core/cell.rs
1//! Shareable mutable containers.
2//!
3//! Rust memory safety is based on this rule: Given an object `T`, it is only possible to
4//! have one of the following:
5//!
6//! - Several immutable references (`&T`) to the object (also known as **aliasing**).
7//! - One mutable reference (`&mut T`) to the object (also known as **mutability**).
8//!
9//! This is enforced by the Rust compiler. However, there are situations where this rule is not
10//! flexible enough. Sometimes it is required to have multiple references to an object and yet
11//! mutate it.
12//!
13//! Shareable mutable containers exist to permit mutability in a controlled manner, even in the
14//! presence of aliasing. [`Cell<T>`], [`RefCell<T>`], and [`OnceCell<T>`] allow doing this in
15//! a single-threaded way—they do not implement [`Sync`]. (If you need to do aliasing and
16//! mutation among multiple threads, [`Mutex<T>`], [`RwLock<T>`], [`OnceLock<T>`] or [`atomic`]
17//! types are the correct data structures to do so).
18//!
19//! Values of the `Cell<T>`, `RefCell<T>`, and `OnceCell<T>` types may be mutated through shared
20//! references (i.e. the common `&T` type), whereas most Rust types can only be mutated through
21//! unique (`&mut T`) references. We say these cell types provide 'interior mutability'
22//! (mutable via `&T`), in contrast with typical Rust types that exhibit 'inherited mutability'
23//! (mutable only via `&mut T`).
24//!
25//! Cell types come in four flavors: `Cell<T>`, `RefCell<T>`, `OnceCell<T>`, and `LazyCell<T>`.
26//! Each provides a different way of providing safe interior mutability.
27//!
28//! ## `Cell<T>`
29//!
30//! [`Cell<T>`] implements interior mutability by moving values in and out of the cell. That is, a
31//! `&T` to the inner value can never be obtained, and the value itself cannot be directly
32//! obtained without replacing it with something else. This type provides the following
33//! methods:
34//!
35//! - For types that implement [`Copy`], the [`get`](Cell::get) method retrieves the current
36//! interior value by duplicating it.
37//! - For types that implement [`Default`], the [`take`](Cell::take) method replaces the current
38//! interior value with [`Default::default()`] and returns the replaced value.
39//! - All types have:
40//! - [`replace`](Cell::replace): replaces the current interior value and returns the replaced
41//! value.
42//! - [`into_inner`](Cell::into_inner): this method consumes the `Cell<T>` and returns the
43//! interior value.
44//! - [`set`](Cell::set): this method replaces the interior value, dropping the replaced value.
45//!
46//! `Cell<T>` is typically used for more simple types where copying or moving values isn't too
47//! resource intensive (e.g. numbers), and should usually be preferred over other cell types when
48//! possible. For larger and non-copy types, `RefCell` provides some advantages.
49//!
50//! ## `RefCell<T>`
51//!
52//! [`RefCell<T>`] uses Rust's lifetimes to implement "dynamic borrowing", a process whereby one can
53//! claim temporary, exclusive, mutable access to the inner value. Borrows for `RefCell<T>`s are
54//! tracked at _runtime_, unlike Rust's native reference types which are entirely tracked
55//! statically, at compile time.
56//!
57//! An immutable reference to a `RefCell`'s inner value (`&T`) can be obtained with
58//! [`borrow`](`RefCell::borrow`), and a mutable borrow (`&mut T`) can be obtained with
59//! [`borrow_mut`](`RefCell::borrow_mut`). When these functions are called, they first verify that
60//! Rust's borrow rules will be satisfied: any number of immutable borrows are allowed or a
61//! single mutable borrow is allowed, but never both. If a borrow is attempted that would violate
62//! these rules, the thread will panic.
63//!
64//! The corresponding [`Sync`] version of `RefCell<T>` is [`RwLock<T>`].
65//!
66//! ## `OnceCell<T>`
67//!
68//! [`OnceCell<T>`] is somewhat of a hybrid of `Cell` and `RefCell` that works for values that
69//! typically only need to be set once. This means that a reference `&T` can be obtained without
70//! moving or copying the inner value (unlike `Cell`) but also without runtime checks (unlike
71//! `RefCell`). However, its value can also not be updated once set unless you have a mutable
72//! reference to the `OnceCell`.
73//!
74//! `OnceCell` provides the following methods:
75//!
76//! - [`get`](OnceCell::get): obtain a reference to the inner value
77//! - [`set`](OnceCell::set): set the inner value if it is unset (returns a `Result`)
78//! - [`get_or_init`](OnceCell::get_or_init): return the inner value, initializing it if needed
79//! - [`get_mut`](OnceCell::get_mut): provide a mutable reference to the inner value, only available
80//! if you have a mutable reference to the cell itself.
81//!
82//! The corresponding [`Sync`] version of `OnceCell<T>` is [`OnceLock<T>`].
83//!
84//! ## `LazyCell<T, F>`
85//!
86//! A common pattern with OnceCell is, for a given OnceCell, to use the same function on every
87//! call to [`OnceCell::get_or_init`] with that cell. This is what is offered by [`LazyCell`],
88//! which pairs cells of `T` with functions of `F`, and always calls `F` before it yields `&T`.
89//! This happens implicitly by simply attempting to dereference the LazyCell to get its contents,
90//! so its use is much more transparent with a place which has been initialized by a constant.
91//!
92//! More complicated patterns that don't fit this description can be built on `OnceCell<T>` instead.
93//!
94//! `LazyCell` works by providing an implementation of `impl Deref` that calls the function,
95//! so you can just use it by dereference (e.g. `*lazy_cell` or `lazy_cell.deref()`).
96//!
97//! The corresponding [`Sync`] version of `LazyCell<T, F>` is [`LazyLock<T, F>`].
98//!
99//! # When to choose interior mutability
100//!
101//! The more common inherited mutability, where one must have unique access to mutate a value, is
102//! one of the key language elements that enables Rust to reason strongly about pointer aliasing,
103//! statically preventing crash bugs. Because of that, inherited mutability is preferred, and
104//! interior mutability is something of a last resort. Since cell types enable mutation where it
105//! would otherwise be disallowed though, there are occasions when interior mutability might be
106//! appropriate, or even *must* be used, e.g.
107//!
108//! * Introducing mutability 'inside' of something immutable
109//! * Implementation details of logically-immutable methods.
110//! * Mutating implementations of [`Clone`].
111//!
112//! ## Introducing mutability 'inside' of something immutable
113//!
114//! Many shared smart pointer types, including [`Rc<T>`] and [`Arc<T>`], provide containers that can
115//! be cloned and shared between multiple parties. Because the contained values may be
116//! multiply-aliased, they can only be borrowed with `&`, not `&mut`. Without cells it would be
117//! impossible to mutate data inside of these smart pointers at all.
118//!
119//! It's very common then to put a `RefCell<T>` inside shared pointer types to reintroduce
120//! mutability:
121//!
122//! ```
123//! use std::cell::{RefCell, RefMut};
124//! use std::collections::HashMap;
125//! use std::rc::Rc;
126//!
127//! fn main() {
128//! let shared_map: Rc<RefCell<_>> = Rc::new(RefCell::new(HashMap::new()));
129//! // Create a new block to limit the scope of the dynamic borrow
130//! {
131//! let mut map: RefMut<'_, _> = shared_map.borrow_mut();
132//! map.insert("africa", 92388);
133//! map.insert("kyoto", 11837);
134//! map.insert("piccadilly", 11826);
135//! map.insert("marbles", 38);
136//! }
137//!
138//! // Note that if we had not let the previous borrow of the cache fall out
139//! // of scope then the subsequent borrow would cause a dynamic thread panic.
140//! // This is the major hazard of using `RefCell`.
141//! let total: i32 = shared_map.borrow().values().sum();
142//! println!("{total}");
143//! }
144//! ```
145//!
146//! Note that this example uses `Rc<T>` and not `Arc<T>`. `RefCell<T>`s are for single-threaded
147//! scenarios. Consider using [`RwLock<T>`] or [`Mutex<T>`] if you need shared mutability in a
148//! multi-threaded situation.
149//!
150//! ## Implementation details of logically-immutable methods
151//!
152//! Occasionally it may be desirable not to expose in an API that there is mutation happening
153//! "under the hood". This may be because logically the operation is immutable, but e.g., caching
154//! forces the implementation to perform mutation; or because you must employ mutation to implement
155//! a trait method that was originally defined to take `&self`.
156//!
157//! ```
158//! # #![allow(dead_code)]
159//! use std::cell::OnceCell;
160//!
161//! struct Graph {
162//! edges: Vec<(i32, i32)>,
163//! span_tree_cache: OnceCell<Vec<(i32, i32)>>
164//! }
165//!
166//! impl Graph {
167//! fn minimum_spanning_tree(&self) -> Vec<(i32, i32)> {
168//! self.span_tree_cache
169//! .get_or_init(|| self.calc_span_tree())
170//! .clone()
171//! }
172//!
173//! fn calc_span_tree(&self) -> Vec<(i32, i32)> {
174//! // Expensive computation goes here
175//! vec![]
176//! }
177//! }
178//! ```
179//!
180//! ## Mutating implementations of `Clone`
181//!
182//! This is simply a special - but common - case of the previous: hiding mutability for operations
183//! that appear to be immutable. The [`clone`](Clone::clone) method is expected to not change the
184//! source value, and is declared to take `&self`, not `&mut self`. Therefore, any mutation that
185//! happens in the `clone` method must use cell types. For example, [`Rc<T>`] maintains its
186//! reference counts within a `Cell<T>`.
187//!
188//! ```
189//! use std::cell::Cell;
190//! use std::ptr::NonNull;
191//! use std::process::abort;
192//! use std::marker::PhantomData;
193//!
194//! struct Rc<T: ?Sized> {
195//! ptr: NonNull<RcInner<T>>,
196//! phantom: PhantomData<RcInner<T>>,
197//! }
198//!
199//! struct RcInner<T: ?Sized> {
200//! strong: Cell<usize>,
201//! refcount: Cell<usize>,
202//! value: T,
203//! }
204//!
205//! impl<T: ?Sized> Clone for Rc<T> {
206//! fn clone(&self) -> Rc<T> {
207//! self.inc_strong();
208//! Rc {
209//! ptr: self.ptr,
210//! phantom: PhantomData,
211//! }
212//! }
213//! }
214//!
215//! trait RcInnerPtr<T: ?Sized> {
216//!
217//! fn inner(&self) -> &RcInner<T>;
218//!
219//! fn strong(&self) -> usize {
220//! self.inner().strong.get()
221//! }
222//!
223//! fn inc_strong(&self) {
224//! self.inner()
225//! .strong
226//! .set(self.strong()
227//! .checked_add(1)
228//! .unwrap_or_else(|| abort() ));
229//! }
230//! }
231//!
232//! impl<T: ?Sized> RcInnerPtr<T> for Rc<T> {
233//! fn inner(&self) -> &RcInner<T> {
234//! unsafe {
235//! self.ptr.as_ref()
236//! }
237//! }
238//! }
239//! ```
240//!
241//! [`Arc<T>`]: ../../std/sync/struct.Arc.html
242//! [`Rc<T>`]: ../../std/rc/struct.Rc.html
243//! [`RwLock<T>`]: ../../std/sync/struct.RwLock.html
244//! [`Mutex<T>`]: ../../std/sync/struct.Mutex.html
245//! [`OnceLock<T>`]: ../../std/sync/struct.OnceLock.html
246//! [`LazyLock<T, F>`]: ../../std/sync/struct.LazyLock.html
247//! [`Sync`]: ../../std/marker/trait.Sync.html
248//! [`atomic`]: crate::sync::atomic
249
250#![stable(feature = "rust1", since = "1.0.0")]
251
252#[cfg(not(feature = "ferrocene_subset"))]
253use crate::cmp::Ordering;
254use crate::fmt::{self, Debug, Display};
255#[cfg(not(feature = "ferrocene_subset"))]
256use crate::marker::{Destruct, PhantomData, Unsize};
257#[cfg(not(feature = "ferrocene_subset"))]
258use crate::mem::{self, ManuallyDrop};
259#[cfg(not(feature = "ferrocene_subset"))]
260use crate::ops::{self, CoerceUnsized, Deref, DerefMut, DerefPure, DispatchFromDyn};
261use crate::panic::const_panic;
262#[cfg(not(feature = "ferrocene_subset"))]
263use crate::pin::PinCoerceUnsized;
264#[cfg(not(feature = "ferrocene_subset"))]
265use crate::ptr::{self, NonNull};
266#[cfg(not(feature = "ferrocene_subset"))]
267use crate::range;
268
269// Ferrocene addition: imports for certified subset
270#[cfg(feature = "ferrocene_subset")]
271#[rustfmt::skip]
272use crate::{
273 marker::{Destruct, PhantomData},
274 mem,
275 ops::{Deref, DerefMut},
276 ptr::NonNull,
277};
278
279#[cfg(not(feature = "ferrocene_subset"))]
280mod lazy;
281#[cfg(not(feature = "ferrocene_subset"))]
282mod once;
283
284#[stable(feature = "lazy_cell", since = "1.80.0")]
285#[cfg(not(feature = "ferrocene_subset"))]
286pub use lazy::LazyCell;
287#[stable(feature = "once_cell", since = "1.70.0")]
288#[cfg(not(feature = "ferrocene_subset"))]
289pub use once::OnceCell;
290
291/// A mutable memory location.
292///
293/// # Memory layout
294///
295/// `Cell<T>` has the same [memory layout and caveats as
296/// `UnsafeCell<T>`](UnsafeCell#memory-layout). In particular, this means that
297/// `Cell<T>` has the same in-memory representation as its inner type `T`.
298///
299/// # Examples
300///
301/// In this example, you can see that `Cell<T>` enables mutation inside an
302/// immutable struct. In other words, it enables "interior mutability".
303///
304/// ```
305/// use std::cell::Cell;
306///
307/// struct SomeStruct {
308/// regular_field: u8,
309/// special_field: Cell<u8>,
310/// }
311///
312/// let my_struct = SomeStruct {
313/// regular_field: 0,
314/// special_field: Cell::new(1),
315/// };
316///
317/// let new_value = 100;
318///
319/// // ERROR: `my_struct` is immutable
320/// // my_struct.regular_field = new_value;
321///
322/// // WORKS: although `my_struct` is immutable, `special_field` is a `Cell`,
323/// // which can always be mutated
324/// my_struct.special_field.set(new_value);
325/// assert_eq!(my_struct.special_field.get(), new_value);
326/// ```
327///
328/// See the [module-level documentation](self) for more.
329#[rustc_diagnostic_item = "Cell"]
330#[stable(feature = "rust1", since = "1.0.0")]
331#[repr(transparent)]
332#[rustc_pub_transparent]
333pub struct Cell<T: ?Sized> {
334 value: UnsafeCell<T>,
335}
336
337#[stable(feature = "rust1", since = "1.0.0")]
338unsafe impl<T: ?Sized> Send for Cell<T> where T: Send {}
339
340// Note that this negative impl isn't strictly necessary for correctness,
341// as `Cell` wraps `UnsafeCell`, which is itself `!Sync`.
342// However, given how important `Cell`'s `!Sync`-ness is,
343// having an explicit negative impl is nice for documentation purposes
344// and results in nicer error messages.
