core/iter/traits/
iterator.rs

1#[cfg(not(feature = "ferrocene_certified"))]
2use super::super::{
3    ArrayChunks, ByRefSized, Chain, Cloned, Copied, Cycle, Enumerate, Filter, FilterMap, FlatMap,
4    Flatten, Fuse, Inspect, Intersperse, IntersperseWith, Map, MapWhile, MapWindows, Peekable,
5    Product, Rev, Scan, Skip, SkipWhile, StepBy, Sum, Take, TakeWhile, TrustedRandomAccessNoCoerce,
6    Zip, try_process,
7};
8#[cfg(not(feature = "ferrocene_certified"))]
9use super::TrustedLen;
10#[cfg(not(feature = "ferrocene_certified"))]
11use crate::array;
12#[cfg(not(feature = "ferrocene_certified"))]
13use crate::cmp::{self, Ordering};
14#[cfg(not(feature = "ferrocene_certified"))]
15use crate::num::NonZero;
16#[cfg(not(feature = "ferrocene_certified"))]
17use crate::ops::{ChangeOutputType, ControlFlow, FromResidual, Residual, Try};
18
19// Ferrocene addition: imports for certified subset
20#[cfg(feature = "ferrocene_certified")]
21#[rustfmt::skip]
22use super::super::{Cloned, Map};
23
24#[cfg(not(feature = "ferrocene_certified"))]
25fn _assert_is_dyn_compatible(_: &dyn Iterator<Item = ()>) {}
26
27/// A trait for dealing with iterators.
28///
29/// This is the main iterator trait. For more about the concept of iterators
30/// generally, please see the [module-level documentation]. In particular, you
31/// may want to know how to [implement `Iterator`][impl].
32///
33/// [module-level documentation]: crate::iter
34/// [impl]: crate::iter#implementing-iterator
35#[stable(feature = "rust1", since = "1.0.0")]
36#[rustc_on_unimplemented(
37    on(
38        Self = "core::ops::range::RangeTo<Idx>",
39        note = "you might have meant to use a bounded `Range`"
40    ),
41    on(
42        Self = "core::ops::range::RangeToInclusive<Idx>",
43        note = "you might have meant to use a bounded `RangeInclusive`"
44    ),
45    label = "`{Self}` is not an iterator",
46    message = "`{Self}` is not an iterator"
47)]
48#[cfg_attr(not(feature = "ferrocene_certified"), doc(notable_trait))]
49#[lang = "iterator"]
50#[rustc_diagnostic_item = "Iterator"]
51#[must_use = "iterators are lazy and do nothing unless consumed"]
52pub trait Iterator {
53    /// The type of the elements being iterated over.
54    #[rustc_diagnostic_item = "IteratorItem"]
55    #[stable(feature = "rust1", since = "1.0.0")]
56    type Item;
57
58    /// Advances the iterator and returns the next value.
59    ///
60    /// Returns [`None`] when iteration is finished. Individual iterator
61    /// implementations may choose to resume iteration, and so calling `next()`
62    /// again may or may not eventually start returning [`Some(Item)`] again at some
63    /// point.
64    ///
65    /// [`Some(Item)`]: Some
66    ///
67    /// # Examples
68    ///
69    /// ```
70    /// let a = [1, 2, 3];
71    ///
72    /// let mut iter = a.into_iter();
73    ///
74    /// // A call to next() returns the next value...
75    /// assert_eq!(Some(1), iter.next());
76    /// assert_eq!(Some(2), iter.next());
77    /// assert_eq!(Some(3), iter.next());
78    ///
79    /// // ... and then None once it's over.
80    /// assert_eq!(None, iter.next());
81    ///
82    /// // More calls may or may not return `None`. Here, they always will.
83    /// assert_eq!(None, iter.next());
84    /// assert_eq!(None, iter.next());
85    /// ```
86    #[lang = "next"]
87    #[stable(feature = "rust1", since = "1.0.0")]
88    fn next(&mut self) -> Option<Self::Item>;
89
90    /// Advances the iterator and returns an array containing the next `N` values.
91    ///
92    /// If there are not enough elements to fill the array then `Err` is returned
93    /// containing an iterator over the remaining elements.
94    ///
95    /// # Examples
96    ///
97    /// Basic usage:
98    ///
99    /// ```
100    /// #![feature(iter_next_chunk)]
101    ///
102    /// let mut iter = "lorem".chars();
103    ///
104    /// assert_eq!(iter.next_chunk().unwrap(), ['l', 'o']);              // N is inferred as 2
105    /// assert_eq!(iter.next_chunk().unwrap(), ['r', 'e', 'm']);         // N is inferred as 3
106    /// assert_eq!(iter.next_chunk::<4>().unwrap_err().as_slice(), &[]); // N is explicitly 4
107    /// ```
108    ///
109    /// Split a string and get the first three items.
110    ///
111    /// ```
112    /// #![feature(iter_next_chunk)]
113    ///
114    /// let quote = "not all those who wander are lost";
115    /// let [first, second, third] = quote.split_whitespace().next_chunk().unwrap();
116    /// assert_eq!(first, "not");
117    /// assert_eq!(second, "all");
118    /// assert_eq!(third, "those");
119    /// ```
120    #[inline]
121    #[unstable(feature = "iter_next_chunk", reason = "recently added", issue = "98326")]
122    #[cfg(not(feature = "ferrocene_certified"))]
123    fn next_chunk<const N: usize>(
124        &mut self,
125    ) -> Result<[Self::Item; N], array::IntoIter<Self::Item, N>>
126    where
127        Self: Sized,
128    {
129        array::iter_next_chunk(self)
130    }
131
132    /// Returns the bounds on the remaining length of the iterator.
133    ///
134    /// Specifically, `size_hint()` returns a tuple where the first element
135    /// is the lower bound, and the second element is the upper bound.
136    ///
137    /// The second half of the tuple that is returned is an <code>[Option]<[usize]></code>.
138    /// A [`None`] here means that either there is no known upper bound, or the
139    /// upper bound is larger than [`usize`].
140    ///
141    /// # Implementation notes
142    ///
143    /// It is not enforced that an iterator implementation yields the declared
144    /// number of elements. A buggy iterator may yield less than the lower bound
145    /// or more than the upper bound of elements.
146    ///
147    /// `size_hint()` is primarily intended to be used for optimizations such as
148    /// reserving space for the elements of the iterator, but must not be
149    /// trusted to e.g., omit bounds checks in unsafe code. An incorrect
150    /// implementation of `size_hint()` should not lead to memory safety
151    /// violations.
152    ///
153    /// That said, the implementation should provide a correct estimation,
154    /// because otherwise it would be a violation of the trait's protocol.
155    ///
156    /// The default implementation returns <code>(0, [None])</code> which is correct for any
157    /// iterator.
158    ///
159    /// # Examples
160    ///
161    /// Basic usage:
162    ///
163    /// ```
164    /// let a = [1, 2, 3];
165    /// let mut iter = a.iter();
166    ///
167    /// assert_eq!((3, Some(3)), iter.size_hint());
168    /// let _ = iter.next();
169    /// assert_eq!((2, Some(2)), iter.size_hint());
170    /// ```
171    ///
172    /// A more complex example:
173    ///
174    /// ```
175    /// // The even numbers in the range of zero to nine.
176    /// let iter = (0..10).filter(|x| x % 2 == 0);
177    ///
178    /// // We might iterate from zero to ten times. Knowing that it's five
179    /// // exactly wouldn't be possible without executing filter().
180    /// assert_eq!((0, Some(10)), iter.size_hint());
181    ///
182    /// // Let's add five more numbers with chain()
183    /// let iter = (0..10).filter(|x| x % 2 == 0).chain(15..20);
184    ///
185    /// // now both bounds are increased by five
186    /// assert_eq!((5, Some(15)), iter.size_hint());
187    /// ```
188    ///
189    /// Returning `None` for an upper bound:
190    ///
191    /// ```
192    /// // an infinite iterator has no upper bound
193    /// // and the maximum possible lower bound
194    /// let iter = 0..;
195    ///
196    /// assert_eq!((usize::MAX, None), iter.size_hint());
197    /// ```
198    #[inline]
199    #[stable(feature = "rust1", since = "1.0.0")]
200    fn size_hint(&self) -> (usize, Option<usize>) {
201        (0, None)
202    }
203
204    /// Consumes the iterator, counting the number of iterations and returning it.
205    ///
206    /// This method will call [`next`] repeatedly until [`None`] is encountered,
207    /// returning the number of times it saw [`Some`]. Note that [`next`] has to be
208    /// called at least once even if the iterator does not have any elements.
209    ///
210    /// [`next`]: Iterator::next
211    ///
212    /// # Overflow Behavior
213    ///
214    /// The method does no guarding against overflows, so counting elements of
215    /// an iterator with more than [`usize::MAX`] elements either produces the
216    /// wrong result or panics. If overflow checks are enabled, a panic is
217    /// guaranteed.
218    ///
219    /// # Panics
220    ///
221    /// This function might panic if the iterator has more than [`usize::MAX`]
222    /// elements.
223    ///
224    /// # Examples
225    ///
226    /// ```
227    /// let a = [1, 2, 3];
228    /// assert_eq!(a.iter().count(), 3);
229    ///
230    /// let a = [1, 2, 3, 4, 5];
231    /// assert_eq!(a.iter().count(), 5);
232    /// ```
233    #[inline]
234    #[stable(feature = "rust1", since = "1.0.0")]
235    #[cfg(not(feature = "ferrocene_certified"))]
236    fn count(self) -> usize
237    where
238        Self: Sized,
239    {
240        self.fold(
241            0,
242            #[rustc_inherit_overflow_checks]
243            |count, _| count + 1,
244        )
245    }
246
247    /// Consumes the iterator, returning the last element.
248    ///
249    /// This method will evaluate the iterator until it returns [`None`]. While
250    /// doing so, it keeps track of the current element. After [`None`] is
251    /// returned, `last()` will then return the last element it saw.
252    ///
253    /// # Examples
254    ///
255    /// ```
256    /// let a = [1, 2, 3];
257    /// assert_eq!(a.into_iter().last(), Some(3));
258    ///
259    /// let a = [1, 2, 3, 4, 5];
260    /// assert_eq!(a.into_iter().last(), Some(5));
261    /// ```
262    #[inline]
263    #[stable(feature = "rust1", since = "1.0.0")]
264    #[cfg(not(feature = "ferrocene_certified"))]
265    fn last(self) -> Option<Self::Item>
266    where
267        Self: Sized,
268    {
269        #[inline]
270        fn some<T>(_: Option<T>, x: T) -> Option<T> {
271            Some(x)
272        }
273
274        self.fold(None, some)
275    }
276
277    /// Advances the iterator by `n` elements.
278    ///
279    /// This method will eagerly skip `n` elements by calling [`next`] up to `n`
280    /// times until [`None`] is encountered.
281    ///
282    /// `advance_by(n)` will return `Ok(())` if the iterator successfully advances by
283    /// `n` elements, or a `Err(NonZero<usize>)` with value `k` if [`None`] is encountered,
284    /// where `k` is remaining number of steps that could not be advanced because the iterator ran out.
285    /// If `self` is empty and `n` is non-zero, then this returns `Err(n)`.
286    /// Otherwise, `k` is always less than `n`.
287    ///
288    /// Calling `advance_by(0)` can do meaningful work, for example [`Flatten`]
289    /// can advance its outer iterator until it finds an inner iterator that is not empty, which
290    /// then often allows it to return a more accurate `size_hint()` than in its initial state.
291    ///
292    /// [`Flatten`]: crate::iter::Flatten
293    /// [`next`]: Iterator::next
294    ///
295    /// # Examples
296    ///
297    /// ```
298    /// #![feature(iter_advance_by)]
299    ///
300    /// use std::num::NonZero;
301    ///
302    /// let a = [1, 2, 3, 4];
303    /// let mut iter = a.into_iter();
304    ///
305    /// assert_eq!(iter.advance_by(2), Ok(()));
306    /// assert_eq!(iter.next(), Some(3));
307    /// assert_eq!(iter.advance_by(0), Ok(()));
308    /// assert_eq!(iter.advance_by(100), Err(NonZero::new(99).unwrap())); // only `4` was skipped
309    /// ```
310    #[inline]
311    #[unstable(feature = "iter_advance_by", reason = "recently added", issue = "77404")]
312    #[cfg(not(feature = "ferrocene_certified"))]
313    fn advance_by(&mut self, n: usize) -> Result<(), NonZero<usize>> {
314        /// Helper trait to specialize `advance_by` via `try_fold` for `Sized` iterators.
315        trait SpecAdvanceBy {
316            fn spec_advance_by(&mut self, n: usize) -> Result<(), NonZero<usize>>;
317        }
318
319        impl<I: Iterator + ?Sized> SpecAdvanceBy for I {
320            default fn spec_advance_by(&mut self, n: usize) -> Result<(), NonZero<usize>> {
321                for i in 0..n {
322                    if self.next().is_none() {
323                        // SAFETY: `i` is always less than `n`.
324                        return Err(unsafe { NonZero::new_unchecked(n - i) });
325                    }
326                }
327                Ok(())
328            }
329        }
330
331        impl<I: Iterator> SpecAdvanceBy for I {
332            fn spec_advance_by(&mut self, n: usize) -> Result<(), NonZero<usize>> {
333                let Some(n) = NonZero::new(n) else {
334                    return Ok(());
335                };
336
337                let res = self.try_fold(n, |n, _| NonZero::new(n.get() - 1));
338
339                match res {
340                    None => Ok(()),
341                    Some(n) => Err(n),
342                }
343            }
344        }
345
346        self.spec_advance_by(n)
347    }
348
349    /// Returns the `n`th element of the iterator.
350    ///
351    /// Like most indexing operations, the count starts from zero, so `nth(0)`
352    /// returns the first value, `nth(1)` the second, and so on.
353    ///
354    /// Note that all preceding elements, as well as the returned element, will be
355    /// consumed from the iterator. That means that the preceding elements will be
356    /// discarded, and also that calling `nth(0)` multiple times on the same iterator
357    /// will return different elements.
358    ///
359    /// `nth()` will return [`None`] if `n` is greater than or equal to the length of the
360    /// iterator.
361    ///
362    /// # Examples
363    ///
364    /// Basic usage:
365    ///
366    /// ```
367    /// let a = [1, 2, 3];
368    /// assert_eq!(a.into_iter().nth(1), Some(2));
369    /// ```
370    ///
371    /// Calling `nth()` multiple times doesn't rewind the iterator:
372    ///
373    /// ```
374    /// let a = [1, 2, 3];
375    ///
376    /// let mut iter = a.into_iter();
377    ///
378    /// assert_eq!(iter.nth(1), Some(2));
379    /// assert_eq!(iter.nth(1), None);
380    /// ```
381    ///
382    /// Returning `None` if there are less than `n + 1` elements:
383    ///
384    /// ```
385    /// let a = [1, 2, 3];
386    /// assert_eq!(a.into_iter().nth(10), None);
387    /// ```
388    #[inline]
389    #[stable(feature = "rust1", since = "1.0.0")]
390    #[cfg(not(feature = "ferrocene_certified"))]
391    fn nth(&mut self, n: usize) -> Option<Self::Item> {
392        self.advance_by(n).ok()?;
393        self.next()
394    }
395
396    /// Creates an iterator starting at the same point, but stepping by
397    /// the given amount at each iteration.
398    ///
399    /// Note 1: The first element of the iterator will always be returned,
400    /// regardless of the step given.
401    ///
402    /// Note 2: The time at which ignored elements are pulled is not fixed.
403    /// `StepBy` behaves like the sequence `self.next()`, `self.nth(step-1)`,
404    /// `self.nth(step-1)`, …, but is also free to behave like the sequence
405    /// `advance_n_and_return_first(&mut self, step)`,
406    /// `advance_n_and_return_first(&mut self, step)`, …
407    /// Which way is used may change for some iterators for performance reasons.
408    /// The second way will advance the iterator earlier and may consume more items.
409    ///
410    /// `advance_n_and_return_first` is the equivalent of:
411    /// ```
412    /// fn advance_n_and_return_first<I>(iter: &mut I, n: usize) -> Option<I::Item>
413    /// where
414    ///     I: Iterator,
415    /// {
416    ///     let next = iter.next();
417    ///     if n > 1 {
418    ///         iter.nth(n - 2);
419    ///     }
420    ///     next
421    /// }
422    /// ```
423    ///
424    /// # Panics
425    ///
426    /// The method will panic if the given step is `0`.
427    ///
428    /// # Examples
429    ///
430    /// ```
431    /// let a = [0, 1, 2, 3, 4, 5];
432    /// let mut iter = a.into_iter().step_by(2);
433    ///
434    /// assert_eq!(iter.next(), Some(0));
435    /// assert_eq!(iter.next(), Some(2));
436    /// assert_eq!(iter.next(), Some(4));
437    /// assert_eq!(iter.next(), None);
438    /// ```
439    #[inline]
440    #[stable(feature = "iterator_step_by", since = "1.28.0")]
441    #[cfg(not(feature = "ferrocene_certified"))]
442    fn step_by(self, step: usize) -> StepBy<Self>
443    where
444        Self: Sized,
445    {
446        StepBy::new(self, step)
447    }
448
449    /// Takes two iterators and creates a new iterator over both in sequence.
450    ///
451    /// `chain()` will return a new iterator which will first iterate over
452    /// values from the first iterator and then over values from the second
453    /// iterator.
454    ///
455    /// In other words, it links two iterators together, in a chain. 🔗
456    ///
457    /// [`once`] is commonly used to adapt a single value into a chain of
458    /// other kinds of iteration.
459    ///
460    /// # Examples
461    ///
462    /// Basic usage:
463    ///
464    /// ```
465    /// let s1 = "abc".chars();
466    /// let s2 = "def".chars();
467    ///
468    /// let mut iter = s1.chain(s2);
469    ///
470    /// assert_eq!(iter.next(), Some('a'));
471    /// assert_eq!(iter.next(), Some('b'));
472    /// assert_eq!(iter.next(), Some('c'));
473    /// assert_eq!(iter.next(), Some('d'));
474    /// assert_eq!(iter.next(), Some('e'));
475    /// assert_eq!(iter.next(), Some('f'));
476    /// assert_eq!(iter.next(), None);
477    /// ```
478    ///
479    /// Since the argument to `chain()` uses [`IntoIterator`], we can pass
480    /// anything that can be converted into an [`Iterator`], not just an
481    /// [`Iterator`] itself. For example, arrays (`[T]`) implement
482    /// [`IntoIterator`], and so can be passed to `chain()` directly:
483    ///
484    /// ```
485    /// let a1 = [1, 2, 3];
486    /// let a2 = [4, 5, 6];
487    ///
488    /// let mut iter = a1.into_iter().chain(a2);
489    ///
490    /// assert_eq!(iter.next(), Some(1));
491    /// assert_eq!(iter.next(), Some(2));
492    /// assert_eq!(iter.next(), Some(3));
493    /// assert_eq!(iter.next(), Some(4));
494    /// assert_eq!(iter.next(), Some(5));
495    /// assert_eq!(iter.next(), Some(6));
496    /// assert_eq!(iter.next(), None);
497    /// ```
498    ///
499    /// If you work with Windows API, you may wish to convert [`OsStr`] to `Vec<u16>`:
500    ///
501    /// ```
502    /// #[cfg(windows)]
503    /// fn os_str_to_utf16(s: &std::ffi::OsStr) -> Vec<u16> {
504    ///     use std::os::windows::ffi::OsStrExt;
505    ///     s.encode_wide().chain(std::iter::once(0)).collect()
506    /// }
507    /// ```
508    ///
509    /// [`once`]: crate::iter::once
510    /// [`OsStr`]: ../../std/ffi/struct.OsStr.html
511    #[inline]
512    #[stable(feature = "rust1", since = "1.0.0")]
513    #[cfg(not(feature = "ferrocene_certified"))]
514    fn chain<U>(self, other: U) -> Chain<Self, U::IntoIter>
515    where
516        Self: Sized,
517        U: IntoIterator<Item = Self::Item>,
518    {
519        Chain::new(self, other.into_iter())
520    }
521
522    /// 'Zips up' two iterators into a single iterator of pairs.
523    ///
524    /// `zip()` returns a new iterator that will iterate over two other
525    /// iterators, returning a tuple where the first element comes from the
526    /// first iterator, and the second element comes from the second iterator.
527    ///
528    /// In other words, it zips two iterators together, into a single one.
529    ///
530    /// If either iterator returns [`None`], [`next`] from the zipped iterator
531    /// will return [`None`].
532    /// If the zipped iterator has no more elements to return then each further attempt to advance
533    /// it will first try to advance the first iterator at most one time and if it still yielded an item
534    /// try to advance the second iterator at most one time.
535    ///
536    /// To 'undo' the result of zipping up two iterators, see [`unzip`].
537    ///
538    /// [`unzip`]: Iterator::unzip
539    ///
540    /// # Examples
541    ///
542    /// Basic usage:
543    ///
544    /// ```
545    /// let s1 = "abc".chars();
546    /// let s2 = "def".chars();
547    ///
548    /// let mut iter = s1.zip(s2);
549    ///
550    /// assert_eq!(iter.next(), Some(('a', 'd')));
551    /// assert_eq!(iter.next(), Some(('b', 'e')));
552    /// assert_eq!(iter.next(), Some(('c', 'f')));
553    /// assert_eq!(iter.next(), None);
554    /// ```
555    ///
556    /// Since the argument to `zip()` uses [`IntoIterator`], we can pass
557    /// anything that can be converted into an [`Iterator`], not just an
558    /// [`Iterator`] itself. For example, arrays (`[T]`) implement
559    /// [`IntoIterator`], and so can be passed to `zip()` directly:
560    ///
561    /// ```
562    /// let a1 = [1, 2, 3];
563    /// let a2 = [4, 5, 6];
564    ///
565    /// let mut iter = a1.into_iter().zip(a2);
566    ///
567    /// assert_eq!(iter.next(), Some((1, 4)));
568    /// assert_eq!(iter.next(), Some((2, 5)));
569    /// assert_eq!(iter.next(), Some((3, 6)));
570    /// assert_eq!(iter.next(), None);
571    /// ```
572    ///
573    /// `zip()` is often used to zip an infinite iterator to a finite one.
