core/mem/
maybe_uninit.rs

1#[cfg(not(feature = "ferrocene_certified"))]
2use crate::any::type_name;
3use crate::clone::TrivialClone;
4use crate::marker::Destruct;
5use crate::mem::ManuallyDrop;
6#[cfg(not(feature = "ferrocene_certified"))]
7use crate::{fmt, intrinsics, ptr, slice};
8
9// Ferrocene addition: imports for certified subset
10#[cfg(feature = "ferrocene_certified")]
11#[rustfmt::skip]
12use crate::{intrinsics, ptr, slice};
13
14/// A wrapper type to construct uninitialized instances of `T`.
15///
16/// # Initialization invariant
17///
18/// The compiler, in general, assumes that a variable is properly initialized
19/// according to the requirements of the variable's type. For example, a variable of
20/// reference type must be aligned and non-null. This is an invariant that must
21/// *always* be upheld, even in unsafe code. As a consequence, zero-initializing a
22/// variable of reference type causes instantaneous [undefined behavior][ub],
23/// no matter whether that reference ever gets used to access memory:
24///
25/// ```rust,no_run
26/// # #![allow(invalid_value)]
27/// use std::mem::{self, MaybeUninit};
28///
29/// let x: &i32 = unsafe { mem::zeroed() }; // undefined behavior! ⚠️
30/// // The equivalent code with `MaybeUninit<&i32>`:
31/// let x: &i32 = unsafe { MaybeUninit::zeroed().assume_init() }; // undefined behavior! ⚠️
32/// ```
33///
34/// This is exploited by the compiler for various optimizations, such as eliding
35/// run-time checks and optimizing `enum` layout.
36///
37/// Similarly, entirely uninitialized memory may have any content, while a `bool` must
38/// always be `true` or `false`. Hence, creating an uninitialized `bool` is undefined behavior:
39///
40/// ```rust,no_run
41/// # #![allow(invalid_value)]
42/// use std::mem::{self, MaybeUninit};
43///
44/// let b: bool = unsafe { mem::uninitialized() }; // undefined behavior! ⚠️
45/// // The equivalent code with `MaybeUninit<bool>`:
46/// let b: bool = unsafe { MaybeUninit::uninit().assume_init() }; // undefined behavior! ⚠️
47/// ```
48///
49/// Moreover, uninitialized memory is special in that it does not have a fixed value ("fixed"
50/// meaning "it won't change without being written to"). Reading the same uninitialized byte
51/// multiple times can give different results. This makes it undefined behavior to have
52/// uninitialized data in a variable even if that variable has an integer type, which otherwise can
53/// hold any *fixed* bit pattern:
54///
55/// ```rust,no_run
56/// # #![allow(invalid_value)]
57/// use std::mem::{self, MaybeUninit};
58///
59/// let x: i32 = unsafe { mem::uninitialized() }; // undefined behavior! ⚠️
60/// // The equivalent code with `MaybeUninit<i32>`:
61/// let x: i32 = unsafe { MaybeUninit::uninit().assume_init() }; // undefined behavior! ⚠️
62/// ```
63/// On top of that, remember that most types have additional invariants beyond merely
64/// being considered initialized at the type level. For example, a `1`-initialized [`Vec<T>`]
65/// is considered initialized (under the current implementation; this does not constitute
66/// a stable guarantee) because the only requirement the compiler knows about it
67/// is that the data pointer must be non-null. Creating such a `Vec<T>` does not cause
68/// *immediate* undefined behavior, but will cause undefined behavior with most
69/// safe operations (including dropping it).
70///
71/// [`Vec<T>`]: ../../std/vec/struct.Vec.html
72///
73/// # Examples
74///
75/// `MaybeUninit<T>` serves to enable unsafe code to deal with uninitialized data.
76/// It is a signal to the compiler indicating that the data here might *not*
77/// be initialized:
78///
79/// ```rust
80/// use std::mem::MaybeUninit;
81///
82/// // Create an explicitly uninitialized reference. The compiler knows that data inside
83/// // a `MaybeUninit<T>` may be invalid, and hence this is not UB:
84/// let mut x = MaybeUninit::<&i32>::uninit();
85/// // Set it to a valid value.
86/// x.write(&0);
87/// // Extract the initialized data -- this is only allowed *after* properly
88/// // initializing `x`!
89/// let x = unsafe { x.assume_init() };
90/// ```
91///
92/// The compiler then knows to not make any incorrect assumptions or optimizations on this code.
93///
94/// You can think of `MaybeUninit<T>` as being a bit like `Option<T>` but without
95/// any of the run-time tracking and without any of the safety checks.
96///
97/// ## out-pointers
98///
99/// You can use `MaybeUninit<T>` to implement "out-pointers": instead of returning data
100/// from a function, pass it a pointer to some (uninitialized) memory to put the
101/// result into. This can be useful when it is important for the caller to control
102/// how the memory the result is stored in gets allocated, and you want to avoid
103/// unnecessary moves.
104///
105/// ```
106/// use std::mem::MaybeUninit;
107///
108/// unsafe fn make_vec(out: *mut Vec<i32>) {
109///     // `write` does not drop the old contents, which is important.
110///     unsafe { out.write(vec![1, 2, 3]); }
111/// }
112///
113/// let mut v = MaybeUninit::uninit();
114/// unsafe { make_vec(v.as_mut_ptr()); }
115/// // Now we know `v` is initialized! This also makes sure the vector gets
116/// // properly dropped.
117/// let v = unsafe { v.assume_init() };
118/// assert_eq!(&v, &[1, 2, 3]);
119/// ```
120///
121/// ## Initializing an array element-by-element
122///
123/// `MaybeUninit<T>` can be used to initialize a large array element-by-element:
124///
125/// ```
126/// use std::mem::{self, MaybeUninit};
127///
128/// let data = {
129///     // Create an uninitialized array of `MaybeUninit`.
130///     let mut data: [MaybeUninit<Vec<u32>>; 1000] = [const { MaybeUninit::uninit() }; 1000];
131///
132///     // Dropping a `MaybeUninit` does nothing, so if there is a panic during this loop,
133///     // we have a memory leak, but there is no memory safety issue.
134///     for elem in &mut data[..] {
135///         elem.write(vec![42]);
136///     }
137///
138///     // Everything is initialized. Transmute the array to the
139///     // initialized type.
140///     unsafe { mem::transmute::<_, [Vec<u32>; 1000]>(data) }
141/// };
142///
143/// assert_eq!(&data[0], &[42]);
144/// ```
145///
146/// You can also work with partially initialized arrays, which could
147/// be found in low-level datastructures.
148///
149/// ```
150/// use std::mem::MaybeUninit;
151///
152/// // Create an uninitialized array of `MaybeUninit`.
153/// let mut data: [MaybeUninit<String>; 1000] = [const { MaybeUninit::uninit() }; 1000];
154/// // Count the number of elements we have assigned.
155/// let mut data_len: usize = 0;
156///
157/// for elem in &mut data[0..500] {
158///     elem.write(String::from("hello"));
159///     data_len += 1;
160/// }
161///
162/// // For each item in the array, drop if we allocated it.
163/// for elem in &mut data[0..data_len] {
164///     unsafe { elem.assume_init_drop(); }
165/// }
166/// ```
167///
168/// ## Initializing a struct field-by-field
169///
170/// You can use `MaybeUninit<T>`, and the [`std::ptr::addr_of_mut`] macro, to initialize structs field by field:
171///
172/// ```rust
173/// use std::mem::MaybeUninit;
174/// use std::ptr::addr_of_mut;
175///
176/// #[derive(Debug, PartialEq)]
177/// pub struct Foo {
178///     name: String,
179///     list: Vec<u8>,
180/// }
181///
182/// let foo = {
183///     let mut uninit: MaybeUninit<Foo> = MaybeUninit::uninit();
184///     let ptr = uninit.as_mut_ptr();
185///
186///     // Initializing the `name` field
187///     // Using `write` instead of assignment via `=` to not call `drop` on the
188///     // old, uninitialized value.
189///     unsafe { addr_of_mut!((*ptr).name).write("Bob".to_string()); }
190///
191///     // Initializing the `list` field
192///     // If there is a panic here, then the `String` in the `name` field leaks.
193///     unsafe { addr_of_mut!((*ptr).list).write(vec![0, 1, 2]); }
194///
195///     // All the fields are initialized, so we call `assume_init` to get an initialized Foo.
