Skip to main content

core/iter/traits/
collect.rs

1#[cfg(not(feature = "ferrocene_subset"))]
2use super::TrustedLen;
3
4/// Conversion from an [`Iterator`].
5///
6/// By implementing `FromIterator` for a type, you define how it will be
7/// created from an iterator. This is common for types which describe a
8/// collection of some kind.
9///
10/// If you want to create a collection from the contents of an iterator, the
11/// [`Iterator::collect()`] method is preferred. However, when you need to
12/// specify the container type, [`FromIterator::from_iter()`] can be more
13/// readable than using a turbofish (e.g. `::<Vec<_>>()`). See the
14/// [`Iterator::collect()`] documentation for more examples of its use.
15///
16/// See also: [`IntoIterator`].
17///
18/// # Examples
19///
20/// Basic usage:
21///
22/// ```
23/// let five_fives = std::iter::repeat(5).take(5);
24///
25/// let v = Vec::from_iter(five_fives);
26///
27/// assert_eq!(v, vec![5, 5, 5, 5, 5]);
28/// ```
29///
30/// Using [`Iterator::collect()`] to implicitly use `FromIterator`:
31///
32/// ```
33/// let five_fives = std::iter::repeat(5).take(5);
34///
35/// let v: Vec<i32> = five_fives.collect();
36///
37/// assert_eq!(v, vec![5, 5, 5, 5, 5]);
38/// ```
39///
40/// Using [`FromIterator::from_iter()`] as a more readable alternative to
41/// [`Iterator::collect()`]:
42///
43/// ```
44/// use std::collections::VecDeque;
45/// let first = (0..10).collect::<VecDeque<i32>>();
46/// let second = VecDeque::from_iter(0..10);
47///
48/// assert_eq!(first, second);
49/// ```
50///
51/// Implementing `FromIterator` for your type:
52///
53/// ```
54/// // A sample collection, that's just a wrapper over Vec<T>
55/// #[derive(Debug)]
56/// struct MyCollection(Vec<i32>);
57///
58/// // Let's give it some methods so we can create one and add things
59/// // to it.
60/// impl MyCollection {
61///     fn new() -> MyCollection {
62///         MyCollection(Vec::new())
63///     }
64///
65///     fn add(&mut self, elem: i32) {
66///         self.0.push(elem);
67///     }
68/// }
69///
70/// // and we'll implement FromIterator
71/// impl FromIterator<i32> for MyCollection {
72///     fn from_iter<I: IntoIterator<Item=i32>>(iter: I) -> Self {
73///         let mut c = MyCollection::new();
74///
75///         for i in iter {
76///             c.add(i);
77///         }
78///
79///         c
80///     }
81/// }
82///
83/// // Now we can make a new iterator...
84/// let iter = (0..5).into_iter();
85///
86/// // ... and make a MyCollection out of it
87/// let c = MyCollection::from_iter(iter);
88///
89/// assert_eq!(c.0, vec![0, 1, 2, 3, 4]);
90///
91/// // collect works too!
