Skip to main content

core/
option.rs

1//! Optional values.
2//!
3//! Type [`Option`] represents an optional value: every [`Option`]
4//! is either [`Some`] and contains a value, or [`None`], and
5//! does not. [`Option`] types are very common in Rust code, as
6//! they have a number of uses:
7//!
8//! * Initial values
9//! * Return values for functions that are not defined
10//!   over their entire input range (partial functions)
11//! * Return value for otherwise reporting simple errors, where [`None`] is
12//!   returned on error
13//! * Optional struct fields
14//! * Struct fields that can be loaned or "taken"
15//! * Optional function arguments
16//! * Nullable pointers
17//! * Swapping things out of difficult situations
18//!
19//! [`Option`]s are commonly paired with pattern matching to query the presence
20//! of a value and take action, always accounting for the [`None`] case.
21//!
22//! ```
23//! fn divide(numerator: f64, denominator: f64) -> Option<f64> {
24//!     if denominator == 0.0 {
25//!         None
26//!     } else {
27//!         Some(numerator / denominator)
28//!     }
29//! }
30//!
31//! // The return value of the function is an option
32//! let result = divide(2.0, 3.0);
33//!
34//! // Pattern match to retrieve the value
35//! match result {
36//!     // The division was valid
37//!     Some(x) => println!("Result: {x}"),
38//!     // The division was invalid
39//!     None    => println!("Cannot divide by 0"),
40//! }
41//! ```
42//!
43//
44// FIXME: Show how `Option` is used in practice, with lots of methods
45//
46//! # Options and pointers ("nullable" pointers)
47//!
48//! Rust's pointer types must always point to a valid location; there are
49//! no "null" references. Instead, Rust has *optional* pointers, like
50//! the optional owned box, <code>[Option]<[Box\<T>]></code>.
51//!
52//! [Box\<T>]: ../../std/boxed/struct.Box.html
53//!
54//! The following example uses [`Option`] to create an optional box of
55//! [`i32`]. Notice that in order to use the inner [`i32`] value, the
56//! `check_optional` function first needs to use pattern matching to
57//! determine whether the box has a value (i.e., it is [`Some(...)`][`Some`]) or
58//! not ([`None`]).
59//!
60//! ```
61//! let optional = None;
62//! check_optional(optional);
63//!
64//! let optional = Some(Box::new(9000));
65//! check_optional(optional);
66//!
67//! fn check_optional(optional: Option<Box<i32>>) {
68//!     match optional {
69//!         Some(p) => println!("has value {p}"),
70//!         None => println!("has no value"),
71//!     }
72//! }
73//! ```
74//!
75//! # The question mark operator, `?`
76//!
77//! Similar to the [`Result`] type, when writing code that calls many functions that return the
78//! [`Option`] type, handling `Some`/`None` can be tedious. The question mark
79//! operator, [`?`], hides some of the boilerplate of propagating values
80//! up the call stack.
81//!
82//! It replaces this:
83//!
84//! ```
85//! # #![allow(dead_code)]
86//! fn add_last_numbers(stack: &mut Vec<i32>) -> Option<i32> {
87//!     let a = stack.pop();
88//!     let b = stack.pop();
89//!
90//!     match (a, b) {
91//!         (Some(x), Some(y)) => Some(x + y),
92//!         _ => None,
93//!     }
94//! }
95//!
96//! ```
97//!
98//! With this:
99//!
100//! ```
101//! # #![allow(dead_code)]
102//! fn add_last_numbers(stack: &mut Vec<i32>) -> Option<i32> {
103//!     Some(stack.pop()? + stack.pop()?)
104//! }
105//! ```
106//!
107//! *It's much nicer!*
108//!
109//! Ending the expression with [`?`] will result in the [`Some`]'s unwrapped value, unless the
110//! result is [`None`], in which case [`None`] is returned early from the enclosing function.
111//!
112//! [`?`] can be used in functions that return [`Option`] because of the
113//! early return of [`None`] that it provides.
114//!
115//! [`?`]: crate::ops::Try
116//! [`Some`]: Some
117//! [`None`]: None
118//!
119//! # Representation
120//!
121//! Rust guarantees to optimize the following types `T` such that [`Option<T>`]
122//! has the same size, alignment, and [function call ABI] as `T`. It is
123//! therefore sound, when `T` is one of these types, to transmute a value `t` of
124//! type `T` to type `Option<T>` (producing the value `Some(t)`) and to
125//! transmute a value `Some(t)` of type `Option<T>` to type `T` (producing the
126//! value `t`).
127//!
128//! In some of these cases, Rust further guarantees the following:
129//! - `transmute::<_, Option<T>>([0u8; size_of::<T>()])` is sound and produces
130//!   `Option::<T>::None`
131//! - `transmute::<_, [u8; size_of::<T>()]>(Option::<T>::None)` is sound and produces
132//!   `[0u8; size_of::<T>()]`
133//!
134//! These cases are identified by the second column:
135//!
136//! | `T`                                                                 | Transmuting between `[0u8; size_of::<T>()]` and `Option::<T>::None` sound? |
137//! |---------------------------------------------------------------------|----------------------------------------------------------------------------|
138//! | [`Box<U>`] (specifically, only `Box<U, Global>`)                    | when `U: Sized`                                                            |
139//! | `&U`                                                                | when `U: Sized`                                                            |
140//! | `&mut U`                                                            | when `U: Sized`                                                            |
141//! | `fn`, `extern "C" fn`[^extern_fn]                                   | always                                                                     |
142//! | [`num::NonZero*`]                                                   | always                                                                     |
143//! | [`ptr::NonNull<U>`]                                                 | when `U: Sized`                                                            |
144//! | `#[repr(transparent)]` struct around one of the types in this list. | when it holds for the inner type                                           |
145//!
146//! [^extern_fn]: this remains true for `unsafe` variants, any argument/return types, and any other ABI: `[unsafe] extern "abi" fn` (_e.g._, `extern "system" fn`)
147//!
148//! Under some conditions the above types `T` are also null pointer optimized when wrapped in a [`Result`][result_repr].
149//!
150//! [`Box<U>`]: ../../std/boxed/struct.Box.html
151//! [`num::NonZero*`]: crate::num
152//! [`ptr::NonNull<U>`]: crate::ptr::NonNull
153//! [function call ABI]: ../primitive.fn.html#abi-compatibility
154//! [result_repr]: crate::result#representation
155//!
156//! This is called the "null pointer optimization" or NPO.
157//!
158//! It is further guaranteed that, for the cases above, one can
159//! [`mem::transmute`] from all valid values of `T` to `Option<T>` and
160//! from `Some::<T>(_)` to `T` (but transmuting `None::<T>` to `T`
161//! is undefined behavior).
162//!
163//! # Method overview
164//!
165//! In addition to working with pattern matching, [`Option`] provides a wide
166//! variety of different methods.
167//!
168//! ## Querying the variant
169//!
170//! The [`is_some`] and [`is_none`] methods return [`true`] if the [`Option`]
171//! is [`Some`] or [`None`], respectively.
172//!
173//! The [`is_some_and`] and [`is_none_or`] methods apply the provided function
174//! to the contents of the [`Option`] to produce a boolean value.
175//! If this is [`None`] then a default result is returned instead without executing the function.
176//!
177//! [`is_none`]: Option::is_none
178//! [`is_some`]: Option::is_some
179//! [`is_some_and`]: Option::is_some_and
180//! [`is_none_or`]: Option::is_none_or
181//!
182//! ## Adapters for working with references
183//!
184//! * [`as_ref`] converts from <code>[&][][Option]\<T></code> to <code>[Option]<[&]T></code>
185//! * [`as_mut`] converts from <code>[&mut] [Option]\<T></code> to <code>[Option]<[&mut] T></code>
186//! * [`as_deref`] converts from <code>[&][][Option]\<T></code> to
187//!   <code>[Option]<[&]T::[Target]></code>
188//! * [`as_deref_mut`] converts from <code>[&mut] [Option]\<T></code> to
189//!   <code>[Option]<[&mut] T::[Target]></code>
190//! * [`as_pin_ref`] converts from <code>[Pin]<[&][][Option]\<T>></code> to
191//!   <code>[Option]<[Pin]<[&]T>></code>
192//! * [`as_pin_mut`] converts from <code>[Pin]<[&mut] [Option]\<T>></code> to
193//!   <code>[Option]<[Pin]<[&mut] T>></code>
194//! * [`as_slice`] returns a one-element slice of the contained value, if any.
195//!   If this is [`None`], an empty slice is returned.
196//! * [`as_mut_slice`] returns a mutable one-element slice of the contained value, if any.
197//!   If this is [`None`], an empty slice is returned.
198//!
199//! [&]: reference "shared reference"
200//! [&mut]: reference "mutable reference"
201//! [Target]: Deref::Target "ops::Deref::Target"
202//! [`as_deref`]: Option::as_deref
203//! [`as_deref_mut`]: Option::as_deref_mut
204//! [`as_mut`]: Option::as_mut
205//! [`as_pin_mut`]: Option::as_pin_mut
206//! [`as_pin_ref`]: Option::as_pin_ref
207//! [`as_ref`]: Option::as_ref
208//! [`as_slice`]: Option::as_slice
209//! [`as_mut_slice`]: Option::as_mut_slice
210//!
211//! ## Extracting the contained value
212//!
213//! These methods extract the contained value in an [`Option<T>`] when it
214//! is the [`Some`] variant. If the [`Option`] is [`None`]:
215//!
216//! * [`expect`] panics with a provided custom message
217//! * [`unwrap`] panics with a generic message
218//! * [`unwrap_or`] returns the provided default value
219//! * [`unwrap_or_default`] returns the default value of the type `T`
220//!   (which must implement the [`Default`] trait)
221//! * [`unwrap_or_else`] returns the result of evaluating the provided
222//!   function
223//! * [`unwrap_unchecked`] produces *[undefined behavior]*
224//!
225//! [`expect`]: Option::expect
226//! [`unwrap`]: Option::unwrap
227//! [`unwrap_or`]: Option::unwrap_or
228//! [`unwrap_or_default`]: Option::unwrap_or_default
229//! [`unwrap_or_else`]: Option::unwrap_or_else
230//! [`unwrap_unchecked`]: Option::unwrap_unchecked
231//! [undefined behavior]: https://doc.rust-lang.org/reference/behavior-considered-undefined.html
232//!
233//! ## Transforming contained values
234//!
235//! These methods transform [`Option`] to [`Result`]:
236//!
237//! * [`ok_or`] transforms [`Some(v)`] to [`Ok(v)`], and [`None`] to
238//!   [`Err(err)`] using the provided default `err` value
239//! * [`ok_or_else`] transforms [`Some(v)`] to [`Ok(v)`], and [`None`] to
240//!   a value of [`Err`] using the provided function
241//! * [`transpose`] transposes an [`Option`] of a [`Result`] into a
242//!   [`Result`] of an [`Option`]
243//!
244//! [`Err(err)`]: Err
245//! [`Ok(v)`]: Ok
246//! [`Some(v)`]: Some
247//! [`ok_or`]: Option::ok_or
248//! [`ok_or_else`]: Option::ok_or_else
249//! [`transpose`]: Option::transpose
250//!
251//! These methods transform the [`Some`] variant:
252//!
253//! * [`filter`] calls the provided predicate function on the contained
254//!   value `t` if the [`Option`] is [`Some(t)`], and returns [`Some(t)`]
255//!   if the function returns `true`; otherwise, returns [`None`]
256//! * [`flatten`] removes one level of nesting from an [`Option<Option<T>>`]
257//! * [`inspect`] method takes ownership of the [`Option`] and applies
258//!   the provided function to the contained value by reference if [`Some`]
259//! * [`map`] transforms [`Option<T>`] to [`Option<U>`] by applying the
260//!   provided function to the contained value of [`Some`] and leaving
261//!   [`None`] values unchanged
262//!
263//! [`Some(t)`]: Some
264//! [`filter`]: Option::filter
265//! [`flatten`]: Option::flatten
266//! [`inspect`]: Option::inspect
267//! [`map`]: Option::map
268//!
269//! These methods transform [`Option<T>`] to a value of a possibly
270//! different type `U`:
271//!
272//! * [`map_or`] applies the provided function to the contained value of
273//!   [`Some`], or returns the provided default value if the [`Option`] is
274//!   [`None`]
275//! * [`map_or_else`] applies the provided function to the contained value
276//!   of [`Some`], or returns the result of evaluating the provided
277//!   fallback function if the [`Option`] is [`None`]
278//!
279//! [`map_or`]: Option::map_or
280//! [`map_or_else`]: Option::map_or_else
281//!
282//! These methods combine the [`Some`] variants of two [`Option`] values:
283//!
284//! * [`zip`] returns [`Some((s, o))`] if `self` is [`Some(s)`] and the
285//!   provided [`Option`] value is [`Some(o)`]; otherwise, returns [`None`]
286//! * [`zip_with`] calls the provided function `f` and returns
287//!   [`Some(f(s, o))`] if `self` is [`Some(s)`] and the provided
288//!   [`Option`] value is [`Some(o)`]; otherwise, returns [`None`]
289//!
290//! [`Some(f(s, o))`]: Some
291//! [`Some(o)`]: Some
292//! [`Some(s)`]: Some
293//! [`Some((s, o))`]: Some
294//! [`zip`]: Option::zip
295//! [`zip_with`]: Option::zip_with
296//!
297//! ## Boolean operators
298//!
299//! These methods treat the [`Option`] as a boolean value, where [`Some`]
300//! acts like [`true`] and [`None`] acts like [`false`]. There are two
301//! categories of these methods: ones that take an [`Option`] as input, and
302//! ones that take a function as input (to be lazily evaluated).
303//!
304//! The [`and`], [`or`], and [`xor`] methods take another [`Option`] as
305//! input, and produce an [`Option`] as output. Only the [`and`] method can
306//! produce an [`Option<U>`] value having a different inner type `U` than
307//! [`Option<T>`].
308//!
309//! | method  | self      | input     | output    |
310//! |---------|-----------|-----------|-----------|
311//! | [`and`] | `None`    | (ignored) | `None`    |
312//! | [`and`] | `Some(x)` | `None`    | `None`    |
313//! | [`and`] | `Some(x)` | `Some(y)` | `Some(y)` |
314//! | [`or`]  | `None`    | `None`    | `None`    |
315//! | [`or`]  | `None`    | `Some(y)` | `Some(y)` |
316//! | [`or`]  | `Some(x)` | (ignored) | `Some(x)` |
317//! | [`xor`] | `None`    | `None`    | `None`    |
318//! | [`xor`] | `None`    | `Some(y)` | `Some(y)` |
319//! | [`xor`] | `Some(x)` | `None`    | `Some(x)` |
320//! | [`xor`] | `Some(x)` | `Some(y)` | `None`    |
321//!
322//! [`and`]: Option::and
323//! [`or`]: Option::or
324//! [`xor`]: Option::xor
325//!
