_ref_cell", issue = "137844")]
1240    pub const fn borrow_mut(&self) -> RefMut<'_, T> {
1241        match self.try_borrow_mut() {
1242            Ok(b) => b,
1243            Err(err) => panic_already_borrowed(err),
1244        }
1245    }
1246
1247    /// Mutably borrows the wrapped value, returning an error if the value is currently borrowed.
1248    ///
1249    /// The borrow lasts until the returned `RefMut` or all `RefMut`s derived
1250    /// from it exit scope. The value cannot be borrowed while this borrow is
1251    /// active.
1252    ///
1253    /// This is the non-panicking variant of [`borrow_mut`](#method.borrow_mut).
1254    ///
1255    /// # Examples
1256    ///
1257    /// ```
1258    /// use std::cell::RefCell;
1259    ///
1260    /// let c = RefCell::new(5);
1261    ///
1262    /// {
1263    ///     let m = c.borrow();
1264    ///     assert!(c.try_borrow_mut().is_err());
1265    /// }
1266    ///
1267    /// assert!(c.try_borrow_mut().is_ok());
1268    /// ```
1269    #[stable(feature = "try_borrow", since = "1.13.0")]
1270    #[inline]
1271    #[cfg_attr(feature = "debug_refcell", track_caller)]
1272    #[rustc_const_unstable(feature = "const_ref_cell", issue = "137844")]
1273    pub const fn try_borrow_mut(&self) -> Result<RefMut<'_, T>, BorrowMutError> {
1274        match BorrowRefMut::new(&self.borrow) {
1275            Some(b) => {
1276                #[cfg(feature = "debug_refcell")]
1277                {
1278                    self.borrowed_at.replace(Some(crate::panic::Location::caller()));
1279                }
1280
1281                // SAFETY: `BorrowRefMut` guarantees unique access.
1282                let value = unsafe { NonNull::new_unchecked(self.value.get()) };
1283                Ok(RefMut { value, borrow: b, marker: PhantomData })
1284            }
1285            None => Err(BorrowMutError {
1286                // If a borrow occurred, then we must already have an outstanding borrow,
1287                // so `borrowed_at` will be `Some`
1288                #[cfg(feature = "debug_refcell")]
1289                location: self.borrowed_at.get().unwrap(),
1290            }),
1291        }
1292    }
1293
1294    /// Returns a raw pointer to the underlying data in this cell.
1295    ///
1296    /// # Examples
1297    ///
1298    /// ```
1299    /// use std::cell::RefCell;
1300    ///
1301    /// let c = RefCell::new(5);
1302    ///
1303    /// let ptr = c.as_ptr();
1304    /// ```
1305    #[inline]
1306    #[stable(feature = "cell_as_ptr", since = "1.12.0")]
1307    #[rustc_as_ptr]
1308    #[rustc_never_returns_null_ptr]
1309    #[rustc_const_unstable(feature = "const_ref_cell", issue = "137844")]
1310    #[cfg(not(feature = "ferrocene_certified"))]
1311    pub const fn as_ptr(&self) -> *mut T {
1312        self.value.get()
1313    }
1314
1315    /// Returns a mutable reference to the underlying data.
1316    ///
1317    /// Since this method borrows `RefCell` mutably, it is statically guaranteed
1318    /// that no borrows to the underlying data exist. The dynamic checks inherent
1319    /// in [`borrow_mut`] and most other methods of `RefCell` are therefore
1320    /// unnecessary. Note that this method does not reset the borrowing state if borrows were previously leaked
1321    /// (e.g., via [`forget()`] on a [`Ref`] or [`RefMut`]). For that purpose,
1322    /// consider using the unstable [`undo_leak`] method.
1323    ///
1324    /// This method can only be called if `RefCell` can be mutably borrowed,
1325    /// which in general is only the case directly after the `RefCell` has
1326    /// been created. In these situations, skipping the aforementioned dynamic
1327    /// borrowing checks may yield better ergonomics and runtime-performance.
1328    ///
1329    /// In most situations where `RefCell` is used, it can't be borrowed mutably.
1330    /// Use [`borrow_mut`] to get mutable access to the underlying data then.
1331    ///
1332    /// [`borrow_mut`]: RefCell::borrow_mut()
1333    /// [`forget()`]: mem::forget
1334    /// [`undo_leak`]: RefCell::undo_leak()
1335    ///
1336    /// # Examples
1337    ///
1338    /// ```
1339    /// use std::cell::RefCell;
1340    ///
1341    /// let mut c = RefCell::new(5);
1342    /// *c.get_mut() += 1;
1343    ///
1344    /// assert_eq!(c, RefCell::new(6));
1345    /// ```
1346    #[inline]
1347    #[stable(feature = "cell_get_mut", since = "1.11.0")]
1348    #[rustc_const_unstable(feature = "const_ref_cell", issue = "137844")]
1349    #[cfg(not(feature = "ferrocene_certified"))]
1350    pub const fn get_mut(&mut self) -> &mut T {
1351        self.value.get_mut()
1352    }
1353
1354    /// Undo the effect of leaked guards on the borrow state of the `RefCell`.
1355    ///
1356    /// This call is similar to [`get_mut`] but more specialized. It borrows `RefCell` mutably to
1357    /// ensure no borrows exist and then resets the state tracking shared borrows. This is relevant
1358    /// if some `Ref` or `RefMut` borrows have been leaked.
1359    ///
1360    /// [`get_mut`]: RefCell::get_mut()
1361    ///
1362    /// # Examples
1363    ///
1364    /// ```
1365    /// #![feature(cell_leak)]
1366    /// use std::cell::RefCell;
1367    ///
1368    /// let mut c = RefCell::new(0);
1369    /// std::mem::forget(c.borrow_mut());
1370    ///
1371    /// assert!(c.try_borrow().is_err());
1372    /// c.undo_leak();
1373    /// assert!(c.try_borrow().is_ok());
1374    /// ```
1375    #[unstable(feature = "cell_leak", issue = "69099")]
1376    #[rustc_const_unstable(feature = "const_ref_cell", issue = "137844")]
1377    #[cfg(not(feature = "ferrocene_certified"))]
1378    pub const fn undo_leak(&mut self) -> &mut T {
1379        *self.borrow.get_mut() = UNUSED;
1380        self.get_mut()
1381    }
1382
1383    /// Immutably borrows the wrapped value, returning an error if the value is
1384    /// currently mutably borrowed.
1385    ///
1386    /// # Safety
1387    ///
1388    /// Unlike `RefCell::borrow`, this method is unsafe because it does not
1389    /// return a `Ref`, thus leaving the borrow flag untouched. Mutably
1390    /// borrowing the `RefCell` while the reference returned by this method
1391    /// is alive is undefined behavior.
1392    ///
1393    /// # Examples
1394    ///
1395    /// ```
1396    /// use std::cell::RefCell;
1397    ///
1398    /// let c = RefCell::new(5);
1399    ///
1400    /// {
1401    ///     let m = c.borrow_mut();
1402    ///     assert!(unsafe { c.try_borrow_unguarded() }.is_err());
1403    /// }
1404    ///
1405    /// {
1406    ///     let m = c.borrow();
1407    ///     assert!(unsafe { c.try_borrow_unguarded() }.is_ok());
1408    /// }
1409    /// ```
1410    #[stable(feature = "borrow_state", since = "1.37.0")]
1411    #[inline]
1412    #[rustc_const_unstable(feature = "const_ref_cell", issue = "137844")]
1413    #[cfg(not(feature = "ferrocene_certified"))]
1414    pub const unsafe fn try_borrow_unguarded(&self) -> Result<&T, BorrowError> {
1415        if !is_writing(self.borrow.get()) {
1416            // SAFETY: We check that nobody is actively writing now, but it is
1417            // the caller's responsibility to ensure that nobody writes until
1418            // the returned reference is no longer in use.
1419            // Also, `self.value.get()` refers to the value owned by `self`
1420            // and is thus guaranteed to be valid for the lifetime of `self`.
1421            Ok(unsafe { &*self.value.get() })
1422        } else {
1423            Err(BorrowError {
1424                // If a borrow occurred, then we must already have an outstanding borrow,
1425                // so `borrowed_at` will be `Some`
1426                #[cfg(feature = "debug_refcell")]
1427                location: self.borrowed_at.get().unwrap(),
1428            })
1429        }
1430    }
1431}
1432
1433#[cfg(not(feature = "ferrocene_certified"))]
1434impl<T: Default> RefCell<T> {
1435    /// Takes the wrapped value, leaving `Default::default()` in its place.
1436    ///
1437    /// # Panics
1438    ///
1439    /// Panics if the value is currently borrowed.
