core/ptr/
non_null.rs

1use crate::clone::TrivialClone;
2#[cfg(not(feature = "ferrocene_certified"))]
3use crate::cmp::Ordering;
4#[cfg(not(feature = "ferrocene_certified"))]
5use crate::marker::{Destruct, PointeeSized, Unsize};
6#[cfg(not(feature = "ferrocene_certified"))]
7use crate::mem::{MaybeUninit, SizedTypeProperties};
8#[cfg(not(feature = "ferrocene_certified"))]
9use crate::num::NonZero;
10#[cfg(not(feature = "ferrocene_certified"))]
11use crate::ops::{CoerceUnsized, DispatchFromDyn};
12#[cfg(not(feature = "ferrocene_certified"))]
13use crate::pin::PinCoerceUnsized;
14#[cfg(not(feature = "ferrocene_certified"))]
15use crate::ptr::Unique;
16#[cfg(not(feature = "ferrocene_certified"))]
17use crate::slice::{self, SliceIndex};
18use crate::ub_checks::assert_unsafe_precondition;
19#[cfg(not(feature = "ferrocene_certified"))]
20use crate::{fmt, hash, intrinsics, mem, ptr};
21
22// Ferrocene addition: imports for certified subset
23#[cfg(feature = "ferrocene_certified")]
24#[rustfmt::skip]
25use crate::{intrinsics, marker::PointeeSized, mem};
26
27/// `*mut T` but non-zero and [covariant].
28///
29/// This is often the correct thing to use when building data structures using
30/// raw pointers, but is ultimately more dangerous to use because of its additional
31/// properties. If you're not sure if you should use `NonNull<T>`, just use `*mut T`!
32///
33/// Unlike `*mut T`, the pointer must always be non-null, even if the pointer
34/// is never dereferenced. This is so that enums may use this forbidden value
35/// as a discriminant -- `Option<NonNull<T>>` has the same size as `*mut T`.
36/// However the pointer may still dangle if it isn't dereferenced.
37///
38/// Unlike `*mut T`, `NonNull<T>` is covariant over `T`. This is usually the correct
39/// choice for most data structures and safe abstractions, such as `Box`, `Rc`, `Arc`, `Vec`,
40/// and `LinkedList`.
41///
42/// In rare cases, if your type exposes a way to mutate the value of `T` through a `NonNull<T>`,
43/// and you need to prevent unsoundness from variance (for example, if `T` could be a reference
44/// with a shorter lifetime), you should add a field to make your type invariant, such as
45/// `PhantomData<Cell<T>>` or `PhantomData<&'a mut T>`.
46///
47/// Example of a type that must be invariant:
48/// ```rust
49/// use std::cell::Cell;
50/// use std::marker::PhantomData;
51/// struct Invariant<T> {
52///     ptr: std::ptr::NonNull<T>,
53///     _invariant: PhantomData<Cell<T>>,
54/// }
55/// ```
56///
57/// Notice that `NonNull<T>` has a `From` instance for `&T`. However, this does
58/// not change the fact that mutating through a (pointer derived from a) shared
59/// reference is undefined behavior unless the mutation happens inside an
60/// [`UnsafeCell<T>`]. The same goes for creating a mutable reference from a shared
61/// reference. When using this `From` instance without an `UnsafeCell<T>`,
62/// it is your responsibility to ensure that `as_mut` is never called, and `as_ptr`
63/// is never used for mutation.
64///
65/// # Representation
66///
67/// Thanks to the [null pointer optimization],
68/// `NonNull<T>` and `Option<NonNull<T>>`
69/// are guaranteed to have the same size and alignment:
70///
71/// ```
72/// use std::ptr::NonNull;
73///
74/// assert_eq!(size_of::<NonNull<i16>>(), size_of::<Option<NonNull<i16>>>());
75/// assert_eq!(align_of::<NonNull<i16>>(), align_of::<Option<NonNull<i16>>>());
76///
77/// assert_eq!(size_of::<NonNull<str>>(), size_of::<Option<NonNull<str>>>());
78/// assert_eq!(align_of::<NonNull<str>>(), align_of::<Option<NonNull<str>>>());
79/// ```
80///
81/// [covariant]: https://doc.rust-lang.org/reference/subtyping.html
82/// [`PhantomData`]: crate::marker::PhantomData
83/// [`UnsafeCell<T>`]: crate::cell::UnsafeCell
84/// [null pointer optimization]: crate::option#representation
85#[stable(feature = "nonnull", since = "1.25.0")]
86#[repr(transparent)]
87#[rustc_layout_scalar_valid_range_start(1)]
88#[rustc_nonnull_optimization_guaranteed]
89#[rustc_diagnostic_item = "NonNull"]
90pub struct NonNull<T: PointeeSized> {
91    // Remember to use `.as_ptr()` instead of `.pointer`, as field projecting to
92    // this is banned by <https://github.com/rust-lang/compiler-team/issues/807>.
93    pointer: *const T,
94}
95
96/// `NonNull` pointers are not `Send` because the data they reference may be aliased.
97// N.B., this impl is unnecessary, but should provide better error messages.
98#[stable(feature = "nonnull", since = "1.25.0")]
99impl<T: PointeeSized> !Send for NonNull<T> {}
100
101/// `NonNull` pointers are not `Sync` because the data they reference may be aliased.
102// N.B., this impl is unnecessary, but should provide better error messages.
103#[stable(feature = "nonnull", since = "1.25.0")]
104impl<T: PointeeSized> !Sync for NonNull<T> {}
105
106#[cfg(not(feature = "ferrocene_certified"))]
107impl<T: Sized> NonNull<T> {
108    /// Creates a pointer with the given address and no [provenance][crate::ptr#provenance].
109    ///
110    /// For more details, see the equivalent method on a raw pointer, [`ptr::without_provenance_mut`].
111    ///
112    /// This is a [Strict Provenance][crate::ptr#strict-provenance] API.
113    #[stable(feature = "nonnull_provenance", since = "1.89.0")]
114    #[rustc_const_stable(feature = "nonnull_provenance", since = "1.89.0")]
115    #[must_use]
116    #[inline]
117    pub const fn without_provenance(addr: NonZero<usize>) -> Self {
118        let pointer = crate::ptr::without_provenance(addr.get());
119        // SAFETY: we know `addr` is non-zero.
120        unsafe { NonNull { pointer } }
121    }
122
123    /// Creates a new `NonNull` that is dangling, but well-aligned.
124    ///
125    /// This is useful for initializing types which lazily allocate, like
126    /// `Vec::new` does.
127    ///
128    /// Note that the address of the returned pointer may potentially
129    /// be that of a valid pointer, which means this must not be used
130    /// as a "not yet initialized" sentinel value.
131    /// Types that lazily allocate must track initialization by some other means.
132    ///
133    /// # Examples
134    ///
135    /// ```
136    /// use std::ptr::NonNull;
137    ///
138    /// let ptr = NonNull::<u32>::dangling();
139    /// // Important: don't try to access the value of `ptr` without
140    /// // initializing it first! The pointer is not null but isn't valid either!
141    /// ```
142    #[stable(feature = "nonnull", since = "1.25.0")]
143    #[rustc_const_stable(feature = "const_nonnull_dangling", since = "1.36.0")]
144    #[must_use]
145    #[inline]
146    pub const fn dangling() -> Self {
147        let align = crate::ptr::Alignment::of::<T>();
148        NonNull::without_provenance(align.as_nonzero())
149    }
150
151    /// Converts an address back to a mutable pointer, picking up some previously 'exposed'
152    /// [provenance][crate::ptr#provenance].
153    ///
154    /// For more details, see the equivalent method on a raw pointer, [`ptr::with_exposed_provenance_mut`].
155    ///
156    /// This is an [Exposed Provenance][crate::ptr#exposed-provenance] API.
157    #[stable(feature = "nonnull_provenance", since = "1.89.0")]
158    #[inline]
159    pub fn with_exposed_provenance(addr: NonZero<usize>) -> Self {
160        // SAFETY: we know `addr` is non-zero.
161        unsafe {
162            let ptr = crate::ptr::with_exposed_provenance_mut(addr.get());
163            NonNull::new_unchecked(ptr)
164        }
165    }
166
167    /// Returns a shared references to the value. In contrast to [`as_ref`], this does not require
168    /// that the value has to be initialized.
169    ///
170    /// For the mutable counterpart see [`as_uninit_mut`].
171    ///
172    /// [`as_ref`]: NonNull::as_ref
173    /// [`as_uninit_mut`]: NonNull::as_uninit_mut
174    ///
175    /// # Safety
176    ///
177    /// When calling this method, you have to ensure that
178    /// the pointer is [convertible to a reference](crate::ptr#pointer-to-reference-conversion).
179    /// Note that because the created reference is to `MaybeUninit<T>`, the
180    /// source pointer can point to uninitialized memory.
181    #[inline]
182    #[must_use]
183    #[unstable(feature = "ptr_as_uninit", issue = "75402")]
184    pub const unsafe fn as_uninit_ref<'a>(self) -> &'a MaybeUninit<T> {
185        // SAFETY: the caller must guarantee that `self` meets all the
186        // requirements for a reference.
187        unsafe { &*self.cast().as_ptr() }
188    }
189
190    /// Returns a unique references to the value. In contrast to [`as_mut`], this does not require
191    /// that the value has to be initialized.
192    ///
193    /// For the shared counterpart see [`as_uninit_ref`].
194    ///
195    /// [`as_mut`]: NonNull::as_mut
196    /// [`as_uninit_ref`]: NonNull::as_uninit_ref
197    ///
198    /// # Safety
199    ///
200    /// When calling this method, you have to ensure that
201    /// the pointer is [convertible to a reference](crate::ptr#pointer-to-reference-conversion).
202    /// Note that because the created reference is to `MaybeUninit<T>`, the
203    /// source pointer can point to uninitialized memory.
204    #[inline]
205    #[must_use]
206    #[unstable(feature = "ptr_as_uninit", issue = "75402")]
207    pub const unsafe fn as_uninit_mut<'a>(self) -> &'a mut MaybeUninit<T> {
208        // SAFETY: the caller must guarantee that `self` meets all the
209        // requirements for a reference.
210        unsafe { &mut *self.cast().as_ptr() }
211    }
212
213    /// Casts from a pointer-to-`T` to a pointer-to-`[T; N]`.