345#[stable(feature = "rust1", since = "1.0.0")]
346impl<T: ?Sized> !Sync for Cell<T> {}
347
348#[stable(feature = "rust1", since = "1.0.0")]
349#[cfg(not(feature = "ferrocene_subset"))]
350impl<T: Copy> Clone for Cell<T> {
351 #[inline]
352 fn clone(&self) -> Cell<T> {
353 Cell::new(self.get())
354 }
355}
356
357#[stable(feature = "rust1", since = "1.0.0")]
358#[rustc_const_unstable(feature = "const_default", issue = "143894")]
359#[cfg(not(feature = "ferrocene_subset"))]
360impl<T: [const] Default> const Default for Cell<T> {
361 /// Creates a `Cell<T>`, with the `Default` value for T.
362 #[inline]
363 fn default() -> Cell<T> {
364 Cell::new(Default::default())
365 }
366}
367
368#[stable(feature = "rust1", since = "1.0.0")]
369#[cfg(not(feature = "ferrocene_subset"))]
370impl<T: PartialEq + Copy> PartialEq for Cell<T> {
371 #[inline]
372 fn eq(&self, other: &Cell<T>) -> bool {
373 self.get() == other.get()
374 }
375}
376
377#[stable(feature = "cell_eq", since = "1.2.0")]
378#[cfg(not(feature = "ferrocene_subset"))]
379impl<T: Eq + Copy> Eq for Cell<T> {}
380
381#[stable(feature = "cell_ord", since = "1.10.0")]
382#[cfg(not(feature = "ferrocene_subset"))]
383impl<T: PartialOrd + Copy> PartialOrd for Cell<T> {
384 #[inline]
385 fn partial_cmp(&self, other: &Cell<T>) -> Option<Ordering> {
386 self.get().partial_cmp(&other.get())
387 }
388
389 #[inline]
390 fn lt(&self, other: &Cell<T>) -> bool {
391 self.get() < other.get()
392 }
393
394 #[inline]
395 fn le(&self, other: &Cell<T>) -> bool {
396 self.get() <= other.get()
397 }
398
399 #[inline]
400 fn gt(&self, other: &Cell<T>) -> bool {
401 self.get() > other.get()
402 }
403
404 #[inline]
405 fn ge(&self, other: &Cell<T>) -> bool {
406 self.get() >= other.get()
407 }
408}
409
410#[stable(feature = "cell_ord", since = "1.10.0")]
411#[cfg(not(feature = "ferrocene_subset"))]
412impl<T: Ord + Copy> Ord for Cell<T> {
413 #[inline]
414 fn cmp(&self, other: &Cell<T>) -> Ordering {
415 self.get().cmp(&other.get())
416 }
417}
418
419#[stable(feature = "cell_from", since = "1.12.0")]
420#[rustc_const_unstable(feature = "const_convert", issue = "143773")]
421#[cfg(not(feature = "ferrocene_subset"))]
422impl<T> const From<T> for Cell<T> {
423 /// Creates a new `Cell<T>` containing the given value.
424 fn from(t: T) -> Cell<T> {
425 Cell::new(t)
426 }
427}
428
429impl<T> Cell<T> {
430 /// Creates a new `Cell` containing the given value.
431 ///
432 /// # Examples
433 ///
434 /// ```
435 /// use std::cell::Cell;
436 ///
437 /// let c = Cell::new(5);
438 /// ```
439 #[stable(feature = "rust1", since = "1.0.0")]
440 #[rustc_const_stable(feature = "const_cell_new", since = "1.24.0")]
441 #[inline]
442 pub const fn new(value: T) -> Cell<T> {
443 Cell { value: UnsafeCell::new(value) }
444 }
445
446 /// Sets the contained value.
447 ///
448 /// # Examples
449 ///
450 /// ```
451 /// use std::cell::Cell;
452 ///
453 /// let c = Cell::new(5);
454 ///
455 /// c.set(10);
456 /// ```
457 #[inline]
458 #[stable(feature = "rust1", since = "1.0.0")]
459 #[rustc_const_unstable(feature = "const_cell_traits", issue = "147787")]
460 #[rustc_should_not_be_called_on_const_items]
461 pub const fn set(&self, val: T)
462 where
463 T: [const] Destruct,
464 {
465 self.replace(val);
466 }
467
468 /// Swaps the values of two `Cell`s.
469 ///
470 /// The difference with `std::mem::swap` is that this function doesn't
471 /// require a `&mut` reference.
472 ///
473 /// # Panics
474 ///
475 /// This function will panic if `self` and `other` are different `Cell`s that partially overlap.
476 /// (Using just standard library methods, it is impossible to create such partially overlapping `Cell`s.
477 /// However, unsafe code is allowed to e.g. create two `&Cell<[i32; 2]>` that partially overlap.)
478 ///
479 /// # Examples
480 ///
481 /// ```
482 /// use std::cell::Cell;
483 ///
484 /// let c1 = Cell::new(5i32);
485 /// let c2 = Cell::new(10i32);
486 /// c1.swap(&c2);
487 /// assert_eq!(10, c1.get());
488 /// assert_eq!(5, c2.get());
489 /// ```
490 #[inline]
491 #[stable(feature = "move_cell", since = "1.17.0")]
492 #[cfg(not(feature = "ferrocene_subset"))]
493 #[rustc_should_not_be_called_on_const_items]
494 pub fn swap(&self, other: &Self) {
495 // This function documents that it *will* panic, and intrinsics::is_nonoverlapping doesn't
496 // do the check in const, so trying to use it here would be inviting unnecessary fragility.
497 fn is_nonoverlapping<T>(src: *const T, dst: *const T) -> bool {
498 let src_usize = src.addr();
499 let dst_usize = dst.addr();
500 let diff = src_usize.abs_diff(dst_usize);
501 diff >= size_of::<T>()
502 }
503
504 if ptr::eq(self, other) {
505 // Swapping wouldn't change anything.
506 return;
507 }
508 if !is_nonoverlapping(self, other) {
509 // See <https://github.com/rust-lang/rust/issues/80778> for why we need to stop here.
510 panic!("`Cell::swap` on overlapping non-identical `Cell`s");
511 }
512 // SAFETY: This can be risky if called from separate threads, but `Cell`
513 // is `!Sync` so this won't happen. This also won't invalidate any
514 // pointers since `Cell` makes sure nothing else will be pointing into
515 // either of these `Cell`s. We also excluded shenanigans like partially overlapping `Cell`s,
516 // so `swap` will just properly copy two full values of type `T` back and forth.
517 unsafe {
518 mem::swap(&mut *self.value.get(), &mut *other.value.get());
519 }
520 }
521
522 /// Replaces the contained value with `val`, and returns the old contained value.
523 ///
524 /// # Examples
525 ///
526 /// ```
527 /// use std::cell::Cell;
528 ///
529 /// let cell = Cell::new(5);
530 /// assert_eq!(cell.get(), 5);
531 /// assert_eq!(cell.replace(10), 5);
532 /// assert_eq!(cell.get(), 10);
533 /// ```
534 #[inline]
535 #[stable(feature = "move_cell", since = "1.17.0")]
536 #[rustc_const_stable(feature = "const_cell", since = "1.88.0")]
537 #[rustc_confusables("swap")]
538 #[rustc_should_not_be_called_on_const_items]
539 pub const fn replace(&self, val: T) -> T {
540 // SAFETY: This can cause data races if called from a separate thread,
541 // but `Cell` is `!Sync` so this won't happen.
542 mem::replace(unsafe { &mut *self.value.get() }, val)
543 }
544
545 /// Unwraps the value, consuming the cell.
546 ///
547 /// # Examples
548 ///
549 /// ```
550 /// use std::cell::Cell;
551 ///
552 /// let c = Cell::new(5);
553 /// let five = c.into_inner();
554 ///
555 /// assert_eq!(five, 5);
556 /// ```
557 #[stable(feature = "move_cell", since = "1.17.0")]
558 #[rustc_const_stable(feature = "const_cell_into_inner", since = "1.83.0")]
559 #[rustc_allow_const_fn_unstable(const_precise_live_drops)]
560 #[cfg(not(feature = "ferrocene_subset"))]
561 pub const fn into_inner(self) -> T {
562 self.value.into_inner()
563 }
564}
565
566impl<T: Copy> Cell<T> {
567 /// Returns a copy of the contained value.
568 ///
569 /// # Examples
570 ///
571 /// ```
572 /// use std::cell::Cell;
573 ///
574 /// let c = Cell::new(5);
575 ///
576 /// let five = c.get();
577 /// ```
578 #[inline]
579 #[stable(feature = "rust1", since = "1.0.0")]
580 #[rustc_const_stable(feature = "const_cell", since = "1.88.0")]
581 #[rustc_should_not_be_called_on_const_items]
582 pub const fn get(&self) -> T {
583 // SAFETY: This can cause data races if called from a separate thread,
584 // but `Cell` is `!Sync` so this won't happen.
585 unsafe { *self.value.get() }
586 }
587
588 /// Updates the contained value using a function.
589 ///
590 /// # Examples
591 ///
592 /// ```
593 /// use std::cell::Cell;
594 ///
595 /// let c = Cell::new(5);
596 /// c.update(|x| x + 1);
597 /// assert_eq!(c.get(), 6);
598 /// ```
599 #[inline]
600 #[stable(feature = "cell_update", since = "1.88.0")]
601 #[rustc_const_unstable(feature = "const_cell_traits", issue = "147787")]
602 #[cfg(not(feature = "ferrocene_subset"))]
603 #[rustc_should_not_be_called_on_const_items]
604 pub const fn update(&self, f: impl [const] FnOnce(T) -> T)
605 where
606 // FIXME(const-hack): `Copy` should imply `const Destruct`
607 T: [const] Destruct,
608 {
609 let old = self.get();
610 self.set(f(old));
611 }
612}
613
614#[cfg(not(feature = "ferrocene_subset"))]
615impl<T: ?Sized> Cell<T> {
616 /// Returns a raw pointer to the underlying data in this cell.
617 ///
618 /// # Examples
619 ///
620 /// ```
621 /// use std::cell::Cell;
622 ///
623 /// let c = Cell::new(5);
624 ///
625 /// let ptr = c.as_ptr();
626 /// ```
627 #[inline]
628 #[stable(feature = "cell_as_ptr", since = "1.12.0")]
629 #[rustc_const_stable(feature = "const_cell_as_ptr", since = "1.32.0")]
630 #[rustc_as_ptr]
631 #[rustc_never_returns_null_ptr]
632 pub const fn as_ptr(&self) -> *mut T {
633 self.value.get()
634 }
635
636 /// Returns a mutable reference to the underlying data.
637 ///
638 /// This call borrows `Cell` mutably (at compile-time) which guarantees
639 /// that we possess the only reference.
640 ///
641 /// However be cautious: this method expects `self` to be mutable, which is
642 /// generally not the case when using a `Cell`. If you require interior
643 /// mutability by reference, consider using `RefCell` which provides
644 /// run-time checked mutable borrows through its [`borrow_mut`] method.
645 ///
646 /// [`borrow_mut`]: RefCell::borrow_mut()
647 ///
648 /// # Examples
649 ///
650 /// ```
651 /// use std::cell::Cell;
652 ///
653 /// let mut c = Cell::new(5);
654 /// *c.get_mut() += 1;
655 ///
656 /// assert_eq!(c.get(), 6);
657 /// ```
658 #[inline]
659 #[stable(feature = "cell_get_mut", since = "1.11.0")]
660 #[rustc_const_stable(feature = "const_cell", since = "1.88.0")]
661 pub const fn get_mut(&mut self) -> &mut T {
662 self.value.get_mut()
663 }
664
665 /// Returns a `&Cell<T>` from a `&mut T`
666 ///
667 /// # Examples
668 ///
669 /// ```
670 /// use std::cell::Cell;
671 ///
672 /// let slice: &mut [i32] = &mut [1, 2, 3];
673 /// let cell_slice: &Cell<[i32]> = Cell::from_mut(slice);
674 /// let slice_cell: &[Cell<i32>] = cell_slice.as_slice_of_cells();
675 ///
676 /// assert_eq!(slice_cell.len(), 3);
677 /// ```
678 #[inline]
679 #[stable(feature = "as_cell", since = "1.37.0")]
680 #[rustc_const_stable(feature = "const_cell", since = "1.88.0")]
681 pub const fn from_mut(t: &mut T) -> &Cell<T> {
682 // SAFETY: `&mut` ensures unique access.
683 unsafe { &*(t as *mut T as *const Cell<T>) }
684 }
685}
686
687#[cfg(not(feature = "ferrocene_subset"))]
688impl<T: Default> Cell<T> {
689 /// Takes the value of the cell, leaving `Default::default()` in its place.
690 ///
691 /// # Examples
692 ///
693 /// ```
694 /// use std::cell::Cell;
695 ///
696 /// let c = Cell::new(5);
697 /// let five = c.take();
698 ///
699 /// assert_eq!(five, 5);
700 /// assert_eq!(c.into_inner(), 0);
701 /// ```
702 #[stable(feature = "move_cell", since = "1.17.0")]
703 #[rustc_const_unstable(feature = "const_cell_traits", issue = "147787")]
704 pub const fn take(&self) -> T
705 where
706 T: [const] Default,
707 {
708 self.replace(Default::default())
709 }
710}
711
712#[unstable(feature = "coerce_unsized", issue = "18598")]
713#[cfg(not(feature = "ferrocene_subset"))]
714impl<T: CoerceUnsized<U>, U> CoerceUnsized<Cell<U>> for Cell<T> {}
715
716// Allow types that wrap `Cell` to also implement `DispatchFromDyn`
717// and become dyn-compatible method receivers.
718// Note that currently `Cell` itself cannot be a method receiver
719// because it does not implement Deref.
720// In other words:
721// `self: Cell<&Self>` won't work
722// `self: CellWrapper<Self>` becomes possible
723#[unstable(feature = "dispatch_from_dyn", issue = "none")]
724#[cfg(not(feature = "ferrocene_subset"))]
725impl<T: DispatchFromDyn<U>, U> DispatchFromDyn<Cell<U>> for Cell<T> {}
726
727#[cfg(not(feature = "ferrocene_subset"))]
728impl<T> Cell<[T]> {
729 /// Returns a `&[Cell<T>]` from a `&Cell<[T]>`
730 ///
731 /// # Examples
732 ///
733 /// ```
734 /// use std::cell::Cell;
735 ///
736 /// let slice: &mut [i32] = &mut [1, 2, 3];
737 /// let cell_slice: &Cell<[i32]> = Cell::from_mut(slice);
738 /// let slice_cell: &[Cell<i32>] = cell_slice.as_slice_of_cells();
739 ///
740 /// assert_eq!(slice_cell.len(), 3);
741 /// ```
742 #[stable(feature = "as_cell", since = "1.37.0")]
743 #[rustc_const_stable(feature = "const_cell", since = "1.88.0")]
744 pub const fn as_slice_of_cells(&self) -> &[Cell<T>] {
745 // SAFETY: `Cell<T>` has the same memory layout as `T`.
