core/str/pattern.rs
1//! The string Pattern API.
2//!
3//! The Pattern API provides a generic mechanism for using different pattern
4//! types when searching through a string.
5//!
6//! For more details, see the traits [`Pattern`], [`Searcher`],
7//! [`ReverseSearcher`], and [`DoubleEndedSearcher`].
8//!
9//! Although this API is unstable, it is exposed via stable APIs on the
10//! [`str`] type.
11//!
12//! # Examples
13//!
14//! [`Pattern`] is [implemented][pattern-impls] in the stable API for
15//! [`&str`][`str`], [`char`], slices of [`char`], and functions and closures
16//! implementing `FnMut(char) -> bool`.
17//!
18//! ```
19//! let s = "Can you find a needle in a haystack?";
20//!
21//! // &str pattern
22//! assert_eq!(s.find("you"), Some(4));
23//! // char pattern
24//! assert_eq!(s.find('n'), Some(2));
25//! // array of chars pattern
26//! assert_eq!(s.find(&['a', 'e', 'i', 'o', 'u']), Some(1));
27//! // slice of chars pattern
28//! assert_eq!(s.find(&['a', 'e', 'i', 'o', 'u'][..]), Some(1));
29//! // closure pattern
30//! assert_eq!(s.find(|c: char| c.is_ascii_punctuation()), Some(35));
31//! ```
32//!
33//! [pattern-impls]: Pattern#implementors
34
35#![unstable(
36 feature = "pattern",
37 reason = "API not fully fleshed out and ready to be stabilized",
38 issue = "27721"
39)]
40
41#[cfg(not(feature = "ferrocene_certified"))]
42use crate::cmp::Ordering;
43#[cfg(not(feature = "ferrocene_certified"))]
44use crate::convert::TryInto as _;
45#[cfg(not(feature = "ferrocene_certified"))]
46use crate::slice::memchr;
47#[cfg(not(feature = "ferrocene_certified"))]
48use crate::{cmp, fmt};
49
50// Ferrocene addition: imports for certified subset
51#[cfg(feature = "ferrocene_certified")]
52#[rustfmt::skip]
53use crate::cmp;
54
55// Pattern
56
57/// A string pattern.
58///
59/// A `Pattern` expresses that the implementing type
60/// can be used as a string pattern for searching in a [`&str`][str].
61///
62/// For example, both `'a'` and `"aa"` are patterns that
63/// would match at index `1` in the string `"baaaab"`.
64///
65/// The trait itself acts as a builder for an associated
66/// [`Searcher`] type, which does the actual work of finding
67/// occurrences of the pattern in a string.
68///
69/// Depending on the type of the pattern, the behavior of methods like
70/// [`str::find`] and [`str::contains`] can change. The table below describes
71/// some of those behaviors.
72///
73/// | Pattern type | Match condition |
74/// |--------------------------|-------------------------------------------|
75/// | `&str` | is substring |
76/// | `char` | is contained in string |
77/// | `&[char]` | any char in slice is contained in string |
78/// | `F: FnMut(char) -> bool` | `F` returns `true` for a char in string |
79/// | `&&str` | is substring |
80/// | `&String` | is substring |
81///
82/// # Examples
83///
84/// ```
85/// // &str
86/// assert_eq!("abaaa".find("ba"), Some(1));
87/// assert_eq!("abaaa".find("bac"), None);
88///
89/// // char
90/// assert_eq!("abaaa".find('a'), Some(0));
91/// assert_eq!("abaaa".find('b'), Some(1));
92/// assert_eq!("abaaa".find('c'), None);
93///
94/// // &[char; N]
95/// assert_eq!("ab".find(&['b', 'a']), Some(0));
96/// assert_eq!("abaaa".find(&['a', 'z']), Some(0));
97/// assert_eq!("abaaa".find(&['c', 'd']), None);
98///
99/// // &[char]
100/// assert_eq!("ab".find(&['b', 'a'][..]), Some(0));
101/// assert_eq!("abaaa".find(&['a', 'z'][..]), Some(0));
102/// assert_eq!("abaaa".find(&['c', 'd'][..]), None);
103///
104/// // FnMut(char) -> bool
105/// assert_eq!("abcdef_z".find(|ch| ch > 'd' && ch < 'y'), Some(4));
106/// assert_eq!("abcddd_z".find(|ch| ch > 'd' && ch < 'y'), None);
107/// ```
108pub trait Pattern: Sized {
109 /// Associated searcher for this pattern
110 type Searcher<'a>: Searcher<'a>;
111
112 /// Constructs the associated searcher from
113 /// `self` and the `haystack` to search in.
