Skip to main content

core/num/
f64.rs

1//! Constants for the `f64` double-precision floating point type.
2//!
3//! *[See also the `f64` primitive type][f64].*
4//!
5//! Mathematically significant numbers are provided in the `consts` sub-module.
6//!
7//! For the constants defined directly in this module
8//! (as distinct from those defined in the `consts` sub-module),
9//! new code should instead use the associated constants
10//! defined directly on the `f64` type.
11
12#![stable(feature = "rust1", since = "1.0.0")]
13
14#[cfg(not(feature = "ferrocene_subset"))]
15use crate::convert::FloatToInt;
16use crate::num::FpCategory;
17#[cfg(not(feature = "ferrocene_subset"))]
18use crate::panic::const_assert;
19use crate::{intrinsics, mem};
20
21/// The radix or base of the internal representation of `f64`.
22/// Use [`f64::RADIX`] instead.
23///
24/// # Examples
25///
26/// ```rust
27/// // deprecated way
28/// # #[allow(deprecated, deprecated_in_future)]
29/// let r = std::f64::RADIX;
30///
31/// // intended way
32/// let r = f64::RADIX;
33/// ```
34#[stable(feature = "rust1", since = "1.0.0")]
35#[deprecated(since = "TBD", note = "replaced by the `RADIX` associated constant on `f64`")]
36#[rustc_diagnostic_item = "f64_legacy_const_radix"]
37pub const RADIX: u32 = f64::RADIX;
38
39/// Number of significant digits in base 2.
40/// Use [`f64::MANTISSA_DIGITS`] instead.
41///
42/// # Examples
43///
44/// ```rust
45/// // deprecated way
46/// # #[allow(deprecated, deprecated_in_future)]
47/// let d = std::f64::MANTISSA_DIGITS;
48///
49/// // intended way
50/// let d = f64::MANTISSA_DIGITS;
51/// ```
52#[stable(feature = "rust1", since = "1.0.0")]
53#[deprecated(
54    since = "TBD",
55    note = "replaced by the `MANTISSA_DIGITS` associated constant on `f64`"
56)]
57#[rustc_diagnostic_item = "f64_legacy_const_mantissa_dig"]
58pub const MANTISSA_DIGITS: u32 = f64::MANTISSA_DIGITS;
59
60/// Approximate number of significant digits in base 10.
61/// Use [`f64::DIGITS`] instead.
62///
63/// # Examples
64///
65/// ```rust
66/// // deprecated way
67/// # #[allow(deprecated, deprecated_in_future)]
68/// let d = std::f64::DIGITS;
69///
70/// // intended way
71/// let d = f64::DIGITS;
72/// ```
73#[stable(feature = "rust1", since = "1.0.0")]
74#[deprecated(since = "TBD", note = "replaced by the `DIGITS` associated constant on `f64`")]
75#[rustc_diagnostic_item = "f64_legacy_const_digits"]
76pub const DIGITS: u32 = f64::DIGITS;
77
78/// [Machine epsilon] value for `f64`.
79/// Use [`f64::EPSILON`] instead.
80///
81/// This is the difference between `1.0` and the next larger representable number.
82///
83/// [Machine epsilon]: https://en.wikipedia.org/wiki/Machine_epsilon
84///
85/// # Examples
86///
87/// ```rust
88/// // deprecated way
89/// # #[allow(deprecated, deprecated_in_future)]
90/// let e = std::f64::EPSILON;
91///
92/// // intended way
93/// let e = f64::EPSILON;
94/// ```
95#[stable(feature = "rust1", since = "1.0.0")]
96#[deprecated(since = "TBD", note = "replaced by the `EPSILON` associated constant on `f64`")]
97#[rustc_diagnostic_item = "f64_legacy_const_epsilon"]
98pub const EPSILON: f64 = f64::EPSILON;
99
100/// Smallest finite `f64` value.
101/// Use [`f64::MIN`] instead.
102///
103/// # Examples
104///
105/// ```rust
106/// // deprecated way
107/// # #[allow(deprecated, deprecated_in_future)]
108/// let min = std::f64::MIN;
109///
110/// // intended way
111/// let min = f64::MIN;
112/// ```
113#[stable(feature = "rust1", since = "1.0.0")]
114#[deprecated(since = "TBD", note = "replaced by the `MIN` associated constant on `f64`")]
115#[rustc_diagnostic_item = "f64_legacy_const_min"]
116pub const MIN: f64 = f64::MIN;
117
118/// Smallest positive normal `f64` value.
119/// Use [`f64::MIN_POSITIVE`] instead.
120///
121/// # Examples
122///
123/// ```rust
124/// // deprecated way
125/// # #[allow(deprecated, deprecated_in_future)]
126/// let min = std::f64::MIN_POSITIVE;
127///
128/// // intended way
129/// let min = f64::MIN_POSITIVE;
130/// ```
131#[stable(feature = "rust1", since = "1.0.0")]
132#[deprecated(since = "TBD", note = "replaced by the `MIN_POSITIVE` associated constant on `f64`")]
133#[rustc_diagnostic_item = "f64_legacy_const_min_positive"]
134pub const MIN_POSITIVE: f64 = f64::MIN_POSITIVE;
135
136/// Largest finite `f64` value.
137/// Use [`f64::MAX`] instead.
138///
139/// # Examples
140///
141/// ```rust
142/// // deprecated way
143/// # #[allow(deprecated, deprecated_in_future)]
144/// let max = std::f64::MAX;
145///
146/// // intended way
147/// let max = f64::MAX;
148/// ```
149#[stable(feature = "rust1", since = "1.0.0")]
150#[deprecated(since = "TBD", note = "replaced by the `MAX` associated constant on `f64`")]
151#[rustc_diagnostic_item = "f64_legacy_const_max"]
152pub const MAX: f64 = f64::MAX;
153
154/// One greater than the minimum possible normal power of 2 exponent.
155/// Use [`f64::MIN_EXP`] instead.
156///
157/// # Examples
158///
159/// ```rust
160/// // deprecated way
161/// # #[allow(deprecated, deprecated_in_future)]
162/// let min = std::f64::MIN_EXP;
163///
164/// // intended way
165/// let min = f64::MIN_EXP;
166/// ```
167#[stable(feature = "rust1", since = "1.0.0")]
168#[deprecated(since = "TBD", note = "replaced by the `MIN_EXP` associated constant on `f64`")]
169#[rustc_diagnostic_item = "f64_legacy_const_min_exp"]
170pub const MIN_EXP: i32 = f64::MIN_EXP;
171
172/// Maximum possible power of 2 exponent.
173/// Use [`f64::MAX_EXP`] instead.
174///
175/// # Examples
176///
177/// ```rust
178/// // deprecated way
179/// # #[allow(deprecated, deprecated_in_future)]
180/// let max = std::f64::MAX_EXP;
181///
182/// // intended way
183/// let max = f64::MAX_EXP;
184/// ```
185#[stable(feature = "rust1", since = "1.0.0")]
186#[deprecated(since = "TBD", note = "replaced by the `MAX_EXP` associated constant on `f64`")]
187#[rustc_diagnostic_item = "f64_legacy_const_max_exp"]
188pub const MAX_EXP: i32 = f64::MAX_EXP;
189
190/// Minimum possible normal power of 10 exponent.
191/// Use [`f64::MIN_10_EXP`] instead.
192///
193/// # Examples
194///
195/// ```rust
196/// // deprecated way
197/// # #[allow(deprecated, deprecated_in_future)]
198/// let min = std::f64::MIN_10_EXP;
199///
200/// // intended way
201/// let min = f64::MIN_10_EXP;
202/// ```
203#[stable(feature = "rust1", since = "1.0.0")]
204#[deprecated(since = "TBD", note = "replaced by the `MIN_10_EXP` associated constant on `f64`")]
205#[rustc_diagnostic_item = "f64_legacy_const_min_10_exp"]
206pub const MIN_10_EXP: i32 = f64::MIN_10_EXP;
207
208/// Maximum possible power of 10 exponent.
209/// Use [`f64::MAX_10_EXP`] instead.
210///
211/// # Examples
212///
213/// ```rust
214/// // deprecated way
215/// # #[allow(deprecated, deprecated_in_future)]
216/// let max = std::f64::MAX_10_EXP;
217///
218/// // intended way
219/// let max = f64::MAX_10_EXP;
220/// ```
221#[stable(feature = "rust1", since = "1.0.0")]
222#[deprecated(since = "TBD", note = "replaced by the `MAX_10_EXP` associated constant on `f64`")]
223#[rustc_diagnostic_item = "f64_legacy_const_max_10_exp"]
224pub const MAX_10_EXP: i32 = f64::MAX_10_EXP;
225
226/// Not a Number (NaN).
227/// Use [`f64::NAN`] instead.
228///
229/// # Examples
230///
231/// ```rust
232/// // deprecated way
233/// # #[allow(deprecated, deprecated_in_future)]
234/// let nan = std::f64::NAN;
235///
236/// // intended way
237/// let nan = f64::NAN;
238/// ```
239#[stable(feature = "rust1", since = "1.0.0")]
240#[deprecated(since = "TBD", note = "replaced by the `NAN` associated constant on `f64`")]
241#[rustc_diagnostic_item = "f64_legacy_const_nan"]
242pub const NAN: f64 = f64::NAN;
243
244/// Infinity (∞).
245/// Use [`f64::INFINITY`] instead.
246///
247/// # Examples
248///
249/// ```rust
250/// // deprecated way
251/// # #[allow(deprecated, deprecated_in_future)]
252/// let inf = std::f64::INFINITY;
253///
254/// // intended way
255/// let inf = f64::INFINITY;
256/// ```
257#[stable(feature = "rust1", since = "1.0.0")]
258#[deprecated(since = "TBD", note = "replaced by the `INFINITY` associated constant on `f64`")]
259#[rustc_diagnostic_item = "f64_legacy_const_infinity"]
260pub const INFINITY: f64 = f64::INFINITY;
261
262/// Negative infinity (−∞).
263/// Use [`f64::NEG_INFINITY`] instead.
264///
265/// # Examples
266///
267/// ```rust
268/// // deprecated way
269/// # #[allow(deprecated, deprecated_in_future)]
270/// let ninf = std::f64::NEG_INFINITY;
271///
272/// // intended way
273/// let ninf = f64::NEG_INFINITY;
274/// ```
275#[stable(feature = "rust1", since = "1.0.0")]
276#[deprecated(since = "TBD", note = "replaced by the `NEG_INFINITY` associated constant on `f64`")]
277#[rustc_diagnostic_item = "f64_legacy_const_neg_infinity"]
278pub const NEG_INFINITY: f64 = f64::NEG_INFINITY;
279
280/// Basic mathematical constants.
281#[stable(feature = "rust1", since = "1.0.0")]
282#[rustc_diagnostic_item = "f64_consts_mod"]
283pub mod consts {
284    // FIXME: replace with mathematical constants from cmath.
285
286    /// Archimedes' constant (π)
287    #[stable(feature = "rust1", since = "1.0.0")]
288    pub const PI: f64 = 3.14159265358979323846264338327950288_f64;
289
290    /// The full circle constant (τ)
291    ///
292    /// Equal to 2π.
