Skip to main content

core/macros/
mod.rs

1#[doc = include_str!("panic.md")]
2#[macro_export]
3#[rustc_builtin_macro(core_panic)]
4#[allow_internal_unstable(edition_panic)]
5#[stable(feature = "core", since = "1.6.0")]
6#[rustc_diagnostic_item = "core_panic_macro"]
7macro_rules! panic {
8    // Expands to either `$crate::panic::panic_2015` or `$crate::panic::panic_2021`
9    // depending on the edition of the caller.
10    ($($arg:tt)*) => {
11        /* compiler built-in */
12    };
13}
14
15/// Asserts that two expressions are equal to each other (using [`PartialEq`]).
16///
17/// Assertions are always checked in both debug and release builds, and cannot
18/// be disabled. See [`debug_assert_eq!`] for assertions that are disabled in
19/// release builds by default.
20///
21/// [`debug_assert_eq!`]: crate::debug_assert_eq
22///
23/// On panic, this macro will print the values of the expressions with their
24/// debug representations.
25///
26/// Like [`assert!`], this macro has a second form, where a custom
27/// panic message can be provided.
28///
29/// # Examples
30///
31/// ```
32/// let a = 3;
33/// let b = 1 + 2;
34/// assert_eq!(a, b);
35///
36/// assert_eq!(a, b, "we are testing addition with {} and {}", a, b);
37/// ```
38#[macro_export]
39#[stable(feature = "rust1", since = "1.0.0")]
40#[rustc_diagnostic_item = "assert_eq_macro"]
41#[allow_internal_unstable(panic_internals)]
42macro_rules! assert_eq {
43    ($left:expr, $right:expr $(,)?) => {
44        match (&$left, &$right) {
45            (left_val, right_val) => {
46                if !(*left_val == *right_val) {
47                    let kind = $crate::panicking::AssertKind::Eq;
48                    // The reborrows below are intentional. Without them, the stack slot for the
49                    // borrow is initialized even before the values are compared, leading to a
50                    // noticeable slow down.
51                    $crate::panicking::assert_failed(kind, &*left_val, &*right_val, $crate::option::Option::None);
52                }
53            }
54        }
55    };
56    ($left:expr, $right:expr, $($arg:tt)+) => {
57        match (&$left, &$right) {
58            (left_val, right_val) => {
59                if !(*left_val == *right_val) {
60                    let kind = $crate::panicking::AssertKind::Eq;
61                    // The reborrows below are intentional. Without them, the stack slot for the
62                    // borrow is initialized even before the values are compared, leading to a
63                    // noticeable slow down.
64                    $crate::panicking::assert_failed(kind, &*left_val, &*right_val, $crate::option::Option::Some($crate::format_args!($($arg)+)));
65                }
66            }
67        }
68    };
69}
70
71/// Asserts that two expressions are not equal to each other (using [`PartialEq`]).
72///
73/// Assertions are always checked in both debug and release builds, and cannot
74/// be disabled. See [`debug_assert_ne!`] for assertions that are disabled in
75/// release builds by default.
76///
77/// [`debug_assert_ne!`]: crate::debug_assert_ne
78///
79/// On panic, this macro will print the values of the expressions with their
80/// debug representations.
81///
82/// Like [`assert!`], this macro has a second form, where a custom
83/// panic message can be provided.
84///
85/// # Examples
86///
87/// ```
88/// let a = 3;
89/// let b = 2;
90/// assert_ne!(a, b);
91///
92/// assert_ne!(a, b, "we are testing that the values are not equal");
93/// ```
94#[macro_export]
95#[stable(feature = "assert_ne", since = "1.13.0")]
96#[rustc_diagnostic_item = "assert_ne_macro"]
97#[allow_internal_unstable(panic_internals)]
98macro_rules! assert_ne {
99    ($left:expr, $right:expr $(,)?) => {
100        match (&$left, &$right) {
101            (left_val, right_val) => {
102                if *left_val == *right_val {
103                    let kind = $crate::panicking::AssertKind::Ne;
104                    // The reborrows below are intentional. Without them, the stack slot for the
105                    // borrow is initialized even before the values are compared, leading to a
106                    // noticeable slow down.
107                    $crate::panicking::assert_failed(kind, &*left_val, &*right_val, $crate::option::Option::None);
108                }
109            }
110        }
111    };
112    ($left:expr, $right:expr, $($arg:tt)+) => {
113        match (&($left), &($right)) {
114            (left_val, right_val) => {
115                if *left_val == *right_val {
116                    let kind = $crate::panicking::AssertKind::Ne;
117                    // The reborrows below are intentional. Without them, the stack slot for the
118                    // borrow is initialized even before the values are compared, leading to a
119                    // noticeable slow down.
120                    $crate::panicking::assert_failed(kind, &*left_val, &*right_val, $crate::option::Option::Some($crate::format_args!($($arg)+)));
121                }
122            }
123        }
124    };
125}
126
127/// Asserts that an expression matches the provided pattern.
128///
129/// This macro is generally preferable to `assert!(matches!(value, pattern))`, because it can print
130/// the debug representation of the actual value shape that did not meet expectations. In contrast,
131/// using [`assert!`] will only print that expectations were not met, but not why.
132///
133/// The pattern syntax is exactly the same as found in a match arm and the `matches!` macro. The
134/// optional if guard can be used to add additional checks that must be true for the matched value,
135/// otherwise this macro will panic.
136///
137/// Assertions are always checked in both debug and release builds, and cannot
138/// be disabled. See `debug_assert_matches!` for assertions that are disabled in
139/// release builds by default.
140///
141/// On panic, this macro will print the value of the expression with its debug representation.
142///
143/// Like [`assert!`], this macro has a second form, where a custom panic message can be provided.
144///
145/// # Examples
146///
147/// ```
148/// #![feature(assert_matches)]
149///
150/// use std::assert_matches;
151///
152/// let a = Some(345);
153/// let b = Some(56);
154/// assert_matches!(a, Some(_));
155/// assert_matches!(b, Some(_));
156///
157/// assert_matches!(a, Some(345));
158/// assert_matches!(a, Some(345) | None);
159///
160/// // assert_matches!(a, None); // panics
161/// // assert_matches!(b, Some(345)); // panics
162/// // assert_matches!(b, Some(345) | None); // panics
163///
164/// assert_matches!(a, Some(x) if x > 100);
165/// // assert_matches!(a, Some(x) if x < 100); // panics
166/// ```
167#[unstable(feature = "assert_matches", issue = "82775")]
168#[allow_internal_unstable(panic_internals)]
169#[rustc_macro_transparency = "semiopaque"]
170pub macro assert_matches {
171    ($left:expr, $(|)? $( $pattern:pat_param )|+ $( if $guard: expr )? $(,)?) => {
172        match $left {
173            $( $pattern )|+ $( if $guard )? => {}
174            ref left_val => {
175                $crate::panicking::assert_matches_failed(
176                    left_val,
177                    $crate::stringify!($($pattern)|+ $(if $guard)?),
178                    $crate::option::Option::None
179                );
180            }
181        }
182    },
183    ($left:expr, $(|)? $( $pattern:pat_param )|+ $( if $guard: expr )?, $($arg:tt)+) => {
184        match $left {
185            $( $pattern )|+ $( if $guard )? => {}
186            ref left_val => {
187                $crate::panicking::assert_matches_failed(
188                    left_val,
189                    $crate::stringify!($($pattern)|+ $(if $guard)?),
190                    $crate::option::Option::Some($crate::format_args!($($arg)+))
191                );
192            }
193        }
194    },
195}
196
197/// Selects code at compile-time based on `cfg` predicates.
198///
199/// This macro evaluates, at compile-time, a series of `cfg` predicates,
200/// selects the first that is true, and emits the code guarded by that
201/// predicate. The code guarded by other predicates is not emitted.
202///
203/// An optional trailing `_` wildcard can be used to specify a fallback. If
204/// none of the predicates are true, a [`compile_error`] is emitted.
205///
206/// # Example
207///
208/// ```
209/// #![feature(cfg_select)]
210///
211/// cfg_select! {
212///     unix => {
213///         fn foo() { /* unix specific functionality */ }
214///     }
215///     target_pointer_width = "32" => {
216///         fn foo() { /* non-unix, 32-bit functionality */ }
217///     }
218///     _ => {
219///         fn foo() { /* fallback implementation */ }
220///     }
221/// }
222/// ```
223///
224/// The `cfg_select!` macro can also be used in expression position, with or without braces on the
225/// right-hand side:
226///
227/// ```
228/// #![feature(cfg_select)]
229///
230/// let _some_string = cfg_select! {
231///     unix => "With great power comes great electricity bills",
232///     _ => { "Behind every successful diet is an unwatched pizza" }
233/// };
234/// ```
235#[unstable(feature = "cfg_select", issue = "115585")]
236#[rustc_diagnostic_item = "cfg_select"]
237#[rustc_builtin_macro]
238pub macro cfg_select($($tt:tt)*) {
239    /* compiler built-in */
240}
241
242/// Asserts that a boolean expression is `true` at runtime.
243///
244/// This will invoke the [`panic!`] macro if the provided expression cannot be
245/// evaluated to `true` at runtime.
246///
247/// Like [`assert!`], this macro also has a second version, where a custom panic
248/// message can be provided.
249///
250/// # Uses
251///
252/// Unlike [`assert!`], `debug_assert!` statements are only enabled in non
253/// optimized builds by default. An optimized build will not execute
254/// `debug_assert!` statements unless `-C debug-assertions` is passed to the
255/// compiler. This makes `debug_assert!` useful for checks that are too
256/// expensive to be present in a release build but may be helpful during
257/// development. The result of expanding `debug_assert!` is always type checked.