196///     unsafe { uninit.assume_init() }
197/// };
198///
199/// assert_eq!(
200///     foo,
201///     Foo {
202///         name: "Bob".to_string(),
203///         list: vec![0, 1, 2]
204///     }
205/// );
206/// ```
207/// [`std::ptr::addr_of_mut`]: crate::ptr::addr_of_mut
208/// [ub]: ../../reference/behavior-considered-undefined.html
209///
210/// # Layout
211///
212/// `MaybeUninit<T>` is guaranteed to have the same size, alignment, and ABI as `T`:
213///
214/// ```rust
215/// use std::mem::MaybeUninit;
216/// assert_eq!(size_of::<MaybeUninit<u64>>(), size_of::<u64>());
217/// assert_eq!(align_of::<MaybeUninit<u64>>(), align_of::<u64>());
218/// ```
219///
220/// However remember that a type *containing* a `MaybeUninit<T>` is not necessarily the same
221/// layout; Rust does not in general guarantee that the fields of a `Foo<T>` have the same order as
222/// a `Foo<U>` even if `T` and `U` have the same size and alignment. Furthermore because any bit
223/// value is valid for a `MaybeUninit<T>` the compiler can't apply non-zero/niche-filling
224/// optimizations, potentially resulting in a larger size:
225///
226/// ```rust
227/// # use std::mem::MaybeUninit;
228/// assert_eq!(size_of::<Option<bool>>(), 1);
229/// assert_eq!(size_of::<Option<MaybeUninit<bool>>>(), 2);
230/// ```
231///
232/// If `T` is FFI-safe, then so is `MaybeUninit<T>`.
233///
234/// While `MaybeUninit` is `#[repr(transparent)]` (indicating it guarantees the same size,
235/// alignment, and ABI as `T`), this does *not* change any of the previous caveats. `Option<T>` and
236/// `Option<MaybeUninit<T>>` may still have different sizes, and types containing a field of type
237/// `T` may be laid out (and sized) differently than if that field were `MaybeUninit<T>`.
238/// `MaybeUninit` is a union type, and `#[repr(transparent)]` on unions is unstable (see [the
239/// tracking issue](https://github.com/rust-lang/rust/issues/60405)). Over time, the exact
240/// guarantees of `#[repr(transparent)]` on unions may evolve, and `MaybeUninit` may or may not
241/// remain `#[repr(transparent)]`. That said, `MaybeUninit<T>` will *always* guarantee that it has
242/// the same size, alignment, and ABI as `T`; it's just that the way `MaybeUninit` implements that
243/// guarantee may evolve.
244///
245/// Note that even though `T` and `MaybeUninit<T>` are ABI compatible it is still unsound to
246/// transmute `&mut T` to `&mut MaybeUninit<T>` and expose that to safe code because it would allow
247/// safe code to access uninitialized memory:
248///
249/// ```rust,no_run
250/// use core::mem::MaybeUninit;
251///
252/// fn unsound_transmute<T>(val: &mut T) -> &mut MaybeUninit<T> {
253///     unsafe { core::mem::transmute(val) }
254/// }
255///
256/// fn main() {
257///     let mut code = 0;
258///     let code = &mut code;
259///     let code2 = unsound_transmute(code);
260///     *code2 = MaybeUninit::uninit();
261///     std::process::exit(*code); // UB! Accessing uninitialized memory.
262/// }
263/// ```
264///
265/// # Validity
266///
267/// `MaybeUninit<T>` has no validity requirements –- any sequence of [bytes] of
268/// the appropriate length, initialized or uninitialized, are a valid
269/// representation.
270///
271/// Moving or copying a value of type `MaybeUninit<T>` (i.e., performing a
272/// "typed copy") will exactly preserve the contents, including the
273/// [provenance], of all non-padding bytes of type `T` in the value's
274/// representation.
275///
276/// Therefore `MaybeUninit` can be used to perform a round trip of a value from
277/// type `T` to type `MaybeUninit<U>` then back to type `T`, while preserving
278/// the original value, if two conditions are met. One, type `U` must have the
279/// same size as type `T`. Two, for all byte offsets where type `U` has padding,
280/// the corresponding bytes in the representation of the value must be
281/// uninitialized.
282///
283/// For example, due to the fact that the type `[u8; size_of::<T>]` has no
284/// padding, the following is sound for any type `T` and will return the
285/// original value:
286///
287/// ```rust,no_run
288/// # use core::mem::{MaybeUninit, transmute};
289/// # struct T;
290/// fn identity(t: T) -> T {
291///     unsafe {
292///         let u: MaybeUninit<[u8; size_of::<T>()]> = transmute(t);
293///         transmute(u) // OK.
294///     }
295/// }
296/// ```
297///
298/// Note: Copying a value that contains references may implicitly reborrow them
299/// causing the provenance of the returned value to differ from that of the
300/// original. This applies equally to the trivial identity function:
301///
302/// ```rust,no_run
303/// fn trivial_identity<T>(t: T) -> T { t }
304/// ```
305///
306/// Note: Moving or copying a value whose representation has initialized bytes
307/// at byte offsets where the type has padding may lose the value of those
308/// bytes, so while the original value will be preserved, the original
309/// *representation* of that value as bytes may not be. Again, this applies
310/// equally to `trivial_identity`.
311///
312/// Note: Performing this round trip when type `U` has padding at byte offsets
313/// where the representation of the original value has initialized bytes may
314/// produce undefined behavior or a different value. For example, the following
315/// is unsound since `T` requires all bytes to be initialized:
316///
317/// ```rust,no_run
318/// # use core::mem::{MaybeUninit, transmute};
319/// #[repr(C)] struct T([u8; 4]);
320/// #[repr(C)] struct U(u8, u16);
321/// fn unsound_identity(t: T) -> T {
322///     unsafe {
323///         let u: MaybeUninit<U> = transmute(t);
324///         transmute(u) // UB.
325///     }
326/// }
327/// ```
328///
329/// Conversely, the following is sound since `T` allows uninitialized bytes in
330/// the representation of a value, but the round trip may alter the value:
331///
332/// ```rust,no_run
333/// # use core::mem::{MaybeUninit, transmute};
334/// #[repr(C)] struct T(MaybeUninit<[u8; 4]>);
335/// #[repr(C)] struct U(u8, u16);
336/// fn non_identity(t: T) -> T {
337///     unsafe {
338///         // May lose an initialized byte.
339///         let u: MaybeUninit<U> = transmute(t);
340///         transmute(u)
341///     }
342/// }
343/// ```
344///
345/// [bytes]: ../../reference/memory-model.html#bytes
346/// [provenance]: crate::ptr#provenance
347#[stable(feature = "maybe_uninit", since = "1.36.0")]
348// Lang item so we can wrap other types in it. This is useful for coroutines.
349#[lang = "maybe_uninit"]
350#[derive(Copy)]
351#[repr(transparent)]
352#[rustc_pub_transparent]
353pub union MaybeUninit<T> {
354    uninit: (),
355    value: ManuallyDrop<T>,
356}
357
358#[stable(feature = "maybe_uninit", since = "1.36.0")]
359impl<T: Copy> Clone for MaybeUninit<T> {
360    #[inline(always)]
361    fn clone(&self) -> Self {
362        // Not calling `T::clone()`, we cannot know if we are initialized enough for that.
363        *self
364    }
365}
366
367// SAFETY: the clone implementation is a copy, see above.
368#[doc(hidden)]
369#[unstable(feature = "trivial_clone", issue = "none")]
370unsafe impl<T> TrivialClone for MaybeUninit<T> where MaybeUninit<T>: Clone {}
371
372#[stable(feature = "maybe_uninit_debug", since = "1.41.0")]
373#[cfg(not(feature = "ferrocene_certified"))]
374impl<T> fmt::Debug for MaybeUninit<T> {
375    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
376        // NB: there is no `.pad_fmt` so we can't use a simpler `format_args!("MaybeUninit<{..}>").
377        let full_name = type_name::<Self>();
378        let prefix_len = full_name.find("MaybeUninit").unwrap();
379        f.pad(&full_name[prefix_len..])
380    }
381}
382
383impl<T> MaybeUninit<T> {
384    /// Creates a new `MaybeUninit<T>` initialized with the given value.
385    /// It is safe to call [`assume_init`] on the return value of this function.
386    ///
387    /// Note that dropping a `MaybeUninit<T>` will never call `T`'s drop code.
388    /// It is your responsibility to make sure `T` gets dropped if it got initialized.
389    ///
390    /// # Example
391    ///
392    /// ```
393    /// use std::mem::MaybeUninit;
394    ///
395    /// let v: MaybeUninit<Vec<u8>> = MaybeUninit::new(vec![42]);
396    /// # // Prevent leaks for Miri
397    /// # unsafe { let _ = MaybeUninit::assume_init(v); }
398    /// ```
399    ///
400    /// [`assume_init`]: MaybeUninit::assume_init
401    #[stable(feature = "maybe_uninit", since = "1.36.0")]
402    #[rustc_const_stable(feature = "const_maybe_uninit", since = "1.36.0")]
403    #[must_use = "use `forget` to avoid running Drop code"]
404    #[inline(always)]
405    pub const fn new(val: T) -> MaybeUninit<T> {
406        MaybeUninit { value: ManuallyDrop::new(val) }
407    }
408
409    /// Creates a new `MaybeUninit<T>` in an uninitialized state.
410    ///
411    /// Note that dropping a `MaybeUninit<T>` will never call `T`'s drop code.
412    /// It is your responsibility to make sure `T` gets dropped if it got initialized.
413    ///
414    /// See the [type-level documentation][MaybeUninit] for some examples.
