core/macros/
mod.rs

1#[doc = include_str!("panic.md")]
2#[macro_export]
3#[rustc_builtin_macro(core_panic)]
4#[allow_internal_unstable(edition_panic)]
5#[stable(feature = "core", since = "1.6.0")]
6#[rustc_diagnostic_item = "core_panic_macro"]
7macro_rules! panic {
8    // Expands to either `$crate::panic::panic_2015` or `$crate::panic::panic_2021`
9    // depending on the edition of the caller.
10    ($($arg:tt)*) => {
11        /* compiler built-in */
12    };
13}
14
15/// Asserts that two expressions are equal to each other (using [`PartialEq`]).
16///
17/// Assertions are always checked in both debug and release builds, and cannot
18/// be disabled. See [`debug_assert_eq!`] for assertions that are disabled in
19/// release builds by default.
20///
21/// [`debug_assert_eq!`]: crate::debug_assert_eq
22///
23/// On panic, this macro will print the values of the expressions with their
24/// debug representations.
25///
26/// Like [`assert!`], this macro has a second form, where a custom
27/// panic message can be provided.
28///
29/// # Examples
30///
31/// ```
32/// let a = 3;
33/// let b = 1 + 2;
34/// assert_eq!(a, b);
35///
36/// assert_eq!(a, b, "we are testing addition with {} and {}", a, b);
37/// ```
38#[macro_export]
39#[stable(feature = "rust1", since = "1.0.0")]
40#[rustc_diagnostic_item = "assert_eq_macro"]
41#[allow_internal_unstable(panic_internals)]
42#[cfg(not(feature = "ferrocene_certified_runtime"))]
43macro_rules! assert_eq {
44    ($left:expr, $right:expr $(,)?) => {
45        match (&$left, &$right) {
46            (left_val, right_val) => {
47                if !(*left_val == *right_val) {
48                    let kind = $crate::panicking::AssertKind::Eq;
49                    // The reborrows below are intentional. Without them, the stack slot for the
50                    // borrow is initialized even before the values are compared, leading to a
51                    // noticeable slow down.
52                    $crate::panicking::assert_failed(kind, &*left_val, &*right_val, $crate::option::Option::None);
53                }
54            }
55        }
56    };
57    ($left:expr, $right:expr, $($arg:tt)+) => {
58        match (&$left, &$right) {
59            (left_val, right_val) => {
60                if !(*left_val == *right_val) {
61                    let kind = $crate::panicking::AssertKind::Eq;
62                    // The reborrows below are intentional. Without them, the stack slot for the
63                    // borrow is initialized even before the values are compared, leading to a
64                    // noticeable slow down.
65                    $crate::panicking::assert_failed(kind, &*left_val, &*right_val, $crate::option::Option::Some($crate::format_args!($($arg)+)));
66                }
67            }
68        }
69    };
70}
71
72/// Asserts that two expressions are equal to each other (using [`PartialEq`]).
73///
74/// Assertions are always checked in both debug and release builds, and cannot
75/// be disabled. See [`debug_assert_eq!`] for assertions that are disabled in
76/// release builds by default.
77///
78/// [`debug_assert_eq!`]: crate::debug_assert_eq
79///
80/// On panic, this macro will print the values of the expressions with their
81/// debug representations.
82///
83/// Like [`assert!`], this macro has a second form, where a custom
84/// panic message can be provided.
85///
86/// # Examples
87///
88/// ```
89/// let a = 3;
90/// let b = 1 + 2;
91/// assert_eq!(a, b);
92///
93/// assert_eq!(a, b, "we are testing addition with {} and {}", a, b);
94/// ```
95#[macro_export]
96#[stable(feature = "rust1", since = "1.0.0")]
97#[rustc_diagnostic_item = "assert_eq_macro"]
98#[allow_internal_unstable(panic_internals)]
99#[cfg(feature = "ferrocene_certified_runtime")]
100macro_rules! assert_eq {
101    ($left:expr, $right:expr $(,)?) => {
102        match (&$left, &$right) {
103            (left_val, right_val) => {
104                if !(*left_val == *right_val) {
105                    panic!("assertion `left == right` failed")
106                }
107            }
108        }
109    };
110    ($left:expr, $right:expr, $msg:literal) => {
111        match (&$left, &$right) {
112            (left_val, right_val) => {
113                if !(*left_val == *right_val) {
114                    panic!(concat!("assertion `left == right` failed: ", $msg))
115                }
116            }
117        }
118    };
119    ($left:expr, $right:expr, $($arg:tt)+) => {
120        match (&$left, &$right) {
121            (left_val, right_val) => {
122                if !(*left_val == *right_val) {
123                    panic!("assertion `left == right` failed")
124                }
125            }
126        }
127    };
128}
129
130/// Asserts that two expressions are not equal to each other (using [`PartialEq`]).
131///
132/// Assertions are always checked in both debug and release builds, and cannot
133/// be disabled. See [`debug_assert_ne!`] for assertions that are disabled in
134/// release builds by default.
135///
136/// [`debug_assert_ne!`]: crate::debug_assert_ne
137///
138/// On panic, this macro will print the values of the expressions with their
139/// debug representations.
140///
141/// Like [`assert!`], this macro has a second form, where a custom
142/// panic message can be provided.
143///
144/// # Examples
145///
146/// ```
147/// let a = 3;
148/// let b = 2;
149/// assert_ne!(a, b);
150///
151/// assert_ne!(a, b, "we are testing that the values are not equal");
152/// ```
153#[macro_export]
154#[stable(feature = "assert_ne", since = "1.13.0")]
155#[rustc_diagnostic_item = "assert_ne_macro"]
156#[allow_internal_unstable(panic_internals)]
157#[cfg(not(feature = "ferrocene_certified_runtime"))]
158macro_rules! assert_ne {
159    ($left:expr, $right:expr $(,)?) => {
160        match (&$left, &$right) {
161            (left_val, right_val) => {
162                if *left_val == *right_val {
163                    let kind = $crate::panicking::AssertKind::Ne;
164                    // The reborrows below are intentional. Without them, the stack slot for the
165                    // borrow is initialized even before the values are compared, leading to a
166                    // noticeable slow down.
167                    $crate::panicking::assert_failed(kind, &*left_val, &*right_val, $crate::option::Option::None);
168                }
169            }
170        }
171    };
172    ($left:expr, $right:expr, $($arg:tt)+) => {
173        match (&($left), &($right)) {
174            (left_val, right_val) => {
175                if *left_val == *right_val {
176                    let kind = $crate::panicking::AssertKind::Ne;
177                    // The reborrows below are intentional. Without them, the stack slot for the
178                    // borrow is initialized even before the values are compared, leading to a
179                    // noticeable slow down.
180                    $crate::panicking::assert_failed(kind, &*left_val, &*right_val, $crate::option::Option::Some($crate::format_args!($($arg)+)));
181                }
182            }
183        }
184    };
185}
186
187/// Asserts that two expressions are not equal to each other (using [`PartialEq`]).
188///
189/// Assertions are always checked in both debug and release builds, and cannot
190/// be disabled. See [`debug_assert_ne!`] for assertions that are disabled in
191/// release builds by default.
192///
193/// [`debug_assert_ne!`]: crate::debug_assert_ne
194///
195/// On panic, this macro will print the values of the expressions with their
196/// debug representations.
197///
198/// Like [`assert!`], this macro has a second form, where a custom
199/// panic message can be provided.
200///
201/// # Examples
202///
203/// ```
204/// let a = 3;
205/// let b = 2;
206/// assert_ne!(a, b);
207///
208/// assert_ne!(a, b, "we are testing that the values are not equal");
209/// ```
210#[macro_export]
211#[stable(feature = "assert_ne", since = "1.13.0")]
212#[rustc_diagnostic_item = "assert_ne_macro"]
213#[allow_internal_unstable(panic_internals)]
214#[cfg(feature = "ferrocene_certified_runtime")]
215macro_rules! assert_ne {
216    ($left:expr, $right:expr $(,)?) => {
217        match (&$left, &$right) {
218            (left_val, right_val) => {
219                if *left_val == *right_val {
220                    panic!("assertion `left != right` failed")
221                }
222            }
223        }
224    };
225    ($left:expr, $right:expr, $msg:literal) => {
226        match (&$left, &$right) {
227            (left_val, right_val) => {
228                if *left_val == *right_val {
229                    panic!(concat!("assertion `left != right` failed: ", $msg))
230                }
231            }
232        }
233    };
234    ($left:expr, $right:expr, $($arg:tt)+) => {
235        match (&$left, &$right) {
236            (left_val, right_val) => {
237                if *left_val == *right_val {
238                    panic!("assertion `left != right` failed")
239                }
240            }
241        }
242    };
243}
244
245/// Asserts that an expression matches the provided pattern.
246///
247/// This macro is generally preferable to `assert!(matches!(value, pattern))`, because it can print
248/// the debug representation of the actual value shape that did not meet expectations. In contrast,
249/// using [`assert!`] will only print that expectations were not met, but not why.
250///
251/// The pattern syntax is exactly the same as found in a match arm and the `matches!` macro. The
252/// optional if guard can be used to add additional checks that must be true for the matched value,
253/// otherwise this macro will panic.
254///
255/// Assertions are always checked in both debug and release builds, and cannot
256/// be disabled. See [`debug_assert_matches!`] for assertions that are disabled in
257/// release builds by default.
258///
259/// [`debug_assert_matches!`]: crate::assert_matches::debug_assert_matches
260///
261/// On panic, this macro will print the value of the expression with its debug representation.
262///
263/// Like [`assert!`], this macro has a second form, where a custom panic message can be provided.