214    #[inline]
215    #[unstable(feature = "ptr_cast_array", issue = "144514")]
216    pub const fn cast_array<const N: usize>(self) -> NonNull<[T; N]> {
217        self.cast()
218    }
219}
220
221impl<T: PointeeSized> NonNull<T> {
222    /// Creates a new `NonNull`.
223    ///
224    /// # Safety
225    ///
226    /// `ptr` must be non-null.
227    ///
228    /// # Examples
229    ///
230    /// ```
231    /// use std::ptr::NonNull;
232    ///
233    /// let mut x = 0u32;
234    /// let ptr = unsafe { NonNull::new_unchecked(&mut x as *mut _) };
235    /// ```
236    ///
237    /// *Incorrect* usage of this function:
238    ///
239    /// ```rust,no_run
240    /// use std::ptr::NonNull;
241    ///
242    /// // NEVER DO THAT!!! This is undefined behavior. ⚠️
243    /// let ptr = unsafe { NonNull::<u32>::new_unchecked(std::ptr::null_mut()) };
244    /// ```
245    #[stable(feature = "nonnull", since = "1.25.0")]
246    #[rustc_const_stable(feature = "const_nonnull_new_unchecked", since = "1.25.0")]
247    #[inline]
248    #[track_caller]
249    pub const unsafe fn new_unchecked(ptr: *mut T) -> Self {
250        // SAFETY: the caller must guarantee that `ptr` is non-null.
251        unsafe {
252            assert_unsafe_precondition!(
253                check_language_ub,
254                "NonNull::new_unchecked requires that the pointer is non-null",
255                (ptr: *mut () = ptr as *mut ()) => !ptr.is_null()
256            );
257            NonNull { pointer: ptr as _ }
258        }
259    }
260
261    /// Creates a new `NonNull` if `ptr` is non-null.
262    ///
263    /// # Panics during const evaluation
264    ///
265    /// This method will panic during const evaluation if the pointer cannot be
266    /// determined to be null or not. See [`is_null`] for more information.
267    ///
268    /// [`is_null`]: ../primitive.pointer.html#method.is_null-1
269    ///
270    /// # Examples
271    ///
272    /// ```
273    /// use std::ptr::NonNull;
274    ///
275    /// let mut x = 0u32;
276    /// let ptr = NonNull::<u32>::new(&mut x as *mut _).expect("ptr is null!");
277    ///
278    /// if let Some(ptr) = NonNull::<u32>::new(std::ptr::null_mut()) {
279    ///     unreachable!();
280    /// }
281    /// ```
282    #[stable(feature = "nonnull", since = "1.25.0")]
283    #[rustc_const_stable(feature = "const_nonnull_new", since = "1.85.0")]
284    #[inline]
285    #[cfg(not(feature = "ferrocene_certified"))]
286    pub const fn new(ptr: *mut T) -> Option<Self> {
287        if !ptr.is_null() {
288            // SAFETY: The pointer is already checked and is not null
289            Some(unsafe { Self::new_unchecked(ptr) })
290        } else {
291            None
292        }
293    }
294
295    /// Converts a reference to a `NonNull` pointer.
296    #[stable(feature = "non_null_from_ref", since = "1.89.0")]
297    #[rustc_const_stable(feature = "non_null_from_ref", since = "1.89.0")]
298    #[inline]
299    pub const fn from_ref(r: &T) -> Self {
300        // SAFETY: A reference cannot be null.
301        unsafe { NonNull { pointer: r as *const T } }
302    }
303
304    /// Converts a mutable reference to a `NonNull` pointer.
305    #[stable(feature = "non_null_from_ref", since = "1.89.0")]
306    #[rustc_const_stable(feature = "non_null_from_ref", since = "1.89.0")]
307    #[inline]
308    pub const fn from_mut(r: &mut T) -> Self {
309        // SAFETY: A mutable reference cannot be null.
310        unsafe { NonNull { pointer: r as *mut T } }
311    }
312
313    /// Performs the same functionality as [`std::ptr::from_raw_parts`], except that a
314    /// `NonNull` pointer is returned, as opposed to a raw `*const` pointer.
315    ///
316    /// See the documentation of [`std::ptr::from_raw_parts`] for more details.
317    ///
318    /// [`std::ptr::from_raw_parts`]: crate::ptr::from_raw_parts
319    #[unstable(feature = "ptr_metadata", issue = "81513")]
320    #[inline]
321    #[cfg(not(feature = "ferrocene_certified"))]
322    pub const fn from_raw_parts(
323        data_pointer: NonNull<impl super::Thin>,
324        metadata: <T as super::Pointee>::Metadata,
325    ) -> NonNull<T> {
326        // SAFETY: The result of `ptr::from::raw_parts_mut` is non-null because `data_pointer` is.
327        unsafe {
328            NonNull::new_unchecked(super::from_raw_parts_mut(data_pointer.as_ptr(), metadata))
329        }
330    }
331
332    /// Decompose a (possibly wide) pointer into its data pointer and metadata components.
333    ///
334    /// The pointer can be later reconstructed with [`NonNull::from_raw_parts`].
335    #[unstable(feature = "ptr_metadata", issue = "81513")]
336    #[must_use = "this returns the result of the operation, \
337                  without modifying the original"]
338    #[inline]
339    #[cfg(not(feature = "ferrocene_certified"))]
340    pub const fn to_raw_parts(self) -> (NonNull<()>, <T as super::Pointee>::Metadata) {
341        (self.cast(), super::metadata(self.as_ptr()))
342    }
343
344    /// Gets the "address" portion of the pointer.
345    ///
346    /// For more details, see the equivalent method on a raw pointer, [`pointer::addr`].
347    ///
348    /// This is a [Strict Provenance][crate::ptr#strict-provenance] API.
349    #[must_use]
350    #[inline]
351    #[stable(feature = "strict_provenance", since = "1.84.0")]
352    #[cfg(not(feature = "ferrocene_certified"))]
353    pub fn addr(self) -> NonZero<usize> {
354        // SAFETY: The pointer is guaranteed by the type to be non-null,
355        // meaning that the address will be non-zero.
356        unsafe { NonZero::new_unchecked(self.as_ptr().addr()) }
357    }
358
359    /// Exposes the ["provenance"][crate::ptr#provenance] part of the pointer for future use in
360    /// [`with_exposed_provenance`][NonNull::with_exposed_provenance] and returns the "address" portion.
361    ///
362    /// For more details, see the equivalent method on a raw pointer, [`pointer::expose_provenance`].
363    ///
364    /// This is an [Exposed Provenance][crate::ptr#exposed-provenance] API.
365    #[stable(feature = "nonnull_provenance", since = "1.89.0")]
366    #[cfg(not(feature = "ferrocene_certified"))]
367    pub fn expose_provenance(self) -> NonZero<usize> {
368        // SAFETY: The pointer is guaranteed by the type to be non-null,
369        // meaning that the address will be non-zero.
370        unsafe { NonZero::new_unchecked(self.as_ptr().expose_provenance()) }
371    }
372
373    /// Creates a new pointer with the given address and the [provenance][crate::ptr#provenance] of
374    /// `self`.
375    ///
376    /// For more details, see the equivalent method on a raw pointer, [`pointer::with_addr`].
377    ///
378    /// This is a [Strict Provenance][crate::ptr#strict-provenance] API.
379    #[must_use]
380    #[inline]
381    #[stable(feature = "strict_provenance", since = "1.84.0")]
382    #[cfg(not(feature = "ferrocene_certified"))]
383    pub fn with_addr(self, addr: NonZero<usize>) -> Self {
384        // SAFETY: The result of `ptr::from::with_addr` is non-null because `addr` is guaranteed to be non-zero.
385        unsafe { NonNull::new_unchecked(self.as_ptr().with_addr(addr.get()) as *mut _) }
386    }
387
388    /// Creates a new pointer by mapping `self`'s address to a new one, preserving the
389    /// [provenance][crate::ptr#provenance] of `self`.
390    ///
391    /// For more details, see the equivalent method on a raw pointer, [`pointer::map_addr`].
392    ///
393    /// This is a [Strict Provenance][crate::ptr#strict-provenance] API.
394    #[must_use]
395    #[inline]
396    #[stable(feature = "strict_provenance", since = "1.84.0")]
397    #[cfg(not(feature = "ferrocene_certified"))]
398    pub fn map_addr(self, f: impl FnOnce(NonZero<usize>) -> NonZero<usize>) -> Self {
399        self.with_addr(f(self.addr()))
400    }
401
402    /// Acquires the underlying `*mut` pointer.
403    ///
404    /// # Examples
405    ///
406    /// ```
407    /// use std::ptr::NonNull;
408    ///
409    /// let mut x = 0u32;
410    /// let ptr = NonNull::new(&mut x).expect("ptr is null!");
411    ///
412    /// let x_value = unsafe { *ptr.as_ptr() };
413    /// assert_eq!(x_value, 0);
414    ///
415    /// unsafe { *ptr.as_ptr() += 2; }
416    /// let x_value = unsafe { *ptr.as_ptr() };
417    /// assert_eq!(x_value, 2);
418    /// ```
419    #[stable(feature = "nonnull", since = "1.25.0")]
420    #[rustc_const_stable(feature = "const_nonnull_as_ptr", since = "1.32.0")]
421    #[rustc_never_returns_null_ptr]
422    #[must_use]
423    #[inline(always)]
424    pub const fn as_ptr(self) -> *mut T {
425        // This is a transmute for the same reasons as `NonZero::get`.
426
427        // SAFETY: `NonNull` is `transparent` over a `*const T`, and `*const T`
428        // and `*mut T` have the same layout, so transitively we can transmute
429        // our `NonNull` to a `*mut T` directly.
430        unsafe { mem::transmute::<Self, *mut T>(self) }
431    }
432
433    /// Returns a shared reference to the value. If the value may be uninitialized, [`as_uninit_ref`]
434    /// must be used instead.
435    ///
436    /// For the mutable counterpart see [`as_mut`].
437    ///
438    /// [`as_uninit_ref`]: NonNull::as_uninit_ref
439    /// [`as_mut`]: NonNull::as_mut
440    ///
441    /// # Safety
442    ///
443    /// When calling this method, you have to ensure that
444    /// the pointer is [convertible to a reference](crate::ptr#pointer-to-reference-conversion).
