core/
result.rs

1//! Error handling with the `Result` type.
2//!
3//! [`Result<T, E>`][`Result`] is the type used for returning and propagating
4//! errors. It is an enum with the variants, [`Ok(T)`], representing
5//! success and containing a value, and [`Err(E)`], representing error
6//! and containing an error value.
7//!
8//! ```
9//! # #[allow(dead_code)]
10//! enum Result<T, E> {
11//!    Ok(T),
12//!    Err(E),
13//! }
14//! ```
15//!
16//! Functions return [`Result`] whenever errors are expected and
17//! recoverable. In the `std` crate, [`Result`] is most prominently used
18//! for [I/O](../../std/io/index.html).
19//!
20//! A simple function returning [`Result`] might be
21//! defined and used like so:
22//!
23//! ```
24//! #[derive(Debug)]
25//! enum Version { Version1, Version2 }
26//!
27//! fn parse_version(header: &[u8]) -> Result<Version, &'static str> {
28//!     match header.get(0) {
29//!         None => Err("invalid header length"),
30//!         Some(&1) => Ok(Version::Version1),
31//!         Some(&2) => Ok(Version::Version2),
32//!         Some(_) => Err("invalid version"),
33//!     }
34//! }
35//!
36//! let version = parse_version(&[1, 2, 3, 4]);
37//! match version {
38//!     Ok(v) => println!("working with version: {v:?}"),
39//!     Err(e) => println!("error parsing header: {e:?}"),
40//! }
41//! ```
42//!
43//! Pattern matching on [`Result`]s is clear and straightforward for
44//! simple cases, but [`Result`] comes with some convenience methods
45//! that make working with it more succinct.
46//!
47//! ```
48//! // The `is_ok` and `is_err` methods do what they say.
49//! let good_result: Result<i32, i32> = Ok(10);
50//! let bad_result: Result<i32, i32> = Err(10);
51//! assert!(good_result.is_ok() && !good_result.is_err());
52//! assert!(bad_result.is_err() && !bad_result.is_ok());
53//!
54//! // `map` and `map_err` consume the `Result` and produce another.
55//! let good_result: Result<i32, i32> = good_result.map(|i| i + 1);
56//! let bad_result: Result<i32, i32> = bad_result.map_err(|i| i - 1);
57//! assert_eq!(good_result, Ok(11));
58//! assert_eq!(bad_result, Err(9));
59//!
60//! // Use `and_then` to continue the computation.
61//! let good_result: Result<bool, i32> = good_result.and_then(|i| Ok(i == 11));
62//! assert_eq!(good_result, Ok(true));
63//!
64//! // Use `or_else` to handle the error.
65//! let bad_result: Result<i32, i32> = bad_result.or_else(|i| Ok(i + 20));
66//! assert_eq!(bad_result, Ok(29));
67//!
68//! // Consume the result and return the contents with `unwrap`.
69//! let final_awesome_result = good_result.unwrap();
70//! assert!(final_awesome_result)
71//! ```
72//!
73//! # Results must be used
74//!
75//! A common problem with using return values to indicate errors is
76//! that it is easy to ignore the return value, thus failing to handle
77//! the error. [`Result`] is annotated with the `#[must_use]` attribute,
78//! which will cause the compiler to issue a warning when a Result
79//! value is ignored. This makes [`Result`] especially useful with
80//! functions that may encounter errors but don't otherwise return a
81//! useful value.
82//!
83//! Consider the [`write_all`] method defined for I/O types
84//! by the [`Write`] trait:
85//!
86//! ```
87//! use std::io;
88//!
89//! trait Write {
90//!     fn write_all(&mut self, bytes: &[u8]) -> Result<(), io::Error>;
91//! }
92//! ```
93//!
94//! *Note: The actual definition of [`Write`] uses [`io::Result`], which
95//! is just a synonym for <code>[Result]<T, [io::Error]></code>.*
96//!
97//! This method doesn't produce a value, but the write may
98//! fail. It's crucial to handle the error case, and *not* write
99//! something like this:
100//!
101//! ```no_run
102//! # #![allow(unused_must_use)] // \o/
103//! use std::fs::File;
104//! use std::io::prelude::*;
105//!
106//! let mut file = File::create("valuable_data.txt").unwrap();
107//! // If `write_all` errors, then we'll never know, because the return
108//! // value is ignored.
109//! file.write_all(b"important message");
110//! ```
111//!
112//! If you *do* write that in Rust, the compiler will give you a
113//! warning (by default, controlled by the `unused_must_use` lint).
114//!
115//! You might instead, if you don't want to handle the error, simply
116//! assert success with [`expect`]. This will panic if the
117//! write fails, providing a marginally useful message indicating why:
118//!
119//! ```no_run
120//! use std::fs::File;
121//! use std::io::prelude::*;
122//!
123//! let mut file = File::create("valuable_data.txt").unwrap();
124//! file.write_all(b"important message").expect("failed to write message");
125//! ```
126//!
127//! You might also simply assert success:
128//!
129//! ```no_run
130//! # use std::fs::File;
131//! # use std::io::prelude::*;
132//! # let mut file = File::create("valuable_data.txt").unwrap();
133//! assert!(file.write_all(b"important message").is_ok());
134//! ```
135//!
136//! Or propagate the error up the call stack with [`?`]:
137//!
138//! ```
139//! # use std::fs::File;
140//! # use std::io::prelude::*;
141//! # use std::io;
142//! # #[allow(dead_code)]
143//! fn write_message() -> io::Result<()> {
144//!     let mut file = File::create("valuable_data.txt")?;
145//!     file.write_all(b"important message")?;
146//!     Ok(())
147//! }
148//! ```
149//!
150//! # The question mark operator, `?`
151//!
152//! When writing code that calls many functions that return the
153//! [`Result`] type, the error handling can be tedious. The question mark
154//! operator, [`?`], hides some of the boilerplate of propagating errors
155//! up the call stack.
156//!
157//! It replaces this:
158//!
159//! ```
160//! # #![allow(dead_code)]
161//! use std::fs::File;
162//! use std::io::prelude::*;
163//! use std::io;
164//!
165//! struct Info {
166//!     name: String,
167//!     age: i32,
168//!     rating: i32,
169//! }
170//!
171//! fn write_info(info: &Info) -> io::Result<()> {
172//!     // Early return on error
173//!     let mut file = match File::create("my_best_friends.txt") {
174//!            Err(e) => return Err(e),
175//!            Ok(f) => f,
176//!     };
177//!     if let Err(e) = file.write_all(format!("name: {}\n", info.name).as_bytes()) {
178//!         return Err(e)
179//!     }
180//!     if let Err(e) = file.write_all(format!("age: {}\n", info.age).as_bytes()) {
181//!         return Err(e)
182//!     }
183//!     if let Err(e) = file.write_all(format!("rating: {}\n", info.rating).as_bytes()) {
184//!         return Err(e)
185//!     }
186//!     Ok(())
187//! }
188//! ```
189//!
190//! With this:
191//!
192//! ```
193//! # #![allow(dead_code)]
194//! use std::fs::File;
195//! use std::io::prelude::*;
196//! use std::io;
197//!
198//! struct Info {
199//!     name: String,
200//!     age: i32,
201//!     rating: i32,
202//! }
203//!
204//! fn write_info(info: &Info) -> io::Result<()> {
205//!     let mut file = File::create("my_best_friends.txt")?;
206//!     // Early return on error
207//!     file.write_all(format!("name: {}\n", info.name).as_bytes())?;
208//!     file.write_all(format!("age: {}\n", info.age).as_bytes())?;
209//!     file.write_all(format!("rating: {}\n", info.rating).as_bytes())?;
210//!     Ok(())
211//! }
212//! ```
213//!
214//! *It's much nicer!*
215//!
216//! Ending the expression with [`?`] will result in the [`Ok`]'s unwrapped value, unless the result
217//! is [`Err`], in which case [`Err`] is returned early from the enclosing function.
218//!
219//! [`?`] can be used in functions that return [`Result`] because of the
220//! early return of [`Err`] that it provides.
221//!
222//! [`expect`]: Result::expect
223//! [`Write`]: ../../std/io/trait.Write.html "io::Write"
224//! [`write_all`]: ../../std/io/trait.Write.html#method.write_all "io::Write::write_all"
225//! [`io::Result`]: ../../std/io/type.Result.html "io::Result"
226//! [`?`]: crate::ops::Try
227//! [`Ok(T)`]: Ok
228//! [`Err(E)`]: Err
229//! [io::Error]: ../../std/io/struct.Error.html "io::Error"
230//!
231//! # Representation
232//!
233//! In some cases, [`Result<T, E>`] comes with size, alignment, and ABI
234//! guarantees. Specifically, one of either the `T` or `E` type must be a type
235//! that qualifies for the `Option` [representation guarantees][opt-rep] (let's
236//! call that type `I`), and the *other* type is a zero-sized type with
237//! alignment 1 (a "1-ZST").
238//!
239//! If that is the case, then `Result<T, E>` has the same size, alignment, and
240//! [function call ABI] as `I` (and therefore, as `Option<I>`). If `I` is `T`,
241//! it is therefore sound to transmute a value `t` of type `I` to type
242//! `Result<T, E>` (producing the value `Ok(t)`) and to transmute a value
243//! `Ok(t)` of type `Result<T, E>` to type `I` (producing the value `t`). If `I`
244//! is `E`, the same applies with `Ok` replaced by `Err`.
245//!
246//! For example, `NonZeroI32` qualifies for the `Option` representation
247//! guarantees and `()` is a zero-sized type with alignment 1. This means that
248//! both `Result<NonZeroI32, ()>` and `Result<(), NonZeroI32>` have the same
249//! size, alignment, and ABI as `NonZeroI32` (and `Option<NonZeroI32>`). The
250//! only difference between these is in the implied semantics:
251//!
252//! * `Option<NonZeroI32>` is "a non-zero i32 might be present"
253//! * `Result<NonZeroI32, ()>` is "a non-zero i32 success result, if any"
254//! * `Result<(), NonZeroI32>` is "a non-zero i32 error result, if any"
255//!
256//! [opt-rep]: ../option/index.html#representation "Option Representation"
257//! [function call ABI]: ../primitive.fn.html#abi-compatibility
258//!
259//! # Method overview
260//!
261//! In addition to working with pattern matching, [`Result`] provides a
262//! wide variety of different methods.
263//!
264//! ## Querying the variant
265//!
266//! The [`is_ok`] and [`is_err`] methods return [`true`] if the [`Result`]
267//! is [`Ok`] or [`Err`], respectively.
268//!
269//! The [`is_ok_and`] and [`is_err_and`] methods apply the provided function
270//! to the contents of the [`Result`] to produce a boolean value. If the [`Result`] does not have the expected variant
271//! then [`false`] is returned instead without executing the function.
272//!
273//! [`is_err`]: Result::is_err
274//! [`is_ok`]: Result::is_ok
275//! [`is_ok_and`]: Result::is_ok_and
276//! [`is_err_and`]: Result::is_err_and
277//!
278//! ## Adapters for working with references
279//!
280//! * [`as_ref`] converts from `&Result<T, E>` to `Result<&T, &E>`
281//! * [`as_mut`] converts from `&mut Result<T, E>` to `Result<&mut T, &mut E>`
282//! * [`as_deref`] converts from `&Result<T, E>` to `Result<&T::Target, &E>`
283//! * [`as_deref_mut`] converts from `&mut Result<T, E>` to
284//!   `Result<&mut T::Target, &mut E>`
285//!
286//! [`as_deref`]: Result::as_deref
287//! [`as_deref_mut`]: Result::as_deref_mut
288//! [`as_mut`]: Result::as_mut
289//! [`as_ref`]: Result::as_ref
290//!
291//! ## Extracting contained values
292//!
293//! These methods extract the contained value in a [`Result<T, E>`] when it
294//! is the [`Ok`] variant. If the [`Result`] is [`Err`]:
295//!
