Skip to main content

core/str/
mod.rs

1//! String manipulation.
2//!
3//! For more details, see the [`std::str`] module.
4//!
5//! [`std::str`]: ../../std/str/index.html
6
7#![stable(feature = "rust1", since = "1.0.0")]
8
9mod converts;
10mod count;
11mod error;
12mod iter;
13mod traits;
14mod validations;
15
16#[cfg(not(feature = "ferrocene_subset"))]
17use self::pattern::{DoubleEndedSearcher, Pattern, ReverseSearcher, Searcher};
18#[cfg(not(feature = "ferrocene_subset"))]
19use crate::char::{self, EscapeDebugExtArgs};
20#[cfg(not(feature = "ferrocene_subset"))]
21use crate::ops::Range;
22#[cfg(not(feature = "ferrocene_subset"))]
23use crate::slice::{self, SliceIndex};
24#[cfg(not(feature = "ferrocene_subset"))]
25use crate::ub_checks::assert_unsafe_precondition;
26#[cfg(not(feature = "ferrocene_subset"))]
27use crate::{ascii, mem};
28
29// Ferrocene addition: imports for certified subset
30#[cfg(feature = "ferrocene_subset")]
31#[rustfmt::skip]
32use {
33    self::pattern::{Pattern, ReverseSearcher, Searcher},
34    crate::{char, mem, slice::SliceIndex},
35};
36
37pub mod pattern;
38
39mod lossy;
40#[unstable(feature = "str_from_raw_parts", issue = "119206")]
41pub use converts::{from_raw_parts, from_raw_parts_mut};
42#[stable(feature = "rust1", since = "1.0.0")]
43pub use converts::{from_utf8, from_utf8_unchecked};
44#[stable(feature = "str_mut_extras", since = "1.20.0")]
45pub use converts::{from_utf8_mut, from_utf8_unchecked_mut};
46#[stable(feature = "rust1", since = "1.0.0")]
47#[cfg(not(feature = "ferrocene_subset"))]
48pub use error::{ParseBoolError, Utf8Error};
49#[stable(feature = "encode_utf16", since = "1.8.0")]
50#[cfg(not(feature = "ferrocene_subset"))]
51pub use iter::EncodeUtf16;
52#[stable(feature = "rust1", since = "1.0.0")]
53#[allow(deprecated)]
54#[cfg(not(feature = "ferrocene_subset"))]
55pub use iter::LinesAny;
56#[stable(feature = "split_ascii_whitespace", since = "1.34.0")]
57#[cfg(not(feature = "ferrocene_subset"))]
58pub use iter::SplitAsciiWhitespace;
59#[stable(feature = "split_inclusive", since = "1.51.0")]
60pub use iter::SplitInclusive;
61#[stable(feature = "rust1", since = "1.0.0")]
62#[cfg(not(feature = "ferrocene_subset"))]
63pub use iter::{Bytes, CharIndices, Chars, Lines, SplitWhitespace};
64#[stable(feature = "str_escape", since = "1.34.0")]
65#[cfg(not(feature = "ferrocene_subset"))]
66pub use iter::{EscapeDebug, EscapeDefault, EscapeUnicode};
67#[stable(feature = "str_match_indices", since = "1.5.0")]
68#[cfg(not(feature = "ferrocene_subset"))]
69pub use iter::{MatchIndices, RMatchIndices};
70#[cfg(not(feature = "ferrocene_subset"))]
71use iter::{MatchIndicesInternal, MatchesInternal, SplitInternal, SplitNInternal};
72#[stable(feature = "str_matches", since = "1.2.0")]
73#[cfg(not(feature = "ferrocene_subset"))]
74pub use iter::{Matches, RMatches};
75#[stable(feature = "rust1", since = "1.0.0")]
76#[cfg(not(feature = "ferrocene_subset"))]
77pub use iter::{RSplit, RSplitTerminator, Split, SplitTerminator};
78#[stable(feature = "rust1", since = "1.0.0")]
79#[cfg(not(feature = "ferrocene_subset"))]
80pub use iter::{RSplitN, SplitN};
81#[stable(feature = "utf8_chunks", since = "1.79.0")]
82#[cfg(not(feature = "ferrocene_subset"))]
83pub use lossy::{Utf8Chunk, Utf8Chunks};
84#[stable(feature = "rust1", since = "1.0.0")]
85pub use traits::FromStr;
86#[unstable(feature = "str_internals", issue = "none")]
87pub use validations::{next_code_point, utf8_char_width};
88
89#[stable(feature = "rust1", since = "1.0.0")]
90#[cfg(feature = "ferrocene_subset")]
91#[rustfmt::skip]
92pub use {
93    error::Utf8Error,
94    iter::{Bytes, CharIndices, Chars},
95};
96
97#[cfg(feature = "ferrocene_subset")]
98#[rustfmt::skip]
99use iter::SplitInternal;
100
101#[inline(never)]
102#[cold]
103#[track_caller]
104#[rustc_allow_const_fn_unstable(const_eval_select)]
105#[cfg(not(panic = "immediate-abort"))]
106const fn slice_error_fail(s: &str, begin: usize, end: usize) -> ! {
107    crate::intrinsics::const_eval_select((s, begin, end), slice_error_fail_ct, slice_error_fail_rt)
108}
109
110#[cfg(panic = "immediate-abort")]
111#[cfg(not(feature = "ferrocene_subset"))]
112const fn slice_error_fail(s: &str, begin: usize, end: usize) -> ! {
113    slice_error_fail_ct(s, begin, end)
114}
115
116#[track_caller]
117#[ferrocene::annotation("Cannot be covered as this only runs during compilation.")]
118const fn slice_error_fail_ct(_: &str, _: usize, _: usize) -> ! {
119    panic!("failed to slice string");
120}
121
122#[track_caller]
123fn slice_error_fail_rt(s: &str, begin: usize, end: usize) -> ! {
124    const MAX_DISPLAY_LENGTH: usize = 256;
125    let trunc_len = s.floor_char_boundary(MAX_DISPLAY_LENGTH);
126    let s_trunc = &s[..trunc_len];
127    let ellipsis = if trunc_len < s.len() { "[...]" } else { "" };
128
129    // 1. out of bounds
130    if begin > s.len() || end > s.len() {
131        let oob_index = if begin > s.len() { begin } else { end };
132        panic!("byte index {oob_index} is out of bounds of `{s_trunc}`{ellipsis}");
133    }
134
135    // 2. begin <= end
136    assert!(
137        begin <= end,
138        "begin <= end ({} <= {}) when slicing `{}`{}",
139        begin,
140        end,
141        s_trunc,
142        ellipsis
143    );
144
145    // 3. character boundary
146    let index = if !s.is_char_boundary(begin) { begin } else { end };
147    // find the character
148    let char_start = s.floor_char_boundary(index);
149    // `char_start` must be less than len and a char boundary
150    let ch = s[char_start..].chars().next().unwrap();
151    let char_range = char_start..char_start + ch.len_utf8();
152    panic!(
153        "byte index {} is not a char boundary; it is inside {:?} (bytes {:?}) of `{}`{}",
154        index, ch, char_range, s_trunc, ellipsis
155    );
156}
157
158impl str {
159    /// Returns the length of `self`.
160    ///
161    /// This length is in bytes, not [`char`]s or graphemes. In other words,
162    /// it might not be what a human considers the length of the string.
163    ///
164    /// [`char`]: prim@char
165    ///
166    /// # Examples
167    ///
168    /// ```
169    /// let len = "foo".len();
170    /// assert_eq!(3, len);
171    ///
172    /// assert_eq!("ƒoo".len(), 4); // fancy f!
173    /// assert_eq!("ƒoo".chars().count(), 3);
174    /// ```
175    #[stable(feature = "rust1", since = "1.0.0")]
176    #[rustc_const_stable(feature = "const_str_len", since = "1.39.0")]
177    #[rustc_diagnostic_item = "str_len"]
178    #[rustc_no_implicit_autorefs]
179    #[must_use]
180    #[inline]
181    pub const fn len(&self) -> usize {
182        self.as_bytes().len()
183    }
184
185    /// Returns `true` if `self` has a length of zero bytes.
186    ///
187    /// # Examples
188    ///
189    /// ```
190    /// let s = "";
191    /// assert!(s.is_empty());
192    ///
193    /// let s = "not empty";
194    /// assert!(!s.is_empty());
195    /// ```
196    #[stable(feature = "rust1", since = "1.0.0")]
197    #[rustc_const_stable(feature = "const_str_is_empty", since = "1.39.0")]
198    #[rustc_no_implicit_autorefs]
199    #[must_use]
200    #[inline]
201    pub const fn is_empty(&self) -> bool {
202        self.len() == 0
203    }
204
205    /// Converts a slice of bytes to a string slice.
206    ///
207    /// A string slice ([`&str`]) is made of bytes ([`u8`]), and a byte slice
208    /// ([`&[u8]`][byteslice]) is made of bytes, so this function converts between
209    /// the two. Not all byte slices are valid string slices, however: [`&str`] requires
210    /// that it is valid UTF-8. `from_utf8()` checks to ensure that the bytes are valid
211    /// UTF-8, and then does the conversion.
212    ///
213    /// [`&str`]: str
214    /// [byteslice]: prim@slice
215    ///
216    /// If you are sure that the byte slice is valid UTF-8, and you don't want to
217    /// incur the overhead of the validity check, there is an unsafe version of
218    /// this function, [`from_utf8_unchecked`], which has the same
219    /// behavior but skips the check.
220    ///
221    /// If you need a `String` instead of a `&str`, consider
222    /// [`String::from_utf8`][string].
223    ///
224    /// [string]: ../std/string/struct.String.html#method.from_utf8
225    ///
226    /// Because you can stack-allocate a `[u8; N]`, and you can take a
227    /// [`&[u8]`][byteslice] of it, this function is one way to have a
228    /// stack-allocated string. There is an example of this in the
229    /// examples section below.
230    ///
231    /// [byteslice]: slice
232    ///
233    /// # Errors
234    ///
235    /// Returns `Err` if the slice is not UTF-8 with a description as to why the
236    /// provided slice is not UTF-8.
237    ///
238    /// # Examples
239    ///
240    /// Basic usage:
241    ///
242    /// ```
243    /// // some bytes, in a vector
244    /// let sparkle_heart = vec![240, 159, 146, 150];
245    ///
246    /// // We can use the ? (try) operator to check if the bytes are valid
247    /// let sparkle_heart = str::from_utf8(&sparkle_heart)?;
248    ///
249    /// assert_eq!("💖", sparkle_heart);
250    /// # Ok::<_, std::str::Utf8Error>(())
251    /// ```
252    ///
253    /// Incorrect bytes:
254    ///
255    /// ```
256    /// // some invalid bytes, in a vector
257    /// let sparkle_heart = vec![0, 159, 146, 150];
258    ///
259    /// assert!(str::from_utf8(&sparkle_heart).is_err());
260    /// ```
261    ///
262    /// See the docs for [`Utf8Error`] for more details on the kinds of
263    /// errors that can be returned.
264    ///
265    /// A "stack allocated string":
266    ///
267    /// ```
268    /// // some bytes, in a stack-allocated array
269    /// let sparkle_heart = [240, 159, 146, 150];
270    ///
271    /// // We know these bytes are valid, so just use `unwrap()`.
272    /// let sparkle_heart: &str = str::from_utf8(&sparkle_heart).unwrap();
273    ///
274    /// assert_eq!("💖", sparkle_heart);
275    /// ```
276    #[stable(feature = "inherent_str_constructors", since = "1.87.0")]
277    #[rustc_const_stable(feature = "inherent_str_constructors", since = "1.87.0")]
278    #[rustc_diagnostic_item = "str_inherent_from_utf8"]
279    pub const fn from_utf8(v: &[u8]) -> Result<&str, Utf8Error> {
280        converts::from_utf8(v)
281    }
282
283    /// Converts a mutable slice of bytes to a mutable string slice.
284    ///
285    /// # Examples
286    ///
287    /// Basic usage:
288    ///
289    /// ```
290    /// // "Hello, Rust!" as a mutable vector
291    /// let mut hellorust = vec![72, 101, 108, 108, 111, 44, 32, 82, 117, 115, 116, 33];
292    ///
293    /// // As we know these bytes are valid, we can use `unwrap()`
294    /// let outstr = str::from_utf8_mut(&mut hellorust).unwrap();
295    ///
296    /// assert_eq!("Hello, Rust!", outstr);
297    /// ```
298    ///
299    /// Incorrect bytes:
300    ///
301    /// ```
302    /// // Some invalid bytes in a mutable vector
303    /// let mut invalid = vec![128, 223];
304    ///
305    /// assert!(str::from_utf8_mut(&mut invalid).is_err());
306    /// ```
307    /// See the docs for [`Utf8Error`] for more details on the kinds of
308    /// errors that can be returned.
309    #[stable(feature = "inherent_str_constructors", since = "1.87.0")]
310    #[rustc_const_stable(feature = "const_str_from_utf8", since = "1.87.0")]
311    #[rustc_diagnostic_item = "str_inherent_from_utf8_mut"]
312    pub const fn from_utf8_mut(v: &mut [u8]) -> Result<&mut str, Utf8Error> {
313        converts::from_utf8_mut(v)
314    }
315
316    /// Converts a slice of bytes to a string slice without checking
317    /// that the string contains valid UTF-8.
318    ///
319    /// See the safe version, [`from_utf8`], for more information.
320    ///
321    /// # Safety
322    ///
323    /// The bytes passed in must be valid UTF-8.
324    ///
325    /// # Examples
326    ///
327    /// Basic usage:
328    ///
329    /// ```
330    /// // some bytes, in a vector
331    /// let sparkle_heart = vec![240, 159, 146, 150];
332    ///
333    /// let sparkle_heart = unsafe {
334    ///     str::from_utf8_unchecked(&sparkle_heart)
335    /// };
336    ///
337    /// assert_eq!("💖", sparkle_heart);
338    /// ```
339    #[inline]
340    #[must_use]
341    #[stable(feature = "inherent_str_constructors", since = "1.87.0")]
342    #[rustc_const_stable(feature = "inherent_str_constructors", since = "1.87.0")]
343    #[rustc_diagnostic_item = "str_inherent_from_utf8_unchecked"]
344    pub const unsafe fn from_utf8_unchecked(v: &[u8]) -> &str {
345        // SAFETY: converts::from_utf8_unchecked has the same safety requirements as this function.
346        unsafe { converts::from_utf8_unchecked(v) }
347    }
348
349    /// Converts a slice of bytes to a string slice without checking
350    /// that the string contains valid UTF-8; mutable version.
351    ///
352    /// See the immutable version, [`from_utf8_unchecked()`] for documentation and safety requirements.
353    ///
354    /// # Examples
355    ///
356    /// Basic usage:
357    ///
358    /// ```
359    /// let mut heart = vec![240, 159, 146, 150];
360    /// let heart = unsafe { str::from_utf8_unchecked_mut(&mut heart) };
361    ///
362    /// assert_eq!("💖", heart);
363    /// ```
364    #[inline]
365    #[must_use]
366    #[stable(feature = "inherent_str_constructors", since = "1.87.0")]
367    #[rustc_const_stable(feature = "inherent_str_constructors", since = "1.87.0")]
368    #[rustc_diagnostic_item = "str_inherent_from_utf8_unchecked_mut"]
369    pub const unsafe fn from_utf8_unchecked_mut(v: &mut [u8]) -> &mut str {
370        // SAFETY: converts::from_utf8_unchecked_mut has the same safety requirements as this function.
371        unsafe { converts::from_utf8_unchecked_mut(v) }
372    }
373
374    /// Checks that `index`-th byte is the first byte in a UTF-8 code point
375    /// sequence or the end of the string.
376    ///
377    /// The start and end of the string (when `index == self.len()`) are
378    /// considered to be boundaries.
379    ///
380    /// Returns `false` if `index` is greater than `self.len()`.
381    ///
382    /// # Examples
383    ///
384    /// ```
385    /// let s = "Löwe 老虎 Léopard";
386    /// assert!(s.is_char_boundary(0));
387    /// // start of `老`
388    /// assert!(s.is_char_boundary(6));
389    /// assert!(s.is_char_boundary(s.len()));
390    ///
391    /// // second byte of `ö`
392    /// assert!(!s.is_char_boundary(2));
393    ///
394    /// // third byte of `老`
395    /// assert!(!s.is_char_boundary(8));
396    /// ```
397    #[must_use]
398    #[stable(feature = "is_char_boundary", since = "1.9.0")]
399    #[rustc_const_stable(feature = "const_is_char_boundary", since = "1.86.0")]
400    #[inline]
401    pub const fn is_char_boundary(&self, index: usize) -> bool {
402        // 0 is always ok.
403        // Test for 0 explicitly so that it can optimize out the check
404        // easily and skip reading string data for that case.
405        // Note that optimizing `self.get(..index)` relies on this.
406        if index == 0 {
407            return true;
408        }
409
410        if index >= self.len() {
411            // For `true` we have two options:
412            //
413            // - index == self.len()
414            //   Empty strings are valid, so return true
415            // - index > self.len()
416            //   In this case return false
417            //
418            // The check is placed exactly here, because it improves generated
419            // code on higher opt-levels. See PR #84751 for more details.