258///
259/// An unchecked assertion allows a program in an inconsistent state to keep
260/// running, which might have unexpected consequences but does not introduce
261/// unsafety as long as this only happens in safe code. The performance cost
262/// of assertions, however, is not measurable in general. Replacing [`assert!`]
263/// with `debug_assert!` is thus only encouraged after thorough profiling, and
264/// more importantly, only in safe code!
265///
266/// # Examples
267///
268/// ```
269/// // the panic message for these assertions is the stringified value of the
270/// // expression given.
271/// debug_assert!(true);
272///
273/// fn some_expensive_computation() -> bool {
274///     // Some expensive computation here
275///     true
276/// }
277/// debug_assert!(some_expensive_computation());
278///
279/// // assert with a custom message
280/// let x = true;
281/// debug_assert!(x, "x wasn't true!");
282///
283/// let a = 3; let b = 27;
284/// debug_assert!(a + b == 30, "a = {}, b = {}", a, b);
285/// ```
286#[macro_export]
287#[stable(feature = "rust1", since = "1.0.0")]
288#[rustc_diagnostic_item = "debug_assert_macro"]
289#[allow_internal_unstable(edition_panic)]
290macro_rules! debug_assert {
291    ($($arg:tt)*) => {
292        if $crate::cfg!(debug_assertions) {
293            $crate::assert!($($arg)*);
294        }
295    };
296}
297
298/// Asserts that two expressions are equal to each other.
299///
300/// On panic, this macro will print the values of the expressions with their
301/// debug representations.
302///
303/// Unlike [`assert_eq!`], `debug_assert_eq!` statements are only enabled in non
304/// optimized builds by default. An optimized build will not execute
305/// `debug_assert_eq!` statements unless `-C debug-assertions` is passed to the
306/// compiler. This makes `debug_assert_eq!` useful for checks that are too
307/// expensive to be present in a release build but may be helpful during
308/// development. The result of expanding `debug_assert_eq!` is always type checked.
309///
310/// # Examples
311///
312/// ```
313/// let a = 3;
314/// let b = 1 + 2;
315/// debug_assert_eq!(a, b);
316/// ```
317#[macro_export]
318#[stable(feature = "rust1", since = "1.0.0")]
319#[rustc_diagnostic_item = "debug_assert_eq_macro"]
320macro_rules! debug_assert_eq {
321    ($($arg:tt)*) => {
322        if $crate::cfg!(debug_assertions) {
323            $crate::assert_eq!($($arg)*);
324        }
325    };
326}
327
328/// Asserts that two expressions are not equal to each other.
329///
330/// On panic, this macro will print the values of the expressions with their
331/// debug representations.
332///
333/// Unlike [`assert_ne!`], `debug_assert_ne!` statements are only enabled in non
334/// optimized builds by default. An optimized build will not execute
335/// `debug_assert_ne!` statements unless `-C debug-assertions` is passed to the
336/// compiler. This makes `debug_assert_ne!` useful for checks that are too
337/// expensive to be present in a release build but may be helpful during
338/// development. The result of expanding `debug_assert_ne!` is always type checked.
339///
340/// # Examples
341///
342/// ```
343/// let a = 3;
344/// let b = 2;
345/// debug_assert_ne!(a, b);
346/// ```
347#[macro_export]
348#[stable(feature = "assert_ne", since = "1.13.0")]
349#[rustc_diagnostic_item = "debug_assert_ne_macro"]
350macro_rules! debug_assert_ne {
351    ($($arg:tt)*) => {
352        if $crate::cfg!(debug_assertions) {
353            $crate::assert_ne!($($arg)*);
354        }
355    };
356}
357
358/// Asserts that an expression matches the provided pattern.
359///
360/// This macro is generally preferable to `debug_assert!(matches!(value, pattern))`, because it can
361/// print the debug representation of the actual value shape that did not meet expectations. In
362/// contrast, using [`debug_assert!`] will only print that expectations were not met, but not why.
363///
364/// The pattern syntax is exactly the same as found in a match arm and the `matches!` macro. The
365/// optional if guard can be used to add additional checks that must be true for the matched value,
366/// otherwise this macro will panic.
367///
368/// On panic, this macro will print the value of the expression with its debug representation.
369///
370/// Like [`assert!`], this macro has a second form, where a custom panic message can be provided.
371///
372/// Unlike [`assert_matches!`], `debug_assert_matches!` statements are only enabled in non optimized
373/// builds by default. An optimized build will not execute `debug_assert_matches!` statements unless
374/// `-C debug-assertions` is passed to the compiler. This makes `debug_assert_matches!` useful for
375/// checks that are too expensive to be present in a release build but may be helpful during
376/// development. The result of expanding `debug_assert_matches!` is always type checked.
377///
378/// # Examples
379///
380/// ```
381/// #![feature(assert_matches)]
382///
383/// use std::debug_assert_matches;
384///
385/// let a = Some(345);
386/// let b = Some(56);
387/// debug_assert_matches!(a, Some(_));
388/// debug_assert_matches!(b, Some(_));
389///
390/// debug_assert_matches!(a, Some(345));
391/// debug_assert_matches!(a, Some(345) | None);
392///
393/// // debug_assert_matches!(a, None); // panics
394/// // debug_assert_matches!(b, Some(345)); // panics
395/// // debug_assert_matches!(b, Some(345) | None); // panics
396///
397/// debug_assert_matches!(a, Some(x) if x > 100);
398/// // debug_assert_matches!(a, Some(x) if x < 100); // panics
399/// ```
400#[unstable(feature = "assert_matches", issue = "82775")]
401#[allow_internal_unstable(assert_matches)]
402#[rustc_macro_transparency = "semiopaque"]
403#[cfg(not(feature = "ferrocene_subset"))]
404pub macro debug_assert_matches($($arg:tt)*) {
405    if $crate::cfg!(debug_assertions) {
406        $crate::assert_matches!($($arg)*);
407    }
408}
409
410/// Returns whether the given expression matches the provided pattern.
411///
412/// The pattern syntax is exactly the same as found in a match arm. The optional if guard can be
413/// used to add additional checks that must be true for the matched value, otherwise this macro will
414/// return `false`.
415///
416/// When testing that a value matches a pattern, it's generally preferable to use
417/// [`assert_matches!`] as it will print the debug representation of the value if the assertion
418/// fails.
419///
420/// # Examples
421///
422/// ```
423/// let foo = 'f';
424/// assert!(matches!(foo, 'A'..='Z' | 'a'..='z'));
425///
426/// let bar = Some(4);
427/// assert!(matches!(bar, Some(x) if x > 2));
428/// ```
429#[macro_export]
430#[stable(feature = "matches_macro", since = "1.42.0")]
431#[rustc_diagnostic_item = "matches_macro"]
432#[allow_internal_unstable(non_exhaustive_omitted_patterns_lint, stmt_expr_attributes)]
433macro_rules! matches {
434    ($expression:expr, $pattern:pat $(if $guard:expr)? $(,)?) => {
435        #[allow(non_exhaustive_omitted_patterns)]
436        match $expression {
437            $pattern $(if $guard)? => true,
438            _ => false
439        }
440    };
441}
442
443/// Unwraps a result or propagates its error.
444///
445/// The [`?` operator][propagating-errors] was added to replace `try!`
446/// and should be used instead. Furthermore, `try` is a reserved word
447/// in Rust 2018, so if you must use it, you will need to use the
448/// [raw-identifier syntax][ris]: `r#try`.
449///
450/// [propagating-errors]: https://doc.rust-lang.org/book/ch09-02-recoverable-errors-with-result.html#a-shortcut-for-propagating-errors-the--operator
451/// [ris]: https://doc.rust-lang.org/nightly/rust-by-example/compatibility/raw_identifiers.html
452///
453/// `try!` matches the given [`Result`]. In case of the `Ok` variant, the
454/// expression has the value of the wrapped value.
455///
456/// In case of the `Err` variant, it retrieves the inner error. `try!` then
457/// performs conversion using `From`. This provides automatic conversion
458/// between specialized errors and more general ones. The resulting
459/// error is then immediately returned.
460///
461/// Because of the early return, `try!` can only be used in functions that
462/// return [`Result`].
463///
464/// # Examples
465///
466/// ```
467/// use std::io;
468/// use std::fs::File;
469/// use std::io::prelude::*;
470///
471/// enum MyError {
472///     FileWriteError
473/// }
474///
475/// impl From<io::Error> for MyError {
476///     fn from(e: io::Error) -> MyError {
477///         MyError::FileWriteError
478///     }
479/// }
480///
481/// // The preferred method of quick returning Errors
482/// fn write_to_file_question() -> Result<(), MyError> {
483///     let mut file = File::create("my_best_friends.txt")?;
484///     file.write_all(b"This is a list of my best friends.")?;
485///     Ok(())
486/// }
487///
488/// // The previous method of quick returning Errors
489/// fn write_to_file_using_try() -> Result<(), MyError> {
490///     let mut file = r#try!(File::create("my_best_friends.txt"));
491///     r#try!(file.write_all(b"This is a list of my best friends."));
492///     Ok(())
493/// }
494///
495/// // This is equivalent to:
496/// fn write_to_file_using_match() -> Result<(), MyError> {
497///     let mut file = r#try!(File::create("my_best_friends.txt"));
498///     match file.write_all(b"This is a list of my best friends.") {
499///         Ok(v) => v,
500///         Err(e) => return Err(From::from(e)),
501///     }
502///     Ok(())
503/// }
504/// ```
505#[macro_export]
506#[stable(feature = "rust1", since = "1.0.0")]
507#[deprecated(since = "1.39.0", note = "use the `?` operator instead")]
508#[doc(alias = "?")]