415    ///
416    /// # Example
417    ///
418    /// ```
419    /// use std::mem::MaybeUninit;
420    ///
421    /// let v: MaybeUninit<String> = MaybeUninit::uninit();
422    /// ```
423    #[stable(feature = "maybe_uninit", since = "1.36.0")]
424    #[rustc_const_stable(feature = "const_maybe_uninit", since = "1.36.0")]
425    #[must_use]
426    #[inline(always)]
427    #[rustc_diagnostic_item = "maybe_uninit_uninit"]
428    pub const fn uninit() -> MaybeUninit<T> {
429        MaybeUninit { uninit: () }
430    }
431
432    /// Creates a new `MaybeUninit<T>` in an uninitialized state, with the memory being
433    /// filled with `0` bytes. It depends on `T` whether that already makes for
434    /// proper initialization. For example, `MaybeUninit<usize>::zeroed()` is initialized,
435    /// but `MaybeUninit<&'static i32>::zeroed()` is not because references must not
436    /// be null.
437    ///
438    /// Note that if `T` has padding bytes, those bytes are *not* preserved when the
439    /// `MaybeUninit<T>` value is returned from this function, so those bytes will *not* be zeroed.
440    ///
441    /// Note that dropping a `MaybeUninit<T>` will never call `T`'s drop code.
442    /// It is your responsibility to make sure `T` gets dropped if it got initialized.
443    ///
444    /// # Example
445    ///
446    /// Correct usage of this function: initializing a struct with zero, where all
447    /// fields of the struct can hold the bit-pattern 0 as a valid value.
448    ///
449    /// ```rust
450    /// use std::mem::MaybeUninit;
451    ///
452    /// let x = MaybeUninit::<(u8, bool)>::zeroed();
453    /// let x = unsafe { x.assume_init() };
454    /// assert_eq!(x, (0, false));
455    /// ```
456    ///
457    /// This can be used in const contexts, such as to indicate the end of static arrays for
458    /// plugin registration.
459    ///
460    /// *Incorrect* usage of this function: calling `x.zeroed().assume_init()`
461    /// when `0` is not a valid bit-pattern for the type:
462    ///
463    /// ```rust,no_run
464    /// use std::mem::MaybeUninit;
465    ///
466    /// enum NotZero { One = 1, Two = 2 }
467    ///
468    /// let x = MaybeUninit::<(u8, NotZero)>::zeroed();
469    /// let x = unsafe { x.assume_init() };
470    /// // Inside a pair, we create a `NotZero` that does not have a valid discriminant.
471    /// // This is undefined behavior. ⚠️
472    /// ```
473    #[inline]
474    #[must_use]
475    #[rustc_diagnostic_item = "maybe_uninit_zeroed"]
476    #[stable(feature = "maybe_uninit", since = "1.36.0")]
477    #[rustc_const_stable(feature = "const_maybe_uninit_zeroed", since = "1.75.0")]
478    pub const fn zeroed() -> MaybeUninit<T> {
479        let mut u = MaybeUninit::<T>::uninit();
480        // SAFETY: `u.as_mut_ptr()` points to allocated memory.
481        unsafe { u.as_mut_ptr().write_bytes(0u8, 1) };
482        u
483    }
484
485    /// Sets the value of the `MaybeUninit<T>`.
486    ///
487    /// This overwrites any previous value without dropping it, so be careful
488    /// not to use this twice unless you want to skip running the destructor.
489    /// For your convenience, this also returns a mutable reference to the
490    /// (now safely initialized) contents of `self`.
491    ///
492    /// As the content is stored inside a `ManuallyDrop`, the destructor is not
493    /// run for the inner data if the MaybeUninit leaves scope without a call to
494    /// [`assume_init`], [`assume_init_drop`], or similar. Code that receives
495    /// the mutable reference returned by this function needs to keep this in
496    /// mind. The safety model of Rust regards leaks as safe, but they are
497    /// usually still undesirable. This being said, the mutable reference
498    /// behaves like any other mutable reference would, so assigning a new value
499    /// to it will drop the old content.
500    ///
501    /// [`assume_init`]: Self::assume_init
502    /// [`assume_init_drop`]: Self::assume_init_drop
503    ///
504    /// # Examples
505    ///
506    /// Correct usage of this method:
507    ///
508    /// ```rust
509    /// use std::mem::MaybeUninit;
510    ///
511    /// let mut x = MaybeUninit::<Vec<u8>>::uninit();
512    ///
513    /// {
514    ///     let hello = x.write((&b"Hello, world!").to_vec());
515    ///     // Setting hello does not leak prior allocations, but drops them
516    ///     *hello = (&b"Hello").to_vec();
517    ///     hello[0] = 'h' as u8;
518    /// }
519    /// // x is initialized now:
520    /// let s = unsafe { x.assume_init() };
521    /// assert_eq!(b"hello", s.as_slice());
522    /// ```
523    ///
524    /// This usage of the method causes a leak:
525    ///
526    /// ```rust
527    /// use std::mem::MaybeUninit;
528    ///
529    /// let mut x = MaybeUninit::<String>::uninit();
530    ///
531    /// x.write("Hello".to_string());
532    /// # // FIXME(https://github.com/rust-lang/miri/issues/3670):
533    /// # // use -Zmiri-disable-leak-check instead of unleaking in tests meant to leak.
534    /// # unsafe { MaybeUninit::assume_init_drop(&mut x); }
535    /// // This leaks the contained string:
536    /// x.write("hello".to_string());
537    /// // x is initialized now:
538    /// let s = unsafe { x.assume_init() };
539    /// ```
540    ///
541    /// This method can be used to avoid unsafe in some cases. The example below
542    /// shows a part of an implementation of a fixed sized arena that lends out
543    /// pinned references.
544    /// With `write`, we can avoid the need to write through a raw pointer:
545    ///
546    /// ```rust
547    /// use core::pin::Pin;
548    /// use core::mem::MaybeUninit;
549    ///
550    /// struct PinArena<T> {
551    ///     memory: Box<[MaybeUninit<T>]>,
552    ///     len: usize,
553    /// }
554    ///
555    /// impl <T> PinArena<T> {
556    ///     pub fn capacity(&self) -> usize {
557    ///         self.memory.len()
558    ///     }
559    ///     pub fn push(&mut self, val: T) -> Pin<&mut T> {
560    ///         if self.len >= self.capacity() {
561    ///             panic!("Attempted to push to a full pin arena!");
562    ///         }
563    ///         let ref_ = self.memory[self.len].write(val);
564    ///         self.len += 1;
565    ///         unsafe { Pin::new_unchecked(ref_) }
566    ///     }
567    /// }
568    /// ```
569    #[inline(always)]
570    #[stable(feature = "maybe_uninit_write", since = "1.55.0")]
571    #[rustc_const_stable(feature = "const_maybe_uninit_write", since = "1.85.0")]
572    pub const fn write(&mut self, val: T) -> &mut T {
573        *self = MaybeUninit::new(val);
574        // SAFETY: We just initialized this value.
575        unsafe { self.assume_init_mut() }
576    }
577
578    /// Gets a pointer to the contained value. Reading from this pointer or turning it
579    /// into a reference is undefined behavior unless the `MaybeUninit<T>` is initialized.
580    /// Writing to memory that this pointer (non-transitively) points to is undefined behavior
581    /// (except inside an `UnsafeCell<T>`).
582    ///
583    /// # Examples
584    ///
585    /// Correct usage of this method:
586    ///
587    /// ```rust
588    /// use std::mem::MaybeUninit;
589    ///
590    /// let mut x = MaybeUninit::<Vec<u32>>::uninit();
591    /// x.write(vec![0, 1, 2]);
592    /// // Create a reference into the `MaybeUninit<T>`. This is okay because we initialized it.
593    /// let x_vec = unsafe { &*x.as_ptr() };
594    /// assert_eq!(x_vec.len(), 3);
595    /// # // Prevent leaks for Miri
596    /// # unsafe { MaybeUninit::assume_init_drop(&mut x); }
597    /// ```
598    ///
599    /// *Incorrect* usage of this method:
600    ///
601    /// ```rust,no_run
602    /// use std::mem::MaybeUninit;
603    ///
604    /// let x = MaybeUninit::<Vec<u32>>::uninit();
605    /// let x_vec = unsafe { &*x.as_ptr() };
606    /// // We have created a reference to an uninitialized vector! This is undefined behavior. ⚠️
607    /// ```
608    ///
609    /// (Notice that the rules around references to uninitialized data are not finalized yet, but
610    /// until they are, it is advisable to avoid them.)
611    #[stable(feature = "maybe_uninit", since = "1.36.0")]
612    #[rustc_const_stable(feature = "const_maybe_uninit_as_ptr", since = "1.59.0")]
613    #[rustc_as_ptr]
614    #[inline(always)]
615    pub const fn as_ptr(&self) -> *const T {
616        // `MaybeUninit` and `ManuallyDrop` are both `repr(transparent)` so we can cast the pointer.
617        self as *const _ as *const T
618    }
619
620    /// Gets a mutable pointer to the contained value. Reading from this pointer or turning it
621    /// into a reference is undefined behavior unless the `MaybeUninit<T>` is initialized.
