core/ffi/c_str.rs
1//! [`CStr`] and its related types.
2
3#[cfg(not(feature = "ferrocene_subset"))]
4use crate::cmp::Ordering;
5#[cfg(not(feature = "ferrocene_subset"))]
6use crate::error::Error;
7use crate::ffi::c_char;
8use crate::intrinsics::const_eval_select;
9#[cfg(not(feature = "ferrocene_subset"))]
10use crate::iter::FusedIterator;
11#[cfg(not(feature = "ferrocene_subset"))]
12use crate::marker::PhantomData;
13#[cfg(not(feature = "ferrocene_subset"))]
14use crate::ptr::NonNull;
15use crate::slice::memchr;
16#[cfg(not(feature = "ferrocene_subset"))]
17use crate::{fmt, ops, slice, str};
18
19// Ferrocene addition: imports for certified subset
20#[cfg(feature = "ferrocene_subset")]
21#[rustfmt::skip]
22use crate::{fmt, slice};
23
24// FIXME: because this is doc(inline)d, we *have* to use intra-doc links because the actual link
25// depends on where the item is being documented. however, since this is libcore, we can't
26// actually reference libstd or liballoc in intra-doc links. so, the best we can do is remove the
27// links to `CString` and `String` for now until a solution is developed
28
29/// A dynamically-sized view of a C string.
30///
31/// The type `&CStr` represents a reference to a borrowed nul-terminated
32/// array of bytes. It can be constructed safely from a <code>&[[u8]]</code>
33/// slice, or unsafely from a raw `*const c_char`. It can be expressed as a
34/// literal in the form `c"Hello world"`.
35///
36/// The `&CStr` can then be converted to a Rust <code>&[str]</code> by performing
37/// UTF-8 validation, or into an owned `CString`.
38///
39/// `&CStr` is to `CString` as <code>&[str]</code> is to `String`: the former
40/// in each pair are borrowing references; the latter are owned
41/// strings.
42///
43/// Note that this structure does **not** have a guaranteed layout (the `repr(transparent)`
44/// notwithstanding) and should not be placed in the signatures of FFI functions.
45/// Instead, safe wrappers of FFI functions may leverage [`CStr::as_ptr`] and the unsafe
46/// [`CStr::from_ptr`] constructor to provide a safe interface to other consumers.
47///
48/// # Examples
49///
50/// Inspecting a foreign C string:
51///
52/// ```
53/// use std::ffi::CStr;
54/// use std::os::raw::c_char;
55///
56/// # /* Extern functions are awkward in doc comments - fake it instead
57/// extern "C" { fn my_string() -> *const c_char; }
58/// # */ unsafe extern "C" fn my_string() -> *const c_char { c"hello".as_ptr() }
59///
60/// unsafe {
61/// let slice = CStr::from_ptr(my_string());
62/// println!("string buffer size without nul terminator: {}", slice.to_bytes().len());
63/// }
64/// ```
65///
66/// Passing a Rust-originating C string:
67///
68/// ```
69/// use std::ffi::CStr;
70/// use std::os::raw::c_char;
71///
72/// fn work(data: &CStr) {
73/// unsafe extern "C" fn work_with(s: *const c_char) {}
74/// unsafe { work_with(data.as_ptr()) }
75/// }
76///
77/// let s = c"Hello world!";
78/// work(&s);
79/// ```
80///
81/// Converting a foreign C string into a Rust `String`:
82///
83/// ```
84/// use std::ffi::CStr;
85/// use std::os::raw::c_char;
86///
87/// # /* Extern functions are awkward in doc comments - fake it instead
88/// extern "C" { fn my_string() -> *const c_char; }
89/// # */ unsafe extern "C" fn my_string() -> *const c_char { c"hello".as_ptr() }
90///
91/// fn my_string_safe() -> String {
92/// let cstr = unsafe { CStr::from_ptr(my_string()) };
93/// // Get a copy-on-write Cow<'_, str>, then extract the
94/// // allocated String (or allocate a fresh one if needed).
95/// cstr.to_string_lossy().into_owned()
96/// }
97///
98/// println!("string: {}", my_string_safe());
99/// ```
100///
101/// [str]: prim@str "str"
102#[derive(PartialEq, Eq, Hash)]
103#[stable(feature = "core_c_str", since = "1.64.0")]
104#[rustc_diagnostic_item = "cstr_type"]
105#[rustc_has_incoherent_inherent_impls]
106#[lang = "CStr"]
107// `fn from` in `impl From<&CStr> for Box<CStr>` current implementation relies
108// on `CStr` being layout-compatible with `[u8]`.