574    /// This works because the finite iterator will eventually return [`None`],
575    /// ending the zipper. Zipping with `(0..)` can look a lot like [`enumerate`]:
576    ///
577    /// ```
578    /// let enumerate: Vec<_> = "foo".chars().enumerate().collect();
579    ///
580    /// let zipper: Vec<_> = (0..).zip("foo".chars()).collect();
581    ///
582    /// assert_eq!((0, 'f'), enumerate[0]);
583    /// assert_eq!((0, 'f'), zipper[0]);
584    ///
585    /// assert_eq!((1, 'o'), enumerate[1]);
586    /// assert_eq!((1, 'o'), zipper[1]);
587    ///
588    /// assert_eq!((2, 'o'), enumerate[2]);
589    /// assert_eq!((2, 'o'), zipper[2]);
590    /// ```
591    ///
592    /// If both iterators have roughly equivalent syntax, it may be more readable to use [`zip`]:
593    ///
594    /// ```
595    /// use std::iter::zip;
596    ///
597    /// let a = [1, 2, 3];
598    /// let b = [2, 3, 4];
599    ///
600    /// let mut zipped = zip(
601    ///     a.into_iter().map(|x| x * 2).skip(1),
602    ///     b.into_iter().map(|x| x * 2).skip(1),
603    /// );
604    ///
605    /// assert_eq!(zipped.next(), Some((4, 6)));
606    /// assert_eq!(zipped.next(), Some((6, 8)));
607    /// assert_eq!(zipped.next(), None);
608    /// ```
609    ///
610    /// compared to:
611    ///
612    /// ```
613    /// # let a = [1, 2, 3];
614    /// # let b = [2, 3, 4];
615    /// #
616    /// let mut zipped = a
617    ///     .into_iter()
618    ///     .map(|x| x * 2)
619    ///     .skip(1)
620    ///     .zip(b.into_iter().map(|x| x * 2).skip(1));
621    /// #
622    /// # assert_eq!(zipped.next(), Some((4, 6)));
623    /// # assert_eq!(zipped.next(), Some((6, 8)));
624    /// # assert_eq!(zipped.next(), None);
625    /// ```
626    ///
627    /// [`enumerate`]: Iterator::enumerate
628    /// [`next`]: Iterator::next
629    /// [`zip`]: crate::iter::zip
630    #[inline]
631    #[stable(feature = "rust1", since = "1.0.0")]
632    #[cfg(not(feature = "ferrocene_certified"))]
633    fn zip<U>(self, other: U) -> Zip<Self, U::IntoIter>
634    where
635        Self: Sized,
636        U: IntoIterator,
637    {
638        Zip::new(self, other.into_iter())
639    }
640
641    /// Creates a new iterator which places a copy of `separator` between adjacent
642    /// items of the original iterator.
643    ///
644    /// In case `separator` does not implement [`Clone`] or needs to be
645    /// computed every time, use [`intersperse_with`].
646    ///
647    /// # Examples
648    ///
649    /// Basic usage:
650    ///
651    /// ```
652    /// #![feature(iter_intersperse)]
653    ///
654    /// let mut a = [0, 1, 2].into_iter().intersperse(100);
655    /// assert_eq!(a.next(), Some(0));   // The first element from `a`.
656    /// assert_eq!(a.next(), Some(100)); // The separator.
657    /// assert_eq!(a.next(), Some(1));   // The next element from `a`.
658    /// assert_eq!(a.next(), Some(100)); // The separator.
659    /// assert_eq!(a.next(), Some(2));   // The last element from `a`.
660    /// assert_eq!(a.next(), None);       // The iterator is finished.
661    /// ```
662    ///
663    /// `intersperse` can be very useful to join an iterator's items using a common element:
664    /// ```
665    /// #![feature(iter_intersperse)]
666    ///
667    /// let words = ["Hello", "World", "!"];
668    /// let hello: String = words.into_iter().intersperse(" ").collect();
669    /// assert_eq!(hello, "Hello World !");
670    /// ```
671    ///
672    /// [`Clone`]: crate::clone::Clone
673    /// [`intersperse_with`]: Iterator::intersperse_with
674    #[inline]
675    #[unstable(feature = "iter_intersperse", reason = "recently added", issue = "79524")]
676    #[cfg(not(feature = "ferrocene_certified"))]
677    fn intersperse(self, separator: Self::Item) -> Intersperse<Self>
678    where
679        Self: Sized,
680        Self::Item: Clone,
681    {
682        Intersperse::new(self, separator)
683    }
684
685    /// Creates a new iterator which places an item generated by `separator`
686    /// between adjacent items of the original iterator.
687    ///
688    /// The closure will be called exactly once each time an item is placed
689    /// between two adjacent items from the underlying iterator; specifically,
690    /// the closure is not called if the underlying iterator yields less than
691    /// two items and after the last item is yielded.
692    ///
693    /// If the iterator's item implements [`Clone`], it may be easier to use
694    /// [`intersperse`].
695    ///
696    /// # Examples
697    ///
698    /// Basic usage:
699    ///
700    /// ```
701    /// #![feature(iter_intersperse)]
702    ///
703    /// #[derive(PartialEq, Debug)]
704    /// struct NotClone(usize);
705    ///
706    /// let v = [NotClone(0), NotClone(1), NotClone(2)];
707    /// let mut it = v.into_iter().intersperse_with(|| NotClone(99));
708    ///
709    /// assert_eq!(it.next(), Some(NotClone(0)));  // The first element from `v`.
710    /// assert_eq!(it.next(), Some(NotClone(99))); // The separator.
711    /// assert_eq!(it.next(), Some(NotClone(1)));  // The next element from `v`.
712    /// assert_eq!(it.next(), Some(NotClone(99))); // The separator.
713    /// assert_eq!(it.next(), Some(NotClone(2)));  // The last element from `v`.
714    /// assert_eq!(it.next(), None);               // The iterator is finished.
715    /// ```
716    ///
717    /// `intersperse_with` can be used in situations where the separator needs
718    /// to be computed:
719    /// ```
720    /// #![feature(iter_intersperse)]
721    ///
722    /// let src = ["Hello", "to", "all", "people", "!!"].iter().copied();
723    ///
724    /// // The closure mutably borrows its context to generate an item.
725    /// let mut happy_emojis = [" ❤️ ", " 😀 "].into_iter();
726    /// let separator = || happy_emojis.next().unwrap_or(" 🦀 ");
727    ///
728    /// let result = src.intersperse_with(separator).collect::<String>();
729    /// assert_eq!(result, "Hello ❤️ to 😀 all 🦀 people 🦀 !!");
730    /// ```
731    /// [`Clone`]: crate::clone::Clone
732    /// [`intersperse`]: Iterator::intersperse
733    #[inline]
734    #[unstable(feature = "iter_intersperse", reason = "recently added", issue = "79524")]
735    #[cfg(not(feature = "ferrocene_certified"))]
736    fn intersperse_with<G>(self, separator: G) -> IntersperseWith<Self, G>
737    where
738        Self: Sized,
739        G: FnMut() -> Self::Item,
740    {
741        IntersperseWith::new(self, separator)
742    }
743
744    /// Takes a closure and creates an iterator which calls that closure on each
745    /// element.
746    ///
747    /// `map()` transforms one iterator into another, by means of its argument:
748    /// something that implements [`FnMut`]. It produces a new iterator which
749    /// calls this closure on each element of the original iterator.
750    ///
751    /// If you are good at thinking in types, you can think of `map()` like this:
752    /// If you have an iterator that gives you elements of some type `A`, and
753    /// you want an iterator of some other type `B`, you can use `map()`,
754    /// passing a closure that takes an `A` and returns a `B`.
755    ///
756    /// `map()` is conceptually similar to a [`for`] loop. However, as `map()` is
757    /// lazy, it is best used when you're already working with other iterators.
758    /// If you're doing some sort of looping for a side effect, it's considered
759    /// more idiomatic to use [`for`] than `map()`.
760    ///
761    /// [`for`]: ../../book/ch03-05-control-flow.html#looping-through-a-collection-with-for
762    ///
763    /// # Examples
764    ///
765    /// Basic usage:
766    ///
767    /// ```
768    /// let a = [1, 2, 3];
769    ///
770    /// let mut iter = a.iter().map(|x| 2 * x);
771    ///
772    /// assert_eq!(iter.next(), Some(2));
773    /// assert_eq!(iter.next(), Some(4));
774    /// assert_eq!(iter.next(), Some(6));
775    /// assert_eq!(iter.next(), None);
776    /// ```
777    ///
778    /// If you're doing some sort of side effect, prefer [`for`] to `map()`:
779    ///
780    /// ```
781    /// # #![allow(unused_must_use)]
782    /// // don't do this:
783    /// (0..5).map(|x| println!("{x}"));
784    ///
785    /// // it won't even execute, as it is lazy. Rust will warn you about this.
786    ///
787    /// // Instead, use a for-loop:
788    /// for x in 0..5 {
789    ///     println!("{x}");
790    /// }
791    /// ```
792    #[rustc_diagnostic_item = "IteratorMap"]
793    #[inline]
794    #[stable(feature = "rust1", since = "1.0.0")]
795    fn map<B, F>(self, f: F) -> Map<Self, F>
796    where
797        Self: Sized,
798        F: FnMut(Self::Item) -> B,
799    {
800        Map::new(self, f)
801    }
802
803    /// Calls a closure on each element of an iterator.
804    ///
805    /// This is equivalent to using a [`for`] loop on the iterator, although
806    /// `break` and `continue` are not possible from a closure. It's generally
807    /// more idiomatic to use a `for` loop, but `for_each` may be more legible
808    /// when processing items at the end of longer iterator chains. In some
809    /// cases `for_each` may also be faster than a loop, because it will use
810    /// internal iteration on adapters like `Chain`.
811    ///
812    /// [`for`]: ../../book/ch03-05-control-flow.html#looping-through-a-collection-with-for
813    ///
814    /// # Examples
815    ///
816    /// Basic usage:
817    ///
818    /// ```
819    /// use std::sync::mpsc::channel;
820    ///
821    /// let (tx, rx) = channel();
822    /// (0..5).map(|x| x * 2 + 1)
823    ///       .for_each(move |x| tx.send(x).unwrap());
824    ///
825    /// let v: Vec<_> = rx.iter().collect();
826    /// assert_eq!(v, vec![1, 3, 5, 7, 9]);
827    /// ```
828    ///
829    /// For such a small example, a `for` loop may be cleaner, but `for_each`
830    /// might be preferable to keep a functional style with longer iterators:
831    ///
832    /// ```
833    /// (0..5).flat_map(|x| (x * 100)..(x * 110))
834    ///       .enumerate()
835    ///       .filter(|&(i, x)| (i + x) % 3 == 0)
836    ///       .for_each(|(i, x)| println!("{i}:{x}"));
837    /// ```
838    #[inline]
839    #[stable(feature = "iterator_for_each", since = "1.21.0")]
840    #[cfg(not(feature = "ferrocene_certified"))]
841    fn for_each<F>(self, f: F)
842    where
843        Self: Sized,
844        F: FnMut(Self::Item),
845    {
846        #[inline]
847        fn call<T>(mut f: impl FnMut(T)) -> impl FnMut((), T) {
848            move |(), item| f(item)
849        }
850
851        self.fold((), call(f));
852    }
853
854    /// Creates an iterator which uses a closure to determine if an element
855    /// should be yielded.
856    ///
857    /// Given an element the closure must return `true` or `false`. The returned
858    /// iterator will yield only the elements for which the closure returns
859    /// `true`.
860    ///
861    /// # Examples
862    ///
863    /// Basic usage:
864    ///
865    /// ```
866    /// let a = [0i32, 1, 2];
867    ///
868    /// let mut iter = a.into_iter().filter(|x| x.is_positive());
869    ///
870    /// assert_eq!(iter.next(), Some(1));
871    /// assert_eq!(iter.next(), Some(2));
872    /// assert_eq!(iter.next(), None);
873    /// ```
874    ///
875    /// Because the closure passed to `filter()` takes a reference, and many
876    /// iterators iterate over references, this leads to a possibly confusing
877    /// situation, where the type of the closure is a double reference:
878    ///
879    /// ```
880    /// let s = &[0, 1, 2];
881    ///
882    /// let mut iter = s.iter().filter(|x| **x > 1); // needs two *s!
883    ///
884    /// assert_eq!(iter.next(), Some(&2));
885    /// assert_eq!(iter.next(), None);
886    /// ```
887    ///
888    /// It's common to instead use destructuring on the argument to strip away one:
889    ///
890    /// ```
891    /// let s = &[0, 1, 2];
892    ///
893    /// let mut iter = s.iter().filter(|&x| *x > 1); // both & and *
894    ///
895    /// assert_eq!(iter.next(), Some(&2));
896    /// assert_eq!(iter.next(), None);
897    /// ```
898    ///
899    /// or both:
900    ///
901    /// ```
902    /// let s = &[0, 1, 2];
903    ///
904    /// let mut iter = s.iter().filter(|&&x| x > 1); // two &s
905    ///
906    /// assert_eq!(iter.next(), Some(&2));
907    /// assert_eq!(iter.next(), None);
908    /// ```
909    ///
910    /// of these layers.
911    ///
912    /// Note that `iter.filter(f).next()` is equivalent to `iter.find(f)`.
913    #[inline]
914    #[stable(feature = "rust1", since = "1.0.0")]
915    #[rustc_diagnostic_item = "iter_filter"]
916    #[cfg(not(feature = "ferrocene_certified"))]
917    fn filter<P>(self, predicate: P) -> Filter<Self, P>
918    where
919        Self: Sized,
920        P: FnMut(&Self::Item) -> bool,
921    {
922        Filter::new(self, predicate)
923    }
924
925    /// Creates an iterator that both filters and maps.
926    ///
927    /// The returned iterator yields only the `value`s for which the supplied
928    /// closure returns `Some(value)`.
929    ///
930    /// `filter_map` can be used to make chains of [`filter`] and [`map`] more
931    /// concise. The example below shows how a `map().filter().map()` can be
932    /// shortened to a single call to `filter_map`.
933    ///
934    /// [`filter`]: Iterator::filter
935    /// [`map`]: Iterator::map
936    ///
937    /// # Examples
938    ///
939    /// Basic usage:
940    ///
941    /// ```
942    /// let a = ["1", "two", "NaN", "four", "5"];
943    ///
944    /// let mut iter = a.iter().filter_map(|s| s.parse().ok());
945    ///
946    /// assert_eq!(iter.next(), Some(1));
947    /// assert_eq!(iter.next(), Some(5));
948    /// assert_eq!(iter.next(), None);
949    /// ```
950    ///
951    /// Here's the same example, but with [`filter`] and [`map`]:
952    ///
953    /// ```
954    /// let a = ["1", "two", "NaN", "four", "5"];
955    /// let mut iter = a.iter().map(|s| s.parse()).filter(|s| s.is_ok()).map(|s| s.unwrap());
956    /// assert_eq!(iter.next(), Some(1));
957    /// assert_eq!(iter.next(), Some(5));
958    /// assert_eq!(iter.next(), None);
959    /// ```
960    #[inline]
961    #[stable(feature = "rust1", since = "1.0.0")]
962    #[cfg(not(feature = "ferrocene_certified"))]
963    fn filter_map<B, F>(self, f: F) -> FilterMap<Self, F>
964    where
965        Self: Sized,
966        F: FnMut(Self::Item) -> Option<B>,
967    {
968        FilterMap::new(self, f)
969    }
970
971    /// Creates an iterator which gives the current iteration count as well as
972    /// the next value.
973    ///
974    /// The iterator returned yields pairs `(i, val)`, where `i` is the
975    /// current index of iteration and `val` is the value returned by the
976    /// iterator.
977    ///
978    /// `enumerate()` keeps its count as a [`usize`]. If you want to count by a
979    /// different sized integer, the [`zip`] function provides similar
980    /// functionality.
981    ///
982    /// # Overflow Behavior
983    ///
984    /// The method does no guarding against overflows, so enumerating more than
985    /// [`usize::MAX`] elements either produces the wrong result or panics. If
986    /// overflow checks are enabled, a panic is guaranteed.
987    ///
988    /// # Panics
989    ///
990    /// The returned iterator might panic if the to-be-returned index would
991    /// overflow a [`usize`].
992    ///
993    /// [`zip`]: Iterator::zip
994    ///
995    /// # Examples
996    ///
997    /// ```
998    /// let a = ['a', 'b', 'c'];
999    ///
1000    /// let mut iter = a.into_iter().enumerate();
1001    ///
1002    /// assert_eq!(iter.next(), Some((0, 'a')));
1003    /// assert_eq!(iter.next(), Some((1, 'b')));
1004    /// assert_eq!(iter.next(), Some((2, 'c')));
1005    /// assert_eq!(iter.next(), None);
1006    /// ```
1007    #[inline]
1008    #[stable(feature = "rust1", since = "1.0.0")]
1009    #[rustc_diagnostic_item = "enumerate_method"]
1010    #[cfg(not(feature = "ferrocene_certified"))]
1011    fn enumerate(self) -> Enumerate<Self>
1012    where
1013        Self: Sized,
1014    {
1015        Enumerate::new(self)
1016    }
1017
1018    /// Creates an iterator which can use the [`peek`] and [`peek_mut`] methods
1019    /// to look at the next element of the iterator without consuming it. See
1020    /// their documentation for more information.
1021    ///
1022    /// Note that the underlying iterator is still advanced when [`peek`] or
1023    /// [`peek_mut`] are called for the first time: In order to retrieve the
1024    /// next element, [`next`] is called on the underlying iterator, hence any
1025    /// side effects (i.e. anything other than fetching the next value) of
1026    /// the [`next`] method will occur.
1027    ///
1028    ///
1029    /// # Examples
1030    ///
1031    /// Basic usage:
1032    ///
1033    /// ```
1034    /// let xs = [1, 2, 3];
1035    ///
1036    /// let mut iter = xs.into_iter().peekable();
1037    ///
1038    /// // peek() lets us see into the future
1039    /// assert_eq!(iter.peek(), Some(&1));
1040    /// assert_eq!(iter.next(), Some(1));
1041    ///
1042    /// assert_eq!(iter.next(), Some(2));
1043    ///
1044    /// // we can peek() multiple times, the iterator won't advance
1045    /// assert_eq!(iter.peek(), Some(&3));
1046    /// assert_eq!(iter.peek(), Some(&3));
1047    ///
1048    /// assert_eq!(iter.next(), Some(3));
1049    ///
1050    /// // after the iterator is finished, so is peek()
1051    /// assert_eq!(iter.peek(), None);
1052    /// assert_eq!(iter.next(), None);
1053    /// ```
1054    ///
1055    /// Using [`peek_mut`] to mutate the next item without advancing the
1056    /// iterator:
1057    ///
1058    /// ```
1059    /// let xs = [1, 2, 3];
1060    ///
1061    /// let mut iter = xs.into_iter().peekable();
1062    ///
1063    /// // `peek_mut()` lets us see into the future
1064    /// assert_eq!(iter.peek_mut(), Some(&mut 1));
1065    /// assert_eq!(iter.peek_mut(), Some(&mut 1));
1066    /// assert_eq!(iter.next(), Some(1));
1067    ///
1068    /// if let Some(p) = iter.peek_mut() {
1069    ///     assert_eq!(*p, 2);
1070    ///     // put a value into the iterator
1071    ///     *p = 1000;
1072    /// }
1073    ///
1074    /// // The value reappears as the iterator continues
1075    /// assert_eq!(iter.collect::<Vec<_>>(), vec![1000, 3]);
1076    /// ```
1077    /// [`peek`]: Peekable::peek
1078    /// [`peek_mut`]: Peekable::peek_mut
1079    /// [`next`]: Iterator::next
1080    #[inline]
1081    #[stable(feature = "rust1", since = "1.0.0")]
1082    #[cfg(not(feature = "ferrocene_certified"))]
1083    fn peekable(self) -> Peekable<Self>
1084    where
1085        Self: Sized,
1086    {
1087        Peekable::new(self)
1088    }
1089
1090    /// Creates an iterator that [`skip`]s elements based on a predicate.
1091    ///
1092    /// [`skip`]: Iterator::skip
1093    ///
1094    /// `skip_while()` takes a closure as an argument. It will call this
1095    /// closure on each element of the iterator, and ignore elements
1096    /// until it returns `false`.
1097    ///
1098    /// After `false` is returned, `skip_while()`'s job is over, and the
1099    /// rest of the elements are yielded.
1100    ///
1101    /// # Examples
1102    ///
1103    /// Basic usage:
1104    ///
1105    /// ```
1106    /// let a = [-1i32, 0, 1];
1107    ///
1108    /// let mut iter = a.into_iter().skip_while(|x| x.is_negative());
1109    ///
1110    /// assert_eq!(iter.next(), Some(0));
1111    /// assert_eq!(iter.next(), Some(1));
1112    /// assert_eq!(iter.next(), None);
1113    /// ```
1114    ///
1115    /// Because the closure passed to `skip_while()` takes a reference, and many
1116    /// iterators iterate over references, this leads to a possibly confusing
1117    /// situation, where the type of the closure argument is a double reference:
1118    ///
1119    /// ```
1120    /// let s = &[-1, 0, 1];
1121    ///
1122    /// let mut iter = s.iter().skip_while(|x| **x < 0); // need two *s!