622    ///
623    /// # Examples
624    ///
625    /// Correct usage of this method:
626    ///
627    /// ```rust
628    /// use std::mem::MaybeUninit;
629    ///
630    /// let mut x = MaybeUninit::<Vec<u32>>::uninit();
631    /// x.write(vec![0, 1, 2]);
632    /// // Create a reference into the `MaybeUninit<Vec<u32>>`.
633    /// // This is okay because we initialized it.
634    /// let x_vec = unsafe { &mut *x.as_mut_ptr() };
635    /// x_vec.push(3);
636    /// assert_eq!(x_vec.len(), 4);
637    /// # // Prevent leaks for Miri
638    /// # unsafe { MaybeUninit::assume_init_drop(&mut x); }
639    /// ```
640    ///
641    /// *Incorrect* usage of this method:
642    ///
643    /// ```rust,no_run
644    /// use std::mem::MaybeUninit;
645    ///
646    /// let mut x = MaybeUninit::<Vec<u32>>::uninit();
647    /// let x_vec = unsafe { &mut *x.as_mut_ptr() };
648    /// // We have created a reference to an uninitialized vector! This is undefined behavior. ⚠️
649    /// ```
650    ///
651    /// (Notice that the rules around references to uninitialized data are not finalized yet, but
652    /// until they are, it is advisable to avoid them.)
653    #[stable(feature = "maybe_uninit", since = "1.36.0")]
654    #[rustc_const_stable(feature = "const_maybe_uninit_as_mut_ptr", since = "1.83.0")]
655    #[rustc_as_ptr]
656    #[inline(always)]
657    pub const fn as_mut_ptr(&mut self) -> *mut T {
658        // `MaybeUninit` and `ManuallyDrop` are both `repr(transparent)` so we can cast the pointer.
659        self as *mut _ as *mut T
660    }
661
662    /// Extracts the value from the `MaybeUninit<T>` container. This is a great way
663    /// to ensure that the data will get dropped, because the resulting `T` is
664    /// subject to the usual drop handling.
665    ///
666    /// # Safety
667    ///
668    /// It is up to the caller to guarantee that the `MaybeUninit<T>` really is in an initialized
669    /// state. Calling this when the content is not yet fully initialized causes immediate undefined
670    /// behavior. The [type-level documentation][inv] contains more information about
671    /// this initialization invariant.
672    ///
673    /// [inv]: #initialization-invariant
674    ///
675    /// On top of that, remember that most types have additional invariants beyond merely
676    /// being considered initialized at the type level. For example, a `1`-initialized [`Vec<T>`]
677    /// is considered initialized (under the current implementation; this does not constitute
678    /// a stable guarantee) because the only requirement the compiler knows about it
679    /// is that the data pointer must be non-null. Creating such a `Vec<T>` does not cause
680    /// *immediate* undefined behavior, but will cause undefined behavior with most
681    /// safe operations (including dropping it).
682    ///
683    /// [`Vec<T>`]: ../../std/vec/struct.Vec.html
684    ///
685    /// # Examples
686    ///
687    /// Correct usage of this method:
688    ///
689    /// ```rust
690    /// use std::mem::MaybeUninit;
691    ///
692    /// let mut x = MaybeUninit::<bool>::uninit();
693    /// x.write(true);
694    /// let x_init = unsafe { x.assume_init() };
695    /// assert_eq!(x_init, true);
696    /// ```
697    ///
698    /// *Incorrect* usage of this method:
699    ///
700    /// ```rust,no_run
701    /// use std::mem::MaybeUninit;
702    ///
703    /// let x = MaybeUninit::<Vec<u32>>::uninit();
704    /// let x_init = unsafe { x.assume_init() };
705    /// // `x` had not been initialized yet, so this last line caused undefined behavior. ⚠️
706    /// ```
707    #[stable(feature = "maybe_uninit", since = "1.36.0")]
708    #[rustc_const_stable(feature = "const_maybe_uninit_assume_init_by_value", since = "1.59.0")]
709    #[inline(always)]
710    #[rustc_diagnostic_item = "assume_init"]
711    #[track_caller]
712    pub const unsafe fn assume_init(self) -> T {
713        // SAFETY: the caller must guarantee that `self` is initialized.
714        // This also means that `self` must be a `value` variant.
715        unsafe {
716            intrinsics::assert_inhabited::<T>();
717            // We do this via a raw ptr read instead of `ManuallyDrop::into_inner` so that there's
718            // no trace of `ManuallyDrop` in Miri's error messages here.
719            (&raw const self.value).cast::<T>().read()
720        }
721    }
722
723    /// Reads the value from the `MaybeUninit<T>` container. The resulting `T` is subject
724    /// to the usual drop handling.
725    ///
726    /// Whenever possible, it is preferable to use [`assume_init`] instead, which
727    /// prevents duplicating the content of the `MaybeUninit<T>`.
728    ///
729    /// # Safety
730    ///
731    /// It is up to the caller to guarantee that the `MaybeUninit<T>` really is in an initialized
732    /// state. Calling this when the content is not yet fully initialized causes undefined
733    /// behavior. The [type-level documentation][inv] contains more information about
734    /// this initialization invariant.
735    ///
736    /// Moreover, similar to the [`ptr::read`] function, this function creates a
737    /// bitwise copy of the contents, regardless whether the contained type
738    /// implements the [`Copy`] trait or not. When using multiple copies of the
739    /// data (by calling `assume_init_read` multiple times, or first calling
740    /// `assume_init_read` and then [`assume_init`]), it is your responsibility
741    /// to ensure that data may indeed be duplicated.
742    ///
743    /// [inv]: #initialization-invariant
744    /// [`assume_init`]: MaybeUninit::assume_init
745    ///
746    /// # Examples
747    ///
748    /// Correct usage of this method:
749    ///
750    /// ```rust
751    /// use std::mem::MaybeUninit;
752    ///
753    /// let mut x = MaybeUninit::<u32>::uninit();
754    /// x.write(13);
755    /// let x1 = unsafe { x.assume_init_read() };
756    /// // `u32` is `Copy`, so we may read multiple times.
757    /// let x2 = unsafe { x.assume_init_read() };
758    /// assert_eq!(x1, x2);
759    ///
760    /// let mut x = MaybeUninit::<Option<Vec<u32>>>::uninit();
761    /// x.write(None);
762    /// let x1 = unsafe { x.assume_init_read() };
763    /// // Duplicating a `None` value is okay, so we may read multiple times.
764    /// let x2 = unsafe { x.assume_init_read() };
765    /// assert_eq!(x1, x2);
766    /// ```
767    ///
768    /// *Incorrect* usage of this method:
769    ///
770    /// ```rust,no_run
771    /// use std::mem::MaybeUninit;
772    ///
773    /// let mut x = MaybeUninit::<Option<Vec<u32>>>::uninit();
774    /// x.write(Some(vec![0, 1, 2]));
775    /// let x1 = unsafe { x.assume_init_read() };
776    /// let x2 = unsafe { x.assume_init_read() };
777    /// // We now created two copies of the same vector, leading to a double-free ⚠️ when
778    /// // they both get dropped!
779    /// ```
780    #[stable(feature = "maybe_uninit_extra", since = "1.60.0")]
781    #[rustc_const_stable(feature = "const_maybe_uninit_assume_init_read", since = "1.75.0")]
782    #[inline(always)]
783    #[track_caller]
784    pub const unsafe fn assume_init_read(&self) -> T {
785        // SAFETY: the caller must guarantee that `self` is initialized.
786        // Reading from `self.as_ptr()` is safe since `self` should be initialized.
787        unsafe {
788            intrinsics::assert_inhabited::<T>();
789            self.as_ptr().read()
790        }
791    }
792
793    /// Drops the contained value in place.
794    ///
795    /// If you have ownership of the `MaybeUninit`, you can also use
796    /// [`assume_init`] as an alternative.
797    ///
798    /// # Safety
799    ///
800    /// It is up to the caller to guarantee that the `MaybeUninit<T>` really is
801    /// in an initialized state. Calling this when the content is not yet fully
802    /// initialized causes undefined behavior.
803    ///
804    /// On top of that, all additional invariants of the type `T` must be
805    /// satisfied, as the `Drop` implementation of `T` (or its members) may
806    /// rely on this. For example, setting a `Vec<T>` to an invalid but
807    /// non-null address makes it initialized (under the current implementation;
808    /// this does not constitute a stable guarantee), because the only
809    /// requirement the compiler knows about it is that the data pointer must be
810    /// non-null. Dropping such a `Vec<T>` however will cause undefined
811    /// behavior.
812    ///
813    /// [`assume_init`]: MaybeUninit::assume_init
814    #[stable(feature = "maybe_uninit_extra", since = "1.60.0")]
815    #[rustc_const_unstable(feature = "const_drop_in_place", issue = "109342")]
816    pub const unsafe fn assume_init_drop(&mut self)
817    where
818        T: [const] Destruct,
819    {
820        // SAFETY: the caller must guarantee that `self` is initialized and
821        // satisfies all invariants of `T`.
