core/macros/mod.rs
1#[doc = include_str!("panic.md")]
2#[macro_export]
3#[rustc_builtin_macro(core_panic)]
4#[allow_internal_unstable(edition_panic)]
5#[stable(feature = "core", since = "1.6.0")]
6#[rustc_diagnostic_item = "core_panic_macro"]
7macro_rules! panic {
8 // Expands to either `$crate::panic::panic_2015` or `$crate::panic::panic_2021`
9 // depending on the edition of the caller.
10 ($($arg:tt)*) => {
11 /* compiler built-in */
12 };
13}
14
15/// Asserts that two expressions are equal to each other (using [`PartialEq`]).
16///
17/// Assertions are always checked in both debug and release builds, and cannot
18/// be disabled. See [`debug_assert_eq!`] for assertions that are disabled in
19/// release builds by default.
20///
21/// [`debug_assert_eq!`]: crate::debug_assert_eq
22///
23/// On panic, this macro will print the values of the expressions with their
24/// debug representations.
25///
26/// Like [`assert!`], this macro has a second form, where a custom
27/// panic message can be provided.
28///
29/// # Examples
30///
31/// ```
32/// let a = 3;
33/// let b = 1 + 2;
34/// assert_eq!(a, b);
35///
36/// assert_eq!(a, b, "we are testing addition with {} and {}", a, b);
37/// ```
38#[macro_export]
39#[stable(feature = "rust1", since = "1.0.0")]
40#[rustc_diagnostic_item = "assert_eq_macro"]
41#[allow_internal_unstable(panic_internals)]
42#[cfg(not(feature = "ferrocene_certified"))]
43macro_rules! assert_eq {
44 ($left:expr, $right:expr $(,)?) => {
45 match (&$left, &$right) {
46 (left_val, right_val) => {
47 if !(*left_val == *right_val) {
48 let kind = $crate::panicking::AssertKind::Eq;
49 // The reborrows below are intentional. Without them, the stack slot for the
50 // borrow is initialized even before the values are compared, leading to a
51 // noticeable slow down.
52 $crate::panicking::assert_failed(kind, &*left_val, &*right_val, $crate::option::Option::None);
53 }
54 }
55 }
56 };
57 ($left:expr, $right:expr, $($arg:tt)+) => {
58 match (&$left, &$right) {
59 (left_val, right_val) => {
60 if !(*left_val == *right_val) {
61 let kind = $crate::panicking::AssertKind::Eq;
62 // The reborrows below are intentional. Without them, the stack slot for the
63 // borrow is initialized even before the values are compared, leading to a
64 // noticeable slow down.
65 $crate::panicking::assert_failed(kind, &*left_val, &*right_val, $crate::option::Option::Some($crate::format_args!($($arg)+)));
66 }
67 }
68 }
69 };
70}
71
72/// Asserts that two expressions are not equal to each other (using [`PartialEq`]).
73///
74/// Assertions are always checked in both debug and release builds, and cannot
75/// be disabled. See [`debug_assert_ne!`] for assertions that are disabled in
76/// release builds by default.
77///
78/// [`debug_assert_ne!`]: crate::debug_assert_ne
79///
80/// On panic, this macro will print the values of the expressions with their
81/// debug representations.
82///
83/// Like [`assert!`], this macro has a second form, where a custom
84/// panic message can be provided.
85///
86/// # Examples
87///
88/// ```
89/// let a = 3;
90/// let b = 2;
91/// assert_ne!(a, b);
92///
93/// assert_ne!(a, b, "we are testing that the values are not equal");
94/// ```
95#[macro_export]
96#[stable(feature = "assert_ne", since = "1.13.0")]
97#[rustc_diagnostic_item = "assert_ne_macro"]
98#[allow_internal_unstable(panic_internals)]
99#[cfg(not(feature = "ferrocene_certified"))]
100macro_rules! assert_ne {
101 ($left:expr, $right:expr $(,)?) => {
102 match (&$left, &$right) {
103 (left_val, right_val) => {
104 if *left_val == *right_val {
105 let kind = $crate::panicking::AssertKind::Ne;
106 // The reborrows below are intentional. Without them, the stack slot for the
107 // borrow is initialized even before the values are compared, leading to a
108 // noticeable slow down.
109 $crate::panicking::assert_failed(kind, &*left_val, &*right_val, $crate::option::Option::None);
110 }
111 }
112 }
113 };
114 ($left:expr, $right:expr, $($arg:tt)+) => {
115 match (&($left), &($right)) {
116 (left_val, right_val) => {
117 if *left_val == *right_val {
118 let kind = $crate::panicking::AssertKind::Ne;
119 // The reborrows below are intentional. Without them, the stack slot for the
120 // borrow is initialized even before the values are compared, leading to a
121 // noticeable slow down.
122 $crate::panicking::assert_failed(kind, &*left_val, &*right_val, $crate::option::Option::Some($crate::format_args!($($arg)+)));
123 }
124 }
125 }
126 };
127}
128
129/// Asserts that an expression matches the provided pattern.
130///
131/// This macro is generally preferable to `assert!(matches!(value, pattern))`, because it can print
132/// the debug representation of the actual value shape that did not meet expectations. In contrast,
133/// using [`assert!`] will only print that expectations were not met, but not why.
134///
135/// The pattern syntax is exactly the same as found in a match arm and the `matches!` macro. The
136/// optional if guard can be used to add additional checks that must be true for the matched value,
137/// otherwise this macro will panic.
138///
139/// Assertions are always checked in both debug and release builds, and cannot
140/// be disabled. See [`debug_assert_matches!`] for assertions that are disabled in
141/// release builds by default.
142///
143/// [`debug_assert_matches!`]: crate::assert_matches::debug_assert_matches
144///
145/// On panic, this macro will print the value of the expression with its debug representation.
146///
147/// Like [`assert!`], this macro has a second form, where a custom panic message can be provided.
148///
149/// # Examples
150///
151/// ```
152/// #![feature(assert_matches)]
153///
154/// use std::assert_matches::assert_matches;
155///
156/// let a = Some(345);
157/// let b = Some(56);
158/// assert_matches!(a, Some(_));
159/// assert_matches!(b, Some(_));
160///
161/// assert_matches!(a, Some(345));
162/// assert_matches!(a, Some(345) | None);
163///
164/// // assert_matches!(a, None); // panics
165/// // assert_matches!(b, Some(345)); // panics
166/// // assert_matches!(b, Some(345) | None); // panics
167///
168/// assert_matches!(a, Some(x) if x > 100);
169/// // assert_matches!(a, Some(x) if x < 100); // panics
170/// ```
171#[unstable(feature = "assert_matches", issue = "82775")]
172#[allow_internal_unstable(panic_internals)]
173#[rustc_macro_transparency = "semitransparent"]
174#[cfg(not(feature = "ferrocene_certified"))]
175pub macro assert_matches {
176 ($left:expr, $(|)? $( $pattern:pat_param )|+ $( if $guard: expr )? $(,)?) => {
177 match $left {
178 $( $pattern )|+ $( if $guard )? => {}
179 ref left_val => {
180 $crate::panicking::assert_matches_failed(
181 left_val,
182 $crate::stringify!($($pattern)|+ $(if $guard)?),
183 $crate::option::Option::None
184 );
185 }
186 }
187 },
188 ($left:expr, $(|)? $( $pattern:pat_param )|+ $( if $guard: expr )?, $($arg:tt)+) => {
189 match $left {
190 $( $pattern )|+ $( if $guard )? => {}
191 ref left_val => {
192 $crate::panicking::assert_matches_failed(
193 left_val,
194 $crate::stringify!($($pattern)|+ $(if $guard)?),
195 $crate::option::Option::Some($crate::format_args!($($arg)+))
196 );
197 }
198 }
199 },
200}
201
202/// Selects code at compile-time based on `cfg` predicates.
203///
204/// This macro evaluates, at compile-time, a series of `cfg` predicates,
205/// selects the first that is true, and emits the code guarded by that
206/// predicate. The code guarded by other predicates is not emitted.
207///
208/// An optional trailing `_` wildcard can be used to specify a fallback. If
209/// none of the predicates are true, a [`compile_error`] is emitted.
210///
211/// # Example
212///
213/// ```
214/// #![feature(cfg_select)]
215///
216/// cfg_select! {
217/// unix => {
218/// fn foo() { /* unix specific functionality */ }
219/// }
220/// target_pointer_width = "32" => {
221/// fn foo() { /* non-unix, 32-bit functionality */ }
222/// }
223/// _ => {
224/// fn foo() { /* fallback implementation */ }
225/// }
226/// }
227/// ```
228///
229/// The `cfg_select!` macro can also be used in expression position, with or without braces on the
230/// right-hand side:
231///
232/// ```
233/// #![feature(cfg_select)]
234///
235/// let _some_string = cfg_select! {
236/// unix => "With great power comes great electricity bills",
237/// _ => { "Behind every successful diet is an unwatched pizza" }
238/// };
239/// ```
240#[unstable(feature = "cfg_select", issue = "115585")]
241#[rustc_diagnostic_item = "cfg_select"]
242#[rustc_builtin_macro]
243pub macro cfg_select($($tt:tt)*) {
244 /* compiler built-in */
245}
246
247/// Asserts that a boolean expression is `true` at runtime.
248///
249/// This will invoke the [`panic!`] macro if the provided expression cannot be
250/// evaluated to `true` at runtime.
251///
252/// Like [`assert!`], this macro also has a second version, where a custom panic
253/// message can be provided.
