core/
option.rs

1//! Optional values.
2//!
3//! Type [`Option`] represents an optional value: every [`Option`]
4//! is either [`Some`] and contains a value, or [`None`], and
5//! does not. [`Option`] types are very common in Rust code, as
6//! they have a number of uses:
7//!
8//! * Initial values
9//! * Return values for functions that are not defined
10//!   over their entire input range (partial functions)
11//! * Return value for otherwise reporting simple errors, where [`None`] is
12//!   returned on error
13//! * Optional struct fields
14//! * Struct fields that can be loaned or "taken"
15//! * Optional function arguments
16//! * Nullable pointers
17//! * Swapping things out of difficult situations
18//!
19//! [`Option`]s are commonly paired with pattern matching to query the presence
20//! of a value and take action, always accounting for the [`None`] case.
21//!
22//! ```
23//! fn divide(numerator: f64, denominator: f64) -> Option<f64> {
24//!     if denominator == 0.0 {
25//!         None
26//!     } else {
27//!         Some(numerator / denominator)
28//!     }
29//! }
30//!
31//! // The return value of the function is an option
32//! let result = divide(2.0, 3.0);
33//!
34//! // Pattern match to retrieve the value
35//! match result {
36//!     // The division was valid
37//!     Some(x) => println!("Result: {x}"),
38//!     // The division was invalid
39//!     None    => println!("Cannot divide by 0"),
40//! }
41//! ```
42//!
43//
44// FIXME: Show how `Option` is used in practice, with lots of methods
45//
46//! # Options and pointers ("nullable" pointers)
47//!
48//! Rust's pointer types must always point to a valid location; there are
49//! no "null" references. Instead, Rust has *optional* pointers, like
50//! the optional owned box, <code>[Option]<[Box\<T>]></code>.
51//!
52//! [Box\<T>]: ../../std/boxed/struct.Box.html
53//!
54//! The following example uses [`Option`] to create an optional box of
55//! [`i32`]. Notice that in order to use the inner [`i32`] value, the
56//! `check_optional` function first needs to use pattern matching to
57//! determine whether the box has a value (i.e., it is [`Some(...)`][`Some`]) or
58//! not ([`None`]).
59//!
60//! ```
61//! let optional = None;
62//! check_optional(optional);
63//!
64//! let optional = Some(Box::new(9000));
65//! check_optional(optional);
66//!
67//! fn check_optional(optional: Option<Box<i32>>) {
68//!     match optional {
69//!         Some(p) => println!("has value {p}"),
70//!         None => println!("has no value"),
71//!     }
72//! }
73//! ```
74//!
75//! # The question mark operator, `?`
76//!
77//! Similar to the [`Result`] type, when writing code that calls many functions that return the
78//! [`Option`] type, handling `Some`/`None` can be tedious. The question mark
79//! operator, [`?`], hides some of the boilerplate of propagating values
80//! up the call stack.
81//!
82//! It replaces this:
83//!
84//! ```
85//! # #![allow(dead_code)]
86//! fn add_last_numbers(stack: &mut Vec<i32>) -> Option<i32> {
87//!     let a = stack.pop();
88//!     let b = stack.pop();
89//!
90//!     match (a, b) {
91//!         (Some(x), Some(y)) => Some(x + y),
92//!         _ => None,
93//!     }
94//! }
95//!
96//! ```
97//!
98//! With this:
99//!
100//! ```
101//! # #![allow(dead_code)]
102//! fn add_last_numbers(stack: &mut Vec<i32>) -> Option<i32> {
103//!     Some(stack.pop()? + stack.pop()?)
104//! }
105//! ```
106//!
107//! *It's much nicer!*
108//!
109//! Ending the expression with [`?`] will result in the [`Some`]'s unwrapped value, unless the
110//! result is [`None`], in which case [`None`] is returned early from the enclosing function.
111//!
112//! [`?`] can be used in functions that return [`Option`] because of the
113//! early return of [`None`] that it provides.
114//!
115//! [`?`]: crate::ops::Try
116//! [`Some`]: Some
117//! [`None`]: None
118//!
119//! # Representation
120//!
121//! Rust guarantees to optimize the following types `T` such that [`Option<T>`]
122//! has the same size, alignment, and [function call ABI] as `T`. It is
123//! therefore sound, when `T` is one of these types, to transmute a value `t` of
124//! type `T` to type `Option<T>` (producing the value `Some(t)`) and to
125//! transmute a value `Some(t)` of type `Option<T>` to type `T` (producing the
126//! value `t`).
127//!
128//! In some of these cases, Rust further guarantees the following:
129//! - `transmute::<_, Option<T>>([0u8; size_of::<T>()])` is sound and produces
130//!   `Option::<T>::None`
131//! - `transmute::<_, [u8; size_of::<T>()]>(Option::<T>::None)` is sound and produces
132//!   `[0u8; size_of::<T>()]`
133//!
134//! These cases are identified by the second column:
135//!
136//! | `T`                                                                 | Transmuting between `[0u8; size_of::<T>()]` and `Option::<T>::None` sound? |
137//! |---------------------------------------------------------------------|----------------------------------------------------------------------------|
138//! | [`Box<U>`] (specifically, only `Box<U, Global>`)                    | when `U: Sized`                                                            |
139//! | `&U`                                                                | when `U: Sized`                                                            |
140//! | `&mut U`                                                            | when `U: Sized`                                                            |
141//! | `fn`, `extern "C" fn`[^extern_fn]                                   | always                                                                     |
142//! | [`num::NonZero*`]                                                   | always                                                                     |
143//! | [`ptr::NonNull<U>`]                                                 | when `U: Sized`                                                            |
144//! | `#[repr(transparent)]` struct around one of the types in this list. | when it holds for the inner type                                           |
145//!
146//! [^extern_fn]: this remains true for `unsafe` variants, any argument/return types, and any other ABI: `[unsafe] extern "abi" fn` (_e.g._, `extern "system" fn`)
147//!
148//! Under some conditions the above types `T` are also null pointer optimized when wrapped in a [`Result`][result_repr].
149//!
150//! [`Box<U>`]: ../../std/boxed/struct.Box.html
151//! [`num::NonZero*`]: crate::num
152//! [`ptr::NonNull<U>`]: crate::ptr::NonNull
153//! [function call ABI]: ../primitive.fn.html#abi-compatibility
154//! [result_repr]: crate::result#representation
155//!
156//! This is called the "null pointer optimization" or NPO.
157//!
158//! It is further guaranteed that, for the cases above, one can
159//! [`mem::transmute`] from all valid values of `T` to `Option<T>` and
160//! from `Some::<T>(_)` to `T` (but transmuting `None::<T>` to `T`
161//! is undefined behavior).
162//!
163//! # Method overview
164//!
165//! In addition to working with pattern matching, [`Option`] provides a wide
166//! variety of different methods.
167//!
168//! ## Querying the variant
169//!
170//! The [`is_some`] and [`is_none`] methods return [`true`] if the [`Option`]
171//! is [`Some`] or [`None`], respectively.
172//!
173//! The [`is_some_and`] and [`is_none_or`] methods apply the provided function
174//! to the contents of the [`Option`] to produce a boolean value.
175//! If this is [`None`] then a default result is returned instead without executing the function.
176//!
177//! [`is_none`]: Option::is_none
178//! [`is_some`]: Option::is_some
179//! [`is_some_and`]: Option::is_some_and
180//! [`is_none_or`]: Option::is_none_or
181//!
182//! ## Adapters for working with references
183//!
184//! * [`as_ref`] converts from <code>[&][][Option]\<T></code> to <code>[Option]<[&]T></code>
185//! * [`as_mut`] converts from <code>[&mut] [Option]\<T></code> to <code>[Option]<[&mut] T></code>
186//! * [`as_deref`] converts from <code>[&][][Option]\<T></code> to
187//!   <code>[Option]<[&]T::[Target]></code>
188//! * [`as_deref_mut`] converts from <code>[&mut] [Option]\<T></code> to
189//!   <code>[Option]<[&mut] T::[Target]></code>
190//! * [`as_pin_ref`] converts from <code>[Pin]<[&][][Option]\<T>></code> to
191//!   <code>[Option]<[Pin]<[&]T>></code>
192//! * [`as_pin_mut`] converts from <code>[Pin]<[&mut] [Option]\<T>></code> to
193//!   <code>[Option]<[Pin]<[&mut] T>></code>
194//! * [`as_slice`] returns a one-element slice of the contained value, if any.
195//!   If this is [`None`], an empty slice is returned.
196//! * [`as_mut_slice`] returns a mutable one-element slice of the contained value, if any.
197//!   If this is [`None`], an empty slice is returned.
198//!
199//! [&]: reference "shared reference"
200//! [&mut]: reference "mutable reference"
201//! [Target]: Deref::Target "ops::Deref::Target"
202//! [`as_deref`]: Option::as_deref
203//! [`as_deref_mut`]: Option::as_deref_mut
204//! [`as_mut`]: Option::as_mut
205//! [`as_pin_mut`]: Option::as_pin_mut
206//! [`as_pin_ref`]: Option::as_pin_ref
207//! [`as_ref`]: Option::as_ref
208//! [`as_slice`]: Option::as_slice
209//! [`as_mut_slice`]: Option::as_mut_slice
210//!
211//! ## Extracting the contained value
212//!
213//! These methods extract the contained value in an [`Option<T>`] when it
214//! is the [`Some`] variant. If the [`Option`] is [`None`]:
215//!
216//! * [`expect`] panics with a provided custom message
217//! * [`unwrap`] panics with a generic message
218//! * [`unwrap_or`] returns the provided default value
219//! * [`unwrap_or_default`] returns the default value of the type `T`
220//!   (which must implement the [`Default`] trait)
221//! * [`unwrap_or_else`] returns the result of evaluating the provided
222//!   function
223//! * [`unwrap_unchecked`] produces *[undefined behavior]*
224//!
225//! [`expect`]: Option::expect
226//! [`unwrap`]: Option::unwrap
227//! [`unwrap_or`]: Option::unwrap_or
228//! [`unwrap_or_default`]: Option::unwrap_or_default
229//! [`unwrap_or_else`]: Option::unwrap_or_else
230//! [`unwrap_unchecked`]: Option::unwrap_unchecked
231//! [undefined behavior]: https://doc.rust-lang.org/reference/behavior-considered-undefined.html
232//!
233//! ## Transforming contained values
234//!
235//! These methods transform [`Option`] to [`Result`]:
236//!
237//! * [`ok_or`] transforms [`Some(v)`] to [`Ok(v)`], and [`None`] to
238//!   [`Err(err)`] using the provided default `err` value
239//! * [`ok_or_else`] transforms [`Some(v)`] to [`Ok(v)`], and [`None`] to
240//!   a value of [`Err`] using the provided function
241//! * [`transpose`] transposes an [`Option`] of a [`Result`] into a
242//!   [`Result`] of an [`Option`]
243//!
244//! [`Err(err)`]: Err
245//! [`Ok(v)`]: Ok
246//! [`Some(v)`]: Some
247//! [`ok_or`]: Option::ok_or
248//! [`ok_or_else`]: Option::ok_or_else
249//! [`transpose`]: Option::transpose
250//!
251//! These methods transform the [`Some`] variant:
252//!
253//! * [`filter`] calls the provided predicate function on the contained
254//!   value `t` if the [`Option`] is [`Some(t)`], and returns [`Some(t)`]
255//!   if the function returns `true`; otherwise, returns [`None`]
256//! * [`flatten`] removes one level of nesting from an [`Option<Option<T>>`]
257//! * [`inspect`] method takes ownership of the [`Option`] and applies
258//!   the provided function to the contained value by reference if [`Some`]
259//! * [`map`] transforms [`Option<T>`] to [`Option<U>`] by applying the
260//!   provided function to the contained value of [`Some`] and leaving
261//!   [`None`] values unchanged
262//!
263//! [`Some(t)`]: Some
264//! [`filter`]: Option::filter
265//! [`flatten`]: Option::flatten
266//! [`inspect`]: Option::inspect
267//! [`map`]: Option::map
268//!
269//! These methods transform [`Option<T>`] to a value of a possibly
270//! different type `U`:
271//!
272//! * [`map_or`] applies the provided function to the contained value of
273//!   [`Some`], or returns the provided default value if the [`Option`] is
274//!   [`None`]
275//! * [`map_or_else`] applies the provided function to the contained value
276//!   of [`Some`], or returns the result of evaluating the provided
277//!   fallback function if the [`Option`] is [`None`]
278//!
279//! [`map_or`]: Option::map_or
280//! [`map_or_else`]: Option::map_or_else
281//!
282//! These methods combine the [`Some`] variants of two [`Option`] values:
283//!
284//! * [`zip`] returns [`Some((s, o))`] if `self` is [`Some(s)`] and the
285//!   provided [`Option`] value is [`Some(o)`]; otherwise, returns [`None`]
286//! * [`zip_with`] calls the provided function `f` and returns
287//!   [`Some(f(s, o))`] if `self` is [`Some(s)`] and the provided
288//!   [`Option`] value is [`Some(o)`]; otherwise, returns [`None`]
289//!
290//! [`Some(f(s, o))`]: Some
291//! [`Some(o)`]: Some
292//! [`Some(s)`]: Some
293//! [`Some((s, o))`]: Some
294//! [`zip`]: Option::zip
295//! [`zip_with`]: Option::zip_with
296//!
297//! ## Boolean operators
298//!
299//! These methods treat the [`Option`] as a boolean value, where [`Some`]
300//! acts like [`true`] and [`None`] acts like [`false`]. There are two
301//! categories of these methods: ones that take an [`Option`] as input, and
302//! ones that take a function as input (to be lazily evaluated).
303//!
304//! The [`and`], [`or`], and [`xor`] methods take another [`Option`] as
305//! input, and produce an [`Option`] as output. Only the [`and`] method can
306//! produce an [`Option<U>`] value having a different inner type `U` than
307//! [`Option<T>`].
308//!