420            index == self.len()
421        } else {
422            self.as_bytes()[index].is_utf8_char_boundary()
423        }
424    }
425
426    /// Finds the closest `x` not exceeding `index` where [`is_char_boundary(x)`] is `true`.
427    ///
428    /// This method can help you truncate a string so that it's still valid UTF-8, but doesn't
429    /// exceed a given number of bytes. Note that this is done purely at the character level
430    /// and can still visually split graphemes, even though the underlying characters aren't
431    /// split. For example, the emoji 🧑‍🔬 (scientist) could be split so that the string only
432    /// includes 🧑 (person) instead.
433    ///
434    /// [`is_char_boundary(x)`]: Self::is_char_boundary
435    ///
436    /// # Examples
437    ///
438    /// ```
439    /// let s = "❤️🧡💛💚💙💜";
440    /// assert_eq!(s.len(), 26);
441    /// assert!(!s.is_char_boundary(13));
442    ///
443    /// let closest = s.floor_char_boundary(13);
444    /// assert_eq!(closest, 10);
445    /// assert_eq!(&s[..closest], "❤️🧡");
446    /// ```
447    #[stable(feature = "round_char_boundary", since = "1.91.0")]
448    #[rustc_const_stable(feature = "round_char_boundary", since = "1.91.0")]
449    #[inline]
450    pub const fn floor_char_boundary(&self, index: usize) -> usize {
451        if index >= self.len() {
452            self.len()
453        } else {
454            let mut i = index;
455            while i > 0 {
456                if self.as_bytes()[i].is_utf8_char_boundary() {
457                    break;
458                }
459                i -= 1;
460            }
461
462            //  The character boundary will be within four bytes of the index
463            debug_assert!(i >= index.saturating_sub(3));
464
465            i
466        }
467    }
468
469    /// Finds the closest `x` not below `index` where [`is_char_boundary(x)`] is `true`.
470    ///
471    /// If `index` is greater than the length of the string, this returns the length of the string.
472    ///
473    /// This method is the natural complement to [`floor_char_boundary`]. See that method
474    /// for more details.
475    ///
476    /// [`floor_char_boundary`]: str::floor_char_boundary
477    /// [`is_char_boundary(x)`]: Self::is_char_boundary
478    ///
479    /// # Examples
480    ///
481    /// ```
482    /// let s = "❤️🧡💛💚💙💜";
483    /// assert_eq!(s.len(), 26);
484    /// assert!(!s.is_char_boundary(13));
485    ///
486    /// let closest = s.ceil_char_boundary(13);
487    /// assert_eq!(closest, 14);
488    /// assert_eq!(&s[..closest], "❤️🧡💛");
489    /// ```
490    #[stable(feature = "round_char_boundary", since = "1.91.0")]
491    #[rustc_const_stable(feature = "round_char_boundary", since = "1.91.0")]
492    #[inline]
493    #[cfg(not(feature = "ferrocene_subset"))]
494    pub const fn ceil_char_boundary(&self, index: usize) -> usize {
495        if index >= self.len() {
496            self.len()
497        } else {
498            let mut i = index;
499            while i < self.len() {
500                if self.as_bytes()[i].is_utf8_char_boundary() {
501                    break;
502                }
503                i += 1;
504            }
505
506            //  The character boundary will be within four bytes of the index
507            debug_assert!(i <= index + 3);
508
509            i
510        }
511    }
512
513    /// Converts a string slice to a byte slice. To convert the byte slice back
514    /// into a string slice, use the [`from_utf8`] function.
515    ///
516    /// # Examples
517    ///
518    /// ```
519    /// let bytes = "bors".as_bytes();
520    /// assert_eq!(b"bors", bytes);
521    /// ```
522    #[stable(feature = "rust1", since = "1.0.0")]
523    #[rustc_const_stable(feature = "str_as_bytes", since = "1.39.0")]
524    #[must_use]
525    #[inline(always)]
526    #[allow(unused_attributes)]
527    pub const fn as_bytes(&self) -> &[u8] {
528        // SAFETY: const sound because we transmute two types with the same layout
529        unsafe { mem::transmute(self) }
530    }
531
532    /// Converts a mutable string slice to a mutable byte slice.
533    ///
534    /// # Safety
535    ///
536    /// The caller must ensure that the content of the slice is valid UTF-8
537    /// before the borrow ends and the underlying `str` is used.
538    ///
539    /// Use of a `str` whose contents are not valid UTF-8 is undefined behavior.
540    ///
541    /// # Examples
542    ///
543    /// Basic usage:
544    ///
545    /// ```
546    /// let mut s = String::from("Hello");
547    /// let bytes = unsafe { s.as_bytes_mut() };
548    ///
549    /// assert_eq!(b"Hello", bytes);
550    /// ```
551    ///
552    /// Mutability:
553    ///
554    /// ```
555    /// let mut s = String::from("🗻∈🌏");
556    ///
557    /// unsafe {
558    ///     let bytes = s.as_bytes_mut();
559    ///
560    ///     bytes[0] = 0xF0;
561    ///     bytes[1] = 0x9F;
562    ///     bytes[2] = 0x8D;
563    ///     bytes[3] = 0x94;
564    /// }
565    ///
566    /// assert_eq!("🍔∈🌏", s);
567    /// ```
568    #[stable(feature = "str_mut_extras", since = "1.20.0")]
569    #[rustc_const_stable(feature = "const_str_as_mut", since = "1.83.0")]
570    #[must_use]
571    #[inline(always)]
572    pub const unsafe fn as_bytes_mut(&mut self) -> &mut [u8] {
573        // SAFETY: the cast from `&str` to `&[u8]` is safe since `str`
574        // has the same layout as `&[u8]` (only std can make this guarantee).
575        // The pointer dereference is safe since it comes from a mutable reference which
576        // is guaranteed to be valid for writes.
577        unsafe { &mut *(self as *mut str as *mut [u8]) }
578    }
579
580    /// Converts a string slice to a raw pointer.
581    ///
582    /// As string slices are a slice of bytes, the raw pointer points to a
583    /// [`u8`]. This pointer will be pointing to the first byte of the string
584    /// slice.
585    ///
586    /// The caller must ensure that the returned pointer is never written to.
587    /// If you need to mutate the contents of the string slice, use [`as_mut_ptr`].
588    ///
589    /// [`as_mut_ptr`]: str::as_mut_ptr
590    ///
591    /// # Examples
592    ///
593    /// ```
594    /// let s = "Hello";
595    /// let ptr = s.as_ptr();
596    /// ```
597    #[stable(feature = "rust1", since = "1.0.0")]
598    #[rustc_const_stable(feature = "rustc_str_as_ptr", since = "1.32.0")]
599    #[rustc_never_returns_null_ptr]
600    #[rustc_as_ptr]
601    #[must_use]
602    #[inline(always)]
603    pub const fn as_ptr(&self) -> *const u8 {
604        self as *const str as *const u8
605    }
606
607    /// Converts a mutable string slice to a raw pointer.
608    ///
609    /// As string slices are a slice of bytes, the raw pointer points to a
610    /// [`u8`]. This pointer will be pointing to the first byte of the string
611    /// slice.
612    ///
613    /// It is your responsibility to make sure that the string slice only gets
614    /// modified in a way that it remains valid UTF-8.
615    #[stable(feature = "str_as_mut_ptr", since = "1.36.0")]
616    #[rustc_const_stable(feature = "const_str_as_mut", since = "1.83.0")]
617    #[rustc_never_returns_null_ptr]
618    #[rustc_as_ptr]
619    #[must_use]
620    #[inline(always)]
621    pub const fn as_mut_ptr(&mut self) -> *mut u8 {
622        self as *mut str as *mut u8
623    }
624
625    /// Returns a subslice of `str`.
626    ///
627    /// This is the non-panicking alternative to indexing the `str`. Returns
628    /// [`None`] whenever equivalent indexing operation would panic.
629    ///
630    /// # Examples
631    ///
632    /// ```
633    /// let v = String::from("🗻∈🌏");
634    ///
635    /// assert_eq!(Some("🗻"), v.get(0..4));
636    ///
637    /// // indices not on UTF-8 sequence boundaries
638    /// assert!(v.get(1..).is_none());
639    /// assert!(v.get(..8).is_none());
640    ///
641    /// // out of bounds
642    /// assert!(v.get(..42).is_none());
643    /// ```
644    #[stable(feature = "str_checked_slicing", since = "1.20.0")]
645    #[rustc_const_unstable(feature = "const_index", issue = "143775")]
646    #[inline]
647    #[cfg(not(feature = "ferrocene_subset"))]
648    pub const fn get<I: [const] SliceIndex<str>>(&self, i: I) -> Option<&I::Output> {
649        i.get(self)
650    }
651
652    /// Returns a mutable subslice of `str`.
653    ///
654    /// This is the non-panicking alternative to indexing the `str`. Returns
655    /// [`None`] whenever equivalent indexing operation would panic.
656    ///
657    /// # Examples
658    ///
659    /// ```
660    /// let mut v = String::from("hello");
661    /// // correct length
662    /// assert!(v.get_mut(0..5).is_some());
663    /// // out of bounds
664    /// assert!(v.get_mut(..42).is_none());
665    /// assert_eq!(Some("he"), v.get_mut(0..2).map(|v| &*v));
666    ///
667    /// assert_eq!("hello", v);
668    /// {
669    ///     let s = v.get_mut(0..2);
670    ///     let s = s.map(|s| {
671    ///         s.make_ascii_uppercase();
672    ///         &*s
673    ///     });
674    ///     assert_eq!(Some("HE"), s);
675    /// }
676    /// assert_eq!("HEllo", v);
677    /// ```
678    #[stable(feature = "str_checked_slicing", since = "1.20.0")]
679    #[rustc_const_unstable(feature = "const_index", issue = "143775")]
680    #[inline]
681    #[cfg(not(feature = "ferrocene_subset"))]
682    pub const fn get_mut<I: [const] SliceIndex<str>>(&mut self, i: I) -> Option<&mut I::Output> {
683        i.get_mut(self)
684    }
685
686    /// Returns an unchecked subslice of `str`.
687    ///
688    /// This is the unchecked alternative to indexing the `str`.
689    ///
690    /// # Safety
691    ///
692    /// Callers of this function are responsible that these preconditions are
693    /// satisfied:
694    ///
695    /// * The starting index must not exceed the ending index;
696    /// * Indexes must be within bounds of the original slice;
697    /// * Indexes must lie on UTF-8 sequence boundaries.
698    ///
699    /// Failing that, the returned string slice may reference invalid memory or
700    /// violate the invariants communicated by the `str` type.
701    ///
702    /// # Examples
703    ///
704    /// ```
705    /// let v = "🗻∈🌏";
706    /// unsafe {
707    ///     assert_eq!("🗻", v.get_unchecked(0..4));
708    ///     assert_eq!("∈", v.get_unchecked(4..7));
709    ///     assert_eq!("🌏", v.get_unchecked(7..11));
710    /// }
711    /// ```
712    #[stable(feature = "str_checked_slicing", since = "1.20.0")]
713    #[inline]
714    pub unsafe fn get_unchecked<I: SliceIndex<str>>(&self, i: I) -> &I::Output {
715        // SAFETY: the caller must uphold the safety contract for `get_unchecked`;
716        // the slice is dereferenceable because `self` is a safe reference.
717        // The returned pointer is safe because impls of `SliceIndex` have to guarantee that it is.
718        unsafe { &*i.get_unchecked(self) }
719    }
720
721    /// Returns a mutable, unchecked subslice of `str`.
722    ///
723    /// This is the unchecked alternative to indexing the `str`.
724    ///
725    /// # Safety
726    ///
727    /// Callers of this function are responsible that these preconditions are
728    /// satisfied:
729    ///
730    /// * The starting index must not exceed the ending index;
731    /// * Indexes must be within bounds of the original slice;
732    /// * Indexes must lie on UTF-8 sequence boundaries.
733    ///
734    /// Failing that, the returned string slice may reference invalid memory or
735    /// violate the invariants communicated by the `str` type.
736    ///
737    /// # Examples
738    ///
739    /// ```
740    /// let mut v = String::from("🗻∈🌏");
741    /// unsafe {
742    ///     assert_eq!("🗻", v.get_unchecked_mut(0..4));
743    ///     assert_eq!("∈", v.get_unchecked_mut(4..7));
744    ///     assert_eq!("🌏", v.get_unchecked_mut(7..11));
745    /// }
746    /// ```
747    #[stable(feature = "str_checked_slicing", since = "1.20.0")]
748    #[inline]
749    #[cfg(not(feature = "ferrocene_subset"))]
750    pub unsafe fn get_unchecked_mut<I: SliceIndex<str>>(&mut self, i: I) -> &mut I::Output {
751        // SAFETY: the caller must uphold the safety contract for `get_unchecked_mut`;
752        // the slice is dereferenceable because `self` is a safe reference.
753        // The returned pointer is safe because impls of `SliceIndex` have to guarantee that it is.
754        unsafe { &mut *i.get_unchecked_mut(self) }
755    }
756
757    /// Creates a string slice from another string slice, bypassing safety
758    /// checks.
759    ///
760    /// This is generally not recommended, use with caution! For a safe
761    /// alternative see [`str`] and [`Index`].
762    ///
763    /// [`Index`]: crate::ops::Index
764    ///
765    /// This new slice goes from `begin` to `end`, including `begin` but
766    /// excluding `end`.
767    ///
768    /// To get a mutable string slice instead, see the
769    /// [`slice_mut_unchecked`] method.
770    ///
771    /// [`slice_mut_unchecked`]: str::slice_mut_unchecked
772    ///
773    /// # Safety
774    ///
775    /// Callers of this function are responsible that three preconditions are
776    /// satisfied:
777    ///
778    /// * `begin` must not exceed `end`.
779    /// * `begin` and `end` must be byte positions within the string slice.
780    /// * `begin` and `end` must lie on UTF-8 sequence boundaries.
781    ///
782    /// # Examples
783    ///
784    /// ```
785    /// let s = "Löwe 老虎 Léopard";
786    ///
787    /// unsafe {
788    ///     assert_eq!("Löwe 老虎 Léopard", s.slice_unchecked(0, 21));
789    /// }
790    ///
791    /// let s = "Hello, world!";
792    ///
793    /// unsafe {
794    ///     assert_eq!("world", s.slice_unchecked(7, 12));
795    /// }
796    /// ```
797    #[stable(feature = "rust1", since = "1.0.0")]
798    #[deprecated(since = "1.29.0", note = "use `get_unchecked(begin..end)` instead")]
799    #[must_use]
800    #[inline]
801    #[cfg(not(feature = "ferrocene_subset"))]
802    pub unsafe fn slice_unchecked(&self, begin: usize, end: usize) -> &str {
803        // SAFETY: the caller must uphold the safety contract for `get_unchecked`;
804        // the slice is dereferenceable because `self` is a safe reference.
805        // The returned pointer is safe because impls of `SliceIndex` have to guarantee that it is.
806        unsafe { &*(begin..end).get_unchecked(self) }
807    }
808
809    /// Creates a string slice from another string slice, bypassing safety
810    /// checks.
811    ///
812    /// This is generally not recommended, use with caution! For a safe
813    /// alternative see [`str`] and [`IndexMut`].
814    ///
815    /// [`IndexMut`]: crate::ops::IndexMut
816    ///
817    /// This new slice goes from `begin` to `end`, including `begin` but
818    /// excluding `end`.
819    ///
820    /// To get an immutable string slice instead, see the
821    /// [`slice_unchecked`] method.
822    ///
823    /// [`slice_unchecked`]: str::slice_unchecked
824    ///
825    /// # Safety
826    ///
827    /// Callers of this function are responsible that three preconditions are
828    /// satisfied:
829    ///
830    /// * `begin` must not exceed `end`.
831    /// * `begin` and `end` must be byte positions within the string slice.
832    /// * `begin` and `end` must lie on UTF-8 sequence boundaries.
833    #[stable(feature = "str_slice_mut", since = "1.5.0")]
834    #[deprecated(since = "1.29.0", note = "use `get_unchecked_mut(begin..end)` instead")]
835    #[inline]
836    #[cfg(not(feature = "ferrocene_subset"))]
837    pub unsafe fn slice_mut_unchecked(&mut self, begin: usize, end: usize) -> &mut str {
838        // SAFETY: the caller must uphold the safety contract for `get_unchecked_mut`;
839        // the slice is dereferenceable because `self` is a safe reference.
840        // The returned pointer is safe because impls of `SliceIndex` have to guarantee that it is.
841        unsafe { &mut *(begin..end).get_unchecked_mut(self) }
842    }
843
844    /// Divides one string slice into two at an index.
845    ///
846    /// The argument, `mid`, should be a byte offset from the start of the
847    /// string. It must also be on the boundary of a UTF-8 code point.
848    ///
849    /// The two slices returned go from the start of the string slice to `mid`,
850    /// and from `mid` to the end of the string slice.