746 unsafe { &*(self as *const Cell<[T]> as *const [Cell<T>]) }
747 }
748}
749
750#[cfg(not(feature = "ferrocene_subset"))]
751impl<T, const N: usize> Cell<[T; N]> {
752 /// Returns a `&[Cell<T>; N]` from a `&Cell<[T; N]>`
753 ///
754 /// # Examples
755 ///
756 /// ```
757 /// use std::cell::Cell;
758 ///
759 /// let mut array: [i32; 3] = [1, 2, 3];
760 /// let cell_array: &Cell<[i32; 3]> = Cell::from_mut(&mut array);
761 /// let array_cell: &[Cell<i32>; 3] = cell_array.as_array_of_cells();
762 /// ```
763 #[stable(feature = "as_array_of_cells", since = "1.91.0")]
764 #[rustc_const_stable(feature = "as_array_of_cells", since = "1.91.0")]
765 pub const fn as_array_of_cells(&self) -> &[Cell<T>; N] {
766 // SAFETY: `Cell<T>` has the same memory layout as `T`.
767 unsafe { &*(self as *const Cell<[T; N]> as *const [Cell<T>; N]) }
768 }
769}
770
771/// Types for which cloning `Cell<Self>` is sound.
772///
773/// # Safety
774///
775/// Implementing this trait for a type is sound if and only if the following code is sound for T =
776/// that type.
777///
778/// ```
779/// #![feature(cell_get_cloned)]
780/// # use std::cell::{CloneFromCell, Cell};
781/// fn clone_from_cell<T: CloneFromCell>(cell: &Cell<T>) -> T {
782/// unsafe { T::clone(&*cell.as_ptr()) }
783/// }
784/// ```
785///
786/// Importantly, you can't just implement `CloneFromCell` for any arbitrary `Copy` type, e.g. the
787/// following is unsound:
788///
789/// ```rust
790/// #![feature(cell_get_cloned)]
791/// # use std::cell::Cell;
792///
793/// #[derive(Copy, Debug)]
794/// pub struct Bad<'a>(Option<&'a Cell<Bad<'a>>>, u8);
795///
796/// impl Clone for Bad<'_> {
797/// fn clone(&self) -> Self {
798/// let a: &u8 = &self.1;
799/// // when self.0 points to self, we write to self.1 while we have a live `&u8` pointing to
800/// // it -- this is UB
801/// self.0.unwrap().set(Self(None, 1));
802/// dbg!((a, self));
803/// Self(None, 0)
804/// }
805/// }
806///
807/// // this is not sound
808/// // unsafe impl CloneFromCell for Bad<'_> {}
809/// ```
810#[unstable(feature = "cell_get_cloned", issue = "145329")]
811// Allow potential overlapping implementations in user code
812#[marker]
813#[cfg(not(feature = "ferrocene_subset"))]
814pub unsafe trait CloneFromCell: Clone {}
815
816// `CloneFromCell` can be implemented for types that don't have indirection and which don't access
817// `Cell`s in their `Clone` implementation. A commonly-used subset is covered here.
818#[unstable(feature = "cell_get_cloned", issue = "145329")]
819#[cfg(not(feature = "ferrocene_subset"))]
820unsafe impl<T: CloneFromCell, const N: usize> CloneFromCell for [T; N] {}
821#[unstable(feature = "cell_get_cloned", issue = "145329")]
822#[cfg(not(feature = "ferrocene_subset"))]
823unsafe impl<T: CloneFromCell> CloneFromCell for Option<T> {}
824#[unstable(feature = "cell_get_cloned", issue = "145329")]
825#[cfg(not(feature = "ferrocene_subset"))]
826unsafe impl<T: CloneFromCell, E: CloneFromCell> CloneFromCell for Result<T, E> {}
827#[unstable(feature = "cell_get_cloned", issue = "145329")]
828#[cfg(not(feature = "ferrocene_subset"))]
829unsafe impl<T: ?Sized> CloneFromCell for PhantomData<T> {}
830#[unstable(feature = "cell_get_cloned", issue = "145329")]
831#[cfg(not(feature = "ferrocene_subset"))]
832unsafe impl<T: CloneFromCell> CloneFromCell for ManuallyDrop<T> {}
833#[unstable(feature = "cell_get_cloned", issue = "145329")]
834#[cfg(not(feature = "ferrocene_subset"))]
835unsafe impl<T: CloneFromCell> CloneFromCell for ops::Range<T> {}
836#[unstable(feature = "cell_get_cloned", issue = "145329")]
837#[cfg(not(feature = "ferrocene_subset"))]
838unsafe impl<T: CloneFromCell> CloneFromCell for range::Range<T> {}
839
840#[unstable(feature = "cell_get_cloned", issue = "145329")]
841#[cfg(not(feature = "ferrocene_subset"))]
842impl<T: CloneFromCell> Cell<T> {
843 /// Get a clone of the `Cell` that contains a copy of the original value.
844 ///
845 /// This allows a cheaply `Clone`-able type like an `Rc` to be stored in a `Cell`, exposing the
846 /// cheaper `clone()` method.
847 ///
848 /// # Examples
849 ///
850 /// ```
851 /// #![feature(cell_get_cloned)]
852 ///
853 /// use core::cell::Cell;
854 /// use std::rc::Rc;
855 ///
856 /// let rc = Rc::new(1usize);
857 /// let c1 = Cell::new(rc);
858 /// let c2 = c1.get_cloned();
859 /// assert_eq!(*c2.into_inner(), 1);
860 /// ```
861 pub fn get_cloned(&self) -> Self {
862 // SAFETY: T is CloneFromCell, which guarantees that this is sound.
863 Cell::new(T::clone(unsafe { &*self.as_ptr() }))
864 }
865}
866
867/// A mutable memory location with dynamically checked borrow rules
868///
869/// See the [module-level documentation](self) for more.
870#[rustc_diagnostic_item = "RefCell"]
871#[stable(feature = "rust1", since = "1.0.0")]
872pub struct RefCell<T: ?Sized> {
873 borrow: Cell<BorrowCounter>,
874 // Stores the location of the earliest currently active borrow.
875 // This gets updated whenever we go from having zero borrows
876 // to having a single borrow. When a borrow occurs, this gets included
877 // in the generated `BorrowError`/`BorrowMutError`
878 #[cfg(feature = "debug_refcell")]
879 borrowed_at: Cell<Option<&'static crate::panic::Location<'static>>>,
880 value: UnsafeCell<T>,
881}
882
883/// An error returned by [`RefCell::try_borrow`].
884#[stable(feature = "try_borrow", since = "1.13.0")]
885#[non_exhaustive]
886#[derive(Debug)]
887pub struct BorrowError {
888 #[cfg(feature = "debug_refcell")]
889 location: &'static crate::panic::Location<'static>,
890}
891
892#[stable(feature = "try_borrow", since = "1.13.0")]
893impl Display for BorrowError {
894 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
895 #[cfg(feature = "debug_refcell")]
896 let res = write!(
897 f,
898 "RefCell already mutably borrowed; a previous borrow was at {}",
899 self.location
900 );
901
902 #[cfg(not(feature = "debug_refcell"))]
903 let res = Display::fmt("RefCell already mutably borrowed", f);
904
905 res
906 }
907}
908
909/// An error returned by [`RefCell::try_borrow_mut`].
910#[stable(feature = "try_borrow", since = "1.13.0")]
911#[non_exhaustive]
912#[derive(Debug)]
913pub struct BorrowMutError {
914 #[cfg(feature = "debug_refcell")]
915 location: &'static crate::panic::Location<'static>,
916}
917
918#[stable(feature = "try_borrow", since = "1.13.0")]
919impl Display for BorrowMutError {
920 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
921 #[cfg(feature = "debug_refcell")]
922 let res = write!(f, "RefCell already borrowed; a previous borrow was at {}", self.location);
923
924 #[cfg(not(feature = "debug_refcell"))]
925 let res = Display::fmt("RefCell already borrowed", f);
926
927 res
928 }
929}
930
931// This ensures the panicking code is outlined from `borrow_mut` for `RefCell`.
932#[cfg_attr(not(panic = "immediate-abort"), inline(never))]
933#[track_caller]
934#[cold]
935const fn panic_already_borrowed(err: BorrowMutError) -> ! {
936 const_panic!(
937 "RefCell already borrowed",
938 "{err}",
939 err: BorrowMutError = err,
940 )
941}
942
943// This ensures the panicking code is outlined from `borrow` for `RefCell`.
944#[cfg_attr(not(panic = "immediate-abort"), inline(never))]
945#[track_caller]
946#[cold]
947const fn panic_already_mutably_borrowed(err: BorrowError) -> ! {
948 const_panic!(
949 "RefCell already mutably borrowed",
950 "{err}",
951 err: BorrowError = err,
952 )
953}
954
955// Positive values represent the number of `Ref` active. Negative values
956// represent the number of `RefMut` active. Multiple `RefMut`s can only be
957// active at a time if they refer to distinct, nonoverlapping components of a
958// `RefCell` (e.g., different ranges of a slice).
959//
960// `Ref` and `RefMut` are both two words in size, and so there will likely never
961// be enough `Ref`s or `RefMut`s in existence to overflow half of the `usize`
962// range. Thus, a `BorrowCounter` will probably never overflow or underflow.
963// However, this is not a guarantee, as a pathological program could repeatedly
964// create and then mem::forget `Ref`s or `RefMut`s. Thus, all code must
965// explicitly check for overflow and underflow in order to avoid unsafety, or at
966// least behave correctly in the event that overflow or underflow happens (e.g.,
967// see BorrowRef::new).
968type BorrowCounter = isize;
969const UNUSED: BorrowCounter = 0;
970
971#[inline(always)]
972const fn is_writing(x: BorrowCounter) -> bool {
973 x < UNUSED
974}
975
976#[inline(always)]
977const fn is_reading(x: BorrowCounter) -> bool {
978 x > UNUSED
979}
980
981impl<T> RefCell<T> {
982 /// Creates a new `RefCell` containing `value`.
983 ///
984 /// # Examples
985 ///
986 /// ```
987 /// use std::cell::RefCell;
988 ///
989 /// let c = RefCell::new(5);
990 /// ```
991 #[stable(feature = "rust1", since = "1.0.0")]
992 #[rustc_const_stable(feature = "const_refcell_new", since = "1.24.0")]
993 #[inline]
994 pub const fn new(value: T) -> RefCell<T> {
995 RefCell {
996 value: UnsafeCell::new(value),
997 borrow: Cell::new(UNUSED),
998 #[cfg(feature = "debug_refcell")]
999 borrowed_at: Cell::new(None),
1000 }
1001 }
1002
1003 /// Consumes the `RefCell`, returning the wrapped value.
1004 ///
1005 /// # Examples
1006 ///
1007 /// ```
1008 /// use std::cell::RefCell;
1009 ///
1010 /// let c = RefCell::new(5);
1011 ///
1012 /// let five = c.into_inner();
1013 /// ```
1014 #[stable(feature = "rust1", since = "1.0.0")]
1015 #[rustc_const_stable(feature = "const_cell_into_inner", since = "1.83.0")]
1016 #[rustc_allow_const_fn_unstable(const_precise_live_drops)]
1017 #[inline]
1018 #[cfg(not(feature = "ferrocene_subset"))]
1019 pub const fn into_inner(self) -> T {
1020 // Since this function takes `self` (the `RefCell`) by value, the
1021 // compiler statically verifies that it is not currently borrowed.
1022 self.value.into_inner()
1023 }
1024
1025 /// Replaces the wrapped value with a new one, returning the old value,
1026 /// without deinitializing either one.
1027 ///
1028 /// This function corresponds to [`std::mem::replace`](../mem/fn.replace.html).
1029 ///
1030 /// # Panics
1031 ///
1032 /// Panics if the value is currently borrowed.
1033 ///
1034 /// # Examples
1035 ///
1036 /// ```
1037 /// use std::cell::RefCell;
1038 /// let cell = RefCell::new(5);
1039 /// let old_value = cell.replace(6);
1040 /// assert_eq!(old_value, 5);
1041 /// assert_eq!(cell, RefCell::new(6));
1042 /// ```
1043 #[inline]
1044 #[stable(feature = "refcell_replace", since = "1.24.0")]
1045 #[track_caller]
1046 #[rustc_confusables("swap")]
1047 #[rustc_const_unstable(feature = "const_ref_cell", issue = "137844")]
1048 #[rustc_should_not_be_called_on_const_items]
1049 pub const fn replace(&self, t: T) -> T {
1050 mem::replace(&mut self.borrow_mut(), t)
1051 }
1052
1053 /// Replaces the wrapped value with a new one computed from `f`, returning
1054 /// the old value, without deinitializing either one.
1055 ///
1056 /// # Panics
1057 ///
1058 /// Panics if the value is currently borrowed.
1059 ///
1060 /// # Examples
1061 ///
1062 /// ```
1063 /// use std::cell::RefCell;
1064 /// let cell = RefCell::new(5);
1065 /// let old_value = cell.replace_with(|&mut old| old + 1);
1066 /// assert_eq!(old_value, 5);
1067 /// assert_eq!(cell, RefCell::new(6));
1068 /// ```
1069 #[inline]
1070 #[stable(feature = "refcell_replace_swap", since = "1.35.0")]
1071 #[track_caller]
1072 #[rustc_should_not_be_called_on_const_items]
1073 pub fn replace_with<F: FnOnce(&mut T) -> T>(&self, f: F) -> T {
1074 let mut_borrow = &mut *self.borrow_mut();
1075 let replacement = f(mut_borrow);
1076 mem::replace(mut_borrow, replacement)
1077 }
1078
1079 /// Swaps the wrapped value of `self` with the wrapped value of `other`,
1080 /// without deinitializing either one.
1081 ///
1082 /// This function corresponds to [`std::mem::swap`](../mem/fn.swap.html).
1083 ///
1084 /// # Panics
1085 ///
1086 /// Panics if the value in either `RefCell` is currently borrowed, or
1087 /// if `self` and `other` point to the same `RefCell`.
1088 ///
1089 /// # Examples
1090 ///
1091 /// ```
1092 /// use std::cell::RefCell;
1093 /// let c = RefCell::new(5);
1094 /// let d = RefCell::new(6);
1095 /// c.swap(&d);
1096 /// assert_eq!(c, RefCell::new(6));
1097 /// assert_eq!(d, RefCell::new(5));
1098 /// ```
1099 #[inline]
1100 #[stable(feature = "refcell_swap", since = "1.24.0")]
1101 #[rustc_const_unstable(feature = "const_ref_cell", issue = "137844")]
1102 #[cfg(not(feature = "ferrocene_subset"))]
1103 #[rustc_should_not_be_called_on_const_items]
1104 pub const fn swap(&self, other: &Self) {
1105 mem::swap(&mut *self.borrow_mut(), &mut *other.borrow_mut())
1106 }
1107}
1108
1109impl<T: ?Sized> RefCell<T> {
1110 /// Immutably borrows the wrapped value.
1111 ///
1112 /// The borrow lasts until the returned `Ref` exits scope. Multiple
1113 /// immutable borrows can be taken out at the same time.
1114 ///
1115 /// # Panics
1116 ///
1117 /// Panics if the value is currently mutably borrowed. For a non-panicking variant, use
1118 /// [`try_borrow`](#method.try_borrow).