309//! | method  | self      | input     | output    |
310//! |---------|-----------|-----------|-----------|
311//! | [`and`] | `None`    | (ignored) | `None`    |
312//! | [`and`] | `Some(x)` | `None`    | `None`    |
313//! | [`and`] | `Some(x)` | `Some(y)` | `Some(y)` |
314//! | [`or`]  | `None`    | `None`    | `None`    |
315//! | [`or`]  | `None`    | `Some(y)` | `Some(y)` |
316//! | [`or`]  | `Some(x)` | (ignored) | `Some(x)` |
317//! | [`xor`] | `None`    | `None`    | `None`    |
318//! | [`xor`] | `None`    | `Some(y)` | `Some(y)` |
319//! | [`xor`] | `Some(x)` | `None`    | `Some(x)` |
320//! | [`xor`] | `Some(x)` | `Some(y)` | `None`    |
321//!
322//! [`and`]: Option::and
323//! [`or`]: Option::or
324//! [`xor`]: Option::xor
325//!
326//! The [`and_then`] and [`or_else`] methods take a function as input, and
327//! only evaluate the function when they need to produce a new value. Only
328//! the [`and_then`] method can produce an [`Option<U>`] value having a
329//! different inner type `U` than [`Option<T>`].
330//!
331//! | method       | self      | function input | function result | output    |
332//! |--------------|-----------|----------------|-----------------|-----------|
333//! | [`and_then`] | `None`    | (not provided) | (not evaluated) | `None`    |
334//! | [`and_then`] | `Some(x)` | `x`            | `None`          | `None`    |
335//! | [`and_then`] | `Some(x)` | `x`            | `Some(y)`       | `Some(y)` |
336//! | [`or_else`]  | `None`    | (not provided) | `None`          | `None`    |
337//! | [`or_else`]  | `None`    | (not provided) | `Some(y)`       | `Some(y)` |
338//! | [`or_else`]  | `Some(x)` | (not provided) | (not evaluated) | `Some(x)` |
339//!
340//! [`and_then`]: Option::and_then
341//! [`or_else`]: Option::or_else
342//!
343//! This is an example of using methods like [`and_then`] and [`or`] in a
344//! pipeline of method calls. Early stages of the pipeline pass failure
345//! values ([`None`]) through unchanged, and continue processing on
346//! success values ([`Some`]). Toward the end, [`or`] substitutes an error
347//! message if it receives [`None`].
348//!
349//! ```
350//! # use std::collections::BTreeMap;
351//! let mut bt = BTreeMap::new();
352//! bt.insert(20u8, "foo");
353//! bt.insert(42u8, "bar");
354//! let res = [0u8, 1, 11, 200, 22]
355//!     .into_iter()
356//!     .map(|x| {
357//!         // `checked_sub()` returns `None` on error
358//!         x.checked_sub(1)
359//!             // same with `checked_mul()`
360//!             .and_then(|x| x.checked_mul(2))
361//!             // `BTreeMap::get` returns `None` on error
362//!             .and_then(|x| bt.get(&x))
363//!             // Substitute an error message if we have `None` so far
364//!             .or(Some(&"error!"))
365//!             .copied()
366//!             // Won't panic because we unconditionally used `Some` above
367//!             .unwrap()
368//!     })
369//!     .collect::<Vec<_>>();
370//! assert_eq!(res, ["error!", "error!", "foo", "error!", "bar"]);
371//! ```
372//!
373//! ## Comparison operators
374//!
375//! If `T` implements [`PartialOrd`] then [`Option<T>`] will derive its
376//! [`PartialOrd`] implementation.  With this order, [`None`] compares as
377//! less than any [`Some`], and two [`Some`] compare the same way as their
378//! contained values would in `T`.  If `T` also implements
379//! [`Ord`], then so does [`Option<T>`].
380//!
381//! ```
382//! assert!(None < Some(0));
383//! assert!(Some(0) < Some(1));
384//! ```
385//!
386//! ## Iterating over `Option`
387//!
388//! An [`Option`] can be iterated over. This can be helpful if you need an
389//! iterator that is conditionally empty. The iterator will either produce
390//! a single value (when the [`Option`] is [`Some`]), or produce no values
391//! (when the [`Option`] is [`None`]). For example, [`into_iter`] acts like
392//! [`once(v)`] if the [`Option`] is [`Some(v)`], and like [`empty()`] if
393//! the [`Option`] is [`None`].
394//!
395//! [`Some(v)`]: Some
396//! [`empty()`]: crate::iter::empty
397//! [`once(v)`]: crate::iter::once
398//!
399//! Iterators over [`Option<T>`] come in three types:
400//!
401//! * [`into_iter`] consumes the [`Option`] and produces the contained
402//!   value
403//! * [`iter`] produces an immutable reference of type `&T` to the
404//!   contained value
405//! * [`iter_mut`] produces a mutable reference of type `&mut T` to the
406//!   contained value
407//!
408//! [`into_iter`]: Option::into_iter
409//! [`iter`]: Option::iter
410//! [`iter_mut`]: Option::iter_mut
411//!
412//! An iterator over [`Option`] can be useful when chaining iterators, for
413//! example, to conditionally insert items. (It's not always necessary to
414//! explicitly call an iterator constructor: many [`Iterator`] methods that
415//! accept other iterators will also accept iterable types that implement
416//! [`IntoIterator`], which includes [`Option`].)
417//!
418//! ```
419//! let yep = Some(42);
420//! let nope = None;
421//! // chain() already calls into_iter(), so we don't have to do so
422//! let nums: Vec<i32> = (0..4).chain(yep).chain(4..8).collect();
423//! assert_eq!(nums, [0, 1, 2, 3, 42, 4, 5, 6, 7]);
424//! let nums: Vec<i32> = (0..4).chain(nope).chain(4..8).collect();
425//! assert_eq!(nums, [0, 1, 2, 3, 4, 5, 6, 7]);
426//! ```
427//!
428//! One reason to chain iterators in this way is that a function returning
429//! `impl Iterator` must have all possible return values be of the same
430//! concrete type. Chaining an iterated [`Option`] can help with that.
431//!
432//! ```
433//! fn make_iter(do_insert: bool) -> impl Iterator<Item = i32> {
434//!     // Explicit returns to illustrate return types matching
435//!     match do_insert {
436//!         true => return (0..4).chain(Some(42)).chain(4..8),
437//!         false => return (0..4).chain(None).chain(4..8),
438//!     }
439//! }
440//! println!("{:?}", make_iter(true).collect::<Vec<_>>());
441//! println!("{:?}", make_iter(false).collect::<Vec<_>>());
442//! ```
443//!
444//! If we try to do the same thing, but using [`once()`] and [`empty()`],
445//! we can't return `impl Iterator` anymore because the concrete types of
446//! the return values differ.
447//!
448//! [`empty()`]: crate::iter::empty
449//! [`once()`]: crate::iter::once
450//!
451//! ```compile_fail,E0308
452//! # use std::iter::{empty, once};
453//! // This won't compile because all possible returns from the function
454//! // must have the same concrete type.
455//! fn make_iter(do_insert: bool) -> impl Iterator<Item = i32> {
456//!     // Explicit returns to illustrate return types not matching
457//!     match do_insert {
458//!         true => return (0..4).chain(once(42)).chain(4..8),
459//!         false => return (0..4).chain(empty()).chain(4..8),
460//!     }
461//! }
462//! ```
463//!
464//! ## Collecting into `Option`
465//!
466//! [`Option`] implements the [`FromIterator`][impl-FromIterator] trait,
467//! which allows an iterator over [`Option`] values to be collected into an
468//! [`Option`] of a collection of each contained value of the original
469//! [`Option`] values, or [`None`] if any of the elements was [`None`].
470//!
471//! [impl-FromIterator]: Option#impl-FromIterator%3COption%3CA%3E%3E-for-Option%3CV%3E
472//!
473//! ```
474//! let v = [Some(2), Some(4), None, Some(8)];
475//! let res: Option<Vec<_>> = v.into_iter().collect();
476//! assert_eq!(res, None);
477//! let v = [Some(2), Some(4), Some(8)];
478//! let res: Option<Vec<_>> = v.into_iter().collect();
479//! assert_eq!(res, Some(vec![2, 4, 8]));
480//! ```
481//!
482//! [`Option`] also implements the [`Product`][impl-Product] and
483//! [`Sum`][impl-Sum] traits, allowing an iterator over [`Option`] values
484//! to provide the [`product`][Iterator::product] and
485//! [`sum`][Iterator::sum] methods.
486//!
487//! [impl-Product]: Option#impl-Product%3COption%3CU%3E%3E-for-Option%3CT%3E
488//! [impl-Sum]: Option#impl-Sum%3COption%3CU%3E%3E-for-Option%3CT%3E
489//!
490//! ```
491//! let v = [None, Some(1), Some(2), Some(3)];
492//! let res: Option<i32> = v.into_iter().sum();
493//! assert_eq!(res, None);
494//! let v = [Some(1), Some(2), Some(21)];
495//! let res: Option<i32> = v.into_iter().product();
496//! assert_eq!(res, Some(42));
497//! ```
498//!
499//! ## Modifying an [`Option`] in-place
500//!
501//! These methods return a mutable reference to the contained value of an
502//! [`Option<T>`]:
503//!
504//! * [`insert`] inserts a value, dropping any old contents
505//! * [`get_or_insert`] gets the current value, inserting a provided
506//!   default value if it is [`None`]
507//! * [`get_or_insert_default`] gets the current value, inserting the
508//!   default value of type `T` (which must implement [`Default`]) if it is
509//!   [`None`]
510//! * [`get_or_insert_with`] gets the current value, inserting a default
511//!   computed by the provided function if it is [`None`]
512//!
513//! [`get_or_insert`]: Option::get_or_insert
514//! [`get_or_insert_default`]: Option::get_or_insert_default
515//! [`get_or_insert_with`]: Option::get_or_insert_with
516//! [`insert`]: Option::insert
517//!
518//! These methods transfer ownership of the contained value of an
519//! [`Option`]:
520//!
521//! * [`take`] takes ownership of the contained value of an [`Option`], if
522//!   any, replacing the [`Option`] with [`None`]
523//! * [`replace`] takes ownership of the contained value of an [`Option`],
524//!   if any, replacing the [`Option`] with a [`Some`] containing the
525//!   provided value
526//!
527//! [`replace`]: Option::replace
528//! [`take`]: Option::take
529//!
530//! # Examples
531//!
532//! Basic pattern matching on [`Option`]:
533//!
534//! ```
535//! let msg = Some("howdy");
536//!
537//! // Take a reference to the contained string
538//! if let Some(m) = &msg {
539//!     println!("{}", *m);
540//! }
541//!
542//! // Remove the contained string, destroying the Option
543//! let unwrapped_msg = msg.unwrap_or("default message");
544//! ```
545//!
546//! Initialize a result to [`None`] before a loop:
547//!
548//! ```
549//! enum Kingdom { Plant(u32, &'static str), Animal(u32, &'static str) }
550//!
551//! // A list of data to search through.
552//! let all_the_big_things = [
553//!     Kingdom::Plant(250, "redwood"),
554//!     Kingdom::Plant(230, "noble fir"),
555//!     Kingdom::Plant(229, "sugar pine"),
556//!     Kingdom::Animal(25, "blue whale"),
557//!     Kingdom::Animal(19, "fin whale"),
558//!     Kingdom::Animal(15, "north pacific right whale"),
559//! ];
560//!
561//! // We're going to search for the name of the biggest animal,
562//! // but to start with we've just got `None`.
563//! let mut name_of_biggest_animal = None;
564//! let mut size_of_biggest_animal = 0;
565//! for big_thing in &all_the_big_things {
566//!     match *big_thing {
567//!         Kingdom::Animal(size, name) if size > size_of_biggest_animal => {
568//!             // Now we've found the name of some big animal
569//!             size_of_biggest_animal = size;
570//!             name_of_biggest_animal = Some(name);
571//!         }
572//!         Kingdom::Animal(..) | Kingdom::Plant(..) => ()
573//!     }
574//! }
575//!
576//! match name_of_biggest_animal {
577//!     Some(name) => println!("the biggest animal is {name}"),
578//!     None => println!("there are no animals :("),
579//! }
580//! ```
581
582#![stable(feature = "rust1", since = "1.0.0")]
583
584use crate::clone::TrivialClone;
585#[cfg(not(feature = "ferrocene_certified"))]
586use crate::iter::{self, FusedIterator, TrustedLen};
587use crate::marker::Destruct;
588use crate::ops::{self, ControlFlow, Deref, DerefMut};
589#[cfg(not(feature = "ferrocene_certified"))]
590use crate::panicking::{panic, panic_display};
591#[cfg(not(feature = "ferrocene_certified"))]
592use crate::pin::Pin;
593#[cfg(not(feature = "ferrocene_certified"))]
594use crate::{cmp, convert, hint, mem, slice};
595
596// Ferrocene addition: imports for certified subset
597#[cfg(feature = "ferrocene_certified")]
598#[rustfmt::skip]
599use crate::{convert, hint, mem, panicking::panic};
600
601/// The `Option` type. See [the module level documentation](self) for more.
602#[doc(search_unbox)]
603#[cfg_attr(not(feature = "ferrocene_certified"), derive(Copy, Debug, Hash))]
604#[cfg_attr(not(feature = "ferrocene_certified"), derive_const(Eq))]
605#[cfg_attr(feature = "ferrocene_certified", derive(Copy))]
606#[rustc_diagnostic_item = "Option"]
607#[lang = "Option"]
608#[stable(feature = "rust1", since = "1.0.0")]
609#[allow(clippy::derived_hash_with_manual_eq)] // PartialEq is manually implemented equivalently
610pub enum Option<T> {
611    /// No value.
612    #[lang = "None"]
613    #[stable(feature = "rust1", since = "1.0.0")]
614    None,
615    /// Some value of type `T`.
616    #[lang = "Some"]
617    #[stable(feature = "rust1", since = "1.0.0")]
618    Some(#[stable(feature = "rust1", since = "1.0.0")] T),
619}
620
621/////////////////////////////////////////////////////////////////////////////
622// Type implementation
623/////////////////////////////////////////////////////////////////////////////
624
625impl<T> Option<T> {
626    /////////////////////////////////////////////////////////////////////////
627    // Querying the contained values
628    /////////////////////////////////////////////////////////////////////////
629
630    /// Returns `true` if the option is a [`Some`] value.