1123    ///
1124    /// assert_eq!(iter.next(), Some(&0));
1125    /// assert_eq!(iter.next(), Some(&1));
1126    /// assert_eq!(iter.next(), None);
1127    /// ```
1128    ///
1129    /// Stopping after an initial `false`:
1130    ///
1131    /// ```
1132    /// let a = [-1, 0, 1, -2];
1133    ///
1134    /// let mut iter = a.into_iter().skip_while(|&x| x < 0);
1135    ///
1136    /// assert_eq!(iter.next(), Some(0));
1137    /// assert_eq!(iter.next(), Some(1));
1138    ///
1139    /// // while this would have been false, since we already got a false,
1140    /// // skip_while() isn't used any more
1141    /// assert_eq!(iter.next(), Some(-2));
1142    ///
1143    /// assert_eq!(iter.next(), None);
1144    /// ```
1145    #[inline]
1146    #[doc(alias = "drop_while")]
1147    #[stable(feature = "rust1", since = "1.0.0")]
1148    #[cfg(not(feature = "ferrocene_certified"))]
1149    fn skip_while<P>(self, predicate: P) -> SkipWhile<Self, P>
1150    where
1151        Self: Sized,
1152        P: FnMut(&Self::Item) -> bool,
1153    {
1154        SkipWhile::new(self, predicate)
1155    }
1156
1157    /// Creates an iterator that yields elements based on a predicate.
1158    ///
1159    /// `take_while()` takes a closure as an argument. It will call this
1160    /// closure on each element of the iterator, and yield elements
1161    /// while it returns `true`.
1162    ///
1163    /// After `false` is returned, `take_while()`'s job is over, and the
1164    /// rest of the elements are ignored.
1165    ///
1166    /// # Examples
1167    ///
1168    /// Basic usage:
1169    ///
1170    /// ```
1171    /// let a = [-1i32, 0, 1];
1172    ///
1173    /// let mut iter = a.into_iter().take_while(|x| x.is_negative());
1174    ///
1175    /// assert_eq!(iter.next(), Some(-1));
1176    /// assert_eq!(iter.next(), None);
1177    /// ```
1178    ///
1179    /// Because the closure passed to `take_while()` takes a reference, and many
1180    /// iterators iterate over references, this leads to a possibly confusing
1181    /// situation, where the type of the closure is a double reference:
1182    ///
1183    /// ```
1184    /// let s = &[-1, 0, 1];
1185    ///
1186    /// let mut iter = s.iter().take_while(|x| **x < 0); // need two *s!
1187    ///
1188    /// assert_eq!(iter.next(), Some(&-1));
1189    /// assert_eq!(iter.next(), None);
1190    /// ```
1191    ///
1192    /// Stopping after an initial `false`:
1193    ///
1194    /// ```
1195    /// let a = [-1, 0, 1, -2];
1196    ///
1197    /// let mut iter = a.into_iter().take_while(|&x| x < 0);
1198    ///
1199    /// assert_eq!(iter.next(), Some(-1));
1200    ///
1201    /// // We have more elements that are less than zero, but since we already
1202    /// // got a false, take_while() ignores the remaining elements.
1203    /// assert_eq!(iter.next(), None);
1204    /// ```
1205    ///
1206    /// Because `take_while()` needs to look at the value in order to see if it
1207    /// should be included or not, consuming iterators will see that it is
1208    /// removed:
1209    ///
1210    /// ```
1211    /// let a = [1, 2, 3, 4];
1212    /// let mut iter = a.into_iter();
1213    ///
1214    /// let result: Vec<i32> = iter.by_ref().take_while(|&n| n != 3).collect();
1215    ///
1216    /// assert_eq!(result, [1, 2]);
1217    ///
1218    /// let result: Vec<i32> = iter.collect();
1219    ///
1220    /// assert_eq!(result, [4]);
1221    /// ```
1222    ///
1223    /// The `3` is no longer there, because it was consumed in order to see if
1224    /// the iteration should stop, but wasn't placed back into the iterator.
1225    #[inline]
1226    #[stable(feature = "rust1", since = "1.0.0")]
1227    #[cfg(not(feature = "ferrocene_certified"))]
1228    fn take_while<P>(self, predicate: P) -> TakeWhile<Self, P>
1229    where
1230        Self: Sized,
1231        P: FnMut(&Self::Item) -> bool,
1232    {
1233        TakeWhile::new(self, predicate)
1234    }
1235
1236    /// Creates an iterator that both yields elements based on a predicate and maps.
1237    ///
1238    /// `map_while()` takes a closure as an argument. It will call this
1239    /// closure on each element of the iterator, and yield elements
1240    /// while it returns [`Some(_)`][`Some`].
1241    ///
1242    /// # Examples
1243    ///
1244    /// Basic usage:
1245    ///
1246    /// ```
1247    /// let a = [-1i32, 4, 0, 1];
1248    ///
1249    /// let mut iter = a.into_iter().map_while(|x| 16i32.checked_div(x));
1250    ///
1251    /// assert_eq!(iter.next(), Some(-16));
1252    /// assert_eq!(iter.next(), Some(4));
1253    /// assert_eq!(iter.next(), None);
1254    /// ```
1255    ///
1256    /// Here's the same example, but with [`take_while`] and [`map`]:
1257    ///
1258    /// [`take_while`]: Iterator::take_while
1259    /// [`map`]: Iterator::map
1260    ///
1261    /// ```
1262    /// let a = [-1i32, 4, 0, 1];
1263    ///
1264    /// let mut iter = a.into_iter()
1265    ///                 .map(|x| 16i32.checked_div(x))
1266    ///                 .take_while(|x| x.is_some())
1267    ///                 .map(|x| x.unwrap());
1268    ///
1269    /// assert_eq!(iter.next(), Some(-16));
1270    /// assert_eq!(iter.next(), Some(4));
1271    /// assert_eq!(iter.next(), None);
1272    /// ```
1273    ///
1274    /// Stopping after an initial [`None`]:
1275    ///
1276    /// ```
1277    /// let a = [0, 1, 2, -3, 4, 5, -6];
1278    ///
1279    /// let iter = a.into_iter().map_while(|x| u32::try_from(x).ok());
1280    /// let vec: Vec<_> = iter.collect();
1281    ///
1282    /// // We have more elements that could fit in u32 (such as 4, 5), but `map_while` returned `None` for `-3`
1283    /// // (as the `predicate` returned `None`) and `collect` stops at the first `None` encountered.
1284    /// assert_eq!(vec, [0, 1, 2]);
1285    /// ```
1286    ///
1287    /// Because `map_while()` needs to look at the value in order to see if it
1288    /// should be included or not, consuming iterators will see that it is
1289    /// removed:
1290    ///
1291    /// ```
1292    /// let a = [1, 2, -3, 4];
1293    /// let mut iter = a.into_iter();
1294    ///
1295    /// let result: Vec<u32> = iter.by_ref()
1296    ///                            .map_while(|n| u32::try_from(n).ok())
1297    ///                            .collect();
1298    ///
1299    /// assert_eq!(result, [1, 2]);
1300    ///
1301    /// let result: Vec<i32> = iter.collect();
1302    ///
1303    /// assert_eq!(result, [4]);
1304    /// ```
1305    ///
1306    /// The `-3` is no longer there, because it was consumed in order to see if
1307    /// the iteration should stop, but wasn't placed back into the iterator.
1308    ///
1309    /// Note that unlike [`take_while`] this iterator is **not** fused.
1310    /// It is also not specified what this iterator returns after the first [`None`] is returned.
1311    /// If you need a fused iterator, use [`fuse`].
1312    ///
1313    /// [`fuse`]: Iterator::fuse
1314    #[inline]
1315    #[stable(feature = "iter_map_while", since = "1.57.0")]
1316    #[cfg(not(feature = "ferrocene_certified"))]
1317    fn map_while<B, P>(self, predicate: P) -> MapWhile<Self, P>
1318    where
1319        Self: Sized,
1320        P: FnMut(Self::Item) -> Option<B>,
1321    {
1322        MapWhile::new(self, predicate)
1323    }
1324
1325    /// Creates an iterator that skips the first `n` elements.
1326    ///
1327    /// `skip(n)` skips elements until `n` elements are skipped or the end of the
1328    /// iterator is reached (whichever happens first). After that, all the remaining
1329    /// elements are yielded. In particular, if the original iterator is too short,
1330    /// then the returned iterator is empty.
1331    ///
1332    /// Rather than overriding this method directly, instead override the `nth` method.
1333    ///
1334    /// # Examples
1335    ///
1336    /// ```
1337    /// let a = [1, 2, 3];
1338    ///
1339    /// let mut iter = a.into_iter().skip(2);
1340    ///
1341    /// assert_eq!(iter.next(), Some(3));
1342    /// assert_eq!(iter.next(), None);
1343    /// ```
1344    #[inline]
1345    #[stable(feature = "rust1", since = "1.0.0")]
1346    #[cfg(not(feature = "ferrocene_certified"))]
1347    fn skip(self, n: usize) -> Skip<Self>
1348    where
1349        Self: Sized,
1350    {
1351        Skip::new(self, n)
1352    }
1353
1354    /// Creates an iterator that yields the first `n` elements, or fewer
1355    /// if the underlying iterator ends sooner.
1356    ///
1357    /// `take(n)` yields elements until `n` elements are yielded or the end of
1358    /// the iterator is reached (whichever happens first).
1359    /// The returned iterator is a prefix of length `n` if the original iterator
1360    /// contains at least `n` elements, otherwise it contains all of the
1361    /// (fewer than `n`) elements of the original iterator.
1362    ///
1363    /// # Examples
1364    ///
1365    /// Basic usage:
1366    ///
1367    /// ```
1368    /// let a = [1, 2, 3];
1369    ///
1370    /// let mut iter = a.into_iter().take(2);
1371    ///
1372    /// assert_eq!(iter.next(), Some(1));
1373    /// assert_eq!(iter.next(), Some(2));
1374    /// assert_eq!(iter.next(), None);
1375    /// ```
1376    ///
1377    /// `take()` is often used with an infinite iterator, to make it finite:
1378    ///
1379    /// ```
1380    /// let mut iter = (0..).take(3);
1381    ///
1382    /// assert_eq!(iter.next(), Some(0));
1383    /// assert_eq!(iter.next(), Some(1));
1384    /// assert_eq!(iter.next(), Some(2));
1385    /// assert_eq!(iter.next(), None);
1386    /// ```
1387    ///
1388    /// If less than `n` elements are available,
1389    /// `take` will limit itself to the size of the underlying iterator:
1390    ///
1391    /// ```
1392    /// let v = [1, 2];
1393    /// let mut iter = v.into_iter().take(5);
1394    /// assert_eq!(iter.next(), Some(1));
1395    /// assert_eq!(iter.next(), Some(2));
1396    /// assert_eq!(iter.next(), None);
1397    /// ```
1398    ///
1399    /// Use [`by_ref`] to take from the iterator without consuming it, and then
1400    /// continue using the original iterator:
1401    ///
1402    /// ```
1403    /// let mut words = ["hello", "world", "of", "Rust"].into_iter();
1404    ///
1405    /// // Take the first two words.
1406    /// let hello_world: Vec<_> = words.by_ref().take(2).collect();
1407    /// assert_eq!(hello_world, vec!["hello", "world"]);
1408    ///
1409    /// // Collect the rest of the words.
1410    /// // We can only do this because we used `by_ref` earlier.
1411    /// let of_rust: Vec<_> = words.collect();
1412    /// assert_eq!(of_rust, vec!["of", "Rust"]);
1413    /// ```
1414    ///
1415    /// [`by_ref`]: Iterator::by_ref
1416    #[doc(alias = "limit")]
1417    #[inline]
1418    #[stable(feature = "rust1", since = "1.0.0")]
1419    #[cfg(not(feature = "ferrocene_certified"))]
1420    fn take(self, n: usize) -> Take<Self>
1421    where
1422        Self: Sized,
1423    {
1424        Take::new(self, n)
1425    }
1426
1427    /// An iterator adapter which, like [`fold`], holds internal state, but
1428    /// unlike [`fold`], produces a new iterator.
1429    ///
1430    /// [`fold`]: Iterator::fold
1431    ///
1432    /// `scan()` takes two arguments: an initial value which seeds the internal
1433    /// state, and a closure with two arguments, the first being a mutable
1434    /// reference to the internal state and the second an iterator element.
1435    /// The closure can assign to the internal state to share state between
1436    /// iterations.
1437    ///
1438    /// On iteration, the closure will be applied to each element of the
1439    /// iterator and the return value from the closure, an [`Option`], is
1440    /// returned by the `next` method. Thus the closure can return
1441    /// `Some(value)` to yield `value`, or `None` to end the iteration.
1442    ///
1443    /// # Examples
1444    ///
1445    /// ```
1446    /// let a = [1, 2, 3, 4];
1447    ///
1448    /// let mut iter = a.into_iter().scan(1, |state, x| {
1449    ///     // each iteration, we'll multiply the state by the element ...
1450    ///     *state = *state * x;
1451    ///
1452    ///     // ... and terminate if the state exceeds 6
1453    ///     if *state > 6 {
1454    ///         return None;
1455    ///     }
1456    ///     // ... else yield the negation of the state
1457    ///     Some(-*state)
1458    /// });
1459    ///
1460    /// assert_eq!(iter.next(), Some(-1));
1461    /// assert_eq!(iter.next(), Some(-2));
1462    /// assert_eq!(iter.next(), Some(-6));
1463    /// assert_eq!(iter.next(), None);
1464    /// ```
1465    #[inline]
1466    #[stable(feature = "rust1", since = "1.0.0")]
1467    #[cfg(not(feature = "ferrocene_certified"))]
1468    fn scan<St, B, F>(self, initial_state: St, f: F) -> Scan<Self, St, F>
1469    where
1470        Self: Sized,
1471        F: FnMut(&mut St, Self::Item) -> Option<B>,
1472    {
1473        Scan::new(self, initial_state, f)
1474    }
1475
1476    /// Creates an iterator that works like map, but flattens nested structure.
1477    ///
1478    /// The [`map`] adapter is very useful, but only when the closure
1479    /// argument produces values. If it produces an iterator instead, there's
1480    /// an extra layer of indirection. `flat_map()` will remove this extra layer
1481    /// on its own.
1482    ///
1483    /// You can think of `flat_map(f)` as the semantic equivalent
1484    /// of [`map`]ping, and then [`flatten`]ing as in `map(f).flatten()`.
1485    ///
1486    /// Another way of thinking about `flat_map()`: [`map`]'s closure returns
1487    /// one item for each element, and `flat_map()`'s closure returns an
1488    /// iterator for each element.
1489    ///
1490    /// [`map`]: Iterator::map
1491    /// [`flatten`]: Iterator::flatten
1492    ///
1493    /// # Examples
1494    ///
1495    /// ```
1496    /// let words = ["alpha", "beta", "gamma"];
1497    ///
1498    /// // chars() returns an iterator
1499    /// let merged: String = words.iter()
1500    ///                           .flat_map(|s| s.chars())
1501    ///                           .collect();
1502    /// assert_eq!(merged, "alphabetagamma");
1503    /// ```
1504    #[inline]
1505    #[stable(feature = "rust1", since = "1.0.0")]
1506    #[cfg(not(feature = "ferrocene_certified"))]
1507    fn flat_map<U, F>(self, f: F) -> FlatMap<Self, U, F>
1508    where
1509        Self: Sized,
1510        U: IntoIterator,
1511        F: FnMut(Self::Item) -> U,
1512    {
1513        FlatMap::new(self, f)
1514    }
1515
1516    /// Creates an iterator that flattens nested structure.
1517    ///
1518    /// This is useful when you have an iterator of iterators or an iterator of
1519    /// things that can be turned into iterators and you want to remove one
1520    /// level of indirection.
1521    ///
1522    /// # Examples
1523    ///
1524    /// Basic usage:
1525    ///
1526    /// ```
1527    /// let data = vec![vec![1, 2, 3, 4], vec![5, 6]];
1528    /// let flattened: Vec<_> = data.into_iter().flatten().collect();
1529    /// assert_eq!(flattened, [1, 2, 3, 4, 5, 6]);
1530    /// ```
1531    ///
1532    /// Mapping and then flattening:
1533    ///
1534    /// ```
1535    /// let words = ["alpha", "beta", "gamma"];
1536    ///
1537    /// // chars() returns an iterator
1538    /// let merged: String = words.iter()
1539    ///                           .map(|s| s.chars())
1540    ///                           .flatten()
1541    ///                           .collect();
1542    /// assert_eq!(merged, "alphabetagamma");
1543    /// ```
1544    ///
1545    /// You can also rewrite this in terms of [`flat_map()`], which is preferable
1546    /// in this case since it conveys intent more clearly:
1547    ///
1548    /// ```
1549    /// let words = ["alpha", "beta", "gamma"];
1550    ///
1551    /// // chars() returns an iterator
1552    /// let merged: String = words.iter()
1553    ///                           .flat_map(|s| s.chars())
1554    ///                           .collect();
1555    /// assert_eq!(merged, "alphabetagamma");
1556    /// ```
1557    ///
1558    /// Flattening works on any `IntoIterator` type, including `Option` and `Result`:
1559    ///
1560    /// ```
1561    /// let options = vec![Some(123), Some(321), None, Some(231)];
1562    /// let flattened_options: Vec<_> = options.into_iter().flatten().collect();
1563    /// assert_eq!(flattened_options, [123, 321, 231]);
1564    ///
1565    /// let results = vec![Ok(123), Ok(321), Err(456), Ok(231)];
1566    /// let flattened_results: Vec<_> = results.into_iter().flatten().collect();
1567    /// assert_eq!(flattened_results, [123, 321, 231]);
1568    /// ```
1569    ///
1570    /// Flattening only removes one level of nesting at a time:
1571    ///
1572    /// ```
1573    /// let d3 = [[[1, 2], [3, 4]], [[5, 6], [7, 8]]];
1574    ///
1575    /// let d2: Vec<_> = d3.into_iter().flatten().collect();
1576    /// assert_eq!(d2, [[1, 2], [3, 4], [5, 6], [7, 8]]);
1577    ///
1578    /// let d1: Vec<_> = d3.into_iter().flatten().flatten().collect();
1579    /// assert_eq!(d1, [1, 2, 3, 4, 5, 6, 7, 8]);
1580    /// ```
1581    ///
1582    /// Here we see that `flatten()` does not perform a "deep" flatten.
1583    /// Instead, only one level of nesting is removed. That is, if you
1584    /// `flatten()` a three-dimensional array, the result will be
1585    /// two-dimensional and not one-dimensional. To get a one-dimensional
1586    /// structure, you have to `flatten()` again.
1587    ///
1588    /// [`flat_map()`]: Iterator::flat_map
1589    #[inline]
1590    #[stable(feature = "iterator_flatten", since = "1.29.0")]
1591    #[cfg(not(feature = "ferrocene_certified"))]
1592    fn flatten(self) -> Flatten<Self>
1593    where
1594        Self: Sized,
1595        Self::Item: IntoIterator,
1596    {
1597        Flatten::new(self)
1598    }
1599
1600    /// Calls the given function `f` for each contiguous window of size `N` over
1601    /// `self` and returns an iterator over the outputs of `f`. Like [`slice::windows()`],
1602    /// the windows during mapping overlap as well.
1603    ///
1604    /// In the following example, the closure is called three times with the
1605    /// arguments `&['a', 'b']`, `&['b', 'c']` and `&['c', 'd']` respectively.
1606    ///
1607    /// ```
1608    /// #![feature(iter_map_windows)]
1609    ///
1610    /// let strings = "abcd".chars()
1611    ///     .map_windows(|[x, y]| format!("{}+{}", x, y))
1612    ///     .collect::<Vec<String>>();
1613    ///
1614    /// assert_eq!(strings, vec!["a+b", "b+c", "c+d"]);
1615    /// ```
1616    ///
1617    /// Note that the const parameter `N` is usually inferred by the
1618    /// destructured argument in the closure.
1619    ///
1620    /// The returned iterator yields 𝑘 − `N` + 1 items (where 𝑘 is the number of
1621    /// items yielded by `self`). If 𝑘 is less than `N`, this method yields an
1622    /// empty iterator.
1623    ///
1624    /// The returned iterator implements [`FusedIterator`], because once `self`
1625    /// returns `None`, even if it returns a `Some(T)` again in the next iterations,
1626    /// we cannot put it into a contiguous array buffer, and thus the returned iterator
1627    /// should be fused.
1628    ///
1629    /// [`slice::windows()`]: slice::windows
1630    /// [`FusedIterator`]: crate::iter::FusedIterator
1631    ///
1632    /// # Panics
1633    ///
1634    /// Panics if `N` is zero. This check will most probably get changed to a
1635    /// compile time error before this method gets stabilized.
1636    ///
1637    /// ```should_panic
1638    /// #![feature(iter_map_windows)]
1639    ///
1640    /// let iter = std::iter::repeat(0).map_windows(|&[]| ());
1641    /// ```
1642    ///
1643    /// # Examples
1644    ///
1645    /// Building the sums of neighboring numbers.
