Skip to main content

core/iter/traits/
iterator.rs

1#[cfg(not(feature = "ferrocene_subset"))]
2use super::super::{
3    ArrayChunks, ByRefSized, Chain, Cloned, Copied, Cycle, Enumerate, Filter, FilterMap, FlatMap,
4    Flatten, Fuse, Inspect, Intersperse, IntersperseWith, Map, MapWhile, MapWindows, Peekable,
5    Product, Rev, Scan, Skip, SkipWhile, StepBy, Sum, Take, TakeWhile, TrustedRandomAccessNoCoerce,
6    Zip, try_process,
7};
8use super::TrustedLen;
9#[cfg(not(feature = "ferrocene_subset"))]
10use crate::array;
11use crate::cmp::{self, Ordering};
12use crate::num::NonZero;
13#[cfg(not(feature = "ferrocene_subset"))]
14use crate::ops::{ChangeOutputType, ControlFlow, FromResidual, Residual, Try};
15
16// Ferrocene addition: imports for certified subset
17#[cfg(feature = "ferrocene_subset")]
18#[rustfmt::skip]
19use {
20    super::super::{
21        Chain, Cloned, Copied, DoubleEndedIterator, Enumerate, Filter, FlatMap, Fuse, Map, Rev,
22        Skip, StepBy, Sum, Take, TakeWhile, Zip,
23    },
24    crate::ops::{ControlFlow, Try},
25};
26
27#[cfg(not(feature = "ferrocene_subset"))]
28fn _assert_is_dyn_compatible(_: &dyn Iterator<Item = ()>) {}
29
30/// A trait for dealing with iterators.
31///
32/// This is the main iterator trait. For more about the concept of iterators
33/// generally, please see the [module-level documentation]. In particular, you
34/// may want to know how to [implement `Iterator`][impl].
35///
36/// [module-level documentation]: crate::iter
37/// [impl]: crate::iter#implementing-iterator
38#[stable(feature = "rust1", since = "1.0.0")]
39#[rustc_on_unimplemented(
40    on(
41        Self = "core::ops::range::RangeTo<Idx>",
42        note = "you might have meant to use a bounded `Range`"
43    ),
44    on(
45        Self = "core::ops::range::RangeToInclusive<Idx>",
46        note = "you might have meant to use a bounded `RangeInclusive`"
47    ),
48    label = "`{Self}` is not an iterator",
49    message = "`{Self}` is not an iterator"
50)]
51#[cfg_attr(not(feature = "ferrocene_subset"), doc(notable_trait))]
52#[lang = "iterator"]
53#[rustc_diagnostic_item = "Iterator"]
54#[must_use = "iterators are lazy and do nothing unless consumed"]
55pub trait Iterator {
56    /// The type of the elements being iterated over.
57    #[rustc_diagnostic_item = "IteratorItem"]
58    #[stable(feature = "rust1", since = "1.0.0")]
59    type Item;
60
61    /// Advances the iterator and returns the next value.
62    ///
63    /// Returns [`None`] when iteration is finished. Individual iterator
64    /// implementations may choose to resume iteration, and so calling `next()`
65    /// again may or may not eventually start returning [`Some(Item)`] again at some
66    /// point.
67    ///
68    /// [`Some(Item)`]: Some
69    ///
70    /// # Examples
71    ///
72    /// ```
73    /// let a = [1, 2, 3];
74    ///
75    /// let mut iter = a.into_iter();
76    ///
77    /// // A call to next() returns the next value...
78    /// assert_eq!(Some(1), iter.next());
79    /// assert_eq!(Some(2), iter.next());
80    /// assert_eq!(Some(3), iter.next());
81    ///
82    /// // ... and then None once it's over.
83    /// assert_eq!(None, iter.next());
84    ///
85    /// // More calls may or may not return `None`. Here, they always will.
86    /// assert_eq!(None, iter.next());
87    /// assert_eq!(None, iter.next());
88    /// ```
89    #[lang = "next"]
90    #[stable(feature = "rust1", since = "1.0.0")]
91    fn next(&mut self) -> Option<Self::Item>;
92
93    /// Advances the iterator and returns an array containing the next `N` values.
94    ///
95    /// If there are not enough elements to fill the array then `Err` is returned
96    /// containing an iterator over the remaining elements.
97    ///
98    /// # Examples
99    ///
100    /// Basic usage:
101    ///
102    /// ```
103    /// #![feature(iter_next_chunk)]
104    ///
105    /// let mut iter = "lorem".chars();
106    ///
107    /// assert_eq!(iter.next_chunk().unwrap(), ['l', 'o']);              // N is inferred as 2
108    /// assert_eq!(iter.next_chunk().unwrap(), ['r', 'e', 'm']);         // N is inferred as 3
109    /// assert_eq!(iter.next_chunk::<4>().unwrap_err().as_slice(), &[]); // N is explicitly 4
110    /// ```
111    ///
112    /// Split a string and get the first three items.
113    ///
114    /// ```
115    /// #![feature(iter_next_chunk)]
116    ///
117    /// let quote = "not all those who wander are lost";
118    /// let [first, second, third] = quote.split_whitespace().next_chunk().unwrap();
119    /// assert_eq!(first, "not");
120    /// assert_eq!(second, "all");
121    /// assert_eq!(third, "those");
122    /// ```
123    #[inline]
124    #[unstable(feature = "iter_next_chunk", issue = "98326")]
125    #[cfg(not(feature = "ferrocene_subset"))]
126    fn next_chunk<const N: usize>(
127        &mut self,
128    ) -> Result<[Self::Item; N], array::IntoIter<Self::Item, N>>
129    where
130        Self: Sized,
131    {
132        array::iter_next_chunk(self)
133    }
134
135    /// Returns the bounds on the remaining length of the iterator.
136    ///
137    /// Specifically, `size_hint()` returns a tuple where the first element
138    /// is the lower bound, and the second element is the upper bound.
139    ///
140    /// The second half of the tuple that is returned is an <code>[Option]<[usize]></code>.
141    /// A [`None`] here means that either there is no known upper bound, or the
142    /// upper bound is larger than [`usize`].
143    ///
144    /// # Implementation notes
145    ///
146    /// It is not enforced that an iterator implementation yields the declared
147    /// number of elements. A buggy iterator may yield less than the lower bound
148    /// or more than the upper bound of elements.
149    ///
150    /// `size_hint()` is primarily intended to be used for optimizations such as
151    /// reserving space for the elements of the iterator, but must not be
152    /// trusted to e.g., omit bounds checks in unsafe code. An incorrect
153    /// implementation of `size_hint()` should not lead to memory safety
154    /// violations.
155    ///
156    /// That said, the implementation should provide a correct estimation,
157    /// because otherwise it would be a violation of the trait's protocol.
158    ///
159    /// The default implementation returns <code>(0, [None])</code> which is correct for any
160    /// iterator.
161    ///
162    /// # Examples
163    ///
164    /// Basic usage:
165    ///
166    /// ```
167    /// let a = [1, 2, 3];
168    /// let mut iter = a.iter();
169    ///
170    /// assert_eq!((3, Some(3)), iter.size_hint());
171    /// let _ = iter.next();
172    /// assert_eq!((2, Some(2)), iter.size_hint());
173    /// ```
174    ///
175    /// A more complex example:
176    ///
177    /// ```
178    /// // The even numbers in the range of zero to nine.
179    /// let iter = (0..10).filter(|x| x % 2 == 0);
180    ///
181    /// // We might iterate from zero to ten times. Knowing that it's five
182    /// // exactly wouldn't be possible without executing filter().
183    /// assert_eq!((0, Some(10)), iter.size_hint());
184    ///
185    /// // Let's add five more numbers with chain()
186    /// let iter = (0..10).filter(|x| x % 2 == 0).chain(15..20);
187    ///
188    /// // now both bounds are increased by five
189    /// assert_eq!((5, Some(15)), iter.size_hint());
190    /// ```
191    ///
192    /// Returning `None` for an upper bound:
193    ///
194    /// ```
195    /// // an infinite iterator has no upper bound
196    /// // and the maximum possible lower bound
197    /// let iter = 0..;
198    ///
199    /// assert_eq!((usize::MAX, None), iter.size_hint());
200    /// ```
201    #[inline]
202    #[stable(feature = "rust1", since = "1.0.0")]
203    fn size_hint(&self) -> (usize, Option<usize>) {
204        (0, None)
205    }
206
207    /// Consumes the iterator, counting the number of iterations and returning it.
208    ///
209    /// This method will call [`next`] repeatedly until [`None`] is encountered,
210    /// returning the number of times it saw [`Some`]. Note that [`next`] has to be
211    /// called at least once even if the iterator does not have any elements.
212    ///
213    /// [`next`]: Iterator::next
214    ///
215    /// # Overflow Behavior
216    ///
217    /// The method does no guarding against overflows, so counting elements of
218    /// an iterator with more than [`usize::MAX`] elements either produces the
219    /// wrong result or panics. If overflow checks are enabled, a panic is
220    /// guaranteed.
221    ///
222    /// # Panics
223    ///
224    /// This function might panic if the iterator has more than [`usize::MAX`]
225    /// elements.
226    ///
227    /// # Examples
228    ///
229    /// ```
230    /// let a = [1, 2, 3];
231    /// assert_eq!(a.iter().count(), 3);
232    ///
233    /// let a = [1, 2, 3, 4, 5];
234    /// assert_eq!(a.iter().count(), 5);
235    /// ```
236    #[inline]
237    #[stable(feature = "rust1", since = "1.0.0")]
238    fn count(self) -> usize
239    where
240        Self: Sized,
241    {
242        self.fold(
243            0,
244            #[rustc_inherit_overflow_checks]
245            |count, _| count + 1,
246        )
247    }
248
249    /// Consumes the iterator, returning the last element.
250    ///
251    /// This method will evaluate the iterator until it returns [`None`]. While
252    /// doing so, it keeps track of the current element. After [`None`] is
253    /// returned, `last()` will then return the last element it saw.
254    ///
255    /// # Panics
256    ///
257    /// This function might panic if the iterator is infinite.
258    ///
259    /// # Examples
260    ///
261    /// ```
262    /// let a = [1, 2, 3];
263    /// assert_eq!(a.into_iter().last(), Some(3));
264    ///
265    /// let a = [1, 2, 3, 4, 5];
266    /// assert_eq!(a.into_iter().last(), Some(5));
267    /// ```
268    #[inline]
269    #[stable(feature = "rust1", since = "1.0.0")]
270    fn last(self) -> Option<Self::Item>
271    where
272        Self: Sized,
273    {
274        #[inline]
275        fn some<T>(_: Option<T>, x: T) -> Option<T> {
276            Some(x)
277        }
278
279        self.fold(None, some)
280    }
281
282    /// Advances the iterator by `n` elements.
283    ///
284    /// This method will eagerly skip `n` elements by calling [`next`] up to `n`
285    /// times until [`None`] is encountered.
286    ///
287    /// `advance_by(n)` will return `Ok(())` if the iterator successfully advances by
288    /// `n` elements, or a `Err(NonZero<usize>)` with value `k` if [`None`] is encountered,
289    /// where `k` is remaining number of steps that could not be advanced because the iterator ran out.
290    /// If `self` is empty and `n` is non-zero, then this returns `Err(n)`.
291    /// Otherwise, `k` is always less than `n`.
292    ///
293    /// Calling `advance_by(0)` can do meaningful work, for example [`Flatten`]
294    /// can advance its outer iterator until it finds an inner iterator that is not empty, which
295    /// then often allows it to return a more accurate `size_hint()` than in its initial state.
296    ///
297    /// [`Flatten`]: crate::iter::Flatten
298    /// [`next`]: Iterator::next
299    ///
300    /// # Examples
301    ///
302    /// ```
303    /// #![feature(iter_advance_by)]
304    ///
305    /// use std::num::NonZero;
306    ///
307    /// let a = [1, 2, 3, 4];
308    /// let mut iter = a.into_iter();
309    ///
310    /// assert_eq!(iter.advance_by(2), Ok(()));
311    /// assert_eq!(iter.next(), Some(3));
312    /// assert_eq!(iter.advance_by(0), Ok(()));
313    /// assert_eq!(iter.advance_by(100), Err(NonZero::new(99).unwrap())); // only `4` was skipped
314    /// ```
315    #[inline]
316    #[unstable(feature = "iter_advance_by", issue = "77404")]
317    fn advance_by(&mut self, n: usize) -> Result<(), NonZero<usize>> {
318        /// Helper trait to specialize `advance_by` via `try_fold` for `Sized` iterators.
319        trait SpecAdvanceBy {
320            fn spec_advance_by(&mut self, n: usize) -> Result<(), NonZero<usize>>;
321        }
322
323        impl<I: Iterator + ?Sized> SpecAdvanceBy for I {
324            default fn spec_advance_by(&mut self, n: usize) -> Result<(), NonZero<usize>> {
325                for i in 0..n {
326                    if self.next().is_none() {
327                        // SAFETY: `i` is always less than `n`.
328                        return Err(unsafe { NonZero::new_unchecked(n - i) });
329                    }
330                }
331                Ok(())
332            }
333        }
334
335        impl<I: Iterator> SpecAdvanceBy for I {
336            fn spec_advance_by(&mut self, n: usize) -> Result<(), NonZero<usize>> {
337                let Some(n) = NonZero::new(n) else {
338                    return Ok(());
339                };
340
341                let res = self.try_fold(n, |n, _| NonZero::new(n.get() - 1));
342
343                match res {
344                    None => Ok(()),
345                    Some(n) => Err(n),
346                }
347            }
348        }
349
350        self.spec_advance_by(n)
351    }
352
353    /// Returns the `n`th element of the iterator.
354    ///
355    /// Like most indexing operations, the count starts from zero, so `nth(0)`
356    /// returns the first value, `nth(1)` the second, and so on.
357    ///
358    /// Note that all preceding elements, as well as the returned element, will be
359    /// consumed from the iterator. That means that the preceding elements will be
360    /// discarded, and also that calling `nth(0)` multiple times on the same iterator
361    /// will return different elements.
362    ///
363    /// `nth()` will return [`None`] if `n` is greater than or equal to the length of the
364    /// iterator.
365    ///
366    /// # Examples
367    ///
368    /// Basic usage:
369    ///
370    /// ```
371    /// let a = [1, 2, 3];
372    /// assert_eq!(a.into_iter().nth(1), Some(2));
373    /// ```
374    ///
375    /// Calling `nth()` multiple times doesn't rewind the iterator:
376    ///
377    /// ```
378    /// let a = [1, 2, 3];
379    ///
380    /// let mut iter = a.into_iter();
381    ///
382    /// assert_eq!(iter.nth(1), Some(2));
383    /// assert_eq!(iter.nth(1), None);
384    /// ```
385    ///
386    /// Returning `None` if there are less than `n + 1` elements:
387    ///
388    /// ```
389    /// let a = [1, 2, 3];
390    /// assert_eq!(a.into_iter().nth(10), None);
391    /// ```
392    #[inline]
393    #[stable(feature = "rust1", since = "1.0.0")]
394    fn nth(&mut self, n: usize) -> Option<Self::Item> {
395        self.advance_by(n).ok()?;
396        self.next()
397    }
398
399    /// Creates an iterator starting at the same point, but stepping by
400    /// the given amount at each iteration.
401    ///
402    /// Note 1: The first element of the iterator will always be returned,
403    /// regardless of the step given.
404    ///
405    /// Note 2: The time at which ignored elements are pulled is not fixed.
406    /// `StepBy` behaves like the sequence `self.next()`, `self.nth(step-1)`,
407    /// `self.nth(step-1)`, …, but is also free to behave like the sequence
408    /// `advance_n_and_return_first(&mut self, step)`,
409    /// `advance_n_and_return_first(&mut self, step)`, …
410    /// Which way is used may change for some iterators for performance reasons.
411    /// The second way will advance the iterator earlier and may consume more items.
412    ///
413    /// `advance_n_and_return_first` is the equivalent of:
414    /// ```
415    /// fn advance_n_and_return_first<I>(iter: &mut I, n: usize) -> Option<I::Item>
416    /// where
417    ///     I: Iterator,
418    /// {
419    ///     let next = iter.next();
420    ///     if n > 1 {
421    ///         iter.nth(n - 2);
422    ///     }
423    ///     next
424    /// }
425    /// ```
426    ///
427    /// # Panics
428    ///
429    /// The method will panic if the given step is `0`.
430    ///
431    /// # Examples
432    ///
433    /// ```
434    /// let a = [0, 1, 2, 3, 4, 5];
435    /// let mut iter = a.into_iter().step_by(2);
436    ///
437    /// assert_eq!(iter.next(), Some(0));
438    /// assert_eq!(iter.next(), Some(2));
439    /// assert_eq!(iter.next(), Some(4));
440    /// assert_eq!(iter.next(), None);
441    /// ```
442    #[inline]
443    #[stable(feature = "iterator_step_by", since = "1.28.0")]
444    fn step_by(self, step: usize) -> StepBy<Self>
445    where
446        Self: Sized,
447    {
448        StepBy::new(self, step)
449    }
450
451    /// Takes two iterators and creates a new iterator over both in sequence.
452    ///
453    /// `chain()` will return a new iterator which will first iterate over
454    /// values from the first iterator and then over values from the second
455    /// iterator.
456    ///
457    /// In other words, it links two iterators together, in a chain. 🔗
458    ///
459    /// [`once`] is commonly used to adapt a single value into a chain of
460    /// other kinds of iteration.
461    ///
462    /// # Examples
463    ///
464    /// Basic usage:
465    ///
466    /// ```
467    /// let s1 = "abc".chars();
468    /// let s2 = "def".chars();
469    ///
470    /// let mut iter = s1.chain(s2);
471    ///
472    /// assert_eq!(iter.next(), Some('a'));
473    /// assert_eq!(iter.next(), Some('b'));
474    /// assert_eq!(iter.next(), Some('c'));
475    /// assert_eq!(iter.next(), Some('d'));
476    /// assert_eq!(iter.next(), Some('e'));
477    /// assert_eq!(iter.next(), Some('f'));
478    /// assert_eq!(iter.next(), None);
479    /// ```
480    ///
481    /// Since the argument to `chain()` uses [`IntoIterator`], we can pass
482    /// anything that can be converted into an [`Iterator`], not just an
483    /// [`Iterator`] itself. For example, arrays (`[T]`) implement
484    /// [`IntoIterator`], and so can be passed to `chain()` directly:
485    ///
486    /// ```
487    /// let a1 = [1, 2, 3];
488    /// let a2 = [4, 5, 6];
489    ///
490    /// let mut iter = a1.into_iter().chain(a2);
491    ///
492    /// assert_eq!(iter.next(), Some(1));
493    /// assert_eq!(iter.next(), Some(2));
494    /// assert_eq!(iter.next(), Some(3));
495    /// assert_eq!(iter.next(), Some(4));
496    /// assert_eq!(iter.next(), Some(5));
497    /// assert_eq!(iter.next(), Some(6));
498    /// assert_eq!(iter.next(), None);
499    /// ```
500    ///
501    /// If you work with Windows API, you may wish to convert [`OsStr`] to `Vec<u16>`:
502    ///
503    /// ```
504    /// #[cfg(windows)]
505    /// fn os_str_to_utf16(s: &std::ffi::OsStr) -> Vec<u16> {
506    ///     use std::os::windows::ffi::OsStrExt;
507    ///     s.encode_wide().chain(std::iter::once(0)).collect()
508    /// }
509    /// ```
510    ///
511    /// [`once`]: crate::iter::once
512    /// [`OsStr`]: ../../std/ffi/struct.OsStr.html
513    #[inline]
514    #[stable(feature = "rust1", since = "1.0.0")]
515    fn chain<U>(self, other: U) -> Chain<Self, U::IntoIter>
516    where
517        Self: Sized,
518        U: IntoIterator<Item = Self::Item>,
519    {
520        Chain::new(self, other.into_iter())
521    }
522
523    /// 'Zips up' two iterators into a single iterator of pairs.
524    ///
525    /// `zip()` returns a new iterator that will iterate over two other
526    /// iterators, returning a tuple where the first element comes from the
527    /// first iterator, and the second element comes from the second iterator.
528    ///
529    /// In other words, it zips two iterators together, into a single one.
530    ///
531    /// If either iterator returns [`None`], [`next`] from the zipped iterator
532    /// will return [`None`].
533    /// If the zipped iterator has no more elements to return then each further attempt to advance
534    /// it will first try to advance the first iterator at most one time and if it still yielded an item
535    /// try to advance the second iterator at most one time.
536    ///
537    /// To 'undo' the result of zipping up two iterators, see [`unzip`].
538    ///
539    /// [`unzip`]: Iterator::unzip
540    ///
541    /// # Examples
542    ///
543    /// Basic usage:
544    ///
545    /// ```
546    /// let s1 = "abc".chars();
547    /// let s2 = "def".chars();
548    ///
549    /// let mut iter = s1.zip(s2);
550    ///
551    /// assert_eq!(iter.next(), Some(('a', 'd')));
552    /// assert_eq!(iter.next(), Some(('b', 'e')));
553    /// assert_eq!(iter.next(), Some(('c', 'f')));
554    /// assert_eq!(iter.next(), None);
555    /// ```
556    ///
557    /// Since the argument to `zip()` uses [`IntoIterator`], we can pass
558    /// anything that can be converted into an [`Iterator`], not just an
559    /// [`Iterator`] itself. For example, arrays (`[T]`) implement
560    /// [`IntoIterator`], and so can be passed to `zip()` directly:
561    ///
562    /// ```
563    /// let a1 = [1, 2, 3];
564    /// let a2 = [4, 5, 6];
565    ///
566    /// let mut iter = a1.into_iter().zip(a2);
567    ///
568    /// assert_eq!(iter.next(), Some((1, 4)));
569    /// assert_eq!(iter.next(), Some((2, 5)));
570    /// assert_eq!(iter.next(), Some((3, 6)));
571    /// assert_eq!(iter.next(), None);
572    /// ```
573    ///
574    /// `zip()` is often used to zip an infinite iterator to a finite one.
