core/cell.rs
1//! Shareable mutable containers.
2//!
3//! Rust memory safety is based on this rule: Given an object `T`, it is only possible to
4//! have one of the following:
5//!
6//! - Several immutable references (`&T`) to the object (also known as **aliasing**).
7//! - One mutable reference (`&mut T`) to the object (also known as **mutability**).
8//!
9//! This is enforced by the Rust compiler. However, there are situations where this rule is not
10//! flexible enough. Sometimes it is required to have multiple references to an object and yet
11//! mutate it.
12//!
13//! Shareable mutable containers exist to permit mutability in a controlled manner, even in the
14//! presence of aliasing. [`Cell<T>`], [`RefCell<T>`], and [`OnceCell<T>`] allow doing this in
15//! a single-threaded way—they do not implement [`Sync`]. (If you need to do aliasing and
16//! mutation among multiple threads, [`Mutex<T>`], [`RwLock<T>`], [`OnceLock<T>`] or [`atomic`]
17//! types are the correct data structures to do so).
18//!
19//! Values of the `Cell<T>`, `RefCell<T>`, and `OnceCell<T>` types may be mutated through shared
20//! references (i.e. the common `&T` type), whereas most Rust types can only be mutated through
21//! unique (`&mut T`) references. We say these cell types provide 'interior mutability'
22//! (mutable via `&T`), in contrast with typical Rust types that exhibit 'inherited mutability'
23//! (mutable only via `&mut T`).
24//!
25//! Cell types come in four flavors: `Cell<T>`, `RefCell<T>`, `OnceCell<T>`, and `LazyCell<T>`.
26//! Each provides a different way of providing safe interior mutability.
27//!
28//! ## `Cell<T>`
29//!
30//! [`Cell<T>`] implements interior mutability by moving values in and out of the cell. That is, an
31//! `&mut T` to the inner value can never be obtained, and the value itself cannot be directly
32//! obtained without replacing it with something else. Both of these rules ensure that there is
33//! never more than one reference pointing to the inner value. This type provides the following
34//! methods:
35//!
36//! - For types that implement [`Copy`], the [`get`](Cell::get) method retrieves the current
37//! interior value by duplicating it.
38//! - For types that implement [`Default`], the [`take`](Cell::take) method replaces the current
39//! interior value with [`Default::default()`] and returns the replaced value.
40//! - All types have:
41//! - [`replace`](Cell::replace): replaces the current interior value and returns the replaced
42//! value.
43//! - [`into_inner`](Cell::into_inner): this method consumes the `Cell<T>` and returns the
44//! interior value.
45//! - [`set`](Cell::set): this method replaces the interior value, dropping the replaced value.
46//!
47//! `Cell<T>` is typically used for more simple types where copying or moving values isn't too
48//! resource intensive (e.g. numbers), and should usually be preferred over other cell types when
49//! possible. For larger and non-copy types, `RefCell` provides some advantages.
50//!
51//! ## `RefCell<T>`
52//!
53//! [`RefCell<T>`] uses Rust's lifetimes to implement "dynamic borrowing", a process whereby one can
54//! claim temporary, exclusive, mutable access to the inner value. Borrows for `RefCell<T>`s are
55//! tracked at _runtime_, unlike Rust's native reference types which are entirely tracked
56//! statically, at compile time.
57//!
58//! An immutable reference to a `RefCell`'s inner value (`&T`) can be obtained with
59//! [`borrow`](`RefCell::borrow`), and a mutable borrow (`&mut T`) can be obtained with
60//! [`borrow_mut`](`RefCell::borrow_mut`). When these functions are called, they first verify that
61//! Rust's borrow rules will be satisfied: any number of immutable borrows are allowed or a
62//! single mutable borrow is allowed, but never both. If a borrow is attempted that would violate
63//! these rules, the thread will panic.
64//!
65//! The corresponding [`Sync`] version of `RefCell<T>` is [`RwLock<T>`].
66//!
67//! ## `OnceCell<T>`
68//!
69//! [`OnceCell<T>`] is somewhat of a hybrid of `Cell` and `RefCell` that works for values that
70//! typically only need to be set once. This means that a reference `&T` can be obtained without
71//! moving or copying the inner value (unlike `Cell`) but also without runtime checks (unlike
72//! `RefCell`). However, its value can also not be updated once set unless you have a mutable
73//! reference to the `OnceCell`.
74//!
75//! `OnceCell` provides the following methods:
76//!
77//! - [`get`](OnceCell::get): obtain a reference to the inner value
78//! - [`set`](OnceCell::set): set the inner value if it is unset (returns a `Result`)
79//! - [`get_or_init`](OnceCell::get_or_init): return the inner value, initializing it if needed
80//! - [`get_mut`](OnceCell::get_mut): provide a mutable reference to the inner value, only available
81//! if you have a mutable reference to the cell itself.
82//!
83//! The corresponding [`Sync`] version of `OnceCell<T>` is [`OnceLock<T>`].
84//!
85//! ## `LazyCell<T, F>`
86//!
87//! A common pattern with OnceCell is, for a given OnceCell, to use the same function on every
88//! call to [`OnceCell::get_or_init`] with that cell. This is what is offered by [`LazyCell`],
89//! which pairs cells of `T` with functions of `F`, and always calls `F` before it yields `&T`.
90//! This happens implicitly by simply attempting to dereference the LazyCell to get its contents,
91//! so its use is much more transparent with a place which has been initialized by a constant.
92//!
93//! More complicated patterns that don't fit this description can be built on `OnceCell<T>` instead.
94//!
95//! `LazyCell` works by providing an implementation of `impl Deref` that calls the function,
96//! so you can just use it by dereference (e.g. `*lazy_cell` or `lazy_cell.deref()`).
97//!
98//! The corresponding [`Sync`] version of `LazyCell<T, F>` is [`LazyLock<T, F>`].
99//!
100//! # When to choose interior mutability
101//!
102//! The more common inherited mutability, where one must have unique access to mutate a value, is
103//! one of the key language elements that enables Rust to reason strongly about pointer aliasing,
104//! statically preventing crash bugs. Because of that, inherited mutability is preferred, and
105//! interior mutability is something of a last resort. Since cell types enable mutation where it
106//! would otherwise be disallowed though, there are occasions when interior mutability might be
107//! appropriate, or even *must* be used, e.g.
108//!
109//! * Introducing mutability 'inside' of something immutable
110//! * Implementation details of logically-immutable methods.
111//! * Mutating implementations of [`Clone`].
112//!
113//! ## Introducing mutability 'inside' of something immutable
114//!
115//! Many shared smart pointer types, including [`Rc<T>`] and [`Arc<T>`], provide containers that can
116//! be cloned and shared between multiple parties. Because the contained values may be
117//! multiply-aliased, they can only be borrowed with `&`, not `&mut`. Without cells it would be
118//! impossible to mutate data inside of these smart pointers at all.
119//!
120//! It's very common then to put a `RefCell<T>` inside shared pointer types to reintroduce
121//! mutability:
122//!
123//! ```
124//! use std::cell::{RefCell, RefMut};
125//! use std::collections::HashMap;
126//! use std::rc::Rc;
127//!
128//! fn main() {
129//! let shared_map: Rc<RefCell<_>> = Rc::new(RefCell::new(HashMap::new()));
130//! // Create a new block to limit the scope of the dynamic borrow
131//! {
132//! let mut map: RefMut<'_, _> = shared_map.borrow_mut();
133//! map.insert("africa", 92388);
134//! map.insert("kyoto", 11837);
135//! map.insert("piccadilly", 11826);
136//! map.insert("marbles", 38);
137//! }
138//!
139//! // Note that if we had not let the previous borrow of the cache fall out
140//! // of scope then the subsequent borrow would cause a dynamic thread panic.
141//! // This is the major hazard of using `RefCell`.
142//! let total: i32 = shared_map.borrow().values().sum();
143//! println!("{total}");
144//! }
145//! ```
146//!
147//! Note that this example uses `Rc<T>` and not `Arc<T>`. `RefCell<T>`s are for single-threaded
148//! scenarios. Consider using [`RwLock<T>`] or [`Mutex<T>`] if you need shared mutability in a
149//! multi-threaded situation.
150//!
151//! ## Implementation details of logically-immutable methods
152//!
153//! Occasionally it may be desirable not to expose in an API that there is mutation happening
154//! "under the hood". This may be because logically the operation is immutable, but e.g., caching
155//! forces the implementation to perform mutation; or because you must employ mutation to implement
156//! a trait method that was originally defined to take `&self`.
157//!
158//! ```
159//! # #![allow(dead_code)]
160//! use std::cell::OnceCell;
161//!
162//! struct Graph {
163//! edges: Vec<(i32, i32)>,
164//! span_tree_cache: OnceCell<Vec<(i32, i32)>>
165//! }
166//!
167//! impl Graph {
168//! fn minimum_spanning_tree(&self) -> Vec<(i32, i32)> {
169//! self.span_tree_cache
170//! .get_or_init(|| self.calc_span_tree())
171//! .clone()
172//! }
173//!
174//! fn calc_span_tree(&self) -> Vec<(i32, i32)> {
175//! // Expensive computation goes here
176//! vec![]
177//! }
178//! }
179//! ```
180//!
181//! ## Mutating implementations of `Clone`
182//!
183//! This is simply a special - but common - case of the previous: hiding mutability for operations
184//! that appear to be immutable. The [`clone`](Clone::clone) method is expected to not change the
185//! source value, and is declared to take `&self`, not `&mut self`. Therefore, any mutation that
186//! happens in the `clone` method must use cell types. For example, [`Rc<T>`] maintains its
187//! reference counts within a `Cell<T>`.
188//!
189//! ```
190//! use std::cell::Cell;
191//! use std::ptr::NonNull;
192//! use std::process::abort;
193//! use std::marker::PhantomData;
194//!
195//! struct Rc<T: ?Sized> {
196//! ptr: NonNull<RcInner<T>>,
197//! phantom: PhantomData<RcInner<T>>,
198//! }
199//!
200//! struct RcInner<T: ?Sized> {
201//! strong: Cell<usize>,
202//! refcount: Cell<usize>,
203//! value: T,
204//! }
205//!
206//! impl<T: ?Sized> Clone for Rc<T> {
207//! fn clone(&self) -> Rc<T> {
208//! self.inc_strong();
209//! Rc {
210//! ptr: self.ptr,
211//! phantom: PhantomData,
212//! }
213//! }
214//! }
215//!
216//! trait RcInnerPtr<T: ?Sized> {
217//!
218//! fn inner(&self) -> &RcInner<T>;
219//!
220//! fn strong(&self) -> usize {
221//! self.inner().strong.get()
222//! }
223//!
224//! fn inc_strong(&self) {
225//! self.inner()
226//! .strong
227//! .set(self.strong()
228//! .checked_add(1)
229//! .unwrap_or_else(|| abort() ));
230//! }
231//! }
232//!
233//! impl<T: ?Sized> RcInnerPtr<T> for Rc<T> {
234//! fn inner(&self) -> &RcInner<T> {
235//! unsafe {
236//! self.ptr.as_ref()
237//! }
238//! }
239//! }
240//! ```
241//!
242//! [`Arc<T>`]: ../../std/sync/struct.Arc.html
243//! [`Rc<T>`]: ../../std/rc/struct.Rc.html
244//! [`RwLock<T>`]: ../../std/sync/struct.RwLock.html
245//! [`Mutex<T>`]: ../../std/sync/struct.Mutex.html
246//! [`OnceLock<T>`]: ../../std/sync/struct.OnceLock.html
247//! [`LazyLock<T, F>`]: ../../std/sync/struct.LazyLock.html
248//! [`Sync`]: ../../std/marker/trait.Sync.html
249//! [`atomic`]: crate::sync::atomic
250
251#![stable(feature = "rust1", since = "1.0.0")]
252
253#[cfg(not(feature = "ferrocene_certified"))]
254use crate::cmp::Ordering;
255#[cfg(not(feature = "ferrocene_certified"))]
256use crate::fmt::{self, Debug, Display};
257#[cfg(not(feature = "ferrocene_certified"))]
258use crate::marker::{PhantomData, Unsize};
259#[cfg(not(feature = "ferrocene_certified"))]
260use crate::mem::{self, ManuallyDrop};
261#[cfg(not(feature = "ferrocene_certified"))]
262use crate::ops::{self, CoerceUnsized, Deref, DerefMut, DerefPure, DispatchFromDyn};
263#[cfg(not(feature = "ferrocene_certified"))]
264use crate::panic::const_panic;
265#[cfg(not(feature = "ferrocene_certified"))]
266use crate::pin::PinCoerceUnsized;
267#[cfg(not(feature = "ferrocene_certified"))]
268use crate::ptr::{self, NonNull};
269#[cfg(not(feature = "ferrocene_certified"))]
270use crate::range;
271
272#[cfg(not(feature = "ferrocene_certified"))]
273mod lazy;
274#[cfg(not(feature = "ferrocene_certified"))]
275mod once;
276
277#[stable(feature = "lazy_cell", since = "1.80.0")]
278#[cfg(not(feature = "ferrocene_certified"))]
279pub use lazy::LazyCell;
280#[stable(feature = "once_cell", since = "1.70.0")]
281#[cfg(not(feature = "ferrocene_certified"))]
282pub use once::OnceCell;
283
284/// A mutable memory location.
285///
286/// # Memory layout
287///
288/// `Cell<T>` has the same [memory layout and caveats as
289/// `UnsafeCell<T>`](UnsafeCell#memory-layout). In particular, this means that
290/// `Cell<T>` has the same in-memory representation as its inner type `T`.
291///
292/// # Examples
293///
294/// In this example, you can see that `Cell<T>` enables mutation inside an
295/// immutable struct. In other words, it enables "interior mutability".
296///
297/// ```
298/// use std::cell::Cell;
299///
300/// struct SomeStruct {
301/// regular_field: u8,
302/// special_field: Cell<u8>,
303/// }
304///
305/// let my_struct = SomeStruct {
306/// regular_field: 0,
307/// special_field: Cell::new(1),
308/// };
309///
310/// let new_value = 100;
311///
312/// // ERROR: `my_struct` is immutable
313/// // my_struct.regular_field = new_value;
314///
315/// // WORKS: although `my_struct` is immutable, `special_field` is a `Cell`,
316/// // which can always be mutated
317/// my_struct.special_field.set(new_value);
318/// assert_eq!(my_struct.special_field.get(), new_value);
319/// ```
320///
321/// See the [module-level documentation](self) for more.
322#[rustc_diagnostic_item = "Cell"]
323#[stable(feature = "rust1", since = "1.0.0")]
324#[repr(transparent)]
325#[rustc_pub_transparent]
326#[cfg(not(feature = "ferrocene_certified"))]
327pub struct Cell<T: ?Sized> {
328 value: UnsafeCell<T>,
329}
330
331#[stable(feature = "rust1", since = "1.0.0")]
332#[cfg(not(feature = "ferrocene_certified"))]
333unsafe impl<T: ?Sized> Send for Cell<T> where T: Send {}
334
335// Note that this negative impl isn't strictly necessary for correctness,
336// as `Cell` wraps `UnsafeCell`, which is itself `!Sync`.
337// However, given how important `Cell`'s `!Sync`-ness is,
338// having an explicit negative impl is nice for documentation purposes
339// and results in nicer error messages.
