core/str/mod.rs
1//! String manipulation.
2//!
3//! For more details, see the [`std::str`] module.
4//!
5//! [`std::str`]: ../../std/str/index.html
6
7#![stable(feature = "rust1", since = "1.0.0")]
8
9mod converts;
10#[cfg(not(feature = "ferrocene_certified"))]
11mod count;
12mod error;
13#[cfg(not(feature = "ferrocene_certified"))]
14mod iter;
15#[cfg(not(feature = "ferrocene_certified"))]
16mod traits;
17mod validations;
18
19#[cfg(not(feature = "ferrocene_certified"))]
20use self::pattern::{DoubleEndedSearcher, Pattern, ReverseSearcher, Searcher};
21#[cfg(not(feature = "ferrocene_certified"))]
22use crate::char::{self, EscapeDebugExtArgs};
23#[cfg(not(feature = "ferrocene_certified"))]
24use crate::ops::Range;
25#[cfg(not(feature = "ferrocene_certified"))]
26use crate::slice::{self, SliceIndex};
27#[cfg(not(feature = "ferrocene_certified"))]
28use crate::ub_checks::assert_unsafe_precondition;
29#[cfg(not(feature = "ferrocene_certified"))]
30use crate::{ascii, mem};
31
32// Ferrocene addition: imports for certified subset
33#[cfg(feature = "ferrocene_certified")]
34#[rustfmt::skip]
35use crate::mem;
36
37#[cfg(not(feature = "ferrocene_certified"))]
38pub mod pattern;
39
40#[cfg(not(feature = "ferrocene_certified"))]
41mod lossy;
42#[unstable(feature = "str_from_raw_parts", issue = "119206")]
43#[cfg(not(feature = "ferrocene_certified"))]
44pub use converts::{from_raw_parts, from_raw_parts_mut};
45#[stable(feature = "rust1", since = "1.0.0")]
46pub use converts::{from_utf8, from_utf8_unchecked};
47#[stable(feature = "str_mut_extras", since = "1.20.0")]
48#[cfg(not(feature = "ferrocene_certified"))]
49pub use converts::{from_utf8_mut, from_utf8_unchecked_mut};
50#[stable(feature = "rust1", since = "1.0.0")]
51#[cfg(not(feature = "ferrocene_certified"))]
52pub use error::{ParseBoolError, Utf8Error};
53#[stable(feature = "encode_utf16", since = "1.8.0")]
54#[cfg(not(feature = "ferrocene_certified"))]
55pub use iter::EncodeUtf16;
56#[stable(feature = "rust1", since = "1.0.0")]
57#[allow(deprecated)]
58#[cfg(not(feature = "ferrocene_certified"))]
59pub use iter::LinesAny;
60#[stable(feature = "split_ascii_whitespace", since = "1.34.0")]
61#[cfg(not(feature = "ferrocene_certified"))]
62pub use iter::SplitAsciiWhitespace;
63#[stable(feature = "split_inclusive", since = "1.51.0")]
64#[cfg(not(feature = "ferrocene_certified"))]
65pub use iter::SplitInclusive;
66#[stable(feature = "rust1", since = "1.0.0")]
67#[cfg(not(feature = "ferrocene_certified"))]
68pub use iter::{Bytes, CharIndices, Chars, Lines, SplitWhitespace};
69#[stable(feature = "str_escape", since = "1.34.0")]
70#[cfg(not(feature = "ferrocene_certified"))]
71pub use iter::{EscapeDebug, EscapeDefault, EscapeUnicode};
72#[stable(feature = "str_match_indices", since = "1.5.0")]
73#[cfg(not(feature = "ferrocene_certified"))]
74pub use iter::{MatchIndices, RMatchIndices};
75#[cfg(not(feature = "ferrocene_certified"))]
76use iter::{MatchIndicesInternal, MatchesInternal, SplitInternal, SplitNInternal};
77#[stable(feature = "str_matches", since = "1.2.0")]
78#[cfg(not(feature = "ferrocene_certified"))]
79pub use iter::{Matches, RMatches};
80#[stable(feature = "rust1", since = "1.0.0")]
81#[cfg(not(feature = "ferrocene_certified"))]
82pub use iter::{RSplit, RSplitTerminator, Split, SplitTerminator};
83#[stable(feature = "rust1", since = "1.0.0")]
84#[cfg(not(feature = "ferrocene_certified"))]
85pub use iter::{RSplitN, SplitN};
86#[stable(feature = "utf8_chunks", since = "1.79.0")]
87#[cfg(not(feature = "ferrocene_certified"))]
88pub use lossy::{Utf8Chunk, Utf8Chunks};
89#[stable(feature = "rust1", since = "1.0.0")]
90#[cfg(not(feature = "ferrocene_certified"))]
91pub use traits::FromStr;
92#[unstable(feature = "str_internals", issue = "none")]
93#[cfg(not(feature = "ferrocene_certified"))]
94pub use validations::{next_code_point, utf8_char_width};
95
96#[stable(feature = "rust1", since = "1.0.0")]
97#[cfg(feature = "ferrocene_certified")]
98#[rustfmt::skip]
99pub use {error::Utf8Error, validations::utf8_char_width};
100
101#[inline(never)]
102#[cold]
103#[track_caller]
104#[rustc_allow_const_fn_unstable(const_eval_select)]
105#[cfg(not(panic = "immediate-abort"))]
106#[cfg(not(feature = "ferrocene_certified"))]
107const fn slice_error_fail(s: &str, begin: usize, end: usize) -> ! {
108 crate::intrinsics::const_eval_select((s, begin, end), slice_error_fail_ct, slice_error_fail_rt)
109}
110
111#[cfg(panic = "immediate-abort")]
112#[cfg(not(feature = "ferrocene_certified"))]
113const fn slice_error_fail(s: &str, begin: usize, end: usize) -> ! {
114 slice_error_fail_ct(s, begin, end)
115}
116
117#[track_caller]
118#[cfg(not(feature = "ferrocene_certified"))]
119const fn slice_error_fail_ct(_: &str, _: usize, _: usize) -> ! {
120 panic!("failed to slice string");
121}
122
123#[track_caller]
124#[cfg(not(feature = "ferrocene_certified"))]
125fn slice_error_fail_rt(s: &str, begin: usize, end: usize) -> ! {
126 const MAX_DISPLAY_LENGTH: usize = 256;
127 let trunc_len = s.floor_char_boundary(MAX_DISPLAY_LENGTH);
128 let s_trunc = &s[..trunc_len];
129 let ellipsis = if trunc_len < s.len() { "[...]" } else { "" };
130
131 // 1. out of bounds
132 if begin > s.len() || end > s.len() {
133 let oob_index = if begin > s.len() { begin } else { end };
134 panic!("byte index {oob_index} is out of bounds of `{s_trunc}`{ellipsis}");
135 }
136
137 // 2. begin <= end
138 assert!(
139 begin <= end,
140 "begin <= end ({} <= {}) when slicing `{}`{}",
141 begin,
142 end,
143 s_trunc,
144 ellipsis
145 );
146
147 // 3. character boundary
148 let index = if !s.is_char_boundary(begin) { begin } else { end };
149 // find the character
150 let char_start = s.floor_char_boundary(index);
151 // `char_start` must be less than len and a char boundary
152 let ch = s[char_start..].chars().next().unwrap();
153 let char_range = char_start..char_start + ch.len_utf8();
154 panic!(
155 "byte index {} is not a char boundary; it is inside {:?} (bytes {:?}) of `{}`{}",
156 index, ch, char_range, s_trunc, ellipsis
157 );
158}
159
160impl str {
161 /// Returns the length of `self`.
162 ///
163 /// This length is in bytes, not [`char`]s or graphemes. In other words,
164 /// it might not be what a human considers the length of the string.
165 ///
166 /// [`char`]: prim@char
167 ///
168 /// # Examples
169 ///
170 /// ```
171 /// let len = "foo".len();
172 /// assert_eq!(3, len);
173 ///
174 /// assert_eq!("ƒoo".len(), 4); // fancy f!
175 /// assert_eq!("ƒoo".chars().count(), 3);
176 /// ```
177 #[stable(feature = "rust1", since = "1.0.0")]
178 #[rustc_const_stable(feature = "const_str_len", since = "1.39.0")]
179 #[rustc_diagnostic_item = "str_len"]
180 #[rustc_no_implicit_autorefs]
181 #[must_use]
182 #[inline]
183 pub const fn len(&self) -> usize {
184 self.as_bytes().len()
185 }
186
187 /// Returns `true` if `self` has a length of zero bytes.
188 ///
189 /// # Examples
190 ///
191 /// ```
192 /// let s = "";
193 /// assert!(s.is_empty());
194 ///
195 /// let s = "not empty";
196 /// assert!(!s.is_empty());
197 /// ```
198 #[stable(feature = "rust1", since = "1.0.0")]
199 #[rustc_const_stable(feature = "const_str_is_empty", since = "1.39.0")]
200 #[rustc_no_implicit_autorefs]
201 #[must_use]
202 #[inline]
203 pub const fn is_empty(&self) -> bool {
204 self.len() == 0
205 }
206
207 /// Converts a slice of bytes to a string slice.
208 ///
209 /// A string slice ([`&str`]) is made of bytes ([`u8`]), and a byte slice
210 /// ([`&[u8]`][byteslice]) is made of bytes, so this function converts between
211 /// the two. Not all byte slices are valid string slices, however: [`&str`] requires
212 /// that it is valid UTF-8. `from_utf8()` checks to ensure that the bytes are valid
213 /// UTF-8, and then does the conversion.
214 ///
215 /// [`&str`]: str
216 /// [byteslice]: prim@slice
217 ///
218 /// If you are sure that the byte slice is valid UTF-8, and you don't want to
219 /// incur the overhead of the validity check, there is an unsafe version of
220 /// this function, [`from_utf8_unchecked`], which has the same
221 /// behavior but skips the check.
222 ///
223 /// If you need a `String` instead of a `&str`, consider
224 /// [`String::from_utf8`][string].
225 ///
226 /// [string]: ../std/string/struct.String.html#method.from_utf8
227 ///
228 /// Because you can stack-allocate a `[u8; N]`, and you can take a
229 /// [`&[u8]`][byteslice] of it, this function is one way to have a
230 /// stack-allocated string. There is an example of this in the
231 /// examples section below.
232 ///
233 /// [byteslice]: slice
234 ///
235 /// # Errors
236 ///
237 /// Returns `Err` if the slice is not UTF-8 with a description as to why the
238 /// provided slice is not UTF-8.
239 ///
240 /// # Examples
241 ///
242 /// Basic usage:
243 ///
244 /// ```
245 /// // some bytes, in a vector
246 /// let sparkle_heart = vec![240, 159, 146, 150];
247 ///
248 /// // We can use the ? (try) operator to check if the bytes are valid
249 /// let sparkle_heart = str::from_utf8(&sparkle_heart)?;
250 ///
251 /// assert_eq!("💖", sparkle_heart);
252 /// # Ok::<_, std::str::Utf8Error>(())
253 /// ```
254 ///
255 /// Incorrect bytes:
256 ///
257 /// ```
258 /// // some invalid bytes, in a vector
259 /// let sparkle_heart = vec![0, 159, 146, 150];
260 ///
261 /// assert!(str::from_utf8(&sparkle_heart).is_err());
262 /// ```
263 ///
264 /// See the docs for [`Utf8Error`] for more details on the kinds of
265 /// errors that can be returned.
266 ///
267 /// A "stack allocated string":
268 ///
269 /// ```
270 /// // some bytes, in a stack-allocated array
271 /// let sparkle_heart = [240, 159, 146, 150];
272 ///
273 /// // We know these bytes are valid, so just use `unwrap()`.
274 /// let sparkle_heart: &str = str::from_utf8(&sparkle_heart).unwrap();
275 ///
276 /// assert_eq!("💖", sparkle_heart);
277 /// ```
278 #[stable(feature = "inherent_str_constructors", since = "1.87.0")]
279 #[rustc_const_stable(feature = "inherent_str_constructors", since = "1.87.0")]
280 #[rustc_diagnostic_item = "str_inherent_from_utf8"]
281 #[cfg(not(feature = "ferrocene_certified"))]
282 pub const fn from_utf8(v: &[u8]) -> Result<&str, Utf8Error> {
283 converts::from_utf8(v)
284 }
285
286 /// Converts a mutable slice of bytes to a mutable string slice.
287 ///
288 /// # Examples
289 ///
290 /// Basic usage:
291 ///
292 /// ```
293 /// // "Hello, Rust!" as a mutable vector
294 /// let mut hellorust = vec![72, 101, 108, 108, 111, 44, 32, 82, 117, 115, 116, 33];
295 ///
296 /// // As we know these bytes are valid, we can use `unwrap()`
297 /// let outstr = str::from_utf8_mut(&mut hellorust).unwrap();
298 ///
299 /// assert_eq!("Hello, Rust!", outstr);
300 /// ```
301 ///
302 /// Incorrect bytes:
303 ///
304 /// ```
305 /// // Some invalid bytes in a mutable vector
306 /// let mut invalid = vec![128, 223];
307 ///
308 /// assert!(str::from_utf8_mut(&mut invalid).is_err());
309 /// ```
310 /// See the docs for [`Utf8Error`] for more details on the kinds of
311 /// errors that can be returned.
312 #[stable(feature = "inherent_str_constructors", since = "1.87.0")]
313 #[rustc_const_stable(feature = "const_str_from_utf8", since = "1.87.0")]
314 #[rustc_diagnostic_item = "str_inherent_from_utf8_mut"]
315 #[cfg(not(feature = "ferrocene_certified"))]
316 pub const fn from_utf8_mut(v: &mut [u8]) -> Result<&mut str, Utf8Error> {
317 converts::from_utf8_mut(v)
318 }
319
320 /// Converts a slice of bytes to a string slice without checking
321 /// that the string contains valid UTF-8.
322 ///
323 /// See the safe version, [`from_utf8`], for more information.
324 ///
325 /// # Safety
326 ///
327 /// The bytes passed in must be valid UTF-8.
328 ///
329 /// # Examples
330 ///
331 /// Basic usage:
332 ///
333 /// ```
334 /// // some bytes, in a vector
335 /// let sparkle_heart = vec![240, 159, 146, 150];
336 ///
337 /// let sparkle_heart = unsafe {
338 /// str::from_utf8_unchecked(&sparkle_heart)
339 /// };
340 ///
341 /// assert_eq!("💖", sparkle_heart);
342 /// ```
343 #[inline]
344 #[must_use]
345 #[stable(feature = "inherent_str_constructors", since = "1.87.0")]
346 #[rustc_const_stable(feature = "inherent_str_constructors", since = "1.87.0")]
347 #[rustc_diagnostic_item = "str_inherent_from_utf8_unchecked"]
348 #[cfg(not(feature = "ferrocene_certified"))]
349 pub const unsafe fn from_utf8_unchecked(v: &[u8]) -> &str {
350 // SAFETY: converts::from_utf8_unchecked has the same safety requirements as this function.
351 unsafe { converts::from_utf8_unchecked(v) }
352 }
353
354 /// Converts a slice of bytes to a string slice without checking
355 /// that the string contains valid UTF-8; mutable version.
356 ///
357 /// See the immutable version, [`from_utf8_unchecked()`] for documentation and safety requirements.
358 ///
359 /// # Examples
360 ///
361 /// Basic usage:
362 ///
363 /// ```
364 /// let mut heart = vec![240, 159, 146, 150];
365 /// let heart = unsafe { str::from_utf8_unchecked_mut(&mut heart) };
366 ///
367 /// assert_eq!("💖", heart);
368 /// ```
369 #[inline]
370 #[must_use]
371 #[stable(feature = "inherent_str_constructors", since = "1.87.0")]
372 #[rustc_const_stable(feature = "inherent_str_constructors", since = "1.87.0")]
373 #[rustc_diagnostic_item = "str_inherent_from_utf8_unchecked_mut"]
374 #[cfg(not(feature = "ferrocene_certified"))]
375 pub const unsafe fn from_utf8_unchecked_mut(v: &mut [u8]) -> &mut str {
376 // SAFETY: converts::from_utf8_unchecked_mut has the same safety requirements as this function.
377 unsafe { converts::from_utf8_unchecked_mut(v) }
378 }
379
380 /// Checks that `index`-th byte is the first byte in a UTF-8 code point
381 /// sequence or the end of the string.
382 ///
383 /// The start and end of the string (when `index == self.len()`) are
384 /// considered to be boundaries.
385 ///
386 /// Returns `false` if `index` is greater than `self.len()`.
387 ///
388 /// # Examples
389 ///
390 /// ```
391 /// let s = "Löwe 老虎 Léopard";
392 /// assert!(s.is_char_boundary(0));
393 /// // start of `老`
394 /// assert!(s.is_char_boundary(6));
395 /// assert!(s.is_char_boundary(s.len()));
396 ///
397 /// // second byte of `ö`
398 /// assert!(!s.is_char_boundary(2));
399 ///
400 /// // third byte of `老`
401 /// assert!(!s.is_char_boundary(8));
402 /// ```
403 #[must_use]
404 #[stable(feature = "is_char_boundary", since = "1.9.0")]
405 #[rustc_const_stable(feature = "const_is_char_boundary", since = "1.86.0")]
406 #[inline]
407 #[cfg(not(feature = "ferrocene_certified"))]
408 pub const fn is_char_boundary(&self, index: usize) -> bool {
409 // 0 is always ok.