575    /// This works because the finite iterator will eventually return [`None`],
576    /// ending the zipper. Zipping with `(0..)` can look a lot like [`enumerate`]:
577    ///
578    /// ```
579    /// let enumerate: Vec<_> = "foo".chars().enumerate().collect();
580    ///
581    /// let zipper: Vec<_> = (0..).zip("foo".chars()).collect();
582    ///
583    /// assert_eq!((0, 'f'), enumerate[0]);
584    /// assert_eq!((0, 'f'), zipper[0]);
585    ///
586    /// assert_eq!((1, 'o'), enumerate[1]);
587    /// assert_eq!((1, 'o'), zipper[1]);
588    ///
589    /// assert_eq!((2, 'o'), enumerate[2]);
590    /// assert_eq!((2, 'o'), zipper[2]);
591    /// ```
592    ///
593    /// If both iterators have roughly equivalent syntax, it may be more readable to use [`zip`]:
594    ///
595    /// ```
596    /// use std::iter::zip;
597    ///
598    /// let a = [1, 2, 3];
599    /// let b = [2, 3, 4];
600    ///
601    /// let mut zipped = zip(
602    ///     a.into_iter().map(|x| x * 2).skip(1),
603    ///     b.into_iter().map(|x| x * 2).skip(1),
604    /// );
605    ///
606    /// assert_eq!(zipped.next(), Some((4, 6)));
607    /// assert_eq!(zipped.next(), Some((6, 8)));
608    /// assert_eq!(zipped.next(), None);
609    /// ```
610    ///
611    /// compared to:
612    ///
613    /// ```
614    /// # let a = [1, 2, 3];
615    /// # let b = [2, 3, 4];
616    /// #
617    /// let mut zipped = a
618    ///     .into_iter()
619    ///     .map(|x| x * 2)
620    ///     .skip(1)
621    ///     .zip(b.into_iter().map(|x| x * 2).skip(1));
622    /// #
623    /// # assert_eq!(zipped.next(), Some((4, 6)));
624    /// # assert_eq!(zipped.next(), Some((6, 8)));
625    /// # assert_eq!(zipped.next(), None);
626    /// ```
627    ///
628    /// [`enumerate`]: Iterator::enumerate
629    /// [`next`]: Iterator::next
630    /// [`zip`]: crate::iter::zip
631    #[inline]
632    #[stable(feature = "rust1", since = "1.0.0")]
633    fn zip<U>(self, other: U) -> Zip<Self, U::IntoIter>
634    where
635        Self: Sized,
636        U: IntoIterator,
637    {
638        Zip::new(self, other.into_iter())
639    }
640
641    /// Creates a new iterator which places a copy of `separator` between adjacent
642    /// items of the original iterator.
643    ///
644    /// In case `separator` does not implement [`Clone`] or needs to be
645    /// computed every time, use [`intersperse_with`].
646    ///
647    /// # Examples
648    ///
649    /// Basic usage:
650    ///
651    /// ```
652    /// #![feature(iter_intersperse)]
653    ///
654    /// let mut a = [0, 1, 2].into_iter().intersperse(100);
655    /// assert_eq!(a.next(), Some(0));   // The first element from `a`.
656    /// assert_eq!(a.next(), Some(100)); // The separator.
657    /// assert_eq!(a.next(), Some(1));   // The next element from `a`.
658    /// assert_eq!(a.next(), Some(100)); // The separator.
659    /// assert_eq!(a.next(), Some(2));   // The last element from `a`.
660    /// assert_eq!(a.next(), None);       // The iterator is finished.
661    /// ```
662    ///
663    /// `intersperse` can be very useful to join an iterator's items using a common element:
664    /// ```
665    /// #![feature(iter_intersperse)]
666    ///
667    /// let words = ["Hello", "World", "!"];
668    /// let hello: String = words.into_iter().intersperse(" ").collect();
669    /// assert_eq!(hello, "Hello World !");
670    /// ```
671    ///
672    /// [`Clone`]: crate::clone::Clone
673    /// [`intersperse_with`]: Iterator::intersperse_with
674    #[inline]
675    #[unstable(feature = "iter_intersperse", issue = "79524")]
676    #[cfg(not(feature = "ferrocene_subset"))]
677    fn intersperse(self, separator: Self::Item) -> Intersperse<Self>
678    where
679        Self: Sized,
680        Self::Item: Clone,
681    {
682        Intersperse::new(self, separator)
683    }
684
685    /// Creates a new iterator which places an item generated by `separator`
686    /// between adjacent items of the original iterator.
687    ///
688    /// The closure will be called exactly once each time an item is placed
689    /// between two adjacent items from the underlying iterator; specifically,
690    /// the closure is not called if the underlying iterator yields less than
691    /// two items and after the last item is yielded.
692    ///
693    /// If the iterator's item implements [`Clone`], it may be easier to use
694    /// [`intersperse`].
695    ///
696    /// # Examples
697    ///
698    /// Basic usage:
699    ///
700    /// ```
701    /// #![feature(iter_intersperse)]
702    ///
703    /// #[derive(PartialEq, Debug)]
704    /// struct NotClone(usize);
705    ///
706    /// let v = [NotClone(0), NotClone(1), NotClone(2)];
707    /// let mut it = v.into_iter().intersperse_with(|| NotClone(99));
708    ///
709    /// assert_eq!(it.next(), Some(NotClone(0)));  // The first element from `v`.
710    /// assert_eq!(it.next(), Some(NotClone(99))); // The separator.
711    /// assert_eq!(it.next(), Some(NotClone(1)));  // The next element from `v`.
712    /// assert_eq!(it.next(), Some(NotClone(99))); // The separator.
713    /// assert_eq!(it.next(), Some(NotClone(2)));  // The last element from `v`.
714    /// assert_eq!(it.next(), None);               // The iterator is finished.
715    /// ```
716    ///
717    /// `intersperse_with` can be used in situations where the separator needs
718    /// to be computed:
719    /// ```
720    /// #![feature(iter_intersperse)]
721    ///
722    /// let src = ["Hello", "to", "all", "people", "!!"].iter().copied();
723    ///
724    /// // The closure mutably borrows its context to generate an item.
725    /// let mut happy_emojis = [" ❤️ ", " 😀 "].into_iter();
726    /// let separator = || happy_emojis.next().unwrap_or(" 🦀 ");
727    ///
728    /// let result = src.intersperse_with(separator).collect::<String>();
729    /// assert_eq!(result, "Hello ❤️ to 😀 all 🦀 people 🦀 !!");
730    /// ```
731    /// [`Clone`]: crate::clone::Clone
732    /// [`intersperse`]: Iterator::intersperse
733    #[inline]
734    #[unstable(feature = "iter_intersperse", issue = "79524")]
735    #[cfg(not(feature = "ferrocene_subset"))]
736    fn intersperse_with<G>(self, separator: G) -> IntersperseWith<Self, G>
737    where
738        Self: Sized,
739        G: FnMut() -> Self::Item,
740    {
741        IntersperseWith::new(self, separator)
742    }
743
744    /// Takes a closure and creates an iterator which calls that closure on each
745    /// element.
746    ///
747    /// `map()` transforms one iterator into another, by means of its argument:
748    /// something that implements [`FnMut`]. It produces a new iterator which
749    /// calls this closure on each element of the original iterator.
750    ///
751    /// If you are good at thinking in types, you can think of `map()` like this:
752    /// If you have an iterator that gives you elements of some type `A`, and
753    /// you want an iterator of some other type `B`, you can use `map()`,
754    /// passing a closure that takes an `A` and returns a `B`.
755    ///
756    /// `map()` is conceptually similar to a [`for`] loop. However, as `map()` is
757    /// lazy, it is best used when you're already working with other iterators.
758    /// If you're doing some sort of looping for a side effect, it's considered
759    /// more idiomatic to use [`for`] than `map()`.
760    ///
761    /// [`for`]: ../../book/ch03-05-control-flow.html#looping-through-a-collection-with-for
762    ///
763    /// # Examples
764    ///
765    /// Basic usage:
766    ///
767    /// ```
768    /// let a = [1, 2, 3];
769    ///
770    /// let mut iter = a.iter().map(|x| 2 * x);
771    ///
772    /// assert_eq!(iter.next(), Some(2));
773    /// assert_eq!(iter.next(), Some(4));
774    /// assert_eq!(iter.next(), Some(6));
775    /// assert_eq!(iter.next(), None);
776    /// ```
777    ///
778    /// If you're doing some sort of side effect, prefer [`for`] to `map()`:
779    ///
780    /// ```
781    /// # #![allow(unused_must_use)]
782    /// // don't do this:
783    /// (0..5).map(|x| println!("{x}"));
784    ///
785    /// // it won't even execute, as it is lazy. Rust will warn you about this.
786    ///
787    /// // Instead, use a for-loop:
788    /// for x in 0..5 {
789    ///     println!("{x}");
790    /// }
791    /// ```
792    #[rustc_diagnostic_item = "IteratorMap"]
793    #[inline]
794    #[stable(feature = "rust1", since = "1.0.0")]
795    fn map<B, F>(self, f: F) -> Map<Self, F>
796    where
797        Self: Sized,
798        F: FnMut(Self::Item) -> B,
799    {
800        Map::new(self, f)
801    }
802
803    /// Calls a closure on each element of an iterator.
804    ///
805    /// This is equivalent to using a [`for`] loop on the iterator, although
806    /// `break` and `continue` are not possible from a closure. It's generally
807    /// more idiomatic to use a `for` loop, but `for_each` may be more legible
808    /// when processing items at the end of longer iterator chains. In some
809    /// cases `for_each` may also be faster than a loop, because it will use
810    /// internal iteration on adapters like `Chain`.
811    ///
812    /// [`for`]: ../../book/ch03-05-control-flow.html#looping-through-a-collection-with-for
813    ///
814    /// # Examples
815    ///
816    /// Basic usage:
817    ///
818    /// ```
819    /// use std::sync::mpsc::channel;
820    ///
821    /// let (tx, rx) = channel();
822    /// (0..5).map(|x| x * 2 + 1)
823    ///       .for_each(move |x| tx.send(x).unwrap());
824    ///
825    /// let v: Vec<_> = rx.iter().collect();
826    /// assert_eq!(v, vec![1, 3, 5, 7, 9]);
827    /// ```
828    ///
829    /// For such a small example, a `for` loop may be cleaner, but `for_each`
830    /// might be preferable to keep a functional style with longer iterators:
831    ///
832    /// ```
833    /// (0..5).flat_map(|x| (x * 100)..(x * 110))
834    ///       .enumerate()
835    ///       .filter(|&(i, x)| (i + x) % 3 == 0)
836    ///       .for_each(|(i, x)| println!("{i}:{x}"));
837    /// ```
838    #[inline]
839    #[stable(feature = "iterator_for_each", since = "1.21.0")]
840    fn for_each<F>(self, f: F)
841    where
842        Self: Sized,
843        F: FnMut(Self::Item),
844    {
845        #[inline]
846        fn call<T>(mut f: impl FnMut(T)) -> impl FnMut((), T) {
847            move |(), item| f(item)
848        }
849
850        self.fold((), call(f));
851    }
852
853    /// Creates an iterator which uses a closure to determine if an element
854    /// should be yielded.
855    ///
856    /// Given an element the closure must return `true` or `false`. The returned
857    /// iterator will yield only the elements for which the closure returns
858    /// `true`.
859    ///
860    /// # Examples
861    ///
862    /// Basic usage:
863    ///
864    /// ```
865    /// let a = [0i32, 1, 2];
866    ///
867    /// let mut iter = a.into_iter().filter(|x| x.is_positive());
868    ///
869    /// assert_eq!(iter.next(), Some(1));
870    /// assert_eq!(iter.next(), Some(2));
871    /// assert_eq!(iter.next(), None);
872    /// ```
873    ///
874    /// Because the closure passed to `filter()` takes a reference, and many
875    /// iterators iterate over references, this leads to a possibly confusing
876    /// situation, where the type of the closure is a double reference:
877    ///
878    /// ```
879    /// let s = &[0, 1, 2];
880    ///
881    /// let mut iter = s.iter().filter(|x| **x > 1); // needs two *s!
882    ///
883    /// assert_eq!(iter.next(), Some(&2));
884    /// assert_eq!(iter.next(), None);
885    /// ```
886    ///
887    /// It's common to instead use destructuring on the argument to strip away one:
888    ///
889    /// ```
890    /// let s = &[0, 1, 2];
891    ///
892    /// let mut iter = s.iter().filter(|&x| *x > 1); // both & and *
893    ///
894    /// assert_eq!(iter.next(), Some(&2));
895    /// assert_eq!(iter.next(), None);
896    /// ```
897    ///
898    /// or both:
899    ///
900    /// ```
901    /// let s = &[0, 1, 2];
902    ///
903    /// let mut iter = s.iter().filter(|&&x| x > 1); // two &s
904    ///
905    /// assert_eq!(iter.next(), Some(&2));
906    /// assert_eq!(iter.next(), None);
907    /// ```
908    ///
909    /// of these layers.
910    ///
911    /// Note that `iter.filter(f).next()` is equivalent to `iter.find(f)`.
912    #[inline]
913    #[stable(feature = "rust1", since = "1.0.0")]
914    #[rustc_diagnostic_item = "iter_filter"]
915    fn filter<P>(self, predicate: P) -> Filter<Self, P>
916    where
917        Self: Sized,
918        P: FnMut(&Self::Item) -> bool,
919    {
920        Filter::new(self, predicate)
921    }
922
923    /// Creates an iterator that both filters and maps.
924    ///
925    /// The returned iterator yields only the `value`s for which the supplied
926    /// closure returns `Some(value)`.
927    ///
928    /// `filter_map` can be used to make chains of [`filter`] and [`map`] more
929    /// concise. The example below shows how a `map().filter().map()` can be
930    /// shortened to a single call to `filter_map`.
931    ///
932    /// [`filter`]: Iterator::filter
933    /// [`map`]: Iterator::map
934    ///
935    /// # Examples
936    ///
937    /// Basic usage:
938    ///
939    /// ```
940    /// let a = ["1", "two", "NaN", "four", "5"];
941    ///
942    /// let mut iter = a.iter().filter_map(|s| s.parse().ok());
943    ///
944    /// assert_eq!(iter.next(), Some(1));
945    /// assert_eq!(iter.next(), Some(5));
946    /// assert_eq!(iter.next(), None);
947    /// ```
948    ///
949    /// Here's the same example, but with [`filter`] and [`map`]:
950    ///
951    /// ```
952    /// let a = ["1", "two", "NaN", "four", "5"];
953    /// let mut iter = a.iter().map(|s| s.parse()).filter(|s| s.is_ok()).map(|s| s.unwrap());
954    /// assert_eq!(iter.next(), Some(1));
955    /// assert_eq!(iter.next(), Some(5));
956    /// assert_eq!(iter.next(), None);
957    /// ```
958    #[inline]
959    #[stable(feature = "rust1", since = "1.0.0")]
960    #[cfg(not(feature = "ferrocene_subset"))]
961    fn filter_map<B, F>(self, f: F) -> FilterMap<Self, F>
962    where
963        Self: Sized,
964        F: FnMut(Self::Item) -> Option<B>,
965    {
966        FilterMap::new(self, f)
967    }
968
969    /// Creates an iterator which gives the current iteration count as well as
970    /// the next value.
971    ///
972    /// The iterator returned yields pairs `(i, val)`, where `i` is the
973    /// current index of iteration and `val` is the value returned by the
974    /// iterator.
975    ///
976    /// `enumerate()` keeps its count as a [`usize`]. If you want to count by a
977    /// different sized integer, the [`zip`] function provides similar
978    /// functionality.
979    ///
980    /// # Overflow Behavior
981    ///
982    /// The method does no guarding against overflows, so enumerating more than
983    /// [`usize::MAX`] elements either produces the wrong result or panics. If
984    /// overflow checks are enabled, a panic is guaranteed.
985    ///
986    /// # Panics
987    ///
988    /// The returned iterator might panic if the to-be-returned index would
989    /// overflow a [`usize`].
990    ///
991    /// [`zip`]: Iterator::zip
992    ///
993    /// # Examples
994    ///
995    /// ```
996    /// let a = ['a', 'b', 'c'];
997    ///
998    /// let mut iter = a.into_iter().enumerate();
999    ///
1000    /// assert_eq!(iter.next(), Some((0, 'a')));
1001    /// assert_eq!(iter.next(), Some((1, 'b')));
1002    /// assert_eq!(iter.next(), Some((2, 'c')));
1003    /// assert_eq!(iter.next(), None);
1004    /// ```
1005    #[inline]
1006    #[stable(feature = "rust1", since = "1.0.0")]
1007    #[rustc_diagnostic_item = "enumerate_method"]
1008    fn enumerate(self) -> Enumerate<Self>
1009    where
1010        Self: Sized,
1011    {
1012        Enumerate::new(self)
1013    }
1014
1015    /// Creates an iterator which can use the [`peek`] and [`peek_mut`] methods
1016    /// to look at the next element of the iterator without consuming it. See
1017    /// their documentation for more information.
1018    ///
1019    /// Note that the underlying iterator is still advanced when [`peek`] or
1020    /// [`peek_mut`] are called for the first time: In order to retrieve the
1021    /// next element, [`next`] is called on the underlying iterator, hence any
1022    /// side effects (i.e. anything other than fetching the next value) of
1023    /// the [`next`] method will occur.
1024    ///
1025    ///
1026    /// # Examples
1027    ///
1028    /// Basic usage:
1029    ///
1030    /// ```
1031    /// let xs = [1, 2, 3];
1032    ///
1033    /// let mut iter = xs.into_iter().peekable();
1034    ///
1035    /// // peek() lets us see into the future
1036    /// assert_eq!(iter.peek(), Some(&1));
1037    /// assert_eq!(iter.next(), Some(1));
1038    ///
1039    /// assert_eq!(iter.next(), Some(2));
1040    ///
1041    /// // we can peek() multiple times, the iterator won't advance
1042    /// assert_eq!(iter.peek(), Some(&3));
1043    /// assert_eq!(iter.peek(), Some(&3));
1044    ///
1045    /// assert_eq!(iter.next(), Some(3));
1046    ///
1047    /// // after the iterator is finished, so is peek()
1048    /// assert_eq!(iter.peek(), None);
1049    /// assert_eq!(iter.next(), None);
1050    /// ```
1051    ///
1052    /// Using [`peek_mut`] to mutate the next item without advancing the
1053    /// iterator:
1054    ///
1055    /// ```
1056    /// let xs = [1, 2, 3];
1057    ///
1058    /// let mut iter = xs.into_iter().peekable();
1059    ///
1060    /// // `peek_mut()` lets us see into the future
1061    /// assert_eq!(iter.peek_mut(), Some(&mut 1));
1062    /// assert_eq!(iter.peek_mut(), Some(&mut 1));
1063    /// assert_eq!(iter.next(), Some(1));
1064    ///
1065    /// if let Some(p) = iter.peek_mut() {
1066    ///     assert_eq!(*p, 2);
1067    ///     // put a value into the iterator
1068    ///     *p = 1000;
1069    /// }
1070    ///
1071    /// // The value reappears as the iterator continues
1072    /// assert_eq!(iter.collect::<Vec<_>>(), vec![1000, 3]);
1073    /// ```
1074    /// [`peek`]: Peekable::peek
1075    /// [`peek_mut`]: Peekable::peek_mut
1076    /// [`next`]: Iterator::next
1077    #[inline]
1078    #[stable(feature = "rust1", since = "1.0.0")]
1079    #[cfg(not(feature = "ferrocene_subset"))]
1080    fn peekable(self) -> Peekable<Self>
1081    where
1082        Self: Sized,
1083    {
1084        Peekable::new(self)
1085    }
1086
1087    /// Creates an iterator that [`skip`]s elements based on a predicate.
1088    ///
1089    /// [`skip`]: Iterator::skip
1090    ///
1091    /// `skip_while()` takes a closure as an argument. It will call this
1092    /// closure on each element of the iterator, and ignore elements
1093    /// until it returns `false`.
1094    ///
1095    /// After `false` is returned, `skip_while()`'s job is over, and the
1096    /// rest of the elements are yielded.
1097    ///
1098    /// # Examples
1099    ///
1100    /// Basic usage:
1101    ///
1102    /// ```
1103    /// let a = [-1i32, 0, 1];
1104    ///
1105    /// let mut iter = a.into_iter().skip_while(|x| x.is_negative());
1106    ///
1107    /// assert_eq!(iter.next(), Some(0));
1108    /// assert_eq!(iter.next(), Some(1));
1109    /// assert_eq!(iter.next(), None);
1110    /// ```
1111    ///
1112    /// Because the closure passed to `skip_while()` takes a reference, and many
1113    /// iterators iterate over references, this leads to a possibly confusing
1114    /// situation, where the type of the closure argument is a double reference:
1115    ///
1116    /// ```
1117    /// let s = &[-1, 0, 1];
1118    ///
1119    /// let mut iter = s.iter().skip_while(|x| **x < 0); // need two *s!