1440    ///
1441    /// # Examples
1442    ///
1443    /// ```
1444    /// use std::cell::RefCell;
1445    ///
1446    /// let c = RefCell::new(5);
1447    /// let five = c.take();
1448    ///
1449    /// assert_eq!(five, 5);
1450    /// assert_eq!(c.into_inner(), 0);
1451    /// ```
1452    #[stable(feature = "refcell_take", since = "1.50.0")]
1453    pub fn take(&self) -> T {
1454        self.replace(Default::default())
1455    }
1456}
1457
1458#[stable(feature = "rust1", since = "1.0.0")]
1459#[cfg(not(feature = "ferrocene_certified"))]
1460unsafe impl<T: ?Sized> Send for RefCell<T> where T: Send {}
1461
1462#[stable(feature = "rust1", since = "1.0.0")]
1463#[cfg(not(feature = "ferrocene_certified"))]
1464impl<T: ?Sized> !Sync for RefCell<T> {}
1465
1466#[stable(feature = "rust1", since = "1.0.0")]
1467#[cfg(not(feature = "ferrocene_certified"))]
1468impl<T: Clone> Clone for RefCell<T> {
1469    /// # Panics
1470    ///
1471    /// Panics if the value is currently mutably borrowed.
1472    #[inline]
1473    #[track_caller]
1474    fn clone(&self) -> RefCell<T> {
1475        RefCell::new(self.borrow().clone())
1476    }
1477
1478    /// # Panics
1479    ///
1480    /// Panics if `source` is currently mutably borrowed.
1481    #[inline]
1482    #[track_caller]
1483    fn clone_from(&mut self, source: &Self) {
1484        self.get_mut().clone_from(&source.borrow())
1485    }
1486}
1487
1488#[stable(feature = "rust1", since = "1.0.0")]
1489#[rustc_const_unstable(feature = "const_default", issue = "143894")]
1490#[cfg(not(feature = "ferrocene_certified"))]
1491impl<T: [const] Default> const Default for RefCell<T> {
1492    /// Creates a `RefCell<T>`, with the `Default` value for T.
1493    #[inline]
1494    fn default() -> RefCell<T> {
1495        RefCell::new(Default::default())
1496    }
1497}
1498
1499#[stable(feature = "rust1", since = "1.0.0")]
1500#[cfg(not(feature = "ferrocene_certified"))]
1501impl<T: ?Sized + PartialEq> PartialEq for RefCell<T> {
1502    /// # Panics
1503    ///
1504    /// Panics if the value in either `RefCell` is currently mutably borrowed.
1505    #[inline]
1506    fn eq(&self, other: &RefCell<T>) -> bool {
1507        *self.borrow() == *other.borrow()
1508    }
1509}
1510
1511#[stable(feature = "cell_eq", since = "1.2.0")]
1512#[cfg(not(feature = "ferrocene_certified"))]
1513impl<T: ?Sized + Eq> Eq for RefCell<T> {}
1514
1515#[stable(feature = "cell_ord", since = "1.10.0")]
1516#[cfg(not(feature = "ferrocene_certified"))]
1517impl<T: ?Sized + PartialOrd> PartialOrd for RefCell<T> {
1518    /// # Panics
1519    ///
1520    /// Panics if the value in either `RefCell` is currently mutably borrowed.
1521    #[inline]
1522    fn partial_cmp(&self, other: &RefCell<T>) -> Option<Ordering> {
1523        self.borrow().partial_cmp(&*other.borrow())
1524    }
1525
1526    /// # Panics
1527    ///
1528    /// Panics if the value in either `RefCell` is currently mutably borrowed.
1529    #[inline]
1530    fn lt(&self, other: &RefCell<T>) -> bool {
1531        *self.borrow() < *other.borrow()
1532    }
1533
1534    /// # Panics
1535    ///
1536    /// Panics if the value in either `RefCell` is currently mutably borrowed.
1537    #[inline]
1538    fn le(&self, other: &RefCell<T>) -> bool {
1539        *self.borrow() <= *other.borrow()
1540    }
1541
1542    /// # Panics
1543    ///
1544    /// Panics if the value in either `RefCell` is currently mutably borrowed.
1545    #[inline]
1546    fn gt(&self, other: &RefCell<T>) -> bool {
1547        *self.borrow() > *other.borrow()
1548    }
1549
1550    /// # Panics
1551    ///
1552    /// Panics if the value in either `RefCell` is currently mutably borrowed.
1553    #[inline]
1554    fn ge(&self, other: &RefCell<T>) -> bool {
1555        *self.borrow() >= *other.borrow()
1556    }
1557}
1558
1559#[stable(feature = "cell_ord", since = "1.10.0")]
1560#[cfg(not(feature = "ferrocene_certified"))]
1561impl<T: ?Sized + Ord> Ord for RefCell<T> {
1562    /// # Panics
1563    ///
1564    /// Panics if the value in either `RefCell` is currently mutably borrowed.
1565    #[inline]
1566    fn cmp(&self, other: &RefCell<T>) -> Ordering {
1567        self.borrow().cmp(&*other.borrow())
1568    }
1569}
1570
1571#[stable(feature = "cell_from", since = "1.12.0")]
1572#[rustc_const_unstable(feature = "const_convert", issue = "143773")]
1573#[cfg(not(feature = "ferrocene_certified"))]
1574impl<T> const From<T> for RefCell<T> {
1575    /// Creates a new `RefCell<T>` containing the given value.
1576    fn from(t: T) -> RefCell<T> {
1577        RefCell::new(t)
1578    }
1579}
1580
1581#[unstable(feature = "coerce_unsized", issue = "18598")]
1582#[cfg(not(feature = "ferrocene_certified"))]
1583impl<T: CoerceUnsized<U>, U> CoerceUnsized<RefCell<U>> for RefCell<T> {}
1584
1585struct BorrowRef<'b> {
1586    borrow: &'b Cell<BorrowCounter>,
1587}
1588
1589impl<'b> BorrowRef<'b> {
1590    #[inline]
1591    const fn new(borrow: &'b Cell<BorrowCounter>) -> Option<BorrowRef<'b>> {
1592        let b = borrow.get().wrapping_add(1);
1593        if !is_reading(b) {
1594            // Incrementing borrow can result in a non-reading value (<= 0) in these cases:
1595            // 1. It was < 0, i.e. there are writing borrows, so we can't allow a read borrow
1596            //    due to Rust's reference aliasing rules
1597            // 2. It was isize::MAX (the max amount of reading borrows) and it overflowed
1598            //    into isize::MIN (the max amount of writing borrows) so we can't allow
1599            //    an additional read borrow because isize can't represent so many read borrows
1600            //    (this can only happen if you mem::forget more than a small constant amount of
1601            //    `Ref`s, which is not good practice)
1602            None
1603        } else {
1604            // Incrementing borrow can result in a reading value (> 0) in these cases:
1605            // 1. It was = 0, i.e. it wasn't borrowed, and we are taking the first read borrow
1606            // 2. It was > 0 and < isize::MAX, i.e. there were read borrows, and isize
1607            //    is large enough to represent having one more read borrow
1608            borrow.replace(b);
1609            Some(BorrowRef { borrow })
1610        }
1611    }
1612}
1613
1614#[rustc_const_unstable(feature = "const_ref_cell", issue = "137844")]
1615impl const Drop for BorrowRef<'_> {
1616    #[inline]
1617    fn drop(&mut self) {
1618        let borrow = self.borrow.get();
1619        debug_assert!(is_reading(borrow));
1620        self.borrow.replace(borrow - 1);
1621    }
1622}
1623
1624#[rustc_const_unstable(feature = "const_ref_cell", issue = "137844")]
1625#[cfg(not(feature = "ferrocene_certified"))]
1626impl const Clone for BorrowRef<'_> {
1627    #[inline]
1628    fn clone(&self) -> Self {
1629        // Since this Ref exists, we know the borrow flag
1630        // is a reading borrow.
1631        let borrow = self.borrow.get();
1632        debug_assert!(is_reading(borrow));
1633        // Prevent the borrow counter from overflowing into
1634        // a writing borrow.
1635        assert!(borrow != BorrowCounter::MAX);
1636        self.borrow.replace(borrow + 1);
1637        BorrowRef { borrow: self.borrow }
1638    }
1639}
1640
1641/// Wraps a borrowed reference to a value in a `RefCell` box.
1642/// A wrapper type for an immutably borrowed value from a `RefCell<T>`.
1643///
1644/// See the [module-level documentation](self) for more.
1645#[stable(feature = "rust1", since = "1.0.0")]
1646#[must_not_suspend = "holding a Ref across suspend points can cause BorrowErrors"]
1647#[rustc_diagnostic_item = "RefCellRef"]
1648#[cfg_attr(feature = "ferrocene_certified", expect(dead_code))]
1649pub struct Ref<'b, T: ?Sized + 'b> {
1650    // NB: we use a pointer instead of `&'b T` to avoid `noalias` violations, because a
1651    // `Ref` argument doesn't hold immutability for its whole scope, only until it drops.
1652    // `NonNull` is also covariant over `T`, just like we would have with `&T`.
1653    value: NonNull<T>,
1654    borrow: BorrowRef<'b>,
1655}
1656
1657#[stable(feature = "rust1", since = "1.0.0")]
1658#[rustc_const_unstable(feature = "const_convert", issue = "143773")]
1659#[cfg(not(feature = "ferrocene_certified"))]
1660impl<T: ?Sized> const Deref for Ref<'_, T> {
1661    type Target = T;
1662
1663    #[inline]
1664    fn deref(&self) -> &T {
1665        // SAFETY: the value is accessible as long as we hold our borrow.