326//! The [`and_then`] and [`or_else`] methods take a function as input, and
327//! only evaluate the function when they need to produce a new value. Only
328//! the [`and_then`] method can produce an [`Option<U>`] value having a
329//! different inner type `U` than [`Option<T>`].
330//!
331//! | method       | self      | function input | function result | output    |
332//! |--------------|-----------|----------------|-----------------|-----------|
333//! | [`and_then`] | `None`    | (not provided) | (not evaluated) | `None`    |
334//! | [`and_then`] | `Some(x)` | `x`            | `None`          | `None`    |
335//! | [`and_then`] | `Some(x)` | `x`            | `Some(y)`       | `Some(y)` |
336//! | [`or_else`]  | `None`    | (not provided) | `None`          | `None`    |
337//! | [`or_else`]  | `None`    | (not provided) | `Some(y)`       | `Some(y)` |
338//! | [`or_else`]  | `Some(x)` | (not provided) | (not evaluated) | `Some(x)` |
339//!
340//! [`and_then`]: Option::and_then
341//! [`or_else`]: Option::or_else
342//!
343//! This is an example of using methods like [`and_then`] and [`or`] in a
344//! pipeline of method calls. Early stages of the pipeline pass failure
345//! values ([`None`]) through unchanged, and continue processing on
346//! success values ([`Some`]). Toward the end, [`or`] substitutes an error
347//! message if it receives [`None`].
348//!
349//! ```
350//! # use std::collections::BTreeMap;
351//! let mut bt = BTreeMap::new();
352//! bt.insert(20u8, "foo");
353//! bt.insert(42u8, "bar");
354//! let res = [0u8, 1, 11, 200, 22]
355//!     .into_iter()
356//!     .map(|x| {
357//!         // `checked_sub()` returns `None` on error
358//!         x.checked_sub(1)
359//!             // same with `checked_mul()`
360//!             .and_then(|x| x.checked_mul(2))
361//!             // `BTreeMap::get` returns `None` on error
362//!             .and_then(|x| bt.get(&x))
363//!             // Substitute an error message if we have `None` so far
364//!             .or(Some(&"error!"))
365//!             .copied()
366//!             // Won't panic because we unconditionally used `Some` above
367//!             .unwrap()
368//!     })
369//!     .collect::<Vec<_>>();
370//! assert_eq!(res, ["error!", "error!", "foo", "error!", "bar"]);
371//! ```
372//!
373//! ## Comparison operators
374//!
375//! If `T` implements [`PartialOrd`] then [`Option<T>`] will derive its
376//! [`PartialOrd`] implementation.  With this order, [`None`] compares as
377//! less than any [`Some`], and two [`Some`] compare the same way as their
378//! contained values would in `T`.  If `T` also implements
379//! [`Ord`], then so does [`Option<T>`].
380//!
381//! ```
382//! assert!(None < Some(0));
383//! assert!(Some(0) < Some(1));
384//! ```
385//!
386//! ## Iterating over `Option`
387//!
388//! An [`Option`] can be iterated over. This can be helpful if you need an
389//! iterator that is conditionally empty. The iterator will either produce
390//! a single value (when the [`Option`] is [`Some`]), or produce no values
391//! (when the [`Option`] is [`None`]). For example, [`into_iter`] acts like
392//! [`once(v)`] if the [`Option`] is [`Some(v)`], and like [`empty()`] if
393//! the [`Option`] is [`None`].
394//!
395//! [`Some(v)`]: Some
396//! [`empty()`]: crate::iter::empty
397//! [`once(v)`]: crate::iter::once
398//!
399//! Iterators over [`Option<T>`] come in three types:
400//!
401//! * [`into_iter`] consumes the [`Option`] and produces the contained
402//!   value
403//! * [`iter`] produces an immutable reference of type `&T` to the
404//!   contained value
405//! * [`iter_mut`] produces a mutable reference of type `&mut T` to the
406//!   contained value
407//!
408//! [`into_iter`]: Option::into_iter
409//! [`iter`]: Option::iter
410//! [`iter_mut`]: Option::iter_mut
411//!
412//! An iterator over [`Option`] can be useful when chaining iterators, for
413//! example, to conditionally insert items. (It's not always necessary to
414//! explicitly call an iterator constructor: many [`Iterator`] methods that
415//! accept other iterators will also accept iterable types that implement
416//! [`IntoIterator`], which includes [`Option`].)
417//!
418//! ```
419//! let yep = Some(42);
420//! let nope = None;
421//! // chain() already calls into_iter(), so we don't have to do so
422//! let nums: Vec<i32> = (0..4).chain(yep).chain(4..8).collect();
423//! assert_eq!(nums, [0, 1, 2, 3, 42, 4, 5, 6, 7]);
424//! let nums: Vec<i32> = (0..4).chain(nope).chain(4..8).collect();
425//! assert_eq!(nums, [0, 1, 2, 3, 4, 5, 6, 7]);
426//! ```
427//!
428//! One reason to chain iterators in this way is that a function returning
429//! `impl Iterator` must have all possible return values be of the same
430//! concrete type. Chaining an iterated [`Option`] can help with that.
431//!
432//! ```
433//! fn make_iter(do_insert: bool) -> impl Iterator<Item = i32> {
434//!     // Explicit returns to illustrate return types matching
435//!     match do_insert {
436//!         true => return (0..4).chain(Some(42)).chain(4..8),
437//!         false => return (0..4).chain(None).chain(4..8),
438//!     }
439//! }
440//! println!("{:?}", make_iter(true).collect::<Vec<_>>());
441//! println!("{:?}", make_iter(false).collect::<Vec<_>>());
442//! ```
443//!
444//! If we try to do the same thing, but using [`once()`] and [`empty()`],
445//! we can't return `impl Iterator` anymore because the concrete types of
446//! the return values differ.
447//!
448//! [`empty()`]: crate::iter::empty
449//! [`once()`]: crate::iter::once
450//!
451//! ```compile_fail,E0308
452//! # use std::iter::{empty, once};
453//! // This won't compile because all possible returns from the function
454//! // must have the same concrete type.
455//! fn make_iter(do_insert: bool) -> impl Iterator<Item = i32> {
456//!     // Explicit returns to illustrate return types not matching
457//!     match do_insert {
458//!         true => return (0..4).chain(once(42)).chain(4..8),
459//!         false => return (0..4).chain(empty()).chain(4..8),
460//!     }
461//! }
462//! ```
463//!
464//! ## Collecting into `Option`
465//!
466//! [`Option`] implements the [`FromIterator`][impl-FromIterator] trait,
467//! which allows an iterator over [`Option`] values to be collected into an
468//! [`Option`] of a collection of each contained value of the original
469//! [`Option`] values, or [`None`] if any of the elements was [`None`].
470//!
471//! [impl-FromIterator]: Option#impl-FromIterator%3COption%3CA%3E%3E-for-Option%3CV%3E
472//!
473//! ```
474//! let v = [Some(2), Some(4), None, Some(8)];
475//! let res: Option<Vec<_>> = v.into_iter().collect();
476//! assert_eq!(res, None);
477//! let v = [Some(2), Some(4), Some(8)];
478//! let res: Option<Vec<_>> = v.into_iter().collect();
479//! assert_eq!(res, Some(vec![2, 4, 8]));
480//! ```
481//!
482//! [`Option`] also implements the [`Product`][impl-Product] and
483//! [`Sum`][impl-Sum] traits, allowing an iterator over [`Option`] values
484//! to provide the [`product`][Iterator::product] and
485//! [`sum`][Iterator::sum] methods.
486//!
487//! [impl-Product]: Option#impl-Product%3COption%3CU%3E%3E-for-Option%3CT%3E
488//! [impl-Sum]: Option#impl-Sum%3COption%3CU%3E%3E-for-Option%3CT%3E
489//!
490//! ```
491//! let v = [None, Some(1), Some(2), Some(3)];
492//! let res: Option<i32> = v.into_iter().sum();
493//! assert_eq!(res, None);
494//! let v = [Some(1), Some(2), Some(21)];
495//! let res: Option<i32> = v.into_iter().product();
496//! assert_eq!(res, Some(42));
497//! ```
498//!
499//! ## Modifying an [`Option`] in-place
500//!
501//! These methods return a mutable reference to the contained value of an
502//! [`Option<T>`]:
503//!
504//! * [`insert`] inserts a value, dropping any old contents
505//! * [`get_or_insert`] gets the current value, inserting a provided
506//!   default value if it is [`None`]
507//! * [`get_or_insert_default`] gets the current value, inserting the
508//!   default value of type `T` (which must implement [`Default`]) if it is
509//!   [`None`]
510//! * [`get_or_insert_with`] gets the current value, inserting a default
511//!   computed by the provided function if it is [`None`]
512//!
513//! [`get_or_insert`]: Option::get_or_insert
514//! [`get_or_insert_default`]: Option::get_or_insert_default
515//! [`get_or_insert_with`]: Option::get_or_insert_with
516//! [`insert`]: Option::insert
517//!
518//! These methods transfer ownership of the contained value of an
519//! [`Option`]:
520//!
521//! * [`take`] takes ownership of the contained value of an [`Option`], if
522//!   any, replacing the [`Option`] with [`None`]
523//! * [`replace`] takes ownership of the contained value of an [`Option`],
524//!   if any, replacing the [`Option`] with a [`Some`] containing the
525//!   provided value
526//!
527//! [`replace`]: Option::replace
528//! [`take`]: Option::take
529//!
530//! # Examples
531//!
532//! Basic pattern matching on [`Option`]:
533//!
534//! ```
535//! let msg = Some("howdy");
536//!
537//! // Take a reference to the contained string
538//! if let Some(m) = &msg {
539//!     println!("{}", *m);
540//! }
541//!
542//! // Remove the contained string, destroying the Option
543//! let unwrapped_msg = msg.unwrap_or("default message");
544//! ```
545//!
546//! Initialize a result to [`None`] before a loop:
547//!
548//! ```
549//! enum Kingdom { Plant(u32, &'static str), Animal(u32, &'static str) }
550//!
551//! // A list of data to search through.
552//! let all_the_big_things = [
553//!     Kingdom::Plant(250, "redwood"),
554//!     Kingdom::Plant(230, "noble fir"),
555//!     Kingdom::Plant(229, "sugar pine"),
556//!     Kingdom::Animal(25, "blue whale"),
557//!     Kingdom::Animal(19, "fin whale"),
558//!     Kingdom::Animal(15, "north pacific right whale"),
559//! ];
560//!
561//! // We're going to search for the name of the biggest animal,
562//! // but to start with we've just got `None`.
563//! let mut name_of_biggest_animal = None;
564//! let mut size_of_biggest_animal = 0;
565//! for big_thing in &all_the_big_things {
566//!     match *big_thing {
567//!         Kingdom::Animal(size, name) if size > size_of_biggest_animal => {
568//!             // Now we've found the name of some big animal
569//!             size_of_biggest_animal = size;
570//!             name_of_biggest_animal = Some(name);
571//!         }
572//!         Kingdom::Animal(..) | Kingdom::Plant(..) => ()
573//!     }
574//! }
575//!
576//! match name_of_biggest_animal {
577//!     Some(name) => println!("the biggest animal is {name}"),
578//!     None => println!("there are no animals :("),
579//! }
580//! ```
581
582#![stable(feature = "rust1", since = "1.0.0")]
583
584use crate::clone::TrivialClone;
585#[cfg(not(feature = "ferrocene_subset"))]
586use crate::iter::{self, FusedIterator, TrustedLen};
587use crate::marker::Destruct;
588use crate::ops::{self, ControlFlow, Deref, DerefMut};
589use crate::panicking::{panic, panic_display};
590#[cfg(not(feature = "ferrocene_subset"))]
591use crate::pin::Pin;
592#[cfg(not(feature = "ferrocene_subset"))]
593use crate::{cmp, convert, hint, mem, slice};
594
595// Ferrocene addition: imports for certified subset
596#[cfg(feature = "ferrocene_subset")]
597#[rustfmt::skip]
598use crate::{convert, hint, mem};
599
600/// The `Option` type. See [the module level documentation](self) for more.
601#[doc(search_unbox)]
602#[derive(Copy, Debug, Hash)]
603#[derive_const(Eq)]
604#[rustc_diagnostic_item = "Option"]
605#[lang = "Option"]
606#[stable(feature = "rust1", since = "1.0.0")]
607#[allow(clippy::derived_hash_with_manual_eq)] // PartialEq is manually implemented equivalently
608pub enum Option<T> {
609    /// No value.
610    #[lang = "None"]
611    #[stable(feature = "rust1", since = "1.0.0")]
612    None,
613    /// Some value of type `T`.
614    #[lang = "Some"]
615    #[stable(feature = "rust1", since = "1.0.0")]
616    Some(#[stable(feature = "rust1", since = "1.0.0")] T),
617}
618
619/////////////////////////////////////////////////////////////////////////////
620// Type implementation
621/////////////////////////////////////////////////////////////////////////////
622
623impl<T> Option<T> {
624    /////////////////////////////////////////////////////////////////////////
625    // Querying the contained values
626    /////////////////////////////////////////////////////////////////////////
627
628    /// Returns `true` if the option is a [`Some`] value.
629    ///
630    /// # Examples
631    ///
632    /// ```
633    /// let x: Option<u32> = Some(2);
634    /// assert_eq!(x.is_some(), true);
635    ///
636    /// let x: Option<u32> = None;
637    /// assert_eq!(x.is_some(), false);
638    /// ```
639    #[must_use = "if you intended to assert that this has a value, consider `.unwrap()` instead"]
640    #[inline]
641    #[stable(feature = "rust1", since = "1.0.0")]
642    #[rustc_const_stable(feature = "const_option_basics", since = "1.48.0")]
643    pub const fn is_some(&self) -> bool {
644        matches!(*self, Some(_))
645    }
646
647    /// Returns `true` if the option is a [`Some`] and the value inside of it matches a predicate.
648    ///
649    /// # Examples
650    ///
651    /// ```
652    /// let x: Option<u32> = Some(2);
653    /// assert_eq!(x.is_some_and(|x| x > 1), true);
654    ///
655    /// let x: Option<u32> = Some(0);
656    /// assert_eq!(x.is_some_and(|x| x > 1), false);
657    ///
658    /// let x: Option<u32> = None;
659    /// assert_eq!(x.is_some_and(|x| x > 1), false);
660    ///
661    /// let x: Option<String> = Some("ownership".to_string());
662    /// assert_eq!(x.as_ref().is_some_and(|x| x.len() > 1), true);
663    /// println!("still alive {:?}", x);
664    /// ```
665    #[must_use]
666    #[inline]
667    #[stable(feature = "is_some_and", since = "1.70.0")]
668    #[rustc_const_unstable(feature = "const_option_ops", issue = "143956")]
669    pub const fn is_some_and(self, f: impl [const] FnOnce(T) -> bool + [const] Destruct) -> bool {
670        match self {
671            None => false,
672            Some(x) => f(x),
673        }
674    }
675
676    /// Returns `true` if the option is a [`None`] value.