264///
265/// # Examples
266///
267/// ```
268/// #![feature(assert_matches)]
269///
270/// use std::assert_matches::assert_matches;
271///
272/// let a = Some(345);
273/// let b = Some(56);
274/// assert_matches!(a, Some(_));
275/// assert_matches!(b, Some(_));
276///
277/// assert_matches!(a, Some(345));
278/// assert_matches!(a, Some(345) | None);
279///
280/// // assert_matches!(a, None); // panics
281/// // assert_matches!(b, Some(345)); // panics
282/// // assert_matches!(b, Some(345) | None); // panics
283///
284/// assert_matches!(a, Some(x) if x > 100);
285/// // assert_matches!(a, Some(x) if x < 100); // panics
286/// ```
287#[unstable(feature = "assert_matches", issue = "82775")]
288#[allow_internal_unstable(panic_internals)]
289#[rustc_macro_transparency = "semitransparent"]
290#[cfg(not(feature = "ferrocene_certified_runtime"))]
291pub macro assert_matches {
292    ($left:expr, $(|)? $( $pattern:pat_param )|+ $( if $guard: expr )? $(,)?) => {
293        match $left {
294            $( $pattern )|+ $( if $guard )? => {}
295            ref left_val => {
296                $crate::panicking::assert_matches_failed(
297                    left_val,
298                    $crate::stringify!($($pattern)|+ $(if $guard)?),
299                    $crate::option::Option::None
300                );
301            }
302        }
303    },
304    ($left:expr, $(|)? $( $pattern:pat_param )|+ $( if $guard: expr )?, $($arg:tt)+) => {
305        match $left {
306            $( $pattern )|+ $( if $guard )? => {}
307            ref left_val => {
308                $crate::panicking::assert_matches_failed(
309                    left_val,
310                    $crate::stringify!($($pattern)|+ $(if $guard)?),
311                    $crate::option::Option::Some($crate::format_args!($($arg)+))
312                );
313            }
314        }
315    },
316}
317
318/// Asserts that an expression matches the provided pattern.
319///
320/// This macro is generally preferable to `assert!(matches!(value, pattern))`, because it can print
321/// the debug representation of the actual value shape that did not meet expectations. In contrast,
322/// using [`assert!`] will only print that expectations were not met, but not why.
323///
324/// The pattern syntax is exactly the same as found in a match arm and the `matches!` macro. The
325/// optional if guard can be used to add additional checks that must be true for the matched value,
326/// otherwise this macro will panic.
327///
328/// Assertions are always checked in both debug and release builds, and cannot
329/// be disabled. See [`debug_assert_matches!`] for assertions that are disabled in
330/// release builds by default.
331///
332/// [`debug_assert_matches!`]: crate::assert_matches::debug_assert_matches
333///
334/// On panic, this macro will print the value of the expression with its debug representation.
335///
336/// Like [`assert!`], this macro has a second form, where a custom panic message can be provided.
337///
338/// # Examples
339///
340/// ```
341/// #![feature(assert_matches)]
342///
343/// use std::assert_matches::assert_matches;
344///
345/// let a = Some(345);
346/// let b = Some(56);
347/// assert_matches!(a, Some(_));
348/// assert_matches!(b, Some(_));
349///
350/// assert_matches!(a, Some(345));
351/// assert_matches!(a, Some(345) | None);
352///
353/// // assert_matches!(a, None); // panics
354/// // assert_matches!(b, Some(345)); // panics
355/// // assert_matches!(b, Some(345) | None); // panics
356///
357/// assert_matches!(a, Some(x) if x > 100);
358/// // assert_matches!(a, Some(x) if x < 100); // panics
359/// ```
360#[unstable(feature = "assert_matches", issue = "82775")]
361#[allow_internal_unstable(panic_internals)]
362#[rustc_macro_transparency = "semitransparent"]
363#[cfg(feature = "ferrocene_certified_runtime")]
364pub macro assert_matches {
365    ($left:expr, $(|)? $( $pattern:pat_param )|+ $( if $guard: expr )? $(,)?) =>{
366        match $left {
367            $( $pattern )|+ $( if $guard )? => {}
368            ref left_val => {
369                panic!("assertion `left matches right` failed");
370            }
371        }
372    },
373    ($left:expr, $(|)? $( $pattern:pat_param )|+ $( if $guard: expr )?, $msg:literal) => {
374        match $left {
375            $( $pattern )|+ $( if $guard )? => {}
376            ref left_val => {
377                panic!(concat!("assertion `left matches right` failed: ", $msg));
378            }
379        }
380    },
381    ($left:expr, $(|)? $( $pattern:pat_param )|+ $( if $guard: expr )?, $($arg:tt)+) => {
382        match $left {
383            $( $pattern )|+ $( if $guard )? => {}
384            ref left_val => {
385                panic!("assertion `left matches right` failed");
386            }
387        }
388    },
389}
390/// Selects code at compile-time based on `cfg` predicates.
391///
392/// This macro evaluates, at compile-time, a series of `cfg` predicates,
393/// selects the first that is true, and emits the code guarded by that
394/// predicate. The code guarded by other predicates is not emitted.
395///
396/// An optional trailing `_` wildcard can be used to specify a fallback. If
397/// none of the predicates are true, a [`compile_error`] is emitted.
398///
399/// # Example
400///
401/// ```
402/// #![feature(cfg_select)]
403///
404/// cfg_select! {
405///     unix => {
406///         fn foo() { /* unix specific functionality */ }
407///     }
408///     target_pointer_width = "32" => {
409///         fn foo() { /* non-unix, 32-bit functionality */ }
410///     }
411///     _ => {
412///         fn foo() { /* fallback implementation */ }
413///     }
414/// }
415/// ```
416///
417/// The `cfg_select!` macro can also be used in expression position, with or without braces on the
418/// right-hand side:
419///
420/// ```
421/// #![feature(cfg_select)]
422///
423/// let _some_string = cfg_select! {
424///     unix => "With great power comes great electricity bills",
425///     _ => { "Behind every successful diet is an unwatched pizza" }
426/// };
427/// ```
428#[unstable(feature = "cfg_select", issue = "115585")]
429#[rustc_diagnostic_item = "cfg_select"]
430#[rustc_builtin_macro]
431pub macro cfg_select($($tt:tt)*) {
432    /* compiler built-in */
433}
434
435/// Asserts that a boolean expression is `true` at runtime.
436///
437/// This will invoke the [`panic!`] macro if the provided expression cannot be
438/// evaluated to `true` at runtime.
439///
440/// Like [`assert!`], this macro also has a second version, where a custom panic
441/// message can be provided.
442///
443/// # Uses
444///
445/// Unlike [`assert!`], `debug_assert!` statements are only enabled in non
446/// optimized builds by default. An optimized build will not execute
447/// `debug_assert!` statements unless `-C debug-assertions` is passed to the
448/// compiler. This makes `debug_assert!` useful for checks that are too
449/// expensive to be present in a release build but may be helpful during
450/// development. The result of expanding `debug_assert!` is always type checked.
451///
452/// An unchecked assertion allows a program in an inconsistent state to keep
453/// running, which might have unexpected consequences but does not introduce
454/// unsafety as long as this only happens in safe code. The performance cost
455/// of assertions, however, is not measurable in general. Replacing [`assert!`]
456/// with `debug_assert!` is thus only encouraged after thorough profiling, and
457/// more importantly, only in safe code!
458///
459/// # Examples
460///
461/// ```
462/// // the panic message for these assertions is the stringified value of the
463/// // expression given.
464/// debug_assert!(true);
465///
466/// fn some_expensive_computation() -> bool {
467///     // Some expensive computation here
468///     true
469/// }
470/// debug_assert!(some_expensive_computation());
471///
472/// // assert with a custom message
473/// let x = true;
474/// debug_assert!(x, "x wasn't true!");
475///
476/// let a = 3; let b = 27;
477/// debug_assert!(a + b == 30, "a = {}, b = {}", a, b);
478/// ```
479#[macro_export]
480#[stable(feature = "rust1", since = "1.0.0")]
481#[rustc_diagnostic_item = "debug_assert_macro"]
482#[allow_internal_unstable(edition_panic)]
483macro_rules! debug_assert {
484    ($($arg:tt)*) => {
485        if $crate::cfg!(debug_assertions) {
486            $crate::assert!($($arg)*);
487        }
488    };
489}
490
491/// Asserts that two expressions are equal to each other.
492///
493/// On panic, this macro will print the values of the expressions with their
494/// debug representations.
495///
496/// Unlike [`assert_eq!`], `debug_assert_eq!` statements are only enabled in non
497/// optimized builds by default. An optimized build will not execute
498/// `debug_assert_eq!` statements unless `-C debug-assertions` is passed to the
499/// compiler. This makes `debug_assert_eq!` useful for checks that are too
500/// expensive to be present in a release build but may be helpful during
501/// development. The result of expanding `debug_assert_eq!` is always type checked.
502///
503/// # Examples
504///
505/// ```
506/// let a = 3;
507/// let b = 1 + 2;
508/// debug_assert_eq!(a, b);
509/// ```
510#[macro_export]
511#[stable(feature = "rust1", since = "1.0.0")]
512#[rustc_diagnostic_item = "debug_assert_eq_macro"]
513#[cfg(not(feature = "ferrocene_subset"))]
514macro_rules! debug_assert_eq {
515    ($($arg:tt)*) => {
516        if $crate::cfg!(debug_assertions) {
517            $crate::assert_eq!($($arg)*);
518        }
519    };
520}
521
522/// Asserts that two expressions are not equal to each other.
523///
524/// On panic, this macro will print the values of the expressions with their
525/// debug representations.
526///
527/// Unlike [`assert_ne!`], `debug_assert_ne!` statements are only enabled in non
528/// optimized builds by default. An optimized build will not execute
529/// `debug_assert_ne!` statements unless `-C debug-assertions` is passed to the
530/// compiler. This makes `debug_assert_ne!` useful for checks that are too
531/// expensive to be present in a release build but may be helpful during
532/// development. The result of expanding `debug_assert_ne!` is always type checked.
533///
534/// # Examples
535///
536/// ```
537/// let a = 3;
538/// let b = 2;
539/// debug_assert_ne!(a, b);
540/// ```
541#[macro_export]
542#[stable(feature = "assert_ne", since = "1.13.0")]
543#[rustc_diagnostic_item = "debug_assert_ne_macro"]
544#[cfg(not(feature = "ferrocene_subset"))]
545macro_rules! debug_assert_ne {
546    ($($arg:tt)*) => {
547        if $crate::cfg!(debug_assertions) {
548            $crate::assert_ne!($($arg)*);
549        }
550    };
551}
552
553/// Asserts that an expression matches the provided pattern.
554///
555/// This macro is generally preferable to `debug_assert!(matches!(value, pattern))`, because it can
556/// print the debug representation of the actual value shape that did not meet expectations. In
557/// contrast, using [`debug_assert!`] will only print that expectations were not met, but not why.
558///
559/// The pattern syntax is exactly the same as found in a match arm and the `matches!` macro. The
560/// optional if guard can be used to add additional checks that must be true for the matched value,
561/// otherwise this macro will panic.
562///
563/// On panic, this macro will print the value of the expression with its debug representation.
564///
565/// Like [`assert!`], this macro has a second form, where a custom panic message can be provided.