114 fn into_searcher(self, haystack: &str) -> Self::Searcher<'_>;
115
116 /// Checks whether the pattern matches anywhere in the haystack
117 #[inline]
118 #[cfg(not(feature = "ferrocene_certified"))]
119 fn is_contained_in(self, haystack: &str) -> bool {
120 self.into_searcher(haystack).next_match().is_some()
121 }
122
123 /// Checks whether the pattern matches at the front of the haystack
124 #[inline]
125 fn is_prefix_of(self, haystack: &str) -> bool {
126 matches!(self.into_searcher(haystack).next(), SearchStep::Match(0, _))
127 }
128
129 /// Checks whether the pattern matches at the back of the haystack
130 #[inline]
131 #[cfg(not(feature = "ferrocene_certified"))]
132 fn is_suffix_of<'a>(self, haystack: &'a str) -> bool
133 where
134 Self::Searcher<'a>: ReverseSearcher<'a>,
135 {
136 matches!(self.into_searcher(haystack).next_back(), SearchStep::Match(_, j) if haystack.len() == j)
137 }
138
139 /// Removes the pattern from the front of haystack, if it matches.
140 #[inline]
141 #[cfg(not(feature = "ferrocene_certified"))]
142 fn strip_prefix_of(self, haystack: &str) -> Option<&str> {
143 if let SearchStep::Match(start, len) = self.into_searcher(haystack).next() {
144 debug_assert_eq!(
145 start, 0,
146 "The first search step from Searcher \
147 must include the first character"
148 );
149 // SAFETY: `Searcher` is known to return valid indices.
150 unsafe { Some(haystack.get_unchecked(len..)) }
151 } else {
152 None
153 }
154 }
155
156 /// Removes the pattern from the back of haystack, if it matches.
157 #[inline]
158 #[cfg(not(feature = "ferrocene_certified"))]
159 fn strip_suffix_of<'a>(self, haystack: &'a str) -> Option<&'a str>
160 where
161 Self::Searcher<'a>: ReverseSearcher<'a>,
162 {
163 if let SearchStep::Match(start, end) = self.into_searcher(haystack).next_back() {
164 debug_assert_eq!(
165 end,
166 haystack.len(),
167 "The first search step from ReverseSearcher \
168 must include the last character"
169 );
170 // SAFETY: `Searcher` is known to return valid indices.
171 unsafe { Some(haystack.get_unchecked(..start)) }
172 } else {
173 None
174 }
175 }
176
177 /// Returns the pattern as utf-8 bytes if possible.
178 #[cfg(not(feature = "ferrocene_certified"))]
179 fn as_utf8_pattern(&self) -> Option<Utf8Pattern<'_>> {
180 None
181 }
182}
183/// Result of calling [`Pattern::as_utf8_pattern()`].
184/// Can be used for inspecting the contents of a [`Pattern`] in cases
185/// where the underlying representation can be represented as UTF-8.
186#[derive(Copy, Clone, Eq, PartialEq, Debug)]
187#[cfg(not(feature = "ferrocene_certified"))]
188pub enum Utf8Pattern<'a> {
189 /// Type returned by String and str types.
190 StringPattern(&'a [u8]),
191 /// Type returned by char types.
192 CharPattern(char),
193}
194
195// Searcher
196
197/// Result of calling [`Searcher::next()`] or [`ReverseSearcher::next_back()`].
198#[cfg_attr(not(feature = "ferrocene_certified"), derive(Copy, Clone, Eq, PartialEq, Debug))]
199pub enum SearchStep {
200 /// Expresses that a match of the pattern has been found at
201 /// `haystack[a..b]`.
202 Match(usize, usize),
203 /// Expresses that `haystack[a..b]` has been rejected as a possible match
204 /// of the pattern.
205 ///
206 /// Note that there might be more than one `Reject` between two `Match`es,
207 /// there is no requirement for them to be combined into one.