410 // Test for 0 explicitly so that it can optimize out the check
411 // easily and skip reading string data for that case.
412 // Note that optimizing `self.get(..index)` relies on this.
413 if index == 0 {
414 return true;
415 }
416
417 if index >= self.len() {
418 // For `true` we have two options:
419 //
420 // - index == self.len()
421 // Empty strings are valid, so return true
422 // - index > self.len()
423 // In this case return false
424 //
425 // The check is placed exactly here, because it improves generated
426 // code on higher opt-levels. See PR #84751 for more details.
427 index == self.len()
428 } else {
429 self.as_bytes()[index].is_utf8_char_boundary()
430 }
431 }
432
433 /// Finds the closest `x` not exceeding `index` where [`is_char_boundary(x)`] is `true`.
434 ///
435 /// This method can help you truncate a string so that it's still valid UTF-8, but doesn't
436 /// exceed a given number of bytes. Note that this is done purely at the character level
437 /// and can still visually split graphemes, even though the underlying characters aren't
438 /// split. For example, the emoji 🧑🔬 (scientist) could be split so that the string only
439 /// includes 🧑 (person) instead.
440 ///
441 /// [`is_char_boundary(x)`]: Self::is_char_boundary
442 ///
443 /// # Examples
444 ///
445 /// ```
446 /// let s = "❤️🧡💛💚💙💜";
447 /// assert_eq!(s.len(), 26);
448 /// assert!(!s.is_char_boundary(13));
449 ///
450 /// let closest = s.floor_char_boundary(13);
451 /// assert_eq!(closest, 10);
452 /// assert_eq!(&s[..closest], "❤️🧡");
453 /// ```
454 #[stable(feature = "round_char_boundary", since = "1.91.0")]
455 #[rustc_const_stable(feature = "round_char_boundary", since = "1.91.0")]
456 #[inline]
457 #[cfg(not(feature = "ferrocene_certified"))]
458 pub const fn floor_char_boundary(&self, index: usize) -> usize {
459 if index >= self.len() {
460 self.len()
461 } else {
462 let mut i = index;
463 while i > 0 {
464 if self.as_bytes()[i].is_utf8_char_boundary() {
465 break;
466 }
467 i -= 1;
468 }
469
470 // The character boundary will be within four bytes of the index
471 debug_assert!(i >= index.saturating_sub(3));
472
473 i
474 }
475 }
476
477 /// Finds the closest `x` not below `index` where [`is_char_boundary(x)`] is `true`.
478 ///
479 /// If `index` is greater than the length of the string, this returns the length of the string.
480 ///
481 /// This method is the natural complement to [`floor_char_boundary`]. See that method
482 /// for more details.
483 ///
484 /// [`floor_char_boundary`]: str::floor_char_boundary
485 /// [`is_char_boundary(x)`]: Self::is_char_boundary
486 ///
487 /// # Examples
488 ///
489 /// ```
490 /// let s = "❤️🧡💛💚💙💜";
491 /// assert_eq!(s.len(), 26);
492 /// assert!(!s.is_char_boundary(13));
493 ///
494 /// let closest = s.ceil_char_boundary(13);
495 /// assert_eq!(closest, 14);
496 /// assert_eq!(&s[..closest], "❤️🧡💛");
497 /// ```
498 #[stable(feature = "round_char_boundary", since = "1.91.0")]
499 #[rustc_const_stable(feature = "round_char_boundary", since = "1.91.0")]
500 #[inline]
501 #[cfg(not(feature = "ferrocene_certified"))]
502 pub const fn ceil_char_boundary(&self, index: usize) -> usize {
503 if index >= self.len() {
504 self.len()
505 } else {
506 let mut i = index;
507 while i < self.len() {
508 if self.as_bytes()[i].is_utf8_char_boundary() {
509 break;
510 }
511 i += 1;
512 }
513
514 // The character boundary will be within four bytes of the index
515 debug_assert!(i <= index + 3);
516
517 i
518 }
519 }
520
521 /// Converts a string slice to a byte slice. To convert the byte slice back
522 /// into a string slice, use the [`from_utf8`] function.
523 ///
524 /// # Examples
525 ///
526 /// ```
527 /// let bytes = "bors".as_bytes();
528 /// assert_eq!(b"bors", bytes);
529 /// ```
530 #[stable(feature = "rust1", since = "1.0.0")]
531 #[rustc_const_stable(feature = "str_as_bytes", since = "1.39.0")]
532 #[must_use]
533 #[inline(always)]
534 #[allow(unused_attributes)]
535 pub const fn as_bytes(&self) -> &[u8] {
536 // SAFETY: const sound because we transmute two types with the same layout
537 unsafe { mem::transmute(self) }
538 }
539
540 /// Converts a mutable string slice to a mutable byte slice.
541 ///
542 /// # Safety
543 ///
544 /// The caller must ensure that the content of the slice is valid UTF-8
545 /// before the borrow ends and the underlying `str` is used.
546 ///
547 /// Use of a `str` whose contents are not valid UTF-8 is undefined behavior.
548 ///
549 /// # Examples
550 ///
551 /// Basic usage:
552 ///
553 /// ```
554 /// let mut s = String::from("Hello");
555 /// let bytes = unsafe { s.as_bytes_mut() };
556 ///
557 /// assert_eq!(b"Hello", bytes);
558 /// ```
559 ///
560 /// Mutability:
561 ///
562 /// ```
563 /// let mut s = String::from("🗻∈🌏");
564 ///
565 /// unsafe {
566 /// let bytes = s.as_bytes_mut();
567 ///
568 /// bytes[0] = 0xF0;
569 /// bytes[1] = 0x9F;
570 /// bytes[2] = 0x8D;
571 /// bytes[3] = 0x94;
572 /// }
573 ///
574 /// assert_eq!("🍔∈🌏", s);
575 /// ```
576 #[stable(feature = "str_mut_extras", since = "1.20.0")]
577 #[rustc_const_stable(feature = "const_str_as_mut", since = "1.83.0")]
578 #[must_use]
579 #[inline(always)]
580 pub const unsafe fn as_bytes_mut(&mut self) -> &mut [u8] {
581 // SAFETY: the cast from `&str` to `&[u8]` is safe since `str`
582 // has the same layout as `&[u8]` (only std can make this guarantee).
583 // The pointer dereference is safe since it comes from a mutable reference which
584 // is guaranteed to be valid for writes.
585 unsafe { &mut *(self as *mut str as *mut [u8]) }
586 }
587
588 /// Converts a string slice to a raw pointer.
589 ///
590 /// As string slices are a slice of bytes, the raw pointer points to a
591 /// [`u8`]. This pointer will be pointing to the first byte of the string
592 /// slice.
593 ///
594 /// The caller must ensure that the returned pointer is never written to.
595 /// If you need to mutate the contents of the string slice, use [`as_mut_ptr`].
596 ///
597 /// [`as_mut_ptr`]: str::as_mut_ptr
598 ///
599 /// # Examples
600 ///
601 /// ```
602 /// let s = "Hello";
603 /// let ptr = s.as_ptr();
604 /// ```
605 #[stable(feature = "rust1", since = "1.0.0")]
606 #[rustc_const_stable(feature = "rustc_str_as_ptr", since = "1.32.0")]
607 #[rustc_never_returns_null_ptr]
608 #[rustc_as_ptr]
609 #[must_use]
610 #[inline(always)]
611 pub const fn as_ptr(&self) -> *const u8 {
612 self as *const str as *const u8
613 }
614
615 /// Converts a mutable string slice to a raw pointer.
616 ///
617 /// As string slices are a slice of bytes, the raw pointer points to a
618 /// [`u8`]. This pointer will be pointing to the first byte of the string
619 /// slice.
620 ///
621 /// It is your responsibility to make sure that the string slice only gets
622 /// modified in a way that it remains valid UTF-8.
623 #[stable(feature = "str_as_mut_ptr", since = "1.36.0")]
624 #[rustc_const_stable(feature = "const_str_as_mut", since = "1.83.0")]
625 #[rustc_never_returns_null_ptr]
626 #[rustc_as_ptr]
627 #[must_use]
628 #[inline(always)]
629 pub const fn as_mut_ptr(&mut self) -> *mut u8 {
630 self as *mut str as *mut u8
631 }
632
633 /// Returns a subslice of `str`.
634 ///
635 /// This is the non-panicking alternative to indexing the `str`. Returns
636 /// [`None`] whenever equivalent indexing operation would panic.
637 ///
638 /// # Examples
639 ///
640 /// ```
641 /// let v = String::from("🗻∈🌏");
642 ///
643 /// assert_eq!(Some("🗻"), v.get(0..4));
644 ///
645 /// // indices not on UTF-8 sequence boundaries
646 /// assert!(v.get(1..).is_none());
647 /// assert!(v.get(..8).is_none());
648 ///
649 /// // out of bounds
650 /// assert!(v.get(..42).is_none());
651 /// ```
652 #[stable(feature = "str_checked_slicing", since = "1.20.0")]
653 #[rustc_const_unstable(feature = "const_index", issue = "143775")]
654 #[inline]
655 #[cfg(not(feature = "ferrocene_certified"))]
656 pub const fn get<I: [const] SliceIndex<str>>(&self, i: I) -> Option<&I::Output> {
657 i.get(self)
658 }
659
660 /// Returns a mutable subslice of `str`.
661 ///
662 /// This is the non-panicking alternative to indexing the `str`. Returns
663 /// [`None`] whenever equivalent indexing operation would panic.
664 ///
665 /// # Examples
666 ///
667 /// ```
668 /// let mut v = String::from("hello");
669 /// // correct length
670 /// assert!(v.get_mut(0..5).is_some());
671 /// // out of bounds
672 /// assert!(v.get_mut(..42).is_none());
673 /// assert_eq!(Some("he"), v.get_mut(0..2).map(|v| &*v));
674 ///
675 /// assert_eq!("hello", v);
676 /// {
677 /// let s = v.get_mut(0..2);
678 /// let s = s.map(|s| {
679 /// s.make_ascii_uppercase();
680 /// &*s
681 /// });
682 /// assert_eq!(Some("HE"), s);
683 /// }
684 /// assert_eq!("HEllo", v);
685 /// ```
686 #[stable(feature = "str_checked_slicing", since = "1.20.0")]
687 #[rustc_const_unstable(feature = "const_index", issue = "143775")]
688 #[inline]
689 #[cfg(not(feature = "ferrocene_certified"))]
690 pub const fn get_mut<I: [const] SliceIndex<str>>(&mut self, i: I) -> Option<&mut I::Output> {
691 i.get_mut(self)
692 }
693
694 /// Returns an unchecked subslice of `str`.
695 ///
696 /// This is the unchecked alternative to indexing the `str`.
697 ///
698 /// # Safety
699 ///
700 /// Callers of this function are responsible that these preconditions are
701 /// satisfied:
702 ///
703 /// * The starting index must not exceed the ending index;
704 /// * Indexes must be within bounds of the original slice;
705 /// * Indexes must lie on UTF-8 sequence boundaries.
706 ///
707 /// Failing that, the returned string slice may reference invalid memory or
708 /// violate the invariants communicated by the `str` type.
709 ///
710 /// # Examples
711 ///
712 /// ```
713 /// let v = "🗻∈🌏";
714 /// unsafe {
715 /// assert_eq!("🗻", v.get_unchecked(0..4));
716 /// assert_eq!("∈", v.get_unchecked(4..7));
717 /// assert_eq!("🌏", v.get_unchecked(7..11));
718 /// }
719 /// ```
720 #[stable(feature = "str_checked_slicing", since = "1.20.0")]
721 #[inline]
722 #[cfg(not(feature = "ferrocene_certified"))]
723 pub unsafe fn get_unchecked<I: SliceIndex<str>>(&self, i: I) -> &I::Output {
724 // SAFETY: the caller must uphold the safety contract for `get_unchecked`;
725 // the slice is dereferenceable because `self` is a safe reference.
726 // The returned pointer is safe because impls of `SliceIndex` have to guarantee that it is.
727 unsafe { &*i.get_unchecked(self) }
728 }
729
730 /// Returns a mutable, unchecked subslice of `str`.
731 ///
732 /// This is the unchecked alternative to indexing the `str`.
733 ///
734 /// # Safety
735 ///
736 /// Callers of this function are responsible that these preconditions are
737 /// satisfied:
738 ///
739 /// * The starting index must not exceed the ending index;
740 /// * Indexes must be within bounds of the original slice;
741 /// * Indexes must lie on UTF-8 sequence boundaries.
742 ///
743 /// Failing that, the returned string slice may reference invalid memory or
744 /// violate the invariants communicated by the `str` type.
745 ///
746 /// # Examples
747 ///
748 /// ```
749 /// let mut v = String::from("🗻∈🌏");
750 /// unsafe {
751 /// assert_eq!("🗻", v.get_unchecked_mut(0..4));
752 /// assert_eq!("∈", v.get_unchecked_mut(4..7));
753 /// assert_eq!("🌏", v.get_unchecked_mut(7..11));
754 /// }
755 /// ```
756 #[stable(feature = "str_checked_slicing", since = "1.20.0")]
757 #[inline]
758 #[cfg(not(feature = "ferrocene_certified"))]
759 pub unsafe fn get_unchecked_mut<I: SliceIndex<str>>(&mut self, i: I) -> &mut I::Output {
760 // SAFETY: the caller must uphold the safety contract for `get_unchecked_mut`;
761 // the slice is dereferenceable because `self` is a safe reference.
762 // The returned pointer is safe because impls of `SliceIndex` have to guarantee that it is.
763 unsafe { &mut *i.get_unchecked_mut(self) }
764 }
765
766 /// Creates a string slice from another string slice, bypassing safety
767 /// checks.
768 ///
769 /// This is generally not recommended, use with caution! For a safe
770 /// alternative see [`str`] and [`Index`].
771 ///
772 /// [`Index`]: crate::ops::Index
773 ///
774 /// This new slice goes from `begin` to `end`, including `begin` but
775 /// excluding `end`.
776 ///
777 /// To get a mutable string slice instead, see the
778 /// [`slice_mut_unchecked`] method.
779 ///
780 /// [`slice_mut_unchecked`]: str::slice_mut_unchecked
781 ///
782 /// # Safety
783 ///
784 /// Callers of this function are responsible that three preconditions are
785 /// satisfied:
786 ///
787 /// * `begin` must not exceed `end`.
788 /// * `begin` and `end` must be byte positions within the string slice.
789 /// * `begin` and `end` must lie on UTF-8 sequence boundaries.
790 ///
791 /// # Examples
792 ///
793 /// ```
794 /// let s = "Löwe 老虎 Léopard";
795 ///
796 /// unsafe {
797 /// assert_eq!("Löwe 老虎 Léopard", s.slice_unchecked(0, 21));
798 /// }
799 ///
800 /// let s = "Hello, world!";
801 ///
802 /// unsafe {
803 /// assert_eq!("world", s.slice_unchecked(7, 12));
804 /// }
805 /// ```
806 #[stable(feature = "rust1", since = "1.0.0")]
807 #[deprecated(since = "1.29.0", note = "use `get_unchecked(begin..end)` instead")]
808 #[must_use]
809 #[inline]
810 #[cfg(not(feature = "ferrocene_certified"))]
811 pub unsafe fn slice_unchecked(&self, begin: usize, end: usize) -> &str {
812 // SAFETY: the caller must uphold the safety contract for `get_unchecked`;
813 // the slice is dereferenceable because `self` is a safe reference.
814 // The returned pointer is safe because impls of `SliceIndex` have to guarantee that it is.
815 unsafe { &*(begin..end).get_unchecked(self) }
816 }
817
818 /// Creates a string slice from another string slice, bypassing safety
819 /// checks.
820 ///
821 /// This is generally not recommended, use with caution! For a safe
822 /// alternative see [`str`] and [`IndexMut`].
823 ///
824 /// [`IndexMut`]: crate::ops::IndexMut
825 ///
826 /// This new slice goes from `begin` to `end`, including `begin` but
827 /// excluding `end`.
828 ///
829 /// To get an immutable string slice instead, see the
830 /// [`slice_unchecked`] method.
831 ///
832 /// [`slice_unchecked`]: str::slice_unchecked
833 ///
834 /// # Safety
835 ///
836 /// Callers of this function are responsible that three preconditions are
837 /// satisfied:
838 ///
839 /// * `begin` must not exceed `end`.
840 /// * `begin` and `end` must be byte positions within the string slice.
841 /// * `begin` and `end` must lie on UTF-8 sequence boundaries.
842 #[stable(feature = "str_slice_mut", since = "1.5.0")]
843 #[deprecated(since = "1.29.0", note = "use `get_unchecked_mut(begin..end)` instead")]
844 #[inline]
845 #[cfg(not(feature = "ferrocene_certified"))]
846 pub unsafe fn slice_mut_unchecked(&mut self, begin: usize, end: usize) -> &mut str {
847 // SAFETY: the caller must uphold the safety contract for `get_unchecked_mut`;
848 // the slice is dereferenceable because `self` is a safe reference.