340#[stable(feature = "rust1", since = "1.0.0")]
341#[cfg(not(feature = "ferrocene_certified"))]
342impl<T: ?Sized> !Sync for Cell<T> {}
343
344#[stable(feature = "rust1", since = "1.0.0")]
345#[cfg(not(feature = "ferrocene_certified"))]
346impl<T: Copy> Clone for Cell<T> {
347 #[inline]
348 fn clone(&self) -> Cell<T> {
349 Cell::new(self.get())
350 }
351}
352
353#[stable(feature = "rust1", since = "1.0.0")]
354#[rustc_const_unstable(feature = "const_default", issue = "143894")]
355#[cfg(not(feature = "ferrocene_certified"))]
356impl<T: [const] Default> const Default for Cell<T> {
357 /// Creates a `Cell<T>`, with the `Default` value for T.
358 #[inline]
359 fn default() -> Cell<T> {
360 Cell::new(Default::default())
361 }
362}
363
364#[stable(feature = "rust1", since = "1.0.0")]
365#[cfg(not(feature = "ferrocene_certified"))]
366impl<T: PartialEq + Copy> PartialEq for Cell<T> {
367 #[inline]
368 fn eq(&self, other: &Cell<T>) -> bool {
369 self.get() == other.get()
370 }
371}
372
373#[stable(feature = "cell_eq", since = "1.2.0")]
374#[cfg(not(feature = "ferrocene_certified"))]
375impl<T: Eq + Copy> Eq for Cell<T> {}
376
377#[stable(feature = "cell_ord", since = "1.10.0")]
378#[cfg(not(feature = "ferrocene_certified"))]
379impl<T: PartialOrd + Copy> PartialOrd for Cell<T> {
380 #[inline]
381 fn partial_cmp(&self, other: &Cell<T>) -> Option<Ordering> {
382 self.get().partial_cmp(&other.get())
383 }
384
385 #[inline]
386 fn lt(&self, other: &Cell<T>) -> bool {
387 self.get() < other.get()
388 }
389
390 #[inline]
391 fn le(&self, other: &Cell<T>) -> bool {
392 self.get() <= other.get()
393 }
394
395 #[inline]
396 fn gt(&self, other: &Cell<T>) -> bool {
397 self.get() > other.get()
398 }
399
400 #[inline]
401 fn ge(&self, other: &Cell<T>) -> bool {
402 self.get() >= other.get()
403 }
404}
405
406#[stable(feature = "cell_ord", since = "1.10.0")]
407#[cfg(not(feature = "ferrocene_certified"))]
408impl<T: Ord + Copy> Ord for Cell<T> {
409 #[inline]
410 fn cmp(&self, other: &Cell<T>) -> Ordering {
411 self.get().cmp(&other.get())
412 }
413}
414
415#[stable(feature = "cell_from", since = "1.12.0")]
416#[rustc_const_unstable(feature = "const_convert", issue = "143773")]
417#[cfg(not(feature = "ferrocene_certified"))]
418impl<T> const From<T> for Cell<T> {
419 /// Creates a new `Cell<T>` containing the given value.
420 fn from(t: T) -> Cell<T> {
421 Cell::new(t)
422 }
423}
424
425#[cfg(not(feature = "ferrocene_certified"))]
426impl<T> Cell<T> {
427 /// Creates a new `Cell` containing the given value.
428 ///
429 /// # Examples
430 ///
431 /// ```
432 /// use std::cell::Cell;
433 ///
434 /// let c = Cell::new(5);
435 /// ```
436 #[stable(feature = "rust1", since = "1.0.0")]
437 #[rustc_const_stable(feature = "const_cell_new", since = "1.24.0")]
438 #[inline]
439 pub const fn new(value: T) -> Cell<T> {
440 Cell { value: UnsafeCell::new(value) }
441 }
442
443 /// Sets the contained value.
444 ///
445 /// # Examples
446 ///
447 /// ```
448 /// use std::cell::Cell;
449 ///
450 /// let c = Cell::new(5);
451 ///
452 /// c.set(10);
453 /// ```
454 #[inline]
455 #[stable(feature = "rust1", since = "1.0.0")]
456 pub fn set(&self, val: T) {
457 self.replace(val);
458 }
459
460 /// Swaps the values of two `Cell`s.
461 ///
462 /// The difference with `std::mem::swap` is that this function doesn't
463 /// require a `&mut` reference.
464 ///
465 /// # Panics
466 ///
467 /// This function will panic if `self` and `other` are different `Cell`s that partially overlap.
468 /// (Using just standard library methods, it is impossible to create such partially overlapping `Cell`s.
469 /// However, unsafe code is allowed to e.g. create two `&Cell<[i32; 2]>` that partially overlap.)
470 ///
471 /// # Examples
472 ///
473 /// ```
474 /// use std::cell::Cell;
475 ///
476 /// let c1 = Cell::new(5i32);
477 /// let c2 = Cell::new(10i32);
478 /// c1.swap(&c2);
479 /// assert_eq!(10, c1.get());
480 /// assert_eq!(5, c2.get());
481 /// ```
482 #[inline]
483 #[stable(feature = "move_cell", since = "1.17.0")]
484 pub fn swap(&self, other: &Self) {
485 // This function documents that it *will* panic, and intrinsics::is_nonoverlapping doesn't
486 // do the check in const, so trying to use it here would be inviting unnecessary fragility.
487 fn is_nonoverlapping<T>(src: *const T, dst: *const T) -> bool {
488 let src_usize = src.addr();
489 let dst_usize = dst.addr();
490 let diff = src_usize.abs_diff(dst_usize);
491 diff >= size_of::<T>()
492 }
493
494 if ptr::eq(self, other) {
495 // Swapping wouldn't change anything.
496 return;
497 }
498 if !is_nonoverlapping(self, other) {
499 // See <https://github.com/rust-lang/rust/issues/80778> for why we need to stop here.
500 panic!("`Cell::swap` on overlapping non-identical `Cell`s");
501 }
502 // SAFETY: This can be risky if called from separate threads, but `Cell`
503 // is `!Sync` so this won't happen. This also won't invalidate any
504 // pointers since `Cell` makes sure nothing else will be pointing into
505 // either of these `Cell`s. We also excluded shenanigans like partially overlapping `Cell`s,
506 // so `swap` will just properly copy two full values of type `T` back and forth.
507 unsafe {
508 mem::swap(&mut *self.value.get(), &mut *other.value.get());
509 }
510 }
511
512 /// Replaces the contained value with `val`, and returns the old contained value.
513 ///
514 /// # Examples
515 ///
516 /// ```
517 /// use std::cell::Cell;
518 ///
519 /// let cell = Cell::new(5);
520 /// assert_eq!(cell.get(), 5);
521 /// assert_eq!(cell.replace(10), 5);
522 /// assert_eq!(cell.get(), 10);
523 /// ```
524 #[inline]
525 #[stable(feature = "move_cell", since = "1.17.0")]
526 #[rustc_const_stable(feature = "const_cell", since = "1.88.0")]
527 #[rustc_confusables("swap")]
528 pub const fn replace(&self, val: T) -> T {
529 // SAFETY: This can cause data races if called from a separate thread,
530 // but `Cell` is `!Sync` so this won't happen.
531 mem::replace(unsafe { &mut *self.value.get() }, val)
532 }
533
534 /// Unwraps the value, consuming the cell.
535 ///
536 /// # Examples
537 ///
538 /// ```
539 /// use std::cell::Cell;
540 ///
541 /// let c = Cell::new(5);
542 /// let five = c.into_inner();
543 ///
544 /// assert_eq!(five, 5);
545 /// ```
546 #[stable(feature = "move_cell", since = "1.17.0")]
547 #[rustc_const_stable(feature = "const_cell_into_inner", since = "1.83.0")]
548 #[rustc_allow_const_fn_unstable(const_precise_live_drops)]
549 pub const fn into_inner(self) -> T {
550 self.value.into_inner()
551 }
552}
553
554#[cfg(not(feature = "ferrocene_certified"))]
555impl<T: Copy> Cell<T> {
556 /// Returns a copy of the contained value.
557 ///
558 /// # Examples
559 ///
560 /// ```
561 /// use std::cell::Cell;
562 ///
563 /// let c = Cell::new(5);
564 ///
565 /// let five = c.get();
566 /// ```
567 #[inline]
568 #[stable(feature = "rust1", since = "1.0.0")]
569 #[rustc_const_stable(feature = "const_cell", since = "1.88.0")]
570 pub const fn get(&self) -> T {
571 // SAFETY: This can cause data races if called from a separate thread,
572 // but `Cell` is `!Sync` so this won't happen.
573 unsafe { *self.value.get() }
574 }
575
576 /// Updates the contained value using a function.
577 ///
578 /// # Examples
579 ///
580 /// ```
581 /// use std::cell::Cell;
582 ///
583 /// let c = Cell::new(5);
584 /// c.update(|x| x + 1);
585 /// assert_eq!(c.get(), 6);
586 /// ```
587 #[inline]
588 #[stable(feature = "cell_update", since = "1.88.0")]
589 pub fn update(&self, f: impl FnOnce(T) -> T) {
590 let old = self.get();
591 self.set(f(old));
592 }
593}
594
595#[cfg(not(feature = "ferrocene_certified"))]
596impl<T: ?Sized> Cell<T> {
597 /// Returns a raw pointer to the underlying data in this cell.
598 ///
599 /// # Examples
600 ///
601 /// ```
602 /// use std::cell::Cell;
603 ///
604 /// let c = Cell::new(5);
605 ///
606 /// let ptr = c.as_ptr();
607 /// ```
608 #[inline]
609 #[stable(feature = "cell_as_ptr", since = "1.12.0")]
610 #[rustc_const_stable(feature = "const_cell_as_ptr", since = "1.32.0")]
611 #[rustc_as_ptr]
612 #[rustc_never_returns_null_ptr]
613 pub const fn as_ptr(&self) -> *mut T {
614 self.value.get()
615 }
616
617 /// Returns a mutable reference to the underlying data.
618 ///
619 /// This call borrows `Cell` mutably (at compile-time) which guarantees
620 /// that we possess the only reference.
621 ///
622 /// However be cautious: this method expects `self` to be mutable, which is
623 /// generally not the case when using a `Cell`. If you require interior
624 /// mutability by reference, consider using `RefCell` which provides
625 /// run-time checked mutable borrows through its [`borrow_mut`] method.
626 ///
627 /// [`borrow_mut`]: RefCell::borrow_mut()
628 ///
629 /// # Examples
630 ///
631 /// ```
632 /// use std::cell::Cell;
633 ///
634 /// let mut c = Cell::new(5);
635 /// *c.get_mut() += 1;
636 ///
637 /// assert_eq!(c.get(), 6);
638 /// ```
639 #[inline]
640 #[stable(feature = "cell_get_mut", since = "1.11.0")]
641 #[rustc_const_stable(feature = "const_cell", since = "1.88.0")]
642 pub const fn get_mut(&mut self) -> &mut T {
643 self.value.get_mut()
644 }
645
646 /// Returns a `&Cell<T>` from a `&mut T`
647 ///
648 /// # Examples
649 ///
650 /// ```
651 /// use std::cell::Cell;
652 ///
653 /// let slice: &mut [i32] = &mut [1, 2, 3];
654 /// let cell_slice: &Cell<[i32]> = Cell::from_mut(slice);
655 /// let slice_cell: &[Cell<i32>] = cell_slice.as_slice_of_cells();
656 ///
657 /// assert_eq!(slice_cell.len(), 3);
658 /// ```
659 #[inline]
660 #[stable(feature = "as_cell", since = "1.37.0")]
661 #[rustc_const_stable(feature = "const_cell", since = "1.88.0")]
662 pub const fn from_mut(t: &mut T) -> &Cell<T> {
663 // SAFETY: `&mut` ensures unique access.
664 unsafe { &*(t as *mut T as *const Cell<T>) }
665 }
666}
667
668#[cfg(not(feature = "ferrocene_certified"))]
669impl<T: Default> Cell<T> {
670 /// Takes the value of the cell, leaving `Default::default()` in its place.
671 ///
672 /// # Examples
673 ///
674 /// ```
675 /// use std::cell::Cell;
676 ///
677 /// let c = Cell::new(5);
678 /// let five = c.take();
679 ///
680 /// assert_eq!(five, 5);
681 /// assert_eq!(c.into_inner(), 0);
682 /// ```
683 #[stable(feature = "move_cell", since = "1.17.0")]
684 pub fn take(&self) -> T {
685 self.replace(Default::default())
686 }
687}
688
689#[unstable(feature = "coerce_unsized", issue = "18598")]
690#[cfg(not(feature = "ferrocene_certified"))]
691impl<T: CoerceUnsized<U>, U> CoerceUnsized<Cell<U>> for Cell<T> {}
692
693// Allow types that wrap `Cell` to also implement `DispatchFromDyn`
694// and become dyn-compatible method receivers.
695// Note that currently `Cell` itself cannot be a method receiver
696// because it does not implement Deref.
697// In other words:
698// `self: Cell<&Self>` won't work
699// `self: CellWrapper<Self>` becomes possible
700#[unstable(feature = "dispatch_from_dyn", issue = "none")]
701#[cfg(not(feature = "ferrocene_certified"))]
702impl<T: DispatchFromDyn<U>, U> DispatchFromDyn<Cell<U>> for Cell<T> {}
703
704#[cfg(not(feature = "ferrocene_certified"))]
705impl<T> Cell<[T]> {
706 /// Returns a `&[Cell<T>]` from a `&Cell<[T]>`
707 ///
708 /// # Examples
709 ///
710 /// ```
711 /// use std::cell::Cell;
712 ///
713 /// let slice: &mut [i32] = &mut [1, 2, 3];
714 /// let cell_slice: &Cell<[i32]> = Cell::from_mut(slice);
715 /// let slice_cell: &[Cell<i32>] = cell_slice.as_slice_of_cells();
716 ///
717 /// assert_eq!(slice_cell.len(), 3);
718 /// ```
719 #[stable(feature = "as_cell", since = "1.37.0")]
720 #[rustc_const_stable(feature = "const_cell", since = "1.88.0")]
721 pub const fn as_slice_of_cells(&self) -> &[Cell<T>] {
722 // SAFETY: `Cell<T>` has the same memory layout as `T`.
723 unsafe { &*(self as *const Cell<[T]> as *const [Cell<T>]) }
724 }
725}
726
727#[cfg(not(feature = "ferrocene_certified"))]
728impl<T, const N: usize> Cell<[T; N]> {
729 /// Returns a `&[Cell<T>; N]` from a `&Cell<[T; N]>`
730 ///
731 /// # Examples
732 ///
733 /// ```
734 /// use std::cell::Cell;
735 ///
736 /// let mut array: [i32; 3] = [1, 2, 3];
737 /// let cell_array: &Cell<[i32; 3]> = Cell::from_mut(&mut array);
738 /// let array_cell: &[Cell<i32>; 3] = cell_array.as_array_of_cells();
739 /// ```
740 #[stable(feature = "as_array_of_cells", since = "1.91.0")]
741 #[rustc_const_stable(feature = "as_array_of_cells", since = "1.91.0")]
742 pub const fn as_array_of_cells(&self) -> &[Cell<T>; N] {
743 // SAFETY: `Cell<T>` has the same memory layout as `T`.