1119 ///
1120 /// # Examples
1121 ///
1122 /// ```
1123 /// use std::cell::RefCell;
1124 ///
1125 /// let c = RefCell::new(5);
1126 ///
1127 /// let borrowed_five = c.borrow();
1128 /// let borrowed_five2 = c.borrow();
1129 /// ```
1130 ///
1131 /// An example of panic:
1132 ///
1133 /// ```should_panic
1134 /// use std::cell::RefCell;
1135 ///
1136 /// let c = RefCell::new(5);
1137 ///
1138 /// let m = c.borrow_mut();
1139 /// let b = c.borrow(); // this causes a panic
1140 /// ```
1141 #[stable(feature = "rust1", since = "1.0.0")]
1142 #[inline]
1143 #[track_caller]
1144 #[rustc_const_unstable(feature = "const_ref_cell", issue = "137844")]
1145 #[rustc_should_not_be_called_on_const_items]
1146 pub const fn borrow(&self) -> Ref<'_, T> {
1147 match self.try_borrow() {
1148 Ok(b) => b,
1149 Err(err) => panic_already_mutably_borrowed(err),
1150 }
1151 }
1152
1153 /// Immutably borrows the wrapped value, returning an error if the value is currently mutably
1154 /// borrowed.
1155 ///
1156 /// The borrow lasts until the returned `Ref` exits scope. Multiple immutable borrows can be
1157 /// taken out at the same time.
1158 ///
1159 /// This is the non-panicking variant of [`borrow`](#method.borrow).
1160 ///
1161 /// # Examples
1162 ///
1163 /// ```
1164 /// use std::cell::RefCell;
1165 ///
1166 /// let c = RefCell::new(5);
1167 ///
1168 /// {
1169 /// let m = c.borrow_mut();
1170 /// assert!(c.try_borrow().is_err());
1171 /// }
1172 ///
1173 /// {
1174 /// let m = c.borrow();
1175 /// assert!(c.try_borrow().is_ok());
1176 /// }
1177 /// ```
1178 #[stable(feature = "try_borrow", since = "1.13.0")]
1179 #[inline]
1180 #[cfg_attr(feature = "debug_refcell", track_caller)]
1181 #[rustc_const_unstable(feature = "const_ref_cell", issue = "137844")]
1182 #[rustc_should_not_be_called_on_const_items]
1183 pub const fn try_borrow(&self) -> Result<Ref<'_, T>, BorrowError> {
1184 match BorrowRef::new(&self.borrow) {
1185 Some(b) => {
1186 #[cfg(feature = "debug_refcell")]
1187 {
1188 // `borrowed_at` is always the *first* active borrow
1189 if b.borrow.get() == 1 {
1190 self.borrowed_at.replace(Some(crate::panic::Location::caller()));
1191 }
1192 }
1193
1194 // SAFETY: `BorrowRef` ensures that there is only immutable access
1195 // to the value while borrowed.
1196 let value = unsafe { NonNull::new_unchecked(self.value.get()) };
1197 Ok(Ref { value, borrow: b })
1198 }
1199 None => Err(BorrowError {
1200 // If a borrow occurred, then we must already have an outstanding borrow,
1201 // so `borrowed_at` will be `Some`
1202 #[cfg(feature = "debug_refcell")]
1203 location: self.borrowed_at.get().unwrap(),
1204 }),
1205 }
1206 }
1207
1208 /// Mutably borrows the wrapped value.
1209 ///
1210 /// The borrow lasts until the returned `RefMut` or all `RefMut`s derived
1211 /// from it exit scope. The value cannot be borrowed while this borrow is
1212 /// active.
1213 ///
1214 /// # Panics
1215 ///
1216 /// Panics if the value is currently borrowed. For a non-panicking variant, use
1217 /// [`try_borrow_mut`](#method.try_borrow_mut).
1218 ///
1219 /// # Examples
1220 ///
1221 /// ```
1222 /// use std::cell::RefCell;
1223 ///
1224 /// let c = RefCell::new("hello".to_owned());
1225 ///
1226 /// *c.borrow_mut() = "bonjour".to_owned();
1227 ///
1228 /// assert_eq!(&*c.borrow(), "bonjour");
1229 /// ```
1230 ///
1231 /// An example of panic:
1232 ///
1233 /// ```should_panic
1234 /// use std::cell::RefCell;
1235 ///
1236 /// let c = RefCell::new(5);
1237 /// let m = c.borrow();
1238 ///
1239 /// let b = c.borrow_mut(); // this causes a panic
1240 /// ```
1241 #[stable(feature = "rust1", since = "1.0.0")]
1242 #[inline]
1243 #[track_caller]
1244 #[rustc_const_unstable(feature = "const_ref_cell", issue = "137844")]
1245 #[rustc_should_not_be_called_on_const_items]
1246 pub const fn borrow_mut(&self) -> RefMut<'_, T> {
1247 match self.try_borrow_mut() {
1248 Ok(b) => b,
1249 Err(err) => panic_already_borrowed(err),
1250 }
1251 }
1252
1253 /// Mutably borrows the wrapped value, returning an error if the value is currently borrowed.
1254 ///
1255 /// The borrow lasts until the returned `RefMut` or all `RefMut`s derived
1256 /// from it exit scope. The value cannot be borrowed while this borrow is
1257 /// active.
1258 ///
1259 /// This is the non-panicking variant of [`borrow_mut`](#method.borrow_mut).
1260 ///
1261 /// # Examples
1262 ///
1263 /// ```
1264 /// use std::cell::RefCell;
1265 ///
1266 /// let c = RefCell::new(5);
1267 ///
1268 /// {
1269 /// let m = c.borrow();
1270 /// assert!(c.try_borrow_mut().is_err());
1271 /// }
1272 ///
1273 /// assert!(c.try_borrow_mut().is_ok());
1274 /// ```
1275 #[stable(feature = "try_borrow", since = "1.13.0")]
1276 #[inline]
1277 #[cfg_attr(feature = "debug_refcell", track_caller)]
1278 #[rustc_const_unstable(feature = "const_ref_cell", issue = "137844")]
1279 #[rustc_should_not_be_called_on_const_items]
1280 pub const fn try_borrow_mut(&self) -> Result<RefMut<'_, T>, BorrowMutError> {
1281 match BorrowRefMut::new(&self.borrow) {
1282 Some(b) => {
1283 #[cfg(feature = "debug_refcell")]
1284 {
1285 self.borrowed_at.replace(Some(crate::panic::Location::caller()));
1286 }
1287
1288 // SAFETY: `BorrowRefMut` guarantees unique access.
1289 let value = unsafe { NonNull::new_unchecked(self.value.get()) };
1290 Ok(RefMut { value, borrow: b, marker: PhantomData })
1291 }
1292 None => Err(BorrowMutError {
1293 // If a borrow occurred, then we must already have an outstanding borrow,
1294 // so `borrowed_at` will be `Some`
1295 #[cfg(feature = "debug_refcell")]
1296 location: self.borrowed_at.get().unwrap(),
1297 }),
1298 }
1299 }
1300
1301 /// Returns a raw pointer to the underlying data in this cell.
1302 ///
1303 /// # Examples
1304 ///
1305 /// ```
1306 /// use std::cell::RefCell;
1307 ///
1308 /// let c = RefCell::new(5);
1309 ///
1310 /// let ptr = c.as_ptr();
1311 /// ```
1312 #[inline]
1313 #[stable(feature = "cell_as_ptr", since = "1.12.0")]
1314 #[rustc_as_ptr]
1315 #[rustc_never_returns_null_ptr]
1316 #[rustc_const_unstable(feature = "const_ref_cell", issue = "137844")]
1317 #[cfg(not(feature = "ferrocene_subset"))]
1318 pub const fn as_ptr(&self) -> *mut T {
1319 self.value.get()
1320 }
1321
1322 /// Returns a mutable reference to the underlying data.
1323 ///
1324 /// Since this method borrows `RefCell` mutably, it is statically guaranteed
1325 /// that no borrows to the underlying data exist. The dynamic checks inherent
1326 /// in [`borrow_mut`] and most other methods of `RefCell` are therefore
1327 /// unnecessary. Note that this method does not reset the borrowing state if borrows were previously leaked
1328 /// (e.g., via [`forget()`] on a [`Ref`] or [`RefMut`]). For that purpose,
1329 /// consider using the unstable [`undo_leak`] method.
1330 ///
1331 /// This method can only be called if `RefCell` can be mutably borrowed,
1332 /// which in general is only the case directly after the `RefCell` has
1333 /// been created. In these situations, skipping the aforementioned dynamic
1334 /// borrowing checks may yield better ergonomics and runtime-performance.
1335 ///
1336 /// In most situations where `RefCell` is used, it can't be borrowed mutably.
1337 /// Use [`borrow_mut`] to get mutable access to the underlying data then.
1338 ///
1339 /// [`borrow_mut`]: RefCell::borrow_mut()
1340 /// [`forget()`]: mem::forget
1341 /// [`undo_leak`]: RefCell::undo_leak()
1342 ///
1343 /// # Examples
1344 ///
1345 /// ```
1346 /// use std::cell::RefCell;
1347 ///
1348 /// let mut c = RefCell::new(5);
1349 /// *c.get_mut() += 1;
1350 ///
1351 /// assert_eq!(c, RefCell::new(6));
1352 /// ```
1353 #[inline]
1354 #[stable(feature = "cell_get_mut", since = "1.11.0")]
1355 #[rustc_const_unstable(feature = "const_ref_cell", issue = "137844")]
1356 #[cfg(not(feature = "ferrocene_subset"))]
1357 pub const fn get_mut(&mut self) -> &mut T {
1358 self.value.get_mut()
1359 }
1360
1361 /// Undo the effect of leaked guards on the borrow state of the `RefCell`.
1362 ///
1363 /// This call is similar to [`get_mut`] but more specialized. It borrows `RefCell` mutably to
1364 /// ensure no borrows exist and then resets the state tracking shared borrows. This is relevant
1365 /// if some `Ref` or `RefMut` borrows have been leaked.
1366 ///
1367 /// [`get_mut`]: RefCell::get_mut()
1368 ///
1369 /// # Examples
1370 ///
1371 /// ```
1372 /// #![feature(cell_leak)]
1373 /// use std::cell::RefCell;
1374 ///
1375 /// let mut c = RefCell::new(0);
1376 /// std::mem::forget(c.borrow_mut());
1377 ///
1378 /// assert!(c.try_borrow().is_err());
1379 /// c.undo_leak();
1380 /// assert!(c.try_borrow().is_ok());
1381 /// ```
1382 #[unstable(feature = "cell_leak", issue = "69099")]
1383 #[rustc_const_unstable(feature = "const_ref_cell", issue = "137844")]
1384 #[cfg(not(feature = "ferrocene_subset"))]
1385 pub const fn undo_leak(&mut self) -> &mut T {
1386 *self.borrow.get_mut() = UNUSED;
1387 self.get_mut()
1388 }
1389
1390 /// Immutably borrows the wrapped value, returning an error if the value is
1391 /// currently mutably borrowed.
1392 ///
1393 /// # Safety
1394 ///
1395 /// Unlike `RefCell::borrow`, this method is unsafe because it does not
1396 /// return a `Ref`, thus leaving the borrow flag untouched. Mutably
1397 /// borrowing the `RefCell` while the reference returned by this method
1398 /// is alive is undefined behavior.
1399 ///
1400 /// # Examples
1401 ///
1402 /// ```
1403 /// use std::cell::RefCell;
1404 ///
1405 /// let c = RefCell::new(5);
1406 ///
1407 /// {
1408 /// let m = c.borrow_mut();
1409 /// assert!(unsafe { c.try_borrow_unguarded() }.is_err());
1410 /// }
1411 ///
1412 /// {
1413 /// let m = c.borrow();
1414 /// assert!(unsafe { c.try_borrow_unguarded() }.is_ok());
1415 /// }
1416 /// ```
1417 #[stable(feature = "borrow_state", since = "1.37.0")]
1418 #[inline]
1419 #[rustc_const_unstable(feature = "const_ref_cell", issue = "137844")]
1420 #[cfg(not(feature = "ferrocene_subset"))]
1421 pub const unsafe fn try_borrow_unguarded(&self) -> Result<&T, BorrowError> {
1422 if !is_writing(self.borrow.get()) {
1423 // SAFETY: We check that nobody is actively writing now, but it is
1424 // the caller's responsibility to ensure that nobody writes until
1425 // the returned reference is no longer in use.
1426 // Also, `self.value.get()` refers to the value owned by `self`
1427 // and is thus guaranteed to be valid for the lifetime of `self`.
1428 Ok(unsafe { &*self.value.get() })
1429 } else {
1430 Err(BorrowError {
1431 // If a borrow occurred, then we must already have an outstanding borrow,
1432 // so `borrowed_at` will be `Some`
1433 #[cfg(feature = "debug_refcell")]
1434 location: self.borrowed_at.get().unwrap(),
1435 })
1436 }
1437 }
1438}
1439
1440impl<T: Default> RefCell<T> {
1441 /// Takes the wrapped value, leaving `Default::default()` in its place.
1442 ///
1443 /// # Panics
1444 ///
1445 /// Panics if the value is currently borrowed.
1446 ///
1447 /// # Examples
1448 ///
1449 /// ```
1450 /// use std::cell::RefCell;
1451 ///
1452 /// let c = RefCell::new(5);
1453 /// let five = c.take();
1454 ///
1455 /// assert_eq!(five, 5);
1456 /// assert_eq!(c.into_inner(), 0);
1457 /// ```
1458 #[stable(feature = "refcell_take", since = "1.50.0")]
1459 pub fn take(&self) -> T {
1460 self.replace(Default::default())
1461 }
1462}
1463
1464#[stable(feature = "rust1", since = "1.0.0")]
1465unsafe impl<T: ?Sized> Send for RefCell<T> where T: Send {}
1466
1467#[stable(feature = "rust1", since = "1.0.0")]
1468impl<T: ?Sized> !Sync for RefCell<T> {}
1469
1470#[stable(feature = "rust1", since = "1.0.0")]
1471#[cfg(not(feature = "ferrocene_subset"))]
1472impl<T: Clone> Clone for RefCell<T> {
1473 /// # Panics
1474 ///
1475 /// Panics if the value is currently mutably borrowed.
1476 #[inline]
1477 #[track_caller]
1478 fn clone(&self) -> RefCell<T> {
1479 RefCell::new(self.borrow().clone())
1480 }
1481
1482 /// # Panics
1483 ///
1484 /// Panics if `source` is currently mutably borrowed.
1485 #[inline]
1486 #[track_caller]
1487 fn clone_from(&mut self, source: &Self) {
1488 self.get_mut().clone_from(&source.borrow())
1489 }
1490}
1491
1492#[stable(feature = "rust1", since = "1.0.0")]
1493#[rustc_const_unstable(feature = "const_default", issue = "143894")]
1494#[cfg(not(feature = "ferrocene_subset"))]
1495impl<T: [const] Default> const Default for RefCell<T> {
1496 /// Creates a `RefCell<T>`, with the `Default` value for T.
1497 #[inline]
1498 fn default() -> RefCell<T> {
1499 RefCell::new(Default::default())
1500 }
1501}
1502
1503#[stable(feature = "rust1", since = "1.0.0")]
1504#[cfg(not(feature = "ferrocene_subset"))]
1505impl<T: ?Sized + PartialEq> PartialEq for RefCell<T> {
1506 /// # Panics
1507 ///
1508 /// Panics if the value in either `RefCell` is currently mutably borrowed.
