core/
option.rs

1//! Optional values.
2//!
3//! Type [`Option`] represents an optional value: every [`Option`]
4//! is either [`Some`] and contains a value, or [`None`], and
5//! does not. [`Option`] types are very common in Rust code, as
6//! they have a number of uses:
7//!
8//! * Initial values
9//! * Return values for functions that are not defined
10//!   over their entire input range (partial functions)
11//! * Return value for otherwise reporting simple errors, where [`None`] is
12//!   returned on error
13//! * Optional struct fields
14//! * Struct fields that can be loaned or "taken"
15//! * Optional function arguments
16//! * Nullable pointers
17//! * Swapping things out of difficult situations
18//!
19//! [`Option`]s are commonly paired with pattern matching to query the presence
20//! of a value and take action, always accounting for the [`None`] case.
21//!
22//! ```
23//! fn divide(numerator: f64, denominator: f64) -> Option<f64> {
24//!     if denominator == 0.0 {
25//!         None
26//!     } else {
27//!         Some(numerator / denominator)
28//!     }
29//! }
30//!
31//! // The return value of the function is an option
32//! let result = divide(2.0, 3.0);
33//!
34//! // Pattern match to retrieve the value
35//! match result {
36//!     // The division was valid
37//!     Some(x) => println!("Result: {x}"),
38//!     // The division was invalid
39//!     None    => println!("Cannot divide by 0"),
40//! }
41//! ```
42//!
43//
44// FIXME: Show how `Option` is used in practice, with lots of methods
45//
46//! # Options and pointers ("nullable" pointers)
47//!
48//! Rust's pointer types must always point to a valid location; there are
49//! no "null" references. Instead, Rust has *optional* pointers, like
50//! the optional owned box, <code>[Option]<[Box\<T>]></code>.
51//!
52//! [Box\<T>]: ../../std/boxed/struct.Box.html
53//!
54//! The following example uses [`Option`] to create an optional box of
55//! [`i32`]. Notice that in order to use the inner [`i32`] value, the
56//! `check_optional` function first needs to use pattern matching to
57//! determine whether the box has a value (i.e., it is [`Some(...)`][`Some`]) or
58//! not ([`None`]).
59//!
60//! ```
61//! let optional = None;
62//! check_optional(optional);
63//!
64//! let optional = Some(Box::new(9000));
65//! check_optional(optional);
66//!
67//! fn check_optional(optional: Option<Box<i32>>) {
68//!     match optional {
69//!         Some(p) => println!("has value {p}"),
70//!         None => println!("has no value"),
71//!     }
72//! }
73//! ```
74//!
75//! # The question mark operator, `?`
76//!
77//! Similar to the [`Result`] type, when writing code that calls many functions that return the
78//! [`Option`] type, handling `Some`/`None` can be tedious. The question mark
79//! operator, [`?`], hides some of the boilerplate of propagating values
80//! up the call stack.
81//!
82//! It replaces this:
83//!
84//! ```
85//! # #![allow(dead_code)]
86//! fn add_last_numbers(stack: &mut Vec<i32>) -> Option<i32> {
87//!     let a = stack.pop();
88//!     let b = stack.pop();
89//!
90//!     match (a, b) {
91//!         (Some(x), Some(y)) => Some(x + y),
92//!         _ => None,
93//!     }
94//! }
95//!
96//! ```
97//!
98//! With this:
99//!
100//! ```
101//! # #![allow(dead_code)]
102//! fn add_last_numbers(stack: &mut Vec<i32>) -> Option<i32> {
103//!     Some(stack.pop()? + stack.pop()?)
104//! }
105//! ```
106//!
107//! *It's much nicer!*
108//!
109//! Ending the expression with [`?`] will result in the [`Some`]'s unwrapped value, unless the
110//! result is [`None`], in which case [`None`] is returned early from the enclosing function.
111//!
112//! [`?`] can be used in functions that return [`Option`] because of the
113//! early return of [`None`] that it provides.
114//!
115//! [`?`]: crate::ops::Try
116//! [`Some`]: Some
117//! [`None`]: None
118//!
119//! # Representation
120//!
121//! Rust guarantees to optimize the following types `T` such that
122//! [`Option<T>`] has the same size, alignment, and [function call ABI] as `T`. In some
123//! of these cases, Rust further guarantees the following:
124//! - `transmute::<_, Option<T>>([0u8; size_of::<T>()])` is sound and produces
125//!   `Option::<T>::None`
126//! - `transmute::<_, [u8; size_of::<T>()]>(Option::<T>::None)` is sound and produces
127//!   `[0u8; size_of::<T>()]`
128//!
129//! These cases are identified by the second column:
130//!
131//! | `T`                                                                 | Transmuting between `[0u8; size_of::<T>()]` and `Option::<T>::None` sound? |
132//! |---------------------------------------------------------------------|----------------------------------------------------------------------------|
133//! | [`Box<U>`] (specifically, only `Box<U, Global>`)                    | when `U: Sized`                                                            |
134//! | `&U`                                                                | when `U: Sized`                                                            |
135//! | `&mut U`                                                            | when `U: Sized`                                                            |
136//! | `fn`, `extern "C" fn`[^extern_fn]                                   | always                                                                     |
137//! | [`num::NonZero*`]                                                   | always                                                                     |
138//! | [`ptr::NonNull<U>`]                                                 | when `U: Sized`                                                            |
139//! | `#[repr(transparent)]` struct around one of the types in this list. | when it holds for the inner type                                           |
140//!
141//! [^extern_fn]: this remains true for `unsafe` variants, any argument/return types, and any other ABI: `[unsafe] extern "abi" fn` (_e.g._, `extern "system" fn`)
142//!
143//! Under some conditions the above types `T` are also null pointer optimized when wrapped in a [`Result`][result_repr].
144//!
145//! [`Box<U>`]: ../../std/boxed/struct.Box.html
146//! [`num::NonZero*`]: crate::num
147//! [`ptr::NonNull<U>`]: crate::ptr::NonNull
148//! [function call ABI]: ../primitive.fn.html#abi-compatibility
149//! [result_repr]: crate::result#representation
150//!
151//! This is called the "null pointer optimization" or NPO.
152//!
153//! It is further guaranteed that, for the cases above, one can
154//! [`mem::transmute`] from all valid values of `T` to `Option<T>` and
155//! from `Some::<T>(_)` to `T` (but transmuting `None::<T>` to `T`
156//! is undefined behavior).
157//!
158//! # Method overview
159//!
160//! In addition to working with pattern matching, [`Option`] provides a wide
161//! variety of different methods.
162//!
163//! ## Querying the variant
164//!
165//! The [`is_some`] and [`is_none`] methods return [`true`] if the [`Option`]
166//! is [`Some`] or [`None`], respectively.
167//!
168//! The [`is_some_and`] and [`is_none_or`] methods apply the provided function
169//! to the contents of the [`Option`] to produce a boolean value.
170//! If this is [`None`] then a default result is returned instead without executing the function.
171//!
172//! [`is_none`]: Option::is_none
173//! [`is_some`]: Option::is_some
174//! [`is_some_and`]: Option::is_some_and
175//! [`is_none_or`]: Option::is_none_or
176//!
177//! ## Adapters for working with references
178//!
179//! * [`as_ref`] converts from <code>[&][][Option]\<T></code> to <code>[Option]<[&]T></code>
180//! * [`as_mut`] converts from <code>[&mut] [Option]\<T></code> to <code>[Option]<[&mut] T></code>
181//! * [`as_deref`] converts from <code>[&][][Option]\<T></code> to
182//!   <code>[Option]<[&]T::[Target]></code>
183//! * [`as_deref_mut`] converts from <code>[&mut] [Option]\<T></code> to
184//!   <code>[Option]<[&mut] T::[Target]></code>
185//! * [`as_pin_ref`] converts from <code>[Pin]<[&][][Option]\<T>></code> to
186//!   <code>[Option]<[Pin]<[&]T>></code>
187//! * [`as_pin_mut`] converts from <code>[Pin]<[&mut] [Option]\<T>></code> to
188//!   <code>[Option]<[Pin]<[&mut] T>></code>
189//! * [`as_slice`] returns a one-element slice of the contained value, if any.
190//!   If this is [`None`], an empty slice is returned.
191//! * [`as_mut_slice`] returns a mutable one-element slice of the contained value, if any.
192//!   If this is [`None`], an empty slice is returned.
193//!
194//! [&]: reference "shared reference"
195//! [&mut]: reference "mutable reference"
196//! [Target]: Deref::Target "ops::Deref::Target"
197//! [`as_deref`]: Option::as_deref
198//! [`as_deref_mut`]: Option::as_deref_mut
199//! [`as_mut`]: Option::as_mut
200//! [`as_pin_mut`]: Option::as_pin_mut
201//! [`as_pin_ref`]: Option::as_pin_ref
202//! [`as_ref`]: Option::as_ref
203//! [`as_slice`]: Option::as_slice
204//! [`as_mut_slice`]: Option::as_mut_slice
205//!
206//! ## Extracting the contained value
207//!
208//! These methods extract the contained value in an [`Option<T>`] when it
209//! is the [`Some`] variant. If the [`Option`] is [`None`]:
210//!
211//! * [`expect`] panics with a provided custom message
212//! * [`unwrap`] panics with a generic message
213//! * [`unwrap_or`] returns the provided default value
214//! * [`unwrap_or_default`] returns the default value of the type `T`
215//!   (which must implement the [`Default`] trait)
216//! * [`unwrap_or_else`] returns the result of evaluating the provided
217//!   function
218//! * [`unwrap_unchecked`] produces *[undefined behavior]*
219//!
220//! [`expect`]: Option::expect
221//! [`unwrap`]: Option::unwrap
222//! [`unwrap_or`]: Option::unwrap_or
223//! [`unwrap_or_default`]: Option::unwrap_or_default
224//! [`unwrap_or_else`]: Option::unwrap_or_else
225//! [`unwrap_unchecked`]: Option::unwrap_unchecked
226//! [undefined behavior]: https://doc.rust-lang.org/reference/behavior-considered-undefined.html
227//!
228//! ## Transforming contained values
229//!
230//! These methods transform [`Option`] to [`Result`]:
231//!
232//! * [`ok_or`] transforms [`Some(v)`] to [`Ok(v)`], and [`None`] to
233//!   [`Err(err)`] using the provided default `err` value
234//! * [`ok_or_else`] transforms [`Some(v)`] to [`Ok(v)`], and [`None`] to
235//!   a value of [`Err`] using the provided function
236//! * [`transpose`] transposes an [`Option`] of a [`Result`] into a
237//!   [`Result`] of an [`Option`]
238//!
239//! [`Err(err)`]: Err
240//! [`Ok(v)`]: Ok
241//! [`Some(v)`]: Some
242//! [`ok_or`]: Option::ok_or
243//! [`ok_or_else`]: Option::ok_or_else
244//! [`transpose`]: Option::transpose
245//!
246//! These methods transform the [`Some`] variant:
247//!
248//! * [`filter`] calls the provided predicate function on the contained
249//!   value `t` if the [`Option`] is [`Some(t)`], and returns [`Some(t)`]
250//!   if the function returns `true`; otherwise, returns [`None`]
251//! * [`flatten`] removes one level of nesting from an [`Option<Option<T>>`]
252//! * [`inspect`] method takes ownership of the [`Option`] and applies
253//!   the provided function to the contained value by reference if [`Some`]
254//! * [`map`] transforms [`Option<T>`] to [`Option<U>`] by applying the
255//!   provided function to the contained value of [`Some`] and leaving
256//!   [`None`] values unchanged
257//!
258//! [`Some(t)`]: Some
259//! [`filter`]: Option::filter
260//! [`flatten`]: Option::flatten
261//! [`inspect`]: Option::inspect
262//! [`map`]: Option::map
263//!
264//! These methods transform [`Option<T>`] to a value of a possibly
265//! different type `U`:
266//!
267//! * [`map_or`] applies the provided function to the contained value of
268//!   [`Some`], or returns the provided default value if the [`Option`] is
269//!   [`None`]
270//! * [`map_or_else`] applies the provided function to the contained value
271//!   of [`Some`], or returns the result of evaluating the provided
272//!   fallback function if the [`Option`] is [`None`]
273//!
274//! [`map_or`]: Option::map_or
275//! [`map_or_else`]: Option::map_or_else
276//!
277//! These methods combine the [`Some`] variants of two [`Option`] values:
278//!
279//! * [`zip`] returns [`Some((s, o))`] if `self` is [`Some(s)`] and the
280//!   provided [`Option`] value is [`Some(o)`]; otherwise, returns [`None`]
281//! * [`zip_with`] calls the provided function `f` and returns
282//!   [`Some(f(s, o))`] if `self` is [`Some(s)`] and the provided
283//!   [`Option`] value is [`Some(o)`]; otherwise, returns [`None`]
284//!
285//! [`Some(f(s, o))`]: Some
286//! [`Some(o)`]: Some
287//! [`Some(s)`]: Some
288//! [`Some((s, o))`]: Some
289//! [`zip`]: Option::zip
290//! [`zip_with`]: Option::zip_with
291//!
292//! ## Boolean operators
293//!
294//! These methods treat the [`Option`] as a boolean value, where [`Some`]
295//! acts like [`true`] and [`None`] acts like [`false`]. There are two
296//! categories of these methods: ones that take an [`Option`] as input, and
297//! ones that take a function as input (to be lazily evaluated).
298//!
299//! The [`and`], [`or`], and [`xor`] methods take another [`Option`] as
300//! input, and produce an [`Option`] as output. Only the [`and`] method can
301//! produce an [`Option<U>`] value having a different inner type `U` than
302//! [`Option<T>`].
303//!
304//! | method  | self      | input     | output    |
305//! |---------|-----------|-----------|-----------|
306//! | [`and`] | `None`    | (ignored) | `None`    |
307//! | [`and`] | `Some(x)` | `None`    | `None`    |
308//! | [`and`] | `Some(x)` | `Some(y)` | `Some(y)` |
309//! | [`or`]  | `None`    | `None`    | `None`    |
310//! | [`or`]  | `None`    | `Some(y)` | `Some(y)` |
311//! | [`or`]  | `Some(x)` | (ignored) | `Some(x)` |
312//! | [`xor`] | `None`    | `None`    | `None`    |
313//! | [`xor`] | `None`    | `Some(y)` | `Some(y)` |
314//! | [`xor`] | `Some(x)` | `None`    | `Some(x)` |
315//! | [`xor`] | `Some(x)` | `Some(y)` | `None`    |
316//!