92///
93/// let iter = (0..5).into_iter();
94/// let c: MyCollection = iter.collect();
95///
96/// assert_eq!(c.0, vec![0, 1, 2, 3, 4]);
97/// ```
98#[stable(feature = "rust1", since = "1.0.0")]
99#[rustc_on_unimplemented(
100    on(
101        Self = "&[{A}]",
102        message = "a slice of type `{Self}` cannot be built since we need to store the elements somewhere",
103        label = "try explicitly collecting into a `Vec<{A}>`",
104    ),
105    on(
106        all(A = "{integer}", any(Self = "&[{integral}]",)),
107        message = "a slice of type `{Self}` cannot be built since we need to store the elements somewhere",
108        label = "try explicitly collecting into a `Vec<{A}>`",
109    ),
110    on(
111        Self = "[{A}]",
112        message = "a slice of type `{Self}` cannot be built since `{Self}` has no definite size",
113        label = "try explicitly collecting into a `Vec<{A}>`",
114    ),
115    on(
116        all(A = "{integer}", any(Self = "[{integral}]",)),
117        message = "a slice of type `{Self}` cannot be built since `{Self}` has no definite size",
118        label = "try explicitly collecting into a `Vec<{A}>`",
119    ),
120    on(
121        Self = "[{A}; _]",
122        message = "an array of type `{Self}` cannot be built directly from an iterator",
123        label = "try collecting into a `Vec<{A}>`, then using `.try_into()`",
124    ),
125    on(
126        all(A = "{integer}", any(Self = "[{integral}; _]",)),
127        message = "an array of type `{Self}` cannot be built directly from an iterator",
128        label = "try collecting into a `Vec<{A}>`, then using `.try_into()`",
129    ),
130    message = "a value of type `{Self}` cannot be built from an iterator \
131               over elements of type `{A}`",
132    label = "value of type `{Self}` cannot be built from `std::iter::Iterator<Item={A}>`"
133)]
134#[rustc_diagnostic_item = "FromIterator"]
135pub trait FromIterator<A>: Sized {
136    /// Creates a value from an iterator.
137    ///
138    /// See the [module-level documentation] for more.
139    ///
140    /// [module-level documentation]: crate::iter
141    ///
142    /// # Examples
143    ///
144    /// ```
145    /// let five_fives = std::iter::repeat(5).take(5);
146    ///
147    /// let v = Vec::from_iter(five_fives);
148    ///
149    /// assert_eq!(v, vec![5, 5, 5, 5, 5]);
150    /// ```
151    #[stable(feature = "rust1", since = "1.0.0")]
152    #[rustc_diagnostic_item = "from_iter_fn"]
153    fn from_iter<T: IntoIterator<Item = A>>(iter: T) -> Self;
154}
155
156/// Conversion into an [`Iterator`].
157///
158/// By implementing `IntoIterator` for a type, you define how it will be
159/// converted to an iterator. This is common for types which describe a
160/// collection of some kind.
161///
162/// One benefit of implementing `IntoIterator` is that your type will [work
163/// with Rust's `for` loop syntax](crate::iter#for-loops-and-intoiterator).
164///
165/// See also: [`FromIterator`].
166///
167/// # Examples
168///
169/// Basic usage:
170///
171/// ```
172/// let v = [1, 2, 3];
173/// let mut iter = v.into_iter();
174///
175/// assert_eq!(Some(1), iter.next());
176/// assert_eq!(Some(2), iter.next());
177/// assert_eq!(Some(3), iter.next());
178/// assert_eq!(None, iter.next());
179/// ```
180/// Implementing `IntoIterator` for your type:
181///
182/// ```
183/// // A sample collection, that's just a wrapper over Vec<T>
184/// #[derive(Debug)]
185/// struct MyCollection(Vec<i32>);
186///
187/// // Let's give it some methods so we can create one and add things
188/// // to it.
189/// impl MyCollection {
190///     fn new() -> MyCollection {
191///         MyCollection(Vec::new())
192///     }
193///
194///     fn add(&mut self, elem: i32) {
195///         self.0.push(elem);
196///     }
197/// }
198///
199/// // and we'll implement IntoIterator
200/// impl IntoIterator for MyCollection {
201///     type Item = i32;
202///     type IntoIter = std::vec::IntoIter<Self::Item>;
203///
204///     fn into_iter(self) -> Self::IntoIter {
205///         self.0.into_iter()
206///     }
207/// }
208///
209/// // Now we can make a new collection...
210/// let mut c = MyCollection::new();
211///
212/// // ... add some stuff to it ...