744 unsafe { &*(self as *const Cell<[T; N]> as *const [Cell<T>; N]) }
745 }
746}
747
748/// Types for which cloning `Cell<Self>` is sound.
749///
750/// # Safety
751///
752/// Implementing this trait for a type is sound if and only if the following code is sound for T =
753/// that type.
754///
755/// ```
756/// #![feature(cell_get_cloned)]
757/// # use std::cell::{CloneFromCell, Cell};
758/// fn clone_from_cell<T: CloneFromCell>(cell: &Cell<T>) -> T {
759/// unsafe { T::clone(&*cell.as_ptr()) }
760/// }
761/// ```
762///
763/// Importantly, you can't just implement `CloneFromCell` for any arbitrary `Copy` type, e.g. the
764/// following is unsound:
765///
766/// ```rust
767/// #![feature(cell_get_cloned)]
768/// # use std::cell::Cell;
769///
770/// #[derive(Copy, Debug)]
771/// pub struct Bad<'a>(Option<&'a Cell<Bad<'a>>>, u8);
772///
773/// impl Clone for Bad<'_> {
774/// fn clone(&self) -> Self {
775/// let a: &u8 = &self.1;
776/// // when self.0 points to self, we write to self.1 while we have a live `&u8` pointing to
777/// // it -- this is UB
778/// self.0.unwrap().set(Self(None, 1));
779/// dbg!((a, self));
780/// Self(None, 0)
781/// }
782/// }
783///
784/// // this is not sound
785/// // unsafe impl CloneFromCell for Bad<'_> {}
786/// ```
787#[unstable(feature = "cell_get_cloned", issue = "145329")]
788// Allow potential overlapping implementations in user code
789#[marker]
790#[cfg(not(feature = "ferrocene_certified"))]
791pub unsafe trait CloneFromCell: Clone {}
792
793// `CloneFromCell` can be implemented for types that don't have indirection and which don't access
794// `Cell`s in their `Clone` implementation. A commonly-used subset is covered here.
795#[unstable(feature = "cell_get_cloned", issue = "145329")]
796#[cfg(not(feature = "ferrocene_certified"))]
797unsafe impl<T: CloneFromCell, const N: usize> CloneFromCell for [T; N] {}
798#[unstable(feature = "cell_get_cloned", issue = "145329")]
799#[cfg(not(feature = "ferrocene_certified"))]
800unsafe impl<T: CloneFromCell> CloneFromCell for Option<T> {}
801#[unstable(feature = "cell_get_cloned", issue = "145329")]
802#[cfg(not(feature = "ferrocene_certified"))]
803unsafe impl<T: CloneFromCell, E: CloneFromCell> CloneFromCell for Result<T, E> {}
804#[unstable(feature = "cell_get_cloned", issue = "145329")]
805#[cfg(not(feature = "ferrocene_certified"))]
806unsafe impl<T: ?Sized> CloneFromCell for PhantomData<T> {}
807#[unstable(feature = "cell_get_cloned", issue = "145329")]
808#[cfg(not(feature = "ferrocene_certified"))]
809unsafe impl<T: CloneFromCell> CloneFromCell for ManuallyDrop<T> {}
810#[unstable(feature = "cell_get_cloned", issue = "145329")]
811#[cfg(not(feature = "ferrocene_certified"))]
812unsafe impl<T: CloneFromCell> CloneFromCell for ops::Range<T> {}
813#[unstable(feature = "cell_get_cloned", issue = "145329")]
814#[cfg(not(feature = "ferrocene_certified"))]
815unsafe impl<T: CloneFromCell> CloneFromCell for range::Range<T> {}
816
817#[unstable(feature = "cell_get_cloned", issue = "145329")]
818#[cfg(not(feature = "ferrocene_certified"))]
819impl<T: CloneFromCell> Cell<T> {
820 /// Get a clone of the `Cell` that contains a copy of the original value.
821 ///
822 /// This allows a cheaply `Clone`-able type like an `Rc` to be stored in a `Cell`, exposing the
823 /// cheaper `clone()` method.
824 ///
825 /// # Examples
826 ///
827 /// ```
828 /// #![feature(cell_get_cloned)]
829 ///
830 /// use core::cell::Cell;
831 /// use std::rc::Rc;
832 ///
833 /// let rc = Rc::new(1usize);
834 /// let c1 = Cell::new(rc);
835 /// let c2 = c1.get_cloned();
836 /// assert_eq!(*c2.into_inner(), 1);
837 /// ```
838 pub fn get_cloned(&self) -> Self {
839 // SAFETY: T is CloneFromCell, which guarantees that this is sound.
840 Cell::new(T::clone(unsafe { &*self.as_ptr() }))
841 }
842}
843
844/// A mutable memory location with dynamically checked borrow rules
845///
846/// See the [module-level documentation](self) for more.
847#[rustc_diagnostic_item = "RefCell"]
848#[stable(feature = "rust1", since = "1.0.0")]
849#[cfg(not(feature = "ferrocene_certified"))]
850pub struct RefCell<T: ?Sized> {
851 borrow: Cell<BorrowCounter>,
852 // Stores the location of the earliest currently active borrow.
853 // This gets updated whenever we go from having zero borrows
854 // to having a single borrow. When a borrow occurs, this gets included
855 // in the generated `BorrowError`/`BorrowMutError`
856 #[cfg(feature = "debug_refcell")]
857 borrowed_at: Cell<Option<&'static crate::panic::Location<'static>>>,
858 value: UnsafeCell<T>,
859}
860
861/// An error returned by [`RefCell::try_borrow`].
862#[stable(feature = "try_borrow", since = "1.13.0")]
863#[non_exhaustive]
864#[derive(Debug)]
865#[cfg(not(feature = "ferrocene_certified"))]
866pub struct BorrowError {
867 #[cfg(feature = "debug_refcell")]
868 location: &'static crate::panic::Location<'static>,
869}
870
871#[stable(feature = "try_borrow", since = "1.13.0")]
872#[cfg(not(feature = "ferrocene_certified"))]
873impl Display for BorrowError {
874 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
875 #[cfg(feature = "debug_refcell")]
876 let res = write!(
877 f,
878 "RefCell already mutably borrowed; a previous borrow was at {}",
879 self.location
880 );
881
882 #[cfg(not(feature = "debug_refcell"))]
883 let res = Display::fmt("RefCell already mutably borrowed", f);
884
885 res
886 }
887}
888
889/// An error returned by [`RefCell::try_borrow_mut`].
890#[stable(feature = "try_borrow", since = "1.13.0")]
891#[non_exhaustive]
892#[derive(Debug)]
893#[cfg(not(feature = "ferrocene_certified"))]
894pub struct BorrowMutError {
895 #[cfg(feature = "debug_refcell")]
896 location: &'static crate::panic::Location<'static>,
897}
898
899#[stable(feature = "try_borrow", since = "1.13.0")]
900#[cfg(not(feature = "ferrocene_certified"))]
901impl Display for BorrowMutError {
902 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
903 #[cfg(feature = "debug_refcell")]
904 let res = write!(f, "RefCell already borrowed; a previous borrow was at {}", self.location);
905
906 #[cfg(not(feature = "debug_refcell"))]
907 let res = Display::fmt("RefCell already borrowed", f);
908
909 res
910 }
911}
912
913// This ensures the panicking code is outlined from `borrow_mut` for `RefCell`.
914#[cfg_attr(not(panic = "immediate-abort"), inline(never))]
915#[track_caller]
916#[cold]
917#[cfg(not(feature = "ferrocene_certified"))]
918const fn panic_already_borrowed(err: BorrowMutError) -> ! {
919 const_panic!(
920 "RefCell already borrowed",
921 "{err}",
922 err: BorrowMutError = err,
923 )
924}
925
926// This ensures the panicking code is outlined from `borrow` for `RefCell`.
927#[cfg_attr(not(panic = "immediate-abort"), inline(never))]
928#[track_caller]
929#[cold]
930#[cfg(not(feature = "ferrocene_certified"))]
931const fn panic_already_mutably_borrowed(err: BorrowError) -> ! {
932 const_panic!(
933 "RefCell already mutably borrowed",
934 "{err}",
935 err: BorrowError = err,
936 )
937}
938
939// Positive values represent the number of `Ref` active. Negative values
940// represent the number of `RefMut` active. Multiple `RefMut`s can only be
941// active at a time if they refer to distinct, nonoverlapping components of a
942// `RefCell` (e.g., different ranges of a slice).
943//
944// `Ref` and `RefMut` are both two words in size, and so there will likely never
945// be enough `Ref`s or `RefMut`s in existence to overflow half of the `usize`
946// range. Thus, a `BorrowCounter` will probably never overflow or underflow.
947// However, this is not a guarantee, as a pathological program could repeatedly
948// create and then mem::forget `Ref`s or `RefMut`s. Thus, all code must
949// explicitly check for overflow and underflow in order to avoid unsafety, or at
950// least behave correctly in the event that overflow or underflow happens (e.g.,
951// see BorrowRef::new).
952#[cfg(not(feature = "ferrocene_certified"))]
953type BorrowCounter = isize;
954#[cfg(not(feature = "ferrocene_certified"))]
955const UNUSED: BorrowCounter = 0;
956
957#[inline(always)]
958#[cfg(not(feature = "ferrocene_certified"))]
959const fn is_writing(x: BorrowCounter) -> bool {
960 x < UNUSED
961}
962
963#[inline(always)]
964#[cfg(not(feature = "ferrocene_certified"))]
965const fn is_reading(x: BorrowCounter) -> bool {
966 x > UNUSED
967}
968
969#[cfg(not(feature = "ferrocene_certified"))]
970impl<T> RefCell<T> {
971 /// Creates a new `RefCell` containing `value`.
972 ///
973 /// # Examples
974 ///
975 /// ```
976 /// use std::cell::RefCell;
977 ///
978 /// let c = RefCell::new(5);
979 /// ```
980 #[stable(feature = "rust1", since = "1.0.0")]
981 #[rustc_const_stable(feature = "const_refcell_new", since = "1.24.0")]
982 #[inline]
983 pub const fn new(value: T) -> RefCell<T> {
984 RefCell {
985 value: UnsafeCell::new(value),
986 borrow: Cell::new(UNUSED),
987 #[cfg(feature = "debug_refcell")]
988 borrowed_at: Cell::new(None),
989 }
990 }
991
992 /// Consumes the `RefCell`, returning the wrapped value.
993 ///
994 /// # Examples
995 ///
996 /// ```
997 /// use std::cell::RefCell;
998 ///
999 /// let c = RefCell::new(5);
1000 ///
1001 /// let five = c.into_inner();
1002 /// ```
1003 #[stable(feature = "rust1", since = "1.0.0")]
1004 #[rustc_const_stable(feature = "const_cell_into_inner", since = "1.83.0")]
1005 #[rustc_allow_const_fn_unstable(const_precise_live_drops)]
1006 #[inline]
1007 pub const fn into_inner(self) -> T {
1008 // Since this function takes `self` (the `RefCell`) by value, the
1009 // compiler statically verifies that it is not currently borrowed.
1010 self.value.into_inner()
1011 }
1012
1013 /// Replaces the wrapped value with a new one, returning the old value,
1014 /// without deinitializing either one.
1015 ///
1016 /// This function corresponds to [`std::mem::replace`](../mem/fn.replace.html).
1017 ///
1018 /// # Panics
1019 ///
1020 /// Panics if the value is currently borrowed.
1021 ///
1022 /// # Examples
1023 ///
1024 /// ```
1025 /// use std::cell::RefCell;
1026 /// let cell = RefCell::new(5);
1027 /// let old_value = cell.replace(6);
1028 /// assert_eq!(old_value, 5);
1029 /// assert_eq!(cell, RefCell::new(6));
1030 /// ```
1031 #[inline]
1032 #[stable(feature = "refcell_replace", since = "1.24.0")]
1033 #[track_caller]
1034 #[rustc_confusables("swap")]
1035 #[rustc_const_unstable(feature = "const_ref_cell", issue = "137844")]
1036 pub const fn replace(&self, t: T) -> T {
1037 mem::replace(&mut self.borrow_mut(), t)
1038 }
1039
1040 /// Replaces the wrapped value with a new one computed from `f`, returning
1041 /// the old value, without deinitializing either one.
1042 ///
1043 /// # Panics
1044 ///
1045 /// Panics if the value is currently borrowed.
1046 ///
1047 /// # Examples
1048 ///
1049 /// ```
1050 /// use std::cell::RefCell;
1051 /// let cell = RefCell::new(5);
1052 /// let old_value = cell.replace_with(|&mut old| old + 1);
1053 /// assert_eq!(old_value, 5);
1054 /// assert_eq!(cell, RefCell::new(6));
1055 /// ```
1056 #[inline]
1057 #[stable(feature = "refcell_replace_swap", since = "1.35.0")]
1058 #[track_caller]
1059 pub fn replace_with<F: FnOnce(&mut T) -> T>(&self, f: F) -> T {
1060 let mut_borrow = &mut *self.borrow_mut();
1061 let replacement = f(mut_borrow);
1062 mem::replace(mut_borrow, replacement)
1063 }
1064
1065 /// Swaps the wrapped value of `self` with the wrapped value of `other`,
1066 /// without deinitializing either one.
1067 ///
1068 /// This function corresponds to [`std::mem::swap`](../mem/fn.swap.html).
1069 ///
1070 /// # Panics
1071 ///
1072 /// Panics if the value in either `RefCell` is currently borrowed, or
1073 /// if `self` and `other` point to the same `RefCell`.
1074 ///
1075 /// # Examples
1076 ///
1077 /// ```
1078 /// use std::cell::RefCell;
1079 /// let c = RefCell::new(5);
1080 /// let d = RefCell::new(6);
1081 /// c.swap(&d);
1082 /// assert_eq!(c, RefCell::new(6));
1083 /// assert_eq!(d, RefCell::new(5));
1084 /// ```
1085 #[inline]
1086 #[stable(feature = "refcell_swap", since = "1.24.0")]
1087 #[rustc_const_unstable(feature = "const_ref_cell", issue = "137844")]
1088 pub const fn swap(&self, other: &Self) {
1089 mem::swap(&mut *self.borrow_mut(), &mut *other.borrow_mut())
1090 }
1091}
1092
1093#[cfg(not(feature = "ferrocene_certified"))]
1094impl<T: ?Sized> RefCell<T> {
1095 /// Immutably borrows the wrapped value.
1096 ///
1097 /// The borrow lasts until the returned `Ref` exits scope. Multiple
1098 /// immutable borrows can be taken out at the same time.
1099 ///
1100 /// # Panics
1101 ///
1102 /// Panics if the value is currently mutably borrowed. For a non-panicking variant, use
1103 /// [`try_borrow`](#method.try_borrow).
1104 ///
1105 /// # Examples
1106 ///
1107 /// ```
1108 /// use std::cell::RefCell;
1109 ///
1110 /// let c = RefCell::new(5);
1111 ///
1112 /// let borrowed_five = c.borrow();
1113 /// let borrowed_five2 = c.borrow();
1114 /// ```
1115 ///
1116 /// An example of panic:
1117 ///
1118 /// ```should_panic
1119 /// use std::cell::RefCell;
1120 ///
1121 /// let c = RefCell::new(5);
1122 ///
1123 /// let m = c.borrow_mut();
1124 /// let b = c.borrow(); // this causes a panic
1125 /// ```
1126 #[stable(feature = "rust1", since = "1.0.0")]
1127 #[inline]
1128 #[track_caller]
1129 #[rustc_const_unstable(feature = "const_ref_cell", issue = "137844")]
1130 pub const fn borrow(&self) -> Ref<'_, T> {
1131 match self.try_borrow() {
1132 Ok(b) => b,
1133 Err(err) => panic_already_mutably_borrowed(err),
1134 }
1135 }
1136
1137 /// Immutably borrows the wrapped value, returning an error if the value is currently mutably
1138 /// borrowed.