631    ///
632    /// # Examples
633    ///
634    /// ```
635    /// let x: Option<u32> = Some(2);
636    /// assert_eq!(x.is_some(), true);
637    ///
638    /// let x: Option<u32> = None;
639    /// assert_eq!(x.is_some(), false);
640    /// ```
641    #[must_use = "if you intended to assert that this has a value, consider `.unwrap()` instead"]
642    #[inline]
643    #[stable(feature = "rust1", since = "1.0.0")]
644    #[rustc_const_stable(feature = "const_option_basics", since = "1.48.0")]
645    pub const fn is_some(&self) -> bool {
646        matches!(*self, Some(_))
647    }
648
649    /// Returns `true` if the option is a [`Some`] and the value inside of it matches a predicate.
650    ///
651    /// # Examples
652    ///
653    /// ```
654    /// let x: Option<u32> = Some(2);
655    /// assert_eq!(x.is_some_and(|x| x > 1), true);
656    ///
657    /// let x: Option<u32> = Some(0);
658    /// assert_eq!(x.is_some_and(|x| x > 1), false);
659    ///
660    /// let x: Option<u32> = None;
661    /// assert_eq!(x.is_some_and(|x| x > 1), false);
662    ///
663    /// let x: Option<String> = Some("ownership".to_string());
664    /// assert_eq!(x.as_ref().is_some_and(|x| x.len() > 1), true);
665    /// println!("still alive {:?}", x);
666    /// ```
667    #[must_use]
668    #[inline]
669    #[stable(feature = "is_some_and", since = "1.70.0")]
670    #[rustc_const_unstable(feature = "const_option_ops", issue = "143956")]
671    pub const fn is_some_and(self, f: impl [const] FnOnce(T) -> bool + [const] Destruct) -> bool {
672        match self {
673            None => false,
674            Some(x) => f(x),
675        }
676    }
677
678    /// Returns `true` if the option is a [`None`] value.
679    ///
680    /// # Examples
681    ///
682    /// ```
683    /// let x: Option<u32> = Some(2);
684    /// assert_eq!(x.is_none(), false);
685    ///
686    /// let x: Option<u32> = None;
687    /// assert_eq!(x.is_none(), true);
688    /// ```
689    #[must_use = "if you intended to assert that this doesn't have a value, consider \
690                  wrapping this in an `assert!()` instead"]
691    #[inline]
692    #[stable(feature = "rust1", since = "1.0.0")]
693    #[rustc_const_stable(feature = "const_option_basics", since = "1.48.0")]
694    pub const fn is_none(&self) -> bool {
695        !self.is_some()
696    }
697
698    /// Returns `true` if the option is a [`None`] or the value inside of it matches a predicate.
699    ///
700    /// # Examples
701    ///
702    /// ```
703    /// let x: Option<u32> = Some(2);
704    /// assert_eq!(x.is_none_or(|x| x > 1), true);
705    ///
706    /// let x: Option<u32> = Some(0);
707    /// assert_eq!(x.is_none_or(|x| x > 1), false);
708    ///
709    /// let x: Option<u32> = None;
710    /// assert_eq!(x.is_none_or(|x| x > 1), true);
711    ///
712    /// let x: Option<String> = Some("ownership".to_string());
713    /// assert_eq!(x.as_ref().is_none_or(|x| x.len() > 1), true);
714    /// println!("still alive {:?}", x);
715    /// ```
716    #[must_use]
717    #[inline]
718    #[stable(feature = "is_none_or", since = "1.82.0")]
719    #[rustc_const_unstable(feature = "const_option_ops", issue = "143956")]
720    pub const fn is_none_or(self, f: impl [const] FnOnce(T) -> bool + [const] Destruct) -> bool {
721        match self {
722            None => true,
723            Some(x) => f(x),
724        }
725    }
726
727    /////////////////////////////////////////////////////////////////////////
728    // Adapter for working with references
729    /////////////////////////////////////////////////////////////////////////
730
731    /// Converts from `&Option<T>` to `Option<&T>`.
732    ///
733    /// # Examples
734    ///
735    /// Calculates the length of an <code>Option<[String]></code> as an <code>Option<[usize]></code>
736    /// without moving the [`String`]. The [`map`] method takes the `self` argument by value,
737    /// consuming the original, so this technique uses `as_ref` to first take an `Option` to a
738    /// reference to the value inside the original.
739    ///
740    /// [`map`]: Option::map
741    /// [String]: ../../std/string/struct.String.html "String"
742    /// [`String`]: ../../std/string/struct.String.html "String"
743    ///
744    /// ```
745    /// let text: Option<String> = Some("Hello, world!".to_string());
746    /// // First, cast `Option<String>` to `Option<&String>` with `as_ref`,
747    /// // then consume *that* with `map`, leaving `text` on the stack.
748    /// let text_length: Option<usize> = text.as_ref().map(|s| s.len());
749    /// println!("still can print text: {text:?}");
750    /// ```
751    #[inline]
752    #[rustc_const_stable(feature = "const_option_basics", since = "1.48.0")]
753    #[stable(feature = "rust1", since = "1.0.0")]
754    pub const fn as_ref(&self) -> Option<&T> {
755        match *self {
756            Some(ref x) => Some(x),
757            None => None,
758        }
759    }
760
761    /// Converts from `&mut Option<T>` to `Option<&mut T>`.
762    ///
763    /// # Examples
764    ///
765    /// ```
766    /// let mut x = Some(2);
767    /// match x.as_mut() {
768    ///     Some(v) => *v = 42,
769    ///     None => {},
770    /// }
771    /// assert_eq!(x, Some(42));
772    /// ```
773    #[inline]
774    #[stable(feature = "rust1", since = "1.0.0")]
775    #[rustc_const_stable(feature = "const_option", since = "1.83.0")]
776    pub const fn as_mut(&mut self) -> Option<&mut T> {
777        match *self {
778            Some(ref mut x) => Some(x),
779            None => None,
780        }
781    }
782
783    /// Converts from <code>[Pin]<[&]Option\<T>></code> to <code>Option<[Pin]<[&]T>></code>.
784    ///
785    /// [&]: reference "shared reference"
786    #[inline]
787    #[must_use]
788    #[stable(feature = "pin", since = "1.33.0")]
789    #[rustc_const_stable(feature = "const_option_ext", since = "1.84.0")]
790    #[cfg(not(feature = "ferrocene_certified"))]
791    pub const fn as_pin_ref(self: Pin<&Self>) -> Option<Pin<&T>> {
792        // FIXME(const-hack): use `map` once that is possible
793        match Pin::get_ref(self).as_ref() {
794            // SAFETY: `x` is guaranteed to be pinned because it comes from `self`
795            // which is pinned.
796            Some(x) => unsafe { Some(Pin::new_unchecked(x)) },
797            None => None,
798        }
799    }
800
801    /// Converts from <code>[Pin]<[&mut] Option\<T>></code> to <code>Option<[Pin]<[&mut] T>></code>.
802    ///
803    /// [&mut]: reference "mutable reference"
804    #[inline]
805    #[must_use]
806    #[stable(feature = "pin", since = "1.33.0")]
807    #[rustc_const_stable(feature = "const_option_ext", since = "1.84.0")]
808    #[cfg(not(feature = "ferrocene_certified"))]
809    pub const fn as_pin_mut(self: Pin<&mut Self>) -> Option<Pin<&mut T>> {
810        // SAFETY: `get_unchecked_mut` is never used to move the `Option` inside `self`.
811        // `x` is guaranteed to be pinned because it comes from `self` which is pinned.
812        unsafe {
813            // FIXME(const-hack): use `map` once that is possible
814            match Pin::get_unchecked_mut(self).as_mut() {
815                Some(x) => Some(Pin::new_unchecked(x)),
816                None => None,
817            }
818        }
819    }
820
821    #[inline]
822    const fn len(&self) -> usize {
823        // Using the intrinsic avoids emitting a branch to get the 0 or 1.
824        let discriminant: isize = crate::intrinsics::discriminant_value(self);
825        discriminant as usize
826    }
827
828    /// Returns a slice of the contained value, if any. If this is `None`, an
829    /// empty slice is returned. This can be useful to have a single type of
830    /// iterator over an `Option` or slice.
831    ///
832    /// Note: Should you have an `Option<&T>` and wish to get a slice of `T`,
833    /// you can unpack it via `opt.map_or(&[], std::slice::from_ref)`.
834    ///
835    /// # Examples
836    ///
837    /// ```rust
838    /// assert_eq!(
839    ///     [Some(1234).as_slice(), None.as_slice()],
840    ///     [&[1234][..], &[][..]],
841    /// );
842    /// ```
843    ///
844    /// The inverse of this function is (discounting
845    /// borrowing) [`[_]::first`](slice::first):
846    ///
847    /// ```rust
848    /// for i in [Some(1234_u16), None] {
849    ///     assert_eq!(i.as_ref(), i.as_slice().first());
850    /// }
851    /// ```
852    #[inline]
853    #[must_use]
854    #[stable(feature = "option_as_slice", since = "1.75.0")]
855    #[rustc_const_stable(feature = "const_option_ext", since = "1.84.0")]
856    #[cfg(not(feature = "ferrocene_certified"))]
857    pub const fn as_slice(&self) -> &[T] {
858        // SAFETY: When the `Option` is `Some`, we're using the actual pointer
859        // to the payload, with a length of 1, so this is equivalent to
860        // `slice::from_ref`, and thus is safe.
861        // When the `Option` is `None`, the length used is 0, so to be safe it
862        // just needs to be aligned, which it is because `&self` is aligned and
863        // the offset used is a multiple of alignment.
864        //
865        // Here we assume that `offset_of!` always returns an offset to an
866        // in-bounds and correctly aligned position for a `T` (even if in the
867        // `None` case it's just padding).
868        unsafe {
869            slice::from_raw_parts(
870                (self as *const Self).byte_add(core::mem::offset_of!(Self, Some.0)).cast(),
871                self.len(),
872            )
873        }
874    }
875
876    /// Returns a mutable slice of the contained value, if any. If this is
877    /// `None`, an empty slice is returned. This can be useful to have a
878    /// single type of iterator over an `Option` or slice.
879    ///
880    /// Note: Should you have an `Option<&mut T>` instead of a
881    /// `&mut Option<T>`, which this method takes, you can obtain a mutable
882    /// slice via `opt.map_or(&mut [], std::slice::from_mut)`.
883    ///
884    /// # Examples
885    ///
886    /// ```rust
887    /// assert_eq!(
888    ///     [Some(1234).as_mut_slice(), None.as_mut_slice()],
889    ///     [&mut [1234][..], &mut [][..]],
890    /// );
891    /// ```
892    ///
893    /// The result is a mutable slice of zero or one items that points into
894    /// our original `Option`:
895    ///
896    /// ```rust
897    /// let mut x = Some(1234);
898    /// x.as_mut_slice()[0] += 1;
899    /// assert_eq!(x, Some(1235));
900    /// ```
901    ///
902    /// The inverse of this method (discounting borrowing)
903    /// is [`[_]::first_mut`](slice::first_mut):
904    ///
905    /// ```rust
906    /// assert_eq!(Some(123).as_mut_slice().first_mut(), Some(&mut 123))
907    /// ```
908    #[inline]
909    #[must_use]
910    #[stable(feature = "option_as_slice", since = "1.75.0")]
911    #[rustc_const_stable(feature = "const_option_ext", since = "1.84.0")]
912    #[cfg(not(feature = "ferrocene_certified"))]
913    pub const fn as_mut_slice(&mut self) -> &mut [T] {
914        // SAFETY: When the `Option` is `Some`, we're using the actual pointer
915        // to the payload, with a length of 1, so this is equivalent to
916        // `slice::from_mut`, and thus is safe.
917        // When the `Option` is `None`, the length used is 0, so to be safe it
918        // just needs to be aligned, which it is because `&self` is aligned and
919        // the offset used is a multiple of alignment.
920        //
921        // In the new version, the intrinsic creates a `*const T` from a
922        // mutable reference  so it is safe to cast back to a mutable pointer
923        // here. As with `as_slice`, the intrinsic always returns a pointer to
924        // an in-bounds and correctly aligned position for a `T` (even if in
925        // the `None` case it's just padding).
926        unsafe {
927            slice::from_raw_parts_mut(
928                (self as *mut Self).byte_add(core::mem::offset_of!(Self, Some.0)).cast(),
929                self.len(),
930            )
931        }
932    }
933
934    /////////////////////////////////////////////////////////////////////////
935    // Getting to contained values
936    /////////////////////////////////////////////////////////////////////////
937
938    /// Returns the contained [`Some`] value, consuming the `self` value.
939    ///
940    /// # Panics
941    ///
942    /// Panics if the value is a [`None`] with a custom panic message provided by
943    /// `msg`.
944    ///
945    /// # Examples
946    ///
947    /// ```
948    /// let x = Some("value");
949    /// assert_eq!(x.expect("fruits are healthy"), "value");
950    /// ```
951    ///
952    /// ```should_panic
953    /// let x: Option<&str> = None;
954    /// x.expect("fruits are healthy"); // panics with `fruits are healthy`
955    /// ```
956    ///
957    /// # Recommended Message Style
958    ///
959    /// We recommend that `expect` messages are used to describe the reason you
960    /// _expect_ the `Option` should be `Some`.
961    ///
962    /// ```should_panic
963    /// # let slice: &[u8] = &[];
964    /// let item = slice.get(0)
965    ///     .expect("slice should not be empty");
966    /// ```
967    ///
968    /// **Hint**: If you're having trouble remembering how to phrase expect
969    /// error messages remember to focus on the word "should" as in "env
970    /// variable should be set by blah" or "the given binary should be available
971    /// and executable by the current user".
972    ///
973    /// For more detail on expect message styles and the reasoning behind our
974    /// recommendation please refer to the section on ["Common Message
975    /// Styles"](../../std/error/index.html#common-message-styles) in the [`std::error`](../../std/error/index.html) module docs.
976    #[inline]
977    #[track_caller]
978    #[stable(feature = "rust1", since = "1.0.0")]
979    #[rustc_diagnostic_item = "option_expect"]
980    #[rustc_allow_const_fn_unstable(const_precise_live_drops)]
981    #[rustc_const_stable(feature = "const_option", since = "1.83.0")]
982    pub const fn expect(
983        self,
984        #[cfg(not(feature = "ferrocene_certified"))] msg: &str,
985        #[cfg(feature = "ferrocene_certified")] msg: &'static str,
986    ) -> T {
987        match self {
988            Some(val) => val,
989            #[cfg(not(feature = "ferrocene_certified"))]
990            None => expect_failed(msg),
991            #[cfg(feature = "ferrocene_certified")]
992            None => panic(msg),
993        }
994    }
995
996    /// Returns the contained [`Some`] value, consuming the `self` value.