254///
255/// # Uses
256///
257/// Unlike [`assert!`], `debug_assert!` statements are only enabled in non
258/// optimized builds by default. An optimized build will not execute
259/// `debug_assert!` statements unless `-C debug-assertions` is passed to the
260/// compiler. This makes `debug_assert!` useful for checks that are too
261/// expensive to be present in a release build but may be helpful during
262/// development. The result of expanding `debug_assert!` is always type checked.
263///
264/// An unchecked assertion allows a program in an inconsistent state to keep
265/// running, which might have unexpected consequences but does not introduce
266/// unsafety as long as this only happens in safe code. The performance cost
267/// of assertions, however, is not measurable in general. Replacing [`assert!`]
268/// with `debug_assert!` is thus only encouraged after thorough profiling, and
269/// more importantly, only in safe code!
270///
271/// # Examples
272///
273/// ```
274/// // the panic message for these assertions is the stringified value of the
275/// // expression given.
276/// debug_assert!(true);
277///
278/// fn some_expensive_computation() -> bool {
279/// // Some expensive computation here
280/// true
281/// }
282/// debug_assert!(some_expensive_computation());
283///
284/// // assert with a custom message
285/// let x = true;
286/// debug_assert!(x, "x wasn't true!");
287///
288/// let a = 3; let b = 27;
289/// debug_assert!(a + b == 30, "a = {}, b = {}", a, b);
290/// ```
291#[macro_export]
292#[stable(feature = "rust1", since = "1.0.0")]
293#[rustc_diagnostic_item = "debug_assert_macro"]
294#[allow_internal_unstable(edition_panic)]
295macro_rules! debug_assert {
296 ($($arg:tt)*) => {
297 if $crate::cfg!(debug_assertions) {
298 $crate::assert!($($arg)*);
299 }
300 };
301}
302
303/// Asserts that two expressions are equal to each other.
304///
305/// On panic, this macro will print the values of the expressions with their
306/// debug representations.
307///
308/// Unlike [`assert_eq!`], `debug_assert_eq!` statements are only enabled in non
309/// optimized builds by default. An optimized build will not execute
310/// `debug_assert_eq!` statements unless `-C debug-assertions` is passed to the
311/// compiler. This makes `debug_assert_eq!` useful for checks that are too
312/// expensive to be present in a release build but may be helpful during
313/// development. The result of expanding `debug_assert_eq!` is always type checked.
314///
315/// # Examples
316///
317/// ```
318/// let a = 3;
319/// let b = 1 + 2;
320/// debug_assert_eq!(a, b);
321/// ```
322#[macro_export]
323#[stable(feature = "rust1", since = "1.0.0")]
324#[rustc_diagnostic_item = "debug_assert_eq_macro"]
325#[cfg(not(feature = "ferrocene_certified"))]
326macro_rules! debug_assert_eq {
327 ($($arg:tt)*) => {
328 if $crate::cfg!(debug_assertions) {
329 $crate::assert_eq!($($arg)*);
330 }
331 };
332}
333
334/// Asserts that two expressions are not equal to each other.
335///
336/// On panic, this macro will print the values of the expressions with their
337/// debug representations.
338///
339/// Unlike [`assert_ne!`], `debug_assert_ne!` statements are only enabled in non
340/// optimized builds by default. An optimized build will not execute
341/// `debug_assert_ne!` statements unless `-C debug-assertions` is passed to the
342/// compiler. This makes `debug_assert_ne!` useful for checks that are too
343/// expensive to be present in a release build but may be helpful during
344/// development. The result of expanding `debug_assert_ne!` is always type checked.
345///
346/// # Examples
347///
348/// ```
349/// let a = 3;
350/// let b = 2;
351/// debug_assert_ne!(a, b);
352/// ```
353#[macro_export]
354#[stable(feature = "assert_ne", since = "1.13.0")]
355#[rustc_diagnostic_item = "debug_assert_ne_macro"]
356#[cfg(not(feature = "ferrocene_certified"))]
357macro_rules! debug_assert_ne {
358 ($($arg:tt)*) => {
359 if $crate::cfg!(debug_assertions) {
360 $crate::assert_ne!($($arg)*);
361 }
362 };
363}
364
365/// Asserts that an expression matches the provided pattern.
366///
367/// This macro is generally preferable to `debug_assert!(matches!(value, pattern))`, because it can
368/// print the debug representation of the actual value shape that did not meet expectations. In
369/// contrast, using [`debug_assert!`] will only print that expectations were not met, but not why.
370///
371/// The pattern syntax is exactly the same as found in a match arm and the `matches!` macro. The
372/// optional if guard can be used to add additional checks that must be true for the matched value,
373/// otherwise this macro will panic.
374///
375/// On panic, this macro will print the value of the expression with its debug representation.
376///
377/// Like [`assert!`], this macro has a second form, where a custom panic message can be provided.
378///
379/// Unlike [`assert_matches!`], `debug_assert_matches!` statements are only enabled in non optimized
380/// builds by default. An optimized build will not execute `debug_assert_matches!` statements unless
381/// `-C debug-assertions` is passed to the compiler. This makes `debug_assert_matches!` useful for
382/// checks that are too expensive to be present in a release build but may be helpful during
383/// development. The result of expanding `debug_assert_matches!` is always type checked.
384///
385/// # Examples
386///
387/// ```
388/// #![feature(assert_matches)]
389///
390/// use std::assert_matches::debug_assert_matches;
391///
392/// let a = Some(345);
393/// let b = Some(56);
394/// debug_assert_matches!(a, Some(_));
395/// debug_assert_matches!(b, Some(_));
396///
397/// debug_assert_matches!(a, Some(345));
398/// debug_assert_matches!(a, Some(345) | None);
399///
400/// // debug_assert_matches!(a, None); // panics
401/// // debug_assert_matches!(b, Some(345)); // panics
402/// // debug_assert_matches!(b, Some(345) | None); // panics
403///
404/// debug_assert_matches!(a, Some(x) if x > 100);
405/// // debug_assert_matches!(a, Some(x) if x < 100); // panics
406/// ```
407#[unstable(feature = "assert_matches", issue = "82775")]
408#[allow_internal_unstable(assert_matches)]
409#[rustc_macro_transparency = "semitransparent"]
410#[cfg(not(feature = "ferrocene_certified"))]
411pub macro debug_assert_matches($($arg:tt)*) {
412 if $crate::cfg!(debug_assertions) {
413 $crate::assert_matches::assert_matches!($($arg)*);
414 }
415}
416
417/// Returns whether the given expression matches the provided pattern.
418///
419/// The pattern syntax is exactly the same as found in a match arm. The optional if guard can be
420/// used to add additional checks that must be true for the matched value, otherwise this macro will
421/// return `false`.
422///
423/// When testing that a value matches a pattern, it's generally preferable to use
424/// [`assert_matches!`] as it will print the debug representation of the value if the assertion
425/// fails.
426///
427/// # Examples
428///
429/// ```
430/// let foo = 'f';
431/// assert!(matches!(foo, 'A'..='Z' | 'a'..='z'));
432///
433/// let bar = Some(4);
434/// assert!(matches!(bar, Some(x) if x > 2));
435/// ```
436#[macro_export]
437#[stable(feature = "matches_macro", since = "1.42.0")]
438#[rustc_diagnostic_item = "matches_macro"]
439#[allow_internal_unstable(non_exhaustive_omitted_patterns_lint, stmt_expr_attributes)]
440macro_rules! matches {
441 ($expression:expr, $pattern:pat $(if $guard:expr)? $(,)?) => {
442 #[allow(non_exhaustive_omitted_patterns)]
443 match $expression {
444 $pattern $(if $guard)? => true,
445 _ => false
446 }
447 };
448}
449
450/// Unwraps a result or propagates its error.
451///
452/// The [`?` operator][propagating-errors] was added to replace `try!`
453/// and should be used instead. Furthermore, `try` is a reserved word
454/// in Rust 2018, so if you must use it, you will need to use the
455/// [raw-identifier syntax][ris]: `r#try`.
456///
457/// [propagating-errors]: https://doc.rust-lang.org/book/ch09-02-recoverable-errors-with-result.html#a-shortcut-for-propagating-errors-the--operator
458/// [ris]: https://doc.rust-lang.org/nightly/rust-by-example/compatibility/raw_identifiers.html
459///
460/// `try!` matches the given [`Result`]. In case of the `Ok` variant, the
461/// expression has the value of the wrapped value.
462///
463/// In case of the `Err` variant, it retrieves the inner error. `try!` then
464/// performs conversion using `From`. This provides automatic conversion
465/// between specialized errors and more general ones. The resulting
466/// error is then immediately returned.
467///
468/// Because of the early return, `try!` can only be used in functions that
469/// return [`Result`].
470///
471/// # Examples
472///
473/// ```
474/// use std::io;
475/// use std::fs::File;
476/// use std::io::prelude::*;
477///
478/// enum MyError {
479/// FileWriteError
480/// }
481///
482/// impl From<io::Error> for MyError {
483/// fn from(e: io::Error) -> MyError {
484/// MyError::FileWriteError
485/// }
486/// }
487///
488/// // The preferred method of quick returning Errors
489/// fn write_to_file_question() -> Result<(), MyError> {
490/// let mut file = File::create("my_best_friends.txt")?;
491/// file.write_all(b"This is a list of my best friends.")?;
492/// Ok(())
493/// }
494///
495/// // The previous method of quick returning Errors
496/// fn write_to_file_using_try() -> Result<(), MyError> {
497/// let mut file = r#try!(File::create("my_best_friends.txt"));
498/// r#try!(file.write_all(b"This is a list of my best friends."));
499/// Ok(())
500/// }
501///
502/// // This is equivalent to:
503/// fn write_to_file_using_match() -> Result<(), MyError> {
504/// let mut file = r#try!(File::create("my_best_friends.txt"));
505/// match file.write_all(b"This is a list of my best friends.") {
506/// Ok(v) => v,
507/// Err(e) => return Err(From::from(e)),
508/// }
509/// Ok(())
510/// }
511/// ```
512#[macro_export]
513#[stable(feature = "rust1", since = "1.0.0")]
514#[deprecated(since = "1.39.0", note = "use the `?` operator instead")]
515#[doc(alias = "?")]