822        // Dropping the value in place is safe if that is the case.
823        unsafe { ptr::drop_in_place(self.as_mut_ptr()) }
824    }
825
826    /// Gets a shared reference to the contained value.
827    ///
828    /// This can be useful when we want to access a `MaybeUninit` that has been
829    /// initialized but don't have ownership of the `MaybeUninit` (preventing the use
830    /// of `.assume_init()`).
831    ///
832    /// # Safety
833    ///
834    /// Calling this when the content is not yet fully initialized causes undefined
835    /// behavior: it is up to the caller to guarantee that the `MaybeUninit<T>` really
836    /// is in an initialized state.
837    ///
838    /// # Examples
839    ///
840    /// ### Correct usage of this method:
841    ///
842    /// ```rust
843    /// use std::mem::MaybeUninit;
844    ///
845    /// let mut x = MaybeUninit::<Vec<u32>>::uninit();
846    /// # let mut x_mu = x;
847    /// # let mut x = &mut x_mu;
848    /// // Initialize `x`:
849    /// x.write(vec![1, 2, 3]);
850    /// // Now that our `MaybeUninit<_>` is known to be initialized, it is okay to
851    /// // create a shared reference to it:
852    /// let x: &Vec<u32> = unsafe {
853    ///     // SAFETY: `x` has been initialized.
854    ///     x.assume_init_ref()
855    /// };
856    /// assert_eq!(x, &vec![1, 2, 3]);
857    /// # // Prevent leaks for Miri
858    /// # unsafe { MaybeUninit::assume_init_drop(&mut x_mu); }
859    /// ```
860    ///
861    /// ### *Incorrect* usages of this method:
862    ///
863    /// ```rust,no_run
864    /// use std::mem::MaybeUninit;
865    ///
866    /// let x = MaybeUninit::<Vec<u32>>::uninit();
867    /// let x_vec: &Vec<u32> = unsafe { x.assume_init_ref() };
868    /// // We have created a reference to an uninitialized vector! This is undefined behavior. ⚠️
869    /// ```
870    ///
871    /// ```rust,no_run
872    /// use std::{cell::Cell, mem::MaybeUninit};
873    ///
874    /// let b = MaybeUninit::<Cell<bool>>::uninit();
875    /// // Initialize the `MaybeUninit` using `Cell::set`:
876    /// unsafe {
877    ///     b.assume_init_ref().set(true);
878    ///     //^^^^^^^^^^^^^^^ Reference to an uninitialized `Cell<bool>`: UB!
879    /// }
880    /// ```
881    #[stable(feature = "maybe_uninit_ref", since = "1.55.0")]
882    #[rustc_const_stable(feature = "const_maybe_uninit_assume_init_ref", since = "1.59.0")]
883    #[inline(always)]
884    pub const unsafe fn assume_init_ref(&self) -> &T {
885        // SAFETY: the caller must guarantee that `self` is initialized.
886        // This also means that `self` must be a `value` variant.
887        unsafe {
888            intrinsics::assert_inhabited::<T>();
889            &*self.as_ptr()
890        }
891    }
892
893    /// Gets a mutable (unique) reference to the contained value.
894    ///
895    /// This can be useful when we want to access a `MaybeUninit` that has been
896    /// initialized but don't have ownership of the `MaybeUninit` (preventing the use
897    /// of `.assume_init()`).
898    ///
899    /// # Safety
900    ///
901    /// Calling this when the content is not yet fully initialized causes undefined
902    /// behavior: it is up to the caller to guarantee that the `MaybeUninit<T>` really
903    /// is in an initialized state. For instance, `.assume_init_mut()` cannot be used to
904    /// initialize a `MaybeUninit`.
905    ///
906    /// # Examples
907    ///
908    /// ### Correct usage of this method:
909    ///
910    /// ```rust
911    /// # #![allow(unexpected_cfgs)]
912    /// use std::mem::MaybeUninit;
913    ///
914    /// # unsafe extern "C" fn initialize_buffer(buf: *mut [u8; 1024]) { unsafe { *buf = [0; 1024] } }
915    /// # #[cfg(FALSE)]
916    /// extern "C" {
917    ///     /// Initializes *all* the bytes of the input buffer.
918    ///     fn initialize_buffer(buf: *mut [u8; 1024]);
919    /// }
920    ///
921    /// let mut buf = MaybeUninit::<[u8; 1024]>::uninit();
922    ///
923    /// // Initialize `buf`:
924    /// unsafe { initialize_buffer(buf.as_mut_ptr()); }
925    /// // Now we know that `buf` has been initialized, so we could `.assume_init()` it.
926    /// // However, using `.assume_init()` may trigger a `memcpy` of the 1024 bytes.
927    /// // To assert our buffer has been initialized without copying it, we upgrade
928    /// // the `&mut MaybeUninit<[u8; 1024]>` to a `&mut [u8; 1024]`:
929    /// let buf: &mut [u8; 1024] = unsafe {
930    ///     // SAFETY: `buf` has been initialized.
931    ///     buf.assume_init_mut()
932    /// };
933    ///
934    /// // Now we can use `buf` as a normal slice:
935    /// buf.sort_unstable();
936    /// assert!(
937    ///     buf.windows(2).all(|pair| pair[0] <= pair[1]),
938    ///     "buffer is sorted",
939    /// );
940    /// ```
941    ///
942    /// ### *Incorrect* usages of this method:
943    ///
944    /// You cannot use `.assume_init_mut()` to initialize a value:
945    ///
946    /// ```rust,no_run
947    /// use std::mem::MaybeUninit;
948    ///
949    /// let mut b = MaybeUninit::<bool>::uninit();
950    /// unsafe {
951    ///     *b.assume_init_mut() = true;
952    ///     // We have created a (mutable) reference to an uninitialized `bool`!
953    ///     // This is undefined behavior. ⚠️
954    /// }
955    /// ```
956    ///
957    /// For instance, you cannot [`Read`] into an uninitialized buffer:
958    ///
959    /// [`Read`]: ../../std/io/trait.Read.html
960    ///
961    /// ```rust,no_run
962    /// use std::{io, mem::MaybeUninit};
963    ///
964    /// fn read_chunk (reader: &'_ mut dyn io::Read) -> io::Result<[u8; 64]>
965    /// {
966    ///     let mut buffer = MaybeUninit::<[u8; 64]>::uninit();
967    ///     reader.read_exact(unsafe { buffer.assume_init_mut() })?;
968    ///     //                         ^^^^^^^^^^^^^^^^^^^^^^^^
969    ///     // (mutable) reference to uninitialized memory!
970    ///     // This is undefined behavior.
971    ///     Ok(unsafe { buffer.assume_init() })
972    /// }
973    /// ```
974    ///
975    /// Nor can you use direct field access to do field-by-field gradual initialization:
976    ///
977    /// ```rust,no_run
978    /// use std::{mem::MaybeUninit, ptr};
979    ///
980    /// struct Foo {
981    ///     a: u32,
982    ///     b: u8,
983    /// }
984    ///
985    /// let foo: Foo = unsafe {
986    ///     let mut foo = MaybeUninit::<Foo>::uninit();
987    ///     ptr::write(&mut foo.assume_init_mut().a as *mut u32, 1337);
988    ///     //              ^^^^^^^^^^^^^^^^^^^^^
989    ///     // (mutable) reference to uninitialized memory!
990    ///     // This is undefined behavior.
991    ///     ptr::write(&mut foo.assume_init_mut().b as *mut u8, 42);
992    ///     //              ^^^^^^^^^^^^^^^^^^^^^
993    ///     // (mutable) reference to uninitialized memory!
994    ///     // This is undefined behavior.
995    ///     foo.assume_init()
996    /// };
997    /// ```
998    #[stable(feature = "maybe_uninit_ref", since = "1.55.0")]
999    #[rustc_const_stable(feature = "const_maybe_uninit_assume_init", since = "1.84.0")]
1000    #[inline(always)]
1001    pub const unsafe fn assume_init_mut(&mut self) -> &mut T {
1002        // SAFETY: the caller must guarantee that `self` is initialized.
1003        // This also means that `self` must be a `value` variant.
1004        unsafe {
1005            intrinsics::assert_inhabited::<T>();
1006            &mut *self.as_mut_ptr()
1007        }
1008    }
1009
1010    /// Extracts the values from an array of `MaybeUninit` containers.
1011    ///
1012    /// # Safety
1013    ///
1014    /// It is up to the caller to guarantee that all elements of the array are
1015    /// in an initialized state.