509#[cfg(not(feature = "ferrocene_subset"))]
510macro_rules! r#try {
511    ($expr:expr $(,)?) => {
512        match $expr {
513            $crate::result::Result::Ok(val) => val,
514            $crate::result::Result::Err(err) => {
515                return $crate::result::Result::Err($crate::convert::From::from(err));
516            }
517        }
518    };
519}
520
521/// Writes formatted data into a buffer.
522///
523/// This macro accepts a 'writer', a format string, and a list of arguments. Arguments will be
524/// formatted according to the specified format string and the result will be passed to the writer.
525/// The writer may be any value with a `write_fmt` method; generally this comes from an
526/// implementation of either the [`fmt::Write`] or the [`io::Write`] trait. The macro
527/// returns whatever the `write_fmt` method returns; commonly a [`fmt::Result`], or an
528/// [`io::Result`].
529///
530/// See [`std::fmt`] for more information on the format string syntax.
531///
532/// [`std::fmt`]: ../std/fmt/index.html
533/// [`fmt::Write`]: crate::fmt::Write
534/// [`io::Write`]: ../std/io/trait.Write.html
535/// [`fmt::Result`]: crate::fmt::Result
536/// [`io::Result`]: ../std/io/type.Result.html
537///
538/// # Examples
539///
540/// ```
541/// use std::io::Write;
542///
543/// fn main() -> std::io::Result<()> {
544///     let mut w = Vec::new();
545///     write!(&mut w, "test")?;
546///     write!(&mut w, "formatted {}", "arguments")?;
547///
548///     assert_eq!(w, b"testformatted arguments");
549///     Ok(())
550/// }
551/// ```
552///
553/// A module can import both `std::fmt::Write` and `std::io::Write` and call `write!` on objects
554/// implementing either, as objects do not typically implement both. However, the module must
555/// avoid conflict between the trait names, such as by importing them as `_` or otherwise renaming
556/// them:
557///
558/// ```
559/// use std::fmt::Write as _;
560/// use std::io::Write as _;
561///
562/// fn main() -> Result<(), Box<dyn std::error::Error>> {
563///     let mut s = String::new();
564///     let mut v = Vec::new();
565///
566///     write!(&mut s, "{} {}", "abc", 123)?; // uses fmt::Write::write_fmt
567///     write!(&mut v, "s = {:?}", s)?; // uses io::Write::write_fmt
568///     assert_eq!(v, b"s = \"abc 123\"");
569///     Ok(())
570/// }
571/// ```
572///
573/// If you also need the trait names themselves, such as to implement one or both on your types,
574/// import the containing module and then name them with a prefix:
575///
576/// ```
577/// # #![allow(unused_imports)]
578/// use std::fmt::{self, Write as _};
579/// use std::io::{self, Write as _};
580///
581/// struct Example;
582///
583/// impl fmt::Write for Example {
584///     fn write_str(&mut self, _s: &str) -> core::fmt::Result {
585///          unimplemented!();
586///     }
587/// }
588/// ```
589///
590/// Note: This macro can be used in `no_std` setups as well.
591/// In a `no_std` setup you are responsible for the implementation details of the components.
592///
593/// ```no_run
594/// use core::fmt::Write;
595///
596/// struct Example;
597///
598/// impl Write for Example {
599///     fn write_str(&mut self, _s: &str) -> core::fmt::Result {
600///          unimplemented!();
601///     }
602/// }
603///
604/// let mut m = Example{};
605/// write!(&mut m, "Hello World").expect("Not written");
606/// ```
607#[macro_export]
608#[stable(feature = "rust1", since = "1.0.0")]
609#[rustc_diagnostic_item = "write_macro"]
610macro_rules! write {
611    ($dst:expr, $($arg:tt)*) => {
612        $dst.write_fmt($crate::format_args!($($arg)*))
613    };
614}
615
616/// Writes formatted data into a buffer, with a newline appended.
617///
618/// On all platforms, the newline is the LINE FEED character (`\n`/`U+000A`) alone
619/// (no additional CARRIAGE RETURN (`\r`/`U+000D`).
620///
621/// For more information, see [`write!`]. For information on the format string syntax, see
622/// [`std::fmt`].
623///
624/// [`std::fmt`]: ../std/fmt/index.html
625///
626/// # Examples
627///
628/// ```
629/// use std::io::{Write, Result};
630///
631/// fn main() -> Result<()> {
632///     let mut w = Vec::new();
633///     writeln!(&mut w)?;
634///     writeln!(&mut w, "test")?;
635///     writeln!(&mut w, "formatted {}", "arguments")?;
636///
637///     assert_eq!(&w[..], "\ntest\nformatted arguments\n".as_bytes());
638///     Ok(())
639/// }
640/// ```
641#[macro_export]
642#[stable(feature = "rust1", since = "1.0.0")]
643#[rustc_diagnostic_item = "writeln_macro"]
644#[allow_internal_unstable(format_args_nl)]
645macro_rules! writeln {
646    ($dst:expr $(,)?) => {
647        $crate::write!($dst, "\n")
648    };
649    ($dst:expr, $($arg:tt)*) => {
650        $dst.write_fmt($crate::format_args_nl!($($arg)*))
651    };
652}
653
654/// Indicates unreachable code.
655///
656/// This is useful any time that the compiler can't determine that some code is unreachable. For
657/// example:
658///
659/// * Match arms with guard conditions.
660/// * Loops that dynamically terminate.
661/// * Iterators that dynamically terminate.
662///
663/// If the determination that the code is unreachable proves incorrect, the
664/// program immediately terminates with a [`panic!`].
665///
666/// The unsafe counterpart of this macro is the [`unreachable_unchecked`] function, which
667/// will cause undefined behavior if the code is reached.
668///
669/// [`unreachable_unchecked`]: crate::hint::unreachable_unchecked
670///
671/// # Panics
672///
673/// This will always [`panic!`] because `unreachable!` is just a shorthand for `panic!` with a
674/// fixed, specific message.
675///
676/// Like `panic!`, this macro has a second form for displaying custom values.
677///
678/// # Examples
679///
680/// Match arms:
681///
682/// ```
683/// # #[allow(dead_code)]
684/// fn foo(x: Option<i32>) {
685///     match x {
686///         Some(n) if n >= 0 => println!("Some(Non-negative)"),
687///         Some(n) if n <  0 => println!("Some(Negative)"),
688///         Some(_)           => unreachable!(), // compile error if commented out
689///         None              => println!("None")
690///     }
691/// }
692/// ```
693///
694/// Iterators:
695///
696/// ```
697/// # #[allow(dead_code)]
698/// fn divide_by_three(x: u32) -> u32 { // one of the poorest implementations of x/3
699///     for i in 0.. {
700///         if 3*i < i { panic!("u32 overflow"); }
701///         if x < 3*i { return i-1; }
702///     }
703///     unreachable!("The loop should always return");
704/// }
705/// ```
706#[macro_export]
707#[rustc_builtin_macro(unreachable)]
708#[allow_internal_unstable(edition_panic)]
709#[stable(feature = "rust1", since = "1.0.0")]
710#[rustc_diagnostic_item = "unreachable_macro"]
711macro_rules! unreachable {
712    // Expands to either `$crate::panic::unreachable_2015` or `$crate::panic::unreachable_2021`
713    // depending on the edition of the caller.
714    ($($arg:tt)*) => {
715        /* compiler built-in */
716    };
717}
718
719/// Indicates unimplemented code by panicking with a message of "not implemented".
720///
721/// This allows your code to type-check, which is useful if you are prototyping or
722/// implementing a trait that requires multiple methods which you don't plan to use all of.
723///
724/// The difference between `unimplemented!` and [`todo!`] is that while `todo!`
725/// conveys an intent of implementing the functionality later and the message is "not yet
726/// implemented", `unimplemented!` makes no such claims. Its message is "not implemented".
727///
728/// Also, some IDEs will mark `todo!`s.
729///
730/// # Panics
731///
732/// This will always [`panic!`] because `unimplemented!` is just a shorthand for `panic!` with a
733/// fixed, specific message.
734///
735/// Like `panic!`, this macro has a second form for displaying custom values.
736///
737/// [`todo!`]: crate::todo
738///
739/// # Examples
740///
741/// Say we have a trait `Foo`:
742///
743/// ```
744/// trait Foo {
745///     fn bar(&self) -> u8;
746///     fn baz(&self);
747///     fn qux(&self) -> Result<u64, ()>;
748/// }
749/// ```
750///
751/// We want to implement `Foo` for 'MyStruct', but for some reason it only makes sense
752/// to implement the `bar()` function. `baz()` and `qux()` will still need to be defined
753/// in our implementation of `Foo`, but we can use `unimplemented!` in their definitions
754/// to allow our code to compile.
755///
756/// We still want to have our program stop running if the unimplemented methods are
757/// reached.
758///
759/// ```
760/// # trait Foo {
761/// #     fn bar(&self) -> u8;
762/// #     fn baz(&self);
763/// #     fn qux(&self) -> Result<u64, ()>;
764/// # }
765/// struct MyStruct;
766///
767/// impl Foo for MyStruct {
768///     fn bar(&self) -> u8 {
769///         1 + 1
770///     }
771///
772///     fn baz(&self) {
773///         // It makes no sense to `baz` a `MyStruct`, so we have no logic here
774///         // at all.
775///         // This will display "thread 'main' panicked at 'not implemented'".
776///         unimplemented!();
777///     }
778///
779///     fn qux(&self) -> Result<u64, ()> {
780///         // We have some logic here,
781///         // We can add a message to unimplemented! to display our omission.
782///         // This will display:
783///         // "thread 'main' panicked at 'not implemented: MyStruct isn't quxable'".