849 // The returned pointer is safe because impls of `SliceIndex` have to guarantee that it is.
850 unsafe { &mut *(begin..end).get_unchecked_mut(self) }
851 }
852
853 /// Divides one string slice into two at an index.
854 ///
855 /// The argument, `mid`, should be a byte offset from the start of the
856 /// string. It must also be on the boundary of a UTF-8 code point.
857 ///
858 /// The two slices returned go from the start of the string slice to `mid`,
859 /// and from `mid` to the end of the string slice.
860 ///
861 /// To get mutable string slices instead, see the [`split_at_mut`]
862 /// method.
863 ///
864 /// [`split_at_mut`]: str::split_at_mut
865 ///
866 /// # Panics
867 ///
868 /// Panics if `mid` is not on a UTF-8 code point boundary, or if it is past
869 /// the end of the last code point of the string slice. For a non-panicking
870 /// alternative see [`split_at_checked`](str::split_at_checked).
871 ///
872 /// # Examples
873 ///
874 /// ```
875 /// let s = "Per Martin-Löf";
876 ///
877 /// let (first, last) = s.split_at(3);
878 ///
879 /// assert_eq!("Per", first);
880 /// assert_eq!(" Martin-Löf", last);
881 /// ```
882 #[inline]
883 #[must_use]
884 #[stable(feature = "str_split_at", since = "1.4.0")]
885 #[rustc_const_stable(feature = "const_str_split_at", since = "1.86.0")]
886 #[cfg(not(feature = "ferrocene_certified"))]
887 pub const fn split_at(&self, mid: usize) -> (&str, &str) {
888 match self.split_at_checked(mid) {
889 None => slice_error_fail(self, 0, mid),
890 Some(pair) => pair,
891 }
892 }
893
894 /// Divides one mutable string slice into two at an index.
895 ///
896 /// The argument, `mid`, should be a byte offset from the start of the
897 /// string. It must also be on the boundary of a UTF-8 code point.
898 ///
899 /// The two slices returned go from the start of the string slice to `mid`,
900 /// and from `mid` to the end of the string slice.
901 ///
902 /// To get immutable string slices instead, see the [`split_at`] method.
903 ///
904 /// [`split_at`]: str::split_at
905 ///
906 /// # Panics
907 ///
908 /// Panics if `mid` is not on a UTF-8 code point boundary, or if it is past
909 /// the end of the last code point of the string slice. For a non-panicking
910 /// alternative see [`split_at_mut_checked`](str::split_at_mut_checked).
911 ///
912 /// # Examples
913 ///
914 /// ```
915 /// let mut s = "Per Martin-Löf".to_string();
916 /// {
917 /// let (first, last) = s.split_at_mut(3);
918 /// first.make_ascii_uppercase();
919 /// assert_eq!("PER", first);
920 /// assert_eq!(" Martin-Löf", last);
921 /// }
922 /// assert_eq!("PER Martin-Löf", s);
923 /// ```
924 #[inline]
925 #[must_use]
926 #[stable(feature = "str_split_at", since = "1.4.0")]
927 #[rustc_const_stable(feature = "const_str_split_at", since = "1.86.0")]
928 #[cfg(not(feature = "ferrocene_certified"))]
929 pub const fn split_at_mut(&mut self, mid: usize) -> (&mut str, &mut str) {
930 // is_char_boundary checks that the index is in [0, .len()]
931 if self.is_char_boundary(mid) {
932 // SAFETY: just checked that `mid` is on a char boundary.
933 unsafe { self.split_at_mut_unchecked(mid) }
934 } else {
935 slice_error_fail(self, 0, mid)
936 }
937 }
938
939 /// Divides one string slice into two at an index.
940 ///
941 /// The argument, `mid`, should be a valid byte offset from the start of the
942 /// string. It must also be on the boundary of a UTF-8 code point. The
943 /// method returns `None` if that’s not the case.
944 ///
945 /// The two slices returned go from the start of the string slice to `mid`,
946 /// and from `mid` to the end of the string slice.
947 ///
948 /// To get mutable string slices instead, see the [`split_at_mut_checked`]
949 /// method.
950 ///
951 /// [`split_at_mut_checked`]: str::split_at_mut_checked
952 ///
953 /// # Examples
954 ///
955 /// ```
956 /// let s = "Per Martin-Löf";
957 ///
958 /// let (first, last) = s.split_at_checked(3).unwrap();
959 /// assert_eq!("Per", first);
960 /// assert_eq!(" Martin-Löf", last);
961 ///
962 /// assert_eq!(None, s.split_at_checked(13)); // Inside “ö”
963 /// assert_eq!(None, s.split_at_checked(16)); // Beyond the string length
964 /// ```
965 #[inline]
966 #[must_use]
967 #[stable(feature = "split_at_checked", since = "1.80.0")]
968 #[rustc_const_stable(feature = "const_str_split_at", since = "1.86.0")]
969 #[cfg(not(feature = "ferrocene_certified"))]
970 pub const fn split_at_checked(&self, mid: usize) -> Option<(&str, &str)> {
971 // is_char_boundary checks that the index is in [0, .len()]
972 if self.is_char_boundary(mid) {
973 // SAFETY: just checked that `mid` is on a char boundary.
974 Some(unsafe { self.split_at_unchecked(mid) })
975 } else {
976 None
977 }
978 }
979
980 /// Divides one mutable string slice into two at an index.
981 ///
982 /// The argument, `mid`, should be a valid byte offset from the start of the
983 /// string. It must also be on the boundary of a UTF-8 code point. The
984 /// method returns `None` if that’s not the case.
985 ///
986 /// The two slices returned go from the start of the string slice to `mid`,
987 /// and from `mid` to the end of the string slice.
988 ///
989 /// To get immutable string slices instead, see the [`split_at_checked`] method.
990 ///
991 /// [`split_at_checked`]: str::split_at_checked
992 ///
993 /// # Examples
994 ///
995 /// ```
996 /// let mut s = "Per Martin-Löf".to_string();
997 /// if let Some((first, last)) = s.split_at_mut_checked(3) {
998 /// first.make_ascii_uppercase();
999 /// assert_eq!("PER", first);
1000 /// assert_eq!(" Martin-Löf", last);
1001 /// }
1002 /// assert_eq!("PER Martin-Löf", s);
1003 ///
1004 /// assert_eq!(None, s.split_at_mut_checked(13)); // Inside “ö”
1005 /// assert_eq!(None, s.split_at_mut_checked(16)); // Beyond the string length
1006 /// ```
1007 #[inline]
1008 #[must_use]
1009 #[stable(feature = "split_at_checked", since = "1.80.0")]
1010 #[rustc_const_stable(feature = "const_str_split_at", since = "1.86.0")]
1011 #[cfg(not(feature = "ferrocene_certified"))]
1012 pub const fn split_at_mut_checked(&mut self, mid: usize) -> Option<(&mut str, &mut str)> {
1013 // is_char_boundary checks that the index is in [0, .len()]
1014 if self.is_char_boundary(mid) {
1015 // SAFETY: just checked that `mid` is on a char boundary.
1016 Some(unsafe { self.split_at_mut_unchecked(mid) })
1017 } else {
1018 None
1019 }
1020 }
1021
1022 /// Divides one string slice into two at an index.
1023 ///
1024 /// # Safety
1025 ///
1026 /// The caller must ensure that `mid` is a valid byte offset from the start
1027 /// of the string and falls on the boundary of a UTF-8 code point.
1028 #[inline]
1029 #[cfg(not(feature = "ferrocene_certified"))]
1030 const unsafe fn split_at_unchecked(&self, mid: usize) -> (&str, &str) {
1031 let len = self.len();
1032 let ptr = self.as_ptr();
1033 // SAFETY: caller guarantees `mid` is on a char boundary.
1034 unsafe {
1035 (
1036 from_utf8_unchecked(slice::from_raw_parts(ptr, mid)),
1037 from_utf8_unchecked(slice::from_raw_parts(ptr.add(mid), len - mid)),
1038 )
1039 }
1040 }
1041
1042 /// Divides one string slice into two at an index.
1043 ///
1044 /// # Safety
1045 ///
1046 /// The caller must ensure that `mid` is a valid byte offset from the start
1047 /// of the string and falls on the boundary of a UTF-8 code point.
1048 #[cfg(not(feature = "ferrocene_certified"))]
1049 const unsafe fn split_at_mut_unchecked(&mut self, mid: usize) -> (&mut str, &mut str) {
1050 let len = self.len();
1051 let ptr = self.as_mut_ptr();
1052 // SAFETY: caller guarantees `mid` is on a char boundary.
1053 unsafe {
1054 (
1055 from_utf8_unchecked_mut(slice::from_raw_parts_mut(ptr, mid)),
1056 from_utf8_unchecked_mut(slice::from_raw_parts_mut(ptr.add(mid), len - mid)),
1057 )
1058 }
1059 }
1060
1061 /// Returns an iterator over the [`char`]s of a string slice.
1062 ///
1063 /// As a string slice consists of valid UTF-8, we can iterate through a
1064 /// string slice by [`char`]. This method returns such an iterator.
1065 ///
1066 /// It's important to remember that [`char`] represents a Unicode Scalar
1067 /// Value, and might not match your idea of what a 'character' is. Iteration
1068 /// over grapheme clusters may be what you actually want. This functionality
1069 /// is not provided by Rust's standard library, check crates.io instead.
1070 ///
1071 /// # Examples
1072 ///
1073 /// Basic usage:
1074 ///
1075 /// ```
1076 /// let word = "goodbye";
1077 ///
1078 /// let count = word.chars().count();
1079 /// assert_eq!(7, count);
1080 ///
1081 /// let mut chars = word.chars();
1082 ///
1083 /// assert_eq!(Some('g'), chars.next());
1084 /// assert_eq!(Some('o'), chars.next());
1085 /// assert_eq!(Some('o'), chars.next());
1086 /// assert_eq!(Some('d'), chars.next());
1087 /// assert_eq!(Some('b'), chars.next());
1088 /// assert_eq!(Some('y'), chars.next());
1089 /// assert_eq!(Some('e'), chars.next());
1090 ///
1091 /// assert_eq!(None, chars.next());
1092 /// ```
1093 ///
1094 /// Remember, [`char`]s might not match your intuition about characters:
1095 ///
1096 /// [`char`]: prim@char
1097 ///
1098 /// ```
1099 /// let y = "y̆";
1100 ///
1101 /// let mut chars = y.chars();
1102 ///
1103 /// assert_eq!(Some('y'), chars.next()); // not 'y̆'
1104 /// assert_eq!(Some('\u{0306}'), chars.next());
1105 ///
1106 /// assert_eq!(None, chars.next());
1107 /// ```
1108 #[stable(feature = "rust1", since = "1.0.0")]
1109 #[inline]
1110 #[rustc_diagnostic_item = "str_chars"]
1111 #[cfg(not(feature = "ferrocene_certified"))]
1112 pub fn chars(&self) -> Chars<'_> {
1113 Chars { iter: self.as_bytes().iter() }
1114 }
1115
1116 /// Returns an iterator over the [`char`]s of a string slice, and their
1117 /// positions.
1118 ///
1119 /// As a string slice consists of valid UTF-8, we can iterate through a
1120 /// string slice by [`char`]. This method returns an iterator of both
1121 /// these [`char`]s, as well as their byte positions.
1122 ///
1123 /// The iterator yields tuples. The position is first, the [`char`] is
1124 /// second.
1125 ///
1126 /// # Examples
1127 ///
1128 /// Basic usage:
1129 ///
1130 /// ```
1131 /// let word = "goodbye";
1132 ///
1133 /// let count = word.char_indices().count();
1134 /// assert_eq!(7, count);
1135 ///
1136 /// let mut char_indices = word.char_indices();
1137 ///
1138 /// assert_eq!(Some((0, 'g')), char_indices.next());
1139 /// assert_eq!(Some((1, 'o')), char_indices.next());
1140 /// assert_eq!(Some((2, 'o')), char_indices.next());
1141 /// assert_eq!(Some((3, 'd')), char_indices.next());
1142 /// assert_eq!(Some((4, 'b')), char_indices.next());
1143 /// assert_eq!(Some((5, 'y')), char_indices.next());
1144 /// assert_eq!(Some((6, 'e')), char_indices.next());
1145 ///
1146 /// assert_eq!(None, char_indices.next());
1147 /// ```
1148 ///
1149 /// Remember, [`char`]s might not match your intuition about characters:
1150 ///
1151 /// [`char`]: prim@char
1152 ///
1153 /// ```
1154 /// let yes = "y̆es";
1155 ///
1156 /// let mut char_indices = yes.char_indices();
1157 ///
1158 /// assert_eq!(Some((0, 'y')), char_indices.next()); // not (0, 'y̆')
1159 /// assert_eq!(Some((1, '\u{0306}')), char_indices.next());
1160 ///
1161 /// // note the 3 here - the previous character took up two bytes
1162 /// assert_eq!(Some((3, 'e')), char_indices.next());
1163 /// assert_eq!(Some((4, 's')), char_indices.next());
1164 ///
1165 /// assert_eq!(None, char_indices.next());
1166 /// ```
1167 #[stable(feature = "rust1", since = "1.0.0")]
1168 #[inline]
1169 #[cfg(not(feature = "ferrocene_certified"))]
1170 pub fn char_indices(&self) -> CharIndices<'_> {
1171 CharIndices { front_offset: 0, iter: self.chars() }
1172 }
1173
1174 /// Returns an iterator over the bytes of a string slice.
1175 ///
1176 /// As a string slice consists of a sequence of bytes, we can iterate
1177 /// through a string slice by byte. This method returns such an iterator.
1178 ///
1179 /// # Examples
1180 ///
1181 /// ```
1182 /// let mut bytes = "bors".bytes();
1183 ///
1184 /// assert_eq!(Some(b'b'), bytes.next());
1185 /// assert_eq!(Some(b'o'), bytes.next());
1186 /// assert_eq!(Some(b'r'), bytes.next());
1187 /// assert_eq!(Some(b's'), bytes.next());
1188 ///
1189 /// assert_eq!(None, bytes.next());
1190 /// ```
1191 #[stable(feature = "rust1", since = "1.0.0")]
1192 #[inline]
1193 #[cfg(not(feature = "ferrocene_certified"))]
1194 pub fn bytes(&self) -> Bytes<'_> {
1195 Bytes(self.as_bytes().iter().copied())
1196 }
1197
1198 /// Splits a string slice by whitespace.
1199 ///
1200 /// The iterator returned will return string slices that are sub-slices of
1201 /// the original string slice, separated by any amount of whitespace.
1202 ///
1203 /// 'Whitespace' is defined according to the terms of the Unicode Derived
1204 /// Core Property `White_Space`. If you only want to split on ASCII whitespace
1205 /// instead, use [`split_ascii_whitespace`].
1206 ///
1207 /// [`split_ascii_whitespace`]: str::split_ascii_whitespace
1208 ///
1209 /// # Examples
1210 ///
1211 /// Basic usage:
1212 ///
1213 /// ```
1214 /// let mut iter = "A few words".split_whitespace();
1215 ///
1216 /// assert_eq!(Some("A"), iter.next());
1217 /// assert_eq!(Some("few"), iter.next());
1218 /// assert_eq!(Some("words"), iter.next());
1219 ///
1220 /// assert_eq!(None, iter.next());
1221 /// ```
1222 ///
1223 /// All kinds of whitespace are considered:
1224 ///
1225 /// ```
1226 /// let mut iter = " Mary had\ta\u{2009}little \n\t lamb".split_whitespace();
1227 /// assert_eq!(Some("Mary"), iter.next());
1228 /// assert_eq!(Some("had"), iter.next());
1229 /// assert_eq!(Some("a"), iter.next());
1230 /// assert_eq!(Some("little"), iter.next());
1231 /// assert_eq!(Some("lamb"), iter.next());
1232 ///
1233 /// assert_eq!(None, iter.next());
1234 /// ```
1235 ///
1236 /// If the string is empty or all whitespace, the iterator yields no string slices:
1237 /// ```
1238 /// assert_eq!("".split_whitespace().next(), None);
1239 /// assert_eq!(" ".split_whitespace().next(), None);
1240 /// ```
1241 #[must_use = "this returns the split string as an iterator, \
1242 without modifying the original"]
1243 #[stable(feature = "split_whitespace", since = "1.1.0")]
1244 #[rustc_diagnostic_item = "str_split_whitespace"]
1245 #[inline]
1246 #[cfg(not(feature = "ferrocene_certified"))]
1247 pub fn split_whitespace(&self) -> SplitWhitespace<'_> {
1248 SplitWhitespace { inner: self.split(IsWhitespace).filter(IsNotEmpty) }
1249 }
1250
1251 /// Splits a string slice by ASCII whitespace.
1252 ///
1253 /// The iterator returned will return string slices that are sub-slices of
1254 /// the original string slice, separated by any amount of ASCII whitespace.
1255 ///
1256 /// This uses the same definition as [`char::is_ascii_whitespace`].
1257 /// To split by Unicode `Whitespace` instead, use [`split_whitespace`].