566///
567/// Unlike [`assert_matches!`], `debug_assert_matches!` statements are only enabled in non optimized
568/// builds by default. An optimized build will not execute `debug_assert_matches!` statements unless
569/// `-C debug-assertions` is passed to the compiler. This makes `debug_assert_matches!` useful for
570/// checks that are too expensive to be present in a release build but may be helpful during
571/// development. The result of expanding `debug_assert_matches!` is always type checked.
572///
573/// # Examples
574///
575/// ```
576/// #![feature(assert_matches)]
577///
578/// use std::assert_matches::debug_assert_matches;
579///
580/// let a = Some(345);
581/// let b = Some(56);
582/// debug_assert_matches!(a, Some(_));
583/// debug_assert_matches!(b, Some(_));
584///
585/// debug_assert_matches!(a, Some(345));
586/// debug_assert_matches!(a, Some(345) | None);
587///
588/// // debug_assert_matches!(a, None); // panics
589/// // debug_assert_matches!(b, Some(345)); // panics
590/// // debug_assert_matches!(b, Some(345) | None); // panics
591///
592/// debug_assert_matches!(a, Some(x) if x > 100);
593/// // debug_assert_matches!(a, Some(x) if x < 100); // panics
594/// ```
595#[unstable(feature = "assert_matches", issue = "82775")]
596#[allow_internal_unstable(assert_matches)]
597#[rustc_macro_transparency = "semitransparent"]
598#[cfg(not(feature = "ferrocene_subset"))]
599pub macro debug_assert_matches($($arg:tt)*) {
600    if $crate::cfg!(debug_assertions) {
601        $crate::assert_matches::assert_matches!($($arg)*);
602    }
603}
604
605/// Returns whether the given expression matches the provided pattern.
606///
607/// The pattern syntax is exactly the same as found in a match arm. The optional if guard can be
608/// used to add additional checks that must be true for the matched value, otherwise this macro will
609/// return `false`.
610///
611/// When testing that a value matches a pattern, it's generally preferable to use
612/// [`assert_matches!`] as it will print the debug representation of the value if the assertion
613/// fails.
614///
615/// # Examples
616///
617/// ```
618/// let foo = 'f';
619/// assert!(matches!(foo, 'A'..='Z' | 'a'..='z'));
620///
621/// let bar = Some(4);
622/// assert!(matches!(bar, Some(x) if x > 2));
623/// ```
624#[macro_export]
625#[stable(feature = "matches_macro", since = "1.42.0")]
626#[rustc_diagnostic_item = "matches_macro"]
627#[allow_internal_unstable(non_exhaustive_omitted_patterns_lint, stmt_expr_attributes)]
628macro_rules! matches {
629    ($expression:expr, $pattern:pat $(if $guard:expr)? $(,)?) => {
630        #[allow(non_exhaustive_omitted_patterns)]
631        match $expression {
632            $pattern $(if $guard)? => true,
633            _ => false
634        }
635    };
636}
637
638/// Unwraps a result or propagates its error.
639///
640/// The [`?` operator][propagating-errors] was added to replace `try!`
641/// and should be used instead. Furthermore, `try` is a reserved word
642/// in Rust 2018, so if you must use it, you will need to use the
643/// [raw-identifier syntax][ris]: `r#try`.
644///
645/// [propagating-errors]: https://doc.rust-lang.org/book/ch09-02-recoverable-errors-with-result.html#a-shortcut-for-propagating-errors-the--operator
646/// [ris]: https://doc.rust-lang.org/nightly/rust-by-example/compatibility/raw_identifiers.html
647///
648/// `try!` matches the given [`Result`]. In case of the `Ok` variant, the
649/// expression has the value of the wrapped value.
650///
651/// In case of the `Err` variant, it retrieves the inner error. `try!` then
652/// performs conversion using `From`. This provides automatic conversion
653/// between specialized errors and more general ones. The resulting
654/// error is then immediately returned.
655///
656/// Because of the early return, `try!` can only be used in functions that
657/// return [`Result`].
658///
659/// # Examples
660///
661/// ```
662/// use std::io;
663/// use std::fs::File;
664/// use std::io::prelude::*;
665///
666/// enum MyError {
667///     FileWriteError
668/// }
669///
670/// impl From<io::Error> for MyError {
671///     fn from(e: io::Error) -> MyError {
672///         MyError::FileWriteError
673///     }
674/// }
675///
676/// // The preferred method of quick returning Errors
677/// fn write_to_file_question() -> Result<(), MyError> {
678///     let mut file = File::create("my_best_friends.txt")?;
679///     file.write_all(b"This is a list of my best friends.")?;
680///     Ok(())
681/// }
682///
683/// // The previous method of quick returning Errors
684/// fn write_to_file_using_try() -> Result<(), MyError> {
685///     let mut file = r#try!(File::create("my_best_friends.txt"));
686///     r#try!(file.write_all(b"This is a list of my best friends."));
687///     Ok(())
688/// }
689///
690/// // This is equivalent to:
691/// fn write_to_file_using_match() -> Result<(), MyError> {
692///     let mut file = r#try!(File::create("my_best_friends.txt"));
693///     match file.write_all(b"This is a list of my best friends.") {
694///         Ok(v) => v,
695///         Err(e) => return Err(From::from(e)),
696///     }
697///     Ok(())
698/// }
699/// ```
700#[macro_export]
701#[stable(feature = "rust1", since = "1.0.0")]
702#[deprecated(since = "1.39.0", note = "use the `?` operator instead")]
703#[doc(alias = "?")]
704#[cfg(not(feature = "ferrocene_subset"))]
705macro_rules! r#try {
706    ($expr:expr $(,)?) => {
707        match $expr {
708            $crate::result::Result::Ok(val) => val,
709            $crate::result::Result::Err(err) => {
710                return $crate::result::Result::Err($crate::convert::From::from(err));
711            }
712        }
713    };
714}
715
716/// Writes formatted data into a buffer.
717///
718/// This macro accepts a 'writer', a format string, and a list of arguments. Arguments will be
719/// formatted according to the specified format string and the result will be passed to the writer.
720/// The writer may be any value with a `write_fmt` method; generally this comes from an
721/// implementation of either the [`fmt::Write`] or the [`io::Write`] trait. The macro
722/// returns whatever the `write_fmt` method returns; commonly a [`fmt::Result`], or an
723/// [`io::Result`].
724///
725/// See [`std::fmt`] for more information on the format string syntax.
726///
727/// [`std::fmt`]: ../std/fmt/index.html
728/// [`fmt::Write`]: crate::fmt::Write
729/// [`io::Write`]: ../std/io/trait.Write.html
730/// [`fmt::Result`]: crate::fmt::Result
731/// [`io::Result`]: ../std/io/type.Result.html
732///
733/// # Examples
734///
735/// ```
736/// use std::io::Write;
737///
738/// fn main() -> std::io::Result<()> {
739///     let mut w = Vec::new();
740///     write!(&mut w, "test")?;
741///     write!(&mut w, "formatted {}", "arguments")?;
742///
743///     assert_eq!(w, b"testformatted arguments");
744///     Ok(())
745/// }
746/// ```
747///
748/// A module can import both `std::fmt::Write` and `std::io::Write` and call `write!` on objects
749/// implementing either, as objects do not typically implement both. However, the module must
750/// avoid conflict between the trait names, such as by importing them as `_` or otherwise renaming
751/// them:
752///
753/// ```
754/// use std::fmt::Write as _;
755/// use std::io::Write as _;
756///
757/// fn main() -> Result<(), Box<dyn std::error::Error>> {
758///     let mut s = String::new();
759///     let mut v = Vec::new();
760///
761///     write!(&mut s, "{} {}", "abc", 123)?; // uses fmt::Write::write_fmt
762///     write!(&mut v, "s = {:?}", s)?; // uses io::Write::write_fmt
763///     assert_eq!(v, b"s = \"abc 123\"");
764///     Ok(())
765/// }
766/// ```
767///
768/// If you also need the trait names themselves, such as to implement one or both on your types,
769/// import the containing module and then name them with a prefix:
770///
771/// ```
772/// # #![allow(unused_imports)]
773/// use std::fmt::{self, Write as _};
774/// use std::io::{self, Write as _};
775///
776/// struct Example;
777///
778/// impl fmt::Write for Example {
779///     fn write_str(&mut self, _s: &str) -> core::fmt::Result {
780///          unimplemented!();
781///     }
782/// }
783/// ```
784///
785/// Note: This macro can be used in `no_std` setups as well.
786/// In a `no_std` setup you are responsible for the implementation details of the components.
787///
788/// ```no_run
789/// use core::fmt::Write;
790///
791/// struct Example;
792///
793/// impl Write for Example {
794///     fn write_str(&mut self, _s: &str) -> core::fmt::Result {
795///          unimplemented!();
796///     }
797/// }
798///
799/// let mut m = Example{};
800/// write!(&mut m, "Hello World").expect("Not written");
801/// ```
802#[macro_export]
803#[stable(feature = "rust1", since = "1.0.0")]
804#[rustc_diagnostic_item = "write_macro"]
805#[cfg(not(feature = "ferrocene_subset"))]
806macro_rules! write {
807    ($dst:expr, $($arg:tt)*) => {
808        $dst.write_fmt($crate::format_args!($($arg)*))
809    };
810}
811
812/// Writes formatted data into a buffer, with a newline appended.
813///
814/// On all platforms, the newline is the LINE FEED character (`\n`/`U+000A`) alone
815/// (no additional CARRIAGE RETURN (`\r`/`U+000D`).
816///
817/// For more information, see [`write!`]. For information on the format string syntax, see
818/// [`std::fmt`].
819///
820/// [`std::fmt`]: ../std/fmt/index.html
821///
822/// # Examples
823///
824/// ```
825/// use std::io::{Write, Result};
826///
827/// fn main() -> Result<()> {
828///     let mut w = Vec::new();
829///     writeln!(&mut w)?;
830///     writeln!(&mut w, "test")?;
831///     writeln!(&mut w, "formatted {}", "arguments")?;
832///
833///     assert_eq!(&w[..], "\ntest\nformatted arguments\n".as_bytes());
834///     Ok(())
835/// }
836/// ```
837#[macro_export]
838#[stable(feature = "rust1", since = "1.0.0")]
839#[rustc_diagnostic_item = "writeln_macro"]
840#[allow_internal_unstable(format_args_nl)]
841#[cfg(not(feature = "ferrocene_subset"))]
842macro_rules! writeln {
843    ($dst:expr $(,)?) => {
844        $crate::write!($dst, "\n")
845    };
846    ($dst:expr, $($arg:tt)*) => {
847        $dst.write_fmt($crate::format_args_nl!($($arg)*))
848    };
849}
850
851/// Indicates unreachable code.