296//! * [`expect`] panics with a provided custom message
297//! * [`unwrap`] panics with a generic message
298//! * [`unwrap_or`] returns the provided default value
299//! * [`unwrap_or_default`] returns the default value of the type `T`
300//!   (which must implement the [`Default`] trait)
301//! * [`unwrap_or_else`] returns the result of evaluating the provided
302//!   function
303//! * [`unwrap_unchecked`] produces *[undefined behavior]*
304//!
305//! The panicking methods [`expect`] and [`unwrap`] require `E` to
306//! implement the [`Debug`] trait.
307//!
308//! [`Debug`]: crate::fmt::Debug
309//! [`expect`]: Result::expect
310//! [`unwrap`]: Result::unwrap
311//! [`unwrap_or`]: Result::unwrap_or
312//! [`unwrap_or_default`]: Result::unwrap_or_default
313//! [`unwrap_or_else`]: Result::unwrap_or_else
314//! [`unwrap_unchecked`]: Result::unwrap_unchecked
315//! [undefined behavior]: https://doc.rust-lang.org/reference/behavior-considered-undefined.html
316//!
317//! These methods extract the contained value in a [`Result<T, E>`] when it
318//! is the [`Err`] variant. They require `T` to implement the [`Debug`]
319//! trait. If the [`Result`] is [`Ok`]:
320//!
321//! * [`expect_err`] panics with a provided custom message
322//! * [`unwrap_err`] panics with a generic message
323//! * [`unwrap_err_unchecked`] produces *[undefined behavior]*
324//!
325//! [`Debug`]: crate::fmt::Debug
326//! [`expect_err`]: Result::expect_err
327//! [`unwrap_err`]: Result::unwrap_err
328//! [`unwrap_err_unchecked`]: Result::unwrap_err_unchecked
329//! [undefined behavior]: https://doc.rust-lang.org/reference/behavior-considered-undefined.html
330//!
331//! ## Transforming contained values
332//!
333//! These methods transform [`Result`] to [`Option`]:
334//!
335//! * [`err`][Result::err] transforms [`Result<T, E>`] into [`Option<E>`],
336//!   mapping [`Err(e)`] to [`Some(e)`] and [`Ok(v)`] to [`None`]
337//! * [`ok`][Result::ok] transforms [`Result<T, E>`] into [`Option<T>`],
338//!   mapping [`Ok(v)`] to [`Some(v)`] and [`Err(e)`] to [`None`]
339//! * [`transpose`] transposes a [`Result`] of an [`Option`] into an
340//!   [`Option`] of a [`Result`]
341//!
342// Do NOT add link reference definitions for `err` or `ok`, because they
343// will generate numerous incorrect URLs for `Err` and `Ok` elsewhere, due
344// to case folding.
345//!
346//! [`Err(e)`]: Err
347//! [`Ok(v)`]: Ok
348//! [`Some(e)`]: Option::Some
349//! [`Some(v)`]: Option::Some
350//! [`transpose`]: Result::transpose
351//!
352//! These methods transform the contained value of the [`Ok`] variant:
353//!
354//! * [`map`] transforms [`Result<T, E>`] into [`Result<U, E>`] by applying
355//!   the provided function to the contained value of [`Ok`] and leaving
356//!   [`Err`] values unchanged
357//! * [`inspect`] takes ownership of the [`Result`], applies the
358//!   provided function to the contained value by reference,
359//!   and then returns the [`Result`]
360//!
361//! [`map`]: Result::map
362//! [`inspect`]: Result::inspect
363//!
364//! These methods transform the contained value of the [`Err`] variant:
365//!
366//! * [`map_err`] transforms [`Result<T, E>`] into [`Result<T, F>`] by
367//!   applying the provided function to the contained value of [`Err`] and
368//!   leaving [`Ok`] values unchanged
369//! * [`inspect_err`] takes ownership of the [`Result`], applies the
370//!   provided function to the contained value of [`Err`] by reference,
371//!   and then returns the [`Result`]
372//!
373//! [`map_err`]: Result::map_err
374//! [`inspect_err`]: Result::inspect_err
375//!
376//! These methods transform a [`Result<T, E>`] into a value of a possibly
377//! different type `U`:
378//!
379//! * [`map_or`] applies the provided function to the contained value of
380//!   [`Ok`], or returns the provided default value if the [`Result`] is
381//!   [`Err`]
382//! * [`map_or_else`] applies the provided function to the contained value
383//!   of [`Ok`], or applies the provided default fallback function to the
384//!   contained value of [`Err`]
385//!
386//! [`map_or`]: Result::map_or
387//! [`map_or_else`]: Result::map_or_else
388//!
389//! ## Boolean operators
390//!
391//! These methods treat the [`Result`] as a boolean value, where [`Ok`]
392//! acts like [`true`] and [`Err`] acts like [`false`]. There are two
393//! categories of these methods: ones that take a [`Result`] as input, and
394//! ones that take a function as input (to be lazily evaluated).
395//!
396//! The [`and`] and [`or`] methods take another [`Result`] as input, and
397//! produce a [`Result`] as output. The [`and`] method can produce a
398//! [`Result<U, E>`] value having a different inner type `U` than
399//! [`Result<T, E>`]. The [`or`] method can produce a [`Result<T, F>`]
400//! value having a different error type `F` than [`Result<T, E>`].
401//!
402//! | method  | self     | input     | output   |
403//! |---------|----------|-----------|----------|
404//! | [`and`] | `Err(e)` | (ignored) | `Err(e)` |
405//! | [`and`] | `Ok(x)`  | `Err(d)`  | `Err(d)` |
406//! | [`and`] | `Ok(x)`  | `Ok(y)`   | `Ok(y)`  |
407//! | [`or`]  | `Err(e)` | `Err(d)`  | `Err(d)` |
408//! | [`or`]  | `Err(e)` | `Ok(y)`   | `Ok(y)`  |
409//! | [`or`]  | `Ok(x)`  | (ignored) | `Ok(x)`  |
410//!
411//! [`and`]: Result::and
412//! [`or`]: Result::or
413//!
414//! The [`and_then`] and [`or_else`] methods take a function as input, and
415//! only evaluate the function when they need to produce a new value. The
416//! [`and_then`] method can produce a [`Result<U, E>`] value having a
417//! different inner type `U` than [`Result<T, E>`]. The [`or_else`] method
418//! can produce a [`Result<T, F>`] value having a different error type `F`
419//! than [`Result<T, E>`].
420//!
421//! | method       | self     | function input | function result | output   |
422//! |--------------|----------|----------------|-----------------|----------|
423//! | [`and_then`] | `Err(e)` | (not provided) | (not evaluated) | `Err(e)` |
424//! | [`and_then`] | `Ok(x)`  | `x`            | `Err(d)`        | `Err(d)` |
425//! | [`and_then`] | `Ok(x)`  | `x`            | `Ok(y)`         | `Ok(y)`  |
426//! | [`or_else`]  | `Err(e)` | `e`            | `Err(d)`        | `Err(d)` |
427//! | [`or_else`]  | `Err(e)` | `e`            | `Ok(y)`         | `Ok(y)`  |
428//! | [`or_else`]  | `Ok(x)`  | (not provided) | (not evaluated) | `Ok(x)`  |
429//!
430//! [`and_then`]: Result::and_then
431//! [`or_else`]: Result::or_else
432//!
433//! ## Comparison operators
434//!
435//! If `T` and `E` both implement [`PartialOrd`] then [`Result<T, E>`] will
436//! derive its [`PartialOrd`] implementation.  With this order, an [`Ok`]
437//! compares as less than any [`Err`], while two [`Ok`] or two [`Err`]
438//! compare as their contained values would in `T` or `E` respectively.  If `T`
439//! and `E` both also implement [`Ord`], then so does [`Result<T, E>`].
440//!
441//! ```
442//! assert!(Ok(1) < Err(0));
443//! let x: Result<i32, ()> = Ok(0);
444//! let y = Ok(1);
445//! assert!(x < y);
446//! let x: Result<(), i32> = Err(0);
447//! let y = Err(1);
448//! assert!(x < y);
449//! ```
450//!
451//! ## Iterating over `Result`
452//!
453//! A [`Result`] can be iterated over. This can be helpful if you need an
454//! iterator that is conditionally empty. The iterator will either produce
455//! a single value (when the [`Result`] is [`Ok`]), or produce no values
456//! (when the [`Result`] is [`Err`]). For example, [`into_iter`] acts like
457//! [`once(v)`] if the [`Result`] is [`Ok(v)`], and like [`empty()`] if the
458//! [`Result`] is [`Err`].
459//!
460//! [`Ok(v)`]: Ok
461//! [`empty()`]: crate::iter::empty
462//! [`once(v)`]: crate::iter::once
463//!
464//! Iterators over [`Result<T, E>`] come in three types:
465//!
466//! * [`into_iter`] consumes the [`Result`] and produces the contained
467//!   value
468//! * [`iter`] produces an immutable reference of type `&T` to the
469//!   contained value
470//! * [`iter_mut`] produces a mutable reference of type `&mut T` to the
471//!   contained value
472//!
473//! See [Iterating over `Option`] for examples of how this can be useful.
474//!
475//! [Iterating over `Option`]: crate::option#iterating-over-option
476//! [`into_iter`]: Result::into_iter
477//! [`iter`]: Result::iter
478//! [`iter_mut`]: Result::iter_mut
479//!
480//! You might want to use an iterator chain to do multiple instances of an
481//! operation that can fail, but would like to ignore failures while
482//! continuing to process the successful results. In this example, we take
483//! advantage of the iterable nature of [`Result`] to select only the
484//! [`Ok`] values using [`flatten`][Iterator::flatten].
485//!
486//! ```
487//! # use std::str::FromStr;
488//! let mut results = vec![];
489//! let mut errs = vec![];
490//! let nums: Vec<_> = ["17", "not a number", "99", "-27", "768"]
491//!    .into_iter()
492//!    .map(u8::from_str)
493//!    // Save clones of the raw `Result` values to inspect
494//!    .inspect(|x| results.push(x.clone()))
495//!    // Challenge: explain how this captures only the `Err` values
496//!    .inspect(|x| errs.extend(x.clone().err()))
497//!    .flatten()
498//!    .collect();
499//! assert_eq!(errs.len(), 3);
500//! assert_eq!(nums, [17, 99]);
501//! println!("results {results:?}");
502//! println!("errs {errs:?}");
503//! println!("nums {nums:?}");
504//! ```
505//!
506//! ## Collecting into `Result`
507//!
508//! [`Result`] implements the [`FromIterator`][impl-FromIterator] trait,
509//! which allows an iterator over [`Result`] values to be collected into a
510//! [`Result`] of a collection of each contained value of the original
511//! [`Result`] values, or [`Err`] if any of the elements was [`Err`].
512//!
513//! [impl-FromIterator]: Result#impl-FromIterator%3CResult%3CA,+E%3E%3E-for-Result%3CV,+E%3E
514//!
515//! ```
516//! let v = [Ok(2), Ok(4), Err("err!"), Ok(8)];
517//! let res: Result<Vec<_>, &str> = v.into_iter().collect();
518//! assert_eq!(res, Err("err!"));
519//! let v = [Ok(2), Ok(4), Ok(8)];
520//! let res: Result<Vec<_>, &str> = v.into_iter().collect();
521//! assert_eq!(res, Ok(vec![2, 4, 8]));
522//! ```
523//!
524//! [`Result`] also implements the [`Product`][impl-Product] and
525//! [`Sum`][impl-Sum] traits, allowing an iterator over [`Result`] values
526//! to provide the [`product`][Iterator::product] and
527//! [`sum`][Iterator::sum] methods.
528//!