1016    ///
1017    /// # Examples
1018    ///
1019    /// ```
1020    /// #![feature(maybe_uninit_array_assume_init)]
1021    /// use std::mem::MaybeUninit;
1022    ///
1023    /// let mut array: [MaybeUninit<i32>; 3] = [MaybeUninit::uninit(); 3];
1024    /// array[0].write(0);
1025    /// array[1].write(1);
1026    /// array[2].write(2);
1027    ///
1028    /// // SAFETY: Now safe as we initialised all elements
1029    /// let array = unsafe {
1030    ///     MaybeUninit::array_assume_init(array)
1031    /// };
1032    ///
1033    /// assert_eq!(array, [0, 1, 2]);
1034    /// ```
1035    #[unstable(feature = "maybe_uninit_array_assume_init", issue = "96097")]
1036    #[inline(always)]
1037    #[track_caller]
1038    pub const unsafe fn array_assume_init<const N: usize>(array: [Self; N]) -> [T; N] {
1039        // SAFETY:
1040        // * The caller guarantees that all elements of the array are initialized
1041        // * `MaybeUninit<T>` and T are guaranteed to have the same layout
1042        // * `MaybeUninit` does not drop, so there are no double-frees
1043        // And thus the conversion is safe
1044        unsafe {
1045            intrinsics::assert_inhabited::<[T; N]>();
1046            intrinsics::transmute_unchecked(array)
1047        }
1048    }
1049
1050    /// Returns the contents of this `MaybeUninit` as a slice of potentially uninitialized bytes.
1051    ///
1052    /// Note that even if the contents of a `MaybeUninit` have been initialized, the value may still
1053    /// contain padding bytes which are left uninitialized.
1054    ///
1055    /// # Examples
1056    ///
1057    /// ```
1058    /// #![feature(maybe_uninit_as_bytes, maybe_uninit_slice)]
1059    /// use std::mem::MaybeUninit;
1060    ///
1061    /// let val = 0x12345678_i32;
1062    /// let uninit = MaybeUninit::new(val);
1063    /// let uninit_bytes = uninit.as_bytes();
1064    /// let bytes = unsafe { uninit_bytes.assume_init_ref() };
1065    /// assert_eq!(bytes, val.to_ne_bytes());
1066    /// ```
1067    #[unstable(feature = "maybe_uninit_as_bytes", issue = "93092")]
1068    pub const fn as_bytes(&self) -> &[MaybeUninit<u8>] {
1069        // SAFETY: MaybeUninit<u8> is always valid, even for padding bytes
1070        unsafe {
1071            slice::from_raw_parts(self.as_ptr().cast::<MaybeUninit<u8>>(), super::size_of::<T>())
1072        }
1073    }
1074
1075    /// Returns the contents of this `MaybeUninit` as a mutable slice of potentially uninitialized
1076    /// bytes.
1077    ///
1078    /// Note that even if the contents of a `MaybeUninit` have been initialized, the value may still
1079    /// contain padding bytes which are left uninitialized.
1080    ///
1081    /// # Examples
1082    ///
1083    /// ```
1084    /// #![feature(maybe_uninit_as_bytes)]
1085    /// use std::mem::MaybeUninit;
1086    ///
1087    /// let val = 0x12345678_i32;
1088    /// let mut uninit = MaybeUninit::new(val);
1089    /// let uninit_bytes = uninit.as_bytes_mut();
1090    /// if cfg!(target_endian = "little") {
1091    ///     uninit_bytes[0].write(0xcd);
1092    /// } else {
1093    ///     uninit_bytes[3].write(0xcd);
1094    /// }
1095    /// let val2 = unsafe { uninit.assume_init() };
1096    /// assert_eq!(val2, 0x123456cd);
1097    /// ```
1098    #[unstable(feature = "maybe_uninit_as_bytes", issue = "93092")]
1099    pub const fn as_bytes_mut(&mut self) -> &mut [MaybeUninit<u8>] {
1100        // SAFETY: MaybeUninit<u8> is always valid, even for padding bytes
1101        unsafe {
1102            slice::from_raw_parts_mut(
1103                self.as_mut_ptr().cast::<MaybeUninit<u8>>(),
1104                super::size_of::<T>(),
1105            )
1106        }
1107    }
1108
1109    /// Gets a pointer to the first element of the array.
1110    #[unstable(feature = "maybe_uninit_slice", issue = "63569")]
1111    #[inline(always)]
1112    pub const fn slice_as_ptr(this: &[MaybeUninit<T>]) -> *const T {
1113        this.as_ptr() as *const T
1114    }
1115
1116    /// Gets a mutable pointer to the first element of the array.
1117    #[unstable(feature = "maybe_uninit_slice", issue = "63569")]
1118    #[inline(always)]
1119    pub const fn slice_as_mut_ptr(this: &mut [MaybeUninit<T>]) -> *mut T {
1120        this.as_mut_ptr() as *mut T
1121    }
1122}
1123
1124impl<T> [MaybeUninit<T>] {
1125    /// Copies the elements from `src` to `self`,
1126    /// returning a mutable reference to the now initialized contents of `self`.
1127    ///
1128    /// If `T` does not implement `Copy`, use [`write_clone_of_slice`] instead.
1129    ///
1130    /// This is similar to [`slice::copy_from_slice`].
1131    ///
1132    /// # Panics
1133    ///
1134    /// This function will panic if the two slices have different lengths.
1135    ///
1136    /// # Examples
1137    ///
1138    /// ```
1139    /// #![feature(maybe_uninit_write_slice)]
1140    /// use std::mem::MaybeUninit;
1141    ///
1142    /// let mut dst = [MaybeUninit::uninit(); 32];
1143    /// let src = [0; 32];
1144    ///
1145    /// let init = dst.write_copy_of_slice(&src);
1146    ///
1147    /// assert_eq!(init, src);
1148    /// ```
1149    ///
1150    /// ```
1151    /// #![feature(maybe_uninit_write_slice)]
1152    ///
1153    /// let mut vec = Vec::with_capacity(32);
1154    /// let src = [0; 16];
1155    ///
1156    /// vec.spare_capacity_mut()[..src.len()].write_copy_of_slice(&src);
1157    ///
1158    /// // SAFETY: we have just copied all the elements of len into the spare capacity
1159    /// // the first src.len() elements of the vec are valid now.
1160    /// unsafe {
1161    ///     vec.set_len(src.len());
1162    /// }
1163    ///
1164    /// assert_eq!(vec, src);
1165    /// ```
1166    ///
1167    /// [`write_clone_of_slice`]: slice::write_clone_of_slice
1168    #[unstable(feature = "maybe_uninit_write_slice", issue = "79995")]
1169    #[cfg(not(feature = "ferrocene_certified"))]
1170    pub const fn write_copy_of_slice(&mut self, src: &[T]) -> &mut [T]
1171    where
1172        T: Copy,
1173    {
1174        // SAFETY: &[T] and &[MaybeUninit<T>] have the same layout
1175        let uninit_src: &[MaybeUninit<T>] = unsafe { super::transmute(src) };
1176
1177        self.copy_from_slice(uninit_src);
1178
1179        // SAFETY: Valid elements have just been copied into `self` so it is initialized
1180        unsafe { self.assume_init_mut() }
1181    }
1182
1183    /// Clones the elements from `src` to `self`,
1184    /// returning a mutable reference to the now initialized contents of `self`.
1185    /// Any already initialized elements will not be dropped.
1186    ///
1187    /// If `T` implements `Copy`, use [`write_copy_of_slice`] instead.
1188    ///
1189    /// This is similar to [`slice::clone_from_slice`] but does not drop existing elements.
1190    ///
1191    /// # Panics
1192    ///
1193    /// This function will panic if the two slices have different lengths, or if the implementation of `Clone` panics.
1194    ///
1195    /// If there is a panic, the already cloned elements will be dropped.
1196    ///
1197    /// # Examples
1198    ///
1199    /// ```
1200    /// #![feature(maybe_uninit_write_slice)]
1201    /// use std::mem::MaybeUninit;
1202    ///
1203    /// let mut dst = [const { MaybeUninit::uninit() }; 5];
1204    /// let src = ["wibbly", "wobbly", "timey", "wimey", "stuff"].map(|s| s.to_string());
1205    ///
1206    /// let init = dst.write_clone_of_slice(&src);
1207    ///
1208    /// assert_eq!(init, src);
1209    ///
1210    /// # // Prevent leaks for Miri
1211    /// # unsafe { std::ptr::drop_in_place(init); }
1212    /// ```
1213    ///
1214    /// ```
1215    /// #![feature(maybe_uninit_write_slice)]
1216    ///
1217    /// let mut vec = Vec::with_capacity(32);
1218    /// let src = ["rust", "is", "a", "pretty", "cool", "language"].map(|s| s.to_string());
1219    ///
1220    /// vec.spare_capacity_mut()[..src.len()].write_clone_of_slice(&src);
1221    ///
1222    /// // SAFETY: we have just cloned all the elements of len into the spare capacity
1223    /// // the first src.len() elements of the vec are valid now.
1224    /// unsafe {
1225    ///     vec.set_len(src.len());
1226    /// }
1227    ///
1228    /// assert_eq!(vec, src);
1229    /// ```
1230    ///
1231    /// [`write_copy_of_slice`]: slice::write_copy_of_slice
1232    #[unstable(feature = "maybe_uninit_write_slice", issue = "79995")]
1233    #[cfg(not(feature = "ferrocene_certified"))]
1234    pub fn write_clone_of_slice(&mut self, src: &[T]) -> &mut [T]
1235    where
1236        T: Clone,
1237    {
1238        // unlike copy_from_slice this does not call clone_from_slice on the slice
1239        // this is because `MaybeUninit<T: Clone>` does not implement Clone.