293    #[stable(feature = "tau_constant", since = "1.47.0")]
294    pub const TAU: f64 = 6.28318530717958647692528676655900577_f64;
295
296    /// The golden ratio (φ)
297    #[stable(feature = "euler_gamma_golden_ratio", since = "1.94.0")]
298    pub const GOLDEN_RATIO: f64 = 1.618033988749894848204586834365638118_f64;
299
300    /// The Euler-Mascheroni constant (γ)
301    #[stable(feature = "euler_gamma_golden_ratio", since = "1.94.0")]
302    pub const EULER_GAMMA: f64 = 0.577215664901532860606512090082402431_f64;
303
304    /// π/2
305    #[stable(feature = "rust1", since = "1.0.0")]
306    pub const FRAC_PI_2: f64 = 1.57079632679489661923132169163975144_f64;
307
308    /// π/3
309    #[stable(feature = "rust1", since = "1.0.0")]
310    pub const FRAC_PI_3: f64 = 1.04719755119659774615421446109316763_f64;
311
312    /// π/4
313    #[stable(feature = "rust1", since = "1.0.0")]
314    pub const FRAC_PI_4: f64 = 0.785398163397448309615660845819875721_f64;
315
316    /// π/6
317    #[stable(feature = "rust1", since = "1.0.0")]
318    pub const FRAC_PI_6: f64 = 0.52359877559829887307710723054658381_f64;
319
320    /// π/8
321    #[stable(feature = "rust1", since = "1.0.0")]
322    pub const FRAC_PI_8: f64 = 0.39269908169872415480783042290993786_f64;
323
324    /// 1/π
325    #[stable(feature = "rust1", since = "1.0.0")]
326    pub const FRAC_1_PI: f64 = 0.318309886183790671537767526745028724_f64;
327
328    /// 1/sqrt(π)
329    #[unstable(feature = "more_float_constants", issue = "146939")]
330    pub const FRAC_1_SQRT_PI: f64 = 0.564189583547756286948079451560772586_f64;
331
332    /// 1/sqrt(2π)
333    #[doc(alias = "FRAC_1_SQRT_TAU")]
334    #[unstable(feature = "more_float_constants", issue = "146939")]
335    pub const FRAC_1_SQRT_2PI: f64 = 0.398942280401432677939946059934381868_f64;
336
337    /// 2/π
338    #[stable(feature = "rust1", since = "1.0.0")]
339    pub const FRAC_2_PI: f64 = 0.636619772367581343075535053490057448_f64;
340
341    /// 2/sqrt(π)
342    #[stable(feature = "rust1", since = "1.0.0")]
343    pub const FRAC_2_SQRT_PI: f64 = 1.12837916709551257389615890312154517_f64;
344
345    /// sqrt(2)
346    #[stable(feature = "rust1", since = "1.0.0")]
347    pub const SQRT_2: f64 = 1.41421356237309504880168872420969808_f64;
348
349    /// 1/sqrt(2)
350    #[stable(feature = "rust1", since = "1.0.0")]
351    pub const FRAC_1_SQRT_2: f64 = 0.707106781186547524400844362104849039_f64;
352
353    /// sqrt(3)
354    #[unstable(feature = "more_float_constants", issue = "146939")]
355    pub const SQRT_3: f64 = 1.732050807568877293527446341505872367_f64;
356
357    /// 1/sqrt(3)
358    #[unstable(feature = "more_float_constants", issue = "146939")]
359    pub const FRAC_1_SQRT_3: f64 = 0.577350269189625764509148780501957456_f64;
360
361    /// Euler's number (e)
362    #[stable(feature = "rust1", since = "1.0.0")]
363    pub const E: f64 = 2.71828182845904523536028747135266250_f64;
364
365    /// log<sub>2</sub>(10)
366    #[stable(feature = "extra_log_consts", since = "1.43.0")]
367    pub const LOG2_10: f64 = 3.32192809488736234787031942948939018_f64;
368
369    /// log<sub>2</sub>(e)
370    #[stable(feature = "rust1", since = "1.0.0")]
371    pub const LOG2_E: f64 = 1.44269504088896340735992468100189214_f64;
372
373    /// log<sub>10</sub>(2)
374    #[stable(feature = "extra_log_consts", since = "1.43.0")]
375    pub const LOG10_2: f64 = 0.301029995663981195213738894724493027_f64;
376
377    /// log<sub>10</sub>(e)
378    #[stable(feature = "rust1", since = "1.0.0")]
379    pub const LOG10_E: f64 = 0.434294481903251827651128918916605082_f64;
380
381    /// ln(2)
382    #[stable(feature = "rust1", since = "1.0.0")]
383    pub const LN_2: f64 = 0.693147180559945309417232121458176568_f64;
384
385    /// ln(10)
386    #[stable(feature = "rust1", since = "1.0.0")]
387    pub const LN_10: f64 = 2.30258509299404568401799145468436421_f64;
388}
389
390impl f64 {
391    /// The radix or base of the internal representation of `f64`.
392    #[stable(feature = "assoc_int_consts", since = "1.43.0")]
393    pub const RADIX: u32 = 2;
394
395    /// Number of significant digits in base 2.
396    ///
397    /// Note that the size of the mantissa in the bitwise representation is one
398    /// smaller than this since the leading 1 is not stored explicitly.
399    #[stable(feature = "assoc_int_consts", since = "1.43.0")]
400    pub const MANTISSA_DIGITS: u32 = 53;
401    /// Approximate number of significant digits in base 10.
402    ///
403    /// This is the maximum <i>x</i> such that any decimal number with <i>x</i>
404    /// significant digits can be converted to `f64` and back without loss.
405    ///
406    /// Equal to floor(log<sub>10</sub>&nbsp;2<sup>[`MANTISSA_DIGITS`]&nbsp;&minus;&nbsp;1</sup>).
407    ///
408    /// [`MANTISSA_DIGITS`]: f64::MANTISSA_DIGITS
409    #[stable(feature = "assoc_int_consts", since = "1.43.0")]
410    pub const DIGITS: u32 = 15;
411
412    /// [Machine epsilon] value for `f64`.
413    ///
414    /// This is the difference between `1.0` and the next larger representable number.
415    ///
416    /// Equal to 2<sup>1&nbsp;&minus;&nbsp;[`MANTISSA_DIGITS`]</sup>.
417    ///
418    /// [Machine epsilon]: https://en.wikipedia.org/wiki/Machine_epsilon
419    /// [`MANTISSA_DIGITS`]: f64::MANTISSA_DIGITS
420    #[stable(feature = "assoc_int_consts", since = "1.43.0")]
421    #[rustc_diagnostic_item = "f64_epsilon"]
422    pub const EPSILON: f64 = 2.2204460492503131e-16_f64;
423
424    /// Smallest finite `f64` value.
425    ///
426    /// Equal to &minus;[`MAX`].
427    ///
428    /// [`MAX`]: f64::MAX
429    #[stable(feature = "assoc_int_consts", since = "1.43.0")]
430    pub const MIN: f64 = -1.7976931348623157e+308_f64;
431    /// Smallest positive normal `f64` value.
432    ///
433    /// Equal to 2<sup>[`MIN_EXP`]&nbsp;&minus;&nbsp;1</sup>.
434    ///
435    /// [`MIN_EXP`]: f64::MIN_EXP
436    #[stable(feature = "assoc_int_consts", since = "1.43.0")]
437    pub const MIN_POSITIVE: f64 = 2.2250738585072014e-308_f64;
438    /// Largest finite `f64` value.
439    ///
440    /// Equal to
441    /// (1&nbsp;&minus;&nbsp;2<sup>&minus;[`MANTISSA_DIGITS`]</sup>)&nbsp;2<sup>[`MAX_EXP`]</sup>.
442    ///
443    /// [`MANTISSA_DIGITS`]: f64::MANTISSA_DIGITS
444    /// [`MAX_EXP`]: f64::MAX_EXP
445    #[stable(feature = "assoc_int_consts", since = "1.43.0")]
446    pub const MAX: f64 = 1.7976931348623157e+308_f64;
447
448    /// One greater than the minimum possible *normal* power of 2 exponent
449    /// for a significand bounded by 1 ≤ x < 2 (i.e. the IEEE definition).
450    ///
451    /// This corresponds to the exact minimum possible *normal* power of 2 exponent
452    /// for a significand bounded by 0.5 ≤ x < 1 (i.e. the C definition).
453    /// In other words, all normal numbers representable by this type are
454    /// greater than or equal to 0.5&nbsp;×&nbsp;2<sup><i>MIN_EXP</i></sup>.
455    #[stable(feature = "assoc_int_consts", since = "1.43.0")]
456    pub const MIN_EXP: i32 = -1021;
457    /// One greater than the maximum possible power of 2 exponent
458    /// for a significand bounded by 1 ≤ x < 2 (i.e. the IEEE definition).
459    ///
460    /// This corresponds to the exact maximum possible power of 2 exponent
461    /// for a significand bounded by 0.5 ≤ x < 1 (i.e. the C definition).
462    /// In other words, all numbers representable by this type are
463    /// strictly less than 2<sup><i>MAX_EXP</i></sup>.
464    #[stable(feature = "assoc_int_consts", since = "1.43.0")]
465    pub const MAX_EXP: i32 = 1024;
466
467    /// Minimum <i>x</i> for which 10<sup><i>x</i></sup> is normal.
468    ///
469    /// Equal to ceil(log<sub>10</sub>&nbsp;[`MIN_POSITIVE`]).
470    ///
471    /// [`MIN_POSITIVE`]: f64::MIN_POSITIVE
472    #[stable(feature = "assoc_int_consts", since = "1.43.0")]
473    pub const MIN_10_EXP: i32 = -307;
474    /// Maximum <i>x</i> for which 10<sup><i>x</i></sup> is normal.
475    ///
476    /// Equal to floor(log<sub>10</sub>&nbsp;[`MAX`]).
477    ///
478    /// [`MAX`]: f64::MAX
479    #[stable(feature = "assoc_int_consts", since = "1.43.0")]
480    pub const MAX_10_EXP: i32 = 308;
481
482    /// Not a Number (NaN).
483    ///
484    /// Note that IEEE 754 doesn't define just a single NaN value; a plethora of bit patterns are
485    /// considered to be NaN. Furthermore, the standard makes a difference between a "signaling" and
486    /// a "quiet" NaN, and allows inspecting its "payload" (the unspecified bits in the bit pattern)
487    /// and its sign. See the [specification of NaN bit patterns](f32#nan-bit-patterns) for more
488    /// info.
489    ///
490    /// This constant is guaranteed to be a quiet NaN (on targets that follow the Rust assumptions
491    /// that the quiet/signaling bit being set to 1 indicates a quiet NaN). Beyond that, nothing is
492    /// guaranteed about the specific bit pattern chosen here: both payload and sign are arbitrary.
493    /// The concrete bit pattern may change across Rust versions and target platforms.
494    #[rustc_diagnostic_item = "f64_nan"]
495    #[stable(feature = "assoc_int_consts", since = "1.43.0")]
496    #[allow(clippy::eq_op)]
497    pub const NAN: f64 = 0.0_f64 / 0.0_f64;
498    /// Infinity (∞).
499    #[stable(feature = "assoc_int_consts", since = "1.43.0")]
500    pub const INFINITY: f64 = 1.0_f64 / 0.0_f64;
501    /// Negative infinity (−∞).
502    #[stable(feature = "assoc_int_consts", since = "1.43.0")]
503    pub const NEG_INFINITY: f64 = -1.0_f64 / 0.0_f64;
504
505    /// Sign bit
506    pub(crate) const SIGN_MASK: u64 = 0x8000_0000_0000_0000;
507
508    /// Exponent mask
509    pub(crate) const EXP_MASK: u64 = 0x7ff0_0000_0000_0000;
510
511    /// Mantissa mask
512    pub(crate) const MAN_MASK: u64 = 0x000f_ffff_ffff_ffff;
513
514    /// Minimum representable positive value (min subnormal)
515    #[cfg(not(feature = "ferrocene_subset"))]
516    const TINY_BITS: u64 = 0x1;
517
518    /// Minimum representable negative value (min negative subnormal)
519    #[cfg(not(feature = "ferrocene_subset"))]
520    const NEG_TINY_BITS: u64 = Self::TINY_BITS | Self::SIGN_MASK;
521
522    /// Returns `true` if this value is NaN.