213/// c.add(0);
214/// c.add(1);
215/// c.add(2);
216///
217/// // ... and then turn it into an Iterator:
218/// for (i, n) in c.into_iter().enumerate() {
219///     assert_eq!(i as i32, n);
220/// }
221/// ```
222///
223/// It is common to use `IntoIterator` as a trait bound. This allows
224/// the input collection type to change, so long as it is still an
225/// iterator. Additional bounds can be specified by restricting on
226/// `Item`:
227///
228/// ```rust
229/// fn collect_as_strings<T>(collection: T) -> Vec<String>
230/// where
231///     T: IntoIterator,
232///     T::Item: std::fmt::Debug,
233/// {
234///     collection
235///         .into_iter()
236///         .map(|item| format!("{item:?}"))
237///         .collect()
238/// }
239/// ```
240#[rustc_diagnostic_item = "IntoIterator"]
241#[rustc_on_unimplemented(
242    on(
243        Self = "core::ops::range::RangeTo<Idx>",
244        label = "if you meant to iterate until a value, add a starting value",
245        note = "`..end` is a `RangeTo`, which cannot be iterated on; you might have meant to have a \
246              bounded `Range`: `0..end`"
247    ),
248    on(
249        Self = "core::ops::range::RangeToInclusive<Idx>",
250        label = "if you meant to iterate until a value (including it), add a starting value",
251        note = "`..=end` is a `RangeToInclusive`, which cannot be iterated on; you might have meant \
252              to have a bounded `RangeInclusive`: `0..=end`"
253    ),
254    on(
255        Self = "[]",
256        label = "`{Self}` is not an iterator; try calling `.into_iter()` or `.iter()`"
257    ),
258    on(Self = "&[]", label = "`{Self}` is not an iterator; try calling `.iter()`"),
259    on(
260        Self = "alloc::vec::Vec<T, A>",
261        label = "`{Self}` is not an iterator; try calling `.into_iter()` or `.iter()`"
262    ),
263    on(Self = "&str", label = "`{Self}` is not an iterator; try calling `.chars()` or `.bytes()`"),
264    on(
265        Self = "alloc::string::String",
266        label = "`{Self}` is not an iterator; try calling `.chars()` or `.bytes()`"
267    ),
268    on(
269        Self = "{integral}",
270        note = "if you want to iterate between `start` until a value `end`, use the exclusive range \
271              syntax `start..end` or the inclusive range syntax `start..=end`"
272    ),
273    on(
274        Self = "{float}",
275        note = "if you want to iterate between `start` until a value `end`, use the exclusive range \
276              syntax `start..end` or the inclusive range syntax `start..=end`"
277    ),
278    label = "`{Self}` is not an iterator",
279    message = "`{Self}` is not an iterator"
280)]
281#[rustc_skip_during_method_dispatch(array, boxed_slice)]
282#[stable(feature = "rust1", since = "1.0.0")]
283pub trait IntoIterator {
284    /// The type of the elements being iterated over.
285    #[rustc_diagnostic_item = "IntoIteratorItem"]
286    #[stable(feature = "rust1", since = "1.0.0")]
287    type Item;
288
289    /// Which kind of iterator are we turning this into?
290    #[stable(feature = "rust1", since = "1.0.0")]
291    type IntoIter: Iterator<Item = Self::Item>;
292
293    /// Creates an iterator from a value.
294    ///
295    /// See the [module-level documentation] for more.
296    ///
297    /// [module-level documentation]: crate::iter
298    ///
299    /// # Examples
300    ///
301    /// ```
302    /// let v = [1, 2, 3];
303    /// let mut iter = v.into_iter();
304    ///
305    /// assert_eq!(Some(1), iter.next());
306    /// assert_eq!(Some(2), iter.next());
307    /// assert_eq!(Some(3), iter.next());
308    /// assert_eq!(None, iter.next());
309    /// ```
310    #[lang = "into_iter"]
311    #[stable(feature = "rust1", since = "1.0.0")]
312    fn into_iter(self) -> Self::IntoIter;
313}
314
315#[stable(feature = "rust1", since = "1.0.0")]
316impl<I: Iterator> IntoIterator for I {
317    type Item = I::Item;
318    type IntoIter = I;
319
320    #[inline]
321    fn into_iter(self) -> I {
322        self
323    }
324}
325
326/// Extend a collection with the contents of an iterator.