1258 ///
1259 /// [`split_whitespace`]: str::split_whitespace
1260 ///
1261 /// # Examples
1262 ///
1263 /// Basic usage:
1264 ///
1265 /// ```
1266 /// let mut iter = "A few words".split_ascii_whitespace();
1267 ///
1268 /// assert_eq!(Some("A"), iter.next());
1269 /// assert_eq!(Some("few"), iter.next());
1270 /// assert_eq!(Some("words"), iter.next());
1271 ///
1272 /// assert_eq!(None, iter.next());
1273 /// ```
1274 ///
1275 /// Various kinds of ASCII whitespace are considered
1276 /// (see [`char::is_ascii_whitespace`]):
1277 ///
1278 /// ```
1279 /// let mut iter = " Mary had\ta little \n\t lamb".split_ascii_whitespace();
1280 /// assert_eq!(Some("Mary"), iter.next());
1281 /// assert_eq!(Some("had"), iter.next());
1282 /// assert_eq!(Some("a"), iter.next());
1283 /// assert_eq!(Some("little"), iter.next());
1284 /// assert_eq!(Some("lamb"), iter.next());
1285 ///
1286 /// assert_eq!(None, iter.next());
1287 /// ```
1288 ///
1289 /// If the string is empty or all ASCII whitespace, the iterator yields no string slices:
1290 /// ```
1291 /// assert_eq!("".split_ascii_whitespace().next(), None);
1292 /// assert_eq!(" ".split_ascii_whitespace().next(), None);
1293 /// ```
1294 #[must_use = "this returns the split string as an iterator, \
1295 without modifying the original"]
1296 #[stable(feature = "split_ascii_whitespace", since = "1.34.0")]
1297 #[inline]
1298 #[cfg(not(feature = "ferrocene_certified"))]
1299 pub fn split_ascii_whitespace(&self) -> SplitAsciiWhitespace<'_> {
1300 let inner =
1301 self.as_bytes().split(IsAsciiWhitespace).filter(BytesIsNotEmpty).map(UnsafeBytesToStr);
1302 SplitAsciiWhitespace { inner }
1303 }
1304
1305 /// Returns an iterator over the lines of a string, as string slices.
1306 ///
1307 /// Lines are split at line endings that are either newlines (`\n`) or
1308 /// sequences of a carriage return followed by a line feed (`\r\n`).
1309 ///
1310 /// Line terminators are not included in the lines returned by the iterator.
1311 ///
1312 /// Note that any carriage return (`\r`) not immediately followed by a
1313 /// line feed (`\n`) does not split a line. These carriage returns are
1314 /// thereby included in the produced lines.
1315 ///
1316 /// The final line ending is optional. A string that ends with a final line
1317 /// ending will return the same lines as an otherwise identical string
1318 /// without a final line ending.
1319 ///
1320 /// # Examples
1321 ///
1322 /// Basic usage:
1323 ///
1324 /// ```
1325 /// let text = "foo\r\nbar\n\nbaz\r";
1326 /// let mut lines = text.lines();
1327 ///
1328 /// assert_eq!(Some("foo"), lines.next());
1329 /// assert_eq!(Some("bar"), lines.next());
1330 /// assert_eq!(Some(""), lines.next());
1331 /// // Trailing carriage return is included in the last line
1332 /// assert_eq!(Some("baz\r"), lines.next());
1333 ///
1334 /// assert_eq!(None, lines.next());
1335 /// ```
1336 ///
1337 /// The final line does not require any ending:
1338 ///
1339 /// ```
1340 /// let text = "foo\nbar\n\r\nbaz";
1341 /// let mut lines = text.lines();
1342 ///
1343 /// assert_eq!(Some("foo"), lines.next());
1344 /// assert_eq!(Some("bar"), lines.next());
1345 /// assert_eq!(Some(""), lines.next());
1346 /// assert_eq!(Some("baz"), lines.next());
1347 ///
1348 /// assert_eq!(None, lines.next());
1349 /// ```
1350 #[stable(feature = "rust1", since = "1.0.0")]
1351 #[inline]
1352 #[cfg(not(feature = "ferrocene_certified"))]
1353 pub fn lines(&self) -> Lines<'_> {
1354 Lines(self.split_inclusive('\n').map(LinesMap))
1355 }
1356
1357 /// Returns an iterator over the lines of a string.
1358 #[stable(feature = "rust1", since = "1.0.0")]
1359 #[deprecated(since = "1.4.0", note = "use lines() instead now", suggestion = "lines")]
1360 #[inline]
1361 #[allow(deprecated)]
1362 #[cfg(not(feature = "ferrocene_certified"))]
1363 pub fn lines_any(&self) -> LinesAny<'_> {
1364 LinesAny(self.lines())
1365 }
1366
1367 /// Returns an iterator of `u16` over the string encoded
1368 /// as native endian UTF-16 (without byte-order mark).
1369 ///
1370 /// # Examples
1371 ///
1372 /// ```
1373 /// let text = "Zażółć gęślą jaźń";
1374 ///
1375 /// let utf8_len = text.len();
1376 /// let utf16_len = text.encode_utf16().count();
1377 ///
1378 /// assert!(utf16_len <= utf8_len);
1379 /// ```
1380 #[must_use = "this returns the encoded string as an iterator, \
1381 without modifying the original"]
1382 #[stable(feature = "encode_utf16", since = "1.8.0")]
1383 #[cfg(not(feature = "ferrocene_certified"))]
1384 pub fn encode_utf16(&self) -> EncodeUtf16<'_> {
1385 EncodeUtf16 { chars: self.chars(), extra: 0 }
1386 }
1387
1388 /// Returns `true` if the given pattern matches a sub-slice of
1389 /// this string slice.
1390 ///
1391 /// Returns `false` if it does not.
1392 ///
1393 /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a
1394 /// function or closure that determines if a character matches.
1395 ///
1396 /// [`char`]: prim@char
1397 /// [pattern]: self::pattern
1398 ///
1399 /// # Examples
1400 ///
1401 /// ```
1402 /// let bananas = "bananas";
1403 ///
1404 /// assert!(bananas.contains("nana"));
1405 /// assert!(!bananas.contains("apples"));
1406 /// ```
1407 #[stable(feature = "rust1", since = "1.0.0")]
1408 #[inline]
1409 #[cfg(not(feature = "ferrocene_certified"))]
1410 pub fn contains<P: Pattern>(&self, pat: P) -> bool {
1411 pat.is_contained_in(self)
1412 }
1413
1414 /// Returns `true` if the given pattern matches a prefix of this
1415 /// string slice.
1416 ///
1417 /// Returns `false` if it does not.
1418 ///
1419 /// The [pattern] can be a `&str`, in which case this function will return true if
1420 /// the `&str` is a prefix of this string slice.
1421 ///
1422 /// The [pattern] can also be a [`char`], a slice of [`char`]s, or a
1423 /// function or closure that determines if a character matches.
1424 /// These will only be checked against the first character of this string slice.
1425 /// Look at the second example below regarding behavior for slices of [`char`]s.
1426 ///
1427 /// [`char`]: prim@char
1428 /// [pattern]: self::pattern
1429 ///
1430 /// # Examples
1431 ///
1432 /// ```
1433 /// let bananas = "bananas";
1434 ///
1435 /// assert!(bananas.starts_with("bana"));
1436 /// assert!(!bananas.starts_with("nana"));
1437 /// ```
1438 ///
1439 /// ```
1440 /// let bananas = "bananas";
1441 ///
1442 /// // Note that both of these assert successfully.
1443 /// assert!(bananas.starts_with(&['b', 'a', 'n', 'a']));
1444 /// assert!(bananas.starts_with(&['a', 'b', 'c', 'd']));
1445 /// ```
1446 #[stable(feature = "rust1", since = "1.0.0")]
1447 #[rustc_diagnostic_item = "str_starts_with"]
1448 #[cfg(not(feature = "ferrocene_certified"))]
1449 pub fn starts_with<P: Pattern>(&self, pat: P) -> bool {
1450 pat.is_prefix_of(self)
1451 }
1452
1453 /// Returns `true` if the given pattern matches a suffix of this
1454 /// string slice.
1455 ///
1456 /// Returns `false` if it does not.
1457 ///
1458 /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a
1459 /// function or closure that determines if a character matches.
1460 ///
1461 /// [`char`]: prim@char
1462 /// [pattern]: self::pattern
1463 ///
1464 /// # Examples
1465 ///
1466 /// ```
1467 /// let bananas = "bananas";
1468 ///
1469 /// assert!(bananas.ends_with("anas"));
1470 /// assert!(!bananas.ends_with("nana"));
1471 /// ```
1472 #[stable(feature = "rust1", since = "1.0.0")]
1473 #[rustc_diagnostic_item = "str_ends_with"]
1474 #[cfg(not(feature = "ferrocene_certified"))]
1475 pub fn ends_with<P: Pattern>(&self, pat: P) -> bool
1476 where
1477 for<'a> P::Searcher<'a>: ReverseSearcher<'a>,
1478 {
1479 pat.is_suffix_of(self)
1480 }
1481
1482 /// Returns the byte index of the first character of this string slice that
1483 /// matches the pattern.
1484 ///
1485 /// Returns [`None`] if the pattern doesn't match.
1486 ///
1487 /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a
1488 /// function or closure that determines if a character matches.
1489 ///
1490 /// [`char`]: prim@char
1491 /// [pattern]: self::pattern
1492 ///
1493 /// # Examples
1494 ///
1495 /// Simple patterns:
1496 ///
1497 /// ```
1498 /// let s = "Löwe 老虎 Léopard Gepardi";
1499 ///
1500 /// assert_eq!(s.find('L'), Some(0));
1501 /// assert_eq!(s.find('é'), Some(14));
1502 /// assert_eq!(s.find("pard"), Some(17));
1503 /// ```
1504 ///
1505 /// More complex patterns using point-free style and closures:
1506 ///
1507 /// ```
1508 /// let s = "Löwe 老虎 Léopard";
1509 ///
1510 /// assert_eq!(s.find(char::is_whitespace), Some(5));
1511 /// assert_eq!(s.find(char::is_lowercase), Some(1));
1512 /// assert_eq!(s.find(|c: char| c.is_whitespace() || c.is_lowercase()), Some(1));
1513 /// assert_eq!(s.find(|c: char| (c < 'o') && (c > 'a')), Some(4));
1514 /// ```
1515 ///
1516 /// Not finding the pattern:
1517 ///
1518 /// ```
1519 /// let s = "Löwe 老虎 Léopard";
1520 /// let x: &[_] = &['1', '2'];
1521 ///
1522 /// assert_eq!(s.find(x), None);
1523 /// ```
1524 #[stable(feature = "rust1", since = "1.0.0")]
1525 #[inline]
1526 #[cfg(not(feature = "ferrocene_certified"))]
1527 pub fn find<P: Pattern>(&self, pat: P) -> Option<usize> {
1528 pat.into_searcher(self).next_match().map(|(i, _)| i)
1529 }
1530
1531 /// Returns the byte index for the first character of the last match of the pattern in
1532 /// this string slice.
1533 ///
1534 /// Returns [`None`] if the pattern doesn't match.
1535 ///
1536 /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a
1537 /// function or closure that determines if a character matches.
1538 ///
1539 /// [`char`]: prim@char
1540 /// [pattern]: self::pattern
1541 ///
1542 /// # Examples
1543 ///
1544 /// Simple patterns:
1545 ///
1546 /// ```
1547 /// let s = "Löwe 老虎 Léopard Gepardi";
1548 ///
1549 /// assert_eq!(s.rfind('L'), Some(13));
1550 /// assert_eq!(s.rfind('é'), Some(14));
1551 /// assert_eq!(s.rfind("pard"), Some(24));
1552 /// ```
1553 ///
1554 /// More complex patterns with closures:
1555 ///
1556 /// ```
1557 /// let s = "Löwe 老虎 Léopard";
1558 ///
1559 /// assert_eq!(s.rfind(char::is_whitespace), Some(12));
1560 /// assert_eq!(s.rfind(char::is_lowercase), Some(20));
1561 /// ```
1562 ///
1563 /// Not finding the pattern:
1564 ///
1565 /// ```
1566 /// let s = "Löwe 老虎 Léopard";
1567 /// let x: &[_] = &['1', '2'];
1568 ///
1569 /// assert_eq!(s.rfind(x), None);
1570 /// ```
1571 #[stable(feature = "rust1", since = "1.0.0")]
1572 #[inline]
1573 #[cfg(not(feature = "ferrocene_certified"))]
1574 pub fn rfind<P: Pattern>(&self, pat: P) -> Option<usize>
1575 where
1576 for<'a> P::Searcher<'a>: ReverseSearcher<'a>,
1577 {
1578 pat.into_searcher(self).next_match_back().map(|(i, _)| i)
1579 }
1580
1581 /// Returns an iterator over substrings of this string slice, separated by
1582 /// characters matched by a pattern.
1583 ///
1584 /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a
1585 /// function or closure that determines if a character matches.
1586 ///
1587 /// If there are no matches the full string slice is returned as the only
1588 /// item in the iterator.
1589 ///
1590 /// [`char`]: prim@char
1591 /// [pattern]: self::pattern
1592 ///
1593 /// # Iterator behavior
1594 ///
1595 /// The returned iterator will be a [`DoubleEndedIterator`] if the pattern
1596 /// allows a reverse search and forward/reverse search yields the same
1597 /// elements. This is true for, e.g., [`char`], but not for `&str`.
1598 ///
1599 /// If the pattern allows a reverse search but its results might differ
1600 /// from a forward search, the [`rsplit`] method can be used.
1601 ///
1602 /// [`rsplit`]: str::rsplit
1603 ///
1604 /// # Examples
1605 ///
1606 /// Simple patterns:
1607 ///
1608 /// ```
1609 /// let v: Vec<&str> = "Mary had a little lamb".split(' ').collect();
1610 /// assert_eq!(v, ["Mary", "had", "a", "little", "lamb"]);
1611 ///
1612 /// let v: Vec<&str> = "".split('X').collect();
1613 /// assert_eq!(v, [""]);
1614 ///
1615 /// let v: Vec<&str> = "lionXXtigerXleopard".split('X').collect();
1616 /// assert_eq!(v, ["lion", "", "tiger", "leopard"]);
1617 ///
1618 /// let v: Vec<&str> = "lion::tiger::leopard".split("::").collect();
1619 /// assert_eq!(v, ["lion", "tiger", "leopard"]);
1620 ///
1621 /// let v: Vec<&str> = "AABBCC".split("DD").collect();
1622 /// assert_eq!(v, ["AABBCC"]);
1623 ///
1624 /// let v: Vec<&str> = "abc1def2ghi".split(char::is_numeric).collect();
1625 /// assert_eq!(v, ["abc", "def", "ghi"]);
1626 ///
1627 /// let v: Vec<&str> = "lionXtigerXleopard".split(char::is_uppercase).collect();
1628 /// assert_eq!(v, ["lion", "tiger", "leopard"]);
1629 /// ```
1630 ///
1631 /// If the pattern is a slice of chars, split on each occurrence of any of the characters:
1632 ///
1633 /// ```
1634 /// let v: Vec<&str> = "2020-11-03 23:59".split(&['-', ' ', ':', '@'][..]).collect();
1635 /// assert_eq!(v, ["2020", "11", "03", "23", "59"]);
1636 /// ```
1637 ///
1638 /// A more complex pattern, using a closure:
1639 ///
1640 /// ```
1641 /// let v: Vec<&str> = "abc1defXghi".split(|c| c == '1' || c == 'X').collect();
1642 /// assert_eq!(v, ["abc", "def", "ghi"]);
1643 /// ```
1644 ///
1645 /// If a string contains multiple contiguous separators, you will end up
1646 /// with empty strings in the output:
1647 ///
1648 /// ```
1649 /// let x = "||||a||b|c".to_string();
1650 /// let d: Vec<_> = x.split('|').collect();
1651 ///
1652 /// assert_eq!(d, &["", "", "", "", "a", "", "b", "c"]);
1653 /// ```
1654 ///
1655 /// Contiguous separators are separated by the empty string.
1656 ///
1657 /// ```
1658 /// let x = "(///)".to_string();
1659 /// let d: Vec<_> = x.split('/').collect();
1660 ///
1661 /// assert_eq!(d, &["(", "", "", ")"]);
1662 /// ```
1663 ///
1664 /// Separators at the start or end of a string are neighbored
1665 /// by empty strings.
1666 ///
1667 /// ```
1668 /// let d: Vec<_> = "010".split("0").collect();
1669 /// assert_eq!(d, &["", "1", ""]);
1670 /// ```
1671 ///
1672 /// When the empty string is used as a separator, it separates
1673 /// every character in the string, along with the beginning
1674 /// and end of the string.
1675 ///
1676 /// ```
1677 /// let f: Vec<_> = "rust".split("").collect();
1678 /// assert_eq!(f, &["", "r", "u", "s", "t", ""]);
1679 /// ```
1680 ///
1681 /// Contiguous separators can lead to possibly surprising behavior
1682 /// when whitespace is used as the separator. This code is correct:
1683 ///
1684 /// ```
1685 /// let x = " a b c".to_string();
1686 /// let d: Vec<_> = x.split(' ').collect();
1687 ///
1688 /// assert_eq!(d, &["", "", "", "", "a", "", "b", "c"]);
1689 /// ```
1690 ///
1691 /// It does _not_ give you:
1692 ///
1693 /// ```,ignore
1694 /// assert_eq!(d, &["a", "b", "c"]);
1695 /// ```
1696 ///
1697 /// Use [`split_whitespace`] for this behavior.