784///         unimplemented!("MyStruct isn't quxable");
785///     }
786/// }
787///
788/// fn main() {
789///     let s = MyStruct;
790///     s.bar();
791/// }
792/// ```
793#[macro_export]
794#[stable(feature = "rust1", since = "1.0.0")]
795#[rustc_diagnostic_item = "unimplemented_macro"]
796#[allow_internal_unstable(panic_internals)]
797#[cfg(not(feature = "ferrocene_subset"))]
798macro_rules! unimplemented {
799    () => {
800        $crate::panicking::panic("not implemented")
801    };
802    ($($arg:tt)+) => {
803        $crate::panic!("not implemented: {}", $crate::format_args!($($arg)+))
804    };
805}
806
807/// Indicates unfinished code.
808///
809/// This can be useful if you are prototyping and just
810/// want a placeholder to let your code pass type analysis.
811///
812/// The difference between [`unimplemented!`] and `todo!` is that while `todo!` conveys
813/// an intent of implementing the functionality later and the message is "not yet
814/// implemented", `unimplemented!` makes no such claims. Its message is "not implemented".
815///
816/// Also, some IDEs will mark `todo!`s.
817///
818/// # Panics
819///
820/// This will always [`panic!`] because `todo!` is just a shorthand for `panic!` with a
821/// fixed, specific message.
822///
823/// Like `panic!`, this macro has a second form for displaying custom values.
824///
825/// # Examples
826///
827/// Here's an example of some in-progress code. We have a trait `Foo`:
828///
829/// ```
830/// trait Foo {
831///     fn bar(&self) -> u8;
832///     fn baz(&self);
833///     fn qux(&self) -> Result<u64, ()>;
834/// }
835/// ```
836///
837/// We want to implement `Foo` on one of our types, but we also want to work on
838/// just `bar()` first. In order for our code to compile, we need to implement
839/// `baz()` and `qux()`, so we can use `todo!`:
840///
841/// ```
842/// # trait Foo {
843/// #     fn bar(&self) -> u8;
844/// #     fn baz(&self);
845/// #     fn qux(&self) -> Result<u64, ()>;
846/// # }
847/// struct MyStruct;
848///
849/// impl Foo for MyStruct {
850///     fn bar(&self) -> u8 {
851///         1 + 1
852///     }
853///
854///     fn baz(&self) {
855///         // Let's not worry about implementing baz() for now
856///         todo!();
857///     }
858///
859///     fn qux(&self) -> Result<u64, ()> {
860///         // We can add a message to todo! to display our omission.
861///         // This will display:
862///         // "thread 'main' panicked at 'not yet implemented: MyStruct is not yet quxable'".
863///         todo!("MyStruct is not yet quxable");
864///     }
865/// }
866///
867/// fn main() {
868///     let s = MyStruct;
869///     s.bar();
870///
871///     // We aren't even using baz() or qux(), so this is fine.
872/// }
873/// ```
874#[macro_export]
875#[stable(feature = "todo_macro", since = "1.40.0")]
876#[rustc_diagnostic_item = "todo_macro"]
877#[allow_internal_unstable(panic_internals)]
878#[cfg(not(feature = "ferrocene_subset"))]
879macro_rules! todo {
880    () => {
881        $crate::panicking::panic("not yet implemented")
882    };
883    ($($arg:tt)+) => {
884        $crate::panic!("not yet implemented: {}", $crate::format_args!($($arg)+))
885    };
886}
887
888/// Definitions of built-in macros.
889///
890/// Most of the macro properties (stability, visibility, etc.) are taken from the source code here,
891/// with exception of expansion functions transforming macro inputs into outputs,
892/// those functions are provided by the compiler.
893pub(crate) mod builtin {
894
895    /// Causes compilation to fail with the given error message when encountered.
896    ///
897    /// This macro should be used when a crate uses a conditional compilation strategy to provide
898    /// better error messages for erroneous conditions. It's the compiler-level form of [`panic!`],
899    /// but emits an error during *compilation* rather than at *runtime*.
900    ///
901    /// # Examples
902    ///
903    /// Two such examples are macros and `#[cfg]` environments.
904    ///
905    /// Emit a better compiler error if a macro is passed invalid values. Without the final branch,
906    /// the compiler would still emit an error, but the error's message would not mention the two
907    /// valid values.
908    ///
909    /// ```compile_fail
910    /// macro_rules! give_me_foo_or_bar {
911    ///     (foo) => {};
912    ///     (bar) => {};
913    ///     ($x:ident) => {
914    ///         compile_error!("This macro only accepts `foo` or `bar`");
915    ///     }
916    /// }
917    ///
918    /// give_me_foo_or_bar!(neither);
919    /// // ^ will fail at compile time with message "This macro only accepts `foo` or `bar`"
920    /// ```
921    ///
922    /// Emit a compiler error if one of a number of features isn't available.
923    ///
924    /// ```compile_fail
925    /// #[cfg(not(any(feature = "foo", feature = "bar")))]
926    /// compile_error!("Either feature \"foo\" or \"bar\" must be enabled for this crate.");
927    /// ```
928    #[stable(feature = "compile_error_macro", since = "1.20.0")]
929    #[rustc_builtin_macro]
930    #[macro_export]
931    macro_rules! compile_error {
932        ($msg:expr $(,)?) => {{ /* compiler built-in */ }};
933    }
934
935    /// Constructs parameters for the other string-formatting macros.
936    ///
937    /// This macro functions by taking a formatting string literal containing
938    /// `{}` for each additional argument passed. `format_args!` prepares the
939    /// additional parameters to ensure the output can be interpreted as a string
940    /// and canonicalizes the arguments into a single type. Any value that implements
941    /// the [`Display`] trait can be passed to `format_args!`, as can any
942    /// [`Debug`] implementation be passed to a `{:?}` within the formatting string.
943    ///
944    /// This macro produces a value of type [`fmt::Arguments`]. This value can be
945    /// passed to the macros within [`std::fmt`] for performing useful redirection.
946    /// All other formatting macros ([`format!`], [`write!`], [`println!`], etc) are
947    /// proxied through this one. `format_args!`, unlike its derived macros, avoids
948    /// heap allocations.
949    ///
950    /// You can use the [`fmt::Arguments`] value that `format_args!` returns
951    /// in `Debug` and `Display` contexts as seen below. The example also shows
952    /// that `Debug` and `Display` format to the same thing: the interpolated
953    /// format string in `format_args!`.
954    ///
955    /// ```rust
956    /// let args = format_args!("{} foo {:?}", 1, 2);
957    /// let debug = format!("{args:?}");
958    /// let display = format!("{args}");
959    /// assert_eq!("1 foo 2", display);
960    /// assert_eq!(display, debug);
961    /// ```
962    ///
963    /// See [the formatting documentation in `std::fmt`](../std/fmt/index.html)
964    /// for details of the macro argument syntax, and further information.
965    ///
966    /// [`Display`]: crate::fmt::Display
967    /// [`Debug`]: crate::fmt::Debug
968    /// [`fmt::Arguments`]: crate::fmt::Arguments
969    /// [`std::fmt`]: ../std/fmt/index.html
970    /// [`format!`]: ../std/macro.format.html
971    /// [`println!`]: ../std/macro.println.html
972    ///
973    /// # Examples
974    ///
975    /// ```
976    /// use std::fmt;
977    ///
978    /// let s = fmt::format(format_args!("hello {}", "world"));
979    /// assert_eq!(s, format!("hello {}", "world"));
980    /// ```
981    ///
982    /// # Argument lifetimes
983    ///
984    /// Except when no formatting arguments are used,
985    /// the produced `fmt::Arguments` value borrows temporary values.
986    /// To allow it to be stored for later use, the arguments' lifetimes, as well as those of
987    /// temporaries they borrow, may be [extended] when `format_args!` appears in the initializer
988    /// expression of a `let` statement. The syntactic rules used to determine when temporaries'
989    /// lifetimes are extended are documented in the [Reference].
990    ///
991    /// [extended]: ../reference/destructors.html#temporary-lifetime-extension
992    /// [Reference]: ../reference/destructors.html#extending-based-on-expressions
993    #[stable(feature = "rust1", since = "1.0.0")]
994    #[rustc_diagnostic_item = "format_args_macro"]
995    #[allow_internal_unsafe]
996    #[allow_internal_unstable(fmt_internals, fmt_arguments_from_str)]
997    #[rustc_builtin_macro]
998    #[macro_export]
999    macro_rules! format_args {
1000        ($fmt:expr) => {{ /* compiler built-in */ }};
1001        ($fmt:expr, $($args:tt)*) => {{ /* compiler built-in */ }};
1002    }
1003
1004    /// Same as [`format_args`], but can be used in some const contexts.
1005    ///
1006    /// This macro is used by the panic macros for the `const_panic` feature.
1007    ///
1008    /// This macro will be removed once `format_args` is allowed in const contexts.
1009    #[unstable(feature = "const_format_args", issue = "none")]
1010    #[allow_internal_unstable(fmt_internals, fmt_arguments_from_str)]
1011    #[rustc_builtin_macro]
1012    #[macro_export]
1013    macro_rules! const_format_args {
1014        ($fmt:expr) => {{ /* compiler built-in */ }};
1015        ($fmt:expr, $($args:tt)*) => {{ /* compiler built-in */ }};
1016    }
1017
1018    /// Same as [`format_args`], but adds a newline in the end.
1019    #[unstable(
1020        feature = "format_args_nl",
1021        issue = "none",
1022        reason = "`format_args_nl` is only for internal \
1023                  language use and is subject to change"
1024    )]
1025    #[allow_internal_unstable(fmt_internals, fmt_arguments_from_str)]
1026    #[rustc_builtin_macro]
1027    #[doc(hidden)]
1028    #[macro_export]
1029    macro_rules! format_args_nl {
1030        ($fmt:expr) => {{ /* compiler built-in */ }};
1031        ($fmt:expr, $($args:tt)*) => {{ /* compiler built-in */ }};
1032    }
1033
1034    /// Inspects an environment variable at compile time.