327///
328/// Iterators produce a series of values, and collections can also be thought
329/// of as a series of values. The `Extend` trait bridges this gap, allowing you
330/// to extend a collection by including the contents of that iterator. When
331/// extending a collection with an already existing key, that entry is updated
332/// or, in the case of collections that permit multiple entries with equal
333/// keys, that entry is inserted.
334///
335/// # Examples
336///
337/// Basic usage:
338///
339/// ```
340/// // You can extend a String with some chars:
341/// let mut message = String::from("The first three letters are: ");
342///
343/// message.extend(&['a', 'b', 'c']);
344///
345/// assert_eq!("abc", &message[29..32]);
346/// ```
347///
348/// Implementing `Extend`:
349///
350/// ```
351/// // A sample collection, that's just a wrapper over Vec<T>
352/// #[derive(Debug)]
353/// struct MyCollection(Vec<i32>);
354///
355/// // Let's give it some methods so we can create one and add things
356/// // to it.
357/// impl MyCollection {
358///     fn new() -> MyCollection {
359///         MyCollection(Vec::new())
360///     }
361///
362///     fn add(&mut self, elem: i32) {
363///         self.0.push(elem);
364///     }
365/// }
366///
367/// // since MyCollection has a list of i32s, we implement Extend for i32
368/// impl Extend<i32> for MyCollection {
369///
370///     // This is a bit simpler with the concrete type signature: we can call
371///     // extend on anything which can be turned into an Iterator which gives
372///     // us i32s. Because we need i32s to put into MyCollection.
373///     fn extend<T: IntoIterator<Item=i32>>(&mut self, iter: T) {
374///
375///         // The implementation is very straightforward: loop through the
376///         // iterator, and add() each element to ourselves.
377///         for elem in iter {
378///             self.add(elem);
379///         }
380///     }
381/// }
382///
383/// let mut c = MyCollection::new();
384///
385/// c.add(5);
386/// c.add(6);
387/// c.add(7);
388///
389/// // let's extend our collection with three more numbers
390/// c.extend(vec![1, 2, 3]);
391///
392/// // we've added these elements onto the end
393/// assert_eq!("MyCollection([5, 6, 7, 1, 2, 3])", format!("{c:?}"));
394/// ```
395#[stable(feature = "rust1", since = "1.0.0")]
396pub trait Extend<A> {
397    /// Extends a collection with the contents of an iterator.
398    ///
399    /// As this is the only required method for this trait, the [trait-level] docs
400    /// contain more details.
401    ///
402    /// [trait-level]: Extend
403    ///
404    /// # Examples
405    ///
406    /// ```
407    /// // You can extend a String with some chars:
408    /// let mut message = String::from("abc");
409    ///
410    /// message.extend(['d', 'e', 'f'].iter());
411    ///
412    /// assert_eq!("abcdef", &message);
413    /// ```
414    #[stable(feature = "rust1", since = "1.0.0")]
415    fn extend<T: IntoIterator<Item = A>>(&mut self, iter: T);
416
417    /// Extends a collection with exactly one element.
418    #[unstable(feature = "extend_one", issue = "72631")]
419    fn extend_one(&mut self, item: A) {
420        self.extend(Some(item));
421    }
422
423    /// Reserves capacity in a collection for the given number of additional elements.
424    ///
425    /// The default implementation does nothing.
426    #[unstable(feature = "extend_one", issue = "72631")]
427    fn extend_reserve(&mut self, additional: usize) {
428        let _ = additional;
429    }
430
431    /// Extends a collection with one element, without checking there is enough capacity for it.
432    ///
433    /// # Safety
434    ///
435    /// **For callers:** This must only be called when we know the collection has enough capacity
436    /// to contain the new item, for example because we previously called `extend_reserve`.
437    ///
438    /// **For implementors:** For a collection to unsafely rely on this method's safety precondition (that is,
439    /// invoke UB if they are violated), it must implement `extend_reserve` correctly. In other words,
440    /// callers may assume that if they `extend_reserve`ed enough space they can call this method.