523    ///
524    /// ```
525    /// let nan = f64::NAN;
526    /// let f = 7.0_f64;
527    ///
528    /// assert!(nan.is_nan());
529    /// assert!(!f.is_nan());
530    /// ```
531    #[must_use]
532    #[stable(feature = "rust1", since = "1.0.0")]
533    #[rustc_const_stable(feature = "const_float_classify", since = "1.83.0")]
534    #[inline]
535    #[allow(clippy::eq_op)] // > if you intended to check if the operand is NaN, use `.is_nan()` instead :)
536    pub const fn is_nan(self) -> bool {
537        self != self
538    }
539
540    /// Returns `true` if this value is positive infinity or negative infinity, and
541    /// `false` otherwise.
542    ///
543    /// ```
544    /// let f = 7.0f64;
545    /// let inf = f64::INFINITY;
546    /// let neg_inf = f64::NEG_INFINITY;
547    /// let nan = f64::NAN;
548    ///
549    /// assert!(!f.is_infinite());
550    /// assert!(!nan.is_infinite());
551    ///
552    /// assert!(inf.is_infinite());
553    /// assert!(neg_inf.is_infinite());
554    /// ```
555    #[must_use]
556    #[stable(feature = "rust1", since = "1.0.0")]
557    #[rustc_const_stable(feature = "const_float_classify", since = "1.83.0")]
558    #[inline]
559    pub const fn is_infinite(self) -> bool {
560        // Getting clever with transmutation can result in incorrect answers on some FPUs
561        // FIXME: alter the Rust <-> Rust calling convention to prevent this problem.
562        // See https://github.com/rust-lang/rust/issues/72327
563        (self == f64::INFINITY) | (self == f64::NEG_INFINITY)
564    }
565
566    /// Returns `true` if this number is neither infinite nor NaN.
567    ///
568    /// ```
569    /// let f = 7.0f64;
570    /// let inf: f64 = f64::INFINITY;
571    /// let neg_inf: f64 = f64::NEG_INFINITY;
572    /// let nan: f64 = f64::NAN;
573    ///
574    /// assert!(f.is_finite());
575    ///
576    /// assert!(!nan.is_finite());
577    /// assert!(!inf.is_finite());
578    /// assert!(!neg_inf.is_finite());
579    /// ```
580    #[must_use]
581    #[stable(feature = "rust1", since = "1.0.0")]
582    #[rustc_const_stable(feature = "const_float_classify", since = "1.83.0")]
583    #[inline]
584    #[cfg(not(feature = "ferrocene_subset"))]
585    pub const fn is_finite(self) -> bool {
586        // There's no need to handle NaN separately: if self is NaN,
587        // the comparison is not true, exactly as desired.
588        self.abs() < Self::INFINITY
589    }
590
591    /// Returns `true` if the number is [subnormal].
592    ///
593    /// ```
594    /// let min = f64::MIN_POSITIVE; // 2.2250738585072014e-308_f64
595    /// let max = f64::MAX;
596    /// let lower_than_min = 1.0e-308_f64;
597    /// let zero = 0.0_f64;
598    ///
599    /// assert!(!min.is_subnormal());
600    /// assert!(!max.is_subnormal());
601    ///
602    /// assert!(!zero.is_subnormal());
603    /// assert!(!f64::NAN.is_subnormal());
604    /// assert!(!f64::INFINITY.is_subnormal());
605    /// // Values between `0` and `min` are Subnormal.
606    /// assert!(lower_than_min.is_subnormal());
607    /// ```
608    /// [subnormal]: https://en.wikipedia.org/wiki/Denormal_number
609    #[must_use]
610    #[stable(feature = "is_subnormal", since = "1.53.0")]
611    #[rustc_const_stable(feature = "const_float_classify", since = "1.83.0")]
612    #[inline]
613    #[cfg(not(feature = "ferrocene_subset"))]
614    pub const fn is_subnormal(self) -> bool {
615        matches!(self.classify(), FpCategory::Subnormal)
616    }
617
618    /// Returns `true` if the number is neither zero, infinite,
619    /// [subnormal], or NaN.
620    ///
621    /// ```
622    /// let min = f64::MIN_POSITIVE; // 2.2250738585072014e-308f64
623    /// let max = f64::MAX;
624    /// let lower_than_min = 1.0e-308_f64;
625    /// let zero = 0.0f64;
626    ///
627    /// assert!(min.is_normal());
628    /// assert!(max.is_normal());
629    ///
630    /// assert!(!zero.is_normal());
631    /// assert!(!f64::NAN.is_normal());
632    /// assert!(!f64::INFINITY.is_normal());
633    /// // Values between `0` and `min` are Subnormal.
634    /// assert!(!lower_than_min.is_normal());
635    /// ```
636    /// [subnormal]: https://en.wikipedia.org/wiki/Denormal_number
637    #[must_use]
638    #[stable(feature = "rust1", since = "1.0.0")]
639    #[rustc_const_stable(feature = "const_float_classify", since = "1.83.0")]
640    #[inline]
641    #[cfg(not(feature = "ferrocene_subset"))]
642    pub const fn is_normal(self) -> bool {
643        matches!(self.classify(), FpCategory::Normal)
644    }
645
646    /// Returns the floating point category of the number. If only one property
647    /// is going to be tested, it is generally faster to use the specific
648    /// predicate instead.
649    ///
650    /// ```
651    /// use std::num::FpCategory;
652    ///
653    /// let num = 12.4_f64;
654    /// let inf = f64::INFINITY;
655    ///
656    /// assert_eq!(num.classify(), FpCategory::Normal);
657    /// assert_eq!(inf.classify(), FpCategory::Infinite);
658    /// ```
659    #[stable(feature = "rust1", since = "1.0.0")]
660    #[rustc_const_stable(feature = "const_float_classify", since = "1.83.0")]
661    pub const fn classify(self) -> FpCategory {
662        // We used to have complicated logic here that avoids the simple bit-based tests to work
663        // around buggy codegen for x87 targets (see
664        // https://github.com/rust-lang/rust/issues/114479). However, some LLVM versions later, none
665        // of our tests is able to find any difference between the complicated and the naive
666        // version, so now we are back to the naive version.
667        let b = self.to_bits();
668        match (b & Self::MAN_MASK, b & Self::EXP_MASK) {
669            (0, Self::EXP_MASK) => FpCategory::Infinite,
670            (_, Self::EXP_MASK) => FpCategory::Nan,
671            (0, 0) => FpCategory::Zero,
672            (_, 0) => FpCategory::Subnormal,
673            _ => FpCategory::Normal,
674        }
675    }
676
677    /// Returns `true` if `self` has a positive sign, including `+0.0`, NaNs with
678    /// positive sign bit and positive infinity.
679    ///
680    /// Note that IEEE 754 doesn't assign any meaning to the sign bit in case of
681    /// a NaN, and as Rust doesn't guarantee that the bit pattern of NaNs are
682    /// conserved over arithmetic operations, the result of `is_sign_positive` on
683    /// a NaN might produce an unexpected or non-portable result. See the [specification
684    /// of NaN bit patterns](f32#nan-bit-patterns) for more info. Use `self.signum() == 1.0`
685    /// if you need fully portable behavior (will return `false` for all NaNs).
686    ///
687    /// ```
688    /// let f = 7.0_f64;
689    /// let g = -7.0_f64;
690    ///
691    /// assert!(f.is_sign_positive());
692    /// assert!(!g.is_sign_positive());
693    /// ```
694    #[must_use]
695    #[stable(feature = "rust1", since = "1.0.0")]
696    #[rustc_const_stable(feature = "const_float_classify", since = "1.83.0")]
697    #[inline]
698    pub const fn is_sign_positive(self) -> bool {
699        !self.is_sign_negative()
700    }
701
702    #[must_use]
703    #[stable(feature = "rust1", since = "1.0.0")]
704    #[deprecated(since = "1.0.0", note = "renamed to is_sign_positive")]
705    #[inline]
706    #[doc(hidden)]
707    pub fn is_positive(self) -> bool {
708        self.is_sign_positive()
709    }
710
711    /// Returns `true` if `self` has a negative sign, including `-0.0`, NaNs with
712    /// negative sign bit and negative infinity.
713    ///
714    /// Note that IEEE 754 doesn't assign any meaning to the sign bit in case of
715    /// a NaN, and as Rust doesn't guarantee that the bit pattern of NaNs are
716    /// conserved over arithmetic operations, the result of `is_sign_negative` on
717    /// a NaN might produce an unexpected or non-portable result. See the [specification
718    /// of NaN bit patterns](f32#nan-bit-patterns) for more info. Use `self.signum() == -1.0`
719    /// if you need fully portable behavior (will return `false` for all NaNs).
720    ///
721    /// ```
722    /// let f = 7.0_f64;
723    /// let g = -7.0_f64;
724    ///
725    /// assert!(!f.is_sign_negative());
726    /// assert!(g.is_sign_negative());
727    /// ```
728    #[must_use]
729    #[stable(feature = "rust1", since = "1.0.0")]
730    #[rustc_const_stable(feature = "const_float_classify", since = "1.83.0")]
731    #[inline]
732    pub const fn is_sign_negative(self) -> bool {
733        // IEEE754 says: isSignMinus(x) is true if and only if x has negative sign. isSignMinus
734        // applies to zeros and NaNs as well.
735        self.to_bits() & Self::SIGN_MASK != 0
736    }
737
738    #[must_use]
739    #[stable(feature = "rust1", since = "1.0.0")]
740    #[deprecated(since = "1.0.0", note = "renamed to is_sign_negative")]
741    #[inline]
742    #[doc(hidden)]
743    pub fn is_negative(self) -> bool {
744        self.is_sign_negative()
745    }
746
747    /// Returns the least number greater than `self`.
748    ///
749    /// Let `TINY` be the smallest representable positive `f64`. Then,
750    ///  - if `self.is_nan()`, this returns `self`;
751    ///  - if `self` is [`NEG_INFINITY`], this returns [`MIN`];
752    ///  - if `self` is `-TINY`, this returns -0.0;
753    ///  - if `self` is -0.0 or +0.0, this returns `TINY`;
754    ///  - if `self` is [`MAX`] or [`INFINITY`], this returns [`INFINITY`];
755    ///  - otherwise the unique least value greater than `self` is returned.
756    ///
757    /// The identity `x.next_up() == -(-x).next_down()` holds for all non-NaN `x`. When `x`
758    /// is finite `x == x.next_up().next_down()` also holds.
759    ///
760    /// ```rust
761    /// // f64::EPSILON is the difference between 1.0 and the next number up.
762    /// assert_eq!(1.0f64.next_up(), 1.0 + f64::EPSILON);
763    /// // But not for most numbers.
764    /// assert!(0.1f64.next_up() < 0.1 + f64::EPSILON);
765    /// assert_eq!(9007199254740992f64.next_up(), 9007199254740994.0);
766    /// ```
767    ///
768    /// This operation corresponds to IEEE-754 `nextUp`.