1139 ///
1140 /// The borrow lasts until the returned `Ref` exits scope. Multiple immutable borrows can be
1141 /// taken out at the same time.
1142 ///
1143 /// This is the non-panicking variant of [`borrow`](#method.borrow).
1144 ///
1145 /// # Examples
1146 ///
1147 /// ```
1148 /// use std::cell::RefCell;
1149 ///
1150 /// let c = RefCell::new(5);
1151 ///
1152 /// {
1153 /// let m = c.borrow_mut();
1154 /// assert!(c.try_borrow().is_err());
1155 /// }
1156 ///
1157 /// {
1158 /// let m = c.borrow();
1159 /// assert!(c.try_borrow().is_ok());
1160 /// }
1161 /// ```
1162 #[stable(feature = "try_borrow", since = "1.13.0")]
1163 #[inline]
1164 #[cfg_attr(feature = "debug_refcell", track_caller)]
1165 #[rustc_const_unstable(feature = "const_ref_cell", issue = "137844")]
1166 pub const fn try_borrow(&self) -> Result<Ref<'_, T>, BorrowError> {
1167 match BorrowRef::new(&self.borrow) {
1168 Some(b) => {
1169 #[cfg(feature = "debug_refcell")]
1170 {
1171 // `borrowed_at` is always the *first* active borrow
1172 if b.borrow.get() == 1 {
1173 self.borrowed_at.replace(Some(crate::panic::Location::caller()));
1174 }
1175 }
1176
1177 // SAFETY: `BorrowRef` ensures that there is only immutable access
1178 // to the value while borrowed.
1179 let value = unsafe { NonNull::new_unchecked(self.value.get()) };
1180 Ok(Ref { value, borrow: b })
1181 }
1182 None => Err(BorrowError {
1183 // If a borrow occurred, then we must already have an outstanding borrow,
1184 // so `borrowed_at` will be `Some`
1185 #[cfg(feature = "debug_refcell")]
1186 location: self.borrowed_at.get().unwrap(),
1187 }),
1188 }
1189 }
1190
1191 /// Mutably borrows the wrapped value.
1192 ///
1193 /// The borrow lasts until the returned `RefMut` or all `RefMut`s derived
1194 /// from it exit scope. The value cannot be borrowed while this borrow is
1195 /// active.
1196 ///
1197 /// # Panics
1198 ///
1199 /// Panics if the value is currently borrowed. For a non-panicking variant, use
1200 /// [`try_borrow_mut`](#method.try_borrow_mut).
1201 ///
1202 /// # Examples
1203 ///
1204 /// ```
1205 /// use std::cell::RefCell;
1206 ///
1207 /// let c = RefCell::new("hello".to_owned());
1208 ///
1209 /// *c.borrow_mut() = "bonjour".to_owned();
1210 ///
1211 /// assert_eq!(&*c.borrow(), "bonjour");
1212 /// ```
1213 ///
1214 /// An example of panic:
1215 ///
1216 /// ```should_panic
1217 /// use std::cell::RefCell;
1218 ///
1219 /// let c = RefCell::new(5);
1220 /// let m = c.borrow();
1221 ///
1222 /// let b = c.borrow_mut(); // this causes a panic
1223 /// ```
1224 #[stable(feature = "rust1", since = "1.0.0")]
1225 #[inline]
1226 #[track_caller]
1227 #[rustc_const_unstable(feature = "const_ref_cell", issue = "137844")]
1228 pub const fn borrow_mut(&self) -> RefMut<'_, T> {
1229 match self.try_borrow_mut() {
1230 Ok(b) => b,
1231 Err(err) => panic_already_borrowed(err),
1232 }
1233 }
1234
1235 /// Mutably borrows the wrapped value, returning an error if the value is currently borrowed.
1236 ///
1237 /// The borrow lasts until the returned `RefMut` or all `RefMut`s derived
1238 /// from it exit scope. The value cannot be borrowed while this borrow is
1239 /// active.
1240 ///
1241 /// This is the non-panicking variant of [`borrow_mut`](#method.borrow_mut).
1242 ///
1243 /// # Examples
1244 ///
1245 /// ```
1246 /// use std::cell::RefCell;
1247 ///
1248 /// let c = RefCell::new(5);
1249 ///
1250 /// {
1251 /// let m = c.borrow();
1252 /// assert!(c.try_borrow_mut().is_err());
1253 /// }
1254 ///
1255 /// assert!(c.try_borrow_mut().is_ok());
1256 /// ```
1257 #[stable(feature = "try_borrow", since = "1.13.0")]
1258 #[inline]
1259 #[cfg_attr(feature = "debug_refcell", track_caller)]
1260 #[rustc_const_unstable(feature = "const_ref_cell", issue = "137844")]
1261 pub const fn try_borrow_mut(&self) -> Result<RefMut<'_, T>, BorrowMutError> {
1262 match BorrowRefMut::new(&self.borrow) {
1263 Some(b) => {
1264 #[cfg(feature = "debug_refcell")]
1265 {
1266 self.borrowed_at.replace(Some(crate::panic::Location::caller()));
1267 }
1268
1269 // SAFETY: `BorrowRefMut` guarantees unique access.
1270 let value = unsafe { NonNull::new_unchecked(self.value.get()) };
1271 Ok(RefMut { value, borrow: b, marker: PhantomData })
1272 }
1273 None => Err(BorrowMutError {
1274 // If a borrow occurred, then we must already have an outstanding borrow,
1275 // so `borrowed_at` will be `Some`
1276 #[cfg(feature = "debug_refcell")]
1277 location: self.borrowed_at.get().unwrap(),
1278 }),
1279 }
1280 }
1281
1282 /// Returns a raw pointer to the underlying data in this cell.
1283 ///
1284 /// # Examples
1285 ///
1286 /// ```
1287 /// use std::cell::RefCell;
1288 ///
1289 /// let c = RefCell::new(5);
1290 ///
1291 /// let ptr = c.as_ptr();
1292 /// ```
1293 #[inline]
1294 #[stable(feature = "cell_as_ptr", since = "1.12.0")]
1295 #[rustc_as_ptr]
1296 #[rustc_never_returns_null_ptr]
1297 #[rustc_const_unstable(feature = "const_ref_cell", issue = "137844")]
1298 pub const fn as_ptr(&self) -> *mut T {
1299 self.value.get()
1300 }
1301
1302 /// Returns a mutable reference to the underlying data.
1303 ///
1304 /// Since this method borrows `RefCell` mutably, it is statically guaranteed
1305 /// that no borrows to the underlying data exist. The dynamic checks inherent
1306 /// in [`borrow_mut`] and most other methods of `RefCell` are therefore
1307 /// unnecessary. Note that this method does not reset the borrowing state if borrows were previously leaked
1308 /// (e.g., via [`forget()`] on a [`Ref`] or [`RefMut`]). For that purpose,
1309 /// consider using the unstable [`undo_leak`] method.
1310 ///
1311 /// This method can only be called if `RefCell` can be mutably borrowed,
1312 /// which in general is only the case directly after the `RefCell` has
1313 /// been created. In these situations, skipping the aforementioned dynamic
1314 /// borrowing checks may yield better ergonomics and runtime-performance.
1315 ///
1316 /// In most situations where `RefCell` is used, it can't be borrowed mutably.
1317 /// Use [`borrow_mut`] to get mutable access to the underlying data then.
1318 ///
1319 /// [`borrow_mut`]: RefCell::borrow_mut()
1320 /// [`forget()`]: mem::forget
1321 /// [`undo_leak`]: RefCell::undo_leak()
1322 ///
1323 /// # Examples
1324 ///
1325 /// ```
1326 /// use std::cell::RefCell;
1327 ///
1328 /// let mut c = RefCell::new(5);
1329 /// *c.get_mut() += 1;
1330 ///
1331 /// assert_eq!(c, RefCell::new(6));
1332 /// ```
1333 #[inline]
1334 #[stable(feature = "cell_get_mut", since = "1.11.0")]
1335 #[rustc_const_unstable(feature = "const_ref_cell", issue = "137844")]
1336 pub const fn get_mut(&mut self) -> &mut T {
1337 self.value.get_mut()
1338 }
1339
1340 /// Undo the effect of leaked guards on the borrow state of the `RefCell`.
1341 ///
1342 /// This call is similar to [`get_mut`] but more specialized. It borrows `RefCell` mutably to
1343 /// ensure no borrows exist and then resets the state tracking shared borrows. This is relevant
1344 /// if some `Ref` or `RefMut` borrows have been leaked.
1345 ///
1346 /// [`get_mut`]: RefCell::get_mut()
1347 ///
1348 /// # Examples
1349 ///
1350 /// ```
1351 /// #![feature(cell_leak)]
1352 /// use std::cell::RefCell;
1353 ///
1354 /// let mut c = RefCell::new(0);
1355 /// std::mem::forget(c.borrow_mut());
1356 ///
1357 /// assert!(c.try_borrow().is_err());
1358 /// c.undo_leak();
1359 /// assert!(c.try_borrow().is_ok());
1360 /// ```
1361 #[unstable(feature = "cell_leak", issue = "69099")]
1362 #[rustc_const_unstable(feature = "const_ref_cell", issue = "137844")]
1363 pub const fn undo_leak(&mut self) -> &mut T {
1364 *self.borrow.get_mut() = UNUSED;
1365 self.get_mut()
1366 }
1367
1368 /// Immutably borrows the wrapped value, returning an error if the value is
1369 /// currently mutably borrowed.
1370 ///
1371 /// # Safety
1372 ///
1373 /// Unlike `RefCell::borrow`, this method is unsafe because it does not
1374 /// return a `Ref`, thus leaving the borrow flag untouched. Mutably
1375 /// borrowing the `RefCell` while the reference returned by this method
1376 /// is alive is undefined behavior.
1377 ///
1378 /// # Examples
1379 ///
1380 /// ```
1381 /// use std::cell::RefCell;
1382 ///
1383 /// let c = RefCell::new(5);
1384 ///
1385 /// {
1386 /// let m = c.borrow_mut();
1387 /// assert!(unsafe { c.try_borrow_unguarded() }.is_err());
1388 /// }
1389 ///
1390 /// {
1391 /// let m = c.borrow();
1392 /// assert!(unsafe { c.try_borrow_unguarded() }.is_ok());
1393 /// }
1394 /// ```
1395 #[stable(feature = "borrow_state", since = "1.37.0")]
1396 #[inline]
1397 #[rustc_const_unstable(feature = "const_ref_cell", issue = "137844")]
1398 pub const unsafe fn try_borrow_unguarded(&self) -> Result<&T, BorrowError> {
1399 if !is_writing(self.borrow.get()) {
1400 // SAFETY: We check that nobody is actively writing now, but it is
1401 // the caller's responsibility to ensure that nobody writes until
1402 // the returned reference is no longer in use.
1403 // Also, `self.value.get()` refers to the value owned by `self`
1404 // and is thus guaranteed to be valid for the lifetime of `self`.
1405 Ok(unsafe { &*self.value.get() })
1406 } else {
1407 Err(BorrowError {
1408 // If a borrow occurred, then we must already have an outstanding borrow,
1409 // so `borrowed_at` will be `Some`
1410 #[cfg(feature = "debug_refcell")]
1411 location: self.borrowed_at.get().unwrap(),
1412 })
1413 }
1414 }
1415}
1416
1417#[cfg(not(feature = "ferrocene_certified"))]
1418impl<T: Default> RefCell<T> {
1419 /// Takes the wrapped value, leaving `Default::default()` in its place.
1420 ///
1421 /// # Panics
1422 ///
1423 /// Panics if the value is currently borrowed.
1424 ///
1425 /// # Examples
1426 ///
1427 /// ```
1428 /// use std::cell::RefCell;
1429 ///
1430 /// let c = RefCell::new(5);
1431 /// let five = c.take();
1432 ///
1433 /// assert_eq!(five, 5);
1434 /// assert_eq!(c.into_inner(), 0);
1435 /// ```
1436 #[stable(feature = "refcell_take", since = "1.50.0")]
1437 pub fn take(&self) -> T {
1438 self.replace(Default::default())
1439 }
1440}
1441
1442#[stable(feature = "rust1", since = "1.0.0")]
1443#[cfg(not(feature = "ferrocene_certified"))]
1444unsafe impl<T: ?Sized> Send for RefCell<T> where T: Send {}
1445
1446#[stable(feature = "rust1", since = "1.0.0")]
1447#[cfg(not(feature = "ferrocene_certified"))]
1448impl<T: ?Sized> !Sync for RefCell<T> {}
1449
1450#[stable(feature = "rust1", since = "1.0.0")]
1451#[cfg(not(feature = "ferrocene_certified"))]
1452impl<T: Clone> Clone for RefCell<T> {
1453 /// # Panics
1454 ///
1455 /// Panics if the value is currently mutably borrowed.
1456 #[inline]
1457 #[track_caller]
1458 fn clone(&self) -> RefCell<T> {
1459 RefCell::new(self.borrow().clone())
1460 }
1461
1462 /// # Panics
1463 ///
1464 /// Panics if `source` is currently mutably borrowed.
1465 #[inline]
1466 #[track_caller]
1467 fn clone_from(&mut self, source: &Self) {
1468 self.get_mut().clone_from(&source.borrow())
1469 }
1470}
1471
1472#[stable(feature = "rust1", since = "1.0.0")]
1473#[rustc_const_unstable(feature = "const_default", issue = "143894")]
1474#[cfg(not(feature = "ferrocene_certified"))]
1475impl<T: [const] Default> const Default for RefCell<T> {
1476 /// Creates a `RefCell<T>`, with the `Default` value for T.
1477 #[inline]
1478 fn default() -> RefCell<T> {
1479 RefCell::new(Default::default())
1480 }
1481}
1482
1483#[stable(feature = "rust1", since = "1.0.0")]
1484#[cfg(not(feature = "ferrocene_certified"))]
1485impl<T: ?Sized + PartialEq> PartialEq for RefCell<T> {
1486 /// # Panics
1487 ///
1488 /// Panics if the value in either `RefCell` is currently mutably borrowed.
1489 #[inline]
1490 fn eq(&self, other: &RefCell<T>) -> bool {
1491 *self.borrow() == *other.borrow()
1492 }
1493}
1494
1495#[stable(feature = "cell_eq", since = "1.2.0")]
1496#[cfg(not(feature = "ferrocene_certified"))]
1497impl<T: ?Sized + Eq> Eq for RefCell<T> {}
1498
1499#[stable(feature = "cell_ord", since = "1.10.0")]
1500#[cfg(not(feature = "ferrocene_certified"))]
1501impl<T: ?Sized + PartialOrd> PartialOrd for RefCell<T> {
1502 /// # Panics
1503 ///
1504 /// Panics if the value in either `RefCell` is currently mutably borrowed.