441    // This method is for internal usage only. It is only on the trait because of specialization's limitations.
442    #[unstable(feature = "extend_one_unchecked", issue = "none")]
443    #[doc(hidden)]
444    unsafe fn extend_one_unchecked(&mut self, item: A)
445    where
446        Self: Sized,
447    {
448        self.extend_one(item);
449    }
450}
451
452#[stable(feature = "extend_for_unit", since = "1.28.0")]
453#[cfg(not(feature = "ferrocene_subset"))]
454impl Extend<()> for () {
455    fn extend<T: IntoIterator<Item = ()>>(&mut self, iter: T) {
456        iter.into_iter().for_each(drop)
457    }
458    fn extend_one(&mut self, _item: ()) {}
459}
460
461/// This trait is implemented for tuples up to twelve items long. The `impl`s for
462/// 1- and 3- through 12-ary tuples were stabilized after 2-tuples, in 1.85.0.
463#[doc(fake_variadic)] // the other implementations are below.
464#[stable(feature = "extend_for_tuple", since = "1.56.0")]
465#[cfg(not(feature = "ferrocene_subset"))]
466impl<T, ExtendT> Extend<(T,)> for (ExtendT,)
467where
468    ExtendT: Extend<T>,
469{
470    /// Allows to `extend` a tuple of collections that also implement `Extend`.
471    ///
472    /// See also: [`Iterator::unzip`]
473    ///
474    /// # Examples
475    /// ```
476    /// // Example given for a 2-tuple, but 1- through 12-tuples are supported
477    /// let mut tuple = (vec![0], vec![1]);
478    /// tuple.extend([(2, 3), (4, 5), (6, 7)]);
479    /// assert_eq!(tuple.0, [0, 2, 4, 6]);
480    /// assert_eq!(tuple.1, [1, 3, 5, 7]);
481    ///
482    /// // also allows for arbitrarily nested tuples as elements
483    /// let mut nested_tuple = (vec![1], (vec![2], vec![3]));
484    /// nested_tuple.extend([(4, (5, 6)), (7, (8, 9))]);
485    ///
486    /// let (a, (b, c)) = nested_tuple;
487    /// assert_eq!(a, [1, 4, 7]);
488    /// assert_eq!(b, [2, 5, 8]);
489    /// assert_eq!(c, [3, 6, 9]);
490    /// ```
491    fn extend<I: IntoIterator<Item = (T,)>>(&mut self, iter: I) {
492        self.0.extend(iter.into_iter().map(|t| t.0));
493    }
494
495    fn extend_one(&mut self, item: (T,)) {
496        self.0.extend_one(item.0)
497    }
498
499    fn extend_reserve(&mut self, additional: usize) {
500        self.0.extend_reserve(additional)
501    }
502
503    unsafe fn extend_one_unchecked(&mut self, item: (T,)) {
504        // SAFETY: the caller guarantees all preconditions.
505        unsafe { self.0.extend_one_unchecked(item.0) }
506    }
507}
508
509/// This implementation turns an iterator of tuples into a tuple of types which implement
510/// [`Default`] and [`Extend`].
511///
512/// This is similar to [`Iterator::unzip`], but is also composable with other [`FromIterator`]
513/// implementations:
514///
515/// ```rust
516/// # fn main() -> Result<(), core::num::ParseIntError> {
517/// let string = "1,2,123,4";
518///
519/// // Example given for a 2-tuple, but 1- through 12-tuples are supported
520/// let (numbers, lengths): (Vec<_>, Vec<_>) = string
521///     .split(',')
522///     .map(|s| s.parse().map(|n: u32| (n, s.len())))
523///     .collect::<Result<_, _>>()?;
524///
525/// assert_eq!(numbers, [1, 2, 123, 4]);
526/// assert_eq!(lengths, [1, 1, 3, 1]);
527/// # Ok(()) }
528/// ```
529#[doc(fake_variadic)] // the other implementations are below.