677    ///
678    /// # Examples
679    ///
680    /// ```
681    /// let x: Option<u32> = Some(2);
682    /// assert_eq!(x.is_none(), false);
683    ///
684    /// let x: Option<u32> = None;
685    /// assert_eq!(x.is_none(), true);
686    /// ```
687    #[must_use = "if you intended to assert that this doesn't have a value, consider \
688                  wrapping this in an `assert!()` instead"]
689    #[inline]
690    #[stable(feature = "rust1", since = "1.0.0")]
691    #[rustc_const_stable(feature = "const_option_basics", since = "1.48.0")]
692    pub const fn is_none(&self) -> bool {
693        !self.is_some()
694    }
695
696    /// Returns `true` if the option is a [`None`] or the value inside of it matches a predicate.
697    ///
698    /// # Examples
699    ///
700    /// ```
701    /// let x: Option<u32> = Some(2);
702    /// assert_eq!(x.is_none_or(|x| x > 1), true);
703    ///
704    /// let x: Option<u32> = Some(0);
705    /// assert_eq!(x.is_none_or(|x| x > 1), false);
706    ///
707    /// let x: Option<u32> = None;
708    /// assert_eq!(x.is_none_or(|x| x > 1), true);
709    ///
710    /// let x: Option<String> = Some("ownership".to_string());
711    /// assert_eq!(x.as_ref().is_none_or(|x| x.len() > 1), true);
712    /// println!("still alive {:?}", x);
713    /// ```
714    #[must_use]
715    #[inline]
716    #[stable(feature = "is_none_or", since = "1.82.0")]
717    #[rustc_const_unstable(feature = "const_option_ops", issue = "143956")]
718    pub const fn is_none_or(self, f: impl [const] FnOnce(T) -> bool + [const] Destruct) -> bool {
719        match self {
720            None => true,
721            Some(x) => f(x),
722        }
723    }
724
725    /////////////////////////////////////////////////////////////////////////
726    // Adapter for working with references
727    /////////////////////////////////////////////////////////////////////////
728
729    /// Converts from `&Option<T>` to `Option<&T>`.
730    ///
731    /// # Examples
732    ///
733    /// Calculates the length of an <code>Option<[String]></code> as an <code>Option<[usize]></code>
734    /// without moving the [`String`]. The [`map`] method takes the `self` argument by value,
735    /// consuming the original, so this technique uses `as_ref` to first take an `Option` to a
736    /// reference to the value inside the original.
737    ///
738    /// [`map`]: Option::map
739    /// [String]: ../../std/string/struct.String.html "String"
740    /// [`String`]: ../../std/string/struct.String.html "String"
741    ///
742    /// ```
743    /// let text: Option<String> = Some("Hello, world!".to_string());
744    /// // First, cast `Option<String>` to `Option<&String>` with `as_ref`,
745    /// // then consume *that* with `map`, leaving `text` on the stack.
746    /// let text_length: Option<usize> = text.as_ref().map(|s| s.len());
747    /// println!("still can print text: {text:?}");
748    /// ```
749    #[inline]
750    #[rustc_const_stable(feature = "const_option_basics", since = "1.48.0")]
751    #[stable(feature = "rust1", since = "1.0.0")]
752    pub const fn as_ref(&self) -> Option<&T> {
753        match *self {
754            Some(ref x) => Some(x),
755            None => None,
756        }
757    }
758
759    /// Converts from `&mut Option<T>` to `Option<&mut T>`.
760    ///
761    /// # Examples
762    ///
763    /// ```
764    /// let mut x = Some(2);
765    /// match x.as_mut() {
766    ///     Some(v) => *v = 42,
767    ///     None => {},
768    /// }
769    /// assert_eq!(x, Some(42));
770    /// ```
771    #[inline]
772    #[stable(feature = "rust1", since = "1.0.0")]
773    #[rustc_const_stable(feature = "const_option", since = "1.83.0")]
774    pub const fn as_mut(&mut self) -> Option<&mut T> {
775        match *self {
776            Some(ref mut x) => Some(x),
777            None => None,
778        }
779    }
780
781    /// Converts from <code>[Pin]<[&]Option\<T>></code> to <code>Option<[Pin]<[&]T>></code>.
782    ///
783    /// [&]: reference "shared reference"
784    #[inline]
785    #[must_use]
786    #[stable(feature = "pin", since = "1.33.0")]
787    #[rustc_const_stable(feature = "const_option_ext", since = "1.84.0")]
788    #[cfg(not(feature = "ferrocene_subset"))]
789    pub const fn as_pin_ref(self: Pin<&Self>) -> Option<Pin<&T>> {
790        // FIXME(const-hack): use `map` once that is possible
791        match Pin::get_ref(self).as_ref() {
792            // SAFETY: `x` is guaranteed to be pinned because it comes from `self`
793            // which is pinned.
794            Some(x) => unsafe { Some(Pin::new_unchecked(x)) },
795            None => None,
796        }
797    }
798
799    /// Converts from <code>[Pin]<[&mut] Option\<T>></code> to <code>Option<[Pin]<[&mut] T>></code>.
800    ///
801    /// [&mut]: reference "mutable reference"
802    #[inline]
803    #[must_use]
804    #[stable(feature = "pin", since = "1.33.0")]
805    #[rustc_const_stable(feature = "const_option_ext", since = "1.84.0")]
806    #[cfg(not(feature = "ferrocene_subset"))]
807    pub const fn as_pin_mut(self: Pin<&mut Self>) -> Option<Pin<&mut T>> {
808        // SAFETY: `get_unchecked_mut` is never used to move the `Option` inside `self`.
809        // `x` is guaranteed to be pinned because it comes from `self` which is pinned.
810        unsafe {
811            // FIXME(const-hack): use `map` once that is possible
812            match Pin::get_unchecked_mut(self).as_mut() {
813                Some(x) => Some(Pin::new_unchecked(x)),
814                None => None,
815            }
816        }
817    }
818
819    #[inline]
820    const fn len(&self) -> usize {
821        // Using the intrinsic avoids emitting a branch to get the 0 or 1.
822        let discriminant: isize = crate::intrinsics::discriminant_value(self);
823        discriminant as usize
824    }
825
826    /// Returns a slice of the contained value, if any. If this is `None`, an
827    /// empty slice is returned. This can be useful to have a single type of
828    /// iterator over an `Option` or slice.
829    ///
830    /// Note: Should you have an `Option<&T>` and wish to get a slice of `T`,
831    /// you can unpack it via `opt.map_or(&[], std::slice::from_ref)`.
832    ///
833    /// # Examples
834    ///
835    /// ```rust
836    /// assert_eq!(
837    ///     [Some(1234).as_slice(), None.as_slice()],
838    ///     [&[1234][..], &[][..]],
839    /// );
840    /// ```
841    ///
842    /// The inverse of this function is (discounting
843    /// borrowing) [`[_]::first`](slice::first):
844    ///
845    /// ```rust
846    /// for i in [Some(1234_u16), None] {
847    ///     assert_eq!(i.as_ref(), i.as_slice().first());
848    /// }
849    /// ```
850    #[inline]
851    #[must_use]
852    #[stable(feature = "option_as_slice", since = "1.75.0")]
853    #[rustc_const_stable(feature = "const_option_ext", since = "1.84.0")]
854    #[cfg(not(feature = "ferrocene_subset"))]
855    pub const fn as_slice(&self) -> &[T] {
856        // SAFETY: When the `Option` is `Some`, we're using the actual pointer
857        // to the payload, with a length of 1, so this is equivalent to
858        // `slice::from_ref`, and thus is safe.
859        // When the `Option` is `None`, the length used is 0, so to be safe it
860        // just needs to be aligned, which it is because `&self` is aligned and
861        // the offset used is a multiple of alignment.
862        //
863        // Here we assume that `offset_of!` always returns an offset to an
864        // in-bounds and correctly aligned position for a `T` (even if in the
865        // `None` case it's just padding).
866        unsafe {
867            slice::from_raw_parts(
868                (self as *const Self).byte_add(core::mem::offset_of!(Self, Some.0)).cast(),
869                self.len(),
870            )
871        }
872    }
873
874    /// Returns a mutable slice of the contained value, if any. If this is
875    /// `None`, an empty slice is returned. This can be useful to have a
876    /// single type of iterator over an `Option` or slice.
877    ///
878    /// Note: Should you have an `Option<&mut T>` instead of a
879    /// `&mut Option<T>`, which this method takes, you can obtain a mutable
880    /// slice via `opt.map_or(&mut [], std::slice::from_mut)`.
881    ///
882    /// # Examples
883    ///
884    /// ```rust
885    /// assert_eq!(
886    ///     [Some(1234).as_mut_slice(), None.as_mut_slice()],
887    ///     [&mut [1234][..], &mut [][..]],
888    /// );
889    /// ```
890    ///
891    /// The result is a mutable slice of zero or one items that points into
892    /// our original `Option`:
893    ///
894    /// ```rust
895    /// let mut x = Some(1234);
896    /// x.as_mut_slice()[0] += 1;
897    /// assert_eq!(x, Some(1235));
898    /// ```
899    ///
900    /// The inverse of this method (discounting borrowing)
901    /// is [`[_]::first_mut`](slice::first_mut):
902    ///
903    /// ```rust
904    /// assert_eq!(Some(123).as_mut_slice().first_mut(), Some(&mut 123))
905    /// ```
906    #[inline]
907    #[must_use]
908    #[stable(feature = "option_as_slice", since = "1.75.0")]
909    #[rustc_const_stable(feature = "const_option_ext", since = "1.84.0")]
910    #[cfg(not(feature = "ferrocene_subset"))]
911    pub const fn as_mut_slice(&mut self) -> &mut [T] {
912        // SAFETY: When the `Option` is `Some`, we're using the actual pointer
913        // to the payload, with a length of 1, so this is equivalent to
914        // `slice::from_mut`, and thus is safe.
915        // When the `Option` is `None`, the length used is 0, so to be safe it
916        // just needs to be aligned, which it is because `&self` is aligned and
917        // the offset used is a multiple of alignment.
918        //
919        // In the new version, the intrinsic creates a `*const T` from a
920        // mutable reference  so it is safe to cast back to a mutable pointer
921        // here. As with `as_slice`, the intrinsic always returns a pointer to
922        // an in-bounds and correctly aligned position for a `T` (even if in
923        // the `None` case it's just padding).
924        unsafe {
925            slice::from_raw_parts_mut(
926                (self as *mut Self).byte_add(core::mem::offset_of!(Self, Some.0)).cast(),
927                self.len(),
928            )
929        }
930    }
931
932    /////////////////////////////////////////////////////////////////////////
933    // Getting to contained values
934    /////////////////////////////////////////////////////////////////////////
935
936    /// Returns the contained [`Some`] value, consuming the `self` value.
937    ///
938    /// # Panics
939    ///
940    /// Panics if the value is a [`None`] with a custom panic message provided by
941    /// `msg`.
942    ///
943    /// # Examples
944    ///
945    /// ```
946    /// let x = Some("value");
947    /// assert_eq!(x.expect("fruits are healthy"), "value");
948    /// ```
949    ///
950    /// ```should_panic
951    /// let x: Option<&str> = None;
952    /// x.expect("fruits are healthy"); // panics with `fruits are healthy`
953    /// ```
954    ///
955    /// # Recommended Message Style
956    ///
957    /// We recommend that `expect` messages are used to describe the reason you
958    /// _expect_ the `Option` should be `Some`.
959    ///
960    /// ```should_panic
961    /// # let slice: &[u8] = &[];
962    /// let item = slice.get(0)
963    ///     .expect("slice should not be empty");
964    /// ```
965    ///
966    /// **Hint**: If you're having trouble remembering how to phrase expect
967    /// error messages remember to focus on the word "should" as in "env
968    /// variable should be set by blah" or "the given binary should be available
969    /// and executable by the current user".
970    ///
971    /// For more detail on expect message styles and the reasoning behind our
972    /// recommendation please refer to the section on ["Common Message
973    /// Styles"](../../std/error/index.html#common-message-styles) in the [`std::error`](../../std/error/index.html) module docs.
974    #[inline]
975    #[track_caller]
976    #[stable(feature = "rust1", since = "1.0.0")]
977    #[rustc_diagnostic_item = "option_expect"]
978    #[rustc_allow_const_fn_unstable(const_precise_live_drops)]
979    #[rustc_const_stable(feature = "const_option", since = "1.83.0")]
980    pub const fn expect(self, msg: &str) -> T {
981        match self {
982            Some(val) => val,
983            None => expect_failed(msg),
984        }
985    }
986
987    /// Returns the contained [`Some`] value, consuming the `self` value.
988    ///
989    /// Because this function may panic, its use is generally discouraged.
990    /// Panics are meant for unrecoverable errors, and
991    /// [may abort the entire program][panic-abort].
992    ///
993    /// Instead, prefer to use pattern matching and handle the [`None`]
994    /// case explicitly, or call [`unwrap_or`], [`unwrap_or_else`], or
995    /// [`unwrap_or_default`]. In functions returning `Option`, you can use
996    /// [the `?` (try) operator][try-option].
997    ///
998    /// [panic-abort]: https://doc.rust-lang.org/book/ch09-01-unrecoverable-errors-with-panic.html
999    /// [try-option]: https://doc.rust-lang.org/book/ch09-02-recoverable-errors-with-result.html#where-the--operator-can-be-used
1000    /// [`unwrap_or`]: Option::unwrap_or
1001    /// [`unwrap_or_else`]: Option::unwrap_or_else
1002    /// [`unwrap_or_default`]: Option::unwrap_or_default
1003    ///
1004    /// # Panics
1005    ///
1006    /// Panics if the self value equals [`None`].
1007    ///
1008    /// # Examples
1009    ///
1010    /// ```
1011    /// let x = Some("air");
1012    /// assert_eq!(x.unwrap(), "air");
1013    /// ```
1014    ///
1015    /// ```should_panic
1016    /// let x: Option<&str> = None;
1017    /// assert_eq!(x.unwrap(), "air"); // fails
1018    /// ```
1019    #[inline(always)]
1020    #[track_caller]
1021    #[stable(feature = "rust1", since = "1.0.0")]
1022    #[rustc_diagnostic_item = "option_unwrap"]
1023    #[rustc_allow_const_fn_unstable(const_precise_live_drops)]
1024    #[rustc_const_stable(feature = "const_option", since = "1.83.0")]
1025    pub const fn unwrap(self) -> T {
1026        match self {
1027            Some(val) => val,
1028            None => unwrap_failed(),
1029        }
1030    }
1031
1032    /// Returns the contained [`Some`] value or a provided default.
1033    ///
1034    /// Arguments passed to `unwrap_or` are eagerly evaluated; if you are passing
1035    /// the result of a function call, it is recommended to use [`unwrap_or_else`],
1036    /// which is lazily evaluated.