109// However, `CStr` layout is considered an implementation detail and must not be relied upon. We
110// want `repr(transparent)` but we don't want it to show up in rustdoc, so we hide it under
111// `cfg(doc)`. This is an ad-hoc implementation of attribute privacy.
112#[repr(transparent)]
113pub struct CStr {
114 // FIXME: this should not be represented with a DST slice but rather with
115 // just a raw `c_char` along with some form of marker to make
116 // this an unsized type. Essentially `sizeof(&CStr)` should be the
117 // same as `sizeof(&c_char)` but `CStr` should be an unsized type.
118 inner: [c_char],
119}
120
121/// An error indicating that a nul byte was not in the expected position.
122///
123/// The slice used to create a [`CStr`] must have one and only one nul byte,
124/// positioned at the end.
125///
126/// This error is created by the [`CStr::from_bytes_with_nul`] method.
127/// See its documentation for more.
128///
129/// # Examples
130///
131/// ```
132/// use std::ffi::{CStr, FromBytesWithNulError};
133///
134/// let _: FromBytesWithNulError = CStr::from_bytes_with_nul(b"f\0oo").unwrap_err();
135/// ```
136#[derive(Clone, Copy, PartialEq, Eq, Debug)]
137#[stable(feature = "core_c_str", since = "1.64.0")]
138pub enum FromBytesWithNulError {
139 /// Data provided contains an interior nul byte at byte `position`.
140 InteriorNul {
141 /// The position of the interior nul byte.
142 position: usize,
143 },
144 /// Data provided is not nul terminated.
145 NotNulTerminated,
146}
147
148#[cfg(not(feature = "ferrocene_subset"))]
149#[stable(feature = "frombyteswithnulerror_impls", since = "1.17.0")]
150impl fmt::Display for FromBytesWithNulError {
151 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
152 match self {
153 Self::InteriorNul { position } => {
154 write!(f, "data provided contains an interior nul byte at byte position {position}")
155 }
156 Self::NotNulTerminated => write!(f, "data provided is not nul terminated"),
157 }
158 }
159}
160
161#[cfg(not(feature = "ferrocene_subset"))]
162#[stable(feature = "frombyteswithnulerror_impls", since = "1.17.0")]
163impl Error for FromBytesWithNulError {}
164
165/// An error indicating that no nul byte was present.
166///
167/// A slice used to create a [`CStr`] must contain a nul byte somewhere
168/// within the slice.
169///
170/// This error is created by the [`CStr::from_bytes_until_nul`] method.
171#[cfg(not(feature = "ferrocene_subset"))]
172#[derive(Clone, PartialEq, Eq, Debug)]
173#[stable(feature = "cstr_from_bytes_until_nul", since = "1.69.0")]
174pub struct FromBytesUntilNulError(());
175
176#[cfg(not(feature = "ferrocene_subset"))]
177#[stable(feature = "cstr_from_bytes_until_nul", since = "1.69.0")]
178impl fmt::Display for FromBytesUntilNulError {
179 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
180 write!(f, "data provided does not contain a nul")
181 }
182}
183
184/// Shows the underlying bytes as a normal string, with invalid UTF-8
185/// presented as hex escape sequences.
186#[stable(feature = "cstr_debug", since = "1.3.0")]
187impl fmt::Debug for CStr {
188 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
189 fmt::Debug::fmt(crate::bstr::ByteStr::from_bytes(self.to_bytes()), f)
190 }
191}
192
193#[cfg(not(feature = "ferrocene_subset"))]
194#[stable(feature = "cstr_default", since = "1.10.0")]
195impl Default for &CStr {
196 #[inline]
197 fn default() -> Self {
198 c""
199 }
200}
201
202impl CStr {
203 /// Wraps a raw C string with a safe C string wrapper.
204 ///
205 /// This function will wrap the provided `ptr` with a `CStr` wrapper, which
206 /// allows inspection and interoperation of non-owned C strings. The total
207 /// size of the terminated buffer must be smaller than [`isize::MAX`] **bytes**
208 /// in memory (a restriction from [`slice::from_raw_parts`]).
209 ///
210 /// # Safety
211 ///
212 /// * The memory pointed to by `ptr` must contain a valid nul terminator at the
213 /// end of the string.
214 ///
215 /// * `ptr` must be [valid] for reads of bytes up to and including the nul terminator.
216 /// This means in particular:
217 ///
218 /// * The entire memory range of this `CStr` must be contained within a single allocation!
219 /// * `ptr` must be non-null even for a zero-length cstr.
220 ///
221 /// * The memory referenced by the returned `CStr` must not be mutated for
222 /// the duration of lifetime `'a`.