530#[stable(feature = "from_iterator_for_tuple", since = "1.79.0")]
531#[cfg(not(feature = "ferrocene_subset"))]
532impl<T, ExtendT> FromIterator<(T,)> for (ExtendT,)
533where
534    ExtendT: Default + Extend<T>,
535{
536    fn from_iter<Iter: IntoIterator<Item = (T,)>>(iter: Iter) -> Self {
537        let mut res = ExtendT::default();
538        res.extend(iter.into_iter().map(|t| t.0));
539        (res,)
540    }
541}
542
543/// An implementation of [`extend`](Extend::extend) that calls `extend_one` or
544/// `extend_one_unchecked` for each element of the iterator.
545#[cfg(not(feature = "ferrocene_subset"))]
546fn default_extend<ExtendT, I, T>(collection: &mut ExtendT, iter: I)
547where
548    ExtendT: Extend<T>,
549    I: IntoIterator<Item = T>,
550{
551    // Specialize on `TrustedLen` and call `extend_one_unchecked` where
552    // applicable.
553    trait SpecExtend<I> {
554        fn extend(&mut self, iter: I);
555    }
556
557    // Extracting these to separate functions avoid monomorphising the closures
558    // for every iterator type.
559    fn extender<ExtendT, T>(collection: &mut ExtendT) -> impl FnMut(T) + use<'_, ExtendT, T>
560    where
561        ExtendT: Extend<T>,
562    {
563        move |item| collection.extend_one(item)
564    }
565
566    unsafe fn unchecked_extender<ExtendT, T>(
567        collection: &mut ExtendT,
568    ) -> impl FnMut(T) + use<'_, ExtendT, T>
569    where
570        ExtendT: Extend<T>,
571    {
572        // SAFETY: we make sure that there is enough space at the callsite of
573        // this function.
574        move |item| unsafe { collection.extend_one_unchecked(item) }
575    }
576
577    impl<ExtendT, I, T> SpecExtend<I> for ExtendT
578    where
579        ExtendT: Extend<T>,
580        I: Iterator<Item = T>,
581    {
582        default fn extend(&mut self, iter: I) {
583            let (lower_bound, _) = iter.size_hint();
584            if lower_bound > 0 {
585                self.extend_reserve(lower_bound);
586            }
587
588            iter.for_each(extender(self))
589        }
590    }
591
592    impl<ExtendT, I, T> SpecExtend<I> for ExtendT
593    where
594        ExtendT: Extend<T>,
595        I: TrustedLen<Item = T>,
596    {
597        fn extend(&mut self, iter: I) {
598            let (lower_bound, upper_bound) = iter.size_hint();
599            if lower_bound > 0 {
600                self.extend_reserve(lower_bound);
601            }
602
603            if upper_bound.is_none() {
604                // We cannot reserve more than `usize::MAX` items, and this is likely to go out of memory anyway.
605                iter.for_each(extender(self))
606            } else {
607                // SAFETY: We reserve enough space for the `size_hint`, and the iterator is
608                // `TrustedLen` so its `size_hint` is exact.
609                iter.for_each(unsafe { unchecked_extender(self) })
610            }
611        }
612    }
613
614    SpecExtend::extend(collection, iter.into_iter());
615}
616
617// Implements `Extend` and `FromIterator` for tuples with length larger than one.
618macro_rules! impl_extend_tuple {
619    ($(($ty:tt, $extend_ty:tt, $index:tt)),+) => {
620        #[doc(hidden)]
621        #[stable(feature = "extend_for_tuple", since = "1.56.0")]
622        #[cfg(not(feature = "ferrocene_subset"))]
623        impl<$($ty,)+ $($extend_ty,)+> Extend<($($ty,)+)> for ($($extend_ty,)+)
624        where
625            $($extend_ty: Extend<$ty>,)+
626        {
627            fn extend<T: IntoIterator<Item = ($($ty,)+)>>(&mut self, iter: T) {
628                default_extend(self, iter)
629            }
630
631            fn extend_one(&mut self, item: ($($ty,)+)) {
632                $(self.$index.extend_one(item.$index);)+
633            }
634
635            fn extend_reserve(&mut self, additional: usize) {
636                $(self.$index.extend_reserve(additional);)+
637            }
638
639            unsafe fn extend_one_unchecked(&mut self, item: ($($ty,)+)) {
640                // SAFETY: Those are our safety preconditions, and we correctly forward `extend_reserve`.