1505 #[inline]
1506 fn partial_cmp(&self, other: &RefCell<T>) -> Option<Ordering> {
1507 self.borrow().partial_cmp(&*other.borrow())
1508 }
1509
1510 /// # Panics
1511 ///
1512 /// Panics if the value in either `RefCell` is currently mutably borrowed.
1513 #[inline]
1514 fn lt(&self, other: &RefCell<T>) -> bool {
1515 *self.borrow() < *other.borrow()
1516 }
1517
1518 /// # Panics
1519 ///
1520 /// Panics if the value in either `RefCell` is currently mutably borrowed.
1521 #[inline]
1522 fn le(&self, other: &RefCell<T>) -> bool {
1523 *self.borrow() <= *other.borrow()
1524 }
1525
1526 /// # Panics
1527 ///
1528 /// Panics if the value in either `RefCell` is currently mutably borrowed.
1529 #[inline]
1530 fn gt(&self, other: &RefCell<T>) -> bool {
1531 *self.borrow() > *other.borrow()
1532 }
1533
1534 /// # Panics
1535 ///
1536 /// Panics if the value in either `RefCell` is currently mutably borrowed.
1537 #[inline]
1538 fn ge(&self, other: &RefCell<T>) -> bool {
1539 *self.borrow() >= *other.borrow()
1540 }
1541}
1542
1543#[stable(feature = "cell_ord", since = "1.10.0")]
1544#[cfg(not(feature = "ferrocene_certified"))]
1545impl<T: ?Sized + Ord> Ord for RefCell<T> {
1546 /// # Panics
1547 ///
1548 /// Panics if the value in either `RefCell` is currently mutably borrowed.
1549 #[inline]
1550 fn cmp(&self, other: &RefCell<T>) -> Ordering {
1551 self.borrow().cmp(&*other.borrow())
1552 }
1553}
1554
1555#[stable(feature = "cell_from", since = "1.12.0")]
1556#[rustc_const_unstable(feature = "const_convert", issue = "143773")]
1557#[cfg(not(feature = "ferrocene_certified"))]
1558impl<T> const From<T> for RefCell<T> {
1559 /// Creates a new `RefCell<T>` containing the given value.
1560 fn from(t: T) -> RefCell<T> {
1561 RefCell::new(t)
1562 }
1563}
1564
1565#[unstable(feature = "coerce_unsized", issue = "18598")]
1566#[cfg(not(feature = "ferrocene_certified"))]
1567impl<T: CoerceUnsized<U>, U> CoerceUnsized<RefCell<U>> for RefCell<T> {}
1568
1569#[cfg(not(feature = "ferrocene_certified"))]
1570struct BorrowRef<'b> {
1571 borrow: &'b Cell<BorrowCounter>,
1572}
1573
1574#[cfg(not(feature = "ferrocene_certified"))]
1575impl<'b> BorrowRef<'b> {
1576 #[inline]
1577 const fn new(borrow: &'b Cell<BorrowCounter>) -> Option<BorrowRef<'b>> {
1578 let b = borrow.get().wrapping_add(1);
1579 if !is_reading(b) {
1580 // Incrementing borrow can result in a non-reading value (<= 0) in these cases:
1581 // 1. It was < 0, i.e. there are writing borrows, so we can't allow a read borrow
1582 // due to Rust's reference aliasing rules
1583 // 2. It was isize::MAX (the max amount of reading borrows) and it overflowed
1584 // into isize::MIN (the max amount of writing borrows) so we can't allow
1585 // an additional read borrow because isize can't represent so many read borrows
1586 // (this can only happen if you mem::forget more than a small constant amount of
1587 // `Ref`s, which is not good practice)
1588 None
1589 } else {
1590 // Incrementing borrow can result in a reading value (> 0) in these cases:
1591 // 1. It was = 0, i.e. it wasn't borrowed, and we are taking the first read borrow
1592 // 2. It was > 0 and < isize::MAX, i.e. there were read borrows, and isize
1593 // is large enough to represent having one more read borrow
1594 borrow.replace(b);
1595 Some(BorrowRef { borrow })
1596 }
1597 }
1598}
1599
1600#[rustc_const_unstable(feature = "const_ref_cell", issue = "137844")]
1601#[cfg(not(feature = "ferrocene_certified"))]
1602impl const Drop for BorrowRef<'_> {
1603 #[inline]
1604 fn drop(&mut self) {
1605 let borrow = self.borrow.get();
1606 debug_assert!(is_reading(borrow));
1607 self.borrow.replace(borrow - 1);
1608 }
1609}
1610
1611#[rustc_const_unstable(feature = "const_ref_cell", issue = "137844")]
1612#[cfg(not(feature = "ferrocene_certified"))]
1613impl const Clone for BorrowRef<'_> {
1614 #[inline]
1615 fn clone(&self) -> Self {
1616 // Since this Ref exists, we know the borrow flag
1617 // is a reading borrow.
1618 let borrow = self.borrow.get();
1619 debug_assert!(is_reading(borrow));
1620 // Prevent the borrow counter from overflowing into
1621 // a writing borrow.
1622 assert!(borrow != BorrowCounter::MAX);
1623 self.borrow.replace(borrow + 1);
1624 BorrowRef { borrow: self.borrow }
1625 }
1626}
1627
1628/// Wraps a borrowed reference to a value in a `RefCell` box.
1629/// A wrapper type for an immutably borrowed value from a `RefCell<T>`.
1630///
1631/// See the [module-level documentation](self) for more.
1632#[stable(feature = "rust1", since = "1.0.0")]
1633#[must_not_suspend = "holding a Ref across suspend points can cause BorrowErrors"]
1634#[rustc_diagnostic_item = "RefCellRef"]
1635#[cfg(not(feature = "ferrocene_certified"))]
1636pub struct Ref<'b, T: ?Sized + 'b> {
1637 // NB: we use a pointer instead of `&'b T` to avoid `noalias` violations, because a
1638 // `Ref` argument doesn't hold immutability for its whole scope, only until it drops.
1639 // `NonNull` is also covariant over `T`, just like we would have with `&T`.
1640 value: NonNull<T>,
1641 borrow: BorrowRef<'b>,
1642}
1643
1644#[stable(feature = "rust1", since = "1.0.0")]
1645#[rustc_const_unstable(feature = "const_convert", issue = "143773")]
1646#[cfg(not(feature = "ferrocene_certified"))]
1647impl<T: ?Sized> const Deref for Ref<'_, T> {
1648 type Target = T;
1649
1650 #[inline]
1651 fn deref(&self) -> &T {
1652 // SAFETY: the value is accessible as long as we hold our borrow.
1653 unsafe { self.value.as_ref() }
1654 }
1655}
1656
1657#[unstable(feature = "deref_pure_trait", issue = "87121")]
1658#[cfg(not(feature = "ferrocene_certified"))]
1659unsafe impl<T: ?Sized> DerefPure for Ref<'_, T> {}
1660
1661#[cfg(not(feature = "ferrocene_certified"))]
1662impl<'b, T: ?Sized> Ref<'b, T> {
1663 /// Copies a `Ref`.
1664 ///
1665 /// The `RefCell` is already immutably borrowed, so this cannot fail.
1666 ///
1667 /// This is an associated function that needs to be used as
1668 /// `Ref::clone(...)`. A `Clone` implementation or a method would interfere
1669 /// with the widespread use of `r.borrow().clone()` to clone the contents of
1670 /// a `RefCell`.
1671 #[stable(feature = "cell_extras", since = "1.15.0")]
1672 #[must_use]
1673 #[inline]
1674 #[rustc_const_unstable(feature = "const_ref_cell", issue = "137844")]
1675 pub const fn clone(orig: &Ref<'b, T>) -> Ref<'b, T> {
1676 Ref { value: orig.value, borrow: orig.borrow.clone() }
1677 }
1678
1679 /// Makes a new `Ref` for a component of the borrowed data.
1680 ///
1681 /// The `RefCell` is already immutably borrowed, so this cannot fail.
1682 ///
1683 /// This is an associated function that needs to be used as `Ref::map(...)`.
1684 /// A method would interfere with methods of the same name on the contents
1685 /// of a `RefCell` used through `Deref`.
1686 ///
1687 /// # Examples
1688 ///
1689 /// ```
1690 /// use std::cell::{RefCell, Ref};
1691 ///
1692 /// let c = RefCell::new((5, 'b'));
1693 /// let b1: Ref<'_, (u32, char)> = c.borrow();
1694 /// let b2: Ref<'_, u32> = Ref::map(b1, |t| &t.0);
1695 /// assert_eq!(*b2, 5)
1696 /// ```
1697 #[stable(feature = "cell_map", since = "1.8.0")]
1698 #[inline]
1699 pub fn map<U: ?Sized, F>(orig: Ref<'b, T>, f: F) -> Ref<'b, U>
1700 where
1701 F: FnOnce(&T) -> &U,
1702 {
1703 Ref { value: NonNull::from(f(&*orig)), borrow: orig.borrow }
1704 }
1705
1706 /// Makes a new `Ref` for an optional component of the borrowed data. The
1707 /// original guard is returned as an `Err(..)` if the closure returns
1708 /// `None`.
1709 ///
1710 /// The `RefCell` is already immutably borrowed, so this cannot fail.
1711 ///
1712 /// This is an associated function that needs to be used as
1713 /// `Ref::filter_map(...)`. A method would interfere with methods of the same
1714 /// name on the contents of a `RefCell` used through `Deref`.
1715 ///
1716 /// # Examples
1717 ///
1718 /// ```
1719 /// use std::cell::{RefCell, Ref};
1720 ///
1721 /// let c = RefCell::new(vec![1, 2, 3]);
1722 /// let b1: Ref<'_, Vec<u32>> = c.borrow();
1723 /// let b2: Result<Ref<'_, u32>, _> = Ref::filter_map(b1, |v| v.get(1));
1724 /// assert_eq!(*b2.unwrap(), 2);
1725 /// ```
1726 #[stable(feature = "cell_filter_map", since = "1.63.0")]
1727 #[inline]
1728 pub fn filter_map<U: ?Sized, F>(orig: Ref<'b, T>, f: F) -> Result<Ref<'b, U>, Self>
1729 where
1730 F: FnOnce(&T) -> Option<&U>,
1731 {
1732 match f(&*orig) {
1733 Some(value) => Ok(Ref { value: NonNull::from(value), borrow: orig.borrow }),
1734 None => Err(orig),
1735 }
1736 }
1737
1738 /// Tries to makes a new `Ref` for a component of the borrowed data.
1739 /// On failure, the original guard is returned alongside with the error
1740 /// returned by the closure.
1741 ///
1742 /// The `RefCell` is already immutably borrowed, so this cannot fail.
1743 ///
1744 /// This is an associated function that needs to be used as
1745 /// `Ref::try_map(...)`. A method would interfere with methods of the same
1746 /// name on the contents of a `RefCell` used through `Deref`.
1747 ///
1748 /// # Examples
1749 ///
1750 /// ```
1751 /// #![feature(refcell_try_map)]
1752 /// use std::cell::{RefCell, Ref};
1753 /// use std::str::{from_utf8, Utf8Error};
1754 ///
1755 /// let c = RefCell::new(vec![0xF0, 0x9F, 0xA6 ,0x80]);
1756 /// let b1: Ref<'_, Vec<u8>> = c.borrow();
1757 /// let b2: Result<Ref<'_, str>, _> = Ref::try_map(b1, |v| from_utf8(v));
1758 /// assert_eq!(&*b2.unwrap(), "🦀");
1759 ///
1760 /// let c = RefCell::new(vec![0xF0, 0x9F, 0xA6]);
1761 /// let b1: Ref<'_, Vec<u8>> = c.borrow();
1762 /// let b2: Result<_, (Ref<'_, Vec<u8>>, Utf8Error)> = Ref::try_map(b1, |v| from_utf8(v));
1763 /// let (b3, e) = b2.unwrap_err();
1764 /// assert_eq!(*b3, vec![0xF0, 0x9F, 0xA6]);
1765 /// assert_eq!(e.valid_up_to(), 0);
1766 /// ```
1767 #[unstable(feature = "refcell_try_map", issue = "143801")]
1768 #[inline]
1769 pub fn try_map<U: ?Sized, E>(
1770 orig: Ref<'b, T>,
1771 f: impl FnOnce(&T) -> Result<&U, E>,
1772 ) -> Result<Ref<'b, U>, (Self, E)> {
1773 match f(&*orig) {
1774 Ok(value) => Ok(Ref { value: NonNull::from(value), borrow: orig.borrow }),
1775 Err(e) => Err((orig, e)),
1776 }
1777 }
1778
1779 /// Splits a `Ref` into multiple `Ref`s for different components of the
1780 /// borrowed data.
1781 ///
1782 /// The `RefCell` is already immutably borrowed, so this cannot fail.
1783 ///
1784 /// This is an associated function that needs to be used as
1785 /// `Ref::map_split(...)`. A method would interfere with methods of the same
1786 /// name on the contents of a `RefCell` used through `Deref`.
1787 ///
1788 /// # Examples
1789 ///
1790 /// ```
1791 /// use std::cell::{Ref, RefCell};
1792 ///
1793 /// let cell = RefCell::new([1, 2, 3, 4]);
1794 /// let borrow = cell.borrow();
1795 /// let (begin, end) = Ref::map_split(borrow, |slice| slice.split_at(2));
1796 /// assert_eq!(*begin, [1, 2]);
1797 /// assert_eq!(*end, [3, 4]);
1798 /// ```
1799 #[stable(feature = "refcell_map_split", since = "1.35.0")]
1800 #[inline]
1801 pub fn map_split<U: ?Sized, V: ?Sized, F>(orig: Ref<'b, T>, f: F) -> (Ref<'b, U>, Ref<'b, V>)
1802 where
1803 F: FnOnce(&T) -> (&U, &V),
1804 {
1805 let (a, b) = f(&*orig);
1806 let borrow = orig.borrow.clone();
1807 (
1808 Ref { value: NonNull::from(a), borrow },
1809 Ref { value: NonNull::from(b), borrow: orig.borrow },
1810 )
1811 }
1812
1813 /// Converts into a reference to the underlying data.
1814 ///
1815 /// The underlying `RefCell` can never be mutably borrowed from again and will always appear
1816 /// already immutably borrowed. It is not a good idea to leak more than a constant number of
1817 /// references. The `RefCell` can be immutably borrowed again if only a smaller number of leaks
1818 /// have occurred in total.
1819 ///
1820 /// This is an associated function that needs to be used as
1821 /// `Ref::leak(...)`. A method would interfere with methods of the
1822 /// same name on the contents of a `RefCell` used through `Deref`.
1823 ///
1824 /// # Examples
1825 ///
1826 /// ```
1827 /// #![feature(cell_leak)]
1828 /// use std::cell::{RefCell, Ref};
1829 /// let cell = RefCell::new(0);
1830 ///
1831 /// let value = Ref::leak(cell.borrow());
1832 /// assert_eq!(*value, 0);
1833 ///
1834 /// assert!(cell.try_borrow().is_ok());
1835 /// assert!(cell.try_borrow_mut().is_err());
1836 /// ```
1837 #[unstable(feature = "cell_leak", issue = "69099")]
1838 #[rustc_const_unstable(feature = "const_ref_cell", issue = "137844")]
1839 pub const fn leak(orig: Ref<'b, T>) -> &'b T {
1840 // By forgetting this Ref we ensure that the borrow counter in the RefCell can't go back to
1841 // UNUSED within the lifetime `'b`. Resetting the reference tracking state would require a
1842 // unique reference to the borrowed RefCell. No further mutable references can be created
1843 // from the original cell.
