Skip to main content

core/
result.rs

1//! Error handling with the `Result` type.
2//!
3//! [`Result<T, E>`][`Result`] is the type used for returning and propagating
4//! errors. It is an enum with the variants, [`Ok(T)`], representing
5//! success and containing a value, and [`Err(E)`], representing error
6//! and containing an error value.
7//!
8//! ```
9//! # #[allow(dead_code)]
10//! enum Result<T, E> {
11//!    Ok(T),
12//!    Err(E),
13//! }
14//! ```
15//!
16//! Functions return [`Result`] whenever errors are expected and
17//! recoverable. In the `std` crate, [`Result`] is most prominently used
18//! for [I/O](../../std/io/index.html).
19//!
20//! A simple function returning [`Result`] might be
21//! defined and used like so:
22//!
23//! ```
24//! #[derive(Debug)]
25//! enum Version { Version1, Version2 }
26//!
27//! fn parse_version(header: &[u8]) -> Result<Version, &'static str> {
28//!     match header.get(0) {
29//!         None => Err("invalid header length"),
30//!         Some(&1) => Ok(Version::Version1),
31//!         Some(&2) => Ok(Version::Version2),
32//!         Some(_) => Err("invalid version"),
33//!     }
34//! }
35//!
36//! let version = parse_version(&[1, 2, 3, 4]);
37//! match version {
38//!     Ok(v) => println!("working with version: {v:?}"),
39//!     Err(e) => println!("error parsing header: {e:?}"),
40//! }
41//! ```
42//!
43//! Pattern matching on [`Result`]s is clear and straightforward for
44//! simple cases, but [`Result`] comes with some convenience methods
45//! that make working with it more succinct.
46//!
47//! ```
48//! // The `is_ok` and `is_err` methods do what they say.
49//! let good_result: Result<i32, i32> = Ok(10);
50//! let bad_result: Result<i32, i32> = Err(10);
51//! assert!(good_result.is_ok() && !good_result.is_err());
52//! assert!(bad_result.is_err() && !bad_result.is_ok());
53//!
54//! // `map` and `map_err` consume the `Result` and produce another.
55//! let good_result: Result<i32, i32> = good_result.map(|i| i + 1);
56//! let bad_result: Result<i32, i32> = bad_result.map_err(|i| i - 1);
57//! assert_eq!(good_result, Ok(11));
58//! assert_eq!(bad_result, Err(9));
59//!
60//! // Use `and_then` to continue the computation.
61//! let good_result: Result<bool, i32> = good_result.and_then(|i| Ok(i == 11));
62//! assert_eq!(good_result, Ok(true));
63//!
64//! // Use `or_else` to handle the error.
65//! let bad_result: Result<i32, i32> = bad_result.or_else(|i| Ok(i + 20));
66//! assert_eq!(bad_result, Ok(29));
67//!
68//! // Consume the result and return the contents with `unwrap`.
69//! let final_awesome_result = good_result.unwrap();
70//! assert!(final_awesome_result)
71//! ```
72//!
73//! # Results must be used
74//!
75//! A common problem with using return values to indicate errors is
76//! that it is easy to ignore the return value, thus failing to handle
77//! the error. [`Result`] is annotated with the `#[must_use]` attribute,
78//! which will cause the compiler to issue a warning when a Result
79//! value is ignored. This makes [`Result`] especially useful with
80//! functions that may encounter errors but don't otherwise return a
81//! useful value.
82//!
83//! Consider the [`write_all`] method defined for I/O types
84//! by the [`Write`] trait:
85//!
86//! ```
87//! use std::io;
88//!
89//! trait Write {
90//!     fn write_all(&mut self, bytes: &[u8]) -> Result<(), io::Error>;
91//! }
92//! ```
93//!
94//! *Note: The actual definition of [`Write`] uses [`io::Result`], which
95//! is just a synonym for <code>[Result]<T, [io::Error]></code>.*
96//!
97//! This method doesn't produce a value, but the write may
98//! fail. It's crucial to handle the error case, and *not* write
99//! something like this:
100//!
101//! ```no_run
102//! # #![allow(unused_must_use)] // \o/
103//! use std::fs::File;
104//! use std::io::prelude::*;
105//!
106//! let mut file = File::create("valuable_data.txt").unwrap();
107//! // If `write_all` errors, then we'll never know, because the return
108//! // value is ignored.
109//! file.write_all(b"important message");
110//! ```
111//!
112//! If you *do* write that in Rust, the compiler will give you a
113//! warning (by default, controlled by the `unused_must_use` lint).
114//!
115//! You might instead, if you don't want to handle the error, simply
116//! assert success with [`expect`]. This will panic if the
117//! write fails, providing a marginally useful message indicating why:
118//!
119//! ```no_run
120//! use std::fs::File;
121//! use std::io::prelude::*;
122//!
123//! let mut file = File::create("valuable_data.txt").unwrap();
124//! file.write_all(b"important message").expect("failed to write message");
125//! ```
126//!
127//! You might also simply assert success:
128//!
129//! ```no_run
130//! # use std::fs::File;
131//! # use std::io::prelude::*;
132//! # let mut file = File::create("valuable_data.txt").unwrap();
133//! assert!(file.write_all(b"important message").is_ok());
134//! ```
135//!
136//! Or propagate the error up the call stack with [`?`]:
137//!
138//! ```
139//! # use std::fs::File;
140//! # use std::io::prelude::*;
141//! # use std::io;
142//! # #[allow(dead_code)]
143//! fn write_message() -> io::Result<()> {
144//!     let mut file = File::create("valuable_data.txt")?;
145//!     file.write_all(b"important message")?;
146//!     Ok(())
147//! }
148//! ```
149//!
150//! # The question mark operator, `?`
151//!
152//! When writing code that calls many functions that return the
153//! [`Result`] type, the error handling can be tedious. The question mark
154//! operator, [`?`], hides some of the boilerplate of propagating errors
155//! up the call stack.
156//!
157//! It replaces this:
158//!
159//! ```
160//! # #![allow(dead_code)]
161//! use std::fs::File;
162//! use std::io::prelude::*;
163//! use std::io;
164//!
165//! struct Info {
166//!     name: String,
167//!     age: i32,
168//!     rating: i32,
169//! }
170//!
171//! fn write_info(info: &Info) -> io::Result<()> {
172//!     // Early return on error
173//!     let mut file = match File::create("my_best_friends.txt") {
174//!            Err(e) => return Err(e),
175//!            Ok(f) => f,
176//!     };
177//!     if let Err(e) = file.write_all(format!("name: {}\n", info.name).as_bytes()) {
178//!         return Err(e)
179//!     }
180//!     if let Err(e) = file.write_all(format!("age: {}\n", info.age).as_bytes()) {
181//!         return Err(e)
182//!     }
183//!     if let Err(e) = file.write_all(format!("rating: {}\n", info.rating).as_bytes()) {
184//!         return Err(e)
185//!     }
186//!     Ok(())
187//! }
188//! ```
189//!
190//! With this:
191//!
192//! ```
193//! # #![allow(dead_code)]
194//! use std::fs::File;
195//! use std::io::prelude::*;
196//! use std::io;
197//!
198//! struct Info {
199//!     name: String,
200//!     age: i32,
201//!     rating: i32,
202//! }
203//!
204//! fn write_info(info: &Info) -> io::Result<()> {
205//!     let mut file = File::create("my_best_friends.txt")?;
206//!     // Early return on error
207//!     file.write_all(format!("name: {}\n", info.name).as_bytes())?;
208//!     file.write_all(format!("age: {}\n", info.age).as_bytes())?;
209//!     file.write_all(format!("rating: {}\n", info.rating).as_bytes())?;
210//!     Ok(())
211//! }
212//! ```
213//!
214//! *It's much nicer!*
215//!
216//! Ending the expression with [`?`] will result in the [`Ok`]'s unwrapped value, unless the result
217//! is [`Err`], in which case [`Err`] is returned early from the enclosing function.
218//!
219//! [`?`] can be used in functions that return [`Result`] because of the
220//! early return of [`Err`] that it provides.
221//!
222//! [`expect`]: Result::expect
223//! [`Write`]: ../../std/io/trait.Write.html "io::Write"
224//! [`write_all`]: ../../std/io/trait.Write.html#method.write_all "io::Write::write_all"
225//! [`io::Result`]: ../../std/io/type.Result.html "io::Result"
226//! [`?`]: crate::ops::Try
227//! [`Ok(T)`]: Ok
228//! [`Err(E)`]: Err
229//! [io::Error]: ../../std/io/struct.Error.html "io::Error"
230//!
231//! # Representation
232//!
233//! In some cases, [`Result<T, E>`] comes with size, alignment, and ABI
234//! guarantees. Specifically, one of either the `T` or `E` type must be a type
235//! that qualifies for the `Option` [representation guarantees][opt-rep] (let's
236//! call that type `I`), and the *other* type is a zero-sized type with
237//! alignment 1 (a "1-ZST").
238//!
239//! If that is the case, then `Result<T, E>` has the same size, alignment, and
240//! [function call ABI] as `I` (and therefore, as `Option<I>`). If `I` is `T`,
241//! it is therefore sound to transmute a value `t` of type `I` to type
242//! `Result<T, E>` (producing the value `Ok(t)`) and to transmute a value
243//! `Ok(t)` of type `Result<T, E>` to type `I` (producing the value `t`). If `I`
244//! is `E`, the same applies with `Ok` replaced by `Err`.
245//!
246//! For example, `NonZeroI32` qualifies for the `Option` representation
247//! guarantees and `()` is a zero-sized type with alignment 1. This means that
248//! both `Result<NonZeroI32, ()>` and `Result<(), NonZeroI32>` have the same
249//! size, alignment, and ABI as `NonZeroI32` (and `Option<NonZeroI32>`). The
250//! only difference between these is in the implied semantics:
251//!
252//! * `Option<NonZeroI32>` is "a non-zero i32 might be present"
253//! * `Result<NonZeroI32, ()>` is "a non-zero i32 success result, if any"
254//! * `Result<(), NonZeroI32>` is "a non-zero i32 error result, if any"
255//!
256//! [opt-rep]: ../option/index.html#representation "Option Representation"
257//! [function call ABI]: ../primitive.fn.html#abi-compatibility
258//!
259//! # Method overview
260//!
261//! In addition to working with pattern matching, [`Result`] provides a
262//! wide variety of different methods.
263//!
264//! ## Querying the variant
265//!
266//! The [`is_ok`] and [`is_err`] methods return [`true`] if the [`Result`]
267//! is [`Ok`] or [`Err`], respectively.
268//!
269//! The [`is_ok_and`] and [`is_err_and`] methods apply the provided function
270//! to the contents of the [`Result`] to produce a boolean value. If the [`Result`] does not have the expected variant
271//! then [`false`] is returned instead without executing the function.
272//!
273//! [`is_err`]: Result::is_err
274//! [`is_ok`]: Result::is_ok
275//! [`is_ok_and`]: Result::is_ok_and
276//! [`is_err_and`]: Result::is_err_and
277//!
278//! ## Adapters for working with references
279//!
280//! * [`as_ref`] converts from `&Result<T, E>` to `Result<&T, &E>`
281//! * [`as_mut`] converts from `&mut Result<T, E>` to `Result<&mut T, &mut E>`
282//! * [`as_deref`] converts from `&Result<T, E>` to `Result<&T::Target, &E>`
283//! * [`as_deref_mut`] converts from `&mut Result<T, E>` to
284//!   `Result<&mut T::Target, &mut E>`
285//!
286//! [`as_deref`]: Result::as_deref
287//! [`as_deref_mut`]: Result::as_deref_mut
288//! [`as_mut`]: Result::as_mut
289//! [`as_ref`]: Result::as_ref
290//!