1698 ///
1699 /// [`split_whitespace`]: str::split_whitespace
1700 #[stable(feature = "rust1", since = "1.0.0")]
1701 #[inline]
1702 #[cfg(not(feature = "ferrocene_certified"))]
1703 pub fn split<P: Pattern>(&self, pat: P) -> Split<'_, P> {
1704 Split(SplitInternal {
1705 start: 0,
1706 end: self.len(),
1707 matcher: pat.into_searcher(self),
1708 allow_trailing_empty: true,
1709 finished: false,
1710 })
1711 }
1712
1713 /// Returns an iterator over substrings of this string slice, separated by
1714 /// characters matched by a pattern.
1715 ///
1716 /// Differs from the iterator produced by `split` in that `split_inclusive`
1717 /// leaves the matched part as the terminator of the substring.
1718 ///
1719 /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a
1720 /// function or closure that determines if a character matches.
1721 ///
1722 /// [`char`]: prim@char
1723 /// [pattern]: self::pattern
1724 ///
1725 /// # Examples
1726 ///
1727 /// ```
1728 /// let v: Vec<&str> = "Mary had a little lamb\nlittle lamb\nlittle lamb."
1729 /// .split_inclusive('\n').collect();
1730 /// assert_eq!(v, ["Mary had a little lamb\n", "little lamb\n", "little lamb."]);
1731 /// ```
1732 ///
1733 /// If the last element of the string is matched,
1734 /// that element will be considered the terminator of the preceding substring.
1735 /// That substring will be the last item returned by the iterator.
1736 ///
1737 /// ```
1738 /// let v: Vec<&str> = "Mary had a little lamb\nlittle lamb\nlittle lamb.\n"
1739 /// .split_inclusive('\n').collect();
1740 /// assert_eq!(v, ["Mary had a little lamb\n", "little lamb\n", "little lamb.\n"]);
1741 /// ```
1742 #[stable(feature = "split_inclusive", since = "1.51.0")]
1743 #[inline]
1744 #[cfg(not(feature = "ferrocene_certified"))]
1745 pub fn split_inclusive<P: Pattern>(&self, pat: P) -> SplitInclusive<'_, P> {
1746 SplitInclusive(SplitInternal {
1747 start: 0,
1748 end: self.len(),
1749 matcher: pat.into_searcher(self),
1750 allow_trailing_empty: false,
1751 finished: false,
1752 })
1753 }
1754
1755 /// Returns an iterator over substrings of the given string slice, separated
1756 /// by characters matched by a pattern and yielded in reverse order.
1757 ///
1758 /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a
1759 /// function or closure that determines if a character matches.
1760 ///
1761 /// [`char`]: prim@char
1762 /// [pattern]: self::pattern
1763 ///
1764 /// # Iterator behavior
1765 ///
1766 /// The returned iterator requires that the pattern supports a reverse
1767 /// search, and it will be a [`DoubleEndedIterator`] if a forward/reverse
1768 /// search yields the same elements.
1769 ///
1770 /// For iterating from the front, the [`split`] method can be used.
1771 ///
1772 /// [`split`]: str::split
1773 ///
1774 /// # Examples
1775 ///
1776 /// Simple patterns:
1777 ///
1778 /// ```
1779 /// let v: Vec<&str> = "Mary had a little lamb".rsplit(' ').collect();
1780 /// assert_eq!(v, ["lamb", "little", "a", "had", "Mary"]);
1781 ///
1782 /// let v: Vec<&str> = "".rsplit('X').collect();
1783 /// assert_eq!(v, [""]);
1784 ///
1785 /// let v: Vec<&str> = "lionXXtigerXleopard".rsplit('X').collect();
1786 /// assert_eq!(v, ["leopard", "tiger", "", "lion"]);
1787 ///
1788 /// let v: Vec<&str> = "lion::tiger::leopard".rsplit("::").collect();
1789 /// assert_eq!(v, ["leopard", "tiger", "lion"]);
1790 /// ```
1791 ///
1792 /// A more complex pattern, using a closure:
1793 ///
1794 /// ```
1795 /// let v: Vec<&str> = "abc1defXghi".rsplit(|c| c == '1' || c == 'X').collect();
1796 /// assert_eq!(v, ["ghi", "def", "abc"]);
1797 /// ```
1798 #[stable(feature = "rust1", since = "1.0.0")]
1799 #[inline]
1800 #[cfg(not(feature = "ferrocene_certified"))]
1801 pub fn rsplit<P: Pattern>(&self, pat: P) -> RSplit<'_, P>
1802 where
1803 for<'a> P::Searcher<'a>: ReverseSearcher<'a>,
1804 {
1805 RSplit(self.split(pat).0)
1806 }
1807
1808 /// Returns an iterator over substrings of the given string slice, separated
1809 /// by characters matched by a pattern.
1810 ///
1811 /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a
1812 /// function or closure that determines if a character matches.
1813 ///
1814 /// [`char`]: prim@char
1815 /// [pattern]: self::pattern
1816 ///
1817 /// Equivalent to [`split`], except that the trailing substring
1818 /// is skipped if empty.
1819 ///
1820 /// [`split`]: str::split
1821 ///
1822 /// This method can be used for string data that is _terminated_,
1823 /// rather than _separated_ by a pattern.
1824 ///
1825 /// # Iterator behavior
1826 ///
1827 /// The returned iterator will be a [`DoubleEndedIterator`] if the pattern
1828 /// allows a reverse search and forward/reverse search yields the same
1829 /// elements. This is true for, e.g., [`char`], but not for `&str`.
1830 ///
1831 /// If the pattern allows a reverse search but its results might differ
1832 /// from a forward search, the [`rsplit_terminator`] method can be used.
1833 ///
1834 /// [`rsplit_terminator`]: str::rsplit_terminator
1835 ///
1836 /// # Examples
1837 ///
1838 /// ```
1839 /// let v: Vec<&str> = "A.B.".split_terminator('.').collect();
1840 /// assert_eq!(v, ["A", "B"]);
1841 ///
1842 /// let v: Vec<&str> = "A..B..".split_terminator(".").collect();
1843 /// assert_eq!(v, ["A", "", "B", ""]);
1844 ///
1845 /// let v: Vec<&str> = "A.B:C.D".split_terminator(&['.', ':'][..]).collect();
1846 /// assert_eq!(v, ["A", "B", "C", "D"]);
1847 /// ```
1848 #[stable(feature = "rust1", since = "1.0.0")]
1849 #[inline]
1850 #[cfg(not(feature = "ferrocene_certified"))]
1851 pub fn split_terminator<P: Pattern>(&self, pat: P) -> SplitTerminator<'_, P> {
1852 SplitTerminator(SplitInternal { allow_trailing_empty: false, ..self.split(pat).0 })
1853 }
1854
1855 /// Returns an iterator over substrings of `self`, separated by characters
1856 /// matched by a pattern and yielded in reverse order.
1857 ///
1858 /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a
1859 /// function or closure that determines if a character matches.
1860 ///
1861 /// [`char`]: prim@char
1862 /// [pattern]: self::pattern
1863 ///
1864 /// Equivalent to [`split`], except that the trailing substring is
1865 /// skipped if empty.
1866 ///
1867 /// [`split`]: str::split
1868 ///
1869 /// This method can be used for string data that is _terminated_,
1870 /// rather than _separated_ by a pattern.
1871 ///
1872 /// # Iterator behavior
1873 ///
1874 /// The returned iterator requires that the pattern supports a
1875 /// reverse search, and it will be double ended if a forward/reverse
1876 /// search yields the same elements.
1877 ///
1878 /// For iterating from the front, the [`split_terminator`] method can be
1879 /// used.
1880 ///
1881 /// [`split_terminator`]: str::split_terminator
1882 ///
1883 /// # Examples
1884 ///
1885 /// ```
1886 /// let v: Vec<&str> = "A.B.".rsplit_terminator('.').collect();
1887 /// assert_eq!(v, ["B", "A"]);
1888 ///
1889 /// let v: Vec<&str> = "A..B..".rsplit_terminator(".").collect();
1890 /// assert_eq!(v, ["", "B", "", "A"]);
1891 ///
1892 /// let v: Vec<&str> = "A.B:C.D".rsplit_terminator(&['.', ':'][..]).collect();
1893 /// assert_eq!(v, ["D", "C", "B", "A"]);
1894 /// ```
1895 #[stable(feature = "rust1", since = "1.0.0")]
1896 #[inline]
1897 #[cfg(not(feature = "ferrocene_certified"))]
1898 pub fn rsplit_terminator<P: Pattern>(&self, pat: P) -> RSplitTerminator<'_, P>
1899 where
1900 for<'a> P::Searcher<'a>: ReverseSearcher<'a>,
1901 {
1902 RSplitTerminator(self.split_terminator(pat).0)
1903 }
1904
1905 /// Returns an iterator over substrings of the given string slice, separated
1906 /// by a pattern, restricted to returning at most `n` items.
1907 ///
1908 /// If `n` substrings are returned, the last substring (the `n`th substring)
1909 /// will contain the remainder of the string.
1910 ///
1911 /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a
1912 /// function or closure that determines if a character matches.
1913 ///
1914 /// [`char`]: prim@char
1915 /// [pattern]: self::pattern
1916 ///
1917 /// # Iterator behavior
1918 ///
1919 /// The returned iterator will not be double ended, because it is
1920 /// not efficient to support.
1921 ///
1922 /// If the pattern allows a reverse search, the [`rsplitn`] method can be
1923 /// used.
1924 ///
1925 /// [`rsplitn`]: str::rsplitn
1926 ///
1927 /// # Examples
1928 ///
1929 /// Simple patterns:
1930 ///
1931 /// ```
1932 /// let v: Vec<&str> = "Mary had a little lambda".splitn(3, ' ').collect();
1933 /// assert_eq!(v, ["Mary", "had", "a little lambda"]);
1934 ///
1935 /// let v: Vec<&str> = "lionXXtigerXleopard".splitn(3, "X").collect();
1936 /// assert_eq!(v, ["lion", "", "tigerXleopard"]);
1937 ///
1938 /// let v: Vec<&str> = "abcXdef".splitn(1, 'X').collect();
1939 /// assert_eq!(v, ["abcXdef"]);
1940 ///
1941 /// let v: Vec<&str> = "".splitn(1, 'X').collect();
1942 /// assert_eq!(v, [""]);
1943 /// ```
1944 ///
1945 /// A more complex pattern, using a closure:
1946 ///
1947 /// ```
1948 /// let v: Vec<&str> = "abc1defXghi".splitn(2, |c| c == '1' || c == 'X').collect();
1949 /// assert_eq!(v, ["abc", "defXghi"]);
1950 /// ```
1951 #[stable(feature = "rust1", since = "1.0.0")]
1952 #[inline]
1953 #[cfg(not(feature = "ferrocene_certified"))]
1954 pub fn splitn<P: Pattern>(&self, n: usize, pat: P) -> SplitN<'_, P> {
1955 SplitN(SplitNInternal { iter: self.split(pat).0, count: n })
1956 }
1957
1958 /// Returns an iterator over substrings of this string slice, separated by a
1959 /// pattern, starting from the end of the string, restricted to returning at
1960 /// most `n` items.
1961 ///
1962 /// If `n` substrings are returned, the last substring (the `n`th substring)
1963 /// will contain the remainder of the string.
1964 ///
1965 /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a
1966 /// function or closure that determines if a character matches.
1967 ///
1968 /// [`char`]: prim@char
1969 /// [pattern]: self::pattern
1970 ///
1971 /// # Iterator behavior
1972 ///
1973 /// The returned iterator will not be double ended, because it is not
1974 /// efficient to support.
1975 ///
1976 /// For splitting from the front, the [`splitn`] method can be used.
1977 ///
1978 /// [`splitn`]: str::splitn
1979 ///
1980 /// # Examples
1981 ///
1982 /// Simple patterns:
1983 ///
1984 /// ```
1985 /// let v: Vec<&str> = "Mary had a little lamb".rsplitn(3, ' ').collect();
1986 /// assert_eq!(v, ["lamb", "little", "Mary had a"]);
1987 ///
1988 /// let v: Vec<&str> = "lionXXtigerXleopard".rsplitn(3, 'X').collect();
1989 /// assert_eq!(v, ["leopard", "tiger", "lionX"]);
1990 ///
1991 /// let v: Vec<&str> = "lion::tiger::leopard".rsplitn(2, "::").collect();
1992 /// assert_eq!(v, ["leopard", "lion::tiger"]);
1993 /// ```
1994 ///
1995 /// A more complex pattern, using a closure:
1996 ///
1997 /// ```
1998 /// let v: Vec<&str> = "abc1defXghi".rsplitn(2, |c| c == '1' || c == 'X').collect();
1999 /// assert_eq!(v, ["ghi", "abc1def"]);
2000 /// ```
2001 #[stable(feature = "rust1", since = "1.0.0")]
2002 #[inline]
2003 #[cfg(not(feature = "ferrocene_certified"))]
2004 pub fn rsplitn<P: Pattern>(&self, n: usize, pat: P) -> RSplitN<'_, P>
2005 where
2006 for<'a> P::Searcher<'a>: ReverseSearcher<'a>,
2007 {
2008 RSplitN(self.splitn(n, pat).0)
2009 }
2010
2011 /// Splits the string on the first occurrence of the specified delimiter and
2012 /// returns prefix before delimiter and suffix after delimiter.
2013 ///
2014 /// # Examples
2015 ///
2016 /// ```
2017 /// assert_eq!("cfg".split_once('='), None);
2018 /// assert_eq!("cfg=".split_once('='), Some(("cfg", "")));
2019 /// assert_eq!("cfg=foo".split_once('='), Some(("cfg", "foo")));
2020 /// assert_eq!("cfg=foo=bar".split_once('='), Some(("cfg", "foo=bar")));
2021 /// ```
2022 #[stable(feature = "str_split_once", since = "1.52.0")]
2023 #[inline]
2024 #[cfg(not(feature = "ferrocene_certified"))]
2025 pub fn split_once<P: Pattern>(&self, delimiter: P) -> Option<(&'_ str, &'_ str)> {
2026 let (start, end) = delimiter.into_searcher(self).next_match()?;
2027 // SAFETY: `Searcher` is known to return valid indices.
2028 unsafe { Some((self.get_unchecked(..start), self.get_unchecked(end..))) }
2029 }
2030
2031 /// Splits the string on the last occurrence of the specified delimiter and
2032 /// returns prefix before delimiter and suffix after delimiter.
2033 ///
2034 /// # Examples
2035 ///
2036 /// ```
2037 /// assert_eq!("cfg".rsplit_once('='), None);
2038 /// assert_eq!("cfg=foo".rsplit_once('='), Some(("cfg", "foo")));
2039 /// assert_eq!("cfg=foo=bar".rsplit_once('='), Some(("cfg=foo", "bar")));
2040 /// ```
2041 #[stable(feature = "str_split_once", since = "1.52.0")]
2042 #[inline]
2043 #[cfg(not(feature = "ferrocene_certified"))]
2044 pub fn rsplit_once<P: Pattern>(&self, delimiter: P) -> Option<(&'_ str, &'_ str)>
2045 where
2046 for<'a> P::Searcher<'a>: ReverseSearcher<'a>,
2047 {
2048 let (start, end) = delimiter.into_searcher(self).next_match_back()?;
2049 // SAFETY: `Searcher` is known to return valid indices.
2050 unsafe { Some((self.get_unchecked(..start), self.get_unchecked(end..))) }
2051 }
2052
2053 /// Returns an iterator over the disjoint matches of a pattern within the
2054 /// given string slice.
2055 ///
2056 /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a
2057 /// function or closure that determines if a character matches.
2058 ///
2059 /// [`char`]: prim@char
2060 /// [pattern]: self::pattern
2061 ///
2062 /// # Iterator behavior
2063 ///
2064 /// The returned iterator will be a [`DoubleEndedIterator`] if the pattern
2065 /// allows a reverse search and forward/reverse search yields the same
2066 /// elements. This is true for, e.g., [`char`], but not for `&str`.
2067 ///
2068 /// If the pattern allows a reverse search but its results might differ
2069 /// from a forward search, the [`rmatches`] method can be used.
2070 ///
2071 /// [`rmatches`]: str::rmatches
2072 ///
2073 /// # Examples
2074 ///
2075 /// ```
2076 /// let v: Vec<&str> = "abcXXXabcYYYabc".matches("abc").collect();
2077 /// assert_eq!(v, ["abc", "abc", "abc"]);
2078 ///
2079 /// let v: Vec<&str> = "1abc2abc3".matches(char::is_numeric).collect();
2080 /// assert_eq!(v, ["1", "2", "3"]);
2081 /// ```
2082 #[stable(feature = "str_matches", since = "1.2.0")]
2083 #[inline]
2084 #[cfg(not(feature = "ferrocene_certified"))]
2085 pub fn matches<P: Pattern>(&self, pat: P) -> Matches<'_, P> {
2086 Matches(MatchesInternal(pat.into_searcher(self)))
2087 }
2088
2089 /// Returns an iterator over the disjoint matches of a pattern within this
2090 /// string slice, yielded in reverse order.