1844 mem::forget(orig.borrow);
1845 // SAFETY: after forgetting, we can form a reference for the rest of lifetime `'b`.
1846 unsafe { orig.value.as_ref() }
1847 }
1848}
1849
1850#[unstable(feature = "coerce_unsized", issue = "18598")]
1851#[cfg(not(feature = "ferrocene_certified"))]
1852impl<'b, T: ?Sized + Unsize<U>, U: ?Sized> CoerceUnsized<Ref<'b, U>> for Ref<'b, T> {}
1853
1854#[stable(feature = "std_guard_impls", since = "1.20.0")]
1855#[cfg(not(feature = "ferrocene_certified"))]
1856impl<T: ?Sized + fmt::Display> fmt::Display for Ref<'_, T> {
1857 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
1858 (**self).fmt(f)
1859 }
1860}
1861
1862#[cfg(not(feature = "ferrocene_certified"))]
1863impl<'b, T: ?Sized> RefMut<'b, T> {
1864 /// Makes a new `RefMut` for a component of the borrowed data, e.g., an enum
1865 /// variant.
1866 ///
1867 /// The `RefCell` is already mutably borrowed, so this cannot fail.
1868 ///
1869 /// This is an associated function that needs to be used as
1870 /// `RefMut::map(...)`. A method would interfere with methods of the same
1871 /// name on the contents of a `RefCell` used through `Deref`.
1872 ///
1873 /// # Examples
1874 ///
1875 /// ```
1876 /// use std::cell::{RefCell, RefMut};
1877 ///
1878 /// let c = RefCell::new((5, 'b'));
1879 /// {
1880 /// let b1: RefMut<'_, (u32, char)> = c.borrow_mut();
1881 /// let mut b2: RefMut<'_, u32> = RefMut::map(b1, |t| &mut t.0);
1882 /// assert_eq!(*b2, 5);
1883 /// *b2 = 42;
1884 /// }
1885 /// assert_eq!(*c.borrow(), (42, 'b'));
1886 /// ```
1887 #[stable(feature = "cell_map", since = "1.8.0")]
1888 #[inline]
1889 pub fn map<U: ?Sized, F>(mut orig: RefMut<'b, T>, f: F) -> RefMut<'b, U>
1890 where
1891 F: FnOnce(&mut T) -> &mut U,
1892 {
1893 let value = NonNull::from(f(&mut *orig));
1894 RefMut { value, borrow: orig.borrow, marker: PhantomData }
1895 }
1896
1897 /// Makes a new `RefMut` for an optional component of the borrowed data. The
1898 /// original guard is returned as an `Err(..)` if the closure returns
1899 /// `None`.
1900 ///
1901 /// The `RefCell` is already mutably borrowed, so this cannot fail.
1902 ///
1903 /// This is an associated function that needs to be used as
1904 /// `RefMut::filter_map(...)`. A method would interfere with methods of the
1905 /// same name on the contents of a `RefCell` used through `Deref`.
1906 ///
1907 /// # Examples
1908 ///
1909 /// ```
1910 /// use std::cell::{RefCell, RefMut};
1911 ///
1912 /// let c = RefCell::new(vec![1, 2, 3]);
1913 ///
1914 /// {
1915 /// let b1: RefMut<'_, Vec<u32>> = c.borrow_mut();
1916 /// let mut b2: Result<RefMut<'_, u32>, _> = RefMut::filter_map(b1, |v| v.get_mut(1));
1917 ///
1918 /// if let Ok(mut b2) = b2 {
1919 /// *b2 += 2;
1920 /// }
1921 /// }
1922 ///
1923 /// assert_eq!(*c.borrow(), vec![1, 4, 3]);
1924 /// ```
1925 #[stable(feature = "cell_filter_map", since = "1.63.0")]
1926 #[inline]
1927 pub fn filter_map<U: ?Sized, F>(mut orig: RefMut<'b, T>, f: F) -> Result<RefMut<'b, U>, Self>
1928 where
1929 F: FnOnce(&mut T) -> Option<&mut U>,
1930 {
1931 // SAFETY: function holds onto an exclusive reference for the duration
1932 // of its call through `orig`, and the pointer is only de-referenced
1933 // inside of the function call never allowing the exclusive reference to
1934 // escape.
1935 match f(&mut *orig) {
1936 Some(value) => {
1937 Ok(RefMut { value: NonNull::from(value), borrow: orig.borrow, marker: PhantomData })
1938 }
1939 None => Err(orig),
1940 }
1941 }
1942
1943 /// Tries to makes a new `RefMut` for a component of the borrowed data.
1944 /// On failure, the original guard is returned alongside with the error
1945 /// returned by the closure.
1946 ///
1947 /// The `RefCell` is already mutably borrowed, so this cannot fail.
1948 ///
1949 /// This is an associated function that needs to be used as
1950 /// `RefMut::try_map(...)`. A method would interfere with methods of the same
1951 /// name on the contents of a `RefCell` used through `Deref`.
1952 ///
1953 /// # Examples
1954 ///
1955 /// ```
1956 /// #![feature(refcell_try_map)]
1957 /// use std::cell::{RefCell, RefMut};
1958 /// use std::str::{from_utf8_mut, Utf8Error};
1959 ///
1960 /// let c = RefCell::new(vec![0x68, 0x65, 0x6C, 0x6C, 0x6F]);
1961 /// {
1962 /// let b1: RefMut<'_, Vec<u8>> = c.borrow_mut();
1963 /// let b2: Result<RefMut<'_, str>, _> = RefMut::try_map(b1, |v| from_utf8_mut(v));
1964 /// let mut b2 = b2.unwrap();
1965 /// assert_eq!(&*b2, "hello");
1966 /// b2.make_ascii_uppercase();
1967 /// }
1968 /// assert_eq!(*c.borrow(), "HELLO".as_bytes());
1969 ///
1970 /// let c = RefCell::new(vec![0xFF]);
1971 /// let b1: RefMut<'_, Vec<u8>> = c.borrow_mut();
1972 /// let b2: Result<_, (RefMut<'_, Vec<u8>>, Utf8Error)> = RefMut::try_map(b1, |v| from_utf8_mut(v));
1973 /// let (b3, e) = b2.unwrap_err();
1974 /// assert_eq!(*b3, vec![0xFF]);
1975 /// assert_eq!(e.valid_up_to(), 0);
1976 /// ```
1977 #[unstable(feature = "refcell_try_map", issue = "143801")]
1978 #[inline]
1979 pub fn try_map<U: ?Sized, E>(
1980 mut orig: RefMut<'b, T>,
1981 f: impl FnOnce(&mut T) -> Result<&mut U, E>,
1982 ) -> Result<RefMut<'b, U>, (Self, E)> {
1983 // SAFETY: function holds onto an exclusive reference for the duration
1984 // of its call through `orig`, and the pointer is only de-referenced
1985 // inside of the function call never allowing the exclusive reference to
1986 // escape.
1987 match f(&mut *orig) {
1988 Ok(value) => {
1989 Ok(RefMut { value: NonNull::from(value), borrow: orig.borrow, marker: PhantomData })
1990 }
1991 Err(e) => Err((orig, e)),
1992 }
1993 }
1994
1995 /// Splits a `RefMut` into multiple `RefMut`s for different components of the
1996 /// borrowed data.
1997 ///
1998 /// The underlying `RefCell` will remain mutably borrowed until both
1999 /// returned `RefMut`s go out of scope.
2000 ///
2001 /// The `RefCell` is already mutably borrowed, so this cannot fail.
2002 ///
2003 /// This is an associated function that needs to be used as
2004 /// `RefMut::map_split(...)`. A method would interfere with methods of the
2005 /// same name on the contents of a `RefCell` used through `Deref`.
2006 ///
2007 /// # Examples
2008 ///
2009 /// ```
2010 /// use std::cell::{RefCell, RefMut};
2011 ///
2012 /// let cell = RefCell::new([1, 2, 3, 4]);
2013 /// let borrow = cell.borrow_mut();
2014 /// let (mut begin, mut end) = RefMut::map_split(borrow, |slice| slice.split_at_mut(2));
2015 /// assert_eq!(*begin, [1, 2]);
2016 /// assert_eq!(*end, [3, 4]);
2017 /// begin.copy_from_slice(&[4, 3]);
2018 /// end.copy_from_slice(&[2, 1]);
2019 /// ```
2020 #[stable(feature = "refcell_map_split", since = "1.35.0")]
2021 #[inline]
2022 pub fn map_split<U: ?Sized, V: ?Sized, F>(
2023 mut orig: RefMut<'b, T>,
2024 f: F,
2025 ) -> (RefMut<'b, U>, RefMut<'b, V>)
2026 where
2027 F: FnOnce(&mut T) -> (&mut U, &mut V),
2028 {
2029 let borrow = orig.borrow.clone();
2030 let (a, b) = f(&mut *orig);
2031 (
2032 RefMut { value: NonNull::from(a), borrow, marker: PhantomData },
2033 RefMut { value: NonNull::from(b), borrow: orig.borrow, marker: PhantomData },
2034 )
2035 }
2036
2037 /// Converts into a mutable reference to the underlying data.
2038 ///
2039 /// The underlying `RefCell` can not be borrowed from again and will always appear already
2040 /// mutably borrowed, making the returned reference the only to the interior.
2041 ///
2042 /// This is an associated function that needs to be used as
2043 /// `RefMut::leak(...)`. A method would interfere with methods of the
2044 /// same name on the contents of a `RefCell` used through `Deref`.
2045 ///
2046 /// # Examples
2047 ///
2048 /// ```
2049 /// #![feature(cell_leak)]
2050 /// use std::cell::{RefCell, RefMut};
2051 /// let cell = RefCell::new(0);
2052 ///
2053 /// let value = RefMut::leak(cell.borrow_mut());
2054 /// assert_eq!(*value, 0);
2055 /// *value = 1;
2056 ///
2057 /// assert!(cell.try_borrow_mut().is_err());
2058 /// ```
2059 #[unstable(feature = "cell_leak", issue = "69099")]
2060 #[rustc_const_unstable(feature = "const_ref_cell", issue = "137844")]
2061 pub const fn leak(mut orig: RefMut<'b, T>) -> &'b mut T {
2062 // By forgetting this BorrowRefMut we ensure that the borrow counter in the RefCell can't
2063 // go back to UNUSED within the lifetime `'b`. Resetting the reference tracking state would
2064 // require a unique reference to the borrowed RefCell. No further references can be created
2065 // from the original cell within that lifetime, making the current borrow the only
2066 // reference for the remaining lifetime.
2067 mem::forget(orig.borrow);
2068 // SAFETY: after forgetting, we can form a reference for the rest of lifetime `'b`.
2069 unsafe { orig.value.as_mut() }
2070 }
2071}
2072
2073#[cfg(not(feature = "ferrocene_certified"))]
2074struct BorrowRefMut<'b> {
2075 borrow: &'b Cell<BorrowCounter>,
2076}
2077
2078#[rustc_const_unstable(feature = "const_ref_cell", issue = "137844")]
2079#[cfg(not(feature = "ferrocene_certified"))]
2080impl const Drop for BorrowRefMut<'_> {
2081 #[inline]
2082 fn drop(&mut self) {
2083 let borrow = self.borrow.get();
2084 debug_assert!(is_writing(borrow));
2085 self.borrow.replace(borrow + 1);
2086 }
2087}
2088
2089#[cfg(not(feature = "ferrocene_certified"))]
2090impl<'b> BorrowRefMut<'b> {
2091 #[inline]
2092 const fn new(borrow: &'b Cell<BorrowCounter>) -> Option<BorrowRefMut<'b>> {
2093 // NOTE: Unlike BorrowRefMut::clone, new is called to create the initial
2094 // mutable reference, and so there must currently be no existing
2095 // references. Thus, while clone increments the mutable refcount, here
2096 // we explicitly only allow going from UNUSED to UNUSED - 1.
2097 match borrow.get() {
2098 UNUSED => {
2099 borrow.replace(UNUSED - 1);
2100 Some(BorrowRefMut { borrow })
2101 }
2102 _ => None,
2103 }
2104 }
2105
2106 // Clones a `BorrowRefMut`.
2107 //
2108 // This is only valid if each `BorrowRefMut` is used to track a mutable
2109 // reference to a distinct, nonoverlapping range of the original object.
2110 // This isn't in a Clone impl so that code doesn't call this implicitly.
2111 #[inline]
2112 fn clone(&self) -> BorrowRefMut<'b> {
2113 let borrow = self.borrow.get();
2114 debug_assert!(is_writing(borrow));
2115 // Prevent the borrow counter from underflowing.
2116 assert!(borrow != BorrowCounter::MIN);
2117 self.borrow.set(borrow - 1);
2118 BorrowRefMut { borrow: self.borrow }
2119 }
2120}
2121
2122/// A wrapper type for a mutably borrowed value from a `RefCell<T>`.
2123///
2124/// See the [module-level documentation](self) for more.
2125#[stable(feature = "rust1", since = "1.0.0")]
2126#[must_not_suspend = "holding a RefMut across suspend points can cause BorrowErrors"]
2127#[rustc_diagnostic_item = "RefCellRefMut"]
2128#[cfg(not(feature = "ferrocene_certified"))]
2129pub struct RefMut<'b, T: ?Sized + 'b> {
2130 // NB: we use a pointer instead of `&'b mut T` to avoid `noalias` violations, because a
2131 // `RefMut` argument doesn't hold exclusivity for its whole scope, only until it drops.
2132 value: NonNull<T>,
2133 borrow: BorrowRefMut<'b>,
2134 // `NonNull` is covariant over `T`, so we need to reintroduce invariance.
2135 marker: PhantomData<&'b mut T>,
2136}
2137
2138#[stable(feature = "rust1", since = "1.0.0")]
2139#[rustc_const_unstable(feature = "const_convert", issue = "143773")]
2140#[cfg(not(feature = "ferrocene_certified"))]
2141impl<T: ?Sized> const Deref for RefMut<'_, T> {
2142 type Target = T;
2143
2144 #[inline]
2145 fn deref(&self) -> &T {
2146 // SAFETY: the value is accessible as long as we hold our borrow.
2147 unsafe { self.value.as_ref() }
2148 }
2149}
2150
2151#[stable(feature = "rust1", since = "1.0.0")]
2152#[rustc_const_unstable(feature = "const_convert", issue = "143773")]
2153#[cfg(not(feature = "ferrocene_certified"))]
2154impl<T: ?Sized> const DerefMut for RefMut<'_, T> {
2155 #[inline]
2156 fn deref_mut(&mut self) -> &mut T {
2157 // SAFETY: the value is accessible as long as we hold our borrow.
2158 unsafe { self.value.as_mut() }
2159 }
2160}
2161
2162#[unstable(feature = "deref_pure_trait", issue = "87121")]
2163#[cfg(not(feature = "ferrocene_certified"))]
2164unsafe impl<T: ?Sized> DerefPure for RefMut<'_, T> {}
2165
2166#[unstable(feature = "coerce_unsized", issue = "18598")]
2167#[cfg(not(feature = "ferrocene_certified"))]
2168impl<'b, T: ?Sized + Unsize<U>, U: ?Sized> CoerceUnsized<RefMut<'b, U>> for RefMut<'b, T> {}
2169
2170#[stable(feature = "std_guard_impls", since = "1.20.0")]
2171#[cfg(not(feature = "ferrocene_certified"))]
2172impl<T: ?Sized + fmt::Display> fmt::Display for RefMut<'_, T> {
2173 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
2174 (**self).fmt(f)
2175 }
2176}
2177
2178/// The core primitive for interior mutability in Rust.