1666        unsafe { self.value.as_ref() }
1667    }
1668}
1669
1670#[unstable(feature = "deref_pure_trait", issue = "87121")]
1671#[cfg(not(feature = "ferrocene_certified"))]
1672unsafe impl<T: ?Sized> DerefPure for Ref<'_, T> {}
1673
1674#[cfg(not(feature = "ferrocene_certified"))]
1675impl<'b, T: ?Sized> Ref<'b, T> {
1676    /// Copies a `Ref`.
1677    ///
1678    /// The `RefCell` is already immutably borrowed, so this cannot fail.
1679    ///
1680    /// This is an associated function that needs to be used as
1681    /// `Ref::clone(...)`. A `Clone` implementation or a method would interfere
1682    /// with the widespread use of `r.borrow().clone()` to clone the contents of
1683    /// a `RefCell`.
1684    #[stable(feature = "cell_extras", since = "1.15.0")]
1685    #[must_use]
1686    #[inline]
1687    #[rustc_const_unstable(feature = "const_ref_cell", issue = "137844")]
1688    pub const fn clone(orig: &Ref<'b, T>) -> Ref<'b, T> {
1689        Ref { value: orig.value, borrow: orig.borrow.clone() }
1690    }
1691
1692    /// Makes a new `Ref` for a component of the borrowed data.
1693    ///
1694    /// The `RefCell` is already immutably borrowed, so this cannot fail.
1695    ///
1696    /// This is an associated function that needs to be used as `Ref::map(...)`.
1697    /// A method would interfere with methods of the same name on the contents
1698    /// of a `RefCell` used through `Deref`.
1699    ///
1700    /// # Examples
1701    ///
1702    /// ```
1703    /// use std::cell::{RefCell, Ref};
1704    ///
1705    /// let c = RefCell::new((5, 'b'));
1706    /// let b1: Ref<'_, (u32, char)> = c.borrow();
1707    /// let b2: Ref<'_, u32> = Ref::map(b1, |t| &t.0);
1708    /// assert_eq!(*b2, 5)
1709    /// ```
1710    #[stable(feature = "cell_map", since = "1.8.0")]
1711    #[inline]
1712    pub fn map<U: ?Sized, F>(orig: Ref<'b, T>, f: F) -> Ref<'b, U>
1713    where
1714        F: FnOnce(&T) -> &U,
1715    {
1716        Ref { value: NonNull::from(f(&*orig)), borrow: orig.borrow }
1717    }
1718
1719    /// Makes a new `Ref` for an optional component of the borrowed data. The
1720    /// original guard is returned as an `Err(..)` if the closure returns
1721    /// `None`.
1722    ///
1723    /// The `RefCell` is already immutably borrowed, so this cannot fail.
1724    ///
1725    /// This is an associated function that needs to be used as
1726    /// `Ref::filter_map(...)`. A method would interfere with methods of the same
1727    /// name on the contents of a `RefCell` used through `Deref`.
1728    ///
1729    /// # Examples
1730    ///
1731    /// ```
1732    /// use std::cell::{RefCell, Ref};
1733    ///
1734    /// let c = RefCell::new(vec![1, 2, 3]);
1735    /// let b1: Ref<'_, Vec<u32>> = c.borrow();
1736    /// let b2: Result<Ref<'_, u32>, _> = Ref::filter_map(b1, |v| v.get(1));
1737    /// assert_eq!(*b2.unwrap(), 2);
1738    /// ```
1739    #[stable(feature = "cell_filter_map", since = "1.63.0")]
1740    #[inline]
1741    pub fn filter_map<U: ?Sized, F>(orig: Ref<'b, T>, f: F) -> Result<Ref<'b, U>, Self>
1742    where
1743        F: FnOnce(&T) -> Option<&U>,
1744    {
1745        match f(&*orig) {
1746            Some(value) => Ok(Ref { value: NonNull::from(value), borrow: orig.borrow }),
1747            None => Err(orig),
1748        }
1749    }
1750
1751    /// Tries to makes a new `Ref` for a component of the borrowed data.
1752    /// On failure, the original guard is returned alongside with the error
1753    /// returned by the closure.
1754    ///
1755    /// The `RefCell` is already immutably borrowed, so this cannot fail.
1756    ///
1757    /// This is an associated function that needs to be used as
1758    /// `Ref::try_map(...)`. A method would interfere with methods of the same
1759    /// name on the contents of a `RefCell` used through `Deref`.
1760    ///
1761    /// # Examples
1762    ///
1763    /// ```
1764    /// #![feature(refcell_try_map)]
1765    /// use std::cell::{RefCell, Ref};
1766    /// use std::str::{from_utf8, Utf8Error};
1767    ///
1768    /// let c = RefCell::new(vec![0xF0, 0x9F, 0xA6 ,0x80]);
1769    /// let b1: Ref<'_, Vec<u8>> = c.borrow();
1770    /// let b2: Result<Ref<'_, str>, _> = Ref::try_map(b1, |v| from_utf8(v));
1771    /// assert_eq!(&*b2.unwrap(), "🦀");
1772    ///
1773    /// let c = RefCell::new(vec![0xF0, 0x9F, 0xA6]);
1774    /// let b1: Ref<'_, Vec<u8>> = c.borrow();
1775    /// let b2: Result<_, (Ref<'_, Vec<u8>>, Utf8Error)> = Ref::try_map(b1, |v| from_utf8(v));
1776    /// let (b3, e) = b2.unwrap_err();
1777    /// assert_eq!(*b3, vec![0xF0, 0x9F, 0xA6]);
1778    /// assert_eq!(e.valid_up_to(), 0);
1779    /// ```
1780    #[unstable(feature = "refcell_try_map", issue = "143801")]
1781    #[inline]
1782    pub fn try_map<U: ?Sized, E>(
1783        orig: Ref<'b, T>,
1784        f: impl FnOnce(&T) -> Result<&U, E>,
1785    ) -> Result<Ref<'b, U>, (Self, E)> {
1786        match f(&*orig) {
1787            Ok(value) => Ok(Ref { value: NonNull::from(value), borrow: orig.borrow }),
1788            Err(e) => Err((orig, e)),
1789        }
1790    }
1791
1792    /// Splits a `Ref` into multiple `Ref`s for different components of the
1793    /// borrowed data.
1794    ///
1795    /// The `RefCell` is already immutably borrowed, so this cannot fail.
1796    ///
1797    /// This is an associated function that needs to be used as
1798    /// `Ref::map_split(...)`. A method would interfere with methods of the same
1799    /// name on the contents of a `RefCell` used through `Deref`.
1800    ///
1801    /// # Examples
1802    ///
1803    /// ```
1804    /// use std::cell::{Ref, RefCell};
1805    ///
1806    /// let cell = RefCell::new([1, 2, 3, 4]);
1807    /// let borrow = cell.borrow();
1808    /// let (begin, end) = Ref::map_split(borrow, |slice| slice.split_at(2));
1809    /// assert_eq!(*begin, [1, 2]);
1810    /// assert_eq!(*end, [3, 4]);
1811    /// ```
1812    #[stable(feature = "refcell_map_split", since = "1.35.0")]
1813    #[inline]
1814    pub fn map_split<U: ?Sized, V: ?Sized, F>(orig: Ref<'b, T>, f: F) -> (Ref<'b, U>, Ref<'b, V>)
1815    where
1816        F: FnOnce(&T) -> (&U, &V),
1817    {
1818        let (a, b) = f(&*orig);
1819        let borrow = orig.borrow.clone();
1820        (
1821            Ref { value: NonNull::from(a), borrow },
1822            Ref { value: NonNull::from(b), borrow: orig.borrow },
1823        )
1824    }
1825
1826    /// Converts into a reference to the underlying data.
1827    ///
1828    /// The underlying `RefCell` can never be mutably borrowed from again and will always appear
1829    /// already immutably borrowed. It is not a good idea to leak more than a constant number of
1830    /// references. The `RefCell` can be immutably borrowed again if only a smaller number of leaks
1831    /// have occurred in total.
1832    ///
1833    /// This is an associated function that needs to be used as
1834    /// `Ref::leak(...)`. A method would interfere with methods of the
1835    /// same name on the contents of a `RefCell` used through `Deref`.
1836    ///
1837    /// # Examples
1838    ///
1839    /// ```
1840    /// #![feature(cell_leak)]
1841    /// use std::cell::{RefCell, Ref};
1842    /// let cell = RefCell::new(0);
1843    ///
1844    /// let value = Ref::leak(cell.borrow());
1845    /// assert_eq!(*value, 0);
1846    ///
1847    /// assert!(cell.try_borrow().is_ok());
1848    /// assert!(cell.try_borrow_mut().is_err());
1849    /// ```
1850    #[unstable(feature = "cell_leak", issue = "69099")]
1851    #[rustc_const_unstable(feature = "const_ref_cell", issue = "137844")]
1852    pub const fn leak(orig: Ref<'b, T>) -> &'b T {
1853        // By forgetting this Ref we ensure that the borrow counter in the RefCell can't go back to
1854        // UNUSED within the lifetime `'b`. Resetting the reference tracking state would require a
1855        // unique reference to the borrowed RefCell. No further mutable references can be created
1856        // from the original cell.
1857        mem::forget(orig.borrow);
1858        // SAFETY: after forgetting, we can form a reference for the rest of lifetime `'b`.