445    ///
446    /// # Examples
447    ///
448    /// ```
449    /// use std::ptr::NonNull;
450    ///
451    /// let mut x = 0u32;
452    /// let ptr = NonNull::new(&mut x as *mut _).expect("ptr is null!");
453    ///
454    /// let ref_x = unsafe { ptr.as_ref() };
455    /// println!("{ref_x}");
456    /// ```
457    ///
458    /// [the module documentation]: crate::ptr#safety
459    #[stable(feature = "nonnull", since = "1.25.0")]
460    #[rustc_const_stable(feature = "const_nonnull_as_ref", since = "1.73.0")]
461    #[must_use]
462    #[inline(always)]
463    pub const unsafe fn as_ref<'a>(&self) -> &'a T {
464        // SAFETY: the caller must guarantee that `self` meets all the
465        // requirements for a reference.
466        // `cast_const` avoids a mutable raw pointer deref.
467        unsafe { &*self.as_ptr().cast_const() }
468    }
469
470    /// Returns a unique reference to the value. If the value may be uninitialized, [`as_uninit_mut`]
471    /// must be used instead.
472    ///
473    /// For the shared counterpart see [`as_ref`].
474    ///
475    /// [`as_uninit_mut`]: NonNull::as_uninit_mut
476    /// [`as_ref`]: NonNull::as_ref
477    ///
478    /// # Safety
479    ///
480    /// When calling this method, you have to ensure that
481    /// the pointer is [convertible to a reference](crate::ptr#pointer-to-reference-conversion).
482    /// # Examples
483    ///
484    /// ```
485    /// use std::ptr::NonNull;
486    ///
487    /// let mut x = 0u32;
488    /// let mut ptr = NonNull::new(&mut x).expect("null pointer");
489    ///
490    /// let x_ref = unsafe { ptr.as_mut() };
491    /// assert_eq!(*x_ref, 0);
492    /// *x_ref += 2;
493    /// assert_eq!(*x_ref, 2);
494    /// ```
495    ///
496    /// [the module documentation]: crate::ptr#safety
497    #[stable(feature = "nonnull", since = "1.25.0")]
498    #[rustc_const_stable(feature = "const_ptr_as_ref", since = "1.83.0")]
499    #[must_use]
500    #[inline(always)]
501    pub const unsafe fn as_mut<'a>(&mut self) -> &'a mut T {
502        // SAFETY: the caller must guarantee that `self` meets all the
503        // requirements for a mutable reference.
504        unsafe { &mut *self.as_ptr() }
505    }
506
507    /// Casts to a pointer of another type.
508    ///
509    /// # Examples
510    ///
511    /// ```
512    /// use std::ptr::NonNull;
513    ///
514    /// let mut x = 0u32;
515    /// let ptr = NonNull::new(&mut x as *mut _).expect("null pointer");
516    ///
517    /// let casted_ptr = ptr.cast::<i8>();
518    /// let raw_ptr: *mut i8 = casted_ptr.as_ptr();
519    /// ```
520    #[stable(feature = "nonnull_cast", since = "1.27.0")]
521    #[rustc_const_stable(feature = "const_nonnull_cast", since = "1.36.0")]
522    #[must_use = "this returns the result of the operation, \
523                  without modifying the original"]
524    #[inline]
525    pub const fn cast<U>(self) -> NonNull<U> {
526        // SAFETY: `self` is a `NonNull` pointer which is necessarily non-null
527        unsafe { NonNull { pointer: self.as_ptr() as *mut U } }
528    }
529
530    /// Try to cast to a pointer of another type by checking alignment.
531    ///
532    /// If the pointer is properly aligned to the target type, it will be
533    /// cast to the target type. Otherwise, `None` is returned.
534    ///
535    /// # Examples
536    ///
537    /// ```rust
538    /// #![feature(pointer_try_cast_aligned)]
539    /// use std::ptr::NonNull;
540    ///
541    /// let mut x = 0u64;
542    ///
543    /// let aligned = NonNull::from_mut(&mut x);
544    /// let unaligned = unsafe { aligned.byte_add(1) };
545    ///
546    /// assert!(aligned.try_cast_aligned::<u32>().is_some());
547    /// assert!(unaligned.try_cast_aligned::<u32>().is_none());
548    /// ```
549    #[unstable(feature = "pointer_try_cast_aligned", issue = "141221")]
550    #[must_use = "this returns the result of the operation, \
551                  without modifying the original"]
552    #[inline]
553    #[cfg(not(feature = "ferrocene_certified"))]
554    pub fn try_cast_aligned<U>(self) -> Option<NonNull<U>> {
555        if self.is_aligned_to(align_of::<U>()) { Some(self.cast()) } else { None }
556    }
557
558    /// Adds an offset to a pointer.
559    ///
560    /// `count` is in units of T; e.g., a `count` of 3 represents a pointer
561    /// offset of `3 * size_of::<T>()` bytes.
562    ///
563    /// # Safety
564    ///
565    /// If any of the following conditions are violated, the result is Undefined Behavior:
566    ///
567    /// * The computed offset, `count * size_of::<T>()` bytes, must not overflow `isize`.
568    ///
569    /// * If the computed offset is non-zero, then `self` must be derived from a pointer to some
570    ///   [allocation], and the entire memory range between `self` and the result must be in
571    ///   bounds of that allocation. In particular, this range must not "wrap around" the edge
572    ///   of the address space.
573    ///
574    /// Allocations can never be larger than `isize::MAX` bytes, so if the computed offset
575    /// stays in bounds of the allocation, it is guaranteed to satisfy the first requirement.
576    /// This implies, for instance, that `vec.as_ptr().add(vec.len())` (for `vec: Vec<T>`) is always
577    /// safe.
578    ///
579    /// [allocation]: crate::ptr#allocation
580    ///
581    /// # Examples
582    ///
583    /// ```
584    /// use std::ptr::NonNull;
585    ///
586    /// let mut s = [1, 2, 3];
587    /// let ptr: NonNull<u32> = NonNull::new(s.as_mut_ptr()).unwrap();
588    ///
589    /// unsafe {
590    ///     println!("{}", ptr.offset(1).read());
591    ///     println!("{}", ptr.offset(2).read());
592    /// }
593    /// ```
594    #[inline(always)]
595    #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
596    #[must_use = "returns a new pointer rather than modifying its argument"]
597    #[stable(feature = "non_null_convenience", since = "1.80.0")]
598    #[rustc_const_stable(feature = "non_null_convenience", since = "1.80.0")]
599    #[cfg(not(feature = "ferrocene_certified"))]
600    pub const unsafe fn offset(self, count: isize) -> Self
601    where
602        T: Sized,
603    {
604        // SAFETY: the caller must uphold the safety contract for `offset`.
605        // Additionally safety contract of `offset` guarantees that the resulting pointer is
606        // pointing to an allocation, there can't be an allocation at null, thus it's safe to
607        // construct `NonNull`.
608        unsafe { NonNull { pointer: intrinsics::offset(self.as_ptr(), count) } }
609    }
610
611    /// Calculates the offset from a pointer in bytes.
612    ///
613    /// `count` is in units of **bytes**.
614    ///
615    /// This is purely a convenience for casting to a `u8` pointer and
616    /// using [offset][pointer::offset] on it. See that method for documentation
617    /// and safety requirements.
618    ///
619    /// For non-`Sized` pointees this operation changes only the data pointer,
620    /// leaving the metadata untouched.
621    #[must_use]
622    #[inline(always)]
623    #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
624    #[stable(feature = "non_null_convenience", since = "1.80.0")]
625    #[rustc_const_stable(feature = "non_null_convenience", since = "1.80.0")]
626    #[cfg(not(feature = "ferrocene_certified"))]
627    pub const unsafe fn byte_offset(self, count: isize) -> Self {
628        // SAFETY: the caller must uphold the safety contract for `offset` and `byte_offset` has
629        // the same safety contract.
630        // Additionally safety contract of `offset` guarantees that the resulting pointer is
631        // pointing to an allocation, there can't be an allocation at null, thus it's safe to
632        // construct `NonNull`.
633        unsafe { NonNull { pointer: self.as_ptr().byte_offset(count) } }
634    }
635
636    /// Adds an offset to a pointer (convenience for `.offset(count as isize)`).
637    ///
638    /// `count` is in units of T; e.g., a `count` of 3 represents a pointer
639    /// offset of `3 * size_of::<T>()` bytes.
640    ///
641    /// # Safety
642    ///
643    /// If any of the following conditions are violated, the result is Undefined Behavior:
644    ///
645    /// * The computed offset, `count * size_of::<T>()` bytes, must not overflow `isize`.
646    ///
647    /// * If the computed offset is non-zero, then `self` must be derived from a pointer to some
648    ///   [allocation], and the entire memory range between `self` and the result must be in
649    ///   bounds of that allocation. In particular, this range must not "wrap around" the edge
650    ///   of the address space.
651    ///
652    /// Allocations can never be larger than `isize::MAX` bytes, so if the computed offset
653    /// stays in bounds of the allocation, it is guaranteed to satisfy the first requirement.
654    /// This implies, for instance, that `vec.as_ptr().add(vec.len())` (for `vec: Vec<T>`) is always
655    /// safe.
656    ///
657    /// [allocation]: crate::ptr#allocation
658    ///
659    /// # Examples
660    ///
661    /// ```
662    /// use std::ptr::NonNull;
663    ///
664    /// let s: &str = "123";
665    /// let ptr: NonNull<u8> = NonNull::new(s.as_ptr().cast_mut()).unwrap();
666    ///
667    /// unsafe {
668    ///     println!("{}", ptr.add(1).read() as char);
669    ///     println!("{}", ptr.add(2).read() as char);
670    /// }
671    /// ```
672    #[inline(always)]
673    #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
674    #[must_use = "returns a new pointer rather than modifying its argument"]
675    #[stable(feature = "non_null_convenience", since = "1.80.0")]
676    #[rustc_const_stable(feature = "non_null_convenience", since = "1.80.0")]
677    pub const unsafe fn add(self, count: usize) -> Self
678    where
679        T: Sized,
680    {
681        // SAFETY: the caller must uphold the safety contract for `offset`.
682        // Additionally safety contract of `offset` guarantees that the resulting pointer is
683        // pointing to an allocation, there can't be an allocation at null, thus it's safe to
684        // construct `NonNull`.
685        unsafe { NonNull { pointer: intrinsics::offset(self.as_ptr(), count) } }
686    }
687
688    /// Calculates the offset from a pointer in bytes (convenience for `.byte_offset(count as isize)`).
689    ///
690    /// `count` is in units of bytes.
691    ///
692    /// This is purely a convenience for casting to a `u8` pointer and
693    /// using [`add`][NonNull::add] on it. See that method for documentation
694    /// and safety requirements.