769    ///
770    /// [`NEG_INFINITY`]: Self::NEG_INFINITY
771    /// [`INFINITY`]: Self::INFINITY
772    /// [`MIN`]: Self::MIN
773    /// [`MAX`]: Self::MAX
774    #[inline]
775    #[doc(alias = "nextUp")]
776    #[stable(feature = "float_next_up_down", since = "1.86.0")]
777    #[rustc_const_stable(feature = "float_next_up_down", since = "1.86.0")]
778    #[cfg(not(feature = "ferrocene_subset"))]
779    pub const fn next_up(self) -> Self {
780        // Some targets violate Rust's assumption of IEEE semantics, e.g. by flushing
781        // denormals to zero. This is in general unsound and unsupported, but here
782        // we do our best to still produce the correct result on such targets.
783        let bits = self.to_bits();
784        if self.is_nan() || bits == Self::INFINITY.to_bits() {
785            return self;
786        }
787
788        let abs = bits & !Self::SIGN_MASK;
789        let next_bits = if abs == 0 {
790            Self::TINY_BITS
791        } else if bits == abs {
792            bits + 1
793        } else {
794            bits - 1
795        };
796        Self::from_bits(next_bits)
797    }
798
799    /// Returns the greatest number less than `self`.
800    ///
801    /// Let `TINY` be the smallest representable positive `f64`. Then,
802    ///  - if `self.is_nan()`, this returns `self`;
803    ///  - if `self` is [`INFINITY`], this returns [`MAX`];
804    ///  - if `self` is `TINY`, this returns 0.0;
805    ///  - if `self` is -0.0 or +0.0, this returns `-TINY`;
806    ///  - if `self` is [`MIN`] or [`NEG_INFINITY`], this returns [`NEG_INFINITY`];
807    ///  - otherwise the unique greatest value less than `self` is returned.
808    ///
809    /// The identity `x.next_down() == -(-x).next_up()` holds for all non-NaN `x`. When `x`
810    /// is finite `x == x.next_down().next_up()` also holds.
811    ///
812    /// ```rust
813    /// let x = 1.0f64;
814    /// // Clamp value into range [0, 1).
815    /// let clamped = x.clamp(0.0, 1.0f64.next_down());
816    /// assert!(clamped < 1.0);
817    /// assert_eq!(clamped.next_up(), 1.0);
818    /// ```
819    ///
820    /// This operation corresponds to IEEE-754 `nextDown`.
821    ///
822    /// [`NEG_INFINITY`]: Self::NEG_INFINITY
823    /// [`INFINITY`]: Self::INFINITY
824    /// [`MIN`]: Self::MIN
825    /// [`MAX`]: Self::MAX
826    #[inline]
827    #[doc(alias = "nextDown")]
828    #[stable(feature = "float_next_up_down", since = "1.86.0")]
829    #[rustc_const_stable(feature = "float_next_up_down", since = "1.86.0")]
830    #[cfg(not(feature = "ferrocene_subset"))]
831    pub const fn next_down(self) -> Self {
832        // Some targets violate Rust's assumption of IEEE semantics, e.g. by flushing
833        // denormals to zero. This is in general unsound and unsupported, but here
834        // we do our best to still produce the correct result on such targets.
835        let bits = self.to_bits();
836        if self.is_nan() || bits == Self::NEG_INFINITY.to_bits() {
837            return self;
838        }
839
840        let abs = bits & !Self::SIGN_MASK;
841        let next_bits = if abs == 0 {
842            Self::NEG_TINY_BITS
843        } else if bits == abs {
844            bits - 1
845        } else {
846            bits + 1
847        };
848        Self::from_bits(next_bits)
849    }
850
851    /// Takes the reciprocal (inverse) of a number, `1/x`.
852    ///
853    /// ```
854    /// let x = 2.0_f64;
855    /// let abs_difference = (x.recip() - (1.0 / x)).abs();
856    ///
857    /// assert!(abs_difference < 1e-10);
858    /// ```
859    #[must_use = "this returns the result of the operation, without modifying the original"]
860    #[stable(feature = "rust1", since = "1.0.0")]
861    #[rustc_const_stable(feature = "const_float_methods", since = "1.85.0")]
862    #[inline]
863    #[cfg(not(feature = "ferrocene_subset"))]
864    pub const fn recip(self) -> f64 {
865        1.0 / self
866    }
867
868    /// Converts radians to degrees.
869    ///
870    /// # Unspecified precision
871    ///
872    /// The precision of this function is non-deterministic. This means it varies by platform,
873    /// Rust version, and can even differ within the same execution from one invocation to the next.
874    ///
875    /// # Examples
876    ///
877    /// ```
878    /// let angle = std::f64::consts::PI;
879    ///
880    /// let abs_difference = (angle.to_degrees() - 180.0).abs();
881    ///
882    /// assert!(abs_difference < 1e-10);
883    /// ```
884    #[must_use = "this returns the result of the operation, \
885                  without modifying the original"]
886    #[stable(feature = "rust1", since = "1.0.0")]
887    #[rustc_const_stable(feature = "const_float_methods", since = "1.85.0")]
888    #[inline]
889    #[cfg(not(feature = "ferrocene_subset"))]
890    pub const fn to_degrees(self) -> f64 {
891        // The division here is correctly rounded with respect to the true value of 180/π.
892        // Although π is irrational and already rounded, the double rounding happens
893        // to produce correct result for f64.
894        const PIS_IN_180: f64 = 180.0 / consts::PI;
895        self * PIS_IN_180
896    }
897
898    /// Converts degrees to radians.
899    ///
900    /// # Unspecified precision
901    ///
902    /// The precision of this function is non-deterministic. This means it varies by platform,
903    /// Rust version, and can even differ within the same execution from one invocation to the next.
904    ///
905    /// # Examples
906    ///
907    /// ```
908    /// let angle = 180.0_f64;
909    ///
910    /// let abs_difference = (angle.to_radians() - std::f64::consts::PI).abs();
911    ///
912    /// assert!(abs_difference < 1e-10);
913    /// ```
914    #[must_use = "this returns the result of the operation, \
915                  without modifying the original"]
916    #[stable(feature = "rust1", since = "1.0.0")]
917    #[rustc_const_stable(feature = "const_float_methods", since = "1.85.0")]
918    #[inline]
919    #[cfg(not(feature = "ferrocene_subset"))]
920    pub const fn to_radians(self) -> f64 {
921        // The division here is correctly rounded with respect to the true value of π/180.
922        // Although π is irrational and already rounded, the double rounding happens
923        // to produce correct result for f64.
924        const RADS_PER_DEG: f64 = consts::PI / 180.0;
925        self * RADS_PER_DEG
926    }
927
928    /// Returns the maximum of the two numbers, ignoring NaN.
929    ///
930    /// If exactly one of the arguments is NaN (quiet or signaling), then the other argument is
931    /// returned. If both arguments are NaN, the return value is NaN, with the bit pattern picked
932    /// using the usual [rules for arithmetic operations](f32#nan-bit-patterns). If the inputs
933    /// compare equal (such as for the case of `+0.0` and `-0.0`), either input may be returned
934    /// non-deterministically.
935    ///
936    /// The handling of NaNs follows the IEEE 754-2019 semantics for `maximumNumber`, treating all
937    /// NaNs the same way to ensure the operation is associative. The handling of signed zeros
938    /// follows the IEEE 754-2008 semantics for `maxNum`.
939    ///
940    /// ```
941    /// let x = 1.0_f64;
942    /// let y = 2.0_f64;
943    ///
944    /// assert_eq!(x.max(y), y);
945    /// assert_eq!(x.max(f64::NAN), x);
946    /// ```
947    #[must_use = "this returns the result of the comparison, without modifying either input"]
948    #[stable(feature = "rust1", since = "1.0.0")]
949    #[rustc_const_stable(feature = "const_float_methods", since = "1.85.0")]
950    #[inline]
951    #[cfg(not(feature = "ferrocene_subset"))]
952    pub const fn max(self, other: f64) -> f64 {
953        intrinsics::maxnumf64(self, other)
954    }
955
956    /// Returns the minimum of the two numbers, ignoring NaN.
957    ///
958    /// If exactly one of the arguments is NaN (quiet or signaling), then the other argument is
959    /// returned. If both arguments are NaN, the return value is NaN, with the bit pattern picked
960    /// using the usual [rules for arithmetic operations](f32#nan-bit-patterns). If the inputs
961    /// compare equal (such as for the case of `+0.0` and `-0.0`), either input may be returned
962    /// non-deterministically.
963    ///
964    /// The handling of NaNs follows the IEEE 754-2019 semantics for `minimumNumber`, treating all
965    /// NaNs the same way to ensure the operation is associative. The handling of signed zeros
966    /// follows the IEEE 754-2008 semantics for `minNum`.
967    ///
968    /// ```
969    /// let x = 1.0_f64;
970    /// let y = 2.0_f64;
971    ///
972    /// assert_eq!(x.min(y), x);
973    /// assert_eq!(x.min(f64::NAN), x);
974    /// ```
975    #[must_use = "this returns the result of the comparison, without modifying either input"]
976    #[stable(feature = "rust1", since = "1.0.0")]
977    #[rustc_const_stable(feature = "const_float_methods", since = "1.85.0")]
978    #[inline]
979    #[cfg(not(feature = "ferrocene_subset"))]
980    pub const fn min(self, other: f64) -> f64 {
981        intrinsics::minnumf64(self, other)
982    }
983
984    /// Returns the maximum of the two numbers, propagating NaN.
985    ///
986    /// If at least one of the arguments is NaN, the return value is NaN, with the bit pattern
987    /// picked using the usual [rules for arithmetic operations](f32#nan-bit-patterns). Furthermore,
988    /// `-0.0` is considered to be less than `+0.0`, making this function fully deterministic for
989    /// non-NaN inputs.
990    ///
991    /// This is in contrast to [`f64::max`] which only returns NaN when *both* arguments are NaN,
992    /// and which does not reliably order `-0.0` and `+0.0`.
993    ///
994    /// This follows the IEEE 754-2019 semantics for `maximum`.
995    ///
996    /// ```
997    /// #![feature(float_minimum_maximum)]
998    /// let x = 1.0_f64;
999    /// let y = 2.0_f64;
1000    ///
1001    /// assert_eq!(x.maximum(y), y);
1002    /// assert!(x.maximum(f64::NAN).is_nan());
1003    /// ```
1004    #[must_use = "this returns the result of the comparison, without modifying either input"]
1005    #[unstable(feature = "float_minimum_maximum", issue = "91079")]
1006    #[inline]
1007    #[cfg(not(feature = "ferrocene_subset"))]
1008    pub const fn maximum(self, other: f64) -> f64 {
1009        intrinsics::maximumf64(self, other)
1010    }
1011
1012    /// Returns the minimum of the two numbers, propagating NaN.
1013    ///
1014    /// If at least one of the arguments is NaN, the return value is NaN, with the bit pattern
1015    /// picked using the usual [rules for arithmetic operations](f32#nan-bit-patterns). Furthermore,
1016    /// `-0.0` is considered to be less than `+0.0`, making this function fully deterministic for
1017    /// non-NaN inputs.
1018    ///
1019    /// This is in contrast to [`f64::min`] which only returns NaN when *both* arguments are NaN,
1020    /// and which does not reliably order `-0.0` and `+0.0`.
1021    ///
1022    /// This follows the IEEE 754-2019 semantics for `minimum`.