1037    ///
1038    /// [`unwrap_or_else`]: Option::unwrap_or_else
1039    ///
1040    /// # Examples
1041    ///
1042    /// ```
1043    /// assert_eq!(Some("car").unwrap_or("bike"), "car");
1044    /// assert_eq!(None.unwrap_or("bike"), "bike");
1045    /// ```
1046    #[inline]
1047    #[stable(feature = "rust1", since = "1.0.0")]
1048    #[rustc_allow_const_fn_unstable(const_precise_live_drops)]
1049    #[rustc_const_unstable(feature = "const_option_ops", issue = "143956")]
1050    pub const fn unwrap_or(self, default: T) -> T
1051    where
1052        T: [const] Destruct,
1053    {
1054        match self {
1055            Some(x) => x,
1056            None => default,
1057        }
1058    }
1059
1060    /// Returns the contained [`Some`] value or computes it from a closure.
1061    ///
1062    /// # Examples
1063    ///
1064    /// ```
1065    /// let k = 10;
1066    /// assert_eq!(Some(4).unwrap_or_else(|| 2 * k), 4);
1067    /// assert_eq!(None.unwrap_or_else(|| 2 * k), 20);
1068    /// ```
1069    #[inline]
1070    #[track_caller]
1071    #[stable(feature = "rust1", since = "1.0.0")]
1072    #[rustc_const_unstable(feature = "const_option_ops", issue = "143956")]
1073    pub const fn unwrap_or_else<F>(self, f: F) -> T
1074    where
1075        F: [const] FnOnce() -> T + [const] Destruct,
1076    {
1077        match self {
1078            Some(x) => x,
1079            None => f(),
1080        }
1081    }
1082
1083    /// Returns the contained [`Some`] value or a default.
1084    ///
1085    /// Consumes the `self` argument then, if [`Some`], returns the contained
1086    /// value, otherwise if [`None`], returns the [default value] for that
1087    /// type.
1088    ///
1089    /// # Examples
1090    ///
1091    /// ```
1092    /// let x: Option<u32> = None;
1093    /// let y: Option<u32> = Some(12);
1094    ///
1095    /// assert_eq!(x.unwrap_or_default(), 0);
1096    /// assert_eq!(y.unwrap_or_default(), 12);
1097    /// ```
1098    ///
1099    /// [default value]: Default::default
1100    /// [`parse`]: str::parse
1101    /// [`FromStr`]: crate::str::FromStr
1102    #[inline]
1103    #[stable(feature = "rust1", since = "1.0.0")]
1104    #[rustc_const_unstable(feature = "const_option_ops", issue = "143956")]
1105    pub const fn unwrap_or_default(self) -> T
1106    where
1107        T: [const] Default,
1108    {
1109        match self {
1110            Some(x) => x,
1111            None => T::default(),
1112        }
1113    }
1114
1115    /// Returns the contained [`Some`] value, consuming the `self` value,
1116    /// without checking that the value is not [`None`].
1117    ///
1118    /// # Safety
1119    ///
1120    /// Calling this method on [`None`] is *[undefined behavior]*.
1121    ///
1122    /// [undefined behavior]: https://doc.rust-lang.org/reference/behavior-considered-undefined.html
1123    ///
1124    /// # Examples
1125    ///
1126    /// ```
1127    /// let x = Some("air");
1128    /// assert_eq!(unsafe { x.unwrap_unchecked() }, "air");
1129    /// ```
1130    ///
1131    /// ```no_run
1132    /// let x: Option<&str> = None;
1133    /// assert_eq!(unsafe { x.unwrap_unchecked() }, "air"); // Undefined behavior!
1134    /// ```
1135    #[inline]
1136    #[track_caller]
1137    #[stable(feature = "option_result_unwrap_unchecked", since = "1.58.0")]
1138    #[rustc_allow_const_fn_unstable(const_precise_live_drops)]
1139    #[rustc_const_stable(feature = "const_option", since = "1.83.0")]
1140    pub const unsafe fn unwrap_unchecked(self) -> T {
1141        match self {
1142            Some(val) => val,
1143            #[ferrocene::annotation(
1144                "This line cannot be covered as reaching `unreachable_unchecked` is undefined behavior."
1145            )]
1146            // SAFETY: the safety contract must be upheld by the caller.
1147            None => unsafe { hint::unreachable_unchecked() },
1148        }
1149    }
1150
1151    /////////////////////////////////////////////////////////////////////////
1152    // Transforming contained values
1153    /////////////////////////////////////////////////////////////////////////
1154
1155    /// Maps an `Option<T>` to `Option<U>` by applying a function to a contained value (if `Some`) or returns `None` (if `None`).
1156    ///
1157    /// # Examples
1158    ///
1159    /// Calculates the length of an <code>Option<[String]></code> as an
1160    /// <code>Option<[usize]></code>, consuming the original:
1161    ///
1162    /// [String]: ../../std/string/struct.String.html "String"
1163    /// ```
1164    /// let maybe_some_string = Some(String::from("Hello, World!"));
1165    /// // `Option::map` takes self *by value*, consuming `maybe_some_string`
1166    /// let maybe_some_len = maybe_some_string.map(|s| s.len());
1167    /// assert_eq!(maybe_some_len, Some(13));
1168    ///
1169    /// let x: Option<&str> = None;
1170    /// assert_eq!(x.map(|s| s.len()), None);
1171    /// ```
1172    #[inline]
1173    #[stable(feature = "rust1", since = "1.0.0")]
1174    #[rustc_const_unstable(feature = "const_option_ops", issue = "143956")]
1175    pub const fn map<U, F>(self, f: F) -> Option<U>
1176    where
1177        F: [const] FnOnce(T) -> U + [const] Destruct,
1178    {
1179        match self {
1180            Some(x) => Some(f(x)),
1181            None => None,
1182        }
1183    }
1184
1185    /// Calls a function with a reference to the contained value if [`Some`].
1186    ///
1187    /// Returns the original option.
1188    ///
1189    /// # Examples
1190    ///
1191    /// ```
1192    /// let list = vec![1, 2, 3];
1193    ///
1194    /// // prints "got: 2"
1195    /// let x = list
1196    ///     .get(1)
1197    ///     .inspect(|x| println!("got: {x}"))
1198    ///     .expect("list should be long enough");
1199    ///
1200    /// // prints nothing
1201    /// list.get(5).inspect(|x| println!("got: {x}"));
1202    /// ```
1203    #[inline]
1204    #[stable(feature = "result_option_inspect", since = "1.76.0")]
1205    #[rustc_const_unstable(feature = "const_option_ops", issue = "143956")]
1206    pub const fn inspect<F>(self, f: F) -> Self
1207    where
1208        F: [const] FnOnce(&T) + [const] Destruct,
1209    {
1210        if let Some(ref x) = self {
1211            f(x);
1212        }
1213
1214        self
1215    }
1216
1217    /// Returns the provided default result (if none),
1218    /// or applies a function to the contained value (if any).
1219    ///
1220    /// Arguments passed to `map_or` are eagerly evaluated; if you are passing
1221    /// the result of a function call, it is recommended to use [`map_or_else`],
1222    /// which is lazily evaluated.
1223    ///
1224    /// [`map_or_else`]: Option::map_or_else
1225    ///
1226    /// # Examples
1227    ///
1228    /// ```
1229    /// let x = Some("foo");
1230    /// assert_eq!(x.map_or(42, |v| v.len()), 3);
1231    ///
1232    /// let x: Option<&str> = None;
1233    /// assert_eq!(x.map_or(42, |v| v.len()), 42);
1234    /// ```
1235    #[inline]
1236    #[stable(feature = "rust1", since = "1.0.0")]
1237    #[must_use = "if you don't need the returned value, use `if let` instead"]
1238    #[rustc_const_unstable(feature = "const_option_ops", issue = "143956")]
1239    pub const fn map_or<U, F>(self, default: U, f: F) -> U
1240    where
1241        F: [const] FnOnce(T) -> U + [const] Destruct,
1242        U: [const] Destruct,
1243    {
1244        match self {
1245            Some(t) => f(t),
1246            None => default,
1247        }
1248    }
1249
1250    /// Computes a default function result (if none), or
1251    /// applies a different function to the contained value (if any).
1252    ///
1253    /// # Basic examples
1254    ///
1255    /// ```
1256    /// let k = 21;
1257    ///
1258    /// let x = Some("foo");
1259    /// assert_eq!(x.map_or_else(|| 2 * k, |v| v.len()), 3);
1260    ///
1261    /// let x: Option<&str> = None;
1262    /// assert_eq!(x.map_or_else(|| 2 * k, |v| v.len()), 42);
1263    /// ```
1264    ///
1265    /// # Handling a Result-based fallback
1266    ///
1267    /// A somewhat common occurrence when dealing with optional values
1268    /// in combination with [`Result<T, E>`] is the case where one wants to invoke
1269    /// a fallible fallback if the option is not present.  This example
1270    /// parses a command line argument (if present), or the contents of a file to
1271    /// an integer.  However, unlike accessing the command line argument, reading
1272    /// the file is fallible, so it must be wrapped with `Ok`.
1273    ///
1274    /// ```no_run
1275    /// # fn main() -> Result<(), Box<dyn std::error::Error>> {
1276    /// let v: u64 = std::env::args()
1277    ///    .nth(1)
1278    ///    .map_or_else(|| std::fs::read_to_string("/etc/someconfig.conf"), Ok)?
1279    ///    .parse()?;
1280    /// #   Ok(())
1281    /// # }
1282    /// ```
1283    #[inline]
1284    #[stable(feature = "rust1", since = "1.0.0")]
1285    #[rustc_const_unstable(feature = "const_option_ops", issue = "143956")]
1286    pub const fn map_or_else<U, D, F>(self, default: D, f: F) -> U
1287    where
1288        D: [const] FnOnce() -> U + [const] Destruct,
1289        F: [const] FnOnce(T) -> U + [const] Destruct,
1290    {
1291        match self {
1292            Some(t) => f(t),
1293            None => default(),
1294        }
1295    }
1296
1297    /// Maps an `Option<T>` to a `U` by applying function `f` to the contained
1298    /// value if the option is [`Some`], otherwise if [`None`], returns the
1299    /// [default value] for the type `U`.
1300    ///
1301    /// # Examples
1302    ///
1303    /// ```
1304    /// #![feature(result_option_map_or_default)]
1305    ///
1306    /// let x: Option<&str> = Some("hi");
1307    /// let y: Option<&str> = None;
1308    ///
1309    /// assert_eq!(x.map_or_default(|x| x.len()), 2);
1310    /// assert_eq!(y.map_or_default(|y| y.len()), 0);
1311    /// ```
1312    ///
1313    /// [default value]: Default::default
1314    #[inline]
1315    #[unstable(feature = "result_option_map_or_default", issue = "138099")]
1316    #[rustc_const_unstable(feature = "const_option_ops", issue = "143956")]
1317    pub const fn map_or_default<U, F>(self, f: F) -> U
1318    where
1319        U: [const] Default,
1320        F: [const] FnOnce(T) -> U + [const] Destruct,
1321    {
1322        match self {
1323            Some(t) => f(t),
1324            None => U::default(),
1325        }
1326    }
1327
1328    /// Transforms the `Option<T>` into a [`Result<T, E>`], mapping [`Some(v)`] to
1329    /// [`Ok(v)`] and [`None`] to [`Err(err)`].
1330    ///
1331    /// Arguments passed to `ok_or` are eagerly evaluated; if you are passing the
1332    /// result of a function call, it is recommended to use [`ok_or_else`], which is
1333    /// lazily evaluated.
1334    ///
1335    /// [`Ok(v)`]: Ok
1336    /// [`Err(err)`]: Err
1337    /// [`Some(v)`]: Some
1338    /// [`ok_or_else`]: Option::ok_or_else
1339    ///
1340    /// # Examples
1341    ///
1342    /// ```
1343    /// let x = Some("foo");
1344    /// assert_eq!(x.ok_or(0), Ok("foo"));
1345    ///
1346    /// let x: Option<&str> = None;
1347    /// assert_eq!(x.ok_or(0), Err(0));
1348    /// ```
1349    #[inline]
1350    #[stable(feature = "rust1", since = "1.0.0")]
1351    #[rustc_const_unstable(feature = "const_option_ops", issue = "143956")]
1352    pub const fn ok_or<E: [const] Destruct>(self, err: E) -> Result<T, E> {
1353        match self {
1354            Some(v) => Ok(v),
1355            None => Err(err),
1356        }
1357    }
1358
1359    /// Transforms the `Option<T>` into a [`Result<T, E>`], mapping [`Some(v)`] to
1360    /// [`Ok(v)`] and [`None`] to [`Err(err())`].
1361    ///
1362    /// [`Ok(v)`]: Ok
1363    /// [`Err(err())`]: Err
1364    /// [`Some(v)`]: Some
1365    ///
1366    /// # Examples
1367    ///
1368    /// ```
1369    /// let x = Some("foo");
1370    /// assert_eq!(x.ok_or_else(|| 0), Ok("foo"));
1371    ///
1372    /// let x: Option<&str> = None;
1373    /// assert_eq!(x.ok_or_else(|| 0), Err(0));
1374    /// ```
1375    #[inline]
1376    #[stable(feature = "rust1", since = "1.0.0")]
1377    #[rustc_const_unstable(feature = "const_option_ops", issue = "143956")]
1378    pub const fn ok_or_else<E, F>(self, err: F) -> Result<T, E>
1379    where
1380        F: [const] FnOnce() -> E + [const] Destruct,
1381    {
1382        match self {
1383            Some(v) => Ok(v),
1384            None => Err(err()),
1385        }
1386    }
1387
1388    /// Converts from `Option<T>` (or `&Option<T>`) to `Option<&T::Target>`.
1389    ///
1390    /// Leaves the original Option in-place, creating a new one with a reference
1391    /// to the original one, additionally coercing the contents via [`Deref`].
1392    ///
1393    /// # Examples
1394    ///
1395    /// ```
1396    /// let x: Option<String> = Some("hey".to_owned());
1397    /// assert_eq!(x.as_deref(), Some("hey"));
1398    ///
1399    /// let x: Option<String> = None;
1400    /// assert_eq!(x.as_deref(), None);
1401    /// ```
1402    #[inline]
1403    #[stable(feature = "option_deref", since = "1.40.0")]
1404    #[rustc_const_unstable(feature = "const_convert", issue = "143773")]
1405    pub const fn as_deref(&self) -> Option<&T::Target>
1406    where
1407        T: [const] Deref,
1408    {
1409        self.as_ref().map(Deref::deref)
1410    }
1411
1412    /// Converts from `Option<T>` (or `&mut Option<T>`) to `Option<&mut T::Target>`.
1413    ///
1414    /// Leaves the original `Option` in-place, creating a new one containing a mutable reference to
1415    /// the inner type's [`Deref::Target`] type.