1035    ///
1036    /// This macro will expand to the value of the named environment variable at
1037    /// compile time, yielding an expression of type `&'static str`. Use
1038    /// [`std::env::var`] instead if you want to read the value at runtime.
1039    ///
1040    /// [`std::env::var`]: ../std/env/fn.var.html
1041    ///
1042    /// If the environment variable is not defined, then a compilation error
1043    /// will be emitted. To not emit a compile error, use the [`option_env!`]
1044    /// macro instead. A compilation error will also be emitted if the
1045    /// environment variable is not a valid Unicode string.
1046    ///
1047    /// # Examples
1048    ///
1049    /// ```
1050    /// let path: &'static str = env!("PATH");
1051    /// println!("the $PATH variable at the time of compiling was: {path}");
1052    /// ```
1053    ///
1054    /// You can customize the error message by passing a string as the second
1055    /// parameter:
1056    ///
1057    /// ```compile_fail
1058    /// let doc: &'static str = env!("documentation", "what's that?!");
1059    /// ```
1060    ///
1061    /// If the `documentation` environment variable is not defined, you'll get
1062    /// the following error:
1063    ///
1064    /// ```text
1065    /// error: what's that?!
1066    /// ```
1067    #[stable(feature = "rust1", since = "1.0.0")]
1068    #[rustc_builtin_macro]
1069    #[macro_export]
1070    #[rustc_diagnostic_item = "env_macro"] // useful for external lints
1071    macro_rules! env {
1072        ($name:expr $(,)?) => {{ /* compiler built-in */ }};
1073        ($name:expr, $error_msg:expr $(,)?) => {{ /* compiler built-in */ }};
1074    }
1075
1076    /// Optionally inspects an environment variable at compile time.
1077    ///
1078    /// If the named environment variable is present at compile time, this will
1079    /// expand into an expression of type `Option<&'static str>` whose value is
1080    /// `Some` of the value of the environment variable (a compilation error
1081    /// will be emitted if the environment variable is not a valid Unicode
1082    /// string). If the environment variable is not present, then this will
1083    /// expand to `None`. See [`Option<T>`][Option] for more information on this
1084    /// type.  Use [`std::env::var`] instead if you want to read the value at
1085    /// runtime.
1086    ///
1087    /// [`std::env::var`]: ../std/env/fn.var.html
1088    ///
1089    /// A compile time error is only emitted when using this macro if the
1090    /// environment variable exists and is not a valid Unicode string. To also
1091    /// emit a compile error if the environment variable is not present, use the
1092    /// [`env!`] macro instead.
1093    ///
1094    /// # Examples
1095    ///
1096    /// ```
1097    /// let key: Option<&'static str> = option_env!("SECRET_KEY");
1098    /// println!("the secret key might be: {key:?}");
1099    /// ```
1100    #[stable(feature = "rust1", since = "1.0.0")]
1101    #[rustc_builtin_macro]
1102    #[macro_export]
1103    #[rustc_diagnostic_item = "option_env_macro"] // useful for external lints
1104    macro_rules! option_env {
1105        ($name:expr $(,)?) => {{ /* compiler built-in */ }};
1106    }
1107
1108    /// Concatenates literals into a byte slice.
1109    ///
1110    /// This macro takes any number of comma-separated literals, and concatenates them all into
1111    /// one, yielding an expression of type `&[u8; _]`, which represents all of the literals
1112    /// concatenated left-to-right. The literals passed can be any combination of:
1113    ///
1114    /// - byte literals (`b'r'`)
1115    /// - byte strings (`b"Rust"`)
1116    /// - arrays of bytes/numbers (`[b'A', 66, b'C']`)
1117    ///
1118    /// # Examples
1119    ///
1120    /// ```
1121    /// #![feature(concat_bytes)]
1122    ///
1123    /// # fn main() {
1124    /// let s: &[u8; 6] = concat_bytes!(b'A', b"BC", [68, b'E', 70]);
1125    /// assert_eq!(s, b"ABCDEF");
1126    /// # }
1127    /// ```
1128    #[unstable(feature = "concat_bytes", issue = "87555")]
1129    #[rustc_builtin_macro]
1130    #[macro_export]
1131    macro_rules! concat_bytes {
1132        ($($e:literal),+ $(,)?) => {{ /* compiler built-in */ }};
1133    }
1134
1135    /// Concatenates literals into a static string slice.
1136    ///
1137    /// This macro takes any number of comma-separated literals, yielding an
1138    /// expression of type `&'static str` which represents all of the literals
1139    /// concatenated left-to-right.
1140    ///
1141    /// Integer and floating point literals are [stringified](core::stringify) in order to be
1142    /// concatenated.
1143    ///
1144    /// # Examples
1145    ///
1146    /// ```
1147    /// let s = concat!("test", 10, 'b', true);
1148    /// assert_eq!(s, "test10btrue");
1149    /// ```
1150    #[stable(feature = "rust1", since = "1.0.0")]
1151    #[rustc_builtin_macro]
1152    #[rustc_diagnostic_item = "macro_concat"]
1153    #[macro_export]
1154    macro_rules! concat {
1155        ($($e:expr),* $(,)?) => {{ /* compiler built-in */ }};
1156    }
1157
1158    /// Expands to the line number on which it was invoked.
1159    ///
1160    /// With [`column!`] and [`file!`], these macros provide debugging information for
1161    /// developers about the location within the source.
1162    ///
1163    /// The expanded expression has type `u32` and is 1-based, so the first line
1164    /// in each file evaluates to 1, the second to 2, etc. This is consistent
1165    /// with error messages by common compilers or popular editors.
1166    /// The returned line is *not necessarily* the line of the `line!` invocation itself,
1167    /// but rather the first macro invocation leading up to the invocation
1168    /// of the `line!` macro.
1169    ///
1170    /// # Examples
1171    ///
1172    /// ```
1173    /// let current_line = line!();
1174    /// println!("defined on line: {current_line}");
1175    /// ```
1176    #[stable(feature = "rust1", since = "1.0.0")]
1177    #[rustc_builtin_macro]
1178    #[macro_export]
1179    macro_rules! line {
1180        () => {
1181            /* compiler built-in */
1182        };
1183    }
1184
1185    /// Expands to the column number at which it was invoked.
1186    ///
1187    /// With [`line!`] and [`file!`], these macros provide debugging information for
1188    /// developers about the location within the source.
1189    ///
1190    /// The expanded expression has type `u32` and is 1-based, so the first column
1191    /// in each line evaluates to 1, the second to 2, etc. This is consistent
1192    /// with error messages by common compilers or popular editors.
1193    /// The returned column is *not necessarily* the line of the `column!` invocation itself,
1194    /// but rather the first macro invocation leading up to the invocation
1195    /// of the `column!` macro.
1196    ///
1197    /// # Examples
1198    ///
1199    /// ```
1200    /// let current_col = column!();
1201    /// println!("defined on column: {current_col}");
1202    /// ```
1203    ///
1204    /// `column!` counts Unicode code points, not bytes or graphemes. As a result, the first two
1205    /// invocations return the same value, but the third does not.
1206    ///
1207    /// ```
1208    /// let a = ("foobar", column!()).1;
1209    /// let b = ("人之初性本善", column!()).1;
1210    /// let c = ("f̅o̅o̅b̅a̅r̅", column!()).1; // Uses combining overline (U+0305)
1211    ///
1212    /// assert_eq!(a, b);
1213    /// assert_ne!(b, c);
1214    /// ```
1215    #[stable(feature = "rust1", since = "1.0.0")]
1216    #[rustc_builtin_macro]
1217    #[macro_export]
1218    macro_rules! column {
1219        () => {
1220            /* compiler built-in */
1221        };
1222    }
1223
1224    /// Expands to the file name in which it was invoked.
1225    ///
1226    /// With [`line!`] and [`column!`], these macros provide debugging information for
1227    /// developers about the location within the source.
1228    ///
1229    /// The expanded expression has type `&'static str`, and the returned file
1230    /// is not the invocation of the `file!` macro itself, but rather the
1231    /// first macro invocation leading up to the invocation of the `file!`
1232    /// macro.
1233    ///
1234    /// The file name is derived from the crate root's source path passed to the Rust compiler
1235    /// and the sequence the compiler takes to get from the crate root to the
1236    /// module containing `file!`, modified by any flags passed to the Rust compiler (e.g.
1237    /// `--remap-path-prefix`).  If the crate's source path is relative, the initial base
1238    /// directory will be the working directory of the Rust compiler.  For example, if the source
1239    /// path passed to the compiler is `./src/lib.rs` which has a `mod foo;` with a source path of
1240    /// `src/foo/mod.rs`, then calling `file!` inside `mod foo;` will return `./src/foo/mod.rs`.
1241    ///
1242    /// Future compiler options might make further changes to the behavior of `file!`,
1243    /// including potentially making it entirely empty. Code (e.g. test libraries)
1244    /// relying on `file!` producing an openable file path would be incompatible
1245    /// with such options, and might wish to recommend not using those options.
1246    ///
1247    /// # Examples
1248    ///
1249    /// ```
1250    /// let this_file = file!();
1251    /// println!("defined in file: {this_file}");
1252    /// ```
1253    #[stable(feature = "rust1", since = "1.0.0")]
1254    #[rustc_builtin_macro]
1255    #[macro_export]
1256    macro_rules! file {
1257        () => {
1258            /* compiler built-in */
1259        };
1260    }
1261
1262    /// Stringifies its arguments.