516#[cfg(not(feature = "ferrocene_certified"))]
517macro_rules! r#try {
518 ($expr:expr $(,)?) => {
519 match $expr {
520 $crate::result::Result::Ok(val) => val,
521 $crate::result::Result::Err(err) => {
522 return $crate::result::Result::Err($crate::convert::From::from(err));
523 }
524 }
525 };
526}
527
528/// Writes formatted data into a buffer.
529///
530/// This macro accepts a 'writer', a format string, and a list of arguments. Arguments will be
531/// formatted according to the specified format string and the result will be passed to the writer.
532/// The writer may be any value with a `write_fmt` method; generally this comes from an
533/// implementation of either the [`fmt::Write`] or the [`io::Write`] trait. The macro
534/// returns whatever the `write_fmt` method returns; commonly a [`fmt::Result`], or an
535/// [`io::Result`].
536///
537/// See [`std::fmt`] for more information on the format string syntax.
538///
539/// [`std::fmt`]: ../std/fmt/index.html
540/// [`fmt::Write`]: crate::fmt::Write
541/// [`io::Write`]: ../std/io/trait.Write.html
542/// [`fmt::Result`]: crate::fmt::Result
543/// [`io::Result`]: ../std/io/type.Result.html
544///
545/// # Examples
546///
547/// ```
548/// use std::io::Write;
549///
550/// fn main() -> std::io::Result<()> {
551/// let mut w = Vec::new();
552/// write!(&mut w, "test")?;
553/// write!(&mut w, "formatted {}", "arguments")?;
554///
555/// assert_eq!(w, b"testformatted arguments");
556/// Ok(())
557/// }
558/// ```
559///
560/// A module can import both `std::fmt::Write` and `std::io::Write` and call `write!` on objects
561/// implementing either, as objects do not typically implement both. However, the module must
562/// avoid conflict between the trait names, such as by importing them as `_` or otherwise renaming
563/// them:
564///
565/// ```
566/// use std::fmt::Write as _;
567/// use std::io::Write as _;
568///
569/// fn main() -> Result<(), Box<dyn std::error::Error>> {
570/// let mut s = String::new();
571/// let mut v = Vec::new();
572///
573/// write!(&mut s, "{} {}", "abc", 123)?; // uses fmt::Write::write_fmt
574/// write!(&mut v, "s = {:?}", s)?; // uses io::Write::write_fmt
575/// assert_eq!(v, b"s = \"abc 123\"");
576/// Ok(())
577/// }
578/// ```
579///
580/// If you also need the trait names themselves, such as to implement one or both on your types,
581/// import the containing module and then name them with a prefix:
582///
583/// ```
584/// # #![allow(unused_imports)]
585/// use std::fmt::{self, Write as _};
586/// use std::io::{self, Write as _};
587///
588/// struct Example;
589///
590/// impl fmt::Write for Example {
591/// fn write_str(&mut self, _s: &str) -> core::fmt::Result {
592/// unimplemented!();
593/// }
594/// }
595/// ```
596///
597/// Note: This macro can be used in `no_std` setups as well.
598/// In a `no_std` setup you are responsible for the implementation details of the components.
599///
600/// ```no_run
601/// use core::fmt::Write;
602///
603/// struct Example;
604///
605/// impl Write for Example {
606/// fn write_str(&mut self, _s: &str) -> core::fmt::Result {
607/// unimplemented!();
608/// }
609/// }
610///
611/// let mut m = Example{};
612/// write!(&mut m, "Hello World").expect("Not written");
613/// ```
614#[macro_export]
615#[stable(feature = "rust1", since = "1.0.0")]
616#[rustc_diagnostic_item = "write_macro"]
617#[cfg(not(feature = "ferrocene_certified"))]
618macro_rules! write {
619 ($dst:expr, $($arg:tt)*) => {
620 $dst.write_fmt($crate::format_args!($($arg)*))
621 };
622}
623
624/// Writes formatted data into a buffer, with a newline appended.
625///
626/// On all platforms, the newline is the LINE FEED character (`\n`/`U+000A`) alone
627/// (no additional CARRIAGE RETURN (`\r`/`U+000D`).
628///
629/// For more information, see [`write!`]. For information on the format string syntax, see
630/// [`std::fmt`].
631///
632/// [`std::fmt`]: ../std/fmt/index.html
633///
634/// # Examples
635///
636/// ```
637/// use std::io::{Write, Result};
638///
639/// fn main() -> Result<()> {
640/// let mut w = Vec::new();
641/// writeln!(&mut w)?;
642/// writeln!(&mut w, "test")?;
643/// writeln!(&mut w, "formatted {}", "arguments")?;
644///
645/// assert_eq!(&w[..], "\ntest\nformatted arguments\n".as_bytes());
646/// Ok(())
647/// }
648/// ```
649#[macro_export]
650#[stable(feature = "rust1", since = "1.0.0")]
651#[rustc_diagnostic_item = "writeln_macro"]
652#[allow_internal_unstable(format_args_nl)]
653#[cfg(not(feature = "ferrocene_certified"))]
654macro_rules! writeln {
655 ($dst:expr $(,)?) => {
656 $crate::write!($dst, "\n")
657 };
658 ($dst:expr, $($arg:tt)*) => {
659 $dst.write_fmt($crate::format_args_nl!($($arg)*))
660 };
661}
662
663/// Indicates unreachable code.
664///
665/// This is useful any time that the compiler can't determine that some code is unreachable. For
666/// example:
667///
668/// * Match arms with guard conditions.
669/// * Loops that dynamically terminate.
670/// * Iterators that dynamically terminate.
671///
672/// If the determination that the code is unreachable proves incorrect, the
673/// program immediately terminates with a [`panic!`].
674///
675/// The unsafe counterpart of this macro is the [`unreachable_unchecked`] function, which
676/// will cause undefined behavior if the code is reached.
677///
678/// [`unreachable_unchecked`]: crate::hint::unreachable_unchecked
679///
680/// # Panics
681///
682/// This will always [`panic!`] because `unreachable!` is just a shorthand for `panic!` with a
683/// fixed, specific message.
684///
685/// Like `panic!`, this macro has a second form for displaying custom values.
686///
687/// # Examples
688///
689/// Match arms:
690///
691/// ```
692/// # #[allow(dead_code)]
693/// fn foo(x: Option<i32>) {
694/// match x {
695/// Some(n) if n >= 0 => println!("Some(Non-negative)"),
696/// Some(n) if n < 0 => println!("Some(Negative)"),
697/// Some(_) => unreachable!(), // compile error if commented out
698/// None => println!("None")
699/// }
700/// }
701/// ```
702///
703/// Iterators:
704///
705/// ```
706/// # #[allow(dead_code)]
707/// fn divide_by_three(x: u32) -> u32 { // one of the poorest implementations of x/3
708/// for i in 0.. {
709/// if 3*i < i { panic!("u32 overflow"); }
710/// if x < 3*i { return i-1; }
711/// }
712/// unreachable!("The loop should always return");
713/// }
714/// ```
715#[macro_export]
716#[rustc_builtin_macro(unreachable)]
717#[allow_internal_unstable(edition_panic)]
718#[stable(feature = "rust1", since = "1.0.0")]
719#[rustc_diagnostic_item = "unreachable_macro"]
720macro_rules! unreachable {
721 // Expands to either `$crate::panic::unreachable_2015` or `$crate::panic::unreachable_2021`
722 // depending on the edition of the caller.
723 ($($arg:tt)*) => {
724 /* compiler built-in */
725 };
726}
727
728/// Indicates unimplemented code by panicking with a message of "not implemented".
729///
730/// This allows your code to type-check, which is useful if you are prototyping or
731/// implementing a trait that requires multiple methods which you don't plan to use all of.
732///
733/// The difference between `unimplemented!` and [`todo!`] is that while `todo!`
734/// conveys an intent of implementing the functionality later and the message is "not yet
735/// implemented", `unimplemented!` makes no such claims. Its message is "not implemented".
736///
737/// Also, some IDEs will mark `todo!`s.
738///
739/// # Panics
740///
741/// This will always [`panic!`] because `unimplemented!` is just a shorthand for `panic!` with a
742/// fixed, specific message.
743///
744/// Like `panic!`, this macro has a second form for displaying custom values.
745///
746/// [`todo!`]: crate::todo
747///
748/// # Examples
749///
750/// Say we have a trait `Foo`:
751///
752/// ```
753/// trait Foo {
754/// fn bar(&self) -> u8;
755/// fn baz(&self);
756/// fn qux(&self) -> Result<u64, ()>;
757/// }
758/// ```
759///
760/// We want to implement `Foo` for 'MyStruct', but for some reason it only makes sense
761/// to implement the `bar()` function. `baz()` and `qux()` will still need to be defined
762/// in our implementation of `Foo`, but we can use `unimplemented!` in their definitions
763/// to allow our code to compile.
764///
765/// We still want to have our program stop running if the unimplemented methods are
766/// reached.