223 ///
224 /// * The nul terminator must be within `isize::MAX` from `ptr`
225 ///
226 /// > **Note**: This operation is intended to be a 0-cost cast but it is
227 /// > currently implemented with an up-front calculation of the length of
228 /// > the string. This is not guaranteed to always be the case.
229 ///
230 /// # Caveat
231 ///
232 /// The lifetime for the returned slice is inferred from its usage. To prevent accidental misuse,
233 /// it's suggested to tie the lifetime to whichever source lifetime is safe in the context,
234 /// such as by providing a helper function taking the lifetime of a host value for the slice,
235 /// or by explicit annotation.
236 ///
237 /// # Examples
238 ///
239 /// ```
240 /// use std::ffi::{c_char, CStr};
241 ///
242 /// fn my_string() -> *const c_char {
243 /// c"hello".as_ptr()
244 /// }
245 ///
246 /// unsafe {
247 /// let slice = CStr::from_ptr(my_string());
248 /// assert_eq!(slice.to_str().unwrap(), "hello");
249 /// }
250 /// ```
251 ///
252 /// ```
253 /// use std::ffi::{c_char, CStr};
254 ///
255 /// const HELLO_PTR: *const c_char = {
256 /// const BYTES: &[u8] = b"Hello, world!\0";
257 /// BYTES.as_ptr().cast()
258 /// };
259 /// const HELLO: &CStr = unsafe { CStr::from_ptr(HELLO_PTR) };
260 ///
261 /// assert_eq!(c"Hello, world!", HELLO);
262 /// ```
263 ///
264 /// [valid]: core::ptr#safety
265 #[inline] // inline is necessary for codegen to see strlen.
266 #[must_use]
267 #[stable(feature = "rust1", since = "1.0.0")]
268 #[rustc_const_stable(feature = "const_cstr_from_ptr", since = "1.81.0")]
269 pub const unsafe fn from_ptr<'a>(ptr: *const c_char) -> &'a CStr {
270 // SAFETY: The caller has provided a pointer that points to a valid C
271 // string with a NUL terminator less than `isize::MAX` from `ptr`.
272 let len = unsafe { strlen(ptr) };
273
274 // SAFETY: The caller has provided a valid pointer with length less than
275 // `isize::MAX`, so `from_raw_parts` is safe. The content remains valid
276 // and doesn't change for the lifetime of the returned `CStr`. This
277 // means the call to `from_bytes_with_nul_unchecked` is correct.
278 //
279 // The cast from c_char to u8 is ok because a c_char is always one byte.
280 unsafe { Self::from_bytes_with_nul_unchecked(slice::from_raw_parts(ptr.cast(), len + 1)) }
281 }
282
283 /// Creates a C string wrapper from a byte slice with any number of nuls.
284 ///
285 /// This method will create a `CStr` from any byte slice that contains at
286 /// least one nul byte. Unlike with [`CStr::from_bytes_with_nul`], the caller
287 /// does not need to know where the nul byte is located.
288 ///
289 /// If the first byte is a nul character, this method will return an
290 /// empty `CStr`. If multiple nul characters are present, the `CStr` will
291 /// end at the first one.
292 ///
293 /// If the slice only has a single nul byte at the end, this method is
294 /// equivalent to [`CStr::from_bytes_with_nul`].
295 ///
296 /// # Examples
297 /// ```
298 /// use std::ffi::CStr;
299 ///
300 /// let mut buffer = [0u8; 16];
301 /// unsafe {
302 /// // Here we might call an unsafe C function that writes a string
303 /// // into the buffer.
304 /// let buf_ptr = buffer.as_mut_ptr();
305 /// buf_ptr.write_bytes(b'A', 8);
306 /// }
307 /// // Attempt to extract a C nul-terminated string from the buffer.
308 /// let c_str = CStr::from_bytes_until_nul(&buffer[..]).unwrap();
309 /// assert_eq!(c_str.to_str().unwrap(), "AAAAAAAA");
310 /// ```
311 ///
312 #[cfg(not(feature = "ferrocene_subset"))]
313 #[stable(feature = "cstr_from_bytes_until_nul", since = "1.69.0")]
314 #[rustc_const_stable(feature = "cstr_from_bytes_until_nul", since = "1.69.0")]
315 pub const fn from_bytes_until_nul(bytes: &[u8]) -> Result<&CStr, FromBytesUntilNulError> {
316 let nul_pos = memchr::memchr(0, bytes);
317 match nul_pos {
318 Some(nul_pos) => {
319 // FIXME(const-hack) replace with range index
320 // SAFETY: nul_pos + 1 <= bytes.len()
321 let subslice = unsafe { crate::slice::from_raw_parts(bytes.as_ptr(), nul_pos + 1) };
322 // SAFETY: We know there is a nul byte at nul_pos, so this slice
323 // (ending at the nul byte) is a well-formed C string.