208 Reject(usize, usize),
209 /// Expresses that every byte of the haystack has been visited, ending
210 /// the iteration.
211 Done,
212}
213
214/// A searcher for a string pattern.
215///
216/// This trait provides methods for searching for non-overlapping
217/// matches of a pattern starting from the front (left) of a string.
218///
219/// It will be implemented by associated `Searcher`
220/// types of the [`Pattern`] trait.
221///
222/// The trait is marked unsafe because the indices returned by the
223/// [`next()`][Searcher::next] methods are required to lie on valid utf8
224/// boundaries in the haystack. This enables consumers of this trait to
225/// slice the haystack without additional runtime checks.
226pub unsafe trait Searcher<'a> {
227 /// Getter for the underlying string to be searched in
228 ///
229 /// Will always return the same [`&str`][str].
230 #[cfg(not(feature = "ferrocene_certified"))]
231 fn haystack(&self) -> &'a str;
232
233 /// Performs the next search step starting from the front.
234 ///
235 /// - Returns [`Match(a, b)`][SearchStep::Match] if `haystack[a..b]` matches
236 /// the pattern.
237 /// - Returns [`Reject(a, b)`][SearchStep::Reject] if `haystack[a..b]` can
238 /// not match the pattern, even partially.
239 /// - Returns [`Done`][SearchStep::Done] if every byte of the haystack has
240 /// been visited.
241 ///
242 /// The stream of [`Match`][SearchStep::Match] and
243 /// [`Reject`][SearchStep::Reject] values up to a [`Done`][SearchStep::Done]
244 /// will contain index ranges that are adjacent, non-overlapping,
245 /// covering the whole haystack, and laying on utf8 boundaries.
246 ///
247 /// A [`Match`][SearchStep::Match] result needs to contain the whole matched
248 /// pattern, however [`Reject`][SearchStep::Reject] results may be split up
249 /// into arbitrary many adjacent fragments. Both ranges may have zero length.
250 ///
251 /// As an example, the pattern `"aaa"` and the haystack `"cbaaaaab"`
252 /// might produce the stream
253 /// `[Reject(0, 1), Reject(1, 2), Match(2, 5), Reject(5, 8)]`
254 fn next(&mut self) -> SearchStep;
255
256 /// Finds the next [`Match`][SearchStep::Match] result. See [`next()`][Searcher::next].
257 ///
258 /// Unlike [`next()`][Searcher::next], there is no guarantee that the returned ranges
259 /// of this and [`next_reject`][Searcher::next_reject] will overlap. This will return
260 /// `(start_match, end_match)`, where start_match is the index of where
261 /// the match begins, and end_match is the index after the end of the match.
262 #[inline]
263 #[cfg(not(feature = "ferrocene_certified"))]
264 fn next_match(&mut self) -> Option<(usize, usize)> {
265 loop {
266 match self.next() {
267 SearchStep::Match(a, b) => return Some((a, b)),
268 SearchStep::Done => return None,
269 _ => continue,
270 }
271 }
272 }
273
274 /// Finds the next [`Reject`][SearchStep::Reject] result. See [`next()`][Searcher::next]
275 /// and [`next_match()`][Searcher::next_match].
276 ///
277 /// Unlike [`next()`][Searcher::next], there is no guarantee that the returned ranges
278 /// of this and [`next_match`][Searcher::next_match] will overlap.
279 #[inline]
280 #[cfg(not(feature = "ferrocene_certified"))]
281 fn next_reject(&mut self) -> Option<(usize, usize)> {
282 loop {
283 match self.next() {
284 SearchStep::Reject(a, b) => return Some((a, b)),
285 SearchStep::Done => return None,
286 _ => continue,
287 }
288 }
289 }
290}
291
292/// A reverse searcher for a string pattern.
293///
294/// This trait provides methods for searching for non-overlapping
295/// matches of a pattern starting from the back (right) of a string.
296///
297/// It will be implemented by associated [`Searcher`]
298/// types of the [`Pattern`] trait if the pattern supports searching
299/// for it from the back.
300///
301/// The index ranges returned by this trait are not required
302/// to exactly match those of the forward search in reverse.
303///
304/// For the reason why this trait is marked unsafe, see the
305/// parent trait [`Searcher`].