291//! ## Extracting contained values
292//!
293//! These methods extract the contained value in a [`Result<T, E>`] when it
294//! is the [`Ok`] variant. If the [`Result`] is [`Err`]:
295//!
296//! * [`expect`] panics with a provided custom message
297//! * [`unwrap`] panics with a generic message
298//! * [`unwrap_or`] returns the provided default value
299//! * [`unwrap_or_default`] returns the default value of the type `T`
300//!   (which must implement the [`Default`] trait)
301//! * [`unwrap_or_else`] returns the result of evaluating the provided
302//!   function
303//! * [`unwrap_unchecked`] produces *[undefined behavior]*
304//!
305//! The panicking methods [`expect`] and [`unwrap`] require `E` to
306//! implement the [`Debug`] trait.
307//!
308//! [`Debug`]: crate::fmt::Debug
309//! [`expect`]: Result::expect
310//! [`unwrap`]: Result::unwrap
311//! [`unwrap_or`]: Result::unwrap_or
312//! [`unwrap_or_default`]: Result::unwrap_or_default
313//! [`unwrap_or_else`]: Result::unwrap_or_else
314//! [`unwrap_unchecked`]: Result::unwrap_unchecked
315//! [undefined behavior]: https://doc.rust-lang.org/reference/behavior-considered-undefined.html
316//!
317//! These methods extract the contained value in a [`Result<T, E>`] when it
318//! is the [`Err`] variant. They require `T` to implement the [`Debug`]
319//! trait. If the [`Result`] is [`Ok`]:
320//!
321//! * [`expect_err`] panics with a provided custom message
322//! * [`unwrap_err`] panics with a generic message
323//! * [`unwrap_err_unchecked`] produces *[undefined behavior]*
324//!
325//! [`Debug`]: crate::fmt::Debug
326//! [`expect_err`]: Result::expect_err
327//! [`unwrap_err`]: Result::unwrap_err
328//! [`unwrap_err_unchecked`]: Result::unwrap_err_unchecked
329//! [undefined behavior]: https://doc.rust-lang.org/reference/behavior-considered-undefined.html
330//!
331//! ## Transforming contained values
332//!
333//! These methods transform [`Result`] to [`Option`]:
334//!
335//! * [`err`][Result::err] transforms [`Result<T, E>`] into [`Option<E>`],
336//!   mapping [`Err(e)`] to [`Some(e)`] and [`Ok(v)`] to [`None`]
337//! * [`ok`][Result::ok] transforms [`Result<T, E>`] into [`Option<T>`],
338//!   mapping [`Ok(v)`] to [`Some(v)`] and [`Err(e)`] to [`None`]
339//! * [`transpose`] transposes a [`Result`] of an [`Option`] into an
340//!   [`Option`] of a [`Result`]
341//!
342// Do NOT add link reference definitions for `err` or `ok`, because they
343// will generate numerous incorrect URLs for `Err` and `Ok` elsewhere, due
344// to case folding.
345//!
346//! [`Err(e)`]: Err
347//! [`Ok(v)`]: Ok
348//! [`Some(e)`]: Option::Some
349//! [`Some(v)`]: Option::Some
350//! [`transpose`]: Result::transpose
351//!
352//! These methods transform the contained value of the [`Ok`] variant:
353//!
354//! * [`map`] transforms [`Result<T, E>`] into [`Result<U, E>`] by applying
355//!   the provided function to the contained value of [`Ok`] and leaving
356//!   [`Err`] values unchanged
357//! * [`inspect`] takes ownership of the [`Result`], applies the
358//!   provided function to the contained value by reference,
359//!   and then returns the [`Result`]
360//!
361//! [`map`]: Result::map
362//! [`inspect`]: Result::inspect
363//!
364//! These methods transform the contained value of the [`Err`] variant:
365//!
366//! * [`map_err`] transforms [`Result<T, E>`] into [`Result<T, F>`] by
367//!   applying the provided function to the contained value of [`Err`] and
368//!   leaving [`Ok`] values unchanged
369//! * [`inspect_err`] takes ownership of the [`Result`], applies the
370//!   provided function to the contained value of [`Err`] by reference,
371//!   and then returns the [`Result`]
372//!
373//! [`map_err`]: Result::map_err
374//! [`inspect_err`]: Result::inspect_err
375//!
376//! These methods transform a [`Result<T, E>`] into a value of a possibly
377//! different type `U`:
378//!
379//! * [`map_or`] applies the provided function to the contained value of
380//!   [`Ok`], or returns the provided default value if the [`Result`] is
381//!   [`Err`]
382//! * [`map_or_else`] applies the provided function to the contained value
383//!   of [`Ok`], or applies the provided default fallback function to the
384//!   contained value of [`Err`]
385//!
386//! [`map_or`]: Result::map_or
387//! [`map_or_else`]: Result::map_or_else
388//!
389//! ## Boolean operators
390//!
391//! These methods treat the [`Result`] as a boolean value, where [`Ok`]
392//! acts like [`true`] and [`Err`] acts like [`false`]. There are two
393//! categories of these methods: ones that take a [`Result`] as input, and
394//! ones that take a function as input (to be lazily evaluated).
395//!
396//! The [`and`] and [`or`] methods take another [`Result`] as input, and
397//! produce a [`Result`] as output. The [`and`] method can produce a
398//! [`Result<U, E>`] value having a different inner type `U` than
399//! [`Result<T, E>`]. The [`or`] method can produce a [`Result<T, F>`]
400//! value having a different error type `F` than [`Result<T, E>`].
401//!
402//! | method  | self     | input     | output   |
403//! |---------|----------|-----------|----------|
404//! | [`and`] | `Err(e)` | (ignored) | `Err(e)` |
405//! | [`and`] | `Ok(x)`  | `Err(d)`  | `Err(d)` |
406//! | [`and`] | `Ok(x)`  | `Ok(y)`   | `Ok(y)`  |
407//! | [`or`]  | `Err(e)` | `Err(d)`  | `Err(d)` |
408//! | [`or`]  | `Err(e)` | `Ok(y)`   | `Ok(y)`  |
409//! | [`or`]  | `Ok(x)`  | (ignored) | `Ok(x)`  |
410//!
411//! [`and`]: Result::and
412//! [`or`]: Result::or
413//!
414//! The [`and_then`] and [`or_else`] methods take a function as input, and
415//! only evaluate the function when they need to produce a new value. The
416//! [`and_then`] method can produce a [`Result<U, E>`] value having a
417//! different inner type `U` than [`Result<T, E>`]. The [`or_else`] method
418//! can produce a [`Result<T, F>`] value having a different error type `F`
419//! than [`Result<T, E>`].
420//!
421//! | method       | self     | function input | function result | output   |
422//! |--------------|----------|----------------|-----------------|----------|
423//! | [`and_then`] | `Err(e)` | (not provided) | (not evaluated) | `Err(e)` |
424//! | [`and_then`] | `Ok(x)`  | `x`            | `Err(d)`        | `Err(d)` |
425//! | [`and_then`] | `Ok(x)`  | `x`            | `Ok(y)`         | `Ok(y)`  |
426//! | [`or_else`]  | `Err(e)` | `e`            | `Err(d)`        | `Err(d)` |
427//! | [`or_else`]  | `Err(e)` | `e`            | `Ok(y)`         | `Ok(y)`  |
428//! | [`or_else`]  | `Ok(x)`  | (not provided) | (not evaluated) | `Ok(x)`  |
429//!
430//! [`and_then`]: Result::and_then
431//! [`or_else`]: Result::or_else
432//!
433//! ## Comparison operators
434//!
435//! If `T` and `E` both implement [`PartialOrd`] then [`Result<T, E>`] will
436//! derive its [`PartialOrd`] implementation.  With this order, an [`Ok`]
437//! compares as less than any [`Err`], while two [`Ok`] or two [`Err`]
438//! compare as their contained values would in `T` or `E` respectively.  If `T`
439//! and `E` both also implement [`Ord`], then so does [`Result<T, E>`].
440//!
441//! ```
442//! assert!(Ok(1) < Err(0));
443//! let x: Result<i32, ()> = Ok(0);
444//! let y = Ok(1);
445//! assert!(x < y);
446//! let x: Result<(), i32> = Err(0);
447//! let y = Err(1);
448//! assert!(x < y);
449//! ```
450//!
451//! ## Iterating over `Result`
452//!
453//! A [`Result`] can be iterated over. This can be helpful if you need an
454//! iterator that is conditionally empty. The iterator will either produce
455//! a single value (when the [`Result`] is [`Ok`]), or produce no values
456//! (when the [`Result`] is [`Err`]). For example, [`into_iter`] acts like
457//! [`once(v)`] if the [`Result`] is [`Ok(v)`], and like [`empty()`] if the
458//! [`Result`] is [`Err`].
459//!
460//! [`Ok(v)`]: Ok
461//! [`empty()`]: crate::iter::empty
462//! [`once(v)`]: crate::iter::once
463//!
464//! Iterators over [`Result<T, E>`] come in three types:
465//!
466//! * [`into_iter`] consumes the [`Result`] and produces the contained
467//!   value
468//! * [`iter`] produces an immutable reference of type `&T` to the
469//!   contained value
470//! * [`iter_mut`] produces a mutable reference of type `&mut T` to the
471//!   contained value
472//!
473//! See [Iterating over `Option`] for examples of how this can be useful.
474//!
475//! [Iterating over `Option`]: crate::option#iterating-over-option
476//! [`into_iter`]: Result::into_iter
477//! [`iter`]: Result::iter
478//! [`iter_mut`]: Result::iter_mut
479//!
480//! You might want to use an iterator chain to do multiple instances of an
481//! operation that can fail, but would like to ignore failures while
482//! continuing to process the successful results. In this example, we take
483//! advantage of the iterable nature of [`Result`] to select only the
484//! [`Ok`] values using [`flatten`][Iterator::flatten].
485//!
486//! ```
487//! # use std::str::FromStr;
488//! let mut results = vec![];
489//! let mut errs = vec![];
490//! let nums: Vec<_> = ["17", "not a number", "99", "-27", "768"]
491//!    .into_iter()
492//!    .map(u8::from_str)
493//!    // Save clones of the raw `Result` values to inspect
494//!    .inspect(|x| results.push(x.clone()))
495//!    // Challenge: explain how this captures only the `Err` values
496//!    .inspect(|x| errs.extend(x.clone().err()))
497//!    .flatten()
498//!    .collect();
499//! assert_eq!(errs.len(), 3);
500//! assert_eq!(nums, [17, 99]);
501//! println!("results {results:?}");
502//! println!("errs {errs:?}");
503//! println!("nums {nums:?}");
504//! ```
505//!
506//! ## Collecting into `Result`
507//!
508//! [`Result`] implements the [`FromIterator`][impl-FromIterator] trait,
509//! which allows an iterator over [`Result`] values to be collected into a
510//! [`Result`] of a collection of each contained value of the original
511//! [`Result`] values, or [`Err`] if any of the elements was [`Err`].
512//!
513//! [impl-FromIterator]: Result#impl-FromIterator%3CResult%3CA,+E%3E%3E-for-Result%3CV,+E%3E
514//!
515//! ```
516//! let v = [Ok(2), Ok(4), Err("err!"), Ok(8)];
517//! let res: Result<Vec<_>, &str> = v.into_iter().collect();
518//! assert_eq!(res, Err("err!"));
519//! let v = [Ok(2), Ok(4), Ok(8)];
520//! let res: Result<Vec<_>, &str> = v.into_iter().collect();
521//! assert_eq!(res, Ok(vec![2, 4, 8]));
522//! ```
523//!