767///
768/// ```
769/// # trait Foo {
770/// # fn bar(&self) -> u8;
771/// # fn baz(&self);
772/// # fn qux(&self) -> Result<u64, ()>;
773/// # }
774/// struct MyStruct;
775///
776/// impl Foo for MyStruct {
777/// fn bar(&self) -> u8 {
778/// 1 + 1
779/// }
780///
781/// fn baz(&self) {
782/// // It makes no sense to `baz` a `MyStruct`, so we have no logic here
783/// // at all.
784/// // This will display "thread 'main' panicked at 'not implemented'".
785/// unimplemented!();
786/// }
787///
788/// fn qux(&self) -> Result<u64, ()> {
789/// // We have some logic here,
790/// // We can add a message to unimplemented! to display our omission.
791/// // This will display:
792/// // "thread 'main' panicked at 'not implemented: MyStruct isn't quxable'".
793/// unimplemented!("MyStruct isn't quxable");
794/// }
795/// }
796///
797/// fn main() {
798/// let s = MyStruct;
799/// s.bar();
800/// }
801/// ```
802#[macro_export]
803#[stable(feature = "rust1", since = "1.0.0")]
804#[rustc_diagnostic_item = "unimplemented_macro"]
805#[allow_internal_unstable(panic_internals)]
806#[cfg(not(feature = "ferrocene_certified"))]
807macro_rules! unimplemented {
808 () => {
809 $crate::panicking::panic("not implemented")
810 };
811 ($($arg:tt)+) => {
812 $crate::panic!("not implemented: {}", $crate::format_args!($($arg)+))
813 };
814}
815
816/// Indicates unfinished code.
817///
818/// This can be useful if you are prototyping and just
819/// want a placeholder to let your code pass type analysis.
820///
821/// The difference between [`unimplemented!`] and `todo!` is that while `todo!` conveys
822/// an intent of implementing the functionality later and the message is "not yet
823/// implemented", `unimplemented!` makes no such claims. Its message is "not implemented".
824///
825/// Also, some IDEs will mark `todo!`s.
826///
827/// # Panics
828///
829/// This will always [`panic!`] because `todo!` is just a shorthand for `panic!` with a
830/// fixed, specific message.
831///
832/// Like `panic!`, this macro has a second form for displaying custom values.
833///
834/// # Examples
835///
836/// Here's an example of some in-progress code. We have a trait `Foo`:
837///
838/// ```
839/// trait Foo {
840/// fn bar(&self) -> u8;
841/// fn baz(&self);
842/// fn qux(&self) -> Result<u64, ()>;
843/// }
844/// ```
845///
846/// We want to implement `Foo` on one of our types, but we also want to work on
847/// just `bar()` first. In order for our code to compile, we need to implement
848/// `baz()` and `qux()`, so we can use `todo!`:
849///
850/// ```
851/// # trait Foo {
852/// # fn bar(&self) -> u8;
853/// # fn baz(&self);
854/// # fn qux(&self) -> Result<u64, ()>;
855/// # }
856/// struct MyStruct;
857///
858/// impl Foo for MyStruct {
859/// fn bar(&self) -> u8 {
860/// 1 + 1
861/// }
862///
863/// fn baz(&self) {
864/// // Let's not worry about implementing baz() for now
865/// todo!();
866/// }
867///
868/// fn qux(&self) -> Result<u64, ()> {
869/// // We can add a message to todo! to display our omission.
870/// // This will display:
871/// // "thread 'main' panicked at 'not yet implemented: MyStruct is not yet quxable'".
872/// todo!("MyStruct is not yet quxable");
873/// }
874/// }
875///
876/// fn main() {
877/// let s = MyStruct;
878/// s.bar();
879///
880/// // We aren't even using baz() or qux(), so this is fine.
881/// }
882/// ```
883#[macro_export]
884#[stable(feature = "todo_macro", since = "1.40.0")]
885#[rustc_diagnostic_item = "todo_macro"]
886#[allow_internal_unstable(panic_internals)]
887#[cfg(not(feature = "ferrocene_certified"))]
888macro_rules! todo {
889 () => {
890 $crate::panicking::panic("not yet implemented")
891 };
892 ($($arg:tt)+) => {
893 $crate::panic!("not yet implemented: {}", $crate::format_args!($($arg)+))
894 };
895}
896
897/// Definitions of built-in macros.
898///
899/// Most of the macro properties (stability, visibility, etc.) are taken from the source code here,
900/// with exception of expansion functions transforming macro inputs into outputs,
901/// those functions are provided by the compiler.
902pub(crate) mod builtin {
903
904 /// Causes compilation to fail with the given error message when encountered.
905 ///
906 /// This macro should be used when a crate uses a conditional compilation strategy to provide
907 /// better error messages for erroneous conditions. It's the compiler-level form of [`panic!`],
908 /// but emits an error during *compilation* rather than at *runtime*.
909 ///
910 /// # Examples
911 ///
912 /// Two such examples are macros and `#[cfg]` environments.
913 ///
914 /// Emit a better compiler error if a macro is passed invalid values. Without the final branch,
915 /// the compiler would still emit an error, but the error's message would not mention the two
916 /// valid values.
917 ///
918 /// ```compile_fail
919 /// macro_rules! give_me_foo_or_bar {
920 /// (foo) => {};
921 /// (bar) => {};
922 /// ($x:ident) => {
923 /// compile_error!("This macro only accepts `foo` or `bar`");
924 /// }
925 /// }
926 ///
927 /// give_me_foo_or_bar!(neither);
928 /// // ^ will fail at compile time with message "This macro only accepts `foo` or `bar`"
929 /// ```
930 ///
931 /// Emit a compiler error if one of a number of features isn't available.
932 ///
933 /// ```compile_fail
934 /// #[cfg(not(any(feature = "foo", feature = "bar")))]
935 /// compile_error!("Either feature \"foo\" or \"bar\" must be enabled for this crate.");
936 /// ```
937 #[stable(feature = "compile_error_macro", since = "1.20.0")]
938 #[rustc_builtin_macro]
939 #[macro_export]
940 macro_rules! compile_error {
941 ($msg:expr $(,)?) => {{ /* compiler built-in */ }};
942 }
943
944 /// Constructs parameters for the other string-formatting macros.
945 ///
946 /// This macro functions by taking a formatting string literal containing
947 /// `{}` for each additional argument passed. `format_args!` prepares the
948 /// additional parameters to ensure the output can be interpreted as a string
949 /// and canonicalizes the arguments into a single type. Any value that implements
950 /// the [`Display`] trait can be passed to `format_args!`, as can any
951 /// [`Debug`] implementation be passed to a `{:?}` within the formatting string.
952 ///
953 /// This macro produces a value of type [`fmt::Arguments`]. This value can be
954 /// passed to the macros within [`std::fmt`] for performing useful redirection.
955 /// All other formatting macros ([`format!`], [`write!`], [`println!`], etc) are
956 /// proxied through this one. `format_args!`, unlike its derived macros, avoids
957 /// heap allocations.
958 ///
959 /// You can use the [`fmt::Arguments`] value that `format_args!` returns
960 /// in `Debug` and `Display` contexts as seen below. The example also shows
961 /// that `Debug` and `Display` format to the same thing: the interpolated
962 /// format string in `format_args!`.
963 ///
964 /// ```rust
965 /// let args = format_args!("{} foo {:?}", 1, 2);
966 /// let debug = format!("{args:?}");
967 /// let display = format!("{args}");
968 /// assert_eq!("1 foo 2", display);
969 /// assert_eq!(display, debug);
970 /// ```
971 ///
972 /// See [the formatting documentation in `std::fmt`](../std/fmt/index.html)
973 /// for details of the macro argument syntax, and further information.
974 ///
975 /// [`Display`]: crate::fmt::Display
976 /// [`Debug`]: crate::fmt::Debug
977 /// [`fmt::Arguments`]: crate::fmt::Arguments
978 /// [`std::fmt`]: ../std/fmt/index.html
979 /// [`format!`]: ../std/macro.format.html
980 /// [`println!`]: ../std/macro.println.html
981 ///
982 /// # Examples
983 ///
984 /// ```
985 /// use std::fmt;
986 ///
987 /// let s = fmt::format(format_args!("hello {}", "world"));
988 /// assert_eq!(s, format!("hello {}", "world"));
989 /// ```
990 ///
991 /// # Argument lifetimes
992 ///
993 /// Except when no formatting arguments are used,
994 /// the produced `fmt::Arguments` value borrows temporary values.
995 /// To allow it to be stored for later use, the arguments' lifetimes, as well as those of
996 /// temporaries they borrow, may be [extended] when `format_args!` appears in the initializer
997 /// expression of a `let` statement. The syntactic rules used to determine when temporaries'
998 /// lifetimes are extended are documented in the [Reference].
999 ///
1000 /// [extended]: ../reference/destructors.html#temporary-lifetime-extension
1001 /// [Reference]: ../reference/destructors.html#extending-based-on-expressions
1002 #[stable(feature = "rust1", since = "1.0.0")]
1003 #[rustc_diagnostic_item = "format_args_macro"]
1004 #[allow_internal_unsafe]
1005 #[allow_internal_unstable(fmt_internals, fmt_arguments_from_str)]
1006 #[rustc_builtin_macro]
1007 #[macro_export]
1008 macro_rules! format_args {
1009 ($fmt:expr) => {{ /* compiler built-in */ }};
1010 ($fmt:expr, $($args:tt)*) => {{ /* compiler built-in */ }};
1011 }
1012
1013 /// Same as [`format_args`], but can be used in some const contexts.
1014 ///
1015 /// This macro is used by the panic macros for the `const_panic` feature.
1016 ///
1017 /// This macro will be removed once `format_args` is allowed in const contexts.