852///
853/// This is useful any time that the compiler can't determine that some code is unreachable. For
854/// example:
855///
856/// * Match arms with guard conditions.
857/// * Loops that dynamically terminate.
858/// * Iterators that dynamically terminate.
859///
860/// If the determination that the code is unreachable proves incorrect, the
861/// program immediately terminates with a [`panic!`].
862///
863/// The unsafe counterpart of this macro is the [`unreachable_unchecked`] function, which
864/// will cause undefined behavior if the code is reached.
865///
866/// [`unreachable_unchecked`]: crate::hint::unreachable_unchecked
867///
868/// # Panics
869///
870/// This will always [`panic!`] because `unreachable!` is just a shorthand for `panic!` with a
871/// fixed, specific message.
872///
873/// Like `panic!`, this macro has a second form for displaying custom values.
874///
875/// # Examples
876///
877/// Match arms:
878///
879/// ```
880/// # #[allow(dead_code)]
881/// fn foo(x: Option<i32>) {
882///     match x {
883///         Some(n) if n >= 0 => println!("Some(Non-negative)"),
884///         Some(n) if n <  0 => println!("Some(Negative)"),
885///         Some(_)           => unreachable!(), // compile error if commented out
886///         None              => println!("None")
887///     }
888/// }
889/// ```
890///
891/// Iterators:
892///
893/// ```
894/// # #[allow(dead_code)]
895/// fn divide_by_three(x: u32) -> u32 { // one of the poorest implementations of x/3
896///     for i in 0.. {
897///         if 3*i < i { panic!("u32 overflow"); }
898///         if x < 3*i { return i-1; }
899///     }
900///     unreachable!("The loop should always return");
901/// }
902/// ```
903#[macro_export]
904#[rustc_builtin_macro(unreachable)]
905#[allow_internal_unstable(edition_panic)]
906#[stable(feature = "rust1", since = "1.0.0")]
907#[rustc_diagnostic_item = "unreachable_macro"]
908macro_rules! unreachable {
909    // Expands to either `$crate::panic::unreachable_2015` or `$crate::panic::unreachable_2021`
910    // depending on the edition of the caller.
911    ($($arg:tt)*) => {
912        /* compiler built-in */
913    };
914}
915
916/// Indicates unimplemented code by panicking with a message of "not implemented".
917///
918/// This allows your code to type-check, which is useful if you are prototyping or
919/// implementing a trait that requires multiple methods which you don't plan to use all of.
920///
921/// The difference between `unimplemented!` and [`todo!`] is that while `todo!`
922/// conveys an intent of implementing the functionality later and the message is "not yet
923/// implemented", `unimplemented!` makes no such claims. Its message is "not implemented".
924///
925/// Also, some IDEs will mark `todo!`s.
926///
927/// # Panics
928///
929/// This will always [`panic!`] because `unimplemented!` is just a shorthand for `panic!` with a
930/// fixed, specific message.
931///
932/// Like `panic!`, this macro has a second form for displaying custom values.
933///
934/// [`todo!`]: crate::todo
935///
936/// # Examples
937///
938/// Say we have a trait `Foo`:
939///
940/// ```
941/// trait Foo {
942///     fn bar(&self) -> u8;
943///     fn baz(&self);
944///     fn qux(&self) -> Result<u64, ()>;
945/// }
946/// ```
947///
948/// We want to implement `Foo` for 'MyStruct', but for some reason it only makes sense
949/// to implement the `bar()` function. `baz()` and `qux()` will still need to be defined
950/// in our implementation of `Foo`, but we can use `unimplemented!` in their definitions
951/// to allow our code to compile.
952///
953/// We still want to have our program stop running if the unimplemented methods are
954/// reached.
955///
956/// ```
957/// # trait Foo {
958/// #     fn bar(&self) -> u8;
959/// #     fn baz(&self);
960/// #     fn qux(&self) -> Result<u64, ()>;
961/// # }
962/// struct MyStruct;
963///
964/// impl Foo for MyStruct {
965///     fn bar(&self) -> u8 {
966///         1 + 1
967///     }
968///
969///     fn baz(&self) {
970///         // It makes no sense to `baz` a `MyStruct`, so we have no logic here
971///         // at all.
972///         // This will display "thread 'main' panicked at 'not implemented'".
973///         unimplemented!();
974///     }
975///
976///     fn qux(&self) -> Result<u64, ()> {
977///         // We have some logic here,
978///         // We can add a message to unimplemented! to display our omission.
979///         // This will display:
980///         // "thread 'main' panicked at 'not implemented: MyStruct isn't quxable'".
981///         unimplemented!("MyStruct isn't quxable");
982///     }
983/// }
984///
985/// fn main() {
986///     let s = MyStruct;
987///     s.bar();
988/// }
989/// ```
990#[macro_export]
991#[stable(feature = "rust1", since = "1.0.0")]
992#[rustc_diagnostic_item = "unimplemented_macro"]
993#[allow_internal_unstable(panic_internals)]
994#[cfg(not(feature = "ferrocene_subset"))]
995macro_rules! unimplemented {
996    () => {
997        $crate::panicking::panic("not implemented")
998    };
999    ($($arg:tt)+) => {
1000        $crate::panic!("not implemented: {}", $crate::format_args!($($arg)+))
1001    };
1002}
1003
1004/// Indicates unfinished code.
1005///
1006/// This can be useful if you are prototyping and just
1007/// want a placeholder to let your code pass type analysis.
1008///
1009/// The difference between [`unimplemented!`] and `todo!` is that while `todo!` conveys
1010/// an intent of implementing the functionality later and the message is "not yet
1011/// implemented", `unimplemented!` makes no such claims. Its message is "not implemented".
1012///
1013/// Also, some IDEs will mark `todo!`s.
1014///
1015/// # Panics
1016///
1017/// This will always [`panic!`] because `todo!` is just a shorthand for `panic!` with a
1018/// fixed, specific message.
1019///
1020/// Like `panic!`, this macro has a second form for displaying custom values.
1021///
1022/// # Examples
1023///
1024/// Here's an example of some in-progress code. We have a trait `Foo`:
1025///
1026/// ```
1027/// trait Foo {
1028///     fn bar(&self) -> u8;
1029///     fn baz(&self);
1030///     fn qux(&self) -> Result<u64, ()>;
1031/// }
1032/// ```
1033///
1034/// We want to implement `Foo` on one of our types, but we also want to work on
1035/// just `bar()` first. In order for our code to compile, we need to implement
1036/// `baz()` and `qux()`, so we can use `todo!`:
1037///
1038/// ```
1039/// # trait Foo {
1040/// #     fn bar(&self) -> u8;
1041/// #     fn baz(&self);
1042/// #     fn qux(&self) -> Result<u64, ()>;
1043/// # }
1044/// struct MyStruct;
1045///
1046/// impl Foo for MyStruct {
1047///     fn bar(&self) -> u8 {
1048///         1 + 1
1049///     }
1050///
1051///     fn baz(&self) {
1052///         // Let's not worry about implementing baz() for now
1053///         todo!();
1054///     }
1055///
1056///     fn qux(&self) -> Result<u64, ()> {
1057///         // We can add a message to todo! to display our omission.
1058///         // This will display:
1059///         // "thread 'main' panicked at 'not yet implemented: MyStruct is not yet quxable'".
1060///         todo!("MyStruct is not yet quxable");
1061///     }
1062/// }
1063///
1064/// fn main() {
1065///     let s = MyStruct;
1066///     s.bar();
1067///
1068///     // We aren't even using baz() or qux(), so this is fine.
1069/// }
1070/// ```
1071#[macro_export]
1072#[stable(feature = "todo_macro", since = "1.40.0")]
1073#[rustc_diagnostic_item = "todo_macro"]
1074#[allow_internal_unstable(panic_internals)]
1075#[cfg(not(feature = "ferrocene_subset"))]
1076macro_rules! todo {
1077    () => {
1078        $crate::panicking::panic("not yet implemented")
1079    };
1080    ($($arg:tt)+) => {
1081        $crate::panic!("not yet implemented: {}", $crate::format_args!($($arg)+))
1082    };
1083}
1084
1085/// Definitions of built-in macros.
1086///
1087/// Most of the macro properties (stability, visibility, etc.) are taken from the source code here,
1088/// with exception of expansion functions transforming macro inputs into outputs,
1089/// those functions are provided by the compiler.
1090pub(crate) mod builtin {
1091
1092    /// Causes compilation to fail with the given error message when encountered.
1093    ///
1094    /// This macro should be used when a crate uses a conditional compilation strategy to provide
1095    /// better error messages for erroneous conditions. It's the compiler-level form of [`panic!`],
1096    /// but emits an error during *compilation* rather than at *runtime*.
1097    ///
1098    /// # Examples
1099    ///
1100    /// Two such examples are macros and `#[cfg]` environments.
1101    ///
1102    /// Emit a better compiler error if a macro is passed invalid values. Without the final branch,
1103    /// the compiler would still emit an error, but the error's message would not mention the two
1104    /// valid values.
1105    ///
1106    /// ```compile_fail
1107    /// macro_rules! give_me_foo_or_bar {
1108    ///     (foo) => {};
1109    ///     (bar) => {};
1110    ///     ($x:ident) => {
1111    ///         compile_error!("This macro only accepts `foo` or `bar`");
1112    ///     }
1113    /// }
1114    ///
1115    /// give_me_foo_or_bar!(neither);
1116    /// // ^ will fail at compile time with message "This macro only accepts `foo` or `bar`"
1117    /// ```
1118    ///
1119    /// Emit a compiler error if one of a number of features isn't available.
1120    ///
1121    /// ```compile_fail
1122    /// #[cfg(not(any(feature = "foo", feature = "bar")))]
1123    /// compile_error!("Either feature \"foo\" or \"bar\" must be enabled for this crate.");
1124    /// ```
1125    #[stable(feature = "compile_error_macro", since = "1.20.0")]
1126    #[rustc_builtin_macro]
1127    #[macro_export]
1128    macro_rules! compile_error {
1129        ($msg:expr $(,)?) => {{ /* compiler built-in */ }};
1130    }
1131
1132    /// Constructs parameters for the other string-formatting macros.