851    ///
852    /// To get mutable string slices instead, see the [`split_at_mut`]
853    /// method.
854    ///
855    /// [`split_at_mut`]: str::split_at_mut
856    ///
857    /// # Panics
858    ///
859    /// Panics if `mid` is not on a UTF-8 code point boundary, or if it is past
860    /// the end of the last code point of the string slice.  For a non-panicking
861    /// alternative see [`split_at_checked`](str::split_at_checked).
862    ///
863    /// # Examples
864    ///
865    /// ```
866    /// let s = "Per Martin-Löf";
867    ///
868    /// let (first, last) = s.split_at(3);
869    ///
870    /// assert_eq!("Per", first);
871    /// assert_eq!(" Martin-Löf", last);
872    /// ```
873    #[inline]
874    #[must_use]
875    #[stable(feature = "str_split_at", since = "1.4.0")]
876    #[rustc_const_stable(feature = "const_str_split_at", since = "1.86.0")]
877    #[cfg(not(feature = "ferrocene_subset"))]
878    pub const fn split_at(&self, mid: usize) -> (&str, &str) {
879        match self.split_at_checked(mid) {
880            None => slice_error_fail(self, 0, mid),
881            Some(pair) => pair,
882        }
883    }
884
885    /// Divides one mutable string slice into two at an index.
886    ///
887    /// The argument, `mid`, should be a byte offset from the start of the
888    /// string. It must also be on the boundary of a UTF-8 code point.
889    ///
890    /// The two slices returned go from the start of the string slice to `mid`,
891    /// and from `mid` to the end of the string slice.
892    ///
893    /// To get immutable string slices instead, see the [`split_at`] method.
894    ///
895    /// [`split_at`]: str::split_at
896    ///
897    /// # Panics
898    ///
899    /// Panics if `mid` is not on a UTF-8 code point boundary, or if it is past
900    /// the end of the last code point of the string slice.  For a non-panicking
901    /// alternative see [`split_at_mut_checked`](str::split_at_mut_checked).
902    ///
903    /// # Examples
904    ///
905    /// ```
906    /// let mut s = "Per Martin-Löf".to_string();
907    /// {
908    ///     let (first, last) = s.split_at_mut(3);
909    ///     first.make_ascii_uppercase();
910    ///     assert_eq!("PER", first);
911    ///     assert_eq!(" Martin-Löf", last);
912    /// }
913    /// assert_eq!("PER Martin-Löf", s);
914    /// ```
915    #[inline]
916    #[must_use]
917    #[stable(feature = "str_split_at", since = "1.4.0")]
918    #[rustc_const_stable(feature = "const_str_split_at", since = "1.86.0")]
919    #[cfg(not(feature = "ferrocene_subset"))]
920    pub const fn split_at_mut(&mut self, mid: usize) -> (&mut str, &mut str) {
921        // is_char_boundary checks that the index is in [0, .len()]
922        if self.is_char_boundary(mid) {
923            // SAFETY: just checked that `mid` is on a char boundary.
924            unsafe { self.split_at_mut_unchecked(mid) }
925        } else {
926            slice_error_fail(self, 0, mid)
927        }
928    }
929
930    /// Divides one string slice into two at an index.
931    ///
932    /// The argument, `mid`, should be a valid byte offset from the start of the
933    /// string. It must also be on the boundary of a UTF-8 code point. The
934    /// method returns `None` if that’s not the case.
935    ///
936    /// The two slices returned go from the start of the string slice to `mid`,
937    /// and from `mid` to the end of the string slice.
938    ///
939    /// To get mutable string slices instead, see the [`split_at_mut_checked`]
940    /// method.
941    ///
942    /// [`split_at_mut_checked`]: str::split_at_mut_checked
943    ///
944    /// # Examples
945    ///
946    /// ```
947    /// let s = "Per Martin-Löf";
948    ///
949    /// let (first, last) = s.split_at_checked(3).unwrap();
950    /// assert_eq!("Per", first);
951    /// assert_eq!(" Martin-Löf", last);
952    ///
953    /// assert_eq!(None, s.split_at_checked(13));  // Inside “ö”
954    /// assert_eq!(None, s.split_at_checked(16));  // Beyond the string length
955    /// ```
956    #[inline]
957    #[must_use]
958    #[stable(feature = "split_at_checked", since = "1.80.0")]
959    #[rustc_const_stable(feature = "const_str_split_at", since = "1.86.0")]
960    #[cfg(not(feature = "ferrocene_subset"))]
961    pub const fn split_at_checked(&self, mid: usize) -> Option<(&str, &str)> {
962        // is_char_boundary checks that the index is in [0, .len()]
963        if self.is_char_boundary(mid) {
964            // SAFETY: just checked that `mid` is on a char boundary.
965            Some(unsafe { self.split_at_unchecked(mid) })
966        } else {
967            None
968        }
969    }
970
971    /// Divides one mutable string slice into two at an index.
972    ///
973    /// The argument, `mid`, should be a valid byte offset from the start of the
974    /// string. It must also be on the boundary of a UTF-8 code point. The
975    /// method returns `None` if that’s not the case.
976    ///
977    /// The two slices returned go from the start of the string slice to `mid`,
978    /// and from `mid` to the end of the string slice.
979    ///
980    /// To get immutable string slices instead, see the [`split_at_checked`] method.
981    ///
982    /// [`split_at_checked`]: str::split_at_checked
983    ///
984    /// # Examples
985    ///
986    /// ```
987    /// let mut s = "Per Martin-Löf".to_string();
988    /// if let Some((first, last)) = s.split_at_mut_checked(3) {
989    ///     first.make_ascii_uppercase();
990    ///     assert_eq!("PER", first);
991    ///     assert_eq!(" Martin-Löf", last);
992    /// }
993    /// assert_eq!("PER Martin-Löf", s);
994    ///
995    /// assert_eq!(None, s.split_at_mut_checked(13));  // Inside “ö”
996    /// assert_eq!(None, s.split_at_mut_checked(16));  // Beyond the string length
997    /// ```
998    #[inline]
999    #[must_use]
1000    #[stable(feature = "split_at_checked", since = "1.80.0")]
1001    #[rustc_const_stable(feature = "const_str_split_at", since = "1.86.0")]
1002    #[cfg(not(feature = "ferrocene_subset"))]
1003    pub const fn split_at_mut_checked(&mut self, mid: usize) -> Option<(&mut str, &mut str)> {
1004        // is_char_boundary checks that the index is in [0, .len()]
1005        if self.is_char_boundary(mid) {
1006            // SAFETY: just checked that `mid` is on a char boundary.
1007            Some(unsafe { self.split_at_mut_unchecked(mid) })
1008        } else {
1009            None
1010        }
1011    }
1012
1013    /// Divides one string slice into two at an index.
1014    ///
1015    /// # Safety
1016    ///
1017    /// The caller must ensure that `mid` is a valid byte offset from the start
1018    /// of the string and falls on the boundary of a UTF-8 code point.
1019    #[inline]
1020    #[cfg(not(feature = "ferrocene_subset"))]
1021    const unsafe fn split_at_unchecked(&self, mid: usize) -> (&str, &str) {
1022        let len = self.len();
1023        let ptr = self.as_ptr();
1024        // SAFETY: caller guarantees `mid` is on a char boundary.
1025        unsafe {
1026            (
1027                from_utf8_unchecked(slice::from_raw_parts(ptr, mid)),
1028                from_utf8_unchecked(slice::from_raw_parts(ptr.add(mid), len - mid)),
1029            )
1030        }
1031    }
1032
1033    /// Divides one string slice into two at an index.
1034    ///
1035    /// # Safety
1036    ///
1037    /// The caller must ensure that `mid` is a valid byte offset from the start
1038    /// of the string and falls on the boundary of a UTF-8 code point.
1039    #[cfg(not(feature = "ferrocene_subset"))]
1040    const unsafe fn split_at_mut_unchecked(&mut self, mid: usize) -> (&mut str, &mut str) {
1041        let len = self.len();
1042        let ptr = self.as_mut_ptr();
1043        // SAFETY: caller guarantees `mid` is on a char boundary.
1044        unsafe {
1045            (
1046                from_utf8_unchecked_mut(slice::from_raw_parts_mut(ptr, mid)),
1047                from_utf8_unchecked_mut(slice::from_raw_parts_mut(ptr.add(mid), len - mid)),
1048            )
1049        }
1050    }
1051
1052    /// Returns an iterator over the [`char`]s of a string slice.
1053    ///
1054    /// As a string slice consists of valid UTF-8, we can iterate through a
1055    /// string slice by [`char`]. This method returns such an iterator.
1056    ///
1057    /// It's important to remember that [`char`] represents a Unicode Scalar
1058    /// Value, and might not match your idea of what a 'character' is. Iteration
1059    /// over grapheme clusters may be what you actually want. This functionality
1060    /// is not provided by Rust's standard library, check crates.io instead.
1061    ///
1062    /// # Examples
1063    ///
1064    /// Basic usage:
1065    ///
1066    /// ```
1067    /// let word = "goodbye";
1068    ///
1069    /// let count = word.chars().count();
1070    /// assert_eq!(7, count);
1071    ///
1072    /// let mut chars = word.chars();
1073    ///
1074    /// assert_eq!(Some('g'), chars.next());
1075    /// assert_eq!(Some('o'), chars.next());
1076    /// assert_eq!(Some('o'), chars.next());
1077    /// assert_eq!(Some('d'), chars.next());
1078    /// assert_eq!(Some('b'), chars.next());
1079    /// assert_eq!(Some('y'), chars.next());
1080    /// assert_eq!(Some('e'), chars.next());
1081    ///
1082    /// assert_eq!(None, chars.next());
1083    /// ```
1084    ///
1085    /// Remember, [`char`]s might not match your intuition about characters:
1086    ///
1087    /// [`char`]: prim@char
1088    ///
1089    /// ```
1090    /// let y = "y̆";
1091    ///
1092    /// let mut chars = y.chars();
1093    ///
1094    /// assert_eq!(Some('y'), chars.next()); // not 'y̆'
1095    /// assert_eq!(Some('\u{0306}'), chars.next());
1096    ///
1097    /// assert_eq!(None, chars.next());
1098    /// ```
1099    #[stable(feature = "rust1", since = "1.0.0")]
1100    #[inline]
1101    #[rustc_diagnostic_item = "str_chars"]
1102    pub fn chars(&self) -> Chars<'_> {
1103        Chars { iter: self.as_bytes().iter() }
1104    }
1105
1106    /// Returns an iterator over the [`char`]s of a string slice, and their
1107    /// positions.
1108    ///
1109    /// As a string slice consists of valid UTF-8, we can iterate through a
1110    /// string slice by [`char`]. This method returns an iterator of both
1111    /// these [`char`]s, as well as their byte positions.
1112    ///
1113    /// The iterator yields tuples. The position is first, the [`char`] is
1114    /// second.
1115    ///
1116    /// # Examples
1117    ///
1118    /// Basic usage:
1119    ///
1120    /// ```
1121    /// let word = "goodbye";
1122    ///
1123    /// let count = word.char_indices().count();
1124    /// assert_eq!(7, count);
1125    ///
1126    /// let mut char_indices = word.char_indices();
1127    ///
1128    /// assert_eq!(Some((0, 'g')), char_indices.next());
1129    /// assert_eq!(Some((1, 'o')), char_indices.next());
1130    /// assert_eq!(Some((2, 'o')), char_indices.next());
1131    /// assert_eq!(Some((3, 'd')), char_indices.next());
1132    /// assert_eq!(Some((4, 'b')), char_indices.next());
1133    /// assert_eq!(Some((5, 'y')), char_indices.next());
1134    /// assert_eq!(Some((6, 'e')), char_indices.next());
1135    ///
1136    /// assert_eq!(None, char_indices.next());
1137    /// ```
1138    ///
1139    /// Remember, [`char`]s might not match your intuition about characters:
1140    ///
1141    /// [`char`]: prim@char
1142    ///
1143    /// ```
1144    /// let yes = "y̆es";
1145    ///
1146    /// let mut char_indices = yes.char_indices();
1147    ///
1148    /// assert_eq!(Some((0, 'y')), char_indices.next()); // not (0, 'y̆')
1149    /// assert_eq!(Some((1, '\u{0306}')), char_indices.next());
1150    ///
1151    /// // note the 3 here - the previous character took up two bytes
1152    /// assert_eq!(Some((3, 'e')), char_indices.next());
1153    /// assert_eq!(Some((4, 's')), char_indices.next());
1154    ///
1155    /// assert_eq!(None, char_indices.next());
1156    /// ```
1157    #[stable(feature = "rust1", since = "1.0.0")]
1158    #[inline]
1159    pub fn char_indices(&self) -> CharIndices<'_> {
1160        CharIndices { front_offset: 0, iter: self.chars() }
1161    }
1162
1163    /// Returns an iterator over the bytes of a string slice.
1164    ///
1165    /// As a string slice consists of a sequence of bytes, we can iterate
1166    /// through a string slice by byte. This method returns such an iterator.
1167    ///
1168    /// # Examples
1169    ///
1170    /// ```
1171    /// let mut bytes = "bors".bytes();
1172    ///
1173    /// assert_eq!(Some(b'b'), bytes.next());
1174    /// assert_eq!(Some(b'o'), bytes.next());
1175    /// assert_eq!(Some(b'r'), bytes.next());
1176    /// assert_eq!(Some(b's'), bytes.next());
1177    ///
1178    /// assert_eq!(None, bytes.next());
1179    /// ```
1180    #[stable(feature = "rust1", since = "1.0.0")]
1181    #[inline]
1182    pub fn bytes(&self) -> Bytes<'_> {
1183        Bytes(self.as_bytes().iter().copied())
1184    }
1185
1186    /// Splits a string slice by whitespace.
1187    ///
1188    /// The iterator returned will return string slices that are sub-slices of
1189    /// the original string slice, separated by any amount of whitespace.
1190    ///
1191    /// 'Whitespace' is defined according to the terms of the Unicode Derived
1192    /// Core Property `White_Space`. If you only want to split on ASCII whitespace
1193    /// instead, use [`split_ascii_whitespace`].
1194    ///
1195    /// [`split_ascii_whitespace`]: str::split_ascii_whitespace
1196    ///
1197    /// # Examples
1198    ///
1199    /// Basic usage:
1200    ///
1201    /// ```
1202    /// let mut iter = "A few words".split_whitespace();
1203    ///
1204    /// assert_eq!(Some("A"), iter.next());
1205    /// assert_eq!(Some("few"), iter.next());
1206    /// assert_eq!(Some("words"), iter.next());
1207    ///
1208    /// assert_eq!(None, iter.next());
1209    /// ```
1210    ///
1211    /// All kinds of whitespace are considered:
1212    ///
1213    /// ```
1214    /// let mut iter = " Mary   had\ta\u{2009}little  \n\t lamb".split_whitespace();
1215    /// assert_eq!(Some("Mary"), iter.next());
1216    /// assert_eq!(Some("had"), iter.next());
1217    /// assert_eq!(Some("a"), iter.next());
1218    /// assert_eq!(Some("little"), iter.next());
1219    /// assert_eq!(Some("lamb"), iter.next());
1220    ///
1221    /// assert_eq!(None, iter.next());
1222    /// ```
1223    ///
1224    /// If the string is empty or all whitespace, the iterator yields no string slices:
1225    /// ```
1226    /// assert_eq!("".split_whitespace().next(), None);
1227    /// assert_eq!("   ".split_whitespace().next(), None);
1228    /// ```
1229    #[must_use = "this returns the split string as an iterator, \
1230                  without modifying the original"]
1231    #[stable(feature = "split_whitespace", since = "1.1.0")]
1232    #[rustc_diagnostic_item = "str_split_whitespace"]
1233    #[inline]
1234    #[cfg(not(feature = "ferrocene_subset"))]
1235    pub fn split_whitespace(&self) -> SplitWhitespace<'_> {
1236        SplitWhitespace { inner: self.split(IsWhitespace).filter(IsNotEmpty) }
1237    }
1238
1239    /// Splits a string slice by ASCII whitespace.
1240    ///
1241    /// The iterator returned will return string slices that are sub-slices of
1242    /// the original string slice, separated by any amount of ASCII whitespace.
1243    ///
1244    /// This uses the same definition as [`char::is_ascii_whitespace`].
1245    /// To split by Unicode `Whitespace` instead, use [`split_whitespace`].