2091 ///
2092 /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a
2093 /// function or closure that determines if a character matches.
2094 ///
2095 /// [`char`]: prim@char
2096 /// [pattern]: self::pattern
2097 ///
2098 /// # Iterator behavior
2099 ///
2100 /// The returned iterator requires that the pattern supports a reverse
2101 /// search, and it will be a [`DoubleEndedIterator`] if a forward/reverse
2102 /// search yields the same elements.
2103 ///
2104 /// For iterating from the front, the [`matches`] method can be used.
2105 ///
2106 /// [`matches`]: str::matches
2107 ///
2108 /// # Examples
2109 ///
2110 /// ```
2111 /// let v: Vec<&str> = "abcXXXabcYYYabc".rmatches("abc").collect();
2112 /// assert_eq!(v, ["abc", "abc", "abc"]);
2113 ///
2114 /// let v: Vec<&str> = "1abc2abc3".rmatches(char::is_numeric).collect();
2115 /// assert_eq!(v, ["3", "2", "1"]);
2116 /// ```
2117 #[stable(feature = "str_matches", since = "1.2.0")]
2118 #[inline]
2119 #[cfg(not(feature = "ferrocene_certified"))]
2120 pub fn rmatches<P: Pattern>(&self, pat: P) -> RMatches<'_, P>
2121 where
2122 for<'a> P::Searcher<'a>: ReverseSearcher<'a>,
2123 {
2124 RMatches(self.matches(pat).0)
2125 }
2126
2127 /// Returns an iterator over the disjoint matches of a pattern within this string
2128 /// slice as well as the index that the match starts at.
2129 ///
2130 /// For matches of `pat` within `self` that overlap, only the indices
2131 /// corresponding to the first match are returned.
2132 ///
2133 /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a
2134 /// function or closure that determines if a character matches.
2135 ///
2136 /// [`char`]: prim@char
2137 /// [pattern]: self::pattern
2138 ///
2139 /// # Iterator behavior
2140 ///
2141 /// The returned iterator will be a [`DoubleEndedIterator`] if the pattern
2142 /// allows a reverse search and forward/reverse search yields the same
2143 /// elements. This is true for, e.g., [`char`], but not for `&str`.
2144 ///
2145 /// If the pattern allows a reverse search but its results might differ
2146 /// from a forward search, the [`rmatch_indices`] method can be used.
2147 ///
2148 /// [`rmatch_indices`]: str::rmatch_indices
2149 ///
2150 /// # Examples
2151 ///
2152 /// ```
2153 /// let v: Vec<_> = "abcXXXabcYYYabc".match_indices("abc").collect();
2154 /// assert_eq!(v, [(0, "abc"), (6, "abc"), (12, "abc")]);
2155 ///
2156 /// let v: Vec<_> = "1abcabc2".match_indices("abc").collect();
2157 /// assert_eq!(v, [(1, "abc"), (4, "abc")]);
2158 ///
2159 /// let v: Vec<_> = "ababa".match_indices("aba").collect();
2160 /// assert_eq!(v, [(0, "aba")]); // only the first `aba`
2161 /// ```
2162 #[stable(feature = "str_match_indices", since = "1.5.0")]
2163 #[inline]
2164 #[cfg(not(feature = "ferrocene_certified"))]
2165 pub fn match_indices<P: Pattern>(&self, pat: P) -> MatchIndices<'_, P> {
2166 MatchIndices(MatchIndicesInternal(pat.into_searcher(self)))
2167 }
2168
2169 /// Returns an iterator over the disjoint matches of a pattern within `self`,
2170 /// yielded in reverse order along with the index of the match.
2171 ///
2172 /// For matches of `pat` within `self` that overlap, only the indices
2173 /// corresponding to the last match are returned.
2174 ///
2175 /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a
2176 /// function or closure that determines if a character matches.
2177 ///
2178 /// [`char`]: prim@char
2179 /// [pattern]: self::pattern
2180 ///
2181 /// # Iterator behavior
2182 ///
2183 /// The returned iterator requires that the pattern supports a reverse
2184 /// search, and it will be a [`DoubleEndedIterator`] if a forward/reverse
2185 /// search yields the same elements.
2186 ///
2187 /// For iterating from the front, the [`match_indices`] method can be used.
2188 ///
2189 /// [`match_indices`]: str::match_indices
2190 ///
2191 /// # Examples
2192 ///
2193 /// ```
2194 /// let v: Vec<_> = "abcXXXabcYYYabc".rmatch_indices("abc").collect();
2195 /// assert_eq!(v, [(12, "abc"), (6, "abc"), (0, "abc")]);
2196 ///
2197 /// let v: Vec<_> = "1abcabc2".rmatch_indices("abc").collect();
2198 /// assert_eq!(v, [(4, "abc"), (1, "abc")]);
2199 ///
2200 /// let v: Vec<_> = "ababa".rmatch_indices("aba").collect();
2201 /// assert_eq!(v, [(2, "aba")]); // only the last `aba`
2202 /// ```
2203 #[stable(feature = "str_match_indices", since = "1.5.0")]
2204 #[inline]
2205 #[cfg(not(feature = "ferrocene_certified"))]
2206 pub fn rmatch_indices<P: Pattern>(&self, pat: P) -> RMatchIndices<'_, P>
2207 where
2208 for<'a> P::Searcher<'a>: ReverseSearcher<'a>,
2209 {
2210 RMatchIndices(self.match_indices(pat).0)
2211 }
2212
2213 /// Returns a string slice with leading and trailing whitespace removed.
2214 ///
2215 /// 'Whitespace' is defined according to the terms of the Unicode Derived
2216 /// Core Property `White_Space`, which includes newlines.
2217 ///
2218 /// # Examples
2219 ///
2220 /// ```
2221 /// let s = "\n Hello\tworld\t\n";
2222 ///
2223 /// assert_eq!("Hello\tworld", s.trim());
2224 /// ```
2225 #[inline]
2226 #[must_use = "this returns the trimmed string as a slice, \
2227 without modifying the original"]
2228 #[stable(feature = "rust1", since = "1.0.0")]
2229 #[rustc_diagnostic_item = "str_trim"]
2230 #[cfg(not(feature = "ferrocene_certified"))]
2231 pub fn trim(&self) -> &str {
2232 self.trim_matches(char::is_whitespace)
2233 }
2234
2235 /// Returns a string slice with leading whitespace removed.
2236 ///
2237 /// 'Whitespace' is defined according to the terms of the Unicode Derived
2238 /// Core Property `White_Space`, which includes newlines.
2239 ///
2240 /// # Text directionality
2241 ///
2242 /// A string is a sequence of bytes. `start` in this context means the first
2243 /// position of that byte string; for a left-to-right language like English or
2244 /// Russian, this will be left side, and for right-to-left languages like
2245 /// Arabic or Hebrew, this will be the right side.
2246 ///
2247 /// # Examples
2248 ///
2249 /// Basic usage:
2250 ///
2251 /// ```
2252 /// let s = "\n Hello\tworld\t\n";
2253 /// assert_eq!("Hello\tworld\t\n", s.trim_start());
2254 /// ```
2255 ///
2256 /// Directionality:
2257 ///
2258 /// ```
2259 /// let s = " English ";
2260 /// assert!(Some('E') == s.trim_start().chars().next());
2261 ///
2262 /// let s = " עברית ";
2263 /// assert!(Some('ע') == s.trim_start().chars().next());
2264 /// ```
2265 #[inline]
2266 #[must_use = "this returns the trimmed string as a new slice, \
2267 without modifying the original"]
2268 #[stable(feature = "trim_direction", since = "1.30.0")]
2269 #[rustc_diagnostic_item = "str_trim_start"]
2270 #[cfg(not(feature = "ferrocene_certified"))]
2271 pub fn trim_start(&self) -> &str {
2272 self.trim_start_matches(char::is_whitespace)
2273 }
2274
2275 /// Returns a string slice with trailing whitespace removed.
2276 ///
2277 /// 'Whitespace' is defined according to the terms of the Unicode Derived
2278 /// Core Property `White_Space`, which includes newlines.
2279 ///
2280 /// # Text directionality
2281 ///
2282 /// A string is a sequence of bytes. `end` in this context means the last
2283 /// position of that byte string; for a left-to-right language like English or
2284 /// Russian, this will be right side, and for right-to-left languages like
2285 /// Arabic or Hebrew, this will be the left side.
2286 ///
2287 /// # Examples
2288 ///
2289 /// Basic usage:
2290 ///
2291 /// ```
2292 /// let s = "\n Hello\tworld\t\n";
2293 /// assert_eq!("\n Hello\tworld", s.trim_end());
2294 /// ```
2295 ///
2296 /// Directionality:
2297 ///
2298 /// ```
2299 /// let s = " English ";
2300 /// assert!(Some('h') == s.trim_end().chars().rev().next());
2301 ///
2302 /// let s = " עברית ";
2303 /// assert!(Some('ת') == s.trim_end().chars().rev().next());
2304 /// ```
2305 #[inline]
2306 #[must_use = "this returns the trimmed string as a new slice, \
2307 without modifying the original"]
2308 #[stable(feature = "trim_direction", since = "1.30.0")]
2309 #[rustc_diagnostic_item = "str_trim_end"]
2310 #[cfg(not(feature = "ferrocene_certified"))]
2311 pub fn trim_end(&self) -> &str {
2312 self.trim_end_matches(char::is_whitespace)
2313 }
2314
2315 /// Returns a string slice with leading whitespace removed.
2316 ///
2317 /// 'Whitespace' is defined according to the terms of the Unicode Derived
2318 /// Core Property `White_Space`.
2319 ///
2320 /// # Text directionality
2321 ///
2322 /// A string is a sequence of bytes. 'Left' in this context means the first
2323 /// position of that byte string; for a language like Arabic or Hebrew
2324 /// which are 'right to left' rather than 'left to right', this will be
2325 /// the _right_ side, not the left.
2326 ///
2327 /// # Examples
2328 ///
2329 /// Basic usage:
2330 ///
2331 /// ```
2332 /// let s = " Hello\tworld\t";
2333 ///
2334 /// assert_eq!("Hello\tworld\t", s.trim_left());
2335 /// ```
2336 ///
2337 /// Directionality:
2338 ///
2339 /// ```
2340 /// let s = " English";
2341 /// assert!(Some('E') == s.trim_left().chars().next());
2342 ///
2343 /// let s = " עברית";
2344 /// assert!(Some('ע') == s.trim_left().chars().next());
2345 /// ```
2346 #[must_use = "this returns the trimmed string as a new slice, \
2347 without modifying the original"]
2348 #[inline]
2349 #[stable(feature = "rust1", since = "1.0.0")]
2350 #[deprecated(since = "1.33.0", note = "superseded by `trim_start`", suggestion = "trim_start")]
2351 #[cfg(not(feature = "ferrocene_certified"))]
2352 pub fn trim_left(&self) -> &str {
2353 self.trim_start()
2354 }
2355
2356 /// Returns a string slice with trailing whitespace removed.
2357 ///
2358 /// 'Whitespace' is defined according to the terms of the Unicode Derived
2359 /// Core Property `White_Space`.
2360 ///
2361 /// # Text directionality
2362 ///
2363 /// A string is a sequence of bytes. 'Right' in this context means the last
2364 /// position of that byte string; for a language like Arabic or Hebrew
2365 /// which are 'right to left' rather than 'left to right', this will be
2366 /// the _left_ side, not the right.
2367 ///
2368 /// # Examples
2369 ///
2370 /// Basic usage:
2371 ///
2372 /// ```
2373 /// let s = " Hello\tworld\t";
2374 ///
2375 /// assert_eq!(" Hello\tworld", s.trim_right());
2376 /// ```
2377 ///
2378 /// Directionality:
2379 ///
2380 /// ```
2381 /// let s = "English ";
2382 /// assert!(Some('h') == s.trim_right().chars().rev().next());
2383 ///
2384 /// let s = "עברית ";
2385 /// assert!(Some('ת') == s.trim_right().chars().rev().next());
2386 /// ```
2387 #[must_use = "this returns the trimmed string as a new slice, \
2388 without modifying the original"]
2389 #[inline]
2390 #[stable(feature = "rust1", since = "1.0.0")]
2391 #[deprecated(since = "1.33.0", note = "superseded by `trim_end`", suggestion = "trim_end")]
2392 #[cfg(not(feature = "ferrocene_certified"))]
2393 pub fn trim_right(&self) -> &str {
2394 self.trim_end()
2395 }
2396
2397 /// Returns a string slice with all prefixes and suffixes that match a
2398 /// pattern repeatedly removed.
2399 ///
2400 /// The [pattern] can be a [`char`], a slice of [`char`]s, or a function
2401 /// or closure that determines if a character matches.
2402 ///
2403 /// [`char`]: prim@char
2404 /// [pattern]: self::pattern
2405 ///
2406 /// # Examples
2407 ///
2408 /// Simple patterns:
2409 ///
2410 /// ```
2411 /// assert_eq!("11foo1bar11".trim_matches('1'), "foo1bar");
2412 /// assert_eq!("123foo1bar123".trim_matches(char::is_numeric), "foo1bar");
2413 ///
2414 /// let x: &[_] = &['1', '2'];
2415 /// assert_eq!("12foo1bar12".trim_matches(x), "foo1bar");
2416 /// ```
2417 ///
2418 /// A more complex pattern, using a closure:
2419 ///
2420 /// ```
2421 /// assert_eq!("1foo1barXX".trim_matches(|c| c == '1' || c == 'X'), "foo1bar");
2422 /// ```
2423 #[must_use = "this returns the trimmed string as a new slice, \
2424 without modifying the original"]
2425 #[stable(feature = "rust1", since = "1.0.0")]
2426 #[cfg(not(feature = "ferrocene_certified"))]
2427 pub fn trim_matches<P: Pattern>(&self, pat: P) -> &str
2428 where
2429 for<'a> P::Searcher<'a>: DoubleEndedSearcher<'a>,
2430 {
2431 let mut i = 0;
2432 let mut j = 0;
2433 let mut matcher = pat.into_searcher(self);
2434 if let Some((a, b)) = matcher.next_reject() {
2435 i = a;
2436 j = b; // Remember earliest known match, correct it below if
2437 // last match is different
2438 }
2439 if let Some((_, b)) = matcher.next_reject_back() {
2440 j = b;
2441 }
2442 // SAFETY: `Searcher` is known to return valid indices.
2443 unsafe { self.get_unchecked(i..j) }
2444 }
2445
2446 /// Returns a string slice with all prefixes that match a pattern
2447 /// repeatedly removed.
2448 ///
2449 /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a
2450 /// function or closure that determines if a character matches.
2451 ///
2452 /// [`char`]: prim@char
2453 /// [pattern]: self::pattern
2454 ///
2455 /// # Text directionality
2456 ///
2457 /// A string is a sequence of bytes. `start` in this context means the first
2458 /// position of that byte string; for a left-to-right language like English or
2459 /// Russian, this will be left side, and for right-to-left languages like
2460 /// Arabic or Hebrew, this will be the right side.
2461 ///
2462 /// # Examples
2463 ///
2464 /// ```
2465 /// assert_eq!("11foo1bar11".trim_start_matches('1'), "foo1bar11");
2466 /// assert_eq!("123foo1bar123".trim_start_matches(char::is_numeric), "foo1bar123");
2467 ///
2468 /// let x: &[_] = &['1', '2'];
2469 /// assert_eq!("12foo1bar12".trim_start_matches(x), "foo1bar12");
2470 /// ```
2471 #[must_use = "this returns the trimmed string as a new slice, \
2472 without modifying the original"]
2473 #[stable(feature = "trim_direction", since = "1.30.0")]
2474 #[cfg(not(feature = "ferrocene_certified"))]
2475 pub fn trim_start_matches<P: Pattern>(&self, pat: P) -> &str {
2476 let mut i = self.len();
2477 let mut matcher = pat.into_searcher(self);
2478 if let Some((a, _)) = matcher.next_reject() {
2479 i = a;
2480 }
2481 // SAFETY: `Searcher` is known to return valid indices.
2482 unsafe { self.get_unchecked(i..self.len()) }
2483 }
2484
2485 /// Returns a string slice with the prefix removed.
2486 ///
2487 /// If the string starts with the pattern `prefix`, returns the substring after the prefix,
2488 /// wrapped in `Some`. Unlike [`trim_start_matches`], this method removes the prefix exactly once.
2489 ///
2490 /// If the string does not start with `prefix`, returns `None`.
2491 ///
2492 /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a
2493 /// function or closure that determines if a character matches.