529//! [impl-Product]: Result#impl-Product%3CResult%3CU,+E%3E%3E-for-Result%3CT,+E%3E
530//! [impl-Sum]: Result#impl-Sum%3CResult%3CU,+E%3E%3E-for-Result%3CT,+E%3E
531//!
532//! ```
533//! let v = [Err("error!"), Ok(1), Ok(2), Ok(3), Err("foo")];
534//! let res: Result<i32, &str> = v.into_iter().sum();
535//! assert_eq!(res, Err("error!"));
536//! let v = [Ok(1), Ok(2), Ok(21)];
537//! let res: Result<i32, &str> = v.into_iter().product();
538//! assert_eq!(res, Ok(42));
539//! ```
540
541#![stable(feature = "rust1", since = "1.0.0")]
542
543#[cfg(not(feature = "ferrocene_subset"))]
544use crate::iter::{self, FusedIterator, TrustedLen};
545use crate::marker::Destruct;
546use crate::ops::{self, ControlFlow, Deref, DerefMut};
547#[cfg(not(feature = "ferrocene_subset"))]
548use crate::{convert, fmt, hint};
549
550// Ferrocene addition: imports for certified subset
551#[cfg(feature = "ferrocene_subset")]
552#[rustfmt::skip]
553use crate::{convert, hint};
554
555/// `Result` is a type that represents either success ([`Ok`]) or failure ([`Err`]).
556///
557/// See the [module documentation](self) for details.
558#[doc(search_unbox)]
559#[cfg_attr(not(feature = "ferrocene_subset"), derive(Copy, Debug, Hash))]
560#[cfg_attr(not(feature = "ferrocene_subset"), derive_const(PartialEq, PartialOrd, Eq, Ord))]
561#[must_use = "this `Result` may be an `Err` variant, which should be handled"]
562#[rustc_diagnostic_item = "Result"]
563#[stable(feature = "rust1", since = "1.0.0")]
564pub enum Result<T, E> {
565    /// Contains the success value
566    #[lang = "Ok"]
567    #[stable(feature = "rust1", since = "1.0.0")]
568    Ok(#[stable(feature = "rust1", since = "1.0.0")] T),
569
570    /// Contains the error value
571    #[lang = "Err"]
572    #[stable(feature = "rust1", since = "1.0.0")]
573    Err(#[stable(feature = "rust1", since = "1.0.0")] E),
574}
575
576/////////////////////////////////////////////////////////////////////////////
577// Type implementation
578/////////////////////////////////////////////////////////////////////////////
579
580impl<T, E> Result<T, E> {
581    /////////////////////////////////////////////////////////////////////////
582    // Querying the contained values
583    /////////////////////////////////////////////////////////////////////////
584
585    /// Returns `true` if the result is [`Ok`].
586    ///
587    /// # Examples
588    ///
589    /// ```
590    /// let x: Result<i32, &str> = Ok(-3);
591    /// assert_eq!(x.is_ok(), true);
592    ///
593    /// let x: Result<i32, &str> = Err("Some error message");
594    /// assert_eq!(x.is_ok(), false);
595    /// ```
596    #[must_use = "if you intended to assert that this is ok, consider `.unwrap()` instead"]
597    #[rustc_const_stable(feature = "const_result_basics", since = "1.48.0")]
598    #[inline]
599    #[stable(feature = "rust1", since = "1.0.0")]
600    pub const fn is_ok(&self) -> bool {
601        matches!(*self, Ok(_))
602    }
603
604    /// Returns `true` if the result is [`Ok`] and the value inside of it matches a predicate.
605    ///
606    /// # Examples
607    ///
608    /// ```
609    /// let x: Result<u32, &str> = Ok(2);
610    /// assert_eq!(x.is_ok_and(|x| x > 1), true);
611    ///
612    /// let x: Result<u32, &str> = Ok(0);
613    /// assert_eq!(x.is_ok_and(|x| x > 1), false);
614    ///
615    /// let x: Result<u32, &str> = Err("hey");
616    /// assert_eq!(x.is_ok_and(|x| x > 1), false);
617    ///
618    /// let x: Result<String, &str> = Ok("ownership".to_string());
619    /// assert_eq!(x.as_ref().is_ok_and(|x| x.len() > 1), true);
620    /// println!("still alive {:?}", x);
621    /// ```
622    #[must_use]
623    #[inline]
624    #[stable(feature = "is_some_and", since = "1.70.0")]
625    #[rustc_const_unstable(feature = "const_result_trait_fn", issue = "144211")]
626    pub const fn is_ok_and<F>(self, f: F) -> bool
627    where
628        F: [const] FnOnce(T) -> bool + [const] Destruct,
629        T: [const] Destruct,
630        E: [const] Destruct,
631    {
632        match self {
633            Err(_) => false,
634            Ok(x) => f(x),
635        }
636    }
637
638    /// Returns `true` if the result is [`Err`].
639    ///
640    /// # Examples
641    ///
642    /// ```
643    /// let x: Result<i32, &str> = Ok(-3);
644    /// assert_eq!(x.is_err(), false);
645    ///
646    /// let x: Result<i32, &str> = Err("Some error message");
647    /// assert_eq!(x.is_err(), true);
648    /// ```
649    #[must_use = "if you intended to assert that this is err, consider `.unwrap_err()` instead"]
650    #[rustc_const_stable(feature = "const_result_basics", since = "1.48.0")]
651    #[inline]
652    #[stable(feature = "rust1", since = "1.0.0")]
653    pub const fn is_err(&self) -> bool {
654        !self.is_ok()
655    }
656
657    /// Returns `true` if the result is [`Err`] and the value inside of it matches a predicate.
658    ///
659    /// # Examples
660    ///
661    /// ```
662    /// use std::io::{Error, ErrorKind};
663    ///
664    /// let x: Result<u32, Error> = Err(Error::new(ErrorKind::NotFound, "!"));
665    /// assert_eq!(x.is_err_and(|x| x.kind() == ErrorKind::NotFound), true);
666    ///
667    /// let x: Result<u32, Error> = Err(Error::new(ErrorKind::PermissionDenied, "!"));
668    /// assert_eq!(x.is_err_and(|x| x.kind() == ErrorKind::NotFound), false);
669    ///
670    /// let x: Result<u32, Error> = Ok(123);
671    /// assert_eq!(x.is_err_and(|x| x.kind() == ErrorKind::NotFound), false);
672    ///
673    /// let x: Result<u32, String> = Err("ownership".to_string());
674    /// assert_eq!(x.as_ref().is_err_and(|x| x.len() > 1), true);
675    /// println!("still alive {:?}", x);
676    /// ```
677    #[must_use]
678    #[inline]
679    #[stable(feature = "is_some_and", since = "1.70.0")]
680    #[rustc_const_unstable(feature = "const_result_trait_fn", issue = "144211")]
681    pub const fn is_err_and<F>(self, f: F) -> bool
682    where
683        F: [const] FnOnce(E) -> bool + [const] Destruct,
684        E: [const] Destruct,
685        T: [const] Destruct,
686    {
687        match self {
688            Ok(_) => false,
689            Err(e) => f(e),
690        }
691    }
692
693    /////////////////////////////////////////////////////////////////////////
694    // Adapter for each variant
695    /////////////////////////////////////////////////////////////////////////
696
697    /// Converts from `Result<T, E>` to [`Option<T>`].
698    ///
699    /// Converts `self` into an [`Option<T>`], consuming `self`,
700    /// and discarding the error, if any.
701    ///
702    /// # Examples
703    ///
704    /// ```
705    /// let x: Result<u32, &str> = Ok(2);
706    /// assert_eq!(x.ok(), Some(2));
707    ///
708    /// let x: Result<u32, &str> = Err("Nothing here");
709    /// assert_eq!(x.ok(), None);
710    /// ```
711    #[inline]
712    #[stable(feature = "rust1", since = "1.0.0")]
713    #[rustc_const_unstable(feature = "const_result_trait_fn", issue = "144211")]
714    #[rustc_diagnostic_item = "result_ok_method"]
715    pub const fn ok(self) -> Option<T>
716    where
717        T: [const] Destruct,
718        E: [const] Destruct,
719    {
720        match self {
721            Ok(x) => Some(x),
722            Err(_) => None,
723        }
724    }
725
726    /// Converts from `Result<T, E>` to [`Option<E>`].
727    ///
728    /// Converts `self` into an [`Option<E>`], consuming `self`,
729    /// and discarding the success value, if any.
730    ///
731    /// # Examples
732    ///
733    /// ```
734    /// let x: Result<u32, &str> = Ok(2);
735    /// assert_eq!(x.err(), None);
736    ///
737    /// let x: Result<u32, &str> = Err("Nothing here");
738    /// assert_eq!(x.err(), Some("Nothing here"));
739    /// ```
740    #[inline]
741    #[stable(feature = "rust1", since = "1.0.0")]
742    #[rustc_const_unstable(feature = "const_result_trait_fn", issue = "144211")]
743    pub const fn err(self) -> Option<E>
744    where
745        T: [const] Destruct,
746        E: [const] Destruct,
747    {
748        match self {
749            Ok(_) => None,
750            Err(x) => Some(x),
751        }
752    }
753
754    /////////////////////////////////////////////////////////////////////////
755    // Adapter for working with references
756    /////////////////////////////////////////////////////////////////////////
757
758    /// Converts from `&Result<T, E>` to `Result<&T, &E>`.
759    ///
760    /// Produces a new `Result`, containing a reference
761    /// into the original, leaving the original in place.
762    ///
763    /// # Examples
764    ///
765    /// ```
766    /// let x: Result<u32, &str> = Ok(2);
767    /// assert_eq!(x.as_ref(), Ok(&2));
768    ///
769    /// let x: Result<u32, &str> = Err("Error");
770    /// assert_eq!(x.as_ref(), Err(&"Error"));
771    /// ```
772    #[inline]
773    #[rustc_const_stable(feature = "const_result_basics", since = "1.48.0")]
774    #[stable(feature = "rust1", since = "1.0.0")]
775    pub const fn as_ref(&self) -> Result<&T, &E> {
776        match *self {
777            Ok(ref x) => Ok(x),
778            Err(ref x) => Err(x),
779        }
780    }
781
782    /// Converts from `&mut Result<T, E>` to `Result<&mut T, &mut E>`.
783    ///
784    /// # Examples
785    ///
786    /// ```
787    /// fn mutate(r: &mut Result<i32, i32>) {
788    ///     match r.as_mut() {
789    ///         Ok(v) => *v = 42,
790    ///         Err(e) => *e = 0,
791    ///     }
792    /// }
793    ///
794    /// let mut x: Result<i32, i32> = Ok(2);
795    /// mutate(&mut x);
796    /// assert_eq!(x.unwrap(), 42);
797    ///
798    /// let mut x: Result<i32, i32> = Err(13);
799    /// mutate(&mut x);
800    /// assert_eq!(x.unwrap_err(), 0);
801    /// ```
802    #[inline]
803    #[stable(feature = "rust1", since = "1.0.0")]
804    #[rustc_const_stable(feature = "const_result", since = "1.83.0")]
805    pub const fn as_mut(&mut self) -> Result<&mut T, &mut E> {
806        match *self {
807            Ok(ref mut x) => Ok(x),
808            Err(ref mut x) => Err(x),
809        }
810    }
811
812    /////////////////////////////////////////////////////////////////////////
813    // Transforming contained values
814    /////////////////////////////////////////////////////////////////////////
815
816    /// Maps a `Result<T, E>` to `Result<U, E>` by applying a function to a
817    /// contained [`Ok`] value, leaving an [`Err`] value untouched.
818    ///
819    /// This function can be used to compose the results of two functions.
820    ///
821    /// # Examples
822    ///
823    /// Print the numbers on each line of a string multiplied by two.