317//! [`and`]: Option::and
318//! [`or`]: Option::or
319//! [`xor`]: Option::xor
320//!
321//! The [`and_then`] and [`or_else`] methods take a function as input, and
322//! only evaluate the function when they need to produce a new value. Only
323//! the [`and_then`] method can produce an [`Option<U>`] value having a
324//! different inner type `U` than [`Option<T>`].
325//!
326//! | method       | self      | function input | function result | output    |
327//! |--------------|-----------|----------------|-----------------|-----------|
328//! | [`and_then`] | `None`    | (not provided) | (not evaluated) | `None`    |
329//! | [`and_then`] | `Some(x)` | `x`            | `None`          | `None`    |
330//! | [`and_then`] | `Some(x)` | `x`            | `Some(y)`       | `Some(y)` |
331//! | [`or_else`]  | `None`    | (not provided) | `None`          | `None`    |
332//! | [`or_else`]  | `None`    | (not provided) | `Some(y)`       | `Some(y)` |
333//! | [`or_else`]  | `Some(x)` | (not provided) | (not evaluated) | `Some(x)` |
334//!
335//! [`and_then`]: Option::and_then
336//! [`or_else`]: Option::or_else
337//!
338//! This is an example of using methods like [`and_then`] and [`or`] in a
339//! pipeline of method calls. Early stages of the pipeline pass failure
340//! values ([`None`]) through unchanged, and continue processing on
341//! success values ([`Some`]). Toward the end, [`or`] substitutes an error
342//! message if it receives [`None`].
343//!
344//! ```
345//! # use std::collections::BTreeMap;
346//! let mut bt = BTreeMap::new();
347//! bt.insert(20u8, "foo");
348//! bt.insert(42u8, "bar");
349//! let res = [0u8, 1, 11, 200, 22]
350//!     .into_iter()
351//!     .map(|x| {
352//!         // `checked_sub()` returns `None` on error
353//!         x.checked_sub(1)
354//!             // same with `checked_mul()`
355//!             .and_then(|x| x.checked_mul(2))
356//!             // `BTreeMap::get` returns `None` on error
357//!             .and_then(|x| bt.get(&x))
358//!             // Substitute an error message if we have `None` so far
359//!             .or(Some(&"error!"))
360//!             .copied()
361//!             // Won't panic because we unconditionally used `Some` above
362//!             .unwrap()
363//!     })
364//!     .collect::<Vec<_>>();
365//! assert_eq!(res, ["error!", "error!", "foo", "error!", "bar"]);
366//! ```
367//!
368//! ## Comparison operators
369//!
370//! If `T` implements [`PartialOrd`] then [`Option<T>`] will derive its
371//! [`PartialOrd`] implementation.  With this order, [`None`] compares as
372//! less than any [`Some`], and two [`Some`] compare the same way as their
373//! contained values would in `T`.  If `T` also implements
374//! [`Ord`], then so does [`Option<T>`].
375//!
376//! ```
377//! assert!(None < Some(0));
378//! assert!(Some(0) < Some(1));
379//! ```
380//!
381//! ## Iterating over `Option`
382//!
383//! An [`Option`] can be iterated over. This can be helpful if you need an
384//! iterator that is conditionally empty. The iterator will either produce
385//! a single value (when the [`Option`] is [`Some`]), or produce no values
386//! (when the [`Option`] is [`None`]). For example, [`into_iter`] acts like
387//! [`once(v)`] if the [`Option`] is [`Some(v)`], and like [`empty()`] if
388//! the [`Option`] is [`None`].
389//!
390//! [`Some(v)`]: Some
391//! [`empty()`]: crate::iter::empty
392//! [`once(v)`]: crate::iter::once
393//!
394//! Iterators over [`Option<T>`] come in three types:
395//!
396//! * [`into_iter`] consumes the [`Option`] and produces the contained
397//!   value
398//! * [`iter`] produces an immutable reference of type `&T` to the
399//!   contained value
400//! * [`iter_mut`] produces a mutable reference of type `&mut T` to the
401//!   contained value
402//!
403//! [`into_iter`]: Option::into_iter
404//! [`iter`]: Option::iter
405//! [`iter_mut`]: Option::iter_mut
406//!
407//! An iterator over [`Option`] can be useful when chaining iterators, for
408//! example, to conditionally insert items. (It's not always necessary to
409//! explicitly call an iterator constructor: many [`Iterator`] methods that
410//! accept other iterators will also accept iterable types that implement
411//! [`IntoIterator`], which includes [`Option`].)
412//!
413//! ```
414//! let yep = Some(42);
415//! let nope = None;
416//! // chain() already calls into_iter(), so we don't have to do so
417//! let nums: Vec<i32> = (0..4).chain(yep).chain(4..8).collect();
418//! assert_eq!(nums, [0, 1, 2, 3, 42, 4, 5, 6, 7]);
419//! let nums: Vec<i32> = (0..4).chain(nope).chain(4..8).collect();
420//! assert_eq!(nums, [0, 1, 2, 3, 4, 5, 6, 7]);
421//! ```
422//!
423//! One reason to chain iterators in this way is that a function returning
424//! `impl Iterator` must have all possible return values be of the same
425//! concrete type. Chaining an iterated [`Option`] can help with that.
426//!
427//! ```
428//! fn make_iter(do_insert: bool) -> impl Iterator<Item = i32> {
429//!     // Explicit returns to illustrate return types matching
430//!     match do_insert {
431//!         true => return (0..4).chain(Some(42)).chain(4..8),
432//!         false => return (0..4).chain(None).chain(4..8),
433//!     }
434//! }
435//! println!("{:?}", make_iter(true).collect::<Vec<_>>());
436//! println!("{:?}", make_iter(false).collect::<Vec<_>>());
437//! ```
438//!
439//! If we try to do the same thing, but using [`once()`] and [`empty()`],
440//! we can't return `impl Iterator` anymore because the concrete types of
441//! the return values differ.
442//!
443//! [`empty()`]: crate::iter::empty
444//! [`once()`]: crate::iter::once
445//!
446//! ```compile_fail,E0308
447//! # use std::iter::{empty, once};
448//! // This won't compile because all possible returns from the function
449//! // must have the same concrete type.
450//! fn make_iter(do_insert: bool) -> impl Iterator<Item = i32> {
451//!     // Explicit returns to illustrate return types not matching
452//!     match do_insert {
453//!         true => return (0..4).chain(once(42)).chain(4..8),
454//!         false => return (0..4).chain(empty()).chain(4..8),
455//!     }
456//! }
457//! ```
458//!
459//! ## Collecting into `Option`
460//!
461//! [`Option`] implements the [`FromIterator`][impl-FromIterator] trait,
462//! which allows an iterator over [`Option`] values to be collected into an
463//! [`Option`] of a collection of each contained value of the original
464//! [`Option`] values, or [`None`] if any of the elements was [`None`].
465//!
466//! [impl-FromIterator]: Option#impl-FromIterator%3COption%3CA%3E%3E-for-Option%3CV%3E
467//!
468//! ```
469//! let v = [Some(2), Some(4), None, Some(8)];
470//! let res: Option<Vec<_>> = v.into_iter().collect();
471//! assert_eq!(res, None);
472//! let v = [Some(2), Some(4), Some(8)];
473//! let res: Option<Vec<_>> = v.into_iter().collect();
474//! assert_eq!(res, Some(vec![2, 4, 8]));
475//! ```
476//!
477//! [`Option`] also implements the [`Product`][impl-Product] and
478//! [`Sum`][impl-Sum] traits, allowing an iterator over [`Option`] values
479//! to provide the [`product`][Iterator::product] and
480//! [`sum`][Iterator::sum] methods.
481//!
482//! [impl-Product]: Option#impl-Product%3COption%3CU%3E%3E-for-Option%3CT%3E
483//! [impl-Sum]: Option#impl-Sum%3COption%3CU%3E%3E-for-Option%3CT%3E
484//!
485//! ```
486//! let v = [None, Some(1), Some(2), Some(3)];
487//! let res: Option<i32> = v.into_iter().sum();
488//! assert_eq!(res, None);
489//! let v = [Some(1), Some(2), Some(21)];
490//! let res: Option<i32> = v.into_iter().product();
491//! assert_eq!(res, Some(42));
492//! ```
493//!
494//! ## Modifying an [`Option`] in-place
495//!
496//! These methods return a mutable reference to the contained value of an
497//! [`Option<T>`]:
498//!
499//! * [`insert`] inserts a value, dropping any old contents
500//! * [`get_or_insert`] gets the current value, inserting a provided
501//!   default value if it is [`None`]
502//! * [`get_or_insert_default`] gets the current value, inserting the
503//!   default value of type `T` (which must implement [`Default`]) if it is
504//!   [`None`]
505//! * [`get_or_insert_with`] gets the current value, inserting a default
506//!   computed by the provided function if it is [`None`]
507//!
508//! [`get_or_insert`]: Option::get_or_insert
509//! [`get_or_insert_default`]: Option::get_or_insert_default
510//! [`get_or_insert_with`]: Option::get_or_insert_with
511//! [`insert`]: Option::insert
512//!
513//! These methods transfer ownership of the contained value of an
514//! [`Option`]:
515//!
516//! * [`take`] takes ownership of the contained value of an [`Option`], if
517//!   any, replacing the [`Option`] with [`None`]
518//! * [`replace`] takes ownership of the contained value of an [`Option`],
519//!   if any, replacing the [`Option`] with a [`Some`] containing the
520//!   provided value
521//!
522//! [`replace`]: Option::replace
523//! [`take`]: Option::take
524//!
525//! # Examples
526//!
527//! Basic pattern matching on [`Option`]:
528//!
529//! ```
530//! let msg = Some("howdy");
531//!
532//! // Take a reference to the contained string
533//! if let Some(m) = &msg {
534//!     println!("{}", *m);
535//! }
536//!
537//! // Remove the contained string, destroying the Option
538//! let unwrapped_msg = msg.unwrap_or("default message");
539//! ```
540//!
541//! Initialize a result to [`None`] before a loop:
542//!
543//! ```
544//! enum Kingdom { Plant(u32, &'static str), Animal(u32, &'static str) }
545//!
546//! // A list of data to search through.
547//! let all_the_big_things = [
548//!     Kingdom::Plant(250, "redwood"),
549//!     Kingdom::Plant(230, "noble fir"),
550//!     Kingdom::Plant(229, "sugar pine"),
551//!     Kingdom::Animal(25, "blue whale"),
552//!     Kingdom::Animal(19, "fin whale"),
553//!     Kingdom::Animal(15, "north pacific right whale"),
554//! ];
555//!
556//! // We're going to search for the name of the biggest animal,
557//! // but to start with we've just got `None`.
558//! let mut name_of_biggest_animal = None;
559//! let mut size_of_biggest_animal = 0;
560//! for big_thing in &all_the_big_things {
561//!     match *big_thing {
562//!         Kingdom::Animal(size, name) if size > size_of_biggest_animal => {
563//!             // Now we've found the name of some big animal
564//!             size_of_biggest_animal = size;
565//!             name_of_biggest_animal = Some(name);
566//!         }
567//!         Kingdom::Animal(..) | Kingdom::Plant(..) => ()
568//!     }
569//! }
570//!
571//! match name_of_biggest_animal {
572//!     Some(name) => println!("the biggest animal is {name}"),
573//!     None => println!("there are no animals :("),
574//! }
575//! ```
576
577#![stable(feature = "rust1", since = "1.0.0")]
578
579#[cfg(not(feature = "ferrocene_certified"))]
580use crate::iter::{self, FusedIterator, TrustedLen};
581use crate::marker::Destruct;
582#[cfg(not(feature = "ferrocene_certified"))]
583use crate::ops::{self, ControlFlow, Deref, DerefMut};
584#[cfg(feature = "ferrocene_certified")]
585use crate::ops::{Deref, DerefMut};
586#[cfg(not(feature = "ferrocene_certified"))]
587use crate::panicking::{panic, panic_display};
588#[cfg(not(feature = "ferrocene_certified"))]
589use crate::pin::Pin;
590#[cfg(not(feature = "ferrocene_certified"))]
591use crate::{cmp, convert, hint, mem, slice};
592
593/// The `Option` type. See [the module level documentation](self) for more.
594#[doc(search_unbox)]
595#[cfg_attr(not(feature = "ferrocene_certified"), derive(Copy, Debug, Hash))]
596#[cfg_attr(not(feature = "ferrocene_certified"), derive_const(Eq))]
597#[rustc_diagnostic_item = "Option"]
598#[lang = "Option"]
599#[stable(feature = "rust1", since = "1.0.0")]
600#[allow(clippy::derived_hash_with_manual_eq)] // PartialEq is manually implemented equivalently
601pub enum Option<T> {
602    /// No value.
603    #[lang = "None"]
604    #[stable(feature = "rust1", since = "1.0.0")]
605    None,
606    /// Some value of type `T`.
607    #[lang = "Some"]
608    #[stable(feature = "rust1", since = "1.0.0")]
609    Some(#[stable(feature = "rust1", since = "1.0.0")] T),
610}
611
612/////////////////////////////////////////////////////////////////////////////
613// Type implementation
614/////////////////////////////////////////////////////////////////////////////
615
616impl<T> Option<T> {
617    /////////////////////////////////////////////////////////////////////////
618    // Querying the contained values
619    /////////////////////////////////////////////////////////////////////////
620
621    /// Returns `true` if the option is a [`Some`] value.
622    ///
623    /// # Examples
624    ///
625    /// ```
626    /// let x: Option<u32> = Some(2);
627    /// assert_eq!(x.is_some(), true);
628    ///
629    /// let x: Option<u32> = None;
630    /// assert_eq!(x.is_some(), false);
631    /// ```
632    #[must_use = "if you intended to assert that this has a value, consider `.unwrap()` instead"]
633    #[inline]
634    #[stable(feature = "rust1", since = "1.0.0")]
635    #[rustc_const_stable(feature = "const_option_basics", since = "1.48.0")]
636    pub const fn is_some(&self) -> bool {
637        matches!(*self, Some(_))
638    }
639
640    /// Returns `true` if the option is a [`Some`] and the value inside of it matches a predicate.