1246    ///
1247    /// [`split_whitespace`]: str::split_whitespace
1248    ///
1249    /// # Examples
1250    ///
1251    /// Basic usage:
1252    ///
1253    /// ```
1254    /// let mut iter = "A few words".split_ascii_whitespace();
1255    ///
1256    /// assert_eq!(Some("A"), iter.next());
1257    /// assert_eq!(Some("few"), iter.next());
1258    /// assert_eq!(Some("words"), iter.next());
1259    ///
1260    /// assert_eq!(None, iter.next());
1261    /// ```
1262    ///
1263    /// Various kinds of ASCII whitespace are considered
1264    /// (see [`char::is_ascii_whitespace`]):
1265    ///
1266    /// ```
1267    /// let mut iter = " Mary   had\ta little  \n\t lamb".split_ascii_whitespace();
1268    /// assert_eq!(Some("Mary"), iter.next());
1269    /// assert_eq!(Some("had"), iter.next());
1270    /// assert_eq!(Some("a"), iter.next());
1271    /// assert_eq!(Some("little"), iter.next());
1272    /// assert_eq!(Some("lamb"), iter.next());
1273    ///
1274    /// assert_eq!(None, iter.next());
1275    /// ```
1276    ///
1277    /// If the string is empty or all ASCII whitespace, the iterator yields no string slices:
1278    /// ```
1279    /// assert_eq!("".split_ascii_whitespace().next(), None);
1280    /// assert_eq!("   ".split_ascii_whitespace().next(), None);
1281    /// ```
1282    #[must_use = "this returns the split string as an iterator, \
1283                  without modifying the original"]
1284    #[stable(feature = "split_ascii_whitespace", since = "1.34.0")]
1285    #[inline]
1286    #[cfg(not(feature = "ferrocene_subset"))]
1287    pub fn split_ascii_whitespace(&self) -> SplitAsciiWhitespace<'_> {
1288        let inner =
1289            self.as_bytes().split(IsAsciiWhitespace).filter(BytesIsNotEmpty).map(UnsafeBytesToStr);
1290        SplitAsciiWhitespace { inner }
1291    }
1292
1293    /// Returns an iterator over the lines of a string, as string slices.
1294    ///
1295    /// Lines are split at line endings that are either newlines (`\n`) or
1296    /// sequences of a carriage return followed by a line feed (`\r\n`).
1297    ///
1298    /// Line terminators are not included in the lines returned by the iterator.
1299    ///
1300    /// Note that any carriage return (`\r`) not immediately followed by a
1301    /// line feed (`\n`) does not split a line. These carriage returns are
1302    /// thereby included in the produced lines.
1303    ///
1304    /// The final line ending is optional. A string that ends with a final line
1305    /// ending will return the same lines as an otherwise identical string
1306    /// without a final line ending.
1307    ///
1308    /// An empty string returns an empty iterator.
1309    ///
1310    /// # Examples
1311    ///
1312    /// Basic usage:
1313    ///
1314    /// ```
1315    /// let text = "foo\r\nbar\n\nbaz\r";
1316    /// let mut lines = text.lines();
1317    ///
1318    /// assert_eq!(Some("foo"), lines.next());
1319    /// assert_eq!(Some("bar"), lines.next());
1320    /// assert_eq!(Some(""), lines.next());
1321    /// // Trailing carriage return is included in the last line
1322    /// assert_eq!(Some("baz\r"), lines.next());
1323    ///
1324    /// assert_eq!(None, lines.next());
1325    /// ```
1326    ///
1327    /// The final line does not require any ending:
1328    ///
1329    /// ```
1330    /// let text = "foo\nbar\n\r\nbaz";
1331    /// let mut lines = text.lines();
1332    ///
1333    /// assert_eq!(Some("foo"), lines.next());
1334    /// assert_eq!(Some("bar"), lines.next());
1335    /// assert_eq!(Some(""), lines.next());
1336    /// assert_eq!(Some("baz"), lines.next());
1337    ///
1338    /// assert_eq!(None, lines.next());
1339    /// ```
1340    ///
1341    /// An empty string returns an empty iterator:
1342    ///
1343    /// ```
1344    /// let text = "";
1345    /// let mut lines = text.lines();
1346    ///
1347    /// assert_eq!(lines.next(), None);
1348    /// ```
1349    #[stable(feature = "rust1", since = "1.0.0")]
1350    #[inline]
1351    #[cfg(not(feature = "ferrocene_subset"))]
1352    pub fn lines(&self) -> Lines<'_> {
1353        Lines(self.split_inclusive('\n').map(LinesMap))
1354    }
1355
1356    /// Returns an iterator over the lines of a string.
1357    #[stable(feature = "rust1", since = "1.0.0")]
1358    #[deprecated(since = "1.4.0", note = "use lines() instead now", suggestion = "lines")]
1359    #[inline]
1360    #[allow(deprecated)]
1361    #[cfg(not(feature = "ferrocene_subset"))]
1362    pub fn lines_any(&self) -> LinesAny<'_> {
1363        LinesAny(self.lines())
1364    }
1365
1366    /// Returns an iterator of `u16` over the string encoded
1367    /// as native endian UTF-16 (without byte-order mark).
1368    ///
1369    /// # Examples
1370    ///
1371    /// ```
1372    /// let text = "Zażółć gęślą jaźń";
1373    ///
1374    /// let utf8_len = text.len();
1375    /// let utf16_len = text.encode_utf16().count();
1376    ///
1377    /// assert!(utf16_len <= utf8_len);
1378    /// ```
1379    #[must_use = "this returns the encoded string as an iterator, \
1380                  without modifying the original"]
1381    #[stable(feature = "encode_utf16", since = "1.8.0")]
1382    #[cfg(not(feature = "ferrocene_subset"))]
1383    pub fn encode_utf16(&self) -> EncodeUtf16<'_> {
1384        EncodeUtf16 { chars: self.chars(), extra: 0 }
1385    }
1386
1387    /// Returns `true` if the given pattern matches a sub-slice of
1388    /// this string slice.
1389    ///
1390    /// Returns `false` if it does not.
1391    ///
1392    /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a
1393    /// function or closure that determines if a character matches.
1394    ///
1395    /// [`char`]: prim@char
1396    /// [pattern]: self::pattern
1397    ///
1398    /// # Examples
1399    ///
1400    /// ```
1401    /// let bananas = "bananas";
1402    ///
1403    /// assert!(bananas.contains("nana"));
1404    /// assert!(!bananas.contains("apples"));
1405    /// ```
1406    #[stable(feature = "rust1", since = "1.0.0")]
1407    #[inline]
1408    #[cfg(not(feature = "ferrocene_subset"))]
1409    pub fn contains<P: Pattern>(&self, pat: P) -> bool {
1410        pat.is_contained_in(self)
1411    }
1412
1413    /// Returns `true` if the given pattern matches a prefix of this
1414    /// string slice.
1415    ///
1416    /// Returns `false` if it does not.
1417    ///
1418    /// The [pattern] can be a `&str`, in which case this function will return true if
1419    /// the `&str` is a prefix of this string slice.
1420    ///
1421    /// The [pattern] can also be a [`char`], a slice of [`char`]s, or a
1422    /// function or closure that determines if a character matches.
1423    /// These will only be checked against the first character of this string slice.
1424    /// Look at the second example below regarding behavior for slices of [`char`]s.
1425    ///
1426    /// [`char`]: prim@char
1427    /// [pattern]: self::pattern
1428    ///
1429    /// # Examples
1430    ///
1431    /// ```
1432    /// let bananas = "bananas";
1433    ///
1434    /// assert!(bananas.starts_with("bana"));
1435    /// assert!(!bananas.starts_with("nana"));
1436    /// ```
1437    ///
1438    /// ```
1439    /// let bananas = "bananas";
1440    ///
1441    /// // Note that both of these assert successfully.
1442    /// assert!(bananas.starts_with(&['b', 'a', 'n', 'a']));
1443    /// assert!(bananas.starts_with(&['a', 'b', 'c', 'd']));
1444    /// ```
1445    #[stable(feature = "rust1", since = "1.0.0")]
1446    #[rustc_diagnostic_item = "str_starts_with"]
1447    pub fn starts_with<P: Pattern>(&self, pat: P) -> bool {
1448        pat.is_prefix_of(self)
1449    }
1450
1451    /// Returns `true` if the given pattern matches a suffix of this
1452    /// string slice.
1453    ///
1454    /// Returns `false` if it does not.
1455    ///
1456    /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a
1457    /// function or closure that determines if a character matches.
1458    ///
1459    /// [`char`]: prim@char
1460    /// [pattern]: self::pattern
1461    ///
1462    /// # Examples
1463    ///
1464    /// ```
1465    /// let bananas = "bananas";
1466    ///
1467    /// assert!(bananas.ends_with("anas"));
1468    /// assert!(!bananas.ends_with("nana"));
1469    /// ```
1470    #[stable(feature = "rust1", since = "1.0.0")]
1471    #[rustc_diagnostic_item = "str_ends_with"]
1472    pub fn ends_with<P: Pattern>(&self, pat: P) -> bool
1473    where
1474        for<'a> P::Searcher<'a>: ReverseSearcher<'a>,
1475    {
1476        pat.is_suffix_of(self)
1477    }
1478
1479    /// Returns the byte index of the first character of this string slice that
1480    /// matches the pattern.
1481    ///
1482    /// Returns [`None`] if the pattern doesn't match.
1483    ///
1484    /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a
1485    /// function or closure that determines if a character matches.
1486    ///
1487    /// [`char`]: prim@char
1488    /// [pattern]: self::pattern
1489    ///
1490    /// # Examples
1491    ///
1492    /// Simple patterns:
1493    ///
1494    /// ```
1495    /// let s = "Löwe 老虎 Léopard Gepardi";
1496    ///
1497    /// assert_eq!(s.find('L'), Some(0));
1498    /// assert_eq!(s.find('é'), Some(14));
1499    /// assert_eq!(s.find("pard"), Some(17));
1500    /// ```
1501    ///
1502    /// More complex patterns using point-free style and closures:
1503    ///
1504    /// ```
1505    /// let s = "Löwe 老虎 Léopard";
1506    ///
1507    /// assert_eq!(s.find(char::is_whitespace), Some(5));
1508    /// assert_eq!(s.find(char::is_lowercase), Some(1));
1509    /// assert_eq!(s.find(|c: char| c.is_whitespace() || c.is_lowercase()), Some(1));
1510    /// assert_eq!(s.find(|c: char| (c < 'o') && (c > 'a')), Some(4));
1511    /// ```
1512    ///
1513    /// Not finding the pattern:
1514    ///
1515    /// ```
1516    /// let s = "Löwe 老虎 Léopard";
1517    /// let x: &[_] = &['1', '2'];
1518    ///
1519    /// assert_eq!(s.find(x), None);
1520    /// ```
1521    #[stable(feature = "rust1", since = "1.0.0")]
1522    #[inline]
1523    pub fn find<P: Pattern>(&self, pat: P) -> Option<usize> {
1524        pat.into_searcher(self).next_match().map(|(i, _)| i)
1525    }
1526
1527    /// Returns the byte index for the first character of the last match of the pattern in
1528    /// this string slice.
1529    ///
1530    /// Returns [`None`] if the pattern doesn't match.
1531    ///
1532    /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a
1533    /// function or closure that determines if a character matches.
1534    ///
1535    /// [`char`]: prim@char
1536    /// [pattern]: self::pattern
1537    ///
1538    /// # Examples
1539    ///
1540    /// Simple patterns:
1541    ///
1542    /// ```
1543    /// let s = "Löwe 老虎 Léopard Gepardi";
1544    ///
1545    /// assert_eq!(s.rfind('L'), Some(13));
1546    /// assert_eq!(s.rfind('é'), Some(14));
1547    /// assert_eq!(s.rfind("pard"), Some(24));
1548    /// ```
1549    ///
1550    /// More complex patterns with closures:
1551    ///
1552    /// ```
1553    /// let s = "Löwe 老虎 Léopard";
1554    ///
1555    /// assert_eq!(s.rfind(char::is_whitespace), Some(12));
1556    /// assert_eq!(s.rfind(char::is_lowercase), Some(20));
1557    /// ```
1558    ///
1559    /// Not finding the pattern:
1560    ///
1561    /// ```
1562    /// let s = "Löwe 老虎 Léopard";
1563    /// let x: &[_] = &['1', '2'];
1564    ///
1565    /// assert_eq!(s.rfind(x), None);
1566    /// ```
1567    #[stable(feature = "rust1", since = "1.0.0")]
1568    #[inline]
1569    #[cfg(not(feature = "ferrocene_subset"))]
1570    pub fn rfind<P: Pattern>(&self, pat: P) -> Option<usize>
1571    where
1572        for<'a> P::Searcher<'a>: ReverseSearcher<'a>,
1573    {
1574        pat.into_searcher(self).next_match_back().map(|(i, _)| i)
1575    }
1576
1577    /// Returns an iterator over substrings of this string slice, separated by
1578    /// characters matched by a pattern.
1579    ///
1580    /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a
1581    /// function or closure that determines if a character matches.
1582    ///
1583    /// If there are no matches the full string slice is returned as the only
1584    /// item in the iterator.
1585    ///
1586    /// [`char`]: prim@char
1587    /// [pattern]: self::pattern
1588    ///
1589    /// # Iterator behavior
1590    ///
1591    /// The returned iterator will be a [`DoubleEndedIterator`] if the pattern
1592    /// allows a reverse search and forward/reverse search yields the same
1593    /// elements. This is true for, e.g., [`char`], but not for `&str`.
1594    ///
1595    /// If the pattern allows a reverse search but its results might differ
1596    /// from a forward search, the [`rsplit`] method can be used.
1597    ///
1598    /// [`rsplit`]: str::rsplit
1599    ///
1600    /// # Examples
1601    ///
1602    /// Simple patterns:
1603    ///
1604    /// ```
1605    /// let v: Vec<&str> = "Mary had a little lamb".split(' ').collect();
1606    /// assert_eq!(v, ["Mary", "had", "a", "little", "lamb"]);
1607    ///
1608    /// let v: Vec<&str> = "".split('X').collect();
1609    /// assert_eq!(v, [""]);
1610    ///
1611    /// let v: Vec<&str> = "lionXXtigerXleopard".split('X').collect();
1612    /// assert_eq!(v, ["lion", "", "tiger", "leopard"]);
1613    ///
1614    /// let v: Vec<&str> = "lion::tiger::leopard".split("::").collect();
1615    /// assert_eq!(v, ["lion", "tiger", "leopard"]);
1616    ///
1617    /// let v: Vec<&str> = "AABBCC".split("DD").collect();
1618    /// assert_eq!(v, ["AABBCC"]);
1619    ///
1620    /// let v: Vec<&str> = "abc1def2ghi".split(char::is_numeric).collect();
1621    /// assert_eq!(v, ["abc", "def", "ghi"]);
1622    ///
1623    /// let v: Vec<&str> = "lionXtigerXleopard".split(char::is_uppercase).collect();
1624    /// assert_eq!(v, ["lion", "tiger", "leopard"]);
1625    /// ```
1626    ///
1627    /// If the pattern is a slice of chars, split on each occurrence of any of the characters:
1628    ///
1629    /// ```
1630    /// let v: Vec<&str> = "2020-11-03 23:59".split(&['-', ' ', ':', '@'][..]).collect();
1631    /// assert_eq!(v, ["2020", "11", "03", "23", "59"]);
1632    /// ```
1633    ///
1634    /// A more complex pattern, using a closure:
1635    ///
1636    /// ```
1637    /// let v: Vec<&str> = "abc1defXghi".split(|c| c == '1' || c == 'X').collect();
1638    /// assert_eq!(v, ["abc", "def", "ghi"]);
1639    /// ```
1640    ///
1641    /// If a string contains multiple contiguous separators, you will end up
1642    /// with empty strings in the output:
1643    ///
1644    /// ```
1645    /// let x = "||||a||b|c".to_string();
1646    /// let d: Vec<_> = x.split('|').collect();
1647    ///
1648    /// assert_eq!(d, &["", "", "", "", "a", "", "b", "c"]);
1649    /// ```
1650    ///
1651    /// Contiguous separators are separated by the empty string.
1652    ///
1653    /// ```
1654    /// let x = "(///)".to_string();
1655    /// let d: Vec<_> = x.split('/').collect();
1656    ///
1657    /// assert_eq!(d, &["(", "", "", ")"]);
1658    /// ```
1659    ///
1660    /// Separators at the start or end of a string are neighbored
1661    /// by empty strings.
1662    ///
1663    /// ```
1664    /// let d: Vec<_> = "010".split("0").collect();
1665    /// assert_eq!(d, &["", "1", ""]);
1666    /// ```
1667    ///
1668    /// When the empty string is used as a separator, it separates
1669    /// every character in the string, along with the beginning
1670    /// and end of the string.
1671    ///
1672    /// ```
1673    /// let f: Vec<_> = "rust".split("").collect();
1674    /// assert_eq!(f, &["", "r", "u", "s", "t", ""]);
1675    /// ```
1676    ///
1677    /// Contiguous separators can lead to possibly surprising behavior
1678    /// when whitespace is used as the separator. This code is correct:
1679    ///
1680    /// ```
1681    /// let x = "    a  b c".to_string();
1682    /// let d: Vec<_> = x.split(' ').collect();
1683    ///
1684    /// assert_eq!(d, &["", "", "", "", "a", "", "b", "c"]);
1685    /// ```
1686    ///
1687    /// It does _not_ give you:
1688    ///
1689    /// ```,ignore
1690    /// assert_eq!(d, &["a", "b", "c"]);
1691    /// ```
1692    ///
1693    /// Use [`split_whitespace`] for this behavior.