1416    ///
1417    /// # Examples
1418    ///
1419    /// ```
1420    /// let mut x: Option<String> = Some("hey".to_owned());
1421    /// assert_eq!(x.as_deref_mut().map(|x| {
1422    ///     x.make_ascii_uppercase();
1423    ///     x
1424    /// }), Some("HEY".to_owned().as_mut_str()));
1425    /// ```
1426    #[inline]
1427    #[stable(feature = "option_deref", since = "1.40.0")]
1428    #[rustc_const_unstable(feature = "const_convert", issue = "143773")]
1429    pub const fn as_deref_mut(&mut self) -> Option<&mut T::Target>
1430    where
1431        T: [const] DerefMut,
1432    {
1433        self.as_mut().map(DerefMut::deref_mut)
1434    }
1435
1436    /////////////////////////////////////////////////////////////////////////
1437    // Iterator constructors
1438    /////////////////////////////////////////////////////////////////////////
1439
1440    /// Returns an iterator over the possibly contained value.
1441    ///
1442    /// # Examples
1443    ///
1444    /// ```
1445    /// let x = Some(4);
1446    /// assert_eq!(x.iter().next(), Some(&4));
1447    ///
1448    /// let x: Option<u32> = None;
1449    /// assert_eq!(x.iter().next(), None);
1450    /// ```
1451    #[inline]
1452    #[stable(feature = "rust1", since = "1.0.0")]
1453    pub fn iter(&self) -> Iter<'_, T> {
1454        Iter { inner: Item { opt: self.as_ref() } }
1455    }
1456
1457    /// Returns a mutable iterator over the possibly contained value.
1458    ///
1459    /// # Examples
1460    ///
1461    /// ```
1462    /// let mut x = Some(4);
1463    /// match x.iter_mut().next() {
1464    ///     Some(v) => *v = 42,
1465    ///     None => {},
1466    /// }
1467    /// assert_eq!(x, Some(42));
1468    ///
1469    /// let mut x: Option<u32> = None;
1470    /// assert_eq!(x.iter_mut().next(), None);
1471    /// ```
1472    #[inline]
1473    #[stable(feature = "rust1", since = "1.0.0")]
1474    pub fn iter_mut(&mut self) -> IterMut<'_, T> {
1475        IterMut { inner: Item { opt: self.as_mut() } }
1476    }
1477
1478    /////////////////////////////////////////////////////////////////////////
1479    // Boolean operations on the values, eager and lazy
1480    /////////////////////////////////////////////////////////////////////////
1481
1482    /// Returns [`None`] if the option is [`None`], otherwise returns `optb`.
1483    ///
1484    /// Arguments passed to `and` are eagerly evaluated; if you are passing the
1485    /// result of a function call, it is recommended to use [`and_then`], which is
1486    /// lazily evaluated.
1487    ///
1488    /// [`and_then`]: Option::and_then
1489    ///
1490    /// # Examples
1491    ///
1492    /// ```
1493    /// let x = Some(2);
1494    /// let y: Option<&str> = None;
1495    /// assert_eq!(x.and(y), None);
1496    ///
1497    /// let x: Option<u32> = None;
1498    /// let y = Some("foo");
1499    /// assert_eq!(x.and(y), None);
1500    ///
1501    /// let x = Some(2);
1502    /// let y = Some("foo");
1503    /// assert_eq!(x.and(y), Some("foo"));
1504    ///
1505    /// let x: Option<u32> = None;
1506    /// let y: Option<&str> = None;
1507    /// assert_eq!(x.and(y), None);
1508    /// ```
1509    #[inline]
1510    #[stable(feature = "rust1", since = "1.0.0")]
1511    #[rustc_const_unstable(feature = "const_option_ops", issue = "143956")]
1512    pub const fn and<U>(self, optb: Option<U>) -> Option<U>
1513    where
1514        T: [const] Destruct,
1515        U: [const] Destruct,
1516    {
1517        match self {
1518            Some(_) => optb,
1519            None => None,
1520        }
1521    }
1522
1523    /// Returns [`None`] if the option is [`None`], otherwise calls `f` with the
1524    /// wrapped value and returns the result.
1525    ///
1526    /// Some languages call this operation flatmap.
1527    ///
1528    /// # Examples
1529    ///
1530    /// ```
1531    /// fn sq_then_to_string(x: u32) -> Option<String> {
1532    ///     x.checked_mul(x).map(|sq| sq.to_string())
1533    /// }
1534    ///
1535    /// assert_eq!(Some(2).and_then(sq_then_to_string), Some(4.to_string()));
1536    /// assert_eq!(Some(1_000_000).and_then(sq_then_to_string), None); // overflowed!
1537    /// assert_eq!(None.and_then(sq_then_to_string), None);
1538    /// ```
1539    ///
1540    /// Often used to chain fallible operations that may return [`None`].
1541    ///
1542    /// ```
1543    /// let arr_2d = [["A0", "A1"], ["B0", "B1"]];
1544    ///
1545    /// let item_0_1 = arr_2d.get(0).and_then(|row| row.get(1));
1546    /// assert_eq!(item_0_1, Some(&"A1"));
1547    ///
1548    /// let item_2_0 = arr_2d.get(2).and_then(|row| row.get(0));
1549    /// assert_eq!(item_2_0, None);
1550    /// ```
1551    #[doc(alias = "flatmap")]
1552    #[inline]
1553    #[stable(feature = "rust1", since = "1.0.0")]
1554    #[rustc_confusables("flat_map", "flatmap")]
1555    #[rustc_const_unstable(feature = "const_option_ops", issue = "143956")]
1556    pub const fn and_then<U, F>(self, f: F) -> Option<U>
1557    where
1558        F: [const] FnOnce(T) -> Option<U> + [const] Destruct,
1559    {
1560        match self {
1561            Some(x) => f(x),
1562            None => None,
1563        }
1564    }
1565
1566    /// Returns [`None`] if the option is [`None`], otherwise calls `predicate`
1567    /// with the wrapped value and returns:
1568    ///
1569    /// - [`Some(t)`] if `predicate` returns `true` (where `t` is the wrapped
1570    ///   value), and
1571    /// - [`None`] if `predicate` returns `false`.
1572    ///
1573    /// This function works similar to [`Iterator::filter()`]. You can imagine
1574    /// the `Option<T>` being an iterator over one or zero elements. `filter()`
1575    /// lets you decide which elements to keep.
1576    ///
1577    /// # Examples
1578    ///
1579    /// ```rust
1580    /// fn is_even(n: &i32) -> bool {
1581    ///     n % 2 == 0
1582    /// }
1583    ///
1584    /// assert_eq!(None.filter(is_even), None);
1585    /// assert_eq!(Some(3).filter(is_even), None);
1586    /// assert_eq!(Some(4).filter(is_even), Some(4));
1587    /// ```
1588    ///
1589    /// [`Some(t)`]: Some
1590    #[inline]
1591    #[stable(feature = "option_filter", since = "1.27.0")]
1592    #[rustc_const_unstable(feature = "const_option_ops", issue = "143956")]
1593    pub const fn filter<P>(self, predicate: P) -> Self
1594    where
1595        P: [const] FnOnce(&T) -> bool + [const] Destruct,
1596        T: [const] Destruct,
1597    {
1598        if let Some(x) = self {
1599            if predicate(&x) {
1600                return Some(x);
1601            }
1602        }
1603        None
1604    }
1605
1606    /// Returns the option if it contains a value, otherwise returns `optb`.
1607    ///
1608    /// Arguments passed to `or` are eagerly evaluated; if you are passing the
1609    /// result of a function call, it is recommended to use [`or_else`], which is
1610    /// lazily evaluated.
1611    ///
1612    /// [`or_else`]: Option::or_else
1613    ///
1614    /// # Examples
1615    ///
1616    /// ```
1617    /// let x = Some(2);
1618    /// let y = None;
1619    /// assert_eq!(x.or(y), Some(2));
1620    ///
1621    /// let x = None;
1622    /// let y = Some(100);
1623    /// assert_eq!(x.or(y), Some(100));
1624    ///
1625    /// let x = Some(2);
1626    /// let y = Some(100);
1627    /// assert_eq!(x.or(y), Some(2));
1628    ///
1629    /// let x: Option<u32> = None;
1630    /// let y = None;
1631    /// assert_eq!(x.or(y), None);
1632    /// ```
1633    #[inline]
1634    #[stable(feature = "rust1", since = "1.0.0")]
1635    #[rustc_const_unstable(feature = "const_option_ops", issue = "143956")]
1636    pub const fn or(self, optb: Option<T>) -> Option<T>
1637    where
1638        T: [const] Destruct,
1639    {
1640        match self {
1641            x @ Some(_) => x,
1642            None => optb,
1643        }
1644    }
1645
1646    /// Returns the option if it contains a value, otherwise calls `f` and
1647    /// returns the result.
1648    ///
1649    /// # Examples
1650    ///
1651    /// ```
1652    /// fn nobody() -> Option<&'static str> { None }
1653    /// fn vikings() -> Option<&'static str> { Some("vikings") }
1654    ///
1655    /// assert_eq!(Some("barbarians").or_else(vikings), Some("barbarians"));
1656    /// assert_eq!(None.or_else(vikings), Some("vikings"));
1657    /// assert_eq!(None.or_else(nobody), None);
1658    /// ```
1659    #[inline]
1660    #[stable(feature = "rust1", since = "1.0.0")]
1661    #[rustc_const_unstable(feature = "const_option_ops", issue = "143956")]
1662    pub const fn or_else<F>(self, f: F) -> Option<T>
1663    where
1664        F: [const] FnOnce() -> Option<T> + [const] Destruct,
1665        //FIXME(const_hack): this `T: [const] Destruct` is unnecessary, but even precise live drops can't tell
1666        // no value of type `T` gets dropped here
1667        T: [const] Destruct,
1668    {
1669        match self {
1670            x @ Some(_) => x,
1671            None => f(),
1672        }
1673    }
1674
1675    /// Returns [`Some`] if exactly one of `self`, `optb` is [`Some`], otherwise returns [`None`].
1676    ///
1677    /// # Examples
1678    ///
1679    /// ```
1680    /// let x = Some(2);
1681    /// let y: Option<u32> = None;
1682    /// assert_eq!(x.xor(y), Some(2));
1683    ///
1684    /// let x: Option<u32> = None;
1685    /// let y = Some(2);
1686    /// assert_eq!(x.xor(y), Some(2));
1687    ///
1688    /// let x = Some(2);
1689    /// let y = Some(2);
1690    /// assert_eq!(x.xor(y), None);
1691    ///
1692    /// let x: Option<u32> = None;
1693    /// let y: Option<u32> = None;
1694    /// assert_eq!(x.xor(y), None);
1695    /// ```
1696    #[inline]
1697    #[stable(feature = "option_xor", since = "1.37.0")]
1698    #[rustc_const_unstable(feature = "const_option_ops", issue = "143956")]
1699    pub const fn xor(self, optb: Option<T>) -> Option<T>
1700    where
1701        T: [const] Destruct,
1702    {
1703        match (self, optb) {
1704            (a @ Some(_), None) => a,
1705            (None, b @ Some(_)) => b,
1706            _ => None,
1707        }
1708    }
1709
1710    /////////////////////////////////////////////////////////////////////////
1711    // Entry-like operations to insert a value and return a reference
1712    /////////////////////////////////////////////////////////////////////////
1713
1714    /// Inserts `value` into the option, then returns a mutable reference to it.
1715    ///
1716    /// If the option already contains a value, the old value is dropped.
1717    ///
1718    /// See also [`Option::get_or_insert`], which doesn't update the value if
1719    /// the option already contains [`Some`].
1720    ///
1721    /// # Example
1722    ///
1723    /// ```
1724    /// let mut opt = None;
1725    /// let val = opt.insert(1);
1726    /// assert_eq!(*val, 1);
1727    /// assert_eq!(opt.unwrap(), 1);
1728    /// let val = opt.insert(2);
1729    /// assert_eq!(*val, 2);
1730    /// *val = 3;
1731    /// assert_eq!(opt.unwrap(), 3);
1732    /// ```
1733    #[must_use = "if you intended to set a value, consider assignment instead"]
1734    #[inline]
1735    #[stable(feature = "option_insert", since = "1.53.0")]
1736    #[rustc_const_unstable(feature = "const_option_ops", issue = "143956")]
1737    pub const fn insert(&mut self, value: T) -> &mut T
1738    where
1739        T: [const] Destruct,
1740    {
1741        *self = Some(value);
1742
1743        // SAFETY: the code above just filled the option
1744        unsafe { self.as_mut().unwrap_unchecked() }
1745    }
1746
1747    /// Inserts `value` into the option if it is [`None`], then
1748    /// returns a mutable reference to the contained value.
1749    ///
1750    /// See also [`Option::insert`], which updates the value even if
1751    /// the option already contains [`Some`].
1752    ///
1753    /// # Examples
1754    ///
1755    /// ```
1756    /// let mut x = None;
1757    ///
1758    /// {
1759    ///     let y: &mut u32 = x.get_or_insert(5);
1760    ///     assert_eq!(y, &5);
1761    ///
1762    ///     *y = 7;
1763    /// }
1764    ///
1765    /// assert_eq!(x, Some(7));
1766    /// ```
1767    #[inline]
1768    #[stable(feature = "option_entry", since = "1.20.0")]
1769    #[cfg(not(feature = "ferrocene_subset"))]
1770    pub fn get_or_insert(&mut self, value: T) -> &mut T {
1771        self.get_or_insert_with(|| value)
1772    }
1773
1774    /// Inserts the default value into the option if it is [`None`], then
1775    /// returns a mutable reference to the contained value.
1776    ///
1777    /// # Examples
1778    ///
1779    /// ```
1780    /// let mut x = None;
1781    ///
1782    /// {
1783    ///     let y: &mut u32 = x.get_or_insert_default();
1784    ///     assert_eq!(y, &0);
1785    ///
1786    ///     *y = 7;
1787    /// }
1788    ///
1789    /// assert_eq!(x, Some(7));
1790    /// ```
1791    #[inline]
1792    #[stable(feature = "option_get_or_insert_default", since = "1.83.0")]
1793    #[rustc_const_unstable(feature = "const_option_ops", issue = "143956")]
1794    #[cfg(not(feature = "ferrocene_subset"))]
1795    pub const fn get_or_insert_default(&mut self) -> &mut T
1796    where
1797        T: [const] Default + [const] Destruct,
1798    {
1799        self.get_or_insert_with(T::default)
1800    }
1801
1802    /// Inserts a value computed from `f` into the option if it is [`None`],
1803    /// then returns a mutable reference to the contained value.
1804    ///
1805    /// # Examples
1806    ///
1807    /// ```
1808    /// let mut x = None;
1809    ///
1810    /// {
1811    ///     let y: &mut u32 = x.get_or_insert_with(|| 5);
1812    ///     assert_eq!(y, &5);
1813    ///
1814    ///     *y = 7;
1815    /// }
1816    ///
1817    /// assert_eq!(x, Some(7));
1818    /// ```
1819    #[inline]
1820    #[stable(feature = "option_entry", since = "1.20.0")]
1821    #[rustc_const_unstable(feature = "const_option_ops", issue = "143956")]
1822    #[cfg(not(feature = "ferrocene_subset"))]
1823    pub const fn get_or_insert_with<F>(&mut self, f: F) -> &mut T
1824    where
1825        F: [const] FnOnce() -> T + [const] Destruct,
1826        T: [const] Destruct,
1827    {
1828        if let None = self {
1829            *self = Some(f());
1830        }
1831
1832        // SAFETY: a `None` variant for `self` would have been replaced by a `Some`
1833        // variant in the code above.