306#[cfg(not(feature = "ferrocene_certified"))]
307pub unsafe trait ReverseSearcher<'a>: Searcher<'a> {
308 /// Performs the next search step starting from the back.
309 ///
310 /// - Returns [`Match(a, b)`][SearchStep::Match] if `haystack[a..b]`
311 /// matches the pattern.
312 /// - Returns [`Reject(a, b)`][SearchStep::Reject] if `haystack[a..b]`
313 /// can not match the pattern, even partially.
314 /// - Returns [`Done`][SearchStep::Done] if every byte of the haystack
315 /// has been visited
316 ///
317 /// The stream of [`Match`][SearchStep::Match] and
318 /// [`Reject`][SearchStep::Reject] values up to a [`Done`][SearchStep::Done]
319 /// will contain index ranges that are adjacent, non-overlapping,
320 /// covering the whole haystack, and laying on utf8 boundaries.
321 ///
322 /// A [`Match`][SearchStep::Match] result needs to contain the whole matched
323 /// pattern, however [`Reject`][SearchStep::Reject] results may be split up
324 /// into arbitrary many adjacent fragments. Both ranges may have zero length.
325 ///
326 /// As an example, the pattern `"aaa"` and the haystack `"cbaaaaab"`
327 /// might produce the stream
328 /// `[Reject(7, 8), Match(4, 7), Reject(1, 4), Reject(0, 1)]`.
329 fn next_back(&mut self) -> SearchStep;
330
331 /// Finds the next [`Match`][SearchStep::Match] result.
332 /// See [`next_back()`][ReverseSearcher::next_back].
333 #[inline]
334 fn next_match_back(&mut self) -> Option<(usize, usize)> {
335 loop {
336 match self.next_back() {
337 SearchStep::Match(a, b) => return Some((a, b)),
338 SearchStep::Done => return None,
339 _ => continue,
340 }
341 }
342 }
343
344 /// Finds the next [`Reject`][SearchStep::Reject] result.
345 /// See [`next_back()`][ReverseSearcher::next_back].
346 #[inline]
347 fn next_reject_back(&mut self) -> Option<(usize, usize)> {
348 loop {
349 match self.next_back() {
350 SearchStep::Reject(a, b) => return Some((a, b)),
351 SearchStep::Done => return None,
352 _ => continue,
353 }
354 }
355 }
356}
357
358/// A marker trait to express that a [`ReverseSearcher`]
359/// can be used for a [`DoubleEndedIterator`] implementation.
360///
361/// For this, the impl of [`Searcher`] and [`ReverseSearcher`] need
362/// to follow these conditions:
363///
364/// - All results of `next()` need to be identical
365/// to the results of `next_back()` in reverse order.
366/// - `next()` and `next_back()` need to behave as
367/// the two ends of a range of values, that is they
368/// can not "walk past each other".
369///
370/// # Examples
371///
372/// `char::Searcher` is a `DoubleEndedSearcher` because searching for a
373/// [`char`] only requires looking at one at a time, which behaves the same
374/// from both ends.
375///
376/// `(&str)::Searcher` is not a `DoubleEndedSearcher` because
377/// the pattern `"aa"` in the haystack `"aaa"` matches as either
378/// `"[aa]a"` or `"a[aa]"`, depending on which side it is searched.
379#[cfg(not(feature = "ferrocene_certified"))]
380pub trait DoubleEndedSearcher<'a>: ReverseSearcher<'a> {}
381
382/////////////////////////////////////////////////////////////////////////////
383// Impl for char
384/////////////////////////////////////////////////////////////////////////////
385
386/// Associated type for `<char as Pattern>::Searcher<'a>`.
387#[derive(Clone, Debug)]
388#[cfg(not(feature = "ferrocene_certified"))]
389pub struct CharSearcher<'a> {
390 haystack: &'a str,
391 // safety invariant: `finger`/`finger_back` must be a valid utf8 byte index of `haystack`
392 // This invariant can be broken *within* next_match and next_match_back, however
393 // they must exit with fingers on valid code point boundaries.
394 /// `finger` is the current byte index of the forward search.
395 /// Imagine that it exists before the byte at its index, i.e.
396 /// `haystack[finger]` is the first byte of the slice we must inspect during
397 /// forward searching
398 finger: usize,
399 /// `finger_back` is the current byte index of the reverse search.