997    ///
998    /// Because this function may panic, its use is generally discouraged.
999    /// Panics are meant for unrecoverable errors, and
1000    /// [may abort the entire program][panic-abort].
1001    ///
1002    /// Instead, prefer to use pattern matching and handle the [`None`]
1003    /// case explicitly, or call [`unwrap_or`], [`unwrap_or_else`], or
1004    /// [`unwrap_or_default`]. In functions returning `Option`, you can use
1005    /// [the `?` (try) operator][try-option].
1006    ///
1007    /// [panic-abort]: https://doc.rust-lang.org/book/ch09-01-unrecoverable-errors-with-panic.html
1008    /// [try-option]: https://doc.rust-lang.org/book/ch09-02-recoverable-errors-with-result.html#where-the--operator-can-be-used
1009    /// [`unwrap_or`]: Option::unwrap_or
1010    /// [`unwrap_or_else`]: Option::unwrap_or_else
1011    /// [`unwrap_or_default`]: Option::unwrap_or_default
1012    ///
1013    /// # Panics
1014    ///
1015    /// Panics if the self value equals [`None`].
1016    ///
1017    /// # Examples
1018    ///
1019    /// ```
1020    /// let x = Some("air");
1021    /// assert_eq!(x.unwrap(), "air");
1022    /// ```
1023    ///
1024    /// ```should_panic
1025    /// let x: Option<&str> = None;
1026    /// assert_eq!(x.unwrap(), "air"); // fails
1027    /// ```
1028    #[inline(always)]
1029    #[track_caller]
1030    #[stable(feature = "rust1", since = "1.0.0")]
1031    #[rustc_diagnostic_item = "option_unwrap"]
1032    #[rustc_allow_const_fn_unstable(const_precise_live_drops)]
1033    #[rustc_const_stable(feature = "const_option", since = "1.83.0")]
1034    pub const fn unwrap(self) -> T {
1035        match self {
1036            Some(val) => val,
1037            None => unwrap_failed(),
1038        }
1039    }
1040
1041    /// Returns the contained [`Some`] value or a provided default.
1042    ///
1043    /// Arguments passed to `unwrap_or` are eagerly evaluated; if you are passing
1044    /// the result of a function call, it is recommended to use [`unwrap_or_else`],
1045    /// which is lazily evaluated.
1046    ///
1047    /// [`unwrap_or_else`]: Option::unwrap_or_else
1048    ///
1049    /// # Examples
1050    ///
1051    /// ```
1052    /// assert_eq!(Some("car").unwrap_or("bike"), "car");
1053    /// assert_eq!(None.unwrap_or("bike"), "bike");
1054    /// ```
1055    #[inline]
1056    #[stable(feature = "rust1", since = "1.0.0")]
1057    #[rustc_allow_const_fn_unstable(const_precise_live_drops)]
1058    #[rustc_const_unstable(feature = "const_option_ops", issue = "143956")]
1059    pub const fn unwrap_or(self, default: T) -> T
1060    where
1061        T: [const] Destruct,
1062    {
1063        match self {
1064            Some(x) => x,
1065            None => default,
1066        }
1067    }
1068
1069    /// Returns the contained [`Some`] value or computes it from a closure.
1070    ///
1071    /// # Examples
1072    ///
1073    /// ```
1074    /// let k = 10;
1075    /// assert_eq!(Some(4).unwrap_or_else(|| 2 * k), 4);
1076    /// assert_eq!(None.unwrap_or_else(|| 2 * k), 20);
1077    /// ```
1078    #[inline]
1079    #[track_caller]
1080    #[stable(feature = "rust1", since = "1.0.0")]
1081    #[rustc_const_unstable(feature = "const_option_ops", issue = "143956")]
1082    pub const fn unwrap_or_else<F>(self, f: F) -> T
1083    where
1084        F: [const] FnOnce() -> T + [const] Destruct,
1085    {
1086        match self {
1087            Some(x) => x,
1088            None => f(),
1089        }
1090    }
1091
1092    /// Returns the contained [`Some`] value or a default.
1093    ///
1094    /// Consumes the `self` argument then, if [`Some`], returns the contained
1095    /// value, otherwise if [`None`], returns the [default value] for that
1096    /// type.
1097    ///
1098    /// # Examples
1099    ///
1100    /// ```
1101    /// let x: Option<u32> = None;
1102    /// let y: Option<u32> = Some(12);
1103    ///
1104    /// assert_eq!(x.unwrap_or_default(), 0);
1105    /// assert_eq!(y.unwrap_or_default(), 12);
1106    /// ```
1107    ///
1108    /// [default value]: Default::default
1109    /// [`parse`]: str::parse
1110    /// [`FromStr`]: crate::str::FromStr
1111    #[inline]
1112    #[stable(feature = "rust1", since = "1.0.0")]
1113    #[rustc_const_unstable(feature = "const_option_ops", issue = "143956")]
1114    pub const fn unwrap_or_default(self) -> T
1115    where
1116        T: [const] Default,
1117    {
1118        match self {
1119            Some(x) => x,
1120            None => T::default(),
1121        }
1122    }
1123
1124    /// Returns the contained [`Some`] value, consuming the `self` value,
1125    /// without checking that the value is not [`None`].
1126    ///
1127    /// # Safety
1128    ///
1129    /// Calling this method on [`None`] is *[undefined behavior]*.
1130    ///
1131    /// [undefined behavior]: https://doc.rust-lang.org/reference/behavior-considered-undefined.html
1132    ///
1133    /// # Examples
1134    ///
1135    /// ```
1136    /// let x = Some("air");
1137    /// assert_eq!(unsafe { x.unwrap_unchecked() }, "air");
1138    /// ```
1139    ///
1140    /// ```no_run
1141    /// let x: Option<&str> = None;
1142    /// assert_eq!(unsafe { x.unwrap_unchecked() }, "air"); // Undefined behavior!
1143    /// ```
1144    #[inline]
1145    #[track_caller]
1146    #[stable(feature = "option_result_unwrap_unchecked", since = "1.58.0")]
1147    #[rustc_allow_const_fn_unstable(const_precise_live_drops)]
1148    #[rustc_const_stable(feature = "const_option", since = "1.83.0")]
1149    pub const unsafe fn unwrap_unchecked(self) -> T {
1150        match self {
1151            Some(val) => val,
1152            #[ferrocene::annotation(
1153                "This line cannot be covered as reaching `unreachable_unchecked` is undefined behavior."
1154            )]
1155            // SAFETY: the safety contract must be upheld by the caller.
1156            None => unsafe { hint::unreachable_unchecked() },
1157        }
1158    }
1159
1160    /////////////////////////////////////////////////////////////////////////
1161    // Transforming contained values
1162    /////////////////////////////////////////////////////////////////////////
1163
1164    /// Maps an `Option<T>` to `Option<U>` by applying a function to a contained value (if `Some`) or returns `None` (if `None`).
1165    ///
1166    /// # Examples
1167    ///
1168    /// Calculates the length of an <code>Option<[String]></code> as an
1169    /// <code>Option<[usize]></code>, consuming the original:
1170    ///
1171    /// [String]: ../../std/string/struct.String.html "String"
1172    /// ```
1173    /// let maybe_some_string = Some(String::from("Hello, World!"));
1174    /// // `Option::map` takes self *by value*, consuming `maybe_some_string`
1175    /// let maybe_some_len = maybe_some_string.map(|s| s.len());
1176    /// assert_eq!(maybe_some_len, Some(13));
1177    ///
1178    /// let x: Option<&str> = None;
1179    /// assert_eq!(x.map(|s| s.len()), None);
1180    /// ```
1181    #[inline]
1182    #[stable(feature = "rust1", since = "1.0.0")]
1183    #[rustc_const_unstable(feature = "const_option_ops", issue = "143956")]
1184    pub const fn map<U, F>(self, f: F) -> Option<U>
1185    where
1186        F: [const] FnOnce(T) -> U + [const] Destruct,
1187    {
1188        match self {
1189            Some(x) => Some(f(x)),
1190            None => None,
1191        }
1192    }
1193
1194    /// Calls a function with a reference to the contained value if [`Some`].
1195    ///
1196    /// Returns the original option.
1197    ///
1198    /// # Examples
1199    ///
1200    /// ```
1201    /// let list = vec![1, 2, 3];
1202    ///
1203    /// // prints "got: 2"
1204    /// let x = list
1205    ///     .get(1)
1206    ///     .inspect(|x| println!("got: {x}"))
1207    ///     .expect("list should be long enough");
1208    ///
1209    /// // prints nothing
1210    /// list.get(5).inspect(|x| println!("got: {x}"));
1211    /// ```
1212    #[inline]
1213    #[stable(feature = "result_option_inspect", since = "1.76.0")]
1214    #[rustc_const_unstable(feature = "const_option_ops", issue = "143956")]
1215    pub const fn inspect<F>(self, f: F) -> Self
1216    where
1217        F: [const] FnOnce(&T) + [const] Destruct,
1218    {
1219        if let Some(ref x) = self {
1220            f(x);
1221        }
1222
1223        self
1224    }
1225
1226    /// Returns the provided default result (if none),
1227    /// or applies a function to the contained value (if any).
1228    ///
1229    /// Arguments passed to `map_or` are eagerly evaluated; if you are passing
1230    /// the result of a function call, it is recommended to use [`map_or_else`],
1231    /// which is lazily evaluated.
1232    ///
1233    /// [`map_or_else`]: Option::map_or_else
1234    ///
1235    /// # Examples
1236    ///
1237    /// ```
1238    /// let x = Some("foo");
1239    /// assert_eq!(x.map_or(42, |v| v.len()), 3);
1240    ///
1241    /// let x: Option<&str> = None;
1242    /// assert_eq!(x.map_or(42, |v| v.len()), 42);
1243    /// ```
1244    #[inline]
1245    #[stable(feature = "rust1", since = "1.0.0")]
1246    #[must_use = "if you don't need the returned value, use `if let` instead"]
1247    #[rustc_const_unstable(feature = "const_option_ops", issue = "143956")]
1248    pub const fn map_or<U, F>(self, default: U, f: F) -> U
1249    where
1250        F: [const] FnOnce(T) -> U + [const] Destruct,
1251        U: [const] Destruct,
1252    {
1253        match self {
1254            Some(t) => f(t),
1255            None => default,
1256        }
1257    }
1258
1259    /// Computes a default function result (if none), or
1260    /// applies a different function to the contained value (if any).
1261    ///
1262    /// # Basic examples
1263    ///
1264    /// ```
1265    /// let k = 21;
1266    ///
1267    /// let x = Some("foo");
1268    /// assert_eq!(x.map_or_else(|| 2 * k, |v| v.len()), 3);
1269    ///
1270    /// let x: Option<&str> = None;
1271    /// assert_eq!(x.map_or_else(|| 2 * k, |v| v.len()), 42);
1272    /// ```
1273    ///
1274    /// # Handling a Result-based fallback
1275    ///
1276    /// A somewhat common occurrence when dealing with optional values
1277    /// in combination with [`Result<T, E>`] is the case where one wants to invoke
1278    /// a fallible fallback if the option is not present.  This example
1279    /// parses a command line argument (if present), or the contents of a file to
1280    /// an integer.  However, unlike accessing the command line argument, reading
1281    /// the file is fallible, so it must be wrapped with `Ok`.
1282    ///
1283    /// ```no_run
1284    /// # fn main() -> Result<(), Box<dyn std::error::Error>> {
1285    /// let v: u64 = std::env::args()
1286    ///    .nth(1)
1287    ///    .map_or_else(|| std::fs::read_to_string("/etc/someconfig.conf"), Ok)?
1288    ///    .parse()?;
1289    /// #   Ok(())
1290    /// # }
1291    /// ```
1292    #[inline]
1293    #[stable(feature = "rust1", since = "1.0.0")]
1294    #[rustc_const_unstable(feature = "const_option_ops", issue = "143956")]
1295    pub const fn map_or_else<U, D, F>(self, default: D, f: F) -> U
1296    where
1297        D: [const] FnOnce() -> U + [const] Destruct,
1298        F: [const] FnOnce(T) -> U + [const] Destruct,
1299    {
1300        match self {
1301            Some(t) => f(t),
1302            None => default(),
1303        }
1304    }
1305
1306    /// Maps an `Option<T>` to a `U` by applying function `f` to the contained
1307    /// value if the option is [`Some`], otherwise if [`None`], returns the
1308    /// [default value] for the type `U`.
1309    ///
1310    /// # Examples
1311    ///
1312    /// ```
1313    /// #![feature(result_option_map_or_default)]
1314    ///
1315    /// let x: Option<&str> = Some("hi");
1316    /// let y: Option<&str> = None;
1317    ///
1318    /// assert_eq!(x.map_or_default(|x| x.len()), 2);
1319    /// assert_eq!(y.map_or_default(|y| y.len()), 0);
1320    /// ```
1321    ///
1322    /// [default value]: Default::default
1323    #[inline]
1324    #[unstable(feature = "result_option_map_or_default", issue = "138099")]
1325    #[rustc_const_unstable(feature = "const_option_ops", issue = "143956")]
1326    pub const fn map_or_default<U, F>(self, f: F) -> U
1327    where
1328        U: [const] Default,
1329        F: [const] FnOnce(T) -> U + [const] Destruct,
1330    {
1331        match self {
1332            Some(t) => f(t),
1333            None => U::default(),
1334        }
1335    }
1336
1337    /// Transforms the `Option<T>` into a [`Result<T, E>`], mapping [`Some(v)`] to
1338    /// [`Ok(v)`] and [`None`] to [`Err(err)`].
1339    ///
1340    /// Arguments passed to `ok_or` are eagerly evaluated; if you are passing the
1341    /// result of a function call, it is recommended to use [`ok_or_else`], which is
1342    /// lazily evaluated.