1133    ///
1134    /// This macro functions by taking a formatting string literal containing
1135    /// `{}` for each additional argument passed. `format_args!` prepares the
1136    /// additional parameters to ensure the output can be interpreted as a string
1137    /// and canonicalizes the arguments into a single type. Any value that implements
1138    /// the [`Display`] trait can be passed to `format_args!`, as can any
1139    /// [`Debug`] implementation be passed to a `{:?}` within the formatting string.
1140    ///
1141    /// This macro produces a value of type [`fmt::Arguments`]. This value can be
1142    /// passed to the macros within [`std::fmt`] for performing useful redirection.
1143    /// All other formatting macros ([`format!`], [`write!`], [`println!`], etc) are
1144    /// proxied through this one. `format_args!`, unlike its derived macros, avoids
1145    /// heap allocations.
1146    ///
1147    /// You can use the [`fmt::Arguments`] value that `format_args!` returns
1148    /// in `Debug` and `Display` contexts as seen below. The example also shows
1149    /// that `Debug` and `Display` format to the same thing: the interpolated
1150    /// format string in `format_args!`.
1151    ///
1152    /// ```rust
1153    /// let args = format_args!("{} foo {:?}", 1, 2);
1154    /// let debug = format!("{args:?}");
1155    /// let display = format!("{args}");
1156    /// assert_eq!("1 foo 2", display);
1157    /// assert_eq!(display, debug);
1158    /// ```
1159    ///
1160    /// See [the formatting documentation in `std::fmt`](../std/fmt/index.html)
1161    /// for details of the macro argument syntax, and further information.
1162    ///
1163    /// [`Display`]: crate::fmt::Display
1164    /// [`Debug`]: crate::fmt::Debug
1165    /// [`fmt::Arguments`]: crate::fmt::Arguments
1166    /// [`std::fmt`]: ../std/fmt/index.html
1167    /// [`format!`]: ../std/macro.format.html
1168    /// [`println!`]: ../std/macro.println.html
1169    ///
1170    /// # Examples
1171    ///
1172    /// ```
1173    /// use std::fmt;
1174    ///
1175    /// let s = fmt::format(format_args!("hello {}", "world"));
1176    /// assert_eq!(s, format!("hello {}", "world"));
1177    /// ```
1178    ///
1179    /// # Argument lifetimes
1180    ///
1181    /// Except when no formatting arguments are used,
1182    /// the produced `fmt::Arguments` value borrows temporary values.
1183    /// To allow it to be stored for later use, the arguments' lifetimes, as well as those of
1184    /// temporaries they borrow, may be [extended] when `format_args!` appears in the initializer
1185    /// expression of a `let` statement. The syntactic rules used to determine when temporaries'
1186    /// lifetimes are extended are documented in the [Reference].
1187    ///
1188    /// [extended]: ../reference/destructors.html#temporary-lifetime-extension
1189    /// [Reference]: ../reference/destructors.html#extending-based-on-expressions
1190    #[stable(feature = "rust1", since = "1.0.0")]
1191    #[rustc_diagnostic_item = "format_args_macro"]
1192    #[allow_internal_unsafe]
1193    #[allow_internal_unstable(fmt_internals, fmt_arguments_from_str)]
1194    #[rustc_builtin_macro]
1195    #[macro_export]
1196    macro_rules! format_args {
1197        ($fmt:expr) => {{ /* compiler built-in */ }};
1198        ($fmt:expr, $($args:tt)*) => {{ /* compiler built-in */ }};
1199    }
1200
1201    /// Same as [`format_args`], but can be used in some const contexts.
1202    ///
1203    /// This macro is used by the panic macros for the `const_panic` feature.
1204    ///
1205    /// This macro will be removed once `format_args` is allowed in const contexts.
1206    #[unstable(feature = "const_format_args", issue = "none")]
1207    #[allow_internal_unstable(fmt_internals, fmt_arguments_from_str)]
1208    #[rustc_builtin_macro]
1209    #[macro_export]
1210    macro_rules! const_format_args {
1211        ($fmt:expr) => {{ /* compiler built-in */ }};
1212        ($fmt:expr, $($args:tt)*) => {{ /* compiler built-in */ }};
1213    }
1214
1215    /// Same as [`format_args`], but adds a newline in the end.
1216    #[unstable(
1217        feature = "format_args_nl",
1218        issue = "none",
1219        reason = "`format_args_nl` is only for internal \
1220                  language use and is subject to change"
1221    )]
1222    #[allow_internal_unstable(fmt_internals, fmt_arguments_from_str)]
1223    #[rustc_builtin_macro]
1224    #[doc(hidden)]
1225    #[macro_export]
1226    macro_rules! format_args_nl {
1227        ($fmt:expr) => {{ /* compiler built-in */ }};
1228        ($fmt:expr, $($args:tt)*) => {{ /* compiler built-in */ }};
1229    }
1230
1231    /// Inspects an environment variable at compile time.
1232    ///
1233    /// This macro will expand to the value of the named environment variable at
1234    /// compile time, yielding an expression of type `&'static str`. Use
1235    /// [`std::env::var`] instead if you want to read the value at runtime.
1236    ///
1237    /// [`std::env::var`]: ../std/env/fn.var.html
1238    ///
1239    /// If the environment variable is not defined, then a compilation error
1240    /// will be emitted. To not emit a compile error, use the [`option_env!`]
1241    /// macro instead. A compilation error will also be emitted if the
1242    /// environment variable is not a valid Unicode string.
1243    ///
1244    /// # Examples
1245    ///
1246    /// ```
1247    /// let path: &'static str = env!("PATH");
1248    /// println!("the $PATH variable at the time of compiling was: {path}");
1249    /// ```
1250    ///
1251    /// You can customize the error message by passing a string as the second
1252    /// parameter:
1253    ///
1254    /// ```compile_fail
1255    /// let doc: &'static str = env!("documentation", "what's that?!");
1256    /// ```
1257    ///
1258    /// If the `documentation` environment variable is not defined, you'll get
1259    /// the following error:
1260    ///
1261    /// ```text
1262    /// error: what's that?!
1263    /// ```
1264    #[stable(feature = "rust1", since = "1.0.0")]
1265    #[rustc_builtin_macro]
1266    #[macro_export]
1267    #[rustc_diagnostic_item = "env_macro"] // useful for external lints
1268    macro_rules! env {
1269        ($name:expr $(,)?) => {{ /* compiler built-in */ }};
1270        ($name:expr, $error_msg:expr $(,)?) => {{ /* compiler built-in */ }};
1271    }
1272
1273    /// Optionally inspects an environment variable at compile time.
1274    ///
1275    /// If the named environment variable is present at compile time, this will
1276    /// expand into an expression of type `Option<&'static str>` whose value is
1277    /// `Some` of the value of the environment variable (a compilation error
1278    /// will be emitted if the environment variable is not a valid Unicode
1279    /// string). If the environment variable is not present, then this will
1280    /// expand to `None`. See [`Option<T>`][Option] for more information on this
1281    /// type.  Use [`std::env::var`] instead if you want to read the value at
1282    /// runtime.
1283    ///
1284    /// [`std::env::var`]: ../std/env/fn.var.html
1285    ///
1286    /// A compile time error is only emitted when using this macro if the
1287    /// environment variable exists and is not a valid Unicode string. To also
1288    /// emit a compile error if the environment variable is not present, use the
1289    /// [`env!`] macro instead.
1290    ///
1291    /// # Examples
1292    ///
1293    /// ```
1294    /// let key: Option<&'static str> = option_env!("SECRET_KEY");
1295    /// println!("the secret key might be: {key:?}");
1296    /// ```
1297    #[stable(feature = "rust1", since = "1.0.0")]
1298    #[rustc_builtin_macro]
1299    #[macro_export]
1300    #[rustc_diagnostic_item = "option_env_macro"] // useful for external lints
1301    macro_rules! option_env {
1302        ($name:expr $(,)?) => {{ /* compiler built-in */ }};
1303    }
1304
1305    /// Concatenates literals into a byte slice.
1306    ///
1307    /// This macro takes any number of comma-separated literals, and concatenates them all into
1308    /// one, yielding an expression of type `&[u8; _]`, which represents all of the literals
1309    /// concatenated left-to-right. The literals passed can be any combination of:
1310    ///
1311    /// - byte literals (`b'r'`)
1312    /// - byte strings (`b"Rust"`)
1313    /// - arrays of bytes/numbers (`[b'A', 66, b'C']`)
1314    ///
1315    /// # Examples
1316    ///
1317    /// ```
1318    /// #![feature(concat_bytes)]
1319    ///
1320    /// # fn main() {
1321    /// let s: &[u8; 6] = concat_bytes!(b'A', b"BC", [68, b'E', 70]);
1322    /// assert_eq!(s, b"ABCDEF");
1323    /// # }
1324    /// ```
1325    #[unstable(feature = "concat_bytes", issue = "87555")]
1326    #[rustc_builtin_macro]
1327    #[macro_export]
1328    macro_rules! concat_bytes {
1329        ($($e:literal),+ $(,)?) => {{ /* compiler built-in */ }};
1330    }
1331
1332    /// Concatenates literals into a static string slice.
1333    ///
1334    /// This macro takes any number of comma-separated literals, yielding an
1335    /// expression of type `&'static str` which represents all of the literals
1336    /// concatenated left-to-right.
1337    ///
1338    /// Integer and floating point literals are [stringified](core::stringify) in order to be
1339    /// concatenated.
1340    ///
1341    /// # Examples
1342    ///
1343    /// ```
1344    /// let s = concat!("test", 10, 'b', true);
1345    /// assert_eq!(s, "test10btrue");
1346    /// ```
1347    #[stable(feature = "rust1", since = "1.0.0")]
1348    #[rustc_builtin_macro]
1349    #[rustc_diagnostic_item = "macro_concat"]
1350    #[macro_export]
1351    macro_rules! concat {
1352        ($($e:expr),* $(,)?) => {{ /* compiler built-in */ }};
1353    }
1354
1355    /// Expands to the line number on which it was invoked.
1356    ///
1357    /// With [`column!`] and [`file!`], these macros provide debugging information for
1358    /// developers about the location within the source.
1359    ///
1360    /// The expanded expression has type `u32` and is 1-based, so the first line
1361    /// in each file evaluates to 1, the second to 2, etc. This is consistent
1362    /// with error messages by common compilers or popular editors.
1363    /// The returned line is *not necessarily* the line of the `line!` invocation itself,
1364    /// but rather the first macro invocation leading up to the invocation
1365    /// of the `line!` macro.