400 /// Imagine that it exists after the byte at its index, i.e.
401 /// haystack[finger_back - 1] is the last byte of the slice we must inspect during
402 /// forward searching (and thus the first byte to be inspected when calling next_back()).
403 finger_back: usize,
404 /// The character being searched for
405 needle: char,
406
407 // safety invariant: `utf8_size` must be less than 5
408 /// The number of bytes `needle` takes up when encoded in utf8.
409 utf8_size: u8,
410 /// A utf8 encoded copy of the `needle`
411 utf8_encoded: [u8; 4],
412}
413
414#[cfg(not(feature = "ferrocene_certified"))]
415impl CharSearcher<'_> {
416 fn utf8_size(&self) -> usize {
417 self.utf8_size.into()
418 }
419}
420
421#[cfg(not(feature = "ferrocene_certified"))]
422unsafe impl<'a> Searcher<'a> for CharSearcher<'a> {
423 #[inline]
424 fn haystack(&self) -> &'a str {
425 self.haystack
426 }
427 #[inline]
428 fn next(&mut self) -> SearchStep {
429 let old_finger = self.finger;
430 // SAFETY: 1-4 guarantee safety of `get_unchecked`
431 // 1. `self.finger` and `self.finger_back` are kept on unicode boundaries
432 // (this is invariant)
433 // 2. `self.finger >= 0` since it starts at 0 and only increases
434 // 3. `self.finger < self.finger_back` because otherwise the char `iter`
435 // would return `SearchStep::Done`
436 // 4. `self.finger` comes before the end of the haystack because `self.finger_back`
437 // starts at the end and only decreases
438 let slice = unsafe { self.haystack.get_unchecked(old_finger..self.finger_back) };
439 let mut iter = slice.chars();
440 let old_len = iter.iter.len();
441 if let Some(ch) = iter.next() {
442 // add byte offset of current character
443 // without re-encoding as utf-8
444 self.finger += old_len - iter.iter.len();
445 if ch == self.needle {
446 SearchStep::Match(old_finger, self.finger)
447 } else {
448 SearchStep::Reject(old_finger, self.finger)
449 }
450 } else {
451 SearchStep::Done
452 }
453 }
454 #[inline]
455 fn next_match(&mut self) -> Option<(usize, usize)> {
456 loop {
457 // get the haystack after the last character found
458 let bytes = self.haystack.as_bytes().get(self.finger..self.finger_back)?;
459 // the last byte of the utf8 encoded needle
460 // SAFETY: we have an invariant that `utf8_size < 5`
461 let last_byte = unsafe { *self.utf8_encoded.get_unchecked(self.utf8_size() - 1) };
462 if let Some(index) = memchr::memchr(last_byte, bytes) {
463 // The new finger is the index of the byte we found,
464 // plus one, since we memchr'd for the last byte of the character.
465 //
466 // Note that this doesn't always give us a finger on a UTF8 boundary.
467 // If we *didn't* find our character
468 // we may have indexed to the non-last byte of a 3-byte or 4-byte character.
469 // We can't just skip to the next valid starting byte because a character like
470 // ꁁ (U+A041 YI SYLLABLE PA), utf-8 `EA 81 81` will have us always find
471 // the second byte when searching for the third.
472 //
473 // However, this is totally okay. While we have the invariant that
474 // self.finger is on a UTF8 boundary, this invariant is not relied upon
475 // within this method (it is relied upon in CharSearcher::next()).
476 //
477 // We only exit this method when we reach the end of the string, or if we
478 // find something. When we find something the `finger` will be set
479 // to a UTF8 boundary.