2494 ///
2495 /// [`char`]: prim@char
2496 /// [pattern]: self::pattern
2497 /// [`trim_start_matches`]: Self::trim_start_matches
2498 ///
2499 /// # Examples
2500 ///
2501 /// ```
2502 /// assert_eq!("foo:bar".strip_prefix("foo:"), Some("bar"));
2503 /// assert_eq!("foo:bar".strip_prefix("bar"), None);
2504 /// assert_eq!("foofoo".strip_prefix("foo"), Some("foo"));
2505 /// ```
2506 #[must_use = "this returns the remaining substring as a new slice, \
2507 without modifying the original"]
2508 #[stable(feature = "str_strip", since = "1.45.0")]
2509 #[cfg(not(feature = "ferrocene_certified"))]
2510 pub fn strip_prefix<P: Pattern>(&self, prefix: P) -> Option<&str> {
2511 prefix.strip_prefix_of(self)
2512 }
2513
2514 /// Returns a string slice with the suffix removed.
2515 ///
2516 /// If the string ends with the pattern `suffix`, returns the substring before the suffix,
2517 /// wrapped in `Some`. Unlike [`trim_end_matches`], this method removes the suffix exactly once.
2518 ///
2519 /// If the string does not end with `suffix`, returns `None`.
2520 ///
2521 /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a
2522 /// function or closure that determines if a character matches.
2523 ///
2524 /// [`char`]: prim@char
2525 /// [pattern]: self::pattern
2526 /// [`trim_end_matches`]: Self::trim_end_matches
2527 ///
2528 /// # Examples
2529 ///
2530 /// ```
2531 /// assert_eq!("bar:foo".strip_suffix(":foo"), Some("bar"));
2532 /// assert_eq!("bar:foo".strip_suffix("bar"), None);
2533 /// assert_eq!("foofoo".strip_suffix("foo"), Some("foo"));
2534 /// ```
2535 #[must_use = "this returns the remaining substring as a new slice, \
2536 without modifying the original"]
2537 #[stable(feature = "str_strip", since = "1.45.0")]
2538 #[cfg(not(feature = "ferrocene_certified"))]
2539 pub fn strip_suffix<P: Pattern>(&self, suffix: P) -> Option<&str>
2540 where
2541 for<'a> P::Searcher<'a>: ReverseSearcher<'a>,
2542 {
2543 suffix.strip_suffix_of(self)
2544 }
2545
2546 /// Returns a string slice with the prefix and suffix removed.
2547 ///
2548 /// If the string starts with the pattern `prefix` and ends with the pattern `suffix`, returns
2549 /// the substring after the prefix and before the suffix, wrapped in `Some`.
2550 /// Unlike [`trim_start_matches`] and [`trim_end_matches`], this method removes both the prefix
2551 /// and suffix exactly once.
2552 ///
2553 /// If the string does not start with `prefix` or does not end with `suffix`, returns `None`.
2554 ///
2555 /// Each [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a
2556 /// function or closure that determines if a character matches.
2557 ///
2558 /// [`char`]: prim@char
2559 /// [pattern]: self::pattern
2560 /// [`trim_start_matches`]: Self::trim_start_matches
2561 /// [`trim_end_matches`]: Self::trim_end_matches
2562 ///
2563 /// # Examples
2564 ///
2565 /// ```
2566 /// #![feature(strip_circumfix)]
2567 ///
2568 /// assert_eq!("bar:hello:foo".strip_circumfix("bar:", ":foo"), Some("hello"));
2569 /// assert_eq!("bar:foo".strip_circumfix("foo", "foo"), None);
2570 /// assert_eq!("foo:bar;".strip_circumfix("foo:", ';'), Some("bar"));
2571 /// ```
2572 #[must_use = "this returns the remaining substring as a new slice, \
2573 without modifying the original"]
2574 #[unstable(feature = "strip_circumfix", issue = "147946")]
2575 #[cfg(not(feature = "ferrocene_certified"))]
2576 pub fn strip_circumfix<P: Pattern, S: Pattern>(&self, prefix: P, suffix: S) -> Option<&str>
2577 where
2578 for<'a> S::Searcher<'a>: ReverseSearcher<'a>,
2579 {
2580 self.strip_prefix(prefix)?.strip_suffix(suffix)
2581 }
2582
2583 /// Returns a string slice with the optional prefix removed.
2584 ///
2585 /// If the string starts with the pattern `prefix`, returns the substring after the prefix.
2586 /// Unlike [`strip_prefix`], this method always returns `&str` for easy method chaining,
2587 /// instead of returning [`Option<&str>`].
2588 ///
2589 /// If the string does not start with `prefix`, returns the original string unchanged.
2590 ///
2591 /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a
2592 /// function or closure that determines if a character matches.
2593 ///
2594 /// [`char`]: prim@char
2595 /// [pattern]: self::pattern
2596 /// [`strip_prefix`]: Self::strip_prefix
2597 ///
2598 /// # Examples
2599 ///
2600 /// ```
2601 /// #![feature(trim_prefix_suffix)]
2602 ///
2603 /// // Prefix present - removes it
2604 /// assert_eq!("foo:bar".trim_prefix("foo:"), "bar");
2605 /// assert_eq!("foofoo".trim_prefix("foo"), "foo");
2606 ///
2607 /// // Prefix absent - returns original string
2608 /// assert_eq!("foo:bar".trim_prefix("bar"), "foo:bar");
2609 ///
2610 /// // Method chaining example
2611 /// assert_eq!("<https://example.com/>".trim_prefix('<').trim_suffix('>'), "https://example.com/");
2612 /// ```
2613 #[must_use = "this returns the remaining substring as a new slice, \
2614 without modifying the original"]
2615 #[unstable(feature = "trim_prefix_suffix", issue = "142312")]
2616 #[cfg(not(feature = "ferrocene_certified"))]
2617 pub fn trim_prefix<P: Pattern>(&self, prefix: P) -> &str {
2618 prefix.strip_prefix_of(self).unwrap_or(self)
2619 }
2620
2621 /// Returns a string slice with the optional suffix removed.
2622 ///
2623 /// If the string ends with the pattern `suffix`, returns the substring before the suffix.
2624 /// Unlike [`strip_suffix`], this method always returns `&str` for easy method chaining,
2625 /// instead of returning [`Option<&str>`].
2626 ///
2627 /// If the string does not end with `suffix`, returns the original string unchanged.
2628 ///
2629 /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a
2630 /// function or closure that determines if a character matches.
2631 ///
2632 /// [`char`]: prim@char
2633 /// [pattern]: self::pattern
2634 /// [`strip_suffix`]: Self::strip_suffix
2635 ///
2636 /// # Examples
2637 ///
2638 /// ```
2639 /// #![feature(trim_prefix_suffix)]
2640 ///
2641 /// // Suffix present - removes it
2642 /// assert_eq!("bar:foo".trim_suffix(":foo"), "bar");
2643 /// assert_eq!("foofoo".trim_suffix("foo"), "foo");
2644 ///
2645 /// // Suffix absent - returns original string
2646 /// assert_eq!("bar:foo".trim_suffix("bar"), "bar:foo");
2647 ///
2648 /// // Method chaining example
2649 /// assert_eq!("<https://example.com/>".trim_prefix('<').trim_suffix('>'), "https://example.com/");
2650 /// ```
2651 #[must_use = "this returns the remaining substring as a new slice, \
2652 without modifying the original"]
2653 #[unstable(feature = "trim_prefix_suffix", issue = "142312")]
2654 #[cfg(not(feature = "ferrocene_certified"))]
2655 pub fn trim_suffix<P: Pattern>(&self, suffix: P) -> &str
2656 where
2657 for<'a> P::Searcher<'a>: ReverseSearcher<'a>,
2658 {
2659 suffix.strip_suffix_of(self).unwrap_or(self)
2660 }
2661
2662 /// Returns a string slice with all suffixes that match a pattern
2663 /// repeatedly removed.
2664 ///
2665 /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a
2666 /// function or closure that determines if a character matches.
2667 ///
2668 /// [`char`]: prim@char
2669 /// [pattern]: self::pattern
2670 ///
2671 /// # Text directionality
2672 ///
2673 /// A string is a sequence of bytes. `end` in this context means the last
2674 /// position of that byte string; for a left-to-right language like English or
2675 /// Russian, this will be right side, and for right-to-left languages like
2676 /// Arabic or Hebrew, this will be the left side.
2677 ///
2678 /// # Examples
2679 ///
2680 /// Simple patterns:
2681 ///
2682 /// ```
2683 /// assert_eq!("11foo1bar11".trim_end_matches('1'), "11foo1bar");
2684 /// assert_eq!("123foo1bar123".trim_end_matches(char::is_numeric), "123foo1bar");
2685 ///
2686 /// let x: &[_] = &['1', '2'];
2687 /// assert_eq!("12foo1bar12".trim_end_matches(x), "12foo1bar");
2688 /// ```
2689 ///
2690 /// A more complex pattern, using a closure:
2691 ///
2692 /// ```
2693 /// assert_eq!("1fooX".trim_end_matches(|c| c == '1' || c == 'X'), "1foo");
2694 /// ```
2695 #[must_use = "this returns the trimmed string as a new slice, \
2696 without modifying the original"]
2697 #[stable(feature = "trim_direction", since = "1.30.0")]
2698 #[cfg(not(feature = "ferrocene_certified"))]
2699 pub fn trim_end_matches<P: Pattern>(&self, pat: P) -> &str
2700 where
2701 for<'a> P::Searcher<'a>: ReverseSearcher<'a>,
2702 {
2703 let mut j = 0;
2704 let mut matcher = pat.into_searcher(self);
2705 if let Some((_, b)) = matcher.next_reject_back() {
2706 j = b;
2707 }
2708 // SAFETY: `Searcher` is known to return valid indices.
2709 unsafe { self.get_unchecked(0..j) }
2710 }
2711
2712 /// Returns a string slice with all prefixes that match a pattern
2713 /// repeatedly removed.
2714 ///
2715 /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a
2716 /// function or closure that determines if a character matches.
2717 ///
2718 /// [`char`]: prim@char
2719 /// [pattern]: self::pattern
2720 ///
2721 /// # Text directionality
2722 ///
2723 /// A string is a sequence of bytes. 'Left' in this context means the first
2724 /// position of that byte string; for a language like Arabic or Hebrew
2725 /// which are 'right to left' rather than 'left to right', this will be
2726 /// the _right_ side, not the left.
2727 ///
2728 /// # Examples
2729 ///
2730 /// ```
2731 /// assert_eq!("11foo1bar11".trim_left_matches('1'), "foo1bar11");
2732 /// assert_eq!("123foo1bar123".trim_left_matches(char::is_numeric), "foo1bar123");
2733 ///
2734 /// let x: &[_] = &['1', '2'];
2735 /// assert_eq!("12foo1bar12".trim_left_matches(x), "foo1bar12");
2736 /// ```
2737 #[stable(feature = "rust1", since = "1.0.0")]
2738 #[deprecated(
2739 since = "1.33.0",
2740 note = "superseded by `trim_start_matches`",
2741 suggestion = "trim_start_matches"
2742 )]
2743 #[cfg(not(feature = "ferrocene_certified"))]
2744 pub fn trim_left_matches<P: Pattern>(&self, pat: P) -> &str {
2745 self.trim_start_matches(pat)
2746 }
2747
2748 /// Returns a string slice with all suffixes that match a pattern
2749 /// repeatedly removed.
2750 ///
2751 /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a
2752 /// function or closure that determines if a character matches.
2753 ///
2754 /// [`char`]: prim@char
2755 /// [pattern]: self::pattern
2756 ///
2757 /// # Text directionality
2758 ///
2759 /// A string is a sequence of bytes. 'Right' in this context means the last
2760 /// position of that byte string; for a language like Arabic or Hebrew
2761 /// which are 'right to left' rather than 'left to right', this will be
2762 /// the _left_ side, not the right.
2763 ///
2764 /// # Examples
2765 ///
2766 /// Simple patterns:
2767 ///
2768 /// ```
2769 /// assert_eq!("11foo1bar11".trim_right_matches('1'), "11foo1bar");
2770 /// assert_eq!("123foo1bar123".trim_right_matches(char::is_numeric), "123foo1bar");
2771 ///
2772 /// let x: &[_] = &['1', '2'];
2773 /// assert_eq!("12foo1bar12".trim_right_matches(x), "12foo1bar");
2774 /// ```
2775 ///
2776 /// A more complex pattern, using a closure:
2777 ///
2778 /// ```
2779 /// assert_eq!("1fooX".trim_right_matches(|c| c == '1' || c == 'X'), "1foo");
2780 /// ```
2781 #[stable(feature = "rust1", since = "1.0.0")]
2782 #[deprecated(
2783 since = "1.33.0",
2784 note = "superseded by `trim_end_matches`",
2785 suggestion = "trim_end_matches"
2786 )]
2787 #[cfg(not(feature = "ferrocene_certified"))]
2788 pub fn trim_right_matches<P: Pattern>(&self, pat: P) -> &str
2789 where
2790 for<'a> P::Searcher<'a>: ReverseSearcher<'a>,
2791 {
2792 self.trim_end_matches(pat)
2793 }
2794
2795 /// Parses this string slice into another type.
2796 ///
2797 /// Because `parse` is so general, it can cause problems with type
2798 /// inference. As such, `parse` is one of the few times you'll see
2799 /// the syntax affectionately known as the 'turbofish': `::<>`. This
2800 /// helps the inference algorithm understand specifically which type
2801 /// you're trying to parse into.
2802 ///
2803 /// `parse` can parse into any type that implements the [`FromStr`] trait.
2804 ///
2805 /// # Errors
2806 ///
2807 /// Will return [`Err`] if it's not possible to parse this string slice into
2808 /// the desired type.
2809 ///
2810 /// [`Err`]: FromStr::Err
2811 ///
2812 /// # Examples
2813 ///
2814 /// Basic usage:
2815 ///
2816 /// ```
2817 /// let four: u32 = "4".parse().unwrap();
2818 ///
2819 /// assert_eq!(4, four);
2820 /// ```
2821 ///
2822 /// Using the 'turbofish' instead of annotating `four`:
2823 ///
2824 /// ```
2825 /// let four = "4".parse::<u32>();
2826 ///
2827 /// assert_eq!(Ok(4), four);
2828 /// ```
2829 ///
2830 /// Failing to parse:
2831 ///
2832 /// ```
2833 /// let nope = "j".parse::<u32>();
2834 ///
2835 /// assert!(nope.is_err());
2836 /// ```
2837 #[inline]
2838 #[stable(feature = "rust1", since = "1.0.0")]
2839 #[cfg(not(feature = "ferrocene_certified"))]
2840 pub fn parse<F: FromStr>(&self) -> Result<F, F::Err> {
2841 FromStr::from_str(self)
2842 }
2843
2844 /// Checks if all characters in this string are within the ASCII range.
2845 ///
2846 /// An empty string returns `true`.
2847 ///
2848 /// # Examples
2849 ///
2850 /// ```
2851 /// let ascii = "hello!\n";
2852 /// let non_ascii = "Grüße, Jürgen ❤";
2853 ///
2854 /// assert!(ascii.is_ascii());
2855 /// assert!(!non_ascii.is_ascii());
2856 /// ```
2857 #[stable(feature = "ascii_methods_on_intrinsics", since = "1.23.0")]
2858 #[rustc_const_stable(feature = "const_slice_is_ascii", since = "1.74.0")]
2859 #[must_use]
2860 #[inline]
2861 #[cfg(not(feature = "ferrocene_certified"))]
2862 pub const fn is_ascii(&self) -> bool {
2863 // We can treat each byte as character here: all multibyte characters
2864 // start with a byte that is not in the ASCII range, so we will stop
2865 // there already.
2866 self.as_bytes().is_ascii()
2867 }
2868
2869 /// If this string slice [`is_ascii`](Self::is_ascii), returns it as a slice
2870 /// of [ASCII characters](`ascii::Char`), otherwise returns `None`.
2871 #[unstable(feature = "ascii_char", issue = "110998")]
2872 #[must_use]
2873 #[inline]
2874 #[cfg(not(feature = "ferrocene_certified"))]
2875 pub const fn as_ascii(&self) -> Option<&[ascii::Char]> {
2876 // Like in `is_ascii`, we can work on the bytes directly.
2877 self.as_bytes().as_ascii()
2878 }
2879
2880 /// Converts this string slice into a slice of [ASCII characters](ascii::Char),
2881 /// without checking whether they are valid.
2882 ///
2883 /// # Safety
2884 ///
2885 /// Every character in this string must be ASCII, or else this is UB.
2886 #[unstable(feature = "ascii_char", issue = "110998")]
2887 #[must_use]
2888 #[inline]
2889 #[cfg(not(feature = "ferrocene_certified"))]
2890 pub const unsafe fn as_ascii_unchecked(&self) -> &[ascii::Char] {
2891 assert_unsafe_precondition!(
2892 check_library_ub,
2893 "as_ascii_unchecked requires that the string is valid ASCII",
2894 (it: &str = self) => it.is_ascii()
2895 );
2896
2897 // SAFETY: the caller promised that every byte of this string slice
2898 // is ASCII.
2899 unsafe { self.as_bytes().as_ascii_unchecked() }
2900 }
2901
2902 /// Checks that two strings are an ASCII case-insensitive match.
2903 ///
2904 /// Same as `to_ascii_lowercase(a) == to_ascii_lowercase(b)`,
2905 /// but without allocating and copying temporaries.