324 Ok(unsafe { CStr::from_bytes_with_nul_unchecked(subslice) })
325 }
326 None => Err(FromBytesUntilNulError(())),
327 }
328 }
329
330 /// Creates a C string wrapper from a byte slice with exactly one nul
331 /// terminator.
332 ///
333 /// This function will cast the provided `bytes` to a `CStr`
334 /// wrapper after ensuring that the byte slice is nul-terminated
335 /// and does not contain any interior nul bytes.
336 ///
337 /// If the nul byte may not be at the end,
338 /// [`CStr::from_bytes_until_nul`] can be used instead.
339 ///
340 /// # Examples
341 ///
342 /// ```
343 /// use std::ffi::CStr;
344 ///
345 /// let cstr = CStr::from_bytes_with_nul(b"hello\0");
346 /// assert_eq!(cstr, Ok(c"hello"));
347 /// ```
348 ///
349 /// Creating a `CStr` without a trailing nul terminator is an error:
350 ///
351 /// ```
352 /// use std::ffi::{CStr, FromBytesWithNulError};
353 ///
354 /// let cstr = CStr::from_bytes_with_nul(b"hello");
355 /// assert_eq!(cstr, Err(FromBytesWithNulError::NotNulTerminated));
356 /// ```
357 ///
358 /// Creating a `CStr` with an interior nul byte is an error:
359 ///
360 /// ```
361 /// use std::ffi::{CStr, FromBytesWithNulError};
362 ///
363 /// let cstr = CStr::from_bytes_with_nul(b"he\0llo\0");
364 /// assert_eq!(cstr, Err(FromBytesWithNulError::InteriorNul { position: 2 }));
365 /// ```
366 #[stable(feature = "cstr_from_bytes", since = "1.10.0")]
367 #[rustc_const_stable(feature = "const_cstr_methods", since = "1.72.0")]
368 pub const fn from_bytes_with_nul(bytes: &[u8]) -> Result<&Self, FromBytesWithNulError> {
369 let nul_pos = memchr::memchr(0, bytes);
370 match nul_pos {
371 Some(nul_pos) if nul_pos + 1 == bytes.len() => {
372 // SAFETY: We know there is only one nul byte, at the end
373 // of the byte slice.
374 Ok(unsafe { Self::from_bytes_with_nul_unchecked(bytes) })
375 }
376 Some(position) => Err(FromBytesWithNulError::InteriorNul { position }),
377 None => Err(FromBytesWithNulError::NotNulTerminated),
378 }
379 }
380
381 /// Unsafely creates a C string wrapper from a byte slice.
382 ///
383 /// This function will cast the provided `bytes` to a `CStr` wrapper without
384 /// performing any sanity checks.
385 ///
386 /// # Safety
387 /// The provided slice **must** be nul-terminated and not contain any interior
388 /// nul bytes.
389 ///
390 /// # Examples
391 ///
392 /// ```
393 /// use std::ffi::CStr;
394 ///
395 /// let bytes = b"Hello world!\0";
396 ///
397 /// let cstr = unsafe { CStr::from_bytes_with_nul_unchecked(bytes) };
398 /// assert_eq!(cstr.to_bytes_with_nul(), bytes);
399 /// ```
400 #[inline]
401 #[must_use]
402 #[stable(feature = "cstr_from_bytes", since = "1.10.0")]
403 #[rustc_const_stable(feature = "const_cstr_unchecked", since = "1.59.0")]
404 #[rustc_allow_const_fn_unstable(const_eval_select)]
405 pub const unsafe fn from_bytes_with_nul_unchecked(bytes: &[u8]) -> &CStr {
406 const_eval_select!(
407 @capture { bytes: &[u8] } -> &CStr:
408 if const {
409 // Saturating so that an empty slice panics in the assert with a good
410 // message, not here due to underflow.
411 let mut i = bytes.len().saturating_sub(1);
412 assert!(!bytes.is_empty() && bytes[i] == 0, "input was not nul-terminated");
413
414 // Ending nul byte exists, skip to the rest.
415 while i != 0 {
416 i -= 1;
417 let byte = bytes[i];
418 assert!(byte != 0, "input contained interior nul");
419 }
420
421 // SAFETY: See runtime cast comment below.