641                unsafe {
642                    $(self.$index.extend_one_unchecked(item.$index);)+
643                }
644            }
645        }
646
647        #[doc(hidden)]
648        #[stable(feature = "from_iterator_for_tuple", since = "1.79.0")]
649        #[cfg(not(feature = "ferrocene_subset"))]
650        impl<$($ty,)+ $($extend_ty,)+> FromIterator<($($ty,)+)> for ($($extend_ty,)+)
651        where
652            $($extend_ty: Default + Extend<$ty>,)+
653        {
654            fn from_iter<Iter: IntoIterator<Item = ($($ty,)+)>>(iter: Iter) -> Self {
655                let mut res = Self::default();
656                res.extend(iter);
657                res
658            }
659        }
660    };
661}
662
663impl_extend_tuple!((A, ExA, 0), (B, ExB, 1));
664impl_extend_tuple!((A, ExA, 0), (B, ExB, 1), (C, ExC, 2));
665impl_extend_tuple!((A, ExA, 0), (B, ExB, 1), (C, ExC, 2), (D, ExD, 3));
666impl_extend_tuple!((A, ExA, 0), (B, ExB, 1), (C, ExC, 2), (D, ExD, 3), (E, ExE, 4));
667impl_extend_tuple!((A, ExA, 0), (B, ExB, 1), (C, ExC, 2), (D, ExD, 3), (E, ExE, 4), (F, ExF, 5));
668impl_extend_tuple!(
669    (A, ExA, 0),
670    (B, ExB, 1),
671    (C, ExC, 2),
672    (D, ExD, 3),
673    (E, ExE, 4),
674    (F, ExF, 5),
675    (G, ExG, 6)
676);
677impl_extend_tuple!(
678    (A, ExA, 0),
679    (B, ExB, 1),
680    (C, ExC, 2),
681    (D, ExD, 3),
682    (E, ExE, 4),
683    (F, ExF, 5),
684    (G, ExG, 6),
685    (H, ExH, 7)
686);
687impl_extend_tuple!(
688    (A, ExA, 0),
689    (B, ExB, 1),
690    (C, ExC, 2),
691    (D, ExD, 3),
692    (E, ExE, 4),
693    (F, ExF, 5),
694    (G, ExG, 6),
695    (H, ExH, 7),
696    (I, ExI, 8)
697);
698impl_extend_tuple!(
699    (A, ExA, 0),
700    (B, ExB, 1),
701    (C, ExC, 2),
702    (D, ExD, 3),
703    (E, ExE, 4),
704    (F, ExF, 5),
705    (G, ExG, 6),
706    (H, ExH, 7),
707    (I, ExI, 8),
708    (J, ExJ, 9)
709);
710impl_extend_tuple!(
711    (A, ExA, 0),
712    (B, ExB, 1),
713    (C, ExC, 2),
714    (D, ExD, 3),
715    (E, ExE, 4),
716    (F, ExF, 5),
717    (G, ExG, 6),
718    (H, ExH, 7),
719    (I, ExI, 8),
720    (J, ExJ, 9),
721    (K, ExK, 10)
722);
723impl_extend_tuple!(
724    (A, ExA, 0),
725    (B, ExB, 1),
726    (C, ExC, 2),
727    (D, ExD, 3),
728    (E, ExE, 4),
729    (F, ExF, 5),
730    (G, ExG, 6),
731    (H, ExH, 7),
732    (I, ExI, 8),
733    (J, ExJ, 9),
734    (K, ExK, 10),
735    (L, ExL, 11)
736);