824    ///
825    /// ```
826    /// let line = "1\n2\n3\n4\n";
827    ///
828    /// for num in line.lines() {
829    ///     match num.parse::<i32>().map(|i| i * 2) {
830    ///         Ok(n) => println!("{n}"),
831    ///         Err(..) => {}
832    ///     }
833    /// }
834    /// ```
835    #[inline]
836    #[stable(feature = "rust1", since = "1.0.0")]
837    #[rustc_const_unstable(feature = "const_result_trait_fn", issue = "144211")]
838    pub const fn map<U, F>(self, op: F) -> Result<U, E>
839    where
840        F: [const] FnOnce(T) -> U + [const] Destruct,
841    {
842        match self {
843            Ok(t) => Ok(op(t)),
844            Err(e) => Err(e),
845        }
846    }
847
848    /// Returns the provided default (if [`Err`]), or
849    /// applies a function to the contained value (if [`Ok`]).
850    ///
851    /// Arguments passed to `map_or` are eagerly evaluated; if you are passing
852    /// the result of a function call, it is recommended to use [`map_or_else`],
853    /// which is lazily evaluated.
854    ///
855    /// [`map_or_else`]: Result::map_or_else
856    ///
857    /// # Examples
858    ///
859    /// ```
860    /// let x: Result<_, &str> = Ok("foo");
861    /// assert_eq!(x.map_or(42, |v| v.len()), 3);
862    ///
863    /// let x: Result<&str, _> = Err("bar");
864    /// assert_eq!(x.map_or(42, |v| v.len()), 42);
865    /// ```
866    #[inline]
867    #[stable(feature = "result_map_or", since = "1.41.0")]
868    #[rustc_const_unstable(feature = "const_result_trait_fn", issue = "144211")]
869    #[must_use = "if you don't need the returned value, use `if let` instead"]
870    pub const fn map_or<U, F>(self, default: U, f: F) -> U
871    where
872        F: [const] FnOnce(T) -> U + [const] Destruct,
873        T: [const] Destruct,
874        E: [const] Destruct,
875        U: [const] Destruct,
876    {
877        match self {
878            Ok(t) => f(t),
879            Err(_) => default,
880        }
881    }
882
883    /// Maps a `Result<T, E>` to `U` by applying fallback function `default` to
884    /// a contained [`Err`] value, or function `f` to a contained [`Ok`] value.
885    ///
886    /// This function can be used to unpack a successful result
887    /// while handling an error.
888    ///
889    ///
890    /// # Examples
891    ///
892    /// ```
893    /// let k = 21;
894    ///
895    /// let x : Result<_, &str> = Ok("foo");
896    /// assert_eq!(x.map_or_else(|e| k * 2, |v| v.len()), 3);
897    ///
898    /// let x : Result<&str, _> = Err("bar");
899    /// assert_eq!(x.map_or_else(|e| k * 2, |v| v.len()), 42);
900    /// ```
901    #[inline]
902    #[stable(feature = "result_map_or_else", since = "1.41.0")]
903    #[rustc_const_unstable(feature = "const_result_trait_fn", issue = "144211")]
904    pub const fn map_or_else<U, D, F>(self, default: D, f: F) -> U
905    where
906        D: [const] FnOnce(E) -> U + [const] Destruct,
907        F: [const] FnOnce(T) -> U + [const] Destruct,
908    {
909        match self {
910            Ok(t) => f(t),
911            Err(e) => default(e),
912        }
913    }
914
915    /// Maps a `Result<T, E>` to a `U` by applying function `f` to the contained
916    /// value if the result is [`Ok`], otherwise if [`Err`], returns the
917    /// [default value] for the type `U`.
918    ///
919    /// # Examples
920    ///
921    /// ```
922    /// #![feature(result_option_map_or_default)]
923    ///
924    /// let x: Result<_, &str> = Ok("foo");
925    /// let y: Result<&str, _> = Err("bar");
926    ///
927    /// assert_eq!(x.map_or_default(|x| x.len()), 3);
928    /// assert_eq!(y.map_or_default(|y| y.len()), 0);
929    /// ```
930    ///
931    /// [default value]: Default::default
932    #[inline]
933    #[unstable(feature = "result_option_map_or_default", issue = "138099")]
934    #[rustc_const_unstable(feature = "const_result_trait_fn", issue = "144211")]
935    pub const fn map_or_default<U, F>(self, f: F) -> U
936    where
937        F: [const] FnOnce(T) -> U + [const] Destruct,
938        U: [const] Default,
939        T: [const] Destruct,
940        E: [const] Destruct,
941    {
942        match self {
943            Ok(t) => f(t),
944            Err(_) => U::default(),
945        }
946    }
947
948    /// Maps a `Result<T, E>` to `Result<T, F>` by applying a function to a
949    /// contained [`Err`] value, leaving an [`Ok`] value untouched.
950    ///
951    /// This function can be used to pass through a successful result while handling
952    /// an error.
953    ///
954    ///
955    /// # Examples
956    ///
957    /// ```
958    /// fn stringify(x: u32) -> String { format!("error code: {x}") }
959    ///
960    /// let x: Result<u32, u32> = Ok(2);
961    /// assert_eq!(x.map_err(stringify), Ok(2));
962    ///
963    /// let x: Result<u32, u32> = Err(13);
964    /// assert_eq!(x.map_err(stringify), Err("error code: 13".to_string()));
965    /// ```
966    #[inline]
967    #[stable(feature = "rust1", since = "1.0.0")]
968    #[rustc_const_unstable(feature = "const_result_trait_fn", issue = "144211")]
969    pub const fn map_err<F, O>(self, op: O) -> Result<T, F>
970    where
971        O: [const] FnOnce(E) -> F + [const] Destruct,
972    {
973        match self {
974            Ok(t) => Ok(t),
975            Err(e) => Err(op(e)),
976        }
977    }
978
979    /// Calls a function with a reference to the contained value if [`Ok`].
980    ///
981    /// Returns the original result.
982    ///
983    /// # Examples
984    ///
985    /// ```
986    /// let x: u8 = "4"
987    ///     .parse::<u8>()
988    ///     .inspect(|x| println!("original: {x}"))
989    ///     .map(|x| x.pow(3))
990    ///     .expect("failed to parse number");
991    /// ```
992    #[inline]
993    #[stable(feature = "result_option_inspect", since = "1.76.0")]
994    #[rustc_const_unstable(feature = "const_result_trait_fn", issue = "144211")]
995    pub const fn inspect<F>(self, f: F) -> Self
996    where
997        F: [const] FnOnce(&T) + [const] Destruct,
998    {
999        if let Ok(ref t) = self {
1000            f(t);
1001        }
1002
1003        self
1004    }
1005
1006    /// Calls a function with a reference to the contained value if [`Err`].
1007    ///
1008    /// Returns the original result.
1009    ///
1010    /// # Examples
1011    ///
1012    /// ```
1013    /// use std::{fs, io};
1014    ///
1015    /// fn read() -> io::Result<String> {
1016    ///     fs::read_to_string("address.txt")
1017    ///         .inspect_err(|e| eprintln!("failed to read file: {e}"))
1018    /// }
1019    /// ```
1020    #[inline]
1021    #[stable(feature = "result_option_inspect", since = "1.76.0")]
1022    #[rustc_const_unstable(feature = "const_result_trait_fn", issue = "144211")]
1023    pub const fn inspect_err<F>(self, f: F) -> Self
1024    where
1025        F: [const] FnOnce(&E) + [const] Destruct,
1026    {
1027        if let Err(ref e) = self {
1028            f(e);
1029        }
1030
1031        self
1032    }
1033
1034    /// Converts from `Result<T, E>` (or `&Result<T, E>`) to `Result<&<T as Deref>::Target, &E>`.
1035    ///
1036    /// Coerces the [`Ok`] variant of the original [`Result`] via [`Deref`](crate::ops::Deref)
1037    /// and returns the new [`Result`].
1038    ///
1039    /// # Examples
1040    ///
1041    /// ```
1042    /// let x: Result<String, u32> = Ok("hello".to_string());
1043    /// let y: Result<&str, &u32> = Ok("hello");
1044    /// assert_eq!(x.as_deref(), y);
1045    ///
1046    /// let x: Result<String, u32> = Err(42);
1047    /// let y: Result<&str, &u32> = Err(&42);
1048    /// assert_eq!(x.as_deref(), y);
1049    /// ```
1050    #[inline]
1051    #[stable(feature = "inner_deref", since = "1.47.0")]
1052    #[rustc_const_unstable(feature = "const_convert", issue = "143773")]
1053    pub const fn as_deref(&self) -> Result<&T::Target, &E>
1054    where
1055        T: [const] Deref,
1056    {
1057        self.as_ref().map(Deref::deref)
1058    }
1059
1060    /// Converts from `Result<T, E>` (or `&mut Result<T, E>`) to `Result<&mut <T as DerefMut>::Target, &mut E>`.
1061    ///
1062    /// Coerces the [`Ok`] variant of the original [`Result`] via [`DerefMut`](crate::ops::DerefMut)
1063    /// and returns the new [`Result`].
1064    ///
1065    /// # Examples
1066    ///
1067    /// ```
1068    /// let mut s = "HELLO".to_string();
1069    /// let mut x: Result<String, u32> = Ok("hello".to_string());
1070    /// let y: Result<&mut str, &mut u32> = Ok(&mut s);
1071    /// assert_eq!(x.as_deref_mut().map(|x| { x.make_ascii_uppercase(); x }), y);
1072    ///
1073    /// let mut i = 42;
1074    /// let mut x: Result<String, u32> = Err(42);
1075    /// let y: Result<&mut str, &mut u32> = Err(&mut i);
1076    /// assert_eq!(x.as_deref_mut().map(|x| { x.make_ascii_uppercase(); x }), y);
1077    /// ```
1078    #[inline]
1079    #[stable(feature = "inner_deref", since = "1.47.0")]
1080    #[rustc_const_unstable(feature = "const_convert", issue = "143773")]
1081    pub const fn as_deref_mut(&mut self) -> Result<&mut T::Target, &mut E>
1082    where
1083        T: [const] DerefMut,
1084    {
1085        self.as_mut().map(DerefMut::deref_mut)
1086    }
1087
1088    /////////////////////////////////////////////////////////////////////////
1089    // Iterator constructors
1090    /////////////////////////////////////////////////////////////////////////
1091
1092    /// Returns an iterator over the possibly contained value.
1093    ///
1094    /// The iterator yields one value if the result is [`Result::Ok`], otherwise none.
1095    ///
1096    /// # Examples
1097    ///
1098    /// ```
1099    /// let x: Result<u32, &str> = Ok(7);
1100    /// assert_eq!(x.iter().next(), Some(&7));
1101    ///
1102    /// let x: Result<u32, &str> = Err("nothing!");
1103    /// assert_eq!(x.iter().next(), None);
1104    /// ```
1105    #[inline]
1106    #[stable(feature = "rust1", since = "1.0.0")]
1107    #[rustc_const_unstable(feature = "const_result_trait_fn", issue = "144211")]
1108    // Ferrocene: blocked on Iterator
1109    #[cfg(not(feature = "ferrocene_subset"))]
1110    pub const fn iter(&self) -> Iter<'_, T> {
1111        Iter { inner: self.as_ref().ok() }
1112    }
1113
1114    /// Returns a mutable iterator over the possibly contained value.
1115    ///
1116    /// The iterator yields one value if the result is [`Result::Ok`], otherwise none.