524//! [`Result`] also implements the [`Product`][impl-Product] and
525//! [`Sum`][impl-Sum] traits, allowing an iterator over [`Result`] values
526//! to provide the [`product`][Iterator::product] and
527//! [`sum`][Iterator::sum] methods.
528//!
529//! [impl-Product]: Result#impl-Product%3CResult%3CU,+E%3E%3E-for-Result%3CT,+E%3E
530//! [impl-Sum]: Result#impl-Sum%3CResult%3CU,+E%3E%3E-for-Result%3CT,+E%3E
531//!
532//! ```
533//! let v = [Err("error!"), Ok(1), Ok(2), Ok(3), Err("foo")];
534//! let res: Result<i32, &str> = v.into_iter().sum();
535//! assert_eq!(res, Err("error!"));
536//! let v = [Ok(1), Ok(2), Ok(21)];
537//! let res: Result<i32, &str> = v.into_iter().product();
538//! assert_eq!(res, Ok(42));
539//! ```
540
541#![stable(feature = "rust1", since = "1.0.0")]
542
543#[cfg(not(feature = "ferrocene_subset"))]
544use crate::iter::{self, FusedIterator, TrustedLen};
545use crate::marker::Destruct;
546use crate::ops::{self, ControlFlow, Deref, DerefMut};
547use crate::{convert, fmt, hint};
548
549/// `Result` is a type that represents either success ([`Ok`]) or failure ([`Err`]).
550///
551/// See the [module documentation](self) for details.
552#[doc(search_unbox)]
553#[derive(Copy, Debug, Hash)]
554#[derive_const(PartialEq, PartialOrd, Eq, Ord)]
555#[must_use = "this `Result` may be an `Err` variant, which should be handled"]
556#[rustc_diagnostic_item = "Result"]
557#[stable(feature = "rust1", since = "1.0.0")]
558pub enum Result<T, E> {
559    /// Contains the success value
560    #[lang = "Ok"]
561    #[stable(feature = "rust1", since = "1.0.0")]
562    Ok(#[stable(feature = "rust1", since = "1.0.0")] T),
563
564    /// Contains the error value
565    #[lang = "Err"]
566    #[stable(feature = "rust1", since = "1.0.0")]
567    Err(#[stable(feature = "rust1", since = "1.0.0")] E),
568}
569
570/////////////////////////////////////////////////////////////////////////////
571// Type implementation
572/////////////////////////////////////////////////////////////////////////////
573
574impl<T, E> Result<T, E> {
575    /////////////////////////////////////////////////////////////////////////
576    // Querying the contained values
577    /////////////////////////////////////////////////////////////////////////
578
579    /// Returns `true` if the result is [`Ok`].
580    ///
581    /// # Examples
582    ///
583    /// ```
584    /// let x: Result<i32, &str> = Ok(-3);
585    /// assert_eq!(x.is_ok(), true);
586    ///
587    /// let x: Result<i32, &str> = Err("Some error message");
588    /// assert_eq!(x.is_ok(), false);
589    /// ```
590    #[must_use = "if you intended to assert that this is ok, consider `.unwrap()` instead"]
591    #[rustc_const_stable(feature = "const_result_basics", since = "1.48.0")]
592    #[inline]
593    #[stable(feature = "rust1", since = "1.0.0")]
594    pub const fn is_ok(&self) -> bool {
595        matches!(*self, Ok(_))
596    }
597
598    /// Returns `true` if the result is [`Ok`] and the value inside of it matches a predicate.
599    ///
600    /// # Examples
601    ///
602    /// ```
603    /// let x: Result<u32, &str> = Ok(2);
604    /// assert_eq!(x.is_ok_and(|x| x > 1), true);
605    ///
606    /// let x: Result<u32, &str> = Ok(0);
607    /// assert_eq!(x.is_ok_and(|x| x > 1), false);
608    ///
609    /// let x: Result<u32, &str> = Err("hey");
610    /// assert_eq!(x.is_ok_and(|x| x > 1), false);
611    ///
612    /// let x: Result<String, &str> = Ok("ownership".to_string());
613    /// assert_eq!(x.as_ref().is_ok_and(|x| x.len() > 1), true);
614    /// println!("still alive {:?}", x);
615    /// ```
616    #[must_use]
617    #[inline]
618    #[stable(feature = "is_some_and", since = "1.70.0")]
619    #[rustc_const_unstable(feature = "const_result_trait_fn", issue = "144211")]
620    pub const fn is_ok_and<F>(self, f: F) -> bool
621    where
622        F: [const] FnOnce(T) -> bool + [const] Destruct,
623        T: [const] Destruct,
624        E: [const] Destruct,
625    {
626        match self {
627            Err(_) => false,
628            Ok(x) => f(x),
629        }
630    }
631
632    /// Returns `true` if the result is [`Err`].
633    ///
634    /// # Examples
635    ///
636    /// ```
637    /// let x: Result<i32, &str> = Ok(-3);
638    /// assert_eq!(x.is_err(), false);
639    ///
640    /// let x: Result<i32, &str> = Err("Some error message");
641    /// assert_eq!(x.is_err(), true);
642    /// ```
643    #[must_use = "if you intended to assert that this is err, consider `.unwrap_err()` instead"]
644    #[rustc_const_stable(feature = "const_result_basics", since = "1.48.0")]
645    #[inline]
646    #[stable(feature = "rust1", since = "1.0.0")]
647    pub const fn is_err(&self) -> bool {
648        !self.is_ok()
649    }
650
651    /// Returns `true` if the result is [`Err`] and the value inside of it matches a predicate.
652    ///
653    /// # Examples
654    ///
655    /// ```
656    /// use std::io::{Error, ErrorKind};
657    ///
658    /// let x: Result<u32, Error> = Err(Error::new(ErrorKind::NotFound, "!"));
659    /// assert_eq!(x.is_err_and(|x| x.kind() == ErrorKind::NotFound), true);
660    ///
661    /// let x: Result<u32, Error> = Err(Error::new(ErrorKind::PermissionDenied, "!"));
662    /// assert_eq!(x.is_err_and(|x| x.kind() == ErrorKind::NotFound), false);
663    ///
664    /// let x: Result<u32, Error> = Ok(123);
665    /// assert_eq!(x.is_err_and(|x| x.kind() == ErrorKind::NotFound), false);
666    ///
667    /// let x: Result<u32, String> = Err("ownership".to_string());
668    /// assert_eq!(x.as_ref().is_err_and(|x| x.len() > 1), true);
669    /// println!("still alive {:?}", x);
670    /// ```
671    #[must_use]
672    #[inline]
673    #[stable(feature = "is_some_and", since = "1.70.0")]
674    #[rustc_const_unstable(feature = "const_result_trait_fn", issue = "144211")]
675    pub const fn is_err_and<F>(self, f: F) -> bool
676    where
677        F: [const] FnOnce(E) -> bool + [const] Destruct,
678        E: [const] Destruct,
679        T: [const] Destruct,
680    {
681        match self {
682            Ok(_) => false,
683            Err(e) => f(e),
684        }
685    }
686
687    /////////////////////////////////////////////////////////////////////////
688    // Adapter for each variant
689    /////////////////////////////////////////////////////////////////////////
690
691    /// Converts from `Result<T, E>` to [`Option<T>`].
692    ///
693    /// Converts `self` into an [`Option<T>`], consuming `self`,
694    /// and discarding the error, if any.
695    ///
696    /// # Examples
697    ///
698    /// ```
699    /// let x: Result<u32, &str> = Ok(2);
700    /// assert_eq!(x.ok(), Some(2));
701    ///
702    /// let x: Result<u32, &str> = Err("Nothing here");
703    /// assert_eq!(x.ok(), None);
704    /// ```
705    #[inline]
706    #[stable(feature = "rust1", since = "1.0.0")]
707    #[rustc_const_unstable(feature = "const_result_trait_fn", issue = "144211")]
708    #[rustc_diagnostic_item = "result_ok_method"]
709    pub const fn ok(self) -> Option<T>
710    where
711        T: [const] Destruct,
712        E: [const] Destruct,
713    {
714        match self {
715            Ok(x) => Some(x),
716            Err(_) => None,
717        }
718    }
719
720    /// Converts from `Result<T, E>` to [`Option<E>`].
721    ///
722    /// Converts `self` into an [`Option<E>`], consuming `self`,
723    /// and discarding the success value, if any.
724    ///
725    /// # Examples
726    ///
727    /// ```
728    /// let x: Result<u32, &str> = Ok(2);
729    /// assert_eq!(x.err(), None);
730    ///
731    /// let x: Result<u32, &str> = Err("Nothing here");
732    /// assert_eq!(x.err(), Some("Nothing here"));
733    /// ```
734    #[inline]
735    #[stable(feature = "rust1", since = "1.0.0")]
736    #[rustc_const_unstable(feature = "const_result_trait_fn", issue = "144211")]
737    pub const fn err(self) -> Option<E>
738    where
739        T: [const] Destruct,
740        E: [const] Destruct,
741    {
742        match self {
743            Ok(_) => None,
744            Err(x) => Some(x),
745        }
746    }
747
748    /////////////////////////////////////////////////////////////////////////
749    // Adapter for working with references
750    /////////////////////////////////////////////////////////////////////////
751
752    /// Converts from `&Result<T, E>` to `Result<&T, &E>`.
753    ///
754    /// Produces a new `Result`, containing a reference
755    /// into the original, leaving the original in place.
756    ///
757    /// # Examples
758    ///
759    /// ```
760    /// let x: Result<u32, &str> = Ok(2);
761    /// assert_eq!(x.as_ref(), Ok(&2));
762    ///
763    /// let x: Result<u32, &str> = Err("Error");
764    /// assert_eq!(x.as_ref(), Err(&"Error"));
765    /// ```
766    #[inline]
767    #[rustc_const_stable(feature = "const_result_basics", since = "1.48.0")]
768    #[stable(feature = "rust1", since = "1.0.0")]
769    pub const fn as_ref(&self) -> Result<&T, &E> {
770        match *self {
771            Ok(ref x) => Ok(x),
772            Err(ref x) => Err(x),
773        }
774    }
775
776    /// Converts from `&mut Result<T, E>` to `Result<&mut T, &mut E>`.
777    ///
778    /// # Examples
779    ///
780    /// ```
781    /// fn mutate(r: &mut Result<i32, i32>) {
782    ///     match r.as_mut() {
783    ///         Ok(v) => *v = 42,
784    ///         Err(e) => *e = 0,
785    ///     }
786    /// }
787    ///
788    /// let mut x: Result<i32, i32> = Ok(2);
789    /// mutate(&mut x);
790    /// assert_eq!(x.unwrap(), 42);
791    ///
792    /// let mut x: Result<i32, i32> = Err(13);
793    /// mutate(&mut x);
794    /// assert_eq!(x.unwrap_err(), 0);
795    /// ```
796    #[inline]
797    #[stable(feature = "rust1", since = "1.0.0")]
798    #[rustc_const_stable(feature = "const_result", since = "1.83.0")]
799    pub const fn as_mut(&mut self) -> Result<&mut T, &mut E> {
800        match *self {
801            Ok(ref mut x) => Ok(x),
802            Err(ref mut x) => Err(x),
803        }
804    }
805
806    /////////////////////////////////////////////////////////////////////////
807    // Transforming contained values
808    /////////////////////////////////////////////////////////////////////////
809
810    /// Maps a `Result<T, E>` to `Result<U, E>` by applying a function to a
811    /// contained [`Ok`] value, leaving an [`Err`] value untouched.
812    ///
813    /// This function can be used to compose the results of two functions.