1646    ///
1647    /// ```
1648    /// #![feature(iter_map_windows)]
1649    ///
1650    /// let mut it = [1, 3, 8, 1].iter().map_windows(|&[a, b]| a + b);
1651    /// assert_eq!(it.next(), Some(4));  // 1 + 3
1652    /// assert_eq!(it.next(), Some(11)); // 3 + 8
1653    /// assert_eq!(it.next(), Some(9));  // 8 + 1
1654    /// assert_eq!(it.next(), None);
1655    /// ```
1656    ///
1657    /// Since the elements in the following example implement `Copy`, we can
1658    /// just copy the array and get an iterator over the windows.
1659    ///
1660    /// ```
1661    /// #![feature(iter_map_windows)]
1662    ///
1663    /// let mut it = "ferris".chars().map_windows(|w: &[_; 3]| *w);
1664    /// assert_eq!(it.next(), Some(['f', 'e', 'r']));
1665    /// assert_eq!(it.next(), Some(['e', 'r', 'r']));
1666    /// assert_eq!(it.next(), Some(['r', 'r', 'i']));
1667    /// assert_eq!(it.next(), Some(['r', 'i', 's']));
1668    /// assert_eq!(it.next(), None);
1669    /// ```
1670    ///
1671    /// You can also use this function to check the sortedness of an iterator.
1672    /// For the simple case, rather use [`Iterator::is_sorted`].
1673    ///
1674    /// ```
1675    /// #![feature(iter_map_windows)]
1676    ///
1677    /// let mut it = [0.5, 1.0, 3.5, 3.0, 8.5, 8.5, f32::NAN].iter()
1678    ///     .map_windows(|[a, b]| a <= b);
1679    ///
1680    /// assert_eq!(it.next(), Some(true));  // 0.5 <= 1.0
1681    /// assert_eq!(it.next(), Some(true));  // 1.0 <= 3.5
1682    /// assert_eq!(it.next(), Some(false)); // 3.5 <= 3.0
1683    /// assert_eq!(it.next(), Some(true));  // 3.0 <= 8.5
1684    /// assert_eq!(it.next(), Some(true));  // 8.5 <= 8.5
1685    /// assert_eq!(it.next(), Some(false)); // 8.5 <= NAN
1686    /// assert_eq!(it.next(), None);
1687    /// ```
1688    ///
1689    /// For non-fused iterators, they are fused after `map_windows`.
1690    ///
1691    /// ```
1692    /// #![feature(iter_map_windows)]
1693    ///
1694    /// #[derive(Default)]
1695    /// struct NonFusedIterator {
1696    ///     state: i32,
1697    /// }
1698    ///
1699    /// impl Iterator for NonFusedIterator {
1700    ///     type Item = i32;
1701    ///
1702    ///     fn next(&mut self) -> Option<i32> {
1703    ///         let val = self.state;
1704    ///         self.state = self.state + 1;
1705    ///
1706    ///         // yields `0..5` first, then only even numbers since `6..`.
1707    ///         if val < 5 || val % 2 == 0 {
1708    ///             Some(val)
1709    ///         } else {
1710    ///             None
1711    ///         }
1712    ///     }
1713    /// }
1714    ///
1715    ///
1716    /// let mut iter = NonFusedIterator::default();
1717    ///
1718    /// // yields 0..5 first.
1719    /// assert_eq!(iter.next(), Some(0));
1720    /// assert_eq!(iter.next(), Some(1));
1721    /// assert_eq!(iter.next(), Some(2));
1722    /// assert_eq!(iter.next(), Some(3));
1723    /// assert_eq!(iter.next(), Some(4));
1724    /// // then we can see our iterator going back and forth
1725    /// assert_eq!(iter.next(), None);
1726    /// assert_eq!(iter.next(), Some(6));
1727    /// assert_eq!(iter.next(), None);
1728    /// assert_eq!(iter.next(), Some(8));
1729    /// assert_eq!(iter.next(), None);
1730    ///
1731    /// // however, with `.map_windows()`, it is fused.
1732    /// let mut iter = NonFusedIterator::default()
1733    ///     .map_windows(|arr: &[_; 2]| *arr);
1734    ///
1735    /// assert_eq!(iter.next(), Some([0, 1]));
1736    /// assert_eq!(iter.next(), Some([1, 2]));
1737    /// assert_eq!(iter.next(), Some([2, 3]));
1738    /// assert_eq!(iter.next(), Some([3, 4]));
1739    /// assert_eq!(iter.next(), None);
1740    ///
1741    /// // it will always return `None` after the first time.
1742    /// assert_eq!(iter.next(), None);
1743    /// assert_eq!(iter.next(), None);
1744    /// assert_eq!(iter.next(), None);
1745    /// ```
1746    #[inline]
1747    #[unstable(feature = "iter_map_windows", reason = "recently added", issue = "87155")]
1748    #[cfg(not(feature = "ferrocene_certified"))]
1749    fn map_windows<F, R, const N: usize>(self, f: F) -> MapWindows<Self, F, N>
1750    where
1751        Self: Sized,
1752        F: FnMut(&[Self::Item; N]) -> R,
1753    {
1754        MapWindows::new(self, f)
1755    }
1756
1757    /// Creates an iterator which ends after the first [`None`].
1758    ///
1759    /// After an iterator returns [`None`], future calls may or may not yield
1760    /// [`Some(T)`] again. `fuse()` adapts an iterator, ensuring that after a
1761    /// [`None`] is given, it will always return [`None`] forever.
1762    ///
1763    /// Note that the [`Fuse`] wrapper is a no-op on iterators that implement
1764    /// the [`FusedIterator`] trait. `fuse()` may therefore behave incorrectly
1765    /// if the [`FusedIterator`] trait is improperly implemented.
1766    ///
1767    /// [`Some(T)`]: Some
1768    /// [`FusedIterator`]: crate::iter::FusedIterator
1769    ///
1770    /// # Examples
1771    ///
1772    /// ```
1773    /// // an iterator which alternates between Some and None
1774    /// struct Alternate {
1775    ///     state: i32,
1776    /// }
1777    ///
1778    /// impl Iterator for Alternate {
1779    ///     type Item = i32;
1780    ///
1781    ///     fn next(&mut self) -> Option<i32> {
1782    ///         let val = self.state;
1783    ///         self.state = self.state + 1;
1784    ///
1785    ///         // if it's even, Some(i32), else None
1786    ///         (val % 2 == 0).then_some(val)
1787    ///     }
1788    /// }
1789    ///
1790    /// let mut iter = Alternate { state: 0 };
1791    ///
1792    /// // we can see our iterator going back and forth
1793    /// assert_eq!(iter.next(), Some(0));
1794    /// assert_eq!(iter.next(), None);
1795    /// assert_eq!(iter.next(), Some(2));
1796    /// assert_eq!(iter.next(), None);
1797    ///
1798    /// // however, once we fuse it...
1799    /// let mut iter = iter.fuse();
1800    ///
1801    /// assert_eq!(iter.next(), Some(4));
1802    /// assert_eq!(iter.next(), None);
1803    ///
1804    /// // it will always return `None` after the first time.
1805    /// assert_eq!(iter.next(), None);
1806    /// assert_eq!(iter.next(), None);
1807    /// assert_eq!(iter.next(), None);
1808    /// ```
1809    #[inline]
1810    #[stable(feature = "rust1", since = "1.0.0")]
1811    #[cfg(not(feature = "ferrocene_certified"))]
1812    fn fuse(self) -> Fuse<Self>
1813    where
1814        Self: Sized,
1815    {
1816        Fuse::new(self)
1817    }
1818
1819    /// Does something with each element of an iterator, passing the value on.
1820    ///
1821    /// When using iterators, you'll often chain several of them together.
1822    /// While working on such code, you might want to check out what's
1823    /// happening at various parts in the pipeline. To do that, insert
1824    /// a call to `inspect()`.
1825    ///
1826    /// It's more common for `inspect()` to be used as a debugging tool than to
1827    /// exist in your final code, but applications may find it useful in certain
1828    /// situations when errors need to be logged before being discarded.
1829    ///
1830    /// # Examples
1831    ///
1832    /// Basic usage:
1833    ///
1834    /// ```
1835    /// let a = [1, 4, 2, 3];
1836    ///
1837    /// // this iterator sequence is complex.
1838    /// let sum = a.iter()
1839    ///     .cloned()
1840    ///     .filter(|x| x % 2 == 0)
1841    ///     .fold(0, |sum, i| sum + i);
1842    ///
1843    /// println!("{sum}");
1844    ///
1845    /// // let's add some inspect() calls to investigate what's happening
1846    /// let sum = a.iter()
1847    ///     .cloned()
1848    ///     .inspect(|x| println!("about to filter: {x}"))
1849    ///     .filter(|x| x % 2 == 0)
1850    ///     .inspect(|x| println!("made it through filter: {x}"))
1851    ///     .fold(0, |sum, i| sum + i);
1852    ///
1853    /// println!("{sum}");
1854    /// ```
1855    ///
1856    /// This will print:
1857    ///
1858    /// ```text
1859    /// 6
1860    /// about to filter: 1
1861    /// about to filter: 4
1862    /// made it through filter: 4
1863    /// about to filter: 2
1864    /// made it through filter: 2
1865    /// about to filter: 3
1866    /// 6
1867    /// ```
1868    ///
1869    /// Logging errors before discarding them:
1870    ///
1871    /// ```
1872    /// let lines = ["1", "2", "a"];
1873    ///
1874    /// let sum: i32 = lines
1875    ///     .iter()
1876    ///     .map(|line| line.parse::<i32>())
1877    ///     .inspect(|num| {
1878    ///         if let Err(ref e) = *num {
1879    ///             println!("Parsing error: {e}");
1880    ///         }
1881    ///     })
1882    ///     .filter_map(Result::ok)
1883    ///     .sum();
1884    ///
1885    /// println!("Sum: {sum}");
1886    /// ```
1887    ///
1888    /// This will print:
1889    ///
1890    /// ```text
1891    /// Parsing error: invalid digit found in string
1892    /// Sum: 3
1893    /// ```
1894    #[inline]
1895    #[stable(feature = "rust1", since = "1.0.0")]
1896    #[cfg(not(feature = "ferrocene_certified"))]
1897    fn inspect<F>(self, f: F) -> Inspect<Self, F>
1898    where
1899        Self: Sized,
1900        F: FnMut(&Self::Item),
1901    {
1902        Inspect::new(self, f)
1903    }
1904
1905    /// Creates a "by reference" adapter for this instance of `Iterator`.
1906    ///
1907    /// Consuming method calls (direct or indirect calls to `next`)
1908    /// on the "by reference" adapter will consume the original iterator,
1909    /// but ownership-taking methods (those with a `self` parameter)
1910    /// only take ownership of the "by reference" iterator.
1911    ///
1912    /// This is useful for applying ownership-taking methods
1913    /// (such as `take` in the example below)
1914    /// without giving up ownership of the original iterator,
1915    /// so you can use the original iterator afterwards.
1916    ///
1917    /// Uses [`impl<I: Iterator + ?Sized> Iterator for &mut I { type Item = I::Item; ...}`](https://doc.rust-lang.org/nightly/std/iter/trait.Iterator.html#impl-Iterator-for-%26mut+I).
1918    ///
1919    /// # Examples
1920    ///
1921    /// ```
1922    /// let mut words = ["hello", "world", "of", "Rust"].into_iter();
1923    ///
1924    /// // Take the first two words.
1925    /// let hello_world: Vec<_> = words.by_ref().take(2).collect();
1926    /// assert_eq!(hello_world, vec!["hello", "world"]);
1927    ///
1928    /// // Collect the rest of the words.
1929    /// // We can only do this because we used `by_ref` earlier.
1930    /// let of_rust: Vec<_> = words.collect();
1931    /// assert_eq!(of_rust, vec!["of", "Rust"]);
1932    /// ```
1933    #[stable(feature = "rust1", since = "1.0.0")]
1934    #[cfg(not(feature = "ferrocene_certified"))]
1935    fn by_ref(&mut self) -> &mut Self
1936    where
1937        Self: Sized,
1938    {
1939        self
1940    }
1941
1942    /// Transforms an iterator into a collection.
1943    ///
1944    /// `collect()` can take anything iterable, and turn it into a relevant
1945    /// collection. This is one of the more powerful methods in the standard
1946    /// library, used in a variety of contexts.
1947    ///
1948    /// The most basic pattern in which `collect()` is used is to turn one
1949    /// collection into another. You take a collection, call [`iter`] on it,
1950    /// do a bunch of transformations, and then `collect()` at the end.
1951    ///
1952    /// `collect()` can also create instances of types that are not typical
1953    /// collections. For example, a [`String`] can be built from [`char`]s,
1954    /// and an iterator of [`Result<T, E>`][`Result`] items can be collected
1955    /// into `Result<Collection<T>, E>`. See the examples below for more.
1956    ///
1957    /// Because `collect()` is so general, it can cause problems with type
1958    /// inference. As such, `collect()` is one of the few times you'll see
1959    /// the syntax affectionately known as the 'turbofish': `::<>`. This
1960    /// helps the inference algorithm understand specifically which collection
1961    /// you're trying to collect into.
1962    ///
1963    /// # Examples
1964    ///
1965    /// Basic usage:
1966    ///
1967    /// ```
1968    /// let a = [1, 2, 3];
1969    ///
1970    /// let doubled: Vec<i32> = a.iter()
1971    ///                          .map(|x| x * 2)
1972    ///                          .collect();
1973    ///
1974    /// assert_eq!(vec![2, 4, 6], doubled);
1975    /// ```
1976    ///
1977    /// Note that we needed the `: Vec<i32>` on the left-hand side. This is because
1978    /// we could collect into, for example, a [`VecDeque<T>`] instead:
1979    ///
1980    /// [`VecDeque<T>`]: ../../std/collections/struct.VecDeque.html
1981    ///
1982    /// ```
1983    /// use std::collections::VecDeque;
1984    ///
1985    /// let a = [1, 2, 3];
1986    ///
1987    /// let doubled: VecDeque<i32> = a.iter().map(|x| x * 2).collect();
1988    ///
1989    /// assert_eq!(2, doubled[0]);
1990    /// assert_eq!(4, doubled[1]);
1991    /// assert_eq!(6, doubled[2]);
1992    /// ```
1993    ///
1994    /// Using the 'turbofish' instead of annotating `doubled`:
1995    ///
1996    /// ```
1997    /// let a = [1, 2, 3];
1998    ///
1999    /// let doubled = a.iter().map(|x| x * 2).collect::<Vec<i32>>();
2000    ///
2001    /// assert_eq!(vec![2, 4, 6], doubled);
2002    /// ```
2003    ///
2004    /// Because `collect()` only cares about what you're collecting into, you can
2005    /// still use a partial type hint, `_`, with the turbofish:
2006    ///
2007    /// ```
2008    /// let a = [1, 2, 3];
2009    ///
2010    /// let doubled = a.iter().map(|x| x * 2).collect::<Vec<_>>();
2011    ///
2012    /// assert_eq!(vec![2, 4, 6], doubled);
2013    /// ```
2014    ///
2015    /// Using `collect()` to make a [`String`]:
2016    ///
2017    /// ```
2018    /// let chars = ['g', 'd', 'k', 'k', 'n'];
2019    ///
2020    /// let hello: String = chars.into_iter()
2021    ///     .map(|x| x as u8)
2022    ///     .map(|x| (x + 1) as char)
2023    ///     .collect();
2024    ///
2025    /// assert_eq!("hello", hello);
2026    /// ```
2027    ///
2028    /// If you have a list of [`Result<T, E>`][`Result`]s, you can use `collect()` to
2029    /// see if any of them failed:
2030    ///
2031    /// ```
2032    /// let results = [Ok(1), Err("nope"), Ok(3), Err("bad")];
2033    ///
2034    /// let result: Result<Vec<_>, &str> = results.into_iter().collect();
2035    ///
2036    /// // gives us the first error
2037    /// assert_eq!(Err("nope"), result);
2038    ///
2039    /// let results = [Ok(1), Ok(3)];
2040    ///
2041    /// let result: Result<Vec<_>, &str> = results.into_iter().collect();
2042    ///
2043    /// // gives us the list of answers
2044    /// assert_eq!(Ok(vec![1, 3]), result);
2045    /// ```
2046    ///
2047    /// [`iter`]: Iterator::next
2048    /// [`String`]: ../../std/string/struct.String.html
2049    /// [`char`]: type@char
2050    #[inline]
2051    #[stable(feature = "rust1", since = "1.0.0")]
2052    #[must_use = "if you really need to exhaust the iterator, consider `.for_each(drop)` instead"]
2053    #[rustc_diagnostic_item = "iterator_collect_fn"]
2054    #[cfg(not(feature = "ferrocene_certified"))]
2055    fn collect<B: FromIterator<Self::Item>>(self) -> B
2056    where
2057        Self: Sized,
2058    {
2059        // This is too aggressive to turn on for everything all the time, but PR#137908
2060        // accidentally noticed that some rustc iterators had malformed `size_hint`s,
2061        // so this will help catch such things in debug-assertions-std runners,
2062        // even if users won't actually ever see it.
2063        if cfg!(debug_assertions) {
2064            let hint = self.size_hint();
2065            assert!(hint.1.is_none_or(|high| high >= hint.0), "Malformed size_hint {hint:?}");
2066        }
2067
2068        FromIterator::from_iter(self)
2069    }
2070
2071    /// Fallibly transforms an iterator into a collection, short circuiting if
2072    /// a failure is encountered.
2073    ///
2074    /// `try_collect()` is a variation of [`collect()`][`collect`] that allows fallible
2075    /// conversions during collection. Its main use case is simplifying conversions from
2076    /// iterators yielding [`Option<T>`][`Option`] into `Option<Collection<T>>`, or similarly for other [`Try`]
2077    /// types (e.g. [`Result`]).
2078    ///
2079    /// Importantly, `try_collect()` doesn't require that the outer [`Try`] type also implements [`FromIterator`];
2080    /// only the inner type produced on `Try::Output` must implement it. Concretely,
2081    /// this means that collecting into `ControlFlow<_, Vec<i32>>` is valid because `Vec<i32>` implements
2082    /// [`FromIterator`], even though [`ControlFlow`] doesn't.
2083    ///
2084    /// Also, if a failure is encountered during `try_collect()`, the iterator is still valid and
2085    /// may continue to be used, in which case it will continue iterating starting after the element that
2086    /// triggered the failure. See the last example below for an example of how this works.
2087    ///
2088    /// # Examples
2089    /// Successfully collecting an iterator of `Option<i32>` into `Option<Vec<i32>>`:
2090    /// ```
2091    /// #![feature(iterator_try_collect)]
2092    ///
2093    /// let u = vec![Some(1), Some(2), Some(3)];
2094    /// let v = u.into_iter().try_collect::<Vec<i32>>();
2095    /// assert_eq!(v, Some(vec![1, 2, 3]));
2096    /// ```
2097    ///
2098    /// Failing to collect in the same way:
2099    /// ```
2100    /// #![feature(iterator_try_collect)]
2101    ///
2102    /// let u = vec![Some(1), Some(2), None, Some(3)];
2103    /// let v = u.into_iter().try_collect::<Vec<i32>>();
2104    /// assert_eq!(v, None);
2105    /// ```
2106    ///
2107    /// A similar example, but with `Result`:
2108    /// ```
2109    /// #![feature(iterator_try_collect)]
2110    ///
2111    /// let u: Vec<Result<i32, ()>> = vec![Ok(1), Ok(2), Ok(3)];
2112    /// let v = u.into_iter().try_collect::<Vec<i32>>();
2113    /// assert_eq!(v, Ok(vec![1, 2, 3]));
2114    ///
2115    /// let u = vec![Ok(1), Ok(2), Err(()), Ok(3)];
2116    /// let v = u.into_iter().try_collect::<Vec<i32>>();
2117    /// assert_eq!(v, Err(()));
2118    /// ```
2119    ///
2120    /// Finally, even [`ControlFlow`] works, despite the fact that it
2121    /// doesn't implement [`FromIterator`]. Note also that the iterator can
2122    /// continue to be used, even if a failure is encountered:
2123    ///
2124    /// ```
2125    /// #![feature(iterator_try_collect)]
2126    ///
2127    /// use core::ops::ControlFlow::{Break, Continue};
2128    ///
2129    /// let u = [Continue(1), Continue(2), Break(3), Continue(4), Continue(5)];
2130    /// let mut it = u.into_iter();
2131    ///
2132    /// let v = it.try_collect::<Vec<_>>();
2133    /// assert_eq!(v, Break(3));
2134    ///
2135    /// let v = it.try_collect::<Vec<_>>();
2136    /// assert_eq!(v, Continue(vec![4, 5]));
2137    /// ```
2138    ///
2139    /// [`collect`]: Iterator::collect
2140    #[inline]
2141    #[unstable(feature = "iterator_try_collect", issue = "94047")]
2142    #[cfg(not(feature = "ferrocene_certified"))]
2143    fn try_collect<B>(&mut self) -> ChangeOutputType<Self::Item, B>
2144    where
2145        Self: Sized,
2146        Self::Item: Try<Residual: Residual<B>>,
2147        B: FromIterator<<Self::Item as Try>::Output>,
2148    {
2149        try_process(ByRefSized(self), |i| i.collect())
2150    }
2151
2152    /// Collects all the items from an iterator into a collection.
2153    ///
2154    /// This method consumes the iterator and adds all its items to the
2155    /// passed collection. The collection is then returned, so the call chain
2156    /// can be continued.
2157    ///
2158    /// This is useful when you already have a collection and want to add
2159    /// the iterator items to it.
2160    ///
2161    /// This method is a convenience method to call [Extend::extend](trait.Extend.html),
2162    /// but instead of being called on a collection, it's called on an iterator.