1018 #[unstable(feature = "const_format_args", issue = "none")]
1019 #[allow_internal_unstable(fmt_internals, fmt_arguments_from_str)]
1020 #[rustc_builtin_macro]
1021 #[macro_export]
1022 macro_rules! const_format_args {
1023 ($fmt:expr) => {{ /* compiler built-in */ }};
1024 ($fmt:expr, $($args:tt)*) => {{ /* compiler built-in */ }};
1025 }
1026
1027 /// Same as [`format_args`], but adds a newline in the end.
1028 #[unstable(
1029 feature = "format_args_nl",
1030 issue = "none",
1031 reason = "`format_args_nl` is only for internal \
1032 language use and is subject to change"
1033 )]
1034 #[allow_internal_unstable(fmt_internals, fmt_arguments_from_str)]
1035 #[rustc_builtin_macro]
1036 #[doc(hidden)]
1037 #[macro_export]
1038 macro_rules! format_args_nl {
1039 ($fmt:expr) => {{ /* compiler built-in */ }};
1040 ($fmt:expr, $($args:tt)*) => {{ /* compiler built-in */ }};
1041 }
1042
1043 /// Inspects an environment variable at compile time.
1044 ///
1045 /// This macro will expand to the value of the named environment variable at
1046 /// compile time, yielding an expression of type `&'static str`. Use
1047 /// [`std::env::var`] instead if you want to read the value at runtime.
1048 ///
1049 /// [`std::env::var`]: ../std/env/fn.var.html
1050 ///
1051 /// If the environment variable is not defined, then a compilation error
1052 /// will be emitted. To not emit a compile error, use the [`option_env!`]
1053 /// macro instead. A compilation error will also be emitted if the
1054 /// environment variable is not a valid Unicode string.
1055 ///
1056 /// # Examples
1057 ///
1058 /// ```
1059 /// let path: &'static str = env!("PATH");
1060 /// println!("the $PATH variable at the time of compiling was: {path}");
1061 /// ```
1062 ///
1063 /// You can customize the error message by passing a string as the second
1064 /// parameter:
1065 ///
1066 /// ```compile_fail
1067 /// let doc: &'static str = env!("documentation", "what's that?!");
1068 /// ```
1069 ///
1070 /// If the `documentation` environment variable is not defined, you'll get
1071 /// the following error:
1072 ///
1073 /// ```text
1074 /// error: what's that?!
1075 /// ```
1076 #[stable(feature = "rust1", since = "1.0.0")]
1077 #[rustc_builtin_macro]
1078 #[macro_export]
1079 #[rustc_diagnostic_item = "env_macro"] // useful for external lints
1080 macro_rules! env {
1081 ($name:expr $(,)?) => {{ /* compiler built-in */ }};
1082 ($name:expr, $error_msg:expr $(,)?) => {{ /* compiler built-in */ }};
1083 }
1084
1085 /// Optionally inspects an environment variable at compile time.
1086 ///
1087 /// If the named environment variable is present at compile time, this will
1088 /// expand into an expression of type `Option<&'static str>` whose value is
1089 /// `Some` of the value of the environment variable (a compilation error
1090 /// will be emitted if the environment variable is not a valid Unicode
1091 /// string). If the environment variable is not present, then this will
1092 /// expand to `None`. See [`Option<T>`][Option] for more information on this
1093 /// type. Use [`std::env::var`] instead if you want to read the value at
1094 /// runtime.
1095 ///
1096 /// [`std::env::var`]: ../std/env/fn.var.html
1097 ///
1098 /// A compile time error is only emitted when using this macro if the
1099 /// environment variable exists and is not a valid Unicode string. To also
1100 /// emit a compile error if the environment variable is not present, use the
1101 /// [`env!`] macro instead.
1102 ///
1103 /// # Examples
1104 ///
1105 /// ```
1106 /// let key: Option<&'static str> = option_env!("SECRET_KEY");
1107 /// println!("the secret key might be: {key:?}");
1108 /// ```
1109 #[stable(feature = "rust1", since = "1.0.0")]
1110 #[rustc_builtin_macro]
1111 #[macro_export]
1112 #[rustc_diagnostic_item = "option_env_macro"] // useful for external lints
1113 macro_rules! option_env {
1114 ($name:expr $(,)?) => {{ /* compiler built-in */ }};
1115 }
1116
1117 /// Concatenates literals into a byte slice.
1118 ///
1119 /// This macro takes any number of comma-separated literals, and concatenates them all into
1120 /// one, yielding an expression of type `&[u8; _]`, which represents all of the literals
1121 /// concatenated left-to-right. The literals passed can be any combination of:
1122 ///
1123 /// - byte literals (`b'r'`)
1124 /// - byte strings (`b"Rust"`)
1125 /// - arrays of bytes/numbers (`[b'A', 66, b'C']`)
1126 ///
1127 /// # Examples
1128 ///
1129 /// ```
1130 /// #![feature(concat_bytes)]
1131 ///
1132 /// # fn main() {
1133 /// let s: &[u8; 6] = concat_bytes!(b'A', b"BC", [68, b'E', 70]);
1134 /// assert_eq!(s, b"ABCDEF");
1135 /// # }
1136 /// ```
1137 #[unstable(feature = "concat_bytes", issue = "87555")]
1138 #[rustc_builtin_macro]
1139 #[macro_export]
1140 macro_rules! concat_bytes {
1141 ($($e:literal),+ $(,)?) => {{ /* compiler built-in */ }};
1142 }
1143
1144 /// Concatenates literals into a static string slice.
1145 ///
1146 /// This macro takes any number of comma-separated literals, yielding an
1147 /// expression of type `&'static str` which represents all of the literals
1148 /// concatenated left-to-right.
1149 ///
1150 /// Integer and floating point literals are [stringified](core::stringify) in order to be
1151 /// concatenated.
1152 ///
1153 /// # Examples
1154 ///
1155 /// ```
1156 /// let s = concat!("test", 10, 'b', true);
1157 /// assert_eq!(s, "test10btrue");
1158 /// ```
1159 #[stable(feature = "rust1", since = "1.0.0")]
1160 #[rustc_builtin_macro]
1161 #[rustc_diagnostic_item = "macro_concat"]
1162 #[macro_export]
1163 macro_rules! concat {
1164 ($($e:expr),* $(,)?) => {{ /* compiler built-in */ }};
1165 }
1166
1167 /// Expands to the line number on which it was invoked.
1168 ///
1169 /// With [`column!`] and [`file!`], these macros provide debugging information for
1170 /// developers about the location within the source.
1171 ///
1172 /// The expanded expression has type `u32` and is 1-based, so the first line
1173 /// in each file evaluates to 1, the second to 2, etc. This is consistent
1174 /// with error messages by common compilers or popular editors.
1175 /// The returned line is *not necessarily* the line of the `line!` invocation itself,
1176 /// but rather the first macro invocation leading up to the invocation
1177 /// of the `line!` macro.
1178 ///
1179 /// # Examples
1180 ///
1181 /// ```
1182 /// let current_line = line!();
1183 /// println!("defined on line: {current_line}");
1184 /// ```
1185 #[stable(feature = "rust1", since = "1.0.0")]
1186 #[rustc_builtin_macro]
1187 #[macro_export]
1188 macro_rules! line {
1189 () => {
1190 /* compiler built-in */
1191 };
1192 }
1193
1194 /// Expands to the column number at which it was invoked.
1195 ///
1196 /// With [`line!`] and [`file!`], these macros provide debugging information for
1197 /// developers about the location within the source.
1198 ///
1199 /// The expanded expression has type `u32` and is 1-based, so the first column
1200 /// in each line evaluates to 1, the second to 2, etc. This is consistent
1201 /// with error messages by common compilers or popular editors.
1202 /// The returned column is *not necessarily* the line of the `column!` invocation itself,
1203 /// but rather the first macro invocation leading up to the invocation
1204 /// of the `column!` macro.
1205 ///
1206 /// # Examples
1207 ///
1208 /// ```
1209 /// let current_col = column!();
1210 /// println!("defined on column: {current_col}");
1211 /// ```
1212 ///
1213 /// `column!` counts Unicode code points, not bytes or graphemes. As a result, the first two
1214 /// invocations return the same value, but the third does not.
1215 ///
1216 /// ```
1217 /// let a = ("foobar", column!()).1;
1218 /// let b = ("人之初性本善", column!()).1;
1219 /// let c = ("f̅o̅o̅b̅a̅r̅", column!()).1; // Uses combining overline (U+0305)
1220 ///
1221 /// assert_eq!(a, b);
1222 /// assert_ne!(b, c);
1223 /// ```
1224 #[stable(feature = "rust1", since = "1.0.0")]
1225 #[rustc_builtin_macro]
1226 #[macro_export]
1227 macro_rules! column {
1228 () => {
1229 /* compiler built-in */
1230 };
1231 }
1232
1233 /// Expands to the file name in which it was invoked.
1234 ///
1235 /// With [`line!`] and [`column!`], these macros provide debugging information for
1236 /// developers about the location within the source.
1237 ///
1238 /// The expanded expression has type `&'static str`, and the returned file
1239 /// is not the invocation of the `file!` macro itself, but rather the
1240 /// first macro invocation leading up to the invocation of the `file!`
1241 /// macro.
1242 ///
1243 /// The file name is derived from the crate root's source path passed to the Rust compiler
1244 /// and the sequence the compiler takes to get from the crate root to the
1245 /// module containing `file!`, modified by any flags passed to the Rust compiler (e.g.