641    ///
642    /// # Examples
643    ///
644    /// ```
645    /// let x: Option<u32> = Some(2);
646    /// assert_eq!(x.is_some_and(|x| x > 1), true);
647    ///
648    /// let x: Option<u32> = Some(0);
649    /// assert_eq!(x.is_some_and(|x| x > 1), false);
650    ///
651    /// let x: Option<u32> = None;
652    /// assert_eq!(x.is_some_and(|x| x > 1), false);
653    ///
654    /// let x: Option<String> = Some("ownership".to_string());
655    /// assert_eq!(x.as_ref().is_some_and(|x| x.len() > 1), true);
656    /// println!("still alive {:?}", x);
657    /// ```
658    #[must_use]
659    #[inline]
660    #[stable(feature = "is_some_and", since = "1.70.0")]
661    #[rustc_const_unstable(feature = "const_option_ops", issue = "143956")]
662    pub const fn is_some_and(self, f: impl [const] FnOnce(T) -> bool + [const] Destruct) -> bool {
663        match self {
664            None => false,
665            Some(x) => f(x),
666        }
667    }
668
669    /// Returns `true` if the option is a [`None`] value.
670    ///
671    /// # Examples
672    ///
673    /// ```
674    /// let x: Option<u32> = Some(2);
675    /// assert_eq!(x.is_none(), false);
676    ///
677    /// let x: Option<u32> = None;
678    /// assert_eq!(x.is_none(), true);
679    /// ```
680    #[must_use = "if you intended to assert that this doesn't have a value, consider \
681                  wrapping this in an `assert!()` instead"]
682    #[inline]
683    #[stable(feature = "rust1", since = "1.0.0")]
684    #[rustc_const_stable(feature = "const_option_basics", since = "1.48.0")]
685    #[cfg(not(feature = "ferrocene_certified"))]
686    pub const fn is_none(&self) -> bool {
687        !self.is_some()
688    }
689
690    /// Returns `true` if the option is a [`None`] or the value inside of it matches a predicate.
691    ///
692    /// # Examples
693    ///
694    /// ```
695    /// let x: Option<u32> = Some(2);
696    /// assert_eq!(x.is_none_or(|x| x > 1), true);
697    ///
698    /// let x: Option<u32> = Some(0);
699    /// assert_eq!(x.is_none_or(|x| x > 1), false);
700    ///
701    /// let x: Option<u32> = None;
702    /// assert_eq!(x.is_none_or(|x| x > 1), true);
703    ///
704    /// let x: Option<String> = Some("ownership".to_string());
705    /// assert_eq!(x.as_ref().is_none_or(|x| x.len() > 1), true);
706    /// println!("still alive {:?}", x);
707    /// ```
708    #[must_use]
709    #[inline]
710    #[stable(feature = "is_none_or", since = "1.82.0")]
711    #[rustc_const_unstable(feature = "const_option_ops", issue = "143956")]
712    pub const fn is_none_or(self, f: impl [const] FnOnce(T) -> bool + [const] Destruct) -> bool {
713        match self {
714            None => true,
715            Some(x) => f(x),
716        }
717    }
718
719    /////////////////////////////////////////////////////////////////////////
720    // Adapter for working with references
721    /////////////////////////////////////////////////////////////////////////
722
723    /// Converts from `&Option<T>` to `Option<&T>`.
724    ///
725    /// # Examples
726    ///
727    /// Calculates the length of an <code>Option<[String]></code> as an <code>Option<[usize]></code>
728    /// without moving the [`String`]. The [`map`] method takes the `self` argument by value,
729    /// consuming the original, so this technique uses `as_ref` to first take an `Option` to a
730    /// reference to the value inside the original.
731    ///
732    /// [`map`]: Option::map
733    /// [String]: ../../std/string/struct.String.html "String"
734    /// [`String`]: ../../std/string/struct.String.html "String"
735    ///
736    /// ```
737    /// let text: Option<String> = Some("Hello, world!".to_string());
738    /// // First, cast `Option<String>` to `Option<&String>` with `as_ref`,
739    /// // then consume *that* with `map`, leaving `text` on the stack.
740    /// let text_length: Option<usize> = text.as_ref().map(|s| s.len());
741    /// println!("still can print text: {text:?}");
742    /// ```
743    #[inline]
744    #[rustc_const_stable(feature = "const_option_basics", since = "1.48.0")]
745    #[stable(feature = "rust1", since = "1.0.0")]
746    pub const fn as_ref(&self) -> Option<&T> {
747        match *self {
748            Some(ref x) => Some(x),
749            None => None,
750        }
751    }
752
753    /// Converts from `&mut Option<T>` to `Option<&mut T>`.
754    ///
755    /// # Examples
756    ///
757    /// ```
758    /// let mut x = Some(2);
759    /// match x.as_mut() {
760    ///     Some(v) => *v = 42,
761    ///     None => {},
762    /// }
763    /// assert_eq!(x, Some(42));
764    /// ```
765    #[inline]
766    #[stable(feature = "rust1", since = "1.0.0")]
767    #[rustc_const_stable(feature = "const_option", since = "1.83.0")]
768    pub const fn as_mut(&mut self) -> Option<&mut T> {
769        match *self {
770            Some(ref mut x) => Some(x),
771            None => None,
772        }
773    }
774
775    /// Converts from <code>[Pin]<[&]Option\<T>></code> to <code>Option<[Pin]<[&]T>></code>.
776    ///
777    /// [&]: reference "shared reference"
778    #[inline]
779    #[must_use]
780    #[stable(feature = "pin", since = "1.33.0")]
781    #[rustc_const_stable(feature = "const_option_ext", since = "1.84.0")]
782    #[cfg(not(feature = "ferrocene_certified"))]
783    pub const fn as_pin_ref(self: Pin<&Self>) -> Option<Pin<&T>> {
784        // FIXME(const-hack): use `map` once that is possible
785        match Pin::get_ref(self).as_ref() {
786            // SAFETY: `x` is guaranteed to be pinned because it comes from `self`
787            // which is pinned.
788            Some(x) => unsafe { Some(Pin::new_unchecked(x)) },
789            None => None,
790        }
791    }
792
793    /// Converts from <code>[Pin]<[&mut] Option\<T>></code> to <code>Option<[Pin]<[&mut] T>></code>.
794    ///
795    /// [&mut]: reference "mutable reference"
796    #[inline]
797    #[must_use]
798    #[stable(feature = "pin", since = "1.33.0")]
799    #[rustc_const_stable(feature = "const_option_ext", since = "1.84.0")]
800    #[cfg(not(feature = "ferrocene_certified"))]
801    pub const fn as_pin_mut(self: Pin<&mut Self>) -> Option<Pin<&mut T>> {
802        // SAFETY: `get_unchecked_mut` is never used to move the `Option` inside `self`.
803        // `x` is guaranteed to be pinned because it comes from `self` which is pinned.
804        unsafe {
805            // FIXME(const-hack): use `map` once that is possible
806            match Pin::get_unchecked_mut(self).as_mut() {
807                Some(x) => Some(Pin::new_unchecked(x)),
808                None => None,
809            }
810        }
811    }
812
813    #[inline]
814    #[cfg(not(feature = "ferrocene_certified"))]
815    const fn len(&self) -> usize {
816        // Using the intrinsic avoids emitting a branch to get the 0 or 1.
817        let discriminant: isize = crate::intrinsics::discriminant_value(self);
818        discriminant as usize
819    }
820
821    /// Returns a slice of the contained value, if any. If this is `None`, an
822    /// empty slice is returned. This can be useful to have a single type of
823    /// iterator over an `Option` or slice.
824    ///
825    /// Note: Should you have an `Option<&T>` and wish to get a slice of `T`,
826    /// you can unpack it via `opt.map_or(&[], std::slice::from_ref)`.
827    ///
828    /// # Examples
829    ///
830    /// ```rust
831    /// assert_eq!(
832    ///     [Some(1234).as_slice(), None.as_slice()],
833    ///     [&[1234][..], &[][..]],
834    /// );
835    /// ```
836    ///
837    /// The inverse of this function is (discounting
838    /// borrowing) [`[_]::first`](slice::first):
839    ///
840    /// ```rust
841    /// for i in [Some(1234_u16), None] {
842    ///     assert_eq!(i.as_ref(), i.as_slice().first());
843    /// }
844    /// ```
845    #[inline]
846    #[must_use]
847    #[stable(feature = "option_as_slice", since = "1.75.0")]
848    #[rustc_const_stable(feature = "const_option_ext", since = "1.84.0")]
849    #[cfg(not(feature = "ferrocene_certified"))]
850    pub const fn as_slice(&self) -> &[T] {
851        // SAFETY: When the `Option` is `Some`, we're using the actual pointer
852        // to the payload, with a length of 1, so this is equivalent to
853        // `slice::from_ref`, and thus is safe.
854        // When the `Option` is `None`, the length used is 0, so to be safe it
855        // just needs to be aligned, which it is because `&self` is aligned and
856        // the offset used is a multiple of alignment.
857        //
858        // Here we assume that `offset_of!` always returns an offset to an
859        // in-bounds and correctly aligned position for a `T` (even if in the
860        // `None` case it's just padding).
861        unsafe {
862            slice::from_raw_parts(
863                (self as *const Self).byte_add(core::mem::offset_of!(Self, Some.0)).cast(),
864                self.len(),
865            )
866        }
867    }
868
869    /// Returns a mutable slice of the contained value, if any. If this is
870    /// `None`, an empty slice is returned. This can be useful to have a
871    /// single type of iterator over an `Option` or slice.
872    ///
873    /// Note: Should you have an `Option<&mut T>` instead of a
874    /// `&mut Option<T>`, which this method takes, you can obtain a mutable
875    /// slice via `opt.map_or(&mut [], std::slice::from_mut)`.
876    ///
877    /// # Examples
878    ///
879    /// ```rust
880    /// assert_eq!(
881    ///     [Some(1234).as_mut_slice(), None.as_mut_slice()],
882    ///     [&mut [1234][..], &mut [][..]],
883    /// );
884    /// ```
885    ///
886    /// The result is a mutable slice of zero or one items that points into
887    /// our original `Option`:
888    ///
889    /// ```rust
890    /// let mut x = Some(1234);
891    /// x.as_mut_slice()[0] += 1;
892    /// assert_eq!(x, Some(1235));
893    /// ```
894    ///
895    /// The inverse of this method (discounting borrowing)
896    /// is [`[_]::first_mut`](slice::first_mut):
897    ///
898    /// ```rust
899    /// assert_eq!(Some(123).as_mut_slice().first_mut(), Some(&mut 123))
900    /// ```
901    #[inline]
902    #[must_use]
903    #[stable(feature = "option_as_slice", since = "1.75.0")]
904    #[rustc_const_stable(feature = "const_option_ext", since = "1.84.0")]
905    #[cfg(not(feature = "ferrocene_certified"))]
906    pub const fn as_mut_slice(&mut self) -> &mut [T] {
907        // SAFETY: When the `Option` is `Some`, we're using the actual pointer
908        // to the payload, with a length of 1, so this is equivalent to
909        // `slice::from_mut`, and thus is safe.
910        // When the `Option` is `None`, the length used is 0, so to be safe it
911        // just needs to be aligned, which it is because `&self` is aligned and
912        // the offset used is a multiple of alignment.
913        //
914        // In the new version, the intrinsic creates a `*const T` from a
915        // mutable reference  so it is safe to cast back to a mutable pointer
916        // here. As with `as_slice`, the intrinsic always returns a pointer to
917        // an in-bounds and correctly aligned position for a `T` (even if in
918        // the `None` case it's just padding).
919        unsafe {
920            slice::from_raw_parts_mut(
921                (self as *mut Self).byte_add(core::mem::offset_of!(Self, Some.0)).cast(),
922                self.len(),
923            )
924        }
925    }
926
927    /////////////////////////////////////////////////////////////////////////
928    // Getting to contained values
929    /////////////////////////////////////////////////////////////////////////
930
931    /// Returns the contained [`Some`] value, consuming the `self` value.
932    ///
933    /// # Panics
934    ///
935    /// Panics if the value is a [`None`] with a custom panic message provided by
936    /// `msg`.
937    ///
938    /// # Examples
939    ///
940    /// ```
941    /// let x = Some("value");
942    /// assert_eq!(x.expect("fruits are healthy"), "value");
943    /// ```
944    ///
945    /// ```should_panic
946    /// let x: Option<&str> = None;
947    /// x.expect("fruits are healthy"); // panics with `fruits are healthy`
948    /// ```
949    ///
950    /// # Recommended Message Style
951    ///
952    /// We recommend that `expect` messages are used to describe the reason you
953    /// _expect_ the `Option` should be `Some`.
954    ///
955    /// ```should_panic
956    /// # let slice: &[u8] = &[];
957    /// let item = slice.get(0)
958    ///     .expect("slice should not be empty");
959    /// ```
960    ///
961    /// **Hint**: If you're having trouble remembering how to phrase expect
962    /// error messages remember to focus on the word "should" as in "env
963    /// variable should be set by blah" or "the given binary should be available
964    /// and executable by the current user".
965    ///
966    /// For more detail on expect message styles and the reasoning behind our
967    /// recommendation please refer to the section on ["Common Message
968    /// Styles"](../../std/error/index.html#common-message-styles) in the [`std::error`](../../std/error/index.html) module docs.
969    #[inline]
970    #[track_caller]
971    #[stable(feature = "rust1", since = "1.0.0")]
972    #[rustc_diagnostic_item = "option_expect"]
973    #[rustc_allow_const_fn_unstable(const_precise_live_drops)]
974    #[rustc_const_stable(feature = "const_option", since = "1.83.0")]
975    #[cfg(not(feature = "ferrocene_certified"))]
976    pub const fn expect(self, msg: &str) -> T {
977        match self {
978            Some(val) => val,
979            None => expect_failed(msg),
980        }
981    }
982
983    /// Returns the contained [`Some`] value, consuming the `self` value.
984    ///
985    /// Because this function may panic, its use is generally discouraged.
986    /// Panics are meant for unrecoverable errors, and
987    /// [may abort the entire program][panic-abort].
988    ///
989    /// Instead, prefer to use pattern matching and handle the [`None`]
990    /// case explicitly, or call [`unwrap_or`], [`unwrap_or_else`], or
991    /// [`unwrap_or_default`]. In functions returning `Option`, you can use
992    /// [the `?` (try) operator][try-option].