422 unsafe { &*(bytes as *const [u8] as *const CStr) }
423 } else {
424 // Chance at catching some UB at runtime with debug builds.
425 debug_assert!(!bytes.is_empty() && bytes[bytes.len() - 1] == 0);
426
427 // SAFETY: Casting to CStr is safe because its internal representation
428 // is a [u8] too (safe only inside std).
429 // Dereferencing the obtained pointer is safe because it comes from a
430 // reference. Making a reference is then safe because its lifetime
431 // is bound by the lifetime of the given `bytes`.
432 unsafe { &*(bytes as *const [u8] as *const CStr) }
433 }
434 )
435 }
436
437 /// Returns the inner pointer to this C string.
438 ///
439 /// The returned pointer will be valid for as long as `self` is, and points
440 /// to a contiguous region of memory terminated with a 0 byte to represent
441 /// the end of the string.
442 ///
443 /// The type of the returned pointer is
444 /// [`*const c_char`][crate::ffi::c_char], and whether it's
445 /// an alias for `*const i8` or `*const u8` is platform-specific.
446 ///
447 /// **WARNING**
448 ///
449 /// The returned pointer is read-only; writing to it (including passing it
450 /// to C code that writes to it) causes undefined behavior.
451 ///
452 /// It is your responsibility to make sure that the underlying memory is not
453 /// freed too early. For example, the following code will cause undefined
454 /// behavior when `ptr` is used inside the `unsafe` block:
455 ///
456 /// ```no_run
457 /// # #![expect(dangling_pointers_from_temporaries)]
458 /// use std::ffi::{CStr, CString};
459 ///
460 /// // 💀 The meaning of this entire program is undefined,
461 /// // 💀 and nothing about its behavior is guaranteed,
462 /// // 💀 not even that its behavior resembles the code as written,
463 /// // 💀 just because it contains a single instance of undefined behavior!
464 ///
465 /// // 🚨 creates a dangling pointer to a temporary `CString`
466 /// // 🚨 that is deallocated at the end of the statement
467 /// let ptr = CString::new("Hi!".to_uppercase()).unwrap().as_ptr();
468 ///
469 /// // without undefined behavior, you would expect that `ptr` equals:
470 /// dbg!(CStr::from_bytes_with_nul(b"HI!\0").unwrap());
471 ///
472 /// // 🙏 Possibly the program behaved as expected so far,
473 /// // 🙏 and this just shows `ptr` is now garbage..., but
474 /// // 💀 this violates `CStr::from_ptr`'s safety contract
475 /// // 💀 leading to a dereference of a dangling pointer,
476 /// // 💀 which is immediate undefined behavior.
477 /// // 💀 *BOOM*, you're dead, your entire program has no meaning.
478 /// dbg!(unsafe { CStr::from_ptr(ptr) });
479 /// ```
480 ///
481 /// This happens because, the pointer returned by `as_ptr` does not carry any
482 /// lifetime information, and the `CString` is deallocated immediately after
483 /// the expression that it is part of has been evaluated.
484 /// To fix the problem, bind the `CString` to a local variable:
485 ///
486 /// ```
487 /// use std::ffi::{CStr, CString};
488 ///
489 /// let c_str = CString::new("Hi!".to_uppercase()).unwrap();
490 /// let ptr = c_str.as_ptr();
491 ///
492 /// assert_eq!(unsafe { CStr::from_ptr(ptr) }, c"HI!");
493 /// ```
494 #[cfg(not(feature = "ferrocene_subset"))]
495 #[inline]
496 #[must_use]
497 #[stable(feature = "rust1", since = "1.0.0")]
498 #[rustc_const_stable(feature = "const_str_as_ptr", since = "1.32.0")]
499 #[rustc_as_ptr]
500 #[rustc_never_returns_null_ptr]
501 pub const fn as_ptr(&self) -> *const c_char {
502 self.inner.as_ptr()
503 }
504
505 /// We could eventually expose this publicly, if we wanted.
506 #[cfg(not(feature = "ferrocene_subset"))]
507 #[inline]
508 #[must_use]
509 const fn as_non_null_ptr(&self) -> NonNull<c_char> {
510 // FIXME(const_trait_impl) replace with `NonNull::from`
511 // SAFETY: a reference is never null
512 unsafe { NonNull::new_unchecked(&self.inner as *const [c_char] as *mut [c_char]) }
513 .as_non_null_ptr()
514 }
515
516 /// Returns the length of `self`. Like C's `strlen`, this does not include the nul terminator.
517 ///
518 /// > **Note**: This method is currently implemented as a constant-time
519 /// > cast, but it is planned to alter its definition in the future to
520 /// > perform the length calculation whenever this method is called.