814    ///
815    /// # Examples
816    ///
817    /// Print the numbers on each line of a string multiplied by two.
818    ///
819    /// ```
820    /// let line = "1\n2\n3\n4\n";
821    ///
822    /// for num in line.lines() {
823    ///     match num.parse::<i32>().map(|i| i * 2) {
824    ///         Ok(n) => println!("{n}"),
825    ///         Err(..) => {}
826    ///     }
827    /// }
828    /// ```
829    #[inline]
830    #[stable(feature = "rust1", since = "1.0.0")]
831    #[rustc_const_unstable(feature = "const_result_trait_fn", issue = "144211")]
832    pub const fn map<U, F>(self, op: F) -> Result<U, E>
833    where
834        F: [const] FnOnce(T) -> U + [const] Destruct,
835    {
836        match self {
837            Ok(t) => Ok(op(t)),
838            Err(e) => Err(e),
839        }
840    }
841
842    /// Returns the provided default (if [`Err`]), or
843    /// applies a function to the contained value (if [`Ok`]).
844    ///
845    /// Arguments passed to `map_or` are eagerly evaluated; if you are passing
846    /// the result of a function call, it is recommended to use [`map_or_else`],
847    /// which is lazily evaluated.
848    ///
849    /// [`map_or_else`]: Result::map_or_else
850    ///
851    /// # Examples
852    ///
853    /// ```
854    /// let x: Result<_, &str> = Ok("foo");
855    /// assert_eq!(x.map_or(42, |v| v.len()), 3);
856    ///
857    /// let x: Result<&str, _> = Err("bar");
858    /// assert_eq!(x.map_or(42, |v| v.len()), 42);
859    /// ```
860    #[inline]
861    #[stable(feature = "result_map_or", since = "1.41.0")]
862    #[rustc_const_unstable(feature = "const_result_trait_fn", issue = "144211")]
863    #[must_use = "if you don't need the returned value, use `if let` instead"]
864    pub const fn map_or<U, F>(self, default: U, f: F) -> U
865    where
866        F: [const] FnOnce(T) -> U + [const] Destruct,
867        T: [const] Destruct,
868        E: [const] Destruct,
869        U: [const] Destruct,
870    {
871        match self {
872            Ok(t) => f(t),
873            Err(_) => default,
874        }
875    }
876
877    /// Maps a `Result<T, E>` to `U` by applying fallback function `default` to
878    /// a contained [`Err`] value, or function `f` to a contained [`Ok`] value.
879    ///
880    /// This function can be used to unpack a successful result
881    /// while handling an error.
882    ///
883    ///
884    /// # Examples
885    ///
886    /// ```
887    /// let k = 21;
888    ///
889    /// let x : Result<_, &str> = Ok("foo");
890    /// assert_eq!(x.map_or_else(|e| k * 2, |v| v.len()), 3);
891    ///
892    /// let x : Result<&str, _> = Err("bar");
893    /// assert_eq!(x.map_or_else(|e| k * 2, |v| v.len()), 42);
894    /// ```
895    #[inline]
896    #[stable(feature = "result_map_or_else", since = "1.41.0")]
897    #[rustc_const_unstable(feature = "const_result_trait_fn", issue = "144211")]
898    pub const fn map_or_else<U, D, F>(self, default: D, f: F) -> U
899    where
900        D: [const] FnOnce(E) -> U + [const] Destruct,
901        F: [const] FnOnce(T) -> U + [const] Destruct,
902    {
903        match self {
904            Ok(t) => f(t),
905            Err(e) => default(e),
906        }
907    }
908
909    /// Maps a `Result<T, E>` to a `U` by applying function `f` to the contained
910    /// value if the result is [`Ok`], otherwise if [`Err`], returns the
911    /// [default value] for the type `U`.
912    ///
913    /// # Examples
914    ///
915    /// ```
916    /// #![feature(result_option_map_or_default)]
917    ///
918    /// let x: Result<_, &str> = Ok("foo");
919    /// let y: Result<&str, _> = Err("bar");
920    ///
921    /// assert_eq!(x.map_or_default(|x| x.len()), 3);
922    /// assert_eq!(y.map_or_default(|y| y.len()), 0);
923    /// ```
924    ///
925    /// [default value]: Default::default
926    #[inline]
927    #[unstable(feature = "result_option_map_or_default", issue = "138099")]
928    #[rustc_const_unstable(feature = "const_result_trait_fn", issue = "144211")]
929    pub const fn map_or_default<U, F>(self, f: F) -> U
930    where
931        F: [const] FnOnce(T) -> U + [const] Destruct,
932        U: [const] Default,
933        T: [const] Destruct,
934        E: [const] Destruct,
935    {
936        match self {
937            Ok(t) => f(t),
938            Err(_) => U::default(),
939        }
940    }
941
942    /// Maps a `Result<T, E>` to `Result<T, F>` by applying a function to a
943    /// contained [`Err`] value, leaving an [`Ok`] value untouched.
944    ///
945    /// This function can be used to pass through a successful result while handling
946    /// an error.
947    ///
948    ///
949    /// # Examples
950    ///
951    /// ```
952    /// fn stringify(x: u32) -> String { format!("error code: {x}") }
953    ///
954    /// let x: Result<u32, u32> = Ok(2);
955    /// assert_eq!(x.map_err(stringify), Ok(2));
956    ///
957    /// let x: Result<u32, u32> = Err(13);
958    /// assert_eq!(x.map_err(stringify), Err("error code: 13".to_string()));
959    /// ```
960    #[inline]
961    #[stable(feature = "rust1", since = "1.0.0")]
962    #[rustc_const_unstable(feature = "const_result_trait_fn", issue = "144211")]
963    pub const fn map_err<F, O>(self, op: O) -> Result<T, F>
964    where
965        O: [const] FnOnce(E) -> F + [const] Destruct,
966    {
967        match self {
968            Ok(t) => Ok(t),
969            Err(e) => Err(op(e)),
970        }
971    }
972
973    /// Calls a function with a reference to the contained value if [`Ok`].
974    ///
975    /// Returns the original result.
976    ///
977    /// # Examples
978    ///
979    /// ```
980    /// let x: u8 = "4"
981    ///     .parse::<u8>()
982    ///     .inspect(|x| println!("original: {x}"))
983    ///     .map(|x| x.pow(3))
984    ///     .expect("failed to parse number");
985    /// ```
986    #[inline]
987    #[stable(feature = "result_option_inspect", since = "1.76.0")]
988    #[rustc_const_unstable(feature = "const_result_trait_fn", issue = "144211")]
989    pub const fn inspect<F>(self, f: F) -> Self
990    where
991        F: [const] FnOnce(&T) + [const] Destruct,
992    {
993        if let Ok(ref t) = self {
994            f(t);
995        }
996
997        self
998    }
999
1000    /// Calls a function with a reference to the contained value if [`Err`].
1001    ///
1002    /// Returns the original result.
1003    ///
1004    /// # Examples
1005    ///
1006    /// ```
1007    /// use std::{fs, io};
1008    ///
1009    /// fn read() -> io::Result<String> {
1010    ///     fs::read_to_string("address.txt")
1011    ///         .inspect_err(|e| eprintln!("failed to read file: {e}"))
1012    /// }
1013    /// ```
1014    #[inline]
1015    #[stable(feature = "result_option_inspect", since = "1.76.0")]
1016    #[rustc_const_unstable(feature = "const_result_trait_fn", issue = "144211")]
1017    pub const fn inspect_err<F>(self, f: F) -> Self
1018    where
1019        F: [const] FnOnce(&E) + [const] Destruct,
1020    {
1021        if let Err(ref e) = self {
1022            f(e);
1023        }
1024
1025        self
1026    }
1027
1028    /// Converts from `Result<T, E>` (or `&Result<T, E>`) to `Result<&<T as Deref>::Target, &E>`.
1029    ///
1030    /// Coerces the [`Ok`] variant of the original [`Result`] via [`Deref`](crate::ops::Deref)
1031    /// and returns the new [`Result`].
1032    ///
1033    /// # Examples
1034    ///
1035    /// ```
1036    /// let x: Result<String, u32> = Ok("hello".to_string());
1037    /// let y: Result<&str, &u32> = Ok("hello");
1038    /// assert_eq!(x.as_deref(), y);
1039    ///
1040    /// let x: Result<String, u32> = Err(42);
1041    /// let y: Result<&str, &u32> = Err(&42);
1042    /// assert_eq!(x.as_deref(), y);
1043    /// ```
1044    #[inline]
1045    #[stable(feature = "inner_deref", since = "1.47.0")]
1046    #[rustc_const_unstable(feature = "const_convert", issue = "143773")]
1047    pub const fn as_deref(&self) -> Result<&T::Target, &E>
1048    where
1049        T: [const] Deref,
1050    {
1051        self.as_ref().map(Deref::deref)
1052    }
1053
1054    /// Converts from `Result<T, E>` (or `&mut Result<T, E>`) to `Result<&mut <T as DerefMut>::Target, &mut E>`.
1055    ///
1056    /// Coerces the [`Ok`] variant of the original [`Result`] via [`DerefMut`](crate::ops::DerefMut)
1057    /// and returns the new [`Result`].
1058    ///
1059    /// # Examples
1060    ///
1061    /// ```
1062    /// let mut s = "HELLO".to_string();
1063    /// let mut x: Result<String, u32> = Ok("hello".to_string());
1064    /// let y: Result<&mut str, &mut u32> = Ok(&mut s);
1065    /// assert_eq!(x.as_deref_mut().map(|x| { x.make_ascii_uppercase(); x }), y);
1066    ///
1067    /// let mut i = 42;
1068    /// let mut x: Result<String, u32> = Err(42);
1069    /// let y: Result<&mut str, &mut u32> = Err(&mut i);
1070    /// assert_eq!(x.as_deref_mut().map(|x| { x.make_ascii_uppercase(); x }), y);
1071    /// ```
1072    #[inline]
1073    #[stable(feature = "inner_deref", since = "1.47.0")]
1074    #[rustc_const_unstable(feature = "const_convert", issue = "143773")]
1075    pub const fn as_deref_mut(&mut self) -> Result<&mut T::Target, &mut E>
1076    where
1077        T: [const] DerefMut,
1078    {
1079        self.as_mut().map(DerefMut::deref_mut)
1080    }
1081
1082    /////////////////////////////////////////////////////////////////////////
1083    // Iterator constructors
1084    /////////////////////////////////////////////////////////////////////////
1085
1086    /// Returns an iterator over the possibly contained value.
1087    ///
1088    /// The iterator yields one value if the result is [`Result::Ok`], otherwise none.
1089    ///
1090    /// # Examples
1091    ///
1092    /// ```
1093    /// let x: Result<u32, &str> = Ok(7);
1094    /// assert_eq!(x.iter().next(), Some(&7));
1095    ///
1096    /// let x: Result<u32, &str> = Err("nothing!");
1097    /// assert_eq!(x.iter().next(), None);
1098    /// ```
1099    #[inline]
1100    #[stable(feature = "rust1", since = "1.0.0")]
1101    #[rustc_const_unstable(feature = "const_result_trait_fn", issue = "144211")]
1102    // Ferrocene: blocked on Iterator
1103    #[cfg(not(feature = "ferrocene_subset"))]
1104    pub const fn iter(&self) -> Iter<'_, T> {
1105        Iter { inner: self.as_ref().ok() }
1106    }
1107
1108    /// Returns a mutable iterator over the possibly contained value.
1109    ///
1110    /// The iterator yields one value if the result is [`Result::Ok`], otherwise none.