993    ///
994    /// [panic-abort]: https://doc.rust-lang.org/book/ch09-01-unrecoverable-errors-with-panic.html
995    /// [try-option]: https://doc.rust-lang.org/book/ch09-02-recoverable-errors-with-result.html#where-the--operator-can-be-used
996    /// [`unwrap_or`]: Option::unwrap_or
997    /// [`unwrap_or_else`]: Option::unwrap_or_else
998    /// [`unwrap_or_default`]: Option::unwrap_or_default
999    ///
1000    /// # Panics
1001    ///
1002    /// Panics if the self value equals [`None`].
1003    ///
1004    /// # Examples
1005    ///
1006    /// ```
1007    /// let x = Some("air");
1008    /// assert_eq!(x.unwrap(), "air");
1009    /// ```
1010    ///
1011    /// ```should_panic
1012    /// let x: Option<&str> = None;
1013    /// assert_eq!(x.unwrap(), "air"); // fails
1014    /// ```
1015    #[inline(always)]
1016    #[track_caller]
1017    #[stable(feature = "rust1", since = "1.0.0")]
1018    #[rustc_diagnostic_item = "option_unwrap"]
1019    #[rustc_allow_const_fn_unstable(const_precise_live_drops)]
1020    #[rustc_const_stable(feature = "const_option", since = "1.83.0")]
1021    #[cfg(not(feature = "ferrocene_certified"))]
1022    pub const fn unwrap(self) -> T {
1023        match self {
1024            Some(val) => val,
1025            None => unwrap_failed(),
1026        }
1027    }
1028
1029    /// Returns the contained [`Some`] value or a provided default.
1030    ///
1031    /// Arguments passed to `unwrap_or` are eagerly evaluated; if you are passing
1032    /// the result of a function call, it is recommended to use [`unwrap_or_else`],
1033    /// which is lazily evaluated.
1034    ///
1035    /// [`unwrap_or_else`]: Option::unwrap_or_else
1036    ///
1037    /// # Examples
1038    ///
1039    /// ```
1040    /// assert_eq!(Some("car").unwrap_or("bike"), "car");
1041    /// assert_eq!(None.unwrap_or("bike"), "bike");
1042    /// ```
1043    #[inline]
1044    #[stable(feature = "rust1", since = "1.0.0")]
1045    #[rustc_allow_const_fn_unstable(const_precise_live_drops)]
1046    #[rustc_const_unstable(feature = "const_option_ops", issue = "143956")]
1047    pub const fn unwrap_or(self, default: T) -> T
1048    where
1049        T: [const] Destruct,
1050    {
1051        match self {
1052            Some(x) => x,
1053            None => default,
1054        }
1055    }
1056
1057    /// Returns the contained [`Some`] value or computes it from a closure.
1058    ///
1059    /// # Examples
1060    ///
1061    /// ```
1062    /// let k = 10;
1063    /// assert_eq!(Some(4).unwrap_or_else(|| 2 * k), 4);
1064    /// assert_eq!(None.unwrap_or_else(|| 2 * k), 20);
1065    /// ```
1066    #[inline]
1067    #[track_caller]
1068    #[stable(feature = "rust1", since = "1.0.0")]
1069    #[rustc_const_unstable(feature = "const_option_ops", issue = "143956")]
1070    pub const fn unwrap_or_else<F>(self, f: F) -> T
1071    where
1072        F: [const] FnOnce() -> T + [const] Destruct,
1073    {
1074        match self {
1075            Some(x) => x,
1076            None => f(),
1077        }
1078    }
1079
1080    /// Returns the contained [`Some`] value or a default.
1081    ///
1082    /// Consumes the `self` argument then, if [`Some`], returns the contained
1083    /// value, otherwise if [`None`], returns the [default value] for that
1084    /// type.
1085    ///
1086    /// # Examples
1087    ///
1088    /// ```
1089    /// let x: Option<u32> = None;
1090    /// let y: Option<u32> = Some(12);
1091    ///
1092    /// assert_eq!(x.unwrap_or_default(), 0);
1093    /// assert_eq!(y.unwrap_or_default(), 12);
1094    /// ```
1095    ///
1096    /// [default value]: Default::default
1097    /// [`parse`]: str::parse
1098    /// [`FromStr`]: crate::str::FromStr
1099    #[inline]
1100    #[stable(feature = "rust1", since = "1.0.0")]
1101    #[rustc_const_unstable(feature = "const_option_ops", issue = "143956")]
1102    pub const fn unwrap_or_default(self) -> T
1103    where
1104        T: [const] Default,
1105    {
1106        match self {
1107            Some(x) => x,
1108            None => T::default(),
1109        }
1110    }
1111
1112    /// Returns the contained [`Some`] value, consuming the `self` value,
1113    /// without checking that the value is not [`None`].
1114    ///
1115    /// # Safety
1116    ///
1117    /// Calling this method on [`None`] is *[undefined behavior]*.
1118    ///
1119    /// [undefined behavior]: https://doc.rust-lang.org/reference/behavior-considered-undefined.html
1120    ///
1121    /// # Examples
1122    ///
1123    /// ```
1124    /// let x = Some("air");
1125    /// assert_eq!(unsafe { x.unwrap_unchecked() }, "air");
1126    /// ```
1127    ///
1128    /// ```no_run
1129    /// let x: Option<&str> = None;
1130    /// assert_eq!(unsafe { x.unwrap_unchecked() }, "air"); // Undefined behavior!
1131    /// ```
1132    #[inline]
1133    #[track_caller]
1134    #[stable(feature = "option_result_unwrap_unchecked", since = "1.58.0")]
1135    #[rustc_allow_const_fn_unstable(const_precise_live_drops)]
1136    #[rustc_const_stable(feature = "const_option", since = "1.83.0")]
1137    #[cfg(not(feature = "ferrocene_certified"))]
1138    pub const unsafe fn unwrap_unchecked(self) -> T {
1139        match self {
1140            Some(val) => val,
1141            // SAFETY: the safety contract must be upheld by the caller.
1142            None => unsafe { hint::unreachable_unchecked() },
1143        }
1144    }
1145
1146    /////////////////////////////////////////////////////////////////////////
1147    // Transforming contained values
1148    /////////////////////////////////////////////////////////////////////////
1149
1150    /// Maps an `Option<T>` to `Option<U>` by applying a function to a contained value (if `Some`) or returns `None` (if `None`).
1151    ///
1152    /// # Examples
1153    ///
1154    /// Calculates the length of an <code>Option<[String]></code> as an
1155    /// <code>Option<[usize]></code>, consuming the original:
1156    ///
1157    /// [String]: ../../std/string/struct.String.html "String"
1158    /// ```
1159    /// let maybe_some_string = Some(String::from("Hello, World!"));
1160    /// // `Option::map` takes self *by value*, consuming `maybe_some_string`
1161    /// let maybe_some_len = maybe_some_string.map(|s| s.len());
1162    /// assert_eq!(maybe_some_len, Some(13));
1163    ///
1164    /// let x: Option<&str> = None;
1165    /// assert_eq!(x.map(|s| s.len()), None);
1166    /// ```
1167    #[inline]
1168    #[stable(feature = "rust1", since = "1.0.0")]
1169    #[rustc_const_unstable(feature = "const_option_ops", issue = "143956")]
1170    pub const fn map<U, F>(self, f: F) -> Option<U>
1171    where
1172        F: [const] FnOnce(T) -> U + [const] Destruct,
1173    {
1174        match self {
1175            Some(x) => Some(f(x)),
1176            None => None,
1177        }
1178    }
1179
1180    /// Calls a function with a reference to the contained value if [`Some`].
1181    ///
1182    /// Returns the original option.
1183    ///
1184    /// # Examples
1185    ///
1186    /// ```
1187    /// let list = vec![1, 2, 3];
1188    ///
1189    /// // prints "got: 2"
1190    /// let x = list
1191    ///     .get(1)
1192    ///     .inspect(|x| println!("got: {x}"))
1193    ///     .expect("list should be long enough");
1194    ///
1195    /// // prints nothing
1196    /// list.get(5).inspect(|x| println!("got: {x}"));
1197    /// ```
1198    #[inline]
1199    #[stable(feature = "result_option_inspect", since = "1.76.0")]
1200    #[rustc_const_unstable(feature = "const_option_ops", issue = "143956")]
1201    pub const fn inspect<F>(self, f: F) -> Self
1202    where
1203        F: [const] FnOnce(&T) + [const] Destruct,
1204    {
1205        if let Some(ref x) = self {
1206            // Ferrocene annotation: This function is thoroughly tested inside the `option_methods`
1207            // test in `coretests`. Additionally, the `inspect_option` test guarantees that `f` is
1208            // being called by panicking inside the `predicate` body and marking the test as
1209            // `#[should_panic]`.
1210            f(x);
1211        }
1212
1213        self
1214    }
1215
1216    /// Returns the provided default result (if none),
1217    /// or applies a function to the contained value (if any).
1218    ///
1219    /// Arguments passed to `map_or` are eagerly evaluated; if you are passing
1220    /// the result of a function call, it is recommended to use [`map_or_else`],
1221    /// which is lazily evaluated.
1222    ///
1223    /// [`map_or_else`]: Option::map_or_else
1224    ///
1225    /// # Examples
1226    ///
1227    /// ```
1228    /// let x = Some("foo");
1229    /// assert_eq!(x.map_or(42, |v| v.len()), 3);
1230    ///
1231    /// let x: Option<&str> = None;
1232    /// assert_eq!(x.map_or(42, |v| v.len()), 42);
1233    /// ```
1234    #[inline]
1235    #[stable(feature = "rust1", since = "1.0.0")]
1236    #[must_use = "if you don't need the returned value, use `if let` instead"]
1237    #[rustc_const_unstable(feature = "const_option_ops", issue = "143956")]
1238    pub const fn map_or<U, F>(self, default: U, f: F) -> U
1239    where
1240        F: [const] FnOnce(T) -> U + [const] Destruct,
1241        U: [const] Destruct,
1242    {
1243        match self {
1244            Some(t) => f(t),
1245            None => default,
1246        }
1247    }
1248
1249    /// Computes a default function result (if none), or
1250    /// applies a different function to the contained value (if any).
1251    ///
1252    /// # Basic examples
1253    ///
1254    /// ```
1255    /// let k = 21;
1256    ///
1257    /// let x = Some("foo");
1258    /// assert_eq!(x.map_or_else(|| 2 * k, |v| v.len()), 3);
1259    ///
1260    /// let x: Option<&str> = None;
1261    /// assert_eq!(x.map_or_else(|| 2 * k, |v| v.len()), 42);
1262    /// ```
1263    ///
1264    /// # Handling a Result-based fallback
1265    ///
1266    /// A somewhat common occurrence when dealing with optional values
1267    /// in combination with [`Result<T, E>`] is the case where one wants to invoke
1268    /// a fallible fallback if the option is not present.  This example
1269    /// parses a command line argument (if present), or the contents of a file to
1270    /// an integer.  However, unlike accessing the command line argument, reading
1271    /// the file is fallible, so it must be wrapped with `Ok`.
1272    ///
1273    /// ```no_run
1274    /// # fn main() -> Result<(), Box<dyn std::error::Error>> {
1275    /// let v: u64 = std::env::args()
1276    ///    .nth(1)
1277    ///    .map_or_else(|| std::fs::read_to_string("/etc/someconfig.conf"), Ok)?
1278    ///    .parse()?;
1279    /// #   Ok(())
1280    /// # }
1281    /// ```
1282    #[inline]
1283    #[stable(feature = "rust1", since = "1.0.0")]
1284    #[rustc_const_unstable(feature = "const_option_ops", issue = "143956")]
1285    pub const fn map_or_else<U, D, F>(self, default: D, f: F) -> U
1286    where
1287        D: [const] FnOnce() -> U + [const] Destruct,
1288        F: [const] FnOnce(T) -> U + [const] Destruct,
1289    {
1290        match self {
1291            Some(t) => f(t),
1292            None => default(),
1293        }
1294    }
1295
1296    /// Maps an `Option<T>` to a `U` by applying function `f` to the contained
1297    /// value if the option is [`Some`], otherwise if [`None`], returns the
1298    /// [default value] for the type `U`.
1299    ///
1300    /// # Examples
1301    ///
1302    /// ```
1303    /// #![feature(result_option_map_or_default)]
1304    ///
1305    /// let x: Option<&str> = Some("hi");
1306    /// let y: Option<&str> = None;
1307    ///
1308    /// assert_eq!(x.map_or_default(|x| x.len()), 2);
1309    /// assert_eq!(y.map_or_default(|y| y.len()), 0);
1310    /// ```
1311    ///
1312    /// [default value]: Default::default
1313    #[inline]
1314    #[unstable(feature = "result_option_map_or_default", issue = "138099")]
1315    #[rustc_const_unstable(feature = "const_option_ops", issue = "143956")]
1316    pub const fn map_or_default<U, F>(self, f: F) -> U
1317    where
1318        U: [const] Default,
1319        F: [const] FnOnce(T) -> U + [const] Destruct,
1320    {
1321        match self {
1322            Some(t) => f(t),
1323            None => U::default(),
1324        }
1325    }
1326
1327    /// Transforms the `Option<T>` into a [`Result<T, E>`], mapping [`Some(v)`] to
1328    /// [`Ok(v)`] and [`None`] to [`Err(err)`].
1329    ///
1330    /// Arguments passed to `ok_or` are eagerly evaluated; if you are passing the
1331    /// result of a function call, it is recommended to use [`ok_or_else`], which is
1332    /// lazily evaluated.
1333    ///
1334    /// [`Ok(v)`]: Ok
1335    /// [`Err(err)`]: Err
1336    /// [`Some(v)`]: Some
1337    /// [`ok_or_else`]: Option::ok_or_else
1338    ///
1339    /// # Examples
1340    ///
1341    /// ```
1342    /// let x = Some("foo");
1343    /// assert_eq!(x.ok_or(0), Ok("foo"));
1344    ///
1345    /// let x: Option<&str> = None;
1346    /// assert_eq!(x.ok_or(0), Err(0));
1347    /// ```
1348    #[inline]
1349    #[stable(feature = "rust1", since = "1.0.0")]
1350    #[rustc_const_unstable(feature = "const_option_ops", issue = "143956")]
1351    pub const fn ok_or<E: [const] Destruct>(self, err: E) -> Result<T, E> {
1352        match self {
1353            Some(v) => Ok(v),
1354            None => Err(err),
1355        }
1356    }
1357
1358    /// Transforms the `Option<T>` into a [`Result<T, E>`], mapping [`Some(v)`] to
1359    /// [`Ok(v)`] and [`None`] to [`Err(err())`].