521 ///
522 /// # Examples
523 ///
524 /// ```
525 /// assert_eq!(c"foo".count_bytes(), 3);
526 /// assert_eq!(c"".count_bytes(), 0);
527 /// ```
528 #[cfg(not(feature = "ferrocene_subset"))]
529 #[inline]
530 #[must_use]
531 #[doc(alias("len", "strlen"))]
532 #[stable(feature = "cstr_count_bytes", since = "1.79.0")]
533 #[rustc_const_stable(feature = "const_cstr_from_ptr", since = "1.81.0")]
534 pub const fn count_bytes(&self) -> usize {
535 self.inner.len() - 1
536 }
537
538 /// Returns `true` if `self.to_bytes()` has a length of 0.
539 ///
540 /// # Examples
541 ///
542 /// ```
543 /// assert!(!c"foo".is_empty());
544 /// assert!(c"".is_empty());
545 /// ```
546 #[cfg(not(feature = "ferrocene_subset"))]
547 #[inline]
548 #[stable(feature = "cstr_is_empty", since = "1.71.0")]
549 #[rustc_const_stable(feature = "cstr_is_empty", since = "1.71.0")]
550 pub const fn is_empty(&self) -> bool {
551 // SAFETY: We know there is at least one byte; for empty strings it
552 // is the NUL terminator.
553 // FIXME(const-hack): use get_unchecked
554 unsafe { *self.inner.as_ptr() == 0 }
555 }
556
557 /// Converts this C string to a byte slice.
558 ///
559 /// The returned slice will **not** contain the trailing nul terminator that this C
560 /// string has.
561 ///
562 /// > **Note**: This method is currently implemented as a constant-time
563 /// > cast, but it is planned to alter its definition in the future to
564 /// > perform the length calculation whenever this method is called.
565 ///
566 /// # Examples
567 ///
568 /// ```
569 /// assert_eq!(c"foo".to_bytes(), b"foo");
570 /// ```
571 #[inline]
572 #[must_use = "this returns the result of the operation, \
573 without modifying the original"]
574 #[stable(feature = "rust1", since = "1.0.0")]
575 #[rustc_const_stable(feature = "const_cstr_methods", since = "1.72.0")]
576 pub const fn to_bytes(&self) -> &[u8] {
577 let bytes = self.to_bytes_with_nul();
578 // FIXME(const-hack) replace with range index
579 // SAFETY: to_bytes_with_nul returns slice with length at least 1
580 unsafe { slice::from_raw_parts(bytes.as_ptr(), bytes.len() - 1) }
581 }
582
583 /// Converts this C string to a byte slice containing the trailing 0 byte.
584 ///
585 /// This function is the equivalent of [`CStr::to_bytes`] except that it
586 /// will retain the trailing nul terminator instead of chopping it off.
587 ///
588 /// > **Note**: This method is currently implemented as a 0-cost cast, but
589 /// > it is planned to alter its definition in the future to perform the
590 /// > length calculation whenever this method is called.
591 ///
592 /// # Examples
593 ///
594 /// ```
595 /// assert_eq!(c"foo".to_bytes_with_nul(), b"foo\0");
596 /// ```
597 #[inline]
598 #[must_use = "this returns the result of the operation, \
599 without modifying the original"]
600 #[stable(feature = "rust1", since = "1.0.0")]
601 #[rustc_const_stable(feature = "const_cstr_methods", since = "1.72.0")]
602 pub const fn to_bytes_with_nul(&self) -> &[u8] {
603 // SAFETY: Transmuting a slice of `c_char`s to a slice of `u8`s
604 // is safe on all supported targets.
605 unsafe { &*((&raw const self.inner) as *const [u8]) }
606 }
607
608 /// Iterates over the bytes in this C string.
609 ///
610 /// The returned iterator will **not** contain the trailing nul terminator
611 /// that this C string has.
612 ///
613 /// # Examples
614 ///
615 /// ```
616 /// #![feature(cstr_bytes)]
617 ///
618 /// assert!(c"foo".bytes().eq(*b"foo"));
619 /// ```
620 #[cfg(not(feature = "ferrocene_subset"))]
621 #[inline]
622 #[unstable(feature = "cstr_bytes", issue = "112115")]
623 pub fn bytes(&self) -> Bytes<'_> {
624 Bytes::new(self)
625 }
626
627 /// Yields a <code>&[str]</code> slice if the `CStr` contains valid UTF-8.
628 ///
629 /// If the contents of the `CStr` are valid UTF-8 data, this
630 /// function will return the corresponding <code>&[str]</code> slice. Otherwise,
631 /// it will return an error with details of where UTF-8 validation failed.