2179///
2180/// If you have a reference `&T`, then normally in Rust the compiler performs optimizations based on
2181/// the knowledge that `&T` points to immutable data. Mutating that data, for example through an
2182/// alias or by transmuting a `&T` into a `&mut T`, is considered undefined behavior.
2183/// `UnsafeCell<T>` opts-out of the immutability guarantee for `&T`: a shared reference
2184/// `&UnsafeCell<T>` may point to data that is being mutated. This is called "interior mutability".
2185///
2186/// All other types that allow internal mutability, such as [`Cell<T>`] and [`RefCell<T>`], internally
2187/// use `UnsafeCell` to wrap their data.
2188///
2189/// Note that only the immutability guarantee for shared references is affected by `UnsafeCell`. The
2190/// uniqueness guarantee for mutable references is unaffected. There is *no* legal way to obtain
2191/// aliasing `&mut`, not even with `UnsafeCell<T>`.
2192///
2193/// `UnsafeCell` does nothing to avoid data races; they are still undefined behavior. If multiple
2194/// threads have access to the same `UnsafeCell`, they must follow the usual rules of the
2195/// [concurrent memory model]: conflicting non-synchronized accesses must be done via the APIs in
2196/// [`core::sync::atomic`].
2197///
2198/// The `UnsafeCell` API itself is technically very simple: [`.get()`] gives you a raw pointer
2199/// `*mut T` to its contents. It is up to _you_ as the abstraction designer to use that raw pointer
2200/// correctly.
2201///
2202/// [`.get()`]: `UnsafeCell::get`
2203/// [concurrent memory model]: ../sync/atomic/index.html#memory-model-for-atomic-accesses
2204///
2205/// # Aliasing rules
2206///
2207/// The precise Rust aliasing rules are somewhat in flux, but the main points are not contentious:
2208///
2209/// - If you create a safe reference with lifetime `'a` (either a `&T` or `&mut T` reference), then
2210/// you must not access the data in any way that contradicts that reference for the remainder of
2211/// `'a`. For example, this means that if you take the `*mut T` from an `UnsafeCell<T>` and cast it
2212/// to an `&T`, then the data in `T` must remain immutable (modulo any `UnsafeCell` data found
2213/// within `T`, of course) until that reference's lifetime expires. Similarly, if you create a
2214/// `&mut T` reference that is released to safe code, then you must not access the data within the
2215/// `UnsafeCell` until that reference expires.
2216///
2217/// - For both `&T` without `UnsafeCell<_>` and `&mut T`, you must also not deallocate the data
2218/// until the reference expires. As a special exception, given an `&T`, any part of it that is
2219/// inside an `UnsafeCell<_>` may be deallocated during the lifetime of the reference, after the
2220/// last time the reference is used (dereferenced or reborrowed). Since you cannot deallocate a part
2221/// of what a reference points to, this means the memory an `&T` points to can be deallocated only if
2222/// *every part of it* (including padding) is inside an `UnsafeCell`.
2223///
2224/// However, whenever a `&UnsafeCell<T>` is constructed or dereferenced, it must still point to
2225/// live memory and the compiler is allowed to insert spurious reads if it can prove that this
2226/// memory has not yet been deallocated.
2227///
2228/// To assist with proper design, the following scenarios are explicitly declared legal
2229/// for single-threaded code:
2230///
2231/// 1. A `&T` reference can be released to safe code and there it can co-exist with other `&T`
2232/// references, but not with a `&mut T`
2233///
2234/// 2. A `&mut T` reference may be released to safe code provided neither other `&mut T` nor `&T`
2235/// co-exist with it. A `&mut T` must always be unique.
2236///
2237/// Note that whilst mutating the contents of an `&UnsafeCell<T>` (even while other
2238/// `&UnsafeCell<T>` references alias the cell) is
2239/// ok (provided you enforce the above invariants some other way), it is still undefined behavior
2240/// to have multiple `&mut UnsafeCell<T>` aliases. That is, `UnsafeCell` is a wrapper
2241/// designed to have a special interaction with _shared_ accesses (_i.e._, through an
2242/// `&UnsafeCell<_>` reference); there is no magic whatsoever when dealing with _exclusive_
2243/// accesses (_e.g._, through a `&mut UnsafeCell<_>`): neither the cell nor the wrapped value
2244/// may be aliased for the duration of that `&mut` borrow.
2245/// This is showcased by the [`.get_mut()`] accessor, which is a _safe_ getter that yields
2246/// a `&mut T`.
2247///
2248/// [`.get_mut()`]: `UnsafeCell::get_mut`
2249///
2250/// # Memory layout
2251///
2252/// `UnsafeCell<T>` has the same in-memory representation as its inner type `T`. A consequence
2253/// of this guarantee is that it is possible to convert between `T` and `UnsafeCell<T>`.
2254/// Special care has to be taken when converting a nested `T` inside of an `Outer<T>` type
2255/// to an `Outer<UnsafeCell<T>>` type: this is not sound when the `Outer<T>` type enables [niche]
2256/// optimizations. For example, the type `Option<NonNull<u8>>` is typically 8 bytes large on
2257/// 64-bit platforms, but the type `Option<UnsafeCell<NonNull<u8>>>` takes up 16 bytes of space.
2258/// Therefore this is not a valid conversion, despite `NonNull<u8>` and `UnsafeCell<NonNull<u8>>>`
2259/// having the same memory layout. This is because `UnsafeCell` disables niche optimizations in
2260/// order to avoid its interior mutability property from spreading from `T` into the `Outer` type,
2261/// thus this can cause distortions in the type size in these cases.
2262///
2263/// Note that the only valid way to obtain a `*mut T` pointer to the contents of a
2264/// _shared_ `UnsafeCell<T>` is through [`.get()`] or [`.raw_get()`]. A `&mut T` reference
2265/// can be obtained by either dereferencing this pointer or by calling [`.get_mut()`]
2266/// on an _exclusive_ `UnsafeCell<T>`. Even though `T` and `UnsafeCell<T>` have the
2267/// same memory layout, the following is not allowed and undefined behavior:
2268///
2269/// ```rust,compile_fail
2270/// # use std::cell::UnsafeCell;
2271/// unsafe fn not_allowed<T>(ptr: &UnsafeCell<T>) -> &mut T {
2272/// let t = ptr as *const UnsafeCell<T> as *mut T;
2273/// // This is undefined behavior, because the `*mut T` pointer
2274/// // was not obtained through `.get()` nor `.raw_get()`:
2275/// unsafe { &mut *t }
2276/// }
2277/// ```
2278///
2279/// Instead, do this:
2280///
2281/// ```rust
2282/// # use std::cell::UnsafeCell;
2283/// // Safety: the caller must ensure that there are no references that
2284/// // point to the *contents* of the `UnsafeCell`.
2285/// unsafe fn get_mut<T>(ptr: &UnsafeCell<T>) -> &mut T {
2286/// unsafe { &mut *ptr.get() }
2287/// }
2288/// ```
2289///
2290/// Converting in the other direction from a `&mut T`
2291/// to an `&UnsafeCell<T>` is allowed:
2292///
2293/// ```rust
2294/// # use std::cell::UnsafeCell;
2295/// fn get_shared<T>(ptr: &mut T) -> &UnsafeCell<T> {
2296/// let t = ptr as *mut T as *const UnsafeCell<T>;
2297/// // SAFETY: `T` and `UnsafeCell<T>` have the same memory layout
2298/// unsafe { &*t }
2299/// }
2300/// ```
2301///
2302/// [niche]: https://rust-lang.github.io/unsafe-code-guidelines/glossary.html#niche
2303/// [`.raw_get()`]: `UnsafeCell::raw_get`
2304///
2305/// # Examples
2306///
2307/// Here is an example showcasing how to soundly mutate the contents of an `UnsafeCell<_>` despite
2308/// there being multiple references aliasing the cell:
2309///
2310/// ```
2311/// use std::cell::UnsafeCell;
2312///
2313/// let x: UnsafeCell<i32> = 42.into();
2314/// // Get multiple / concurrent / shared references to the same `x`.
2315/// let (p1, p2): (&UnsafeCell<i32>, &UnsafeCell<i32>) = (&x, &x);
2316///
2317/// unsafe {
2318/// // SAFETY: within this scope there are no other references to `x`'s contents,
2319/// // so ours is effectively unique.
2320/// let p1_exclusive: &mut i32 = &mut *p1.get(); // -- borrow --+
2321/// *p1_exclusive += 27; // |
2322/// } // <---------- cannot go beyond this point -------------------+
2323///
2324/// unsafe {
2325/// // SAFETY: within this scope nobody expects to have exclusive access to `x`'s contents,
2326/// // so we can have multiple shared accesses concurrently.
2327/// let p2_shared: &i32 = &*p2.get();
2328/// assert_eq!(*p2_shared, 42 + 27);
2329/// let p1_shared: &i32 = &*p1.get();
2330/// assert_eq!(*p1_shared, *p2_shared);
2331/// }
2332/// ```
2333///
2334/// The following example showcases the fact that exclusive access to an `UnsafeCell<T>`
2335/// implies exclusive access to its `T`:
2336///
2337/// ```rust
2338/// #![forbid(unsafe_code)]
2339/// // with exclusive accesses, `UnsafeCell` is a transparent no-op wrapper, so no need for
2340/// // `unsafe` here.
2341/// use std::cell::UnsafeCell;
2342///
2343/// let mut x: UnsafeCell<i32> = 42.into();
2344///
2345/// // Get a compile-time-checked unique reference to `x`.
2346/// let p_unique: &mut UnsafeCell<i32> = &mut x;
2347/// // With an exclusive reference, we can mutate the contents for free.
2348/// *p_unique.get_mut() = 0;
2349/// // Or, equivalently:
2350/// x = UnsafeCell::new(0);
2351///
2352/// // When we own the value, we can extract the contents for free.
2353/// let contents: i32 = x.into_inner();
2354/// assert_eq!(contents, 0);
2355/// ```
2356#[lang = "unsafe_cell"]
2357#[stable(feature = "rust1", since = "1.0.0")]
2358#[repr(transparent)]
2359#[rustc_pub_transparent]
2360pub struct UnsafeCell<T: ?Sized> {
2361 value: T,
2362}
2363
2364#[stable(feature = "rust1", since = "1.0.0")]
2365#[cfg(not(feature = "ferrocene_certified"))]
2366impl<T: ?Sized> !Sync for UnsafeCell<T> {}
2367
2368impl<T> UnsafeCell<T> {
2369 /// Constructs a new instance of `UnsafeCell` which will wrap the specified
2370 /// value.
2371 ///
2372 /// All access to the inner value through `&UnsafeCell<T>` requires `unsafe` code.
2373 ///
2374 /// # Examples
2375 ///
2376 /// ```
2377 /// use std::cell::UnsafeCell;
2378 ///
2379 /// let uc = UnsafeCell::new(5);
2380 /// ```
2381 #[stable(feature = "rust1", since = "1.0.0")]
2382 #[rustc_const_stable(feature = "const_unsafe_cell_new", since = "1.32.0")]
2383 #[inline(always)]
2384 pub const fn new(value: T) -> UnsafeCell<T> {
2385 UnsafeCell { value }
2386 }
2387
2388 /// Unwraps the value, consuming the cell.
2389 ///
2390 /// # Examples
2391 ///
2392 /// ```
2393 /// use std::cell::UnsafeCell;
2394 ///
2395 /// let uc = UnsafeCell::new(5);
2396 ///
2397 /// let five = uc.into_inner();
2398 /// ```
2399 #[inline(always)]
2400 #[stable(feature = "rust1", since = "1.0.0")]
2401 #[rustc_const_stable(feature = "const_cell_into_inner", since = "1.83.0")]
2402 #[rustc_allow_const_fn_unstable(const_precise_live_drops)]
2403 pub const fn into_inner(self) -> T {
2404 self.value
2405 }
2406
2407 /// Replace the value in this `UnsafeCell` and return the old value.
2408 ///
2409 /// # Safety
2410 ///
2411 /// The caller must take care to avoid aliasing and data races.
2412 ///
2413 /// - It is Undefined Behavior to allow calls to race with
2414 /// any other access to the wrapped value.
2415 /// - It is Undefined Behavior to call this while any other
2416 /// reference(s) to the wrapped value are alive.
2417 ///
2418 /// # Examples
2419 ///
2420 /// ```
2421 /// #![feature(unsafe_cell_access)]
2422 /// use std::cell::UnsafeCell;
2423 ///
2424 /// let uc = UnsafeCell::new(5);
2425 ///
2426 /// let old = unsafe { uc.replace(10) };
2427 /// assert_eq!(old, 5);
2428 /// ```
2429 #[inline]
2430 #[unstable(feature = "unsafe_cell_access", issue = "136327")]
2431 #[cfg(not(feature = "ferrocene_certified"))]
2432 pub const unsafe fn replace(&self, value: T) -> T {
2433 // SAFETY: pointer comes from `&self` so naturally satisfies invariants.
2434 unsafe { ptr::replace(self.get(), value) }
2435 }
2436}
2437
2438impl<T: ?Sized> UnsafeCell<T> {
2439 /// Converts from `&mut T` to `&mut UnsafeCell<T>`.
2440 ///
2441 /// # Examples
2442 ///
2443 /// ```
2444 /// use std::cell::UnsafeCell;
2445 ///
2446 /// let mut val = 42;
2447 /// let uc = UnsafeCell::from_mut(&mut val);
2448 ///
2449 /// *uc.get_mut() -= 1;
2450 /// assert_eq!(*uc.get_mut(), 41);
2451 /// ```
2452 #[inline(always)]
2453 #[stable(feature = "unsafe_cell_from_mut", since = "1.84.0")]
2454 #[rustc_const_stable(feature = "unsafe_cell_from_mut", since = "1.84.0")]
2455 #[cfg(not(feature = "ferrocene_certified"))]
2456 pub const fn from_mut(value: &mut T) -> &mut UnsafeCell<T> {
2457 // SAFETY: `UnsafeCell<T>` has the same memory layout as `T` due to #[repr(transparent)].
2458 unsafe { &mut *(value as *mut T as *mut UnsafeCell<T>) }
2459 }
2460
2461 /// Gets a mutable pointer to the wrapped value.
2462 ///
2463 /// This can be cast to a pointer of any kind. When creating references, you must uphold the
2464 /// aliasing rules; see [the type-level docs][UnsafeCell#aliasing-rules] for more discussion and
2465 /// caveats.
2466 ///
2467 /// # Examples
2468 ///
2469 /// ```
2470 /// use std::cell::UnsafeCell;
2471 ///
2472 /// let uc = UnsafeCell::new(5);
2473 ///
2474 /// let five = uc.get();
2475 /// ```
2476 #[inline(always)]
2477 #[stable(feature = "rust1", since = "1.0.0")]
2478 #[rustc_const_stable(feature = "const_unsafecell_get", since = "1.32.0")]
2479 #[rustc_as_ptr]
2480 #[rustc_never_returns_null_ptr]
2481 pub const fn get(&self) -> *mut T {
2482 // We can just cast the pointer from `UnsafeCell<T>` to `T` because of
2483 // #[repr(transparent)]. This exploits std's special status, there is
2484 // no guarantee for user code that this will work in future versions of the compiler!