1023    ///
1024    /// ```
1025    /// #![feature(float_minimum_maximum)]
1026    /// let x = 1.0_f64;
1027    /// let y = 2.0_f64;
1028    ///
1029    /// assert_eq!(x.minimum(y), x);
1030    /// assert!(x.minimum(f64::NAN).is_nan());
1031    /// ```
1032    #[must_use = "this returns the result of the comparison, without modifying either input"]
1033    #[unstable(feature = "float_minimum_maximum", issue = "91079")]
1034    #[inline]
1035    #[cfg(not(feature = "ferrocene_subset"))]
1036    pub const fn minimum(self, other: f64) -> f64 {
1037        intrinsics::minimumf64(self, other)
1038    }
1039
1040    /// Calculates the midpoint (average) between `self` and `rhs`.
1041    ///
1042    /// This returns NaN when *either* argument is NaN or if a combination of
1043    /// +inf and -inf is provided as arguments.
1044    ///
1045    /// # Examples
1046    ///
1047    /// ```
1048    /// assert_eq!(1f64.midpoint(4.0), 2.5);
1049    /// assert_eq!((-5.5f64).midpoint(8.0), 1.25);
1050    /// ```
1051    #[inline]
1052    #[doc(alias = "average")]
1053    #[stable(feature = "num_midpoint", since = "1.85.0")]
1054    #[rustc_const_stable(feature = "num_midpoint", since = "1.85.0")]
1055    #[cfg(not(feature = "ferrocene_subset"))]
1056    pub const fn midpoint(self, other: f64) -> f64 {
1057        const HI: f64 = f64::MAX / 2.;
1058
1059        let (a, b) = (self, other);
1060        let abs_a = a.abs();
1061        let abs_b = b.abs();
1062
1063        if abs_a <= HI && abs_b <= HI {
1064            // Overflow is impossible
1065            (a + b) / 2.
1066        } else {
1067            (a / 2.) + (b / 2.)
1068        }
1069    }
1070
1071    /// Rounds toward zero and converts to any primitive integer type,
1072    /// assuming that the value is finite and fits in that type.
1073    ///
1074    /// ```
1075    /// let value = 4.6_f64;
1076    /// let rounded = unsafe { value.to_int_unchecked::<u16>() };
1077    /// assert_eq!(rounded, 4);
1078    ///
1079    /// let value = -128.9_f64;
1080    /// let rounded = unsafe { value.to_int_unchecked::<i8>() };
1081    /// assert_eq!(rounded, i8::MIN);
1082    /// ```
1083    ///
1084    /// # Safety
1085    ///
1086    /// The value must:
1087    ///
1088    /// * Not be `NaN`
1089    /// * Not be infinite
1090    /// * Be representable in the return type `Int`, after truncating off its fractional part
1091    #[must_use = "this returns the result of the operation, \
1092                  without modifying the original"]
1093    #[stable(feature = "float_approx_unchecked_to", since = "1.44.0")]
1094    #[inline]
1095    #[cfg(not(feature = "ferrocene_subset"))]
1096    pub unsafe fn to_int_unchecked<Int>(self) -> Int
1097    where
1098        Self: FloatToInt<Int>,
1099    {
1100        // SAFETY: the caller must uphold the safety contract for
1101        // `FloatToInt::to_int_unchecked`.
1102        unsafe { FloatToInt::<Int>::to_int_unchecked(self) }
1103    }
1104
1105    /// Raw transmutation to `u64`.
1106    ///
1107    /// This is currently identical to `transmute::<f64, u64>(self)` on all platforms.
1108    ///
1109    /// See [`from_bits`](Self::from_bits) for some discussion of the
1110    /// portability of this operation (there are almost no issues).
1111    ///
1112    /// Note that this function is distinct from `as` casting, which attempts to
1113    /// preserve the *numeric* value, and not the bitwise value.
1114    ///
1115    /// # Examples
1116    ///
1117    /// ```
1118    /// assert!((1f64).to_bits() != 1f64 as u64); // to_bits() is not casting!
1119    /// assert_eq!((12.5f64).to_bits(), 0x4029000000000000);
1120    /// ```
1121    #[must_use = "this returns the result of the operation, \
1122                  without modifying the original"]
1123    #[stable(feature = "float_bits_conv", since = "1.20.0")]
1124    #[rustc_const_stable(feature = "const_float_bits_conv", since = "1.83.0")]
1125    #[allow(unnecessary_transmutes)]
1126    #[inline]
1127    pub const fn to_bits(self) -> u64 {
1128        // SAFETY: `u64` is a plain old datatype so we can always transmute to it.
1129        unsafe { mem::transmute(self) }
1130    }
1131
1132    /// Raw transmutation from `u64`.
1133    ///
1134    /// This is currently identical to `transmute::<u64, f64>(v)` on all platforms.
1135    /// It turns out this is incredibly portable, for two reasons:
1136    ///
1137    /// * Floats and Ints have the same endianness on all supported platforms.
1138    /// * IEEE 754 very precisely specifies the bit layout of floats.
1139    ///
1140    /// However there is one caveat: prior to the 2008 version of IEEE 754, how
1141    /// to interpret the NaN signaling bit wasn't actually specified. Most platforms
1142    /// (notably x86 and ARM) picked the interpretation that was ultimately
1143    /// standardized in 2008, but some didn't (notably MIPS). As a result, all
1144    /// signaling NaNs on MIPS are quiet NaNs on x86, and vice-versa.
1145    ///
1146    /// Rather than trying to preserve signaling-ness cross-platform, this
1147    /// implementation favors preserving the exact bits. This means that
1148    /// any payloads encoded in NaNs will be preserved even if the result of
1149    /// this method is sent over the network from an x86 machine to a MIPS one.
1150    ///
1151    /// If the results of this method are only manipulated by the same
1152    /// architecture that produced them, then there is no portability concern.
1153    ///
1154    /// If the input isn't NaN, then there is no portability concern.
1155    ///
1156    /// If you don't care about signaling-ness (very likely), then there is no
1157    /// portability concern.
1158    ///
1159    /// Note that this function is distinct from `as` casting, which attempts to
1160    /// preserve the *numeric* value, and not the bitwise value.
1161    ///
1162    /// # Examples
1163    ///
1164    /// ```
1165    /// let v = f64::from_bits(0x4029000000000000);
1166    /// assert_eq!(v, 12.5);
1167    /// ```
1168    #[stable(feature = "float_bits_conv", since = "1.20.0")]
1169    #[rustc_const_stable(feature = "const_float_bits_conv", since = "1.83.0")]
1170    #[must_use]
1171    #[inline]
1172    #[allow(unnecessary_transmutes)]
1173    pub const fn from_bits(v: u64) -> Self {
1174        // It turns out the safety issues with sNaN were overblown! Hooray!
1175        // SAFETY: `u64` is a plain old datatype so we can always transmute from it.
1176        unsafe { mem::transmute(v) }
1177    }
1178
1179    /// Returns the memory representation of this floating point number as a byte array in
1180    /// big-endian (network) byte order.
1181    ///
1182    /// See [`from_bits`](Self::from_bits) for some discussion of the
1183    /// portability of this operation (there are almost no issues).
1184    ///
1185    /// # Examples
1186    ///
1187    /// ```
1188    /// let bytes = 12.5f64.to_be_bytes();
1189    /// assert_eq!(bytes, [0x40, 0x29, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00]);
1190    /// ```
1191    #[must_use = "this returns the result of the operation, \
1192                  without modifying the original"]
1193    #[stable(feature = "float_to_from_bytes", since = "1.40.0")]
1194    #[rustc_const_stable(feature = "const_float_bits_conv", since = "1.83.0")]
1195    #[inline]
1196    #[cfg(not(feature = "ferrocene_subset"))]
1197    pub const fn to_be_bytes(self) -> [u8; 8] {
1198        self.to_bits().to_be_bytes()
1199    }
1200
1201    /// Returns the memory representation of this floating point number as a byte array in
1202    /// little-endian byte order.
1203    ///
1204    /// See [`from_bits`](Self::from_bits) for some discussion of the
1205    /// portability of this operation (there are almost no issues).
1206    ///
1207    /// # Examples
1208    ///
1209    /// ```
1210    /// let bytes = 12.5f64.to_le_bytes();
1211    /// assert_eq!(bytes, [0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x29, 0x40]);
1212    /// ```
1213    #[must_use = "this returns the result of the operation, \
1214                  without modifying the original"]
1215    #[stable(feature = "float_to_from_bytes", since = "1.40.0")]
1216    #[rustc_const_stable(feature = "const_float_bits_conv", since = "1.83.0")]
1217    #[inline]
1218    pub const fn to_le_bytes(self) -> [u8; 8] {
1219        self.to_bits().to_le_bytes()
1220    }
1221
1222    /// Returns the memory representation of this floating point number as a byte array in
1223    /// native byte order.
1224    ///
1225    /// As the target platform's native endianness is used, portable code
1226    /// should use [`to_be_bytes`] or [`to_le_bytes`], as appropriate, instead.
1227    ///
1228    /// [`to_be_bytes`]: f64::to_be_bytes
1229    /// [`to_le_bytes`]: f64::to_le_bytes
1230    ///
1231    /// See [`from_bits`](Self::from_bits) for some discussion of the
1232    /// portability of this operation (there are almost no issues).
1233    ///
1234    /// # Examples
1235    ///
1236    /// ```
1237    /// let bytes = 12.5f64.to_ne_bytes();
1238    /// assert_eq!(
1239    ///     bytes,
1240    ///     if cfg!(target_endian = "big") {
1241    ///         [0x40, 0x29, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00]
1242    ///     } else {
1243    ///         [0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x29, 0x40]
1244    ///     }
1245    /// );
1246    /// ```
1247    #[must_use = "this returns the result of the operation, \
1248                  without modifying the original"]
1249    #[stable(feature = "float_to_from_bytes", since = "1.40.0")]
1250    #[rustc_const_stable(feature = "const_float_bits_conv", since = "1.83.0")]
1251    #[inline]
1252    #[cfg(not(feature = "ferrocene_subset"))]
1253    pub const fn to_ne_bytes(self) -> [u8; 8] {
1254        self.to_bits().to_ne_bytes()
1255    }
1256
1257    /// Creates a floating point value from its representation as a byte array in big endian.
1258    ///
1259    /// See [`from_bits`](Self::from_bits) for some discussion of the
1260    /// portability of this operation (there are almost no issues).
1261    ///
1262    /// # Examples
1263    ///
1264    /// ```
1265    /// let value = f64::from_be_bytes([0x40, 0x29, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00]);
1266    /// assert_eq!(value, 12.5);
1267    /// ```
1268    #[stable(feature = "float_to_from_bytes", since = "1.40.0")]
1269    #[rustc_const_stable(feature = "const_float_bits_conv", since = "1.83.0")]
1270    #[must_use]
1271    #[inline]
1272    #[cfg(not(feature = "ferrocene_subset"))]
1273    pub const fn from_be_bytes(bytes: [u8; 8]) -> Self {
1274        Self::from_bits(u64::from_be_bytes(bytes))
1275    }
1276
1277    /// Creates a floating point value from its representation as a byte array in little endian.
1278    ///
1279    /// See [`from_bits`](Self::from_bits) for some discussion of the
1280    /// portability of this operation (there are almost no issues).
1281    ///
1282    /// # Examples
1283    ///
1284    /// ```
1285    /// let value = f64::from_le_bytes([0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x29, 0x40]);
1286    /// assert_eq!(value, 12.5);
1287    /// ```
1288    #[stable(feature = "float_to_from_bytes", since = "1.40.0")]
1289    #[rustc_const_stable(feature = "const_float_bits_conv", since = "1.83.0")]
1290    #[must_use]
1291    #[inline]
1292    pub const fn from_le_bytes(bytes: [u8; 8]) -> Self {
1293        Self::from_bits(u64::from_le_bytes(bytes))
1294    }
1295
1296    /// Creates a floating point value from its representation as a byte array in native endian.