1859        unsafe { orig.value.as_ref() }
1860    }
1861}
1862
1863#[unstable(feature = "coerce_unsized", issue = "18598")]
1864#[cfg(not(feature = "ferrocene_certified"))]
1865impl<'b, T: ?Sized + Unsize<U>, U: ?Sized> CoerceUnsized<Ref<'b, U>> for Ref<'b, T> {}
1866
1867#[stable(feature = "std_guard_impls", since = "1.20.0")]
1868#[cfg(not(feature = "ferrocene_certified"))]
1869impl<T: ?Sized + fmt::Display> fmt::Display for Ref<'_, T> {
1870    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
1871        (**self).fmt(f)
1872    }
1873}
1874
1875#[cfg(not(feature = "ferrocene_certified"))]
1876impl<'b, T: ?Sized> RefMut<'b, T> {
1877    /// Makes a new `RefMut` for a component of the borrowed data, e.g., an enum
1878    /// variant.
1879    ///
1880    /// The `RefCell` is already mutably borrowed, so this cannot fail.
1881    ///
1882    /// This is an associated function that needs to be used as
1883    /// `RefMut::map(...)`. A method would interfere with methods of the same
1884    /// name on the contents of a `RefCell` used through `Deref`.
1885    ///
1886    /// # Examples
1887    ///
1888    /// ```
1889    /// use std::cell::{RefCell, RefMut};
1890    ///
1891    /// let c = RefCell::new((5, 'b'));
1892    /// {
1893    ///     let b1: RefMut<'_, (u32, char)> = c.borrow_mut();
1894    ///     let mut b2: RefMut<'_, u32> = RefMut::map(b1, |t| &mut t.0);
1895    ///     assert_eq!(*b2, 5);
1896    ///     *b2 = 42;
1897    /// }
1898    /// assert_eq!(*c.borrow(), (42, 'b'));
1899    /// ```
1900    #[stable(feature = "cell_map", since = "1.8.0")]
1901    #[inline]
1902    pub fn map<U: ?Sized, F>(mut orig: RefMut<'b, T>, f: F) -> RefMut<'b, U>
1903    where
1904        F: FnOnce(&mut T) -> &mut U,
1905    {
1906        let value = NonNull::from(f(&mut *orig));
1907        RefMut { value, borrow: orig.borrow, marker: PhantomData }
1908    }
1909
1910    /// Makes a new `RefMut` for an optional component of the borrowed data. The
1911    /// original guard is returned as an `Err(..)` if the closure returns
1912    /// `None`.
1913    ///
1914    /// The `RefCell` is already mutably borrowed, so this cannot fail.
1915    ///
1916    /// This is an associated function that needs to be used as
1917    /// `RefMut::filter_map(...)`. A method would interfere with methods of the
1918    /// same name on the contents of a `RefCell` used through `Deref`.
1919    ///
1920    /// # Examples
1921    ///
1922    /// ```
1923    /// use std::cell::{RefCell, RefMut};
1924    ///
1925    /// let c = RefCell::new(vec![1, 2, 3]);
1926    ///
1927    /// {
1928    ///     let b1: RefMut<'_, Vec<u32>> = c.borrow_mut();
1929    ///     let mut b2: Result<RefMut<'_, u32>, _> = RefMut::filter_map(b1, |v| v.get_mut(1));
1930    ///
1931    ///     if let Ok(mut b2) = b2 {
1932    ///         *b2 += 2;
1933    ///     }
1934    /// }
1935    ///
1936    /// assert_eq!(*c.borrow(), vec![1, 4, 3]);
1937    /// ```
1938    #[stable(feature = "cell_filter_map", since = "1.63.0")]
1939    #[inline]
1940    pub fn filter_map<U: ?Sized, F>(mut orig: RefMut<'b, T>, f: F) -> Result<RefMut<'b, U>, Self>
1941    where
1942        F: FnOnce(&mut T) -> Option<&mut U>,
1943    {
1944        // SAFETY: function holds onto an exclusive reference for the duration
1945        // of its call through `orig`, and the pointer is only de-referenced
1946        // inside of the function call never allowing the exclusive reference to
1947        // escape.
1948        match f(&mut *orig) {
1949            Some(value) => {
1950                Ok(RefMut { value: NonNull::from(value), borrow: orig.borrow, marker: PhantomData })
1951            }
1952            None => Err(orig),
1953        }
1954    }
1955
1956    /// Tries to makes a new `RefMut` for a component of the borrowed data.
1957    /// On failure, the original guard is returned alongside with the error
1958    /// returned by the closure.
1959    ///
1960    /// The `RefCell` is already mutably borrowed, so this cannot fail.
1961    ///
1962    /// This is an associated function that needs to be used as
1963    /// `RefMut::try_map(...)`. A method would interfere with methods of the same
1964    /// name on the contents of a `RefCell` used through `Deref`.
1965    ///
1966    /// # Examples
1967    ///
1968    /// ```
1969    /// #![feature(refcell_try_map)]
1970    /// use std::cell::{RefCell, RefMut};
1971    /// use std::str::{from_utf8_mut, Utf8Error};
1972    ///
1973    /// let c = RefCell::new(vec![0x68, 0x65, 0x6C, 0x6C, 0x6F]);
1974    /// {
1975    ///     let b1: RefMut<'_, Vec<u8>> = c.borrow_mut();
1976    ///     let b2: Result<RefMut<'_, str>, _> = RefMut::try_map(b1, |v| from_utf8_mut(v));
1977    ///     let mut b2 = b2.unwrap();
1978    ///     assert_eq!(&*b2, "hello");
1979    ///     b2.make_ascii_uppercase();
1980    /// }
1981    /// assert_eq!(*c.borrow(), "HELLO".as_bytes());
1982    ///
1983    /// let c = RefCell::new(vec![0xFF]);
1984    /// let b1: RefMut<'_, Vec<u8>> = c.borrow_mut();
1985    /// let b2: Result<_, (RefMut<'_, Vec<u8>>, Utf8Error)> = RefMut::try_map(b1, |v| from_utf8_mut(v));
1986    /// let (b3, e) = b2.unwrap_err();
1987    /// assert_eq!(*b3, vec![0xFF]);
1988    /// assert_eq!(e.valid_up_to(), 0);
1989    /// ```
1990    #[unstable(feature = "refcell_try_map", issue = "143801")]
1991    #[inline]
1992    pub fn try_map<U: ?Sized, E>(
1993        mut orig: RefMut<'b, T>,
1994        f: impl FnOnce(&mut T) -> Result<&mut U, E>,
1995    ) -> Result<RefMut<'b, U>, (Self, E)> {
1996        // SAFETY: function holds onto an exclusive reference for the duration
1997        // of its call through `orig`, and the pointer is only de-referenced
1998        // inside of the function call never allowing the exclusive reference to
1999        // escape.
2000        match f(&mut *orig) {
2001            Ok(value) => {
2002                Ok(RefMut { value: NonNull::from(value), borrow: orig.borrow, marker: PhantomData })
2003            }
2004            Err(e) => Err((orig, e)),
2005        }
2006    }
2007
2008    /// Splits a `RefMut` into multiple `RefMut`s for different components of the
2009    /// borrowed data.
2010    ///
2011    /// The underlying `RefCell` will remain mutably borrowed until both
2012    /// returned `RefMut`s go out of scope.
2013    ///
2014    /// The `RefCell` is already mutably borrowed, so this cannot fail.
2015    ///
2016    /// This is an associated function that needs to be used as
2017    /// `RefMut::map_split(...)`. A method would interfere with methods of the
2018    /// same name on the contents of a `RefCell` used through `Deref`.
2019    ///
2020    /// # Examples
2021    ///
2022    /// ```
2023    /// use std::cell::{RefCell, RefMut};
2024    ///
2025    /// let cell = RefCell::new([1, 2, 3, 4]);
2026    /// let borrow = cell.borrow_mut();
2027    /// let (mut begin, mut end) = RefMut::map_split(borrow, |slice| slice.split_at_mut(2));
2028    /// assert_eq!(*begin, [1, 2]);
2029    /// assert_eq!(*end, [3, 4]);
2030    /// begin.copy_from_slice(&[4, 3]);
2031    /// end.copy_from_slice(&[2, 1]);
2032    /// ```
2033    #[stable(feature = "refcell_map_split", since = "1.35.0")]
2034    #[inline]
2035    pub fn map_split<U: ?Sized, V: ?Sized, F>(
2036        mut orig: RefMut<'b, T>,
2037        f: F,
2038    ) -> (RefMut<'b, U>, RefMut<'b, V>)
2039    where
2040        F: FnOnce(&mut T) -> (&mut U, &mut V),
2041    {
2042        let borrow = orig.borrow.clone();
2043        let (a, b) = f(&mut *orig);
2044        (
2045            RefMut { value: NonNull::from(a), borrow, marker: PhantomData },
2046            RefMut { value: NonNull::from(b), borrow: orig.borrow, marker: PhantomData },
2047        )
2048    }
2049
2050    /// Converts into a mutable reference to the underlying data.
2051    ///
2052    /// The underlying `RefCell` can not be borrowed from again and will always appear already
2053    /// mutably borrowed, making the returned reference the only to the interior.