695    ///
696    /// For non-`Sized` pointees this operation changes only the data pointer,
697    /// leaving the metadata untouched.
698    #[must_use]
699    #[inline(always)]
700    #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
701    #[stable(feature = "non_null_convenience", since = "1.80.0")]
702    #[rustc_const_stable(feature = "non_null_convenience", since = "1.80.0")]
703    #[cfg(not(feature = "ferrocene_certified"))]
704    pub const unsafe fn byte_add(self, count: usize) -> Self {
705        // SAFETY: the caller must uphold the safety contract for `add` and `byte_add` has the same
706        // safety contract.
707        // Additionally safety contract of `add` guarantees that the resulting pointer is pointing
708        // to an allocation, there can't be an allocation at null, thus it's safe to construct
709        // `NonNull`.
710        unsafe { NonNull { pointer: self.as_ptr().byte_add(count) } }
711    }
712
713    /// Subtracts an offset from a pointer (convenience for
714    /// `.offset((count as isize).wrapping_neg())`).
715    ///
716    /// `count` is in units of T; e.g., a `count` of 3 represents a pointer
717    /// offset of `3 * size_of::<T>()` bytes.
718    ///
719    /// # Safety
720    ///
721    /// If any of the following conditions are violated, the result is Undefined Behavior:
722    ///
723    /// * The computed offset, `count * size_of::<T>()` bytes, must not overflow `isize`.
724    ///
725    /// * If the computed offset is non-zero, then `self` must be derived from a pointer to some
726    ///   [allocation], and the entire memory range between `self` and the result must be in
727    ///   bounds of that allocation. In particular, this range must not "wrap around" the edge
728    ///   of the address space.
729    ///
730    /// Allocations can never be larger than `isize::MAX` bytes, so if the computed offset
731    /// stays in bounds of the allocation, it is guaranteed to satisfy the first requirement.
732    /// This implies, for instance, that `vec.as_ptr().add(vec.len())` (for `vec: Vec<T>`) is always
733    /// safe.
734    ///
735    /// [allocation]: crate::ptr#allocation
736    ///
737    /// # Examples
738    ///
739    /// ```
740    /// use std::ptr::NonNull;
741    ///
742    /// let s: &str = "123";
743    ///
744    /// unsafe {
745    ///     let end: NonNull<u8> = NonNull::new(s.as_ptr().cast_mut()).unwrap().add(3);
746    ///     println!("{}", end.sub(1).read() as char);
747    ///     println!("{}", end.sub(2).read() as char);
748    /// }
749    /// ```
750    #[inline(always)]
751    #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
752    #[must_use = "returns a new pointer rather than modifying its argument"]
753    #[stable(feature = "non_null_convenience", since = "1.80.0")]
754    #[rustc_const_stable(feature = "non_null_convenience", since = "1.80.0")]
755    #[cfg(not(feature = "ferrocene_certified"))]
756    pub const unsafe fn sub(self, count: usize) -> Self
757    where
758        T: Sized,
759    {
760        if T::IS_ZST {
761            // Pointer arithmetic does nothing when the pointee is a ZST.
762            self
763        } else {
764            // SAFETY: the caller must uphold the safety contract for `offset`.
765            // Because the pointee is *not* a ZST, that means that `count` is
766            // at most `isize::MAX`, and thus the negation cannot overflow.
767            unsafe { self.offset((count as isize).unchecked_neg()) }
768        }
769    }
770
771    /// Calculates the offset from a pointer in bytes (convenience for
772    /// `.byte_offset((count as isize).wrapping_neg())`).
773    ///
774    /// `count` is in units of bytes.
775    ///
776    /// This is purely a convenience for casting to a `u8` pointer and
777    /// using [`sub`][NonNull::sub] on it. See that method for documentation
778    /// and safety requirements.
779    ///
780    /// For non-`Sized` pointees this operation changes only the data pointer,
781    /// leaving the metadata untouched.
782    #[must_use]
783    #[inline(always)]
784    #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
785    #[stable(feature = "non_null_convenience", since = "1.80.0")]
786    #[rustc_const_stable(feature = "non_null_convenience", since = "1.80.0")]
787    #[cfg(not(feature = "ferrocene_certified"))]
788    pub const unsafe fn byte_sub(self, count: usize) -> Self {
789        // SAFETY: the caller must uphold the safety contract for `sub` and `byte_sub` has the same
790        // safety contract.
791        // Additionally safety contract of `sub` guarantees that the resulting pointer is pointing
792        // to an allocation, there can't be an allocation at null, thus it's safe to construct
793        // `NonNull`.
794        unsafe { NonNull { pointer: self.as_ptr().byte_sub(count) } }
795    }
796
797    /// Calculates the distance between two pointers within the same allocation. The returned value is in
798    /// units of T: the distance in bytes divided by `size_of::<T>()`.
799    ///
800    /// This is equivalent to `(self as isize - origin as isize) / (size_of::<T>() as isize)`,
801    /// except that it has a lot more opportunities for UB, in exchange for the compiler
802    /// better understanding what you are doing.
803    ///
804    /// The primary motivation of this method is for computing the `len` of an array/slice
805    /// of `T` that you are currently representing as a "start" and "end" pointer
806    /// (and "end" is "one past the end" of the array).
807    /// In that case, `end.offset_from(start)` gets you the length of the array.
808    ///
809    /// All of the following safety requirements are trivially satisfied for this usecase.
810    ///
811    /// [`offset`]: #method.offset
812    ///
813    /// # Safety
814    ///
815    /// If any of the following conditions are violated, the result is Undefined Behavior:
816    ///
817    /// * `self` and `origin` must either
818    ///
819    ///   * point to the same address, or
820    ///   * both be *derived from* a pointer to the same [allocation], and the memory range between
821    ///     the two pointers must be in bounds of that object. (See below for an example.)
822    ///
823    /// * The distance between the pointers, in bytes, must be an exact multiple
824    ///   of the size of `T`.
825    ///
826    /// As a consequence, the absolute distance between the pointers, in bytes, computed on
827    /// mathematical integers (without "wrapping around"), cannot overflow an `isize`. This is
828    /// implied by the in-bounds requirement, and the fact that no allocation can be larger
829    /// than `isize::MAX` bytes.
830    ///
831    /// The requirement for pointers to be derived from the same allocation is primarily
832    /// needed for `const`-compatibility: the distance between pointers into *different* allocated
833    /// objects is not known at compile-time. However, the requirement also exists at
834    /// runtime and may be exploited by optimizations. If you wish to compute the difference between
835    /// pointers that are not guaranteed to be from the same allocation, use `(self as isize -
836    /// origin as isize) / size_of::<T>()`.
837    // FIXME: recommend `addr()` instead of `as usize` once that is stable.
838    ///
839    /// [`add`]: #method.add
840    /// [allocation]: crate::ptr#allocation
841    ///
842    /// # Panics
843    ///
844    /// This function panics if `T` is a Zero-Sized Type ("ZST").
845    ///
846    /// # Examples
847    ///
848    /// Basic usage:
849    ///
850    /// ```
851    /// use std::ptr::NonNull;
852    ///
853    /// let a = [0; 5];
854    /// let ptr1: NonNull<u32> = NonNull::from(&a[1]);
855    /// let ptr2: NonNull<u32> = NonNull::from(&a[3]);
856    /// unsafe {
857    ///     assert_eq!(ptr2.offset_from(ptr1), 2);
858    ///     assert_eq!(ptr1.offset_from(ptr2), -2);
859    ///     assert_eq!(ptr1.offset(2), ptr2);
860    ///     assert_eq!(ptr2.offset(-2), ptr1);
861    /// }
862    /// ```
863    ///
864    /// *Incorrect* usage:
865    ///
866    /// ```rust,no_run
867    /// use std::ptr::NonNull;
868    ///
869    /// let ptr1 = NonNull::new(Box::into_raw(Box::new(0u8))).unwrap();
870    /// let ptr2 = NonNull::new(Box::into_raw(Box::new(1u8))).unwrap();
871    /// let diff = (ptr2.addr().get() as isize).wrapping_sub(ptr1.addr().get() as isize);
872    /// // Make ptr2_other an "alias" of ptr2.add(1), but derived from ptr1.
873    /// let diff_plus_1 = diff.wrapping_add(1);
874    /// let ptr2_other = NonNull::new(ptr1.as_ptr().wrapping_byte_offset(diff_plus_1)).unwrap();
875    /// assert_eq!(ptr2.addr(), ptr2_other.addr());
876    /// // Since ptr2_other and ptr2 are derived from pointers to different objects,
877    /// // computing their offset is undefined behavior, even though
878    /// // they point to addresses that are in-bounds of the same object!
879    ///
880    /// let one = unsafe { ptr2_other.offset_from(ptr2) }; // Undefined Behavior! ⚠️
881    /// ```
882    #[inline]
883    #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
884    #[stable(feature = "non_null_convenience", since = "1.80.0")]
885    #[rustc_const_stable(feature = "non_null_convenience", since = "1.80.0")]
886    #[cfg(not(feature = "ferrocene_certified"))]
887    pub const unsafe fn offset_from(self, origin: NonNull<T>) -> isize
888    where
889        T: Sized,
890    {
891        // SAFETY: the caller must uphold the safety contract for `offset_from`.
892        unsafe { self.as_ptr().offset_from(origin.as_ptr()) }
893    }
894
895    /// Calculates the distance between two pointers within the same allocation. The returned value is in
896    /// units of **bytes**.
897    ///
898    /// This is purely a convenience for casting to a `u8` pointer and
899    /// using [`offset_from`][NonNull::offset_from] on it. See that method for
900    /// documentation and safety requirements.
901    ///
902    /// For non-`Sized` pointees this operation considers only the data pointers,
903    /// ignoring the metadata.
904    #[inline(always)]
905    #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
906    #[stable(feature = "non_null_convenience", since = "1.80.0")]
907    #[rustc_const_stable(feature = "non_null_convenience", since = "1.80.0")]
908    #[cfg(not(feature = "ferrocene_certified"))]
909    pub const unsafe fn byte_offset_from<U: ?Sized>(self, origin: NonNull<U>) -> isize {
910        // SAFETY: the caller must uphold the safety contract for `byte_offset_from`.
911        unsafe { self.as_ptr().byte_offset_from(origin.as_ptr()) }
912    }
913
914    // N.B. `wrapping_offset``, `wrapping_add`, etc are not implemented because they can wrap to null
915
916    /// Calculates the distance between two pointers within the same allocation, *where it's known that
917    /// `self` is equal to or greater than `origin`*. The returned value is in
918    /// units of T: the distance in bytes is divided by `size_of::<T>()`.