1366    ///
1367    /// # Examples
1368    ///
1369    /// ```
1370    /// let current_line = line!();
1371    /// println!("defined on line: {current_line}");
1372    /// ```
1373    #[stable(feature = "rust1", since = "1.0.0")]
1374    #[rustc_builtin_macro]
1375    #[macro_export]
1376    macro_rules! line {
1377        () => {
1378            /* compiler built-in */
1379        };
1380    }
1381
1382    /// Expands to the column number at which it was invoked.
1383    ///
1384    /// With [`line!`] and [`file!`], these macros provide debugging information for
1385    /// developers about the location within the source.
1386    ///
1387    /// The expanded expression has type `u32` and is 1-based, so the first column
1388    /// in each line evaluates to 1, the second to 2, etc. This is consistent
1389    /// with error messages by common compilers or popular editors.
1390    /// The returned column is *not necessarily* the line of the `column!` invocation itself,
1391    /// but rather the first macro invocation leading up to the invocation
1392    /// of the `column!` macro.
1393    ///
1394    /// # Examples
1395    ///
1396    /// ```
1397    /// let current_col = column!();
1398    /// println!("defined on column: {current_col}");
1399    /// ```
1400    ///
1401    /// `column!` counts Unicode code points, not bytes or graphemes. As a result, the first two
1402    /// invocations return the same value, but the third does not.
1403    ///
1404    /// ```
1405    /// let a = ("foobar", column!()).1;
1406    /// let b = ("人之初性本善", column!()).1;
1407    /// let c = ("f̅o̅o̅b̅a̅r̅", column!()).1; // Uses combining overline (U+0305)
1408    ///
1409    /// assert_eq!(a, b);
1410    /// assert_ne!(b, c);
1411    /// ```
1412    #[stable(feature = "rust1", since = "1.0.0")]
1413    #[rustc_builtin_macro]
1414    #[macro_export]
1415    macro_rules! column {
1416        () => {
1417            /* compiler built-in */
1418        };
1419    }
1420
1421    /// Expands to the file name in which it was invoked.
1422    ///
1423    /// With [`line!`] and [`column!`], these macros provide debugging information for
1424    /// developers about the location within the source.
1425    ///
1426    /// The expanded expression has type `&'static str`, and the returned file
1427    /// is not the invocation of the `file!` macro itself, but rather the
1428    /// first macro invocation leading up to the invocation of the `file!`
1429    /// macro.
1430    ///
1431    /// The file name is derived from the crate root's source path passed to the Rust compiler
1432    /// and the sequence the compiler takes to get from the crate root to the
1433    /// module containing `file!`, modified by any flags passed to the Rust compiler (e.g.
1434    /// `--remap-path-prefix`).  If the crate's source path is relative, the initial base
1435    /// directory will be the working directory of the Rust compiler.  For example, if the source
1436    /// path passed to the compiler is `./src/lib.rs` which has a `mod foo;` with a source path of
1437    /// `src/foo/mod.rs`, then calling `file!` inside `mod foo;` will return `./src/foo/mod.rs`.
1438    ///
1439    /// Future compiler options might make further changes to the behavior of `file!`,
1440    /// including potentially making it entirely empty. Code (e.g. test libraries)
1441    /// relying on `file!` producing an openable file path would be incompatible
1442    /// with such options, and might wish to recommend not using those options.
1443    ///
1444    /// # Examples
1445    ///
1446    /// ```
1447    /// let this_file = file!();
1448    /// println!("defined in file: {this_file}");
1449    /// ```
1450    #[stable(feature = "rust1", since = "1.0.0")]
1451    #[rustc_builtin_macro]
1452    #[macro_export]
1453    macro_rules! file {
1454        () => {
1455            /* compiler built-in */
1456        };
1457    }
1458
1459    /// Stringifies its arguments.
1460    ///
1461    /// This macro will yield an expression of type `&'static str` which is the
1462    /// stringification of all the tokens passed to the macro. No restrictions
1463    /// are placed on the syntax of the macro invocation itself.
1464    ///
1465    /// Note that the expanded results of the input tokens may change in the
1466    /// future. You should be careful if you rely on the output.
1467    ///
1468    /// # Examples
1469    ///
1470    /// ```
1471    /// let one_plus_one = stringify!(1 + 1);
1472    /// assert_eq!(one_plus_one, "1 + 1");
1473    /// ```
1474    #[stable(feature = "rust1", since = "1.0.0")]
1475    #[rustc_builtin_macro]
1476    #[macro_export]
1477    macro_rules! stringify {
1478        ($($t:tt)*) => {
1479            /* compiler built-in */
1480        };
1481    }
1482
1483    /// Includes a UTF-8 encoded file as a string.
1484    ///
1485    /// The file is located relative to the current file (similarly to how
1486    /// modules are found). The provided path is interpreted in a platform-specific
1487    /// way at compile time. So, for instance, an invocation with a Windows path
1488    /// containing backslashes `\` would not compile correctly on Unix.
1489    ///
1490    /// This macro will yield an expression of type `&'static str` which is the
1491    /// contents of the file.
1492    ///
1493    /// # Examples
1494    ///
1495    /// Assume there are two files in the same directory with the following
1496    /// contents:
1497    ///
1498    /// File 'spanish.in':
1499    ///
1500    /// ```text
1501    /// adiós
1502    /// ```
1503    ///
1504    /// File 'main.rs':
1505    ///
1506    /// ```ignore (cannot-doctest-external-file-dependency)
1507    /// fn main() {
1508    ///     let my_str = include_str!("spanish.in");
1509    ///     assert_eq!(my_str, "adiós\n");
1510    ///     print!("{my_str}");
1511    /// }
1512    /// ```
1513    ///
1514    /// Compiling 'main.rs' and running the resulting binary will print "adiós".
1515    #[stable(feature = "rust1", since = "1.0.0")]
1516    #[rustc_builtin_macro]
1517    #[macro_export]
1518    #[rustc_diagnostic_item = "include_str_macro"]
1519    macro_rules! include_str {
1520        ($file:expr $(,)?) => {{ /* compiler built-in */ }};
1521    }
1522
1523    /// Includes a file as a reference to a byte array.
1524    ///
1525    /// The file is located relative to the current file (similarly to how
1526    /// modules are found). The provided path is interpreted in a platform-specific
1527    /// way at compile time. So, for instance, an invocation with a Windows path
1528    /// containing backslashes `\` would not compile correctly on Unix.
1529    ///
1530    /// This macro will yield an expression of type `&'static [u8; N]` which is
1531    /// the contents of the file.
1532    ///
1533    /// # Examples
1534    ///
1535    /// Assume there are two files in the same directory with the following
1536    /// contents:
1537    ///
1538    /// File 'spanish.in':
1539    ///
1540    /// ```text
1541    /// adiós
1542    /// ```
1543    ///
1544    /// File 'main.rs':
1545    ///
1546    /// ```ignore (cannot-doctest-external-file-dependency)
1547    /// fn main() {
1548    ///     let bytes = include_bytes!("spanish.in");
1549    ///     assert_eq!(bytes, b"adi\xc3\xb3s\n");
1550    ///     print!("{}", String::from_utf8_lossy(bytes));
1551    /// }
1552    /// ```
1553    ///
1554    /// Compiling 'main.rs' and running the resulting binary will print "adiós".
1555    #[stable(feature = "rust1", since = "1.0.0")]
1556    #[rustc_builtin_macro]
1557    #[macro_export]
1558    #[rustc_diagnostic_item = "include_bytes_macro"]
1559    macro_rules! include_bytes {
1560        ($file:expr $(,)?) => {{ /* compiler built-in */ }};
1561    }
1562
1563    /// Expands to a string that represents the current module path.
1564    ///
1565    /// The current module path can be thought of as the hierarchy of modules
1566    /// leading back up to the crate root. The first component of the path
1567    /// returned is the name of the crate currently being compiled.
1568    ///
1569    /// # Examples
1570    ///
1571    /// ```
1572    /// mod test {
1573    ///     pub fn foo() {
1574    ///         assert!(module_path!().ends_with("test"));
1575    ///     }
1576    /// }
1577    ///
1578    /// test::foo();
1579    /// ```
1580    #[stable(feature = "rust1", since = "1.0.0")]
1581    #[rustc_builtin_macro]
1582    #[macro_export]
1583    macro_rules! module_path {
1584        () => {
1585            /* compiler built-in */
1586        };
1587    }
1588
1589    /// Evaluates boolean combinations of configuration flags at compile-time.
1590    ///
1591    /// In addition to the `#[cfg]` attribute, this macro is provided to allow
1592    /// boolean expression evaluation of configuration flags. This frequently
1593    /// leads to less duplicated code.
1594    ///
1595    /// The syntax given to this macro is the same syntax as the [`cfg`]
1596    /// attribute.
1597    ///
1598    /// `cfg!`, unlike `#[cfg]`, does not remove any code and only evaluates to true or false. For
1599    /// example, all blocks in an if/else expression need to be valid when `cfg!` is used for
1600    /// the condition, regardless of what `cfg!` is evaluating.
1601    ///
1602    /// [`cfg`]: ../reference/conditional-compilation.html#the-cfg-attribute
1603    ///
1604    /// # Examples
1605    ///
1606    /// ```
1607    /// let my_directory = if cfg!(windows) {
1608    ///     "windows-specific-directory"
1609    /// } else {
1610    ///     "unix-directory"
1611    /// };
1612    /// ```
1613    #[stable(feature = "rust1", since = "1.0.0")]
1614    #[rustc_builtin_macro]
1615    #[macro_export]
1616    macro_rules! cfg {
1617        ($($cfg:tt)*) => {
1618            /* compiler built-in */
1619        };
1620    }
1621
1622    /// Parses a file as an expression or an item according to the context.
1623    ///
1624    /// **Warning**: For multi-file Rust projects, the `include!` macro is probably not what you
1625    /// are looking for. Usually, multi-file Rust projects use
1626    /// [modules](https://doc.rust-lang.org/reference/items/modules.html). Multi-file projects and
1627    /// modules are explained in the Rust-by-Example book
1628    /// [here](https://doc.rust-lang.org/rust-by-example/mod/split.html) and the module system is
1629    /// explained in the Rust Book
1630    /// [here](https://doc.rust-lang.org/book/ch07-02-defining-modules-to-control-scope-and-privacy.html).
1631    ///
1632    /// The included file is placed in the surrounding code
1633    /// [unhygienically](https://doc.rust-lang.org/reference/macros-by-example.html#hygiene). If
1634    /// the included file is parsed as an expression and variables or functions share names across
1635    /// both files, it could result in variables or functions being different from what the
1636    /// included file expected.