1120    ///
1121    /// assert_eq!(iter.next(), Some(&0));
1122    /// assert_eq!(iter.next(), Some(&1));
1123    /// assert_eq!(iter.next(), None);
1124    /// ```
1125    ///
1126    /// Stopping after an initial `false`:
1127    ///
1128    /// ```
1129    /// let a = [-1, 0, 1, -2];
1130    ///
1131    /// let mut iter = a.into_iter().skip_while(|&x| x < 0);
1132    ///
1133    /// assert_eq!(iter.next(), Some(0));
1134    /// assert_eq!(iter.next(), Some(1));
1135    ///
1136    /// // while this would have been false, since we already got a false,
1137    /// // skip_while() isn't used any more
1138    /// assert_eq!(iter.next(), Some(-2));
1139    ///
1140    /// assert_eq!(iter.next(), None);
1141    /// ```
1142    #[inline]
1143    #[doc(alias = "drop_while")]
1144    #[stable(feature = "rust1", since = "1.0.0")]
1145    #[cfg(not(feature = "ferrocene_subset"))]
1146    fn skip_while<P>(self, predicate: P) -> SkipWhile<Self, P>
1147    where
1148        Self: Sized,
1149        P: FnMut(&Self::Item) -> bool,
1150    {
1151        SkipWhile::new(self, predicate)
1152    }
1153
1154    /// Creates an iterator that yields elements based on a predicate.
1155    ///
1156    /// `take_while()` takes a closure as an argument. It will call this
1157    /// closure on each element of the iterator, and yield elements
1158    /// while it returns `true`.
1159    ///
1160    /// After `false` is returned, `take_while()`'s job is over, and the
1161    /// rest of the elements are ignored.
1162    ///
1163    /// # Examples
1164    ///
1165    /// Basic usage:
1166    ///
1167    /// ```
1168    /// let a = [-1i32, 0, 1];
1169    ///
1170    /// let mut iter = a.into_iter().take_while(|x| x.is_negative());
1171    ///
1172    /// assert_eq!(iter.next(), Some(-1));
1173    /// assert_eq!(iter.next(), None);
1174    /// ```
1175    ///
1176    /// Because the closure passed to `take_while()` takes a reference, and many
1177    /// iterators iterate over references, this leads to a possibly confusing
1178    /// situation, where the type of the closure is a double reference:
1179    ///
1180    /// ```
1181    /// let s = &[-1, 0, 1];
1182    ///
1183    /// let mut iter = s.iter().take_while(|x| **x < 0); // need two *s!
1184    ///
1185    /// assert_eq!(iter.next(), Some(&-1));
1186    /// assert_eq!(iter.next(), None);
1187    /// ```
1188    ///
1189    /// Stopping after an initial `false`:
1190    ///
1191    /// ```
1192    /// let a = [-1, 0, 1, -2];
1193    ///
1194    /// let mut iter = a.into_iter().take_while(|&x| x < 0);
1195    ///
1196    /// assert_eq!(iter.next(), Some(-1));
1197    ///
1198    /// // We have more elements that are less than zero, but since we already
1199    /// // got a false, take_while() ignores the remaining elements.
1200    /// assert_eq!(iter.next(), None);
1201    /// ```
1202    ///
1203    /// Because `take_while()` needs to look at the value in order to see if it
1204    /// should be included or not, consuming iterators will see that it is
1205    /// removed:
1206    ///
1207    /// ```
1208    /// let a = [1, 2, 3, 4];
1209    /// let mut iter = a.into_iter();
1210    ///
1211    /// let result: Vec<i32> = iter.by_ref().take_while(|&n| n != 3).collect();
1212    ///
1213    /// assert_eq!(result, [1, 2]);
1214    ///
1215    /// let result: Vec<i32> = iter.collect();
1216    ///
1217    /// assert_eq!(result, [4]);
1218    /// ```
1219    ///
1220    /// The `3` is no longer there, because it was consumed in order to see if
1221    /// the iteration should stop, but wasn't placed back into the iterator.
1222    #[inline]
1223    #[stable(feature = "rust1", since = "1.0.0")]
1224    fn take_while<P>(self, predicate: P) -> TakeWhile<Self, P>
1225    where
1226        Self: Sized,
1227        P: FnMut(&Self::Item) -> bool,
1228    {
1229        TakeWhile::new(self, predicate)
1230    }
1231
1232    /// Creates an iterator that both yields elements based on a predicate and maps.
1233    ///
1234    /// `map_while()` takes a closure as an argument. It will call this
1235    /// closure on each element of the iterator, and yield elements
1236    /// while it returns [`Some(_)`][`Some`].
1237    ///
1238    /// # Examples
1239    ///
1240    /// Basic usage:
1241    ///
1242    /// ```
1243    /// let a = [-1i32, 4, 0, 1];
1244    ///
1245    /// let mut iter = a.into_iter().map_while(|x| 16i32.checked_div(x));
1246    ///
1247    /// assert_eq!(iter.next(), Some(-16));
1248    /// assert_eq!(iter.next(), Some(4));
1249    /// assert_eq!(iter.next(), None);
1250    /// ```
1251    ///
1252    /// Here's the same example, but with [`take_while`] and [`map`]:
1253    ///
1254    /// [`take_while`]: Iterator::take_while
1255    /// [`map`]: Iterator::map
1256    ///
1257    /// ```
1258    /// let a = [-1i32, 4, 0, 1];
1259    ///
1260    /// let mut iter = a.into_iter()
1261    ///                 .map(|x| 16i32.checked_div(x))
1262    ///                 .take_while(|x| x.is_some())
1263    ///                 .map(|x| x.unwrap());
1264    ///
1265    /// assert_eq!(iter.next(), Some(-16));
1266    /// assert_eq!(iter.next(), Some(4));
1267    /// assert_eq!(iter.next(), None);
1268    /// ```
1269    ///
1270    /// Stopping after an initial [`None`]:
1271    ///
1272    /// ```
1273    /// let a = [0, 1, 2, -3, 4, 5, -6];
1274    ///
1275    /// let iter = a.into_iter().map_while(|x| u32::try_from(x).ok());
1276    /// let vec: Vec<_> = iter.collect();
1277    ///
1278    /// // We have more elements that could fit in u32 (such as 4, 5), but `map_while` returned `None` for `-3`
1279    /// // (as the `predicate` returned `None`) and `collect` stops at the first `None` encountered.
1280    /// assert_eq!(vec, [0, 1, 2]);
1281    /// ```
1282    ///
1283    /// Because `map_while()` needs to look at the value in order to see if it
1284    /// should be included or not, consuming iterators will see that it is
1285    /// removed:
1286    ///
1287    /// ```
1288    /// let a = [1, 2, -3, 4];
1289    /// let mut iter = a.into_iter();
1290    ///
1291    /// let result: Vec<u32> = iter.by_ref()
1292    ///                            .map_while(|n| u32::try_from(n).ok())
1293    ///                            .collect();
1294    ///
1295    /// assert_eq!(result, [1, 2]);
1296    ///
1297    /// let result: Vec<i32> = iter.collect();
1298    ///
1299    /// assert_eq!(result, [4]);
1300    /// ```
1301    ///
1302    /// The `-3` is no longer there, because it was consumed in order to see if
1303    /// the iteration should stop, but wasn't placed back into the iterator.
1304    ///
1305    /// Note that unlike [`take_while`] this iterator is **not** fused.
1306    /// It is also not specified what this iterator returns after the first [`None`] is returned.
1307    /// If you need a fused iterator, use [`fuse`].
1308    ///
1309    /// [`fuse`]: Iterator::fuse
1310    #[inline]
1311    #[stable(feature = "iter_map_while", since = "1.57.0")]
1312    #[cfg(not(feature = "ferrocene_subset"))]
1313    fn map_while<B, P>(self, predicate: P) -> MapWhile<Self, P>
1314    where
1315        Self: Sized,
1316        P: FnMut(Self::Item) -> Option<B>,
1317    {
1318        MapWhile::new(self, predicate)
1319    }
1320
1321    /// Creates an iterator that skips the first `n` elements.
1322    ///
1323    /// `skip(n)` skips elements until `n` elements are skipped or the end of the
1324    /// iterator is reached (whichever happens first). After that, all the remaining
1325    /// elements are yielded. In particular, if the original iterator is too short,
1326    /// then the returned iterator is empty.
1327    ///
1328    /// Rather than overriding this method directly, instead override the `nth` method.
1329    ///
1330    /// # Examples
1331    ///
1332    /// ```
1333    /// let a = [1, 2, 3];
1334    ///
1335    /// let mut iter = a.into_iter().skip(2);
1336    ///
1337    /// assert_eq!(iter.next(), Some(3));
1338    /// assert_eq!(iter.next(), None);
1339    /// ```
1340    #[inline]
1341    #[stable(feature = "rust1", since = "1.0.0")]
1342    fn skip(self, n: usize) -> Skip<Self>
1343    where
1344        Self: Sized,
1345    {
1346        Skip::new(self, n)
1347    }
1348
1349    /// Creates an iterator that yields the first `n` elements, or fewer
1350    /// if the underlying iterator ends sooner.
1351    ///
1352    /// `take(n)` yields elements until `n` elements are yielded or the end of
1353    /// the iterator is reached (whichever happens first).
1354    /// The returned iterator is a prefix of length `n` if the original iterator
1355    /// contains at least `n` elements, otherwise it contains all of the
1356    /// (fewer than `n`) elements of the original iterator.
1357    ///
1358    /// # Examples
1359    ///
1360    /// Basic usage:
1361    ///
1362    /// ```
1363    /// let a = [1, 2, 3];
1364    ///
1365    /// let mut iter = a.into_iter().take(2);
1366    ///
1367    /// assert_eq!(iter.next(), Some(1));
1368    /// assert_eq!(iter.next(), Some(2));
1369    /// assert_eq!(iter.next(), None);
1370    /// ```
1371    ///
1372    /// `take()` is often used with an infinite iterator, to make it finite:
1373    ///
1374    /// ```
1375    /// let mut iter = (0..).take(3);
1376    ///
1377    /// assert_eq!(iter.next(), Some(0));
1378    /// assert_eq!(iter.next(), Some(1));
1379    /// assert_eq!(iter.next(), Some(2));
1380    /// assert_eq!(iter.next(), None);
1381    /// ```
1382    ///
1383    /// If less than `n` elements are available,
1384    /// `take` will limit itself to the size of the underlying iterator:
1385    ///
1386    /// ```
1387    /// let v = [1, 2];
1388    /// let mut iter = v.into_iter().take(5);
1389    /// assert_eq!(iter.next(), Some(1));
1390    /// assert_eq!(iter.next(), Some(2));
1391    /// assert_eq!(iter.next(), None);
1392    /// ```
1393    ///
1394    /// Use [`by_ref`] to take from the iterator without consuming it, and then
1395    /// continue using the original iterator:
1396    ///
1397    /// ```
1398    /// let mut words = ["hello", "world", "of", "Rust"].into_iter();
1399    ///
1400    /// // Take the first two words.
1401    /// let hello_world: Vec<_> = words.by_ref().take(2).collect();
1402    /// assert_eq!(hello_world, vec!["hello", "world"]);
1403    ///
1404    /// // Collect the rest of the words.
1405    /// // We can only do this because we used `by_ref` earlier.
1406    /// let of_rust: Vec<_> = words.collect();
1407    /// assert_eq!(of_rust, vec!["of", "Rust"]);
1408    /// ```
1409    ///
1410    /// [`by_ref`]: Iterator::by_ref
1411    #[doc(alias = "limit")]
1412    #[inline]
1413    #[stable(feature = "rust1", since = "1.0.0")]
1414    fn take(self, n: usize) -> Take<Self>
1415    where
1416        Self: Sized,
1417    {
1418        Take::new(self, n)
1419    }
1420
1421    /// An iterator adapter which, like [`fold`], holds internal state, but
1422    /// unlike [`fold`], produces a new iterator.
1423    ///
1424    /// [`fold`]: Iterator::fold
1425    ///
1426    /// `scan()` takes two arguments: an initial value which seeds the internal
1427    /// state, and a closure with two arguments, the first being a mutable
1428    /// reference to the internal state and the second an iterator element.
1429    /// The closure can assign to the internal state to share state between
1430    /// iterations.
1431    ///
1432    /// On iteration, the closure will be applied to each element of the
1433    /// iterator and the return value from the closure, an [`Option`], is
1434    /// returned by the `next` method. Thus the closure can return
1435    /// `Some(value)` to yield `value`, or `None` to end the iteration.
1436    ///
1437    /// # Examples
1438    ///
1439    /// ```
1440    /// let a = [1, 2, 3, 4];
1441    ///
1442    /// let mut iter = a.into_iter().scan(1, |state, x| {
1443    ///     // each iteration, we'll multiply the state by the element ...
1444    ///     *state = *state * x;
1445    ///
1446    ///     // ... and terminate if the state exceeds 6
1447    ///     if *state > 6 {
1448    ///         return None;
1449    ///     }
1450    ///     // ... else yield the negation of the state
1451    ///     Some(-*state)
1452    /// });
1453    ///
1454    /// assert_eq!(iter.next(), Some(-1));
1455    /// assert_eq!(iter.next(), Some(-2));
1456    /// assert_eq!(iter.next(), Some(-6));
1457    /// assert_eq!(iter.next(), None);
1458    /// ```
1459    #[inline]
1460    #[stable(feature = "rust1", since = "1.0.0")]
1461    #[cfg(not(feature = "ferrocene_subset"))]
1462    fn scan<St, B, F>(self, initial_state: St, f: F) -> Scan<Self, St, F>
1463    where
1464        Self: Sized,
1465        F: FnMut(&mut St, Self::Item) -> Option<B>,
1466    {
1467        Scan::new(self, initial_state, f)
1468    }
1469
1470    /// Creates an iterator that works like map, but flattens nested structure.
1471    ///
1472    /// The [`map`] adapter is very useful, but only when the closure
1473    /// argument produces values. If it produces an iterator instead, there's
1474    /// an extra layer of indirection. `flat_map()` will remove this extra layer
1475    /// on its own.
1476    ///
1477    /// You can think of `flat_map(f)` as the semantic equivalent
1478    /// of [`map`]ping, and then [`flatten`]ing as in `map(f).flatten()`.
1479    ///
1480    /// Another way of thinking about `flat_map()`: [`map`]'s closure returns
1481    /// one item for each element, and `flat_map()`'s closure returns an
1482    /// iterator for each element.
1483    ///
1484    /// [`map`]: Iterator::map
1485    /// [`flatten`]: Iterator::flatten
1486    ///
1487    /// # Examples
1488    ///
1489    /// ```
1490    /// let words = ["alpha", "beta", "gamma"];
1491    ///
1492    /// // chars() returns an iterator
1493    /// let merged: String = words.iter()
1494    ///                           .flat_map(|s| s.chars())
1495    ///                           .collect();
1496    /// assert_eq!(merged, "alphabetagamma");
1497    /// ```
1498    #[inline]
1499    #[stable(feature = "rust1", since = "1.0.0")]
1500    fn flat_map<U, F>(self, f: F) -> FlatMap<Self, U, F>
1501    where
1502        Self: Sized,
1503        U: IntoIterator,
1504        F: FnMut(Self::Item) -> U,
1505    {
1506        FlatMap::new(self, f)
1507    }
1508
1509    /// Creates an iterator that flattens nested structure.
1510    ///
1511    /// This is useful when you have an iterator of iterators or an iterator of
1512    /// things that can be turned into iterators and you want to remove one
1513    /// level of indirection.
1514    ///
1515    /// # Examples
1516    ///
1517    /// Basic usage:
1518    ///
1519    /// ```
1520    /// let data = vec![vec![1, 2, 3, 4], vec![5, 6]];
1521    /// let flattened: Vec<_> = data.into_iter().flatten().collect();
1522    /// assert_eq!(flattened, [1, 2, 3, 4, 5, 6]);
1523    /// ```
1524    ///
1525    /// Mapping and then flattening:
1526    ///
1527    /// ```
1528    /// let words = ["alpha", "beta", "gamma"];
1529    ///
1530    /// // chars() returns an iterator
1531    /// let merged: String = words.iter()
1532    ///                           .map(|s| s.chars())
1533    ///                           .flatten()
1534    ///                           .collect();
1535    /// assert_eq!(merged, "alphabetagamma");
1536    /// ```
1537    ///
1538    /// You can also rewrite this in terms of [`flat_map()`], which is preferable
1539    /// in this case since it conveys intent more clearly:
1540    ///
1541    /// ```
1542    /// let words = ["alpha", "beta", "gamma"];
1543    ///
1544    /// // chars() returns an iterator
1545    /// let merged: String = words.iter()
1546    ///                           .flat_map(|s| s.chars())
1547    ///                           .collect();
1548    /// assert_eq!(merged, "alphabetagamma");
1549    /// ```
1550    ///
1551    /// Flattening works on any `IntoIterator` type, including `Option` and `Result`:
1552    ///
1553    /// ```
1554    /// let options = vec![Some(123), Some(321), None, Some(231)];
1555    /// let flattened_options: Vec<_> = options.into_iter().flatten().collect();
1556    /// assert_eq!(flattened_options, [123, 321, 231]);
1557    ///
1558    /// let results = vec![Ok(123), Ok(321), Err(456), Ok(231)];
1559    /// let flattened_results: Vec<_> = results.into_iter().flatten().collect();
1560    /// assert_eq!(flattened_results, [123, 321, 231]);
1561    /// ```
1562    ///
1563    /// Flattening only removes one level of nesting at a time:
1564    ///
1565    /// ```
1566    /// let d3 = [[[1, 2], [3, 4]], [[5, 6], [7, 8]]];
1567    ///
1568    /// let d2: Vec<_> = d3.into_iter().flatten().collect();
1569    /// assert_eq!(d2, [[1, 2], [3, 4], [5, 6], [7, 8]]);
1570    ///
1571    /// let d1: Vec<_> = d3.into_iter().flatten().flatten().collect();
1572    /// assert_eq!(d1, [1, 2, 3, 4, 5, 6, 7, 8]);
1573    /// ```
1574    ///
1575    /// Here we see that `flatten()` does not perform a "deep" flatten.
1576    /// Instead, only one level of nesting is removed. That is, if you
1577    /// `flatten()` a three-dimensional array, the result will be
1578    /// two-dimensional and not one-dimensional. To get a one-dimensional
1579    /// structure, you have to `flatten()` again.
1580    ///
1581    /// [`flat_map()`]: Iterator::flat_map
1582    #[inline]
1583    #[stable(feature = "iterator_flatten", since = "1.29.0")]
1584    #[cfg(not(feature = "ferrocene_subset"))]
1585    fn flatten(self) -> Flatten<Self>
1586    where
1587        Self: Sized,
1588        Self::Item: IntoIterator,
1589    {
1590        Flatten::new(self)
1591    }
1592
1593    /// Calls the given function `f` for each contiguous window of size `N` over
1594    /// `self` and returns an iterator over the outputs of `f`. Like [`slice::windows()`],
1595    /// the windows during mapping overlap as well.
1596    ///
1597    /// In the following example, the closure is called three times with the
1598    /// arguments `&['a', 'b']`, `&['b', 'c']` and `&['c', 'd']` respectively.
1599    ///
1600    /// ```
1601    /// #![feature(iter_map_windows)]
1602    ///
1603    /// let strings = "abcd".chars()
1604    ///     .map_windows(|[x, y]| format!("{}+{}", x, y))
1605    ///     .collect::<Vec<String>>();
1606    ///
1607    /// assert_eq!(strings, vec!["a+b", "b+c", "c+d"]);
1608    /// ```
1609    ///
1610    /// Note that the const parameter `N` is usually inferred by the
1611    /// destructured argument in the closure.
1612    ///
1613    /// The returned iterator yields 𝑘 − `N` + 1 items (where 𝑘 is the number of
1614    /// items yielded by `self`). If 𝑘 is less than `N`, this method yields an
1615    /// empty iterator.
1616    ///
1617    /// The returned iterator implements [`FusedIterator`], because once `self`
1618    /// returns `None`, even if it returns a `Some(T)` again in the next iterations,
1619    /// we cannot put it into a contiguous array buffer, and thus the returned iterator
1620    /// should be fused.
1621    ///
1622    /// [`slice::windows()`]: slice::windows
1623    /// [`FusedIterator`]: crate::iter::FusedIterator
1624    ///
1625    /// # Panics
1626    ///
1627    /// Panics if `N` is zero. This check will most probably get changed to a
1628    /// compile time error before this method gets stabilized.
1629    ///
1630    /// ```should_panic
1631    /// #![feature(iter_map_windows)]
1632    ///
1633    /// let iter = std::iter::repeat(0).map_windows(|&[]| ());
1634    /// ```
1635    ///
1636    /// # Examples
1637    ///
1638    /// Building the sums of neighboring numbers.