1509 #[inline]
1510 fn eq(&self, other: &RefCell<T>) -> bool {
1511 *self.borrow() == *other.borrow()
1512 }
1513}
1514
1515#[stable(feature = "cell_eq", since = "1.2.0")]
1516#[cfg(not(feature = "ferrocene_subset"))]
1517impl<T: ?Sized + Eq> Eq for RefCell<T> {}
1518
1519#[stable(feature = "cell_ord", since = "1.10.0")]
1520#[cfg(not(feature = "ferrocene_subset"))]
1521impl<T: ?Sized + PartialOrd> PartialOrd for RefCell<T> {
1522 /// # Panics
1523 ///
1524 /// Panics if the value in either `RefCell` is currently mutably borrowed.
1525 #[inline]
1526 fn partial_cmp(&self, other: &RefCell<T>) -> Option<Ordering> {
1527 self.borrow().partial_cmp(&*other.borrow())
1528 }
1529
1530 /// # Panics
1531 ///
1532 /// Panics if the value in either `RefCell` is currently mutably borrowed.
1533 #[inline]
1534 fn lt(&self, other: &RefCell<T>) -> bool {
1535 *self.borrow() < *other.borrow()
1536 }
1537
1538 /// # Panics
1539 ///
1540 /// Panics if the value in either `RefCell` is currently mutably borrowed.
1541 #[inline]
1542 fn le(&self, other: &RefCell<T>) -> bool {
1543 *self.borrow() <= *other.borrow()
1544 }
1545
1546 /// # Panics
1547 ///
1548 /// Panics if the value in either `RefCell` is currently mutably borrowed.
1549 #[inline]
1550 fn gt(&self, other: &RefCell<T>) -> bool {
1551 *self.borrow() > *other.borrow()
1552 }
1553
1554 /// # Panics
1555 ///
1556 /// Panics if the value in either `RefCell` is currently mutably borrowed.
1557 #[inline]
1558 fn ge(&self, other: &RefCell<T>) -> bool {
1559 *self.borrow() >= *other.borrow()
1560 }
1561}
1562
1563#[stable(feature = "cell_ord", since = "1.10.0")]
1564#[cfg(not(feature = "ferrocene_subset"))]
1565impl<T: ?Sized + Ord> Ord for RefCell<T> {
1566 /// # Panics
1567 ///
1568 /// Panics if the value in either `RefCell` is currently mutably borrowed.
1569 #[inline]
1570 fn cmp(&self, other: &RefCell<T>) -> Ordering {
1571 self.borrow().cmp(&*other.borrow())
1572 }
1573}
1574
1575#[stable(feature = "cell_from", since = "1.12.0")]
1576#[rustc_const_unstable(feature = "const_convert", issue = "143773")]
1577#[cfg(not(feature = "ferrocene_subset"))]
1578impl<T> const From<T> for RefCell<T> {
1579 /// Creates a new `RefCell<T>` containing the given value.
1580 fn from(t: T) -> RefCell<T> {
1581 RefCell::new(t)
1582 }
1583}
1584
1585#[unstable(feature = "coerce_unsized", issue = "18598")]
1586#[cfg(not(feature = "ferrocene_subset"))]
1587impl<T: CoerceUnsized<U>, U> CoerceUnsized<RefCell<U>> for RefCell<T> {}
1588
1589struct BorrowRef<'b> {
1590 borrow: &'b Cell<BorrowCounter>,
1591}
1592
1593impl<'b> BorrowRef<'b> {
1594 #[inline]
1595 const fn new(borrow: &'b Cell<BorrowCounter>) -> Option<BorrowRef<'b>> {
1596 let b = borrow.get().wrapping_add(1);
1597 if !is_reading(b) {
1598 // Incrementing borrow can result in a non-reading value (<= 0) in these cases:
1599 // 1. It was < 0, i.e. there are writing borrows, so we can't allow a read borrow
1600 // due to Rust's reference aliasing rules
1601 // 2. It was isize::MAX (the max amount of reading borrows) and it overflowed
1602 // into isize::MIN (the max amount of writing borrows) so we can't allow
1603 // an additional read borrow because isize can't represent so many read borrows
1604 // (this can only happen if you mem::forget more than a small constant amount of
1605 // `Ref`s, which is not good practice)
1606 None
1607 } else {
1608 // Incrementing borrow can result in a reading value (> 0) in these cases:
1609 // 1. It was = 0, i.e. it wasn't borrowed, and we are taking the first read borrow
1610 // 2. It was > 0 and < isize::MAX, i.e. there were read borrows, and isize
1611 // is large enough to represent having one more read borrow
1612 borrow.replace(b);
1613 Some(BorrowRef { borrow })
1614 }
1615 }
1616}
1617
1618#[rustc_const_unstable(feature = "const_ref_cell", issue = "137844")]
1619impl const Drop for BorrowRef<'_> {
1620 #[inline]
1621 fn drop(&mut self) {
1622 let borrow = self.borrow.get();
1623 debug_assert!(is_reading(borrow));
1624 self.borrow.replace(borrow - 1);
1625 }
1626}
1627
1628#[rustc_const_unstable(feature = "const_ref_cell", issue = "137844")]
1629#[cfg(not(feature = "ferrocene_subset"))]
1630impl const Clone for BorrowRef<'_> {
1631 #[inline]
1632 fn clone(&self) -> Self {
1633 // Since this Ref exists, we know the borrow flag
1634 // is a reading borrow.
1635 let borrow = self.borrow.get();
1636 debug_assert!(is_reading(borrow));
1637 // Prevent the borrow counter from overflowing into
1638 // a writing borrow.
1639 assert!(borrow != BorrowCounter::MAX);
1640 self.borrow.replace(borrow + 1);
1641 BorrowRef { borrow: self.borrow }
1642 }
1643}
1644
1645/// Wraps a borrowed reference to a value in a `RefCell` box.
1646/// A wrapper type for an immutably borrowed value from a `RefCell<T>`.
1647///
1648/// See the [module-level documentation](self) for more.
1649#[stable(feature = "rust1", since = "1.0.0")]
1650#[must_not_suspend = "holding a Ref across suspend points can cause BorrowErrors"]
1651#[rustc_diagnostic_item = "RefCellRef"]
1652#[cfg_attr(feature = "ferrocene_subset", expect(dead_code))]
1653pub struct Ref<'b, T: ?Sized + 'b> {
1654 // NB: we use a pointer instead of `&'b T` to avoid `noalias` violations, because a
1655 // `Ref` argument doesn't hold immutability for its whole scope, only until it drops.
1656 // `NonNull` is also covariant over `T`, just like we would have with `&T`.
1657 value: NonNull<T>,
1658 borrow: BorrowRef<'b>,
1659}
1660
1661#[stable(feature = "rust1", since = "1.0.0")]
1662#[rustc_const_unstable(feature = "const_convert", issue = "143773")]
1663impl<T: ?Sized> const Deref for Ref<'_, T> {
1664 type Target = T;
1665
1666 #[inline]
1667 fn deref(&self) -> &T {
1668 // SAFETY: the value is accessible as long as we hold our borrow.
1669 unsafe { self.value.as_ref() }
1670 }
1671}
1672
1673#[unstable(feature = "deref_pure_trait", issue = "87121")]
1674#[cfg(not(feature = "ferrocene_subset"))]
1675unsafe impl<T: ?Sized> DerefPure for Ref<'_, T> {}
1676
1677#[cfg(not(feature = "ferrocene_subset"))]
1678impl<'b, T: ?Sized> Ref<'b, T> {
1679 /// Copies a `Ref`.
1680 ///
1681 /// The `RefCell` is already immutably borrowed, so this cannot fail.
1682 ///
1683 /// This is an associated function that needs to be used as
1684 /// `Ref::clone(...)`. A `Clone` implementation or a method would interfere
1685 /// with the widespread use of `r.borrow().clone()` to clone the contents of
1686 /// a `RefCell`.
1687 #[stable(feature = "cell_extras", since = "1.15.0")]
1688 #[must_use]
1689 #[inline]
1690 #[rustc_const_unstable(feature = "const_ref_cell", issue = "137844")]
1691 pub const fn clone(orig: &Ref<'b, T>) -> Ref<'b, T> {
1692 Ref { value: orig.value, borrow: orig.borrow.clone() }
1693 }
1694
1695 /// Makes a new `Ref` for a component of the borrowed data.
1696 ///
1697 /// The `RefCell` is already immutably borrowed, so this cannot fail.
1698 ///
1699 /// This is an associated function that needs to be used as `Ref::map(...)`.
1700 /// A method would interfere with methods of the same name on the contents
1701 /// of a `RefCell` used through `Deref`.
1702 ///
1703 /// # Examples
1704 ///
1705 /// ```
1706 /// use std::cell::{RefCell, Ref};
1707 ///
1708 /// let c = RefCell::new((5, 'b'));
1709 /// let b1: Ref<'_, (u32, char)> = c.borrow();
1710 /// let b2: Ref<'_, u32> = Ref::map(b1, |t| &t.0);
1711 /// assert_eq!(*b2, 5)
1712 /// ```
1713 #[stable(feature = "cell_map", since = "1.8.0")]
1714 #[inline]
1715 pub fn map<U: ?Sized, F>(orig: Ref<'b, T>, f: F) -> Ref<'b, U>
1716 where
1717 F: FnOnce(&T) -> &U,
1718 {
1719 Ref { value: NonNull::from(f(&*orig)), borrow: orig.borrow }
1720 }
1721
1722 /// Makes a new `Ref` for an optional component of the borrowed data. The
1723 /// original guard is returned as an `Err(..)` if the closure returns
1724 /// `None`.
1725 ///
1726 /// The `RefCell` is already immutably borrowed, so this cannot fail.
1727 ///
1728 /// This is an associated function that needs to be used as
1729 /// `Ref::filter_map(...)`. A method would interfere with methods of the same
1730 /// name on the contents of a `RefCell` used through `Deref`.
1731 ///
1732 /// # Examples
1733 ///
1734 /// ```
1735 /// use std::cell::{RefCell, Ref};
1736 ///
1737 /// let c = RefCell::new(vec![1, 2, 3]);
1738 /// let b1: Ref<'_, Vec<u32>> = c.borrow();
1739 /// let b2: Result<Ref<'_, u32>, _> = Ref::filter_map(b1, |v| v.get(1));
1740 /// assert_eq!(*b2.unwrap(), 2);
1741 /// ```
1742 #[stable(feature = "cell_filter_map", since = "1.63.0")]
1743 #[inline]
1744 pub fn filter_map<U: ?Sized, F>(orig: Ref<'b, T>, f: F) -> Result<Ref<'b, U>, Self>
1745 where
1746 F: FnOnce(&T) -> Option<&U>,
1747 {
1748 match f(&*orig) {
1749 Some(value) => Ok(Ref { value: NonNull::from(value), borrow: orig.borrow }),
1750 None => Err(orig),
1751 }
1752 }
1753
1754 /// Tries to makes a new `Ref` for a component of the borrowed data.
1755 /// On failure, the original guard is returned alongside with the error
1756 /// returned by the closure.
1757 ///
1758 /// The `RefCell` is already immutably borrowed, so this cannot fail.
1759 ///
1760 /// This is an associated function that needs to be used as
1761 /// `Ref::try_map(...)`. A method would interfere with methods of the same
1762 /// name on the contents of a `RefCell` used through `Deref`.
1763 ///
1764 /// # Examples
1765 ///
1766 /// ```
1767 /// #![feature(refcell_try_map)]
1768 /// use std::cell::{RefCell, Ref};
1769 /// use std::str::{from_utf8, Utf8Error};
1770 ///
1771 /// let c = RefCell::new(vec![0xF0, 0x9F, 0xA6 ,0x80]);
1772 /// let b1: Ref<'_, Vec<u8>> = c.borrow();
1773 /// let b2: Result<Ref<'_, str>, _> = Ref::try_map(b1, |v| from_utf8(v));
1774 /// assert_eq!(&*b2.unwrap(), "🦀");
1775 ///
1776 /// let c = RefCell::new(vec![0xF0, 0x9F, 0xA6]);
1777 /// let b1: Ref<'_, Vec<u8>> = c.borrow();
1778 /// let b2: Result<_, (Ref<'_, Vec<u8>>, Utf8Error)> = Ref::try_map(b1, |v| from_utf8(v));
1779 /// let (b3, e) = b2.unwrap_err();
1780 /// assert_eq!(*b3, vec![0xF0, 0x9F, 0xA6]);
1781 /// assert_eq!(e.valid_up_to(), 0);
1782 /// ```
1783 #[unstable(feature = "refcell_try_map", issue = "143801")]
1784 #[inline]
1785 pub fn try_map<U: ?Sized, E>(
1786 orig: Ref<'b, T>,
1787 f: impl FnOnce(&T) -> Result<&U, E>,
1788 ) -> Result<Ref<'b, U>, (Self, E)> {
1789 match f(&*orig) {
1790 Ok(value) => Ok(Ref { value: NonNull::from(value), borrow: orig.borrow }),
1791 Err(e) => Err((orig, e)),
1792 }
1793 }
1794
1795 /// Splits a `Ref` into multiple `Ref`s for different components of the
1796 /// borrowed data.
1797 ///
1798 /// The `RefCell` is already immutably borrowed, so this cannot fail.
1799 ///
1800 /// This is an associated function that needs to be used as
1801 /// `Ref::map_split(...)`. A method would interfere with methods of the same
1802 /// name on the contents of a `RefCell` used through `Deref`.
1803 ///
1804 /// # Examples
1805 ///
1806 /// ```
1807 /// use std::cell::{Ref, RefCell};
1808 ///
1809 /// let cell = RefCell::new([1, 2, 3, 4]);
1810 /// let borrow = cell.borrow();
1811 /// let (begin, end) = Ref::map_split(borrow, |slice| slice.split_at(2));
1812 /// assert_eq!(*begin, [1, 2]);
1813 /// assert_eq!(*end, [3, 4]);
1814 /// ```
1815 #[stable(feature = "refcell_map_split", since = "1.35.0")]
1816 #[inline]
1817 pub fn map_split<U: ?Sized, V: ?Sized, F>(orig: Ref<'b, T>, f: F) -> (Ref<'b, U>, Ref<'b, V>)
1818 where
1819 F: FnOnce(&T) -> (&U, &V),
1820 {
1821 let (a, b) = f(&*orig);
1822 let borrow = orig.borrow.clone();
1823 (
1824 Ref { value: NonNull::from(a), borrow },
1825 Ref { value: NonNull::from(b), borrow: orig.borrow },
1826 )
1827 }
1828
1829 /// Converts into a reference to the underlying data.
1830 ///
1831 /// The underlying `RefCell` can never be mutably borrowed from again and will always appear
1832 /// already immutably borrowed. It is not a good idea to leak more than a constant number of
1833 /// references. The `RefCell` can be immutably borrowed again if only a smaller number of leaks
1834 /// have occurred in total.
1835 ///
1836 /// This is an associated function that needs to be used as
1837 /// `Ref::leak(...)`. A method would interfere with methods of the
1838 /// same name on the contents of a `RefCell` used through `Deref`.
1839 ///
1840 /// # Examples
1841 ///
1842 /// ```
1843 /// #![feature(cell_leak)]
1844 /// use std::cell::{RefCell, Ref};
1845 /// let cell = RefCell::new(0);
1846 ///
1847 /// let value = Ref::leak(cell.borrow());
1848 /// assert_eq!(*value, 0);
1849 ///
1850 /// assert!(cell.try_borrow().is_ok());
1851 /// assert!(cell.try_borrow_mut().is_err());
1852 /// ```
1853 #[unstable(feature = "cell_leak", issue = "69099")]
1854 #[rustc_const_unstable(feature = "const_ref_cell", issue = "137844")]
1855 pub const fn leak(orig: Ref<'b, T>) -> &'b T {
1856 // By forgetting this Ref we ensure that the borrow counter in the RefCell can't go back to
1857 // UNUSED within the lifetime `'b`. Resetting the reference tracking state would require a
1858 // unique reference to the borrowed RefCell. No further mutable references can be created
1859 // from the original cell.