1694    ///
1695    /// [`split_whitespace`]: str::split_whitespace
1696    #[stable(feature = "rust1", since = "1.0.0")]
1697    #[inline]
1698    #[cfg(not(feature = "ferrocene_subset"))]
1699    pub fn split<P: Pattern>(&self, pat: P) -> Split<'_, P> {
1700        Split(SplitInternal {
1701            start: 0,
1702            end: self.len(),
1703            matcher: pat.into_searcher(self),
1704            allow_trailing_empty: true,
1705            finished: false,
1706        })
1707    }
1708
1709    /// Returns an iterator over substrings of this string slice, separated by
1710    /// characters matched by a pattern.
1711    ///
1712    /// Differs from the iterator produced by `split` in that `split_inclusive`
1713    /// leaves the matched part as the terminator of the substring.
1714    ///
1715    /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a
1716    /// function or closure that determines if a character matches.
1717    ///
1718    /// [`char`]: prim@char
1719    /// [pattern]: self::pattern
1720    ///
1721    /// # Examples
1722    ///
1723    /// ```
1724    /// let v: Vec<&str> = "Mary had a little lamb\nlittle lamb\nlittle lamb."
1725    ///     .split_inclusive('\n').collect();
1726    /// assert_eq!(v, ["Mary had a little lamb\n", "little lamb\n", "little lamb."]);
1727    /// ```
1728    ///
1729    /// If the last element of the string is matched,
1730    /// that element will be considered the terminator of the preceding substring.
1731    /// That substring will be the last item returned by the iterator.
1732    ///
1733    /// ```
1734    /// let v: Vec<&str> = "Mary had a little lamb\nlittle lamb\nlittle lamb.\n"
1735    ///     .split_inclusive('\n').collect();
1736    /// assert_eq!(v, ["Mary had a little lamb\n", "little lamb\n", "little lamb.\n"]);
1737    /// ```
1738    #[stable(feature = "split_inclusive", since = "1.51.0")]
1739    #[inline]
1740    pub fn split_inclusive<P: Pattern>(&self, pat: P) -> SplitInclusive<'_, P> {
1741        SplitInclusive(SplitInternal {
1742            start: 0,
1743            end: self.len(),
1744            matcher: pat.into_searcher(self),
1745            allow_trailing_empty: false,
1746            finished: false,
1747        })
1748    }
1749
1750    /// Returns an iterator over substrings of the given string slice, separated
1751    /// by characters matched by a pattern and yielded in reverse order.
1752    ///
1753    /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a
1754    /// function or closure that determines if a character matches.
1755    ///
1756    /// [`char`]: prim@char
1757    /// [pattern]: self::pattern
1758    ///
1759    /// # Iterator behavior
1760    ///
1761    /// The returned iterator requires that the pattern supports a reverse
1762    /// search, and it will be a [`DoubleEndedIterator`] if a forward/reverse
1763    /// search yields the same elements.
1764    ///
1765    /// For iterating from the front, the [`split`] method can be used.
1766    ///
1767    /// [`split`]: str::split
1768    ///
1769    /// # Examples
1770    ///
1771    /// Simple patterns:
1772    ///
1773    /// ```
1774    /// let v: Vec<&str> = "Mary had a little lamb".rsplit(' ').collect();
1775    /// assert_eq!(v, ["lamb", "little", "a", "had", "Mary"]);
1776    ///
1777    /// let v: Vec<&str> = "".rsplit('X').collect();
1778    /// assert_eq!(v, [""]);
1779    ///
1780    /// let v: Vec<&str> = "lionXXtigerXleopard".rsplit('X').collect();
1781    /// assert_eq!(v, ["leopard", "tiger", "", "lion"]);
1782    ///
1783    /// let v: Vec<&str> = "lion::tiger::leopard".rsplit("::").collect();
1784    /// assert_eq!(v, ["leopard", "tiger", "lion"]);
1785    /// ```
1786    ///
1787    /// A more complex pattern, using a closure:
1788    ///
1789    /// ```
1790    /// let v: Vec<&str> = "abc1defXghi".rsplit(|c| c == '1' || c == 'X').collect();
1791    /// assert_eq!(v, ["ghi", "def", "abc"]);
1792    /// ```
1793    #[stable(feature = "rust1", since = "1.0.0")]
1794    #[inline]
1795    #[cfg(not(feature = "ferrocene_subset"))]
1796    pub fn rsplit<P: Pattern>(&self, pat: P) -> RSplit<'_, P>
1797    where
1798        for<'a> P::Searcher<'a>: ReverseSearcher<'a>,
1799    {
1800        RSplit(self.split(pat).0)
1801    }
1802
1803    /// Returns an iterator over substrings of the given string slice, separated
1804    /// by characters matched by a pattern.
1805    ///
1806    /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a
1807    /// function or closure that determines if a character matches.
1808    ///
1809    /// [`char`]: prim@char
1810    /// [pattern]: self::pattern
1811    ///
1812    /// Equivalent to [`split`], except that the trailing substring
1813    /// is skipped if empty.
1814    ///
1815    /// [`split`]: str::split
1816    ///
1817    /// This method can be used for string data that is _terminated_,
1818    /// rather than _separated_ by a pattern.
1819    ///
1820    /// # Iterator behavior
1821    ///
1822    /// The returned iterator will be a [`DoubleEndedIterator`] if the pattern
1823    /// allows a reverse search and forward/reverse search yields the same
1824    /// elements. This is true for, e.g., [`char`], but not for `&str`.
1825    ///
1826    /// If the pattern allows a reverse search but its results might differ
1827    /// from a forward search, the [`rsplit_terminator`] method can be used.
1828    ///
1829    /// [`rsplit_terminator`]: str::rsplit_terminator
1830    ///
1831    /// # Examples
1832    ///
1833    /// ```
1834    /// let v: Vec<&str> = "A.B.".split_terminator('.').collect();
1835    /// assert_eq!(v, ["A", "B"]);
1836    ///
1837    /// let v: Vec<&str> = "A..B..".split_terminator(".").collect();
1838    /// assert_eq!(v, ["A", "", "B", ""]);
1839    ///
1840    /// let v: Vec<&str> = "A.B:C.D".split_terminator(&['.', ':'][..]).collect();
1841    /// assert_eq!(v, ["A", "B", "C", "D"]);
1842    /// ```
1843    #[stable(feature = "rust1", since = "1.0.0")]
1844    #[inline]
1845    #[cfg(not(feature = "ferrocene_subset"))]
1846    pub fn split_terminator<P: Pattern>(&self, pat: P) -> SplitTerminator<'_, P> {
1847        SplitTerminator(SplitInternal { allow_trailing_empty: false, ..self.split(pat).0 })
1848    }
1849
1850    /// Returns an iterator over substrings of `self`, separated by characters
1851    /// matched by a pattern and yielded in reverse order.
1852    ///
1853    /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a
1854    /// function or closure that determines if a character matches.
1855    ///
1856    /// [`char`]: prim@char
1857    /// [pattern]: self::pattern
1858    ///
1859    /// Equivalent to [`split`], except that the trailing substring is
1860    /// skipped if empty.
1861    ///
1862    /// [`split`]: str::split
1863    ///
1864    /// This method can be used for string data that is _terminated_,
1865    /// rather than _separated_ by a pattern.
1866    ///
1867    /// # Iterator behavior
1868    ///
1869    /// The returned iterator requires that the pattern supports a
1870    /// reverse search, and it will be double ended if a forward/reverse
1871    /// search yields the same elements.
1872    ///
1873    /// For iterating from the front, the [`split_terminator`] method can be
1874    /// used.
1875    ///
1876    /// [`split_terminator`]: str::split_terminator
1877    ///
1878    /// # Examples
1879    ///
1880    /// ```
1881    /// let v: Vec<&str> = "A.B.".rsplit_terminator('.').collect();
1882    /// assert_eq!(v, ["B", "A"]);
1883    ///
1884    /// let v: Vec<&str> = "A..B..".rsplit_terminator(".").collect();
1885    /// assert_eq!(v, ["", "B", "", "A"]);
1886    ///
1887    /// let v: Vec<&str> = "A.B:C.D".rsplit_terminator(&['.', ':'][..]).collect();
1888    /// assert_eq!(v, ["D", "C", "B", "A"]);
1889    /// ```
1890    #[stable(feature = "rust1", since = "1.0.0")]
1891    #[inline]
1892    #[cfg(not(feature = "ferrocene_subset"))]
1893    pub fn rsplit_terminator<P: Pattern>(&self, pat: P) -> RSplitTerminator<'_, P>
1894    where
1895        for<'a> P::Searcher<'a>: ReverseSearcher<'a>,
1896    {
1897        RSplitTerminator(self.split_terminator(pat).0)
1898    }
1899
1900    /// Returns an iterator over substrings of the given string slice, separated
1901    /// by a pattern, restricted to returning at most `n` items.
1902    ///
1903    /// If `n` substrings are returned, the last substring (the `n`th substring)
1904    /// will contain the remainder of the string.
1905    ///
1906    /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a
1907    /// function or closure that determines if a character matches.
1908    ///
1909    /// [`char`]: prim@char
1910    /// [pattern]: self::pattern
1911    ///
1912    /// # Iterator behavior
1913    ///
1914    /// The returned iterator will not be double ended, because it is
1915    /// not efficient to support.
1916    ///
1917    /// If the pattern allows a reverse search, the [`rsplitn`] method can be
1918    /// used.
1919    ///
1920    /// [`rsplitn`]: str::rsplitn
1921    ///
1922    /// # Examples
1923    ///
1924    /// Simple patterns:
1925    ///
1926    /// ```
1927    /// let v: Vec<&str> = "Mary had a little lambda".splitn(3, ' ').collect();
1928    /// assert_eq!(v, ["Mary", "had", "a little lambda"]);
1929    ///
1930    /// let v: Vec<&str> = "lionXXtigerXleopard".splitn(3, "X").collect();
1931    /// assert_eq!(v, ["lion", "", "tigerXleopard"]);
1932    ///
1933    /// let v: Vec<&str> = "abcXdef".splitn(1, 'X').collect();
1934    /// assert_eq!(v, ["abcXdef"]);
1935    ///
1936    /// let v: Vec<&str> = "".splitn(1, 'X').collect();
1937    /// assert_eq!(v, [""]);
1938    /// ```
1939    ///
1940    /// A more complex pattern, using a closure:
1941    ///
1942    /// ```
1943    /// let v: Vec<&str> = "abc1defXghi".splitn(2, |c| c == '1' || c == 'X').collect();
1944    /// assert_eq!(v, ["abc", "defXghi"]);
1945    /// ```
1946    #[stable(feature = "rust1", since = "1.0.0")]
1947    #[inline]
1948    #[cfg(not(feature = "ferrocene_subset"))]
1949    pub fn splitn<P: Pattern>(&self, n: usize, pat: P) -> SplitN<'_, P> {
1950        SplitN(SplitNInternal { iter: self.split(pat).0, count: n })
1951    }
1952
1953    /// Returns an iterator over substrings of this string slice, separated by a
1954    /// pattern, starting from the end of the string, restricted to returning at
1955    /// most `n` items.
1956    ///
1957    /// If `n` substrings are returned, the last substring (the `n`th substring)
1958    /// will contain the remainder of the string.
1959    ///
1960    /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a
1961    /// function or closure that determines if a character matches.
1962    ///
1963    /// [`char`]: prim@char
1964    /// [pattern]: self::pattern
1965    ///
1966    /// # Iterator behavior
1967    ///
1968    /// The returned iterator will not be double ended, because it is not
1969    /// efficient to support.
1970    ///
1971    /// For splitting from the front, the [`splitn`] method can be used.
1972    ///
1973    /// [`splitn`]: str::splitn
1974    ///
1975    /// # Examples
1976    ///
1977    /// Simple patterns:
1978    ///
1979    /// ```
1980    /// let v: Vec<&str> = "Mary had a little lamb".rsplitn(3, ' ').collect();
1981    /// assert_eq!(v, ["lamb", "little", "Mary had a"]);
1982    ///
1983    /// let v: Vec<&str> = "lionXXtigerXleopard".rsplitn(3, 'X').collect();
1984    /// assert_eq!(v, ["leopard", "tiger", "lionX"]);
1985    ///
1986    /// let v: Vec<&str> = "lion::tiger::leopard".rsplitn(2, "::").collect();
1987    /// assert_eq!(v, ["leopard", "lion::tiger"]);
1988    /// ```
1989    ///
1990    /// A more complex pattern, using a closure:
1991    ///
1992    /// ```
1993    /// let v: Vec<&str> = "abc1defXghi".rsplitn(2, |c| c == '1' || c == 'X').collect();
1994    /// assert_eq!(v, ["ghi", "abc1def"]);
1995    /// ```
1996    #[stable(feature = "rust1", since = "1.0.0")]
1997    #[inline]
1998    #[cfg(not(feature = "ferrocene_subset"))]
1999    pub fn rsplitn<P: Pattern>(&self, n: usize, pat: P) -> RSplitN<'_, P>
2000    where
2001        for<'a> P::Searcher<'a>: ReverseSearcher<'a>,
2002    {
2003        RSplitN(self.splitn(n, pat).0)
2004    }
2005
2006    /// Splits the string on the first occurrence of the specified delimiter and
2007    /// returns prefix before delimiter and suffix after delimiter.
2008    ///
2009    /// # Examples
2010    ///
2011    /// ```
2012    /// assert_eq!("cfg".split_once('='), None);
2013    /// assert_eq!("cfg=".split_once('='), Some(("cfg", "")));
2014    /// assert_eq!("cfg=foo".split_once('='), Some(("cfg", "foo")));
2015    /// assert_eq!("cfg=foo=bar".split_once('='), Some(("cfg", "foo=bar")));
2016    /// ```
2017    #[stable(feature = "str_split_once", since = "1.52.0")]
2018    #[inline]
2019    #[cfg(not(feature = "ferrocene_subset"))]
2020    pub fn split_once<P: Pattern>(&self, delimiter: P) -> Option<(&'_ str, &'_ str)> {
2021        let (start, end) = delimiter.into_searcher(self).next_match()?;
2022        // SAFETY: `Searcher` is known to return valid indices.
2023        unsafe { Some((self.get_unchecked(..start), self.get_unchecked(end..))) }
2024    }
2025
2026    /// Splits the string on the last occurrence of the specified delimiter and
2027    /// returns prefix before delimiter and suffix after delimiter.
2028    ///
2029    /// # Examples
2030    ///
2031    /// ```
2032    /// assert_eq!("cfg".rsplit_once('='), None);
2033    /// assert_eq!("cfg=".rsplit_once('='), Some(("cfg", "")));
2034    /// assert_eq!("cfg=foo".rsplit_once('='), Some(("cfg", "foo")));
2035    /// assert_eq!("cfg=foo=bar".rsplit_once('='), Some(("cfg=foo", "bar")));
2036    /// ```
2037    #[stable(feature = "str_split_once", since = "1.52.0")]
2038    #[inline]
2039    #[cfg(not(feature = "ferrocene_subset"))]
2040    pub fn rsplit_once<P: Pattern>(&self, delimiter: P) -> Option<(&'_ str, &'_ str)>
2041    where
2042        for<'a> P::Searcher<'a>: ReverseSearcher<'a>,
2043    {
2044        let (start, end) = delimiter.into_searcher(self).next_match_back()?;
2045        // SAFETY: `Searcher` is known to return valid indices.
2046        unsafe { Some((self.get_unchecked(..start), self.get_unchecked(end..))) }
2047    }
2048
2049    /// Returns an iterator over the disjoint matches of a pattern within the
2050    /// given string slice.
2051    ///
2052    /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a
2053    /// function or closure that determines if a character matches.
2054    ///
2055    /// [`char`]: prim@char
2056    /// [pattern]: self::pattern
2057    ///
2058    /// # Iterator behavior
2059    ///
2060    /// The returned iterator will be a [`DoubleEndedIterator`] if the pattern
2061    /// allows a reverse search and forward/reverse search yields the same
2062    /// elements. This is true for, e.g., [`char`], but not for `&str`.
2063    ///
2064    /// If the pattern allows a reverse search but its results might differ
2065    /// from a forward search, the [`rmatches`] method can be used.
2066    ///
2067    /// [`rmatches`]: str::rmatches
2068    ///
2069    /// # Examples
2070    ///
2071    /// ```
2072    /// let v: Vec<&str> = "abcXXXabcYYYabc".matches("abc").collect();
2073    /// assert_eq!(v, ["abc", "abc", "abc"]);
2074    ///
2075    /// let v: Vec<&str> = "1abc2abc3".matches(char::is_numeric).collect();
2076    /// assert_eq!(v, ["1", "2", "3"]);
2077    /// ```
2078    #[stable(feature = "str_matches", since = "1.2.0")]
2079    #[inline]
2080    #[cfg(not(feature = "ferrocene_subset"))]
2081    pub fn matches<P: Pattern>(&self, pat: P) -> Matches<'_, P> {
2082        Matches(MatchesInternal(pat.into_searcher(self)))
2083    }
2084
2085    /// Returns an iterator over the disjoint matches of a pattern within this
2086    /// string slice, yielded in reverse order.