1246 /// `--remap-path-prefix`). If the crate's source path is relative, the initial base
1247 /// directory will be the working directory of the Rust compiler. For example, if the source
1248 /// path passed to the compiler is `./src/lib.rs` which has a `mod foo;` with a source path of
1249 /// `src/foo/mod.rs`, then calling `file!` inside `mod foo;` will return `./src/foo/mod.rs`.
1250 ///
1251 /// Future compiler options might make further changes to the behavior of `file!`,
1252 /// including potentially making it entirely empty. Code (e.g. test libraries)
1253 /// relying on `file!` producing an openable file path would be incompatible
1254 /// with such options, and might wish to recommend not using those options.
1255 ///
1256 /// # Examples
1257 ///
1258 /// ```
1259 /// let this_file = file!();
1260 /// println!("defined in file: {this_file}");
1261 /// ```
1262 #[stable(feature = "rust1", since = "1.0.0")]
1263 #[rustc_builtin_macro]
1264 #[macro_export]
1265 macro_rules! file {
1266 () => {
1267 /* compiler built-in */
1268 };
1269 }
1270
1271 /// Stringifies its arguments.
1272 ///
1273 /// This macro will yield an expression of type `&'static str` which is the
1274 /// stringification of all the tokens passed to the macro. No restrictions
1275 /// are placed on the syntax of the macro invocation itself.
1276 ///
1277 /// Note that the expanded results of the input tokens may change in the
1278 /// future. You should be careful if you rely on the output.
1279 ///
1280 /// # Examples
1281 ///
1282 /// ```
1283 /// let one_plus_one = stringify!(1 + 1);
1284 /// assert_eq!(one_plus_one, "1 + 1");
1285 /// ```
1286 #[stable(feature = "rust1", since = "1.0.0")]
1287 #[rustc_builtin_macro]
1288 #[macro_export]
1289 macro_rules! stringify {
1290 ($($t:tt)*) => {
1291 /* compiler built-in */
1292 };
1293 }
1294
1295 /// Includes a UTF-8 encoded file as a string.
1296 ///
1297 /// The file is located relative to the current file (similarly to how
1298 /// modules are found). The provided path is interpreted in a platform-specific
1299 /// way at compile time. So, for instance, an invocation with a Windows path
1300 /// containing backslashes `\` would not compile correctly on Unix.
1301 ///
1302 /// This macro will yield an expression of type `&'static str` which is the
1303 /// contents of the file.
1304 ///
1305 /// # Examples
1306 ///
1307 /// Assume there are two files in the same directory with the following
1308 /// contents:
1309 ///
1310 /// File 'spanish.in':
1311 ///
1312 /// ```text
1313 /// adiós
1314 /// ```
1315 ///
1316 /// File 'main.rs':
1317 ///
1318 /// ```ignore (cannot-doctest-external-file-dependency)
1319 /// fn main() {
1320 /// let my_str = include_str!("spanish.in");
1321 /// assert_eq!(my_str, "adiós\n");
1322 /// print!("{my_str}");
1323 /// }
1324 /// ```
1325 ///
1326 /// Compiling 'main.rs' and running the resulting binary will print "adiós".
1327 #[stable(feature = "rust1", since = "1.0.0")]
1328 #[rustc_builtin_macro]
1329 #[macro_export]
1330 #[rustc_diagnostic_item = "include_str_macro"]
1331 macro_rules! include_str {
1332 ($file:expr $(,)?) => {{ /* compiler built-in */ }};
1333 }
1334
1335 /// Includes a file as a reference to a byte array.
1336 ///
1337 /// The file is located relative to the current file (similarly to how
1338 /// modules are found). The provided path is interpreted in a platform-specific
1339 /// way at compile time. So, for instance, an invocation with a Windows path
1340 /// containing backslashes `\` would not compile correctly on Unix.
1341 ///
1342 /// This macro will yield an expression of type `&'static [u8; N]` which is
1343 /// the contents of the file.
1344 ///
1345 /// # Examples
1346 ///
1347 /// Assume there are two files in the same directory with the following
1348 /// contents:
1349 ///
1350 /// File 'spanish.in':
1351 ///
1352 /// ```text
1353 /// adiós
1354 /// ```
1355 ///
1356 /// File 'main.rs':
1357 ///
1358 /// ```ignore (cannot-doctest-external-file-dependency)
1359 /// fn main() {
1360 /// let bytes = include_bytes!("spanish.in");
1361 /// assert_eq!(bytes, b"adi\xc3\xb3s\n");
1362 /// print!("{}", String::from_utf8_lossy(bytes));
1363 /// }
1364 /// ```
1365 ///
1366 /// Compiling 'main.rs' and running the resulting binary will print "adiós".
1367 #[stable(feature = "rust1", since = "1.0.0")]
1368 #[rustc_builtin_macro]
1369 #[macro_export]
1370 #[rustc_diagnostic_item = "include_bytes_macro"]
1371 macro_rules! include_bytes {
1372 ($file:expr $(,)?) => {{ /* compiler built-in */ }};
1373 }
1374
1375 /// Expands to a string that represents the current module path.
1376 ///
1377 /// The current module path can be thought of as the hierarchy of modules
1378 /// leading back up to the crate root. The first component of the path
1379 /// returned is the name of the crate currently being compiled.
1380 ///
1381 /// # Examples
1382 ///
1383 /// ```
1384 /// mod test {
1385 /// pub fn foo() {
1386 /// assert!(module_path!().ends_with("test"));
1387 /// }
1388 /// }
1389 ///
1390 /// test::foo();
1391 /// ```
1392 #[stable(feature = "rust1", since = "1.0.0")]
1393 #[rustc_builtin_macro]
1394 #[macro_export]
1395 macro_rules! module_path {
1396 () => {
1397 /* compiler built-in */
1398 };
1399 }
1400
1401 /// Evaluates boolean combinations of configuration flags at compile-time.
1402 ///
1403 /// In addition to the `#[cfg]` attribute, this macro is provided to allow
1404 /// boolean expression evaluation of configuration flags. This frequently
1405 /// leads to less duplicated code.
1406 ///
1407 /// The syntax given to this macro is the same syntax as the [`cfg`]
1408 /// attribute.
1409 ///
1410 /// `cfg!`, unlike `#[cfg]`, does not remove any code and only evaluates to true or false. For
1411 /// example, all blocks in an if/else expression need to be valid when `cfg!` is used for
1412 /// the condition, regardless of what `cfg!` is evaluating.
1413 ///
1414 /// [`cfg`]: ../reference/conditional-compilation.html#the-cfg-attribute
1415 ///
1416 /// # Examples
1417 ///
1418 /// ```
1419 /// let my_directory = if cfg!(windows) {
1420 /// "windows-specific-directory"
1421 /// } else {
1422 /// "unix-directory"
1423 /// };
1424 /// ```
1425 #[stable(feature = "rust1", since = "1.0.0")]
1426 #[rustc_builtin_macro]
1427 #[macro_export]
1428 macro_rules! cfg {
1429 ($($cfg:tt)*) => {
1430 /* compiler built-in */
1431 };
1432 }
1433
1434 /// Parses a file as an expression or an item according to the context.
1435 ///
1436 /// **Warning**: For multi-file Rust projects, the `include!` macro is probably not what you
1437 /// are looking for. Usually, multi-file Rust projects use
1438 /// [modules](https://doc.rust-lang.org/reference/items/modules.html). Multi-file projects and
1439 /// modules are explained in the Rust-by-Example book
1440 /// [here](https://doc.rust-lang.org/rust-by-example/mod/split.html) and the module system is
1441 /// explained in the Rust Book
1442 /// [here](https://doc.rust-lang.org/book/ch07-02-defining-modules-to-control-scope-and-privacy.html).
1443 ///
1444 /// The included file is placed in the surrounding code
1445 /// [unhygienically](https://doc.rust-lang.org/reference/macros-by-example.html#hygiene). If
1446 /// the included file is parsed as an expression and variables or functions share names across
1447 /// both files, it could result in variables or functions being different from what the
1448 /// included file expected.
1449 ///
1450 /// The included file is located relative to the current file (similarly to how modules are
1451 /// found). The provided path is interpreted in a platform-specific way at compile time. So,
1452 /// for instance, an invocation with a Windows path containing backslashes `\` would not
1453 /// compile correctly on Unix.
1454 ///
1455 /// # Uses
1456 ///
1457 /// The `include!` macro is primarily used for two purposes. It is used to include
1458 /// documentation that is written in a separate file and it is used to include [build artifacts
1459 /// usually as a result from the `build.rs`
1460 /// script](https://doc.rust-lang.org/cargo/reference/build-scripts.html#outputs-of-the-build-script).
1461 ///
1462 /// When using the `include` macro to include stretches of documentation, remember that the
1463 /// included file still needs to be a valid Rust syntax. It is also possible to
1464 /// use the [`include_str`] macro as `#![doc = include_str!("...")]` (at the module level) or
1465 /// `#[doc = include_str!("...")]` (at the item level) to include documentation from a plain
1466 /// text or markdown file.
1467 ///
1468 /// # Examples
1469 ///
1470 /// Assume there are two files in the same directory with the following contents:
1471 ///
1472 /// File 'monkeys.in':
1473 ///
1474 /// ```ignore (only-for-syntax-highlight)
1475 /// ['🙈', '🙊', '🙉']
1476 /// .iter()
1477 /// .cycle()
1478 /// .take(6)
1479 /// .collect::<String>()
1480 /// ```
1481 ///
1482 /// File 'main.rs':
1483 ///
1484 /// ```ignore (cannot-doctest-external-file-dependency)
1485 /// fn main() {
1486 /// let my_string = include!("monkeys.in");
1487 /// assert_eq!("🙈🙊🙉🙈🙊🙉", my_string);
1488 /// println!("{my_string}");
1489 /// }
1490 /// ```
1491 ///
1492 /// Compiling 'main.rs' and running the resulting binary will print
1493 /// "🙈🙊🙉🙈🙊🙉".