1637    ///
1638    /// The included file is located relative to the current file (similarly to how modules are
1639    /// found). The provided path is interpreted in a platform-specific way at compile time. So,
1640    /// for instance, an invocation with a Windows path containing backslashes `\` would not
1641    /// compile correctly on Unix.
1642    ///
1643    /// # Uses
1644    ///
1645    /// The `include!` macro is primarily used for two purposes. It is used to include
1646    /// documentation that is written in a separate file and it is used to include [build artifacts
1647    /// usually as a result from the `build.rs`
1648    /// script](https://doc.rust-lang.org/cargo/reference/build-scripts.html#outputs-of-the-build-script).
1649    ///
1650    /// When using the `include` macro to include stretches of documentation, remember that the
1651    /// included file still needs to be a valid Rust syntax. It is also possible to
1652    /// use the [`include_str`] macro as `#![doc = include_str!("...")]` (at the module level) or
1653    /// `#[doc = include_str!("...")]` (at the item level) to include documentation from a plain
1654    /// text or markdown file.
1655    ///
1656    /// # Examples
1657    ///
1658    /// Assume there are two files in the same directory with the following contents:
1659    ///
1660    /// File 'monkeys.in':
1661    ///
1662    /// ```ignore (only-for-syntax-highlight)
1663    /// ['🙈', '🙊', '🙉']
1664    ///     .iter()
1665    ///     .cycle()
1666    ///     .take(6)
1667    ///     .collect::<String>()
1668    /// ```
1669    ///
1670    /// File 'main.rs':
1671    ///
1672    /// ```ignore (cannot-doctest-external-file-dependency)
1673    /// fn main() {
1674    ///     let my_string = include!("monkeys.in");
1675    ///     assert_eq!("🙈🙊🙉🙈🙊🙉", my_string);
1676    ///     println!("{my_string}");
1677    /// }
1678    /// ```
1679    ///
1680    /// Compiling 'main.rs' and running the resulting binary will print
1681    /// "🙈🙊🙉🙈🙊🙉".
1682    #[stable(feature = "rust1", since = "1.0.0")]
1683    #[rustc_builtin_macro]
1684    #[macro_export]
1685    #[rustc_diagnostic_item = "include_macro"] // useful for external lints
1686    macro_rules! include {
1687        ($file:expr $(,)?) => {{ /* compiler built-in */ }};
1688    }
1689
1690    /// This macro uses forward-mode automatic differentiation to generate a new function.
1691    /// It may only be applied to a function. The new function will compute the derivative
1692    /// of the function to which the macro was applied.
1693    ///
1694    /// The expected usage syntax is:
1695    /// `#[autodiff_forward(NAME, INPUT_ACTIVITIES, OUTPUT_ACTIVITY)]`
1696    ///
1697    /// - `NAME`: A string that represents a valid function name.
1698    /// - `INPUT_ACTIVITIES`: Specifies one valid activity for each input parameter.
1699    /// - `OUTPUT_ACTIVITY`: Must not be set if the function implicitly returns nothing
1700    ///   (or explicitly returns `-> ()`). Otherwise, it must be set to one of the allowed activities.
1701    ///
1702    /// ACTIVITIES might either be `Dual` or `Const`, more options will be exposed later.
1703    ///
1704    /// `Const` should be used on non-float arguments, or float-based arguments as an optimization
1705    /// if we are not interested in computing the derivatives with respect to this argument.
1706    ///
1707    /// `Dual` can be used for float scalar values or for references, raw pointers, or other
1708    /// indirect input arguments. It can also be used on a scalar float return value.
1709    /// If used on a return value, the generated function will return a tuple of two float scalars.
1710    /// If used on an input argument, a new shadow argument of the same type will be created,
1711    /// directly following the original argument.
1712    ///
1713    /// ### Usage examples:
1714    ///
1715    /// ```rust,ignore (autodiff requires a -Z flag as well as fat-lto for testing)
1716    /// #![feature(autodiff)]
1717    /// use std::autodiff::*;
1718    /// #[autodiff_forward(rb_fwd1, Dual, Const, Dual)]
1719    /// #[autodiff_forward(rb_fwd2, Const, Dual, Dual)]
1720    /// #[autodiff_forward(rb_fwd3, Dual, Dual, Dual)]
1721    /// fn rosenbrock(x: f64, y: f64) -> f64 {
1722    ///     (1.0 - x).powi(2) + 100.0 * (y - x.powi(2)).powi(2)
1723    /// }
1724    /// #[autodiff_forward(rb_inp_fwd, Dual, Dual, Dual)]
1725    /// fn rosenbrock_inp(x: f64, y: f64, out: &mut f64) {
1726    ///     *out = (1.0 - x).powi(2) + 100.0 * (y - x.powi(2)).powi(2);
1727    /// }
1728    ///
1729    /// fn main() {
1730    ///   let x0 = rosenbrock(1.0, 3.0); // 400.0
1731    ///   let (x1, dx1) = rb_fwd1(1.0, 1.0, 3.0); // (400.0, -800.0)
1732    ///   let (x2, dy1) = rb_fwd2(1.0, 3.0, 1.0); // (400.0, 400.0)
1733    ///   // When seeding both arguments at once the tangent return is the sum of both.
1734    ///   let (x3, dxy) = rb_fwd3(1.0, 1.0, 3.0, 1.0); // (400.0, -400.0)
1735    ///
1736    ///   let mut out = 0.0;
1737    ///   let mut dout = 0.0;
1738    ///   rb_inp_fwd(1.0, 1.0, 3.0, 1.0, &mut out, &mut dout);
1739    ///   // (out, dout) == (400.0, -400.0)
1740    /// }
1741    /// ```
1742    ///
1743    /// We might want to track how one input float affects one or more output floats. In this case,
1744    /// the shadow of one input should be initialized to `1.0`, while the shadows of the other
1745    /// inputs should be initialized to `0.0`. The shadow of the output(s) should be initialized to
1746    /// `0.0`. After calling the generated function, the shadow of the input will be zeroed,
1747    /// while the shadow(s) of the output(s) will contain the derivatives. Forward mode is generally
1748    /// more efficient if we have more output floats marked as `Dual` than input floats.
1749    /// Related information can also be found under the term "Vector-Jacobian product" (VJP).
1750    #[unstable(feature = "autodiff", issue = "124509")]
1751    #[allow_internal_unstable(rustc_attrs)]
1752    #[allow_internal_unstable(core_intrinsics)]
1753    #[rustc_builtin_macro]
1754    pub macro autodiff_forward($item:item) {
1755        /* compiler built-in */
1756    }
1757
1758    /// This macro uses reverse-mode automatic differentiation to generate a new function.
1759    /// It may only be applied to a function. The new function will compute the derivative
1760    /// of the function to which the macro was applied.
1761    ///
1762    /// The expected usage syntax is:
1763    /// `#[autodiff_reverse(NAME, INPUT_ACTIVITIES, OUTPUT_ACTIVITY)]`
1764    ///
1765    /// - `NAME`: A string that represents a valid function name.
1766    /// - `INPUT_ACTIVITIES`: Specifies one valid activity for each input parameter.
1767    /// - `OUTPUT_ACTIVITY`: Must not be set if the function implicitly returns nothing
1768    ///   (or explicitly returns `-> ()`). Otherwise, it must be set to one of the allowed activities.
1769    ///
1770    /// ACTIVITIES might either be `Active`, `Duplicated` or `Const`, more options will be exposed later.
1771    ///
1772    /// `Active` can be used for float scalar values.
1773    /// If used on an input, a new float will be appended to the return tuple of the generated
1774    /// function. If the function returns a float scalar, `Active` can be used for the return as
1775    /// well. In this case a float scalar will be appended to the argument list, it works as seed.
1776    ///
1777    /// `Duplicated` can be used on references, raw pointers, or other indirect input
1778    /// arguments. It creates a new shadow argument of the same type, following the original argument.
1779    /// A const reference or pointer argument will receive a mutable reference or pointer as shadow.
1780    ///
1781    /// `Const` should be used on non-float arguments, or float-based arguments as an optimization
1782    /// if we are not interested in computing the derivatives with respect to this argument.
1783    ///
1784    /// ### Usage examples:
1785    ///
1786    /// ```rust,ignore (autodiff requires a -Z flag as well as fat-lto for testing)
1787    /// #![feature(autodiff)]
1788    /// use std::autodiff::*;
1789    /// #[autodiff_reverse(rb_rev, Active, Active, Active)]
1790    /// fn rosenbrock(x: f64, y: f64) -> f64 {
1791    ///     (1.0 - x).powi(2) + 100.0 * (y - x.powi(2)).powi(2)
1792    /// }
1793    /// #[autodiff_reverse(rb_inp_rev, Active, Active, Duplicated)]
1794    /// fn rosenbrock_inp(x: f64, y: f64, out: &mut f64) {
1795    ///     *out = (1.0 - x).powi(2) + 100.0 * (y - x.powi(2)).powi(2);
1796    /// }
1797    ///
1798    /// fn main() {
1799    ///     let (output1, dx1, dy1) = rb_rev(1.0, 3.0, 1.0);
1800    ///     dbg!(output1, dx1, dy1); // (400.0, -800.0, 400.0)
1801    ///     let mut output2 = 0.0;
1802    ///     let mut seed = 1.0;
1803    ///     let (dx2, dy2) = rb_inp_rev(1.0, 3.0, &mut output2, &mut seed);
1804    ///     // (dx2, dy2, output2, seed) == (-800.0, 400.0, 400.0, 0.0)
1805    /// }
1806    /// ```
1807    ///
1808    ///
1809    /// We often want to track how one or more input floats affect one output float. This output can
1810    /// be a scalar return value, or a mutable reference or pointer argument. In the latter case, the
1811    /// mutable input should be marked as duplicated and its shadow initialized to `0.0`. The shadow of
1812    /// the output should be marked as active or duplicated and initialized to `1.0`. After calling
1813    /// the generated function, the shadow(s) of the input(s) will contain the derivatives. The
1814    /// shadow of the outputs ("seed") will be reset to zero.
1815    /// If the function has more than one output float marked as active or duplicated, users might want to
1816    /// set one of them to `1.0` and the others to `0.0` to compute partial derivatives.
1817    /// Unlike forward-mode, a call to the generated function does not reset the shadow of the
1818    /// inputs.
1819    /// Reverse mode is generally more efficient if we have more active/duplicated input than
1820    /// output floats.
1821    ///
1822    /// Related information can also be found under the term "Jacobian-Vector Product" (JVP).