1639    ///
1640    /// ```
1641    /// #![feature(iter_map_windows)]
1642    ///
1643    /// let mut it = [1, 3, 8, 1].iter().map_windows(|&[a, b]| a + b);
1644    /// assert_eq!(it.next(), Some(4));  // 1 + 3
1645    /// assert_eq!(it.next(), Some(11)); // 3 + 8
1646    /// assert_eq!(it.next(), Some(9));  // 8 + 1
1647    /// assert_eq!(it.next(), None);
1648    /// ```
1649    ///
1650    /// Since the elements in the following example implement `Copy`, we can
1651    /// just copy the array and get an iterator over the windows.
1652    ///
1653    /// ```
1654    /// #![feature(iter_map_windows)]
1655    ///
1656    /// let mut it = "ferris".chars().map_windows(|w: &[_; 3]| *w);
1657    /// assert_eq!(it.next(), Some(['f', 'e', 'r']));
1658    /// assert_eq!(it.next(), Some(['e', 'r', 'r']));
1659    /// assert_eq!(it.next(), Some(['r', 'r', 'i']));
1660    /// assert_eq!(it.next(), Some(['r', 'i', 's']));
1661    /// assert_eq!(it.next(), None);
1662    /// ```
1663    ///
1664    /// You can also use this function to check the sortedness of an iterator.
1665    /// For the simple case, rather use [`Iterator::is_sorted`].
1666    ///
1667    /// ```
1668    /// #![feature(iter_map_windows)]
1669    ///
1670    /// let mut it = [0.5, 1.0, 3.5, 3.0, 8.5, 8.5, f32::NAN].iter()
1671    ///     .map_windows(|[a, b]| a <= b);
1672    ///
1673    /// assert_eq!(it.next(), Some(true));  // 0.5 <= 1.0
1674    /// assert_eq!(it.next(), Some(true));  // 1.0 <= 3.5
1675    /// assert_eq!(it.next(), Some(false)); // 3.5 <= 3.0
1676    /// assert_eq!(it.next(), Some(true));  // 3.0 <= 8.5
1677    /// assert_eq!(it.next(), Some(true));  // 8.5 <= 8.5
1678    /// assert_eq!(it.next(), Some(false)); // 8.5 <= NAN
1679    /// assert_eq!(it.next(), None);
1680    /// ```
1681    ///
1682    /// For non-fused iterators, they are fused after `map_windows`.
1683    ///
1684    /// ```
1685    /// #![feature(iter_map_windows)]
1686    ///
1687    /// #[derive(Default)]
1688    /// struct NonFusedIterator {
1689    ///     state: i32,
1690    /// }
1691    ///
1692    /// impl Iterator for NonFusedIterator {
1693    ///     type Item = i32;
1694    ///
1695    ///     fn next(&mut self) -> Option<i32> {
1696    ///         let val = self.state;
1697    ///         self.state = self.state + 1;
1698    ///
1699    ///         // yields `0..5` first, then only even numbers since `6..`.
1700    ///         if val < 5 || val % 2 == 0 {
1701    ///             Some(val)
1702    ///         } else {
1703    ///             None
1704    ///         }
1705    ///     }
1706    /// }
1707    ///
1708    ///
1709    /// let mut iter = NonFusedIterator::default();
1710    ///
1711    /// // yields 0..5 first.
1712    /// assert_eq!(iter.next(), Some(0));
1713    /// assert_eq!(iter.next(), Some(1));
1714    /// assert_eq!(iter.next(), Some(2));
1715    /// assert_eq!(iter.next(), Some(3));
1716    /// assert_eq!(iter.next(), Some(4));
1717    /// // then we can see our iterator going back and forth
1718    /// assert_eq!(iter.next(), None);
1719    /// assert_eq!(iter.next(), Some(6));
1720    /// assert_eq!(iter.next(), None);
1721    /// assert_eq!(iter.next(), Some(8));
1722    /// assert_eq!(iter.next(), None);
1723    ///
1724    /// // however, with `.map_windows()`, it is fused.
1725    /// let mut iter = NonFusedIterator::default()
1726    ///     .map_windows(|arr: &[_; 2]| *arr);
1727    ///
1728    /// assert_eq!(iter.next(), Some([0, 1]));
1729    /// assert_eq!(iter.next(), Some([1, 2]));
1730    /// assert_eq!(iter.next(), Some([2, 3]));
1731    /// assert_eq!(iter.next(), Some([3, 4]));
1732    /// assert_eq!(iter.next(), None);
1733    ///
1734    /// // it will always return `None` after the first time.
1735    /// assert_eq!(iter.next(), None);
1736    /// assert_eq!(iter.next(), None);
1737    /// assert_eq!(iter.next(), None);
1738    /// ```
1739    #[inline]
1740    #[unstable(feature = "iter_map_windows", issue = "87155")]
1741    #[cfg(not(feature = "ferrocene_subset"))]
1742    fn map_windows<F, R, const N: usize>(self, f: F) -> MapWindows<Self, F, N>
1743    where
1744        Self: Sized,
1745        F: FnMut(&[Self::Item; N]) -> R,
1746    {
1747        MapWindows::new(self, f)
1748    }
1749
1750    /// Creates an iterator which ends after the first [`None`].
1751    ///
1752    /// After an iterator returns [`None`], future calls may or may not yield
1753    /// [`Some(T)`] again. `fuse()` adapts an iterator, ensuring that after a
1754    /// [`None`] is given, it will always return [`None`] forever.
1755    ///
1756    /// Note that the [`Fuse`] wrapper is a no-op on iterators that implement
1757    /// the [`FusedIterator`] trait. `fuse()` may therefore behave incorrectly
1758    /// if the [`FusedIterator`] trait is improperly implemented.
1759    ///
1760    /// [`Some(T)`]: Some
1761    /// [`FusedIterator`]: crate::iter::FusedIterator
1762    ///
1763    /// # Examples
1764    ///
1765    /// ```
1766    /// // an iterator which alternates between Some and None
1767    /// struct Alternate {
1768    ///     state: i32,
1769    /// }
1770    ///
1771    /// impl Iterator for Alternate {
1772    ///     type Item = i32;
1773    ///
1774    ///     fn next(&mut self) -> Option<i32> {
1775    ///         let val = self.state;
1776    ///         self.state = self.state + 1;
1777    ///
1778    ///         // if it's even, Some(i32), else None
1779    ///         (val % 2 == 0).then_some(val)
1780    ///     }
1781    /// }
1782    ///
1783    /// let mut iter = Alternate { state: 0 };
1784    ///
1785    /// // we can see our iterator going back and forth
1786    /// assert_eq!(iter.next(), Some(0));
1787    /// assert_eq!(iter.next(), None);
1788    /// assert_eq!(iter.next(), Some(2));
1789    /// assert_eq!(iter.next(), None);
1790    ///
1791    /// // however, once we fuse it...
1792    /// let mut iter = iter.fuse();
1793    ///
1794    /// assert_eq!(iter.next(), Some(4));
1795    /// assert_eq!(iter.next(), None);
1796    ///
1797    /// // it will always return `None` after the first time.
1798    /// assert_eq!(iter.next(), None);
1799    /// assert_eq!(iter.next(), None);
1800    /// assert_eq!(iter.next(), None);
1801    /// ```
1802    #[inline]
1803    #[stable(feature = "rust1", since = "1.0.0")]
1804    fn fuse(self) -> Fuse<Self>
1805    where
1806        Self: Sized,
1807    {
1808        Fuse::new(self)
1809    }
1810
1811    /// Does something with each element of an iterator, passing the value on.
1812    ///
1813    /// When using iterators, you'll often chain several of them together.
1814    /// While working on such code, you might want to check out what's
1815    /// happening at various parts in the pipeline. To do that, insert
1816    /// a call to `inspect()`.
1817    ///
1818    /// It's more common for `inspect()` to be used as a debugging tool than to
1819    /// exist in your final code, but applications may find it useful in certain
1820    /// situations when errors need to be logged before being discarded.
1821    ///
1822    /// # Examples
1823    ///
1824    /// Basic usage:
1825    ///
1826    /// ```
1827    /// let a = [1, 4, 2, 3];
1828    ///
1829    /// // this iterator sequence is complex.
1830    /// let sum = a.iter()
1831    ///     .cloned()
1832    ///     .filter(|x| x % 2 == 0)
1833    ///     .fold(0, |sum, i| sum + i);
1834    ///
1835    /// println!("{sum}");
1836    ///
1837    /// // let's add some inspect() calls to investigate what's happening
1838    /// let sum = a.iter()
1839    ///     .cloned()
1840    ///     .inspect(|x| println!("about to filter: {x}"))
1841    ///     .filter(|x| x % 2 == 0)
1842    ///     .inspect(|x| println!("made it through filter: {x}"))
1843    ///     .fold(0, |sum, i| sum + i);
1844    ///
1845    /// println!("{sum}");
1846    /// ```
1847    ///
1848    /// This will print:
1849    ///
1850    /// ```text
1851    /// 6
1852    /// about to filter: 1
1853    /// about to filter: 4
1854    /// made it through filter: 4
1855    /// about to filter: 2
1856    /// made it through filter: 2
1857    /// about to filter: 3
1858    /// 6
1859    /// ```
1860    ///
1861    /// Logging errors before discarding them:
1862    ///
1863    /// ```
1864    /// let lines = ["1", "2", "a"];
1865    ///
1866    /// let sum: i32 = lines
1867    ///     .iter()
1868    ///     .map(|line| line.parse::<i32>())
1869    ///     .inspect(|num| {
1870    ///         if let Err(ref e) = *num {
1871    ///             println!("Parsing error: {e}");
1872    ///         }
1873    ///     })
1874    ///     .filter_map(Result::ok)
1875    ///     .sum();
1876    ///
1877    /// println!("Sum: {sum}");
1878    /// ```
1879    ///
1880    /// This will print:
1881    ///
1882    /// ```text
1883    /// Parsing error: invalid digit found in string
1884    /// Sum: 3
1885    /// ```
1886    #[inline]
1887    #[stable(feature = "rust1", since = "1.0.0")]
1888    #[cfg(not(feature = "ferrocene_subset"))]
1889    fn inspect<F>(self, f: F) -> Inspect<Self, F>
1890    where
1891        Self: Sized,
1892        F: FnMut(&Self::Item),
1893    {
1894        Inspect::new(self, f)
1895    }
1896
1897    /// Creates a "by reference" adapter for this instance of `Iterator`.
1898    ///
1899    /// Consuming method calls (direct or indirect calls to `next`)
1900    /// on the "by reference" adapter will consume the original iterator,
1901    /// but ownership-taking methods (those with a `self` parameter)
1902    /// only take ownership of the "by reference" iterator.
1903    ///
1904    /// This is useful for applying ownership-taking methods
1905    /// (such as `take` in the example below)
1906    /// without giving up ownership of the original iterator,
1907    /// so you can use the original iterator afterwards.
1908    ///
1909    /// Uses [`impl<I: Iterator + ?Sized> Iterator for &mut I { type Item = I::Item; ...}`](https://doc.rust-lang.org/nightly/std/iter/trait.Iterator.html#impl-Iterator-for-%26mut+I).
1910    ///
1911    /// # Examples
1912    ///
1913    /// ```
1914    /// let mut words = ["hello", "world", "of", "Rust"].into_iter();
1915    ///
1916    /// // Take the first two words.
1917    /// let hello_world: Vec<_> = words.by_ref().take(2).collect();
1918    /// assert_eq!(hello_world, vec!["hello", "world"]);
1919    ///
1920    /// // Collect the rest of the words.
1921    /// // We can only do this because we used `by_ref` earlier.
1922    /// let of_rust: Vec<_> = words.collect();
1923    /// assert_eq!(of_rust, vec!["of", "Rust"]);
1924    /// ```
1925    #[stable(feature = "rust1", since = "1.0.0")]
1926    fn by_ref(&mut self) -> &mut Self
1927    where
1928        Self: Sized,
1929    {
1930        self
1931    }
1932
1933    /// Transforms an iterator into a collection.
1934    ///
1935    /// `collect()` takes ownership of an iterator and produces whichever
1936    /// collection type you request. The iterator itself carries no knowledge of
1937    /// the eventual container; the target collection is chosen entirely by the
1938    /// type you ask `collect()` to return. This makes `collect()` one of the
1939    /// more powerful methods in the standard library, and it shows up in a wide
1940    /// variety of contexts.
1941    ///
1942    /// The most basic pattern in which `collect()` is used is to turn one
1943    /// collection into another. You take a collection, call [`iter`] on it,
1944    /// do a bunch of transformations, and then `collect()` at the end.
1945    ///
1946    /// `collect()` can also create instances of types that are not typical
1947    /// collections. For example, a [`String`] can be built from [`char`]s,
1948    /// and an iterator of [`Result<T, E>`][`Result`] items can be collected
1949    /// into `Result<Collection<T>, E>`. See the examples below for more.
1950    ///
1951    /// Because `collect()` is so general, it can cause problems with type
1952    /// inference. As such, `collect()` is one of the few times you'll see
1953    /// the syntax affectionately known as the 'turbofish': `::<>`. This
1954    /// helps the inference algorithm understand specifically which collection
1955    /// you're trying to collect into.
1956    ///
1957    /// # Examples
1958    ///
1959    /// Basic usage:
1960    ///
1961    /// ```
1962    /// let a = [1, 2, 3];
1963    ///
1964    /// let doubled: Vec<i32> = a.iter()
1965    ///                          .map(|x| x * 2)
1966    ///                          .collect();
1967    ///
1968    /// assert_eq!(vec![2, 4, 6], doubled);
1969    /// ```
1970    ///
1971    /// Note that we needed the `: Vec<i32>` on the left-hand side. This is because
1972    /// we could collect into, for example, a [`VecDeque<T>`] instead:
1973    ///
1974    /// [`VecDeque<T>`]: ../../std/collections/struct.VecDeque.html
1975    ///
1976    /// ```
1977    /// use std::collections::VecDeque;
1978    ///
1979    /// let a = [1, 2, 3];
1980    ///
1981    /// let doubled: VecDeque<i32> = a.iter().map(|x| x * 2).collect();
1982    ///
1983    /// assert_eq!(2, doubled[0]);
1984    /// assert_eq!(4, doubled[1]);
1985    /// assert_eq!(6, doubled[2]);
1986    /// ```
1987    ///
1988    /// Using the 'turbofish' instead of annotating `doubled`:
1989    ///
1990    /// ```
1991    /// let a = [1, 2, 3];
1992    ///
1993    /// let doubled = a.iter().map(|x| x * 2).collect::<Vec<i32>>();
1994    ///
1995    /// assert_eq!(vec![2, 4, 6], doubled);
1996    /// ```
1997    ///
1998    /// Because `collect()` only cares about what you're collecting into, you can
1999    /// still use a partial type hint, `_`, with the turbofish:
2000    ///
2001    /// ```
2002    /// let a = [1, 2, 3];
2003    ///
2004    /// let doubled = a.iter().map(|x| x * 2).collect::<Vec<_>>();
2005    ///
2006    /// assert_eq!(vec![2, 4, 6], doubled);
2007    /// ```
2008    ///
2009    /// Using `collect()` to make a [`String`]:
2010    ///
2011    /// ```
2012    /// let chars = ['g', 'd', 'k', 'k', 'n'];
2013    ///
2014    /// let hello: String = chars.into_iter()
2015    ///     .map(|x| x as u8)
2016    ///     .map(|x| (x + 1) as char)
2017    ///     .collect();
2018    ///
2019    /// assert_eq!("hello", hello);
2020    /// ```
2021    ///
2022    /// If you have a list of [`Result<T, E>`][`Result`]s, you can use `collect()` to
2023    /// see if any of them failed:
2024    ///
2025    /// ```
2026    /// let results = [Ok(1), Err("nope"), Ok(3), Err("bad")];
2027    ///
2028    /// let result: Result<Vec<_>, &str> = results.into_iter().collect();
2029    ///
2030    /// // gives us the first error
2031    /// assert_eq!(Err("nope"), result);
2032    ///
2033    /// let results = [Ok(1), Ok(3)];
2034    ///
2035    /// let result: Result<Vec<_>, &str> = results.into_iter().collect();
2036    ///
2037    /// // gives us the list of answers
2038    /// assert_eq!(Ok(vec![1, 3]), result);
2039    /// ```
2040    ///
2041    /// [`iter`]: Iterator::next
2042    /// [`String`]: ../../std/string/struct.String.html
2043    /// [`char`]: type@char
2044    #[inline]
2045    #[stable(feature = "rust1", since = "1.0.0")]
2046    #[must_use = "if you really need to exhaust the iterator, consider `.for_each(drop)` instead"]
2047    #[rustc_diagnostic_item = "iterator_collect_fn"]
2048    fn collect<B: FromIterator<Self::Item>>(self) -> B
2049    where
2050        Self: Sized,
2051    {
2052        // This is too aggressive to turn on for everything all the time, but PR#137908
2053        // accidentally noticed that some rustc iterators had malformed `size_hint`s,
2054        // so this will help catch such things in debug-assertions-std runners,
2055        // even if users won't actually ever see it.
2056        #[ferrocene::annotation("We ship `core` with debug assertions enabled")]
2057        if cfg!(debug_assertions) {
2058            let hint = self.size_hint();
2059            assert!(hint.1.is_none_or(|high| high >= hint.0), "Malformed size_hint {hint:?}");
2060        }
2061
2062        FromIterator::from_iter(self)
2063    }
2064
2065    /// Fallibly transforms an iterator into a collection, short circuiting if
2066    /// a failure is encountered.
2067    ///
2068    /// `try_collect()` is a variation of [`collect()`][`collect`] that allows fallible
2069    /// conversions during collection. Its main use case is simplifying conversions from
2070    /// iterators yielding [`Option<T>`][`Option`] into `Option<Collection<T>>`, or similarly for other [`Try`]
2071    /// types (e.g. [`Result`]).
2072    ///
2073    /// Importantly, `try_collect()` doesn't require that the outer [`Try`] type also implements [`FromIterator`];
2074    /// only the inner type produced on `Try::Output` must implement it. Concretely,
2075    /// this means that collecting into `ControlFlow<_, Vec<i32>>` is valid because `Vec<i32>` implements
2076    /// [`FromIterator`], even though [`ControlFlow`] doesn't.
2077    ///
2078    /// Also, if a failure is encountered during `try_collect()`, the iterator is still valid and
2079    /// may continue to be used, in which case it will continue iterating starting after the element that
2080    /// triggered the failure. See the last example below for an example of how this works.
2081    ///
2082    /// # Examples
2083    /// Successfully collecting an iterator of `Option<i32>` into `Option<Vec<i32>>`:
2084    /// ```
2085    /// #![feature(iterator_try_collect)]
2086    ///
2087    /// let u = vec![Some(1), Some(2), Some(3)];
2088    /// let v = u.into_iter().try_collect::<Vec<i32>>();
2089    /// assert_eq!(v, Some(vec![1, 2, 3]));
2090    /// ```
2091    ///
2092    /// Failing to collect in the same way:
2093    /// ```
2094    /// #![feature(iterator_try_collect)]
2095    ///
2096    /// let u = vec![Some(1), Some(2), None, Some(3)];
2097    /// let v = u.into_iter().try_collect::<Vec<i32>>();
2098    /// assert_eq!(v, None);
2099    /// ```
2100    ///
2101    /// A similar example, but with `Result`:
2102    /// ```
2103    /// #![feature(iterator_try_collect)]
2104    ///
2105    /// let u: Vec<Result<i32, ()>> = vec![Ok(1), Ok(2), Ok(3)];
2106    /// let v = u.into_iter().try_collect::<Vec<i32>>();
2107    /// assert_eq!(v, Ok(vec![1, 2, 3]));
2108    ///
2109    /// let u = vec![Ok(1), Ok(2), Err(()), Ok(3)];
2110    /// let v = u.into_iter().try_collect::<Vec<i32>>();
2111    /// assert_eq!(v, Err(()));
2112    /// ```
2113    ///
2114    /// Finally, even [`ControlFlow`] works, despite the fact that it
2115    /// doesn't implement [`FromIterator`]. Note also that the iterator can
2116    /// continue to be used, even if a failure is encountered:
2117    ///
2118    /// ```
2119    /// #![feature(iterator_try_collect)]
2120    ///
2121    /// use core::ops::ControlFlow::{Break, Continue};
2122    ///
2123    /// let u = [Continue(1), Continue(2), Break(3), Continue(4), Continue(5)];
2124    /// let mut it = u.into_iter();
2125    ///
2126    /// let v = it.try_collect::<Vec<_>>();
2127    /// assert_eq!(v, Break(3));
2128    ///
2129    /// let v = it.try_collect::<Vec<_>>();
2130    /// assert_eq!(v, Continue(vec![4, 5]));
2131    /// ```
2132    ///
2133    /// [`collect`]: Iterator::collect
2134    #[inline]
2135    #[unstable(feature = "iterator_try_collect", issue = "94047")]
2136    #[cfg(not(feature = "ferrocene_subset"))]
2137    fn try_collect<B>(&mut self) -> ChangeOutputType<Self::Item, B>
2138    where
2139        Self: Sized,
2140        Self::Item: Try<Residual: Residual<B>>,
2141        B: FromIterator<<Self::Item as Try>::Output>,
2142    {
2143        try_process(ByRefSized(self), |i| i.collect())
2144    }
2145
2146    /// Collects all the items from an iterator into a collection.
2147    ///
2148    /// This method consumes the iterator and adds all its items to the
2149    /// passed collection. The collection is then returned, so the call chain
2150    /// can be continued.
2151    ///
2152    /// This is useful when you already have a collection and want to add
2153    /// the iterator items to it.