1117    ///
1118    /// # Examples
1119    ///
1120    /// ```
1121    /// let mut x: Result<u32, &str> = Ok(7);
1122    /// match x.iter_mut().next() {
1123    ///     Some(v) => *v = 40,
1124    ///     None => {},
1125    /// }
1126    /// assert_eq!(x, Ok(40));
1127    ///
1128    /// let mut x: Result<u32, &str> = Err("nothing!");
1129    /// assert_eq!(x.iter_mut().next(), None);
1130    /// ```
1131    #[inline]
1132    #[stable(feature = "rust1", since = "1.0.0")]
1133    #[rustc_const_unstable(feature = "const_result_trait_fn", issue = "144211")]
1134    // Ferrocene: blocked on Iterator
1135    #[cfg(not(feature = "ferrocene_subset"))]
1136    pub const fn iter_mut(&mut self) -> IterMut<'_, T> {
1137        IterMut { inner: self.as_mut().ok() }
1138    }
1139
1140    /////////////////////////////////////////////////////////////////////////
1141    // Extract a value
1142    /////////////////////////////////////////////////////////////////////////
1143
1144    /// Returns the contained [`Ok`] value, consuming the `self` value.
1145    ///
1146    /// Because this function may panic, its use is generally discouraged.
1147    /// Instead, prefer to use pattern matching and handle the [`Err`]
1148    /// case explicitly, or call [`unwrap_or`], [`unwrap_or_else`], or
1149    /// [`unwrap_or_default`].
1150    ///
1151    /// [`unwrap_or`]: Result::unwrap_or
1152    /// [`unwrap_or_else`]: Result::unwrap_or_else
1153    /// [`unwrap_or_default`]: Result::unwrap_or_default
1154    ///
1155    /// # Panics
1156    ///
1157    /// Panics if the value is an [`Err`], with a panic message including the
1158    /// passed message, and the content of the [`Err`].
1159    ///
1160    ///
1161    /// # Examples
1162    ///
1163    /// ```should_panic
1164    /// let x: Result<u32, &str> = Err("emergency failure");
1165    /// x.expect("Testing expect"); // panics with `Testing expect: emergency failure`
1166    /// ```
1167    ///
1168    /// # Recommended Message Style
1169    ///
1170    /// We recommend that `expect` messages are used to describe the reason you
1171    /// _expect_ the `Result` should be `Ok`.
1172    ///
1173    /// ```should_panic
1174    /// let path = std::env::var("IMPORTANT_PATH")
1175    ///     .expect("env variable `IMPORTANT_PATH` should be set by `wrapper_script.sh`");
1176    /// ```
1177    ///
1178    /// **Hint**: If you're having trouble remembering how to phrase expect
1179    /// error messages remember to focus on the word "should" as in "env
1180    /// variable should be set by blah" or "the given binary should be available
1181    /// and executable by the current user".
1182    ///
1183    /// For more detail on expect message styles and the reasoning behind our recommendation please
1184    /// refer to the section on ["Common Message
1185    /// Styles"](../../std/error/index.html#common-message-styles) in the
1186    /// [`std::error`](../../std/error/index.html) module docs.
1187    #[inline]
1188    #[track_caller]
1189    #[stable(feature = "result_expect", since = "1.4.0")]
1190    // Ferrocene: blocked on Debug
1191    #[cfg(not(feature = "ferrocene_subset"))]
1192    pub fn expect(
1193        self,
1194        #[cfg(not(feature = "ferrocene_certified_runtime"))] msg: &str,
1195        #[cfg(feature = "ferrocene_certified_runtime")] msg: &'static str,
1196    ) -> T
1197    where
1198        E: fmt::Debug,
1199    {
1200        match self {
1201            Ok(t) => t,
1202            #[cfg(not(feature = "ferrocene_certified_runtime"))]
1203            Err(e) => unwrap_failed(msg, &e),
1204            #[cfg(feature = "ferrocene_certified_runtime")]
1205            Err(_) => crate::panicking::panic(msg),
1206        }
1207    }
1208
1209    /// Returns the contained [`Ok`] value, consuming the `self` value.
1210    ///
1211    /// Because this function may panic, its use is generally discouraged.
1212    /// Panics are meant for unrecoverable errors, and
1213    /// [may abort the entire program][panic-abort].
1214    ///
1215    /// Instead, prefer to use [the `?` (try) operator][try-operator], or pattern matching
1216    /// to handle the [`Err`] case explicitly, or call [`unwrap_or`],
1217    /// [`unwrap_or_else`], or [`unwrap_or_default`].
1218    ///
1219    /// [panic-abort]: https://doc.rust-lang.org/book/ch09-01-unrecoverable-errors-with-panic.html
1220    /// [try-operator]: https://doc.rust-lang.org/book/ch09-02-recoverable-errors-with-result.html#a-shortcut-for-propagating-errors-the--operator
1221    /// [`unwrap_or`]: Result::unwrap_or
1222    /// [`unwrap_or_else`]: Result::unwrap_or_else
1223    /// [`unwrap_or_default`]: Result::unwrap_or_default
1224    ///
1225    /// # Panics
1226    ///
1227    /// Panics if the value is an [`Err`], with a panic message provided by the
1228    /// [`Err`]'s value.
1229    ///
1230    ///
1231    /// # Examples
1232    ///
1233    /// Basic usage:
1234    ///
1235    /// ```
1236    /// let x: Result<u32, &str> = Ok(2);
1237    /// assert_eq!(x.unwrap(), 2);
1238    /// ```
1239    ///
1240    /// ```should_panic
1241    /// let x: Result<u32, &str> = Err("emergency failure");
1242    /// x.unwrap(); // panics with `emergency failure`
1243    /// ```
1244    #[inline(always)]
1245    #[track_caller]
1246    #[stable(feature = "rust1", since = "1.0.0")]
1247    // Ferrocene: blocked on Debug
1248    #[cfg(not(feature = "ferrocene_subset"))]
1249    pub fn unwrap(self) -> T
1250    where
1251        E: fmt::Debug,
1252    {
1253        match self {
1254            Ok(t) => t,
1255            Err(e) => unwrap_failed("called `Result::unwrap()` on an `Err` value", &e),
1256        }
1257    }
1258
1259    /// Returns the contained [`Ok`] value or a default
1260    ///
1261    /// Consumes the `self` argument then, if [`Ok`], returns the contained
1262    /// value, otherwise if [`Err`], returns the default value for that
1263    /// type.
1264    ///
1265    /// # Examples
1266    ///
1267    /// Converts a string to an integer, turning poorly-formed strings
1268    /// into 0 (the default value for integers). [`parse`] converts
1269    /// a string to any other type that implements [`FromStr`], returning an
1270    /// [`Err`] on error.
1271    ///
1272    /// ```
1273    /// let good_year_from_input = "1909";
1274    /// let bad_year_from_input = "190blarg";
1275    /// let good_year = good_year_from_input.parse().unwrap_or_default();
1276    /// let bad_year = bad_year_from_input.parse().unwrap_or_default();
1277    ///
1278    /// assert_eq!(1909, good_year);
1279    /// assert_eq!(0, bad_year);
1280    /// ```
1281    ///
1282    /// [`parse`]: str::parse
1283    /// [`FromStr`]: crate::str::FromStr
1284    #[inline]
1285    #[stable(feature = "result_unwrap_or_default", since = "1.16.0")]
1286    #[rustc_const_unstable(feature = "const_result_trait_fn", issue = "144211")]
1287    pub const fn unwrap_or_default(self) -> T
1288    where
1289        T: [const] Default + [const] Destruct,
1290        E: [const] Destruct,
1291    {
1292        match self {
1293            Ok(x) => x,
1294            Err(_) => Default::default(),
1295        }
1296    }
1297
1298    /// Returns the contained [`Err`] value, consuming the `self` value.
1299    ///
1300    /// # Panics
1301    ///
1302    /// Panics if the value is an [`Ok`], with a panic message including the
1303    /// passed message, and the content of the [`Ok`].
1304    ///
1305    ///
1306    /// # Examples
1307    ///
1308    /// ```should_panic
1309    /// let x: Result<u32, &str> = Ok(10);
1310    /// x.expect_err("Testing expect_err"); // panics with `Testing expect_err: 10`
1311    /// ```
1312    #[inline]
1313    #[track_caller]
1314    #[stable(feature = "result_expect_err", since = "1.17.0")]
1315    // Ferrocene: blocked on Debug
1316    #[cfg(not(feature = "ferrocene_subset"))]
1317    pub fn expect_err(
1318        self,
1319        #[cfg(not(feature = "ferrocene_certified_runtime"))] msg: &str,
1320        #[cfg(feature = "ferrocene_certified_runtime")] msg: &'static str,
1321    ) -> E
1322    where
1323        T: fmt::Debug,
1324    {
1325        match self {
1326            #[cfg(not(feature = "ferrocene_certified_runtime"))]
1327            Ok(t) => unwrap_failed(msg, &t),
1328            #[cfg(feature = "ferrocene_certified_runtime")]
1329            Ok(_) => crate::panicking::panic(msg),
1330            Err(e) => e,
1331        }
1332    }
1333
1334    /// Returns the contained [`Err`] value, consuming the `self` value.
1335    ///
1336    /// # Panics
1337    ///
1338    /// Panics if the value is an [`Ok`], with a custom panic message provided
1339    /// by the [`Ok`]'s value.
1340    ///
1341    /// # Examples
1342    ///
1343    /// ```should_panic
1344    /// let x: Result<u32, &str> = Ok(2);
1345    /// x.unwrap_err(); // panics with `2`
1346    /// ```
1347    ///
1348    /// ```
1349    /// let x: Result<u32, &str> = Err("emergency failure");
1350    /// assert_eq!(x.unwrap_err(), "emergency failure");
1351    /// ```
1352    #[inline]
1353    #[track_caller]
1354    #[stable(feature = "rust1", since = "1.0.0")]
1355    // Ferrocene: blocked on Debug
1356    #[cfg(not(feature = "ferrocene_subset"))]
1357    pub fn unwrap_err(self) -> E
1358    where
1359        T: fmt::Debug,
1360    {
1361        match self {
1362            Ok(t) => unwrap_failed("called `Result::unwrap_err()` on an `Ok` value", &t),
1363            Err(e) => e,
1364        }
1365    }
1366
1367    /// Returns the contained [`Ok`] value, but never panics.
1368    ///
1369    /// Unlike [`unwrap`], this method is known to never panic on the
1370    /// result types it is implemented for. Therefore, it can be used
1371    /// instead of `unwrap` as a maintainability safeguard that will fail
1372    /// to compile if the error type of the `Result` is later changed
1373    /// to an error that can actually occur.
1374    ///
1375    /// [`unwrap`]: Result::unwrap
1376    ///
1377    /// # Examples
1378    ///
1379    /// ```
1380    /// # #![feature(never_type)]
1381    /// # #![feature(unwrap_infallible)]
1382    ///
1383    /// fn only_good_news() -> Result<String, !> {
1384    ///     Ok("this is fine".into())
1385    /// }
1386    ///
1387    /// let s: String = only_good_news().into_ok();
1388    /// println!("{s}");
1389    /// ```
1390    #[unstable(feature = "unwrap_infallible", reason = "newly added", issue = "61695")]
1391    #[inline]
1392    #[rustc_allow_const_fn_unstable(const_precise_live_drops)]
1393    #[rustc_const_unstable(feature = "const_convert", issue = "143773")]
1394    // Ferrocene: blocked on !
1395    #[cfg(not(feature = "ferrocene_subset"))]
1396    pub const fn into_ok(self) -> T
1397    where
1398        E: [const] Into<!>,
1399    {
1400        match self {
1401            Ok(x) => x,
1402            Err(e) => e.into(),
1403        }
1404    }
1405
1406    /// Returns the contained [`Err`] value, but never panics.
1407    ///
1408    /// Unlike [`unwrap_err`], this method is known to never panic on the
1409    /// result types it is implemented for. Therefore, it can be used
1410    /// instead of `unwrap_err` as a maintainability safeguard that will fail
1411    /// to compile if the ok type of the `Result` is later changed
1412    /// to a type that can actually occur.