1343    ///
1344    /// [`Ok(v)`]: Ok
1345    /// [`Err(err)`]: Err
1346    /// [`Some(v)`]: Some
1347    /// [`ok_or_else`]: Option::ok_or_else
1348    ///
1349    /// # Examples
1350    ///
1351    /// ```
1352    /// let x = Some("foo");
1353    /// assert_eq!(x.ok_or(0), Ok("foo"));
1354    ///
1355    /// let x: Option<&str> = None;
1356    /// assert_eq!(x.ok_or(0), Err(0));
1357    /// ```
1358    #[inline]
1359    #[stable(feature = "rust1", since = "1.0.0")]
1360    #[rustc_const_unstable(feature = "const_option_ops", issue = "143956")]
1361    pub const fn ok_or<E: [const] Destruct>(self, err: E) -> Result<T, E> {
1362        match self {
1363            Some(v) => Ok(v),
1364            None => Err(err),
1365        }
1366    }
1367
1368    /// Transforms the `Option<T>` into a [`Result<T, E>`], mapping [`Some(v)`] to
1369    /// [`Ok(v)`] and [`None`] to [`Err(err())`].
1370    ///
1371    /// [`Ok(v)`]: Ok
1372    /// [`Err(err())`]: Err
1373    /// [`Some(v)`]: Some
1374    ///
1375    /// # Examples
1376    ///
1377    /// ```
1378    /// let x = Some("foo");
1379    /// assert_eq!(x.ok_or_else(|| 0), Ok("foo"));
1380    ///
1381    /// let x: Option<&str> = None;
1382    /// assert_eq!(x.ok_or_else(|| 0), Err(0));
1383    /// ```
1384    #[inline]
1385    #[stable(feature = "rust1", since = "1.0.0")]
1386    #[rustc_const_unstable(feature = "const_option_ops", issue = "143956")]
1387    pub const fn ok_or_else<E, F>(self, err: F) -> Result<T, E>
1388    where
1389        F: [const] FnOnce() -> E + [const] Destruct,
1390    {
1391        match self {
1392            Some(v) => Ok(v),
1393            None => Err(err()),
1394        }
1395    }
1396
1397    /// Converts from `Option<T>` (or `&Option<T>`) to `Option<&T::Target>`.
1398    ///
1399    /// Leaves the original Option in-place, creating a new one with a reference
1400    /// to the original one, additionally coercing the contents via [`Deref`].
1401    ///
1402    /// # Examples
1403    ///
1404    /// ```
1405    /// let x: Option<String> = Some("hey".to_owned());
1406    /// assert_eq!(x.as_deref(), Some("hey"));
1407    ///
1408    /// let x: Option<String> = None;
1409    /// assert_eq!(x.as_deref(), None);
1410    /// ```
1411    #[inline]
1412    #[stable(feature = "option_deref", since = "1.40.0")]
1413    #[rustc_const_unstable(feature = "const_convert", issue = "143773")]
1414    pub const fn as_deref(&self) -> Option<&T::Target>
1415    where
1416        T: [const] Deref,
1417    {
1418        self.as_ref().map(Deref::deref)
1419    }
1420
1421    /// Converts from `Option<T>` (or `&mut Option<T>`) to `Option<&mut T::Target>`.
1422    ///
1423    /// Leaves the original `Option` in-place, creating a new one containing a mutable reference to
1424    /// the inner type's [`Deref::Target`] type.
1425    ///
1426    /// # Examples
1427    ///
1428    /// ```
1429    /// let mut x: Option<String> = Some("hey".to_owned());
1430    /// assert_eq!(x.as_deref_mut().map(|x| {
1431    ///     x.make_ascii_uppercase();
1432    ///     x
1433    /// }), Some("HEY".to_owned().as_mut_str()));
1434    /// ```
1435    #[inline]
1436    #[stable(feature = "option_deref", since = "1.40.0")]
1437    #[rustc_const_unstable(feature = "const_convert", issue = "143773")]
1438    pub const fn as_deref_mut(&mut self) -> Option<&mut T::Target>
1439    where
1440        T: [const] DerefMut,
1441    {
1442        self.as_mut().map(DerefMut::deref_mut)
1443    }
1444
1445    /////////////////////////////////////////////////////////////////////////
1446    // Iterator constructors
1447    /////////////////////////////////////////////////////////////////////////
1448
1449    /// Returns an iterator over the possibly contained value.
1450    ///
1451    /// # Examples
1452    ///
1453    /// ```
1454    /// let x = Some(4);
1455    /// assert_eq!(x.iter().next(), Some(&4));
1456    ///
1457    /// let x: Option<u32> = None;
1458    /// assert_eq!(x.iter().next(), None);
1459    /// ```
1460    #[inline]
1461    #[stable(feature = "rust1", since = "1.0.0")]
1462    pub fn iter(&self) -> Iter<'_, T> {
1463        Iter { inner: Item { opt: self.as_ref() } }
1464    }
1465
1466    /// Returns a mutable iterator over the possibly contained value.
1467    ///
1468    /// # Examples
1469    ///
1470    /// ```
1471    /// let mut x = Some(4);
1472    /// match x.iter_mut().next() {
1473    ///     Some(v) => *v = 42,
1474    ///     None => {},
1475    /// }
1476    /// assert_eq!(x, Some(42));
1477    ///
1478    /// let mut x: Option<u32> = None;
1479    /// assert_eq!(x.iter_mut().next(), None);
1480    /// ```
1481    #[inline]
1482    #[stable(feature = "rust1", since = "1.0.0")]
1483    pub fn iter_mut(&mut self) -> IterMut<'_, T> {
1484        IterMut { inner: Item { opt: self.as_mut() } }
1485    }
1486
1487    /////////////////////////////////////////////////////////////////////////
1488    // Boolean operations on the values, eager and lazy
1489    /////////////////////////////////////////////////////////////////////////
1490
1491    /// Returns [`None`] if the option is [`None`], otherwise returns `optb`.
1492    ///
1493    /// Arguments passed to `and` are eagerly evaluated; if you are passing the
1494    /// result of a function call, it is recommended to use [`and_then`], which is
1495    /// lazily evaluated.
1496    ///
1497    /// [`and_then`]: Option::and_then
1498    ///
1499    /// # Examples
1500    ///
1501    /// ```
1502    /// let x = Some(2);
1503    /// let y: Option<&str> = None;
1504    /// assert_eq!(x.and(y), None);
1505    ///
1506    /// let x: Option<u32> = None;
1507    /// let y = Some("foo");
1508    /// assert_eq!(x.and(y), None);
1509    ///
1510    /// let x = Some(2);
1511    /// let y = Some("foo");
1512    /// assert_eq!(x.and(y), Some("foo"));
1513    ///
1514    /// let x: Option<u32> = None;
1515    /// let y: Option<&str> = None;
1516    /// assert_eq!(x.and(y), None);
1517    /// ```
1518    #[inline]
1519    #[stable(feature = "rust1", since = "1.0.0")]
1520    #[rustc_const_unstable(feature = "const_option_ops", issue = "143956")]
1521    pub const fn and<U>(self, optb: Option<U>) -> Option<U>
1522    where
1523        T: [const] Destruct,
1524        U: [const] Destruct,
1525    {
1526        match self {
1527            Some(_) => optb,
1528            None => None,
1529        }
1530    }
1531
1532    /// Returns [`None`] if the option is [`None`], otherwise calls `f` with the
1533    /// wrapped value and returns the result.
1534    ///
1535    /// Some languages call this operation flatmap.
1536    ///
1537    /// # Examples
1538    ///
1539    /// ```
1540    /// fn sq_then_to_string(x: u32) -> Option<String> {
1541    ///     x.checked_mul(x).map(|sq| sq.to_string())
1542    /// }
1543    ///
1544    /// assert_eq!(Some(2).and_then(sq_then_to_string), Some(4.to_string()));
1545    /// assert_eq!(Some(1_000_000).and_then(sq_then_to_string), None); // overflowed!
1546    /// assert_eq!(None.and_then(sq_then_to_string), None);
1547    /// ```
1548    ///
1549    /// Often used to chain fallible operations that may return [`None`].
1550    ///
1551    /// ```
1552    /// let arr_2d = [["A0", "A1"], ["B0", "B1"]];
1553    ///
1554    /// let item_0_1 = arr_2d.get(0).and_then(|row| row.get(1));
1555    /// assert_eq!(item_0_1, Some(&"A1"));
1556    ///
1557    /// let item_2_0 = arr_2d.get(2).and_then(|row| row.get(0));
1558    /// assert_eq!(item_2_0, None);
1559    /// ```
1560    #[doc(alias = "flatmap")]
1561    #[inline]
1562    #[stable(feature = "rust1", since = "1.0.0")]
1563    #[rustc_confusables("flat_map", "flatmap")]
1564    #[rustc_const_unstable(feature = "const_option_ops", issue = "143956")]
1565    pub const fn and_then<U, F>(self, f: F) -> Option<U>
1566    where
1567        F: [const] FnOnce(T) -> Option<U> + [const] Destruct,
1568    {
1569        match self {
1570            Some(x) => f(x),
1571            None => None,
1572        }
1573    }
1574
1575    /// Returns [`None`] if the option is [`None`], otherwise calls `predicate`
1576    /// with the wrapped value and returns:
1577    ///
1578    /// - [`Some(t)`] if `predicate` returns `true` (where `t` is the wrapped
1579    ///   value), and
1580    /// - [`None`] if `predicate` returns `false`.
1581    ///
1582    /// This function works similar to [`Iterator::filter()`]. You can imagine
1583    /// the `Option<T>` being an iterator over one or zero elements. `filter()`
1584    /// lets you decide which elements to keep.
1585    ///
1586    /// # Examples
1587    ///
1588    /// ```rust
1589    /// fn is_even(n: &i32) -> bool {
1590    ///     n % 2 == 0
1591    /// }
1592    ///
1593    /// assert_eq!(None.filter(is_even), None);
1594    /// assert_eq!(Some(3).filter(is_even), None);
1595    /// assert_eq!(Some(4).filter(is_even), Some(4));
1596    /// ```
1597    ///
1598    /// [`Some(t)`]: Some
1599    #[inline]
1600    #[stable(feature = "option_filter", since = "1.27.0")]
1601    #[rustc_const_unstable(feature = "const_option_ops", issue = "143956")]
1602    pub const fn filter<P>(self, predicate: P) -> Self
1603    where
1604        P: [const] FnOnce(&T) -> bool + [const] Destruct,
1605        T: [const] Destruct,
1606    {
1607        if let Some(x) = self {
1608            if predicate(&x) {
1609                return Some(x);
1610            }
1611        }
1612        None
1613    }
1614
1615    /// Returns the option if it contains a value, otherwise returns `optb`.
1616    ///
1617    /// Arguments passed to `or` are eagerly evaluated; if you are passing the
1618    /// result of a function call, it is recommended to use [`or_else`], which is
1619    /// lazily evaluated.
1620    ///
1621    /// [`or_else`]: Option::or_else
1622    ///
1623    /// # Examples
1624    ///
1625    /// ```
1626    /// let x = Some(2);
1627    /// let y = None;
1628    /// assert_eq!(x.or(y), Some(2));
1629    ///
1630    /// let x = None;
1631    /// let y = Some(100);
1632    /// assert_eq!(x.or(y), Some(100));
1633    ///
1634    /// let x = Some(2);
1635    /// let y = Some(100);
1636    /// assert_eq!(x.or(y), Some(2));
1637    ///
1638    /// let x: Option<u32> = None;
1639    /// let y = None;
1640    /// assert_eq!(x.or(y), None);
1641    /// ```
1642    #[inline]
1643    #[stable(feature = "rust1", since = "1.0.0")]
1644    #[rustc_const_unstable(feature = "const_option_ops", issue = "143956")]
1645    pub const fn or(self, optb: Option<T>) -> Option<T>
1646    where
1647        T: [const] Destruct,
1648    {
1649        match self {
1650            x @ Some(_) => x,
1651            None => optb,
1652        }
1653    }
1654
1655    /// Returns the option if it contains a value, otherwise calls `f` and
1656    /// returns the result.
1657    ///
1658    /// # Examples
1659    ///
1660    /// ```
1661    /// fn nobody() -> Option<&'static str> { None }
1662    /// fn vikings() -> Option<&'static str> { Some("vikings") }
1663    ///
1664    /// assert_eq!(Some("barbarians").or_else(vikings), Some("barbarians"));
1665    /// assert_eq!(None.or_else(vikings), Some("vikings"));
1666    /// assert_eq!(None.or_else(nobody), None);
1667    /// ```
1668    #[inline]
1669    #[stable(feature = "rust1", since = "1.0.0")]
1670    #[rustc_const_unstable(feature = "const_option_ops", issue = "143956")]
1671    pub const fn or_else<F>(self, f: F) -> Option<T>
1672    where
1673        F: [const] FnOnce() -> Option<T> + [const] Destruct,
1674        //FIXME(const_hack): this `T: [const] Destruct` is unnecessary, but even precise live drops can't tell
1675        // no value of type `T` gets dropped here
1676        T: [const] Destruct,
1677    {
1678        match self {
1679            x @ Some(_) => x,
1680            None => f(),
1681        }
1682    }
1683
1684    /// Returns [`Some`] if exactly one of `self`, `optb` is [`Some`], otherwise returns [`None`].
1685    ///
1686    /// # Examples
1687    ///
1688    /// ```
1689    /// let x = Some(2);
1690    /// let y: Option<u32> = None;
1691    /// assert_eq!(x.xor(y), Some(2));
1692    ///
1693    /// let x: Option<u32> = None;
1694    /// let y = Some(2);
1695    /// assert_eq!(x.xor(y), Some(2));
1696    ///
1697    /// let x = Some(2);
1698    /// let y = Some(2);
1699    /// assert_eq!(x.xor(y), None);
1700    ///
1701    /// let x: Option<u32> = None;
1702    /// let y: Option<u32> = None;
1703    /// assert_eq!(x.xor(y), None);
1704    /// ```
1705    #[inline]
1706    #[stable(feature = "option_xor", since = "1.37.0")]
1707    #[rustc_const_unstable(feature = "const_option_ops", issue = "143956")]
1708    pub const fn xor(self, optb: Option<T>) -> Option<T>
1709    where
1710        T: [const] Destruct,
1711    {
1712        match (self, optb) {
1713            (a @ Some(_), None) => a,
1714            (None, b @ Some(_)) => b,
1715            _ => None,
1716        }
1717    }
1718
1719    /////////////////////////////////////////////////////////////////////////
1720    // Entry-like operations to insert a value and return a reference
1721    /////////////////////////////////////////////////////////////////////////
1722
1723    /// Inserts `value` into the option, then returns a mutable reference to it.