2485 self as *const UnsafeCell<T> as *const T as *mut T
2486 }
2487
2488 /// Returns a mutable reference to the underlying data.
2489 ///
2490 /// This call borrows the `UnsafeCell` mutably (at compile-time) which
2491 /// guarantees that we possess the only reference.
2492 ///
2493 /// # Examples
2494 ///
2495 /// ```
2496 /// use std::cell::UnsafeCell;
2497 ///
2498 /// let mut c = UnsafeCell::new(5);
2499 /// *c.get_mut() += 1;
2500 ///
2501 /// assert_eq!(*c.get_mut(), 6);
2502 /// ```
2503 #[inline(always)]
2504 #[stable(feature = "unsafe_cell_get_mut", since = "1.50.0")]
2505 #[rustc_const_stable(feature = "const_unsafecell_get_mut", since = "1.83.0")]
2506 pub const fn get_mut(&mut self) -> &mut T {
2507 &mut self.value
2508 }
2509
2510 /// Gets a mutable pointer to the wrapped value.
2511 /// The difference from [`get`] is that this function accepts a raw pointer,
2512 /// which is useful to avoid the creation of temporary references.
2513 ///
2514 /// This can be cast to a pointer of any kind. When creating references, you must uphold the
2515 /// aliasing rules; see [the type-level docs][UnsafeCell#aliasing-rules] for more discussion and
2516 /// caveats.
2517 ///
2518 /// [`get`]: UnsafeCell::get()
2519 ///
2520 /// # Examples
2521 ///
2522 /// Gradual initialization of an `UnsafeCell` requires `raw_get`, as
2523 /// calling `get` would require creating a reference to uninitialized data:
2524 ///
2525 /// ```
2526 /// use std::cell::UnsafeCell;
2527 /// use std::mem::MaybeUninit;
2528 ///
2529 /// let m = MaybeUninit::<UnsafeCell<i32>>::uninit();
2530 /// unsafe { UnsafeCell::raw_get(m.as_ptr()).write(5); }
2531 /// // avoid below which references to uninitialized data
2532 /// // unsafe { UnsafeCell::get(&*m.as_ptr()).write(5); }
2533 /// let uc = unsafe { m.assume_init() };
2534 ///
2535 /// assert_eq!(uc.into_inner(), 5);
2536 /// ```
2537 #[inline(always)]
2538 #[stable(feature = "unsafe_cell_raw_get", since = "1.56.0")]
2539 #[rustc_const_stable(feature = "unsafe_cell_raw_get", since = "1.56.0")]
2540 #[rustc_diagnostic_item = "unsafe_cell_raw_get"]
2541 #[cfg(not(feature = "ferrocene_certified"))]
2542 pub const fn raw_get(this: *const Self) -> *mut T {
2543 // We can just cast the pointer from `UnsafeCell<T>` to `T` because of
2544 // #[repr(transparent)]. This exploits std's special status, there is
2545 // no guarantee for user code that this will work in future versions of the compiler!
2546 this as *const T as *mut T
2547 }
2548
2549 /// Get a shared reference to the value within the `UnsafeCell`.
2550 ///
2551 /// # Safety
2552 ///
2553 /// - It is Undefined Behavior to call this while any mutable
2554 /// reference to the wrapped value is alive.
2555 /// - Mutating the wrapped value while the returned
2556 /// reference is alive is Undefined Behavior.
2557 ///
2558 /// # Examples
2559 ///
2560 /// ```
2561 /// #![feature(unsafe_cell_access)]
2562 /// use std::cell::UnsafeCell;
2563 ///
2564 /// let uc = UnsafeCell::new(5);
2565 ///
2566 /// let val = unsafe { uc.as_ref_unchecked() };
2567 /// assert_eq!(val, &5);
2568 /// ```
2569 #[inline]
2570 #[unstable(feature = "unsafe_cell_access", issue = "136327")]
2571 #[cfg(not(feature = "ferrocene_certified"))]
2572 pub const unsafe fn as_ref_unchecked(&self) -> &T {
2573 // SAFETY: pointer comes from `&self` so naturally satisfies ptr-to-ref invariants.
2574 unsafe { self.get().as_ref_unchecked() }
2575 }
2576
2577 /// Get an exclusive reference to the value within the `UnsafeCell`.
2578 ///
2579 /// # Safety
2580 ///
2581 /// - It is Undefined Behavior to call this while any other
2582 /// reference(s) to the wrapped value are alive.
2583 /// - Mutating the wrapped value through other means while the
2584 /// returned reference is alive is Undefined Behavior.
2585 ///
2586 /// # Examples
2587 ///
2588 /// ```
2589 /// #![feature(unsafe_cell_access)]
2590 /// use std::cell::UnsafeCell;
2591 ///
2592 /// let uc = UnsafeCell::new(5);
2593 ///
2594 /// unsafe { *uc.as_mut_unchecked() += 1; }
2595 /// assert_eq!(uc.into_inner(), 6);
2596 /// ```
2597 #[inline]
2598 #[unstable(feature = "unsafe_cell_access", issue = "136327")]
2599 #[allow(clippy::mut_from_ref)]
2600 #[cfg(not(feature = "ferrocene_certified"))]
2601 pub const unsafe fn as_mut_unchecked(&self) -> &mut T {
2602 // SAFETY: pointer comes from `&self` so naturally satisfies ptr-to-ref invariants.
2603 unsafe { self.get().as_mut_unchecked() }
2604 }
2605}
2606
2607#[stable(feature = "unsafe_cell_default", since = "1.10.0")]
2608#[rustc_const_unstable(feature = "const_default", issue = "143894")]
2609#[cfg(not(feature = "ferrocene_certified"))]
2610impl<T: [const] Default> const Default for UnsafeCell<T> {
2611 /// Creates an `UnsafeCell`, with the `Default` value for T.
2612 fn default() -> UnsafeCell<T> {
2613 UnsafeCell::new(Default::default())
2614 }
2615}
2616
2617#[stable(feature = "cell_from", since = "1.12.0")]
2618#[rustc_const_unstable(feature = "const_convert", issue = "143773")]
2619#[cfg(not(feature = "ferrocene_certified"))]
2620impl<T> const From<T> for UnsafeCell<T> {
2621 /// Creates a new `UnsafeCell<T>` containing the given value.
2622 fn from(t: T) -> UnsafeCell<T> {
2623 UnsafeCell::new(t)
2624 }
2625}
2626
2627#[unstable(feature = "coerce_unsized", issue = "18598")]
2628#[cfg(not(feature = "ferrocene_certified"))]
2629impl<T: CoerceUnsized<U>, U> CoerceUnsized<UnsafeCell<U>> for UnsafeCell<T> {}
2630
2631// Allow types that wrap `UnsafeCell` to also implement `DispatchFromDyn`
2632// and become dyn-compatible method receivers.
2633// Note that currently `UnsafeCell` itself cannot be a method receiver
2634// because it does not implement Deref.
2635// In other words:
2636// `self: UnsafeCell<&Self>` won't work
2637// `self: UnsafeCellWrapper<Self>` becomes possible
2638#[unstable(feature = "dispatch_from_dyn", issue = "none")]
2639#[cfg(not(feature = "ferrocene_certified"))]
2640impl<T: DispatchFromDyn<U>, U> DispatchFromDyn<UnsafeCell<U>> for UnsafeCell<T> {}
2641
2642/// [`UnsafeCell`], but [`Sync`].
2643///
2644/// This is just an `UnsafeCell`, except it implements `Sync`
2645/// if `T` implements `Sync`.
2646///
2647/// `UnsafeCell` doesn't implement `Sync`, to prevent accidental mis-use.
2648/// You can use `SyncUnsafeCell` instead of `UnsafeCell` to allow it to be
2649/// shared between threads, if that's intentional.
2650/// Providing proper synchronization is still the task of the user,
2651/// making this type just as unsafe to use.
2652///
2653/// See [`UnsafeCell`] for details.
2654#[unstable(feature = "sync_unsafe_cell", issue = "95439")]
2655#[repr(transparent)]
2656#[rustc_diagnostic_item = "SyncUnsafeCell"]
2657#[rustc_pub_transparent]
2658#[cfg(not(feature = "ferrocene_certified"))]
2659pub struct SyncUnsafeCell<T: ?Sized> {
2660 value: UnsafeCell<T>,
2661}
2662
2663#[unstable(feature = "sync_unsafe_cell", issue = "95439")]
2664#[cfg(not(feature = "ferrocene_certified"))]
2665unsafe impl<T: ?Sized + Sync> Sync for SyncUnsafeCell<T> {}
2666
2667#[unstable(feature = "sync_unsafe_cell", issue = "95439")]
2668#[cfg(not(feature = "ferrocene_certified"))]
2669impl<T> SyncUnsafeCell<T> {
2670 /// Constructs a new instance of `SyncUnsafeCell` which will wrap the specified value.
2671 #[inline]
2672 pub const fn new(value: T) -> Self {
2673 Self { value: UnsafeCell { value } }
2674 }
2675
2676 /// Unwraps the value, consuming the cell.
2677 #[inline]
2678 #[rustc_const_unstable(feature = "sync_unsafe_cell", issue = "95439")]
2679 pub const fn into_inner(self) -> T {
2680 self.value.into_inner()
2681 }
2682}
2683
2684#[unstable(feature = "sync_unsafe_cell", issue = "95439")]
2685#[cfg(not(feature = "ferrocene_certified"))]
2686impl<T: ?Sized> SyncUnsafeCell<T> {
2687 /// Gets a mutable pointer to the wrapped value.
2688 ///
2689 /// This can be cast to a pointer of any kind.
2690 /// Ensure that the access is unique (no active references, mutable or not)
2691 /// when casting to `&mut T`, and ensure that there are no mutations
2692 /// or mutable aliases going on when casting to `&T`
2693 #[inline]
2694 #[rustc_as_ptr]
2695 #[rustc_never_returns_null_ptr]
2696 pub const fn get(&self) -> *mut T {
2697 self.value.get()
2698 }
2699
2700 /// Returns a mutable reference to the underlying data.
2701 ///
2702 /// This call borrows the `SyncUnsafeCell` mutably (at compile-time) which
2703 /// guarantees that we possess the only reference.
2704 #[inline]
2705 pub const fn get_mut(&mut self) -> &mut T {
2706 self.value.get_mut()
2707 }
2708
2709 /// Gets a mutable pointer to the wrapped value.
2710 ///
2711 /// See [`UnsafeCell::get`] for details.
2712 #[inline]
2713 pub const fn raw_get(this: *const Self) -> *mut T {
2714 // We can just cast the pointer from `SyncUnsafeCell<T>` to `T` because
2715 // of #[repr(transparent)] on both SyncUnsafeCell and UnsafeCell.
2716 // See UnsafeCell::raw_get.
2717 this as *const T as *mut T
2718 }
2719}
2720
2721#[unstable(feature = "sync_unsafe_cell", issue = "95439")]
2722#[rustc_const_unstable(feature = "const_default", issue = "143894")]
2723#[cfg(not(feature = "ferrocene_certified"))]
2724impl<T: [const] Default> const Default for SyncUnsafeCell<T> {
2725 /// Creates an `SyncUnsafeCell`, with the `Default` value for T.
2726 fn default() -> SyncUnsafeCell<T> {
2727 SyncUnsafeCell::new(Default::default())
2728 }
2729}
2730
2731#[unstable(feature = "sync_unsafe_cell", issue = "95439")]
2732#[rustc_const_unstable(feature = "const_convert", issue = "143773")]
2733#[cfg(not(feature = "ferrocene_certified"))]
2734impl<T> const From<T> for SyncUnsafeCell<T> {
2735 /// Creates a new `SyncUnsafeCell<T>` containing the given value.
2736 fn from(t: T) -> SyncUnsafeCell<T> {
2737 SyncUnsafeCell::new(t)
2738 }
2739}
2740
2741#[unstable(feature = "coerce_unsized", issue = "18598")]
2742//#[unstable(feature = "sync_unsafe_cell", issue = "95439")]
2743#[cfg(not(feature = "ferrocene_certified"))]
2744impl<T: CoerceUnsized<U>, U> CoerceUnsized<SyncUnsafeCell<U>> for SyncUnsafeCell<T> {}
2745
2746// Allow types that wrap `SyncUnsafeCell` to also implement `DispatchFromDyn`
2747// and become dyn-compatible method receivers.
2748// Note that currently `SyncUnsafeCell` itself cannot be a method receiver
2749// because it does not implement Deref.
2750// In other words:
2751// `self: SyncUnsafeCell<&Self>` won't work
2752// `self: SyncUnsafeCellWrapper<Self>` becomes possible
2753#[unstable(feature = "dispatch_from_dyn", issue = "none")]
2754//#[unstable(feature = "sync_unsafe_cell", issue = "95439")]
2755#[cfg(not(feature = "ferrocene_certified"))]
2756impl<T: DispatchFromDyn<U>, U> DispatchFromDyn<SyncUnsafeCell<U>> for SyncUnsafeCell<T> {}
2757
2758#[allow(unused)]
2759#[cfg(not(feature = "ferrocene_certified"))]
2760fn assert_coerce_unsized(
2761 a: UnsafeCell<&i32>,
2762 b: SyncUnsafeCell<&i32>,
2763 c: Cell<&i32>,
2764 d: RefCell<&i32>,
2765) {
2766 let _: UnsafeCell<&dyn Send> = a;
2767 let _: SyncUnsafeCell<&dyn Send> = b;
2768 let _: Cell<&dyn Send> = c;
2769 let _: RefCell<&dyn Send> = d;
2770}
2771
2772#[unstable(feature = "pin_coerce_unsized_trait", issue = "123430")]
2773#[cfg(not(feature = "ferrocene_certified"))]
2774unsafe impl<T: ?Sized> PinCoerceUnsized for UnsafeCell<T> {}
2775
2776#[unstable(feature = "pin_coerce_unsized_trait", issue = "123430")]
2777#[cfg(not(feature = "ferrocene_certified"))]
2778unsafe impl<T: ?Sized> PinCoerceUnsized for SyncUnsafeCell<T> {}
2779
2780#[unstable(feature = "pin_coerce_unsized_trait", issue = "123430")]
2781#[cfg(not(feature = "ferrocene_certified"))]
2782unsafe impl<T: ?Sized> PinCoerceUnsized for Cell<T> {}
2783
2784#[unstable(feature = "pin_coerce_unsized_trait", issue = "123430")]
2785#[cfg(not(feature = "ferrocene_certified"))]
2786unsafe impl<T: ?Sized> PinCoerceUnsized for RefCell<T> {}
2787
2788#[unstable(feature = "pin_coerce_unsized_trait", issue = "123430")]
2789#[cfg(not(feature = "ferrocene_certified"))]
2790unsafe impl<'b, T: ?Sized> PinCoerceUnsized for Ref<'b, T> {}
2791
2792#[unstable(feature = "pin_coerce_unsized_trait", issue = "123430")]
2793#[cfg(not(feature = "ferrocene_certified"))]
2794unsafe impl<'b, T: ?Sized> PinCoerceUnsized for RefMut<'b, T> {}