1413    ///
1414    /// [`unwrap_err`]: Result::unwrap_err
1415    ///
1416    /// # Examples
1417    ///
1418    /// ```
1419    /// # #![feature(never_type)]
1420    /// # #![feature(unwrap_infallible)]
1421    ///
1422    /// fn only_bad_news() -> Result<!, String> {
1423    ///     Err("Oops, it failed".into())
1424    /// }
1425    ///
1426    /// let error: String = only_bad_news().into_err();
1427    /// println!("{error}");
1428    /// ```
1429    #[unstable(feature = "unwrap_infallible", reason = "newly added", issue = "61695")]
1430    #[inline]
1431    #[rustc_allow_const_fn_unstable(const_precise_live_drops)]
1432    #[rustc_const_unstable(feature = "const_convert", issue = "143773")]
1433    // Ferrocene: blocked on !
1434    #[cfg(not(feature = "ferrocene_subset"))]
1435    pub const fn into_err(self) -> E
1436    where
1437        T: [const] Into<!>,
1438    {
1439        match self {
1440            Ok(x) => x.into(),
1441            Err(e) => e,
1442        }
1443    }
1444
1445    ////////////////////////////////////////////////////////////////////////
1446    // Boolean operations on the values, eager and lazy
1447    /////////////////////////////////////////////////////////////////////////
1448
1449    /// Returns `res` if the result is [`Ok`], otherwise returns the [`Err`] value of `self`.
1450    ///
1451    /// Arguments passed to `and` are eagerly evaluated; if you are passing the
1452    /// result of a function call, it is recommended to use [`and_then`], which is
1453    /// lazily evaluated.
1454    ///
1455    /// [`and_then`]: Result::and_then
1456    ///
1457    /// # Examples
1458    ///
1459    /// ```
1460    /// let x: Result<u32, &str> = Ok(2);
1461    /// let y: Result<&str, &str> = Err("late error");
1462    /// assert_eq!(x.and(y), Err("late error"));
1463    ///
1464    /// let x: Result<u32, &str> = Err("early error");
1465    /// let y: Result<&str, &str> = Ok("foo");
1466    /// assert_eq!(x.and(y), Err("early error"));
1467    ///
1468    /// let x: Result<u32, &str> = Err("not a 2");
1469    /// let y: Result<&str, &str> = Err("late error");
1470    /// assert_eq!(x.and(y), Err("not a 2"));
1471    ///
1472    /// let x: Result<u32, &str> = Ok(2);
1473    /// let y: Result<&str, &str> = Ok("different result type");
1474    /// assert_eq!(x.and(y), Ok("different result type"));
1475    /// ```
1476    #[inline]
1477    #[stable(feature = "rust1", since = "1.0.0")]
1478    #[rustc_const_unstable(feature = "const_result_trait_fn", issue = "144211")]
1479    pub const fn and<U>(self, res: Result<U, E>) -> Result<U, E>
1480    where
1481        T: [const] Destruct,
1482        E: [const] Destruct,
1483        U: [const] Destruct,
1484    {
1485        match self {
1486            Ok(_) => res,
1487            Err(e) => Err(e),
1488        }
1489    }
1490
1491    /// Calls `op` if the result is [`Ok`], otherwise returns the [`Err`] value of `self`.
1492    ///
1493    ///
1494    /// This function can be used for control flow based on `Result` values.
1495    ///
1496    /// # Examples
1497    ///
1498    /// ```
1499    /// fn sq_then_to_string(x: u32) -> Result<String, &'static str> {
1500    ///     x.checked_mul(x).map(|sq| sq.to_string()).ok_or("overflowed")
1501    /// }
1502    ///
1503    /// assert_eq!(Ok(2).and_then(sq_then_to_string), Ok(4.to_string()));
1504    /// assert_eq!(Ok(1_000_000).and_then(sq_then_to_string), Err("overflowed"));
1505    /// assert_eq!(Err("not a number").and_then(sq_then_to_string), Err("not a number"));
1506    /// ```
1507    ///
1508    /// Often used to chain fallible operations that may return [`Err`].
1509    ///
1510    /// ```
1511    /// use std::{io::ErrorKind, path::Path};
1512    ///
1513    /// // Note: on Windows "/" maps to "C:\"
1514    /// let root_modified_time = Path::new("/").metadata().and_then(|md| md.modified());
1515    /// assert!(root_modified_time.is_ok());
1516    ///
1517    /// let should_fail = Path::new("/bad/path").metadata().and_then(|md| md.modified());
1518    /// assert!(should_fail.is_err());
1519    /// assert_eq!(should_fail.unwrap_err().kind(), ErrorKind::NotFound);
1520    /// ```
1521    #[inline]
1522    #[stable(feature = "rust1", since = "1.0.0")]
1523    #[rustc_const_unstable(feature = "const_result_trait_fn", issue = "144211")]
1524    #[rustc_confusables("flat_map", "flatmap")]
1525    pub const fn and_then<U, F>(self, op: F) -> Result<U, E>
1526    where
1527        F: [const] FnOnce(T) -> Result<U, E> + [const] Destruct,
1528    {
1529        match self {
1530            Ok(t) => op(t),
1531            Err(e) => Err(e),
1532        }
1533    }
1534
1535    /// Returns `res` if the result is [`Err`], otherwise returns the [`Ok`] value of `self`.
1536    ///
1537    /// Arguments passed to `or` are eagerly evaluated; if you are passing the
1538    /// result of a function call, it is recommended to use [`or_else`], which is
1539    /// lazily evaluated.
1540    ///
1541    /// [`or_else`]: Result::or_else
1542    ///
1543    /// # Examples
1544    ///
1545    /// ```
1546    /// let x: Result<u32, &str> = Ok(2);
1547    /// let y: Result<u32, &str> = Err("late error");
1548    /// assert_eq!(x.or(y), Ok(2));
1549    ///
1550    /// let x: Result<u32, &str> = Err("early error");
1551    /// let y: Result<u32, &str> = Ok(2);
1552    /// assert_eq!(x.or(y), Ok(2));
1553    ///
1554    /// let x: Result<u32, &str> = Err("not a 2");
1555    /// let y: Result<u32, &str> = Err("late error");
1556    /// assert_eq!(x.or(y), Err("late error"));
1557    ///
1558    /// let x: Result<u32, &str> = Ok(2);
1559    /// let y: Result<u32, &str> = Ok(100);
1560    /// assert_eq!(x.or(y), Ok(2));
1561    /// ```
1562    #[inline]
1563    #[stable(feature = "rust1", since = "1.0.0")]
1564    #[rustc_const_unstable(feature = "const_result_trait_fn", issue = "144211")]
1565    pub const fn or<F>(self, res: Result<T, F>) -> Result<T, F>
1566    where
1567        T: [const] Destruct,
1568        E: [const] Destruct,
1569        F: [const] Destruct,
1570    {
1571        match self {
1572            Ok(v) => Ok(v),
1573            Err(_) => res,
1574        }
1575    }
1576
1577    /// Calls `op` if the result is [`Err`], otherwise returns the [`Ok`] value of `self`.
1578    ///
1579    /// This function can be used for control flow based on result values.
1580    ///
1581    ///
1582    /// # Examples
1583    ///
1584    /// ```
1585    /// fn sq(x: u32) -> Result<u32, u32> { Ok(x * x) }
1586    /// fn err(x: u32) -> Result<u32, u32> { Err(x) }
1587    ///
1588    /// assert_eq!(Ok(2).or_else(sq).or_else(sq), Ok(2));
1589    /// assert_eq!(Ok(2).or_else(err).or_else(sq), Ok(2));
1590    /// assert_eq!(Err(3).or_else(sq).or_else(err), Ok(9));
1591    /// assert_eq!(Err(3).or_else(err).or_else(err), Err(3));
1592    /// ```
1593    #[inline]
1594    #[stable(feature = "rust1", since = "1.0.0")]
1595    #[rustc_const_unstable(feature = "const_result_trait_fn", issue = "144211")]
1596    pub const fn or_else<F, O>(self, op: O) -> Result<T, F>
1597    where
1598        O: [const] FnOnce(E) -> Result<T, F> + [const] Destruct,
1599    {
1600        match self {
1601            Ok(t) => Ok(t),
1602            Err(e) => op(e),
1603        }
1604    }
1605
1606    /// Returns the contained [`Ok`] value or a provided default.
1607    ///
1608    /// Arguments passed to `unwrap_or` are eagerly evaluated; if you are passing
1609    /// the result of a function call, it is recommended to use [`unwrap_or_else`],
1610    /// which is lazily evaluated.
1611    ///
1612    /// [`unwrap_or_else`]: Result::unwrap_or_else
1613    ///
1614    /// # Examples
1615    ///
1616    /// ```
1617    /// let default = 2;
1618    /// let x: Result<u32, &str> = Ok(9);
1619    /// assert_eq!(x.unwrap_or(default), 9);
1620    ///
1621    /// let x: Result<u32, &str> = Err("error");
1622    /// assert_eq!(x.unwrap_or(default), default);
1623    /// ```
1624    #[inline]
1625    #[stable(feature = "rust1", since = "1.0.0")]
1626    #[rustc_const_unstable(feature = "const_result_trait_fn", issue = "144211")]
1627    pub const fn unwrap_or(self, default: T) -> T
1628    where
1629        T: [const] Destruct,
1630        E: [const] Destruct,
1631    {
1632        match self {
1633            Ok(t) => t,
1634            Err(_) => default,
1635        }
1636    }
1637
1638    /// Returns the contained [`Ok`] value or computes it from a closure.
1639    ///
1640    ///
1641    /// # Examples
1642    ///
1643    /// ```
1644    /// fn count(x: &str) -> usize { x.len() }
1645    ///
1646    /// assert_eq!(Ok(2).unwrap_or_else(count), 2);
1647    /// assert_eq!(Err("foo").unwrap_or_else(count), 3);
1648    /// ```
1649    #[inline]
1650    #[track_caller]
1651    #[stable(feature = "rust1", since = "1.0.0")]
1652    #[rustc_const_unstable(feature = "const_result_trait_fn", issue = "144211")]
1653    pub const fn unwrap_or_else<F>(self, op: F) -> T
1654    where
1655        F: [const] FnOnce(E) -> T + [const] Destruct,
1656    {
1657        match self {
1658            Ok(t) => t,
1659            Err(e) => op(e),
1660        }
1661    }
1662
1663    /// Returns the contained [`Ok`] value, consuming the `self` value,
1664    /// without checking that the value is not an [`Err`].
1665    ///
1666    /// # Safety
1667    ///
1668    /// Calling this method on an [`Err`] is *[undefined behavior]*.
1669    ///
1670    /// [undefined behavior]: https://doc.rust-lang.org/reference/behavior-considered-undefined.html
1671    ///
1672    /// # Examples
1673    ///
1674    /// ```
1675    /// let x: Result<u32, &str> = Ok(2);
1676    /// assert_eq!(unsafe { x.unwrap_unchecked() }, 2);
1677    /// ```
1678    ///
1679    /// ```no_run
1680    /// let x: Result<u32, &str> = Err("emergency failure");
1681    /// unsafe { x.unwrap_unchecked() }; // Undefined behavior!
1682    /// ```
1683    #[inline]
1684    #[track_caller]
1685    #[stable(feature = "option_result_unwrap_unchecked", since = "1.58.0")]
1686    #[rustc_const_unstable(feature = "const_result_unwrap_unchecked", issue = "148714")]
1687    pub const unsafe fn unwrap_unchecked(self) -> T {
1688        match self {
1689            Ok(t) => t,
1690            #[ferrocene::annotation(
1691                "This line cannot be covered as reaching `unreachable_unchecked` is undefined behavior"
1692            )]
1693            Err(e) => {
1694                // FIXME(const-hack): to avoid E: const Destruct bound
1695                super::mem::forget(e);
1696                // SAFETY: the safety contract must be upheld by the caller.
1697                unsafe { hint::unreachable_unchecked() }
1698            }
1699        }
1700    }
1701
1702    /// Returns the contained [`Err`] value, consuming the `self` value,
1703    /// without checking that the value is not an [`Ok`].