632 ///
633 /// [str]: prim@str "str"
634 ///
635 /// # Examples
636 ///
637 /// ```
638 /// assert_eq!(c"foo".to_str(), Ok("foo"));
639 /// ```
640 #[cfg(not(feature = "ferrocene_subset"))]
641 #[stable(feature = "cstr_to_str", since = "1.4.0")]
642 #[rustc_const_stable(feature = "const_cstr_methods", since = "1.72.0")]
643 pub const fn to_str(&self) -> Result<&str, str::Utf8Error> {
644 // N.B., when `CStr` is changed to perform the length check in `.to_bytes()`
645 // instead of in `from_ptr()`, it may be worth considering if this should
646 // be rewritten to do the UTF-8 check inline with the length calculation
647 // instead of doing it afterwards.
648 str::from_utf8(self.to_bytes())
649 }
650
651 /// Returns an object that implements [`Display`] for safely printing a [`CStr`] that may
652 /// contain non-Unicode data.
653 ///
654 /// Behaves as if `self` were first lossily converted to a `str`, with invalid UTF-8 presented
655 /// as the Unicode replacement character: �.
656 ///
657 /// [`Display`]: fmt::Display
658 ///
659 /// # Examples
660 ///
661 /// ```
662 /// #![feature(cstr_display)]
663 ///
664 /// let cstr = c"Hello, world!";
665 /// println!("{}", cstr.display());
666 /// ```
667 #[cfg(not(feature = "ferrocene_subset"))]
668 #[unstable(feature = "cstr_display", issue = "139984")]
669 #[must_use = "this does not display the `CStr`; \
670 it returns an object that can be displayed"]
671 #[inline]
672 pub fn display(&self) -> impl fmt::Display {
673 crate::bstr::ByteStr::from_bytes(self.to_bytes())
674 }
675
676 /// Returns the same string as a string slice `&CStr`.
677 ///
678 /// This method is redundant when used directly on `&CStr`, but
679 /// it helps dereferencing other string-like types to string slices,
680 /// for example references to `Box<CStr>` or `Arc<CStr>`.
681 #[cfg(not(feature = "ferrocene_subset"))]
682 #[inline]
683 #[unstable(feature = "str_as_str", issue = "130366")]
684 pub const fn as_c_str(&self) -> &CStr {
685 self
686 }
687}
688
689#[cfg(not(feature = "ferrocene_subset"))]
690#[stable(feature = "c_string_eq_c_str", since = "1.90.0")]
691impl PartialEq<&Self> for CStr {
692 #[inline]
693 fn eq(&self, other: &&Self) -> bool {
694 *self == **other
695 }
696
697 #[inline]
698 fn ne(&self, other: &&Self) -> bool {
699 *self != **other
700 }
701}
702
703// `.to_bytes()` representations are compared instead of the inner `[c_char]`s,
704// because `c_char` is `i8` (not `u8`) on some platforms.
705// That is why this is implemented manually and not derived.
706#[cfg(not(feature = "ferrocene_subset"))]
707#[stable(feature = "rust1", since = "1.0.0")]
708impl PartialOrd for CStr {
709 #[inline]
710 fn partial_cmp(&self, other: &CStr) -> Option<Ordering> {
711 self.to_bytes().partial_cmp(&other.to_bytes())
712 }
713}
714
715#[cfg(not(feature = "ferrocene_subset"))]
716#[stable(feature = "rust1", since = "1.0.0")]
717impl Ord for CStr {
718 #[inline]
719 fn cmp(&self, other: &CStr) -> Ordering {
720 self.to_bytes().cmp(&other.to_bytes())
721 }
722}
723
724#[cfg(not(feature = "ferrocene_subset"))]
725#[stable(feature = "cstr_range_from", since = "1.47.0")]
726impl ops::Index<ops::RangeFrom<usize>> for CStr {
727 type Output = CStr;
728
729 #[inline]
730 fn index(&self, index: ops::RangeFrom<usize>) -> &CStr {
731 let bytes = self.to_bytes_with_nul();
732 // we need to manually check the starting index to account for the null
733 // byte, since otherwise we could get an empty string that doesn't end
734 // in a null.
735 if index.start < bytes.len() {
736 // SAFETY: Non-empty tail of a valid `CStr` is still a valid `CStr`.