2163    ///
2164    /// # Examples
2165    ///
2166    /// Basic usage:
2167    ///
2168    /// ```
2169    /// #![feature(iter_collect_into)]
2170    ///
2171    /// let a = [1, 2, 3];
2172    /// let mut vec: Vec::<i32> = vec![0, 1];
2173    ///
2174    /// a.iter().map(|x| x * 2).collect_into(&mut vec);
2175    /// a.iter().map(|x| x * 10).collect_into(&mut vec);
2176    ///
2177    /// assert_eq!(vec, vec![0, 1, 2, 4, 6, 10, 20, 30]);
2178    /// ```
2179    ///
2180    /// `Vec` can have a manual set capacity to avoid reallocating it:
2181    ///
2182    /// ```
2183    /// #![feature(iter_collect_into)]
2184    ///
2185    /// let a = [1, 2, 3];
2186    /// let mut vec: Vec::<i32> = Vec::with_capacity(6);
2187    ///
2188    /// a.iter().map(|x| x * 2).collect_into(&mut vec);
2189    /// a.iter().map(|x| x * 10).collect_into(&mut vec);
2190    ///
2191    /// assert_eq!(6, vec.capacity());
2192    /// assert_eq!(vec, vec![2, 4, 6, 10, 20, 30]);
2193    /// ```
2194    ///
2195    /// The returned mutable reference can be used to continue the call chain:
2196    ///
2197    /// ```
2198    /// #![feature(iter_collect_into)]
2199    ///
2200    /// let a = [1, 2, 3];
2201    /// let mut vec: Vec::<i32> = Vec::with_capacity(6);
2202    ///
2203    /// let count = a.iter().collect_into(&mut vec).iter().count();
2204    ///
2205    /// assert_eq!(count, vec.len());
2206    /// assert_eq!(vec, vec![1, 2, 3]);
2207    ///
2208    /// let count = a.iter().collect_into(&mut vec).iter().count();
2209    ///
2210    /// assert_eq!(count, vec.len());
2211    /// assert_eq!(vec, vec![1, 2, 3, 1, 2, 3]);
2212    /// ```
2213    #[inline]
2214    #[unstable(feature = "iter_collect_into", reason = "new API", issue = "94780")]
2215    #[cfg(not(feature = "ferrocene_certified"))]
2216    fn collect_into<E: Extend<Self::Item>>(self, collection: &mut E) -> &mut E
2217    where
2218        Self: Sized,
2219    {
2220        collection.extend(self);
2221        collection
2222    }
2223
2224    /// Consumes an iterator, creating two collections from it.
2225    ///
2226    /// The predicate passed to `partition()` can return `true`, or `false`.
2227    /// `partition()` returns a pair, all of the elements for which it returned
2228    /// `true`, and all of the elements for which it returned `false`.
2229    ///
2230    /// See also [`is_partitioned()`] and [`partition_in_place()`].
2231    ///
2232    /// [`is_partitioned()`]: Iterator::is_partitioned
2233    /// [`partition_in_place()`]: Iterator::partition_in_place
2234    ///
2235    /// # Examples
2236    ///
2237    /// ```
2238    /// let a = [1, 2, 3];
2239    ///
2240    /// let (even, odd): (Vec<_>, Vec<_>) = a
2241    ///     .into_iter()
2242    ///     .partition(|n| n % 2 == 0);
2243    ///
2244    /// assert_eq!(even, [2]);
2245    /// assert_eq!(odd, [1, 3]);
2246    /// ```
2247    #[stable(feature = "rust1", since = "1.0.0")]
2248    #[cfg(not(feature = "ferrocene_certified"))]
2249    fn partition<B, F>(self, f: F) -> (B, B)
2250    where
2251        Self: Sized,
2252        B: Default + Extend<Self::Item>,
2253        F: FnMut(&Self::Item) -> bool,
2254    {
2255        #[inline]
2256        fn extend<'a, T, B: Extend<T>>(
2257            mut f: impl FnMut(&T) -> bool + 'a,
2258            left: &'a mut B,
2259            right: &'a mut B,
2260        ) -> impl FnMut((), T) + 'a {
2261            move |(), x| {
2262                if f(&x) {
2263                    left.extend_one(x);
2264                } else {
2265                    right.extend_one(x);
2266                }
2267            }
2268        }
2269
2270        let mut left: B = Default::default();
2271        let mut right: B = Default::default();
2272
2273        self.fold((), extend(f, &mut left, &mut right));
2274
2275        (left, right)
2276    }
2277
2278    /// Reorders the elements of this iterator *in-place* according to the given predicate,
2279    /// such that all those that return `true` precede all those that return `false`.
2280    /// Returns the number of `true` elements found.
2281    ///
2282    /// The relative order of partitioned items is not maintained.
2283    ///
2284    /// # Current implementation
2285    ///
2286    /// The current algorithm tries to find the first element for which the predicate evaluates
2287    /// to false and the last element for which it evaluates to true, and repeatedly swaps them.
2288    ///
2289    /// Time complexity: *O*(*n*)
2290    ///
2291    /// See also [`is_partitioned()`] and [`partition()`].
2292    ///
2293    /// [`is_partitioned()`]: Iterator::is_partitioned
2294    /// [`partition()`]: Iterator::partition
2295    ///
2296    /// # Examples
2297    ///
2298    /// ```
2299    /// #![feature(iter_partition_in_place)]
2300    ///
2301    /// let mut a = [1, 2, 3, 4, 5, 6, 7];
2302    ///
2303    /// // Partition in-place between evens and odds
2304    /// let i = a.iter_mut().partition_in_place(|n| n % 2 == 0);
2305    ///
2306    /// assert_eq!(i, 3);
2307    /// assert!(a[..i].iter().all(|n| n % 2 == 0)); // evens
2308    /// assert!(a[i..].iter().all(|n| n % 2 == 1)); // odds
2309    /// ```
2310    #[unstable(feature = "iter_partition_in_place", reason = "new API", issue = "62543")]
2311    #[cfg(not(feature = "ferrocene_certified"))]
2312    fn partition_in_place<'a, T: 'a, P>(mut self, ref mut predicate: P) -> usize
2313    where
2314        Self: Sized + DoubleEndedIterator<Item = &'a mut T>,
2315        P: FnMut(&T) -> bool,
2316    {
2317        // FIXME: should we worry about the count overflowing? The only way to have more than
2318        // `usize::MAX` mutable references is with ZSTs, which aren't useful to partition...
2319
2320        // These closure "factory" functions exist to avoid genericity in `Self`.
2321
2322        #[inline]
2323        fn is_false<'a, T>(
2324            predicate: &'a mut impl FnMut(&T) -> bool,
2325            true_count: &'a mut usize,
2326        ) -> impl FnMut(&&mut T) -> bool + 'a {
2327            move |x| {
2328                let p = predicate(&**x);
2329                *true_count += p as usize;
2330                !p
2331            }
2332        }
2333
2334        #[inline]
2335        fn is_true<T>(predicate: &mut impl FnMut(&T) -> bool) -> impl FnMut(&&mut T) -> bool + '_ {
2336            move |x| predicate(&**x)
2337        }
2338
2339        // Repeatedly find the first `false` and swap it with the last `true`.
2340        let mut true_count = 0;
2341        while let Some(head) = self.find(is_false(predicate, &mut true_count)) {
2342            if let Some(tail) = self.rfind(is_true(predicate)) {
2343                crate::mem::swap(head, tail);
2344                true_count += 1;
2345            } else {
2346                break;
2347            }
2348        }
2349        true_count
2350    }
2351
2352    /// Checks if the elements of this iterator are partitioned according to the given predicate,
2353    /// such that all those that return `true` precede all those that return `false`.
2354    ///
2355    /// See also [`partition()`] and [`partition_in_place()`].
2356    ///
2357    /// [`partition()`]: Iterator::partition
2358    /// [`partition_in_place()`]: Iterator::partition_in_place
2359    ///
2360    /// # Examples
2361    ///
2362    /// ```
2363    /// #![feature(iter_is_partitioned)]
2364    ///
2365    /// assert!("Iterator".chars().is_partitioned(char::is_uppercase));
2366    /// assert!(!"IntoIterator".chars().is_partitioned(char::is_uppercase));
2367    /// ```
2368    #[unstable(feature = "iter_is_partitioned", reason = "new API", issue = "62544")]
2369    #[cfg(not(feature = "ferrocene_certified"))]
2370    fn is_partitioned<P>(mut self, mut predicate: P) -> bool
2371    where
2372        Self: Sized,
2373        P: FnMut(Self::Item) -> bool,
2374    {
2375        // Either all items test `true`, or the first clause stops at `false`
2376        // and we check that there are no more `true` items after that.
2377        self.all(&mut predicate) || !self.any(predicate)
2378    }
2379
2380    /// An iterator method that applies a function as long as it returns
2381    /// successfully, producing a single, final value.
2382    ///
2383    /// `try_fold()` takes two arguments: an initial value, and a closure with
2384    /// two arguments: an 'accumulator', and an element. The closure either
2385    /// returns successfully, with the value that the accumulator should have
2386    /// for the next iteration, or it returns failure, with an error value that
2387    /// is propagated back to the caller immediately (short-circuiting).
2388    ///
2389    /// The initial value is the value the accumulator will have on the first
2390    /// call. If applying the closure succeeded against every element of the
2391    /// iterator, `try_fold()` returns the final accumulator as success.
2392    ///
2393    /// Folding is useful whenever you have a collection of something, and want
2394    /// to produce a single value from it.
2395    ///
2396    /// # Note to Implementors
2397    ///
2398    /// Several of the other (forward) methods have default implementations in
2399    /// terms of this one, so try to implement this explicitly if it can
2400    /// do something better than the default `for` loop implementation.
2401    ///
2402    /// In particular, try to have this call `try_fold()` on the internal parts
2403    /// from which this iterator is composed. If multiple calls are needed,
2404    /// the `?` operator may be convenient for chaining the accumulator value
2405    /// along, but beware any invariants that need to be upheld before those
2406    /// early returns. This is a `&mut self` method, so iteration needs to be
2407    /// resumable after hitting an error here.
2408    ///
2409    /// # Examples
2410    ///
2411    /// Basic usage:
2412    ///
2413    /// ```
2414    /// let a = [1, 2, 3];
2415    ///
2416    /// // the checked sum of all of the elements of the array
2417    /// let sum = a.into_iter().try_fold(0i8, |acc, x| acc.checked_add(x));
2418    ///
2419    /// assert_eq!(sum, Some(6));
2420    /// ```
2421    ///
2422    /// Short-circuiting:
2423    ///
2424    /// ```
2425    /// let a = [10, 20, 30, 100, 40, 50];
2426    /// let mut iter = a.into_iter();
2427    ///
2428    /// // This sum overflows when adding the 100 element
2429    /// let sum = iter.try_fold(0i8, |acc, x| acc.checked_add(x));
2430    /// assert_eq!(sum, None);
2431    ///
2432    /// // Because it short-circuited, the remaining elements are still
2433    /// // available through the iterator.
2434    /// assert_eq!(iter.len(), 2);
2435    /// assert_eq!(iter.next(), Some(40));
2436    /// ```
2437    ///
2438    /// While you cannot `break` from a closure, the [`ControlFlow`] type allows
2439    /// a similar idea:
2440    ///
2441    /// ```
2442    /// use std::ops::ControlFlow;
2443    ///
2444    /// let triangular = (1..30).try_fold(0_i8, |prev, x| {
2445    ///     if let Some(next) = prev.checked_add(x) {
2446    ///         ControlFlow::Continue(next)
2447    ///     } else {
2448    ///         ControlFlow::Break(prev)
2449    ///     }
2450    /// });
2451    /// assert_eq!(triangular, ControlFlow::Break(120));
2452    ///
2453    /// let triangular = (1..30).try_fold(0_u64, |prev, x| {
2454    ///     if let Some(next) = prev.checked_add(x) {
2455    ///         ControlFlow::Continue(next)
2456    ///     } else {
2457    ///         ControlFlow::Break(prev)
2458    ///     }
2459    /// });
2460    /// assert_eq!(triangular, ControlFlow::Continue(435));
2461    /// ```
2462    #[inline]
2463    #[stable(feature = "iterator_try_fold", since = "1.27.0")]
2464    #[cfg(not(feature = "ferrocene_certified"))]
2465    fn try_fold<B, F, R>(&mut self, init: B, mut f: F) -> R
2466    where
2467        Self: Sized,
2468        F: FnMut(B, Self::Item) -> R,
2469        R: Try<Output = B>,
2470    {
2471        let mut accum = init;
2472        while let Some(x) = self.next() {
2473            accum = f(accum, x)?;
2474        }
2475        try { accum }
2476    }
2477
2478    /// An iterator method that applies a fallible function to each item in the
2479    /// iterator, stopping at the first error and returning that error.
2480    ///
2481    /// This can also be thought of as the fallible form of [`for_each()`]
2482    /// or as the stateless version of [`try_fold()`].
2483    ///
2484    /// [`for_each()`]: Iterator::for_each
2485    /// [`try_fold()`]: Iterator::try_fold
2486    ///
2487    /// # Examples
2488    ///
2489    /// ```
2490    /// use std::fs::rename;
2491    /// use std::io::{stdout, Write};
2492    /// use std::path::Path;
2493    ///
2494    /// let data = ["no_tea.txt", "stale_bread.json", "torrential_rain.png"];
2495    ///
2496    /// let res = data.iter().try_for_each(|x| writeln!(stdout(), "{x}"));
2497    /// assert!(res.is_ok());
2498    ///
2499    /// let mut it = data.iter().cloned();
2500    /// let res = it.try_for_each(|x| rename(x, Path::new(x).with_extension("old")));
2501    /// assert!(res.is_err());
2502    /// // It short-circuited, so the remaining items are still in the iterator:
2503    /// assert_eq!(it.next(), Some("stale_bread.json"));
2504    /// ```
2505    ///
2506    /// The [`ControlFlow`] type can be used with this method for the situations
2507    /// in which you'd use `break` and `continue` in a normal loop:
2508    ///
2509    /// ```
2510    /// use std::ops::ControlFlow;
2511    ///
2512    /// let r = (2..100).try_for_each(|x| {
2513    ///     if 323 % x == 0 {
2514    ///         return ControlFlow::Break(x)
2515    ///     }
2516    ///
2517    ///     ControlFlow::Continue(())
2518    /// });
2519    /// assert_eq!(r, ControlFlow::Break(17));
2520    /// ```
2521    #[inline]
2522    #[stable(feature = "iterator_try_fold", since = "1.27.0")]
2523    #[cfg(not(feature = "ferrocene_certified"))]
2524    fn try_for_each<F, R>(&mut self, f: F) -> R
2525    where
2526        Self: Sized,
2527        F: FnMut(Self::Item) -> R,
2528        R: Try<Output = ()>,
2529    {
2530        #[inline]
2531        fn call<T, R>(mut f: impl FnMut(T) -> R) -> impl FnMut((), T) -> R {
2532            move |(), x| f(x)
2533        }
2534
2535        self.try_fold((), call(f))
2536    }
2537
2538    /// Folds every element into an accumulator by applying an operation,
2539    /// returning the final result.
2540    ///
2541    /// `fold()` takes two arguments: an initial value, and a closure with two
2542    /// arguments: an 'accumulator', and an element. The closure returns the value that
2543    /// the accumulator should have for the next iteration.
2544    ///
2545    /// The initial value is the value the accumulator will have on the first
2546    /// call.
2547    ///
2548    /// After applying this closure to every element of the iterator, `fold()`
2549    /// returns the accumulator.
2550    ///
2551    /// This operation is sometimes called 'reduce' or 'inject'.
2552    ///
2553    /// Folding is useful whenever you have a collection of something, and want
2554    /// to produce a single value from it.
2555    ///
2556    /// Note: `fold()`, and similar methods that traverse the entire iterator,
2557    /// might not terminate for infinite iterators, even on traits for which a
2558    /// result is determinable in finite time.
2559    ///
2560    /// Note: [`reduce()`] can be used to use the first element as the initial
2561    /// value, if the accumulator type and item type is the same.
2562    ///
2563    /// Note: `fold()` combines elements in a *left-associative* fashion. For associative
2564    /// operators like `+`, the order the elements are combined in is not important, but for non-associative
2565    /// operators like `-` the order will affect the final result.
2566    /// For a *right-associative* version of `fold()`, see [`DoubleEndedIterator::rfold()`].
2567    ///
2568    /// # Note to Implementors
2569    ///
2570    /// Several of the other (forward) methods have default implementations in
2571    /// terms of this one, so try to implement this explicitly if it can
2572    /// do something better than the default `for` loop implementation.
2573    ///
2574    /// In particular, try to have this call `fold()` on the internal parts
2575    /// from which this iterator is composed.
2576    ///
2577    /// # Examples
2578    ///
2579    /// Basic usage:
2580    ///
2581    /// ```
2582    /// let a = [1, 2, 3];
2583    ///
2584    /// // the sum of all of the elements of the array
2585    /// let sum = a.iter().fold(0, |acc, x| acc + x);
2586    ///
2587    /// assert_eq!(sum, 6);
2588    /// ```
2589    ///
2590    /// Let's walk through each step of the iteration here:
2591    ///
2592    /// | element | acc | x | result |
2593    /// |---------|-----|---|--------|
2594    /// |         | 0   |   |        |
2595    /// | 1       | 0   | 1 | 1      |
2596    /// | 2       | 1   | 2 | 3      |
2597    /// | 3       | 3   | 3 | 6      |
2598    ///
2599    /// And so, our final result, `6`.
2600    ///
2601    /// This example demonstrates the left-associative nature of `fold()`:
2602    /// it builds a string, starting with an initial value
2603    /// and continuing with each element from the front until the back:
2604    ///
2605    /// ```
2606    /// let numbers = [1, 2, 3, 4, 5];
2607    ///
2608    /// let zero = "0".to_string();
2609    ///
2610    /// let result = numbers.iter().fold(zero, |acc, &x| {
2611    ///     format!("({acc} + {x})")
2612    /// });
2613    ///
2614    /// assert_eq!(result, "(((((0 + 1) + 2) + 3) + 4) + 5)");
2615    /// ```
2616    /// It's common for people who haven't used iterators a lot to
2617    /// use a `for` loop with a list of things to build up a result. Those
2618    /// can be turned into `fold()`s:
2619    ///
2620    /// [`for`]: ../../book/ch03-05-control-flow.html#looping-through-a-collection-with-for
2621    ///
2622    /// ```
2623    /// let numbers = [1, 2, 3, 4, 5];
2624    ///
2625    /// let mut result = 0;
2626    ///
2627    /// // for loop:
2628    /// for i in &numbers {
2629    ///     result = result + i;
2630    /// }
2631    ///
2632    /// // fold:
2633    /// let result2 = numbers.iter().fold(0, |acc, &x| acc + x);
2634    ///
2635    /// // they're the same
2636    /// assert_eq!(result, result2);
2637    /// ```
2638    ///
2639    /// [`reduce()`]: Iterator::reduce
2640    #[doc(alias = "inject", alias = "foldl")]
2641    #[inline]
2642    #[stable(feature = "rust1", since = "1.0.0")]
2643    #[cfg(not(feature = "ferrocene_certified"))]
2644    fn fold<B, F>(mut self, init: B, mut f: F) -> B
2645    where
2646        Self: Sized,
2647        F: FnMut(B, Self::Item) -> B,
2648    {
2649        let mut accum = init;
2650        while let Some(x) = self.next() {
2651            accum = f(accum, x);
2652        }
2653        accum
2654    }
2655
2656    /// Reduces the elements to a single one, by repeatedly applying a reducing
2657    /// operation.
2658    ///
2659    /// If the iterator is empty, returns [`None`]; otherwise, returns the
2660    /// result of the reduction.
2661    ///
2662    /// The reducing function is a closure with two arguments: an 'accumulator', and an element.
2663    /// For iterators with at least one element, this is the same as [`fold()`]
2664    /// with the first element of the iterator as the initial accumulator value, folding
2665    /// every subsequent element into it.
2666    ///
2667    /// [`fold()`]: Iterator::fold
2668    ///
2669    /// # Example
2670    ///
2671    /// ```
2672    /// let reduced: i32 = (1..10).reduce(|acc, e| acc + e).unwrap_or(0);
2673    /// assert_eq!(reduced, 45);
2674    ///
2675    /// // Which is equivalent to doing it with `fold`:
2676    /// let folded: i32 = (1..10).fold(0, |acc, e| acc + e);
2677    /// assert_eq!(reduced, folded);
2678    /// ```
2679    #[inline]
2680    #[stable(feature = "iterator_fold_self", since = "1.51.0")]
2681    #[cfg(not(feature = "ferrocene_certified"))]
2682    fn reduce<F>(mut self, f: F) -> Option<Self::Item>
2683    where
2684        Self: Sized,
2685        F: FnMut(Self::Item, Self::Item) -> Self::Item,
2686    {
2687        let first = self.next()?;
2688        Some(self.fold(first, f))
2689    }
2690
2691    /// Reduces the elements to a single one by repeatedly applying a reducing operation. If the
2692    /// closure returns a failure, the failure is propagated back to the caller immediately.
2693    ///
2694    /// The return type of this method depends on the return type of the closure. If the closure
2695    /// returns `Result<Self::Item, E>`, then this function will return `Result<Option<Self::Item>,
2696    /// E>`. If the closure returns `Option<Self::Item>`, then this function will return
2697    /// `Option<Option<Self::Item>>`.
2698    ///
2699    /// When called on an empty iterator, this function will return either `Some(None)` or
2700    /// `Ok(None)` depending on the type of the provided closure.
2701    ///
2702    /// For iterators with at least one element, this is essentially the same as calling
2703    /// [`try_fold()`] with the first element of the iterator as the initial accumulator value.