1240
1241        assert_eq!(self.len(), src.len(), "destination and source slices have different lengths");
1242
1243        // NOTE: We need to explicitly slice them to the same length
1244        // for bounds checking to be elided, and the optimizer will
1245        // generate memcpy for simple cases (for example T = u8).
1246        let len = self.len();
1247        let src = &src[..len];
1248
1249        // guard is needed b/c panic might happen during a clone
1250        let mut guard = Guard { slice: self, initialized: 0 };
1251
1252        for i in 0..len {
1253            guard.slice[i].write(src[i].clone());
1254            guard.initialized += 1;
1255        }
1256
1257        super::forget(guard);
1258
1259        // SAFETY: Valid elements have just been written into `self` so it is initialized
1260        unsafe { self.assume_init_mut() }
1261    }
1262
1263    /// Fills a slice with elements by cloning `value`, returning a mutable reference to the now
1264    /// initialized contents of the slice.
1265    /// Any previously initialized elements will not be dropped.
1266    ///
1267    /// This is similar to [`slice::fill`].
1268    ///
1269    /// # Panics
1270    ///
1271    /// This function will panic if any call to `Clone` panics.
1272    ///
1273    /// If such a panic occurs, any elements previously initialized during this operation will be
1274    /// dropped.
1275    ///
1276    /// # Examples
1277    ///
1278    /// ```
1279    /// #![feature(maybe_uninit_fill)]
1280    /// use std::mem::MaybeUninit;
1281    ///
1282    /// let mut buf = [const { MaybeUninit::uninit() }; 10];
1283    /// let initialized = buf.write_filled(1);
1284    /// assert_eq!(initialized, &mut [1; 10]);
1285    /// ```
1286    #[doc(alias = "memset")]
1287    #[unstable(feature = "maybe_uninit_fill", issue = "117428")]
1288    #[cfg(not(feature = "ferrocene_certified"))]
1289    pub fn write_filled(&mut self, value: T) -> &mut [T]
1290    where
1291        T: Clone,
1292    {
1293        SpecFill::spec_fill(self, value);
1294        // SAFETY: Valid elements have just been filled into `self` so it is initialized
1295        unsafe { self.assume_init_mut() }
1296    }
1297
1298    /// Fills a slice with elements returned by calling a closure for each index.
1299    ///
1300    /// This method uses a closure to create new values. If you'd rather `Clone` a given value, use
1301    /// [slice::write_filled]. If you want to use the `Default` trait to generate values, you can
1302    /// pass [`|_| Default::default()`][Default::default] as the argument.
1303    ///
1304    /// # Panics
1305    ///
1306    /// This function will panic if any call to the provided closure panics.
1307    ///
1308    /// If such a panic occurs, any elements previously initialized during this operation will be
1309    /// dropped.
1310    ///
1311    /// # Examples
1312    ///
1313    /// ```
1314    /// #![feature(maybe_uninit_fill)]
1315    /// use std::mem::MaybeUninit;
1316    ///
1317    /// let mut buf = [const { MaybeUninit::<usize>::uninit() }; 5];
1318    /// let initialized = buf.write_with(|idx| idx + 1);
1319    /// assert_eq!(initialized, &mut [1, 2, 3, 4, 5]);
1320    /// ```
1321    #[unstable(feature = "maybe_uninit_fill", issue = "117428")]
1322    #[cfg(not(feature = "ferrocene_certified"))]
1323    pub fn write_with<F>(&mut self, mut f: F) -> &mut [T]
1324    where
1325        F: FnMut(usize) -> T,
1326    {
1327        let mut guard = Guard { slice: self, initialized: 0 };
1328
1329        for (idx, element) in guard.slice.iter_mut().enumerate() {
1330            element.write(f(idx));
1331            guard.initialized += 1;
1332        }
1333
1334        super::forget(guard);
1335
1336        // SAFETY: Valid elements have just been written into `this` so it is initialized
1337        unsafe { self.assume_init_mut() }
1338    }
1339
1340    /// Fills a slice with elements yielded by an iterator until either all elements have been
1341    /// initialized or the iterator is empty.
1342    ///
1343    /// Returns two slices. The first slice contains the initialized portion of the original slice.
1344    /// The second slice is the still-uninitialized remainder of the original slice.
1345    ///
1346    /// # Panics
1347    ///
1348    /// This function panics if the iterator's `next` function panics.
1349    ///
1350    /// If such a panic occurs, any elements previously initialized during this operation will be
1351    /// dropped.
1352    ///
1353    /// # Examples
1354    ///
1355    /// Completely filling the slice:
1356    ///
1357    /// ```
1358    /// #![feature(maybe_uninit_fill)]
1359    /// use std::mem::MaybeUninit;
1360    ///
1361    /// let mut buf = [const { MaybeUninit::uninit() }; 5];
1362    ///
1363    /// let iter = [1, 2, 3].into_iter().cycle();
1364    /// let (initialized, remainder) = buf.write_iter(iter);
1365    ///
1366    /// assert_eq!(initialized, &mut [1, 2, 3, 1, 2]);
1367    /// assert_eq!(remainder.len(), 0);
1368    /// ```
1369    ///
1370    /// Partially filling the slice:
1371    ///
1372    /// ```
1373    /// #![feature(maybe_uninit_fill)]
1374    /// use std::mem::MaybeUninit;
1375    ///
1376    /// let mut buf = [const { MaybeUninit::uninit() }; 5];
1377    /// let iter = [1, 2];
1378    /// let (initialized, remainder) = buf.write_iter(iter);
1379    ///
1380    /// assert_eq!(initialized, &mut [1, 2]);
1381    /// assert_eq!(remainder.len(), 3);
1382    /// ```
1383    ///
1384    /// Checking an iterator after filling a slice:
1385    ///
1386    /// ```
1387    /// #![feature(maybe_uninit_fill)]
1388    /// use std::mem::MaybeUninit;
1389    ///
1390    /// let mut buf = [const { MaybeUninit::uninit() }; 3];
1391    /// let mut iter = [1, 2, 3, 4, 5].into_iter();
1392    /// let (initialized, remainder) = buf.write_iter(iter.by_ref());
1393    ///
1394    /// assert_eq!(initialized, &mut [1, 2, 3]);
1395    /// assert_eq!(remainder.len(), 0);
1396    /// assert_eq!(iter.as_slice(), &[4, 5]);
1397    /// ```
1398    #[unstable(feature = "maybe_uninit_fill", issue = "117428")]
1399    #[cfg(not(feature = "ferrocene_certified"))]
1400    pub fn write_iter<I>(&mut self, it: I) -> (&mut [T], &mut [MaybeUninit<T>])
1401    where
1402        I: IntoIterator<Item = T>,
1403    {
1404        let iter = it.into_iter();
1405        let mut guard = Guard { slice: self, initialized: 0 };
1406
1407        for (element, val) in guard.slice.iter_mut().zip(iter) {
1408            element.write(val);
1409            guard.initialized += 1;
1410        }
1411
1412        let initialized_len = guard.initialized;
1413        super::forget(guard);
1414
1415        // SAFETY: guard.initialized <= self.len()
1416        let (initted, remainder) = unsafe { self.split_at_mut_unchecked(initialized_len) };
1417
1418        // SAFETY: Valid elements have just been written into `init`, so that portion
1419        // of `this` is initialized.
1420        (unsafe { initted.assume_init_mut() }, remainder)
1421    }
1422
1423    /// Returns the contents of this `MaybeUninit` as a slice of potentially uninitialized bytes.
1424    ///
1425    /// Note that even if the contents of a `MaybeUninit` have been initialized, the value may still
1426    /// contain padding bytes which are left uninitialized.
1427    ///
1428    /// # Examples
1429    ///
1430    /// ```
1431    /// #![feature(maybe_uninit_as_bytes, maybe_uninit_write_slice, maybe_uninit_slice)]
1432    /// use std::mem::MaybeUninit;
1433    ///
1434    /// let uninit = [MaybeUninit::new(0x1234u16), MaybeUninit::new(0x5678u16)];
1435    /// let uninit_bytes = uninit.as_bytes();
1436    /// let bytes = unsafe { uninit_bytes.assume_init_ref() };
1437    /// let val1 = u16::from_ne_bytes(bytes[0..2].try_into().unwrap());
1438    /// let val2 = u16::from_ne_bytes(bytes[2..4].try_into().unwrap());
1439    /// assert_eq!(&[val1, val2], &[0x1234u16, 0x5678u16]);
1440    /// ```
1441    #[unstable(feature = "maybe_uninit_as_bytes", issue = "93092")]
1442    #[cfg(not(feature = "ferrocene_certified"))]
1443    pub const fn as_bytes(&self) -> &[MaybeUninit<u8>] {
1444        // SAFETY: MaybeUninit<u8> is always valid, even for padding bytes
1445        unsafe {
1446            slice::from_raw_parts(self.as_ptr().cast::<MaybeUninit<u8>>(), super::size_of_val(self))
1447        }
1448    }
1449
1450    /// Returns the contents of this `MaybeUninit` slice as a mutable slice of potentially
1451    /// uninitialized bytes.