1704    ///
1705    /// # Safety
1706    ///
1707    /// Calling this method on an [`Ok`] is *[undefined behavior]*.
1708    ///
1709    /// [undefined behavior]: https://doc.rust-lang.org/reference/behavior-considered-undefined.html
1710    ///
1711    /// # Examples
1712    ///
1713    /// ```no_run
1714    /// let x: Result<u32, &str> = Ok(2);
1715    /// unsafe { x.unwrap_err_unchecked() }; // Undefined behavior!
1716    /// ```
1717    ///
1718    /// ```
1719    /// let x: Result<u32, &str> = Err("emergency failure");
1720    /// assert_eq!(unsafe { x.unwrap_err_unchecked() }, "emergency failure");
1721    /// ```
1722    #[inline]
1723    #[track_caller]
1724    #[stable(feature = "option_result_unwrap_unchecked", since = "1.58.0")]
1725    pub unsafe fn unwrap_err_unchecked(self) -> E {
1726        match self {
1727            #[ferrocene::annotation(
1728                "This line cannot be covered as reaching `unreachable_unchecked` is undefined behavior"
1729            )]
1730            // SAFETY: the safety contract must be upheld by the caller.
1731            Ok(_) => unsafe { hint::unreachable_unchecked() },
1732            Err(e) => e,
1733        }
1734    }
1735}
1736
1737impl<T, E> Result<&T, E> {
1738    /// Maps a `Result<&T, E>` to a `Result<T, E>` by copying the contents of the
1739    /// `Ok` part.
1740    ///
1741    /// # Examples
1742    ///
1743    /// ```
1744    /// let val = 12;
1745    /// let x: Result<&i32, i32> = Ok(&val);
1746    /// assert_eq!(x, Ok(&12));
1747    /// let copied = x.copied();
1748    /// assert_eq!(copied, Ok(12));
1749    /// ```
1750    #[inline]
1751    #[stable(feature = "result_copied", since = "1.59.0")]
1752    #[rustc_const_stable(feature = "const_result", since = "1.83.0")]
1753    #[rustc_allow_const_fn_unstable(const_precise_live_drops)]
1754    pub const fn copied(self) -> Result<T, E>
1755    where
1756        T: Copy,
1757    {
1758        // FIXME(const-hack): this implementation, which sidesteps using `Result::map` since it's not const
1759        // ready yet, should be reverted when possible to avoid code repetition
1760        match self {
1761            Ok(&v) => Ok(v),
1762            Err(e) => Err(e),
1763        }
1764    }
1765
1766    /// Maps a `Result<&T, E>` to a `Result<T, E>` by cloning the contents of the
1767    /// `Ok` part.
1768    ///
1769    /// # Examples
1770    ///
1771    /// ```
1772    /// let val = 12;
1773    /// let x: Result<&i32, i32> = Ok(&val);
1774    /// assert_eq!(x, Ok(&12));
1775    /// let cloned = x.cloned();
1776    /// assert_eq!(cloned, Ok(12));
1777    /// ```
1778    #[inline]
1779    #[stable(feature = "result_cloned", since = "1.59.0")]
1780    pub fn cloned(self) -> Result<T, E>
1781    where
1782        T: Clone,
1783    {
1784        self.map(|t| t.clone())
1785    }
1786}
1787
1788impl<T, E> Result<&mut T, E> {
1789    /// Maps a `Result<&mut T, E>` to a `Result<T, E>` by copying the contents of the
1790    /// `Ok` part.
1791    ///
1792    /// # Examples
1793    ///
1794    /// ```
1795    /// let mut val = 12;
1796    /// let x: Result<&mut i32, i32> = Ok(&mut val);
1797    /// assert_eq!(x, Ok(&mut 12));
1798    /// let copied = x.copied();
1799    /// assert_eq!(copied, Ok(12));
1800    /// ```
1801    #[inline]
1802    #[stable(feature = "result_copied", since = "1.59.0")]
1803    #[rustc_const_stable(feature = "const_result", since = "1.83.0")]
1804    #[rustc_allow_const_fn_unstable(const_precise_live_drops)]
1805    pub const fn copied(self) -> Result<T, E>
1806    where
1807        T: Copy,
1808    {
1809        // FIXME(const-hack): this implementation, which sidesteps using `Result::map` since it's not const
1810        // ready yet, should be reverted when possible to avoid code repetition
1811        match self {
1812            Ok(&mut v) => Ok(v),
1813            Err(e) => Err(e),
1814        }
1815    }
1816
1817    /// Maps a `Result<&mut T, E>` to a `Result<T, E>` by cloning the contents of the
1818    /// `Ok` part.
1819    ///
1820    /// # Examples
1821    ///
1822    /// ```
1823    /// let mut val = 12;
1824    /// let x: Result<&mut i32, i32> = Ok(&mut val);
1825    /// assert_eq!(x, Ok(&mut 12));
1826    /// let cloned = x.cloned();
1827    /// assert_eq!(cloned, Ok(12));
1828    /// ```
1829    #[inline]
1830    #[stable(feature = "result_cloned", since = "1.59.0")]
1831    pub fn cloned(self) -> Result<T, E>
1832    where
1833        T: Clone,
1834    {
1835        self.map(|t| t.clone())
1836    }
1837}
1838
1839impl<T, E> Result<Option<T>, E> {
1840    /// Transposes a `Result` of an `Option` into an `Option` of a `Result`.
1841    ///
1842    /// `Ok(None)` will be mapped to `None`.
1843    /// `Ok(Some(_))` and `Err(_)` will be mapped to `Some(Ok(_))` and `Some(Err(_))`.
1844    ///
1845    /// # Examples
1846    ///
1847    /// ```
1848    /// #[derive(Debug, Eq, PartialEq)]
1849    /// struct SomeErr;
1850    ///
1851    /// let x: Result<Option<i32>, SomeErr> = Ok(Some(5));
1852    /// let y: Option<Result<i32, SomeErr>> = Some(Ok(5));
1853    /// assert_eq!(x.transpose(), y);
1854    /// ```
1855    #[inline]
1856    #[stable(feature = "transpose_result", since = "1.33.0")]
1857    #[rustc_const_stable(feature = "const_result", since = "1.83.0")]
1858    #[rustc_allow_const_fn_unstable(const_precise_live_drops)]
1859    pub const fn transpose(self) -> Option<Result<T, E>> {
1860        match self {
1861            Ok(Some(x)) => Some(Ok(x)),
1862            Ok(None) => None,
1863            Err(e) => Some(Err(e)),
1864        }
1865    }
1866}
1867
1868impl<T, E> Result<Result<T, E>, E> {
1869    /// Converts from `Result<Result<T, E>, E>` to `Result<T, E>`
1870    ///
1871    /// # Examples
1872    ///
1873    /// ```
1874    /// let x: Result<Result<&'static str, u32>, u32> = Ok(Ok("hello"));
1875    /// assert_eq!(Ok("hello"), x.flatten());
1876    ///
1877    /// let x: Result<Result<&'static str, u32>, u32> = Ok(Err(6));
1878    /// assert_eq!(Err(6), x.flatten());
1879    ///
1880    /// let x: Result<Result<&'static str, u32>, u32> = Err(6);
1881    /// assert_eq!(Err(6), x.flatten());
1882    /// ```
1883    ///
1884    /// Flattening only removes one level of nesting at a time:
1885    ///
1886    /// ```
1887    /// let x: Result<Result<Result<&'static str, u32>, u32>, u32> = Ok(Ok(Ok("hello")));
1888    /// assert_eq!(Ok(Ok("hello")), x.flatten());
1889    /// assert_eq!(Ok("hello"), x.flatten().flatten());
1890    /// ```
1891    #[inline]
1892    #[stable(feature = "result_flattening", since = "1.89.0")]
1893    #[rustc_allow_const_fn_unstable(const_precise_live_drops)]
1894    #[rustc_const_stable(feature = "result_flattening", since = "1.89.0")]
1895    // Ferrocene: blocked on const impl Drop for Result<Result<T, E>>
1896    #[cfg(not(feature = "ferrocene_subset"))]
1897    pub const fn flatten(self) -> Result<T, E> {
1898        // FIXME(const-hack): could be written with `and_then`
1899        match self {
1900            Ok(inner) => inner,
1901            Err(e) => Err(e),
1902        }
1903    }
1904}
1905
1906// This is a separate function to reduce the code size of the methods
1907#[cfg(not(panic = "immediate-abort"))]
1908#[inline(never)]
1909#[cold]
1910#[track_caller]
1911// Ferrocene: blocked on Debug
1912#[cfg(not(feature = "ferrocene_subset"))]
1913fn unwrap_failed(msg: &str, error: &dyn fmt::Debug) -> ! {
1914    panic!("{msg}: {error:?}");
1915}
1916
1917// This is a separate function to avoid constructing a `dyn Debug`
1918// that gets immediately thrown away, since vtables don't get cleaned up
1919// by dead code elimination if a trait object is constructed even if it goes
1920// unused
1921#[cfg(panic = "immediate-abort")]
1922#[inline]
1923#[cold]
1924#[track_caller]
1925// Ferrocene: blocked on Debug
1926#[cfg(not(feature = "ferrocene_subset"))]
1927const fn unwrap_failed<T>(_msg: &str, _error: &T) -> ! {
1928    panic!()
1929}
1930
1931/////////////////////////////////////////////////////////////////////////////
1932// Trait implementations
1933/////////////////////////////////////////////////////////////////////////////
1934
1935#[stable(feature = "rust1", since = "1.0.0")]
1936#[cfg(not(feature = "ferrocene_subset"))]
1937impl<T, E> Clone for Result<T, E>
1938where
1939    T: Clone,
1940    E: Clone,
1941{
1942    #[inline]
1943    fn clone(&self) -> Self {
1944        match self {
1945            Ok(x) => Ok(x.clone()),
1946            Err(x) => Err(x.clone()),
1947        }
1948    }
1949
1950    #[inline]
1951    fn clone_from(&mut self, source: &Self) {
1952        match (self, source) {
1953            (Ok(to), Ok(from)) => to.clone_from(from),
1954            (Err(to), Err(from)) => to.clone_from(from),
1955            (to, from) => *to = from.clone(),
1956        }
1957    }
1958}
1959
1960#[unstable(feature = "ergonomic_clones", issue = "132290")]
1961#[cfg(not(feature = "ferrocene_subset"))]
1962impl<T, E> crate::clone::UseCloned for Result<T, E>
1963where
1964    T: crate::clone::UseCloned,
1965    E: crate::clone::UseCloned,
1966{
1967}
1968
1969#[stable(feature = "rust1", since = "1.0.0")]
1970#[cfg(not(feature = "ferrocene_subset"))]
1971impl<T, E> IntoIterator for Result<T, E> {
1972    type Item = T;
1973    type IntoIter = IntoIter<T>;
1974
1975    /// Returns a consuming iterator over the possibly contained value.
1976    ///
1977    /// The iterator yields one value if the result is [`Result::Ok`], otherwise none.
1978    ///
1979    /// # Examples
1980    ///
1981    /// ```
1982    /// let x: Result<u32, &str> = Ok(5);
1983    /// let v: Vec<u32> = x.into_iter().collect();
1984    /// assert_eq!(v, [5]);
1985    ///
1986    /// let x: Result<u32, &str> = Err("nothing!");
1987    /// let v: Vec<u32> = x.into_iter().collect();
1988    /// assert_eq!(v, []);
1989    /// ```
1990    #[inline]
1991    fn into_iter(self) -> IntoIter<T> {
1992        IntoIter { inner: self.ok() }
1993    }
1994}
1995
1996#[stable(since = "1.4.0", feature = "result_iter")]
1997#[cfg(not(feature = "ferrocene_subset"))]
1998impl<'a, T, E> IntoIterator for &'a Result<T, E> {
1999    type Item = &'a T;
2000    type IntoIter = Iter<'a, T>;
2001
2002    fn into_iter(self) -> Iter<'a, T> {
2003        self.iter()
2004    }
2005}
2006
2007#[stable(since = "1.4.0", feature = "result_iter")]
2008#[cfg(not(feature = "ferrocene_subset"))]
2009impl<'a, T, E> IntoIterator for &'a mut Result<T, E> {
2010    type Item = &'a mut T;
2011    type IntoIter = IterMut<'a, T>;
2012
2013    fn into_iter(self) -> IterMut<'a, T> {
2014        self.iter_mut()
2015    }
2016}
2017
2018/////////////////////////////////////////////////////////////////////////////
2019// The Result Iterators
2020/////////////////////////////////////////////////////////////////////////////
2021
2022/// An iterator over a reference to the [`Ok`] variant of a [`Result`].