919    ///
920    /// This computes the same value that [`offset_from`](#method.offset_from)
921    /// would compute, but with the added precondition that the offset is
922    /// guaranteed to be non-negative.  This method is equivalent to
923    /// `usize::try_from(self.offset_from(origin)).unwrap_unchecked()`,
924    /// but it provides slightly more information to the optimizer, which can
925    /// sometimes allow it to optimize slightly better with some backends.
926    ///
927    /// This method can be though of as recovering the `count` that was passed
928    /// to [`add`](#method.add) (or, with the parameters in the other order,
929    /// to [`sub`](#method.sub)).  The following are all equivalent, assuming
930    /// that their safety preconditions are met:
931    /// ```rust
932    /// # unsafe fn blah(ptr: std::ptr::NonNull<u32>, origin: std::ptr::NonNull<u32>, count: usize) -> bool { unsafe {
933    /// ptr.offset_from_unsigned(origin) == count
934    /// # &&
935    /// origin.add(count) == ptr
936    /// # &&
937    /// ptr.sub(count) == origin
938    /// # } }
939    /// ```
940    ///
941    /// # Safety
942    ///
943    /// - The distance between the pointers must be non-negative (`self >= origin`)
944    ///
945    /// - *All* the safety conditions of [`offset_from`](#method.offset_from)
946    ///   apply to this method as well; see it for the full details.
947    ///
948    /// Importantly, despite the return type of this method being able to represent
949    /// a larger offset, it's still *not permitted* to pass pointers which differ
950    /// by more than `isize::MAX` *bytes*.  As such, the result of this method will
951    /// always be less than or equal to `isize::MAX as usize`.
952    ///
953    /// # Panics
954    ///
955    /// This function panics if `T` is a Zero-Sized Type ("ZST").
956    ///
957    /// # Examples
958    ///
959    /// ```
960    /// use std::ptr::NonNull;
961    ///
962    /// let a = [0; 5];
963    /// let ptr1: NonNull<u32> = NonNull::from(&a[1]);
964    /// let ptr2: NonNull<u32> = NonNull::from(&a[3]);
965    /// unsafe {
966    ///     assert_eq!(ptr2.offset_from_unsigned(ptr1), 2);
967    ///     assert_eq!(ptr1.add(2), ptr2);
968    ///     assert_eq!(ptr2.sub(2), ptr1);
969    ///     assert_eq!(ptr2.offset_from_unsigned(ptr2), 0);
970    /// }
971    ///
972    /// // This would be incorrect, as the pointers are not correctly ordered:
973    /// // ptr1.offset_from_unsigned(ptr2)
974    /// ```
975    #[inline]
976    #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
977    #[stable(feature = "ptr_sub_ptr", since = "1.87.0")]
978    #[rustc_const_stable(feature = "const_ptr_sub_ptr", since = "1.87.0")]
979    pub const unsafe fn offset_from_unsigned(self, subtracted: NonNull<T>) -> usize
980    where
981        T: Sized,
982    {
983        // SAFETY: the caller must uphold the safety contract for `offset_from_unsigned`.
984        unsafe { self.as_ptr().offset_from_unsigned(subtracted.as_ptr()) }
985    }
986
987    /// Calculates the distance between two pointers within the same allocation, *where it's known that
988    /// `self` is equal to or greater than `origin`*. The returned value is in
989    /// units of **bytes**.
990    ///
991    /// This is purely a convenience for casting to a `u8` pointer and
992    /// using [`offset_from_unsigned`][NonNull::offset_from_unsigned] on it.
993    /// See that method for documentation and safety requirements.
994    ///
995    /// For non-`Sized` pointees this operation considers only the data pointers,
996    /// ignoring the metadata.
997    #[inline(always)]
998    #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
999    #[stable(feature = "ptr_sub_ptr", since = "1.87.0")]
1000    #[rustc_const_stable(feature = "const_ptr_sub_ptr", since = "1.87.0")]
1001    #[cfg(not(feature = "ferrocene_certified"))]
1002    pub const unsafe fn byte_offset_from_unsigned<U: ?Sized>(self, origin: NonNull<U>) -> usize {
1003        // SAFETY: the caller must uphold the safety contract for `byte_offset_from_unsigned`.
1004        unsafe { self.as_ptr().byte_offset_from_unsigned(origin.as_ptr()) }
1005    }
1006
1007    /// Reads the value from `self` without moving it. This leaves the
1008    /// memory in `self` unchanged.
1009    ///
1010    /// See [`ptr::read`] for safety concerns and examples.
1011    ///
1012    /// [`ptr::read`]: crate::ptr::read()
1013    #[inline]
1014    #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
1015    #[stable(feature = "non_null_convenience", since = "1.80.0")]
1016    #[rustc_const_stable(feature = "non_null_convenience", since = "1.80.0")]
1017    #[cfg(not(feature = "ferrocene_certified"))]
1018    pub const unsafe fn read(self) -> T
1019    where
1020        T: Sized,
1021    {
1022        // SAFETY: the caller must uphold the safety contract for `read`.
1023        unsafe { ptr::read(self.as_ptr()) }
1024    }
1025
1026    /// Performs a volatile read of the value from `self` without moving it. This
1027    /// leaves the memory in `self` unchanged.
1028    ///
1029    /// Volatile operations are intended to act on I/O memory, and are guaranteed
1030    /// to not be elided or reordered by the compiler across other volatile
1031    /// operations.
1032    ///
1033    /// See [`ptr::read_volatile`] for safety concerns and examples.
1034    ///
1035    /// [`ptr::read_volatile`]: crate::ptr::read_volatile()
1036    #[inline]
1037    #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
1038    #[stable(feature = "non_null_convenience", since = "1.80.0")]
1039    #[cfg(not(feature = "ferrocene_certified"))]
1040    pub unsafe fn read_volatile(self) -> T
1041    where
1042        T: Sized,
1043    {
1044        // SAFETY: the caller must uphold the safety contract for `read_volatile`.
1045        unsafe { ptr::read_volatile(self.as_ptr()) }
1046    }
1047
1048    /// Reads the value from `self` without moving it. This leaves the
1049    /// memory in `self` unchanged.
1050    ///
1051    /// Unlike `read`, the pointer may be unaligned.
1052    ///
1053    /// See [`ptr::read_unaligned`] for safety concerns and examples.
1054    ///
1055    /// [`ptr::read_unaligned`]: crate::ptr::read_unaligned()
1056    #[inline]
1057    #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
1058    #[stable(feature = "non_null_convenience", since = "1.80.0")]
1059    #[rustc_const_stable(feature = "non_null_convenience", since = "1.80.0")]
1060    #[cfg(not(feature = "ferrocene_certified"))]
1061    pub const unsafe fn read_unaligned(self) -> T
1062    where
1063        T: Sized,
1064    {
1065        // SAFETY: the caller must uphold the safety contract for `read_unaligned`.
1066        unsafe { ptr::read_unaligned(self.as_ptr()) }
1067    }
1068
1069    /// Copies `count * size_of::<T>()` bytes from `self` to `dest`. The source
1070    /// and destination may overlap.
1071    ///
1072    /// NOTE: this has the *same* argument order as [`ptr::copy`].
1073    ///
1074    /// See [`ptr::copy`] for safety concerns and examples.
1075    ///
1076    /// [`ptr::copy`]: crate::ptr::copy()
1077    #[inline(always)]
1078    #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
1079    #[stable(feature = "non_null_convenience", since = "1.80.0")]
1080    #[rustc_const_stable(feature = "const_intrinsic_copy", since = "1.83.0")]
1081    #[cfg(not(feature = "ferrocene_certified"))]
1082    pub const unsafe fn copy_to(self, dest: NonNull<T>, count: usize)
1083    where
1084        T: Sized,
1085    {
1086        // SAFETY: the caller must uphold the safety contract for `copy`.
1087        unsafe { ptr::copy(self.as_ptr(), dest.as_ptr(), count) }
1088    }
1089
1090    /// Copies `count * size_of::<T>()` bytes from `self` to `dest`. The source
1091    /// and destination may *not* overlap.
1092    ///
1093    /// NOTE: this has the *same* argument order as [`ptr::copy_nonoverlapping`].
1094    ///
1095    /// See [`ptr::copy_nonoverlapping`] for safety concerns and examples.
1096    ///
1097    /// [`ptr::copy_nonoverlapping`]: crate::ptr::copy_nonoverlapping()
1098    #[inline(always)]
1099    #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
1100    #[stable(feature = "non_null_convenience", since = "1.80.0")]
1101    #[rustc_const_stable(feature = "const_intrinsic_copy", since = "1.83.0")]
1102    #[cfg(not(feature = "ferrocene_certified"))]
1103    pub const unsafe fn copy_to_nonoverlapping(self, dest: NonNull<T>, count: usize)
1104    where
1105        T: Sized,
1106    {
1107        // SAFETY: the caller must uphold the safety contract for `copy_nonoverlapping`.
1108        unsafe { ptr::copy_nonoverlapping(self.as_ptr(), dest.as_ptr(), count) }
1109    }
1110
1111    /// Copies `count * size_of::<T>()` bytes from `src` to `self`. The source
1112    /// and destination may overlap.
1113    ///
1114    /// NOTE: this has the *opposite* argument order of [`ptr::copy`].
1115    ///
1116    /// See [`ptr::copy`] for safety concerns and examples.
1117    ///
1118    /// [`ptr::copy`]: crate::ptr::copy()
1119    #[inline(always)]
1120    #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
1121    #[stable(feature = "non_null_convenience", since = "1.80.0")]
1122    #[rustc_const_stable(feature = "const_intrinsic_copy", since = "1.83.0")]
1123    #[cfg(not(feature = "ferrocene_certified"))]
1124    pub const unsafe fn copy_from(self, src: NonNull<T>, count: usize)
1125    where
1126        T: Sized,
1127    {
1128        // SAFETY: the caller must uphold the safety contract for `copy`.
1129        unsafe { ptr::copy(src.as_ptr(), self.as_ptr(), count) }
1130    }
1131
1132    /// Copies `count * size_of::<T>()` bytes from `src` to `self`. The source
1133    /// and destination may *not* overlap.
1134    ///
1135    /// NOTE: this has the *opposite* argument order of [`ptr::copy_nonoverlapping`].