1111    ///
1112    /// # Examples
1113    ///
1114    /// ```
1115    /// let mut x: Result<u32, &str> = Ok(7);
1116    /// match x.iter_mut().next() {
1117    ///     Some(v) => *v = 40,
1118    ///     None => {},
1119    /// }
1120    /// assert_eq!(x, Ok(40));
1121    ///
1122    /// let mut x: Result<u32, &str> = Err("nothing!");
1123    /// assert_eq!(x.iter_mut().next(), None);
1124    /// ```
1125    #[inline]
1126    #[stable(feature = "rust1", since = "1.0.0")]
1127    #[rustc_const_unstable(feature = "const_result_trait_fn", issue = "144211")]
1128    // Ferrocene: blocked on Iterator
1129    #[cfg(not(feature = "ferrocene_subset"))]
1130    pub const fn iter_mut(&mut self) -> IterMut<'_, T> {
1131        IterMut { inner: self.as_mut().ok() }
1132    }
1133
1134    /////////////////////////////////////////////////////////////////////////
1135    // Extract a value
1136    /////////////////////////////////////////////////////////////////////////
1137
1138    /// Returns the contained [`Ok`] value, consuming the `self` value.
1139    ///
1140    /// Because this function may panic, its use is generally discouraged.
1141    /// Instead, prefer to use pattern matching and handle the [`Err`]
1142    /// case explicitly, or call [`unwrap_or`], [`unwrap_or_else`], or
1143    /// [`unwrap_or_default`].
1144    ///
1145    /// [`unwrap_or`]: Result::unwrap_or
1146    /// [`unwrap_or_else`]: Result::unwrap_or_else
1147    /// [`unwrap_or_default`]: Result::unwrap_or_default
1148    ///
1149    /// # Panics
1150    ///
1151    /// Panics if the value is an [`Err`], with a panic message including the
1152    /// passed message, and the content of the [`Err`].
1153    ///
1154    ///
1155    /// # Examples
1156    ///
1157    /// ```should_panic
1158    /// let x: Result<u32, &str> = Err("emergency failure");
1159    /// x.expect("Testing expect"); // panics with `Testing expect: emergency failure`
1160    /// ```
1161    ///
1162    /// # Recommended Message Style
1163    ///
1164    /// We recommend that `expect` messages are used to describe the reason you
1165    /// _expect_ the `Result` should be `Ok`.
1166    ///
1167    /// ```should_panic
1168    /// let path = std::env::var("IMPORTANT_PATH")
1169    ///     .expect("env variable `IMPORTANT_PATH` should be set by `wrapper_script.sh`");
1170    /// ```
1171    ///
1172    /// **Hint**: If you're having trouble remembering how to phrase expect
1173    /// error messages remember to focus on the word "should" as in "env
1174    /// variable should be set by blah" or "the given binary should be available
1175    /// and executable by the current user".
1176    ///
1177    /// For more detail on expect message styles and the reasoning behind our recommendation please
1178    /// refer to the section on ["Common Message
1179    /// Styles"](../../std/error/index.html#common-message-styles) in the
1180    /// [`std::error`](../../std/error/index.html) module docs.
1181    #[inline]
1182    #[track_caller]
1183    #[stable(feature = "result_expect", since = "1.4.0")]
1184    pub fn expect(self, msg: &str) -> T
1185    where
1186        E: fmt::Debug,
1187    {
1188        match self {
1189            Ok(t) => t,
1190            Err(e) => unwrap_failed(msg, &e),
1191        }
1192    }
1193
1194    /// Returns the contained [`Ok`] value, consuming the `self` value.
1195    ///
1196    /// Because this function may panic, its use is generally discouraged.
1197    /// Panics are meant for unrecoverable errors, and
1198    /// [may abort the entire program][panic-abort].
1199    ///
1200    /// Instead, prefer to use [the `?` (try) operator][try-operator], or pattern matching
1201    /// to handle the [`Err`] case explicitly, or call [`unwrap_or`],
1202    /// [`unwrap_or_else`], or [`unwrap_or_default`].
1203    ///
1204    /// [panic-abort]: https://doc.rust-lang.org/book/ch09-01-unrecoverable-errors-with-panic.html
1205    /// [try-operator]: https://doc.rust-lang.org/book/ch09-02-recoverable-errors-with-result.html#a-shortcut-for-propagating-errors-the--operator
1206    /// [`unwrap_or`]: Result::unwrap_or
1207    /// [`unwrap_or_else`]: Result::unwrap_or_else
1208    /// [`unwrap_or_default`]: Result::unwrap_or_default
1209    ///
1210    /// # Panics
1211    ///
1212    /// Panics if the value is an [`Err`], with a panic message provided by the
1213    /// [`Err`]'s value.
1214    ///
1215    ///
1216    /// # Examples
1217    ///
1218    /// Basic usage:
1219    ///
1220    /// ```
1221    /// let x: Result<u32, &str> = Ok(2);
1222    /// assert_eq!(x.unwrap(), 2);
1223    /// ```
1224    ///
1225    /// ```should_panic
1226    /// let x: Result<u32, &str> = Err("emergency failure");
1227    /// x.unwrap(); // panics with `emergency failure`
1228    /// ```
1229    #[inline(always)]
1230    #[track_caller]
1231    #[stable(feature = "rust1", since = "1.0.0")]
1232    // Ferrocene: blocked on Debug
1233    #[cfg(not(feature = "ferrocene_subset"))]
1234    pub fn unwrap(self) -> T
1235    where
1236        E: fmt::Debug,
1237    {
1238        match self {
1239            Ok(t) => t,
1240            Err(e) => unwrap_failed("called `Result::unwrap()` on an `Err` value", &e),
1241        }
1242    }
1243
1244    /// Returns the contained [`Ok`] value or a default
1245    ///
1246    /// Consumes the `self` argument then, if [`Ok`], returns the contained
1247    /// value, otherwise if [`Err`], returns the default value for that
1248    /// type.
1249    ///
1250    /// # Examples
1251    ///
1252    /// Converts a string to an integer, turning poorly-formed strings
1253    /// into 0 (the default value for integers). [`parse`] converts
1254    /// a string to any other type that implements [`FromStr`], returning an
1255    /// [`Err`] on error.
1256    ///
1257    /// ```
1258    /// let good_year_from_input = "1909";
1259    /// let bad_year_from_input = "190blarg";
1260    /// let good_year = good_year_from_input.parse().unwrap_or_default();
1261    /// let bad_year = bad_year_from_input.parse().unwrap_or_default();
1262    ///
1263    /// assert_eq!(1909, good_year);
1264    /// assert_eq!(0, bad_year);
1265    /// ```
1266    ///
1267    /// [`parse`]: str::parse
1268    /// [`FromStr`]: crate::str::FromStr
1269    #[inline]
1270    #[stable(feature = "result_unwrap_or_default", since = "1.16.0")]
1271    #[rustc_const_unstable(feature = "const_result_trait_fn", issue = "144211")]
1272    pub const fn unwrap_or_default(self) -> T
1273    where
1274        T: [const] Default + [const] Destruct,
1275        E: [const] Destruct,
1276    {
1277        match self {
1278            Ok(x) => x,
1279            Err(_) => Default::default(),
1280        }
1281    }
1282
1283    /// Returns the contained [`Err`] value, consuming the `self` value.
1284    ///
1285    /// # Panics
1286    ///
1287    /// Panics if the value is an [`Ok`], with a panic message including the
1288    /// passed message, and the content of the [`Ok`].
1289    ///
1290    ///
1291    /// # Examples
1292    ///
1293    /// ```should_panic
1294    /// let x: Result<u32, &str> = Ok(10);
1295    /// x.expect_err("Testing expect_err"); // panics with `Testing expect_err: 10`
1296    /// ```
1297    #[inline]
1298    #[track_caller]
1299    #[stable(feature = "result_expect_err", since = "1.17.0")]
1300    // Ferrocene: blocked on Debug
1301    #[cfg(not(feature = "ferrocene_subset"))]
1302    pub fn expect_err(self, msg: &str) -> E
1303    where
1304        T: fmt::Debug,
1305    {
1306        match self {
1307            Ok(t) => unwrap_failed(msg, &t),
1308            Err(e) => e,
1309        }
1310    }
1311
1312    /// Returns the contained [`Err`] value, consuming the `self` value.
1313    ///
1314    /// # Panics
1315    ///
1316    /// Panics if the value is an [`Ok`], with a custom panic message provided
1317    /// by the [`Ok`]'s value.
1318    ///
1319    /// # Examples
1320    ///
1321    /// ```should_panic
1322    /// let x: Result<u32, &str> = Ok(2);
1323    /// x.unwrap_err(); // panics with `2`
1324    /// ```
1325    ///
1326    /// ```
1327    /// let x: Result<u32, &str> = Err("emergency failure");
1328    /// assert_eq!(x.unwrap_err(), "emergency failure");
1329    /// ```
1330    #[inline]
1331    #[track_caller]
1332    #[stable(feature = "rust1", since = "1.0.0")]
1333    // Ferrocene: blocked on Debug
1334    #[cfg(not(feature = "ferrocene_subset"))]
1335    pub fn unwrap_err(self) -> E
1336    where
1337        T: fmt::Debug,
1338    {
1339        match self {
1340            Ok(t) => unwrap_failed("called `Result::unwrap_err()` on an `Ok` value", &t),
1341            Err(e) => e,
1342        }
1343    }
1344
1345    /// Returns the contained [`Ok`] value, but never panics.
1346    ///
1347    /// Unlike [`unwrap`], this method is known to never panic on the
1348    /// result types it is implemented for. Therefore, it can be used
1349    /// instead of `unwrap` as a maintainability safeguard that will fail
1350    /// to compile if the error type of the `Result` is later changed
1351    /// to an error that can actually occur.
1352    ///
1353    /// [`unwrap`]: Result::unwrap
1354    ///
1355    /// # Examples
1356    ///
1357    /// ```
1358    /// # #![feature(never_type)]
1359    /// # #![feature(unwrap_infallible)]
1360    ///
1361    /// fn only_good_news() -> Result<String, !> {
1362    ///     Ok("this is fine".into())
1363    /// }
1364    ///
1365    /// let s: String = only_good_news().into_ok();
1366    /// println!("{s}");
1367    /// ```
1368    #[unstable(feature = "unwrap_infallible", issue = "61695")]
1369    #[inline]
1370    #[rustc_allow_const_fn_unstable(const_precise_live_drops)]
1371    #[rustc_const_unstable(feature = "const_convert", issue = "143773")]
1372    // Ferrocene: blocked on !
1373    #[cfg(not(feature = "ferrocene_subset"))]
1374    pub const fn into_ok(self) -> T
1375    where
1376        E: [const] Into<!>,
1377    {
1378        match self {
1379            Ok(x) => x,
1380            Err(e) => e.into(),
1381        }
1382    }
1383
1384    /// Returns the contained [`Err`] value, but never panics.
1385    ///
1386    /// Unlike [`unwrap_err`], this method is known to never panic on the
1387    /// result types it is implemented for. Therefore, it can be used
1388    /// instead of `unwrap_err` as a maintainability safeguard that will fail
1389    /// to compile if the ok type of the `Result` is later changed
1390    /// to a type that can actually occur.
1391    ///
1392    /// [`unwrap_err`]: Result::unwrap_err
1393    ///
1394    /// # Examples
1395    ///
1396    /// ```
1397    /// # #![feature(never_type)]
1398    /// # #![feature(unwrap_infallible)]
1399    ///
1400    /// fn only_bad_news() -> Result<!, String> {
1401    ///     Err("Oops, it failed".into())
1402    /// }
1403    ///
1404    /// let error: String = only_bad_news().into_err();
1405    /// println!("{error}");
1406    /// ```
1407    #[unstable(feature = "unwrap_infallible", issue = "61695")]
1408    #[inline]
1409    #[rustc_allow_const_fn_unstable(const_precise_live_drops)]
1410    #[rustc_const_unstable(feature = "const_convert", issue = "143773")]
1411    // Ferrocene: blocked on !