1860 mem::forget(orig.borrow);
1861 // SAFETY: after forgetting, we can form a reference for the rest of lifetime `'b`.
1862 unsafe { orig.value.as_ref() }
1863 }
1864}
1865
1866#[unstable(feature = "coerce_unsized", issue = "18598")]
1867#[cfg(not(feature = "ferrocene_subset"))]
1868impl<'b, T: ?Sized + Unsize<U>, U: ?Sized> CoerceUnsized<Ref<'b, U>> for Ref<'b, T> {}
1869
1870#[stable(feature = "std_guard_impls", since = "1.20.0")]
1871#[cfg(not(feature = "ferrocene_subset"))]
1872impl<T: ?Sized + fmt::Display> fmt::Display for Ref<'_, T> {
1873 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
1874 (**self).fmt(f)
1875 }
1876}
1877
1878#[cfg(not(feature = "ferrocene_subset"))]
1879impl<'b, T: ?Sized> RefMut<'b, T> {
1880 /// Makes a new `RefMut` for a component of the borrowed data, e.g., an enum
1881 /// variant.
1882 ///
1883 /// The `RefCell` is already mutably borrowed, so this cannot fail.
1884 ///
1885 /// This is an associated function that needs to be used as
1886 /// `RefMut::map(...)`. A method would interfere with methods of the same
1887 /// name on the contents of a `RefCell` used through `Deref`.
1888 ///
1889 /// # Examples
1890 ///
1891 /// ```
1892 /// use std::cell::{RefCell, RefMut};
1893 ///
1894 /// let c = RefCell::new((5, 'b'));
1895 /// {
1896 /// let b1: RefMut<'_, (u32, char)> = c.borrow_mut();
1897 /// let mut b2: RefMut<'_, u32> = RefMut::map(b1, |t| &mut t.0);
1898 /// assert_eq!(*b2, 5);
1899 /// *b2 = 42;
1900 /// }
1901 /// assert_eq!(*c.borrow(), (42, 'b'));
1902 /// ```
1903 #[stable(feature = "cell_map", since = "1.8.0")]
1904 #[inline]
1905 pub fn map<U: ?Sized, F>(mut orig: RefMut<'b, T>, f: F) -> RefMut<'b, U>
1906 where
1907 F: FnOnce(&mut T) -> &mut U,
1908 {
1909 let value = NonNull::from(f(&mut *orig));
1910 RefMut { value, borrow: orig.borrow, marker: PhantomData }
1911 }
1912
1913 /// Makes a new `RefMut` for an optional component of the borrowed data. The
1914 /// original guard is returned as an `Err(..)` if the closure returns
1915 /// `None`.
1916 ///
1917 /// The `RefCell` is already mutably borrowed, so this cannot fail.
1918 ///
1919 /// This is an associated function that needs to be used as
1920 /// `RefMut::filter_map(...)`. A method would interfere with methods of the
1921 /// same name on the contents of a `RefCell` used through `Deref`.
1922 ///
1923 /// # Examples
1924 ///
1925 /// ```
1926 /// use std::cell::{RefCell, RefMut};
1927 ///
1928 /// let c = RefCell::new(vec![1, 2, 3]);
1929 ///
1930 /// {
1931 /// let b1: RefMut<'_, Vec<u32>> = c.borrow_mut();
1932 /// let mut b2: Result<RefMut<'_, u32>, _> = RefMut::filter_map(b1, |v| v.get_mut(1));
1933 ///
1934 /// if let Ok(mut b2) = b2 {
1935 /// *b2 += 2;
1936 /// }
1937 /// }
1938 ///
1939 /// assert_eq!(*c.borrow(), vec![1, 4, 3]);
1940 /// ```
1941 #[stable(feature = "cell_filter_map", since = "1.63.0")]
1942 #[inline]
1943 pub fn filter_map<U: ?Sized, F>(mut orig: RefMut<'b, T>, f: F) -> Result<RefMut<'b, U>, Self>
1944 where
1945 F: FnOnce(&mut T) -> Option<&mut U>,
1946 {
1947 // SAFETY: function holds onto an exclusive reference for the duration
1948 // of its call through `orig`, and the pointer is only de-referenced
1949 // inside of the function call never allowing the exclusive reference to
1950 // escape.
1951 match f(&mut *orig) {
1952 Some(value) => {
1953 Ok(RefMut { value: NonNull::from(value), borrow: orig.borrow, marker: PhantomData })
1954 }
1955 None => Err(orig),
1956 }
1957 }
1958
1959 /// Tries to makes a new `RefMut` for a component of the borrowed data.
1960 /// On failure, the original guard is returned alongside with the error
1961 /// returned by the closure.
1962 ///
1963 /// The `RefCell` is already mutably borrowed, so this cannot fail.
1964 ///
1965 /// This is an associated function that needs to be used as
1966 /// `RefMut::try_map(...)`. A method would interfere with methods of the same
1967 /// name on the contents of a `RefCell` used through `Deref`.
1968 ///
1969 /// # Examples
1970 ///
1971 /// ```
1972 /// #![feature(refcell_try_map)]
1973 /// use std::cell::{RefCell, RefMut};
1974 /// use std::str::{from_utf8_mut, Utf8Error};
1975 ///
1976 /// let c = RefCell::new(vec![0x68, 0x65, 0x6C, 0x6C, 0x6F]);
1977 /// {
1978 /// let b1: RefMut<'_, Vec<u8>> = c.borrow_mut();
1979 /// let b2: Result<RefMut<'_, str>, _> = RefMut::try_map(b1, |v| from_utf8_mut(v));
1980 /// let mut b2 = b2.unwrap();
1981 /// assert_eq!(&*b2, "hello");
1982 /// b2.make_ascii_uppercase();
1983 /// }
1984 /// assert_eq!(*c.borrow(), "HELLO".as_bytes());
1985 ///
1986 /// let c = RefCell::new(vec![0xFF]);
1987 /// let b1: RefMut<'_, Vec<u8>> = c.borrow_mut();
1988 /// let b2: Result<_, (RefMut<'_, Vec<u8>>, Utf8Error)> = RefMut::try_map(b1, |v| from_utf8_mut(v));
1989 /// let (b3, e) = b2.unwrap_err();
1990 /// assert_eq!(*b3, vec![0xFF]);
1991 /// assert_eq!(e.valid_up_to(), 0);
1992 /// ```
1993 #[unstable(feature = "refcell_try_map", issue = "143801")]
1994 #[inline]
1995 pub fn try_map<U: ?Sized, E>(
1996 mut orig: RefMut<'b, T>,
1997 f: impl FnOnce(&mut T) -> Result<&mut U, E>,
1998 ) -> Result<RefMut<'b, U>, (Self, E)> {
1999 // SAFETY: function holds onto an exclusive reference for the duration
2000 // of its call through `orig`, and the pointer is only de-referenced
2001 // inside of the function call never allowing the exclusive reference to
2002 // escape.
2003 match f(&mut *orig) {
2004 Ok(value) => {
2005 Ok(RefMut { value: NonNull::from(value), borrow: orig.borrow, marker: PhantomData })
2006 }
2007 Err(e) => Err((orig, e)),
2008 }
2009 }
2010
2011 /// Splits a `RefMut` into multiple `RefMut`s for different components of the
2012 /// borrowed data.
2013 ///
2014 /// The underlying `RefCell` will remain mutably borrowed until both
2015 /// returned `RefMut`s go out of scope.
2016 ///
2017 /// The `RefCell` is already mutably borrowed, so this cannot fail.
2018 ///
2019 /// This is an associated function that needs to be used as
2020 /// `RefMut::map_split(...)`. A method would interfere with methods of the
2021 /// same name on the contents of a `RefCell` used through `Deref`.
2022 ///
2023 /// # Examples
2024 ///
2025 /// ```
2026 /// use std::cell::{RefCell, RefMut};
2027 ///
2028 /// let cell = RefCell::new([1, 2, 3, 4]);
2029 /// let borrow = cell.borrow_mut();
2030 /// let (mut begin, mut end) = RefMut::map_split(borrow, |slice| slice.split_at_mut(2));
2031 /// assert_eq!(*begin, [1, 2]);
2032 /// assert_eq!(*end, [3, 4]);
2033 /// begin.copy_from_slice(&[4, 3]);
2034 /// end.copy_from_slice(&[2, 1]);
2035 /// ```
2036 #[stable(feature = "refcell_map_split", since = "1.35.0")]
2037 #[inline]
2038 pub fn map_split<U: ?Sized, V: ?Sized, F>(
2039 mut orig: RefMut<'b, T>,
2040 f: F,
2041 ) -> (RefMut<'b, U>, RefMut<'b, V>)
2042 where
2043 F: FnOnce(&mut T) -> (&mut U, &mut V),
2044 {
2045 let borrow = orig.borrow.clone();
2046 let (a, b) = f(&mut *orig);
2047 (
2048 RefMut { value: NonNull::from(a), borrow, marker: PhantomData },
2049 RefMut { value: NonNull::from(b), borrow: orig.borrow, marker: PhantomData },
2050 )
2051 }
2052
2053 /// Converts into a mutable reference to the underlying data.
2054 ///
2055 /// The underlying `RefCell` can not be borrowed from again and will always appear already
2056 /// mutably borrowed, making the returned reference the only to the interior.
2057 ///
2058 /// This is an associated function that needs to be used as
2059 /// `RefMut::leak(...)`. A method would interfere with methods of the
2060 /// same name on the contents of a `RefCell` used through `Deref`.
2061 ///
2062 /// # Examples
2063 ///
2064 /// ```
2065 /// #![feature(cell_leak)]
2066 /// use std::cell::{RefCell, RefMut};
2067 /// let cell = RefCell::new(0);
2068 ///
2069 /// let value = RefMut::leak(cell.borrow_mut());
2070 /// assert_eq!(*value, 0);
2071 /// *value = 1;
2072 ///
2073 /// assert!(cell.try_borrow_mut().is_err());
2074 /// ```
2075 #[unstable(feature = "cell_leak", issue = "69099")]
2076 #[rustc_const_unstable(feature = "const_ref_cell", issue = "137844")]
2077 pub const fn leak(mut orig: RefMut<'b, T>) -> &'b mut T {
2078 // By forgetting this BorrowRefMut we ensure that the borrow counter in the RefCell can't
2079 // go back to UNUSED within the lifetime `'b`. Resetting the reference tracking state would
2080 // require a unique reference to the borrowed RefCell. No further references can be created
2081 // from the original cell within that lifetime, making the current borrow the only
2082 // reference for the remaining lifetime.
2083 mem::forget(orig.borrow);
2084 // SAFETY: after forgetting, we can form a reference for the rest of lifetime `'b`.
2085 unsafe { orig.value.as_mut() }
2086 }
2087}
2088
2089struct BorrowRefMut<'b> {
2090 borrow: &'b Cell<BorrowCounter>,
2091}
2092
2093#[rustc_const_unstable(feature = "const_ref_cell", issue = "137844")]
2094impl const Drop for BorrowRefMut<'_> {
2095 #[inline]
2096 fn drop(&mut self) {
2097 let borrow = self.borrow.get();
2098 debug_assert!(is_writing(borrow));
2099 self.borrow.replace(borrow + 1);
2100 }
2101}
2102
2103impl<'b> BorrowRefMut<'b> {
2104 #[inline]
2105 const fn new(borrow: &'b Cell<BorrowCounter>) -> Option<BorrowRefMut<'b>> {
2106 // NOTE: Unlike BorrowRefMut::clone, new is called to create the initial
2107 // mutable reference, and so there must currently be no existing
2108 // references. Thus, while clone increments the mutable refcount, here
2109 // we explicitly only allow going from UNUSED to UNUSED - 1.
2110 match borrow.get() {
2111 UNUSED => {
2112 borrow.replace(UNUSED - 1);
2113 Some(BorrowRefMut { borrow })
2114 }
2115 _ => None,
2116 }
2117 }
2118
2119 // Clones a `BorrowRefMut`.
2120 //
2121 // This is only valid if each `BorrowRefMut` is used to track a mutable
2122 // reference to a distinct, nonoverlapping range of the original object.
2123 // This isn't in a Clone impl so that code doesn't call this implicitly.
2124 #[inline]
2125 #[cfg(not(feature = "ferrocene_subset"))]
2126 fn clone(&self) -> BorrowRefMut<'b> {
2127 let borrow = self.borrow.get();
2128 debug_assert!(is_writing(borrow));
2129 // Prevent the borrow counter from underflowing.
2130 assert!(borrow != BorrowCounter::MIN);
2131 self.borrow.set(borrow - 1);
2132 BorrowRefMut { borrow: self.borrow }
2133 }
2134}
2135
2136/// A wrapper type for a mutably borrowed value from a `RefCell<T>`.
2137///
2138/// See the [module-level documentation](self) for more.
2139#[stable(feature = "rust1", since = "1.0.0")]
2140#[must_not_suspend = "holding a RefMut across suspend points can cause BorrowErrors"]
2141#[rustc_diagnostic_item = "RefCellRefMut"]
2142#[cfg_attr(feature = "ferrocene_subset", expect(dead_code))]
2143pub struct RefMut<'b, T: ?Sized + 'b> {
2144 // NB: we use a pointer instead of `&'b mut T` to avoid `noalias` violations, because a
2145 // `RefMut` argument doesn't hold exclusivity for its whole scope, only until it drops.
2146 value: NonNull<T>,
2147 borrow: BorrowRefMut<'b>,
2148 // `NonNull` is covariant over `T`, so we need to reintroduce invariance.
2149 marker: PhantomData<&'b mut T>,
2150}
2151
2152#[stable(feature = "rust1", since = "1.0.0")]
2153#[rustc_const_unstable(feature = "const_convert", issue = "143773")]
2154impl<T: ?Sized> const Deref for RefMut<'_, T> {
2155 type Target = T;
2156
2157 #[inline]
2158 fn deref(&self) -> &T {
2159 // SAFETY: the value is accessible as long as we hold our borrow.
2160 unsafe { self.value.as_ref() }
2161 }
2162}
2163
2164#[stable(feature = "rust1", since = "1.0.0")]
2165#[rustc_const_unstable(feature = "const_convert", issue = "143773")]
2166impl<T: ?Sized> const DerefMut for RefMut<'_, T> {
2167 #[inline]
2168 fn deref_mut(&mut self) -> &mut T {
2169 // SAFETY: the value is accessible as long as we hold our borrow.
2170 unsafe { self.value.as_mut() }
2171 }
2172}
2173
2174#[unstable(feature = "deref_pure_trait", issue = "87121")]
2175#[cfg(not(feature = "ferrocene_subset"))]
2176unsafe impl<T: ?Sized> DerefPure for RefMut<'_, T> {}
2177
2178#[unstable(feature = "coerce_unsized", issue = "18598")]
2179#[cfg(not(feature = "ferrocene_subset"))]
2180impl<'b, T: ?Sized + Unsize<U>, U: ?Sized> CoerceUnsized<RefMut<'b, U>> for RefMut<'b, T> {}
2181
2182#[stable(feature = "std_guard_impls", since = "1.20.0")]
2183#[cfg(not(feature = "ferrocene_subset"))]
2184impl<T: ?Sized + fmt::Display> fmt::Display for RefMut<'_, T> {
2185 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
2186 (**self).fmt(f)
2187 }
2188}
2189
2190/// The core primitive for interior mutability in Rust.