1136    ///
1137    /// See [`ptr::copy_nonoverlapping`] for safety concerns and examples.
1138    ///
1139    /// [`ptr::copy_nonoverlapping`]: crate::ptr::copy_nonoverlapping()
1140    #[inline(always)]
1141    #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
1142    #[stable(feature = "non_null_convenience", since = "1.80.0")]
1143    #[rustc_const_stable(feature = "const_intrinsic_copy", since = "1.83.0")]
1144    #[cfg(not(feature = "ferrocene_certified"))]
1145    pub const unsafe fn copy_from_nonoverlapping(self, src: NonNull<T>, count: usize)
1146    where
1147        T: Sized,
1148    {
1149        // SAFETY: the caller must uphold the safety contract for `copy_nonoverlapping`.
1150        unsafe { ptr::copy_nonoverlapping(src.as_ptr(), self.as_ptr(), count) }
1151    }
1152
1153    /// Executes the destructor (if any) of the pointed-to value.
1154    ///
1155    /// See [`ptr::drop_in_place`] for safety concerns and examples.
1156    ///
1157    /// [`ptr::drop_in_place`]: crate::ptr::drop_in_place()
1158    #[inline(always)]
1159    #[stable(feature = "non_null_convenience", since = "1.80.0")]
1160    #[rustc_const_unstable(feature = "const_drop_in_place", issue = "109342")]
1161    #[cfg(not(feature = "ferrocene_certified"))]
1162    pub const unsafe fn drop_in_place(self)
1163    where
1164        T: [const] Destruct,
1165    {
1166        // SAFETY: the caller must uphold the safety contract for `drop_in_place`.
1167        unsafe { ptr::drop_in_place(self.as_ptr()) }
1168    }
1169
1170    /// Overwrites a memory location with the given value without reading or
1171    /// dropping the old value.
1172    ///
1173    /// See [`ptr::write`] for safety concerns and examples.
1174    ///
1175    /// [`ptr::write`]: crate::ptr::write()
1176    #[inline(always)]
1177    #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
1178    #[stable(feature = "non_null_convenience", since = "1.80.0")]
1179    #[rustc_const_stable(feature = "const_ptr_write", since = "1.83.0")]
1180    #[cfg(not(feature = "ferrocene_certified"))]
1181    pub const unsafe fn write(self, val: T)
1182    where
1183        T: Sized,
1184    {
1185        // SAFETY: the caller must uphold the safety contract for `write`.
1186        unsafe { ptr::write(self.as_ptr(), val) }
1187    }
1188
1189    /// Invokes memset on the specified pointer, setting `count * size_of::<T>()`
1190    /// bytes of memory starting at `self` to `val`.
1191    ///
1192    /// See [`ptr::write_bytes`] for safety concerns and examples.
1193    ///
1194    /// [`ptr::write_bytes`]: crate::ptr::write_bytes()
1195    #[inline(always)]
1196    #[doc(alias = "memset")]
1197    #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
1198    #[stable(feature = "non_null_convenience", since = "1.80.0")]
1199    #[rustc_const_stable(feature = "const_ptr_write", since = "1.83.0")]
1200    #[cfg(not(feature = "ferrocene_certified"))]
1201    pub const unsafe fn write_bytes(self, val: u8, count: usize)
1202    where
1203        T: Sized,
1204    {
1205        // SAFETY: the caller must uphold the safety contract for `write_bytes`.
1206        unsafe { ptr::write_bytes(self.as_ptr(), val, count) }
1207    }
1208
1209    /// Performs a volatile write of a memory location with the given value without
1210    /// reading or dropping the old value.
1211    ///
1212    /// Volatile operations are intended to act on I/O memory, and are guaranteed
1213    /// to not be elided or reordered by the compiler across other volatile
1214    /// operations.
1215    ///
1216    /// See [`ptr::write_volatile`] for safety concerns and examples.
1217    ///
1218    /// [`ptr::write_volatile`]: crate::ptr::write_volatile()
1219    #[inline(always)]
1220    #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
1221    #[stable(feature = "non_null_convenience", since = "1.80.0")]
1222    #[cfg(not(feature = "ferrocene_certified"))]
1223    pub unsafe fn write_volatile(self, val: T)
1224    where
1225        T: Sized,
1226    {
1227        // SAFETY: the caller must uphold the safety contract for `write_volatile`.
1228        unsafe { ptr::write_volatile(self.as_ptr(), val) }
1229    }
1230
1231    /// Overwrites a memory location with the given value without reading or
1232    /// dropping the old value.
1233    ///
1234    /// Unlike `write`, the pointer may be unaligned.
1235    ///
1236    /// See [`ptr::write_unaligned`] for safety concerns and examples.
1237    ///
1238    /// [`ptr::write_unaligned`]: crate::ptr::write_unaligned()
1239    #[inline(always)]
1240    #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
1241    #[stable(feature = "non_null_convenience", since = "1.80.0")]
1242    #[rustc_const_stable(feature = "const_ptr_write", since = "1.83.0")]
1243    #[cfg(not(feature = "ferrocene_certified"))]
1244    pub const unsafe fn write_unaligned(self, val: T)
1245    where
1246        T: Sized,
1247    {
1248        // SAFETY: the caller must uphold the safety contract for `write_unaligned`.
1249        unsafe { ptr::write_unaligned(self.as_ptr(), val) }
1250    }
1251
1252    /// Replaces the value at `self` with `src`, returning the old
1253    /// value, without dropping either.
1254    ///
1255    /// See [`ptr::replace`] for safety concerns and examples.
1256    ///
1257    /// [`ptr::replace`]: crate::ptr::replace()
1258    #[inline(always)]
1259    #[stable(feature = "non_null_convenience", since = "1.80.0")]
1260    #[rustc_const_stable(feature = "const_inherent_ptr_replace", since = "1.88.0")]
1261    #[cfg(not(feature = "ferrocene_certified"))]
1262    pub const unsafe fn replace(self, src: T) -> T
1263    where
1264        T: Sized,
1265    {
1266        // SAFETY: the caller must uphold the safety contract for `replace`.
1267        unsafe { ptr::replace(self.as_ptr(), src) }
1268    }
1269
1270    /// Swaps the values at two mutable locations of the same type, without
1271    /// deinitializing either. They may overlap, unlike `mem::swap` which is
1272    /// otherwise equivalent.
1273    ///
1274    /// See [`ptr::swap`] for safety concerns and examples.
1275    ///
1276    /// [`ptr::swap`]: crate::ptr::swap()
1277    #[inline(always)]
1278    #[stable(feature = "non_null_convenience", since = "1.80.0")]
1279    #[rustc_const_stable(feature = "const_swap", since = "1.85.0")]
1280    #[cfg(not(feature = "ferrocene_certified"))]
1281    pub const unsafe fn swap(self, with: NonNull<T>)
1282    where
1283        T: Sized,
1284    {
1285        // SAFETY: the caller must uphold the safety contract for `swap`.
1286        unsafe { ptr::swap(self.as_ptr(), with.as_ptr()) }
1287    }
1288
1289    /// Computes the offset that needs to be applied to the pointer in order to make it aligned to
1290    /// `align`.
1291    ///
1292    /// If it is not possible to align the pointer, the implementation returns
1293    /// `usize::MAX`.
1294    ///
1295    /// The offset is expressed in number of `T` elements, and not bytes.
1296    ///
1297    /// There are no guarantees whatsoever that offsetting the pointer will not overflow or go
1298    /// beyond the allocation that the pointer points into. It is up to the caller to ensure that
1299    /// the returned offset is correct in all terms other than alignment.
1300    ///
1301    /// When this is called during compile-time evaluation (which is unstable), the implementation
1302    /// may return `usize::MAX` in cases where that can never happen at runtime. This is because the
1303    /// actual alignment of pointers is not known yet during compile-time, so an offset with
1304    /// guaranteed alignment can sometimes not be computed. For example, a buffer declared as `[u8;
1305    /// N]` might be allocated at an odd or an even address, but at compile-time this is not yet
1306    /// known, so the execution has to be correct for either choice. It is therefore impossible to
1307    /// find an offset that is guaranteed to be 2-aligned. (This behavior is subject to change, as usual
1308    /// for unstable APIs.)
1309    ///
1310    /// # Panics
1311    ///
1312    /// The function panics if `align` is not a power-of-two.
1313    ///
1314    /// # Examples
1315    ///
1316    /// Accessing adjacent `u8` as `u16`
1317    ///
1318    /// ```
1319    /// use std::ptr::NonNull;
1320    ///
1321    /// # unsafe {
1322    /// let x = [5_u8, 6, 7, 8, 9];
1323    /// let ptr = NonNull::new(x.as_ptr() as *mut u8).unwrap();
1324    /// let offset = ptr.align_offset(align_of::<u16>());
1325    ///
1326    /// if offset < x.len() - 1 {
1327    ///     let u16_ptr = ptr.add(offset).cast::<u16>();
1328    ///     assert!(u16_ptr.read() == u16::from_ne_bytes([5, 6]) || u16_ptr.read() == u16::from_ne_bytes([6, 7]));
1329    /// } else {
1330    ///     // while the pointer can be aligned via `offset`, it would point
1331    ///     // outside the allocation
1332    /// }
1333    /// # }
1334    /// ```
1335    #[inline]
1336    #[must_use]
1337    #[stable(feature = "non_null_convenience", since = "1.80.0")]
1338    #[cfg(not(feature = "ferrocene_certified"))]
1339    pub fn align_offset(self, align: usize) -> usize
1340    where
1341        T: Sized,
1342    {
1343        if !align.is_power_of_two() {
1344            panic!("align_offset: align is not a power-of-two");
1345        }
1346
1347        {
1348            // SAFETY: `align` has been checked to be a power of 2 above.
1349            unsafe { ptr::align_offset(self.as_ptr(), align) }
1350        }
1351    }
1352
1353    /// Returns whether the pointer is properly aligned for `T`.
1354    ///
1355    /// # Examples
1356    ///
1357    /// ```
1358    /// use std::ptr::NonNull;
1359    ///
1360    /// // On some platforms, the alignment of i32 is less than 4.