2054    ///
2055    /// This is an associated function that needs to be used as
2056    /// `RefMut::leak(...)`. A method would interfere with methods of the
2057    /// same name on the contents of a `RefCell` used through `Deref`.
2058    ///
2059    /// # Examples
2060    ///
2061    /// ```
2062    /// #![feature(cell_leak)]
2063    /// use std::cell::{RefCell, RefMut};
2064    /// let cell = RefCell::new(0);
2065    ///
2066    /// let value = RefMut::leak(cell.borrow_mut());
2067    /// assert_eq!(*value, 0);
2068    /// *value = 1;
2069    ///
2070    /// assert!(cell.try_borrow_mut().is_err());
2071    /// ```
2072    #[unstable(feature = "cell_leak", issue = "69099")]
2073    #[rustc_const_unstable(feature = "const_ref_cell", issue = "137844")]
2074    pub const fn leak(mut orig: RefMut<'b, T>) -> &'b mut T {
2075        // By forgetting this BorrowRefMut we ensure that the borrow counter in the RefCell can't
2076        // go back to UNUSED within the lifetime `'b`. Resetting the reference tracking state would
2077        // require a unique reference to the borrowed RefCell. No further references can be created
2078        // from the original cell within that lifetime, making the current borrow the only
2079        // reference for the remaining lifetime.
2080        mem::forget(orig.borrow);
2081        // SAFETY: after forgetting, we can form a reference for the rest of lifetime `'b`.
2082        unsafe { orig.value.as_mut() }
2083    }
2084}
2085
2086struct BorrowRefMut<'b> {
2087    borrow: &'b Cell<BorrowCounter>,
2088}
2089
2090#[rustc_const_unstable(feature = "const_ref_cell", issue = "137844")]
2091impl const Drop for BorrowRefMut<'_> {
2092    #[inline]
2093    fn drop(&mut self) {
2094        let borrow = self.borrow.get();
2095        debug_assert!(is_writing(borrow));
2096        self.borrow.replace(borrow + 1);
2097    }
2098}
2099
2100impl<'b> BorrowRefMut<'b> {
2101    #[inline]
2102    const fn new(borrow: &'b Cell<BorrowCounter>) -> Option<BorrowRefMut<'b>> {
2103        // NOTE: Unlike BorrowRefMut::clone, new is called to create the initial
2104        // mutable reference, and so there must currently be no existing
2105        // references. Thus, while clone increments the mutable refcount, here
2106        // we explicitly only allow going from UNUSED to UNUSED - 1.
2107        match borrow.get() {
2108            UNUSED => {
2109                borrow.replace(UNUSED - 1);
2110                Some(BorrowRefMut { borrow })
2111            }
2112            _ => None,
2113        }
2114    }
2115
2116    // Clones a `BorrowRefMut`.
2117    //
2118    // This is only valid if each `BorrowRefMut` is used to track a mutable
2119    // reference to a distinct, nonoverlapping range of the original object.
2120    // This isn't in a Clone impl so that code doesn't call this implicitly.
2121    #[inline]
2122    #[cfg(not(feature = "ferrocene_certified"))]
2123    fn clone(&self) -> BorrowRefMut<'b> {
2124        let borrow = self.borrow.get();
2125        debug_assert!(is_writing(borrow));
2126        // Prevent the borrow counter from underflowing.
2127        assert!(borrow != BorrowCounter::MIN);
2128        self.borrow.set(borrow - 1);
2129        BorrowRefMut { borrow: self.borrow }
2130    }
2131}
2132
2133/// A wrapper type for a mutably borrowed value from a `RefCell<T>`.
2134///
2135/// See the [module-level documentation](self) for more.
2136#[stable(feature = "rust1", since = "1.0.0")]
2137#[must_not_suspend = "holding a RefMut across suspend points can cause BorrowErrors"]
2138#[rustc_diagnostic_item = "RefCellRefMut"]
2139#[cfg_attr(feature = "ferrocene_certified", expect(dead_code))]
2140pub struct RefMut<'b, T: ?Sized + 'b> {
2141    // NB: we use a pointer instead of `&'b mut T` to avoid `noalias` violations, because a
2142    // `RefMut` argument doesn't hold exclusivity for its whole scope, only until it drops.
2143    value: NonNull<T>,
2144    borrow: BorrowRefMut<'b>,
2145    // `NonNull` is covariant over `T`, so we need to reintroduce invariance.
2146    marker: PhantomData<&'b mut T>,
2147}
2148
2149#[stable(feature = "rust1", since = "1.0.0")]
2150#[rustc_const_unstable(feature = "const_convert", issue = "143773")]
2151impl<T: ?Sized> const Deref for RefMut<'_, T> {
2152    type Target = T;
2153
2154    #[inline]
2155    fn deref(&self) -> &T {
2156        // SAFETY: the value is accessible as long as we hold our borrow.
2157        unsafe { self.value.as_ref() }
2158    }
2159}
2160
2161#[stable(feature = "rust1", since = "1.0.0")]
2162#[rustc_const_unstable(feature = "const_convert", issue = "143773")]
2163impl<T: ?Sized> const DerefMut for RefMut<'_, T> {
2164    #[inline]
2165    fn deref_mut(&mut self) -> &mut T {
2166        // SAFETY: the value is accessible as long as we hold our borrow.
2167        unsafe { self.value.as_mut() }
2168    }
2169}
2170
2171#[unstable(feature = "deref_pure_trait", issue = "87121")]
2172#[cfg(not(feature = "ferrocene_certified"))]
2173unsafe impl<T: ?Sized> DerefPure for RefMut<'_, T> {}
2174
2175#[unstable(feature = "coerce_unsized", issue = "18598")]
2176#[cfg(not(feature = "ferrocene_certified"))]
2177impl<'b, T: ?Sized + Unsize<U>, U: ?Sized> CoerceUnsized<RefMut<'b, U>> for RefMut<'b, T> {}
2178
2179#[stable(feature = "std_guard_impls", since = "1.20.0")]
2180#[cfg(not(feature = "ferrocene_certified"))]
2181impl<T: ?Sized + fmt::Display> fmt::Display for RefMut<'_, T> {
2182    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
2183        (**self).fmt(f)
2184    }
2185}
2186
2187/// The core primitive for interior mutability in Rust.
2188///
2189/// If you have a reference `&T`, then normally in Rust the compiler performs optimizations based on
2190/// the knowledge that `&T` points to immutable data. Mutating that data, for example through an
2191/// alias or by transmuting a `&T` into a `&mut T`, is considered undefined behavior.
2192/// `UnsafeCell<T>` opts-out of the immutability guarantee for `&T`: a shared reference
2193/// `&UnsafeCell<T>` may point to data that is being mutated. This is called "interior mutability".
2194///
2195/// All other types that allow internal mutability, such as [`Cell<T>`] and [`RefCell<T>`], internally
2196/// use `UnsafeCell` to wrap their data.
2197///
2198/// Note that only the immutability guarantee for shared references is affected by `UnsafeCell`. The
2199/// uniqueness guarantee for mutable references is unaffected. There is *no* legal way to obtain
2200/// aliasing `&mut`, not even with `UnsafeCell<T>`.
2201///
2202/// `UnsafeCell` does nothing to avoid data races; they are still undefined behavior. If multiple
2203/// threads have access to the same `UnsafeCell`, they must follow the usual rules of the
2204/// [concurrent memory model]: conflicting non-synchronized accesses must be done via the APIs in
2205/// [`core::sync::atomic`].
2206///
2207/// The `UnsafeCell` API itself is technically very simple: [`.get()`] gives you a raw pointer
2208/// `*mut T` to its contents. It is up to _you_ as the abstraction designer to use that raw pointer
2209/// correctly.
2210///
2211/// [`.get()`]: `UnsafeCell::get`
2212/// [concurrent memory model]: ../sync/atomic/index.html#memory-model-for-atomic-accesses
2213///
2214/// # Aliasing rules
2215///
2216/// The precise Rust aliasing rules are somewhat in flux, but the main points are not contentious:
2217///
2218/// - If you create a safe reference with lifetime `'a` (either a `&T` or `&mut T` reference), then
2219///   you must not access the data in any way that contradicts that reference for the remainder of
2220///   `'a`. For example, this means that if you take the `*mut T` from an `UnsafeCell<T>` and cast it
2221///   to an `&T`, then the data in `T` must remain immutable (modulo any `UnsafeCell` data found
2222///   within `T`, of course) until that reference's lifetime expires. Similarly, if you create a
2223///   `&mut T` reference that is released to safe code, then you must not access the data within the
2224///   `UnsafeCell` until that reference expires.
2225///
2226/// - For both `&T` without `UnsafeCell<_>` and `&mut T`, you must also not deallocate the data
2227///   until the reference expires. As a special exception, given an `&T`, any part of it that is
2228///   inside an `UnsafeCell<_>` may be deallocated during the lifetime of the reference, after the
2229///   last time the reference is used (dereferenced or reborrowed). Since you cannot deallocate a part
2230///   of what a reference points to, this means the memory an `&T` points to can be deallocated only if
2231///   *every part of it* (including padding) is inside an `UnsafeCell`.