2154    ///
2155    /// This method is a convenience method to call [Extend::extend](trait.Extend.html),
2156    /// but instead of being called on a collection, it's called on an iterator.
2157    ///
2158    /// # Examples
2159    ///
2160    /// Basic usage:
2161    ///
2162    /// ```
2163    /// #![feature(iter_collect_into)]
2164    ///
2165    /// let a = [1, 2, 3];
2166    /// let mut vec: Vec::<i32> = vec![0, 1];
2167    ///
2168    /// a.iter().map(|x| x * 2).collect_into(&mut vec);
2169    /// a.iter().map(|x| x * 10).collect_into(&mut vec);
2170    ///
2171    /// assert_eq!(vec, vec![0, 1, 2, 4, 6, 10, 20, 30]);
2172    /// ```
2173    ///
2174    /// `Vec` can have a manual set capacity to avoid reallocating it:
2175    ///
2176    /// ```
2177    /// #![feature(iter_collect_into)]
2178    ///
2179    /// let a = [1, 2, 3];
2180    /// let mut vec: Vec::<i32> = Vec::with_capacity(6);
2181    ///
2182    /// a.iter().map(|x| x * 2).collect_into(&mut vec);
2183    /// a.iter().map(|x| x * 10).collect_into(&mut vec);
2184    ///
2185    /// assert_eq!(6, vec.capacity());
2186    /// assert_eq!(vec, vec![2, 4, 6, 10, 20, 30]);
2187    /// ```
2188    ///
2189    /// The returned mutable reference can be used to continue the call chain:
2190    ///
2191    /// ```
2192    /// #![feature(iter_collect_into)]
2193    ///
2194    /// let a = [1, 2, 3];
2195    /// let mut vec: Vec::<i32> = Vec::with_capacity(6);
2196    ///
2197    /// let count = a.iter().collect_into(&mut vec).iter().count();
2198    ///
2199    /// assert_eq!(count, vec.len());
2200    /// assert_eq!(vec, vec![1, 2, 3]);
2201    ///
2202    /// let count = a.iter().collect_into(&mut vec).iter().count();
2203    ///
2204    /// assert_eq!(count, vec.len());
2205    /// assert_eq!(vec, vec![1, 2, 3, 1, 2, 3]);
2206    /// ```
2207    #[inline]
2208    #[unstable(feature = "iter_collect_into", issue = "94780")]
2209    #[cfg(not(feature = "ferrocene_subset"))]
2210    fn collect_into<E: Extend<Self::Item>>(self, collection: &mut E) -> &mut E
2211    where
2212        Self: Sized,
2213    {
2214        collection.extend(self);
2215        collection
2216    }
2217
2218    /// Consumes an iterator, creating two collections from it.
2219    ///
2220    /// The predicate passed to `partition()` can return `true`, or `false`.
2221    /// `partition()` returns a pair, all of the elements for which it returned
2222    /// `true`, and all of the elements for which it returned `false`.
2223    ///
2224    /// See also [`is_partitioned()`] and [`partition_in_place()`].
2225    ///
2226    /// [`is_partitioned()`]: Iterator::is_partitioned
2227    /// [`partition_in_place()`]: Iterator::partition_in_place
2228    ///
2229    /// # Examples
2230    ///
2231    /// ```
2232    /// let a = [1, 2, 3];
2233    ///
2234    /// let (even, odd): (Vec<_>, Vec<_>) = a
2235    ///     .into_iter()
2236    ///     .partition(|n| n % 2 == 0);
2237    ///
2238    /// assert_eq!(even, [2]);
2239    /// assert_eq!(odd, [1, 3]);
2240    /// ```
2241    #[stable(feature = "rust1", since = "1.0.0")]
2242    #[cfg(not(feature = "ferrocene_subset"))]
2243    fn partition<B, F>(self, f: F) -> (B, B)
2244    where
2245        Self: Sized,
2246        B: Default + Extend<Self::Item>,
2247        F: FnMut(&Self::Item) -> bool,
2248    {
2249        #[inline]
2250        fn extend<'a, T, B: Extend<T>>(
2251            mut f: impl FnMut(&T) -> bool + 'a,
2252            left: &'a mut B,
2253            right: &'a mut B,
2254        ) -> impl FnMut((), T) + 'a {
2255            move |(), x| {
2256                if f(&x) {
2257                    left.extend_one(x);
2258                } else {
2259                    right.extend_one(x);
2260                }
2261            }
2262        }
2263
2264        let mut left: B = Default::default();
2265        let mut right: B = Default::default();
2266
2267        self.fold((), extend(f, &mut left, &mut right));
2268
2269        (left, right)
2270    }
2271
2272    /// Reorders the elements of this iterator *in-place* according to the given predicate,
2273    /// such that all those that return `true` precede all those that return `false`.
2274    /// Returns the number of `true` elements found.
2275    ///
2276    /// The relative order of partitioned items is not maintained.
2277    ///
2278    /// # Current implementation
2279    ///
2280    /// The current algorithm tries to find the first element for which the predicate evaluates
2281    /// to false and the last element for which it evaluates to true, and repeatedly swaps them.
2282    ///
2283    /// Time complexity: *O*(*n*)
2284    ///
2285    /// See also [`is_partitioned()`] and [`partition()`].
2286    ///
2287    /// [`is_partitioned()`]: Iterator::is_partitioned
2288    /// [`partition()`]: Iterator::partition
2289    ///
2290    /// # Examples
2291    ///
2292    /// ```
2293    /// #![feature(iter_partition_in_place)]
2294    ///
2295    /// let mut a = [1, 2, 3, 4, 5, 6, 7];
2296    ///
2297    /// // Partition in-place between evens and odds
2298    /// let i = a.iter_mut().partition_in_place(|n| n % 2 == 0);
2299    ///
2300    /// assert_eq!(i, 3);
2301    /// assert!(a[..i].iter().all(|n| n % 2 == 0)); // evens
2302    /// assert!(a[i..].iter().all(|n| n % 2 == 1)); // odds
2303    /// ```
2304    #[unstable(feature = "iter_partition_in_place", issue = "62543")]
2305    #[cfg(not(feature = "ferrocene_subset"))]
2306    fn partition_in_place<'a, T: 'a, P>(mut self, ref mut predicate: P) -> usize
2307    where
2308        Self: Sized + DoubleEndedIterator<Item = &'a mut T>,
2309        P: FnMut(&T) -> bool,
2310    {
2311        // FIXME: should we worry about the count overflowing? The only way to have more than
2312        // `usize::MAX` mutable references is with ZSTs, which aren't useful to partition...
2313
2314        // These closure "factory" functions exist to avoid genericity in `Self`.
2315
2316        #[inline]
2317        fn is_false<'a, T>(
2318            predicate: &'a mut impl FnMut(&T) -> bool,
2319            true_count: &'a mut usize,
2320        ) -> impl FnMut(&&mut T) -> bool + 'a {
2321            move |x| {
2322                let p = predicate(&**x);
2323                *true_count += p as usize;
2324                !p
2325            }
2326        }
2327
2328        #[inline]
2329        fn is_true<T>(predicate: &mut impl FnMut(&T) -> bool) -> impl FnMut(&&mut T) -> bool + '_ {
2330            move |x| predicate(&**x)
2331        }
2332
2333        // Repeatedly find the first `false` and swap it with the last `true`.
2334        let mut true_count = 0;
2335        while let Some(head) = self.find(is_false(predicate, &mut true_count)) {
2336            if let Some(tail) = self.rfind(is_true(predicate)) {
2337                crate::mem::swap(head, tail);
2338                true_count += 1;
2339            } else {
2340                break;
2341            }
2342        }
2343        true_count
2344    }
2345
2346    /// Checks if the elements of this iterator are partitioned according to the given predicate,
2347    /// such that all those that return `true` precede all those that return `false`.
2348    ///
2349    /// See also [`partition()`] and [`partition_in_place()`].
2350    ///
2351    /// [`partition()`]: Iterator::partition
2352    /// [`partition_in_place()`]: Iterator::partition_in_place
2353    ///
2354    /// # Examples
2355    ///
2356    /// ```
2357    /// #![feature(iter_is_partitioned)]
2358    ///
2359    /// assert!("Iterator".chars().is_partitioned(char::is_uppercase));
2360    /// assert!(!"IntoIterator".chars().is_partitioned(char::is_uppercase));
2361    /// ```
2362    #[unstable(feature = "iter_is_partitioned", issue = "62544")]
2363    #[cfg(not(feature = "ferrocene_subset"))]
2364    fn is_partitioned<P>(mut self, mut predicate: P) -> bool
2365    where
2366        Self: Sized,
2367        P: FnMut(Self::Item) -> bool,
2368    {
2369        // Either all items test `true`, or the first clause stops at `false`
2370        // and we check that there are no more `true` items after that.
2371        self.all(&mut predicate) || !self.any(predicate)
2372    }
2373
2374    /// An iterator method that applies a function as long as it returns
2375    /// successfully, producing a single, final value.
2376    ///
2377    /// `try_fold()` takes two arguments: an initial value, and a closure with
2378    /// two arguments: an 'accumulator', and an element. The closure either
2379    /// returns successfully, with the value that the accumulator should have
2380    /// for the next iteration, or it returns failure, with an error value that
2381    /// is propagated back to the caller immediately (short-circuiting).
2382    ///
2383    /// The initial value is the value the accumulator will have on the first
2384    /// call. If applying the closure succeeded against every element of the
2385    /// iterator, `try_fold()` returns the final accumulator as success.
2386    ///
2387    /// Folding is useful whenever you have a collection of something, and want
2388    /// to produce a single value from it.
2389    ///
2390    /// # Note to Implementors
2391    ///
2392    /// Several of the other (forward) methods have default implementations in
2393    /// terms of this one, so try to implement this explicitly if it can
2394    /// do something better than the default `for` loop implementation.
2395    ///
2396    /// In particular, try to have this call `try_fold()` on the internal parts
2397    /// from which this iterator is composed. If multiple calls are needed,
2398    /// the `?` operator may be convenient for chaining the accumulator value
2399    /// along, but beware any invariants that need to be upheld before those
2400    /// early returns. This is a `&mut self` method, so iteration needs to be
2401    /// resumable after hitting an error here.
2402    ///
2403    /// # Examples
2404    ///
2405    /// Basic usage:
2406    ///
2407    /// ```
2408    /// let a = [1, 2, 3];
2409    ///
2410    /// // the checked sum of all of the elements of the array
2411    /// let sum = a.into_iter().try_fold(0i8, |acc, x| acc.checked_add(x));
2412    ///
2413    /// assert_eq!(sum, Some(6));
2414    /// ```
2415    ///
2416    /// Short-circuiting:
2417    ///
2418    /// ```
2419    /// let a = [10, 20, 30, 100, 40, 50];
2420    /// let mut iter = a.into_iter();
2421    ///
2422    /// // This sum overflows when adding the 100 element
2423    /// let sum = iter.try_fold(0i8, |acc, x| acc.checked_add(x));
2424    /// assert_eq!(sum, None);
2425    ///
2426    /// // Because it short-circuited, the remaining elements are still
2427    /// // available through the iterator.
2428    /// assert_eq!(iter.len(), 2);
2429    /// assert_eq!(iter.next(), Some(40));
2430    /// ```
2431    ///
2432    /// While you cannot `break` from a closure, the [`ControlFlow`] type allows
2433    /// a similar idea:
2434    ///
2435    /// ```
2436    /// use std::ops::ControlFlow;
2437    ///
2438    /// let triangular = (1..30).try_fold(0_i8, |prev, x| {
2439    ///     if let Some(next) = prev.checked_add(x) {
2440    ///         ControlFlow::Continue(next)
2441    ///     } else {
2442    ///         ControlFlow::Break(prev)
2443    ///     }
2444    /// });
2445    /// assert_eq!(triangular, ControlFlow::Break(120));
2446    ///
2447    /// let triangular = (1..30).try_fold(0_u64, |prev, x| {
2448    ///     if let Some(next) = prev.checked_add(x) {
2449    ///         ControlFlow::Continue(next)
2450    ///     } else {
2451    ///         ControlFlow::Break(prev)
2452    ///     }
2453    /// });
2454    /// assert_eq!(triangular, ControlFlow::Continue(435));
2455    /// ```
2456    #[inline]
2457    #[stable(feature = "iterator_try_fold", since = "1.27.0")]
2458    fn try_fold<B, F, R>(&mut self, init: B, mut f: F) -> R
2459    where
2460        Self: Sized,
2461        F: FnMut(B, Self::Item) -> R,
2462        R: Try<Output = B>,
2463    {
2464        let mut accum = init;
2465        while let Some(x) = self.next() {
2466            accum = f(accum, x)?;
2467        }
2468        try { accum }
2469    }
2470
2471    /// An iterator method that applies a fallible function to each item in the
2472    /// iterator, stopping at the first error and returning that error.
2473    ///
2474    /// This can also be thought of as the fallible form of [`for_each()`]
2475    /// or as the stateless version of [`try_fold()`].
2476    ///
2477    /// [`for_each()`]: Iterator::for_each
2478    /// [`try_fold()`]: Iterator::try_fold
2479    ///
2480    /// # Examples
2481    ///
2482    /// ```
2483    /// use std::fs::rename;
2484    /// use std::io::{stdout, Write};
2485    /// use std::path::Path;
2486    ///
2487    /// let data = ["no_tea.txt", "stale_bread.json", "torrential_rain.png"];
2488    ///
2489    /// let res = data.iter().try_for_each(|x| writeln!(stdout(), "{x}"));
2490    /// assert!(res.is_ok());
2491    ///
2492    /// let mut it = data.iter().cloned();
2493    /// let res = it.try_for_each(|x| rename(x, Path::new(x).with_extension("old")));
2494    /// assert!(res.is_err());
2495    /// // It short-circuited, so the remaining items are still in the iterator:
2496    /// assert_eq!(it.next(), Some("stale_bread.json"));
2497    /// ```
2498    ///
2499    /// The [`ControlFlow`] type can be used with this method for the situations
2500    /// in which you'd use `break` and `continue` in a normal loop:
2501    ///
2502    /// ```
2503    /// use std::ops::ControlFlow;
2504    ///
2505    /// let r = (2..100).try_for_each(|x| {
2506    ///     if 323 % x == 0 {
2507    ///         return ControlFlow::Break(x)
2508    ///     }
2509    ///
2510    ///     ControlFlow::Continue(())
2511    /// });
2512    /// assert_eq!(r, ControlFlow::Break(17));
2513    /// ```
2514    #[inline]
2515    #[stable(feature = "iterator_try_fold", since = "1.27.0")]
2516    fn try_for_each<F, R>(&mut self, f: F) -> R
2517    where
2518        Self: Sized,
2519        F: FnMut(Self::Item) -> R,
2520        R: Try<Output = ()>,
2521    {
2522        #[inline]
2523        fn call<T, R>(mut f: impl FnMut(T) -> R) -> impl FnMut((), T) -> R {
2524            move |(), x| f(x)
2525        }
2526
2527        self.try_fold((), call(f))
2528    }
2529
2530    /// Folds every element into an accumulator by applying an operation,
2531    /// returning the final result.
2532    ///
2533    /// `fold()` takes two arguments: an initial value, and a closure with two
2534    /// arguments: an 'accumulator', and an element. The closure returns the value that
2535    /// the accumulator should have for the next iteration.
2536    ///
2537    /// The initial value is the value the accumulator will have on the first
2538    /// call.
2539    ///
2540    /// After applying this closure to every element of the iterator, `fold()`
2541    /// returns the accumulator.
2542    ///
2543    /// This operation is sometimes called 'reduce' or 'inject'.
2544    ///
2545    /// Folding is useful whenever you have a collection of something, and want
2546    /// to produce a single value from it.
2547    ///
2548    /// Note: `fold()`, and similar methods that traverse the entire iterator,
2549    /// might not terminate for infinite iterators, even on traits for which a
2550    /// result is determinable in finite time.
2551    ///
2552    /// Note: [`reduce()`] can be used to use the first element as the initial
2553    /// value, if the accumulator type and item type is the same.
2554    ///
2555    /// Note: `fold()` combines elements in a *left-associative* fashion. For associative
2556    /// operators like `+`, the order the elements are combined in is not important, but for non-associative
2557    /// operators like `-` the order will affect the final result.
2558    /// For a *right-associative* version of `fold()`, see [`DoubleEndedIterator::rfold()`].
2559    ///
2560    /// # Note to Implementors
2561    ///
2562    /// Several of the other (forward) methods have default implementations in
2563    /// terms of this one, so try to implement this explicitly if it can
2564    /// do something better than the default `for` loop implementation.
2565    ///
2566    /// In particular, try to have this call `fold()` on the internal parts
2567    /// from which this iterator is composed.
2568    ///
2569    /// # Examples
2570    ///
2571    /// Basic usage:
2572    ///
2573    /// ```
2574    /// let a = [1, 2, 3];
2575    ///
2576    /// // the sum of all of the elements of the array
2577    /// let sum = a.iter().fold(0, |acc, x| acc + x);
2578    ///
2579    /// assert_eq!(sum, 6);
2580    /// ```
2581    ///
2582    /// Let's walk through each step of the iteration here:
2583    ///
2584    /// | element | acc | x | result |
2585    /// |---------|-----|---|--------|
2586    /// |         | 0   |   |        |
2587    /// | 1       | 0   | 1 | 1      |
2588    /// | 2       | 1   | 2 | 3      |
2589    /// | 3       | 3   | 3 | 6      |
2590    ///
2591    /// And so, our final result, `6`.
2592    ///
2593    /// This example demonstrates the left-associative nature of `fold()`:
2594    /// it builds a string, starting with an initial value
2595    /// and continuing with each element from the front until the back:
2596    ///
2597    /// ```
2598    /// let numbers = [1, 2, 3, 4, 5];
2599    ///
2600    /// let zero = "0".to_string();
2601    ///
2602    /// let result = numbers.iter().fold(zero, |acc, &x| {
2603    ///     format!("({acc} + {x})")
2604    /// });
2605    ///
2606    /// assert_eq!(result, "(((((0 + 1) + 2) + 3) + 4) + 5)");
2607    /// ```
2608    /// It's common for people who haven't used iterators a lot to
2609    /// use a `for` loop with a list of things to build up a result. Those
2610    /// can be turned into `fold()`s:
2611    ///
2612    /// [`for`]: ../../book/ch03-05-control-flow.html#looping-through-a-collection-with-for
2613    ///
2614    /// ```
2615    /// let numbers = [1, 2, 3, 4, 5];
2616    ///
2617    /// let mut result = 0;
2618    ///
2619    /// // for loop:
2620    /// for i in &numbers {
2621    ///     result = result + i;
2622    /// }
2623    ///
2624    /// // fold:
2625    /// let result2 = numbers.iter().fold(0, |acc, &x| acc + x);
2626    ///
2627    /// // they're the same
2628    /// assert_eq!(result, result2);
2629    /// ```
2630    ///
2631    /// [`reduce()`]: Iterator::reduce
2632    #[doc(alias = "inject", alias = "foldl")]
2633    #[inline]
2634    #[stable(feature = "rust1", since = "1.0.0")]
2635    fn fold<B, F>(mut self, init: B, mut f: F) -> B
2636    where
2637        Self: Sized,
2638        F: FnMut(B, Self::Item) -> B,
2639    {
2640        let mut accum = init;
2641        while let Some(x) = self.next() {
2642            accum = f(accum, x);
2643        }
2644        accum
2645    }
2646
2647    /// Reduces the elements to a single one, by repeatedly applying a reducing
2648    /// operation.
2649    ///
2650    /// If the iterator is empty, returns [`None`]; otherwise, returns the
2651    /// result of the reduction.
2652    ///
2653    /// The reducing function is a closure with two arguments: an 'accumulator', and an element.
2654    /// For iterators with at least one element, this is the same as [`fold()`]
2655    /// with the first element of the iterator as the initial accumulator value, folding
2656    /// every subsequent element into it.
2657    ///
2658    /// [`fold()`]: Iterator::fold
2659    ///
2660    /// # Example
2661    ///
2662    /// ```
2663    /// let reduced: i32 = (1..10).reduce(|acc, e| acc + e).unwrap_or(0);
2664    /// assert_eq!(reduced, 45);
2665    ///
2666    /// // Which is equivalent to doing it with `fold`:
2667    /// let folded: i32 = (1..10).fold(0, |acc, e| acc + e);
2668    /// assert_eq!(reduced, folded);
2669    /// ```
2670    #[inline]
2671    #[stable(feature = "iterator_fold_self", since = "1.51.0")]
2672    fn reduce<F>(mut self, f: F) -> Option<Self::Item>
2673    where
2674        Self: Sized,
2675        F: FnMut(Self::Item, Self::Item) -> Self::Item,
2676    {
2677        let first = self.next()?;
2678        Some(self.fold(first, f))
2679    }
2680
2681    /// Reduces the elements to a single one by repeatedly applying a reducing operation. If the
2682    /// closure returns a failure, the failure is propagated back to the caller immediately.
2683    ///
2684    /// The return type of this method depends on the return type of the closure. If the closure
2685    /// returns `Result<Self::Item, E>`, then this function will return `Result<Option<Self::Item>,
2686    /// E>`. If the closure returns `Option<Self::Item>`, then this function will return
2687    /// `Option<Option<Self::Item>>`.