2704    ///
2705    /// [`try_fold()`]: Iterator::try_fold
2706    ///
2707    /// # Examples
2708    ///
2709    /// Safely calculate the sum of a series of numbers:
2710    ///
2711    /// ```
2712    /// #![feature(iterator_try_reduce)]
2713    ///
2714    /// let numbers: Vec<usize> = vec![10, 20, 5, 23, 0];
2715    /// let sum = numbers.into_iter().try_reduce(|x, y| x.checked_add(y));
2716    /// assert_eq!(sum, Some(Some(58)));
2717    /// ```
2718    ///
2719    /// Determine when a reduction short circuited:
2720    ///
2721    /// ```
2722    /// #![feature(iterator_try_reduce)]
2723    ///
2724    /// let numbers = vec![1, 2, 3, usize::MAX, 4, 5];
2725    /// let sum = numbers.into_iter().try_reduce(|x, y| x.checked_add(y));
2726    /// assert_eq!(sum, None);
2727    /// ```
2728    ///
2729    /// Determine when a reduction was not performed because there are no elements:
2730    ///
2731    /// ```
2732    /// #![feature(iterator_try_reduce)]
2733    ///
2734    /// let numbers: Vec<usize> = Vec::new();
2735    /// let sum = numbers.into_iter().try_reduce(|x, y| x.checked_add(y));
2736    /// assert_eq!(sum, Some(None));
2737    /// ```
2738    ///
2739    /// Use a [`Result`] instead of an [`Option`]:
2740    ///
2741    /// ```
2742    /// #![feature(iterator_try_reduce)]
2743    ///
2744    /// let numbers = vec!["1", "2", "3", "4", "5"];
2745    /// let max: Result<Option<_>, <usize as std::str::FromStr>::Err> =
2746    ///     numbers.into_iter().try_reduce(|x, y| {
2747    ///         if x.parse::<usize>()? > y.parse::<usize>()? { Ok(x) } else { Ok(y) }
2748    ///     });
2749    /// assert_eq!(max, Ok(Some("5")));
2750    /// ```
2751    #[inline]
2752    #[unstable(feature = "iterator_try_reduce", reason = "new API", issue = "87053")]
2753    #[cfg(not(feature = "ferrocene_certified"))]
2754    fn try_reduce<R>(
2755        &mut self,
2756        f: impl FnMut(Self::Item, Self::Item) -> R,
2757    ) -> ChangeOutputType<R, Option<R::Output>>
2758    where
2759        Self: Sized,
2760        R: Try<Output = Self::Item, Residual: Residual<Option<Self::Item>>>,
2761    {
2762        let first = match self.next() {
2763            Some(i) => i,
2764            None => return Try::from_output(None),
2765        };
2766
2767        match self.try_fold(first, f).branch() {
2768            ControlFlow::Break(r) => FromResidual::from_residual(r),
2769            ControlFlow::Continue(i) => Try::from_output(Some(i)),
2770        }
2771    }
2772
2773    /// Tests if every element of the iterator matches a predicate.
2774    ///
2775    /// `all()` takes a closure that returns `true` or `false`. It applies
2776    /// this closure to each element of the iterator, and if they all return
2777    /// `true`, then so does `all()`. If any of them return `false`, it
2778    /// returns `false`.
2779    ///
2780    /// `all()` is short-circuiting; in other words, it will stop processing
2781    /// as soon as it finds a `false`, given that no matter what else happens,
2782    /// the result will also be `false`.
2783    ///
2784    /// An empty iterator returns `true`.
2785    ///
2786    /// # Examples
2787    ///
2788    /// Basic usage:
2789    ///
2790    /// ```
2791    /// let a = [1, 2, 3];
2792    ///
2793    /// assert!(a.into_iter().all(|x| x > 0));
2794    ///
2795    /// assert!(!a.into_iter().all(|x| x > 2));
2796    /// ```
2797    ///
2798    /// Stopping at the first `false`:
2799    ///
2800    /// ```
2801    /// let a = [1, 2, 3];
2802    ///
2803    /// let mut iter = a.into_iter();
2804    ///
2805    /// assert!(!iter.all(|x| x != 2));
2806    ///
2807    /// // we can still use `iter`, as there are more elements.
2808    /// assert_eq!(iter.next(), Some(3));
2809    /// ```
2810    #[inline]
2811    #[stable(feature = "rust1", since = "1.0.0")]
2812    #[cfg(not(feature = "ferrocene_certified"))]
2813    fn all<F>(&mut self, f: F) -> bool
2814    where
2815        Self: Sized,
2816        F: FnMut(Self::Item) -> bool,
2817    {
2818        #[inline]
2819        fn check<T>(mut f: impl FnMut(T) -> bool) -> impl FnMut((), T) -> ControlFlow<()> {
2820            move |(), x| {
2821                if f(x) { ControlFlow::Continue(()) } else { ControlFlow::Break(()) }
2822            }
2823        }
2824        self.try_fold((), check(f)) == ControlFlow::Continue(())
2825    }
2826
2827    /// Tests if any element of the iterator matches a predicate.
2828    ///
2829    /// `any()` takes a closure that returns `true` or `false`. It applies
2830    /// this closure to each element of the iterator, and if any of them return
2831    /// `true`, then so does `any()`. If they all return `false`, it
2832    /// returns `false`.
2833    ///
2834    /// `any()` is short-circuiting; in other words, it will stop processing
2835    /// as soon as it finds a `true`, given that no matter what else happens,
2836    /// the result will also be `true`.
2837    ///
2838    /// An empty iterator returns `false`.
2839    ///
2840    /// # Examples
2841    ///
2842    /// Basic usage:
2843    ///
2844    /// ```
2845    /// let a = [1, 2, 3];
2846    ///
2847    /// assert!(a.into_iter().any(|x| x > 0));
2848    ///
2849    /// assert!(!a.into_iter().any(|x| x > 5));
2850    /// ```
2851    ///
2852    /// Stopping at the first `true`:
2853    ///
2854    /// ```
2855    /// let a = [1, 2, 3];
2856    ///
2857    /// let mut iter = a.into_iter();
2858    ///
2859    /// assert!(iter.any(|x| x != 2));
2860    ///
2861    /// // we can still use `iter`, as there are more elements.
2862    /// assert_eq!(iter.next(), Some(2));
2863    /// ```
2864    #[inline]
2865    #[stable(feature = "rust1", since = "1.0.0")]
2866    #[cfg(not(feature = "ferrocene_certified"))]
2867    fn any<F>(&mut self, f: F) -> bool
2868    where
2869        Self: Sized,
2870        F: FnMut(Self::Item) -> bool,
2871    {
2872        #[inline]
2873        fn check<T>(mut f: impl FnMut(T) -> bool) -> impl FnMut((), T) -> ControlFlow<()> {
2874            move |(), x| {
2875                if f(x) { ControlFlow::Break(()) } else { ControlFlow::Continue(()) }
2876            }
2877        }
2878
2879        self.try_fold((), check(f)) == ControlFlow::Break(())
2880    }
2881
2882    /// Searches for an element of an iterator that satisfies a predicate.
2883    ///
2884    /// `find()` takes a closure that returns `true` or `false`. It applies
2885    /// this closure to each element of the iterator, and if any of them return
2886    /// `true`, then `find()` returns [`Some(element)`]. If they all return
2887    /// `false`, it returns [`None`].
2888    ///
2889    /// `find()` is short-circuiting; in other words, it will stop processing
2890    /// as soon as the closure returns `true`.
2891    ///
2892    /// Because `find()` takes a reference, and many iterators iterate over
2893    /// references, this leads to a possibly confusing situation where the
2894    /// argument is a double reference. You can see this effect in the
2895    /// examples below, with `&&x`.
2896    ///
2897    /// If you need the index of the element, see [`position()`].
2898    ///
2899    /// [`Some(element)`]: Some
2900    /// [`position()`]: Iterator::position
2901    ///
2902    /// # Examples
2903    ///
2904    /// Basic usage:
2905    ///
2906    /// ```
2907    /// let a = [1, 2, 3];
2908    ///
2909    /// assert_eq!(a.into_iter().find(|&x| x == 2), Some(2));
2910    /// assert_eq!(a.into_iter().find(|&x| x == 5), None);
2911    /// ```
2912    ///
2913    /// Stopping at the first `true`:
2914    ///
2915    /// ```
2916    /// let a = [1, 2, 3];
2917    ///
2918    /// let mut iter = a.into_iter();
2919    ///
2920    /// assert_eq!(iter.find(|&x| x == 2), Some(2));
2921    ///
2922    /// // we can still use `iter`, as there are more elements.
2923    /// assert_eq!(iter.next(), Some(3));
2924    /// ```
2925    ///
2926    /// Note that `iter.find(f)` is equivalent to `iter.filter(f).next()`.
2927    #[inline]
2928    #[stable(feature = "rust1", since = "1.0.0")]
2929    #[cfg(not(feature = "ferrocene_certified"))]
2930    fn find<P>(&mut self, predicate: P) -> Option<Self::Item>
2931    where
2932        Self: Sized,
2933        P: FnMut(&Self::Item) -> bool,
2934    {
2935        #[inline]
2936        fn check<T>(mut predicate: impl FnMut(&T) -> bool) -> impl FnMut((), T) -> ControlFlow<T> {
2937            move |(), x| {
2938                if predicate(&x) { ControlFlow::Break(x) } else { ControlFlow::Continue(()) }
2939            }
2940        }
2941
2942        self.try_fold((), check(predicate)).break_value()
2943    }
2944
2945    /// Applies function to the elements of iterator and returns
2946    /// the first non-none result.
2947    ///
2948    /// `iter.find_map(f)` is equivalent to `iter.filter_map(f).next()`.
2949    ///
2950    /// # Examples
2951    ///
2952    /// ```
2953    /// let a = ["lol", "NaN", "2", "5"];
2954    ///
2955    /// let first_number = a.iter().find_map(|s| s.parse().ok());
2956    ///
2957    /// assert_eq!(first_number, Some(2));
2958    /// ```
2959    #[inline]
2960    #[stable(feature = "iterator_find_map", since = "1.30.0")]
2961    #[cfg(not(feature = "ferrocene_certified"))]
2962    fn find_map<B, F>(&mut self, f: F) -> Option<B>
2963    where
2964        Self: Sized,
2965        F: FnMut(Self::Item) -> Option<B>,
2966    {
2967        #[inline]
2968        fn check<T, B>(mut f: impl FnMut(T) -> Option<B>) -> impl FnMut((), T) -> ControlFlow<B> {
2969            move |(), x| match f(x) {
2970                Some(x) => ControlFlow::Break(x),
2971                None => ControlFlow::Continue(()),
2972            }
2973        }
2974
2975        self.try_fold((), check(f)).break_value()
2976    }
2977
2978    /// Applies function to the elements of iterator and returns
2979    /// the first true result or the first error.
2980    ///
2981    /// The return type of this method depends on the return type of the closure.
2982    /// If you return `Result<bool, E>` from the closure, you'll get a `Result<Option<Self::Item>, E>`.
2983    /// If you return `Option<bool>` from the closure, you'll get an `Option<Option<Self::Item>>`.
2984    ///
2985    /// # Examples
2986    ///
2987    /// ```
2988    /// #![feature(try_find)]
2989    ///
2990    /// let a = ["1", "2", "lol", "NaN", "5"];
2991    ///
2992    /// let is_my_num = |s: &str, search: i32| -> Result<bool, std::num::ParseIntError> {
2993    ///     Ok(s.parse::<i32>()? == search)
2994    /// };
2995    ///
2996    /// let result = a.into_iter().try_find(|&s| is_my_num(s, 2));
2997    /// assert_eq!(result, Ok(Some("2")));
2998    ///
2999    /// let result = a.into_iter().try_find(|&s| is_my_num(s, 5));
3000    /// assert!(result.is_err());
3001    /// ```
3002    ///
3003    /// This also supports other types which implement [`Try`], not just [`Result`].
3004    ///
3005    /// ```
3006    /// #![feature(try_find)]
3007    ///
3008    /// use std::num::NonZero;
3009    ///
3010    /// let a = [3, 5, 7, 4, 9, 0, 11u32];
3011    /// let result = a.into_iter().try_find(|&x| NonZero::new(x).map(|y| y.is_power_of_two()));
3012    /// assert_eq!(result, Some(Some(4)));
3013    /// let result = a.into_iter().take(3).try_find(|&x| NonZero::new(x).map(|y| y.is_power_of_two()));
3014    /// assert_eq!(result, Some(None));
3015    /// let result = a.into_iter().rev().try_find(|&x| NonZero::new(x).map(|y| y.is_power_of_two()));
3016    /// assert_eq!(result, None);
3017    /// ```
3018    #[inline]
3019    #[unstable(feature = "try_find", reason = "new API", issue = "63178")]
3020    #[cfg(not(feature = "ferrocene_certified"))]
3021    fn try_find<R>(
3022        &mut self,
3023        f: impl FnMut(&Self::Item) -> R,
3024    ) -> ChangeOutputType<R, Option<Self::Item>>
3025    where
3026        Self: Sized,
3027        R: Try<Output = bool, Residual: Residual<Option<Self::Item>>>,
3028    {
3029        #[inline]
3030        fn check<I, V, R>(
3031            mut f: impl FnMut(&I) -> V,
3032        ) -> impl FnMut((), I) -> ControlFlow<R::TryType>
3033        where
3034            V: Try<Output = bool, Residual = R>,
3035            R: Residual<Option<I>>,
3036        {
3037            move |(), x| match f(&x).branch() {
3038                ControlFlow::Continue(false) => ControlFlow::Continue(()),
3039                ControlFlow::Continue(true) => ControlFlow::Break(Try::from_output(Some(x))),
3040                ControlFlow::Break(r) => ControlFlow::Break(FromResidual::from_residual(r)),
3041            }
3042        }
3043
3044        match self.try_fold((), check(f)) {
3045            ControlFlow::Break(x) => x,
3046            ControlFlow::Continue(()) => Try::from_output(None),
3047        }
3048    }
3049
3050    /// Searches for an element in an iterator, returning its index.
3051    ///
3052    /// `position()` takes a closure that returns `true` or `false`. It applies
3053    /// this closure to each element of the iterator, and if one of them
3054    /// returns `true`, then `position()` returns [`Some(index)`]. If all of
3055    /// them return `false`, it returns [`None`].
3056    ///
3057    /// `position()` is short-circuiting; in other words, it will stop
3058    /// processing as soon as it finds a `true`.
3059    ///
3060    /// # Overflow Behavior
3061    ///
3062    /// The method does no guarding against overflows, so if there are more
3063    /// than [`usize::MAX`] non-matching elements, it either produces the wrong
3064    /// result or panics. If overflow checks are enabled, a panic is
3065    /// guaranteed.
3066    ///
3067    /// # Panics
3068    ///
3069    /// This function might panic if the iterator has more than `usize::MAX`
3070    /// non-matching elements.
3071    ///
3072    /// [`Some(index)`]: Some
3073    ///
3074    /// # Examples
3075    ///
3076    /// Basic usage:
3077    ///
3078    /// ```
3079    /// let a = [1, 2, 3];
3080    ///
3081    /// assert_eq!(a.into_iter().position(|x| x == 2), Some(1));
3082    ///
3083    /// assert_eq!(a.into_iter().position(|x| x == 5), None);
3084    /// ```
3085    ///
3086    /// Stopping at the first `true`:
3087    ///
3088    /// ```
3089    /// let a = [1, 2, 3, 4];
3090    ///
3091    /// let mut iter = a.into_iter();
3092    ///
3093    /// assert_eq!(iter.position(|x| x >= 2), Some(1));
3094    ///
3095    /// // we can still use `iter`, as there are more elements.
3096    /// assert_eq!(iter.next(), Some(3));
3097    ///
3098    /// // The returned index depends on iterator state
3099    /// assert_eq!(iter.position(|x| x == 4), Some(0));
3100    ///
3101    /// ```
3102    #[inline]
3103    #[stable(feature = "rust1", since = "1.0.0")]
3104    #[cfg(not(feature = "ferrocene_certified"))]
3105    fn position<P>(&mut self, predicate: P) -> Option<usize>
3106    where
3107        Self: Sized,
3108        P: FnMut(Self::Item) -> bool,
3109    {
3110        #[inline]
3111        fn check<'a, T>(
3112            mut predicate: impl FnMut(T) -> bool + 'a,
3113            acc: &'a mut usize,
3114        ) -> impl FnMut((), T) -> ControlFlow<usize, ()> + 'a {
3115            #[rustc_inherit_overflow_checks]
3116            move |_, x| {
3117                if predicate(x) {
3118                    ControlFlow::Break(*acc)
3119                } else {
3120                    *acc += 1;
3121                    ControlFlow::Continue(())
3122                }
3123            }
3124        }
3125
3126        let mut acc = 0;
3127        self.try_fold((), check(predicate, &mut acc)).break_value()
3128    }
3129
3130    /// Searches for an element in an iterator from the right, returning its
3131    /// index.
3132    ///
3133    /// `rposition()` takes a closure that returns `true` or `false`. It applies
3134    /// this closure to each element of the iterator, starting from the end,
3135    /// and if one of them returns `true`, then `rposition()` returns
3136    /// [`Some(index)`]. If all of them return `false`, it returns [`None`].
3137    ///
3138    /// `rposition()` is short-circuiting; in other words, it will stop
3139    /// processing as soon as it finds a `true`.
3140    ///
3141    /// [`Some(index)`]: Some
3142    ///
3143    /// # Examples
3144    ///
3145    /// Basic usage:
3146    ///
3147    /// ```
3148    /// let a = [1, 2, 3];
3149    ///
3150    /// assert_eq!(a.into_iter().rposition(|x| x == 3), Some(2));
3151    ///
3152    /// assert_eq!(a.into_iter().rposition(|x| x == 5), None);
3153    /// ```
3154    ///
3155    /// Stopping at the first `true`:
3156    ///
3157    /// ```
3158    /// let a = [-1, 2, 3, 4];
3159    ///
3160    /// let mut iter = a.into_iter();
3161    ///
3162    /// assert_eq!(iter.rposition(|x| x >= 2), Some(3));
3163    ///
3164    /// // we can still use `iter`, as there are more elements.
3165    /// assert_eq!(iter.next(), Some(-1));
3166    /// assert_eq!(iter.next_back(), Some(3));
3167    /// ```
3168    #[inline]
3169    #[stable(feature = "rust1", since = "1.0.0")]
3170    #[cfg(not(feature = "ferrocene_certified"))]
3171    fn rposition<P>(&mut self, predicate: P) -> Option<usize>
3172    where
3173        P: FnMut(Self::Item) -> bool,
3174        Self: Sized + ExactSizeIterator + DoubleEndedIterator,
3175    {
3176        // No need for an overflow check here, because `ExactSizeIterator`
3177        // implies that the number of elements fits into a `usize`.
3178        #[inline]
3179        fn check<T>(
3180            mut predicate: impl FnMut(T) -> bool,
3181        ) -> impl FnMut(usize, T) -> ControlFlow<usize, usize> {
3182            move |i, x| {
3183                let i = i - 1;
3184                if predicate(x) { ControlFlow::Break(i) } else { ControlFlow::Continue(i) }
3185            }
3186        }
3187
3188        let n = self.len();
3189        self.try_rfold(n, check(predicate)).break_value()
3190    }
3191
3192    /// Returns the maximum element of an iterator.
3193    ///
3194    /// If several elements are equally maximum, the last element is
3195    /// returned. If the iterator is empty, [`None`] is returned.
3196    ///
3197    /// Note that [`f32`]/[`f64`] doesn't implement [`Ord`] due to NaN being
3198    /// incomparable. You can work around this by using [`Iterator::reduce`]:
3199    /// ```
3200    /// assert_eq!(
3201    ///     [2.4, f32::NAN, 1.3]
3202    ///         .into_iter()
3203    ///         .reduce(f32::max)
3204    ///         .unwrap_or(0.),
3205    ///     2.4
3206    /// );
3207    /// ```
3208    ///
3209    /// # Examples
3210    ///
3211    /// ```
3212    /// let a = [1, 2, 3];
3213    /// let b: [u32; 0] = [];
3214    ///
3215    /// assert_eq!(a.into_iter().max(), Some(3));
3216    /// assert_eq!(b.into_iter().max(), None);
3217    /// ```
3218    #[inline]
3219    #[stable(feature = "rust1", since = "1.0.0")]
3220    #[cfg(not(feature = "ferrocene_certified"))]
3221    fn max(self) -> Option<Self::Item>
3222    where
3223        Self: Sized,
3224        Self::Item: Ord,
3225    {
3226        self.max_by(Ord::cmp)
3227    }
3228
3229    /// Returns the minimum element of an iterator.
3230    ///
3231    /// If several elements are equally minimum, the first element is returned.
3232    /// If the iterator is empty, [`None`] is returned.
3233    ///
3234    /// Note that [`f32`]/[`f64`] doesn't implement [`Ord`] due to NaN being
3235    /// incomparable. You can work around this by using [`Iterator::reduce`]:
3236    /// ```
3237    /// assert_eq!(
3238    ///     [2.4, f32::NAN, 1.3]
3239    ///         .into_iter()
3240    ///         .reduce(f32::min)
3241    ///         .unwrap_or(0.),
3242    ///     1.3
3243    /// );
3244    /// ```
3245    ///
3246    /// # Examples
3247    ///
3248    /// ```
3249    /// let a = [1, 2, 3];
3250    /// let b: [u32; 0] = [];
3251    ///
3252    /// assert_eq!(a.into_iter().min(), Some(1));
3253    /// assert_eq!(b.into_iter().min(), None);
3254    /// ```
3255    #[inline]
3256    #[stable(feature = "rust1", since = "1.0.0")]
3257    #[cfg(not(feature = "ferrocene_certified"))]
3258    fn min(self) -> Option<Self::Item>
3259    where
3260        Self: Sized,
3261        Self::Item: Ord,
3262    {
3263        self.min_by(Ord::cmp)
3264    }
3265
3266    /// Returns the element that gives the maximum value from the
3267    /// specified function.