1360    ///
1361    /// [`Ok(v)`]: Ok
1362    /// [`Err(err())`]: Err
1363    /// [`Some(v)`]: Some
1364    ///
1365    /// # Examples
1366    ///
1367    /// ```
1368    /// let x = Some("foo");
1369    /// assert_eq!(x.ok_or_else(|| 0), Ok("foo"));
1370    ///
1371    /// let x: Option<&str> = None;
1372    /// assert_eq!(x.ok_or_else(|| 0), Err(0));
1373    /// ```
1374    #[inline]
1375    #[stable(feature = "rust1", since = "1.0.0")]
1376    #[rustc_const_unstable(feature = "const_option_ops", issue = "143956")]
1377    pub const fn ok_or_else<E, F>(self, err: F) -> Result<T, E>
1378    where
1379        F: [const] FnOnce() -> E + [const] Destruct,
1380    {
1381        match self {
1382            Some(v) => Ok(v),
1383            None => Err(err()),
1384        }
1385    }
1386
1387    /// Converts from `Option<T>` (or `&Option<T>`) to `Option<&T::Target>`.
1388    ///
1389    /// Leaves the original Option in-place, creating a new one with a reference
1390    /// to the original one, additionally coercing the contents via [`Deref`].
1391    ///
1392    /// # Examples
1393    ///
1394    /// ```
1395    /// let x: Option<String> = Some("hey".to_owned());
1396    /// assert_eq!(x.as_deref(), Some("hey"));
1397    ///
1398    /// let x: Option<String> = None;
1399    /// assert_eq!(x.as_deref(), None);
1400    /// ```
1401    #[inline]
1402    #[stable(feature = "option_deref", since = "1.40.0")]
1403    #[rustc_const_unstable(feature = "const_convert", issue = "143773")]
1404    pub const fn as_deref(&self) -> Option<&T::Target>
1405    where
1406        T: [const] Deref,
1407    {
1408        self.as_ref().map(Deref::deref)
1409    }
1410
1411    /// Converts from `Option<T>` (or `&mut Option<T>`) to `Option<&mut T::Target>`.
1412    ///
1413    /// Leaves the original `Option` in-place, creating a new one containing a mutable reference to
1414    /// the inner type's [`Deref::Target`] type.
1415    ///
1416    /// # Examples
1417    ///
1418    /// ```
1419    /// let mut x: Option<String> = Some("hey".to_owned());
1420    /// assert_eq!(x.as_deref_mut().map(|x| {
1421    ///     x.make_ascii_uppercase();
1422    ///     x
1423    /// }), Some("HEY".to_owned().as_mut_str()));
1424    /// ```
1425    #[inline]
1426    #[stable(feature = "option_deref", since = "1.40.0")]
1427    #[rustc_const_unstable(feature = "const_convert", issue = "143773")]
1428    pub const fn as_deref_mut(&mut self) -> Option<&mut T::Target>
1429    where
1430        T: [const] DerefMut,
1431    {
1432        self.as_mut().map(DerefMut::deref_mut)
1433    }
1434
1435    /////////////////////////////////////////////////////////////////////////
1436    // Iterator constructors
1437    /////////////////////////////////////////////////////////////////////////
1438
1439    /// Returns an iterator over the possibly contained value.
1440    ///
1441    /// # Examples
1442    ///
1443    /// ```
1444    /// let x = Some(4);
1445    /// assert_eq!(x.iter().next(), Some(&4));
1446    ///
1447    /// let x: Option<u32> = None;
1448    /// assert_eq!(x.iter().next(), None);
1449    /// ```
1450    #[inline]
1451    #[stable(feature = "rust1", since = "1.0.0")]
1452    pub fn iter(&self) -> Iter<'_, T> {
1453        Iter { inner: Item { opt: self.as_ref() } }
1454    }
1455
1456    /// Returns a mutable iterator over the possibly contained value.
1457    ///
1458    /// # Examples
1459    ///
1460    /// ```
1461    /// let mut x = Some(4);
1462    /// match x.iter_mut().next() {
1463    ///     Some(v) => *v = 42,
1464    ///     None => {},
1465    /// }
1466    /// assert_eq!(x, Some(42));
1467    ///
1468    /// let mut x: Option<u32> = None;
1469    /// assert_eq!(x.iter_mut().next(), None);
1470    /// ```
1471    #[inline]
1472    #[stable(feature = "rust1", since = "1.0.0")]
1473    pub fn iter_mut(&mut self) -> IterMut<'_, T> {
1474        IterMut { inner: Item { opt: self.as_mut() } }
1475    }
1476
1477    /////////////////////////////////////////////////////////////////////////
1478    // Boolean operations on the values, eager and lazy
1479    /////////////////////////////////////////////////////////////////////////
1480
1481    /// Returns [`None`] if the option is [`None`], otherwise returns `optb`.
1482    ///
1483    /// Arguments passed to `and` are eagerly evaluated; if you are passing the
1484    /// result of a function call, it is recommended to use [`and_then`], which is
1485    /// lazily evaluated.
1486    ///
1487    /// [`and_then`]: Option::and_then
1488    ///
1489    /// # Examples
1490    ///
1491    /// ```
1492    /// let x = Some(2);
1493    /// let y: Option<&str> = None;
1494    /// assert_eq!(x.and(y), None);
1495    ///
1496    /// let x: Option<u32> = None;
1497    /// let y = Some("foo");
1498    /// assert_eq!(x.and(y), None);
1499    ///
1500    /// let x = Some(2);
1501    /// let y = Some("foo");
1502    /// assert_eq!(x.and(y), Some("foo"));
1503    ///
1504    /// let x: Option<u32> = None;
1505    /// let y: Option<&str> = None;
1506    /// assert_eq!(x.and(y), None);
1507    /// ```
1508    #[inline]
1509    #[stable(feature = "rust1", since = "1.0.0")]
1510    #[rustc_const_unstable(feature = "const_option_ops", issue = "143956")]
1511    pub const fn and<U>(self, optb: Option<U>) -> Option<U>
1512    where
1513        T: [const] Destruct,
1514        U: [const] Destruct,
1515    {
1516        match self {
1517            Some(_) => optb,
1518            None => None,
1519        }
1520    }
1521
1522    /// Returns [`None`] if the option is [`None`], otherwise calls `f` with the
1523    /// wrapped value and returns the result.
1524    ///
1525    /// Some languages call this operation flatmap.
1526    ///
1527    /// # Examples
1528    ///
1529    /// ```
1530    /// fn sq_then_to_string(x: u32) -> Option<String> {
1531    ///     x.checked_mul(x).map(|sq| sq.to_string())
1532    /// }
1533    ///
1534    /// assert_eq!(Some(2).and_then(sq_then_to_string), Some(4.to_string()));
1535    /// assert_eq!(Some(1_000_000).and_then(sq_then_to_string), None); // overflowed!
1536    /// assert_eq!(None.and_then(sq_then_to_string), None);
1537    /// ```
1538    ///
1539    /// Often used to chain fallible operations that may return [`None`].
1540    ///
1541    /// ```
1542    /// let arr_2d = [["A0", "A1"], ["B0", "B1"]];
1543    ///
1544    /// let item_0_1 = arr_2d.get(0).and_then(|row| row.get(1));
1545    /// assert_eq!(item_0_1, Some(&"A1"));
1546    ///
1547    /// let item_2_0 = arr_2d.get(2).and_then(|row| row.get(0));
1548    /// assert_eq!(item_2_0, None);
1549    /// ```
1550    #[doc(alias = "flatmap")]
1551    #[inline]
1552    #[stable(feature = "rust1", since = "1.0.0")]
1553    #[rustc_confusables("flat_map", "flatmap")]
1554    #[rustc_const_unstable(feature = "const_option_ops", issue = "143956")]
1555    pub const fn and_then<U, F>(self, f: F) -> Option<U>
1556    where
1557        F: [const] FnOnce(T) -> Option<U> + [const] Destruct,
1558    {
1559        match self {
1560            Some(x) => f(x),
1561            None => None,
1562        }
1563    }
1564
1565    /// Returns [`None`] if the option is [`None`], otherwise calls `predicate`
1566    /// with the wrapped value and returns:
1567    ///
1568    /// - [`Some(t)`] if `predicate` returns `true` (where `t` is the wrapped
1569    ///   value), and
1570    /// - [`None`] if `predicate` returns `false`.
1571    ///
1572    /// This function works similar to [`Iterator::filter()`]. You can imagine
1573    /// the `Option<T>` being an iterator over one or zero elements. `filter()`
1574    /// lets you decide which elements to keep.
1575    ///
1576    /// # Examples
1577    ///
1578    /// ```rust
1579    /// fn is_even(n: &i32) -> bool {
1580    ///     n % 2 == 0
1581    /// }
1582    ///
1583    /// assert_eq!(None.filter(is_even), None);
1584    /// assert_eq!(Some(3).filter(is_even), None);
1585    /// assert_eq!(Some(4).filter(is_even), Some(4));
1586    /// ```
1587    ///
1588    /// [`Some(t)`]: Some
1589    #[inline]
1590    #[stable(feature = "option_filter", since = "1.27.0")]
1591    #[rustc_const_unstable(feature = "const_option_ops", issue = "143956")]
1592    pub const fn filter<P>(self, predicate: P) -> Self
1593    where
1594        P: [const] FnOnce(&T) -> bool + [const] Destruct,
1595        T: [const] Destruct,
1596    {
1597        if let Some(x) = self {
1598            // Ferrocene annotation: This function is thoroughly tested inside the `option_methods`
1599            // test in `coretests`. Additionally, the `filter_option` test guarantees that
1600            // `predicate` is being called by panicking inside the `predicate` body and marking the
1601            // test as `#[should_panic]`.
1602            if predicate(&x) {
1603                return Some(x);
1604            }
1605        }
1606        None
1607    }
1608
1609    /// Returns the option if it contains a value, otherwise returns `optb`.
1610    ///
1611    /// Arguments passed to `or` are eagerly evaluated; if you are passing the
1612    /// result of a function call, it is recommended to use [`or_else`], which is
1613    /// lazily evaluated.
1614    ///
1615    /// [`or_else`]: Option::or_else
1616    ///
1617    /// # Examples
1618    ///
1619    /// ```
1620    /// let x = Some(2);
1621    /// let y = None;
1622    /// assert_eq!(x.or(y), Some(2));
1623    ///
1624    /// let x = None;
1625    /// let y = Some(100);
1626    /// assert_eq!(x.or(y), Some(100));
1627    ///
1628    /// let x = Some(2);
1629    /// let y = Some(100);
1630    /// assert_eq!(x.or(y), Some(2));
1631    ///
1632    /// let x: Option<u32> = None;
1633    /// let y = None;
1634    /// assert_eq!(x.or(y), None);
1635    /// ```
1636    #[inline]
1637    #[stable(feature = "rust1", since = "1.0.0")]
1638    #[rustc_const_unstable(feature = "const_option_ops", issue = "143956")]
1639    pub const fn or(self, optb: Option<T>) -> Option<T>
1640    where
1641        T: [const] Destruct,
1642    {
1643        match self {
1644            x @ Some(_) => x,
1645            None => optb,
1646        }
1647    }
1648
1649    /// Returns the option if it contains a value, otherwise calls `f` and
1650    /// returns the result.
1651    ///
1652    /// # Examples
1653    ///
1654    /// ```
1655    /// fn nobody() -> Option<&'static str> { None }
1656    /// fn vikings() -> Option<&'static str> { Some("vikings") }
1657    ///
1658    /// assert_eq!(Some("barbarians").or_else(vikings), Some("barbarians"));
1659    /// assert_eq!(None.or_else(vikings), Some("vikings"));
1660    /// assert_eq!(None.or_else(nobody), None);
1661    /// ```
1662    #[inline]
1663    #[stable(feature = "rust1", since = "1.0.0")]
1664    #[rustc_const_unstable(feature = "const_option_ops", issue = "143956")]
1665    pub const fn or_else<F>(self, f: F) -> Option<T>
1666    where
1667        F: [const] FnOnce() -> Option<T> + [const] Destruct,
1668        //FIXME(const_hack): this `T: [const] Destruct` is unnecessary, but even precise live drops can't tell
1669        // no value of type `T` gets dropped here
1670        T: [const] Destruct,
1671    {
1672        match self {
1673            x @ Some(_) => x,
1674            None => f(),
1675        }
1676    }
1677
1678    /// Returns [`Some`] if exactly one of `self`, `optb` is [`Some`], otherwise returns [`None`].
1679    ///
1680    /// # Examples
1681    ///
1682    /// ```
1683    /// let x = Some(2);
1684    /// let y: Option<u32> = None;
1685    /// assert_eq!(x.xor(y), Some(2));
1686    ///
1687    /// let x: Option<u32> = None;
1688    /// let y = Some(2);
1689    /// assert_eq!(x.xor(y), Some(2));
1690    ///
1691    /// let x = Some(2);
1692    /// let y = Some(2);
1693    /// assert_eq!(x.xor(y), None);
1694    ///
1695    /// let x: Option<u32> = None;
1696    /// let y: Option<u32> = None;
1697    /// assert_eq!(x.xor(y), None);
1698    /// ```
1699    #[inline]
1700    #[stable(feature = "option_xor", since = "1.37.0")]
1701    #[rustc_const_unstable(feature = "const_option_ops", issue = "143956")]
1702    pub const fn xor(self, optb: Option<T>) -> Option<T>
1703    where
1704        T: [const] Destruct,
1705    {
1706        match (self, optb) {
1707            (a @ Some(_), None) => a,
1708            (None, b @ Some(_)) => b,
1709            _ => None,
1710        }
1711    }
1712
1713    /////////////////////////////////////////////////////////////////////////
1714    // Entry-like operations to insert a value and return a reference
1715    /////////////////////////////////////////////////////////////////////////
1716
1717    /// Inserts `value` into the option, then returns a mutable reference to it.
1718    ///
1719    /// If the option already contains a value, the old value is dropped.
1720    ///
1721    /// See also [`Option::get_or_insert`], which doesn't update the value if
1722    /// the option already contains [`Some`].