2191///
2192/// If you have a reference `&T`, then normally in Rust the compiler performs optimizations based on
2193/// the knowledge that `&T` points to immutable data. Mutating that data, for example through an
2194/// alias or by transmuting a `&T` into a `&mut T`, is considered undefined behavior.
2195/// `UnsafeCell<T>` opts-out of the immutability guarantee for `&T`: a shared reference
2196/// `&UnsafeCell<T>` may point to data that is being mutated. This is called "interior mutability".
2197///
2198/// All other types that allow internal mutability, such as [`Cell<T>`] and [`RefCell<T>`], internally
2199/// use `UnsafeCell` to wrap their data.
2200///
2201/// Note that only the immutability guarantee for shared references is affected by `UnsafeCell`. The
2202/// uniqueness guarantee for mutable references is unaffected. There is *no* legal way to obtain
2203/// aliasing `&mut`, not even with `UnsafeCell<T>`.
2204///
2205/// `UnsafeCell` does nothing to avoid data races; they are still undefined behavior. If multiple
2206/// threads have access to the same `UnsafeCell`, they must follow the usual rules of the
2207/// [concurrent memory model]: conflicting non-synchronized accesses must be done via the APIs in
2208/// [`core::sync::atomic`].
2209///
2210/// The `UnsafeCell` API itself is technically very simple: [`.get()`] gives you a raw pointer
2211/// `*mut T` to its contents. It is up to _you_ as the abstraction designer to use that raw pointer
2212/// correctly.
2213///
2214/// [`.get()`]: `UnsafeCell::get`
2215/// [concurrent memory model]: ../sync/atomic/index.html#memory-model-for-atomic-accesses
2216///
2217/// # Aliasing rules
2218///
2219/// The precise Rust aliasing rules are somewhat in flux, but the main points are not contentious:
2220///
2221/// - If you create a safe reference with lifetime `'a` (either a `&T` or `&mut T` reference), then
2222/// you must not access the data in any way that contradicts that reference for the remainder of
2223/// `'a`. For example, this means that if you take the `*mut T` from an `UnsafeCell<T>` and cast it
2224/// to an `&T`, then the data in `T` must remain immutable (modulo any `UnsafeCell` data found
2225/// within `T`, of course) until that reference's lifetime expires. Similarly, if you create a
2226/// `&mut T` reference that is released to safe code, then you must not access the data within the
2227/// `UnsafeCell` until that reference expires.
2228///
2229/// - For both `&T` without `UnsafeCell<_>` and `&mut T`, you must also not deallocate the data
2230/// until the reference expires. As a special exception, given an `&T`, any part of it that is
2231/// inside an `UnsafeCell<_>` may be deallocated during the lifetime of the reference, after the
2232/// last time the reference is used (dereferenced or reborrowed). Since you cannot deallocate a part
2233/// of what a reference points to, this means the memory an `&T` points to can be deallocated only if
2234/// *every part of it* (including padding) is inside an `UnsafeCell`.
2235///
2236/// However, whenever a `&UnsafeCell<T>` is constructed or dereferenced, it must still point to
2237/// live memory and the compiler is allowed to insert spurious reads if it can prove that this
2238/// memory has not yet been deallocated.
2239///
2240/// To assist with proper design, the following scenarios are explicitly declared legal
2241/// for single-threaded code:
2242///
2243/// 1. A `&T` reference can be released to safe code and there it can co-exist with other `&T`
2244/// references, but not with a `&mut T`
2245///
2246/// 2. A `&mut T` reference may be released to safe code provided neither other `&mut T` nor `&T`
2247/// co-exist with it. A `&mut T` must always be unique.
2248///
2249/// Note that whilst mutating the contents of an `&UnsafeCell<T>` (even while other
2250/// `&UnsafeCell<T>` references alias the cell) is
2251/// ok (provided you enforce the above invariants some other way), it is still undefined behavior
2252/// to have multiple `&mut UnsafeCell<T>` aliases. That is, `UnsafeCell` is a wrapper
2253/// designed to have a special interaction with _shared_ accesses (_i.e._, through an
2254/// `&UnsafeCell<_>` reference); there is no magic whatsoever when dealing with _exclusive_
2255/// accesses (_e.g._, through a `&mut UnsafeCell<_>`): neither the cell nor the wrapped value
2256/// may be aliased for the duration of that `&mut` borrow.
2257/// This is showcased by the [`.get_mut()`] accessor, which is a _safe_ getter that yields
2258/// a `&mut T`.
2259///
2260/// [`.get_mut()`]: `UnsafeCell::get_mut`
2261///
2262/// # Memory layout
2263///
2264/// `UnsafeCell<T>` has the same in-memory representation as its inner type `T`. A consequence
2265/// of this guarantee is that it is possible to convert between `T` and `UnsafeCell<T>`.
2266/// Special care has to be taken when converting a nested `T` inside of an `Outer<T>` type
2267/// to an `Outer<UnsafeCell<T>>` type: this is not sound when the `Outer<T>` type enables [niche]
2268/// optimizations. For example, the type `Option<NonNull<u8>>` is typically 8 bytes large on
2269/// 64-bit platforms, but the type `Option<UnsafeCell<NonNull<u8>>>` takes up 16 bytes of space.
2270/// Therefore this is not a valid conversion, despite `NonNull<u8>` and `UnsafeCell<NonNull<u8>>>`
2271/// having the same memory layout. This is because `UnsafeCell` disables niche optimizations in
2272/// order to avoid its interior mutability property from spreading from `T` into the `Outer` type,
2273/// thus this can cause distortions in the type size in these cases.
2274///
2275/// Note that the only valid way to obtain a `*mut T` pointer to the contents of a
2276/// _shared_ `UnsafeCell<T>` is through [`.get()`] or [`.raw_get()`]. A `&mut T` reference
2277/// can be obtained by either dereferencing this pointer or by calling [`.get_mut()`]
2278/// on an _exclusive_ `UnsafeCell<T>`. Even though `T` and `UnsafeCell<T>` have the
2279/// same memory layout, the following is not allowed and undefined behavior:
2280///
2281/// ```rust,compile_fail
2282/// # use std::cell::UnsafeCell;
2283/// unsafe fn not_allowed<T>(ptr: &UnsafeCell<T>) -> &mut T {
2284/// let t = ptr as *const UnsafeCell<T> as *mut T;
2285/// // This is undefined behavior, because the `*mut T` pointer
2286/// // was not obtained through `.get()` nor `.raw_get()`:
2287/// unsafe { &mut *t }
2288/// }
2289/// ```
2290///
2291/// Instead, do this:
2292///
2293/// ```rust
2294/// # use std::cell::UnsafeCell;
2295/// // Safety: the caller must ensure that there are no references that
2296/// // point to the *contents* of the `UnsafeCell`.
2297/// unsafe fn get_mut<T>(ptr: &UnsafeCell<T>) -> &mut T {
2298/// unsafe { &mut *ptr.get() }
2299/// }
2300/// ```
2301///
2302/// Converting in the other direction from a `&mut T`
2303/// to an `&UnsafeCell<T>` is allowed:
2304///
2305/// ```rust
2306/// # use std::cell::UnsafeCell;
2307/// fn get_shared<T>(ptr: &mut T) -> &UnsafeCell<T> {
2308/// let t = ptr as *mut T as *const UnsafeCell<T>;
2309/// // SAFETY: `T` and `UnsafeCell<T>` have the same memory layout
2310/// unsafe { &*t }
2311/// }
2312/// ```
2313///
2314/// [niche]: https://rust-lang.github.io/unsafe-code-guidelines/glossary.html#niche
2315/// [`.raw_get()`]: `UnsafeCell::raw_get`
2316///
2317/// # Examples
2318///
2319/// Here is an example showcasing how to soundly mutate the contents of an `UnsafeCell<_>` despite
2320/// there being multiple references aliasing the cell:
2321///
2322/// ```
2323/// use std::cell::UnsafeCell;
2324///
2325/// let x: UnsafeCell<i32> = 42.into();
2326/// // Get multiple / concurrent / shared references to the same `x`.
2327/// let (p1, p2): (&UnsafeCell<i32>, &UnsafeCell<i32>) = (&x, &x);
2328///
2329/// unsafe {
2330/// // SAFETY: within this scope there are no other references to `x`'s contents,
2331/// // so ours is effectively unique.
2332/// let p1_exclusive: &mut i32 = &mut *p1.get(); // -- borrow --+
2333/// *p1_exclusive += 27; // |
2334/// } // <---------- cannot go beyond this point -------------------+
2335///
2336/// unsafe {
2337/// // SAFETY: within this scope nobody expects to have exclusive access to `x`'s contents,
2338/// // so we can have multiple shared accesses concurrently.
2339/// let p2_shared: &i32 = &*p2.get();
2340/// assert_eq!(*p2_shared, 42 + 27);
2341/// let p1_shared: &i32 = &*p1.get();
2342/// assert_eq!(*p1_shared, *p2_shared);
2343/// }
2344/// ```
2345///
2346/// The following example showcases the fact that exclusive access to an `UnsafeCell<T>`
2347/// implies exclusive access to its `T`:
2348///
2349/// ```rust
2350/// #![forbid(unsafe_code)]
2351/// // with exclusive accesses, `UnsafeCell` is a transparent no-op wrapper, so no need for
2352/// // `unsafe` here.
2353/// use std::cell::UnsafeCell;
2354///
2355/// let mut x: UnsafeCell<i32> = 42.into();
2356///
2357/// // Get a compile-time-checked unique reference to `x`.
2358/// let p_unique: &mut UnsafeCell<i32> = &mut x;
2359/// // With an exclusive reference, we can mutate the contents for free.
2360/// *p_unique.get_mut() = 0;
2361/// // Or, equivalently:
2362/// x = UnsafeCell::new(0);
2363///
2364/// // When we own the value, we can extract the contents for free.
2365/// let contents: i32 = x.into_inner();
2366/// assert_eq!(contents, 0);
2367/// ```
2368#[lang = "unsafe_cell"]
2369#[stable(feature = "rust1", since = "1.0.0")]
2370#[repr(transparent)]
2371#[rustc_pub_transparent]
2372pub struct UnsafeCell<T: ?Sized> {
2373 value: T,
2374}
2375
2376#[stable(feature = "rust1", since = "1.0.0")]
2377impl<T: ?Sized> !Sync for UnsafeCell<T> {}
2378
2379impl<T> UnsafeCell<T> {
2380 /// Constructs a new instance of `UnsafeCell` which will wrap the specified
2381 /// value.
2382 ///
2383 /// All access to the inner value through `&UnsafeCell<T>` requires `unsafe` code.
2384 ///
2385 /// # Examples
2386 ///
2387 /// ```
2388 /// use std::cell::UnsafeCell;
2389 ///
2390 /// let uc = UnsafeCell::new(5);
2391 /// ```
2392 #[stable(feature = "rust1", since = "1.0.0")]
2393 #[rustc_const_stable(feature = "const_unsafe_cell_new", since = "1.32.0")]
2394 #[inline(always)]
2395 pub const fn new(value: T) -> UnsafeCell<T> {
2396 UnsafeCell { value }
2397 }
2398
2399 /// Unwraps the value, consuming the cell.
2400 ///
2401 /// # Examples
2402 ///
2403 /// ```
2404 /// use std::cell::UnsafeCell;
2405 ///
2406 /// let uc = UnsafeCell::new(5);
2407 ///
2408 /// let five = uc.into_inner();
2409 /// ```
2410 #[inline(always)]
2411 #[stable(feature = "rust1", since = "1.0.0")]
2412 #[rustc_const_stable(feature = "const_cell_into_inner", since = "1.83.0")]
2413 #[rustc_allow_const_fn_unstable(const_precise_live_drops)]
2414 pub const fn into_inner(self) -> T {
2415 self.value
2416 }
2417
2418 /// Replace the value in this `UnsafeCell` and return the old value.
2419 ///
2420 /// # Safety
2421 ///
2422 /// The caller must take care to avoid aliasing and data races.
2423 ///
2424 /// - It is Undefined Behavior to allow calls to race with
2425 /// any other access to the wrapped value.
2426 /// - It is Undefined Behavior to call this while any other
2427 /// reference(s) to the wrapped value are alive.
2428 ///
2429 /// # Examples
2430 ///
2431 /// ```
2432 /// #![feature(unsafe_cell_access)]
2433 /// use std::cell::UnsafeCell;
2434 ///
2435 /// let uc = UnsafeCell::new(5);
2436 ///
2437 /// let old = unsafe { uc.replace(10) };
2438 /// assert_eq!(old, 5);
2439 /// ```
2440 #[inline]
2441 #[unstable(feature = "unsafe_cell_access", issue = "136327")]
2442 #[cfg(not(feature = "ferrocene_subset"))]
2443 #[rustc_should_not_be_called_on_const_items]
2444 pub const unsafe fn replace(&self, value: T) -> T {
2445 // SAFETY: pointer comes from `&self` so naturally satisfies invariants.
2446 unsafe { ptr::replace(self.get(), value) }
2447 }
2448}
2449
2450impl<T: ?Sized> UnsafeCell<T> {
2451 /// Converts from `&mut T` to `&mut UnsafeCell<T>`.
2452 ///
2453 /// # Examples
2454 ///
2455 /// ```
2456 /// use std::cell::UnsafeCell;
2457 ///
2458 /// let mut val = 42;
2459 /// let uc = UnsafeCell::from_mut(&mut val);
2460 ///
2461 /// *uc.get_mut() -= 1;
2462 /// assert_eq!(*uc.get_mut(), 41);
2463 /// ```
2464 #[inline(always)]
2465 #[stable(feature = "unsafe_cell_from_mut", since = "1.84.0")]
2466 #[rustc_const_stable(feature = "unsafe_cell_from_mut", since = "1.84.0")]
2467 #[cfg(not(feature = "ferrocene_subset"))]
2468 pub const fn from_mut(value: &mut T) -> &mut UnsafeCell<T> {
2469 // SAFETY: `UnsafeCell<T>` has the same memory layout as `T` due to #[repr(transparent)].
2470 unsafe { &mut *(value as *mut T as *mut UnsafeCell<T>) }
2471 }
2472
2473 /// Gets a mutable pointer to the wrapped value.
2474 ///
2475 /// This can be cast to a pointer of any kind. When creating references, you must uphold the
2476 /// aliasing rules; see [the type-level docs][UnsafeCell#aliasing-rules] for more discussion and
2477 /// caveats.
2478 ///
2479 /// # Examples
2480 ///
2481 /// ```
2482 /// use std::cell::UnsafeCell;
2483 ///
2484 /// let uc = UnsafeCell::new(5);
2485 ///
2486 /// let five = uc.get();
2487 /// ```
2488 #[inline(always)]
2489 #[stable(feature = "rust1", since = "1.0.0")]
2490 #[rustc_const_stable(feature = "const_unsafecell_get", since = "1.32.0")]
2491 #[rustc_as_ptr]
2492 #[rustc_never_returns_null_ptr]
2493 #[rustc_should_not_be_called_on_const_items]
2494 pub const fn get(&self) -> *mut T {
2495 // We can just cast the pointer from `UnsafeCell<T>` to `T` because of
2496 // #[repr(transparent)]. This exploits std's special status, there is
2497 // no guarantee for user code that this will work in future versions of the compiler!