1452    ///
1453    /// Note that even if the contents of a `MaybeUninit` have been initialized, the value may still
1454    /// contain padding bytes which are left uninitialized.
1455    ///
1456    /// # Examples
1457    ///
1458    /// ```
1459    /// #![feature(maybe_uninit_as_bytes, maybe_uninit_write_slice, maybe_uninit_slice)]
1460    /// use std::mem::MaybeUninit;
1461    ///
1462    /// let mut uninit = [MaybeUninit::<u16>::uninit(), MaybeUninit::<u16>::uninit()];
1463    /// let uninit_bytes = uninit.as_bytes_mut();
1464    /// uninit_bytes.write_copy_of_slice(&[0x12, 0x34, 0x56, 0x78]);
1465    /// let vals = unsafe { uninit.assume_init_ref() };
1466    /// if cfg!(target_endian = "little") {
1467    ///     assert_eq!(vals, &[0x3412u16, 0x7856u16]);
1468    /// } else {
1469    ///     assert_eq!(vals, &[0x1234u16, 0x5678u16]);
1470    /// }
1471    /// ```
1472    #[unstable(feature = "maybe_uninit_as_bytes", issue = "93092")]
1473    #[cfg(not(feature = "ferrocene_certified"))]
1474    pub const fn as_bytes_mut(&mut self) -> &mut [MaybeUninit<u8>] {
1475        // SAFETY: MaybeUninit<u8> is always valid, even for padding bytes
1476        unsafe {
1477            slice::from_raw_parts_mut(
1478                self.as_mut_ptr() as *mut MaybeUninit<u8>,
1479                super::size_of_val(self),
1480            )
1481        }
1482    }
1483
1484    /// Drops the contained values in place.
1485    ///
1486    /// # Safety
1487    ///
1488    /// It is up to the caller to guarantee that every `MaybeUninit<T>` in the slice
1489    /// really is in an initialized state. Calling this when the content is not yet
1490    /// fully initialized causes undefined behavior.
1491    ///
1492    /// On top of that, all additional invariants of the type `T` must be
1493    /// satisfied, as the `Drop` implementation of `T` (or its members) may
1494    /// rely on this. For example, setting a `Vec<T>` to an invalid but
1495    /// non-null address makes it initialized (under the current implementation;
1496    /// this does not constitute a stable guarantee), because the only
1497    /// requirement the compiler knows about it is that the data pointer must be
1498    /// non-null. Dropping such a `Vec<T>` however will cause undefined
1499    /// behaviour.
1500    #[unstable(feature = "maybe_uninit_slice", issue = "63569")]
1501    #[inline(always)]
1502    #[rustc_const_unstable(feature = "const_drop_in_place", issue = "109342")]
1503    pub const unsafe fn assume_init_drop(&mut self)
1504    where
1505        T: [const] Destruct,
1506    {
1507        if !self.is_empty() {
1508            // SAFETY: the caller must guarantee that every element of `self`
1509            // is initialized and satisfies all invariants of `T`.
1510            // Dropping the value in place is safe if that is the case.
1511            unsafe { ptr::drop_in_place(self as *mut [MaybeUninit<T>] as *mut [T]) }
1512        }
1513    }
1514
1515    /// Gets a shared reference to the contained value.
1516    ///
1517    /// # Safety
1518    ///
1519    /// Calling this when the content is not yet fully initialized causes undefined
1520    /// behavior: it is up to the caller to guarantee that every `MaybeUninit<T>` in
1521    /// the slice really is in an initialized state.
1522    #[unstable(feature = "maybe_uninit_slice", issue = "63569")]
1523    #[inline(always)]
1524    pub const unsafe fn assume_init_ref(&self) -> &[T] {
1525        // SAFETY: casting `slice` to a `*const [T]` is safe since the caller guarantees that
1526        // `slice` is initialized, and `MaybeUninit` is guaranteed to have the same layout as `T`.
1527        // The pointer obtained is valid since it refers to memory owned by `slice` which is a
1528        // reference and thus guaranteed to be valid for reads.
1529        unsafe { &*(self as *const Self as *const [T]) }
1530    }
1531
1532    /// Gets a mutable (unique) reference to the contained value.
1533    ///
1534    /// # Safety
1535    ///
1536    /// Calling this when the content is not yet fully initialized causes undefined
1537    /// behavior: it is up to the caller to guarantee that every `MaybeUninit<T>` in the
1538    /// slice really is in an initialized state. For instance, `.assume_init_mut()` cannot
1539    /// be used to initialize a `MaybeUninit` slice.
1540    #[unstable(feature = "maybe_uninit_slice", issue = "63569")]
1541    #[inline(always)]
1542    #[cfg(not(feature = "ferrocene_certified"))]
1543    pub const unsafe fn assume_init_mut(&mut self) -> &mut [T] {
1544        // SAFETY: similar to safety notes for `slice_get_ref`, but we have a
1545        // mutable reference which is also guaranteed to be valid for writes.
1546        unsafe { &mut *(self as *mut Self as *mut [T]) }
1547    }
1548}
1549
1550impl<T, const N: usize> MaybeUninit<[T; N]> {
1551    /// Transposes a `MaybeUninit<[T; N]>` into a `[MaybeUninit<T>; N]`.
1552    ///
1553    /// # Examples
1554    ///
1555    /// ```
1556    /// #![feature(maybe_uninit_uninit_array_transpose)]
1557    /// # use std::mem::MaybeUninit;
1558    ///
1559    /// let data: [MaybeUninit<u8>; 1000] = MaybeUninit::uninit().transpose();
1560    /// ```
1561    #[unstable(feature = "maybe_uninit_uninit_array_transpose", issue = "96097")]
1562    #[inline]
1563    pub const fn transpose(self) -> [MaybeUninit<T>; N] {
1564        // SAFETY: T and MaybeUninit<T> have the same layout
1565        unsafe { intrinsics::transmute_unchecked(self) }
1566    }
1567}
1568
1569impl<T, const N: usize> [MaybeUninit<T>; N] {
1570    /// Transposes a `[MaybeUninit<T>; N]` into a `MaybeUninit<[T; N]>`.
1571    ///
1572    /// # Examples
1573    ///
1574    /// ```
1575    /// #![feature(maybe_uninit_uninit_array_transpose)]
1576    /// # use std::mem::MaybeUninit;
1577    ///
1578    /// let data = [MaybeUninit::<u8>::uninit(); 1000];
1579    /// let data: MaybeUninit<[u8; 1000]> = data.transpose();
1580    /// ```
1581    #[unstable(feature = "maybe_uninit_uninit_array_transpose", issue = "96097")]
1582    #[inline]
1583    pub const fn transpose(self) -> MaybeUninit<[T; N]> {
1584        // SAFETY: T and MaybeUninit<T> have the same layout
1585        unsafe { intrinsics::transmute_unchecked(self) }
1586    }
1587}
1588
1589#[cfg(not(feature = "ferrocene_certified"))]
1590struct Guard<'a, T> {
1591    slice: &'a mut [MaybeUninit<T>],
1592    initialized: usize,
1593}
1594
1595#[cfg(not(feature = "ferrocene_certified"))]
1596impl<'a, T> Drop for Guard<'a, T> {
1597    fn drop(&mut self) {
1598        let initialized_part = &mut self.slice[..self.initialized];
1599        // SAFETY: this raw sub-slice will contain only initialized objects.
1600        unsafe {
1601            initialized_part.assume_init_drop();
1602        }
1603    }
1604}
1605
1606#[cfg(not(feature = "ferrocene_certified"))]
1607trait SpecFill<T> {
1608    fn spec_fill(&mut self, value: T);
1609}
1610
1611#[cfg(not(feature = "ferrocene_certified"))]
1612impl<T: Clone> SpecFill<T> for [MaybeUninit<T>] {
1613    default fn spec_fill(&mut self, value: T) {
1614        let mut guard = Guard { slice: self, initialized: 0 };
1615
1616        if let Some((last, elems)) = guard.slice.split_last_mut() {
1617            for el in elems {
1618                el.write(value.clone());
1619                guard.initialized += 1;
1620            }
1621
1622            last.write(value);
1623        }
1624        super::forget(guard);
1625    }
1626}
1627
1628#[cfg(not(feature = "ferrocene_certified"))]
1629impl<T: TrivialClone> SpecFill<T> for [MaybeUninit<T>] {
1630    fn spec_fill(&mut self, value: T) {
1631        // SAFETY: because `T` is `TrivialClone`, this is equivalent to calling
1632        // `T::clone` for every element. Notably, `TrivialClone` also implies
1633        // that the `clone` implementation will not panic, so we can avoid
1634        // initialization guards and such.
1635        self.fill_with(|| MaybeUninit::new(unsafe { ptr::read(&value) }));
1636    }
1637}