2688    ///
2689    /// When called on an empty iterator, this function will return either `Some(None)` or
2690    /// `Ok(None)` depending on the type of the provided closure.
2691    ///
2692    /// For iterators with at least one element, this is essentially the same as calling
2693    /// [`try_fold()`] with the first element of the iterator as the initial accumulator value.
2694    ///
2695    /// [`try_fold()`]: Iterator::try_fold
2696    ///
2697    /// # Examples
2698    ///
2699    /// Safely calculate the sum of a series of numbers:
2700    ///
2701    /// ```
2702    /// #![feature(iterator_try_reduce)]
2703    ///
2704    /// let numbers: Vec<usize> = vec![10, 20, 5, 23, 0];
2705    /// let sum = numbers.into_iter().try_reduce(|x, y| x.checked_add(y));
2706    /// assert_eq!(sum, Some(Some(58)));
2707    /// ```
2708    ///
2709    /// Determine when a reduction short circuited:
2710    ///
2711    /// ```
2712    /// #![feature(iterator_try_reduce)]
2713    ///
2714    /// let numbers = vec![1, 2, 3, usize::MAX, 4, 5];
2715    /// let sum = numbers.into_iter().try_reduce(|x, y| x.checked_add(y));
2716    /// assert_eq!(sum, None);
2717    /// ```
2718    ///
2719    /// Determine when a reduction was not performed because there are no elements:
2720    ///
2721    /// ```
2722    /// #![feature(iterator_try_reduce)]
2723    ///
2724    /// let numbers: Vec<usize> = Vec::new();
2725    /// let sum = numbers.into_iter().try_reduce(|x, y| x.checked_add(y));
2726    /// assert_eq!(sum, Some(None));
2727    /// ```
2728    ///
2729    /// Use a [`Result`] instead of an [`Option`]:
2730    ///
2731    /// ```
2732    /// #![feature(iterator_try_reduce)]
2733    ///
2734    /// let numbers = vec!["1", "2", "3", "4", "5"];
2735    /// let max: Result<Option<_>, <usize as std::str::FromStr>::Err> =
2736    ///     numbers.into_iter().try_reduce(|x, y| {
2737    ///         if x.parse::<usize>()? > y.parse::<usize>()? { Ok(x) } else { Ok(y) }
2738    ///     });
2739    /// assert_eq!(max, Ok(Some("5")));
2740    /// ```
2741    #[inline]
2742    #[unstable(feature = "iterator_try_reduce", issue = "87053")]
2743    #[cfg(not(feature = "ferrocene_subset"))]
2744    fn try_reduce<R>(
2745        &mut self,
2746        f: impl FnMut(Self::Item, Self::Item) -> R,
2747    ) -> ChangeOutputType<R, Option<R::Output>>
2748    where
2749        Self: Sized,
2750        R: Try<Output = Self::Item, Residual: Residual<Option<Self::Item>>>,
2751    {
2752        let first = match self.next() {
2753            Some(i) => i,
2754            None => return Try::from_output(None),
2755        };
2756
2757        match self.try_fold(first, f).branch() {
2758            ControlFlow::Break(r) => FromResidual::from_residual(r),
2759            ControlFlow::Continue(i) => Try::from_output(Some(i)),
2760        }
2761    }
2762
2763    /// Tests if every element of the iterator matches a predicate.
2764    ///
2765    /// `all()` takes a closure that returns `true` or `false`. It applies
2766    /// this closure to each element of the iterator, and if they all return
2767    /// `true`, then so does `all()`. If any of them return `false`, it
2768    /// returns `false`.
2769    ///
2770    /// `all()` is short-circuiting; in other words, it will stop processing
2771    /// as soon as it finds a `false`, given that no matter what else happens,
2772    /// the result will also be `false`.
2773    ///
2774    /// An empty iterator returns `true`.
2775    ///
2776    /// # Examples
2777    ///
2778    /// Basic usage:
2779    ///
2780    /// ```
2781    /// let a = [1, 2, 3];
2782    ///
2783    /// assert!(a.into_iter().all(|x| x > 0));
2784    ///
2785    /// assert!(!a.into_iter().all(|x| x > 2));
2786    /// ```
2787    ///
2788    /// Stopping at the first `false`:
2789    ///
2790    /// ```
2791    /// let a = [1, 2, 3];
2792    ///
2793    /// let mut iter = a.into_iter();
2794    ///
2795    /// assert!(!iter.all(|x| x != 2));
2796    ///
2797    /// // we can still use `iter`, as there are more elements.
2798    /// assert_eq!(iter.next(), Some(3));
2799    /// ```
2800    #[inline]
2801    #[stable(feature = "rust1", since = "1.0.0")]
2802    fn all<F>(&mut self, f: F) -> bool
2803    where
2804        Self: Sized,
2805        F: FnMut(Self::Item) -> bool,
2806    {
2807        #[inline]
2808        fn check<T>(mut f: impl FnMut(T) -> bool) -> impl FnMut((), T) -> ControlFlow<()> {
2809            move |(), x| {
2810                if f(x) { ControlFlow::Continue(()) } else { ControlFlow::Break(()) }
2811            }
2812        }
2813        self.try_fold((), check(f)) == ControlFlow::Continue(())
2814    }
2815
2816    /// Tests if any element of the iterator matches a predicate.
2817    ///
2818    /// `any()` takes a closure that returns `true` or `false`. It applies
2819    /// this closure to each element of the iterator, and if any of them return
2820    /// `true`, then so does `any()`. If they all return `false`, it
2821    /// returns `false`.
2822    ///
2823    /// `any()` is short-circuiting; in other words, it will stop processing
2824    /// as soon as it finds a `true`, given that no matter what else happens,
2825    /// the result will also be `true`.
2826    ///
2827    /// An empty iterator returns `false`.
2828    ///
2829    /// # Examples
2830    ///
2831    /// Basic usage:
2832    ///
2833    /// ```
2834    /// let a = [1, 2, 3];
2835    ///
2836    /// assert!(a.into_iter().any(|x| x > 0));
2837    ///
2838    /// assert!(!a.into_iter().any(|x| x > 5));
2839    /// ```
2840    ///
2841    /// Stopping at the first `true`:
2842    ///
2843    /// ```
2844    /// let a = [1, 2, 3];
2845    ///
2846    /// let mut iter = a.into_iter();
2847    ///
2848    /// assert!(iter.any(|x| x != 2));
2849    ///
2850    /// // we can still use `iter`, as there are more elements.
2851    /// assert_eq!(iter.next(), Some(2));
2852    /// ```
2853    #[inline]
2854    #[stable(feature = "rust1", since = "1.0.0")]
2855    fn any<F>(&mut self, f: F) -> bool
2856    where
2857        Self: Sized,
2858        F: FnMut(Self::Item) -> bool,
2859    {
2860        #[inline]
2861        fn check<T>(mut f: impl FnMut(T) -> bool) -> impl FnMut((), T) -> ControlFlow<()> {
2862            move |(), x| {
2863                if f(x) { ControlFlow::Break(()) } else { ControlFlow::Continue(()) }
2864            }
2865        }
2866
2867        self.try_fold((), check(f)) == ControlFlow::Break(())
2868    }
2869
2870    /// Searches for an element of an iterator that satisfies a predicate.
2871    ///
2872    /// `find()` takes a closure that returns `true` or `false`. It applies
2873    /// this closure to each element of the iterator, and if any of them return
2874    /// `true`, then `find()` returns [`Some(element)`]. If they all return
2875    /// `false`, it returns [`None`].
2876    ///
2877    /// `find()` is short-circuiting; in other words, it will stop processing
2878    /// as soon as the closure returns `true`.
2879    ///
2880    /// Because `find()` takes a reference, and many iterators iterate over
2881    /// references, this leads to a possibly confusing situation where the
2882    /// argument is a double reference. You can see this effect in the
2883    /// examples below, with `&&x`.
2884    ///
2885    /// If you need the index of the element, see [`position()`].
2886    ///
2887    /// [`Some(element)`]: Some
2888    /// [`position()`]: Iterator::position
2889    ///
2890    /// # Examples
2891    ///
2892    /// Basic usage:
2893    ///
2894    /// ```
2895    /// let a = [1, 2, 3];
2896    ///
2897    /// assert_eq!(a.into_iter().find(|&x| x == 2), Some(2));
2898    /// assert_eq!(a.into_iter().find(|&x| x == 5), None);
2899    /// ```
2900    ///
2901    /// Iterating over references:
2902    ///
2903    /// ```
2904    /// let a = [1, 2, 3];
2905    ///
2906    /// // `iter()` yields references i.e. `&i32` and `find()` takes a
2907    /// // reference to each element.
2908    /// assert_eq!(a.iter().find(|&&x| x == 2), Some(&2));
2909    /// assert_eq!(a.iter().find(|&&x| x == 5), None);
2910    /// ```
2911    ///
2912    /// Stopping at the first `true`:
2913    ///
2914    /// ```
2915    /// let a = [1, 2, 3];
2916    ///
2917    /// let mut iter = a.into_iter();
2918    ///
2919    /// assert_eq!(iter.find(|&x| x == 2), Some(2));
2920    ///
2921    /// // we can still use `iter`, as there are more elements.
2922    /// assert_eq!(iter.next(), Some(3));
2923    /// ```
2924    ///
2925    /// Note that `iter.find(f)` is equivalent to `iter.filter(f).next()`.
2926    #[inline]
2927    #[stable(feature = "rust1", since = "1.0.0")]
2928    fn find<P>(&mut self, predicate: P) -> Option<Self::Item>
2929    where
2930        Self: Sized,
2931        P: FnMut(&Self::Item) -> bool,
2932    {
2933        #[inline]
2934        fn check<T>(mut predicate: impl FnMut(&T) -> bool) -> impl FnMut((), T) -> ControlFlow<T> {
2935            move |(), x| {
2936                if predicate(&x) { ControlFlow::Break(x) } else { ControlFlow::Continue(()) }
2937            }
2938        }
2939
2940        self.try_fold((), check(predicate)).break_value()
2941    }
2942
2943    /// Applies function to the elements of iterator and returns
2944    /// the first non-none result.
2945    ///
2946    /// `iter.find_map(f)` is equivalent to `iter.filter_map(f).next()`.
2947    ///
2948    /// # Examples
2949    ///
2950    /// ```
2951    /// let a = ["lol", "NaN", "2", "5"];
2952    ///
2953    /// let first_number = a.iter().find_map(|s| s.parse().ok());
2954    ///
2955    /// assert_eq!(first_number, Some(2));
2956    /// ```
2957    #[inline]
2958    #[stable(feature = "iterator_find_map", since = "1.30.0")]
2959    #[cfg(not(feature = "ferrocene_subset"))]
2960    fn find_map<B, F>(&mut self, f: F) -> Option<B>
2961    where
2962        Self: Sized,
2963        F: FnMut(Self::Item) -> Option<B>,
2964    {
2965        #[inline]
2966        fn check<T, B>(mut f: impl FnMut(T) -> Option<B>) -> impl FnMut((), T) -> ControlFlow<B> {
2967            move |(), x| match f(x) {
2968                Some(x) => ControlFlow::Break(x),
2969                None => ControlFlow::Continue(()),
2970            }
2971        }
2972
2973        self.try_fold((), check(f)).break_value()
2974    }
2975
2976    /// Applies function to the elements of iterator and returns
2977    /// the first true result or the first error.
2978    ///
2979    /// The return type of this method depends on the return type of the closure.
2980    /// If you return `Result<bool, E>` from the closure, you'll get a `Result<Option<Self::Item>, E>`.
2981    /// If you return `Option<bool>` from the closure, you'll get an `Option<Option<Self::Item>>`.
2982    ///
2983    /// # Examples
2984    ///
2985    /// ```
2986    /// #![feature(try_find)]
2987    ///
2988    /// let a = ["1", "2", "lol", "NaN", "5"];
2989    ///
2990    /// let is_my_num = |s: &str, search: i32| -> Result<bool, std::num::ParseIntError> {
2991    ///     Ok(s.parse::<i32>()? == search)
2992    /// };
2993    ///
2994    /// let result = a.into_iter().try_find(|&s| is_my_num(s, 2));
2995    /// assert_eq!(result, Ok(Some("2")));
2996    ///
2997    /// let result = a.into_iter().try_find(|&s| is_my_num(s, 5));
2998    /// assert!(result.is_err());
2999    /// ```
3000    ///
3001    /// This also supports other types which implement [`Try`], not just [`Result`].
3002    ///
3003    /// ```
3004    /// #![feature(try_find)]
3005    ///
3006    /// use std::num::NonZero;
3007    ///
3008    /// let a = [3, 5, 7, 4, 9, 0, 11u32];
3009    /// let result = a.into_iter().try_find(|&x| NonZero::new(x).map(|y| y.is_power_of_two()));
3010    /// assert_eq!(result, Some(Some(4)));
3011    /// let result = a.into_iter().take(3).try_find(|&x| NonZero::new(x).map(|y| y.is_power_of_two()));
3012    /// assert_eq!(result, Some(None));
3013    /// let result = a.into_iter().rev().try_find(|&x| NonZero::new(x).map(|y| y.is_power_of_two()));
3014    /// assert_eq!(result, None);
3015    /// ```
3016    #[inline]
3017    #[unstable(feature = "try_find", issue = "63178")]
3018    #[cfg(not(feature = "ferrocene_subset"))]
3019    fn try_find<R>(
3020        &mut self,
3021        f: impl FnMut(&Self::Item) -> R,
3022    ) -> ChangeOutputType<R, Option<Self::Item>>
3023    where
3024        Self: Sized,
3025        R: Try<Output = bool, Residual: Residual<Option<Self::Item>>>,
3026    {
3027        #[inline]
3028        fn check<I, V, R>(
3029            mut f: impl FnMut(&I) -> V,
3030        ) -> impl FnMut((), I) -> ControlFlow<R::TryType>
3031        where
3032            V: Try<Output = bool, Residual = R>,
3033            R: Residual<Option<I>>,
3034        {
3035            move |(), x| match f(&x).branch() {
3036                ControlFlow::Continue(false) => ControlFlow::Continue(()),
3037                ControlFlow::Continue(true) => ControlFlow::Break(Try::from_output(Some(x))),
3038                ControlFlow::Break(r) => ControlFlow::Break(FromResidual::from_residual(r)),
3039            }
3040        }
3041
3042        match self.try_fold((), check(f)) {
3043            ControlFlow::Break(x) => x,
3044            ControlFlow::Continue(()) => Try::from_output(None),
3045        }
3046    }
3047
3048    /// Searches for an element in an iterator, returning its index.
3049    ///
3050    /// `position()` takes a closure that returns `true` or `false`. It applies
3051    /// this closure to each element of the iterator, and if one of them
3052    /// returns `true`, then `position()` returns [`Some(index)`]. If all of
3053    /// them return `false`, it returns [`None`].
3054    ///
3055    /// `position()` is short-circuiting; in other words, it will stop
3056    /// processing as soon as it finds a `true`.
3057    ///
3058    /// # Overflow Behavior
3059    ///
3060    /// The method does no guarding against overflows, so if there are more
3061    /// than [`usize::MAX`] non-matching elements, it either produces the wrong
3062    /// result or panics. If overflow checks are enabled, a panic is
3063    /// guaranteed.
3064    ///
3065    /// # Panics
3066    ///
3067    /// This function might panic if the iterator has more than `usize::MAX`
3068    /// non-matching elements.
3069    ///
3070    /// [`Some(index)`]: Some
3071    ///
3072    /// # Examples
3073    ///
3074    /// Basic usage:
3075    ///
3076    /// ```
3077    /// let a = [1, 2, 3];
3078    ///
3079    /// assert_eq!(a.into_iter().position(|x| x == 2), Some(1));
3080    ///
3081    /// assert_eq!(a.into_iter().position(|x| x == 5), None);
3082    /// ```
3083    ///
3084    /// Stopping at the first `true`:
3085    ///
3086    /// ```
3087    /// let a = [1, 2, 3, 4];
3088    ///
3089    /// let mut iter = a.into_iter();
3090    ///
3091    /// assert_eq!(iter.position(|x| x >= 2), Some(1));
3092    ///
3093    /// // we can still use `iter`, as there are more elements.
3094    /// assert_eq!(iter.next(), Some(3));
3095    ///
3096    /// // The returned index depends on iterator state
3097    /// assert_eq!(iter.position(|x| x == 4), Some(0));
3098    ///
3099    /// ```
3100    #[inline]
3101    #[stable(feature = "rust1", since = "1.0.0")]
3102    fn position<P>(&mut self, predicate: P) -> Option<usize>
3103    where
3104        Self: Sized,
3105        P: FnMut(Self::Item) -> bool,
3106    {
3107        #[inline]
3108        fn check<'a, T>(
3109            mut predicate: impl FnMut(T) -> bool + 'a,
3110            acc: &'a mut usize,
3111        ) -> impl FnMut((), T) -> ControlFlow<usize, ()> + 'a {
3112            #[rustc_inherit_overflow_checks]
3113            move |_, x| {
3114                if predicate(x) {
3115                    ControlFlow::Break(*acc)
3116                } else {
3117                    *acc += 1;
3118                    ControlFlow::Continue(())
3119                }
3120            }
3121        }
3122
3123        let mut acc = 0;
3124        self.try_fold((), check(predicate, &mut acc)).break_value()
3125    }
3126
3127    /// Searches for an element in an iterator from the right, returning its
3128    /// index.
3129    ///
3130    /// `rposition()` takes a closure that returns `true` or `false`. It applies
3131    /// this closure to each element of the iterator, starting from the end,
3132    /// and if one of them returns `true`, then `rposition()` returns
3133    /// [`Some(index)`]. If all of them return `false`, it returns [`None`].
3134    ///
3135    /// `rposition()` is short-circuiting; in other words, it will stop
3136    /// processing as soon as it finds a `true`.
3137    ///
3138    /// [`Some(index)`]: Some
3139    ///
3140    /// # Examples
3141    ///
3142    /// Basic usage:
3143    ///
3144    /// ```
3145    /// let a = [1, 2, 3];
3146    ///
3147    /// assert_eq!(a.into_iter().rposition(|x| x == 3), Some(2));
3148    ///
3149    /// assert_eq!(a.into_iter().rposition(|x| x == 5), None);
3150    /// ```
3151    ///
3152    /// Stopping at the first `true`:
3153    ///
3154    /// ```
3155    /// let a = [-1, 2, 3, 4];
3156    ///
3157    /// let mut iter = a.into_iter();
3158    ///
3159    /// assert_eq!(iter.rposition(|x| x >= 2), Some(3));
3160    ///
3161    /// // we can still use `iter`, as there are more elements.
3162    /// assert_eq!(iter.next(), Some(-1));
3163    /// assert_eq!(iter.next_back(), Some(3));
3164    /// ```
3165    #[inline]
3166    #[stable(feature = "rust1", since = "1.0.0")]
3167    fn rposition<P>(&mut self, predicate: P) -> Option<usize>
3168    where
3169        P: FnMut(Self::Item) -> bool,
3170        Self: Sized + ExactSizeIterator + DoubleEndedIterator,
3171    {
3172        // No need for an overflow check here, because `ExactSizeIterator`
3173        // implies that the number of elements fits into a `usize`.
3174        #[inline]
3175        fn check<T>(
3176            mut predicate: impl FnMut(T) -> bool,
3177        ) -> impl FnMut(usize, T) -> ControlFlow<usize, usize> {
3178            move |i, x| {
3179                let i = i - 1;
3180                if predicate(x) { ControlFlow::Break(i) } else { ControlFlow::Continue(i) }
3181            }
3182        }
3183
3184        let n = self.len();
3185        self.try_rfold(n, check(predicate)).break_value()
3186    }
3187
3188    /// Returns the maximum element of an iterator.
3189    ///
3190    /// If several elements are equally maximum, the last element is
3191    /// returned. If the iterator is empty, [`None`] is returned.
3192    ///
3193    /// Note that [`f32`]/[`f64`] doesn't implement [`Ord`] due to NaN being
3194    /// incomparable. You can work around this by using [`Iterator::reduce`]:
3195    /// ```
3196    /// assert_eq!(
3197    ///     [2.4, f32::NAN, 1.3]
3198    ///         .into_iter()
3199    ///         .reduce(f32::max)
3200    ///         .unwrap_or(0.),
3201    ///     2.4
3202    /// );
3203    /// ```
3204    ///
3205    /// # Examples
3206    ///
3207    /// ```
3208    /// let a = [1, 2, 3];
3209    /// let b: [u32; 0] = [];
3210    ///
3211    /// assert_eq!(a.into_iter().max(), Some(3));
3212    /// assert_eq!(b.into_iter().max(), None);
3213    /// ```
3214    #[inline]
3215    #[stable(feature = "rust1", since = "1.0.0")]
3216    #[cfg(not(feature = "ferrocene_subset"))]
3217    fn max(self) -> Option<Self::Item>
3218    where
3219        Self: Sized,
3220        Self::Item: Ord,
3221    {
3222        self.max_by(Ord::cmp)
3223    }
3224
3225    /// Returns the minimum element of an iterator.
3226    ///
3227    /// If several elements are equally minimum, the first element is returned.
3228    /// If the iterator is empty, [`None`] is returned.