1723    ///
1724    /// # Example
1725    ///
1726    /// ```
1727    /// let mut opt = None;
1728    /// let val = opt.insert(1);
1729    /// assert_eq!(*val, 1);
1730    /// assert_eq!(opt.unwrap(), 1);
1731    /// let val = opt.insert(2);
1732    /// assert_eq!(*val, 2);
1733    /// *val = 3;
1734    /// assert_eq!(opt.unwrap(), 3);
1735    /// ```
1736    #[must_use = "if you intended to set a value, consider assignment instead"]
1737    #[inline]
1738    #[stable(feature = "option_insert", since = "1.53.0")]
1739    #[rustc_const_unstable(feature = "const_option_ops", issue = "143956")]
1740    #[cfg(not(feature = "ferrocene_certified"))]
1741    pub const fn insert(&mut self, value: T) -> &mut T
1742    where
1743        T: [const] Destruct,
1744    {
1745        *self = Some(value);
1746
1747        // SAFETY: the code above just filled the option
1748        unsafe { self.as_mut().unwrap_unchecked() }
1749    }
1750
1751    /// Inserts `value` into the option if it is [`None`], then
1752    /// returns a mutable reference to the contained value.
1753    ///
1754    /// See also [`Option::insert`], which updates the value even if
1755    /// the option already contains [`Some`].
1756    ///
1757    /// # Examples
1758    ///
1759    /// ```
1760    /// let mut x = None;
1761    ///
1762    /// {
1763    ///     let y: &mut u32 = x.get_or_insert(5);
1764    ///     assert_eq!(y, &5);
1765    ///
1766    ///     *y = 7;
1767    /// }
1768    ///
1769    /// assert_eq!(x, Some(7));
1770    /// ```
1771    #[inline]
1772    #[stable(feature = "option_entry", since = "1.20.0")]
1773    #[cfg(not(feature = "ferrocene_certified"))]
1774    pub fn get_or_insert(&mut self, value: T) -> &mut T {
1775        self.get_or_insert_with(|| value)
1776    }
1777
1778    /// Inserts the default value into the option if it is [`None`], then
1779    /// returns a mutable reference to the contained value.
1780    ///
1781    /// # Examples
1782    ///
1783    /// ```
1784    /// let mut x = None;
1785    ///
1786    /// {
1787    ///     let y: &mut u32 = x.get_or_insert_default();
1788    ///     assert_eq!(y, &0);
1789    ///
1790    ///     *y = 7;
1791    /// }
1792    ///
1793    /// assert_eq!(x, Some(7));
1794    /// ```
1795    #[inline]
1796    #[stable(feature = "option_get_or_insert_default", since = "1.83.0")]
1797    #[rustc_const_unstable(feature = "const_option_ops", issue = "143956")]
1798    #[cfg(not(feature = "ferrocene_certified"))]
1799    pub const fn get_or_insert_default(&mut self) -> &mut T
1800    where
1801        T: [const] Default + [const] Destruct,
1802    {
1803        self.get_or_insert_with(T::default)
1804    }
1805
1806    /// Inserts a value computed from `f` into the option if it is [`None`],
1807    /// then returns a mutable reference to the contained value.
1808    ///
1809    /// # Examples
1810    ///
1811    /// ```
1812    /// let mut x = None;
1813    ///
1814    /// {
1815    ///     let y: &mut u32 = x.get_or_insert_with(|| 5);
1816    ///     assert_eq!(y, &5);
1817    ///
1818    ///     *y = 7;
1819    /// }
1820    ///
1821    /// assert_eq!(x, Some(7));
1822    /// ```
1823    #[inline]
1824    #[stable(feature = "option_entry", since = "1.20.0")]
1825    #[rustc_const_unstable(feature = "const_option_ops", issue = "143956")]
1826    #[cfg(not(feature = "ferrocene_certified"))]
1827    pub const fn get_or_insert_with<F>(&mut self, f: F) -> &mut T
1828    where
1829        F: [const] FnOnce() -> T + [const] Destruct,
1830        T: [const] Destruct,
1831    {
1832        if let None = self {
1833            *self = Some(f());
1834        }
1835
1836        // SAFETY: a `None` variant for `self` would have been replaced by a `Some`
1837        // variant in the code above.
1838        unsafe { self.as_mut().unwrap_unchecked() }
1839    }
1840
1841    /////////////////////////////////////////////////////////////////////////
1842    // Misc
1843    /////////////////////////////////////////////////////////////////////////
1844
1845    /// Takes the value out of the option, leaving a [`None`] in its place.
1846    ///
1847    /// # Examples
1848    ///
1849    /// ```
1850    /// let mut x = Some(2);
1851    /// let y = x.take();
1852    /// assert_eq!(x, None);
1853    /// assert_eq!(y, Some(2));
1854    ///
1855    /// let mut x: Option<u32> = None;
1856    /// let y = x.take();
1857    /// assert_eq!(x, None);
1858    /// assert_eq!(y, None);
1859    /// ```
1860    #[inline]
1861    #[stable(feature = "rust1", since = "1.0.0")]
1862    #[rustc_const_stable(feature = "const_option", since = "1.83.0")]
1863    #[cfg(not(feature = "ferrocene_certified"))]
1864    pub const fn take(&mut self) -> Option<T> {
1865        // FIXME(const-hack) replace `mem::replace` by `mem::take` when the latter is const ready
1866        mem::replace(self, None)
1867    }
1868
1869    /// Takes the value out of the option, but only if the predicate evaluates to
1870    /// `true` on a mutable reference to the value.
1871    ///
1872    /// In other words, replaces `self` with `None` if the predicate returns `true`.
1873    /// This method operates similar to [`Option::take`] but conditional.
1874    ///
1875    /// # Examples
1876    ///
1877    /// ```
1878    /// let mut x = Some(42);
1879    ///
1880    /// let prev = x.take_if(|v| if *v == 42 {
1881    ///     *v += 1;
1882    ///     false
1883    /// } else {
1884    ///     false
1885    /// });
1886    /// assert_eq!(x, Some(43));
1887    /// assert_eq!(prev, None);
1888    ///
1889    /// let prev = x.take_if(|v| *v == 43);
1890    /// assert_eq!(x, None);
1891    /// assert_eq!(prev, Some(43));
1892    /// ```
1893    #[inline]
1894    #[stable(feature = "option_take_if", since = "1.80.0")]
1895    #[rustc_const_unstable(feature = "const_option_ops", issue = "143956")]
1896    #[cfg(not(feature = "ferrocene_certified"))]
1897    pub const fn take_if<P>(&mut self, predicate: P) -> Option<T>
1898    where
1899        P: [const] FnOnce(&mut T) -> bool + [const] Destruct,
1900    {
1901        if self.as_mut().map_or(false, predicate) { self.take() } else { None }
1902    }
1903
1904    /// Replaces the actual value in the option by the value given in parameter,
1905    /// returning the old value if present,
1906    /// leaving a [`Some`] in its place without deinitializing either one.
1907    ///
1908    /// # Examples
1909    ///
1910    /// ```
1911    /// let mut x = Some(2);
1912    /// let old = x.replace(5);
1913    /// assert_eq!(x, Some(5));
1914    /// assert_eq!(old, Some(2));
1915    ///
1916    /// let mut x = None;
1917    /// let old = x.replace(3);
1918    /// assert_eq!(x, Some(3));
1919    /// assert_eq!(old, None);
1920    /// ```
1921    #[inline]
1922    #[stable(feature = "option_replace", since = "1.31.0")]
1923    #[rustc_const_stable(feature = "const_option", since = "1.83.0")]
1924    #[cfg(not(feature = "ferrocene_certified"))]
1925    pub const fn replace(&mut self, value: T) -> Option<T> {
1926        mem::replace(self, Some(value))
1927    }
1928
1929    /// Zips `self` with another `Option`.
1930    ///
1931    /// If `self` is `Some(s)` and `other` is `Some(o)`, this method returns `Some((s, o))`.
1932    /// Otherwise, `None` is returned.
1933    ///
1934    /// # Examples
1935    ///
1936    /// ```
1937    /// let x = Some(1);
1938    /// let y = Some("hi");
1939    /// let z = None::<u8>;
1940    ///
1941    /// assert_eq!(x.zip(y), Some((1, "hi")));
1942    /// assert_eq!(x.zip(z), None);
1943    /// ```
1944    #[stable(feature = "option_zip_option", since = "1.46.0")]
1945    #[rustc_const_unstable(feature = "const_option_ops", issue = "143956")]
1946    pub const fn zip<U>(self, other: Option<U>) -> Option<(T, U)>
1947    where
1948        T: [const] Destruct,
1949        U: [const] Destruct,
1950    {
1951        match (self, other) {
1952            (Some(a), Some(b)) => Some((a, b)),
1953            _ => None,
1954        }
1955    }
1956
1957    /// Zips `self` and another `Option` with function `f`.
1958    ///
1959    /// If `self` is `Some(s)` and `other` is `Some(o)`, this method returns `Some(f(s, o))`.
1960    /// Otherwise, `None` is returned.
1961    ///
1962    /// # Examples
1963    ///
1964    /// ```
1965    /// #![feature(option_zip)]
1966    ///
1967    /// #[derive(Debug, PartialEq)]
1968    /// struct Point {
1969    ///     x: f64,
1970    ///     y: f64,
1971    /// }
1972    ///
1973    /// impl Point {
1974    ///     fn new(x: f64, y: f64) -> Self {
1975    ///         Self { x, y }
1976    ///     }
1977    /// }
1978    ///
1979    /// let x = Some(17.5);
1980    /// let y = Some(42.7);
1981    ///
1982    /// assert_eq!(x.zip_with(y, Point::new), Some(Point { x: 17.5, y: 42.7 }));
1983    /// assert_eq!(x.zip_with(None, Point::new), None);
1984    /// ```
1985    #[unstable(feature = "option_zip", issue = "70086")]
1986    #[rustc_const_unstable(feature = "const_option_ops", issue = "143956")]
1987    #[cfg(not(feature = "ferrocene_certified"))]
1988    pub const fn zip_with<U, F, R>(self, other: Option<U>, f: F) -> Option<R>
1989    where
1990        F: [const] FnOnce(T, U) -> R + [const] Destruct,
1991        T: [const] Destruct,
1992        U: [const] Destruct,
1993    {
1994        match (self, other) {
1995            (Some(a), Some(b)) => Some(f(a, b)),
1996            _ => None,
1997        }
1998    }
1999
2000    /// Reduces two options into one, using the provided function if both are `Some`.
2001    ///
2002    /// If `self` is `Some(s)` and `other` is `Some(o)`, this method returns `Some(f(s, o))`.
2003    /// Otherwise, if only one of `self` and `other` is `Some`, that one is returned.
2004    /// If both `self` and `other` are `None`, `None` is returned.
2005    ///
2006    /// # Examples
2007    ///
2008    /// ```
2009    /// #![feature(option_reduce)]
2010    ///
2011    /// let s12 = Some(12);
2012    /// let s17 = Some(17);
2013    /// let n = None;
2014    /// let f = |a, b| a + b;
2015    ///
2016    /// assert_eq!(s12.reduce(s17, f), Some(29));
2017    /// assert_eq!(s12.reduce(n, f), Some(12));
2018    /// assert_eq!(n.reduce(s17, f), Some(17));
2019    /// assert_eq!(n.reduce(n, f), None);
2020    /// ```
2021    #[unstable(feature = "option_reduce", issue = "144273")]
2022    pub fn reduce<U, R, F>(self, other: Option<U>, f: F) -> Option<R>
2023    where
2024        T: Into<R>,
2025        U: Into<R>,
2026        F: FnOnce(T, U) -> R,
2027    {
2028        match (self, other) {
2029            (Some(a), Some(b)) => Some(f(a, b)),
2030            (Some(a), _) => Some(a.into()),
2031            (_, Some(b)) => Some(b.into()),
2032            _ => None,
2033        }
2034    }
2035}
2036
2037impl<T, U> Option<(T, U)> {
2038    /// Unzips an option containing a tuple of two options.
2039    ///
2040    /// If `self` is `Some((a, b))` this method returns `(Some(a), Some(b))`.
2041    /// Otherwise, `(None, None)` is returned.
2042    ///
2043    /// # Examples
2044    ///
2045    /// ```
2046    /// let x = Some((1, "hi"));
2047    /// let y = None::<(u8, u32)>;
2048    ///
2049    /// assert_eq!(x.unzip(), (Some(1), Some("hi")));
2050    /// assert_eq!(y.unzip(), (None, None));
2051    /// ```
2052    #[inline]
2053    #[stable(feature = "unzip_option", since = "1.66.0")]
2054    pub fn unzip(self) -> (Option<T>, Option<U>) {
2055        match self {
2056            Some((a, b)) => (Some(a), Some(b)),
2057            None => (None, None),
2058        }
2059    }
2060}
2061
2062impl<T> Option<&T> {
2063    /// Maps an `Option<&T>` to an `Option<T>` by copying the contents of the
2064    /// option.
2065    ///
2066    /// # Examples
2067    ///
2068    /// ```
2069    /// let x = 12;
2070    /// let opt_x = Some(&x);
2071    /// assert_eq!(opt_x, Some(&12));
2072    /// let copied = opt_x.copied();
2073    /// assert_eq!(copied, Some(12));
2074    /// ```
2075    #[must_use = "`self` will be dropped if the result is not used"]
2076    #[stable(feature = "copied", since = "1.35.0")]
2077    #[rustc_const_stable(feature = "const_option", since = "1.83.0")]
2078    pub const fn copied(self) -> Option<T>
2079    where
2080        T: Copy,
2081    {
2082        // FIXME(const-hack): this implementation, which sidesteps using `Option::map` since it's not const
2083        // ready yet, should be reverted when possible to avoid code repetition
2084        match self {
2085            Some(&v) => Some(v),
2086            None => None,
2087        }
2088    }
2089
2090    /// Maps an `Option<&T>` to an `Option<T>` by cloning the contents of the
2091    /// option.
2092    ///
2093    /// # Examples
2094    ///
2095    /// ```
2096    /// let x = 12;
2097    /// let opt_x = Some(&x);
2098    /// assert_eq!(opt_x, Some(&12));
2099    /// let cloned = opt_x.cloned();
2100    /// assert_eq!(cloned, Some(12));
2101    /// ```
2102    #[must_use = "`self` will be dropped if the result is not used"]
2103    #[stable(feature = "rust1", since = "1.0.0")]
2104    pub fn cloned(self) -> Option<T>
2105    where
2106        T: Clone,
2107    {
2108        match self {
2109            Some(t) => Some(t.clone()),
2110            None => None,
2111        }
2112    }
2113}
2114
2115impl<T> Option<&mut T> {
2116    /// Maps an `Option<&mut T>` to an `Option<T>` by copying the contents of the
2117    /// option.