1263    ///
1264    /// This macro will yield an expression of type `&'static str` which is the
1265    /// stringification of all the tokens passed to the macro. No restrictions
1266    /// are placed on the syntax of the macro invocation itself.
1267    ///
1268    /// Note that the expanded results of the input tokens may change in the
1269    /// future. You should be careful if you rely on the output.
1270    ///
1271    /// # Examples
1272    ///
1273    /// ```
1274    /// let one_plus_one = stringify!(1 + 1);
1275    /// assert_eq!(one_plus_one, "1 + 1");
1276    /// ```
1277    #[stable(feature = "rust1", since = "1.0.0")]
1278    #[rustc_builtin_macro]
1279    #[macro_export]
1280    macro_rules! stringify {
1281        ($($t:tt)*) => {
1282            /* compiler built-in */
1283        };
1284    }
1285
1286    /// Includes a UTF-8 encoded file as a string.
1287    ///
1288    /// The file is located relative to the current file (similarly to how
1289    /// modules are found). The provided path is interpreted in a platform-specific
1290    /// way at compile time. So, for instance, an invocation with a Windows path
1291    /// containing backslashes `\` would not compile correctly on Unix.
1292    ///
1293    /// This macro will yield an expression of type `&'static str` which is the
1294    /// contents of the file.
1295    ///
1296    /// # Examples
1297    ///
1298    /// Assume there are two files in the same directory with the following
1299    /// contents:
1300    ///
1301    /// File 'spanish.in':
1302    ///
1303    /// ```text
1304    /// adiós
1305    /// ```
1306    ///
1307    /// File 'main.rs':
1308    ///
1309    /// ```ignore (cannot-doctest-external-file-dependency)
1310    /// fn main() {
1311    ///     let my_str = include_str!("spanish.in");
1312    ///     assert_eq!(my_str, "adiós\n");
1313    ///     print!("{my_str}");
1314    /// }
1315    /// ```
1316    ///
1317    /// Compiling 'main.rs' and running the resulting binary will print "adiós".
1318    #[stable(feature = "rust1", since = "1.0.0")]
1319    #[rustc_builtin_macro]
1320    #[macro_export]
1321    #[rustc_diagnostic_item = "include_str_macro"]
1322    macro_rules! include_str {
1323        ($file:expr $(,)?) => {{ /* compiler built-in */ }};
1324    }
1325
1326    /// Includes a file as a reference to a byte array.
1327    ///
1328    /// The file is located relative to the current file (similarly to how
1329    /// modules are found). The provided path is interpreted in a platform-specific
1330    /// way at compile time. So, for instance, an invocation with a Windows path
1331    /// containing backslashes `\` would not compile correctly on Unix.
1332    ///
1333    /// This macro will yield an expression of type `&'static [u8; N]` which is
1334    /// the contents of the file.
1335    ///
1336    /// # Examples
1337    ///
1338    /// Assume there are two files in the same directory with the following
1339    /// contents:
1340    ///
1341    /// File 'spanish.in':
1342    ///
1343    /// ```text
1344    /// adiós
1345    /// ```
1346    ///
1347    /// File 'main.rs':
1348    ///
1349    /// ```ignore (cannot-doctest-external-file-dependency)
1350    /// fn main() {
1351    ///     let bytes = include_bytes!("spanish.in");
1352    ///     assert_eq!(bytes, b"adi\xc3\xb3s\n");
1353    ///     print!("{}", String::from_utf8_lossy(bytes));
1354    /// }
1355    /// ```
1356    ///
1357    /// Compiling 'main.rs' and running the resulting binary will print "adiós".
1358    #[stable(feature = "rust1", since = "1.0.0")]
1359    #[rustc_builtin_macro]
1360    #[macro_export]
1361    #[rustc_diagnostic_item = "include_bytes_macro"]
1362    macro_rules! include_bytes {
1363        ($file:expr $(,)?) => {{ /* compiler built-in */ }};
1364    }
1365
1366    /// Expands to a string that represents the current module path.
1367    ///
1368    /// The current module path can be thought of as the hierarchy of modules
1369    /// leading back up to the crate root. The first component of the path
1370    /// returned is the name of the crate currently being compiled.
1371    ///
1372    /// # Examples
1373    ///
1374    /// ```
1375    /// mod test {
1376    ///     pub fn foo() {
1377    ///         assert!(module_path!().ends_with("test"));
1378    ///     }
1379    /// }
1380    ///
1381    /// test::foo();
1382    /// ```
1383    #[stable(feature = "rust1", since = "1.0.0")]
1384    #[rustc_builtin_macro]
1385    #[macro_export]
1386    macro_rules! module_path {
1387        () => {
1388            /* compiler built-in */
1389        };
1390    }
1391
1392    /// Evaluates boolean combinations of configuration flags at compile-time.
1393    ///
1394    /// In addition to the `#[cfg]` attribute, this macro is provided to allow
1395    /// boolean expression evaluation of configuration flags. This frequently
1396    /// leads to less duplicated code.
1397    ///
1398    /// The syntax given to this macro is the same syntax as the [`cfg`]
1399    /// attribute.
1400    ///
1401    /// `cfg!`, unlike `#[cfg]`, does not remove any code and only evaluates to true or false. For
1402    /// example, all blocks in an if/else expression need to be valid when `cfg!` is used for
1403    /// the condition, regardless of what `cfg!` is evaluating.
1404    ///
1405    /// [`cfg`]: ../reference/conditional-compilation.html#the-cfg-attribute
1406    ///
1407    /// # Examples
1408    ///
1409    /// ```
1410    /// let my_directory = if cfg!(windows) {
1411    ///     "windows-specific-directory"
1412    /// } else {
1413    ///     "unix-directory"
1414    /// };
1415    /// ```
1416    #[stable(feature = "rust1", since = "1.0.0")]
1417    #[rustc_builtin_macro]
1418    #[macro_export]
1419    macro_rules! cfg {
1420        ($($cfg:tt)*) => {
1421            /* compiler built-in */
1422        };
1423    }
1424
1425    /// Parses a file as an expression or an item according to the context.
1426    ///
1427    /// **Warning**: For multi-file Rust projects, the `include!` macro is probably not what you
1428    /// are looking for. Usually, multi-file Rust projects use
1429    /// [modules](https://doc.rust-lang.org/reference/items/modules.html). Multi-file projects and
1430    /// modules are explained in the Rust-by-Example book
1431    /// [here](https://doc.rust-lang.org/rust-by-example/mod/split.html) and the module system is
1432    /// explained in the Rust Book
1433    /// [here](https://doc.rust-lang.org/book/ch07-02-defining-modules-to-control-scope-and-privacy.html).
1434    ///
1435    /// The included file is placed in the surrounding code
1436    /// [unhygienically](https://doc.rust-lang.org/reference/macros-by-example.html#hygiene). If
1437    /// the included file is parsed as an expression and variables or functions share names across
1438    /// both files, it could result in variables or functions being different from what the
1439    /// included file expected.
1440    ///
1441    /// The included file is located relative to the current file (similarly to how modules are
1442    /// found). The provided path is interpreted in a platform-specific way at compile time. So,
1443    /// for instance, an invocation with a Windows path containing backslashes `\` would not
1444    /// compile correctly on Unix.
1445    ///
1446    /// # Uses
1447    ///
1448    /// The `include!` macro is primarily used for two purposes. It is used to include
1449    /// documentation that is written in a separate file and it is used to include [build artifacts
1450    /// usually as a result from the `build.rs`
1451    /// script](https://doc.rust-lang.org/cargo/reference/build-scripts.html#outputs-of-the-build-script).
1452    ///
1453    /// When using the `include` macro to include stretches of documentation, remember that the
1454    /// included file still needs to be a valid Rust syntax. It is also possible to
1455    /// use the [`include_str`] macro as `#![doc = include_str!("...")]` (at the module level) or
1456    /// `#[doc = include_str!("...")]` (at the item level) to include documentation from a plain
1457    /// text or markdown file.
1458    ///
1459    /// # Examples
1460    ///
1461    /// Assume there are two files in the same directory with the following contents:
1462    ///
1463    /// File 'monkeys.in':
1464    ///
1465    /// ```ignore (only-for-syntax-highlight)
1466    /// ['🙈', '🙊', '🙉']
1467    ///     .iter()
1468    ///     .cycle()
1469    ///     .take(6)
1470    ///     .collect::<String>()
1471    /// ```
1472    ///
1473    /// File 'main.rs':
1474    ///
1475    /// ```ignore (cannot-doctest-external-file-dependency)
1476    /// fn main() {
1477    ///     let my_string = include!("monkeys.in");
1478    ///     assert_eq!("🙈🙊🙉🙈🙊🙉", my_string);
1479    ///     println!("{my_string}");
1480    /// }
1481    /// ```
1482    ///
1483    /// Compiling 'main.rs' and running the resulting binary will print
1484    /// "🙈🙊🙉🙈🙊🙉".
1485    #[stable(feature = "rust1", since = "1.0.0")]
1486    #[rustc_builtin_macro]
1487    #[macro_export]
1488    #[rustc_diagnostic_item = "include_macro"] // useful for external lints
1489    macro_rules! include {
1490        ($file:expr $(,)?) => {{ /* compiler built-in */ }};
1491    }
1492
1493    /// This macro uses forward-mode automatic differentiation to generate a new function.
1494    /// It may only be applied to a function. The new function will compute the derivative
1495    /// of the function to which the macro was applied.
1496    ///
1497    /// The expected usage syntax is:
1498    /// `#[autodiff_forward(NAME, INPUT_ACTIVITIES, OUTPUT_ACTIVITY)]`
1499    ///
1500    /// - `NAME`: A string that represents a valid function name.