1412    #[cfg(not(feature = "ferrocene_subset"))]
1413    pub const fn into_err(self) -> E
1414    where
1415        T: [const] Into<!>,
1416    {
1417        match self {
1418            Ok(x) => x.into(),
1419            Err(e) => e,
1420        }
1421    }
1422
1423    ////////////////////////////////////////////////////////////////////////
1424    // Boolean operations on the values, eager and lazy
1425    /////////////////////////////////////////////////////////////////////////
1426
1427    /// Returns `res` if the result is [`Ok`], otherwise returns the [`Err`] value of `self`.
1428    ///
1429    /// Arguments passed to `and` are eagerly evaluated; if you are passing the
1430    /// result of a function call, it is recommended to use [`and_then`], which is
1431    /// lazily evaluated.
1432    ///
1433    /// [`and_then`]: Result::and_then
1434    ///
1435    /// # Examples
1436    ///
1437    /// ```
1438    /// let x: Result<u32, &str> = Ok(2);
1439    /// let y: Result<&str, &str> = Err("late error");
1440    /// assert_eq!(x.and(y), Err("late error"));
1441    ///
1442    /// let x: Result<u32, &str> = Err("early error");
1443    /// let y: Result<&str, &str> = Ok("foo");
1444    /// assert_eq!(x.and(y), Err("early error"));
1445    ///
1446    /// let x: Result<u32, &str> = Err("not a 2");
1447    /// let y: Result<&str, &str> = Err("late error");
1448    /// assert_eq!(x.and(y), Err("not a 2"));
1449    ///
1450    /// let x: Result<u32, &str> = Ok(2);
1451    /// let y: Result<&str, &str> = Ok("different result type");
1452    /// assert_eq!(x.and(y), Ok("different result type"));
1453    /// ```
1454    #[inline]
1455    #[stable(feature = "rust1", since = "1.0.0")]
1456    #[rustc_const_unstable(feature = "const_result_trait_fn", issue = "144211")]
1457    pub const fn and<U>(self, res: Result<U, E>) -> Result<U, E>
1458    where
1459        T: [const] Destruct,
1460        E: [const] Destruct,
1461        U: [const] Destruct,
1462    {
1463        match self {
1464            Ok(_) => res,
1465            Err(e) => Err(e),
1466        }
1467    }
1468
1469    /// Calls `op` if the result is [`Ok`], otherwise returns the [`Err`] value of `self`.
1470    ///
1471    ///
1472    /// This function can be used for control flow based on `Result` values.
1473    ///
1474    /// # Examples
1475    ///
1476    /// ```
1477    /// fn sq_then_to_string(x: u32) -> Result<String, &'static str> {
1478    ///     x.checked_mul(x).map(|sq| sq.to_string()).ok_or("overflowed")
1479    /// }
1480    ///
1481    /// assert_eq!(Ok(2).and_then(sq_then_to_string), Ok(4.to_string()));
1482    /// assert_eq!(Ok(1_000_000).and_then(sq_then_to_string), Err("overflowed"));
1483    /// assert_eq!(Err("not a number").and_then(sq_then_to_string), Err("not a number"));
1484    /// ```
1485    ///
1486    /// Often used to chain fallible operations that may return [`Err`].
1487    ///
1488    /// ```
1489    /// use std::{io::ErrorKind, path::Path};
1490    ///
1491    /// // Note: on Windows "/" maps to "C:\"
1492    /// let root_modified_time = Path::new("/").metadata().and_then(|md| md.modified());
1493    /// assert!(root_modified_time.is_ok());
1494    ///
1495    /// let should_fail = Path::new("/bad/path").metadata().and_then(|md| md.modified());
1496    /// assert!(should_fail.is_err());
1497    /// assert_eq!(should_fail.unwrap_err().kind(), ErrorKind::NotFound);
1498    /// ```
1499    #[inline]
1500    #[stable(feature = "rust1", since = "1.0.0")]
1501    #[rustc_const_unstable(feature = "const_result_trait_fn", issue = "144211")]
1502    #[rustc_confusables("flat_map", "flatmap")]
1503    pub const fn and_then<U, F>(self, op: F) -> Result<U, E>
1504    where
1505        F: [const] FnOnce(T) -> Result<U, E> + [const] Destruct,
1506    {
1507        match self {
1508            Ok(t) => op(t),
1509            Err(e) => Err(e),
1510        }
1511    }
1512
1513    /// Returns `res` if the result is [`Err`], otherwise returns the [`Ok`] value of `self`.
1514    ///
1515    /// Arguments passed to `or` are eagerly evaluated; if you are passing the
1516    /// result of a function call, it is recommended to use [`or_else`], which is
1517    /// lazily evaluated.
1518    ///
1519    /// [`or_else`]: Result::or_else
1520    ///
1521    /// # Examples
1522    ///
1523    /// ```
1524    /// let x: Result<u32, &str> = Ok(2);
1525    /// let y: Result<u32, &str> = Err("late error");
1526    /// assert_eq!(x.or(y), Ok(2));
1527    ///
1528    /// let x: Result<u32, &str> = Err("early error");
1529    /// let y: Result<u32, &str> = Ok(2);
1530    /// assert_eq!(x.or(y), Ok(2));
1531    ///
1532    /// let x: Result<u32, &str> = Err("not a 2");
1533    /// let y: Result<u32, &str> = Err("late error");
1534    /// assert_eq!(x.or(y), Err("late error"));
1535    ///
1536    /// let x: Result<u32, &str> = Ok(2);
1537    /// let y: Result<u32, &str> = Ok(100);
1538    /// assert_eq!(x.or(y), Ok(2));
1539    /// ```
1540    #[inline]
1541    #[stable(feature = "rust1", since = "1.0.0")]
1542    #[rustc_const_unstable(feature = "const_result_trait_fn", issue = "144211")]
1543    pub const fn or<F>(self, res: Result<T, F>) -> Result<T, F>
1544    where
1545        T: [const] Destruct,
1546        E: [const] Destruct,
1547        F: [const] Destruct,
1548    {
1549        match self {
1550            Ok(v) => Ok(v),
1551            Err(_) => res,
1552        }
1553    }
1554
1555    /// Calls `op` if the result is [`Err`], otherwise returns the [`Ok`] value of `self`.
1556    ///
1557    /// This function can be used for control flow based on result values.
1558    ///
1559    ///
1560    /// # Examples
1561    ///
1562    /// ```
1563    /// fn sq(x: u32) -> Result<u32, u32> { Ok(x * x) }
1564    /// fn err(x: u32) -> Result<u32, u32> { Err(x) }
1565    ///
1566    /// assert_eq!(Ok(2).or_else(sq).or_else(sq), Ok(2));
1567    /// assert_eq!(Ok(2).or_else(err).or_else(sq), Ok(2));
1568    /// assert_eq!(Err(3).or_else(sq).or_else(err), Ok(9));
1569    /// assert_eq!(Err(3).or_else(err).or_else(err), Err(3));
1570    /// ```
1571    #[inline]
1572    #[stable(feature = "rust1", since = "1.0.0")]
1573    #[rustc_const_unstable(feature = "const_result_trait_fn", issue = "144211")]
1574    pub const fn or_else<F, O>(self, op: O) -> Result<T, F>
1575    where
1576        O: [const] FnOnce(E) -> Result<T, F> + [const] Destruct,
1577    {
1578        match self {
1579            Ok(t) => Ok(t),
1580            Err(e) => op(e),
1581        }
1582    }
1583
1584    /// Returns the contained [`Ok`] value or a provided default.
1585    ///
1586    /// Arguments passed to `unwrap_or` are eagerly evaluated; if you are passing
1587    /// the result of a function call, it is recommended to use [`unwrap_or_else`],
1588    /// which is lazily evaluated.
1589    ///
1590    /// [`unwrap_or_else`]: Result::unwrap_or_else
1591    ///
1592    /// # Examples
1593    ///
1594    /// ```
1595    /// let default = 2;
1596    /// let x: Result<u32, &str> = Ok(9);
1597    /// assert_eq!(x.unwrap_or(default), 9);
1598    ///
1599    /// let x: Result<u32, &str> = Err("error");
1600    /// assert_eq!(x.unwrap_or(default), default);
1601    /// ```
1602    #[inline]
1603    #[stable(feature = "rust1", since = "1.0.0")]
1604    #[rustc_const_unstable(feature = "const_result_trait_fn", issue = "144211")]
1605    pub const fn unwrap_or(self, default: T) -> T
1606    where
1607        T: [const] Destruct,
1608        E: [const] Destruct,
1609    {
1610        match self {
1611            Ok(t) => t,
1612            Err(_) => default,
1613        }
1614    }
1615
1616    /// Returns the contained [`Ok`] value or computes it from a closure.
1617    ///
1618    ///
1619    /// # Examples
1620    ///
1621    /// ```
1622    /// fn count(x: &str) -> usize { x.len() }
1623    ///
1624    /// assert_eq!(Ok(2).unwrap_or_else(count), 2);
1625    /// assert_eq!(Err("foo").unwrap_or_else(count), 3);
1626    /// ```
1627    #[inline]
1628    #[track_caller]
1629    #[stable(feature = "rust1", since = "1.0.0")]
1630    #[rustc_const_unstable(feature = "const_result_trait_fn", issue = "144211")]
1631    pub const fn unwrap_or_else<F>(self, op: F) -> T
1632    where
1633        F: [const] FnOnce(E) -> T + [const] Destruct,
1634    {
1635        match self {
1636            Ok(t) => t,
1637            Err(e) => op(e),
1638        }
1639    }
1640
1641    /// Returns the contained [`Ok`] value, consuming the `self` value,
1642    /// without checking that the value is not an [`Err`].
1643    ///
1644    /// # Safety
1645    ///
1646    /// Calling this method on an [`Err`] is *[undefined behavior]*.
1647    ///
1648    /// [undefined behavior]: https://doc.rust-lang.org/reference/behavior-considered-undefined.html
1649    ///
1650    /// # Examples
1651    ///
1652    /// ```
1653    /// let x: Result<u32, &str> = Ok(2);
1654    /// assert_eq!(unsafe { x.unwrap_unchecked() }, 2);
1655    /// ```
1656    ///
1657    /// ```no_run
1658    /// let x: Result<u32, &str> = Err("emergency failure");
1659    /// unsafe { x.unwrap_unchecked() }; // Undefined behavior!
1660    /// ```
1661    #[inline]
1662    #[track_caller]
1663    #[stable(feature = "option_result_unwrap_unchecked", since = "1.58.0")]
1664    #[rustc_const_unstable(feature = "const_result_unwrap_unchecked", issue = "148714")]
1665    pub const unsafe fn unwrap_unchecked(self) -> T {
1666        match self {
1667            Ok(t) => t,
1668            #[ferrocene::annotation(
1669                "This line cannot be covered as reaching `unreachable_unchecked` is undefined behavior"
1670            )]
1671            Err(e) => {
1672                // FIXME(const-hack): to avoid E: const Destruct bound
1673                super::mem::forget(e);
1674                // SAFETY: the safety contract must be upheld by the caller.
1675                unsafe { hint::unreachable_unchecked() }
1676            }
1677        }
1678    }
1679
1680    /// Returns the contained [`Err`] value, consuming the `self` value,
1681    /// without checking that the value is not an [`Ok`].
1682    ///
1683    /// # Safety
1684    ///
1685    /// Calling this method on an [`Ok`] is *[undefined behavior]*.