3229    ///
3230    /// Note that [`f32`]/[`f64`] doesn't implement [`Ord`] due to NaN being
3231    /// incomparable. You can work around this by using [`Iterator::reduce`]:
3232    /// ```
3233    /// assert_eq!(
3234    ///     [2.4, f32::NAN, 1.3]
3235    ///         .into_iter()
3236    ///         .reduce(f32::min)
3237    ///         .unwrap_or(0.),
3238    ///     1.3
3239    /// );
3240    /// ```
3241    ///
3242    /// # Examples
3243    ///
3244    /// ```
3245    /// let a = [1, 2, 3];
3246    /// let b: [u32; 0] = [];
3247    ///
3248    /// assert_eq!(a.into_iter().min(), Some(1));
3249    /// assert_eq!(b.into_iter().min(), None);
3250    /// ```
3251    #[inline]
3252    #[stable(feature = "rust1", since = "1.0.0")]
3253    #[cfg(not(feature = "ferrocene_subset"))]
3254    fn min(self) -> Option<Self::Item>
3255    where
3256        Self: Sized,
3257        Self::Item: Ord,
3258    {
3259        self.min_by(Ord::cmp)
3260    }
3261
3262    /// Returns the element that gives the maximum value from the
3263    /// specified function.
3264    ///
3265    /// If several elements are equally maximum, the last element is
3266    /// returned. If the iterator is empty, [`None`] is returned.
3267    ///
3268    /// # Examples
3269    ///
3270    /// ```
3271    /// let a = [-3_i32, 0, 1, 5, -10];
3272    /// assert_eq!(a.into_iter().max_by_key(|x| x.abs()).unwrap(), -10);
3273    /// ```
3274    #[inline]
3275    #[stable(feature = "iter_cmp_by_key", since = "1.6.0")]
3276    #[cfg(not(feature = "ferrocene_subset"))]
3277    fn max_by_key<B: Ord, F>(self, f: F) -> Option<Self::Item>
3278    where
3279        Self: Sized,
3280        F: FnMut(&Self::Item) -> B,
3281    {
3282        #[inline]
3283        fn key<T, B>(mut f: impl FnMut(&T) -> B) -> impl FnMut(T) -> (B, T) {
3284            move |x| (f(&x), x)
3285        }
3286
3287        #[inline]
3288        fn compare<T, B: Ord>((x_p, _): &(B, T), (y_p, _): &(B, T)) -> Ordering {
3289            x_p.cmp(y_p)
3290        }
3291
3292        let (_, x) = self.map(key(f)).max_by(compare)?;
3293        Some(x)
3294    }
3295
3296    /// Returns the element that gives the maximum value with respect to the
3297    /// specified comparison function.
3298    ///
3299    /// If several elements are equally maximum, the last element is
3300    /// returned. If the iterator is empty, [`None`] is returned.
3301    ///
3302    /// # Examples
3303    ///
3304    /// ```
3305    /// let a = [-3_i32, 0, 1, 5, -10];
3306    /// assert_eq!(a.into_iter().max_by(|x, y| x.cmp(y)).unwrap(), 5);
3307    /// ```
3308    #[inline]
3309    #[stable(feature = "iter_max_by", since = "1.15.0")]
3310    fn max_by<F>(self, compare: F) -> Option<Self::Item>
3311    where
3312        Self: Sized,
3313        F: FnMut(&Self::Item, &Self::Item) -> Ordering,
3314    {
3315        #[inline]
3316        fn fold<T>(mut compare: impl FnMut(&T, &T) -> Ordering) -> impl FnMut(T, T) -> T {
3317            move |x, y| cmp::max_by(x, y, &mut compare)
3318        }
3319
3320        self.reduce(fold(compare))
3321    }
3322
3323    /// Returns the element that gives the minimum value from the
3324    /// specified function.
3325    ///
3326    /// If several elements are equally minimum, the first element is
3327    /// returned. If the iterator is empty, [`None`] is returned.
3328    ///
3329    /// # Examples
3330    ///
3331    /// ```
3332    /// let a = [-3_i32, 0, 1, 5, -10];
3333    /// assert_eq!(a.into_iter().min_by_key(|x| x.abs()).unwrap(), 0);
3334    /// ```
3335    #[inline]
3336    #[stable(feature = "iter_cmp_by_key", since = "1.6.0")]
3337    #[cfg(not(feature = "ferrocene_subset"))]
3338    fn min_by_key<B: Ord, F>(self, f: F) -> Option<Self::Item>
3339    where
3340        Self: Sized,
3341        F: FnMut(&Self::Item) -> B,
3342    {
3343        #[inline]
3344        fn key<T, B>(mut f: impl FnMut(&T) -> B) -> impl FnMut(T) -> (B, T) {
3345            move |x| (f(&x), x)
3346        }
3347
3348        #[inline]
3349        fn compare<T, B: Ord>((x_p, _): &(B, T), (y_p, _): &(B, T)) -> Ordering {
3350            x_p.cmp(y_p)
3351        }
3352
3353        let (_, x) = self.map(key(f)).min_by(compare)?;
3354        Some(x)
3355    }
3356
3357    /// Returns the element that gives the minimum value with respect to the
3358    /// specified comparison function.
3359    ///
3360    /// If several elements are equally minimum, the first element is
3361    /// returned. If the iterator is empty, [`None`] is returned.
3362    ///
3363    /// # Examples
3364    ///
3365    /// ```
3366    /// let a = [-3_i32, 0, 1, 5, -10];
3367    /// assert_eq!(a.into_iter().min_by(|x, y| x.cmp(y)).unwrap(), -10);
3368    /// ```
3369    #[inline]
3370    #[stable(feature = "iter_min_by", since = "1.15.0")]
3371    #[cfg(not(feature = "ferrocene_subset"))]
3372    fn min_by<F>(self, compare: F) -> Option<Self::Item>
3373    where
3374        Self: Sized,
3375        F: FnMut(&Self::Item, &Self::Item) -> Ordering,
3376    {
3377        #[inline]
3378        fn fold<T>(mut compare: impl FnMut(&T, &T) -> Ordering) -> impl FnMut(T, T) -> T {
3379            move |x, y| cmp::min_by(x, y, &mut compare)
3380        }
3381
3382        self.reduce(fold(compare))
3383    }
3384
3385    /// Reverses an iterator's direction.
3386    ///
3387    /// Usually, iterators iterate from left to right. After using `rev()`,
3388    /// an iterator will instead iterate from right to left.
3389    ///
3390    /// This is only possible if the iterator has an end, so `rev()` only
3391    /// works on [`DoubleEndedIterator`]s.
3392    ///
3393    /// # Examples
3394    ///
3395    /// ```
3396    /// let a = [1, 2, 3];
3397    ///
3398    /// let mut iter = a.into_iter().rev();
3399    ///
3400    /// assert_eq!(iter.next(), Some(3));
3401    /// assert_eq!(iter.next(), Some(2));
3402    /// assert_eq!(iter.next(), Some(1));
3403    ///
3404    /// assert_eq!(iter.next(), None);
3405    /// ```
3406    #[inline]
3407    #[doc(alias = "reverse")]
3408    #[stable(feature = "rust1", since = "1.0.0")]
3409    fn rev(self) -> Rev<Self>
3410    where
3411        Self: Sized + DoubleEndedIterator,
3412    {
3413        Rev::new(self)
3414    }
3415
3416    /// Converts an iterator of pairs into a pair of containers.
3417    ///
3418    /// `unzip()` consumes an entire iterator of pairs, producing two
3419    /// collections: one from the left elements of the pairs, and one
3420    /// from the right elements.
3421    ///
3422    /// This function is, in some sense, the opposite of [`zip`].
3423    ///
3424    /// [`zip`]: Iterator::zip
3425    ///
3426    /// # Examples
3427    ///
3428    /// ```
3429    /// let a = [(1, 2), (3, 4), (5, 6)];
3430    ///
3431    /// let (left, right): (Vec<_>, Vec<_>) = a.into_iter().unzip();
3432    ///
3433    /// assert_eq!(left, [1, 3, 5]);
3434    /// assert_eq!(right, [2, 4, 6]);
3435    ///
3436    /// // you can also unzip multiple nested tuples at once
3437    /// let a = [(1, (2, 3)), (4, (5, 6))];
3438    ///
3439    /// let (x, (y, z)): (Vec<_>, (Vec<_>, Vec<_>)) = a.into_iter().unzip();
3440    /// assert_eq!(x, [1, 4]);
3441    /// assert_eq!(y, [2, 5]);
3442    /// assert_eq!(z, [3, 6]);
3443    /// ```
3444    #[stable(feature = "rust1", since = "1.0.0")]
3445    #[cfg(not(feature = "ferrocene_subset"))]
3446    fn unzip<A, B, FromA, FromB>(self) -> (FromA, FromB)
3447    where
3448        FromA: Default + Extend<A>,
3449        FromB: Default + Extend<B>,
3450        Self: Sized + Iterator<Item = (A, B)>,
3451    {
3452        let mut unzipped: (FromA, FromB) = Default::default();
3453        unzipped.extend(self);
3454        unzipped
3455    }
3456
3457    /// Creates an iterator which copies all of its elements.
3458    ///
3459    /// This is useful when you have an iterator over `&T`, but you need an
3460    /// iterator over `T`.
3461    ///
3462    /// # Examples
3463    ///
3464    /// ```
3465    /// let a = [1, 2, 3];
3466    ///
3467    /// let v_copied: Vec<_> = a.iter().copied().collect();
3468    ///
3469    /// // copied is the same as .map(|&x| x)
3470    /// let v_map: Vec<_> = a.iter().map(|&x| x).collect();
3471    ///
3472    /// assert_eq!(v_copied, [1, 2, 3]);
3473    /// assert_eq!(v_map, [1, 2, 3]);
3474    /// ```
3475    #[stable(feature = "iter_copied", since = "1.36.0")]
3476    #[rustc_diagnostic_item = "iter_copied"]
3477    fn copied<'a, T>(self) -> Copied<Self>
3478    where
3479        T: Copy + 'a,
3480        Self: Sized + Iterator<Item = &'a T>,
3481    {
3482        Copied::new(self)
3483    }
3484
3485    /// Creates an iterator which [`clone`]s all of its elements.
3486    ///
3487    /// This is useful when you have an iterator over `&T`, but you need an
3488    /// iterator over `T`.
3489    ///
3490    /// There is no guarantee whatsoever about the `clone` method actually
3491    /// being called *or* optimized away. So code should not depend on
3492    /// either.
3493    ///
3494    /// [`clone`]: Clone::clone
3495    ///
3496    /// # Examples
3497    ///
3498    /// Basic usage:
3499    ///
3500    /// ```
3501    /// let a = [1, 2, 3];
3502    ///
3503    /// let v_cloned: Vec<_> = a.iter().cloned().collect();
3504    ///
3505    /// // cloned is the same as .map(|&x| x), for integers
3506    /// let v_map: Vec<_> = a.iter().map(|&x| x).collect();
3507    ///
3508    /// assert_eq!(v_cloned, [1, 2, 3]);
3509    /// assert_eq!(v_map, [1, 2, 3]);
3510    /// ```
3511    ///
3512    /// To get the best performance, try to clone late:
3513    ///
3514    /// ```
3515    /// let a = [vec![0_u8, 1, 2], vec![3, 4], vec![23]];
3516    /// // don't do this:
3517    /// let slower: Vec<_> = a.iter().cloned().filter(|s| s.len() == 1).collect();
3518    /// assert_eq!(&[vec![23]], &slower[..]);
3519    /// // instead call `cloned` late
3520    /// let faster: Vec<_> = a.iter().filter(|s| s.len() == 1).cloned().collect();
3521    /// assert_eq!(&[vec![23]], &faster[..]);
3522    /// ```
3523    #[stable(feature = "rust1", since = "1.0.0")]
3524    #[rustc_diagnostic_item = "iter_cloned"]
3525    fn cloned<'a, T>(self) -> Cloned<Self>
3526    where
3527        T: Clone + 'a,
3528        Self: Sized + Iterator<Item = &'a T>,
3529    {
3530        Cloned::new(self)
3531    }
3532
3533    /// Repeats an iterator endlessly.
3534    ///
3535    /// Instead of stopping at [`None`], the iterator will instead start again,
3536    /// from the beginning. After iterating again, it will start at the
3537    /// beginning again. And again. And again. Forever. Note that in case the
3538    /// original iterator is empty, the resulting iterator will also be empty.
3539    ///
3540    /// # Examples
3541    ///
3542    /// ```
3543    /// let a = [1, 2, 3];
3544    ///
3545    /// let mut iter = a.into_iter().cycle();
3546    ///
3547    /// loop {
3548    ///     assert_eq!(iter.next(), Some(1));
3549    ///     assert_eq!(iter.next(), Some(2));
3550    ///     assert_eq!(iter.next(), Some(3));
3551    /// #   break;
3552    /// }
3553    /// ```
3554    #[stable(feature = "rust1", since = "1.0.0")]
3555    #[inline]
3556    #[cfg(not(feature = "ferrocene_subset"))]
3557    fn cycle(self) -> Cycle<Self>
3558    where
3559        Self: Sized + Clone,
3560    {
3561        Cycle::new(self)
3562    }
3563
3564    /// Returns an iterator over `N` elements of the iterator at a time.
3565    ///
3566    /// The chunks do not overlap. If `N` does not divide the length of the
3567    /// iterator, then the last up to `N-1` elements will be omitted and can be
3568    /// retrieved from the [`.into_remainder()`][ArrayChunks::into_remainder]
3569    /// function of the iterator.
3570    ///
3571    /// # Panics
3572    ///
3573    /// Panics if `N` is zero.
3574    ///
3575    /// # Examples
3576    ///
3577    /// Basic usage:
3578    ///
3579    /// ```
3580    /// #![feature(iter_array_chunks)]
3581    ///
3582    /// let mut iter = "lorem".chars().array_chunks();
3583    /// assert_eq!(iter.next(), Some(['l', 'o']));
3584    /// assert_eq!(iter.next(), Some(['r', 'e']));
3585    /// assert_eq!(iter.next(), None);
3586    /// assert_eq!(iter.into_remainder().as_slice(), &['m']);
3587    /// ```
3588    ///
3589    /// ```
3590    /// #![feature(iter_array_chunks)]
3591    ///
3592    /// let data = [1, 1, 2, -2, 6, 0, 3, 1];
3593    /// //          ^-----^  ^------^
3594    /// for [x, y, z] in data.iter().array_chunks() {
3595    ///     assert_eq!(x + y + z, 4);
3596    /// }
3597    /// ```
3598    #[track_caller]
3599    #[unstable(feature = "iter_array_chunks", issue = "100450")]
3600    #[cfg(not(feature = "ferrocene_subset"))]
3601    fn array_chunks<const N: usize>(self) -> ArrayChunks<Self, N>
3602    where
3603        Self: Sized,
3604    {
3605        ArrayChunks::new(self)
3606    }
3607
3608    /// Sums the elements of an iterator.
3609    ///
3610    /// Takes each element, adds them together, and returns the result.
3611    ///
3612    /// An empty iterator returns the *additive identity* ("zero") of the type,
3613    /// which is `0` for integers and `-0.0` for floats.
3614    ///
3615    /// `sum()` can be used to sum any type implementing [`Sum`][`core::iter::Sum`],
3616    /// including [`Option`][`Option::sum`] and [`Result`][`Result::sum`].
3617    ///
3618    /// # Panics
3619    ///
3620    /// When calling `sum()` and a primitive integer type is being returned, this
3621    /// method will panic if the computation overflows and overflow checks are
3622    /// enabled.
3623    ///
3624    /// # Examples
3625    ///
3626    /// ```
3627    /// let a = [1, 2, 3];
3628    /// let sum: i32 = a.iter().sum();
3629    ///
3630    /// assert_eq!(sum, 6);
3631    ///
3632    /// let b: Vec<f32> = vec![];
3633    /// let sum: f32 = b.iter().sum();
3634    /// assert_eq!(sum, -0.0_f32);
3635    /// ```
3636    #[stable(feature = "iter_arith", since = "1.11.0")]
3637    fn sum<S>(self) -> S
3638    where
3639        Self: Sized,
3640        S: Sum<Self::Item>,
3641    {
3642        Sum::sum(self)
3643    }
3644
3645    /// Iterates over the entire iterator, multiplying all the elements
3646    ///
3647    /// An empty iterator returns the one value of the type.
3648    ///
3649    /// `product()` can be used to multiply any type implementing [`Product`][`core::iter::Product`],
3650    /// including [`Option`][`Option::product`] and [`Result`][`Result::product`].
3651    ///
3652    /// # Panics
3653    ///
3654    /// When calling `product()` and a primitive integer type is being returned,
3655    /// method will panic if the computation overflows and overflow checks are
3656    /// enabled.
3657    ///
3658    /// # Examples
3659    ///
3660    /// ```
3661    /// fn factorial(n: u32) -> u32 {
3662    ///     (1..=n).product()
3663    /// }
3664    /// assert_eq!(factorial(0), 1);
3665    /// assert_eq!(factorial(1), 1);
3666    /// assert_eq!(factorial(5), 120);
3667    /// ```
3668    #[stable(feature = "iter_arith", since = "1.11.0")]
3669    #[cfg(not(feature = "ferrocene_subset"))]
3670    fn product<P>(self) -> P
3671    where
3672        Self: Sized,
3673        P: Product<Self::Item>,
3674    {
3675        Product::product(self)
3676    }
3677
3678    /// [Lexicographically](Ord#lexicographical-comparison) compares the elements of this [`Iterator`] with those
3679    /// of another.
3680    ///
3681    /// # Examples
3682    ///
3683    /// ```
3684    /// use std::cmp::Ordering;
3685    ///
3686    /// assert_eq!([1].iter().cmp([1].iter()), Ordering::Equal);
3687    /// assert_eq!([1].iter().cmp([1, 2].iter()), Ordering::Less);
3688    /// assert_eq!([1, 2].iter().cmp([1].iter()), Ordering::Greater);
3689    /// ```
3690    #[stable(feature = "iter_order", since = "1.5.0")]
3691    fn cmp<I>(self, other: I) -> Ordering
3692    where
3693        I: IntoIterator<Item = Self::Item>,
3694        Self::Item: Ord,
3695        Self: Sized,
3696    {
3697        self.cmp_by(other, |x, y| x.cmp(&y))
3698    }
3699
3700    /// [Lexicographically](Ord#lexicographical-comparison) compares the elements of this [`Iterator`] with those
3701    /// of another with respect to the specified comparison function.
3702    ///
3703    /// # Examples
3704    ///
3705    /// ```
3706    /// #![feature(iter_order_by)]
3707    ///
3708    /// use std::cmp::Ordering;
3709    ///
3710    /// let xs = [1, 2, 3, 4];
3711    /// let ys = [1, 4, 9, 16];
3712    ///
3713    /// assert_eq!(xs.into_iter().cmp_by(ys, |x, y| x.cmp(&y)), Ordering::Less);
3714    /// assert_eq!(xs.into_iter().cmp_by(ys, |x, y| (x * x).cmp(&y)), Ordering::Equal);
3715    /// assert_eq!(xs.into_iter().cmp_by(ys, |x, y| (2 * x).cmp(&y)), Ordering::Greater);
3716    /// ```
3717    #[unstable(feature = "iter_order_by", issue = "64295")]
3718    fn cmp_by<I, F>(self, other: I, cmp: F) -> Ordering
3719    where
3720        Self: Sized,
3721        I: IntoIterator,
3722        F: FnMut(Self::Item, I::Item) -> Ordering,
3723    {
3724        #[inline]
3725        fn compare<X, Y, F>(mut cmp: F) -> impl FnMut(X, Y) -> ControlFlow<Ordering>
3726        where
3727            F: FnMut(X, Y) -> Ordering,
3728        {
3729            move |x, y| match cmp(x, y) {
3730                Ordering::Equal => ControlFlow::Continue(()),
3731                non_eq => ControlFlow::Break(non_eq),
3732            }
3733        }
3734
3735        match iter_compare(self, other.into_iter(), compare(cmp)) {
3736            ControlFlow::Continue(ord) => ord,
3737            ControlFlow::Break(ord) => ord,
3738        }
3739    }
3740
3741    /// [Lexicographically](Ord#lexicographical-comparison) compares the [`PartialOrd`] elements of
3742    /// this [`Iterator`] with those of another. The comparison works like short-circuit
3743    /// evaluation, returning a result without comparing the remaining elements.
3744    /// As soon as an order can be determined, the evaluation stops and a result is returned.
3745    ///
3746    /// # Examples
3747    ///
3748    /// ```
3749    /// use std::cmp::Ordering;
3750    ///
3751    /// assert_eq!([1.].iter().partial_cmp([1.].iter()), Some(Ordering::Equal));
3752    /// assert_eq!([1.].iter().partial_cmp([1., 2.].iter()), Some(Ordering::Less));
3753    /// assert_eq!([1., 2.].iter().partial_cmp([1.].iter()), Some(Ordering::Greater));
3754    /// ```
3755    ///
3756    /// For floating-point numbers, NaN does not have a total order and will result
3757    /// in `None` when compared:
3758    ///
3759    /// ```
3760    /// assert_eq!([f64::NAN].iter().partial_cmp([1.].iter()), None);
3761    /// ```
3762    ///
3763    /// The results are determined by the order of evaluation.