2087    ///
2088    /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a
2089    /// function or closure that determines if a character matches.
2090    ///
2091    /// [`char`]: prim@char
2092    /// [pattern]: self::pattern
2093    ///
2094    /// # Iterator behavior
2095    ///
2096    /// The returned iterator requires that the pattern supports a reverse
2097    /// search, and it will be a [`DoubleEndedIterator`] if a forward/reverse
2098    /// search yields the same elements.
2099    ///
2100    /// For iterating from the front, the [`matches`] method can be used.
2101    ///
2102    /// [`matches`]: str::matches
2103    ///
2104    /// # Examples
2105    ///
2106    /// ```
2107    /// let v: Vec<&str> = "abcXXXabcYYYabc".rmatches("abc").collect();
2108    /// assert_eq!(v, ["abc", "abc", "abc"]);
2109    ///
2110    /// let v: Vec<&str> = "1abc2abc3".rmatches(char::is_numeric).collect();
2111    /// assert_eq!(v, ["3", "2", "1"]);
2112    /// ```
2113    #[stable(feature = "str_matches", since = "1.2.0")]
2114    #[inline]
2115    #[cfg(not(feature = "ferrocene_subset"))]
2116    pub fn rmatches<P: Pattern>(&self, pat: P) -> RMatches<'_, P>
2117    where
2118        for<'a> P::Searcher<'a>: ReverseSearcher<'a>,
2119    {
2120        RMatches(self.matches(pat).0)
2121    }
2122
2123    /// Returns an iterator over the disjoint matches of a pattern within this string
2124    /// slice as well as the index that the match starts at.
2125    ///
2126    /// For matches of `pat` within `self` that overlap, only the indices
2127    /// corresponding to the first match are returned.
2128    ///
2129    /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a
2130    /// function or closure that determines if a character matches.
2131    ///
2132    /// [`char`]: prim@char
2133    /// [pattern]: self::pattern
2134    ///
2135    /// # Iterator behavior
2136    ///
2137    /// The returned iterator will be a [`DoubleEndedIterator`] if the pattern
2138    /// allows a reverse search and forward/reverse search yields the same
2139    /// elements. This is true for, e.g., [`char`], but not for `&str`.
2140    ///
2141    /// If the pattern allows a reverse search but its results might differ
2142    /// from a forward search, the [`rmatch_indices`] method can be used.
2143    ///
2144    /// [`rmatch_indices`]: str::rmatch_indices
2145    ///
2146    /// # Examples
2147    ///
2148    /// ```
2149    /// let v: Vec<_> = "abcXXXabcYYYabc".match_indices("abc").collect();
2150    /// assert_eq!(v, [(0, "abc"), (6, "abc"), (12, "abc")]);
2151    ///
2152    /// let v: Vec<_> = "1abcabc2".match_indices("abc").collect();
2153    /// assert_eq!(v, [(1, "abc"), (4, "abc")]);
2154    ///
2155    /// let v: Vec<_> = "ababa".match_indices("aba").collect();
2156    /// assert_eq!(v, [(0, "aba")]); // only the first `aba`
2157    /// ```
2158    #[stable(feature = "str_match_indices", since = "1.5.0")]
2159    #[inline]
2160    #[cfg(not(feature = "ferrocene_subset"))]
2161    pub fn match_indices<P: Pattern>(&self, pat: P) -> MatchIndices<'_, P> {
2162        MatchIndices(MatchIndicesInternal(pat.into_searcher(self)))
2163    }
2164
2165    /// Returns an iterator over the disjoint matches of a pattern within `self`,
2166    /// yielded in reverse order along with the index of the match.
2167    ///
2168    /// For matches of `pat` within `self` that overlap, only the indices
2169    /// corresponding to the last match are returned.
2170    ///
2171    /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a
2172    /// function or closure that determines if a character matches.
2173    ///
2174    /// [`char`]: prim@char
2175    /// [pattern]: self::pattern
2176    ///
2177    /// # Iterator behavior
2178    ///
2179    /// The returned iterator requires that the pattern supports a reverse
2180    /// search, and it will be a [`DoubleEndedIterator`] if a forward/reverse
2181    /// search yields the same elements.
2182    ///
2183    /// For iterating from the front, the [`match_indices`] method can be used.
2184    ///
2185    /// [`match_indices`]: str::match_indices
2186    ///
2187    /// # Examples
2188    ///
2189    /// ```
2190    /// let v: Vec<_> = "abcXXXabcYYYabc".rmatch_indices("abc").collect();
2191    /// assert_eq!(v, [(12, "abc"), (6, "abc"), (0, "abc")]);
2192    ///
2193    /// let v: Vec<_> = "1abcabc2".rmatch_indices("abc").collect();
2194    /// assert_eq!(v, [(4, "abc"), (1, "abc")]);
2195    ///
2196    /// let v: Vec<_> = "ababa".rmatch_indices("aba").collect();
2197    /// assert_eq!(v, [(2, "aba")]); // only the last `aba`
2198    /// ```
2199    #[stable(feature = "str_match_indices", since = "1.5.0")]
2200    #[inline]
2201    #[cfg(not(feature = "ferrocene_subset"))]
2202    pub fn rmatch_indices<P: Pattern>(&self, pat: P) -> RMatchIndices<'_, P>
2203    where
2204        for<'a> P::Searcher<'a>: ReverseSearcher<'a>,
2205    {
2206        RMatchIndices(self.match_indices(pat).0)
2207    }
2208
2209    /// Returns a string slice with leading and trailing whitespace removed.
2210    ///
2211    /// 'Whitespace' is defined according to the terms of the Unicode Derived
2212    /// Core Property `White_Space`, which includes newlines.
2213    ///
2214    /// # Examples
2215    ///
2216    /// ```
2217    /// let s = "\n Hello\tworld\t\n";
2218    ///
2219    /// assert_eq!("Hello\tworld", s.trim());
2220    /// ```
2221    #[inline]
2222    #[must_use = "this returns the trimmed string as a slice, \
2223                  without modifying the original"]
2224    #[stable(feature = "rust1", since = "1.0.0")]
2225    #[rustc_diagnostic_item = "str_trim"]
2226    #[cfg(not(feature = "ferrocene_subset"))]
2227    pub fn trim(&self) -> &str {
2228        self.trim_matches(char::is_whitespace)
2229    }
2230
2231    /// Returns a string slice with leading whitespace removed.
2232    ///
2233    /// 'Whitespace' is defined according to the terms of the Unicode Derived
2234    /// Core Property `White_Space`, which includes newlines.
2235    ///
2236    /// # Text directionality
2237    ///
2238    /// A string is a sequence of bytes. `start` in this context means the first
2239    /// position of that byte string; for a left-to-right language like English or
2240    /// Russian, this will be left side, and for right-to-left languages like
2241    /// Arabic or Hebrew, this will be the right side.
2242    ///
2243    /// # Examples
2244    ///
2245    /// Basic usage:
2246    ///
2247    /// ```
2248    /// let s = "\n Hello\tworld\t\n";
2249    /// assert_eq!("Hello\tworld\t\n", s.trim_start());
2250    /// ```
2251    ///
2252    /// Directionality:
2253    ///
2254    /// ```
2255    /// let s = "  English  ";
2256    /// assert!(Some('E') == s.trim_start().chars().next());
2257    ///
2258    /// let s = "  עברית  ";
2259    /// assert!(Some('ע') == s.trim_start().chars().next());
2260    /// ```
2261    #[inline]
2262    #[must_use = "this returns the trimmed string as a new slice, \
2263                  without modifying the original"]
2264    #[stable(feature = "trim_direction", since = "1.30.0")]
2265    #[rustc_diagnostic_item = "str_trim_start"]
2266    #[cfg(not(feature = "ferrocene_subset"))]
2267    pub fn trim_start(&self) -> &str {
2268        self.trim_start_matches(char::is_whitespace)
2269    }
2270
2271    /// Returns a string slice with trailing whitespace removed.
2272    ///
2273    /// 'Whitespace' is defined according to the terms of the Unicode Derived
2274    /// Core Property `White_Space`, which includes newlines.
2275    ///
2276    /// # Text directionality
2277    ///
2278    /// A string is a sequence of bytes. `end` in this context means the last
2279    /// position of that byte string; for a left-to-right language like English or
2280    /// Russian, this will be right side, and for right-to-left languages like
2281    /// Arabic or Hebrew, this will be the left side.
2282    ///
2283    /// # Examples
2284    ///
2285    /// Basic usage:
2286    ///
2287    /// ```
2288    /// let s = "\n Hello\tworld\t\n";
2289    /// assert_eq!("\n Hello\tworld", s.trim_end());
2290    /// ```
2291    ///
2292    /// Directionality:
2293    ///
2294    /// ```
2295    /// let s = "  English  ";
2296    /// assert!(Some('h') == s.trim_end().chars().rev().next());
2297    ///
2298    /// let s = "  עברית  ";
2299    /// assert!(Some('ת') == s.trim_end().chars().rev().next());
2300    /// ```
2301    #[inline]
2302    #[must_use = "this returns the trimmed string as a new slice, \
2303                  without modifying the original"]
2304    #[stable(feature = "trim_direction", since = "1.30.0")]
2305    #[rustc_diagnostic_item = "str_trim_end"]
2306    #[cfg(not(feature = "ferrocene_subset"))]
2307    pub fn trim_end(&self) -> &str {
2308        self.trim_end_matches(char::is_whitespace)
2309    }
2310
2311    /// Returns a string slice with leading whitespace removed.
2312    ///
2313    /// 'Whitespace' is defined according to the terms of the Unicode Derived
2314    /// Core Property `White_Space`.
2315    ///
2316    /// # Text directionality
2317    ///
2318    /// A string is a sequence of bytes. 'Left' in this context means the first
2319    /// position of that byte string; for a language like Arabic or Hebrew
2320    /// which are 'right to left' rather than 'left to right', this will be
2321    /// the _right_ side, not the left.
2322    ///
2323    /// # Examples
2324    ///
2325    /// Basic usage:
2326    ///
2327    /// ```
2328    /// let s = " Hello\tworld\t";
2329    ///
2330    /// assert_eq!("Hello\tworld\t", s.trim_left());
2331    /// ```
2332    ///
2333    /// Directionality:
2334    ///
2335    /// ```
2336    /// let s = "  English";
2337    /// assert!(Some('E') == s.trim_left().chars().next());
2338    ///
2339    /// let s = "  עברית";
2340    /// assert!(Some('ע') == s.trim_left().chars().next());
2341    /// ```
2342    #[must_use = "this returns the trimmed string as a new slice, \
2343                  without modifying the original"]
2344    #[inline]
2345    #[stable(feature = "rust1", since = "1.0.0")]
2346    #[deprecated(since = "1.33.0", note = "superseded by `trim_start`", suggestion = "trim_start")]
2347    #[cfg(not(feature = "ferrocene_subset"))]
2348    pub fn trim_left(&self) -> &str {
2349        self.trim_start()
2350    }
2351
2352    /// Returns a string slice with trailing whitespace removed.
2353    ///
2354    /// 'Whitespace' is defined according to the terms of the Unicode Derived
2355    /// Core Property `White_Space`.
2356    ///
2357    /// # Text directionality
2358    ///
2359    /// A string is a sequence of bytes. 'Right' in this context means the last
2360    /// position of that byte string; for a language like Arabic or Hebrew
2361    /// which are 'right to left' rather than 'left to right', this will be
2362    /// the _left_ side, not the right.
2363    ///
2364    /// # Examples
2365    ///
2366    /// Basic usage:
2367    ///
2368    /// ```
2369    /// let s = " Hello\tworld\t";
2370    ///
2371    /// assert_eq!(" Hello\tworld", s.trim_right());
2372    /// ```
2373    ///
2374    /// Directionality:
2375    ///
2376    /// ```
2377    /// let s = "English  ";
2378    /// assert!(Some('h') == s.trim_right().chars().rev().next());
2379    ///
2380    /// let s = "עברית  ";
2381    /// assert!(Some('ת') == s.trim_right().chars().rev().next());
2382    /// ```
2383    #[must_use = "this returns the trimmed string as a new slice, \
2384                  without modifying the original"]
2385    #[inline]
2386    #[stable(feature = "rust1", since = "1.0.0")]
2387    #[deprecated(since = "1.33.0", note = "superseded by `trim_end`", suggestion = "trim_end")]
2388    #[cfg(not(feature = "ferrocene_subset"))]
2389    pub fn trim_right(&self) -> &str {
2390        self.trim_end()
2391    }
2392
2393    /// Returns a string slice with all prefixes and suffixes that match a
2394    /// pattern repeatedly removed.
2395    ///
2396    /// The [pattern] can be a [`char`], a slice of [`char`]s, or a function
2397    /// or closure that determines if a character matches.
2398    ///
2399    /// [`char`]: prim@char
2400    /// [pattern]: self::pattern
2401    ///
2402    /// # Examples
2403    ///
2404    /// Simple patterns:
2405    ///
2406    /// ```
2407    /// assert_eq!("11foo1bar11".trim_matches('1'), "foo1bar");
2408    /// assert_eq!("123foo1bar123".trim_matches(char::is_numeric), "foo1bar");
2409    ///
2410    /// let x: &[_] = &['1', '2'];
2411    /// assert_eq!("12foo1bar12".trim_matches(x), "foo1bar");
2412    /// ```
2413    ///
2414    /// A more complex pattern, using a closure:
2415    ///
2416    /// ```
2417    /// assert_eq!("1foo1barXX".trim_matches(|c| c == '1' || c == 'X'), "foo1bar");
2418    /// ```
2419    #[must_use = "this returns the trimmed string as a new slice, \
2420                  without modifying the original"]
2421    #[stable(feature = "rust1", since = "1.0.0")]
2422    #[cfg(not(feature = "ferrocene_subset"))]
2423    pub fn trim_matches<P: Pattern>(&self, pat: P) -> &str
2424    where
2425        for<'a> P::Searcher<'a>: DoubleEndedSearcher<'a>,
2426    {
2427        let mut i = 0;
2428        let mut j = 0;
2429        let mut matcher = pat.into_searcher(self);
2430        if let Some((a, b)) = matcher.next_reject() {
2431            i = a;
2432            j = b; // Remember earliest known match, correct it below if
2433            // last match is different
2434        }
2435        if let Some((_, b)) = matcher.next_reject_back() {
2436            j = b;
2437        }
2438        // SAFETY: `Searcher` is known to return valid indices.
2439        unsafe { self.get_unchecked(i..j) }
2440    }
2441
2442    /// Returns a string slice with all prefixes that match a pattern
2443    /// repeatedly removed.
2444    ///
2445    /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a
2446    /// function or closure that determines if a character matches.
2447    ///
2448    /// [`char`]: prim@char
2449    /// [pattern]: self::pattern
2450    ///
2451    /// # Text directionality
2452    ///
2453    /// A string is a sequence of bytes. `start` in this context means the first
2454    /// position of that byte string; for a left-to-right language like English or
2455    /// Russian, this will be left side, and for right-to-left languages like
2456    /// Arabic or Hebrew, this will be the right side.
2457    ///
2458    /// # Examples
2459    ///
2460    /// ```
2461    /// assert_eq!("11foo1bar11".trim_start_matches('1'), "foo1bar11");
2462    /// assert_eq!("123foo1bar123".trim_start_matches(char::is_numeric), "foo1bar123");
2463    ///
2464    /// let x: &[_] = &['1', '2'];
2465    /// assert_eq!("12foo1bar12".trim_start_matches(x), "foo1bar12");
2466    /// ```
2467    #[must_use = "this returns the trimmed string as a new slice, \
2468                  without modifying the original"]
2469    #[stable(feature = "trim_direction", since = "1.30.0")]
2470    #[cfg(not(feature = "ferrocene_subset"))]
2471    pub fn trim_start_matches<P: Pattern>(&self, pat: P) -> &str {
2472        let mut i = self.len();
2473        let mut matcher = pat.into_searcher(self);
2474        if let Some((a, _)) = matcher.next_reject() {
2475            i = a;
2476        }
2477        // SAFETY: `Searcher` is known to return valid indices.
2478        unsafe { self.get_unchecked(i..self.len()) }
2479    }
2480
2481    /// Returns a string slice with the prefix removed.
2482    ///
2483    /// If the string starts with the pattern `prefix`, returns the substring after the prefix,
2484    /// wrapped in `Some`. Unlike [`trim_start_matches`], this method removes the prefix exactly once.
2485    ///
2486    /// If the string does not start with `prefix`, returns `None`.
2487    ///
2488    /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a
2489    /// function or closure that determines if a character matches.