1834        unsafe { self.as_mut().unwrap_unchecked() }
1835    }
1836
1837    /////////////////////////////////////////////////////////////////////////
1838    // Misc
1839    /////////////////////////////////////////////////////////////////////////
1840
1841    /// Takes the value out of the option, leaving a [`None`] in its place.
1842    ///
1843    /// # Examples
1844    ///
1845    /// ```
1846    /// let mut x = Some(2);
1847    /// let y = x.take();
1848    /// assert_eq!(x, None);
1849    /// assert_eq!(y, Some(2));
1850    ///
1851    /// let mut x: Option<u32> = None;
1852    /// let y = x.take();
1853    /// assert_eq!(x, None);
1854    /// assert_eq!(y, None);
1855    /// ```
1856    #[inline]
1857    #[stable(feature = "rust1", since = "1.0.0")]
1858    #[rustc_const_stable(feature = "const_option", since = "1.83.0")]
1859    pub const fn take(&mut self) -> Option<T> {
1860        // FIXME(const-hack) replace `mem::replace` by `mem::take` when the latter is const ready
1861        mem::replace(self, None)
1862    }
1863
1864    /// Takes the value out of the option, but only if the predicate evaluates to
1865    /// `true` on a mutable reference to the value.
1866    ///
1867    /// In other words, replaces `self` with `None` if the predicate returns `true`.
1868    /// This method operates similar to [`Option::take`] but conditional.
1869    ///
1870    /// # Examples
1871    ///
1872    /// ```
1873    /// let mut x = Some(42);
1874    ///
1875    /// let prev = x.take_if(|v| if *v == 42 {
1876    ///     *v += 1;
1877    ///     false
1878    /// } else {
1879    ///     false
1880    /// });
1881    /// assert_eq!(x, Some(43));
1882    /// assert_eq!(prev, None);
1883    ///
1884    /// let prev = x.take_if(|v| *v == 43);
1885    /// assert_eq!(x, None);
1886    /// assert_eq!(prev, Some(43));
1887    /// ```
1888    #[inline]
1889    #[stable(feature = "option_take_if", since = "1.80.0")]
1890    #[rustc_const_unstable(feature = "const_option_ops", issue = "143956")]
1891    #[cfg(not(feature = "ferrocene_subset"))]
1892    pub const fn take_if<P>(&mut self, predicate: P) -> Option<T>
1893    where
1894        P: [const] FnOnce(&mut T) -> bool + [const] Destruct,
1895    {
1896        if self.as_mut().map_or(false, predicate) { self.take() } else { None }
1897    }
1898
1899    /// Replaces the actual value in the option by the value given in parameter,
1900    /// returning the old value if present,
1901    /// leaving a [`Some`] in its place without deinitializing either one.
1902    ///
1903    /// # Examples
1904    ///
1905    /// ```
1906    /// let mut x = Some(2);
1907    /// let old = x.replace(5);
1908    /// assert_eq!(x, Some(5));
1909    /// assert_eq!(old, Some(2));
1910    ///
1911    /// let mut x = None;
1912    /// let old = x.replace(3);
1913    /// assert_eq!(x, Some(3));
1914    /// assert_eq!(old, None);
1915    /// ```
1916    #[inline]
1917    #[stable(feature = "option_replace", since = "1.31.0")]
1918    #[rustc_const_stable(feature = "const_option", since = "1.83.0")]
1919    pub const fn replace(&mut self, value: T) -> Option<T> {
1920        mem::replace(self, Some(value))
1921    }
1922
1923    /// Zips `self` with another `Option`.
1924    ///
1925    /// If `self` is `Some(s)` and `other` is `Some(o)`, this method returns `Some((s, o))`.
1926    /// Otherwise, `None` is returned.
1927    ///
1928    /// # Examples
1929    ///
1930    /// ```
1931    /// let x = Some(1);
1932    /// let y = Some("hi");
1933    /// let z = None::<u8>;
1934    ///
1935    /// assert_eq!(x.zip(y), Some((1, "hi")));
1936    /// assert_eq!(x.zip(z), None);
1937    /// ```
1938    #[stable(feature = "option_zip_option", since = "1.46.0")]
1939    #[rustc_const_unstable(feature = "const_option_ops", issue = "143956")]
1940    pub const fn zip<U>(self, other: Option<U>) -> Option<(T, U)>
1941    where
1942        T: [const] Destruct,
1943        U: [const] Destruct,
1944    {
1945        match (self, other) {
1946            (Some(a), Some(b)) => Some((a, b)),
1947            _ => None,
1948        }
1949    }
1950
1951    /// Zips `self` and another `Option` with function `f`.
1952    ///
1953    /// If `self` is `Some(s)` and `other` is `Some(o)`, this method returns `Some(f(s, o))`.
1954    /// Otherwise, `None` is returned.
1955    ///
1956    /// # Examples
1957    ///
1958    /// ```
1959    /// #![feature(option_zip)]
1960    ///
1961    /// #[derive(Debug, PartialEq)]
1962    /// struct Point {
1963    ///     x: f64,
1964    ///     y: f64,
1965    /// }
1966    ///
1967    /// impl Point {
1968    ///     fn new(x: f64, y: f64) -> Self {
1969    ///         Self { x, y }
1970    ///     }
1971    /// }
1972    ///
1973    /// let x = Some(17.5);
1974    /// let y = Some(42.7);
1975    ///
1976    /// assert_eq!(x.zip_with(y, Point::new), Some(Point { x: 17.5, y: 42.7 }));
1977    /// assert_eq!(x.zip_with(None, Point::new), None);
1978    /// ```
1979    #[unstable(feature = "option_zip", issue = "70086")]
1980    #[rustc_const_unstable(feature = "const_option_ops", issue = "143956")]
1981    #[cfg(not(feature = "ferrocene_subset"))]
1982    pub const fn zip_with<U, F, R>(self, other: Option<U>, f: F) -> Option<R>
1983    where
1984        F: [const] FnOnce(T, U) -> R + [const] Destruct,
1985        T: [const] Destruct,
1986        U: [const] Destruct,
1987    {
1988        match (self, other) {
1989            (Some(a), Some(b)) => Some(f(a, b)),
1990            _ => None,
1991        }
1992    }
1993
1994    /// Reduces two options into one, using the provided function if both are `Some`.
1995    ///
1996    /// If `self` is `Some(s)` and `other` is `Some(o)`, this method returns `Some(f(s, o))`.
1997    /// Otherwise, if only one of `self` and `other` is `Some`, that one is returned.
1998    /// If both `self` and `other` are `None`, `None` is returned.
1999    ///
2000    /// # Examples
2001    ///
2002    /// ```
2003    /// #![feature(option_reduce)]
2004    ///
2005    /// let s12 = Some(12);
2006    /// let s17 = Some(17);
2007    /// let n = None;
2008    /// let f = |a, b| a + b;
2009    ///
2010    /// assert_eq!(s12.reduce(s17, f), Some(29));
2011    /// assert_eq!(s12.reduce(n, f), Some(12));
2012    /// assert_eq!(n.reduce(s17, f), Some(17));
2013    /// assert_eq!(n.reduce(n, f), None);
2014    /// ```
2015    #[unstable(feature = "option_reduce", issue = "144273")]
2016    pub fn reduce<U, R, F>(self, other: Option<U>, f: F) -> Option<R>
2017    where
2018        T: Into<R>,
2019        U: Into<R>,
2020        F: FnOnce(T, U) -> R,
2021    {
2022        match (self, other) {
2023            (Some(a), Some(b)) => Some(f(a, b)),
2024            (Some(a), _) => Some(a.into()),
2025            (_, Some(b)) => Some(b.into()),
2026            _ => None,
2027        }
2028    }
2029}
2030
2031impl<T: IntoIterator> Option<T> {
2032    /// Transforms an optional iterator into an iterator.
2033    ///
2034    /// If `self` is `None`, the resulting iterator is empty.
2035    /// Otherwise, an iterator is made from the `Some` value and returned.
2036    /// # Examples
2037    /// ```
2038    /// #![feature(option_into_flat_iter)]
2039    ///
2040    /// let o1 = Some([1, 2]);
2041    /// let o2 = None::<&[usize]>;
2042    ///
2043    /// assert_eq!(o1.into_flat_iter().collect::<Vec<_>>(), [1, 2]);
2044    /// assert_eq!(o2.into_flat_iter().collect::<Vec<_>>(), Vec::<&usize>::new());
2045    /// ```
2046    #[cfg(not(feature = "ferrocene_subset"))]
2047    #[unstable(feature = "option_into_flat_iter", issue = "148441")]
2048    pub fn into_flat_iter<A>(self) -> OptionFlatten<A>
2049    where
2050        T: IntoIterator<IntoIter = A>,
2051    {
2052        OptionFlatten { iter: self.map(IntoIterator::into_iter) }
2053    }
2054}
2055
2056impl<T, U> Option<(T, U)> {
2057    /// Unzips an option containing a tuple of two options.
2058    ///
2059    /// If `self` is `Some((a, b))` this method returns `(Some(a), Some(b))`.
2060    /// Otherwise, `(None, None)` is returned.
2061    ///
2062    /// # Examples
2063    ///
2064    /// ```
2065    /// let x = Some((1, "hi"));
2066    /// let y = None::<(u8, u32)>;
2067    ///
2068    /// assert_eq!(x.unzip(), (Some(1), Some("hi")));
2069    /// assert_eq!(y.unzip(), (None, None));
2070    /// ```
2071    #[inline]
2072    #[stable(feature = "unzip_option", since = "1.66.0")]
2073    pub fn unzip(self) -> (Option<T>, Option<U>) {
2074        match self {
2075            Some((a, b)) => (Some(a), Some(b)),
2076            None => (None, None),
2077        }
2078    }
2079}
2080
2081impl<T> Option<&T> {
2082    /// Maps an `Option<&T>` to an `Option<T>` by copying the contents of the
2083    /// option.
2084    ///
2085    /// # Examples
2086    ///
2087    /// ```
2088    /// let x = 12;
2089    /// let opt_x = Some(&x);
2090    /// assert_eq!(opt_x, Some(&12));
2091    /// let copied = opt_x.copied();
2092    /// assert_eq!(copied, Some(12));
2093    /// ```
2094    #[must_use = "`self` will be dropped if the result is not used"]
2095    #[stable(feature = "copied", since = "1.35.0")]
2096    #[rustc_const_stable(feature = "const_option", since = "1.83.0")]
2097    pub const fn copied(self) -> Option<T>
2098    where
2099        T: Copy,
2100    {
2101        // FIXME(const-hack): this implementation, which sidesteps using `Option::map` since it's not const
2102        // ready yet, should be reverted when possible to avoid code repetition
2103        match self {
2104            Some(&v) => Some(v),
2105            None => None,
2106        }
2107    }
2108
2109    /// Maps an `Option<&T>` to an `Option<T>` by cloning the contents of the
2110    /// option.
2111    ///
2112    /// # Examples
2113    ///
2114    /// ```
2115    /// let x = 12;
2116    /// let opt_x = Some(&x);
2117    /// assert_eq!(opt_x, Some(&12));
2118    /// let cloned = opt_x.cloned();
2119    /// assert_eq!(cloned, Some(12));
2120    /// ```
2121    #[must_use = "`self` will be dropped if the result is not used"]
2122    #[stable(feature = "rust1", since = "1.0.0")]
2123    pub fn cloned(self) -> Option<T>
2124    where
2125        T: Clone,
2126    {
2127        self.map(T::clone)
2128    }
2129}
2130
2131impl<T> Option<&mut T> {
2132    /// Maps an `Option<&mut T>` to an `Option<T>` by copying the contents of the
2133    /// option.
2134    ///
2135    /// # Examples
2136    ///
2137    /// ```
2138    /// let mut x = 12;
2139    /// let opt_x = Some(&mut x);
2140    /// assert_eq!(opt_x, Some(&mut 12));
2141    /// let copied = opt_x.copied();
2142    /// assert_eq!(copied, Some(12));
2143    /// ```
2144    #[must_use = "`self` will be dropped if the result is not used"]
2145    #[stable(feature = "copied", since = "1.35.0")]
2146    #[rustc_const_stable(feature = "const_option", since = "1.83.0")]
2147    pub const fn copied(self) -> Option<T>
2148    where
2149        T: Copy,
2150    {
2151        match self {
2152            Some(&mut t) => Some(t),
2153            None => None,
2154        }
2155    }
2156
2157    /// Maps an `Option<&mut T>` to an `Option<T>` by cloning the contents of the
2158    /// option.
2159    ///
2160    /// # Examples
2161    ///
2162    /// ```
2163    /// let mut x = 12;
2164    /// let opt_x = Some(&mut x);
2165    /// assert_eq!(opt_x, Some(&mut 12));
2166    /// let cloned = opt_x.cloned();
2167    /// assert_eq!(cloned, Some(12));
2168    /// ```
2169    #[must_use = "`self` will be dropped if the result is not used"]
2170    #[stable(since = "1.26.0", feature = "option_ref_mut_cloned")]
2171    pub fn cloned(self) -> Option<T>
2172    where
2173        T: Clone,
2174    {
2175        self.as_deref().map(T::clone)
2176    }
2177}
2178
2179impl<T, E> Option<Result<T, E>> {
2180    /// Transposes an `Option` of a [`Result`] into a [`Result`] of an `Option`.
2181    ///
2182    /// <code>[Some]\([Ok]\(\_))</code> is mapped to <code>[Ok]\([Some]\(\_))</code>,
2183    /// <code>[Some]\([Err]\(\_))</code> is mapped to <code>[Err]\(\_)</code>,
2184    /// and [`None`] will be mapped to <code>[Ok]\([None])</code>.
2185    ///
2186    /// # Examples
2187    ///
2188    /// ```
2189    /// #[derive(Debug, Eq, PartialEq)]
2190    /// struct SomeErr;
2191    ///
2192    /// let x: Option<Result<i32, SomeErr>> = Some(Ok(5));
2193    /// let y: Result<Option<i32>, SomeErr> = Ok(Some(5));
2194    /// assert_eq!(x.transpose(), y);
2195    /// ```
2196    #[inline]
2197    #[stable(feature = "transpose_result", since = "1.33.0")]
2198    #[rustc_allow_const_fn_unstable(const_precise_live_drops)]
2199    #[rustc_const_stable(feature = "const_option", since = "1.83.0")]
2200    pub const fn transpose(self) -> Result<Option<T>, E> {
2201        match self {
2202            Some(Ok(x)) => Ok(Some(x)),
2203            Some(Err(e)) => Err(e),
2204            None => Ok(None),
2205        }
2206    }
2207}
2208
2209#[cfg_attr(not(panic = "immediate-abort"), inline(never))]
2210#[cfg_attr(panic = "immediate-abort", inline)]
2211#[cold]
2212#[track_caller]
2213const fn unwrap_failed() -> ! {
2214    panic("called `Option::unwrap()` on a `None` value")
2215}
2216
2217// This is a separate function to reduce the code size of .expect() itself.