1297    ///
1298    /// As the target platform's native endianness is used, portable code
1299    /// likely wants to use [`from_be_bytes`] or [`from_le_bytes`], as
1300    /// appropriate instead.
1301    ///
1302    /// [`from_be_bytes`]: f64::from_be_bytes
1303    /// [`from_le_bytes`]: f64::from_le_bytes
1304    ///
1305    /// See [`from_bits`](Self::from_bits) for some discussion of the
1306    /// portability of this operation (there are almost no issues).
1307    ///
1308    /// # Examples
1309    ///
1310    /// ```
1311    /// let value = f64::from_ne_bytes(if cfg!(target_endian = "big") {
1312    ///     [0x40, 0x29, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00]
1313    /// } else {
1314    ///     [0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x29, 0x40]
1315    /// });
1316    /// assert_eq!(value, 12.5);
1317    /// ```
1318    #[stable(feature = "float_to_from_bytes", since = "1.40.0")]
1319    #[rustc_const_stable(feature = "const_float_bits_conv", since = "1.83.0")]
1320    #[must_use]
1321    #[inline]
1322    #[cfg(not(feature = "ferrocene_subset"))]
1323    pub const fn from_ne_bytes(bytes: [u8; 8]) -> Self {
1324        Self::from_bits(u64::from_ne_bytes(bytes))
1325    }
1326
1327    /// Returns the ordering between `self` and `other`.
1328    ///
1329    /// Unlike the standard partial comparison between floating point numbers,
1330    /// this comparison always produces an ordering in accordance to
1331    /// the `totalOrder` predicate as defined in the IEEE 754 (2008 revision)
1332    /// floating point standard. The values are ordered in the following sequence:
1333    ///
1334    /// - negative quiet NaN
1335    /// - negative signaling NaN
1336    /// - negative infinity
1337    /// - negative numbers
1338    /// - negative subnormal numbers
1339    /// - negative zero
1340    /// - positive zero
1341    /// - positive subnormal numbers
1342    /// - positive numbers
1343    /// - positive infinity
1344    /// - positive signaling NaN
1345    /// - positive quiet NaN.
1346    ///
1347    /// The ordering established by this function does not always agree with the
1348    /// [`PartialOrd`] and [`PartialEq`] implementations of `f64`. For example,
1349    /// they consider negative and positive zero equal, while `total_cmp`
1350    /// doesn't.
1351    ///
1352    /// The interpretation of the signaling NaN bit follows the definition in
1353    /// the IEEE 754 standard, which may not match the interpretation by some of
1354    /// the older, non-conformant (e.g. MIPS) hardware implementations.
1355    ///
1356    /// # Example
1357    ///
1358    /// ```
1359    /// struct GoodBoy {
1360    ///     name: String,
1361    ///     weight: f64,
1362    /// }
1363    ///
1364    /// let mut bois = vec![
1365    ///     GoodBoy { name: "Pucci".to_owned(), weight: 0.1 },
1366    ///     GoodBoy { name: "Woofer".to_owned(), weight: 99.0 },
1367    ///     GoodBoy { name: "Yapper".to_owned(), weight: 10.0 },
1368    ///     GoodBoy { name: "Chonk".to_owned(), weight: f64::INFINITY },
1369    ///     GoodBoy { name: "Abs. Unit".to_owned(), weight: f64::NAN },
1370    ///     GoodBoy { name: "Floaty".to_owned(), weight: -5.0 },
1371    /// ];
1372    ///
1373    /// bois.sort_by(|a, b| a.weight.total_cmp(&b.weight));
1374    ///
1375    /// // `f64::NAN` could be positive or negative, which will affect the sort order.
1376    /// if f64::NAN.is_sign_negative() {
1377    ///     assert!(bois.into_iter().map(|b| b.weight)
1378    ///         .zip([f64::NAN, -5.0, 0.1, 10.0, 99.0, f64::INFINITY].iter())
1379    ///         .all(|(a, b)| a.to_bits() == b.to_bits()))
1380    /// } else {
1381    ///     assert!(bois.into_iter().map(|b| b.weight)
1382    ///         .zip([-5.0, 0.1, 10.0, 99.0, f64::INFINITY, f64::NAN].iter())
1383    ///         .all(|(a, b)| a.to_bits() == b.to_bits()))
1384    /// }
1385    /// ```
1386    #[stable(feature = "total_cmp", since = "1.62.0")]
1387    #[rustc_const_unstable(feature = "const_cmp", issue = "143800")]
1388    #[must_use]
1389    #[inline]
1390    #[cfg(not(feature = "ferrocene_subset"))]
1391    pub const fn total_cmp(&self, other: &Self) -> crate::cmp::Ordering {
1392        let mut left = self.to_bits() as i64;
1393        let mut right = other.to_bits() as i64;
1394
1395        // In case of negatives, flip all the bits except the sign
1396        // to achieve a similar layout as two's complement integers
1397        //
1398        // Why does this work? IEEE 754 floats consist of three fields:
1399        // Sign bit, exponent and mantissa. The set of exponent and mantissa
1400        // fields as a whole have the property that their bitwise order is
1401        // equal to the numeric magnitude where the magnitude is defined.
1402        // The magnitude is not normally defined on NaN values, but
1403        // IEEE 754 totalOrder defines the NaN values also to follow the
1404        // bitwise order. This leads to order explained in the doc comment.
1405        // However, the representation of magnitude is the same for negative
1406        // and positive numbers – only the sign bit is different.
1407        // To easily compare the floats as signed integers, we need to
1408        // flip the exponent and mantissa bits in case of negative numbers.
1409        // We effectively convert the numbers to "two's complement" form.
1410        //
1411        // To do the flipping, we construct a mask and XOR against it.
1412        // We branchlessly calculate an "all-ones except for the sign bit"
1413        // mask from negative-signed values: right shifting sign-extends
1414        // the integer, so we "fill" the mask with sign bits, and then
1415        // convert to unsigned to push one more zero bit.
1416        // On positive values, the mask is all zeros, so it's a no-op.
1417        left ^= (((left >> 63) as u64) >> 1) as i64;
1418        right ^= (((right >> 63) as u64) >> 1) as i64;
1419
1420        left.cmp(&right)
1421    }
1422
1423    /// Restrict a value to a certain interval unless it is NaN.
1424    ///
1425    /// Returns `max` if `self` is greater than `max`, and `min` if `self` is
1426    /// less than `min`. Otherwise this returns `self`.
1427    ///
1428    /// Note that this function returns NaN if the initial value was NaN as
1429    /// well. If the result is zero and among the three inputs `self`, `min`, and `max` there are
1430    /// zeros with different sign, either `0.0` or `-0.0` is returned non-deterministically.
1431    ///
1432    /// # Panics
1433    ///
1434    /// Panics if `min > max`, `min` is NaN, or `max` is NaN.
1435    ///
1436    /// # Examples
1437    ///
1438    /// ```
1439    /// assert!((-3.0f64).clamp(-2.0, 1.0) == -2.0);
1440    /// assert!((0.0f64).clamp(-2.0, 1.0) == 0.0);
1441    /// assert!((2.0f64).clamp(-2.0, 1.0) == 1.0);
1442    /// assert!((f64::NAN).clamp(-2.0, 1.0).is_nan());
1443    ///
1444    /// // These always returns zero, but the sign (which is ignored by `==`) is non-deterministic.
1445    /// assert!((0.0f64).clamp(-0.0, -0.0) == 0.0);
1446    /// assert!((1.0f64).clamp(-0.0, 0.0) == 0.0);
1447    /// // This is definitely a negative zero.
1448    /// assert!((-1.0f64).clamp(-0.0, 1.0).is_sign_negative());
1449    /// ```
1450    #[must_use = "method returns a new number and does not mutate the original value"]
1451    #[stable(feature = "clamp", since = "1.50.0")]
1452    #[rustc_const_stable(feature = "const_float_methods", since = "1.85.0")]
1453    #[inline]
1454    #[cfg(not(feature = "ferrocene_subset"))]
1455    pub const fn clamp(mut self, min: f64, max: f64) -> f64 {
1456        const_assert!(
1457            min <= max,
1458            "min > max, or either was NaN",
1459            "min > max, or either was NaN. min = {min:?}, max = {max:?}",
1460            min: f64,
1461            max: f64,
1462        );
1463
1464        if self < min {
1465            self = min;
1466        }
1467        if self > max {
1468            self = max;
1469        }
1470        self
1471    }
1472
1473    /// Clamps this number to a symmetric range centered around zero.
1474    ///
1475    /// The method clamps the number's magnitude (absolute value) to be at most `limit`.
1476    ///
1477    /// This is functionally equivalent to `self.clamp(-limit, limit)`, but is more
1478    /// explicit about the intent.
1479    ///
1480    /// # Panics
1481    ///
1482    /// Panics if `limit` is negative or NaN, as this indicates a logic error.
1483    ///
1484    /// # Examples
1485    ///
1486    /// ```
1487    /// #![feature(clamp_magnitude)]
1488    /// assert_eq!(5.0f64.clamp_magnitude(3.0), 3.0);
1489    /// assert_eq!((-5.0f64).clamp_magnitude(3.0), -3.0);
1490    /// assert_eq!(2.0f64.clamp_magnitude(3.0), 2.0);
1491    /// assert_eq!((-2.0f64).clamp_magnitude(3.0), -2.0);
1492    /// ```
1493    #[cfg(not(feature = "ferrocene_subset"))]
1494    #[must_use = "this returns the clamped value and does not modify the original"]
1495    #[unstable(feature = "clamp_magnitude", issue = "148519")]
1496    #[inline]
1497    pub fn clamp_magnitude(self, limit: f64) -> f64 {
1498        assert!(limit >= 0.0, "limit must be non-negative");
1499        let limit = limit.abs(); // Canonicalises -0.0 to 0.0
1500        self.clamp(-limit, limit)
1501    }
1502
1503    /// Computes the absolute value of `self`.
1504    ///
1505    /// This function always returns the precise result.
1506    ///
1507    /// # Examples
1508    ///
1509    /// ```
1510    /// let x = 3.5_f64;
1511    /// let y = -3.5_f64;
1512    ///
1513    /// assert_eq!(x.abs(), x);
1514    /// assert_eq!(y.abs(), -y);
1515    ///
1516    /// assert!(f64::NAN.abs().is_nan());
1517    /// ```
1518    #[must_use = "method returns a new number and does not mutate the original value"]
1519    #[stable(feature = "rust1", since = "1.0.0")]
1520    #[rustc_const_stable(feature = "const_float_methods", since = "1.85.0")]
1521    #[inline]
1522    pub const fn abs(self) -> f64 {
1523        intrinsics::fabsf64(self)
1524    }
1525
1526    /// Returns a number that represents the sign of `self`.
1527    ///
1528    /// - `1.0` if the number is positive, `+0.0` or `INFINITY`
1529    /// - `-1.0` if the number is negative, `-0.0` or `NEG_INFINITY`
1530    /// - NaN if the number is NaN
1531    ///
1532    /// # Examples
1533    ///
1534    /// ```
1535    /// let f = 3.5_f64;
1536    ///
1537    /// assert_eq!(f.signum(), 1.0);
1538    /// assert_eq!(f64::NEG_INFINITY.signum(), -1.0);
1539    ///
1540    /// assert!(f64::NAN.signum().is_nan());
1541    /// ```
1542    #[must_use = "method returns a new number and does not mutate the original value"]
1543    #[stable(feature = "rust1", since = "1.0.0")]
1544    #[rustc_const_stable(feature = "const_float_methods", since = "1.85.0")]
1545    #[inline]
1546    #[cfg(not(feature = "ferrocene_subset"))]
1547    pub const fn signum(self) -> f64 {
1548        if self.is_nan() { Self::NAN } else { 1.0_f64.copysign(self) }
1549    }
1550
1551    /// Returns a number composed of the magnitude of `self` and the sign of
1552    /// `sign`.