3764    ///
3765    /// ```
3766    /// use std::cmp::Ordering;
3767    ///
3768    /// assert_eq!([1.0, f64::NAN].iter().partial_cmp([2.0, f64::NAN].iter()), Some(Ordering::Less));
3769    /// assert_eq!([2.0, f64::NAN].iter().partial_cmp([1.0, f64::NAN].iter()), Some(Ordering::Greater));
3770    /// assert_eq!([f64::NAN, 1.0].iter().partial_cmp([f64::NAN, 2.0].iter()), None);
3771    /// ```
3772    ///
3773    #[stable(feature = "iter_order", since = "1.5.0")]
3774    #[cfg(not(feature = "ferrocene_subset"))]
3775    fn partial_cmp<I>(self, other: I) -> Option<Ordering>
3776    where
3777        I: IntoIterator,
3778        Self::Item: PartialOrd<I::Item>,
3779        Self: Sized,
3780    {
3781        self.partial_cmp_by(other, |x, y| x.partial_cmp(&y))
3782    }
3783
3784    /// [Lexicographically](Ord#lexicographical-comparison) compares the elements of this [`Iterator`] with those
3785    /// of another with respect to the specified comparison function.
3786    ///
3787    /// # Examples
3788    ///
3789    /// ```
3790    /// #![feature(iter_order_by)]
3791    ///
3792    /// use std::cmp::Ordering;
3793    ///
3794    /// let xs = [1.0, 2.0, 3.0, 4.0];
3795    /// let ys = [1.0, 4.0, 9.0, 16.0];
3796    ///
3797    /// assert_eq!(
3798    ///     xs.iter().partial_cmp_by(ys, |x, y| x.partial_cmp(&y)),
3799    ///     Some(Ordering::Less)
3800    /// );
3801    /// assert_eq!(
3802    ///     xs.iter().partial_cmp_by(ys, |x, y| (x * x).partial_cmp(&y)),
3803    ///     Some(Ordering::Equal)
3804    /// );
3805    /// assert_eq!(
3806    ///     xs.iter().partial_cmp_by(ys, |x, y| (2.0 * x).partial_cmp(&y)),
3807    ///     Some(Ordering::Greater)
3808    /// );
3809    /// ```
3810    #[unstable(feature = "iter_order_by", issue = "64295")]
3811    #[cfg(not(feature = "ferrocene_subset"))]
3812    fn partial_cmp_by<I, F>(self, other: I, partial_cmp: F) -> Option<Ordering>
3813    where
3814        Self: Sized,
3815        I: IntoIterator,
3816        F: FnMut(Self::Item, I::Item) -> Option<Ordering>,
3817    {
3818        #[inline]
3819        fn compare<X, Y, F>(mut partial_cmp: F) -> impl FnMut(X, Y) -> ControlFlow<Option<Ordering>>
3820        where
3821            F: FnMut(X, Y) -> Option<Ordering>,
3822        {
3823            move |x, y| match partial_cmp(x, y) {
3824                Some(Ordering::Equal) => ControlFlow::Continue(()),
3825                non_eq => ControlFlow::Break(non_eq),
3826            }
3827        }
3828
3829        match iter_compare(self, other.into_iter(), compare(partial_cmp)) {
3830            ControlFlow::Continue(ord) => Some(ord),
3831            ControlFlow::Break(ord) => ord,
3832        }
3833    }
3834
3835    /// Determines if the elements of this [`Iterator`] are equal to those of
3836    /// another.
3837    ///
3838    /// # Examples
3839    ///
3840    /// ```
3841    /// assert_eq!([1].iter().eq([1].iter()), true);
3842    /// assert_eq!([1].iter().eq([1, 2].iter()), false);
3843    /// ```
3844    #[stable(feature = "iter_order", since = "1.5.0")]
3845    fn eq<I>(self, other: I) -> bool
3846    where
3847        I: IntoIterator,
3848        Self::Item: PartialEq<I::Item>,
3849        Self: Sized,
3850    {
3851        self.eq_by(other, |x, y| x == y)
3852    }
3853
3854    /// Determines if the elements of this [`Iterator`] are equal to those of
3855    /// another with respect to the specified equality function.
3856    ///
3857    /// # Examples
3858    ///
3859    /// ```
3860    /// #![feature(iter_order_by)]
3861    ///
3862    /// let xs = [1, 2, 3, 4];
3863    /// let ys = [1, 4, 9, 16];
3864    ///
3865    /// assert!(xs.iter().eq_by(ys, |x, y| x * x == y));
3866    /// ```
3867    #[unstable(feature = "iter_order_by", issue = "64295")]
3868    fn eq_by<I, F>(self, other: I, eq: F) -> bool
3869    where
3870        Self: Sized,
3871        I: IntoIterator,
3872        F: FnMut(Self::Item, I::Item) -> bool,
3873    {
3874        #[inline]
3875        fn compare<X, Y, F>(mut eq: F) -> impl FnMut(X, Y) -> ControlFlow<()>
3876        where
3877            F: FnMut(X, Y) -> bool,
3878        {
3879            move |x, y| {
3880                if eq(x, y) { ControlFlow::Continue(()) } else { ControlFlow::Break(()) }
3881            }
3882        }
3883
3884        SpecIterEq::spec_iter_eq(self, other.into_iter(), compare(eq))
3885    }
3886
3887    /// Determines if the elements of this [`Iterator`] are not equal to those of
3888    /// another.
3889    ///
3890    /// # Examples
3891    ///
3892    /// ```
3893    /// assert_eq!([1].iter().ne([1].iter()), false);
3894    /// assert_eq!([1].iter().ne([1, 2].iter()), true);
3895    /// ```
3896    #[stable(feature = "iter_order", since = "1.5.0")]
3897    #[cfg(not(feature = "ferrocene_subset"))]
3898    fn ne<I>(self, other: I) -> bool
3899    where
3900        I: IntoIterator,
3901        Self::Item: PartialEq<I::Item>,
3902        Self: Sized,
3903    {
3904        !self.eq(other)
3905    }
3906
3907    /// Determines if the elements of this [`Iterator`] are [lexicographically](Ord#lexicographical-comparison)
3908    /// less than those of another.
3909    ///
3910    /// # Examples
3911    ///
3912    /// ```
3913    /// assert_eq!([1].iter().lt([1].iter()), false);
3914    /// assert_eq!([1].iter().lt([1, 2].iter()), true);
3915    /// assert_eq!([1, 2].iter().lt([1].iter()), false);
3916    /// assert_eq!([1, 2].iter().lt([1, 2].iter()), false);
3917    /// ```
3918    #[stable(feature = "iter_order", since = "1.5.0")]
3919    #[cfg(not(feature = "ferrocene_subset"))]
3920    fn lt<I>(self, other: I) -> bool
3921    where
3922        I: IntoIterator,
3923        Self::Item: PartialOrd<I::Item>,
3924        Self: Sized,
3925    {
3926        self.partial_cmp(other) == Some(Ordering::Less)
3927    }
3928
3929    /// Determines if the elements of this [`Iterator`] are [lexicographically](Ord#lexicographical-comparison)
3930    /// less or equal to those of another.
3931    ///
3932    /// # Examples
3933    ///
3934    /// ```
3935    /// assert_eq!([1].iter().le([1].iter()), true);
3936    /// assert_eq!([1].iter().le([1, 2].iter()), true);
3937    /// assert_eq!([1, 2].iter().le([1].iter()), false);
3938    /// assert_eq!([1, 2].iter().le([1, 2].iter()), true);
3939    /// ```
3940    #[stable(feature = "iter_order", since = "1.5.0")]
3941    #[cfg(not(feature = "ferrocene_subset"))]
3942    fn le<I>(self, other: I) -> bool
3943    where
3944        I: IntoIterator,
3945        Self::Item: PartialOrd<I::Item>,
3946        Self: Sized,
3947    {
3948        matches!(self.partial_cmp(other), Some(Ordering::Less | Ordering::Equal))
3949    }
3950
3951    /// Determines if the elements of this [`Iterator`] are [lexicographically](Ord#lexicographical-comparison)
3952    /// greater than those of another.
3953    ///
3954    /// # Examples
3955    ///
3956    /// ```
3957    /// assert_eq!([1].iter().gt([1].iter()), false);
3958    /// assert_eq!([1].iter().gt([1, 2].iter()), false);
3959    /// assert_eq!([1, 2].iter().gt([1].iter()), true);
3960    /// assert_eq!([1, 2].iter().gt([1, 2].iter()), false);
3961    /// ```
3962    #[stable(feature = "iter_order", since = "1.5.0")]
3963    #[cfg(not(feature = "ferrocene_subset"))]
3964    fn gt<I>(self, other: I) -> bool
3965    where
3966        I: IntoIterator,
3967        Self::Item: PartialOrd<I::Item>,
3968        Self: Sized,
3969    {
3970        self.partial_cmp(other) == Some(Ordering::Greater)
3971    }
3972
3973    /// Determines if the elements of this [`Iterator`] are [lexicographically](Ord#lexicographical-comparison)
3974    /// greater than or equal to those of another.
3975    ///
3976    /// # Examples
3977    ///
3978    /// ```
3979    /// assert_eq!([1].iter().ge([1].iter()), true);
3980    /// assert_eq!([1].iter().ge([1, 2].iter()), false);
3981    /// assert_eq!([1, 2].iter().ge([1].iter()), true);
3982    /// assert_eq!([1, 2].iter().ge([1, 2].iter()), true);
3983    /// ```
3984    #[stable(feature = "iter_order", since = "1.5.0")]
3985    #[cfg(not(feature = "ferrocene_subset"))]
3986    fn ge<I>(self, other: I) -> bool
3987    where
3988        I: IntoIterator,
3989        Self::Item: PartialOrd<I::Item>,
3990        Self: Sized,
3991    {
3992        matches!(self.partial_cmp(other), Some(Ordering::Greater | Ordering::Equal))
3993    }
3994
3995    /// Checks if the elements of this iterator are sorted.
3996    ///
3997    /// That is, for each element `a` and its following element `b`, `a <= b` must hold. If the
3998    /// iterator yields exactly zero or one element, `true` is returned.
3999    ///
4000    /// Note that if `Self::Item` is only `PartialOrd`, but not `Ord`, the above definition
4001    /// implies that this function returns `false` if any two consecutive items are not
4002    /// comparable.
4003    ///
4004    /// # Examples
4005    ///
4006    /// ```
4007    /// assert!([1, 2, 2, 9].iter().is_sorted());
4008    /// assert!(![1, 3, 2, 4].iter().is_sorted());
4009    /// assert!([0].iter().is_sorted());
4010    /// assert!(std::iter::empty::<i32>().is_sorted());
4011    /// assert!(![0.0, 1.0, f32::NAN].iter().is_sorted());
4012    /// ```
4013    #[inline]
4014    #[stable(feature = "is_sorted", since = "1.82.0")]
4015    #[cfg(not(feature = "ferrocene_subset"))]
4016    fn is_sorted(self) -> bool
4017    where
4018        Self: Sized,
4019        Self::Item: PartialOrd,
4020    {
4021        self.is_sorted_by(|a, b| a <= b)
4022    }
4023
4024    /// Checks if the elements of this iterator are sorted using the given comparator function.
4025    ///
4026    /// Instead of using `PartialOrd::partial_cmp`, this function uses the given `compare`
4027    /// function to determine whether two elements are to be considered in sorted order.
4028    ///
4029    /// # Examples
4030    ///
4031    /// ```
4032    /// assert!([1, 2, 2, 9].iter().is_sorted_by(|a, b| a <= b));
4033    /// assert!(![1, 2, 2, 9].iter().is_sorted_by(|a, b| a < b));
4034    ///
4035    /// assert!([0].iter().is_sorted_by(|a, b| true));
4036    /// assert!([0].iter().is_sorted_by(|a, b| false));
4037    ///
4038    /// assert!(std::iter::empty::<i32>().is_sorted_by(|a, b| false));
4039    /// assert!(std::iter::empty::<i32>().is_sorted_by(|a, b| true));
4040    /// ```
4041    #[stable(feature = "is_sorted", since = "1.82.0")]
4042    #[cfg(not(feature = "ferrocene_subset"))]
4043    fn is_sorted_by<F>(mut self, compare: F) -> bool
4044    where
4045        Self: Sized,
4046        F: FnMut(&Self::Item, &Self::Item) -> bool,
4047    {
4048        #[inline]
4049        fn check<'a, T>(
4050            last: &'a mut T,
4051            mut compare: impl FnMut(&T, &T) -> bool + 'a,
4052        ) -> impl FnMut(T) -> bool + 'a {
4053            move |curr| {
4054                if !compare(&last, &curr) {
4055                    return false;
4056                }
4057                *last = curr;
4058                true
4059            }
4060        }
4061
4062        let mut last = match self.next() {
4063            Some(e) => e,
4064            None => return true,
4065        };
4066
4067        self.all(check(&mut last, compare))
4068    }
4069
4070    /// Checks if the elements of this iterator are sorted using the given key extraction
4071    /// function.
4072    ///
4073    /// Instead of comparing the iterator's elements directly, this function compares the keys of
4074    /// the elements, as determined by `f`. Apart from that, it's equivalent to [`is_sorted`]; see
4075    /// its documentation for more information.
4076    ///
4077    /// [`is_sorted`]: Iterator::is_sorted
4078    ///
4079    /// # Examples
4080    ///
4081    /// ```
4082    /// assert!(["c", "bb", "aaa"].iter().is_sorted_by_key(|s| s.len()));
4083    /// assert!(![-2i32, -1, 0, 3].iter().is_sorted_by_key(|n| n.abs()));
4084    /// ```
4085    #[inline]
4086    #[stable(feature = "is_sorted", since = "1.82.0")]
4087    #[cfg(not(feature = "ferrocene_subset"))]
4088    fn is_sorted_by_key<F, K>(self, f: F) -> bool
4089    where
4090        Self: Sized,
4091        F: FnMut(Self::Item) -> K,
4092        K: PartialOrd,
4093    {
4094        self.map(f).is_sorted()
4095    }
4096
4097    /// See [TrustedRandomAccess][super::super::TrustedRandomAccess]
4098    // The unusual name is to avoid name collisions in method resolution
4099    // see #76479.
4100    #[inline]
4101    #[doc(hidden)]
4102    #[unstable(feature = "trusted_random_access", issue = "none")]
4103    #[cfg(not(feature = "ferrocene_subset"))]
4104    unsafe fn __iterator_get_unchecked(&mut self, _idx: usize) -> Self::Item
4105    where
4106        Self: TrustedRandomAccessNoCoerce,
4107    {
4108        unreachable!("Always specialized");
4109    }
4110}
4111
4112trait SpecIterEq<B: Iterator>: Iterator {
4113    fn spec_iter_eq<F>(self, b: B, f: F) -> bool
4114    where
4115        F: FnMut(Self::Item, <B as Iterator>::Item) -> ControlFlow<()>;
4116}
4117
4118impl<A: Iterator, B: Iterator> SpecIterEq<B> for A {
4119    #[inline]
4120    default fn spec_iter_eq<F>(self, b: B, f: F) -> bool
4121    where
4122        F: FnMut(Self::Item, <B as Iterator>::Item) -> ControlFlow<()>,
4123    {
4124        iter_eq(self, b, f)
4125    }
4126}
4127
4128impl<A: Iterator + TrustedLen, B: Iterator + TrustedLen> SpecIterEq<B> for A {
4129    #[inline]
4130    fn spec_iter_eq<F>(self, b: B, f: F) -> bool
4131    where
4132        F: FnMut(Self::Item, <B as Iterator>::Item) -> ControlFlow<()>,
4133    {
4134        // we *can't* short-circuit if:
4135        match (self.size_hint(), b.size_hint()) {
4136            // ... both iterators have the same length
4137            ((_, Some(a)), (_, Some(b))) if a == b => {}
4138            // ... or both of them are longer than `usize::MAX` (i.e. have an unknown length).
4139            ((_, None), (_, None)) => {}
4140            // otherwise, we can ascertain that they are unequal without actually comparing items
4141            _ => return false,
4142        }
4143
4144        iter_eq(self, b, f)
4145    }
4146}
4147
4148/// Compares two iterators element-wise using the given function.
4149///
4150/// If `ControlFlow::Continue(())` is returned from the function, the comparison moves on to the next
4151/// elements of both iterators. Returning `ControlFlow::Break(x)` short-circuits the iteration and
4152/// returns `ControlFlow::Break(x)`. If one of the iterators runs out of elements,
4153/// `ControlFlow::Continue(ord)` is returned where `ord` is the result of comparing the lengths of
4154/// the iterators.
4155///
4156/// Isolates the logic shared by ['cmp_by'](Iterator::cmp_by),
4157/// ['partial_cmp_by'](Iterator::partial_cmp_by), and ['eq_by'](Iterator::eq_by).
4158#[inline]
4159fn iter_compare<A, B, F, T>(mut a: A, mut b: B, f: F) -> ControlFlow<T, Ordering>
4160where
4161    A: Iterator,
4162    B: Iterator,
4163    F: FnMut(A::Item, B::Item) -> ControlFlow<T>,
4164{
4165    #[inline]
4166    fn compare<'a, B, X, T>(
4167        b: &'a mut B,
4168        mut f: impl FnMut(X, B::Item) -> ControlFlow<T> + 'a,
4169    ) -> impl FnMut(X) -> ControlFlow<ControlFlow<T, Ordering>> + 'a
4170    where
4171        B: Iterator,
4172    {
4173        move |x| match b.next() {
4174            None => ControlFlow::Break(ControlFlow::Continue(Ordering::Greater)),
4175            Some(y) => f(x, y).map_break(ControlFlow::Break),
4176        }
4177    }
4178
4179    match a.try_for_each(compare(&mut b, f)) {
4180        ControlFlow::Continue(()) => ControlFlow::Continue(match b.next() {
4181            None => Ordering::Equal,
4182            Some(_) => Ordering::Less,
4183        }),
4184        ControlFlow::Break(x) => x,
4185    }
4186}
4187
4188#[inline]
4189fn iter_eq<A, B, F>(a: A, b: B, f: F) -> bool
4190where
4191    A: Iterator,
4192    B: Iterator,
4193    F: FnMut(A::Item, B::Item) -> ControlFlow<()>,
4194{
4195    iter_compare(a, b, f).continue_value().is_some_and(|ord| ord == Ordering::Equal)
4196}
4197
4198/// Implements `Iterator` for mutable references to iterators, such as those produced by [`Iterator::by_ref`].
4199///
4200/// This implementation passes all method calls on to the original iterator.
4201#[stable(feature = "rust1", since = "1.0.0")]
4202impl<I: Iterator + ?Sized> Iterator for &mut I {
4203    type Item = I::Item;
4204    #[inline]
4205    fn next(&mut self) -> Option<I::Item> {
4206        (**self).next()
4207    }
4208    fn size_hint(&self) -> (usize, Option<usize>) {
4209        (**self).size_hint()
4210    }
4211    fn advance_by(&mut self, n: usize) -> Result<(), NonZero<usize>> {
4212        (**self).advance_by(n)
4213    }
4214    fn nth(&mut self, n: usize) -> Option<Self::Item> {
4215        (**self).nth(n)
4216    }
4217    #[cfg(not(feature = "ferrocene_subset"))]
4218    fn fold<B, F>(self, init: B, f: F) -> B
4219    where
4220        F: FnMut(B, Self::Item) -> B,
4221    {
4222        self.spec_fold(init, f)
4223    }
4224    fn try_fold<B, F, R>(&mut self, init: B, f: F) -> R
4225    where
4226        F: FnMut(B, Self::Item) -> R,
4227        R: Try<Output = B>,
4228    {
4229        self.spec_try_fold(init, f)
4230    }
4231}
4232
4233/// Helper trait to specialize `fold` and `try_fold` for `&mut I where I: Sized`
4234trait IteratorRefSpec: Iterator {
4235    #[cfg(not(feature = "ferrocene_subset"))]
4236    fn spec_fold<B, F>(self, init: B, f: F) -> B
4237    where
4238        F: FnMut(B, Self::Item) -> B;
4239
4240    fn spec_try_fold<B, F, R>(&mut self, init: B, f: F) -> R
4241    where
4242        F: FnMut(B, Self::Item) -> R,
4243        R: Try<Output = B>;
4244}
4245
4246impl<I: Iterator + ?Sized> IteratorRefSpec for &mut I {
4247    #[cfg(not(feature = "ferrocene_subset"))]
4248    default fn spec_fold<B, F>(self, init: B, mut f: F) -> B
4249    where
4250        F: FnMut(B, Self::Item) -> B,
4251    {
4252        let mut accum = init;
4253        while let Some(x) = self.next() {
4254            accum = f(accum, x);
4255        }
4256        accum
4257    }
4258
4259    default fn spec_try_fold<B, F, R>(&mut self, init: B, mut f: F) -> R
4260    where
4261        F: FnMut(B, Self::Item) -> R,
4262        R: Try<Output = B>,
4263    {
4264        let mut accum = init;
4265        while let Some(x) = self.next() {
4266            accum = f(accum, x)?;
4267        }
4268        try { accum }
4269    }
4270}
4271
4272#[cfg(not(feature = "ferrocene_subset"))]
4273impl<I: Iterator> IteratorRefSpec for &mut I {
4274    impl_fold_via_try_fold! { spec_fold -> spec_try_fold }
4275
4276    fn spec_try_fold<B, F, R>(&mut self, init: B, f: F) -> R
4277    where
4278        F: FnMut(B, Self::Item) -> R,
4279        R: Try<Output = B>,
4280    {
4281        (**self).try_fold(init, f)
4282    }
4283}