3268    ///
3269    /// If several elements are equally maximum, the last element is
3270    /// returned. If the iterator is empty, [`None`] is returned.
3271    ///
3272    /// # Examples
3273    ///
3274    /// ```
3275    /// let a = [-3_i32, 0, 1, 5, -10];
3276    /// assert_eq!(a.into_iter().max_by_key(|x| x.abs()).unwrap(), -10);
3277    /// ```
3278    #[inline]
3279    #[stable(feature = "iter_cmp_by_key", since = "1.6.0")]
3280    #[cfg(not(feature = "ferrocene_certified"))]
3281    fn max_by_key<B: Ord, F>(self, f: F) -> Option<Self::Item>
3282    where
3283        Self: Sized,
3284        F: FnMut(&Self::Item) -> B,
3285    {
3286        #[inline]
3287        fn key<T, B>(mut f: impl FnMut(&T) -> B) -> impl FnMut(T) -> (B, T) {
3288            move |x| (f(&x), x)
3289        }
3290
3291        #[inline]
3292        fn compare<T, B: Ord>((x_p, _): &(B, T), (y_p, _): &(B, T)) -> Ordering {
3293            x_p.cmp(y_p)
3294        }
3295
3296        let (_, x) = self.map(key(f)).max_by(compare)?;
3297        Some(x)
3298    }
3299
3300    /// Returns the element that gives the maximum value with respect to the
3301    /// specified comparison function.
3302    ///
3303    /// If several elements are equally maximum, the last element is
3304    /// returned. If the iterator is empty, [`None`] is returned.
3305    ///
3306    /// # Examples
3307    ///
3308    /// ```
3309    /// let a = [-3_i32, 0, 1, 5, -10];
3310    /// assert_eq!(a.into_iter().max_by(|x, y| x.cmp(y)).unwrap(), 5);
3311    /// ```
3312    #[inline]
3313    #[stable(feature = "iter_max_by", since = "1.15.0")]
3314    #[cfg(not(feature = "ferrocene_certified"))]
3315    fn max_by<F>(self, compare: F) -> Option<Self::Item>
3316    where
3317        Self: Sized,
3318        F: FnMut(&Self::Item, &Self::Item) -> Ordering,
3319    {
3320        #[inline]
3321        fn fold<T>(mut compare: impl FnMut(&T, &T) -> Ordering) -> impl FnMut(T, T) -> T {
3322            move |x, y| cmp::max_by(x, y, &mut compare)
3323        }
3324
3325        self.reduce(fold(compare))
3326    }
3327
3328    /// Returns the element that gives the minimum value from the
3329    /// specified function.
3330    ///
3331    /// If several elements are equally minimum, the first element is
3332    /// returned. If the iterator is empty, [`None`] is returned.
3333    ///
3334    /// # Examples
3335    ///
3336    /// ```
3337    /// let a = [-3_i32, 0, 1, 5, -10];
3338    /// assert_eq!(a.into_iter().min_by_key(|x| x.abs()).unwrap(), 0);
3339    /// ```
3340    #[inline]
3341    #[stable(feature = "iter_cmp_by_key", since = "1.6.0")]
3342    #[cfg(not(feature = "ferrocene_certified"))]
3343    fn min_by_key<B: Ord, F>(self, f: F) -> Option<Self::Item>
3344    where
3345        Self: Sized,
3346        F: FnMut(&Self::Item) -> B,
3347    {
3348        #[inline]
3349        fn key<T, B>(mut f: impl FnMut(&T) -> B) -> impl FnMut(T) -> (B, T) {
3350            move |x| (f(&x), x)
3351        }
3352
3353        #[inline]
3354        fn compare<T, B: Ord>((x_p, _): &(B, T), (y_p, _): &(B, T)) -> Ordering {
3355            x_p.cmp(y_p)
3356        }
3357
3358        let (_, x) = self.map(key(f)).min_by(compare)?;
3359        Some(x)
3360    }
3361
3362    /// Returns the element that gives the minimum value with respect to the
3363    /// specified comparison function.
3364    ///
3365    /// If several elements are equally minimum, the first element is
3366    /// returned. If the iterator is empty, [`None`] is returned.
3367    ///
3368    /// # Examples
3369    ///
3370    /// ```
3371    /// let a = [-3_i32, 0, 1, 5, -10];
3372    /// assert_eq!(a.into_iter().min_by(|x, y| x.cmp(y)).unwrap(), -10);
3373    /// ```
3374    #[inline]
3375    #[stable(feature = "iter_min_by", since = "1.15.0")]
3376    #[cfg(not(feature = "ferrocene_certified"))]
3377    fn min_by<F>(self, compare: F) -> Option<Self::Item>
3378    where
3379        Self: Sized,
3380        F: FnMut(&Self::Item, &Self::Item) -> Ordering,
3381    {
3382        #[inline]
3383        fn fold<T>(mut compare: impl FnMut(&T, &T) -> Ordering) -> impl FnMut(T, T) -> T {
3384            move |x, y| cmp::min_by(x, y, &mut compare)
3385        }
3386
3387        self.reduce(fold(compare))
3388    }
3389
3390    /// Reverses an iterator's direction.
3391    ///
3392    /// Usually, iterators iterate from left to right. After using `rev()`,
3393    /// an iterator will instead iterate from right to left.
3394    ///
3395    /// This is only possible if the iterator has an end, so `rev()` only
3396    /// works on [`DoubleEndedIterator`]s.
3397    ///
3398    /// # Examples
3399    ///
3400    /// ```
3401    /// let a = [1, 2, 3];
3402    ///
3403    /// let mut iter = a.into_iter().rev();
3404    ///
3405    /// assert_eq!(iter.next(), Some(3));
3406    /// assert_eq!(iter.next(), Some(2));
3407    /// assert_eq!(iter.next(), Some(1));
3408    ///
3409    /// assert_eq!(iter.next(), None);
3410    /// ```
3411    #[inline]
3412    #[doc(alias = "reverse")]
3413    #[stable(feature = "rust1", since = "1.0.0")]
3414    #[cfg(not(feature = "ferrocene_certified"))]
3415    fn rev(self) -> Rev<Self>
3416    where
3417        Self: Sized + DoubleEndedIterator,
3418    {
3419        Rev::new(self)
3420    }
3421
3422    /// Converts an iterator of pairs into a pair of containers.
3423    ///
3424    /// `unzip()` consumes an entire iterator of pairs, producing two
3425    /// collections: one from the left elements of the pairs, and one
3426    /// from the right elements.
3427    ///
3428    /// This function is, in some sense, the opposite of [`zip`].
3429    ///
3430    /// [`zip`]: Iterator::zip
3431    ///
3432    /// # Examples
3433    ///
3434    /// ```
3435    /// let a = [(1, 2), (3, 4), (5, 6)];
3436    ///
3437    /// let (left, right): (Vec<_>, Vec<_>) = a.into_iter().unzip();
3438    ///
3439    /// assert_eq!(left, [1, 3, 5]);
3440    /// assert_eq!(right, [2, 4, 6]);
3441    ///
3442    /// // you can also unzip multiple nested tuples at once
3443    /// let a = [(1, (2, 3)), (4, (5, 6))];
3444    ///
3445    /// let (x, (y, z)): (Vec<_>, (Vec<_>, Vec<_>)) = a.into_iter().unzip();
3446    /// assert_eq!(x, [1, 4]);
3447    /// assert_eq!(y, [2, 5]);
3448    /// assert_eq!(z, [3, 6]);
3449    /// ```
3450    #[stable(feature = "rust1", since = "1.0.0")]
3451    #[cfg(not(feature = "ferrocene_certified"))]
3452    fn unzip<A, B, FromA, FromB>(self) -> (FromA, FromB)
3453    where
3454        FromA: Default + Extend<A>,
3455        FromB: Default + Extend<B>,
3456        Self: Sized + Iterator<Item = (A, B)>,
3457    {
3458        let mut unzipped: (FromA, FromB) = Default::default();
3459        unzipped.extend(self);
3460        unzipped
3461    }
3462
3463    /// Creates an iterator which copies all of its elements.
3464    ///
3465    /// This is useful when you have an iterator over `&T`, but you need an
3466    /// iterator over `T`.
3467    ///
3468    /// # Examples
3469    ///
3470    /// ```
3471    /// let a = [1, 2, 3];
3472    ///
3473    /// let v_copied: Vec<_> = a.iter().copied().collect();
3474    ///
3475    /// // copied is the same as .map(|&x| x)
3476    /// let v_map: Vec<_> = a.iter().map(|&x| x).collect();
3477    ///
3478    /// assert_eq!(v_copied, [1, 2, 3]);
3479    /// assert_eq!(v_map, [1, 2, 3]);
3480    /// ```
3481    #[stable(feature = "iter_copied", since = "1.36.0")]
3482    #[rustc_diagnostic_item = "iter_copied"]
3483    #[cfg(not(feature = "ferrocene_certified"))]
3484    fn copied<'a, T>(self) -> Copied<Self>
3485    where
3486        T: Copy + 'a,
3487        Self: Sized + Iterator<Item = &'a T>,
3488    {
3489        Copied::new(self)
3490    }
3491
3492    /// Creates an iterator which [`clone`]s all of its elements.
3493    ///
3494    /// This is useful when you have an iterator over `&T`, but you need an
3495    /// iterator over `T`.
3496    ///
3497    /// There is no guarantee whatsoever about the `clone` method actually
3498    /// being called *or* optimized away. So code should not depend on
3499    /// either.
3500    ///
3501    /// [`clone`]: Clone::clone
3502    ///
3503    /// # Examples
3504    ///
3505    /// Basic usage:
3506    ///
3507    /// ```
3508    /// let a = [1, 2, 3];
3509    ///
3510    /// let v_cloned: Vec<_> = a.iter().cloned().collect();
3511    ///
3512    /// // cloned is the same as .map(|&x| x), for integers
3513    /// let v_map: Vec<_> = a.iter().map(|&x| x).collect();
3514    ///
3515    /// assert_eq!(v_cloned, [1, 2, 3]);
3516    /// assert_eq!(v_map, [1, 2, 3]);
3517    /// ```
3518    ///
3519    /// To get the best performance, try to clone late:
3520    ///
3521    /// ```
3522    /// let a = [vec![0_u8, 1, 2], vec![3, 4], vec![23]];
3523    /// // don't do this:
3524    /// let slower: Vec<_> = a.iter().cloned().filter(|s| s.len() == 1).collect();
3525    /// assert_eq!(&[vec![23]], &slower[..]);
3526    /// // instead call `cloned` late
3527    /// let faster: Vec<_> = a.iter().filter(|s| s.len() == 1).cloned().collect();
3528    /// assert_eq!(&[vec![23]], &faster[..]);
3529    /// ```
3530    #[stable(feature = "rust1", since = "1.0.0")]
3531    #[rustc_diagnostic_item = "iter_cloned"]
3532    fn cloned<'a, T>(self) -> Cloned<Self>
3533    where
3534        T: Clone + 'a,
3535        Self: Sized + Iterator<Item = &'a T>,
3536    {
3537        Cloned::new(self)
3538    }
3539
3540    /// Repeats an iterator endlessly.
3541    ///
3542    /// Instead of stopping at [`None`], the iterator will instead start again,
3543    /// from the beginning. After iterating again, it will start at the
3544    /// beginning again. And again. And again. Forever. Note that in case the
3545    /// original iterator is empty, the resulting iterator will also be empty.
3546    ///
3547    /// # Examples
3548    ///
3549    /// ```
3550    /// let a = [1, 2, 3];
3551    ///
3552    /// let mut iter = a.into_iter().cycle();
3553    ///
3554    /// loop {
3555    ///     assert_eq!(iter.next(), Some(1));
3556    ///     assert_eq!(iter.next(), Some(2));
3557    ///     assert_eq!(iter.next(), Some(3));
3558    /// #   break;
3559    /// }
3560    /// ```
3561    #[stable(feature = "rust1", since = "1.0.0")]
3562    #[inline]
3563    #[cfg(not(feature = "ferrocene_certified"))]
3564    fn cycle(self) -> Cycle<Self>
3565    where
3566        Self: Sized + Clone,
3567    {
3568        Cycle::new(self)
3569    }
3570
3571    /// Returns an iterator over `N` elements of the iterator at a time.
3572    ///
3573    /// The chunks do not overlap. If `N` does not divide the length of the
3574    /// iterator, then the last up to `N-1` elements will be omitted and can be
3575    /// retrieved from the [`.into_remainder()`][ArrayChunks::into_remainder]
3576    /// function of the iterator.
3577    ///
3578    /// # Panics
3579    ///
3580    /// Panics if `N` is zero.
3581    ///
3582    /// # Examples
3583    ///
3584    /// Basic usage:
3585    ///
3586    /// ```
3587    /// #![feature(iter_array_chunks)]
3588    ///
3589    /// let mut iter = "lorem".chars().array_chunks();
3590    /// assert_eq!(iter.next(), Some(['l', 'o']));
3591    /// assert_eq!(iter.next(), Some(['r', 'e']));
3592    /// assert_eq!(iter.next(), None);
3593    /// assert_eq!(iter.into_remainder().unwrap().as_slice(), &['m']);
3594    /// ```
3595    ///
3596    /// ```
3597    /// #![feature(iter_array_chunks)]
3598    ///
3599    /// let data = [1, 1, 2, -2, 6, 0, 3, 1];
3600    /// //          ^-----^  ^------^
3601    /// for [x, y, z] in data.iter().array_chunks() {
3602    ///     assert_eq!(x + y + z, 4);
3603    /// }
3604    /// ```
3605    #[track_caller]
3606    #[unstable(feature = "iter_array_chunks", reason = "recently added", issue = "100450")]
3607    #[cfg(not(feature = "ferrocene_certified"))]
3608    fn array_chunks<const N: usize>(self) -> ArrayChunks<Self, N>
3609    where
3610        Self: Sized,
3611    {
3612        ArrayChunks::new(self)
3613    }
3614
3615    /// Sums the elements of an iterator.
3616    ///
3617    /// Takes each element, adds them together, and returns the result.
3618    ///
3619    /// An empty iterator returns the *additive identity* ("zero") of the type,
3620    /// which is `0` for integers and `-0.0` for floats.
3621    ///
3622    /// `sum()` can be used to sum any type implementing [`Sum`][`core::iter::Sum`],
3623    /// including [`Option`][`Option::sum`] and [`Result`][`Result::sum`].
3624    ///
3625    /// # Panics
3626    ///
3627    /// When calling `sum()` and a primitive integer type is being returned, this
3628    /// method will panic if the computation overflows and overflow checks are
3629    /// enabled.
3630    ///
3631    /// # Examples
3632    ///
3633    /// ```
3634    /// let a = [1, 2, 3];
3635    /// let sum: i32 = a.iter().sum();
3636    ///
3637    /// assert_eq!(sum, 6);
3638    ///
3639    /// let b: Vec<f32> = vec![];
3640    /// let sum: f32 = b.iter().sum();
3641    /// assert_eq!(sum, -0.0_f32);
3642    /// ```
3643    #[stable(feature = "iter_arith", since = "1.11.0")]
3644    #[cfg(not(feature = "ferrocene_certified"))]
3645    fn sum<S>(self) -> S
3646    where
3647        Self: Sized,
3648        S: Sum<Self::Item>,
3649    {
3650        Sum::sum(self)
3651    }
3652
3653    /// Iterates over the entire iterator, multiplying all the elements
3654    ///
3655    /// An empty iterator returns the one value of the type.
3656    ///
3657    /// `product()` can be used to multiply any type implementing [`Product`][`core::iter::Product`],
3658    /// including [`Option`][`Option::product`] and [`Result`][`Result::product`].
3659    ///
3660    /// # Panics
3661    ///
3662    /// When calling `product()` and a primitive integer type is being returned,
3663    /// method will panic if the computation overflows and overflow checks are
3664    /// enabled.
3665    ///
3666    /// # Examples
3667    ///
3668    /// ```
3669    /// fn factorial(n: u32) -> u32 {
3670    ///     (1..=n).product()
3671    /// }
3672    /// assert_eq!(factorial(0), 1);
3673    /// assert_eq!(factorial(1), 1);
3674    /// assert_eq!(factorial(5), 120);
3675    /// ```
3676    #[stable(feature = "iter_arith", since = "1.11.0")]
3677    #[cfg(not(feature = "ferrocene_certified"))]
3678    fn product<P>(self) -> P
3679    where
3680        Self: Sized,
3681        P: Product<Self::Item>,
3682    {
3683        Product::product(self)
3684    }
3685
3686    /// [Lexicographically](Ord#lexicographical-comparison) compares the elements of this [`Iterator`] with those
3687    /// of another.
3688    ///
3689    /// # Examples
3690    ///
3691    /// ```
3692    /// use std::cmp::Ordering;
3693    ///
3694    /// assert_eq!([1].iter().cmp([1].iter()), Ordering::Equal);
3695    /// assert_eq!([1].iter().cmp([1, 2].iter()), Ordering::Less);
3696    /// assert_eq!([1, 2].iter().cmp([1].iter()), Ordering::Greater);
3697    /// ```
3698    #[stable(feature = "iter_order", since = "1.5.0")]
3699    #[cfg(not(feature = "ferrocene_certified"))]
3700    fn cmp<I>(self, other: I) -> Ordering
3701    where
3702        I: IntoIterator<Item = Self::Item>,
3703        Self::Item: Ord,
3704        Self: Sized,
3705    {
3706        self.cmp_by(other, |x, y| x.cmp(&y))
3707    }
3708
3709    /// [Lexicographically](Ord#lexicographical-comparison) compares the elements of this [`Iterator`] with those
3710    /// of another with respect to the specified comparison function.
3711    ///
3712    /// # Examples
3713    ///
3714    /// ```
3715    /// #![feature(iter_order_by)]
3716    ///
3717    /// use std::cmp::Ordering;
3718    ///
3719    /// let xs = [1, 2, 3, 4];
3720    /// let ys = [1, 4, 9, 16];
3721    ///
3722    /// assert_eq!(xs.into_iter().cmp_by(ys, |x, y| x.cmp(&y)), Ordering::Less);
3723    /// assert_eq!(xs.into_iter().cmp_by(ys, |x, y| (x * x).cmp(&y)), Ordering::Equal);
3724    /// assert_eq!(xs.into_iter().cmp_by(ys, |x, y| (2 * x).cmp(&y)), Ordering::Greater);
3725    /// ```
3726    #[unstable(feature = "iter_order_by", issue = "64295")]
3727    #[cfg(not(feature = "ferrocene_certified"))]
3728    fn cmp_by<I, F>(self, other: I, cmp: F) -> Ordering
3729    where
3730        Self: Sized,
3731        I: IntoIterator,
3732        F: FnMut(Self::Item, I::Item) -> Ordering,
3733    {
3734        #[inline]
3735        fn compare<X, Y, F>(mut cmp: F) -> impl FnMut(X, Y) -> ControlFlow<Ordering>
3736        where
3737            F: FnMut(X, Y) -> Ordering,
3738        {
3739            move |x, y| match cmp(x, y) {
3740                Ordering::Equal => ControlFlow::Continue(()),
3741                non_eq => ControlFlow::Break(non_eq),
3742            }
3743        }
3744
3745        match iter_compare(self, other.into_iter(), compare(cmp)) {
3746            ControlFlow::Continue(ord) => ord,
3747            ControlFlow::Break(ord) => ord,
3748        }
3749    }
3750
3751    /// [Lexicographically](Ord#lexicographical-comparison) compares the [`PartialOrd`] elements of
3752    /// this [`Iterator`] with those of another. The comparison works like short-circuit
3753    /// evaluation, returning a result without comparing the remaining elements.
3754    /// As soon as an order can be determined, the evaluation stops and a result is returned.
3755    ///
3756    /// # Examples
3757    ///
3758    /// ```
3759    /// use std::cmp::Ordering;
3760    ///
3761    /// assert_eq!([1.].iter().partial_cmp([1.].iter()), Some(Ordering::Equal));
3762    /// assert_eq!([1.].iter().partial_cmp([1., 2.].iter()), Some(Ordering::Less));
3763    /// assert_eq!([1., 2.].iter().partial_cmp([1.].iter()), Some(Ordering::Greater));
3764    /// ```
3765    ///
3766    /// For floating-point numbers, NaN does not have a total order and will result
3767    /// in `None` when compared:
3768    ///
3769    /// ```
3770    /// assert_eq!([f64::NAN].iter().partial_cmp([1.].iter()), None);
3771    /// ```
3772    ///
3773    /// The results are determined by the order of evaluation.
3774    ///
3775    /// ```
3776    /// use std::cmp::Ordering;
3777    ///
3778    /// assert_eq!([1.0, f64::NAN].iter().partial_cmp([2.0, f64::NAN].iter()), Some(Ordering::Less));
3779    /// assert_eq!([2.0, f64::NAN].iter().partial_cmp([1.0, f64::NAN].iter()), Some(Ordering::Greater));
3780    /// assert_eq!([f64::NAN, 1.0].iter().partial_cmp([f64::NAN, 2.0].iter()), None);
3781    /// ```
3782    ///
3783    #[stable(feature = "iter_order", since = "1.5.0")]
3784    #[cfg(not(feature = "ferrocene_certified"))]
3785    fn partial_cmp<I>(self, other: I) -> Option<Ordering>
3786    where
3787        I: IntoIterator,
3788        Self::Item: PartialOrd<I::Item>,
3789        Self: Sized,
3790    {
3791        self.partial_cmp_by(other, |x, y| x.partial_cmp(&y))
3792    }
3793
3794    /// [Lexicographically](Ord#lexicographical-comparison) compares the elements of this [`Iterator`] with those
3795    /// of another with respect to the specified comparison function.