1724    ///
1725    /// If the option already contains a value, the old value is dropped.
1726    ///
1727    /// See also [`Option::get_or_insert`], which doesn't update the value if
1728    /// the option already contains [`Some`].
1729    ///
1730    /// # Example
1731    ///
1732    /// ```
1733    /// let mut opt = None;
1734    /// let val = opt.insert(1);
1735    /// assert_eq!(*val, 1);
1736    /// assert_eq!(opt.unwrap(), 1);
1737    /// let val = opt.insert(2);
1738    /// assert_eq!(*val, 2);
1739    /// *val = 3;
1740    /// assert_eq!(opt.unwrap(), 3);
1741    /// ```
1742    #[must_use = "if you intended to set a value, consider assignment instead"]
1743    #[inline]
1744    #[stable(feature = "option_insert", since = "1.53.0")]
1745    #[rustc_const_unstable(feature = "const_option_ops", issue = "143956")]
1746    #[cfg(not(feature = "ferrocene_certified"))]
1747    pub const fn insert(&mut self, value: T) -> &mut T
1748    where
1749        T: [const] Destruct,
1750    {
1751        *self = Some(value);
1752
1753        // SAFETY: the code above just filled the option
1754        unsafe { self.as_mut().unwrap_unchecked() }
1755    }
1756
1757    /// Inserts `value` into the option if it is [`None`], then
1758    /// returns a mutable reference to the contained value.
1759    ///
1760    /// See also [`Option::insert`], which updates the value even if
1761    /// the option already contains [`Some`].
1762    ///
1763    /// # Examples
1764    ///
1765    /// ```
1766    /// let mut x = None;
1767    ///
1768    /// {
1769    ///     let y: &mut u32 = x.get_or_insert(5);
1770    ///     assert_eq!(y, &5);
1771    ///
1772    ///     *y = 7;
1773    /// }
1774    ///
1775    /// assert_eq!(x, Some(7));
1776    /// ```
1777    #[inline]
1778    #[stable(feature = "option_entry", since = "1.20.0")]
1779    #[cfg(not(feature = "ferrocene_certified"))]
1780    pub fn get_or_insert(&mut self, value: T) -> &mut T {
1781        self.get_or_insert_with(|| value)
1782    }
1783
1784    /// Inserts the default value into the option if it is [`None`], then
1785    /// returns a mutable reference to the contained value.
1786    ///
1787    /// # Examples
1788    ///
1789    /// ```
1790    /// let mut x = None;
1791    ///
1792    /// {
1793    ///     let y: &mut u32 = x.get_or_insert_default();
1794    ///     assert_eq!(y, &0);
1795    ///
1796    ///     *y = 7;
1797    /// }
1798    ///
1799    /// assert_eq!(x, Some(7));
1800    /// ```
1801    #[inline]
1802    #[stable(feature = "option_get_or_insert_default", since = "1.83.0")]
1803    #[rustc_const_unstable(feature = "const_option_ops", issue = "143956")]
1804    #[cfg(not(feature = "ferrocene_certified"))]
1805    pub const fn get_or_insert_default(&mut self) -> &mut T
1806    where
1807        T: [const] Default + [const] Destruct,
1808    {
1809        self.get_or_insert_with(T::default)
1810    }
1811
1812    /// Inserts a value computed from `f` into the option if it is [`None`],
1813    /// then returns a mutable reference to the contained value.
1814    ///
1815    /// # Examples
1816    ///
1817    /// ```
1818    /// let mut x = None;
1819    ///
1820    /// {
1821    ///     let y: &mut u32 = x.get_or_insert_with(|| 5);
1822    ///     assert_eq!(y, &5);
1823    ///
1824    ///     *y = 7;
1825    /// }
1826    ///
1827    /// assert_eq!(x, Some(7));
1828    /// ```
1829    #[inline]
1830    #[stable(feature = "option_entry", since = "1.20.0")]
1831    #[rustc_const_unstable(feature = "const_option_ops", issue = "143956")]
1832    #[cfg(not(feature = "ferrocene_certified"))]
1833    pub const fn get_or_insert_with<F>(&mut self, f: F) -> &mut T
1834    where
1835        F: [const] FnOnce() -> T + [const] Destruct,
1836        T: [const] Destruct,
1837    {
1838        if let None = self {
1839            *self = Some(f());
1840        }
1841
1842        // SAFETY: a `None` variant for `self` would have been replaced by a `Some`
1843        // variant in the code above.
1844        unsafe { self.as_mut().unwrap_unchecked() }
1845    }
1846
1847    /////////////////////////////////////////////////////////////////////////
1848    // Misc
1849    /////////////////////////////////////////////////////////////////////////
1850
1851    /// Takes the value out of the option, leaving a [`None`] in its place.
1852    ///
1853    /// # Examples
1854    ///
1855    /// ```
1856    /// let mut x = Some(2);
1857    /// let y = x.take();
1858    /// assert_eq!(x, None);
1859    /// assert_eq!(y, Some(2));
1860    ///
1861    /// let mut x: Option<u32> = None;
1862    /// let y = x.take();
1863    /// assert_eq!(x, None);
1864    /// assert_eq!(y, None);
1865    /// ```
1866    #[inline]
1867    #[stable(feature = "rust1", since = "1.0.0")]
1868    #[rustc_const_stable(feature = "const_option", since = "1.83.0")]
1869    pub const fn take(&mut self) -> Option<T> {
1870        // FIXME(const-hack) replace `mem::replace` by `mem::take` when the latter is const ready
1871        mem::replace(self, None)
1872    }
1873
1874    /// Takes the value out of the option, but only if the predicate evaluates to
1875    /// `true` on a mutable reference to the value.
1876    ///
1877    /// In other words, replaces `self` with `None` if the predicate returns `true`.
1878    /// This method operates similar to [`Option::take`] but conditional.
1879    ///
1880    /// # Examples
1881    ///
1882    /// ```
1883    /// let mut x = Some(42);
1884    ///
1885    /// let prev = x.take_if(|v| if *v == 42 {
1886    ///     *v += 1;
1887    ///     false
1888    /// } else {
1889    ///     false
1890    /// });
1891    /// assert_eq!(x, Some(43));
1892    /// assert_eq!(prev, None);
1893    ///
1894    /// let prev = x.take_if(|v| *v == 43);
1895    /// assert_eq!(x, None);
1896    /// assert_eq!(prev, Some(43));
1897    /// ```
1898    #[inline]
1899    #[stable(feature = "option_take_if", since = "1.80.0")]
1900    #[rustc_const_unstable(feature = "const_option_ops", issue = "143956")]
1901    #[cfg(not(feature = "ferrocene_certified"))]
1902    pub const fn take_if<P>(&mut self, predicate: P) -> Option<T>
1903    where
1904        P: [const] FnOnce(&mut T) -> bool + [const] Destruct,
1905    {
1906        if self.as_mut().map_or(false, predicate) { self.take() } else { None }
1907    }
1908
1909    /// Replaces the actual value in the option by the value given in parameter,
1910    /// returning the old value if present,
1911    /// leaving a [`Some`] in its place without deinitializing either one.
1912    ///
1913    /// # Examples
1914    ///
1915    /// ```
1916    /// let mut x = Some(2);
1917    /// let old = x.replace(5);
1918    /// assert_eq!(x, Some(5));
1919    /// assert_eq!(old, Some(2));
1920    ///
1921    /// let mut x = None;
1922    /// let old = x.replace(3);
1923    /// assert_eq!(x, Some(3));
1924    /// assert_eq!(old, None);
1925    /// ```
1926    #[inline]
1927    #[stable(feature = "option_replace", since = "1.31.0")]
1928    #[rustc_const_stable(feature = "const_option", since = "1.83.0")]
1929    pub const fn replace(&mut self, value: T) -> Option<T> {
1930        mem::replace(self, Some(value))
1931    }
1932
1933    /// Zips `self` with another `Option`.
1934    ///
1935    /// If `self` is `Some(s)` and `other` is `Some(o)`, this method returns `Some((s, o))`.
1936    /// Otherwise, `None` is returned.
1937    ///
1938    /// # Examples
1939    ///
1940    /// ```
1941    /// let x = Some(1);
1942    /// let y = Some("hi");
1943    /// let z = None::<u8>;
1944    ///
1945    /// assert_eq!(x.zip(y), Some((1, "hi")));
1946    /// assert_eq!(x.zip(z), None);
1947    /// ```
1948    #[stable(feature = "option_zip_option", since = "1.46.0")]
1949    #[rustc_const_unstable(feature = "const_option_ops", issue = "143956")]
1950    pub const fn zip<U>(self, other: Option<U>) -> Option<(T, U)>
1951    where
1952        T: [const] Destruct,
1953        U: [const] Destruct,
1954    {
1955        match (self, other) {
1956            (Some(a), Some(b)) => Some((a, b)),
1957            _ => None,
1958        }
1959    }
1960
1961    /// Zips `self` and another `Option` with function `f`.
1962    ///
1963    /// If `self` is `Some(s)` and `other` is `Some(o)`, this method returns `Some(f(s, o))`.
1964    /// Otherwise, `None` is returned.
1965    ///
1966    /// # Examples
1967    ///
1968    /// ```
1969    /// #![feature(option_zip)]
1970    ///
1971    /// #[derive(Debug, PartialEq)]
1972    /// struct Point {
1973    ///     x: f64,
1974    ///     y: f64,
1975    /// }
1976    ///
1977    /// impl Point {
1978    ///     fn new(x: f64, y: f64) -> Self {
1979    ///         Self { x, y }
1980    ///     }
1981    /// }
1982    ///
1983    /// let x = Some(17.5);
1984    /// let y = Some(42.7);
1985    ///
1986    /// assert_eq!(x.zip_with(y, Point::new), Some(Point { x: 17.5, y: 42.7 }));
1987    /// assert_eq!(x.zip_with(None, Point::new), None);
1988    /// ```
1989    #[unstable(feature = "option_zip", issue = "70086")]
1990    #[rustc_const_unstable(feature = "const_option_ops", issue = "143956")]
1991    #[cfg(not(feature = "ferrocene_certified"))]
1992    pub const fn zip_with<U, F, R>(self, other: Option<U>, f: F) -> Option<R>
1993    where
1994        F: [const] FnOnce(T, U) -> R + [const] Destruct,
1995        T: [const] Destruct,
1996        U: [const] Destruct,
1997    {
1998        match (self, other) {
1999            (Some(a), Some(b)) => Some(f(a, b)),
2000            _ => None,
2001        }
2002    }
2003
2004    /// Reduces two options into one, using the provided function if both are `Some`.
2005    ///
2006    /// If `self` is `Some(s)` and `other` is `Some(o)`, this method returns `Some(f(s, o))`.
2007    /// Otherwise, if only one of `self` and `other` is `Some`, that one is returned.
2008    /// If both `self` and `other` are `None`, `None` is returned.
2009    ///
2010    /// # Examples
2011    ///
2012    /// ```
2013    /// #![feature(option_reduce)]
2014    ///
2015    /// let s12 = Some(12);
2016    /// let s17 = Some(17);
2017    /// let n = None;
2018    /// let f = |a, b| a + b;
2019    ///
2020    /// assert_eq!(s12.reduce(s17, f), Some(29));
2021    /// assert_eq!(s12.reduce(n, f), Some(12));
2022    /// assert_eq!(n.reduce(s17, f), Some(17));
2023    /// assert_eq!(n.reduce(n, f), None);
2024    /// ```
2025    #[unstable(feature = "option_reduce", issue = "144273")]
2026    pub fn reduce<U, R, F>(self, other: Option<U>, f: F) -> Option<R>
2027    where
2028        T: Into<R>,
2029        U: Into<R>,
2030        F: FnOnce(T, U) -> R,
2031    {
2032        match (self, other) {
2033            (Some(a), Some(b)) => Some(f(a, b)),
2034            (Some(a), _) => Some(a.into()),
2035            (_, Some(b)) => Some(b.into()),
2036            _ => None,
2037        }
2038    }
2039}
2040
2041impl<T, U> Option<(T, U)> {
2042    /// Unzips an option containing a tuple of two options.
2043    ///
2044    /// If `self` is `Some((a, b))` this method returns `(Some(a), Some(b))`.
2045    /// Otherwise, `(None, None)` is returned.
2046    ///
2047    /// # Examples
2048    ///
2049    /// ```
2050    /// let x = Some((1, "hi"));
2051    /// let y = None::<(u8, u32)>;
2052    ///
2053    /// assert_eq!(x.unzip(), (Some(1), Some("hi")));
2054    /// assert_eq!(y.unzip(), (None, None));
2055    /// ```
2056    #[inline]
2057    #[stable(feature = "unzip_option", since = "1.66.0")]
2058    pub fn unzip(self) -> (Option<T>, Option<U>) {
2059        match self {
2060            Some((a, b)) => (Some(a), Some(b)),
2061            None => (None, None),
2062        }
2063    }
2064}
2065
2066impl<T> Option<&T> {
2067    /// Maps an `Option<&T>` to an `Option<T>` by copying the contents of the
2068    /// option.
2069    ///
2070    /// # Examples
2071    ///
2072    /// ```
2073    /// let x = 12;
2074    /// let opt_x = Some(&x);
2075    /// assert_eq!(opt_x, Some(&12));
2076    /// let copied = opt_x.copied();
2077    /// assert_eq!(copied, Some(12));
2078    /// ```
2079    #[must_use = "`self` will be dropped if the result is not used"]
2080    #[stable(feature = "copied", since = "1.35.0")]
2081    #[rustc_const_stable(feature = "const_option", since = "1.83.0")]
2082    pub const fn copied(self) -> Option<T>
2083    where
2084        T: Copy,
2085    {
2086        // FIXME(const-hack): this implementation, which sidesteps using `Option::map` since it's not const
2087        // ready yet, should be reverted when possible to avoid code repetition
2088        match self {
2089            Some(&v) => Some(v),
2090            None => None,
2091        }
2092    }
2093
2094    /// Maps an `Option<&T>` to an `Option<T>` by cloning the contents of the
2095    /// option.