1494 #[stable(feature = "rust1", since = "1.0.0")]
1495 #[rustc_builtin_macro]
1496 #[macro_export]
1497 #[rustc_diagnostic_item = "include_macro"] // useful for external lints
1498 macro_rules! include {
1499 ($file:expr $(,)?) => {{ /* compiler built-in */ }};
1500 }
1501
1502 /// This macro uses forward-mode automatic differentiation to generate a new function.
1503 /// It may only be applied to a function. The new function will compute the derivative
1504 /// of the function to which the macro was applied.
1505 ///
1506 /// The expected usage syntax is:
1507 /// `#[autodiff_forward(NAME, INPUT_ACTIVITIES, OUTPUT_ACTIVITY)]`
1508 ///
1509 /// - `NAME`: A string that represents a valid function name.
1510 /// - `INPUT_ACTIVITIES`: Specifies one valid activity for each input parameter.
1511 /// - `OUTPUT_ACTIVITY`: Must not be set if the function implicitly returns nothing
1512 /// (or explicitly returns `-> ()`). Otherwise, it must be set to one of the allowed activities.
1513 ///
1514 /// ACTIVITIES might either be `Dual` or `Const`, more options will be exposed later.
1515 ///
1516 /// `Const` should be used on non-float arguments, or float-based arguments as an optimization
1517 /// if we are not interested in computing the derivatives with respect to this argument.
1518 ///
1519 /// `Dual` can be used for float scalar values or for references, raw pointers, or other
1520 /// indirect input arguments. It can also be used on a scalar float return value.
1521 /// If used on a return value, the generated function will return a tuple of two float scalars.
1522 /// If used on an input argument, a new shadow argument of the same type will be created,
1523 /// directly following the original argument.
1524 ///
1525 /// ### Usage examples:
1526 ///
1527 /// ```rust,ignore (autodiff requires a -Z flag as well as fat-lto for testing)
1528 /// #![feature(autodiff)]
1529 /// use std::autodiff::*;
1530 /// #[autodiff_forward(rb_fwd1, Dual, Const, Dual)]
1531 /// #[autodiff_forward(rb_fwd2, Const, Dual, Dual)]
1532 /// #[autodiff_forward(rb_fwd3, Dual, Dual, Dual)]
1533 /// fn rosenbrock(x: f64, y: f64) -> f64 {
1534 /// (1.0 - x).powi(2) + 100.0 * (y - x.powi(2)).powi(2)
1535 /// }
1536 /// #[autodiff_forward(rb_inp_fwd, Dual, Dual, Dual)]
1537 /// fn rosenbrock_inp(x: f64, y: f64, out: &mut f64) {
1538 /// *out = (1.0 - x).powi(2) + 100.0 * (y - x.powi(2)).powi(2);
1539 /// }
1540 ///
1541 /// fn main() {
1542 /// let x0 = rosenbrock(1.0, 3.0); // 400.0
1543 /// let (x1, dx1) = rb_fwd1(1.0, 1.0, 3.0); // (400.0, -800.0)
1544 /// let (x2, dy1) = rb_fwd2(1.0, 3.0, 1.0); // (400.0, 400.0)
1545 /// // When seeding both arguments at once the tangent return is the sum of both.
1546 /// let (x3, dxy) = rb_fwd3(1.0, 1.0, 3.0, 1.0); // (400.0, -400.0)
1547 ///
1548 /// let mut out = 0.0;
1549 /// let mut dout = 0.0;
1550 /// rb_inp_fwd(1.0, 1.0, 3.0, 1.0, &mut out, &mut dout);
1551 /// // (out, dout) == (400.0, -400.0)
1552 /// }
1553 /// ```
1554 ///
1555 /// We might want to track how one input float affects one or more output floats. In this case,
1556 /// the shadow of one input should be initialized to `1.0`, while the shadows of the other
1557 /// inputs should be initialized to `0.0`. The shadow of the output(s) should be initialized to
1558 /// `0.0`. After calling the generated function, the shadow of the input will be zeroed,
1559 /// while the shadow(s) of the output(s) will contain the derivatives. Forward mode is generally
1560 /// more efficient if we have more output floats marked as `Dual` than input floats.
1561 /// Related information can also be found under the term "Vector-Jacobian product" (VJP).
1562 #[unstable(feature = "autodiff", issue = "124509")]
1563 #[allow_internal_unstable(rustc_attrs)]
1564 #[allow_internal_unstable(core_intrinsics)]
1565 #[rustc_builtin_macro]
1566 pub macro autodiff_forward($item:item) {
1567 /* compiler built-in */
1568 }
1569
1570 /// This macro uses reverse-mode automatic differentiation to generate a new function.
1571 /// It may only be applied to a function. The new function will compute the derivative
1572 /// of the function to which the macro was applied.
1573 ///
1574 /// The expected usage syntax is:
1575 /// `#[autodiff_reverse(NAME, INPUT_ACTIVITIES, OUTPUT_ACTIVITY)]`
1576 ///
1577 /// - `NAME`: A string that represents a valid function name.
1578 /// - `INPUT_ACTIVITIES`: Specifies one valid activity for each input parameter.
1579 /// - `OUTPUT_ACTIVITY`: Must not be set if the function implicitly returns nothing
1580 /// (or explicitly returns `-> ()`). Otherwise, it must be set to one of the allowed activities.
1581 ///
1582 /// ACTIVITIES might either be `Active`, `Duplicated` or `Const`, more options will be exposed later.
1583 ///
1584 /// `Active` can be used for float scalar values.
1585 /// If used on an input, a new float will be appended to the return tuple of the generated
1586 /// function. If the function returns a float scalar, `Active` can be used for the return as
1587 /// well. In this case a float scalar will be appended to the argument list, it works as seed.
1588 ///
1589 /// `Duplicated` can be used on references, raw pointers, or other indirect input
1590 /// arguments. It creates a new shadow argument of the same type, following the original argument.
1591 /// A const reference or pointer argument will receive a mutable reference or pointer as shadow.
1592 ///
1593 /// `Const` should be used on non-float arguments, or float-based arguments as an optimization
1594 /// if we are not interested in computing the derivatives with respect to this argument.
1595 ///
1596 /// ### Usage examples:
1597 ///
1598 /// ```rust,ignore (autodiff requires a -Z flag as well as fat-lto for testing)
1599 /// #![feature(autodiff)]
1600 /// use std::autodiff::*;
1601 /// #[autodiff_reverse(rb_rev, Active, Active, Active)]
1602 /// fn rosenbrock(x: f64, y: f64) -> f64 {
1603 /// (1.0 - x).powi(2) + 100.0 * (y - x.powi(2)).powi(2)
1604 /// }
1605 /// #[autodiff_reverse(rb_inp_rev, Active, Active, Duplicated)]
1606 /// fn rosenbrock_inp(x: f64, y: f64, out: &mut f64) {
1607 /// *out = (1.0 - x).powi(2) + 100.0 * (y - x.powi(2)).powi(2);
1608 /// }
1609 ///
1610 /// fn main() {
1611 /// let (output1, dx1, dy1) = rb_rev(1.0, 3.0, 1.0);
1612 /// dbg!(output1, dx1, dy1); // (400.0, -800.0, 400.0)
1613 /// let mut output2 = 0.0;
1614 /// let mut seed = 1.0;
1615 /// let (dx2, dy2) = rb_inp_rev(1.0, 3.0, &mut output2, &mut seed);
1616 /// // (dx2, dy2, output2, seed) == (-800.0, 400.0, 400.0, 0.0)
1617 /// }
1618 /// ```
1619 ///
1620 ///
1621 /// We often want to track how one or more input floats affect one output float. This output can
1622 /// be a scalar return value, or a mutable reference or pointer argument. In the latter case, the
1623 /// mutable input should be marked as duplicated and its shadow initialized to `0.0`. The shadow of
1624 /// the output should be marked as active or duplicated and initialized to `1.0`. After calling
1625 /// the generated function, the shadow(s) of the input(s) will contain the derivatives. The
1626 /// shadow of the outputs ("seed") will be reset to zero.
1627 /// If the function has more than one output float marked as active or duplicated, users might want to
1628 /// set one of them to `1.0` and the others to `0.0` to compute partial derivatives.
1629 /// Unlike forward-mode, a call to the generated function does not reset the shadow of the
1630 /// inputs.
1631 /// Reverse mode is generally more efficient if we have more active/duplicated input than
1632 /// output floats.
1633 ///
1634 /// Related information can also be found under the term "Jacobian-Vector Product" (JVP).
1635 #[unstable(feature = "autodiff", issue = "124509")]
1636 #[allow_internal_unstable(rustc_attrs)]
1637 #[allow_internal_unstable(core_intrinsics)]
1638 #[rustc_builtin_macro]
1639 pub macro autodiff_reverse($item:item) {
1640 /* compiler built-in */
1641 }
1642
1643 /// Asserts that a boolean expression is `true` at runtime.
1644 ///
1645 /// This will invoke the [`panic!`] macro if the provided expression cannot be
1646 /// evaluated to `true` at runtime.
1647 ///
1648 /// # Uses
1649 ///
1650 /// Assertions are always checked in both debug and release builds, and cannot
1651 /// be disabled. See [`debug_assert!`] for assertions that are not enabled in
1652 /// release builds by default.
1653 ///
1654 /// Unsafe code may rely on `assert!` to enforce run-time invariants that, if
1655 /// violated could lead to unsafety.