3796    ///
3797    /// # Examples
3798    ///
3799    /// ```
3800    /// #![feature(iter_order_by)]
3801    ///
3802    /// use std::cmp::Ordering;
3803    ///
3804    /// let xs = [1.0, 2.0, 3.0, 4.0];
3805    /// let ys = [1.0, 4.0, 9.0, 16.0];
3806    ///
3807    /// assert_eq!(
3808    ///     xs.iter().partial_cmp_by(ys, |x, y| x.partial_cmp(&y)),
3809    ///     Some(Ordering::Less)
3810    /// );
3811    /// assert_eq!(
3812    ///     xs.iter().partial_cmp_by(ys, |x, y| (x * x).partial_cmp(&y)),
3813    ///     Some(Ordering::Equal)
3814    /// );
3815    /// assert_eq!(
3816    ///     xs.iter().partial_cmp_by(ys, |x, y| (2.0 * x).partial_cmp(&y)),
3817    ///     Some(Ordering::Greater)
3818    /// );
3819    /// ```
3820    #[unstable(feature = "iter_order_by", issue = "64295")]
3821    #[cfg(not(feature = "ferrocene_certified"))]
3822    fn partial_cmp_by<I, F>(self, other: I, partial_cmp: F) -> Option<Ordering>
3823    where
3824        Self: Sized,
3825        I: IntoIterator,
3826        F: FnMut(Self::Item, I::Item) -> Option<Ordering>,
3827    {
3828        #[inline]
3829        fn compare<X, Y, F>(mut partial_cmp: F) -> impl FnMut(X, Y) -> ControlFlow<Option<Ordering>>
3830        where
3831            F: FnMut(X, Y) -> Option<Ordering>,
3832        {
3833            move |x, y| match partial_cmp(x, y) {
3834                Some(Ordering::Equal) => ControlFlow::Continue(()),
3835                non_eq => ControlFlow::Break(non_eq),
3836            }
3837        }
3838
3839        match iter_compare(self, other.into_iter(), compare(partial_cmp)) {
3840            ControlFlow::Continue(ord) => Some(ord),
3841            ControlFlow::Break(ord) => ord,
3842        }
3843    }
3844
3845    /// Determines if the elements of this [`Iterator`] are equal to those of
3846    /// another.
3847    ///
3848    /// # Examples
3849    ///
3850    /// ```
3851    /// assert_eq!([1].iter().eq([1].iter()), true);
3852    /// assert_eq!([1].iter().eq([1, 2].iter()), false);
3853    /// ```
3854    #[stable(feature = "iter_order", since = "1.5.0")]
3855    #[cfg(not(feature = "ferrocene_certified"))]
3856    fn eq<I>(self, other: I) -> bool
3857    where
3858        I: IntoIterator,
3859        Self::Item: PartialEq<I::Item>,
3860        Self: Sized,
3861    {
3862        self.eq_by(other, |x, y| x == y)
3863    }
3864
3865    /// Determines if the elements of this [`Iterator`] are equal to those of
3866    /// another with respect to the specified equality function.
3867    ///
3868    /// # Examples
3869    ///
3870    /// ```
3871    /// #![feature(iter_order_by)]
3872    ///
3873    /// let xs = [1, 2, 3, 4];
3874    /// let ys = [1, 4, 9, 16];
3875    ///
3876    /// assert!(xs.iter().eq_by(ys, |x, y| x * x == y));
3877    /// ```
3878    #[unstable(feature = "iter_order_by", issue = "64295")]
3879    #[cfg(not(feature = "ferrocene_certified"))]
3880    fn eq_by<I, F>(self, other: I, eq: F) -> bool
3881    where
3882        Self: Sized,
3883        I: IntoIterator,
3884        F: FnMut(Self::Item, I::Item) -> bool,
3885    {
3886        #[inline]
3887        fn compare<X, Y, F>(mut eq: F) -> impl FnMut(X, Y) -> ControlFlow<()>
3888        where
3889            F: FnMut(X, Y) -> bool,
3890        {
3891            move |x, y| {
3892                if eq(x, y) { ControlFlow::Continue(()) } else { ControlFlow::Break(()) }
3893            }
3894        }
3895
3896        SpecIterEq::spec_iter_eq(self, other.into_iter(), compare(eq))
3897    }
3898
3899    /// Determines if the elements of this [`Iterator`] are not equal to those of
3900    /// another.
3901    ///
3902    /// # Examples
3903    ///
3904    /// ```
3905    /// assert_eq!([1].iter().ne([1].iter()), false);
3906    /// assert_eq!([1].iter().ne([1, 2].iter()), true);
3907    /// ```
3908    #[stable(feature = "iter_order", since = "1.5.0")]
3909    #[cfg(not(feature = "ferrocene_certified"))]
3910    fn ne<I>(self, other: I) -> bool
3911    where
3912        I: IntoIterator,
3913        Self::Item: PartialEq<I::Item>,
3914        Self: Sized,
3915    {
3916        !self.eq(other)
3917    }
3918
3919    /// Determines if the elements of this [`Iterator`] are [lexicographically](Ord#lexicographical-comparison)
3920    /// less than those of another.
3921    ///
3922    /// # Examples
3923    ///
3924    /// ```
3925    /// assert_eq!([1].iter().lt([1].iter()), false);
3926    /// assert_eq!([1].iter().lt([1, 2].iter()), true);
3927    /// assert_eq!([1, 2].iter().lt([1].iter()), false);
3928    /// assert_eq!([1, 2].iter().lt([1, 2].iter()), false);
3929    /// ```
3930    #[stable(feature = "iter_order", since = "1.5.0")]
3931    #[cfg(not(feature = "ferrocene_certified"))]
3932    fn lt<I>(self, other: I) -> bool
3933    where
3934        I: IntoIterator,
3935        Self::Item: PartialOrd<I::Item>,
3936        Self: Sized,
3937    {
3938        self.partial_cmp(other) == Some(Ordering::Less)
3939    }
3940
3941    /// Determines if the elements of this [`Iterator`] are [lexicographically](Ord#lexicographical-comparison)
3942    /// less or equal to those of another.
3943    ///
3944    /// # Examples
3945    ///
3946    /// ```
3947    /// assert_eq!([1].iter().le([1].iter()), true);
3948    /// assert_eq!([1].iter().le([1, 2].iter()), true);
3949    /// assert_eq!([1, 2].iter().le([1].iter()), false);
3950    /// assert_eq!([1, 2].iter().le([1, 2].iter()), true);
3951    /// ```
3952    #[stable(feature = "iter_order", since = "1.5.0")]
3953    #[cfg(not(feature = "ferrocene_certified"))]
3954    fn le<I>(self, other: I) -> bool
3955    where
3956        I: IntoIterator,
3957        Self::Item: PartialOrd<I::Item>,
3958        Self: Sized,
3959    {
3960        matches!(self.partial_cmp(other), Some(Ordering::Less | Ordering::Equal))
3961    }
3962
3963    /// Determines if the elements of this [`Iterator`] are [lexicographically](Ord#lexicographical-comparison)
3964    /// greater than those of another.
3965    ///
3966    /// # Examples
3967    ///
3968    /// ```
3969    /// assert_eq!([1].iter().gt([1].iter()), false);
3970    /// assert_eq!([1].iter().gt([1, 2].iter()), false);
3971    /// assert_eq!([1, 2].iter().gt([1].iter()), true);
3972    /// assert_eq!([1, 2].iter().gt([1, 2].iter()), false);
3973    /// ```
3974    #[stable(feature = "iter_order", since = "1.5.0")]
3975    #[cfg(not(feature = "ferrocene_certified"))]
3976    fn gt<I>(self, other: I) -> bool
3977    where
3978        I: IntoIterator,
3979        Self::Item: PartialOrd<I::Item>,
3980        Self: Sized,
3981    {
3982        self.partial_cmp(other) == Some(Ordering::Greater)
3983    }
3984
3985    /// Determines if the elements of this [`Iterator`] are [lexicographically](Ord#lexicographical-comparison)
3986    /// greater than or equal to those of another.
3987    ///
3988    /// # Examples
3989    ///
3990    /// ```
3991    /// assert_eq!([1].iter().ge([1].iter()), true);
3992    /// assert_eq!([1].iter().ge([1, 2].iter()), false);
3993    /// assert_eq!([1, 2].iter().ge([1].iter()), true);
3994    /// assert_eq!([1, 2].iter().ge([1, 2].iter()), true);
3995    /// ```
3996    #[stable(feature = "iter_order", since = "1.5.0")]
3997    #[cfg(not(feature = "ferrocene_certified"))]
3998    fn ge<I>(self, other: I) -> bool
3999    where
4000        I: IntoIterator,
4001        Self::Item: PartialOrd<I::Item>,
4002        Self: Sized,
4003    {
4004        matches!(self.partial_cmp(other), Some(Ordering::Greater | Ordering::Equal))
4005    }
4006
4007    /// Checks if the elements of this iterator are sorted.
4008    ///
4009    /// That is, for each element `a` and its following element `b`, `a <= b` must hold. If the
4010    /// iterator yields exactly zero or one element, `true` is returned.
4011    ///
4012    /// Note that if `Self::Item` is only `PartialOrd`, but not `Ord`, the above definition
4013    /// implies that this function returns `false` if any two consecutive items are not
4014    /// comparable.
4015    ///
4016    /// # Examples
4017    ///
4018    /// ```
4019    /// assert!([1, 2, 2, 9].iter().is_sorted());
4020    /// assert!(![1, 3, 2, 4].iter().is_sorted());
4021    /// assert!([0].iter().is_sorted());
4022    /// assert!(std::iter::empty::<i32>().is_sorted());
4023    /// assert!(![0.0, 1.0, f32::NAN].iter().is_sorted());
4024    /// ```
4025    #[inline]
4026    #[stable(feature = "is_sorted", since = "1.82.0")]
4027    #[cfg(not(feature = "ferrocene_certified"))]
4028    fn is_sorted(self) -> bool
4029    where
4030        Self: Sized,
4031        Self::Item: PartialOrd,
4032    {
4033        self.is_sorted_by(|a, b| a <= b)
4034    }
4035
4036    /// Checks if the elements of this iterator are sorted using the given comparator function.
4037    ///
4038    /// Instead of using `PartialOrd::partial_cmp`, this function uses the given `compare`
4039    /// function to determine whether two elements are to be considered in sorted order.
4040    ///
4041    /// # Examples
4042    ///
4043    /// ```
4044    /// assert!([1, 2, 2, 9].iter().is_sorted_by(|a, b| a <= b));
4045    /// assert!(![1, 2, 2, 9].iter().is_sorted_by(|a, b| a < b));
4046    ///
4047    /// assert!([0].iter().is_sorted_by(|a, b| true));
4048    /// assert!([0].iter().is_sorted_by(|a, b| false));
4049    ///
4050    /// assert!(std::iter::empty::<i32>().is_sorted_by(|a, b| false));
4051    /// assert!(std::iter::empty::<i32>().is_sorted_by(|a, b| true));
4052    /// ```
4053    #[stable(feature = "is_sorted", since = "1.82.0")]
4054    #[cfg(not(feature = "ferrocene_certified"))]
4055    fn is_sorted_by<F>(mut self, compare: F) -> bool
4056    where
4057        Self: Sized,
4058        F: FnMut(&Self::Item, &Self::Item) -> bool,
4059    {
4060        #[inline]
4061        fn check<'a, T>(
4062            last: &'a mut T,
4063            mut compare: impl FnMut(&T, &T) -> bool + 'a,
4064        ) -> impl FnMut(T) -> bool + 'a {
4065            move |curr| {
4066                if !compare(&last, &curr) {
4067                    return false;
4068                }
4069                *last = curr;
4070                true
4071            }
4072        }
4073
4074        let mut last = match self.next() {
4075            Some(e) => e,
4076            None => return true,
4077        };
4078
4079        self.all(check(&mut last, compare))
4080    }
4081
4082    /// Checks if the elements of this iterator are sorted using the given key extraction
4083    /// function.
4084    ///
4085    /// Instead of comparing the iterator's elements directly, this function compares the keys of
4086    /// the elements, as determined by `f`. Apart from that, it's equivalent to [`is_sorted`]; see
4087    /// its documentation for more information.
4088    ///
4089    /// [`is_sorted`]: Iterator::is_sorted
4090    ///
4091    /// # Examples
4092    ///
4093    /// ```
4094    /// assert!(["c", "bb", "aaa"].iter().is_sorted_by_key(|s| s.len()));
4095    /// assert!(![-2i32, -1, 0, 3].iter().is_sorted_by_key(|n| n.abs()));
4096    /// ```
4097    #[inline]
4098    #[stable(feature = "is_sorted", since = "1.82.0")]
4099    #[cfg(not(feature = "ferrocene_certified"))]
4100    fn is_sorted_by_key<F, K>(self, f: F) -> bool
4101    where
4102        Self: Sized,
4103        F: FnMut(Self::Item) -> K,
4104        K: PartialOrd,
4105    {
4106        self.map(f).is_sorted()
4107    }
4108
4109    /// See [TrustedRandomAccess][super::super::TrustedRandomAccess]
4110    // The unusual name is to avoid name collisions in method resolution
4111    // see #76479.
4112    #[inline]
4113    #[doc(hidden)]
4114    #[unstable(feature = "trusted_random_access", issue = "none")]
4115    #[cfg(not(feature = "ferrocene_certified"))]
4116    unsafe fn __iterator_get_unchecked(&mut self, _idx: usize) -> Self::Item
4117    where
4118        Self: TrustedRandomAccessNoCoerce,
4119    {
4120        unreachable!("Always specialized");
4121    }
4122}
4123
4124#[cfg(not(feature = "ferrocene_certified"))]
4125trait SpecIterEq<B: Iterator>: Iterator {
4126    fn spec_iter_eq<F>(self, b: B, f: F) -> bool
4127    where
4128        F: FnMut(Self::Item, <B as Iterator>::Item) -> ControlFlow<()>;
4129}
4130
4131#[cfg(not(feature = "ferrocene_certified"))]
4132impl<A: Iterator, B: Iterator> SpecIterEq<B> for A {
4133    #[inline]
4134    default fn spec_iter_eq<F>(self, b: B, f: F) -> bool
4135    where
4136        F: FnMut(Self::Item, <B as Iterator>::Item) -> ControlFlow<()>,
4137    {
4138        iter_eq(self, b, f)
4139    }
4140}
4141
4142#[cfg(not(feature = "ferrocene_certified"))]
4143impl<A: Iterator + TrustedLen, B: Iterator + TrustedLen> SpecIterEq<B> for A {
4144    #[inline]
4145    fn spec_iter_eq<F>(self, b: B, f: F) -> bool
4146    where
4147        F: FnMut(Self::Item, <B as Iterator>::Item) -> ControlFlow<()>,
4148    {
4149        // we *can't* short-circuit if:
4150        match (self.size_hint(), b.size_hint()) {
4151            // ... both iterators have the same length
4152            ((_, Some(a)), (_, Some(b))) if a == b => {}
4153            // ... or both of them are longer than `usize::MAX` (i.e. have an unknown length).
4154            ((_, None), (_, None)) => {}
4155            // otherwise, we can ascertain that they are unequal without actually comparing items
4156            _ => return false,
4157        }
4158
4159        iter_eq(self, b, f)
4160    }
4161}
4162
4163/// Compares two iterators element-wise using the given function.
4164///
4165/// If `ControlFlow::Continue(())` is returned from the function, the comparison moves on to the next
4166/// elements of both iterators. Returning `ControlFlow::Break(x)` short-circuits the iteration and
4167/// returns `ControlFlow::Break(x)`. If one of the iterators runs out of elements,
4168/// `ControlFlow::Continue(ord)` is returned where `ord` is the result of comparing the lengths of
4169/// the iterators.
4170///
4171/// Isolates the logic shared by ['cmp_by'](Iterator::cmp_by),
4172/// ['partial_cmp_by'](Iterator::partial_cmp_by), and ['eq_by'](Iterator::eq_by).
4173#[inline]
4174#[cfg(not(feature = "ferrocene_certified"))]
4175fn iter_compare<A, B, F, T>(mut a: A, mut b: B, f: F) -> ControlFlow<T, Ordering>
4176where
4177    A: Iterator,
4178    B: Iterator,
4179    F: FnMut(A::Item, B::Item) -> ControlFlow<T>,
4180{
4181    #[inline]
4182    fn compare<'a, B, X, T>(
4183        b: &'a mut B,
4184        mut f: impl FnMut(X, B::Item) -> ControlFlow<T> + 'a,
4185    ) -> impl FnMut(X) -> ControlFlow<ControlFlow<T, Ordering>> + 'a
4186    where
4187        B: Iterator,
4188    {
4189        move |x| match b.next() {
4190            None => ControlFlow::Break(ControlFlow::Continue(Ordering::Greater)),
4191            Some(y) => f(x, y).map_break(ControlFlow::Break),
4192        }
4193    }
4194
4195    match a.try_for_each(compare(&mut b, f)) {
4196        ControlFlow::Continue(()) => ControlFlow::Continue(match b.next() {
4197            None => Ordering::Equal,
4198            Some(_) => Ordering::Less,
4199        }),
4200        ControlFlow::Break(x) => x,
4201    }
4202}
4203
4204#[inline]
4205#[cfg(not(feature = "ferrocene_certified"))]
4206fn iter_eq<A, B, F>(a: A, b: B, f: F) -> bool
4207where
4208    A: Iterator,
4209    B: Iterator,
4210    F: FnMut(A::Item, B::Item) -> ControlFlow<()>,
4211{
4212    iter_compare(a, b, f).continue_value().is_some_and(|ord| ord == Ordering::Equal)
4213}
4214
4215/// Implements `Iterator` for mutable references to iterators, such as those produced by [`Iterator::by_ref`].
4216///
4217/// This implementation passes all method calls on to the original iterator.
4218#[stable(feature = "rust1", since = "1.0.0")]
4219impl<I: Iterator + ?Sized> Iterator for &mut I {
4220    type Item = I::Item;
4221    #[inline]
4222    fn next(&mut self) -> Option<I::Item> {
4223        (**self).next()
4224    }
4225    fn size_hint(&self) -> (usize, Option<usize>) {
4226        (**self).size_hint()
4227    }
4228    #[cfg(not(feature = "ferrocene_certified"))]
4229    fn advance_by(&mut self, n: usize) -> Result<(), NonZero<usize>> {
4230        (**self).advance_by(n)
4231    }
4232    #[cfg(not(feature = "ferrocene_certified"))]
4233    fn nth(&mut self, n: usize) -> Option<Self::Item> {
4234        (**self).nth(n)
4235    }
4236    #[cfg(not(feature = "ferrocene_certified"))]
4237    fn fold<B, F>(self, init: B, f: F) -> B
4238    where
4239        F: FnMut(B, Self::Item) -> B,
4240    {
4241        self.spec_fold(init, f)
4242    }
4243    #[cfg(not(feature = "ferrocene_certified"))]
4244    fn try_fold<B, F, R>(&mut self, init: B, f: F) -> R
4245    where
4246        F: FnMut(B, Self::Item) -> R,
4247        R: Try<Output = B>,
4248    {
4249        self.spec_try_fold(init, f)
4250    }
4251}
4252
4253/// Helper trait to specialize `fold` and `try_fold` for `&mut I where I: Sized`
4254#[cfg(not(feature = "ferrocene_certified"))]
4255trait IteratorRefSpec: Iterator {
4256    fn spec_fold<B, F>(self, init: B, f: F) -> B
4257    where
4258        F: FnMut(B, Self::Item) -> B;
4259
4260    fn spec_try_fold<B, F, R>(&mut self, init: B, f: F) -> R
4261    where
4262        F: FnMut(B, Self::Item) -> R,
4263        R: Try<Output = B>;
4264}
4265
4266#[cfg(not(feature = "ferrocene_certified"))]
4267impl<I: Iterator + ?Sized> IteratorRefSpec for &mut I {
4268    default fn spec_fold<B, F>(self, init: B, mut f: F) -> B
4269    where
4270        F: FnMut(B, Self::Item) -> B,
4271    {
4272        let mut accum = init;
4273        while let Some(x) = self.next() {
4274            accum = f(accum, x);
4275        }
4276        accum
4277    }
4278
4279    default fn spec_try_fold<B, F, R>(&mut self, init: B, mut f: F) -> R
4280    where
4281        F: FnMut(B, Self::Item) -> R,
4282        R: Try<Output = B>,
4283    {
4284        let mut accum = init;
4285        while let Some(x) = self.next() {
4286            accum = f(accum, x)?;
4287        }
4288        try { accum }
4289    }
4290}
4291
4292#[cfg(not(feature = "ferrocene_certified"))]
4293impl<I: Iterator> IteratorRefSpec for &mut I {
4294    impl_fold_via_try_fold! { spec_fold -> spec_try_fold }
4295
4296    fn spec_try_fold<B, F, R>(&mut self, init: B, f: F) -> R
4297    where
4298        F: FnMut(B, Self::Item) -> R,
4299        R: Try<Output = B>,
4300    {
4301        (**self).try_fold(init, f)
4302    }
4303}