2232///
2233/// However, whenever a `&UnsafeCell<T>` is constructed or dereferenced, it must still point to
2234/// live memory and the compiler is allowed to insert spurious reads if it can prove that this
2235/// memory has not yet been deallocated.
2236///
2237/// To assist with proper design, the following scenarios are explicitly declared legal
2238/// for single-threaded code:
2239///
2240/// 1. A `&T` reference can be released to safe code and there it can co-exist with other `&T`
2241///    references, but not with a `&mut T`
2242///
2243/// 2. A `&mut T` reference may be released to safe code provided neither other `&mut T` nor `&T`
2244///    co-exist with it. A `&mut T` must always be unique.
2245///
2246/// Note that whilst mutating the contents of an `&UnsafeCell<T>` (even while other
2247/// `&UnsafeCell<T>` references alias the cell) is
2248/// ok (provided you enforce the above invariants some other way), it is still undefined behavior
2249/// to have multiple `&mut UnsafeCell<T>` aliases. That is, `UnsafeCell` is a wrapper
2250/// designed to have a special interaction with _shared_ accesses (_i.e._, through an
2251/// `&UnsafeCell<_>` reference); there is no magic whatsoever when dealing with _exclusive_
2252/// accesses (_e.g._, through a `&mut UnsafeCell<_>`): neither the cell nor the wrapped value
2253/// may be aliased for the duration of that `&mut` borrow.
2254/// This is showcased by the [`.get_mut()`] accessor, which is a _safe_ getter that yields
2255/// a `&mut T`.
2256///
2257/// [`.get_mut()`]: `UnsafeCell::get_mut`
2258///
2259/// # Memory layout
2260///
2261/// `UnsafeCell<T>` has the same in-memory representation as its inner type `T`. A consequence
2262/// of this guarantee is that it is possible to convert between `T` and `UnsafeCell<T>`.
2263/// Special care has to be taken when converting a nested `T` inside of an `Outer<T>` type
2264/// to an `Outer<UnsafeCell<T>>` type: this is not sound when the `Outer<T>` type enables [niche]
2265/// optimizations. For example, the type `Option<NonNull<u8>>` is typically 8 bytes large on
2266/// 64-bit platforms, but the type `Option<UnsafeCell<NonNull<u8>>>` takes up 16 bytes of space.
2267/// Therefore this is not a valid conversion, despite `NonNull<u8>` and `UnsafeCell<NonNull<u8>>>`
2268/// having the same memory layout. This is because `UnsafeCell` disables niche optimizations in
2269/// order to avoid its interior mutability property from spreading from `T` into the `Outer` type,
2270/// thus this can cause distortions in the type size in these cases.
2271///
2272/// Note that the only valid way to obtain a `*mut T` pointer to the contents of a
2273/// _shared_ `UnsafeCell<T>` is through [`.get()`]  or [`.raw_get()`]. A `&mut T` reference
2274/// can be obtained by either dereferencing this pointer or by calling [`.get_mut()`]
2275/// on an _exclusive_ `UnsafeCell<T>`. Even though `T` and `UnsafeCell<T>` have the
2276/// same memory layout, the following is not allowed and undefined behavior:
2277///
2278/// ```rust,compile_fail
2279/// # use std::cell::UnsafeCell;
2280/// unsafe fn not_allowed<T>(ptr: &UnsafeCell<T>) -> &mut T {
2281///   let t = ptr as *const UnsafeCell<T> as *mut T;
2282///   // This is undefined behavior, because the `*mut T` pointer
2283///   // was not obtained through `.get()` nor `.raw_get()`:
2284///   unsafe { &mut *t }
2285/// }
2286/// ```
2287///
2288/// Instead, do this:
2289///
2290/// ```rust
2291/// # use std::cell::UnsafeCell;
2292/// // Safety: the caller must ensure that there are no references that
2293/// // point to the *contents* of the `UnsafeCell`.
2294/// unsafe fn get_mut<T>(ptr: &UnsafeCell<T>) -> &mut T {
2295///   unsafe { &mut *ptr.get() }
2296/// }
2297/// ```
2298///
2299/// Converting in the other direction from a `&mut T`
2300/// to an `&UnsafeCell<T>` is allowed:
2301///
2302/// ```rust
2303/// # use std::cell::UnsafeCell;
2304/// fn get_shared<T>(ptr: &mut T) -> &UnsafeCell<T> {
2305///   let t = ptr as *mut T as *const UnsafeCell<T>;
2306///   // SAFETY: `T` and `UnsafeCell<T>` have the same memory layout
2307///   unsafe { &*t }
2308/// }
2309/// ```
2310///
2311/// [niche]: https://rust-lang.github.io/unsafe-code-guidelines/glossary.html#niche
2312/// [`.raw_get()`]: `UnsafeCell::raw_get`
2313///
2314/// # Examples
2315///
2316/// Here is an example showcasing how to soundly mutate the contents of an `UnsafeCell<_>` despite
2317/// there being multiple references aliasing the cell:
2318///
2319/// ```
2320/// use std::cell::UnsafeCell;
2321///
2322/// let x: UnsafeCell<i32> = 42.into();
2323/// // Get multiple / concurrent / shared references to the same `x`.
2324/// let (p1, p2): (&UnsafeCell<i32>, &UnsafeCell<i32>) = (&x, &x);
2325///
2326/// unsafe {
2327///     // SAFETY: within this scope there are no other references to `x`'s contents,
2328///     // so ours is effectively unique.
2329///     let p1_exclusive: &mut i32 = &mut *p1.get(); // -- borrow --+
2330///     *p1_exclusive += 27; //                                     |
2331/// } // <---------- cannot go beyond this point -------------------+
2332///
2333/// unsafe {
2334///     // SAFETY: within this scope nobody expects to have exclusive access to `x`'s contents,
2335///     // so we can have multiple shared accesses concurrently.
2336///     let p2_shared: &i32 = &*p2.get();
2337///     assert_eq!(*p2_shared, 42 + 27);
2338///     let p1_shared: &i32 = &*p1.get();
2339///     assert_eq!(*p1_shared, *p2_shared);
2340/// }
2341/// ```
2342///
2343/// The following example showcases the fact that exclusive access to an `UnsafeCell<T>`
2344/// implies exclusive access to its `T`:
2345///
2346/// ```rust
2347/// #![forbid(unsafe_code)]
2348/// // with exclusive accesses, `UnsafeCell` is a transparent no-op wrapper, so no need for
2349/// // `unsafe` here.
2350/// use std::cell::UnsafeCell;
2351///
2352/// let mut x: UnsafeCell<i32> = 42.into();
2353///
2354/// // Get a compile-time-checked unique reference to `x`.
2355/// let p_unique: &mut UnsafeCell<i32> = &mut x;
2356/// // With an exclusive reference, we can mutate the contents for free.
2357/// *p_unique.get_mut() = 0;
2358/// // Or, equivalently:
2359/// x = UnsafeCell::new(0);
2360///
2361/// // When we own the value, we can extract the contents for free.
2362/// let contents: i32 = x.into_inner();
2363/// assert_eq!(contents, 0);
2364/// ```
2365#[lang = "unsafe_cell"]
2366#[stable(feature = "rust1", since = "1.0.0")]
2367#[repr(transparent)]
2368#[rustc_pub_transparent]
2369pub struct UnsafeCell<T: ?Sized> {
2370    value: T,
2371}
2372
2373#[stable(feature = "rust1", since = "1.0.0")]
2374impl<T: ?Sized> !Sync for UnsafeCell<T> {}
2375
2376impl<T> UnsafeCell<T> {
2377    /// Constructs a new instance of `UnsafeCell` which will wrap the specified
2378    /// value.
2379    ///
2380    /// All access to the inner value through `&UnsafeCell<T>` requires `unsafe` code.
2381    ///
2382    /// # Examples
2383    ///
2384    /// ```
2385    /// use std::cell::UnsafeCell;
2386    ///
2387    /// let uc = UnsafeCell::new(5);
2388    /// ```
2389    #[stable(feature = "rust1", since = "1.0.0")]
2390    #[rustc_const_stable(feature = "const_unsafe_cell_new", since = "1.32.0")]
2391    #[inline(always)]
2392    pub const fn new(value: T) -> UnsafeCell<T> {
2393        UnsafeCell { value }
2394    }
2395
2396    /// Unwraps the value, consuming the cell.
2397    ///
2398    /// # Examples
2399    ///
2400    /// ```
2401    /// use std::cell::UnsafeCell;
2402    ///
2403    /// let uc = UnsafeCell::new(5);
2404    ///
2405    /// let five = uc.into_inner();
2406    /// ```
2407    #[inline(always)]
2408    #[stable(feature = "rust1", since = "1.0.0")]
2409    #[rustc_const_stable(feature = "const_cell_into_inner", since = "1.83.0")]
2410    #[rustc_allow_const_fn_unstable(const_precise_live_drops)]
2411    pub const fn into_inner(self) -> T {
2412        self.value
2413    }
2414
2415    /// Replace the value in this `UnsafeCell` and return the old value.
2416    ///
2417    /// # Safety
2418    ///
2419    /// The caller must take care to avoid aliasing and data races.
2420    ///
2421    /// - It is Undefined Behavior to allow calls to race with
2422    ///   any other access to the wrapped value.