2490    ///
2491    /// [`char`]: prim@char
2492    /// [pattern]: self::pattern
2493    /// [`trim_start_matches`]: Self::trim_start_matches
2494    ///
2495    /// # Examples
2496    ///
2497    /// ```
2498    /// assert_eq!("foo:bar".strip_prefix("foo:"), Some("bar"));
2499    /// assert_eq!("foo:bar".strip_prefix("bar"), None);
2500    /// assert_eq!("foofoo".strip_prefix("foo"), Some("foo"));
2501    /// ```
2502    #[must_use = "this returns the remaining substring as a new slice, \
2503                  without modifying the original"]
2504    #[stable(feature = "str_strip", since = "1.45.0")]
2505    #[cfg(not(feature = "ferrocene_subset"))]
2506    pub fn strip_prefix<P: Pattern>(&self, prefix: P) -> Option<&str> {
2507        prefix.strip_prefix_of(self)
2508    }
2509
2510    /// Returns a string slice with the suffix removed.
2511    ///
2512    /// If the string ends with the pattern `suffix`, returns the substring before the suffix,
2513    /// wrapped in `Some`.  Unlike [`trim_end_matches`], this method removes the suffix exactly once.
2514    ///
2515    /// If the string does not end with `suffix`, returns `None`.
2516    ///
2517    /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a
2518    /// function or closure that determines if a character matches.
2519    ///
2520    /// [`char`]: prim@char
2521    /// [pattern]: self::pattern
2522    /// [`trim_end_matches`]: Self::trim_end_matches
2523    ///
2524    /// # Examples
2525    ///
2526    /// ```
2527    /// assert_eq!("bar:foo".strip_suffix(":foo"), Some("bar"));
2528    /// assert_eq!("bar:foo".strip_suffix("bar"), None);
2529    /// assert_eq!("foofoo".strip_suffix("foo"), Some("foo"));
2530    /// ```
2531    #[must_use = "this returns the remaining substring as a new slice, \
2532                  without modifying the original"]
2533    #[stable(feature = "str_strip", since = "1.45.0")]
2534    #[cfg(not(feature = "ferrocene_subset"))]
2535    pub fn strip_suffix<P: Pattern>(&self, suffix: P) -> Option<&str>
2536    where
2537        for<'a> P::Searcher<'a>: ReverseSearcher<'a>,
2538    {
2539        suffix.strip_suffix_of(self)
2540    }
2541
2542    /// Returns a string slice with the prefix and suffix removed.
2543    ///
2544    /// If the string starts with the pattern `prefix` and ends with the pattern `suffix`, returns
2545    /// the substring after the prefix and before the suffix, wrapped in `Some`.
2546    /// Unlike [`trim_start_matches`] and [`trim_end_matches`], this method removes both the prefix
2547    /// and suffix exactly once.
2548    ///
2549    /// If the string does not start with `prefix` or does not end with `suffix`, returns `None`.
2550    ///
2551    /// Each [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a
2552    /// function or closure that determines if a character matches.
2553    ///
2554    /// [`char`]: prim@char
2555    /// [pattern]: self::pattern
2556    /// [`trim_start_matches`]: Self::trim_start_matches
2557    /// [`trim_end_matches`]: Self::trim_end_matches
2558    ///
2559    /// # Examples
2560    ///
2561    /// ```
2562    /// #![feature(strip_circumfix)]
2563    ///
2564    /// assert_eq!("bar:hello:foo".strip_circumfix("bar:", ":foo"), Some("hello"));
2565    /// assert_eq!("bar:foo".strip_circumfix("foo", "foo"), None);
2566    /// assert_eq!("foo:bar;".strip_circumfix("foo:", ';'), Some("bar"));
2567    /// ```
2568    #[must_use = "this returns the remaining substring as a new slice, \
2569                  without modifying the original"]
2570    #[unstable(feature = "strip_circumfix", issue = "147946")]
2571    #[cfg(not(feature = "ferrocene_subset"))]
2572    pub fn strip_circumfix<P: Pattern, S: Pattern>(&self, prefix: P, suffix: S) -> Option<&str>
2573    where
2574        for<'a> S::Searcher<'a>: ReverseSearcher<'a>,
2575    {
2576        self.strip_prefix(prefix)?.strip_suffix(suffix)
2577    }
2578
2579    /// Returns a string slice with the optional prefix removed.
2580    ///
2581    /// If the string starts with the pattern `prefix`, returns the substring after the prefix.
2582    /// Unlike [`strip_prefix`], this method always returns `&str` for easy method chaining,
2583    /// instead of returning [`Option<&str>`].
2584    ///
2585    /// If the string does not start with `prefix`, returns the original string unchanged.
2586    ///
2587    /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a
2588    /// function or closure that determines if a character matches.
2589    ///
2590    /// [`char`]: prim@char
2591    /// [pattern]: self::pattern
2592    /// [`strip_prefix`]: Self::strip_prefix
2593    ///
2594    /// # Examples
2595    ///
2596    /// ```
2597    /// #![feature(trim_prefix_suffix)]
2598    ///
2599    /// // Prefix present - removes it
2600    /// assert_eq!("foo:bar".trim_prefix("foo:"), "bar");
2601    /// assert_eq!("foofoo".trim_prefix("foo"), "foo");
2602    ///
2603    /// // Prefix absent - returns original string
2604    /// assert_eq!("foo:bar".trim_prefix("bar"), "foo:bar");
2605    ///
2606    /// // Method chaining example
2607    /// assert_eq!("<https://example.com/>".trim_prefix('<').trim_suffix('>'), "https://example.com/");
2608    /// ```
2609    #[must_use = "this returns the remaining substring as a new slice, \
2610                  without modifying the original"]
2611    #[unstable(feature = "trim_prefix_suffix", issue = "142312")]
2612    #[cfg(not(feature = "ferrocene_subset"))]
2613    pub fn trim_prefix<P: Pattern>(&self, prefix: P) -> &str {
2614        prefix.strip_prefix_of(self).unwrap_or(self)
2615    }
2616
2617    /// Returns a string slice with the optional suffix removed.
2618    ///
2619    /// If the string ends with the pattern `suffix`, returns the substring before the suffix.
2620    /// Unlike [`strip_suffix`], this method always returns `&str` for easy method chaining,
2621    /// instead of returning [`Option<&str>`].
2622    ///
2623    /// If the string does not end with `suffix`, returns the original string unchanged.
2624    ///
2625    /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a
2626    /// function or closure that determines if a character matches.
2627    ///
2628    /// [`char`]: prim@char
2629    /// [pattern]: self::pattern
2630    /// [`strip_suffix`]: Self::strip_suffix
2631    ///
2632    /// # Examples
2633    ///
2634    /// ```
2635    /// #![feature(trim_prefix_suffix)]
2636    ///
2637    /// // Suffix present - removes it
2638    /// assert_eq!("bar:foo".trim_suffix(":foo"), "bar");
2639    /// assert_eq!("foofoo".trim_suffix("foo"), "foo");
2640    ///
2641    /// // Suffix absent - returns original string
2642    /// assert_eq!("bar:foo".trim_suffix("bar"), "bar:foo");
2643    ///
2644    /// // Method chaining example
2645    /// assert_eq!("<https://example.com/>".trim_prefix('<').trim_suffix('>'), "https://example.com/");
2646    /// ```
2647    #[must_use = "this returns the remaining substring as a new slice, \
2648                  without modifying the original"]
2649    #[unstable(feature = "trim_prefix_suffix", issue = "142312")]
2650    #[cfg(not(feature = "ferrocene_subset"))]
2651    pub fn trim_suffix<P: Pattern>(&self, suffix: P) -> &str
2652    where
2653        for<'a> P::Searcher<'a>: ReverseSearcher<'a>,
2654    {
2655        suffix.strip_suffix_of(self).unwrap_or(self)
2656    }
2657
2658    /// Returns a string slice with all suffixes that match a pattern
2659    /// repeatedly removed.
2660    ///
2661    /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a
2662    /// function or closure that determines if a character matches.
2663    ///
2664    /// [`char`]: prim@char
2665    /// [pattern]: self::pattern
2666    ///
2667    /// # Text directionality
2668    ///
2669    /// A string is a sequence of bytes. `end` in this context means the last
2670    /// position of that byte string; for a left-to-right language like English or
2671    /// Russian, this will be right side, and for right-to-left languages like
2672    /// Arabic or Hebrew, this will be the left side.
2673    ///
2674    /// # Examples
2675    ///
2676    /// Simple patterns:
2677    ///
2678    /// ```
2679    /// assert_eq!("11foo1bar11".trim_end_matches('1'), "11foo1bar");
2680    /// assert_eq!("123foo1bar123".trim_end_matches(char::is_numeric), "123foo1bar");
2681    ///
2682    /// let x: &[_] = &['1', '2'];
2683    /// assert_eq!("12foo1bar12".trim_end_matches(x), "12foo1bar");
2684    /// ```
2685    ///
2686    /// A more complex pattern, using a closure:
2687    ///
2688    /// ```
2689    /// assert_eq!("1fooX".trim_end_matches(|c| c == '1' || c == 'X'), "1foo");
2690    /// ```
2691    #[must_use = "this returns the trimmed string as a new slice, \
2692                  without modifying the original"]
2693    #[stable(feature = "trim_direction", since = "1.30.0")]
2694    #[cfg(not(feature = "ferrocene_subset"))]
2695    pub fn trim_end_matches<P: Pattern>(&self, pat: P) -> &str
2696    where
2697        for<'a> P::Searcher<'a>: ReverseSearcher<'a>,
2698    {
2699        let mut j = 0;
2700        let mut matcher = pat.into_searcher(self);
2701        if let Some((_, b)) = matcher.next_reject_back() {
2702            j = b;
2703        }
2704        // SAFETY: `Searcher` is known to return valid indices.
2705        unsafe { self.get_unchecked(0..j) }
2706    }
2707
2708    /// Returns a string slice with all prefixes that match a pattern
2709    /// repeatedly removed.
2710    ///
2711    /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a
2712    /// function or closure that determines if a character matches.
2713    ///
2714    /// [`char`]: prim@char
2715    /// [pattern]: self::pattern
2716    ///
2717    /// # Text directionality
2718    ///
2719    /// A string is a sequence of bytes. 'Left' in this context means the first
2720    /// position of that byte string; for a language like Arabic or Hebrew
2721    /// which are 'right to left' rather than 'left to right', this will be
2722    /// the _right_ side, not the left.
2723    ///
2724    /// # Examples
2725    ///
2726    /// ```
2727    /// assert_eq!("11foo1bar11".trim_left_matches('1'), "foo1bar11");
2728    /// assert_eq!("123foo1bar123".trim_left_matches(char::is_numeric), "foo1bar123");
2729    ///
2730    /// let x: &[_] = &['1', '2'];
2731    /// assert_eq!("12foo1bar12".trim_left_matches(x), "foo1bar12");
2732    /// ```
2733    #[stable(feature = "rust1", since = "1.0.0")]
2734    #[deprecated(
2735        since = "1.33.0",
2736        note = "superseded by `trim_start_matches`",
2737        suggestion = "trim_start_matches"
2738    )]
2739    #[cfg(not(feature = "ferrocene_subset"))]
2740    pub fn trim_left_matches<P: Pattern>(&self, pat: P) -> &str {
2741        self.trim_start_matches(pat)
2742    }
2743
2744    /// Returns a string slice with all suffixes that match a pattern
2745    /// repeatedly removed.
2746    ///
2747    /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a
2748    /// function or closure that determines if a character matches.
2749    ///
2750    /// [`char`]: prim@char
2751    /// [pattern]: self::pattern
2752    ///
2753    /// # Text directionality
2754    ///
2755    /// A string is a sequence of bytes. 'Right' in this context means the last
2756    /// position of that byte string; for a language like Arabic or Hebrew
2757    /// which are 'right to left' rather than 'left to right', this will be
2758    /// the _left_ side, not the right.
2759    ///
2760    /// # Examples
2761    ///
2762    /// Simple patterns:
2763    ///
2764    /// ```
2765    /// assert_eq!("11foo1bar11".trim_right_matches('1'), "11foo1bar");
2766    /// assert_eq!("123foo1bar123".trim_right_matches(char::is_numeric), "123foo1bar");
2767    ///
2768    /// let x: &[_] = &['1', '2'];
2769    /// assert_eq!("12foo1bar12".trim_right_matches(x), "12foo1bar");
2770    /// ```
2771    ///
2772    /// A more complex pattern, using a closure:
2773    ///
2774    /// ```
2775    /// assert_eq!("1fooX".trim_right_matches(|c| c == '1' || c == 'X'), "1foo");
2776    /// ```
2777    #[stable(feature = "rust1", since = "1.0.0")]
2778    #[deprecated(
2779        since = "1.33.0",
2780        note = "superseded by `trim_end_matches`",
2781        suggestion = "trim_end_matches"
2782    )]
2783    #[cfg(not(feature = "ferrocene_subset"))]
2784    pub fn trim_right_matches<P: Pattern>(&self, pat: P) -> &str
2785    where
2786        for<'a> P::Searcher<'a>: ReverseSearcher<'a>,
2787    {
2788        self.trim_end_matches(pat)
2789    }
2790
2791    /// Parses this string slice into another type.
2792    ///
2793    /// Because `parse` is so general, it can cause problems with type
2794    /// inference. As such, `parse` is one of the few times you'll see
2795    /// the syntax affectionately known as the 'turbofish': `::<>`. This
2796    /// helps the inference algorithm understand specifically which type
2797    /// you're trying to parse into.
2798    ///
2799    /// `parse` can parse into any type that implements the [`FromStr`] trait.
2800    ///
2801    /// # Errors
2802    ///
2803    /// Will return [`Err`] if it's not possible to parse this string slice into
2804    /// the desired type.
2805    ///
2806    /// [`Err`]: FromStr::Err
2807    ///
2808    /// # Examples
2809    ///
2810    /// Basic usage:
2811    ///
2812    /// ```
2813    /// let four: u32 = "4".parse().unwrap();
2814    ///
2815    /// assert_eq!(4, four);
2816    /// ```
2817    ///
2818    /// Using the 'turbofish' instead of annotating `four`:
2819    ///
2820    /// ```
2821    /// let four = "4".parse::<u32>();
2822    ///
2823    /// assert_eq!(Ok(4), four);
2824    /// ```
2825    ///
2826    /// Failing to parse:
2827    ///
2828    /// ```
2829    /// let nope = "j".parse::<u32>();
2830    ///
2831    /// assert!(nope.is_err());
2832    /// ```
2833    #[inline]
2834    #[stable(feature = "rust1", since = "1.0.0")]
2835    pub fn parse<F: FromStr>(&self) -> Result<F, F::Err> {
2836        FromStr::from_str(self)
2837    }
2838
2839    /// Checks if all characters in this string are within the ASCII range.
2840    ///
2841    /// An empty string returns `true`.
2842    ///
2843    /// # Examples
2844    ///
2845    /// ```
2846    /// let ascii = "hello!\n";
2847    /// let non_ascii = "Grüße, Jürgen ❤";
2848    ///
2849    /// assert!(ascii.is_ascii());
2850    /// assert!(!non_ascii.is_ascii());
2851    /// ```
2852    #[stable(feature = "ascii_methods_on_intrinsics", since = "1.23.0")]
2853    #[rustc_const_stable(feature = "const_slice_is_ascii", since = "1.74.0")]
2854    #[must_use]
2855    #[inline]
2856    #[cfg(not(feature = "ferrocene_subset"))]
2857    pub const fn is_ascii(&self) -> bool {
2858        // We can treat each byte as character here: all multibyte characters
2859        // start with a byte that is not in the ASCII range, so we will stop
2860        // there already.
2861        self.as_bytes().is_ascii()
2862    }
2863
2864    /// If this string slice [`is_ascii`](Self::is_ascii), returns it as a slice
2865    /// of [ASCII characters](`ascii::Char`), otherwise returns `None`.
2866    #[unstable(feature = "ascii_char", issue = "110998")]
2867    #[must_use]
2868    #[inline]
2869    #[cfg(not(feature = "ferrocene_subset"))]
2870    pub const fn as_ascii(&self) -> Option<&[ascii::Char]> {
2871        // Like in `is_ascii`, we can work on the bytes directly.
2872        self.as_bytes().as_ascii()
2873    }
2874
2875    /// Converts this string slice into a slice of [ASCII characters](ascii::Char),
2876    /// without checking whether they are valid.
2877    ///
2878    /// # Safety
2879    ///
2880    /// Every character in this string must be ASCII, or else this is UB.
2881    #[unstable(feature = "ascii_char", issue = "110998")]
2882    #[must_use]
2883    #[inline]
2884    #[cfg(not(feature = "ferrocene_subset"))]
2885    pub const unsafe fn as_ascii_unchecked(&self) -> &[ascii::Char] {
2886        assert_unsafe_precondition!(
2887            check_library_ub,
2888            "as_ascii_unchecked requires that the string is valid ASCII",
2889            (it: &str = self) => it.is_ascii()
2890        );
2891
2892        // SAFETY: the caller promised that every byte of this string slice
2893        // is ASCII.
2894        unsafe { self.as_bytes().as_ascii_unchecked() }
2895    }
2896
2897    /// Checks that two strings are an ASCII case-insensitive match.
2898    ///
2899    /// Same as `to_ascii_lowercase(a) == to_ascii_lowercase(b)`,
2900    /// but without allocating and copying temporaries.