2023///
2024/// The iterator yields one value if the result is [`Ok`], otherwise none.
2025///
2026/// Created by [`Result::iter`].
2027#[derive(Debug)]
2028#[stable(feature = "rust1", since = "1.0.0")]
2029#[cfg(not(feature = "ferrocene_subset"))]
2030pub struct Iter<'a, T: 'a> {
2031    inner: Option<&'a T>,
2032}
2033
2034#[stable(feature = "rust1", since = "1.0.0")]
2035#[cfg(not(feature = "ferrocene_subset"))]
2036impl<'a, T> Iterator for Iter<'a, T> {
2037    type Item = &'a T;
2038
2039    #[inline]
2040    fn next(&mut self) -> Option<&'a T> {
2041        self.inner.take()
2042    }
2043    #[inline]
2044    fn size_hint(&self) -> (usize, Option<usize>) {
2045        let n = if self.inner.is_some() { 1 } else { 0 };
2046        (n, Some(n))
2047    }
2048}
2049
2050#[stable(feature = "rust1", since = "1.0.0")]
2051#[cfg(not(feature = "ferrocene_subset"))]
2052impl<'a, T> DoubleEndedIterator for Iter<'a, T> {
2053    #[inline]
2054    fn next_back(&mut self) -> Option<&'a T> {
2055        self.inner.take()
2056    }
2057}
2058
2059#[stable(feature = "rust1", since = "1.0.0")]
2060#[cfg(not(feature = "ferrocene_subset"))]
2061impl<T> ExactSizeIterator for Iter<'_, T> {}
2062
2063#[stable(feature = "fused", since = "1.26.0")]
2064#[cfg(not(feature = "ferrocene_subset"))]
2065impl<T> FusedIterator for Iter<'_, T> {}
2066
2067#[unstable(feature = "trusted_len", issue = "37572")]
2068#[cfg(not(feature = "ferrocene_subset"))]
2069unsafe impl<A> TrustedLen for Iter<'_, A> {}
2070
2071#[stable(feature = "rust1", since = "1.0.0")]
2072#[cfg(not(feature = "ferrocene_subset"))]
2073impl<T> Clone for Iter<'_, T> {
2074    #[inline]
2075    fn clone(&self) -> Self {
2076        Iter { inner: self.inner }
2077    }
2078}
2079
2080/// An iterator over a mutable reference to the [`Ok`] variant of a [`Result`].
2081///
2082/// Created by [`Result::iter_mut`].
2083#[derive(Debug)]
2084#[stable(feature = "rust1", since = "1.0.0")]
2085#[cfg(not(feature = "ferrocene_subset"))]
2086pub struct IterMut<'a, T: 'a> {
2087    inner: Option<&'a mut T>,
2088}
2089
2090#[stable(feature = "rust1", since = "1.0.0")]
2091#[cfg(not(feature = "ferrocene_subset"))]
2092impl<'a, T> Iterator for IterMut<'a, T> {
2093    type Item = &'a mut T;
2094
2095    #[inline]
2096    fn next(&mut self) -> Option<&'a mut T> {
2097        self.inner.take()
2098    }
2099    #[inline]
2100    fn size_hint(&self) -> (usize, Option<usize>) {
2101        let n = if self.inner.is_some() { 1 } else { 0 };
2102        (n, Some(n))
2103    }
2104}
2105
2106#[stable(feature = "rust1", since = "1.0.0")]
2107#[cfg(not(feature = "ferrocene_subset"))]
2108impl<'a, T> DoubleEndedIterator for IterMut<'a, T> {
2109    #[inline]
2110    fn next_back(&mut self) -> Option<&'a mut T> {
2111        self.inner.take()
2112    }
2113}
2114
2115#[stable(feature = "rust1", since = "1.0.0")]
2116#[cfg(not(feature = "ferrocene_subset"))]
2117impl<T> ExactSizeIterator for IterMut<'_, T> {}
2118
2119#[stable(feature = "fused", since = "1.26.0")]
2120#[cfg(not(feature = "ferrocene_subset"))]
2121impl<T> FusedIterator for IterMut<'_, T> {}
2122
2123#[unstable(feature = "trusted_len", issue = "37572")]
2124#[cfg(not(feature = "ferrocene_subset"))]
2125unsafe impl<A> TrustedLen for IterMut<'_, A> {}
2126
2127/// An iterator over the value in a [`Ok`] variant of a [`Result`].
2128///
2129/// The iterator yields one value if the result is [`Ok`], otherwise none.
2130///
2131/// This struct is created by the [`into_iter`] method on
2132/// [`Result`] (provided by the [`IntoIterator`] trait).
2133///
2134/// [`into_iter`]: IntoIterator::into_iter
2135#[derive(Clone, Debug)]
2136#[stable(feature = "rust1", since = "1.0.0")]
2137#[cfg(not(feature = "ferrocene_subset"))]
2138pub struct IntoIter<T> {
2139    inner: Option<T>,
2140}
2141
2142#[stable(feature = "rust1", since = "1.0.0")]
2143#[cfg(not(feature = "ferrocene_subset"))]
2144impl<T> Iterator for IntoIter<T> {
2145    type Item = T;
2146
2147    #[inline]
2148    fn next(&mut self) -> Option<T> {
2149        self.inner.take()
2150    }
2151    #[inline]
2152    fn size_hint(&self) -> (usize, Option<usize>) {
2153        let n = if self.inner.is_some() { 1 } else { 0 };
2154        (n, Some(n))
2155    }
2156}
2157
2158#[stable(feature = "rust1", since = "1.0.0")]
2159#[cfg(not(feature = "ferrocene_subset"))]
2160impl<T> DoubleEndedIterator for IntoIter<T> {
2161    #[inline]
2162    fn next_back(&mut self) -> Option<T> {
2163        self.inner.take()
2164    }
2165}
2166
2167#[stable(feature = "rust1", since = "1.0.0")]
2168#[cfg(not(feature = "ferrocene_subset"))]
2169impl<T> ExactSizeIterator for IntoIter<T> {}
2170
2171#[stable(feature = "fused", since = "1.26.0")]
2172#[cfg(not(feature = "ferrocene_subset"))]
2173impl<T> FusedIterator for IntoIter<T> {}
2174
2175#[unstable(feature = "trusted_len", issue = "37572")]
2176#[cfg(not(feature = "ferrocene_subset"))]
2177unsafe impl<A> TrustedLen for IntoIter<A> {}
2178
2179/////////////////////////////////////////////////////////////////////////////
2180// FromIterator
2181/////////////////////////////////////////////////////////////////////////////
2182
2183#[stable(feature = "rust1", since = "1.0.0")]
2184#[cfg(not(feature = "ferrocene_subset"))]
2185impl<A, E, V: FromIterator<A>> FromIterator<Result<A, E>> for Result<V, E> {
2186    /// Takes each element in the `Iterator`: if it is an `Err`, no further
2187    /// elements are taken, and the `Err` is returned. Should no `Err` occur, a
2188    /// container with the values of each `Result` is returned.
2189    ///
2190    /// Here is an example which increments every integer in a vector,
2191    /// checking for overflow:
2192    ///
2193    /// ```
2194    /// let v = vec![1, 2];
2195    /// let res: Result<Vec<u32>, &'static str> = v.iter().map(|x: &u32|
2196    ///     x.checked_add(1).ok_or("Overflow!")
2197    /// ).collect();
2198    /// assert_eq!(res, Ok(vec![2, 3]));
2199    /// ```
2200    ///
2201    /// Here is another example that tries to subtract one from another list
2202    /// of integers, this time checking for underflow:
2203    ///
2204    /// ```
2205    /// let v = vec![1, 2, 0];
2206    /// let res: Result<Vec<u32>, &'static str> = v.iter().map(|x: &u32|
2207    ///     x.checked_sub(1).ok_or("Underflow!")
2208    /// ).collect();
2209    /// assert_eq!(res, Err("Underflow!"));
2210    /// ```
2211    ///
2212    /// Here is a variation on the previous example, showing that no
2213    /// further elements are taken from `iter` after the first `Err`.
2214    ///
2215    /// ```
2216    /// let v = vec![3, 2, 1, 10];
2217    /// let mut shared = 0;
2218    /// let res: Result<Vec<u32>, &'static str> = v.iter().map(|x: &u32| {
2219    ///     shared += x;
2220    ///     x.checked_sub(2).ok_or("Underflow!")
2221    /// }).collect();
2222    /// assert_eq!(res, Err("Underflow!"));
2223    /// assert_eq!(shared, 6);
2224    /// ```
2225    ///
2226    /// Since the third element caused an underflow, no further elements were taken,
2227    /// so the final value of `shared` is 6 (= `3 + 2 + 1`), not 16.
2228    #[inline]
2229    fn from_iter<I: IntoIterator<Item = Result<A, E>>>(iter: I) -> Result<V, E> {
2230        iter::try_process(iter.into_iter(), |i| i.collect())
2231    }
2232}
2233
2234#[unstable(feature = "try_trait_v2", issue = "84277", old_name = "try_trait")]
2235#[rustc_const_unstable(feature = "const_try", issue = "74935")]
2236impl<T, E> const ops::Try for Result<T, E> {
2237    type Output = T;
2238    type Residual = Result<convert::Infallible, E>;
2239
2240    #[inline]
2241    fn from_output(output: Self::Output) -> Self {
2242        Ok(output)
2243    }
2244
2245    #[inline]
2246    fn branch(self) -> ControlFlow<Self::Residual, Self::Output> {
2247        match self {
2248            Ok(v) => ControlFlow::Continue(v),
2249            Err(e) => ControlFlow::Break(Err(e)),
2250        }
2251    }
2252}
2253
2254#[unstable(feature = "try_trait_v2", issue = "84277", old_name = "try_trait")]
2255#[rustc_const_unstable(feature = "const_try", issue = "74935")]
2256impl<T, E, F: [const] From<E>> const ops::FromResidual<Result<convert::Infallible, E>>
2257    for Result<T, F>
2258{
2259    #[inline]
2260    #[track_caller]
2261    fn from_residual(residual: Result<convert::Infallible, E>) -> Self {
2262        match residual {
2263            Err(e) => Err(From::from(e)),
2264        }
2265    }
2266}
2267#[diagnostic::do_not_recommend]
2268#[unstable(feature = "try_trait_v2_yeet", issue = "96374")]
2269#[rustc_const_unstable(feature = "const_try", issue = "74935")]
2270#[cfg(not(feature = "ferrocene_subset"))]
2271impl<T, E, F: [const] From<E>> const ops::FromResidual<ops::Yeet<E>> for Result<T, F> {
2272    #[inline]
2273    fn from_residual(ops::Yeet(e): ops::Yeet<E>) -> Self {
2274        Err(From::from(e))
2275    }
2276}
2277
2278#[unstable(feature = "try_trait_v2_residual", issue = "91285")]
2279#[rustc_const_unstable(feature = "const_try", issue = "74935")]
2280impl<T, E> const ops::Residual<T> for Result<convert::Infallible, E> {
2281    type TryType = Result<T, E>;
2282}