1553    ///
1554    /// Equal to `self` if the sign of `self` and `sign` are the same, otherwise equal to `-self`.
1555    /// If `self` is a NaN, then a NaN with the same payload as `self` and the sign bit of `sign` is
1556    /// returned.
1557    ///
1558    /// If `sign` is a NaN, then this operation will still carry over its sign into the result. Note
1559    /// that IEEE 754 doesn't assign any meaning to the sign bit in case of a NaN, and as Rust
1560    /// doesn't guarantee that the bit pattern of NaNs are conserved over arithmetic operations, the
1561    /// result of `copysign` with `sign` being a NaN might produce an unexpected or non-portable
1562    /// result. See the [specification of NaN bit patterns](primitive@f32#nan-bit-patterns) for more
1563    /// info.
1564    ///
1565    /// # Examples
1566    ///
1567    /// ```
1568    /// let f = 3.5_f64;
1569    ///
1570    /// assert_eq!(f.copysign(0.42), 3.5_f64);
1571    /// assert_eq!(f.copysign(-0.42), -3.5_f64);
1572    /// assert_eq!((-f).copysign(0.42), 3.5_f64);
1573    /// assert_eq!((-f).copysign(-0.42), -3.5_f64);
1574    ///
1575    /// assert!(f64::NAN.copysign(1.0).is_nan());
1576    /// ```
1577    #[must_use = "method returns a new number and does not mutate the original value"]
1578    #[stable(feature = "copysign", since = "1.35.0")]
1579    #[rustc_const_stable(feature = "const_float_methods", since = "1.85.0")]
1580    #[inline]
1581    pub const fn copysign(self, sign: f64) -> f64 {
1582        intrinsics::copysignf64(self, sign)
1583    }
1584
1585    /// Float addition that allows optimizations based on algebraic rules.
1586    ///
1587    /// See [algebraic operators](primitive@f32#algebraic-operators) for more info.
1588    #[must_use = "method returns a new number and does not mutate the original value"]
1589    #[unstable(feature = "float_algebraic", issue = "136469")]
1590    #[rustc_const_unstable(feature = "float_algebraic", issue = "136469")]
1591    #[inline]
1592    #[cfg(not(feature = "ferrocene_subset"))]
1593    pub const fn algebraic_add(self, rhs: f64) -> f64 {
1594        intrinsics::fadd_algebraic(self, rhs)
1595    }
1596
1597    /// Float subtraction that allows optimizations based on algebraic rules.
1598    ///
1599    /// See [algebraic operators](primitive@f32#algebraic-operators) for more info.
1600    #[must_use = "method returns a new number and does not mutate the original value"]
1601    #[unstable(feature = "float_algebraic", issue = "136469")]
1602    #[rustc_const_unstable(feature = "float_algebraic", issue = "136469")]
1603    #[inline]
1604    #[cfg(not(feature = "ferrocene_subset"))]
1605    pub const fn algebraic_sub(self, rhs: f64) -> f64 {
1606        intrinsics::fsub_algebraic(self, rhs)
1607    }
1608
1609    /// Float multiplication that allows optimizations based on algebraic rules.
1610    ///
1611    /// See [algebraic operators](primitive@f32#algebraic-operators) for more info.
1612    #[must_use = "method returns a new number and does not mutate the original value"]
1613    #[unstable(feature = "float_algebraic", issue = "136469")]
1614    #[rustc_const_unstable(feature = "float_algebraic", issue = "136469")]
1615    #[inline]
1616    #[cfg(not(feature = "ferrocene_subset"))]
1617    pub const fn algebraic_mul(self, rhs: f64) -> f64 {
1618        intrinsics::fmul_algebraic(self, rhs)
1619    }
1620
1621    /// Float division that allows optimizations based on algebraic rules.
1622    ///
1623    /// See [algebraic operators](primitive@f32#algebraic-operators) for more info.
1624    #[must_use = "method returns a new number and does not mutate the original value"]
1625    #[unstable(feature = "float_algebraic", issue = "136469")]
1626    #[rustc_const_unstable(feature = "float_algebraic", issue = "136469")]
1627    #[inline]
1628    #[cfg(not(feature = "ferrocene_subset"))]
1629    pub const fn algebraic_div(self, rhs: f64) -> f64 {
1630        intrinsics::fdiv_algebraic(self, rhs)
1631    }
1632
1633    /// Float remainder that allows optimizations based on algebraic rules.
1634    ///
1635    /// See [algebraic operators](primitive@f32#algebraic-operators) for more info.
1636    #[must_use = "method returns a new number and does not mutate the original value"]
1637    #[unstable(feature = "float_algebraic", issue = "136469")]
1638    #[rustc_const_unstable(feature = "float_algebraic", issue = "136469")]
1639    #[inline]
1640    #[cfg(not(feature = "ferrocene_subset"))]
1641    pub const fn algebraic_rem(self, rhs: f64) -> f64 {
1642        intrinsics::frem_algebraic(self, rhs)
1643    }
1644}
1645
1646#[unstable(feature = "core_float_math", issue = "137578")]
1647/// Experimental implementations of floating point functions in `core`.
1648///
1649/// _The standalone functions in this module are for testing only.
1650/// They will be stabilized as inherent methods._
1651#[cfg(not(feature = "ferrocene_subset"))]
1652pub mod math {
1653    use crate::intrinsics;
1654    use crate::num::libm;
1655
1656    /// Experimental version of `floor` in `core`. See [`f64::floor`] for details.
1657    ///
1658    /// # Examples
1659    ///
1660    /// ```
1661    /// #![feature(core_float_math)]
1662    ///
1663    /// use core::f64;
1664    ///
1665    /// let f = 3.7_f64;
1666    /// let g = 3.0_f64;
1667    /// let h = -3.7_f64;
1668    ///
1669    /// assert_eq!(f64::math::floor(f), 3.0);
1670    /// assert_eq!(f64::math::floor(g), 3.0);
1671    /// assert_eq!(f64::math::floor(h), -4.0);
1672    /// ```
1673    ///
1674    /// _This standalone function is for testing only.
1675    /// It will be stabilized as an inherent method._
1676    ///
1677    /// [`f64::floor`]: ../../../std/primitive.f64.html#method.floor
1678    #[inline]
1679    #[unstable(feature = "core_float_math", issue = "137578")]
1680    #[must_use = "method returns a new number and does not mutate the original value"]
1681    pub const fn floor(x: f64) -> f64 {
1682        intrinsics::floorf64(x)
1683    }
1684
1685    /// Experimental version of `ceil` in `core`. See [`f64::ceil`] for details.
1686    ///
1687    /// # Examples
1688    ///
1689    /// ```
1690    /// #![feature(core_float_math)]
1691    ///
1692    /// use core::f64;
1693    ///
1694    /// let f = 3.01_f64;
1695    /// let g = 4.0_f64;
1696    ///
1697    /// assert_eq!(f64::math::ceil(f), 4.0);
1698    /// assert_eq!(f64::math::ceil(g), 4.0);
1699    /// ```
1700    ///
1701    /// _This standalone function is for testing only.
1702    /// It will be stabilized as an inherent method._
1703    ///
1704    /// [`f64::ceil`]: ../../../std/primitive.f64.html#method.ceil
1705    #[inline]
1706    #[doc(alias = "ceiling")]
1707    #[unstable(feature = "core_float_math", issue = "137578")]
1708    #[must_use = "method returns a new number and does not mutate the original value"]
1709    pub const fn ceil(x: f64) -> f64 {
1710        intrinsics::ceilf64(x)
1711    }
1712
1713    /// Experimental version of `round` in `core`. See [`f64::round`] for details.
1714    ///
1715    /// # Examples
1716    ///
1717    /// ```
1718    /// #![feature(core_float_math)]
1719    ///
1720    /// use core::f64;
1721    ///
1722    /// let f = 3.3_f64;
1723    /// let g = -3.3_f64;
1724    /// let h = -3.7_f64;
1725    /// let i = 3.5_f64;
1726    /// let j = 4.5_f64;
1727    ///
1728    /// assert_eq!(f64::math::round(f), 3.0);
1729    /// assert_eq!(f64::math::round(g), -3.0);
1730    /// assert_eq!(f64::math::round(h), -4.0);
1731    /// assert_eq!(f64::math::round(i), 4.0);
1732    /// assert_eq!(f64::math::round(j), 5.0);
1733    /// ```
1734    ///
1735    /// _This standalone function is for testing only.
1736    /// It will be stabilized as an inherent method._
1737    ///
1738    /// [`f64::round`]: ../../../std/primitive.f64.html#method.round
1739    #[inline]
1740    #[unstable(feature = "core_float_math", issue = "137578")]
1741    #[must_use = "method returns a new number and does not mutate the original value"]
1742    pub const fn round(x: f64) -> f64 {
1743        intrinsics::roundf64(x)
1744    }
1745
1746    /// Experimental version of `round_ties_even` in `core`. See [`f64::round_ties_even`] for
1747    /// details.
1748    ///
1749    /// # Examples
1750    ///
1751    /// ```
1752    /// #![feature(core_float_math)]
1753    ///
1754    /// use core::f64;
1755    ///
1756    /// let f = 3.3_f64;
1757    /// let g = -3.3_f64;
1758    /// let h = 3.5_f64;
1759    /// let i = 4.5_f64;
1760    ///
1761    /// assert_eq!(f64::math::round_ties_even(f), 3.0);
1762    /// assert_eq!(f64::math::round_ties_even(g), -3.0);
1763    /// assert_eq!(f64::math::round_ties_even(h), 4.0);
1764    /// assert_eq!(f64::math::round_ties_even(i), 4.0);
1765    /// ```
1766    ///
1767    /// _This standalone function is for testing only.
1768    /// It will be stabilized as an inherent method._
1769    ///
1770    /// [`f64::round_ties_even`]: ../../../std/primitive.f64.html#method.round_ties_even
1771    #[inline]
1772    #[unstable(feature = "core_float_math", issue = "137578")]
1773    #[must_use = "method returns a new number and does not mutate the original value"]
1774    pub const fn round_ties_even(x: f64) -> f64 {
1775        intrinsics::round_ties_even_f64(x)
1776    }
1777
1778    /// Experimental version of `trunc` in `core`. See [`f64::trunc`] for details.
1779    ///
1780    /// # Examples
1781    ///
1782    /// ```
1783    /// #![feature(core_float_math)]
1784    ///
1785    /// use core::f64;
1786    ///
1787    /// let f = 3.7_f64;
1788    /// let g = 3.0_f64;
1789    /// let h = -3.7_f64;
1790    ///
1791    /// assert_eq!(f64::math::trunc(f), 3.0);
1792    /// assert_eq!(f64::math::trunc(g), 3.0);
1793    /// assert_eq!(f64::math::trunc(h), -3.0);
1794    /// ```
1795    ///
1796    /// _This standalone function is for testing only.
1797    /// It will be stabilized as an inherent method._
1798    ///
1799    /// [`f64::trunc`]: ../../../std/primitive.f64.html#method.trunc
1800    #[inline]
1801    #[doc(alias = "truncate")]
1802    #[unstable(feature = "core_float_math", issue = "137578")]
1803    #[must_use = "method returns a new number and does not mutate the original value"]
1804    pub const fn trunc(x: f64) -> f64 {
1805        intrinsics::truncf64(x)
1806    }
1807
1808    /// Experimental version of `fract` in `core`. See [`f64::fract`] for details.