2218#[cfg_attr(not(panic = "immediate-abort"), inline(never))]
2219#[cfg_attr(panic = "immediate-abort", inline)]
2220#[cold]
2221#[track_caller]
2222const fn expect_failed(msg: &str) -> ! {
2223    panic_display(&msg)
2224}
2225
2226/////////////////////////////////////////////////////////////////////////////
2227// Trait implementations
2228/////////////////////////////////////////////////////////////////////////////
2229
2230#[stable(feature = "rust1", since = "1.0.0")]
2231#[rustc_const_unstable(feature = "const_clone", issue = "142757")]
2232impl<T> const Clone for Option<T>
2233where
2234    // FIXME(const_hack): the T: [const] Destruct should be inferred from the Self: [const] Destruct in clone_from.
2235    // See https://github.com/rust-lang/rust/issues/144207
2236    T: [const] Clone + [const] Destruct,
2237{
2238    #[inline]
2239    fn clone(&self) -> Self {
2240        match self {
2241            Some(x) => Some(x.clone()),
2242            None => None,
2243        }
2244    }
2245
2246    #[inline]
2247    fn clone_from(&mut self, source: &Self) {
2248        match (self, source) {
2249            (Some(to), Some(from)) => to.clone_from(from),
2250            (to, from) => *to = from.clone(),
2251        }
2252    }
2253}
2254
2255#[unstable(feature = "ergonomic_clones", issue = "132290")]
2256#[cfg(not(feature = "ferrocene_subset"))]
2257impl<T> crate::clone::UseCloned for Option<T> where T: crate::clone::UseCloned {}
2258
2259#[doc(hidden)]
2260#[unstable(feature = "trivial_clone", issue = "none")]
2261#[rustc_const_unstable(feature = "const_clone", issue = "142757")]
2262unsafe impl<T> const TrivialClone for Option<T> where T: [const] TrivialClone + [const] Destruct {}
2263
2264#[stable(feature = "rust1", since = "1.0.0")]
2265#[rustc_const_unstable(feature = "const_default", issue = "143894")]
2266impl<T> const Default for Option<T> {
2267    /// Returns [`None`][Option::None].
2268    ///
2269    /// # Examples
2270    ///
2271    /// ```
2272    /// let opt: Option<u32> = Option::default();
2273    /// assert!(opt.is_none());
2274    /// ```
2275    #[inline]
2276    fn default() -> Option<T> {
2277        None
2278    }
2279}
2280
2281#[stable(feature = "rust1", since = "1.0.0")]
2282impl<T> IntoIterator for Option<T> {
2283    type Item = T;
2284    type IntoIter = IntoIter<T>;
2285
2286    /// Returns a consuming iterator over the possibly contained value.
2287    ///
2288    /// # Examples
2289    ///
2290    /// ```
2291    /// let x = Some("string");
2292    /// let v: Vec<&str> = x.into_iter().collect();
2293    /// assert_eq!(v, ["string"]);
2294    ///
2295    /// let x = None;
2296    /// let v: Vec<&str> = x.into_iter().collect();
2297    /// assert!(v.is_empty());
2298    /// ```
2299    #[inline]
2300    fn into_iter(self) -> IntoIter<T> {
2301        IntoIter { inner: Item { opt: self } }
2302    }
2303}
2304
2305#[stable(since = "1.4.0", feature = "option_iter")]
2306#[cfg(not(feature = "ferrocene_subset"))]
2307impl<'a, T> IntoIterator for &'a Option<T> {
2308    type Item = &'a T;
2309    type IntoIter = Iter<'a, T>;
2310
2311    fn into_iter(self) -> Iter<'a, T> {
2312        self.iter()
2313    }
2314}
2315
2316#[stable(since = "1.4.0", feature = "option_iter")]
2317#[cfg(not(feature = "ferrocene_subset"))]
2318impl<'a, T> IntoIterator for &'a mut Option<T> {
2319    type Item = &'a mut T;
2320    type IntoIter = IterMut<'a, T>;
2321
2322    fn into_iter(self) -> IterMut<'a, T> {
2323        self.iter_mut()
2324    }
2325}
2326
2327#[stable(since = "1.12.0", feature = "option_from")]
2328#[rustc_const_unstable(feature = "const_convert", issue = "143773")]
2329impl<T> const From<T> for Option<T> {
2330    /// Moves `val` into a new [`Some`].
2331    ///
2332    /// # Examples
2333    ///
2334    /// ```
2335    /// let o: Option<u8> = Option::from(67);
2336    ///
2337    /// assert_eq!(Some(67), o);
2338    /// ```
2339    fn from(val: T) -> Option<T> {
2340        Some(val)
2341    }
2342}
2343
2344#[stable(feature = "option_ref_from_ref_option", since = "1.30.0")]
2345#[rustc_const_unstable(feature = "const_convert", issue = "143773")]
2346impl<'a, T> const From<&'a Option<T>> for Option<&'a T> {
2347    /// Converts from `&Option<T>` to `Option<&T>`.
2348    ///
2349    /// # Examples
2350    ///
2351    /// Converts an <code>[Option]<[String]></code> into an <code>[Option]<[usize]></code>, preserving
2352    /// the original. The [`map`] method takes the `self` argument by value, consuming the original,
2353    /// so this technique uses `from` to first take an [`Option`] to a reference
2354    /// to the value inside the original.
2355    ///
2356    /// [`map`]: Option::map
2357    /// [String]: ../../std/string/struct.String.html "String"
2358    ///
2359    /// ```
2360    /// let s: Option<String> = Some(String::from("Hello, Rustaceans!"));
2361    /// let o: Option<usize> = Option::from(&s).map(|ss: &String| ss.len());
2362    ///
2363    /// println!("Can still print s: {s:?}");
2364    ///
2365    /// assert_eq!(o, Some(18));
2366    /// ```
2367    fn from(o: &'a Option<T>) -> Option<&'a T> {
2368        o.as_ref()
2369    }
2370}
2371
2372#[stable(feature = "option_ref_from_ref_option", since = "1.30.0")]
2373#[rustc_const_unstable(feature = "const_convert", issue = "143773")]
2374impl<'a, T> const From<&'a mut Option<T>> for Option<&'a mut T> {
2375    /// Converts from `&mut Option<T>` to `Option<&mut T>`
2376    ///
2377    /// # Examples
2378    ///
2379    /// ```
2380    /// let mut s = Some(String::from("Hello"));
2381    /// let o: Option<&mut String> = Option::from(&mut s);
2382    ///
2383    /// match o {
2384    ///     Some(t) => *t = String::from("Hello, Rustaceans!"),
2385    ///     None => (),
2386    /// }
2387    ///
2388    /// assert_eq!(s, Some(String::from("Hello, Rustaceans!")));
2389    /// ```
2390    fn from(o: &'a mut Option<T>) -> Option<&'a mut T> {
2391        o.as_mut()
2392    }
2393}
2394
2395// Ideally, LLVM should be able to optimize our derive code to this.
2396// Once https://github.com/llvm/llvm-project/issues/52622 is fixed, we can
2397// go back to deriving `PartialEq`.
2398#[stable(feature = "rust1", since = "1.0.0")]
2399#[cfg(not(feature = "ferrocene_subset"))]
2400impl<T> crate::marker::StructuralPartialEq for Option<T> {}
2401#[stable(feature = "rust1", since = "1.0.0")]
2402#[rustc_const_unstable(feature = "const_cmp", issue = "143800")]
2403impl<T: [const] PartialEq> const PartialEq for Option<T> {
2404    #[inline]
2405    fn eq(&self, other: &Self) -> bool {
2406        // Spelling out the cases explicitly optimizes better than
2407        // `_ => false`
2408        match (self, other) {
2409            (Some(l), Some(r)) => *l == *r,
2410            (Some(_), None) => false,
2411            (None, Some(_)) => false,
2412            (None, None) => true,
2413        }
2414    }
2415}
2416
2417// Manually implementing here somewhat improves codegen for
2418// https://github.com/rust-lang/rust/issues/49892, although still
2419// not optimal.
2420#[stable(feature = "rust1", since = "1.0.0")]
2421#[rustc_const_unstable(feature = "const_cmp", issue = "143800")]
2422#[cfg(not(feature = "ferrocene_subset"))]
2423impl<T: [const] PartialOrd> const PartialOrd for Option<T> {
2424    #[inline]
2425    fn partial_cmp(&self, other: &Self) -> Option<cmp::Ordering> {
2426        match (self, other) {
2427            (Some(l), Some(r)) => l.partial_cmp(r),
2428            (Some(_), None) => Some(cmp::Ordering::Greater),
2429            (None, Some(_)) => Some(cmp::Ordering::Less),
2430            (None, None) => Some(cmp::Ordering::Equal),
2431        }
2432    }
2433}
2434
2435#[stable(feature = "rust1", since = "1.0.0")]
2436#[rustc_const_unstable(feature = "const_cmp", issue = "143800")]
2437#[cfg(not(feature = "ferrocene_subset"))]
2438impl<T: [const] Ord> const Ord for Option<T> {
2439    #[inline]
2440    fn cmp(&self, other: &Self) -> cmp::Ordering {
2441        match (self, other) {
2442            (Some(l), Some(r)) => l.cmp(r),
2443            (Some(_), None) => cmp::Ordering::Greater,
2444            (None, Some(_)) => cmp::Ordering::Less,
2445            (None, None) => cmp::Ordering::Equal,
2446        }
2447    }
2448}
2449
2450/////////////////////////////////////////////////////////////////////////////
2451// The Option Iterators
2452/////////////////////////////////////////////////////////////////////////////
2453
2454#[derive(Clone, Debug)]
2455struct Item<A> {
2456    #[allow(dead_code)]
2457    opt: Option<A>,
2458}
2459
2460impl<A> Iterator for Item<A> {
2461    type Item = A;
2462
2463    #[inline]
2464    fn next(&mut self) -> Option<A> {
2465        self.opt.take()
2466    }
2467
2468    #[inline]
2469    fn size_hint(&self) -> (usize, Option<usize>) {
2470        let len = self.len();
2471        (len, Some(len))
2472    }
2473}
2474
2475#[cfg(not(feature = "ferrocene_subset"))]
2476impl<A> DoubleEndedIterator for Item<A> {
2477    #[inline]
2478    fn next_back(&mut self) -> Option<A> {
2479        self.opt.take()
2480    }
2481}
2482
2483impl<A> ExactSizeIterator for Item<A> {
2484    #[inline]
2485    fn len(&self) -> usize {
2486        self.opt.len()
2487    }
2488}
2489#[cfg(not(feature = "ferrocene_subset"))]
2490impl<A> FusedIterator for Item<A> {}
2491#[cfg(not(feature = "ferrocene_subset"))]
2492unsafe impl<A> TrustedLen for Item<A> {}
2493
2494/// An iterator over a reference to the [`Some`] variant of an [`Option`].
2495///
2496/// The iterator yields one value if the [`Option`] is a [`Some`], otherwise none.
2497///
2498/// This `struct` is created by the [`Option::iter`] function.
2499#[stable(feature = "rust1", since = "1.0.0")]
2500#[derive(Debug)]
2501pub struct Iter<'a, A: 'a> {
2502    #[cfg_attr(feature = "ferrocene_subset", expect(dead_code))]
2503    inner: Item<&'a A>,
2504}
2505
2506#[stable(feature = "rust1", since = "1.0.0")]
2507#[cfg(not(feature = "ferrocene_subset"))]
2508impl<'a, A> Iterator for Iter<'a, A> {
2509    type Item = &'a A;
2510
2511    #[inline]
2512    fn next(&mut self) -> Option<&'a A> {
2513        self.inner.next()
2514    }
2515    #[inline]
2516    fn size_hint(&self) -> (usize, Option<usize>) {
2517        self.inner.size_hint()
2518    }
2519}
2520
2521#[stable(feature = "rust1", since = "1.0.0")]
2522#[cfg(not(feature = "ferrocene_subset"))]
2523impl<'a, A> DoubleEndedIterator for Iter<'a, A> {
2524    #[inline]
2525    fn next_back(&mut self) -> Option<&'a A> {
2526        self.inner.next_back()
2527    }
2528}
2529
2530#[stable(feature = "rust1", since = "1.0.0")]
2531#[cfg(not(feature = "ferrocene_subset"))]
2532impl<A> ExactSizeIterator for Iter<'_, A> {}
2533
2534#[stable(feature = "fused", since = "1.26.0")]
2535#[cfg(not(feature = "ferrocene_subset"))]
2536impl<A> FusedIterator for Iter<'_, A> {}
2537
2538#[unstable(feature = "trusted_len", issue = "37572")]
2539#[cfg(not(feature = "ferrocene_subset"))]
2540unsafe impl<A> TrustedLen for Iter<'_, A> {}
2541
2542#[stable(feature = "rust1", since = "1.0.0")]
2543#[cfg(not(feature = "ferrocene_subset"))]
2544impl<A> Clone for Iter<'_, A> {
2545    #[inline]
2546    fn clone(&self) -> Self {
2547        Iter { inner: self.inner.clone() }
2548    }
2549}
2550
2551/// An iterator over a mutable reference to the [`Some`] variant of an [`Option`].
2552///
2553/// The iterator yields one value if the [`Option`] is a [`Some`], otherwise none.
2554///
2555/// This `struct` is created by the [`Option::iter_mut`] function.
2556#[stable(feature = "rust1", since = "1.0.0")]
2557#[derive(Debug)]
2558pub struct IterMut<'a, A: 'a> {
2559    #[cfg_attr(feature = "ferrocene_subset", expect(dead_code))]
2560    inner: Item<&'a mut A>,
2561}
2562
2563#[stable(feature = "rust1", since = "1.0.0")]
2564#[cfg(not(feature = "ferrocene_subset"))]
2565impl<'a, A> Iterator for IterMut<'a, A> {
2566    type Item = &'a mut A;
2567
2568    #[inline]
2569    fn next(&mut self) -> Option<&'a mut A> {
2570        self.inner.next()
2571    }
2572    #[inline]
2573    fn size_hint(&self) -> (usize, Option<usize>) {
2574        self.inner.size_hint()
2575    }
2576}
2577
2578#[stable(feature = "rust1", since = "1.0.0")]
2579#[cfg(not(feature = "ferrocene_subset"))]
2580impl<'a, A> DoubleEndedIterator for IterMut<'a, A> {
2581    #[inline]
2582    fn next_back(&mut self) -> Option<&'a mut A> {
2583        self.inner.next_back()
2584    }
2585}
2586
2587#[stable(feature = "rust1", since = "1.0.0")]
2588#[cfg(not(feature = "ferrocene_subset"))]
2589impl<A> ExactSizeIterator for IterMut<'_, A> {}
2590
2591#[stable(feature = "fused", since = "1.26.0")]
2592#[cfg(not(feature = "ferrocene_subset"))]
2593impl<A> FusedIterator for IterMut<'_, A> {}
2594#[unstable(feature = "trusted_len", issue = "37572")]
2595#[cfg(not(feature = "ferrocene_subset"))]
2596unsafe impl<A> TrustedLen for IterMut<'_, A> {}
2597
2598/// An iterator over the value in [`Some`] variant of an [`Option`].