1686    ///
1687    /// [undefined behavior]: https://doc.rust-lang.org/reference/behavior-considered-undefined.html
1688    ///
1689    /// # Examples
1690    ///
1691    /// ```no_run
1692    /// let x: Result<u32, &str> = Ok(2);
1693    /// unsafe { x.unwrap_err_unchecked() }; // Undefined behavior!
1694    /// ```
1695    ///
1696    /// ```
1697    /// let x: Result<u32, &str> = Err("emergency failure");
1698    /// assert_eq!(unsafe { x.unwrap_err_unchecked() }, "emergency failure");
1699    /// ```
1700    #[inline]
1701    #[track_caller]
1702    #[stable(feature = "option_result_unwrap_unchecked", since = "1.58.0")]
1703    pub unsafe fn unwrap_err_unchecked(self) -> E {
1704        match self {
1705            #[ferrocene::annotation(
1706                "This line cannot be covered as reaching `unreachable_unchecked` is undefined behavior"
1707            )]
1708            // SAFETY: the safety contract must be upheld by the caller.
1709            Ok(_) => unsafe { hint::unreachable_unchecked() },
1710            Err(e) => e,
1711        }
1712    }
1713}
1714
1715impl<T, E> Result<&T, E> {
1716    /// Maps a `Result<&T, E>` to a `Result<T, E>` by copying the contents of the
1717    /// `Ok` part.
1718    ///
1719    /// # Examples
1720    ///
1721    /// ```
1722    /// let val = 12;
1723    /// let x: Result<&i32, i32> = Ok(&val);
1724    /// assert_eq!(x, Ok(&12));
1725    /// let copied = x.copied();
1726    /// assert_eq!(copied, Ok(12));
1727    /// ```
1728    #[inline]
1729    #[stable(feature = "result_copied", since = "1.59.0")]
1730    #[rustc_const_stable(feature = "const_result", since = "1.83.0")]
1731    #[rustc_allow_const_fn_unstable(const_precise_live_drops)]
1732    pub const fn copied(self) -> Result<T, E>
1733    where
1734        T: Copy,
1735    {
1736        // FIXME(const-hack): this implementation, which sidesteps using `Result::map` since it's not const
1737        // ready yet, should be reverted when possible to avoid code repetition
1738        match self {
1739            Ok(&v) => Ok(v),
1740            Err(e) => Err(e),
1741        }
1742    }
1743
1744    /// Maps a `Result<&T, E>` to a `Result<T, E>` by cloning the contents of the
1745    /// `Ok` part.
1746    ///
1747    /// # Examples
1748    ///
1749    /// ```
1750    /// let val = 12;
1751    /// let x: Result<&i32, i32> = Ok(&val);
1752    /// assert_eq!(x, Ok(&12));
1753    /// let cloned = x.cloned();
1754    /// assert_eq!(cloned, Ok(12));
1755    /// ```
1756    #[inline]
1757    #[stable(feature = "result_cloned", since = "1.59.0")]
1758    pub fn cloned(self) -> Result<T, E>
1759    where
1760        T: Clone,
1761    {
1762        self.map(|t| t.clone())
1763    }
1764}
1765
1766impl<T, E> Result<&mut T, E> {
1767    /// Maps a `Result<&mut T, E>` to a `Result<T, E>` by copying the contents of the
1768    /// `Ok` part.
1769    ///
1770    /// # Examples
1771    ///
1772    /// ```
1773    /// let mut val = 12;
1774    /// let x: Result<&mut i32, i32> = Ok(&mut val);
1775    /// assert_eq!(x, Ok(&mut 12));
1776    /// let copied = x.copied();
1777    /// assert_eq!(copied, Ok(12));
1778    /// ```
1779    #[inline]
1780    #[stable(feature = "result_copied", since = "1.59.0")]
1781    #[rustc_const_stable(feature = "const_result", since = "1.83.0")]
1782    #[rustc_allow_const_fn_unstable(const_precise_live_drops)]
1783    pub const fn copied(self) -> Result<T, E>
1784    where
1785        T: Copy,
1786    {
1787        // FIXME(const-hack): this implementation, which sidesteps using `Result::map` since it's not const
1788        // ready yet, should be reverted when possible to avoid code repetition
1789        match self {
1790            Ok(&mut v) => Ok(v),
1791            Err(e) => Err(e),
1792        }
1793    }
1794
1795    /// Maps a `Result<&mut T, E>` to a `Result<T, E>` by cloning the contents of the
1796    /// `Ok` part.
1797    ///
1798    /// # Examples
1799    ///
1800    /// ```
1801    /// let mut val = 12;
1802    /// let x: Result<&mut i32, i32> = Ok(&mut val);
1803    /// assert_eq!(x, Ok(&mut 12));
1804    /// let cloned = x.cloned();
1805    /// assert_eq!(cloned, Ok(12));
1806    /// ```
1807    #[inline]
1808    #[stable(feature = "result_cloned", since = "1.59.0")]
1809    pub fn cloned(self) -> Result<T, E>
1810    where
1811        T: Clone,
1812    {
1813        self.map(|t| t.clone())
1814    }
1815}
1816
1817impl<T, E> Result<Option<T>, E> {
1818    /// Transposes a `Result` of an `Option` into an `Option` of a `Result`.
1819    ///
1820    /// `Ok(None)` will be mapped to `None`.
1821    /// `Ok(Some(_))` and `Err(_)` will be mapped to `Some(Ok(_))` and `Some(Err(_))`.
1822    ///
1823    /// # Examples
1824    ///
1825    /// ```
1826    /// #[derive(Debug, Eq, PartialEq)]
1827    /// struct SomeErr;
1828    ///
1829    /// let x: Result<Option<i32>, SomeErr> = Ok(Some(5));
1830    /// let y: Option<Result<i32, SomeErr>> = Some(Ok(5));
1831    /// assert_eq!(x.transpose(), y);
1832    /// ```
1833    #[inline]
1834    #[stable(feature = "transpose_result", since = "1.33.0")]
1835    #[rustc_const_stable(feature = "const_result", since = "1.83.0")]
1836    #[rustc_allow_const_fn_unstable(const_precise_live_drops)]
1837    pub const fn transpose(self) -> Option<Result<T, E>> {
1838        match self {
1839            Ok(Some(x)) => Some(Ok(x)),
1840            Ok(None) => None,
1841            Err(e) => Some(Err(e)),
1842        }
1843    }
1844}
1845
1846impl<T, E> Result<Result<T, E>, E> {
1847    /// Converts from `Result<Result<T, E>, E>` to `Result<T, E>`
1848    ///
1849    /// # Examples
1850    ///
1851    /// ```
1852    /// let x: Result<Result<&'static str, u32>, u32> = Ok(Ok("hello"));
1853    /// assert_eq!(Ok("hello"), x.flatten());
1854    ///
1855    /// let x: Result<Result<&'static str, u32>, u32> = Ok(Err(6));
1856    /// assert_eq!(Err(6), x.flatten());
1857    ///
1858    /// let x: Result<Result<&'static str, u32>, u32> = Err(6);
1859    /// assert_eq!(Err(6), x.flatten());
1860    /// ```
1861    ///
1862    /// Flattening only removes one level of nesting at a time:
1863    ///
1864    /// ```
1865    /// let x: Result<Result<Result<&'static str, u32>, u32>, u32> = Ok(Ok(Ok("hello")));
1866    /// assert_eq!(Ok(Ok("hello")), x.flatten());
1867    /// assert_eq!(Ok("hello"), x.flatten().flatten());
1868    /// ```
1869    #[inline]
1870    #[stable(feature = "result_flattening", since = "1.89.0")]
1871    #[rustc_allow_const_fn_unstable(const_precise_live_drops)]
1872    #[rustc_const_stable(feature = "result_flattening", since = "1.89.0")]
1873    // Ferrocene: blocked on const impl Drop for Result<Result<T, E>>
1874    #[cfg(not(feature = "ferrocene_subset"))]
1875    pub const fn flatten(self) -> Result<T, E> {
1876        // FIXME(const-hack): could be written with `and_then`
1877        match self {
1878            Ok(inner) => inner,
1879            Err(e) => Err(e),
1880        }
1881    }
1882}
1883
1884// This is a separate function to reduce the code size of the methods
1885#[cfg(not(panic = "immediate-abort"))]
1886#[inline(never)]
1887#[cold]
1888#[track_caller]
1889fn unwrap_failed(msg: &str, error: &dyn fmt::Debug) -> ! {
1890    panic!("{msg}: {error:?}");
1891}
1892
1893// This is a separate function to avoid constructing a `dyn Debug`
1894// that gets immediately thrown away, since vtables don't get cleaned up
1895// by dead code elimination if a trait object is constructed even if it goes
1896// unused
1897#[cfg(panic = "immediate-abort")]
1898#[inline]
1899#[cold]
1900#[track_caller]
1901const fn unwrap_failed<T>(_msg: &str, _error: &T) -> ! {
1902    panic!()
1903}
1904
1905/////////////////////////////////////////////////////////////////////////////
1906// Trait implementations
1907/////////////////////////////////////////////////////////////////////////////
1908
1909#[stable(feature = "rust1", since = "1.0.0")]
1910impl<T, E> Clone for Result<T, E>
1911where
1912    T: Clone,
1913    E: Clone,
1914{
1915    #[inline]
1916    fn clone(&self) -> Self {
1917        match self {
1918            Ok(x) => Ok(x.clone()),
1919            Err(x) => Err(x.clone()),
1920        }
1921    }
1922
1923    #[inline]
1924    fn clone_from(&mut self, source: &Self) {
1925        match (self, source) {
1926            (Ok(to), Ok(from)) => to.clone_from(from),
1927            (Err(to), Err(from)) => to.clone_from(from),
1928            (to, from) => *to = from.clone(),
1929        }
1930    }
1931}
1932
1933#[unstable(feature = "ergonomic_clones", issue = "132290")]
1934#[cfg(not(feature = "ferrocene_subset"))]
1935impl<T, E> crate::clone::UseCloned for Result<T, E>
1936where
1937    T: crate::clone::UseCloned,
1938    E: crate::clone::UseCloned,
1939{
1940}
1941
1942#[stable(feature = "rust1", since = "1.0.0")]
1943#[cfg(not(feature = "ferrocene_subset"))]
1944impl<T, E> IntoIterator for Result<T, E> {
1945    type Item = T;
1946    type IntoIter = IntoIter<T>;
1947
1948    /// Returns a consuming iterator over the possibly contained value.
1949    ///
1950    /// The iterator yields one value if the result is [`Result::Ok`], otherwise none.
1951    ///
1952    /// # Examples
1953    ///
1954    /// ```
1955    /// let x: Result<u32, &str> = Ok(5);
1956    /// let v: Vec<u32> = x.into_iter().collect();
1957    /// assert_eq!(v, [5]);
1958    ///
1959    /// let x: Result<u32, &str> = Err("nothing!");
1960    /// let v: Vec<u32> = x.into_iter().collect();
1961    /// assert_eq!(v, []);
1962    /// ```
1963    #[inline]
1964    fn into_iter(self) -> IntoIter<T> {
1965        IntoIter { inner: self.ok() }
1966    }
1967}
1968
1969#[stable(since = "1.4.0", feature = "result_iter")]
1970#[cfg(not(feature = "ferrocene_subset"))]
1971impl<'a, T, E> IntoIterator for &'a Result<T, E> {
1972    type Item = &'a T;
1973    type IntoIter = Iter<'a, T>;
1974
1975    fn into_iter(self) -> Iter<'a, T> {
1976        self.iter()
1977    }
1978}
1979
1980#[stable(since = "1.4.0", feature = "result_iter")]
1981#[cfg(not(feature = "ferrocene_subset"))]
1982impl<'a, T, E> IntoIterator for &'a mut Result<T, E> {
1983    type Item = &'a mut T;
1984    type IntoIter = IterMut<'a, T>;
1985
1986    fn into_iter(self) -> IterMut<'a, T> {
1987        self.iter_mut()
1988    }
1989}
1990
1991/////////////////////////////////////////////////////////////////////////////
1992// The Result Iterators
1993/////////////////////////////////////////////////////////////////////////////
1994
1995/// An iterator over a reference to the [`Ok`] variant of a [`Result`].