2498 self as *const UnsafeCell<T> as *const T as *mut T
2499 }
2500
2501 /// Returns a mutable reference to the underlying data.
2502 ///
2503 /// This call borrows the `UnsafeCell` mutably (at compile-time) which
2504 /// guarantees that we possess the only reference.
2505 ///
2506 /// # Examples
2507 ///
2508 /// ```
2509 /// use std::cell::UnsafeCell;
2510 ///
2511 /// let mut c = UnsafeCell::new(5);
2512 /// *c.get_mut() += 1;
2513 ///
2514 /// assert_eq!(*c.get_mut(), 6);
2515 /// ```
2516 #[inline(always)]
2517 #[stable(feature = "unsafe_cell_get_mut", since = "1.50.0")]
2518 #[rustc_const_stable(feature = "const_unsafecell_get_mut", since = "1.83.0")]
2519 pub const fn get_mut(&mut self) -> &mut T {
2520 &mut self.value
2521 }
2522
2523 /// Gets a mutable pointer to the wrapped value.
2524 /// The difference from [`get`] is that this function accepts a raw pointer,
2525 /// which is useful to avoid the creation of temporary references.
2526 ///
2527 /// This can be cast to a pointer of any kind. When creating references, you must uphold the
2528 /// aliasing rules; see [the type-level docs][UnsafeCell#aliasing-rules] for more discussion and
2529 /// caveats.
2530 ///
2531 /// [`get`]: UnsafeCell::get()
2532 ///
2533 /// # Examples
2534 ///
2535 /// Gradual initialization of an `UnsafeCell` requires `raw_get`, as
2536 /// calling `get` would require creating a reference to uninitialized data:
2537 ///
2538 /// ```
2539 /// use std::cell::UnsafeCell;
2540 /// use std::mem::MaybeUninit;
2541 ///
2542 /// let m = MaybeUninit::<UnsafeCell<i32>>::uninit();
2543 /// unsafe { UnsafeCell::raw_get(m.as_ptr()).write(5); }
2544 /// // avoid below which references to uninitialized data
2545 /// // unsafe { UnsafeCell::get(&*m.as_ptr()).write(5); }
2546 /// let uc = unsafe { m.assume_init() };
2547 ///
2548 /// assert_eq!(uc.into_inner(), 5);
2549 /// ```
2550 #[inline(always)]
2551 #[stable(feature = "unsafe_cell_raw_get", since = "1.56.0")]
2552 #[rustc_const_stable(feature = "unsafe_cell_raw_get", since = "1.56.0")]
2553 #[rustc_diagnostic_item = "unsafe_cell_raw_get"]
2554 pub const fn raw_get(this: *const Self) -> *mut T {
2555 // We can just cast the pointer from `UnsafeCell<T>` to `T` because of
2556 // #[repr(transparent)]. This exploits std's special status, there is
2557 // no guarantee for user code that this will work in future versions of the compiler!
2558 this as *const T as *mut T
2559 }
2560
2561 /// Get a shared reference to the value within the `UnsafeCell`.
2562 ///
2563 /// # Safety
2564 ///
2565 /// - It is Undefined Behavior to call this while any mutable
2566 /// reference to the wrapped value is alive.
2567 /// - Mutating the wrapped value while the returned
2568 /// reference is alive is Undefined Behavior.
2569 ///
2570 /// # Examples
2571 ///
2572 /// ```
2573 /// #![feature(unsafe_cell_access)]
2574 /// use std::cell::UnsafeCell;
2575 ///
2576 /// let uc = UnsafeCell::new(5);
2577 ///
2578 /// let val = unsafe { uc.as_ref_unchecked() };
2579 /// assert_eq!(val, &5);
2580 /// ```
2581 #[inline]
2582 #[unstable(feature = "unsafe_cell_access", issue = "136327")]
2583 #[cfg(not(feature = "ferrocene_subset"))]
2584 #[rustc_should_not_be_called_on_const_items]
2585 pub const unsafe fn as_ref_unchecked(&self) -> &T {
2586 // SAFETY: pointer comes from `&self` so naturally satisfies ptr-to-ref invariants.
2587 unsafe { self.get().as_ref_unchecked() }
2588 }
2589
2590 /// Get an exclusive reference to the value within the `UnsafeCell`.
2591 ///
2592 /// # Safety
2593 ///
2594 /// - It is Undefined Behavior to call this while any other
2595 /// reference(s) to the wrapped value are alive.
2596 /// - Mutating the wrapped value through other means while the
2597 /// returned reference is alive is Undefined Behavior.
2598 ///
2599 /// # Examples
2600 ///
2601 /// ```
2602 /// #![feature(unsafe_cell_access)]
2603 /// use std::cell::UnsafeCell;
2604 ///
2605 /// let uc = UnsafeCell::new(5);
2606 ///
2607 /// unsafe { *uc.as_mut_unchecked() += 1; }
2608 /// assert_eq!(uc.into_inner(), 6);
2609 /// ```
2610 #[inline]
2611 #[unstable(feature = "unsafe_cell_access", issue = "136327")]
2612 #[allow(clippy::mut_from_ref)]
2613 #[cfg(not(feature = "ferrocene_subset"))]
2614 #[rustc_should_not_be_called_on_const_items]
2615 pub const unsafe fn as_mut_unchecked(&self) -> &mut T {
2616 // SAFETY: pointer comes from `&self` so naturally satisfies ptr-to-ref invariants.
2617 unsafe { self.get().as_mut_unchecked() }
2618 }
2619}
2620
2621#[stable(feature = "unsafe_cell_default", since = "1.10.0")]
2622#[rustc_const_unstable(feature = "const_default", issue = "143894")]
2623#[cfg(not(feature = "ferrocene_subset"))]
2624impl<T: [const] Default> const Default for UnsafeCell<T> {
2625 /// Creates an `UnsafeCell`, with the `Default` value for T.
2626 fn default() -> UnsafeCell<T> {
2627 UnsafeCell::new(Default::default())
2628 }
2629}
2630
2631#[stable(feature = "cell_from", since = "1.12.0")]
2632#[rustc_const_unstable(feature = "const_convert", issue = "143773")]
2633#[cfg(not(feature = "ferrocene_subset"))]
2634impl<T> const From<T> for UnsafeCell<T> {
2635 /// Creates a new `UnsafeCell<T>` containing the given value.
2636 fn from(t: T) -> UnsafeCell<T> {
2637 UnsafeCell::new(t)
2638 }
2639}
2640
2641#[unstable(feature = "coerce_unsized", issue = "18598")]
2642#[cfg(not(feature = "ferrocene_subset"))]
2643impl<T: CoerceUnsized<U>, U> CoerceUnsized<UnsafeCell<U>> for UnsafeCell<T> {}
2644
2645// Allow types that wrap `UnsafeCell` to also implement `DispatchFromDyn`
2646// and become dyn-compatible method receivers.
2647// Note that currently `UnsafeCell` itself cannot be a method receiver
2648// because it does not implement Deref.
2649// In other words:
2650// `self: UnsafeCell<&Self>` won't work
2651// `self: UnsafeCellWrapper<Self>` becomes possible
2652#[unstable(feature = "dispatch_from_dyn", issue = "none")]
2653#[cfg(not(feature = "ferrocene_subset"))]
2654impl<T: DispatchFromDyn<U>, U> DispatchFromDyn<UnsafeCell<U>> for UnsafeCell<T> {}
2655
2656/// [`UnsafeCell`], but [`Sync`].
2657///
2658/// This is just an `UnsafeCell`, except it implements `Sync`
2659/// if `T` implements `Sync`.
2660///
2661/// `UnsafeCell` doesn't implement `Sync`, to prevent accidental mis-use.
2662/// You can use `SyncUnsafeCell` instead of `UnsafeCell` to allow it to be
2663/// shared between threads, if that's intentional.
2664/// Providing proper synchronization is still the task of the user,
2665/// making this type just as unsafe to use.
2666///
2667/// See [`UnsafeCell`] for details.
2668#[unstable(feature = "sync_unsafe_cell", issue = "95439")]
2669#[repr(transparent)]
2670#[rustc_diagnostic_item = "SyncUnsafeCell"]
2671#[rustc_pub_transparent]
2672pub struct SyncUnsafeCell<T: ?Sized> {
2673 value: UnsafeCell<T>,
2674}
2675
2676#[unstable(feature = "sync_unsafe_cell", issue = "95439")]
2677unsafe impl<T: ?Sized + Sync> Sync for SyncUnsafeCell<T> {}
2678
2679#[unstable(feature = "sync_unsafe_cell", issue = "95439")]
2680#[cfg(not(feature = "ferrocene_subset"))]
2681impl<T> SyncUnsafeCell<T> {
2682 /// Constructs a new instance of `SyncUnsafeCell` which will wrap the specified value.
2683 #[inline]
2684 pub const fn new(value: T) -> Self {
2685 Self { value: UnsafeCell { value } }
2686 }
2687
2688 /// Unwraps the value, consuming the cell.
2689 #[inline]
2690 #[rustc_const_unstable(feature = "sync_unsafe_cell", issue = "95439")]
2691 pub const fn into_inner(self) -> T {
2692 self.value.into_inner()
2693 }
2694}
2695
2696#[unstable(feature = "sync_unsafe_cell", issue = "95439")]
2697#[cfg(not(feature = "ferrocene_subset"))]
2698impl<T: ?Sized> SyncUnsafeCell<T> {
2699 /// Gets a mutable pointer to the wrapped value.
2700 ///
2701 /// This can be cast to a pointer of any kind.
2702 /// Ensure that the access is unique (no active references, mutable or not)
2703 /// when casting to `&mut T`, and ensure that there are no mutations
2704 /// or mutable aliases going on when casting to `&T`
2705 #[inline]
2706 #[rustc_as_ptr]
2707 #[rustc_never_returns_null_ptr]
2708 #[rustc_should_not_be_called_on_const_items]
2709 pub const fn get(&self) -> *mut T {
2710 self.value.get()
2711 }
2712
2713 /// Returns a mutable reference to the underlying data.
2714 ///
2715 /// This call borrows the `SyncUnsafeCell` mutably (at compile-time) which
2716 /// guarantees that we possess the only reference.
2717 #[inline]
2718 pub const fn get_mut(&mut self) -> &mut T {
2719 self.value.get_mut()
2720 }
2721
2722 /// Gets a mutable pointer to the wrapped value.
2723 ///
2724 /// See [`UnsafeCell::get`] for details.
2725 #[inline]
2726 pub const fn raw_get(this: *const Self) -> *mut T {
2727 // We can just cast the pointer from `SyncUnsafeCell<T>` to `T` because
2728 // of #[repr(transparent)] on both SyncUnsafeCell and UnsafeCell.
2729 // See UnsafeCell::raw_get.
2730 this as *const T as *mut T
2731 }
2732}
2733
2734#[unstable(feature = "sync_unsafe_cell", issue = "95439")]
2735#[rustc_const_unstable(feature = "const_default", issue = "143894")]
2736#[cfg(not(feature = "ferrocene_subset"))]
2737impl<T: [const] Default> const Default for SyncUnsafeCell<T> {
2738 /// Creates an `SyncUnsafeCell`, with the `Default` value for T.
2739 fn default() -> SyncUnsafeCell<T> {
2740 SyncUnsafeCell::new(Default::default())
2741 }
2742}
2743
2744#[unstable(feature = "sync_unsafe_cell", issue = "95439")]
2745#[rustc_const_unstable(feature = "const_convert", issue = "143773")]
2746#[cfg(not(feature = "ferrocene_subset"))]
2747impl<T> const From<T> for SyncUnsafeCell<T> {
2748 /// Creates a new `SyncUnsafeCell<T>` containing the given value.
2749 fn from(t: T) -> SyncUnsafeCell<T> {
2750 SyncUnsafeCell::new(t)
2751 }
2752}
2753
2754#[unstable(feature = "coerce_unsized", issue = "18598")]
2755//#[unstable(feature = "sync_unsafe_cell", issue = "95439")]
2756#[cfg(not(feature = "ferrocene_subset"))]
2757impl<T: CoerceUnsized<U>, U> CoerceUnsized<SyncUnsafeCell<U>> for SyncUnsafeCell<T> {}
2758
2759// Allow types that wrap `SyncUnsafeCell` to also implement `DispatchFromDyn`
2760// and become dyn-compatible method receivers.
2761// Note that currently `SyncUnsafeCell` itself cannot be a method receiver
2762// because it does not implement Deref.
2763// In other words:
2764// `self: SyncUnsafeCell<&Self>` won't work
2765// `self: SyncUnsafeCellWrapper<Self>` becomes possible
2766#[unstable(feature = "dispatch_from_dyn", issue = "none")]
2767//#[unstable(feature = "sync_unsafe_cell", issue = "95439")]
2768#[cfg(not(feature = "ferrocene_subset"))]
2769impl<T: DispatchFromDyn<U>, U> DispatchFromDyn<SyncUnsafeCell<U>> for SyncUnsafeCell<T> {}
2770
2771#[allow(unused)]
2772#[cfg(not(feature = "ferrocene_subset"))]
2773fn assert_coerce_unsized(
2774 a: UnsafeCell<&i32>,
2775 b: SyncUnsafeCell<&i32>,
2776 c: Cell<&i32>,
2777 d: RefCell<&i32>,
2778) {
2779 let _: UnsafeCell<&dyn Send> = a;
2780 let _: SyncUnsafeCell<&dyn Send> = b;
2781 let _: Cell<&dyn Send> = c;
2782 let _: RefCell<&dyn Send> = d;
2783}
2784
2785#[cfg(not(feature = "ferrocene_subset"))]
2786#[unstable(feature = "pin_coerce_unsized_trait", issue = "150112")]
2787unsafe impl<T: ?Sized> PinCoerceUnsized for UnsafeCell<T> {}
2788
2789#[cfg(not(feature = "ferrocene_subset"))]
2790#[unstable(feature = "pin_coerce_unsized_trait", issue = "150112")]
2791unsafe impl<T: ?Sized> PinCoerceUnsized for SyncUnsafeCell<T> {}
2792
2793#[cfg(not(feature = "ferrocene_subset"))]
2794#[unstable(feature = "pin_coerce_unsized_trait", issue = "150112")]
2795unsafe impl<T: ?Sized> PinCoerceUnsized for Cell<T> {}
2796
2797#[cfg(not(feature = "ferrocene_subset"))]
2798#[unstable(feature = "pin_coerce_unsized_trait", issue = "150112")]
2799unsafe impl<T: ?Sized> PinCoerceUnsized for RefCell<T> {}
2800
2801#[cfg(not(feature = "ferrocene_subset"))]
2802#[unstable(feature = "pin_coerce_unsized_trait", issue = "150112")]
2803unsafe impl<'b, T: ?Sized> PinCoerceUnsized for Ref<'b, T> {}
2804
2805#[cfg(not(feature = "ferrocene_subset"))]
2806#[unstable(feature = "pin_coerce_unsized_trait", issue = "150112")]
2807unsafe impl<'b, T: ?Sized> PinCoerceUnsized for RefMut<'b, T> {}