1823    #[unstable(feature = "autodiff", issue = "124509")]
1824    #[allow_internal_unstable(rustc_attrs)]
1825    #[allow_internal_unstable(core_intrinsics)]
1826    #[rustc_builtin_macro]
1827    pub macro autodiff_reverse($item:item) {
1828        /* compiler built-in */
1829    }
1830
1831    /// Asserts that a boolean expression is `true` at runtime.
1832    ///
1833    /// This will invoke the [`panic!`] macro if the provided expression cannot be
1834    /// evaluated to `true` at runtime.
1835    ///
1836    /// # Uses
1837    ///
1838    /// Assertions are always checked in both debug and release builds, and cannot
1839    /// be disabled. See [`debug_assert!`] for assertions that are not enabled in
1840    /// release builds by default.
1841    ///
1842    /// Unsafe code may rely on `assert!` to enforce run-time invariants that, if
1843    /// violated could lead to unsafety.
1844    ///
1845    /// Other use-cases of `assert!` include testing and enforcing run-time
1846    /// invariants in safe code (whose violation cannot result in unsafety).
1847    ///
1848    /// # Custom Messages
1849    ///
1850    /// This macro has a second form, where a custom panic message can
1851    /// be provided with or without arguments for formatting. See [`std::fmt`]
1852    /// for syntax for this form. Expressions used as format arguments will only
1853    /// be evaluated if the assertion fails.
1854    ///
1855    /// [`std::fmt`]: ../std/fmt/index.html
1856    ///
1857    /// # Examples
1858    ///
1859    /// ```
1860    /// // the panic message for these assertions is the stringified value of the
1861    /// // expression given.
1862    /// assert!(true);
1863    ///
1864    /// fn some_computation() -> bool {
1865    ///     // Some expensive computation here
1866    ///     true
1867    /// }
1868    ///
1869    /// assert!(some_computation());
1870    ///
1871    /// // assert with a custom message
1872    /// let x = true;
1873    /// assert!(x, "x wasn't true!");
1874    ///
1875    /// let a = 3; let b = 27;
1876    /// assert!(a + b == 30, "a = {}, b = {}", a, b);
1877    /// ```
1878    #[stable(feature = "rust1", since = "1.0.0")]
1879    #[rustc_builtin_macro]
1880    #[macro_export]
1881    #[rustc_diagnostic_item = "assert_macro"]
1882    #[allow_internal_unstable(
1883        core_intrinsics,
1884        panic_internals,
1885        edition_panic,
1886        generic_assert_internals
1887    )]
1888    macro_rules! assert {
1889        ($cond:expr $(,)?) => {{ /* compiler built-in */ }};
1890        ($cond:expr, $($arg:tt)+) => {{ /* compiler built-in */ }};
1891    }
1892
1893    /// Prints passed tokens into the standard output.
1894    #[unstable(
1895        feature = "log_syntax",
1896        issue = "29598",
1897        reason = "`log_syntax!` is not stable enough for use and is subject to change"
1898    )]
1899    #[rustc_builtin_macro]
1900    #[macro_export]
1901    macro_rules! log_syntax {
1902        ($($arg:tt)*) => {
1903            /* compiler built-in */
1904        };
1905    }
1906
1907    /// Enables or disables tracing functionality used for debugging other macros.
1908    #[unstable(
1909        feature = "trace_macros",
1910        issue = "29598",
1911        reason = "`trace_macros` is not stable enough for use and is subject to change"
1912    )]
1913    #[rustc_builtin_macro]
1914    #[macro_export]
1915    macro_rules! trace_macros {
1916        (true) => {{ /* compiler built-in */ }};
1917        (false) => {{ /* compiler built-in */ }};
1918    }
1919
1920    /// Attribute macro used to apply derive macros.
1921    ///
1922    /// See [the reference] for more info.
1923    ///
1924    /// [the reference]: ../../../reference/attributes/derive.html
1925    #[stable(feature = "rust1", since = "1.0.0")]
1926    #[rustc_builtin_macro]
1927    pub macro derive($item:item) {
1928        /* compiler built-in */
1929    }
1930
1931    /// Attribute macro used to apply derive macros for implementing traits
1932    /// in a const context.
1933    ///
1934    /// See [the reference] for more info.
1935    ///
1936    /// [the reference]: ../../../reference/attributes/derive.html
1937    #[unstable(feature = "derive_const", issue = "118304")]
1938    #[rustc_builtin_macro]
1939    pub macro derive_const($item:item) {
1940        /* compiler built-in */
1941    }
1942
1943    /// Attribute macro applied to a function to turn it into a unit test.
1944    ///
1945    /// See [the reference] for more info.
1946    ///
1947    /// [the reference]: ../../../reference/attributes/testing.html#the-test-attribute
1948    #[stable(feature = "rust1", since = "1.0.0")]
1949    #[allow_internal_unstable(test, rustc_attrs, coverage_attribute)]
1950    #[rustc_builtin_macro]
1951    pub macro test($item:item) {
1952        /* compiler built-in */
1953    }
1954
1955    /// Attribute macro applied to a function to turn it into a benchmark test.
1956    #[unstable(
1957        feature = "test",
1958        issue = "50297",
1959        reason = "`bench` is a part of custom test frameworks which are unstable"
1960    )]
1961    #[allow_internal_unstable(test, rustc_attrs, coverage_attribute)]
1962    #[rustc_builtin_macro]
1963    pub macro bench($item:item) {
1964        /* compiler built-in */
1965    }
1966
1967    /// An implementation detail of the `#[test]` and `#[bench]` macros.
1968    #[unstable(
1969        feature = "custom_test_frameworks",
1970        issue = "50297",
1971        reason = "custom test frameworks are an unstable feature"
1972    )]
1973    #[allow_internal_unstable(test, rustc_attrs)]
1974    #[rustc_builtin_macro]
1975    pub macro test_case($item:item) {
1976        /* compiler built-in */
1977    }
1978
1979    /// Attribute macro applied to a static to register it as a global allocator.
1980    ///
1981    /// See also [`std::alloc::GlobalAlloc`](../../../std/alloc/trait.GlobalAlloc.html).
1982    #[stable(feature = "global_allocator", since = "1.28.0")]
1983    #[allow_internal_unstable(rustc_attrs)]
1984    #[rustc_builtin_macro]
1985    pub macro global_allocator($item:item) {
1986        /* compiler built-in */
1987    }
1988
1989    /// Attribute macro applied to a function to give it a post-condition.
1990    ///
1991    /// The attribute carries an argument token-tree which is
1992    /// eventually parsed as a unary closure expression that is
1993    /// invoked on a reference to the return value.
1994    #[unstable(feature = "contracts", issue = "128044")]
1995    #[allow_internal_unstable(contracts_internals)]
1996    #[rustc_builtin_macro]
1997    pub macro contracts_ensures($item:item) {
1998        /* compiler built-in */
1999    }
2000
2001    /// Attribute macro applied to a function to give it a precondition.
2002    ///
2003    /// The attribute carries an argument token-tree which is
2004    /// eventually parsed as an boolean expression with access to the
2005    /// function's formal parameters
2006    #[unstable(feature = "contracts", issue = "128044")]
2007    #[allow_internal_unstable(contracts_internals)]
2008    #[rustc_builtin_macro]
2009    pub macro contracts_requires($item:item) {
2010        /* compiler built-in */
2011    }
2012
2013    /// Attribute macro applied to a function to register it as a handler for allocation failure.
2014    ///
2015    /// See also [`std::alloc::handle_alloc_error`](../../../std/alloc/fn.handle_alloc_error.html).
2016    #[unstable(feature = "alloc_error_handler", issue = "51540")]
2017    #[allow_internal_unstable(rustc_attrs)]
2018    #[rustc_builtin_macro]
2019    pub macro alloc_error_handler($item:item) {
2020        /* compiler built-in */
2021    }
2022
2023    /// Keeps the item it's applied to if the passed path is accessible, and removes it otherwise.
2024    #[unstable(
2025        feature = "cfg_accessible",
2026        issue = "64797",
2027        reason = "`cfg_accessible` is not fully implemented"
2028    )]
2029    #[rustc_builtin_macro]
2030    pub macro cfg_accessible($item:item) {
2031        /* compiler built-in */
2032    }
2033
2034    /// Expands all `#[cfg]` and `#[cfg_attr]` attributes in the code fragment it's applied to.
2035    #[unstable(
2036        feature = "cfg_eval",
2037        issue = "82679",
2038        reason = "`cfg_eval` is a recently implemented feature"
2039    )]
2040    #[rustc_builtin_macro]
2041    pub macro cfg_eval($($tt:tt)*) {
2042        /* compiler built-in */
2043    }
2044
2045    /// Provide a list of type aliases and other opaque-type-containing type definitions
2046    /// to an item with a body. This list will be used in that body to define opaque
2047    /// types' hidden types.
2048    /// Can only be applied to things that have bodies.
2049    #[unstable(
2050        feature = "type_alias_impl_trait",
2051        issue = "63063",
2052        reason = "`type_alias_impl_trait` has open design concerns"
2053    )]
2054    #[rustc_builtin_macro]
2055    pub macro define_opaque($($tt:tt)*) {
2056        /* compiler built-in */
2057    }
2058
2059    /// Unstable placeholder for type ascription.
2060    #[allow_internal_unstable(builtin_syntax)]
2061    #[unstable(
2062        feature = "type_ascription",
2063        issue = "23416",
2064        reason = "placeholder syntax for type ascription"
2065    )]
2066    #[rustfmt::skip]
2067    pub macro type_ascribe($expr:expr, $ty:ty) {
2068        builtin # type_ascribe($expr, $ty)
2069    }
2070
2071    /// Unstable placeholder for deref patterns.
2072    #[allow_internal_unstable(builtin_syntax)]
2073    #[unstable(
2074        feature = "deref_patterns",
2075        issue = "87121",
2076        reason = "placeholder syntax for deref patterns"
2077    )]
2078    pub macro deref($pat:pat) {
2079        builtin # deref($pat)
2080    }
2081
2082    /// Derive macro generating an impl of the trait `From`.
2083    /// Currently, it can only be used on single-field structs.
2084    // Note that the macro is in a different module than the `From` trait,
2085    // to avoid triggering an unstable feature being used if someone imports
2086    // `std::convert::From`.
2087    #[rustc_builtin_macro]
2088    #[unstable(feature = "derive_from", issue = "144889")]
2089    pub macro From($item: item) {
2090        /* compiler built-in */
2091    }
2092}