1501    /// - `INPUT_ACTIVITIES`: Specifies one valid activity for each input parameter.
1502    /// - `OUTPUT_ACTIVITY`: Must not be set if the function implicitly returns nothing
1503    ///   (or explicitly returns `-> ()`). Otherwise, it must be set to one of the allowed activities.
1504    ///
1505    /// ACTIVITIES might either be `Dual` or `Const`, more options will be exposed later.
1506    ///
1507    /// `Const` should be used on non-float arguments, or float-based arguments as an optimization
1508    /// if we are not interested in computing the derivatives with respect to this argument.
1509    ///
1510    /// `Dual` can be used for float scalar values or for references, raw pointers, or other
1511    /// indirect input arguments. It can also be used on a scalar float return value.
1512    /// If used on a return value, the generated function will return a tuple of two float scalars.
1513    /// If used on an input argument, a new shadow argument of the same type will be created,
1514    /// directly following the original argument.
1515    ///
1516    /// ### Usage examples:
1517    ///
1518    /// ```rust,ignore (autodiff requires a -Z flag as well as fat-lto for testing)
1519    /// #![feature(autodiff)]
1520    /// use std::autodiff::*;
1521    /// #[autodiff_forward(rb_fwd1, Dual, Const, Dual)]
1522    /// #[autodiff_forward(rb_fwd2, Const, Dual, Dual)]
1523    /// #[autodiff_forward(rb_fwd3, Dual, Dual, Dual)]
1524    /// fn rosenbrock(x: f64, y: f64) -> f64 {
1525    ///     (1.0 - x).powi(2) + 100.0 * (y - x.powi(2)).powi(2)
1526    /// }
1527    /// #[autodiff_forward(rb_inp_fwd, Dual, Dual, Dual)]
1528    /// fn rosenbrock_inp(x: f64, y: f64, out: &mut f64) {
1529    ///     *out = (1.0 - x).powi(2) + 100.0 * (y - x.powi(2)).powi(2);
1530    /// }
1531    ///
1532    /// fn main() {
1533    ///   let x0 = rosenbrock(1.0, 3.0); // 400.0
1534    ///   let (x1, dx1) = rb_fwd1(1.0, 1.0, 3.0); // (400.0, -800.0)
1535    ///   let (x2, dy1) = rb_fwd2(1.0, 3.0, 1.0); // (400.0, 400.0)
1536    ///   // When seeding both arguments at once the tangent return is the sum of both.
1537    ///   let (x3, dxy) = rb_fwd3(1.0, 1.0, 3.0, 1.0); // (400.0, -400.0)
1538    ///
1539    ///   let mut out = 0.0;
1540    ///   let mut dout = 0.0;
1541    ///   rb_inp_fwd(1.0, 1.0, 3.0, 1.0, &mut out, &mut dout);
1542    ///   // (out, dout) == (400.0, -400.0)
1543    /// }
1544    /// ```
1545    ///
1546    /// We might want to track how one input float affects one or more output floats. In this case,
1547    /// the shadow of one input should be initialized to `1.0`, while the shadows of the other
1548    /// inputs should be initialized to `0.0`. The shadow of the output(s) should be initialized to
1549    /// `0.0`. After calling the generated function, the shadow of the input will be zeroed,
1550    /// while the shadow(s) of the output(s) will contain the derivatives. Forward mode is generally
1551    /// more efficient if we have more output floats marked as `Dual` than input floats.
1552    /// Related information can also be found under the term "Vector-Jacobian product" (VJP).
1553    #[unstable(feature = "autodiff", issue = "124509")]
1554    #[allow_internal_unstable(rustc_attrs)]
1555    #[allow_internal_unstable(core_intrinsics)]
1556    #[rustc_builtin_macro]
1557    pub macro autodiff_forward($item:item) {
1558        /* compiler built-in */
1559    }
1560
1561    /// This macro uses reverse-mode automatic differentiation to generate a new function.
1562    /// It may only be applied to a function. The new function will compute the derivative
1563    /// of the function to which the macro was applied.
1564    ///
1565    /// The expected usage syntax is:
1566    /// `#[autodiff_reverse(NAME, INPUT_ACTIVITIES, OUTPUT_ACTIVITY)]`
1567    ///
1568    /// - `NAME`: A string that represents a valid function name.
1569    /// - `INPUT_ACTIVITIES`: Specifies one valid activity for each input parameter.
1570    /// - `OUTPUT_ACTIVITY`: Must not be set if the function implicitly returns nothing
1571    ///   (or explicitly returns `-> ()`). Otherwise, it must be set to one of the allowed activities.
1572    ///
1573    /// ACTIVITIES might either be `Active`, `Duplicated` or `Const`, more options will be exposed later.
1574    ///
1575    /// `Active` can be used for float scalar values.
1576    /// If used on an input, a new float will be appended to the return tuple of the generated
1577    /// function. If the function returns a float scalar, `Active` can be used for the return as
1578    /// well. In this case a float scalar will be appended to the argument list, it works as seed.
1579    ///
1580    /// `Duplicated` can be used on references, raw pointers, or other indirect input
1581    /// arguments. It creates a new shadow argument of the same type, following the original argument.
1582    /// A const reference or pointer argument will receive a mutable reference or pointer as shadow.
1583    ///
1584    /// `Const` should be used on non-float arguments, or float-based arguments as an optimization
1585    /// if we are not interested in computing the derivatives with respect to this argument.
1586    ///
1587    /// ### Usage examples:
1588    ///
1589    /// ```rust,ignore (autodiff requires a -Z flag as well as fat-lto for testing)
1590    /// #![feature(autodiff)]
1591    /// use std::autodiff::*;
1592    /// #[autodiff_reverse(rb_rev, Active, Active, Active)]
1593    /// fn rosenbrock(x: f64, y: f64) -> f64 {
1594    ///     (1.0 - x).powi(2) + 100.0 * (y - x.powi(2)).powi(2)
1595    /// }
1596    /// #[autodiff_reverse(rb_inp_rev, Active, Active, Duplicated)]
1597    /// fn rosenbrock_inp(x: f64, y: f64, out: &mut f64) {
1598    ///     *out = (1.0 - x).powi(2) + 100.0 * (y - x.powi(2)).powi(2);
1599    /// }
1600    ///
1601    /// fn main() {
1602    ///     let (output1, dx1, dy1) = rb_rev(1.0, 3.0, 1.0);
1603    ///     dbg!(output1, dx1, dy1); // (400.0, -800.0, 400.0)
1604    ///     let mut output2 = 0.0;
1605    ///     let mut seed = 1.0;
1606    ///     let (dx2, dy2) = rb_inp_rev(1.0, 3.0, &mut output2, &mut seed);
1607    ///     // (dx2, dy2, output2, seed) == (-800.0, 400.0, 400.0, 0.0)
1608    /// }
1609    /// ```
1610    ///
1611    ///
1612    /// We often want to track how one or more input floats affect one output float. This output can
1613    /// be a scalar return value, or a mutable reference or pointer argument. In the latter case, the
1614    /// mutable input should be marked as duplicated and its shadow initialized to `0.0`. The shadow of
1615    /// the output should be marked as active or duplicated and initialized to `1.0`. After calling
1616    /// the generated function, the shadow(s) of the input(s) will contain the derivatives. The
1617    /// shadow of the outputs ("seed") will be reset to zero.
1618    /// If the function has more than one output float marked as active or duplicated, users might want to
1619    /// set one of them to `1.0` and the others to `0.0` to compute partial derivatives.
1620    /// Unlike forward-mode, a call to the generated function does not reset the shadow of the
1621    /// inputs.
1622    /// Reverse mode is generally more efficient if we have more active/duplicated input than
1623    /// output floats.
1624    ///
1625    /// Related information can also be found under the term "Jacobian-Vector Product" (JVP).
1626    #[unstable(feature = "autodiff", issue = "124509")]
1627    #[allow_internal_unstable(rustc_attrs)]
1628    #[allow_internal_unstable(core_intrinsics)]
1629    #[rustc_builtin_macro]
1630    pub macro autodiff_reverse($item:item) {
1631        /* compiler built-in */
1632    }
1633
1634    /// Asserts that a boolean expression is `true` at runtime.
1635    ///
1636    /// This will invoke the [`panic!`] macro if the provided expression cannot be
1637    /// evaluated to `true` at runtime.
1638    ///
1639    /// # Uses
1640    ///
1641    /// Assertions are always checked in both debug and release builds, and cannot
1642    /// be disabled. See [`debug_assert!`] for assertions that are not enabled in
1643    /// release builds by default.
1644    ///
1645    /// Unsafe code may rely on `assert!` to enforce run-time invariants that, if
1646    /// violated could lead to unsafety.
1647    ///
1648    /// Other use-cases of `assert!` include testing and enforcing run-time
1649    /// invariants in safe code (whose violation cannot result in unsafety).
1650    ///
1651    /// # Custom Messages
1652    ///
1653    /// This macro has a second form, where a custom panic message can
1654    /// be provided with or without arguments for formatting. See [`std::fmt`]
1655    /// for syntax for this form. Expressions used as format arguments will only
1656    /// be evaluated if the assertion fails.
1657    ///
1658    /// [`std::fmt`]: ../std/fmt/index.html
1659    ///
1660    /// # Examples
1661    ///
1662    /// ```
1663    /// // the panic message for these assertions is the stringified value of the
1664    /// // expression given.