2599///
2600/// The iterator yields one value if the [`Option`] is a [`Some`], otherwise none.
2601///
2602/// This `struct` is created by the [`Option::into_iter`] function.
2603#[derive(Clone, Debug)]
2604#[stable(feature = "rust1", since = "1.0.0")]
2605pub struct IntoIter<A> {
2606    inner: Item<A>,
2607}
2608
2609#[stable(feature = "rust1", since = "1.0.0")]
2610impl<A> Iterator for IntoIter<A> {
2611    type Item = A;
2612
2613    #[inline]
2614    fn next(&mut self) -> Option<A> {
2615        self.inner.next()
2616    }
2617    #[inline]
2618    fn size_hint(&self) -> (usize, Option<usize>) {
2619        self.inner.size_hint()
2620    }
2621}
2622
2623#[stable(feature = "rust1", since = "1.0.0")]
2624#[cfg(not(feature = "ferrocene_subset"))]
2625impl<A> DoubleEndedIterator for IntoIter<A> {
2626    #[inline]
2627    fn next_back(&mut self) -> Option<A> {
2628        self.inner.next_back()
2629    }
2630}
2631
2632#[stable(feature = "rust1", since = "1.0.0")]
2633#[cfg(not(feature = "ferrocene_subset"))]
2634impl<A> ExactSizeIterator for IntoIter<A> {}
2635
2636#[stable(feature = "fused", since = "1.26.0")]
2637#[cfg(not(feature = "ferrocene_subset"))]
2638impl<A> FusedIterator for IntoIter<A> {}
2639
2640#[unstable(feature = "trusted_len", issue = "37572")]
2641#[cfg(not(feature = "ferrocene_subset"))]
2642unsafe impl<A> TrustedLen for IntoIter<A> {}
2643
2644/// The iterator produced by [`Option::into_flat_iter`]. See its documentation for more.
2645#[cfg(not(feature = "ferrocene_subset"))]
2646#[derive(Clone, Debug)]
2647#[unstable(feature = "option_into_flat_iter", issue = "148441")]
2648pub struct OptionFlatten<A> {
2649    iter: Option<A>,
2650}
2651
2652#[cfg(not(feature = "ferrocene_subset"))]
2653#[unstable(feature = "option_into_flat_iter", issue = "148441")]
2654impl<A: Iterator> Iterator for OptionFlatten<A> {
2655    type Item = A::Item;
2656
2657    fn next(&mut self) -> Option<Self::Item> {
2658        self.iter.as_mut()?.next()
2659    }
2660
2661    fn size_hint(&self) -> (usize, Option<usize>) {
2662        self.iter.as_ref().map(|i| i.size_hint()).unwrap_or((0, Some(0)))
2663    }
2664}
2665
2666#[cfg(not(feature = "ferrocene_subset"))]
2667#[unstable(feature = "option_into_flat_iter", issue = "148441")]
2668impl<A: DoubleEndedIterator> DoubleEndedIterator for OptionFlatten<A> {
2669    fn next_back(&mut self) -> Option<Self::Item> {
2670        self.iter.as_mut()?.next_back()
2671    }
2672}
2673
2674#[cfg(not(feature = "ferrocene_subset"))]
2675#[unstable(feature = "option_into_flat_iter", issue = "148441")]
2676impl<A: ExactSizeIterator> ExactSizeIterator for OptionFlatten<A> {}
2677
2678#[cfg(not(feature = "ferrocene_subset"))]
2679#[unstable(feature = "option_into_flat_iter", issue = "148441")]
2680impl<A: FusedIterator> FusedIterator for OptionFlatten<A> {}
2681
2682#[cfg(not(feature = "ferrocene_subset"))]
2683#[unstable(feature = "option_into_flat_iter", issue = "148441")]
2684unsafe impl<A: TrustedLen> TrustedLen for OptionFlatten<A> {}
2685
2686/////////////////////////////////////////////////////////////////////////////
2687// FromIterator
2688/////////////////////////////////////////////////////////////////////////////
2689
2690#[stable(feature = "rust1", since = "1.0.0")]
2691#[cfg(not(feature = "ferrocene_subset"))]
2692impl<A, V: FromIterator<A>> FromIterator<Option<A>> for Option<V> {
2693    /// Takes each element in the [`Iterator`]: if it is [`None`][Option::None],
2694    /// no further elements are taken, and the [`None`][Option::None] is
2695    /// returned. Should no [`None`][Option::None] occur, a container of type
2696    /// `V` containing the values of each [`Option`] is returned.
2697    ///
2698    /// # Examples
2699    ///
2700    /// Here is an example which increments every integer in a vector.
2701    /// We use the checked variant of `add` that returns `None` when the
2702    /// calculation would result in an overflow.
2703    ///
2704    /// ```
2705    /// let items = vec![0_u16, 1, 2];
2706    ///
2707    /// let res: Option<Vec<u16>> = items
2708    ///     .iter()
2709    ///     .map(|x| x.checked_add(1))
2710    ///     .collect();
2711    ///
2712    /// assert_eq!(res, Some(vec![1, 2, 3]));
2713    /// ```
2714    ///
2715    /// As you can see, this will return the expected, valid items.
2716    ///
2717    /// Here is another example that tries to subtract one from another list
2718    /// of integers, this time checking for underflow:
2719    ///
2720    /// ```
2721    /// let items = vec![2_u16, 1, 0];
2722    ///
2723    /// let res: Option<Vec<u16>> = items
2724    ///     .iter()
2725    ///     .map(|x| x.checked_sub(1))
2726    ///     .collect();
2727    ///
2728    /// assert_eq!(res, None);
2729    /// ```
2730    ///
2731    /// Since the last element is zero, it would underflow. Thus, the resulting
2732    /// value is `None`.
2733    ///
2734    /// Here is a variation on the previous example, showing that no
2735    /// further elements are taken from `iter` after the first `None`.
2736    ///
2737    /// ```
2738    /// let items = vec![3_u16, 2, 1, 10];
2739    ///
2740    /// let mut shared = 0;
2741    ///
2742    /// let res: Option<Vec<u16>> = items
2743    ///     .iter()
2744    ///     .map(|x| { shared += x; x.checked_sub(2) })
2745    ///     .collect();
2746    ///
2747    /// assert_eq!(res, None);
2748    /// assert_eq!(shared, 6);
2749    /// ```
2750    ///
2751    /// Since the third element caused an underflow, no further elements were taken,
2752    /// so the final value of `shared` is 6 (= `3 + 2 + 1`), not 16.
2753    #[inline]
2754    fn from_iter<I: IntoIterator<Item = Option<A>>>(iter: I) -> Option<V> {
2755        // FIXME(#11084): This could be replaced with Iterator::scan when this
2756        // performance bug is closed.
2757
2758        iter::try_process(iter.into_iter(), |i| i.collect())
2759    }
2760}
2761
2762#[unstable(feature = "try_trait_v2", issue = "84277", old_name = "try_trait")]
2763#[rustc_const_unstable(feature = "const_try", issue = "74935")]
2764impl<T> const ops::Try for Option<T> {
2765    type Output = T;
2766    type Residual = Option<convert::Infallible>;
2767
2768    #[inline]
2769    fn from_output(output: Self::Output) -> Self {
2770        Some(output)
2771    }
2772
2773    #[inline]
2774    fn branch(self) -> ControlFlow<Self::Residual, Self::Output> {
2775        match self {
2776            Some(v) => ControlFlow::Continue(v),
2777            None => ControlFlow::Break(None),
2778        }
2779    }
2780}
2781
2782#[unstable(feature = "try_trait_v2", issue = "84277", old_name = "try_trait")]
2783#[rustc_const_unstable(feature = "const_try", issue = "74935")]
2784// Note: manually specifying the residual type instead of using the default to work around
2785// https://github.com/rust-lang/rust/issues/99940
2786impl<T> const ops::FromResidual<Option<convert::Infallible>> for Option<T> {
2787    #[inline]
2788    fn from_residual(residual: Option<convert::Infallible>) -> Self {
2789        match residual {
2790            None => None,
2791        }
2792    }
2793}
2794
2795#[diagnostic::do_not_recommend]
2796#[unstable(feature = "try_trait_v2_yeet", issue = "96374")]
2797#[rustc_const_unstable(feature = "const_try", issue = "74935")]
2798#[cfg(not(feature = "ferrocene_subset"))]
2799impl<T> const ops::FromResidual<ops::Yeet<()>> for Option<T> {
2800    #[inline]
2801    fn from_residual(ops::Yeet(()): ops::Yeet<()>) -> Self {
2802        None
2803    }
2804}
2805
2806#[unstable(feature = "try_trait_v2_residual", issue = "91285")]
2807#[rustc_const_unstable(feature = "const_try", issue = "74935")]
2808impl<T> const ops::Residual<T> for Option<convert::Infallible> {
2809    type TryType = Option<T>;
2810}
2811
2812impl<T> Option<Option<T>> {
2813    /// Converts from `Option<Option<T>>` to `Option<T>`.
2814    ///
2815    /// # Examples
2816    ///
2817    /// Basic usage:
2818    ///
2819    /// ```
2820    /// let x: Option<Option<u32>> = Some(Some(6));
2821    /// assert_eq!(Some(6), x.flatten());
2822    ///
2823    /// let x: Option<Option<u32>> = Some(None);
2824    /// assert_eq!(None, x.flatten());
2825    ///
2826    /// let x: Option<Option<u32>> = None;
2827    /// assert_eq!(None, x.flatten());
2828    /// ```
2829    ///
2830    /// Flattening only removes one level of nesting at a time:
2831    ///
2832    /// ```
2833    /// let x: Option<Option<Option<u32>>> = Some(Some(Some(6)));
2834    /// assert_eq!(Some(Some(6)), x.flatten());
2835    /// assert_eq!(Some(6), x.flatten().flatten());
2836    /// ```
2837    #[inline]
2838    #[stable(feature = "option_flattening", since = "1.40.0")]
2839    #[rustc_allow_const_fn_unstable(const_precise_live_drops)]
2840    #[rustc_const_stable(feature = "const_option", since = "1.83.0")]
2841    pub const fn flatten(self) -> Option<T> {
2842        // FIXME(const-hack): could be written with `and_then`
2843        match self {
2844            Some(inner) => inner,
2845            None => None,
2846        }
2847    }
2848}
2849
2850#[cfg(not(feature = "ferrocene_subset"))]
2851impl<'a, T> Option<&'a Option<T>> {
2852    /// Converts from `Option<&Option<T>>` to `Option<&T>`.
2853    ///
2854    /// # Examples
2855    ///
2856    /// Basic usage:
2857    ///
2858    /// ```
2859    /// #![feature(option_reference_flattening)]
2860    ///
2861    /// let x: Option<&Option<u32>> = Some(&Some(6));
2862    /// assert_eq!(Some(&6), x.flatten_ref());
2863    ///
2864    /// let x: Option<&Option<u32>> = Some(&None);
2865    /// assert_eq!(None, x.flatten_ref());
2866    ///
2867    /// let x: Option<&Option<u32>> = None;
2868    /// assert_eq!(None, x.flatten_ref());
2869    /// ```
2870    #[inline]
2871    #[unstable(feature = "option_reference_flattening", issue = "149221")]
2872    pub const fn flatten_ref(self) -> Option<&'a T> {
2873        match self {
2874            Some(inner) => inner.as_ref(),
2875            None => None,
2876        }
2877    }
2878}
2879
2880impl<'a, T> Option<&'a mut Option<T>> {
2881    /// Converts from `Option<&mut Option<T>>` to `&Option<T>`.
2882    ///
2883    /// # Examples
2884    ///
2885    /// Basic usage:
2886    ///
2887    /// ```
2888    /// #![feature(option_reference_flattening)]
2889    ///
2890    /// let y = &mut Some(6);
2891    /// let x: Option<&mut Option<u32>> = Some(y);
2892    /// assert_eq!(Some(&6), x.flatten_ref());
2893    ///
2894    /// let y: &mut Option<u32> = &mut None;
2895    /// let x: Option<&mut Option<u32>> = Some(y);
2896    /// assert_eq!(None, x.flatten_ref());
2897    ///
2898    /// let x: Option<&mut Option<u32>> = None;
2899    /// assert_eq!(None, x.flatten_ref());
2900    /// ```
2901    #[cfg(not(feature = "ferrocene_subset"))]
2902    #[inline]
2903    #[unstable(feature = "option_reference_flattening", issue = "149221")]
2904    pub const fn flatten_ref(self) -> Option<&'a T> {
2905        match self {
2906            Some(inner) => inner.as_ref(),
2907            None => None,
2908        }
2909    }
2910
2911    /// Converts from `Option<&mut Option<T>>` to `Option<&mut T>`.
2912    ///
2913    /// # Examples
2914    ///
2915    /// Basic usage:
2916    ///
2917    /// ```
2918    /// #![feature(option_reference_flattening)]
2919    ///
2920    /// let y: &mut Option<u32> = &mut Some(6);
2921    /// let x: Option<&mut Option<u32>> = Some(y);
2922    /// assert_eq!(Some(&mut 6), x.flatten_mut());
2923    ///
2924    /// let y: &mut Option<u32> = &mut None;
2925    /// let x: Option<&mut Option<u32>> = Some(y);
2926    /// assert_eq!(None, x.flatten_mut());
2927    ///
2928    /// let x: Option<&mut Option<u32>> = None;
2929    /// assert_eq!(None, x.flatten_mut());
2930    /// ```
2931    #[cfg(not(feature = "ferrocene_subset"))]
2932    #[inline]
2933    #[unstable(feature = "option_reference_flattening", issue = "149221")]
2934    pub const fn flatten_mut(self) -> Option<&'a mut T> {
2935        match self {
2936            Some(inner) => inner.as_mut(),
2937            None => None,
2938        }
2939    }
2940}
2941
2942#[cfg(not(feature = "ferrocene_subset"))]
2943impl<T, const N: usize> [Option<T>; N] {
2944    /// Transposes a `[Option<T>; N]` into a `Option<[T; N]>`.
2945    ///
2946    /// # Examples
2947    ///
2948    /// ```
2949    /// #![feature(option_array_transpose)]
2950    /// # use std::option::Option;
2951    ///
2952    /// let data = [Some(0); 1000];
2953    /// let data: Option<[u8; 1000]> = data.transpose();
2954    /// assert_eq!(data, Some([0; 1000]));
2955    ///
2956    /// let data = [Some(0), None];
2957    /// let data: Option<[u8; 2]> = data.transpose();
2958    /// assert_eq!(data, None);
2959    /// ```
2960    #[inline]
2961    #[unstable(feature = "option_array_transpose", issue = "130828")]
2962    pub fn transpose(self) -> Option<[T; N]> {
2963        self.try_map(core::convert::identity)
2964    }
2965}