1809    ///
1810    /// # Examples
1811    ///
1812    /// ```
1813    /// #![feature(core_float_math)]
1814    ///
1815    /// use core::f64;
1816    ///
1817    /// let x = 3.6_f64;
1818    /// let y = -3.6_f64;
1819    /// let abs_difference_x = (f64::math::fract(x) - 0.6).abs();
1820    /// let abs_difference_y = (f64::math::fract(y) - (-0.6)).abs();
1821    ///
1822    /// assert!(abs_difference_x < 1e-10);
1823    /// assert!(abs_difference_y < 1e-10);
1824    /// ```
1825    ///
1826    /// _This standalone function is for testing only.
1827    /// It will be stabilized as an inherent method._
1828    ///
1829    /// [`f64::fract`]: ../../../std/primitive.f64.html#method.fract
1830    #[inline]
1831    #[unstable(feature = "core_float_math", issue = "137578")]
1832    #[must_use = "method returns a new number and does not mutate the original value"]
1833    pub const fn fract(x: f64) -> f64 {
1834        x - trunc(x)
1835    }
1836
1837    /// Experimental version of `mul_add` in `core`. See [`f64::mul_add`] for details.
1838    ///
1839    /// # Examples
1840    ///
1841    /// ```
1842    /// #![feature(core_float_math)]
1843    ///
1844    /// # // FIXME(#140515): mingw has an incorrect fma
1845    /// # // https://sourceforge.net/p/mingw-w64/bugs/848/
1846    /// # #[cfg(all(target_os = "windows", target_env = "gnu", not(target_abi = "llvm")))] {
1847    /// use core::f64;
1848    ///
1849    /// let m = 10.0_f64;
1850    /// let x = 4.0_f64;
1851    /// let b = 60.0_f64;
1852    ///
1853    /// assert_eq!(f64::math::mul_add(m, x, b), 100.0);
1854    /// assert_eq!(m * x + b, 100.0);
1855    ///
1856    /// let one_plus_eps = 1.0_f64 + f64::EPSILON;
1857    /// let one_minus_eps = 1.0_f64 - f64::EPSILON;
1858    /// let minus_one = -1.0_f64;
1859    ///
1860    /// // The exact result (1 + eps) * (1 - eps) = 1 - eps * eps.
1861    /// assert_eq!(
1862    ///     f64::math::mul_add(one_plus_eps, one_minus_eps, minus_one),
1863    ///     -f64::EPSILON * f64::EPSILON
1864    /// );
1865    /// // Different rounding with the non-fused multiply and add.
1866    /// assert_eq!(one_plus_eps * one_minus_eps + minus_one, 0.0);
1867    /// # }
1868    /// ```
1869    ///
1870    /// _This standalone function is for testing only.
1871    /// It will be stabilized as an inherent method._
1872    ///
1873    /// [`f64::mul_add`]: ../../../std/primitive.f64.html#method.mul_add
1874    #[inline]
1875    #[doc(alias = "fma", alias = "fusedMultiplyAdd")]
1876    #[unstable(feature = "core_float_math", issue = "137578")]
1877    #[must_use = "method returns a new number and does not mutate the original value"]
1878    pub const fn mul_add(x: f64, a: f64, b: f64) -> f64 {
1879        intrinsics::fmaf64(x, a, b)
1880    }
1881
1882    /// Experimental version of `div_euclid` in `core`. See [`f64::div_euclid`] for details.
1883    ///
1884    /// # Examples
1885    ///
1886    /// ```
1887    /// #![feature(core_float_math)]
1888    ///
1889    /// use core::f64;
1890    ///
1891    /// let a: f64 = 7.0;
1892    /// let b = 4.0;
1893    /// assert_eq!(f64::math::div_euclid(a, b), 1.0); // 7.0 > 4.0 * 1.0
1894    /// assert_eq!(f64::math::div_euclid(-a, b), -2.0); // -7.0 >= 4.0 * -2.0
1895    /// assert_eq!(f64::math::div_euclid(a, -b), -1.0); // 7.0 >= -4.0 * -1.0
1896    /// assert_eq!(f64::math::div_euclid(-a, -b), 2.0); // -7.0 >= -4.0 * 2.0
1897    /// ```
1898    ///
1899    /// _This standalone function is for testing only.
1900    /// It will be stabilized as an inherent method._
1901    ///
1902    /// [`f64::div_euclid`]: ../../../std/primitive.f64.html#method.div_euclid
1903    #[inline]
1904    #[unstable(feature = "core_float_math", issue = "137578")]
1905    #[must_use = "method returns a new number and does not mutate the original value"]
1906    pub fn div_euclid(x: f64, rhs: f64) -> f64 {
1907        let q = trunc(x / rhs);
1908        if x % rhs < 0.0 {
1909            return if rhs > 0.0 { q - 1.0 } else { q + 1.0 };
1910        }
1911        q
1912    }
1913
1914    /// Experimental version of `rem_euclid` in `core`. See [`f64::rem_euclid`] for details.
1915    ///
1916    /// # Examples
1917    ///
1918    /// ```
1919    /// #![feature(core_float_math)]
1920    ///
1921    /// use core::f64;
1922    ///
1923    /// let a: f64 = 7.0;
1924    /// let b = 4.0;
1925    /// assert_eq!(f64::math::rem_euclid(a, b), 3.0);
1926    /// assert_eq!(f64::math::rem_euclid(-a, b), 1.0);
1927    /// assert_eq!(f64::math::rem_euclid(a, -b), 3.0);
1928    /// assert_eq!(f64::math::rem_euclid(-a, -b), 1.0);
1929    /// // limitation due to round-off error
1930    /// assert!(f64::math::rem_euclid(-f64::EPSILON, 3.0) != 0.0);
1931    /// ```
1932    ///
1933    /// _This standalone function is for testing only.
1934    /// It will be stabilized as an inherent method._
1935    ///
1936    /// [`f64::rem_euclid`]: ../../../std/primitive.f64.html#method.rem_euclid
1937    #[inline]
1938    #[doc(alias = "modulo", alias = "mod")]
1939    #[unstable(feature = "core_float_math", issue = "137578")]
1940    #[must_use = "method returns a new number and does not mutate the original value"]
1941    pub fn rem_euclid(x: f64, rhs: f64) -> f64 {
1942        let r = x % rhs;
1943        if r < 0.0 { r + rhs.abs() } else { r }
1944    }
1945
1946    /// Experimental version of `powi` in `core`. See [`f64::powi`] for details.
1947    ///
1948    /// # Examples
1949    ///
1950    /// ```
1951    /// #![feature(core_float_math)]
1952    ///
1953    /// use core::f64;
1954    ///
1955    /// let x = 2.0_f64;
1956    /// let abs_difference = (f64::math::powi(x, 2) - (x * x)).abs();
1957    /// assert!(abs_difference <= 1e-6);
1958    ///
1959    /// assert_eq!(f64::math::powi(f64::NAN, 0), 1.0);
1960    /// ```
1961    ///
1962    /// _This standalone function is for testing only.
1963    /// It will be stabilized as an inherent method._
1964    ///
1965    /// [`f64::powi`]: ../../../std/primitive.f64.html#method.powi
1966    #[inline]
1967    #[unstable(feature = "core_float_math", issue = "137578")]
1968    #[must_use = "method returns a new number and does not mutate the original value"]
1969    pub fn powi(x: f64, n: i32) -> f64 {
1970        intrinsics::powif64(x, n)
1971    }
1972
1973    /// Experimental version of `sqrt` in `core`. See [`f64::sqrt`] for details.
1974    ///
1975    /// # Examples
1976    ///
1977    /// ```
1978    /// #![feature(core_float_math)]
1979    ///
1980    /// use core::f64;
1981    ///
1982    /// let positive = 4.0_f64;
1983    /// let negative = -4.0_f64;
1984    /// let negative_zero = -0.0_f64;
1985    ///
1986    /// assert_eq!(f64::math::sqrt(positive), 2.0);
1987    /// assert!(f64::math::sqrt(negative).is_nan());
1988    /// assert_eq!(f64::math::sqrt(negative_zero), negative_zero);
1989    /// ```
1990    ///
1991    /// _This standalone function is for testing only.
1992    /// It will be stabilized as an inherent method._
1993    ///
1994    /// [`f64::sqrt`]: ../../../std/primitive.f64.html#method.sqrt
1995    #[inline]
1996    #[doc(alias = "squareRoot")]
1997    #[unstable(feature = "core_float_math", issue = "137578")]
1998    #[must_use = "method returns a new number and does not mutate the original value"]
1999    pub fn sqrt(x: f64) -> f64 {
2000        intrinsics::sqrtf64(x)
2001    }
2002
2003    /// Experimental version of `abs_sub` in `core`. See [`f64::abs_sub`] for details.
2004    ///
2005    /// # Examples
2006    ///
2007    /// ```
2008    /// #![feature(core_float_math)]
2009    ///
2010    /// use core::f64;
2011    ///
2012    /// let x = 3.0_f64;
2013    /// let y = -3.0_f64;
2014    ///
2015    /// let abs_difference_x = (f64::math::abs_sub(x, 1.0) - 2.0).abs();
2016    /// let abs_difference_y = (f64::math::abs_sub(y, 1.0) - 0.0).abs();
2017    ///
2018    /// assert!(abs_difference_x < 1e-10);
2019    /// assert!(abs_difference_y < 1e-10);
2020    /// ```
2021    ///
2022    /// _This standalone function is for testing only.
2023    /// It will be stabilized as an inherent method._
2024    ///
2025    /// [`f64::abs_sub`]: ../../../std/primitive.f64.html#method.abs_sub
2026    #[inline]
2027    #[unstable(feature = "core_float_math", issue = "137578")]
2028    #[deprecated(
2029        since = "1.10.0",
2030        note = "you probably meant `(self - other).abs()`: \
2031                this operation is `(self - other).max(0.0)` \
2032                except that `abs_sub` also propagates NaNs (also \
2033                known as `fdim` in C). If you truly need the positive \
2034                difference, consider using that expression or the C function \
2035                `fdim`, depending on how you wish to handle NaN (please consider \
2036                filing an issue describing your use-case too)."
2037    )]
2038    #[must_use = "method returns a new number and does not mutate the original value"]
2039    pub fn abs_sub(x: f64, other: f64) -> f64 {
2040        libm::fdim(x, other)
2041    }
2042
2043    /// Experimental version of `cbrt` in `core`. See [`f64::cbrt`] for details.
2044    ///
2045    /// # Examples
2046    ///
2047    /// ```
2048    /// #![feature(core_float_math)]
2049    ///
2050    /// use core::f64;
2051    ///
2052    /// let x = 8.0_f64;
2053    ///
2054    /// // x^(1/3) - 2 == 0
2055    /// let abs_difference = (f64::math::cbrt(x) - 2.0).abs();
2056    ///
2057    /// assert!(abs_difference < 1e-10);
2058    /// ```
2059    ///
2060    /// _This standalone function is for testing only.
2061    /// It will be stabilized as an inherent method._
2062    ///
2063    /// [`f64::cbrt`]: ../../../std/primitive.f64.html#method.cbrt
2064    #[inline]
2065    #[unstable(feature = "core_float_math", issue = "137578")]
2066    #[must_use = "method returns a new number and does not mutate the original value"]
2067    pub fn cbrt(x: f64) -> f64 {
2068        libm::cbrt(x)
2069    }
2070}