2118    ///
2119    /// # Examples
2120    ///
2121    /// ```
2122    /// let mut x = 12;
2123    /// let opt_x = Some(&mut x);
2124    /// assert_eq!(opt_x, Some(&mut 12));
2125    /// let copied = opt_x.copied();
2126    /// assert_eq!(copied, Some(12));
2127    /// ```
2128    #[must_use = "`self` will be dropped if the result is not used"]
2129    #[stable(feature = "copied", since = "1.35.0")]
2130    #[rustc_const_stable(feature = "const_option", since = "1.83.0")]
2131    pub const fn copied(self) -> Option<T>
2132    where
2133        T: Copy,
2134    {
2135        match self {
2136            Some(&mut t) => Some(t),
2137            None => None,
2138        }
2139    }
2140
2141    /// Maps an `Option<&mut T>` to an `Option<T>` by cloning the contents of the
2142    /// option.
2143    ///
2144    /// # Examples
2145    ///
2146    /// ```
2147    /// let mut x = 12;
2148    /// let opt_x = Some(&mut x);
2149    /// assert_eq!(opt_x, Some(&mut 12));
2150    /// let cloned = opt_x.cloned();
2151    /// assert_eq!(cloned, Some(12));
2152    /// ```
2153    #[must_use = "`self` will be dropped if the result is not used"]
2154    #[stable(since = "1.26.0", feature = "option_ref_mut_cloned")]
2155    pub fn cloned(self) -> Option<T>
2156    where
2157        T: Clone,
2158    {
2159        match self {
2160            Some(t) => Some(t.clone()),
2161            None => None,
2162        }
2163    }
2164}
2165
2166impl<T, E> Option<Result<T, E>> {
2167    /// Transposes an `Option` of a [`Result`] into a [`Result`] of an `Option`.
2168    ///
2169    /// <code>[Some]\([Ok]\(\_))</code> is mapped to <code>[Ok]\([Some]\(\_))</code>,
2170    /// <code>[Some]\([Err]\(\_))</code> is mapped to <code>[Err]\(\_)</code>,
2171    /// and [`None`] will be mapped to <code>[Ok]\([None])</code>.
2172    ///
2173    /// # Examples
2174    ///
2175    /// ```
2176    /// #[derive(Debug, Eq, PartialEq)]
2177    /// struct SomeErr;
2178    ///
2179    /// let x: Option<Result<i32, SomeErr>> = Some(Ok(5));
2180    /// let y: Result<Option<i32>, SomeErr> = Ok(Some(5));
2181    /// assert_eq!(x.transpose(), y);
2182    /// ```
2183    #[inline]
2184    #[stable(feature = "transpose_result", since = "1.33.0")]
2185    #[rustc_allow_const_fn_unstable(const_precise_live_drops)]
2186    #[rustc_const_stable(feature = "const_option", since = "1.83.0")]
2187    pub const fn transpose(self) -> Result<Option<T>, E> {
2188        match self {
2189            Some(Ok(x)) => Ok(Some(x)),
2190            Some(Err(e)) => Err(e),
2191            None => Ok(None),
2192        }
2193    }
2194}
2195
2196#[cfg_attr(not(panic = "immediate-abort"), inline(never))]
2197#[cfg_attr(panic = "immediate-abort", inline)]
2198#[cold]
2199#[track_caller]
2200#[cfg(not(feature = "ferrocene_certified"))]
2201const fn unwrap_failed() -> ! {
2202    panic("called `Option::unwrap()` on a `None` value")
2203}
2204
2205// This is a separate function to reduce the code size of .expect() itself.
2206#[cfg_attr(not(panic = "immediate-abort"), inline(never))]
2207#[cfg_attr(panic = "immediate-abort", inline)]
2208#[cold]
2209#[track_caller]
2210#[cfg(not(feature = "ferrocene_certified"))]
2211const fn expect_failed(msg: &str) -> ! {
2212    panic_display(&msg)
2213}
2214
2215/////////////////////////////////////////////////////////////////////////////
2216// Trait implementations
2217/////////////////////////////////////////////////////////////////////////////
2218
2219#[stable(feature = "rust1", since = "1.0.0")]
2220#[rustc_const_unstable(feature = "const_clone", issue = "142757")]
2221impl<T> const Clone for Option<T>
2222where
2223    // FIXME(const_hack): the T: [const] Destruct should be inferred from the Self: [const] Destruct in clone_from.
2224    // See https://github.com/rust-lang/rust/issues/144207
2225    T: [const] Clone + [const] Destruct,
2226{
2227    #[inline]
2228    fn clone(&self) -> Self {
2229        match self {
2230            Some(x) => Some(x.clone()),
2231            None => None,
2232        }
2233    }
2234
2235    #[inline]
2236    fn clone_from(&mut self, source: &Self) {
2237        match (self, source) {
2238            (Some(to), Some(from)) => to.clone_from(from),
2239            (to, from) => *to = from.clone(),
2240        }
2241    }
2242}
2243
2244#[unstable(feature = "ergonomic_clones", issue = "132290")]
2245#[cfg(not(feature = "ferrocene_certified"))]
2246impl<T> crate::clone::UseCloned for Option<T> where T: crate::clone::UseCloned {}
2247
2248#[stable(feature = "rust1", since = "1.0.0")]
2249#[rustc_const_unstable(feature = "const_default", issue = "143894")]
2250impl<T> const Default for Option<T> {
2251    /// Returns [`None`][Option::None].
2252    ///
2253    /// # Examples
2254    ///
2255    /// ```
2256    /// let opt: Option<u32> = Option::default();
2257    /// assert!(opt.is_none());
2258    /// ```
2259    #[inline]
2260    fn default() -> Option<T> {
2261        None
2262    }
2263}
2264
2265#[stable(feature = "rust1", since = "1.0.0")]
2266#[cfg(not(feature = "ferrocene_certified"))]
2267impl<T> IntoIterator for Option<T> {
2268    type Item = T;
2269    type IntoIter = IntoIter<T>;
2270
2271    /// Returns a consuming iterator over the possibly contained value.
2272    ///
2273    /// # Examples
2274    ///
2275    /// ```
2276    /// let x = Some("string");
2277    /// let v: Vec<&str> = x.into_iter().collect();
2278    /// assert_eq!(v, ["string"]);
2279    ///
2280    /// let x = None;
2281    /// let v: Vec<&str> = x.into_iter().collect();
2282    /// assert!(v.is_empty());
2283    /// ```
2284    #[inline]
2285    fn into_iter(self) -> IntoIter<T> {
2286        IntoIter { inner: Item { opt: self } }
2287    }
2288}
2289
2290#[stable(since = "1.4.0", feature = "option_iter")]
2291#[cfg(not(feature = "ferrocene_certified"))]
2292impl<'a, T> IntoIterator for &'a Option<T> {
2293    type Item = &'a T;
2294    type IntoIter = Iter<'a, T>;
2295
2296    fn into_iter(self) -> Iter<'a, T> {
2297        self.iter()
2298    }
2299}
2300
2301#[stable(since = "1.4.0", feature = "option_iter")]
2302#[cfg(not(feature = "ferrocene_certified"))]
2303impl<'a, T> IntoIterator for &'a mut Option<T> {
2304    type Item = &'a mut T;
2305    type IntoIter = IterMut<'a, T>;
2306
2307    fn into_iter(self) -> IterMut<'a, T> {
2308        self.iter_mut()
2309    }
2310}
2311
2312#[stable(since = "1.12.0", feature = "option_from")]
2313#[rustc_const_unstable(feature = "const_convert", issue = "143773")]
2314impl<T> const From<T> for Option<T> {
2315    /// Moves `val` into a new [`Some`].
2316    ///
2317    /// # Examples
2318    ///
2319    /// ```
2320    /// let o: Option<u8> = Option::from(67);
2321    ///
2322    /// assert_eq!(Some(67), o);
2323    /// ```
2324    fn from(val: T) -> Option<T> {
2325        Some(val)
2326    }
2327}
2328
2329#[stable(feature = "option_ref_from_ref_option", since = "1.30.0")]
2330#[rustc_const_unstable(feature = "const_convert", issue = "143773")]
2331impl<'a, T> const From<&'a Option<T>> for Option<&'a T> {
2332    /// Converts from `&Option<T>` to `Option<&T>`.
2333    ///
2334    /// # Examples
2335    ///
2336    /// Converts an <code>[Option]<[String]></code> into an <code>[Option]<[usize]></code>, preserving
2337    /// the original. The [`map`] method takes the `self` argument by value, consuming the original,
2338    /// so this technique uses `from` to first take an [`Option`] to a reference
2339    /// to the value inside the original.
2340    ///
2341    /// [`map`]: Option::map
2342    /// [String]: ../../std/string/struct.String.html "String"
2343    ///
2344    /// ```
2345    /// let s: Option<String> = Some(String::from("Hello, Rustaceans!"));
2346    /// let o: Option<usize> = Option::from(&s).map(|ss: &String| ss.len());
2347    ///
2348    /// println!("Can still print s: {s:?}");
2349    ///
2350    /// assert_eq!(o, Some(18));
2351    /// ```
2352    fn from(o: &'a Option<T>) -> Option<&'a T> {
2353        o.as_ref()
2354    }
2355}
2356
2357#[stable(feature = "option_ref_from_ref_option", since = "1.30.0")]
2358#[rustc_const_unstable(feature = "const_convert", issue = "143773")]
2359impl<'a, T> const From<&'a mut Option<T>> for Option<&'a mut T> {
2360    /// Converts from `&mut Option<T>` to `Option<&mut T>`
2361    ///
2362    /// # Examples
2363    ///
2364    /// ```
2365    /// let mut s = Some(String::from("Hello"));
2366    /// let o: Option<&mut String> = Option::from(&mut s);
2367    ///
2368    /// match o {
2369    ///     Some(t) => *t = String::from("Hello, Rustaceans!"),
2370    ///     None => (),
2371    /// }
2372    ///
2373    /// assert_eq!(s, Some(String::from("Hello, Rustaceans!")));
2374    /// ```
2375    fn from(o: &'a mut Option<T>) -> Option<&'a mut T> {
2376        o.as_mut()
2377    }
2378}
2379
2380// Ideally, LLVM should be able to optimize our derive code to this.
2381// Once https://github.com/llvm/llvm-project/issues/52622 is fixed, we can
2382// go back to deriving `PartialEq`.
2383#[stable(feature = "rust1", since = "1.0.0")]
2384#[cfg(not(feature = "ferrocene_certified"))]
2385impl<T> crate::marker::StructuralPartialEq for Option<T> {}
2386#[stable(feature = "rust1", since = "1.0.0")]
2387#[rustc_const_unstable(feature = "const_cmp", issue = "143800")]
2388#[cfg(not(feature = "ferrocene_certified"))]
2389impl<T: [const] PartialEq> const PartialEq for Option<T> {
2390    #[inline]
2391    fn eq(&self, other: &Self) -> bool {
2392        // Spelling out the cases explicitly optimizes better than
2393        // `_ => false`
2394        match (self, other) {
2395            (Some(l), Some(r)) => *l == *r,
2396            (Some(_), None) => false,
2397            (None, Some(_)) => false,
2398            (None, None) => true,
2399        }
2400    }
2401}
2402
2403// Manually implementing here somewhat improves codegen for
2404// https://github.com/rust-lang/rust/issues/49892, although still
2405// not optimal.
2406#[stable(feature = "rust1", since = "1.0.0")]
2407#[rustc_const_unstable(feature = "const_cmp", issue = "143800")]
2408#[cfg(not(feature = "ferrocene_certified"))]
2409impl<T: [const] PartialOrd> const PartialOrd for Option<T> {
2410    #[inline]
2411    fn partial_cmp(&self, other: &Self) -> Option<cmp::Ordering> {
2412        match (self, other) {
2413            (Some(l), Some(r)) => l.partial_cmp(r),
2414            (Some(_), None) => Some(cmp::Ordering::Greater),
2415            (None, Some(_)) => Some(cmp::Ordering::Less),
2416            (None, None) => Some(cmp::Ordering::Equal),
2417        }
2418    }
2419}
2420
2421#[stable(feature = "rust1", since = "1.0.0")]
2422#[rustc_const_unstable(feature = "const_cmp", issue = "143800")]
2423#[cfg(not(feature = "ferrocene_certified"))]
2424impl<T: [const] Ord> const Ord for Option<T> {
2425    #[inline]
2426    fn cmp(&self, other: &Self) -> cmp::Ordering {
2427        match (self, other) {
2428            (Some(l), Some(r)) => l.cmp(r),
2429            (Some(_), None) => cmp::Ordering::Greater,
2430            (None, Some(_)) => cmp::Ordering::Less,
2431            (None, None) => cmp::Ordering::Equal,
2432        }
2433    }
2434}
2435
2436/////////////////////////////////////////////////////////////////////////////
2437// The Option Iterators
2438/////////////////////////////////////////////////////////////////////////////
2439
2440#[cfg_attr(not(feature = "ferrocene_certified"), derive(Clone, Debug))]
2441struct Item<A> {
2442    #[allow(dead_code)]
2443    opt: Option<A>,
2444}
2445
2446#[cfg(not(feature = "ferrocene_certified"))]
2447impl<A> Iterator for Item<A> {
2448    type Item = A;
2449
2450    #[inline]
2451    fn next(&mut self) -> Option<A> {
2452        self.opt.take()
2453    }
2454
2455    #[inline]
2456    fn size_hint(&self) -> (usize, Option<usize>) {
2457        let len = self.len();
2458        (len, Some(len))
2459    }
2460}
2461
2462#[cfg(not(feature = "ferrocene_certified"))]
2463impl<A> DoubleEndedIterator for Item<A> {
2464    #[inline]
2465    fn next_back(&mut self) -> Option<A> {
2466        self.opt.take()
2467    }
2468}
2469
2470#[cfg(not(feature = "ferrocene_certified"))]
2471impl<A> ExactSizeIterator for Item<A> {
2472    #[inline]
2473    fn len(&self) -> usize {
2474        self.opt.len()
2475    }
2476}
2477#[cfg(not(feature = "ferrocene_certified"))]
2478impl<A> FusedIterator for Item<A> {}
2479#[cfg(not(feature = "ferrocene_certified"))]
2480unsafe impl<A> TrustedLen for Item<A> {}
2481
2482/// An iterator over a reference to the [`Some`] variant of an [`Option`].