2906 ///
2907 /// # Examples
2908 ///
2909 /// ```
2910 /// assert!("Ferris".eq_ignore_ascii_case("FERRIS"));
2911 /// assert!("Ferrös".eq_ignore_ascii_case("FERRöS"));
2912 /// assert!(!"Ferrös".eq_ignore_ascii_case("FERRÖS"));
2913 /// ```
2914 #[stable(feature = "ascii_methods_on_intrinsics", since = "1.23.0")]
2915 #[rustc_const_stable(feature = "const_eq_ignore_ascii_case", since = "1.89.0")]
2916 #[must_use]
2917 #[inline]
2918 #[cfg(not(feature = "ferrocene_certified"))]
2919 pub const fn eq_ignore_ascii_case(&self, other: &str) -> bool {
2920 self.as_bytes().eq_ignore_ascii_case(other.as_bytes())
2921 }
2922
2923 /// Converts this string to its ASCII upper case equivalent in-place.
2924 ///
2925 /// ASCII letters 'a' to 'z' are mapped to 'A' to 'Z',
2926 /// but non-ASCII letters are unchanged.
2927 ///
2928 /// To return a new uppercased value without modifying the existing one, use
2929 /// [`to_ascii_uppercase()`].
2930 ///
2931 /// [`to_ascii_uppercase()`]: #method.to_ascii_uppercase
2932 ///
2933 /// # Examples
2934 ///
2935 /// ```
2936 /// let mut s = String::from("Grüße, Jürgen ❤");
2937 ///
2938 /// s.make_ascii_uppercase();
2939 ///
2940 /// assert_eq!("GRüßE, JüRGEN ❤", s);
2941 /// ```
2942 #[stable(feature = "ascii_methods_on_intrinsics", since = "1.23.0")]
2943 #[rustc_const_stable(feature = "const_make_ascii", since = "1.84.0")]
2944 #[inline]
2945 #[cfg(not(feature = "ferrocene_certified"))]
2946 pub const fn make_ascii_uppercase(&mut self) {
2947 // SAFETY: changing ASCII letters only does not invalidate UTF-8.
2948 let me = unsafe { self.as_bytes_mut() };
2949 me.make_ascii_uppercase()
2950 }
2951
2952 /// Converts this string to its ASCII lower case equivalent in-place.
2953 ///
2954 /// ASCII letters 'A' to 'Z' are mapped to 'a' to 'z',
2955 /// but non-ASCII letters are unchanged.
2956 ///
2957 /// To return a new lowercased value without modifying the existing one, use
2958 /// [`to_ascii_lowercase()`].
2959 ///
2960 /// [`to_ascii_lowercase()`]: #method.to_ascii_lowercase
2961 ///
2962 /// # Examples
2963 ///
2964 /// ```
2965 /// let mut s = String::from("GRÜßE, JÜRGEN ❤");
2966 ///
2967 /// s.make_ascii_lowercase();
2968 ///
2969 /// assert_eq!("grÜße, jÜrgen ❤", s);
2970 /// ```
2971 #[stable(feature = "ascii_methods_on_intrinsics", since = "1.23.0")]
2972 #[rustc_const_stable(feature = "const_make_ascii", since = "1.84.0")]
2973 #[inline]
2974 #[cfg(not(feature = "ferrocene_certified"))]
2975 pub const fn make_ascii_lowercase(&mut self) {
2976 // SAFETY: changing ASCII letters only does not invalidate UTF-8.
2977 let me = unsafe { self.as_bytes_mut() };
2978 me.make_ascii_lowercase()
2979 }
2980
2981 /// Returns a string slice with leading ASCII whitespace removed.
2982 ///
2983 /// 'Whitespace' refers to the definition used by
2984 /// [`u8::is_ascii_whitespace`].
2985 ///
2986 /// [`u8::is_ascii_whitespace`]: u8::is_ascii_whitespace
2987 ///
2988 /// # Examples
2989 ///
2990 /// ```
2991 /// assert_eq!(" \t \u{3000}hello world\n".trim_ascii_start(), "\u{3000}hello world\n");
2992 /// assert_eq!(" ".trim_ascii_start(), "");
2993 /// assert_eq!("".trim_ascii_start(), "");
2994 /// ```
2995 #[must_use = "this returns the trimmed string as a new slice, \
2996 without modifying the original"]
2997 #[stable(feature = "byte_slice_trim_ascii", since = "1.80.0")]
2998 #[rustc_const_stable(feature = "byte_slice_trim_ascii", since = "1.80.0")]
2999 #[inline]
3000 #[cfg(not(feature = "ferrocene_certified"))]
3001 pub const fn trim_ascii_start(&self) -> &str {
3002 // SAFETY: Removing ASCII characters from a `&str` does not invalidate
3003 // UTF-8.
3004 unsafe { core::str::from_utf8_unchecked(self.as_bytes().trim_ascii_start()) }
3005 }
3006
3007 /// Returns a string slice with trailing ASCII whitespace removed.
3008 ///
3009 /// 'Whitespace' refers to the definition used by
3010 /// [`u8::is_ascii_whitespace`].
3011 ///
3012 /// [`u8::is_ascii_whitespace`]: u8::is_ascii_whitespace
3013 ///
3014 /// # Examples
3015 ///
3016 /// ```
3017 /// assert_eq!("\r hello world\u{3000}\n ".trim_ascii_end(), "\r hello world\u{3000}");
3018 /// assert_eq!(" ".trim_ascii_end(), "");
3019 /// assert_eq!("".trim_ascii_end(), "");
3020 /// ```
3021 #[must_use = "this returns the trimmed string as a new slice, \
3022 without modifying the original"]
3023 #[stable(feature = "byte_slice_trim_ascii", since = "1.80.0")]
3024 #[rustc_const_stable(feature = "byte_slice_trim_ascii", since = "1.80.0")]
3025 #[inline]
3026 #[cfg(not(feature = "ferrocene_certified"))]
3027 pub const fn trim_ascii_end(&self) -> &str {
3028 // SAFETY: Removing ASCII characters from a `&str` does not invalidate
3029 // UTF-8.
3030 unsafe { core::str::from_utf8_unchecked(self.as_bytes().trim_ascii_end()) }
3031 }
3032
3033 /// Returns a string slice with leading and trailing ASCII whitespace
3034 /// removed.
3035 ///
3036 /// 'Whitespace' refers to the definition used by
3037 /// [`u8::is_ascii_whitespace`].
3038 ///
3039 /// [`u8::is_ascii_whitespace`]: u8::is_ascii_whitespace
3040 ///
3041 /// # Examples
3042 ///
3043 /// ```
3044 /// assert_eq!("\r hello world\n ".trim_ascii(), "hello world");
3045 /// assert_eq!(" ".trim_ascii(), "");
3046 /// assert_eq!("".trim_ascii(), "");
3047 /// ```
3048 #[must_use = "this returns the trimmed string as a new slice, \
3049 without modifying the original"]
3050 #[stable(feature = "byte_slice_trim_ascii", since = "1.80.0")]
3051 #[rustc_const_stable(feature = "byte_slice_trim_ascii", since = "1.80.0")]
3052 #[inline]
3053 #[cfg(not(feature = "ferrocene_certified"))]
3054 pub const fn trim_ascii(&self) -> &str {
3055 // SAFETY: Removing ASCII characters from a `&str` does not invalidate
3056 // UTF-8.
3057 unsafe { core::str::from_utf8_unchecked(self.as_bytes().trim_ascii()) }
3058 }
3059
3060 /// Returns an iterator that escapes each char in `self` with [`char::escape_debug`].
3061 ///
3062 /// Note: only extended grapheme codepoints that begin the string will be
3063 /// escaped.
3064 ///
3065 /// # Examples
3066 ///
3067 /// As an iterator:
3068 ///
3069 /// ```
3070 /// for c in "❤\n!".escape_debug() {
3071 /// print!("{c}");
3072 /// }
3073 /// println!();
3074 /// ```
3075 ///
3076 /// Using `println!` directly:
3077 ///
3078 /// ```
3079 /// println!("{}", "❤\n!".escape_debug());
3080 /// ```
3081 ///
3082 ///
3083 /// Both are equivalent to:
3084 ///
3085 /// ```
3086 /// println!("❤\\n!");
3087 /// ```
3088 ///
3089 /// Using `to_string`:
3090 ///
3091 /// ```
3092 /// assert_eq!("❤\n!".escape_debug().to_string(), "❤\\n!");
3093 /// ```
3094 #[must_use = "this returns the escaped string as an iterator, \
3095 without modifying the original"]
3096 #[stable(feature = "str_escape", since = "1.34.0")]
3097 #[cfg(not(feature = "ferrocene_certified"))]
3098 pub fn escape_debug(&self) -> EscapeDebug<'_> {
3099 let mut chars = self.chars();
3100 EscapeDebug {
3101 inner: chars
3102 .next()
3103 .map(|first| first.escape_debug_ext(EscapeDebugExtArgs::ESCAPE_ALL))
3104 .into_iter()
3105 .flatten()
3106 .chain(chars.flat_map(CharEscapeDebugContinue)),
3107 }
3108 }
3109
3110 /// Returns an iterator that escapes each char in `self` with [`char::escape_default`].
3111 ///
3112 /// # Examples
3113 ///
3114 /// As an iterator:
3115 ///
3116 /// ```
3117 /// for c in "❤\n!".escape_default() {
3118 /// print!("{c}");
3119 /// }
3120 /// println!();
3121 /// ```
3122 ///
3123 /// Using `println!` directly:
3124 ///
3125 /// ```
3126 /// println!("{}", "❤\n!".escape_default());
3127 /// ```
3128 ///
3129 ///
3130 /// Both are equivalent to:
3131 ///
3132 /// ```
3133 /// println!("\\u{{2764}}\\n!");
3134 /// ```
3135 ///
3136 /// Using `to_string`:
3137 ///
3138 /// ```
3139 /// assert_eq!("❤\n!".escape_default().to_string(), "\\u{2764}\\n!");
3140 /// ```
3141 #[must_use = "this returns the escaped string as an iterator, \
3142 without modifying the original"]
3143 #[stable(feature = "str_escape", since = "1.34.0")]
3144 #[cfg(not(feature = "ferrocene_certified"))]
3145 pub fn escape_default(&self) -> EscapeDefault<'_> {
3146 EscapeDefault { inner: self.chars().flat_map(CharEscapeDefault) }
3147 }
3148
3149 /// Returns an iterator that escapes each char in `self` with [`char::escape_unicode`].
3150 ///
3151 /// # Examples
3152 ///
3153 /// As an iterator:
3154 ///
3155 /// ```
3156 /// for c in "❤\n!".escape_unicode() {
3157 /// print!("{c}");
3158 /// }
3159 /// println!();
3160 /// ```
3161 ///
3162 /// Using `println!` directly:
3163 ///
3164 /// ```
3165 /// println!("{}", "❤\n!".escape_unicode());
3166 /// ```
3167 ///
3168 ///
3169 /// Both are equivalent to:
3170 ///
3171 /// ```
3172 /// println!("\\u{{2764}}\\u{{a}}\\u{{21}}");
3173 /// ```
3174 ///
3175 /// Using `to_string`:
3176 ///
3177 /// ```
3178 /// assert_eq!("❤\n!".escape_unicode().to_string(), "\\u{2764}\\u{a}\\u{21}");
3179 /// ```
3180 #[must_use = "this returns the escaped string as an iterator, \
3181 without modifying the original"]
3182 #[stable(feature = "str_escape", since = "1.34.0")]
3183 #[cfg(not(feature = "ferrocene_certified"))]
3184 pub fn escape_unicode(&self) -> EscapeUnicode<'_> {
3185 EscapeUnicode { inner: self.chars().flat_map(CharEscapeUnicode) }
3186 }
3187
3188 /// Returns the range that a substring points to.
3189 ///
3190 /// Returns `None` if `substr` does not point within `self`.
3191 ///
3192 /// Unlike [`str::find`], **this does not search through the string**.
3193 /// Instead, it uses pointer arithmetic to find where in the string
3194 /// `substr` is derived from.
3195 ///
3196 /// This is useful for extending [`str::split`] and similar methods.
3197 ///
3198 /// Note that this method may return false positives (typically either
3199 /// `Some(0..0)` or `Some(self.len()..self.len())`) if `substr` is a
3200 /// zero-length `str` that points at the beginning or end of another,
3201 /// independent, `str`.
3202 ///
3203 /// # Examples
3204 /// ```
3205 /// #![feature(substr_range)]
3206 ///
3207 /// let data = "a, b, b, a";
3208 /// let mut iter = data.split(", ").map(|s| data.substr_range(s).unwrap());
3209 ///
3210 /// assert_eq!(iter.next(), Some(0..1));
3211 /// assert_eq!(iter.next(), Some(3..4));
3212 /// assert_eq!(iter.next(), Some(6..7));
3213 /// assert_eq!(iter.next(), Some(9..10));
3214 /// ```
3215 #[must_use]
3216 #[unstable(feature = "substr_range", issue = "126769")]
3217 #[cfg(not(feature = "ferrocene_certified"))]
3218 pub fn substr_range(&self, substr: &str) -> Option<Range<usize>> {
3219 self.as_bytes().subslice_range(substr.as_bytes())
3220 }
3221
3222 /// Returns the same string as a string slice `&str`.
3223 ///
3224 /// This method is redundant when used directly on `&str`, but
3225 /// it helps dereferencing other string-like types to string slices,
3226 /// for example references to `Box<str>` or `Arc<str>`.
3227 #[inline]
3228 #[unstable(feature = "str_as_str", issue = "130366")]
3229 pub const fn as_str(&self) -> &str {
3230 self
3231 }
3232}
3233
3234#[stable(feature = "rust1", since = "1.0.0")]
3235#[rustc_const_unstable(feature = "const_convert", issue = "143773")]
3236impl const AsRef<[u8]> for str {
3237 #[inline]
3238 fn as_ref(&self) -> &[u8] {
3239 self.as_bytes()
3240 }
3241}
3242
3243#[stable(feature = "rust1", since = "1.0.0")]
3244#[rustc_const_unstable(feature = "const_default", issue = "143894")]
3245impl const Default for &str {
3246 /// Creates an empty str
3247 #[inline]
3248 fn default() -> Self {
3249 ""
3250 }
3251}
3252
3253#[stable(feature = "default_mut_str", since = "1.28.0")]
3254#[rustc_const_unstable(feature = "const_default", issue = "143894")]
3255#[cfg(not(feature = "ferrocene_certified"))]
3256impl const Default for &mut str {
3257 /// Creates an empty mutable str
3258 #[inline]
3259 fn default() -> Self {
3260 // SAFETY: The empty string is valid UTF-8.
3261 unsafe { from_utf8_unchecked_mut(&mut []) }
3262 }
3263}
3264
3265#[cfg(not(feature = "ferrocene_certified"))]
3266impl_fn_for_zst! {
3267 /// A nameable, cloneable fn type
3268 #[derive(Clone)]
3269 struct LinesMap impl<'a> Fn = |line: &'a str| -> &'a str {
3270 let Some(line) = line.strip_suffix('\n') else { return line };
3271 let Some(line) = line.strip_suffix('\r') else { return line };
3272 line
3273 };
3274
3275 #[derive(Clone)]
3276 struct CharEscapeDebugContinue impl Fn = |c: char| -> char::EscapeDebug {
3277 c.escape_debug_ext(EscapeDebugExtArgs {
3278 escape_grapheme_extended: false,
3279 escape_single_quote: true,
3280 escape_double_quote: true
3281 })
3282 };
3283
3284 #[derive(Clone)]
3285 struct CharEscapeUnicode impl Fn = |c: char| -> char::EscapeUnicode {
3286 c.escape_unicode()
3287 };
3288 #[derive(Clone)]
3289 struct CharEscapeDefault impl Fn = |c: char| -> char::EscapeDefault {
3290 c.escape_default()
3291 };
3292
3293 #[derive(Clone)]
3294 struct IsWhitespace impl Fn = |c: char| -> bool {
3295 c.is_whitespace()
3296 };
3297
3298 #[derive(Clone)]
3299 struct IsAsciiWhitespace impl Fn = |byte: &u8| -> bool {
3300 byte.is_ascii_whitespace()
3301 };
3302
3303 #[derive(Clone)]
3304 struct IsNotEmpty impl<'a, 'b> Fn = |s: &'a &'b str| -> bool {
3305 !s.is_empty()
3306 };
3307
3308 #[derive(Clone)]
3309 struct BytesIsNotEmpty impl<'a, 'b> Fn = |s: &'a &'b [u8]| -> bool {
3310 !s.is_empty()
3311 };
3312
3313 #[derive(Clone)]
3314 struct UnsafeBytesToStr impl<'a> Fn = |bytes: &'a [u8]| -> &'a str {
3315 // SAFETY: not safe
3316 unsafe { from_utf8_unchecked(bytes) }
3317 };
3318}
3319
3320// This is required to make `impl From<&str> for Box<dyn Error>` and `impl<E> From<E> for Box<dyn Error>` not overlap.
3321#[stable(feature = "error_in_core_neg_impl", since = "1.65.0")]
3322#[cfg(not(feature = "ferrocene_certified"))]
3323impl !crate::error::Error for &str {}