1996///
1997/// The iterator yields one value if the result is [`Ok`], otherwise none.
1998///
1999/// Created by [`Result::iter`].
2000#[derive(Debug)]
2001#[stable(feature = "rust1", since = "1.0.0")]
2002#[cfg(not(feature = "ferrocene_subset"))]
2003pub struct Iter<'a, T: 'a> {
2004    inner: Option<&'a T>,
2005}
2006
2007#[stable(feature = "rust1", since = "1.0.0")]
2008#[cfg(not(feature = "ferrocene_subset"))]
2009impl<'a, T> Iterator for Iter<'a, T> {
2010    type Item = &'a T;
2011
2012    #[inline]
2013    fn next(&mut self) -> Option<&'a T> {
2014        self.inner.take()
2015    }
2016    #[inline]
2017    fn size_hint(&self) -> (usize, Option<usize>) {
2018        let n = if self.inner.is_some() { 1 } else { 0 };
2019        (n, Some(n))
2020    }
2021}
2022
2023#[stable(feature = "rust1", since = "1.0.0")]
2024#[cfg(not(feature = "ferrocene_subset"))]
2025impl<'a, T> DoubleEndedIterator for Iter<'a, T> {
2026    #[inline]
2027    fn next_back(&mut self) -> Option<&'a T> {
2028        self.inner.take()
2029    }
2030}
2031
2032#[stable(feature = "rust1", since = "1.0.0")]
2033#[cfg(not(feature = "ferrocene_subset"))]
2034impl<T> ExactSizeIterator for Iter<'_, T> {}
2035
2036#[stable(feature = "fused", since = "1.26.0")]
2037#[cfg(not(feature = "ferrocene_subset"))]
2038impl<T> FusedIterator for Iter<'_, T> {}
2039
2040#[unstable(feature = "trusted_len", issue = "37572")]
2041#[cfg(not(feature = "ferrocene_subset"))]
2042unsafe impl<A> TrustedLen for Iter<'_, A> {}
2043
2044#[stable(feature = "rust1", since = "1.0.0")]
2045#[cfg(not(feature = "ferrocene_subset"))]
2046impl<T> Clone for Iter<'_, T> {
2047    #[inline]
2048    fn clone(&self) -> Self {
2049        Iter { inner: self.inner }
2050    }
2051}
2052
2053/// An iterator over a mutable reference to the [`Ok`] variant of a [`Result`].
2054///
2055/// Created by [`Result::iter_mut`].
2056#[derive(Debug)]
2057#[stable(feature = "rust1", since = "1.0.0")]
2058#[cfg(not(feature = "ferrocene_subset"))]
2059pub struct IterMut<'a, T: 'a> {
2060    inner: Option<&'a mut T>,
2061}
2062
2063#[stable(feature = "rust1", since = "1.0.0")]
2064#[cfg(not(feature = "ferrocene_subset"))]
2065impl<'a, T> Iterator for IterMut<'a, T> {
2066    type Item = &'a mut T;
2067
2068    #[inline]
2069    fn next(&mut self) -> Option<&'a mut T> {
2070        self.inner.take()
2071    }
2072    #[inline]
2073    fn size_hint(&self) -> (usize, Option<usize>) {
2074        let n = if self.inner.is_some() { 1 } else { 0 };
2075        (n, Some(n))
2076    }
2077}
2078
2079#[stable(feature = "rust1", since = "1.0.0")]
2080#[cfg(not(feature = "ferrocene_subset"))]
2081impl<'a, T> DoubleEndedIterator for IterMut<'a, T> {
2082    #[inline]
2083    fn next_back(&mut self) -> Option<&'a mut T> {
2084        self.inner.take()
2085    }
2086}
2087
2088#[stable(feature = "rust1", since = "1.0.0")]
2089#[cfg(not(feature = "ferrocene_subset"))]
2090impl<T> ExactSizeIterator for IterMut<'_, T> {}
2091
2092#[stable(feature = "fused", since = "1.26.0")]
2093#[cfg(not(feature = "ferrocene_subset"))]
2094impl<T> FusedIterator for IterMut<'_, T> {}
2095
2096#[unstable(feature = "trusted_len", issue = "37572")]
2097#[cfg(not(feature = "ferrocene_subset"))]
2098unsafe impl<A> TrustedLen for IterMut<'_, A> {}
2099
2100/// An iterator over the value in a [`Ok`] variant of a [`Result`].
2101///
2102/// The iterator yields one value if the result is [`Ok`], otherwise none.
2103///
2104/// This struct is created by the [`into_iter`] method on
2105/// [`Result`] (provided by the [`IntoIterator`] trait).
2106///
2107/// [`into_iter`]: IntoIterator::into_iter
2108#[derive(Clone, Debug)]
2109#[stable(feature = "rust1", since = "1.0.0")]
2110#[cfg(not(feature = "ferrocene_subset"))]
2111pub struct IntoIter<T> {
2112    inner: Option<T>,
2113}
2114
2115#[stable(feature = "rust1", since = "1.0.0")]
2116#[cfg(not(feature = "ferrocene_subset"))]
2117impl<T> Iterator for IntoIter<T> {
2118    type Item = T;
2119
2120    #[inline]
2121    fn next(&mut self) -> Option<T> {
2122        self.inner.take()
2123    }
2124    #[inline]
2125    fn size_hint(&self) -> (usize, Option<usize>) {
2126        let n = if self.inner.is_some() { 1 } else { 0 };
2127        (n, Some(n))
2128    }
2129}
2130
2131#[stable(feature = "rust1", since = "1.0.0")]
2132#[cfg(not(feature = "ferrocene_subset"))]
2133impl<T> DoubleEndedIterator for IntoIter<T> {
2134    #[inline]
2135    fn next_back(&mut self) -> Option<T> {
2136        self.inner.take()
2137    }
2138}
2139
2140#[stable(feature = "rust1", since = "1.0.0")]
2141#[cfg(not(feature = "ferrocene_subset"))]
2142impl<T> ExactSizeIterator for IntoIter<T> {}
2143
2144#[stable(feature = "fused", since = "1.26.0")]
2145#[cfg(not(feature = "ferrocene_subset"))]
2146impl<T> FusedIterator for IntoIter<T> {}
2147
2148#[unstable(feature = "trusted_len", issue = "37572")]
2149#[cfg(not(feature = "ferrocene_subset"))]
2150unsafe impl<A> TrustedLen for IntoIter<A> {}
2151
2152/////////////////////////////////////////////////////////////////////////////
2153// FromIterator
2154/////////////////////////////////////////////////////////////////////////////
2155
2156#[stable(feature = "rust1", since = "1.0.0")]
2157#[cfg(not(feature = "ferrocene_subset"))]
2158impl<A, E, V: FromIterator<A>> FromIterator<Result<A, E>> for Result<V, E> {
2159    /// Takes each element in the `Iterator`: if it is an `Err`, no further
2160    /// elements are taken, and the `Err` is returned. Should no `Err` occur, a
2161    /// container with the values of each `Result` is returned.
2162    ///
2163    /// Here is an example which increments every integer in a vector,
2164    /// checking for overflow:
2165    ///
2166    /// ```
2167    /// let v = vec![1, 2];
2168    /// let res: Result<Vec<u32>, &'static str> = v.iter().map(|x: &u32|
2169    ///     x.checked_add(1).ok_or("Overflow!")
2170    /// ).collect();
2171    /// assert_eq!(res, Ok(vec![2, 3]));
2172    /// ```
2173    ///
2174    /// Here is another example that tries to subtract one from another list
2175    /// of integers, this time checking for underflow:
2176    ///
2177    /// ```
2178    /// let v = vec![1, 2, 0];
2179    /// let res: Result<Vec<u32>, &'static str> = v.iter().map(|x: &u32|
2180    ///     x.checked_sub(1).ok_or("Underflow!")
2181    /// ).collect();
2182    /// assert_eq!(res, Err("Underflow!"));
2183    /// ```
2184    ///
2185    /// Here is a variation on the previous example, showing that no
2186    /// further elements are taken from `iter` after the first `Err`.
2187    ///
2188    /// ```
2189    /// let v = vec![3, 2, 1, 10];
2190    /// let mut shared = 0;
2191    /// let res: Result<Vec<u32>, &'static str> = v.iter().map(|x: &u32| {
2192    ///     shared += x;
2193    ///     x.checked_sub(2).ok_or("Underflow!")
2194    /// }).collect();
2195    /// assert_eq!(res, Err("Underflow!"));
2196    /// assert_eq!(shared, 6);
2197    /// ```
2198    ///
2199    /// Since the third element caused an underflow, no further elements were taken,
2200    /// so the final value of `shared` is 6 (= `3 + 2 + 1`), not 16.
2201    #[inline]
2202    fn from_iter<I: IntoIterator<Item = Result<A, E>>>(iter: I) -> Result<V, E> {
2203        iter::try_process(iter.into_iter(), |i| i.collect())
2204    }
2205}
2206
2207#[unstable(feature = "try_trait_v2", issue = "84277", old_name = "try_trait")]
2208#[rustc_const_unstable(feature = "const_try", issue = "74935")]
2209impl<T, E> const ops::Try for Result<T, E> {
2210    type Output = T;
2211    type Residual = Result<convert::Infallible, E>;
2212
2213    #[inline]
2214    fn from_output(output: Self::Output) -> Self {
2215        Ok(output)
2216    }
2217
2218    #[inline]
2219    fn branch(self) -> ControlFlow<Self::Residual, Self::Output> {
2220        match self {
2221            Ok(v) => ControlFlow::Continue(v),
2222            Err(e) => ControlFlow::Break(Err(e)),
2223        }
2224    }
2225}
2226
2227#[unstable(feature = "try_trait_v2", issue = "84277", old_name = "try_trait")]
2228#[rustc_const_unstable(feature = "const_try", issue = "74935")]
2229impl<T, E, F: [const] From<E>> const ops::FromResidual<Result<convert::Infallible, E>>
2230    for Result<T, F>
2231{
2232    #[inline]
2233    #[track_caller]
2234    fn from_residual(residual: Result<convert::Infallible, E>) -> Self {
2235        match residual {
2236            Err(e) => Err(From::from(e)),
2237        }
2238    }
2239}
2240#[diagnostic::do_not_recommend]
2241#[unstable(feature = "try_trait_v2_yeet", issue = "96374")]
2242#[rustc_const_unstable(feature = "const_try", issue = "74935")]
2243#[cfg(not(feature = "ferrocene_subset"))]
2244impl<T, E, F: [const] From<E>> const ops::FromResidual<ops::Yeet<E>> for Result<T, F> {
2245    #[inline]
2246    fn from_residual(ops::Yeet(e): ops::Yeet<E>) -> Self {
2247        Err(From::from(e))
2248    }
2249}
2250
2251#[unstable(feature = "try_trait_v2_residual", issue = "91285")]
2252#[rustc_const_unstable(feature = "const_try", issue = "74935")]
2253impl<T, E> const ops::Residual<T> for Result<convert::Infallible, E> {
2254    type TryType = Result<T, E>;
2255}