737 unsafe { CStr::from_bytes_with_nul_unchecked(&bytes[index.start..]) }
738 } else {
739 panic!(
740 "index out of bounds: the len is {} but the index is {}",
741 bytes.len(),
742 index.start
743 );
744 }
745 }
746}
747
748#[cfg(not(feature = "ferrocene_subset"))]
749#[stable(feature = "cstring_asref", since = "1.7.0")]
750#[rustc_const_unstable(feature = "const_convert", issue = "143773")]
751impl const AsRef<CStr> for CStr {
752 #[inline]
753 fn as_ref(&self) -> &CStr {
754 self
755 }
756}
757
758/// Calculate the length of a nul-terminated string. Defers to C's `strlen` when possible.
759///
760/// # Safety
761///
762/// The pointer must point to a valid buffer that contains a NUL terminator. The NUL must be
763/// located within `isize::MAX` from `ptr`.
764#[inline]
765#[unstable(feature = "cstr_internals", issue = "none")]
766#[rustc_allow_const_fn_unstable(const_eval_select)]
767const unsafe fn strlen(ptr: *const c_char) -> usize {
768 const_eval_select!(
769 @capture { s: *const c_char = ptr } -> usize:
770 if const {
771 let mut len = 0;
772
773 // SAFETY: Outer caller has provided a pointer to a valid C string.
774 while unsafe { *s.add(len) } != 0 {
775 len += 1;
776 }
777
778 len
779 } else {
780 unsafe extern "C" {
781 /// Provided by libc or compiler_builtins.
782 fn strlen(s: *const c_char) -> usize;
783 }
784
785 // SAFETY: Outer caller has provided a pointer to a valid C string.
786 unsafe { strlen(s) }
787 }
788 )
789}
790
791/// An iterator over the bytes of a [`CStr`], without the nul terminator.
792///
793/// This struct is created by the [`bytes`] method on [`CStr`].
794/// See its documentation for more.
795///
796/// [`bytes`]: CStr::bytes
797#[cfg(not(feature = "ferrocene_subset"))]
798#[must_use = "iterators are lazy and do nothing unless consumed"]
799#[unstable(feature = "cstr_bytes", issue = "112115")]
800#[derive(Clone, Debug)]
801pub struct Bytes<'a> {
802 // since we know the string is nul-terminated, we only need one pointer
803 ptr: NonNull<u8>,
804 phantom: PhantomData<&'a [c_char]>,
805}
806
807#[cfg(not(feature = "ferrocene_subset"))]
808#[unstable(feature = "cstr_bytes", issue = "112115")]
809unsafe impl Send for Bytes<'_> {}
810
811#[cfg(not(feature = "ferrocene_subset"))]
812#[unstable(feature = "cstr_bytes", issue = "112115")]
813unsafe impl Sync for Bytes<'_> {}
814
815#[cfg(not(feature = "ferrocene_subset"))]
816impl<'a> Bytes<'a> {
817 #[inline]
818 fn new(s: &'a CStr) -> Self {
819 Self { ptr: s.as_non_null_ptr().cast(), phantom: PhantomData }
820 }
821
822 #[inline]
823 fn is_empty(&self) -> bool {
824 // SAFETY: We uphold that the pointer is always valid to dereference
825 // by starting with a valid C string and then never incrementing beyond
826 // the nul terminator.
827 unsafe { self.ptr.read() == 0 }
828 }
829}
830
831#[cfg(not(feature = "ferrocene_subset"))]
832#[unstable(feature = "cstr_bytes", issue = "112115")]
833impl Iterator for Bytes<'_> {
834 type Item = u8;
835
836 #[inline]
837 fn next(&mut self) -> Option<u8> {
838 // SAFETY: We only choose a pointer from a valid C string, which must
839 // be non-null and contain at least one value. Since we always stop at
840 // the nul terminator, which is guaranteed to exist, we can assume that
841 // the pointer is non-null and valid. This lets us safely dereference
842 // it and assume that adding 1 will create a new, non-null, valid
843 // pointer.
844 unsafe {
845 let ret = self.ptr.read();
846 if ret == 0 {
847 None
848 } else {
849 self.ptr = self.ptr.add(1);
850 Some(ret)
851 }
852 }
853 }
854
855 #[inline]
856 fn size_hint(&self) -> (usize, Option<usize>) {
857 if self.is_empty() { (0, Some(0)) } else { (1, None) }
858 }
859
860 #[inline]
861 fn count(self) -> usize {
862 // SAFETY: We always hold a valid pointer to a C string
863 unsafe { strlen(self.ptr.as_ptr().cast()) }
864 }
865}
866
867#[cfg(not(feature = "ferrocene_subset"))]
868#[unstable(feature = "cstr_bytes", issue = "112115")]
869impl FusedIterator for Bytes<'_> {}