1656 ///
1657 /// Other use-cases of `assert!` include testing and enforcing run-time
1658 /// invariants in safe code (whose violation cannot result in unsafety).
1659 ///
1660 /// # Custom Messages
1661 ///
1662 /// This macro has a second form, where a custom panic message can
1663 /// be provided with or without arguments for formatting. See [`std::fmt`]
1664 /// for syntax for this form. Expressions used as format arguments will only
1665 /// be evaluated if the assertion fails.
1666 ///
1667 /// [`std::fmt`]: ../std/fmt/index.html
1668 ///
1669 /// # Examples
1670 ///
1671 /// ```
1672 /// // the panic message for these assertions is the stringified value of the
1673 /// // expression given.
1674 /// assert!(true);
1675 ///
1676 /// fn some_computation() -> bool {
1677 /// // Some expensive computation here
1678 /// true
1679 /// }
1680 ///
1681 /// assert!(some_computation());
1682 ///
1683 /// // assert with a custom message
1684 /// let x = true;
1685 /// assert!(x, "x wasn't true!");
1686 ///
1687 /// let a = 3; let b = 27;
1688 /// assert!(a + b == 30, "a = {}, b = {}", a, b);
1689 /// ```
1690 #[stable(feature = "rust1", since = "1.0.0")]
1691 #[rustc_builtin_macro]
1692 #[macro_export]
1693 #[rustc_diagnostic_item = "assert_macro"]
1694 #[allow_internal_unstable(
1695 core_intrinsics,
1696 panic_internals,
1697 edition_panic,
1698 generic_assert_internals
1699 )]
1700 macro_rules! assert {
1701 ($cond:expr $(,)?) => {{ /* compiler built-in */ }};
1702 ($cond:expr, $($arg:tt)+) => {{ /* compiler built-in */ }};
1703 }
1704
1705 /// Prints passed tokens into the standard output.
1706 #[unstable(
1707 feature = "log_syntax",
1708 issue = "29598",
1709 reason = "`log_syntax!` is not stable enough for use and is subject to change"
1710 )]
1711 #[rustc_builtin_macro]
1712 #[macro_export]
1713 macro_rules! log_syntax {
1714 ($($arg:tt)*) => {
1715 /* compiler built-in */
1716 };
1717 }
1718
1719 /// Enables or disables tracing functionality used for debugging other macros.
1720 #[unstable(
1721 feature = "trace_macros",
1722 issue = "29598",
1723 reason = "`trace_macros` is not stable enough for use and is subject to change"
1724 )]
1725 #[rustc_builtin_macro]
1726 #[macro_export]
1727 macro_rules! trace_macros {
1728 (true) => {{ /* compiler built-in */ }};
1729 (false) => {{ /* compiler built-in */ }};
1730 }
1731
1732 /// Attribute macro used to apply derive macros.
1733 ///
1734 /// See [the reference] for more info.
1735 ///
1736 /// [the reference]: ../../../reference/attributes/derive.html
1737 #[stable(feature = "rust1", since = "1.0.0")]
1738 #[rustc_builtin_macro]
1739 pub macro derive($item:item) {
1740 /* compiler built-in */
1741 }
1742
1743 /// Attribute macro used to apply derive macros for implementing traits
1744 /// in a const context.
1745 ///
1746 /// See [the reference] for more info.
1747 ///
1748 /// [the reference]: ../../../reference/attributes/derive.html
1749 #[unstable(feature = "derive_const", issue = "118304")]
1750 #[rustc_builtin_macro]
1751 pub macro derive_const($item:item) {
1752 /* compiler built-in */
1753 }
1754
1755 /// Attribute macro applied to a function to turn it into a unit test.
1756 ///
1757 /// See [the reference] for more info.
1758 ///
1759 /// [the reference]: ../../../reference/attributes/testing.html#the-test-attribute
1760 #[stable(feature = "rust1", since = "1.0.0")]
1761 #[allow_internal_unstable(test, rustc_attrs, coverage_attribute)]
1762 #[rustc_builtin_macro]
1763 pub macro test($item:item) {
1764 /* compiler built-in */
1765 }
1766
1767 /// Attribute macro applied to a function to turn it into a benchmark test.
1768 #[unstable(
1769 feature = "test",
1770 issue = "50297",
1771 reason = "`bench` is a part of custom test frameworks which are unstable"
1772 )]
1773 #[allow_internal_unstable(test, rustc_attrs, coverage_attribute)]
1774 #[rustc_builtin_macro]
1775 pub macro bench($item:item) {
1776 /* compiler built-in */
1777 }
1778
1779 /// An implementation detail of the `#[test]` and `#[bench]` macros.
1780 #[unstable(
1781 feature = "custom_test_frameworks",
1782 issue = "50297",
1783 reason = "custom test frameworks are an unstable feature"
1784 )]
1785 #[allow_internal_unstable(test, rustc_attrs)]
1786 #[rustc_builtin_macro]
1787 pub macro test_case($item:item) {
1788 /* compiler built-in */
1789 }
1790
1791 /// Attribute macro applied to a static to register it as a global allocator.
1792 ///
1793 /// See also [`std::alloc::GlobalAlloc`](../../../std/alloc/trait.GlobalAlloc.html).
1794 #[stable(feature = "global_allocator", since = "1.28.0")]
1795 #[allow_internal_unstable(rustc_attrs)]
1796 #[rustc_builtin_macro]
1797 pub macro global_allocator($item:item) {
1798 /* compiler built-in */
1799 }
1800
1801 /// Attribute macro applied to a function to give it a post-condition.
1802 ///
1803 /// The attribute carries an argument token-tree which is
1804 /// eventually parsed as a unary closure expression that is
1805 /// invoked on a reference to the return value.
1806 #[unstable(feature = "contracts", issue = "128044")]
1807 #[allow_internal_unstable(contracts_internals)]
1808 #[rustc_builtin_macro]
1809 pub macro contracts_ensures($item:item) {
1810 /* compiler built-in */
1811 }
1812
1813 /// Attribute macro applied to a function to give it a precondition.
1814 ///
1815 /// The attribute carries an argument token-tree which is
1816 /// eventually parsed as an boolean expression with access to the
1817 /// function's formal parameters
1818 #[unstable(feature = "contracts", issue = "128044")]
1819 #[allow_internal_unstable(contracts_internals)]
1820 #[rustc_builtin_macro]
1821 pub macro contracts_requires($item:item) {
1822 /* compiler built-in */
1823 }
1824
1825 /// Attribute macro applied to a function to register it as a handler for allocation failure.
1826 ///
1827 /// See also [`std::alloc::handle_alloc_error`](../../../std/alloc/fn.handle_alloc_error.html).
1828 #[unstable(feature = "alloc_error_handler", issue = "51540")]
1829 #[allow_internal_unstable(rustc_attrs)]
1830 #[rustc_builtin_macro]
1831 pub macro alloc_error_handler($item:item) {
1832 /* compiler built-in */
1833 }
1834
1835 /// Keeps the item it's applied to if the passed path is accessible, and removes it otherwise.
1836 #[unstable(
1837 feature = "cfg_accessible",
1838 issue = "64797",
1839 reason = "`cfg_accessible` is not fully implemented"
1840 )]
1841 #[rustc_builtin_macro]
1842 pub macro cfg_accessible($item:item) {
1843 /* compiler built-in */
1844 }
1845
1846 /// Expands all `#[cfg]` and `#[cfg_attr]` attributes in the code fragment it's applied to.
1847 #[unstable(
1848 feature = "cfg_eval",
1849 issue = "82679",
1850 reason = "`cfg_eval` is a recently implemented feature"
1851 )]
1852 #[rustc_builtin_macro]
1853 pub macro cfg_eval($($tt:tt)*) {
1854 /* compiler built-in */
1855 }
1856
1857 /// Provide a list of type aliases and other opaque-type-containing type definitions
1858 /// to an item with a body. This list will be used in that body to define opaque
1859 /// types' hidden types.
1860 /// Can only be applied to things that have bodies.
1861 #[unstable(
1862 feature = "type_alias_impl_trait",
1863 issue = "63063",
1864 reason = "`type_alias_impl_trait` has open design concerns"
1865 )]
1866 #[rustc_builtin_macro]
1867 pub macro define_opaque($($tt:tt)*) {
1868 /* compiler built-in */
1869 }
1870
1871 /// Unstable placeholder for type ascription.
1872 #[allow_internal_unstable(builtin_syntax)]
1873 #[unstable(
1874 feature = "type_ascription",
1875 issue = "23416",
1876 reason = "placeholder syntax for type ascription"
1877 )]
1878 #[rustfmt::skip]
1879 pub macro type_ascribe($expr:expr, $ty:ty) {
1880 builtin # type_ascribe($expr, $ty)
1881 }
1882
1883 /// Unstable placeholder for deref patterns.
1884 #[allow_internal_unstable(builtin_syntax)]
1885 #[unstable(
1886 feature = "deref_patterns",
1887 issue = "87121",
1888 reason = "placeholder syntax for deref patterns"
1889 )]
1890 pub macro deref($pat:pat) {
1891 builtin # deref($pat)
1892 }
1893
1894 /// Derive macro generating an impl of the trait `From`.
1895 /// Currently, it can only be used on single-field structs.
1896 // Note that the macro is in a different module than the `From` trait,
1897 // to avoid triggering an unstable feature being used if someone imports
1898 // `std::convert::From`.
1899 #[rustc_builtin_macro]
1900 #[unstable(feature = "derive_from", issue = "144889")]
1901 pub macro From($item: item) {
1902 /* compiler built-in */
1903 }
1904}