1361    /// #[repr(align(4))]
1362    /// struct AlignedI32(i32);
1363    ///
1364    /// let data = AlignedI32(42);
1365    /// let ptr = NonNull::<AlignedI32>::from(&data);
1366    ///
1367    /// assert!(ptr.is_aligned());
1368    /// assert!(!NonNull::new(ptr.as_ptr().wrapping_byte_add(1)).unwrap().is_aligned());
1369    /// ```
1370    #[inline]
1371    #[must_use]
1372    #[stable(feature = "pointer_is_aligned", since = "1.79.0")]
1373    #[cfg(not(feature = "ferrocene_certified"))]
1374    pub fn is_aligned(self) -> bool
1375    where
1376        T: Sized,
1377    {
1378        self.as_ptr().is_aligned()
1379    }
1380
1381    /// Returns whether the pointer is aligned to `align`.
1382    ///
1383    /// For non-`Sized` pointees this operation considers only the data pointer,
1384    /// ignoring the metadata.
1385    ///
1386    /// # Panics
1387    ///
1388    /// The function panics if `align` is not a power-of-two (this includes 0).
1389    ///
1390    /// # Examples
1391    ///
1392    /// ```
1393    /// #![feature(pointer_is_aligned_to)]
1394    ///
1395    /// // On some platforms, the alignment of i32 is less than 4.
1396    /// #[repr(align(4))]
1397    /// struct AlignedI32(i32);
1398    ///
1399    /// let data = AlignedI32(42);
1400    /// let ptr = &data as *const AlignedI32;
1401    ///
1402    /// assert!(ptr.is_aligned_to(1));
1403    /// assert!(ptr.is_aligned_to(2));
1404    /// assert!(ptr.is_aligned_to(4));
1405    ///
1406    /// assert!(ptr.wrapping_byte_add(2).is_aligned_to(2));
1407    /// assert!(!ptr.wrapping_byte_add(2).is_aligned_to(4));
1408    ///
1409    /// assert_ne!(ptr.is_aligned_to(8), ptr.wrapping_add(1).is_aligned_to(8));
1410    /// ```
1411    #[inline]
1412    #[must_use]
1413    #[unstable(feature = "pointer_is_aligned_to", issue = "96284")]
1414    #[cfg(not(feature = "ferrocene_certified"))]
1415    pub fn is_aligned_to(self, align: usize) -> bool {
1416        self.as_ptr().is_aligned_to(align)
1417    }
1418}
1419
1420#[cfg(not(feature = "ferrocene_certified"))]
1421impl<T> NonNull<T> {
1422    /// Casts from a type to its maybe-uninitialized version.
1423    #[must_use]
1424    #[inline(always)]
1425    #[unstable(feature = "cast_maybe_uninit", issue = "145036")]
1426    pub const fn cast_uninit(self) -> NonNull<MaybeUninit<T>> {
1427        self.cast()
1428    }
1429}
1430#[cfg(not(feature = "ferrocene_certified"))]
1431impl<T> NonNull<MaybeUninit<T>> {
1432    /// Casts from a maybe-uninitialized type to its initialized version.
1433    ///
1434    /// This is always safe, since UB can only occur if the pointer is read
1435    /// before being initialized.
1436    #[must_use]
1437    #[inline(always)]
1438    #[unstable(feature = "cast_maybe_uninit", issue = "145036")]
1439    pub const fn cast_init(self) -> NonNull<T> {
1440        self.cast()
1441    }
1442}
1443
1444#[cfg(not(feature = "ferrocene_certified"))]
1445impl<T> NonNull<[T]> {
1446    /// Creates a non-null raw slice from a thin pointer and a length.
1447    ///
1448    /// The `len` argument is the number of **elements**, not the number of bytes.
1449    ///
1450    /// This function is safe, but dereferencing the return value is unsafe.
1451    /// See the documentation of [`slice::from_raw_parts`] for slice safety requirements.
1452    ///
1453    /// # Examples
1454    ///
1455    /// ```rust
1456    /// use std::ptr::NonNull;
1457    ///
1458    /// // create a slice pointer when starting out with a pointer to the first element
1459    /// let mut x = [5, 6, 7];
1460    /// let nonnull_pointer = NonNull::new(x.as_mut_ptr()).unwrap();
1461    /// let slice = NonNull::slice_from_raw_parts(nonnull_pointer, 3);
1462    /// assert_eq!(unsafe { slice.as_ref()[2] }, 7);
1463    /// ```
1464    ///
1465    /// (Note that this example artificially demonstrates a use of this method,
1466    /// but `let slice = NonNull::from(&x[..]);` would be a better way to write code like this.)
1467    #[stable(feature = "nonnull_slice_from_raw_parts", since = "1.70.0")]
1468    #[rustc_const_stable(feature = "const_slice_from_raw_parts_mut", since = "1.83.0")]
1469    #[must_use]
1470    #[inline]
1471    pub const fn slice_from_raw_parts(data: NonNull<T>, len: usize) -> Self {
1472        // SAFETY: `data` is a `NonNull` pointer which is necessarily non-null
1473        unsafe { Self::new_unchecked(super::slice_from_raw_parts_mut(data.as_ptr(), len)) }
1474    }
1475
1476    /// Returns the length of a non-null raw slice.
1477    ///
1478    /// The returned value is the number of **elements**, not the number of bytes.
1479    ///
1480    /// This function is safe, even when the non-null raw slice cannot be dereferenced to a slice
1481    /// because the pointer does not have a valid address.
1482    ///
1483    /// # Examples
1484    ///
1485    /// ```rust
1486    /// use std::ptr::NonNull;
1487    ///
1488    /// let slice: NonNull<[i8]> = NonNull::slice_from_raw_parts(NonNull::dangling(), 3);
1489    /// assert_eq!(slice.len(), 3);
1490    /// ```
1491    #[stable(feature = "slice_ptr_len_nonnull", since = "1.63.0")]
1492    #[rustc_const_stable(feature = "const_slice_ptr_len_nonnull", since = "1.63.0")]
1493    #[must_use]
1494    #[inline]
1495    pub const fn len(self) -> usize {
1496        self.as_ptr().len()
1497    }
1498
1499    /// Returns `true` if the non-null raw slice has a length of 0.
1500    ///
1501    /// # Examples
1502    ///
1503    /// ```rust
1504    /// use std::ptr::NonNull;
1505    ///
1506    /// let slice: NonNull<[i8]> = NonNull::slice_from_raw_parts(NonNull::dangling(), 3);
1507    /// assert!(!slice.is_empty());
1508    /// ```
1509    #[stable(feature = "slice_ptr_is_empty_nonnull", since = "1.79.0")]
1510    #[rustc_const_stable(feature = "const_slice_ptr_is_empty_nonnull", since = "1.79.0")]
1511    #[must_use]
1512    #[inline]
1513    pub const fn is_empty(self) -> bool {
1514        self.len() == 0
1515    }
1516
1517    /// Returns a non-null pointer to the slice's buffer.
1518    ///
1519    /// # Examples
1520    ///
1521    /// ```rust
1522    /// #![feature(slice_ptr_get)]
1523    /// use std::ptr::NonNull;
1524    ///
1525    /// let slice: NonNull<[i8]> = NonNull::slice_from_raw_parts(NonNull::dangling(), 3);
1526    /// assert_eq!(slice.as_non_null_ptr(), NonNull::<i8>::dangling());
1527    /// ```
1528    #[inline]
1529    #[must_use]
1530    #[unstable(feature = "slice_ptr_get", issue = "74265")]
1531    pub const fn as_non_null_ptr(self) -> NonNull<T> {
1532        self.cast()
1533    }
1534
1535    /// Returns a raw pointer to the slice's buffer.
1536    ///
1537    /// # Examples
1538    ///
1539    /// ```rust
1540    /// #![feature(slice_ptr_get)]
1541    /// use std::ptr::NonNull;
1542    ///
1543    /// let slice: NonNull<[i8]> = NonNull::slice_from_raw_parts(NonNull::dangling(), 3);
1544    /// assert_eq!(slice.as_mut_ptr(), NonNull::<i8>::dangling().as_ptr());
1545    /// ```
1546    #[inline]
1547    #[must_use]
1548    #[unstable(feature = "slice_ptr_get", issue = "74265")]
1549    #[rustc_never_returns_null_ptr]
1550    pub const fn as_mut_ptr(self) -> *mut T {
1551        self.as_non_null_ptr().as_ptr()
1552    }
1553
1554    /// Returns a shared reference to a slice of possibly uninitialized values. In contrast to
1555    /// [`as_ref`], this does not require that the value has to be initialized.
1556    ///
1557    /// For the mutable counterpart see [`as_uninit_slice_mut`].
1558    ///
1559    /// [`as_ref`]: NonNull::as_ref
1560    /// [`as_uninit_slice_mut`]: NonNull::as_uninit_slice_mut
1561    ///
1562    /// # Safety
1563    ///
1564    /// When calling this method, you have to ensure that all of the following is true:
1565    ///
1566    /// * The pointer must be [valid] for reads for `ptr.len() * size_of::<T>()` many bytes,
1567    ///   and it must be properly aligned. This means in particular:
1568    ///
1569    ///     * The entire memory range of this slice must be contained within a single allocation!
1570    ///       Slices can never span across multiple allocations.
1571    ///
1572    ///     * The pointer must be aligned even for zero-length slices. One
1573    ///       reason for this is that enum layout optimizations may rely on references
1574    ///       (including slices of any length) being aligned and non-null to distinguish
1575    ///       them from other data. You can obtain a pointer that is usable as `data`
1576    ///       for zero-length slices using [`NonNull::dangling()`].
1577    ///
1578    /// * The total size `ptr.len() * size_of::<T>()` of the slice must be no larger than `isize::MAX`.
1579    ///   See the safety documentation of [`pointer::offset`].
1580    ///
1581    /// * You must enforce Rust's aliasing rules, since the returned lifetime `'a` is
1582    ///   arbitrarily chosen and does not necessarily reflect the actual lifetime of the data.
1583    ///   In particular, while this reference exists, the memory the pointer points to must
1584    ///   not get mutated (except inside `UnsafeCell`).
1585    ///
1586    /// This applies even if the result of this method is unused!
1587    ///
1588    /// See also [`slice::from_raw_parts`].
1589    ///
1590    /// [valid]: crate::ptr#safety
1591    #[inline]
1592    #[must_use]
1593    #[unstable(feature = "ptr_as_uninit", issue = "75402")]
1594    pub const unsafe fn as_uninit_slice<'a>(self) -> &'a [MaybeUninit<T>] {
1595        // SAFETY: the caller must uphold the safety contract for `as_uninit_slice`.
1596        unsafe { slice::from_raw_parts(self.cast().as_ptr(), self.len()) }
1597    }
1598
1599    /// Returns a unique reference to a slice of possibly uninitialized values. In contrast to
1600    /// [`as_mut`], this does not require that the value has to be initialized.