2096    ///
2097    /// # Examples
2098    ///
2099    /// ```
2100    /// let x = 12;
2101    /// let opt_x = Some(&x);
2102    /// assert_eq!(opt_x, Some(&12));
2103    /// let cloned = opt_x.cloned();
2104    /// assert_eq!(cloned, Some(12));
2105    /// ```
2106    #[must_use = "`self` will be dropped if the result is not used"]
2107    #[stable(feature = "rust1", since = "1.0.0")]
2108    pub fn cloned(self) -> Option<T>
2109    where
2110        T: Clone,
2111    {
2112        match self {
2113            Some(t) => Some(t.clone()),
2114            None => None,
2115        }
2116    }
2117}
2118
2119impl<T> Option<&mut T> {
2120    /// Maps an `Option<&mut T>` to an `Option<T>` by copying the contents of the
2121    /// option.
2122    ///
2123    /// # Examples
2124    ///
2125    /// ```
2126    /// let mut x = 12;
2127    /// let opt_x = Some(&mut x);
2128    /// assert_eq!(opt_x, Some(&mut 12));
2129    /// let copied = opt_x.copied();
2130    /// assert_eq!(copied, Some(12));
2131    /// ```
2132    #[must_use = "`self` will be dropped if the result is not used"]
2133    #[stable(feature = "copied", since = "1.35.0")]
2134    #[rustc_const_stable(feature = "const_option", since = "1.83.0")]
2135    pub const fn copied(self) -> Option<T>
2136    where
2137        T: Copy,
2138    {
2139        match self {
2140            Some(&mut t) => Some(t),
2141            None => None,
2142        }
2143    }
2144
2145    /// Maps an `Option<&mut T>` to an `Option<T>` by cloning the contents of the
2146    /// option.
2147    ///
2148    /// # Examples
2149    ///
2150    /// ```
2151    /// let mut x = 12;
2152    /// let opt_x = Some(&mut x);
2153    /// assert_eq!(opt_x, Some(&mut 12));
2154    /// let cloned = opt_x.cloned();
2155    /// assert_eq!(cloned, Some(12));
2156    /// ```
2157    #[must_use = "`self` will be dropped if the result is not used"]
2158    #[stable(since = "1.26.0", feature = "option_ref_mut_cloned")]
2159    pub fn cloned(self) -> Option<T>
2160    where
2161        T: Clone,
2162    {
2163        match self {
2164            Some(t) => Some(t.clone()),
2165            None => None,
2166        }
2167    }
2168}
2169
2170impl<T, E> Option<Result<T, E>> {
2171    /// Transposes an `Option` of a [`Result`] into a [`Result`] of an `Option`.
2172    ///
2173    /// <code>[Some]\([Ok]\(\_))</code> is mapped to <code>[Ok]\([Some]\(\_))</code>,
2174    /// <code>[Some]\([Err]\(\_))</code> is mapped to <code>[Err]\(\_)</code>,
2175    /// and [`None`] will be mapped to <code>[Ok]\([None])</code>.
2176    ///
2177    /// # Examples
2178    ///
2179    /// ```
2180    /// #[derive(Debug, Eq, PartialEq)]
2181    /// struct SomeErr;
2182    ///
2183    /// let x: Option<Result<i32, SomeErr>> = Some(Ok(5));
2184    /// let y: Result<Option<i32>, SomeErr> = Ok(Some(5));
2185    /// assert_eq!(x.transpose(), y);
2186    /// ```
2187    #[inline]
2188    #[stable(feature = "transpose_result", since = "1.33.0")]
2189    #[rustc_allow_const_fn_unstable(const_precise_live_drops)]
2190    #[rustc_const_stable(feature = "const_option", since = "1.83.0")]
2191    pub const fn transpose(self) -> Result<Option<T>, E> {
2192        match self {
2193            Some(Ok(x)) => Ok(Some(x)),
2194            Some(Err(e)) => Err(e),
2195            None => Ok(None),
2196        }
2197    }
2198}
2199
2200#[cfg_attr(not(panic = "immediate-abort"), inline(never))]
2201#[cfg_attr(panic = "immediate-abort", inline)]
2202#[cold]
2203#[track_caller]
2204const fn unwrap_failed() -> ! {
2205    panic("called `Option::unwrap()` on a `None` value")
2206}
2207
2208// This is a separate function to reduce the code size of .expect() itself.
2209#[cfg_attr(not(panic = "immediate-abort"), inline(never))]
2210#[cfg_attr(panic = "immediate-abort", inline)]
2211#[cold]
2212#[track_caller]
2213#[cfg(not(feature = "ferrocene_certified"))]
2214const fn expect_failed(msg: &str) -> ! {
2215    panic_display(&msg)
2216}
2217
2218/////////////////////////////////////////////////////////////////////////////
2219// Trait implementations
2220/////////////////////////////////////////////////////////////////////////////
2221
2222#[stable(feature = "rust1", since = "1.0.0")]
2223#[rustc_const_unstable(feature = "const_clone", issue = "142757")]
2224impl<T> const Clone for Option<T>
2225where
2226    // FIXME(const_hack): the T: [const] Destruct should be inferred from the Self: [const] Destruct in clone_from.
2227    // See https://github.com/rust-lang/rust/issues/144207
2228    T: [const] Clone + [const] Destruct,
2229{
2230    #[inline]
2231    fn clone(&self) -> Self {
2232        match self {
2233            Some(x) => Some(x.clone()),
2234            None => None,
2235        }
2236    }
2237
2238    #[inline]
2239    fn clone_from(&mut self, source: &Self) {
2240        match (self, source) {
2241            (Some(to), Some(from)) => to.clone_from(from),
2242            (to, from) => *to = from.clone(),
2243        }
2244    }
2245}
2246
2247#[unstable(feature = "ergonomic_clones", issue = "132290")]
2248#[cfg(not(feature = "ferrocene_certified"))]
2249impl<T> crate::clone::UseCloned for Option<T> where T: crate::clone::UseCloned {}
2250
2251#[doc(hidden)]
2252#[unstable(feature = "trivial_clone", issue = "none")]
2253#[rustc_const_unstable(feature = "const_clone", issue = "142757")]
2254unsafe impl<T> const TrivialClone for Option<T> where T: [const] TrivialClone + [const] Destruct {}
2255
2256#[stable(feature = "rust1", since = "1.0.0")]
2257#[rustc_const_unstable(feature = "const_default", issue = "143894")]
2258impl<T> const Default for Option<T> {
2259    /// Returns [`None`][Option::None].
2260    ///
2261    /// # Examples
2262    ///
2263    /// ```
2264    /// let opt: Option<u32> = Option::default();
2265    /// assert!(opt.is_none());
2266    /// ```
2267    #[inline]
2268    fn default() -> Option<T> {
2269        None
2270    }
2271}
2272
2273#[stable(feature = "rust1", since = "1.0.0")]
2274impl<T> IntoIterator for Option<T> {
2275    type Item = T;
2276    type IntoIter = IntoIter<T>;
2277
2278    /// Returns a consuming iterator over the possibly contained value.
2279    ///
2280    /// # Examples
2281    ///
2282    /// ```
2283    /// let x = Some("string");
2284    /// let v: Vec<&str> = x.into_iter().collect();
2285    /// assert_eq!(v, ["string"]);
2286    ///
2287    /// let x = None;
2288    /// let v: Vec<&str> = x.into_iter().collect();
2289    /// assert!(v.is_empty());
2290    /// ```
2291    #[inline]
2292    fn into_iter(self) -> IntoIter<T> {
2293        IntoIter { inner: Item { opt: self } }
2294    }
2295}
2296
2297#[stable(since = "1.4.0", feature = "option_iter")]
2298#[cfg(not(feature = "ferrocene_certified"))]
2299impl<'a, T> IntoIterator for &'a Option<T> {
2300    type Item = &'a T;
2301    type IntoIter = Iter<'a, T>;
2302
2303    fn into_iter(self) -> Iter<'a, T> {
2304        self.iter()
2305    }
2306}
2307
2308#[stable(since = "1.4.0", feature = "option_iter")]
2309#[cfg(not(feature = "ferrocene_certified"))]
2310impl<'a, T> IntoIterator for &'a mut Option<T> {
2311    type Item = &'a mut T;
2312    type IntoIter = IterMut<'a, T>;
2313
2314    fn into_iter(self) -> IterMut<'a, T> {
2315        self.iter_mut()
2316    }
2317}
2318
2319#[stable(since = "1.12.0", feature = "option_from")]
2320#[rustc_const_unstable(feature = "const_convert", issue = "143773")]
2321impl<T> const From<T> for Option<T> {
2322    /// Moves `val` into a new [`Some`].
2323    ///
2324    /// # Examples
2325    ///
2326    /// ```
2327    /// let o: Option<u8> = Option::from(67);
2328    ///
2329    /// assert_eq!(Some(67), o);
2330    /// ```
2331    fn from(val: T) -> Option<T> {
2332        Some(val)
2333    }
2334}
2335
2336#[stable(feature = "option_ref_from_ref_option", since = "1.30.0")]
2337#[rustc_const_unstable(feature = "const_convert", issue = "143773")]
2338impl<'a, T> const From<&'a Option<T>> for Option<&'a T> {
2339    /// Converts from `&Option<T>` to `Option<&T>`.
2340    ///
2341    /// # Examples
2342    ///
2343    /// Converts an <code>[Option]<[String]></code> into an <code>[Option]<[usize]></code>, preserving
2344    /// the original. The [`map`] method takes the `self` argument by value, consuming the original,
2345    /// so this technique uses `from` to first take an [`Option`] to a reference
2346    /// to the value inside the original.
2347    ///
2348    /// [`map`]: Option::map
2349    /// [String]: ../../std/string/struct.String.html "String"
2350    ///
2351    /// ```
2352    /// let s: Option<String> = Some(String::from("Hello, Rustaceans!"));
2353    /// let o: Option<usize> = Option::from(&s).map(|ss: &String| ss.len());
2354    ///
2355    /// println!("Can still print s: {s:?}");
2356    ///
2357    /// assert_eq!(o, Some(18));
2358    /// ```
2359    fn from(o: &'a Option<T>) -> Option<&'a T> {
2360        o.as_ref()
2361    }
2362}
2363
2364#[stable(feature = "option_ref_from_ref_option", since = "1.30.0")]
2365#[rustc_const_unstable(feature = "const_convert", issue = "143773")]
2366impl<'a, T> const From<&'a mut Option<T>> for Option<&'a mut T> {
2367    /// Converts from `&mut Option<T>` to `Option<&mut T>`
2368    ///
2369    /// # Examples
2370    ///
2371    /// ```
2372    /// let mut s = Some(String::from("Hello"));
2373    /// let o: Option<&mut String> = Option::from(&mut s);
2374    ///
2375    /// match o {
2376    ///     Some(t) => *t = String::from("Hello, Rustaceans!"),
2377    ///     None => (),
2378    /// }
2379    ///
2380    /// assert_eq!(s, Some(String::from("Hello, Rustaceans!")));
2381    /// ```
2382    fn from(o: &'a mut Option<T>) -> Option<&'a mut T> {
2383        o.as_mut()
2384    }
2385}
2386
2387// Ideally, LLVM should be able to optimize our derive code to this.
2388// Once https://github.com/llvm/llvm-project/issues/52622 is fixed, we can
2389// go back to deriving `PartialEq`.
2390#[stable(feature = "rust1", since = "1.0.0")]
2391#[cfg(not(feature = "ferrocene_certified"))]
2392impl<T> crate::marker::StructuralPartialEq for Option<T> {}
2393#[stable(feature = "rust1", since = "1.0.0")]
2394#[rustc_const_unstable(feature = "const_cmp", issue = "143800")]
2395impl<T: [const] PartialEq> const PartialEq for Option<T> {
2396    #[inline]
2397    fn eq(&self, other: &Self) -> bool {
2398        // Spelling out the cases explicitly optimizes better than
2399        // `_ => false`
2400        match (self, other) {
2401            (Some(l), Some(r)) => *l == *r,
2402            (Some(_), None) => false,
2403            (None, Some(_)) => false,
2404            (None, None) => true,
2405        }
2406    }
2407}
2408
2409// Manually implementing here somewhat improves codegen for
2410// https://github.com/rust-lang/rust/issues/49892, although still
2411// not optimal.
2412#[stable(feature = "rust1", since = "1.0.0")]
2413#[rustc_const_unstable(feature = "const_cmp", issue = "143800")]
2414#[cfg(not(feature = "ferrocene_certified"))]
2415impl<T: [const] PartialOrd> const PartialOrd for Option<T> {
2416    #[inline]
2417    fn partial_cmp(&self, other: &Self) -> Option<cmp::Ordering> {
2418        match (self, other) {
2419            (Some(l), Some(r)) => l.partial_cmp(r),
2420            (Some(_), None) => Some(cmp::Ordering::Greater),
2421            (None, Some(_)) => Some(cmp::Ordering::Less),
2422            (None, None) => Some(cmp::Ordering::Equal),
2423        }
2424    }
2425}
2426
2427#[stable(feature = "rust1", since = "1.0.0")]
2428#[rustc_const_unstable(feature = "const_cmp", issue = "143800")]
2429#[cfg(not(feature = "ferrocene_certified"))]
2430impl<T: [const] Ord> const Ord for Option<T> {
2431    #[inline]
2432    fn cmp(&self, other: &Self) -> cmp::Ordering {
2433        match (self, other) {
2434            (Some(l), Some(r)) => l.cmp(r),
2435            (Some(_), None) => cmp::Ordering::Greater,
2436            (None, Some(_)) => cmp::Ordering::Less,
2437            (None, None) => cmp::Ordering::Equal,
2438        }
2439    }
2440}
2441
2442/////////////////////////////////////////////////////////////////////////////
2443// The Option Iterators
2444/////////////////////////////////////////////////////////////////////////////
2445
2446#[cfg_attr(not(feature = "ferrocene_certified"), derive(Clone, Debug))]
2447struct Item<A> {
2448    #[allow(dead_code)]
2449    opt: Option<A>,
2450}
2451
2452impl<A> Iterator for Item<A> {
2453    type Item = A;
2454
2455    #[inline]
2456    fn next(&mut self) -> Option<A> {
2457        self.opt.take()
2458    }
2459
2460    #[inline]
2461    fn size_hint(&self) -> (usize, Option<usize>) {
2462        let len = self.len();
2463        (len, Some(len))
2464    }
2465}
2466
2467#[cfg(not(feature = "ferrocene_certified"))]
2468impl<A> DoubleEndedIterator for Item<A> {
2469    #[inline]
2470    fn next_back(&mut self) -> Option<A> {
2471        self.opt.take()
2472    }
2473}
2474
2475impl<A> ExactSizeIterator for Item<A> {
2476    #[inline]
2477    fn len(&self) -> usize {
2478        self.opt.len()
2479    }
2480}
2481#[cfg(not(feature = "ferrocene_certified"))]
2482impl<A> FusedIterator for Item<A> {}
2483#[cfg(not(feature = "ferrocene_certified"))]
2484unsafe impl<A> TrustedLen for Item<A> {}
2485
2486/// An iterator over a reference to the [`Some`] variant of an [`Option`].