2423    /// - It is Undefined Behavior to call this while any other
2424    ///   reference(s) to the wrapped value are alive.
2425    ///
2426    /// # Examples
2427    ///
2428    /// ```
2429    /// #![feature(unsafe_cell_access)]
2430    /// use std::cell::UnsafeCell;
2431    ///
2432    /// let uc = UnsafeCell::new(5);
2433    ///
2434    /// let old = unsafe { uc.replace(10) };
2435    /// assert_eq!(old, 5);
2436    /// ```
2437    #[inline]
2438    #[unstable(feature = "unsafe_cell_access", issue = "136327")]
2439    #[cfg(not(feature = "ferrocene_certified"))]
2440    pub const unsafe fn replace(&self, value: T) -> T {
2441        // SAFETY: pointer comes from `&self` so naturally satisfies invariants.
2442        unsafe { ptr::replace(self.get(), value) }
2443    }
2444}
2445
2446impl<T: ?Sized> UnsafeCell<T> {
2447    /// Converts from `&mut T` to `&mut UnsafeCell<T>`.
2448    ///
2449    /// # Examples
2450    ///
2451    /// ```
2452    /// use std::cell::UnsafeCell;
2453    ///
2454    /// let mut val = 42;
2455    /// let uc = UnsafeCell::from_mut(&mut val);
2456    ///
2457    /// *uc.get_mut() -= 1;
2458    /// assert_eq!(*uc.get_mut(), 41);
2459    /// ```
2460    #[inline(always)]
2461    #[stable(feature = "unsafe_cell_from_mut", since = "1.84.0")]
2462    #[rustc_const_stable(feature = "unsafe_cell_from_mut", since = "1.84.0")]
2463    #[cfg(not(feature = "ferrocene_certified"))]
2464    pub const fn from_mut(value: &mut T) -> &mut UnsafeCell<T> {
2465        // SAFETY: `UnsafeCell<T>` has the same memory layout as `T` due to #[repr(transparent)].
2466        unsafe { &mut *(value as *mut T as *mut UnsafeCell<T>) }
2467    }
2468
2469    /// Gets a mutable pointer to the wrapped value.
2470    ///
2471    /// This can be cast to a pointer of any kind. When creating references, you must uphold the
2472    /// aliasing rules; see [the type-level docs][UnsafeCell#aliasing-rules] for more discussion and
2473    /// caveats.
2474    ///
2475    /// # Examples
2476    ///
2477    /// ```
2478    /// use std::cell::UnsafeCell;
2479    ///
2480    /// let uc = UnsafeCell::new(5);
2481    ///
2482    /// let five = uc.get();
2483    /// ```
2484    #[inline(always)]
2485    #[stable(feature = "rust1", since = "1.0.0")]
2486    #[rustc_const_stable(feature = "const_unsafecell_get", since = "1.32.0")]
2487    #[rustc_as_ptr]
2488    #[rustc_never_returns_null_ptr]
2489    pub const fn get(&self) -> *mut T {
2490        // We can just cast the pointer from `UnsafeCell<T>` to `T` because of
2491        // #[repr(transparent)]. This exploits std's special status, there is
2492        // no guarantee for user code that this will work in future versions of the compiler!
2493        self as *const UnsafeCell<T> as *const T as *mut T
2494    }
2495
2496    /// Returns a mutable reference to the underlying data.
2497    ///
2498    /// This call borrows the `UnsafeCell` mutably (at compile-time) which
2499    /// guarantees that we possess the only reference.
2500    ///
2501    /// # Examples
2502    ///
2503    /// ```
2504    /// use std::cell::UnsafeCell;
2505    ///
2506    /// let mut c = UnsafeCell::new(5);
2507    /// *c.get_mut() += 1;
2508    ///
2509    /// assert_eq!(*c.get_mut(), 6);
2510    /// ```
2511    #[inline(always)]
2512    #[stable(feature = "unsafe_cell_get_mut", since = "1.50.0")]
2513    #[rustc_const_stable(feature = "const_unsafecell_get_mut", since = "1.83.0")]
2514    pub const fn get_mut(&mut self) -> &mut T {
2515        &mut self.value
2516    }
2517
2518    /// Gets a mutable pointer to the wrapped value.
2519    /// The difference from [`get`] is that this function accepts a raw pointer,
2520    /// which is useful to avoid the creation of temporary references.
2521    ///
2522    /// This can be cast to a pointer of any kind. When creating references, you must uphold the
2523    /// aliasing rules; see [the type-level docs][UnsafeCell#aliasing-rules] for more discussion and
2524    /// caveats.
2525    ///
2526    /// [`get`]: UnsafeCell::get()
2527    ///
2528    /// # Examples
2529    ///
2530    /// Gradual initialization of an `UnsafeCell` requires `raw_get`, as
2531    /// calling `get` would require creating a reference to uninitialized data:
2532    ///
2533    /// ```
2534    /// use std::cell::UnsafeCell;
2535    /// use std::mem::MaybeUninit;
2536    ///
2537    /// let m = MaybeUninit::<UnsafeCell<i32>>::uninit();
2538    /// unsafe { UnsafeCell::raw_get(m.as_ptr()).write(5); }
2539    /// // avoid below which references to uninitialized data
2540    /// // unsafe { UnsafeCell::get(&*m.as_ptr()).write(5); }
2541    /// let uc = unsafe { m.assume_init() };
2542    ///
2543    /// assert_eq!(uc.into_inner(), 5);
2544    /// ```
2545    #[inline(always)]
2546    #[stable(feature = "unsafe_cell_raw_get", since = "1.56.0")]
2547    #[rustc_const_stable(feature = "unsafe_cell_raw_get", since = "1.56.0")]
2548    #[rustc_diagnostic_item = "unsafe_cell_raw_get"]
2549    #[cfg(not(feature = "ferrocene_certified"))]
2550    pub const fn raw_get(this: *const Self) -> *mut T {
2551        // We can just cast the pointer from `UnsafeCell<T>` to `T` because of
2552        // #[repr(transparent)]. This exploits std's special status, there is
2553        // no guarantee for user code that this will work in future versions of the compiler!
2554        this as *const T as *mut T
2555    }
2556
2557    /// Get a shared reference to the value within the `UnsafeCell`.
2558    ///
2559    /// # Safety
2560    ///
2561    /// - It is Undefined Behavior to call this while any mutable
2562    ///   reference to the wrapped value is alive.
2563    /// - Mutating the wrapped value while the returned
2564    ///   reference is alive is Undefined Behavior.
2565    ///
2566    /// # Examples
2567    ///
2568    /// ```
2569    /// #![feature(unsafe_cell_access)]
2570    /// use std::cell::UnsafeCell;
2571    ///
2572    /// let uc = UnsafeCell::new(5);
2573    ///
2574    /// let val = unsafe { uc.as_ref_unchecked() };
2575    /// assert_eq!(val, &5);
2576    /// ```
2577    #[inline]
2578    #[unstable(feature = "unsafe_cell_access", issue = "136327")]
2579    #[cfg(not(feature = "ferrocene_certified"))]
2580    pub const unsafe fn as_ref_unchecked(&self) -> &T {
2581        // SAFETY: pointer comes from `&self` so naturally satisfies ptr-to-ref invariants.
2582        unsafe { self.get().as_ref_unchecked() }
2583    }
2584
2585    /// Get an exclusive reference to the value within the `UnsafeCell`.
2586    ///
2587    /// # Safety
2588    ///
2589    /// - It is Undefined Behavior to call this while any other
2590    ///   reference(s) to the wrapped value are alive.
2591    /// - Mutating the wrapped value through other means while the
2592    ///   returned reference is alive is Undefined Behavior.
2593    ///
2594    /// # Examples
2595    ///
2596    /// ```
2597    /// #![feature(unsafe_cell_access)]
2598    /// use std::cell::UnsafeCell;
2599    ///
2600    /// let uc = UnsafeCell::new(5);
2601    ///
2602    /// unsafe { *uc.as_mut_unchecked() += 1; }
2603    /// assert_eq!(uc.into_inner(), 6);
2604    /// ```
2605    #[inline]
2606    #[unstable(feature = "unsafe_cell_access", issue = "136327")]
2607    #[allow(clippy::mut_from_ref)]
2608    #[cfg(not(feature = "ferrocene_certified"))]
2609    pub const unsafe fn as_mut_unchecked(&self) -> &mut T {
2610        // SAFETY: pointer comes from `&self` so naturally satisfies ptr-to-ref invariants.
2611        unsafe { self.get().as_mut_unchecked() }
2612    }
2613}
2614
2615#[stable(feature = "unsafe_cell_default", since = "1.10.0")]
2616#[rustc_const_unstable(feature = "const_default", issue = "143894")]
2617#[cfg(not(feature = "ferrocene_certified"))]
2618impl<T: [const] Default> const Default for UnsafeCell<T> {
2619    /// Creates an `UnsafeCell`, with the `Default` value for T.
2620    fn default() -> UnsafeCell<T> {
2621        UnsafeCell::new(Default::default())
2622    }
2623}
2624
2625#[stable(feature = "cell_from", since = "1.12.0")]
2626#[rustc_const_unstable(feature = "const_convert", issue = "143773")]
2627#[cfg(not(feature = "ferrocene_certified"))]
2628impl<T> const From<T> for UnsafeCell<T> {
2629    /// Creates a new `UnsafeCell<T>` containing the given value.