1601    ///
1602    /// For the shared counterpart see [`as_uninit_slice`].
1603    ///
1604    /// [`as_mut`]: NonNull::as_mut
1605    /// [`as_uninit_slice`]: NonNull::as_uninit_slice
1606    ///
1607    /// # Safety
1608    ///
1609    /// When calling this method, you have to ensure that all of the following is true:
1610    ///
1611    /// * The pointer must be [valid] for reads and writes for `ptr.len() * size_of::<T>()`
1612    ///   many bytes, and it must be properly aligned. This means in particular:
1613    ///
1614    ///     * The entire memory range of this slice must be contained within a single allocation!
1615    ///       Slices can never span across multiple allocations.
1616    ///
1617    ///     * The pointer must be aligned even for zero-length slices. One
1618    ///       reason for this is that enum layout optimizations may rely on references
1619    ///       (including slices of any length) being aligned and non-null to distinguish
1620    ///       them from other data. You can obtain a pointer that is usable as `data`
1621    ///       for zero-length slices using [`NonNull::dangling()`].
1622    ///
1623    /// * The total size `ptr.len() * size_of::<T>()` of the slice must be no larger than `isize::MAX`.
1624    ///   See the safety documentation of [`pointer::offset`].
1625    ///
1626    /// * You must enforce Rust's aliasing rules, since the returned lifetime `'a` is
1627    ///   arbitrarily chosen and does not necessarily reflect the actual lifetime of the data.
1628    ///   In particular, while this reference exists, the memory the pointer points to must
1629    ///   not get accessed (read or written) through any other pointer.
1630    ///
1631    /// This applies even if the result of this method is unused!
1632    ///
1633    /// See also [`slice::from_raw_parts_mut`].
1634    ///
1635    /// [valid]: crate::ptr#safety
1636    ///
1637    /// # Examples
1638    ///
1639    /// ```rust
1640    /// #![feature(allocator_api, ptr_as_uninit)]
1641    ///
1642    /// use std::alloc::{Allocator, Layout, Global};
1643    /// use std::mem::MaybeUninit;
1644    /// use std::ptr::NonNull;
1645    ///
1646    /// let memory: NonNull<[u8]> = Global.allocate(Layout::new::<[u8; 32]>())?;
1647    /// // This is safe as `memory` is valid for reads and writes for `memory.len()` many bytes.
1648    /// // Note that calling `memory.as_mut()` is not allowed here as the content may be uninitialized.
1649    /// # #[allow(unused_variables)]
1650    /// let slice: &mut [MaybeUninit<u8>] = unsafe { memory.as_uninit_slice_mut() };
1651    /// # // Prevent leaks for Miri.
1652    /// # unsafe { Global.deallocate(memory.cast(), Layout::new::<[u8; 32]>()); }
1653    /// # Ok::<_, std::alloc::AllocError>(())
1654    /// ```
1655    #[inline]
1656    #[must_use]
1657    #[unstable(feature = "ptr_as_uninit", issue = "75402")]
1658    pub const unsafe fn as_uninit_slice_mut<'a>(self) -> &'a mut [MaybeUninit<T>] {
1659        // SAFETY: the caller must uphold the safety contract for `as_uninit_slice_mut`.
1660        unsafe { slice::from_raw_parts_mut(self.cast().as_ptr(), self.len()) }
1661    }
1662
1663    /// Returns a raw pointer to an element or subslice, without doing bounds
1664    /// checking.
1665    ///
1666    /// Calling this method with an out-of-bounds index or when `self` is not dereferenceable
1667    /// is *[undefined behavior]* even if the resulting pointer is not used.
1668    ///
1669    /// [undefined behavior]: https://doc.rust-lang.org/reference/behavior-considered-undefined.html
1670    ///
1671    /// # Examples
1672    ///
1673    /// ```
1674    /// #![feature(slice_ptr_get)]
1675    /// use std::ptr::NonNull;
1676    ///
1677    /// let x = &mut [1, 2, 4];
1678    /// let x = NonNull::slice_from_raw_parts(NonNull::new(x.as_mut_ptr()).unwrap(), x.len());
1679    ///
1680    /// unsafe {
1681    ///     assert_eq!(x.get_unchecked_mut(1).as_ptr(), x.as_non_null_ptr().as_ptr().add(1));
1682    /// }
1683    /// ```
1684    #[unstable(feature = "slice_ptr_get", issue = "74265")]
1685    #[rustc_const_unstable(feature = "const_index", issue = "143775")]
1686    #[inline]
1687    pub const unsafe fn get_unchecked_mut<I>(self, index: I) -> NonNull<I::Output>
1688    where
1689        I: [const] SliceIndex<[T]>,
1690    {
1691        // SAFETY: the caller ensures that `self` is dereferenceable and `index` in-bounds.
1692        // As a consequence, the resulting pointer cannot be null.
1693        unsafe { NonNull::new_unchecked(self.as_ptr().get_unchecked_mut(index)) }
1694    }
1695}
1696
1697#[stable(feature = "nonnull", since = "1.25.0")]
1698impl<T: PointeeSized> Clone for NonNull<T> {
1699    #[inline(always)]
1700    fn clone(&self) -> Self {
1701        *self
1702    }
1703}
1704
1705#[stable(feature = "nonnull", since = "1.25.0")]
1706impl<T: PointeeSized> Copy for NonNull<T> {}
1707
1708#[doc(hidden)]
1709#[unstable(feature = "trivial_clone", issue = "none")]
1710unsafe impl<T: ?Sized> TrivialClone for NonNull<T> {}
1711
1712#[unstable(feature = "coerce_unsized", issue = "18598")]
1713#[cfg(not(feature = "ferrocene_certified"))]
1714impl<T: PointeeSized, U: PointeeSized> CoerceUnsized<NonNull<U>> for NonNull<T> where T: Unsize<U> {}
1715
1716#[unstable(feature = "dispatch_from_dyn", issue = "none")]
1717#[cfg(not(feature = "ferrocene_certified"))]
1718impl<T: PointeeSized, U: PointeeSized> DispatchFromDyn<NonNull<U>> for NonNull<T> where T: Unsize<U> {}
1719
1720#[stable(feature = "pin", since = "1.33.0")]
1721#[cfg(not(feature = "ferrocene_certified"))]
1722unsafe impl<T: PointeeSized> PinCoerceUnsized for NonNull<T> {}
1723
1724#[stable(feature = "nonnull", since = "1.25.0")]
1725#[cfg(not(feature = "ferrocene_certified"))]
1726impl<T: PointeeSized> fmt::Debug for NonNull<T> {
1727    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
1728        fmt::Pointer::fmt(&self.as_ptr(), f)
1729    }
1730}
1731
1732#[stable(feature = "nonnull", since = "1.25.0")]
1733#[cfg(not(feature = "ferrocene_certified"))]
1734impl<T: PointeeSized> fmt::Pointer for NonNull<T> {
1735    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
1736        fmt::Pointer::fmt(&self.as_ptr(), f)
1737    }
1738}
1739
1740#[stable(feature = "nonnull", since = "1.25.0")]
1741#[cfg(not(feature = "ferrocene_certified"))]
1742impl<T: PointeeSized> Eq for NonNull<T> {}
1743
1744#[stable(feature = "nonnull", since = "1.25.0")]
1745impl<T: PointeeSized> PartialEq for NonNull<T> {
1746    #[inline]
1747    #[allow(ambiguous_wide_pointer_comparisons)]
1748    fn eq(&self, other: &Self) -> bool {
1749        self.as_ptr() == other.as_ptr()
1750    }
1751}
1752
1753#[stable(feature = "nonnull", since = "1.25.0")]
1754#[cfg(not(feature = "ferrocene_certified"))]
1755impl<T: PointeeSized> Ord for NonNull<T> {
1756    #[inline]
1757    #[allow(ambiguous_wide_pointer_comparisons)]
1758    fn cmp(&self, other: &Self) -> Ordering {
1759        self.as_ptr().cmp(&other.as_ptr())
1760    }
1761}
1762
1763#[stable(feature = "nonnull", since = "1.25.0")]
1764#[cfg(not(feature = "ferrocene_certified"))]
1765impl<T: PointeeSized> PartialOrd for NonNull<T> {
1766    #[inline]
1767    #[allow(ambiguous_wide_pointer_comparisons)]
1768    fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
1769        self.as_ptr().partial_cmp(&other.as_ptr())
1770    }
1771}
1772
1773#[stable(feature = "nonnull", since = "1.25.0")]
1774#[cfg(not(feature = "ferrocene_certified"))]
1775impl<T: PointeeSized> hash::Hash for NonNull<T> {
1776    #[inline]
1777    fn hash<H: hash::Hasher>(&self, state: &mut H) {
1778        self.as_ptr().hash(state)
1779    }
1780}
1781
1782#[unstable(feature = "ptr_internals", issue = "none")]
1783#[rustc_const_unstable(feature = "const_convert", issue = "143773")]
1784#[cfg(not(feature = "ferrocene_certified"))]
1785impl<T: PointeeSized> const From<Unique<T>> for NonNull<T> {
1786    #[inline]
1787    fn from(unique: Unique<T>) -> Self {
1788        unique.as_non_null_ptr()
1789    }
1790}
1791
1792#[stable(feature = "nonnull", since = "1.25.0")]
1793#[rustc_const_unstable(feature = "const_convert", issue = "143773")]
1794#[cfg(not(feature = "ferrocene_certified"))]
1795impl<T: PointeeSized> const From<&mut T> for NonNull<T> {
1796    /// Converts a `&mut T` to a `NonNull<T>`.
1797    ///
1798    /// This conversion is safe and infallible since references cannot be null.
1799    #[inline]
1800    fn from(r: &mut T) -> Self {
1801        NonNull::from_mut(r)
1802    }
1803}
1804
1805#[stable(feature = "nonnull", since = "1.25.0")]
1806#[rustc_const_unstable(feature = "const_convert", issue = "143773")]
1807#[cfg(not(feature = "ferrocene_certified"))]
1808impl<T: PointeeSized> const From<&T> for NonNull<T> {
1809    /// Converts a `&T` to a `NonNull<T>`.
1810    ///
1811    /// This conversion is safe and infallible since references cannot be null.
1812    #[inline]
1813    fn from(r: &T) -> Self {
1814        NonNull::from_ref(r)
1815    }
1816}