2487///
2488/// The iterator yields one value if the [`Option`] is a [`Some`], otherwise none.
2489///
2490/// This `struct` is created by the [`Option::iter`] function.
2491#[stable(feature = "rust1", since = "1.0.0")]
2492#[cfg_attr(not(feature = "ferrocene_certified"), derive(Debug))]
2493pub struct Iter<'a, A: 'a> {
2494    #[cfg_attr(feature = "ferrocene_certified", expect(dead_code))]
2495    inner: Item<&'a A>,
2496}
2497
2498#[stable(feature = "rust1", since = "1.0.0")]
2499#[cfg(not(feature = "ferrocene_certified"))]
2500impl<'a, A> Iterator for Iter<'a, A> {
2501    type Item = &'a A;
2502
2503    #[inline]
2504    fn next(&mut self) -> Option<&'a A> {
2505        self.inner.next()
2506    }
2507    #[inline]
2508    fn size_hint(&self) -> (usize, Option<usize>) {
2509        self.inner.size_hint()
2510    }
2511}
2512
2513#[stable(feature = "rust1", since = "1.0.0")]
2514#[cfg(not(feature = "ferrocene_certified"))]
2515impl<'a, A> DoubleEndedIterator for Iter<'a, A> {
2516    #[inline]
2517    fn next_back(&mut self) -> Option<&'a A> {
2518        self.inner.next_back()
2519    }
2520}
2521
2522#[stable(feature = "rust1", since = "1.0.0")]
2523#[cfg(not(feature = "ferrocene_certified"))]
2524impl<A> ExactSizeIterator for Iter<'_, A> {}
2525
2526#[stable(feature = "fused", since = "1.26.0")]
2527#[cfg(not(feature = "ferrocene_certified"))]
2528impl<A> FusedIterator for Iter<'_, A> {}
2529
2530#[unstable(feature = "trusted_len", issue = "37572")]
2531#[cfg(not(feature = "ferrocene_certified"))]
2532unsafe impl<A> TrustedLen for Iter<'_, A> {}
2533
2534#[stable(feature = "rust1", since = "1.0.0")]
2535#[cfg(not(feature = "ferrocene_certified"))]
2536impl<A> Clone for Iter<'_, A> {
2537    #[inline]
2538    fn clone(&self) -> Self {
2539        Iter { inner: self.inner.clone() }
2540    }
2541}
2542
2543/// An iterator over a mutable reference to the [`Some`] variant of an [`Option`].
2544///
2545/// The iterator yields one value if the [`Option`] is a [`Some`], otherwise none.
2546///
2547/// This `struct` is created by the [`Option::iter_mut`] function.
2548#[stable(feature = "rust1", since = "1.0.0")]
2549#[cfg_attr(not(feature = "ferrocene_certified"), derive(Debug))]
2550pub struct IterMut<'a, A: 'a> {
2551    #[cfg_attr(feature = "ferrocene_certified", expect(dead_code))]
2552    inner: Item<&'a mut A>,
2553}
2554
2555#[stable(feature = "rust1", since = "1.0.0")]
2556#[cfg(not(feature = "ferrocene_certified"))]
2557impl<'a, A> Iterator for IterMut<'a, A> {
2558    type Item = &'a mut A;
2559
2560    #[inline]
2561    fn next(&mut self) -> Option<&'a mut A> {
2562        self.inner.next()
2563    }
2564    #[inline]
2565    fn size_hint(&self) -> (usize, Option<usize>) {
2566        self.inner.size_hint()
2567    }
2568}
2569
2570#[stable(feature = "rust1", since = "1.0.0")]
2571#[cfg(not(feature = "ferrocene_certified"))]
2572impl<'a, A> DoubleEndedIterator for IterMut<'a, A> {
2573    #[inline]
2574    fn next_back(&mut self) -> Option<&'a mut A> {
2575        self.inner.next_back()
2576    }
2577}
2578
2579#[stable(feature = "rust1", since = "1.0.0")]
2580#[cfg(not(feature = "ferrocene_certified"))]
2581impl<A> ExactSizeIterator for IterMut<'_, A> {}
2582
2583#[stable(feature = "fused", since = "1.26.0")]
2584#[cfg(not(feature = "ferrocene_certified"))]
2585impl<A> FusedIterator for IterMut<'_, A> {}
2586#[unstable(feature = "trusted_len", issue = "37572")]
2587#[cfg(not(feature = "ferrocene_certified"))]
2588unsafe impl<A> TrustedLen for IterMut<'_, A> {}
2589
2590/// An iterator over the value in [`Some`] variant of an [`Option`].
2591///
2592/// The iterator yields one value if the [`Option`] is a [`Some`], otherwise none.
2593///
2594/// This `struct` is created by the [`Option::into_iter`] function.
2595#[cfg_attr(not(feature = "ferrocene_certified"), derive(Clone, Debug))]
2596#[stable(feature = "rust1", since = "1.0.0")]
2597pub struct IntoIter<A> {
2598    inner: Item<A>,
2599}
2600
2601#[stable(feature = "rust1", since = "1.0.0")]
2602impl<A> Iterator for IntoIter<A> {
2603    type Item = A;
2604
2605    #[inline]
2606    fn next(&mut self) -> Option<A> {
2607        self.inner.next()
2608    }
2609    #[inline]
2610    fn size_hint(&self) -> (usize, Option<usize>) {
2611        self.inner.size_hint()
2612    }
2613}
2614
2615#[stable(feature = "rust1", since = "1.0.0")]
2616#[cfg(not(feature = "ferrocene_certified"))]
2617impl<A> DoubleEndedIterator for IntoIter<A> {
2618    #[inline]
2619    fn next_back(&mut self) -> Option<A> {
2620        self.inner.next_back()
2621    }
2622}
2623
2624#[stable(feature = "rust1", since = "1.0.0")]
2625#[cfg(not(feature = "ferrocene_certified"))]
2626impl<A> ExactSizeIterator for IntoIter<A> {}
2627
2628#[stable(feature = "fused", since = "1.26.0")]
2629#[cfg(not(feature = "ferrocene_certified"))]
2630impl<A> FusedIterator for IntoIter<A> {}
2631
2632#[unstable(feature = "trusted_len", issue = "37572")]
2633#[cfg(not(feature = "ferrocene_certified"))]
2634unsafe impl<A> TrustedLen for IntoIter<A> {}
2635
2636/////////////////////////////////////////////////////////////////////////////
2637// FromIterator
2638/////////////////////////////////////////////////////////////////////////////
2639
2640#[stable(feature = "rust1", since = "1.0.0")]
2641#[cfg(not(feature = "ferrocene_certified"))]
2642impl<A, V: FromIterator<A>> FromIterator<Option<A>> for Option<V> {
2643    /// Takes each element in the [`Iterator`]: if it is [`None`][Option::None],
2644    /// no further elements are taken, and the [`None`][Option::None] is
2645    /// returned. Should no [`None`][Option::None] occur, a container of type
2646    /// `V` containing the values of each [`Option`] is returned.
2647    ///
2648    /// # Examples
2649    ///
2650    /// Here is an example which increments every integer in a vector.
2651    /// We use the checked variant of `add` that returns `None` when the
2652    /// calculation would result in an overflow.
2653    ///
2654    /// ```
2655    /// let items = vec![0_u16, 1, 2];
2656    ///
2657    /// let res: Option<Vec<u16>> = items
2658    ///     .iter()
2659    ///     .map(|x| x.checked_add(1))
2660    ///     .collect();
2661    ///
2662    /// assert_eq!(res, Some(vec![1, 2, 3]));
2663    /// ```
2664    ///
2665    /// As you can see, this will return the expected, valid items.
2666    ///
2667    /// Here is another example that tries to subtract one from another list
2668    /// of integers, this time checking for underflow:
2669    ///
2670    /// ```
2671    /// let items = vec![2_u16, 1, 0];
2672    ///
2673    /// let res: Option<Vec<u16>> = items
2674    ///     .iter()
2675    ///     .map(|x| x.checked_sub(1))
2676    ///     .collect();
2677    ///
2678    /// assert_eq!(res, None);
2679    /// ```
2680    ///
2681    /// Since the last element is zero, it would underflow. Thus, the resulting
2682    /// value is `None`.
2683    ///
2684    /// Here is a variation on the previous example, showing that no
2685    /// further elements are taken from `iter` after the first `None`.
2686    ///
2687    /// ```
2688    /// let items = vec![3_u16, 2, 1, 10];
2689    ///
2690    /// let mut shared = 0;
2691    ///
2692    /// let res: Option<Vec<u16>> = items
2693    ///     .iter()
2694    ///     .map(|x| { shared += x; x.checked_sub(2) })
2695    ///     .collect();
2696    ///
2697    /// assert_eq!(res, None);
2698    /// assert_eq!(shared, 6);
2699    /// ```
2700    ///
2701    /// Since the third element caused an underflow, no further elements were taken,
2702    /// so the final value of `shared` is 6 (= `3 + 2 + 1`), not 16.
2703    #[inline]
2704    fn from_iter<I: IntoIterator<Item = Option<A>>>(iter: I) -> Option<V> {
2705        // FIXME(#11084): This could be replaced with Iterator::scan when this
2706        // performance bug is closed.
2707
2708        iter::try_process(iter.into_iter(), |i| i.collect())
2709    }
2710}
2711
2712#[unstable(feature = "try_trait_v2", issue = "84277", old_name = "try_trait")]
2713#[rustc_const_unstable(feature = "const_try", issue = "74935")]
2714impl<T> const ops::Try for Option<T> {
2715    type Output = T;
2716    type Residual = Option<convert::Infallible>;
2717
2718    #[inline]
2719    fn from_output(output: Self::Output) -> Self {
2720        Some(output)
2721    }
2722
2723    #[inline]
2724    fn branch(self) -> ControlFlow<Self::Residual, Self::Output> {
2725        match self {
2726            Some(v) => ControlFlow::Continue(v),
2727            None => ControlFlow::Break(None),
2728        }
2729    }
2730}
2731
2732#[unstable(feature = "try_trait_v2", issue = "84277", old_name = "try_trait")]
2733#[rustc_const_unstable(feature = "const_try", issue = "74935")]
2734// Note: manually specifying the residual type instead of using the default to work around
2735// https://github.com/rust-lang/rust/issues/99940
2736impl<T> const ops::FromResidual<Option<convert::Infallible>> for Option<T> {
2737    #[inline]
2738    fn from_residual(residual: Option<convert::Infallible>) -> Self {
2739        match residual {
2740            None => None,
2741        }
2742    }
2743}
2744
2745#[diagnostic::do_not_recommend]
2746#[unstable(feature = "try_trait_v2_yeet", issue = "96374")]
2747#[rustc_const_unstable(feature = "const_try", issue = "74935")]
2748#[cfg(not(feature = "ferrocene_certified"))]
2749impl<T> const ops::FromResidual<ops::Yeet<()>> for Option<T> {
2750    #[inline]
2751    fn from_residual(ops::Yeet(()): ops::Yeet<()>) -> Self {
2752        None
2753    }
2754}
2755
2756#[unstable(feature = "try_trait_v2_residual", issue = "91285")]
2757#[rustc_const_unstable(feature = "const_try", issue = "74935")]
2758impl<T> const ops::Residual<T> for Option<convert::Infallible> {
2759    type TryType = Option<T>;
2760}
2761
2762impl<T> Option<Option<T>> {
2763    /// Converts from `Option<Option<T>>` to `Option<T>`.
2764    ///
2765    /// # Examples
2766    ///
2767    /// Basic usage:
2768    ///
2769    /// ```
2770    /// let x: Option<Option<u32>> = Some(Some(6));
2771    /// assert_eq!(Some(6), x.flatten());
2772    ///
2773    /// let x: Option<Option<u32>> = Some(None);
2774    /// assert_eq!(None, x.flatten());
2775    ///
2776    /// let x: Option<Option<u32>> = None;
2777    /// assert_eq!(None, x.flatten());
2778    /// ```
2779    ///
2780    /// Flattening only removes one level of nesting at a time:
2781    ///
2782    /// ```
2783    /// let x: Option<Option<Option<u32>>> = Some(Some(Some(6)));
2784    /// assert_eq!(Some(Some(6)), x.flatten());
2785    /// assert_eq!(Some(6), x.flatten().flatten());
2786    /// ```
2787    #[inline]
2788    #[stable(feature = "option_flattening", since = "1.40.0")]
2789    #[rustc_allow_const_fn_unstable(const_precise_live_drops)]
2790    #[rustc_const_stable(feature = "const_option", since = "1.83.0")]
2791    pub const fn flatten(self) -> Option<T> {
2792        // FIXME(const-hack): could be written with `and_then`
2793        match self {
2794            Some(inner) => inner,
2795            None => None,
2796        }
2797    }
2798}
2799
2800#[cfg(not(feature = "ferrocene_certified"))]
2801impl<T, const N: usize> [Option<T>; N] {
2802    /// Transposes a `[Option<T>; N]` into a `Option<[T; N]>`.
2803    ///
2804    /// # Examples
2805    ///
2806    /// ```
2807    /// #![feature(option_array_transpose)]
2808    /// # use std::option::Option;
2809    ///
2810    /// let data = [Some(0); 1000];
2811    /// let data: Option<[u8; 1000]> = data.transpose();
2812    /// assert_eq!(data, Some([0; 1000]));
2813    ///
2814    /// let data = [Some(0), None];
2815    /// let data: Option<[u8; 2]> = data.transpose();
2816    /// assert_eq!(data, None);
2817    /// ```
2818    #[inline]
2819    #[unstable(feature = "option_array_transpose", issue = "130828")]
2820    pub fn transpose(self) -> Option<[T; N]> {
2821        self.try_map(core::convert::identity)
2822    }
2823}