2630    fn from(t: T) -> UnsafeCell<T> {
2631        UnsafeCell::new(t)
2632    }
2633}
2634
2635#[unstable(feature = "coerce_unsized", issue = "18598")]
2636#[cfg(not(feature = "ferrocene_certified"))]
2637impl<T: CoerceUnsized<U>, U> CoerceUnsized<UnsafeCell<U>> for UnsafeCell<T> {}
2638
2639// Allow types that wrap `UnsafeCell` to also implement `DispatchFromDyn`
2640// and become dyn-compatible method receivers.
2641// Note that currently `UnsafeCell` itself cannot be a method receiver
2642// because it does not implement Deref.
2643// In other words:
2644// `self: UnsafeCell<&Self>` won't work
2645// `self: UnsafeCellWrapper<Self>` becomes possible
2646#[unstable(feature = "dispatch_from_dyn", issue = "none")]
2647#[cfg(not(feature = "ferrocene_certified"))]
2648impl<T: DispatchFromDyn<U>, U> DispatchFromDyn<UnsafeCell<U>> for UnsafeCell<T> {}
2649
2650/// [`UnsafeCell`], but [`Sync`].
2651///
2652/// This is just an `UnsafeCell`, except it implements `Sync`
2653/// if `T` implements `Sync`.
2654///
2655/// `UnsafeCell` doesn't implement `Sync`, to prevent accidental mis-use.
2656/// You can use `SyncUnsafeCell` instead of `UnsafeCell` to allow it to be
2657/// shared between threads, if that's intentional.
2658/// Providing proper synchronization is still the task of the user,
2659/// making this type just as unsafe to use.
2660///
2661/// See [`UnsafeCell`] for details.
2662#[unstable(feature = "sync_unsafe_cell", issue = "95439")]
2663#[repr(transparent)]
2664#[rustc_diagnostic_item = "SyncUnsafeCell"]
2665#[rustc_pub_transparent]
2666#[cfg(not(feature = "ferrocene_certified"))]
2667pub struct SyncUnsafeCell<T: ?Sized> {
2668    value: UnsafeCell<T>,
2669}
2670
2671#[unstable(feature = "sync_unsafe_cell", issue = "95439")]
2672#[cfg(not(feature = "ferrocene_certified"))]
2673unsafe impl<T: ?Sized + Sync> Sync for SyncUnsafeCell<T> {}
2674
2675#[unstable(feature = "sync_unsafe_cell", issue = "95439")]
2676#[cfg(not(feature = "ferrocene_certified"))]
2677impl<T> SyncUnsafeCell<T> {
2678    /// Constructs a new instance of `SyncUnsafeCell` which will wrap the specified value.
2679    #[inline]
2680    pub const fn new(value: T) -> Self {
2681        Self { value: UnsafeCell { value } }
2682    }
2683
2684    /// Unwraps the value, consuming the cell.
2685    #[inline]
2686    #[rustc_const_unstable(feature = "sync_unsafe_cell", issue = "95439")]
2687    pub const fn into_inner(self) -> T {
2688        self.value.into_inner()
2689    }
2690}
2691
2692#[unstable(feature = "sync_unsafe_cell", issue = "95439")]
2693#[cfg(not(feature = "ferrocene_certified"))]
2694impl<T: ?Sized> SyncUnsafeCell<T> {
2695    /// Gets a mutable pointer to the wrapped value.
2696    ///
2697    /// This can be cast to a pointer of any kind.
2698    /// Ensure that the access is unique (no active references, mutable or not)
2699    /// when casting to `&mut T`, and ensure that there are no mutations
2700    /// or mutable aliases going on when casting to `&T`
2701    #[inline]
2702    #[rustc_as_ptr]
2703    #[rustc_never_returns_null_ptr]
2704    pub const fn get(&self) -> *mut T {
2705        self.value.get()
2706    }
2707
2708    /// Returns a mutable reference to the underlying data.
2709    ///
2710    /// This call borrows the `SyncUnsafeCell` mutably (at compile-time) which
2711    /// guarantees that we possess the only reference.
2712    #[inline]
2713    pub const fn get_mut(&mut self) -> &mut T {
2714        self.value.get_mut()
2715    }
2716
2717    /// Gets a mutable pointer to the wrapped value.
2718    ///
2719    /// See [`UnsafeCell::get`] for details.
2720    #[inline]
2721    pub const fn raw_get(this: *const Self) -> *mut T {
2722        // We can just cast the pointer from `SyncUnsafeCell<T>` to `T` because
2723        // of #[repr(transparent)] on both SyncUnsafeCell and UnsafeCell.
2724        // See UnsafeCell::raw_get.
2725        this as *const T as *mut T
2726    }
2727}
2728
2729#[unstable(feature = "sync_unsafe_cell", issue = "95439")]
2730#[rustc_const_unstable(feature = "const_default", issue = "143894")]
2731#[cfg(not(feature = "ferrocene_certified"))]
2732impl<T: [const] Default> const Default for SyncUnsafeCell<T> {
2733    /// Creates an `SyncUnsafeCell`, with the `Default` value for T.
2734    fn default() -> SyncUnsafeCell<T> {
2735        SyncUnsafeCell::new(Default::default())
2736    }
2737}
2738
2739#[unstable(feature = "sync_unsafe_cell", issue = "95439")]
2740#[rustc_const_unstable(feature = "const_convert", issue = "143773")]
2741#[cfg(not(feature = "ferrocene_certified"))]
2742impl<T> const From<T> for SyncUnsafeCell<T> {
2743    /// Creates a new `SyncUnsafeCell<T>` containing the given value.
2744    fn from(t: T) -> SyncUnsafeCell<T> {
2745        SyncUnsafeCell::new(t)
2746    }
2747}
2748
2749#[unstable(feature = "coerce_unsized", issue = "18598")]
2750//#[unstable(feature = "sync_unsafe_cell", issue = "95439")]
2751#[cfg(not(feature = "ferrocene_certified"))]
2752impl<T: CoerceUnsized<U>, U> CoerceUnsized<SyncUnsafeCell<U>> for SyncUnsafeCell<T> {}
2753
2754// Allow types that wrap `SyncUnsafeCell` to also implement `DispatchFromDyn`
2755// and become dyn-compatible method receivers.
2756// Note that currently `SyncUnsafeCell` itself cannot be a method receiver
2757// because it does not implement Deref.
2758// In other words:
2759// `self: SyncUnsafeCell<&Self>` won't work
2760// `self: SyncUnsafeCellWrapper<Self>` becomes possible
2761#[unstable(feature = "dispatch_from_dyn", issue = "none")]
2762//#[unstable(feature = "sync_unsafe_cell", issue = "95439")]
2763#[cfg(not(feature = "ferrocene_certified"))]
2764impl<T: DispatchFromDyn<U>, U> DispatchFromDyn<SyncUnsafeCell<U>> for SyncUnsafeCell<T> {}
2765
2766#[allow(unused)]
2767#[cfg(not(feature = "ferrocene_certified"))]
2768fn assert_coerce_unsized(
2769    a: UnsafeCell<&i32>,
2770    b: SyncUnsafeCell<&i32>,
2771    c: Cell<&i32>,
2772    d: RefCell<&i32>,
2773) {
2774    let _: UnsafeCell<&dyn Send> = a;
2775    let _: SyncUnsafeCell<&dyn Send> = b;
2776    let _: Cell<&dyn Send> = c;
2777    let _: RefCell<&dyn Send> = d;
2778}
2779
2780#[unstable(feature = "pin_coerce_unsized_trait", issue = "123430")]
2781#[cfg(not(feature = "ferrocene_certified"))]
2782unsafe impl<T: ?Sized> PinCoerceUnsized for UnsafeCell<T> {}
2783
2784#[unstable(feature = "pin_coerce_unsized_trait", issue = "123430")]
2785#[cfg(not(feature = "ferrocene_certified"))]
2786unsafe impl<T: ?Sized> PinCoerceUnsized for SyncUnsafeCell<T> {}
2787
2788#[unstable(feature = "pin_coerce_unsized_trait", issue = "123430")]
2789#[cfg(not(feature = "ferrocene_certified"))]
2790unsafe impl<T: ?Sized> PinCoerceUnsized for Cell<T> {}
2791
2792#[unstable(feature = "pin_coerce_unsized_trait", issue = "123430")]
2793#[cfg(not(feature = "ferrocene_certified"))]
2794unsafe impl<T: ?Sized> PinCoerceUnsized for RefCell<T> {}
2795
2796#[unstable(feature = "pin_coerce_unsized_trait", issue = "123430")]
2797#[cfg(not(feature = "ferrocene_certified"))]
2798unsafe impl<'b, T: ?Sized> PinCoerceUnsized for Ref<'b, T> {}
2799
2800#[unstable(feature = "pin_coerce_unsized_trait", issue = "123430")]
2801#[cfg(not(feature = "ferrocene_certified"))]
2802unsafe impl<'b, T: ?Sized> PinCoerceUnsized for RefMut<'b, T> {}