1665    /// assert!(true);
1666    ///
1667    /// fn some_computation() -> bool {
1668    ///     // Some expensive computation here
1669    ///     true
1670    /// }
1671    ///
1672    /// assert!(some_computation());
1673    ///
1674    /// // assert with a custom message
1675    /// let x = true;
1676    /// assert!(x, "x wasn't true!");
1677    ///
1678    /// let a = 3; let b = 27;
1679    /// assert!(a + b == 30, "a = {}, b = {}", a, b);
1680    /// ```
1681    #[stable(feature = "rust1", since = "1.0.0")]
1682    #[rustc_builtin_macro]
1683    #[macro_export]
1684    #[rustc_diagnostic_item = "assert_macro"]
1685    #[allow_internal_unstable(
1686        core_intrinsics,
1687        panic_internals,
1688        edition_panic,
1689        generic_assert_internals
1690    )]
1691    macro_rules! assert {
1692        ($cond:expr $(,)?) => {{ /* compiler built-in */ }};
1693        ($cond:expr, $($arg:tt)+) => {{ /* compiler built-in */ }};
1694    }
1695
1696    /// Prints passed tokens into the standard output.
1697    #[unstable(
1698        feature = "log_syntax",
1699        issue = "29598",
1700        reason = "`log_syntax!` is not stable enough for use and is subject to change"
1701    )]
1702    #[rustc_builtin_macro]
1703    #[macro_export]
1704    macro_rules! log_syntax {
1705        ($($arg:tt)*) => {
1706            /* compiler built-in */
1707        };
1708    }
1709
1710    /// Enables or disables tracing functionality used for debugging other macros.
1711    #[unstable(
1712        feature = "trace_macros",
1713        issue = "29598",
1714        reason = "`trace_macros` is not stable enough for use and is subject to change"
1715    )]
1716    #[rustc_builtin_macro]
1717    #[macro_export]
1718    macro_rules! trace_macros {
1719        (true) => {{ /* compiler built-in */ }};
1720        (false) => {{ /* compiler built-in */ }};
1721    }
1722
1723    /// Attribute macro used to apply derive macros.
1724    ///
1725    /// See [the reference] for more info.
1726    ///
1727    /// [the reference]: ../../../reference/attributes/derive.html
1728    #[stable(feature = "rust1", since = "1.0.0")]
1729    #[rustc_builtin_macro]
1730    pub macro derive($item:item) {
1731        /* compiler built-in */
1732    }
1733
1734    /// Attribute macro used to apply derive macros for implementing traits
1735    /// in a const context.
1736    ///
1737    /// See [the reference] for more info.
1738    ///
1739    /// [the reference]: ../../../reference/attributes/derive.html
1740    #[unstable(feature = "derive_const", issue = "118304")]
1741    #[rustc_builtin_macro]
1742    pub macro derive_const($item:item) {
1743        /* compiler built-in */
1744    }
1745
1746    /// Attribute macro applied to a function to turn it into a unit test.
1747    ///
1748    /// See [the reference] for more info.
1749    ///
1750    /// [the reference]: ../../../reference/attributes/testing.html#the-test-attribute
1751    #[stable(feature = "rust1", since = "1.0.0")]
1752    #[allow_internal_unstable(test, rustc_attrs, coverage_attribute)]
1753    #[rustc_builtin_macro]
1754    pub macro test($item:item) {
1755        /* compiler built-in */
1756    }
1757
1758    /// Attribute macro applied to a function to turn it into a benchmark test.
1759    #[unstable(
1760        feature = "test",
1761        issue = "50297",
1762        reason = "`bench` is a part of custom test frameworks which are unstable"
1763    )]
1764    #[allow_internal_unstable(test, rustc_attrs, coverage_attribute)]
1765    #[rustc_builtin_macro]
1766    pub macro bench($item:item) {
1767        /* compiler built-in */
1768    }
1769
1770    /// An implementation detail of the `#[test]` and `#[bench]` macros.
1771    #[unstable(
1772        feature = "custom_test_frameworks",
1773        issue = "50297",
1774        reason = "custom test frameworks are an unstable feature"
1775    )]
1776    #[allow_internal_unstable(test, rustc_attrs)]
1777    #[rustc_builtin_macro]
1778    pub macro test_case($item:item) {
1779        /* compiler built-in */
1780    }
1781
1782    /// Attribute macro applied to a static to register it as a global allocator.
1783    ///
1784    /// See also [`std::alloc::GlobalAlloc`](../../../std/alloc/trait.GlobalAlloc.html).
1785    #[stable(feature = "global_allocator", since = "1.28.0")]
1786    #[allow_internal_unstable(rustc_attrs)]
1787    #[rustc_builtin_macro]
1788    pub macro global_allocator($item:item) {
1789        /* compiler built-in */
1790    }
1791
1792    /// Attribute macro applied to a function to give it a post-condition.
1793    ///
1794    /// The attribute carries an argument token-tree which is
1795    /// eventually parsed as a unary closure expression that is
1796    /// invoked on a reference to the return value.
1797    #[unstable(feature = "contracts", issue = "128044")]
1798    #[allow_internal_unstable(contracts_internals)]
1799    #[rustc_builtin_macro]
1800    pub macro contracts_ensures($item:item) {
1801        /* compiler built-in */
1802    }
1803
1804    /// Attribute macro applied to a function to give it a precondition.
1805    ///
1806    /// The attribute carries an argument token-tree which is
1807    /// eventually parsed as an boolean expression with access to the
1808    /// function's formal parameters
1809    #[unstable(feature = "contracts", issue = "128044")]
1810    #[allow_internal_unstable(contracts_internals)]
1811    #[rustc_builtin_macro]
1812    pub macro contracts_requires($item:item) {
1813        /* compiler built-in */
1814    }
1815
1816    /// Attribute macro applied to a function to register it as a handler for allocation failure.
1817    ///
1818    /// See also [`std::alloc::handle_alloc_error`](../../../std/alloc/fn.handle_alloc_error.html).
1819    #[unstable(feature = "alloc_error_handler", issue = "51540")]
1820    #[allow_internal_unstable(rustc_attrs)]
1821    #[rustc_builtin_macro]
1822    pub macro alloc_error_handler($item:item) {
1823        /* compiler built-in */
1824    }
1825
1826    /// Keeps the item it's applied to if the passed path is accessible, and removes it otherwise.
1827    #[unstable(
1828        feature = "cfg_accessible",
1829        issue = "64797",
1830        reason = "`cfg_accessible` is not fully implemented"
1831    )]
1832    #[rustc_builtin_macro]
1833    pub macro cfg_accessible($item:item) {
1834        /* compiler built-in */
1835    }
1836
1837    /// Expands all `#[cfg]` and `#[cfg_attr]` attributes in the code fragment it's applied to.
1838    #[unstable(
1839        feature = "cfg_eval",
1840        issue = "82679",
1841        reason = "`cfg_eval` is a recently implemented feature"
1842    )]
1843    #[rustc_builtin_macro]
1844    pub macro cfg_eval($($tt:tt)*) {
1845        /* compiler built-in */
1846    }
1847
1848    /// Provide a list of type aliases and other opaque-type-containing type definitions
1849    /// to an item with a body. This list will be used in that body to define opaque
1850    /// types' hidden types.
1851    /// Can only be applied to things that have bodies.
1852    #[unstable(
1853        feature = "type_alias_impl_trait",
1854        issue = "63063",
1855        reason = "`type_alias_impl_trait` has open design concerns"
1856    )]
1857    #[rustc_builtin_macro]
1858    pub macro define_opaque($($tt:tt)*) {
1859        /* compiler built-in */
1860    }
1861
1862    /// Unstable placeholder for type ascription.
1863    #[allow_internal_unstable(builtin_syntax)]
1864    #[unstable(
1865        feature = "type_ascription",
1866        issue = "23416",
1867        reason = "placeholder syntax for type ascription"
1868    )]
1869    #[rustfmt::skip]
1870    pub macro type_ascribe($expr:expr, $ty:ty) {
1871        builtin # type_ascribe($expr, $ty)
1872    }
1873
1874    /// Unstable placeholder for deref patterns.
1875    #[allow_internal_unstable(builtin_syntax)]
1876    #[unstable(
1877        feature = "deref_patterns",
1878        issue = "87121",
1879        reason = "placeholder syntax for deref patterns"
1880    )]
1881    pub macro deref($pat:pat) {
1882        builtin # deref($pat)
1883    }
1884
1885    /// Derive macro generating an impl of the trait `From`.
1886    /// Currently, it can only be used on single-field structs.
1887    // Note that the macro is in a different module than the `From` trait,
1888    // to avoid triggering an unstable feature being used if someone imports
1889    // `std::convert::From`.
1890    #[rustc_builtin_macro]
1891    #[unstable(feature = "derive_from", issue = "144889")]
1892    pub macro From($item: item) {
1893        /* compiler built-in */
1894    }
1895
1896    /// Externally Implementable Item: Defines an attribute macro that can override the item
1897    /// this is applied to.
1898    #[unstable(feature = "extern_item_impls", issue = "125418")]
1899    #[rustc_builtin_macro]
1900    #[allow_internal_unstable(eii_internals, decl_macro, rustc_attrs)]
1901    pub macro eii($item:item) {
1902        /* compiler built-in */
1903    }
1904
1905    /// Unsafely Externally Implementable Item: Defines an unsafe attribute macro that can override
1906    /// the item this is applied to.
1907    #[unstable(feature = "extern_item_impls", issue = "125418")]
1908    #[rustc_builtin_macro]
1909    #[allow_internal_unstable(eii_internals, decl_macro, rustc_attrs)]
1910    pub macro unsafe_eii($item:item) {
1911        /* compiler built-in */
1912    }
1913
1914    /// Impl detail of EII
1915    #[unstable(feature = "eii_internals", issue = "none")]
1916    #[rustc_builtin_macro]
1917    pub macro eii_declaration($item:item) {
1918        /* compiler built-in */
1919    }
1920}