2901    ///
2902    /// # Examples
2903    ///
2904    /// ```
2905    /// assert!("Ferris".eq_ignore_ascii_case("FERRIS"));
2906    /// assert!("Ferrös".eq_ignore_ascii_case("FERRöS"));
2907    /// assert!(!"Ferrös".eq_ignore_ascii_case("FERRÖS"));
2908    /// ```
2909    #[stable(feature = "ascii_methods_on_intrinsics", since = "1.23.0")]
2910    #[rustc_const_stable(feature = "const_eq_ignore_ascii_case", since = "1.89.0")]
2911    #[must_use]
2912    #[inline]
2913    pub const fn eq_ignore_ascii_case(&self, other: &str) -> bool {
2914        self.as_bytes().eq_ignore_ascii_case(other.as_bytes())
2915    }
2916
2917    /// Converts this string to its ASCII upper case equivalent in-place.
2918    ///
2919    /// ASCII letters 'a' to 'z' are mapped to 'A' to 'Z',
2920    /// but non-ASCII letters are unchanged.
2921    ///
2922    /// To return a new uppercased value without modifying the existing one, use
2923    /// [`to_ascii_uppercase()`].
2924    ///
2925    /// [`to_ascii_uppercase()`]: #method.to_ascii_uppercase
2926    ///
2927    /// # Examples
2928    ///
2929    /// ```
2930    /// let mut s = String::from("Grüße, Jürgen ❤");
2931    ///
2932    /// s.make_ascii_uppercase();
2933    ///
2934    /// assert_eq!("GRüßE, JüRGEN ❤", s);
2935    /// ```
2936    #[stable(feature = "ascii_methods_on_intrinsics", since = "1.23.0")]
2937    #[rustc_const_stable(feature = "const_make_ascii", since = "1.84.0")]
2938    #[inline]
2939    #[cfg(not(feature = "ferrocene_subset"))]
2940    pub const fn make_ascii_uppercase(&mut self) {
2941        // SAFETY: changing ASCII letters only does not invalidate UTF-8.
2942        let me = unsafe { self.as_bytes_mut() };
2943        me.make_ascii_uppercase()
2944    }
2945
2946    /// Converts this string to its ASCII lower case equivalent in-place.
2947    ///
2948    /// ASCII letters 'A' to 'Z' are mapped to 'a' to 'z',
2949    /// but non-ASCII letters are unchanged.
2950    ///
2951    /// To return a new lowercased value without modifying the existing one, use
2952    /// [`to_ascii_lowercase()`].
2953    ///
2954    /// [`to_ascii_lowercase()`]: #method.to_ascii_lowercase
2955    ///
2956    /// # Examples
2957    ///
2958    /// ```
2959    /// let mut s = String::from("GRÜßE, JÜRGEN ❤");
2960    ///
2961    /// s.make_ascii_lowercase();
2962    ///
2963    /// assert_eq!("grÜße, jÜrgen ❤", s);
2964    /// ```
2965    #[stable(feature = "ascii_methods_on_intrinsics", since = "1.23.0")]
2966    #[rustc_const_stable(feature = "const_make_ascii", since = "1.84.0")]
2967    #[inline]
2968    #[cfg(not(feature = "ferrocene_subset"))]
2969    pub const fn make_ascii_lowercase(&mut self) {
2970        // SAFETY: changing ASCII letters only does not invalidate UTF-8.
2971        let me = unsafe { self.as_bytes_mut() };
2972        me.make_ascii_lowercase()
2973    }
2974
2975    /// Returns a string slice with leading ASCII whitespace removed.
2976    ///
2977    /// 'Whitespace' refers to the definition used by
2978    /// [`u8::is_ascii_whitespace`].
2979    ///
2980    /// [`u8::is_ascii_whitespace`]: u8::is_ascii_whitespace
2981    ///
2982    /// # Examples
2983    ///
2984    /// ```
2985    /// assert_eq!(" \t \u{3000}hello world\n".trim_ascii_start(), "\u{3000}hello world\n");
2986    /// assert_eq!("  ".trim_ascii_start(), "");
2987    /// assert_eq!("".trim_ascii_start(), "");
2988    /// ```
2989    #[must_use = "this returns the trimmed string as a new slice, \
2990                  without modifying the original"]
2991    #[stable(feature = "byte_slice_trim_ascii", since = "1.80.0")]
2992    #[rustc_const_stable(feature = "byte_slice_trim_ascii", since = "1.80.0")]
2993    #[inline]
2994    #[cfg(not(feature = "ferrocene_subset"))]
2995    pub const fn trim_ascii_start(&self) -> &str {
2996        // SAFETY: Removing ASCII characters from a `&str` does not invalidate
2997        // UTF-8.
2998        unsafe { core::str::from_utf8_unchecked(self.as_bytes().trim_ascii_start()) }
2999    }
3000
3001    /// Returns a string slice with trailing ASCII whitespace removed.
3002    ///
3003    /// 'Whitespace' refers to the definition used by
3004    /// [`u8::is_ascii_whitespace`].
3005    ///
3006    /// [`u8::is_ascii_whitespace`]: u8::is_ascii_whitespace
3007    ///
3008    /// # Examples
3009    ///
3010    /// ```
3011    /// assert_eq!("\r hello world\u{3000}\n ".trim_ascii_end(), "\r hello world\u{3000}");
3012    /// assert_eq!("  ".trim_ascii_end(), "");
3013    /// assert_eq!("".trim_ascii_end(), "");
3014    /// ```
3015    #[must_use = "this returns the trimmed string as a new slice, \
3016                  without modifying the original"]
3017    #[stable(feature = "byte_slice_trim_ascii", since = "1.80.0")]
3018    #[rustc_const_stable(feature = "byte_slice_trim_ascii", since = "1.80.0")]
3019    #[inline]
3020    #[cfg(not(feature = "ferrocene_subset"))]
3021    pub const fn trim_ascii_end(&self) -> &str {
3022        // SAFETY: Removing ASCII characters from a `&str` does not invalidate
3023        // UTF-8.
3024        unsafe { core::str::from_utf8_unchecked(self.as_bytes().trim_ascii_end()) }
3025    }
3026
3027    /// Returns a string slice with leading and trailing ASCII whitespace
3028    /// removed.
3029    ///
3030    /// 'Whitespace' refers to the definition used by
3031    /// [`u8::is_ascii_whitespace`].
3032    ///
3033    /// [`u8::is_ascii_whitespace`]: u8::is_ascii_whitespace
3034    ///
3035    /// # Examples
3036    ///
3037    /// ```
3038    /// assert_eq!("\r hello world\n ".trim_ascii(), "hello world");
3039    /// assert_eq!("  ".trim_ascii(), "");
3040    /// assert_eq!("".trim_ascii(), "");
3041    /// ```
3042    #[must_use = "this returns the trimmed string as a new slice, \
3043                  without modifying the original"]
3044    #[stable(feature = "byte_slice_trim_ascii", since = "1.80.0")]
3045    #[rustc_const_stable(feature = "byte_slice_trim_ascii", since = "1.80.0")]
3046    #[inline]
3047    #[cfg(not(feature = "ferrocene_subset"))]
3048    pub const fn trim_ascii(&self) -> &str {
3049        // SAFETY: Removing ASCII characters from a `&str` does not invalidate
3050        // UTF-8.
3051        unsafe { core::str::from_utf8_unchecked(self.as_bytes().trim_ascii()) }
3052    }
3053
3054    /// Returns an iterator that escapes each char in `self` with [`char::escape_debug`].
3055    ///
3056    /// Note: only extended grapheme codepoints that begin the string will be
3057    /// escaped.
3058    ///
3059    /// # Examples
3060    ///
3061    /// As an iterator:
3062    ///
3063    /// ```
3064    /// for c in "❤\n!".escape_debug() {
3065    ///     print!("{c}");
3066    /// }
3067    /// println!();
3068    /// ```
3069    ///
3070    /// Using `println!` directly:
3071    ///
3072    /// ```
3073    /// println!("{}", "❤\n!".escape_debug());
3074    /// ```
3075    ///
3076    ///
3077    /// Both are equivalent to:
3078    ///
3079    /// ```
3080    /// println!("❤\\n!");
3081    /// ```
3082    ///
3083    /// Using `to_string`:
3084    ///
3085    /// ```
3086    /// assert_eq!("❤\n!".escape_debug().to_string(), "❤\\n!");
3087    /// ```
3088    #[must_use = "this returns the escaped string as an iterator, \
3089                  without modifying the original"]
3090    #[stable(feature = "str_escape", since = "1.34.0")]
3091    #[cfg(not(feature = "ferrocene_subset"))]
3092    pub fn escape_debug(&self) -> EscapeDebug<'_> {
3093        let mut chars = self.chars();
3094        EscapeDebug {
3095            inner: chars
3096                .next()
3097                .map(|first| first.escape_debug_ext(EscapeDebugExtArgs::ESCAPE_ALL))
3098                .into_iter()
3099                .flatten()
3100                .chain(chars.flat_map(CharEscapeDebugContinue)),
3101        }
3102    }
3103
3104    /// Returns an iterator that escapes each char in `self` with [`char::escape_default`].
3105    ///
3106    /// # Examples
3107    ///
3108    /// As an iterator:
3109    ///
3110    /// ```
3111    /// for c in "❤\n!".escape_default() {
3112    ///     print!("{c}");
3113    /// }
3114    /// println!();
3115    /// ```
3116    ///
3117    /// Using `println!` directly:
3118    ///
3119    /// ```
3120    /// println!("{}", "❤\n!".escape_default());
3121    /// ```
3122    ///
3123    ///
3124    /// Both are equivalent to:
3125    ///
3126    /// ```
3127    /// println!("\\u{{2764}}\\n!");
3128    /// ```
3129    ///
3130    /// Using `to_string`:
3131    ///
3132    /// ```
3133    /// assert_eq!("❤\n!".escape_default().to_string(), "\\u{2764}\\n!");
3134    /// ```
3135    #[must_use = "this returns the escaped string as an iterator, \
3136                  without modifying the original"]
3137    #[stable(feature = "str_escape", since = "1.34.0")]
3138    #[cfg(not(feature = "ferrocene_subset"))]
3139    pub fn escape_default(&self) -> EscapeDefault<'_> {
3140        EscapeDefault { inner: self.chars().flat_map(CharEscapeDefault) }
3141    }
3142
3143    /// Returns an iterator that escapes each char in `self` with [`char::escape_unicode`].
3144    ///
3145    /// # Examples
3146    ///
3147    /// As an iterator:
3148    ///
3149    /// ```
3150    /// for c in "❤\n!".escape_unicode() {
3151    ///     print!("{c}");
3152    /// }
3153    /// println!();
3154    /// ```
3155    ///
3156    /// Using `println!` directly:
3157    ///
3158    /// ```
3159    /// println!("{}", "❤\n!".escape_unicode());
3160    /// ```
3161    ///
3162    ///
3163    /// Both are equivalent to:
3164    ///
3165    /// ```
3166    /// println!("\\u{{2764}}\\u{{a}}\\u{{21}}");
3167    /// ```
3168    ///
3169    /// Using `to_string`:
3170    ///
3171    /// ```
3172    /// assert_eq!("❤\n!".escape_unicode().to_string(), "\\u{2764}\\u{a}\\u{21}");
3173    /// ```
3174    #[must_use = "this returns the escaped string as an iterator, \
3175                  without modifying the original"]
3176    #[stable(feature = "str_escape", since = "1.34.0")]
3177    #[cfg(not(feature = "ferrocene_subset"))]
3178    pub fn escape_unicode(&self) -> EscapeUnicode<'_> {
3179        EscapeUnicode { inner: self.chars().flat_map(CharEscapeUnicode) }
3180    }
3181
3182    /// Returns the range that a substring points to.
3183    ///
3184    /// Returns `None` if `substr` does not point within `self`.
3185    ///
3186    /// Unlike [`str::find`], **this does not search through the string**.
3187    /// Instead, it uses pointer arithmetic to find where in the string
3188    /// `substr` is derived from.
3189    ///
3190    /// This is useful for extending [`str::split`] and similar methods.
3191    ///
3192    /// Note that this method may return false positives (typically either
3193    /// `Some(0..0)` or `Some(self.len()..self.len())`) if `substr` is a
3194    /// zero-length `str` that points at the beginning or end of another,
3195    /// independent, `str`.
3196    ///
3197    /// # Examples
3198    /// ```
3199    /// #![feature(substr_range)]
3200    ///
3201    /// let data = "a, b, b, a";
3202    /// let mut iter = data.split(", ").map(|s| data.substr_range(s).unwrap());
3203    ///
3204    /// assert_eq!(iter.next(), Some(0..1));
3205    /// assert_eq!(iter.next(), Some(3..4));
3206    /// assert_eq!(iter.next(), Some(6..7));
3207    /// assert_eq!(iter.next(), Some(9..10));
3208    /// ```
3209    #[must_use]
3210    #[unstable(feature = "substr_range", issue = "126769")]
3211    #[cfg(not(feature = "ferrocene_subset"))]
3212    pub fn substr_range(&self, substr: &str) -> Option<Range<usize>> {
3213        self.as_bytes().subslice_range(substr.as_bytes())
3214    }
3215
3216    /// Returns the same string as a string slice `&str`.
3217    ///
3218    /// This method is redundant when used directly on `&str`, but
3219    /// it helps dereferencing other string-like types to string slices,
3220    /// for example references to `Box<str>` or `Arc<str>`.
3221    #[inline]
3222    #[unstable(feature = "str_as_str", issue = "130366")]
3223    pub const fn as_str(&self) -> &str {
3224        self
3225    }
3226}
3227
3228#[stable(feature = "rust1", since = "1.0.0")]
3229#[rustc_const_unstable(feature = "const_convert", issue = "143773")]
3230impl const AsRef<[u8]> for str {
3231    #[inline]
3232    fn as_ref(&self) -> &[u8] {
3233        self.as_bytes()
3234    }
3235}
3236
3237#[stable(feature = "rust1", since = "1.0.0")]
3238#[rustc_const_unstable(feature = "const_default", issue = "143894")]
3239impl const Default for &str {
3240    /// Creates an empty str
3241    #[inline]
3242    fn default() -> Self {
3243        ""
3244    }
3245}
3246
3247#[stable(feature = "default_mut_str", since = "1.28.0")]
3248#[rustc_const_unstable(feature = "const_default", issue = "143894")]
3249#[cfg(not(feature = "ferrocene_subset"))]
3250impl const Default for &mut str {
3251    /// Creates an empty mutable str
3252    #[inline]
3253    fn default() -> Self {
3254        // SAFETY: The empty string is valid UTF-8.
3255        unsafe { from_utf8_unchecked_mut(&mut []) }
3256    }
3257}
3258
3259#[cfg(not(feature = "ferrocene_subset"))]
3260impl_fn_for_zst! {
3261    /// A nameable, cloneable fn type
3262    #[derive(Clone)]
3263    struct LinesMap impl<'a> Fn = |line: &'a str| -> &'a str {
3264        let Some(line) = line.strip_suffix('\n') else { return line };
3265        let Some(line) = line.strip_suffix('\r') else { return line };
3266        line
3267    };
3268
3269    #[derive(Clone)]
3270    struct CharEscapeDebugContinue impl Fn = |c: char| -> char::EscapeDebug {
3271        c.escape_debug_ext(EscapeDebugExtArgs {
3272            escape_grapheme_extended: false,
3273            escape_single_quote: true,
3274            escape_double_quote: true
3275        })
3276    };
3277
3278    #[derive(Clone)]
3279    struct CharEscapeUnicode impl Fn = |c: char| -> char::EscapeUnicode {
3280        c.escape_unicode()
3281    };
3282    #[derive(Clone)]
3283    struct CharEscapeDefault impl Fn = |c: char| -> char::EscapeDefault {
3284        c.escape_default()
3285    };
3286
3287    #[derive(Clone)]
3288    struct IsWhitespace impl Fn = |c: char| -> bool {
3289        c.is_whitespace()
3290    };
3291
3292    #[derive(Clone)]
3293    struct IsAsciiWhitespace impl Fn = |byte: &u8| -> bool {
3294        byte.is_ascii_whitespace()
3295    };
3296
3297    #[derive(Clone)]
3298    struct IsNotEmpty impl<'a, 'b> Fn = |s: &'a &'b str| -> bool {
3299        !s.is_empty()
3300    };
3301
3302    #[derive(Clone)]
3303    struct BytesIsNotEmpty impl<'a, 'b> Fn = |s: &'a &'b [u8]| -> bool {
3304        !s.is_empty()
3305    };
3306
3307    #[derive(Clone)]
3308    struct UnsafeBytesToStr impl<'a> Fn = |bytes: &'a [u8]| -> &'a str {
3309        // SAFETY: not safe
3310        unsafe { from_utf8_unchecked(bytes) }
3311    };
3312}
3313
3314// This is required to make `impl From<&str> for Box<dyn Error>` and `impl<E> From<E> for Box<dyn Error>` not overlap.
3315#[stable(feature = "error_in_core_neg_impl", since = "1.65.0")]
3316#[cfg(not(feature = "ferrocene_subset"))]
3317impl !crate::error::Error for &str {}