2483///
2484/// The iterator yields one value if the [`Option`] is a [`Some`], otherwise none.
2485///
2486/// This `struct` is created by the [`Option::iter`] function.
2487#[stable(feature = "rust1", since = "1.0.0")]
2488#[cfg_attr(not(feature = "ferrocene_certified"), derive(Debug))]
2489pub struct Iter<'a, A: 'a> {
2490    #[cfg_attr(feature = "ferrocene_certified", allow(dead_code))]
2491    inner: Item<&'a A>,
2492}
2493
2494#[stable(feature = "rust1", since = "1.0.0")]
2495#[cfg(not(feature = "ferrocene_certified"))]
2496impl<'a, A> Iterator for Iter<'a, A> {
2497    type Item = &'a A;
2498
2499    #[inline]
2500    fn next(&mut self) -> Option<&'a A> {
2501        self.inner.next()
2502    }
2503    #[inline]
2504    fn size_hint(&self) -> (usize, Option<usize>) {
2505        self.inner.size_hint()
2506    }
2507}
2508
2509#[stable(feature = "rust1", since = "1.0.0")]
2510#[cfg(not(feature = "ferrocene_certified"))]
2511impl<'a, A> DoubleEndedIterator for Iter<'a, A> {
2512    #[inline]
2513    fn next_back(&mut self) -> Option<&'a A> {
2514        self.inner.next_back()
2515    }
2516}
2517
2518#[stable(feature = "rust1", since = "1.0.0")]
2519#[cfg(not(feature = "ferrocene_certified"))]
2520impl<A> ExactSizeIterator for Iter<'_, A> {}
2521
2522#[stable(feature = "fused", since = "1.26.0")]
2523#[cfg(not(feature = "ferrocene_certified"))]
2524impl<A> FusedIterator for Iter<'_, A> {}
2525
2526#[unstable(feature = "trusted_len", issue = "37572")]
2527#[cfg(not(feature = "ferrocene_certified"))]
2528unsafe impl<A> TrustedLen for Iter<'_, A> {}
2529
2530#[stable(feature = "rust1", since = "1.0.0")]
2531#[cfg(not(feature = "ferrocene_certified"))]
2532impl<A> Clone for Iter<'_, A> {
2533    #[inline]
2534    fn clone(&self) -> Self {
2535        Iter { inner: self.inner.clone() }
2536    }
2537}
2538
2539/// An iterator over a mutable reference to the [`Some`] variant of an [`Option`].
2540///
2541/// The iterator yields one value if the [`Option`] is a [`Some`], otherwise none.
2542///
2543/// This `struct` is created by the [`Option::iter_mut`] function.
2544#[stable(feature = "rust1", since = "1.0.0")]
2545#[cfg_attr(not(feature = "ferrocene_certified"), derive(Debug))]
2546pub struct IterMut<'a, A: 'a> {
2547    #[cfg_attr(feature = "ferrocene_certified", allow(dead_code))]
2548    inner: Item<&'a mut A>,
2549}
2550
2551#[stable(feature = "rust1", since = "1.0.0")]
2552#[cfg(not(feature = "ferrocene_certified"))]
2553impl<'a, A> Iterator for IterMut<'a, A> {
2554    type Item = &'a mut A;
2555
2556    #[inline]
2557    fn next(&mut self) -> Option<&'a mut A> {
2558        self.inner.next()
2559    }
2560    #[inline]
2561    fn size_hint(&self) -> (usize, Option<usize>) {
2562        self.inner.size_hint()
2563    }
2564}
2565
2566#[stable(feature = "rust1", since = "1.0.0")]
2567#[cfg(not(feature = "ferrocene_certified"))]
2568impl<'a, A> DoubleEndedIterator for IterMut<'a, A> {
2569    #[inline]
2570    fn next_back(&mut self) -> Option<&'a mut A> {
2571        self.inner.next_back()
2572    }
2573}
2574
2575#[stable(feature = "rust1", since = "1.0.0")]
2576#[cfg(not(feature = "ferrocene_certified"))]
2577impl<A> ExactSizeIterator for IterMut<'_, A> {}
2578
2579#[stable(feature = "fused", since = "1.26.0")]
2580#[cfg(not(feature = "ferrocene_certified"))]
2581impl<A> FusedIterator for IterMut<'_, A> {}
2582#[unstable(feature = "trusted_len", issue = "37572")]
2583#[cfg(not(feature = "ferrocene_certified"))]
2584unsafe impl<A> TrustedLen for IterMut<'_, A> {}
2585
2586/// An iterator over the value in [`Some`] variant of an [`Option`].
2587///
2588/// The iterator yields one value if the [`Option`] is a [`Some`], otherwise none.
2589///
2590/// This `struct` is created by the [`Option::into_iter`] function.
2591#[derive(Clone, Debug)]
2592#[stable(feature = "rust1", since = "1.0.0")]
2593#[cfg(not(feature = "ferrocene_certified"))]
2594pub struct IntoIter<A> {
2595    inner: Item<A>,
2596}
2597
2598#[stable(feature = "rust1", since = "1.0.0")]
2599#[cfg(not(feature = "ferrocene_certified"))]
2600impl<A> Iterator for IntoIter<A> {
2601    type Item = A;
2602
2603    #[inline]
2604    fn next(&mut self) -> Option<A> {
2605        self.inner.next()
2606    }
2607    #[inline]
2608    fn size_hint(&self) -> (usize, Option<usize>) {
2609        self.inner.size_hint()
2610    }
2611}
2612
2613#[stable(feature = "rust1", since = "1.0.0")]
2614#[cfg(not(feature = "ferrocene_certified"))]
2615impl<A> DoubleEndedIterator for IntoIter<A> {
2616    #[inline]
2617    fn next_back(&mut self) -> Option<A> {
2618        self.inner.next_back()
2619    }
2620}
2621
2622#[stable(feature = "rust1", since = "1.0.0")]
2623#[cfg(not(feature = "ferrocene_certified"))]
2624impl<A> ExactSizeIterator for IntoIter<A> {}
2625
2626#[stable(feature = "fused", since = "1.26.0")]
2627#[cfg(not(feature = "ferrocene_certified"))]
2628impl<A> FusedIterator for IntoIter<A> {}
2629
2630#[unstable(feature = "trusted_len", issue = "37572")]
2631#[cfg(not(feature = "ferrocene_certified"))]
2632unsafe impl<A> TrustedLen for IntoIter<A> {}
2633
2634/////////////////////////////////////////////////////////////////////////////
2635// FromIterator
2636/////////////////////////////////////////////////////////////////////////////
2637
2638#[stable(feature = "rust1", since = "1.0.0")]
2639#[cfg(not(feature = "ferrocene_certified"))]
2640impl<A, V: FromIterator<A>> FromIterator<Option<A>> for Option<V> {
2641    /// Takes each element in the [`Iterator`]: if it is [`None`][Option::None],
2642    /// no further elements are taken, and the [`None`][Option::None] is
2643    /// returned. Should no [`None`][Option::None] occur, a container of type
2644    /// `V` containing the values of each [`Option`] is returned.
2645    ///
2646    /// # Examples
2647    ///
2648    /// Here is an example which increments every integer in a vector.
2649    /// We use the checked variant of `add` that returns `None` when the
2650    /// calculation would result in an overflow.
2651    ///
2652    /// ```
2653    /// let items = vec![0_u16, 1, 2];
2654    ///
2655    /// let res: Option<Vec<u16>> = items
2656    ///     .iter()
2657    ///     .map(|x| x.checked_add(1))
2658    ///     .collect();
2659    ///
2660    /// assert_eq!(res, Some(vec![1, 2, 3]));
2661    /// ```
2662    ///
2663    /// As you can see, this will return the expected, valid items.
2664    ///
2665    /// Here is another example that tries to subtract one from another list
2666    /// of integers, this time checking for underflow:
2667    ///
2668    /// ```
2669    /// let items = vec![2_u16, 1, 0];
2670    ///
2671    /// let res: Option<Vec<u16>> = items
2672    ///     .iter()
2673    ///     .map(|x| x.checked_sub(1))
2674    ///     .collect();
2675    ///
2676    /// assert_eq!(res, None);
2677    /// ```
2678    ///
2679    /// Since the last element is zero, it would underflow. Thus, the resulting
2680    /// value is `None`.
2681    ///
2682    /// Here is a variation on the previous example, showing that no
2683    /// further elements are taken from `iter` after the first `None`.
2684    ///
2685    /// ```
2686    /// let items = vec![3_u16, 2, 1, 10];
2687    ///
2688    /// let mut shared = 0;
2689    ///
2690    /// let res: Option<Vec<u16>> = items
2691    ///     .iter()
2692    ///     .map(|x| { shared += x; x.checked_sub(2) })
2693    ///     .collect();
2694    ///
2695    /// assert_eq!(res, None);
2696    /// assert_eq!(shared, 6);
2697    /// ```
2698    ///
2699    /// Since the third element caused an underflow, no further elements were taken,
2700    /// so the final value of `shared` is 6 (= `3 + 2 + 1`), not 16.
2701    #[inline]
2702    fn from_iter<I: IntoIterator<Item = Option<A>>>(iter: I) -> Option<V> {
2703        // FIXME(#11084): This could be replaced with Iterator::scan when this
2704        // performance bug is closed.
2705
2706        iter::try_process(iter.into_iter(), |i| i.collect())
2707    }
2708}
2709
2710#[unstable(feature = "try_trait_v2", issue = "84277", old_name = "try_trait")]
2711#[rustc_const_unstable(feature = "const_try", issue = "74935")]
2712#[cfg(not(feature = "ferrocene_certified"))]
2713impl<T> const ops::Try for Option<T> {
2714    type Output = T;
2715    type Residual = Option<convert::Infallible>;
2716
2717    #[inline]
2718    fn from_output(output: Self::Output) -> Self {
2719        Some(output)
2720    }
2721
2722    #[inline]
2723    fn branch(self) -> ControlFlow<Self::Residual, Self::Output> {
2724        match self {
2725            Some(v) => ControlFlow::Continue(v),
2726            None => ControlFlow::Break(None),
2727        }
2728    }
2729}
2730
2731#[unstable(feature = "try_trait_v2", issue = "84277", old_name = "try_trait")]
2732#[rustc_const_unstable(feature = "const_try", issue = "74935")]
2733// Note: manually specifying the residual type instead of using the default to work around
2734// https://github.com/rust-lang/rust/issues/99940
2735#[cfg(not(feature = "ferrocene_certified"))]
2736impl<T> const ops::FromResidual<Option<convert::Infallible>> for Option<T> {
2737    #[inline]
2738    fn from_residual(residual: Option<convert::Infallible>) -> Self {
2739        match residual {
2740            None => None,
2741        }
2742    }
2743}
2744
2745#[diagnostic::do_not_recommend]
2746#[unstable(feature = "try_trait_v2_yeet", issue = "96374")]
2747#[rustc_const_unstable(feature = "const_try", issue = "74935")]
2748#[cfg(not(feature = "ferrocene_certified"))]
2749impl<T> const ops::FromResidual<ops::Yeet<()>> for Option<T> {
2750    #[inline]
2751    fn from_residual(ops::Yeet(()): ops::Yeet<()>) -> Self {
2752        None
2753    }
2754}
2755
2756#[unstable(feature = "try_trait_v2_residual", issue = "91285")]
2757#[rustc_const_unstable(feature = "const_try", issue = "74935")]
2758#[cfg(not(feature = "ferrocene_certified"))]
2759impl<T> const ops::Residual<T> for Option<convert::Infallible> {
2760    type TryType = Option<T>;
2761}
2762
2763impl<T> Option<Option<T>> {
2764    /// Converts from `Option<Option<T>>` to `Option<T>`.
2765    ///
2766    /// # Examples
2767    ///
2768    /// Basic usage:
2769    ///
2770    /// ```
2771    /// let x: Option<Option<u32>> = Some(Some(6));
2772    /// assert_eq!(Some(6), x.flatten());
2773    ///
2774    /// let x: Option<Option<u32>> = Some(None);
2775    /// assert_eq!(None, x.flatten());
2776    ///
2777    /// let x: Option<Option<u32>> = None;
2778    /// assert_eq!(None, x.flatten());
2779    /// ```
2780    ///
2781    /// Flattening only removes one level of nesting at a time:
2782    ///
2783    /// ```
2784    /// let x: Option<Option<Option<u32>>> = Some(Some(Some(6)));
2785    /// assert_eq!(Some(Some(6)), x.flatten());
2786    /// assert_eq!(Some(6), x.flatten().flatten());
2787    /// ```
2788    #[inline]
2789    #[stable(feature = "option_flattening", since = "1.40.0")]
2790    #[rustc_allow_const_fn_unstable(const_precise_live_drops)]
2791    #[rustc_const_stable(feature = "const_option", since = "1.83.0")]
2792    pub const fn flatten(self) -> Option<T> {
2793        // FIXME(const-hack): could be written with `and_then`
2794        match self {
2795            Some(inner) => inner,
2796            None => None,
2797        }
2798    }
2799}
2800
2801#[cfg(not(feature = "ferrocene_certified"))]
2802impl<T, const N: usize> [Option<T>; N] {
2803    /// Transposes a `[Option<T>; N]` into a `Option<[T; N]>`.
2804    ///
2805    /// # Examples
2806    ///
2807    /// ```
2808    /// #![feature(option_array_transpose)]
2809    /// # use std::option::Option;
2810    ///
2811    /// let data = [Some(0); 1000];
2812    /// let data: Option<[u8; 1000]> = data.transpose();
2813    /// assert_eq!(data, Some([0; 1000]));
2814    ///
2815    /// let data = [Some(0), None];
2816    /// let data: Option<[u8; 2]> = data.transpose();
2817    /// assert_eq!(data, None);
2818    /// ```
2819    #[inline]
2820    #[unstable(feature = "option_array_transpose", issue = "130828")]
2821    pub fn transpose(self) -> Option<[T; N]> {
2822        self.try_map(core::convert::identity)
2823    }
2824}