480 self.finger += index + 1;
481 if self.finger >= self.utf8_size() {
482 let found_char = self.finger - self.utf8_size();
483 if let Some(slice) = self.haystack.as_bytes().get(found_char..self.finger) {
484 if slice == &self.utf8_encoded[0..self.utf8_size()] {
485 return Some((found_char, self.finger));
486 }
487 }
488 }
489 } else {
490 // found nothing, exit
491 self.finger = self.finger_back;
492 return None;
493 }
494 }
495 }
496
497 // let next_reject use the default implementation from the Searcher trait
498}
499
500#[cfg(not(feature = "ferrocene_certified"))]
501unsafe impl<'a> ReverseSearcher<'a> for CharSearcher<'a> {
502 #[inline]
503 fn next_back(&mut self) -> SearchStep {
504 let old_finger = self.finger_back;
505 // SAFETY: see the comment for next() above
506 let slice = unsafe { self.haystack.get_unchecked(self.finger..old_finger) };
507 let mut iter = slice.chars();
508 let old_len = iter.iter.len();
509 if let Some(ch) = iter.next_back() {
510 // subtract byte offset of current character
511 // without re-encoding as utf-8
512 self.finger_back -= old_len - iter.iter.len();
513 if ch == self.needle {
514 SearchStep::Match(self.finger_back, old_finger)
515 } else {
516 SearchStep::Reject(self.finger_back, old_finger)
517 }
518 } else {
519 SearchStep::Done
520 }
521 }
522 #[inline]
523 fn next_match_back(&mut self) -> Option<(usize, usize)> {
524 let haystack = self.haystack.as_bytes();
525 loop {
526 // get the haystack up to but not including the last character searched
527 let bytes = haystack.get(self.finger..self.finger_back)?;
528 // the last byte of the utf8 encoded needle
529 // SAFETY: we have an invariant that `utf8_size < 5`
530 let last_byte = unsafe { *self.utf8_encoded.get_unchecked(self.utf8_size() - 1) };
531 if let Some(index) = memchr::memrchr(last_byte, bytes) {
532 // we searched a slice that was offset by self.finger,
533 // add self.finger to recoup the original index
534 let index = self.finger + index;
535 // memrchr will return the index of the byte we wish to
536 // find. In case of an ASCII character, this is indeed
537 // were we wish our new finger to be ("after" the found
538 // char in the paradigm of reverse iteration). For
539 // multibyte chars we need to skip down by the number of more
540 // bytes they have than ASCII
541 let shift = self.utf8_size() - 1;
542 if index >= shift {
543 let found_char = index - shift;
544 if let Some(slice) = haystack.get(found_char..(found_char + self.utf8_size())) {
545 if slice == &self.utf8_encoded[0..self.utf8_size()] {
546 // move finger to before the character found (i.e., at its start index)
547 self.finger_back = found_char;
548 return Some((self.finger_back, self.finger_back + self.utf8_size()));
549 }
550 }
551 }
552 // We can't use finger_back = index - size + 1 here. If we found the last char
553 // of a different-sized character (or the middle byte of a different character)
554 // we need to bump the finger_back down to `index`. This similarly makes
555 // `finger_back` have the potential to no longer be on a boundary,
556 // but this is OK since we only exit this function on a boundary
557 // or when the haystack has been searched completely.
558 //
559 // Unlike next_match this does not
560 // have the problem of repeated bytes in utf-8 because
561 // we're searching for the last byte, and we can only have
562 // found the last byte when searching in reverse.
563 self.finger_back = index;
564 } else {
565 self.finger_back = self.finger;
566 // found nothing, exit
567 return None;
568 }
569 }
570 }
571
572 // let next_reject_back use the default implementation from the Searcher trait
573}
574
575#[cfg(not(feature = "ferrocene_certified"))]
576impl<'a> DoubleEndedSearcher<'a> for CharSearcher<'a> {}
577
578/// Searches for chars that are equal to a given [`char`].
579///
580/// # Examples
581///
582/// ```
583/// assert_eq!("Hello world".find('o'), Some(4));
584/// ```
585#[cfg(not(feature = "ferrocene_certified"))]
586impl Pattern for char {
587 type Searcher<'a> = CharSearcher<'a>;
588
589 #[inline]
590 fn into_searcher<'a>(self, haystack: &'a str) -> Self::Searcher<'a> {
591 let mut utf8_encoded = [0; char::MAX_LEN_UTF8];
592 let utf8_size = self
593 .encode_utf8(&mut utf8_encoded)
594 .len()
595 .try_into()
596 .expect("char len should be less than 255");
597
598 CharSearcher {
599 haystack,
600 finger: 0,
601 finger_back: haystack.len(),
602 needle: self,
603 utf8_size,
604 utf8_encoded,
605 }
606 }
607
608 #[inline]
609 fn is_contained_in(self, haystack: &str) -> bool {
610 if (self as u32) < 128 {
611 haystack.as_bytes().contains(&(self as u8))
612 } else {
613 let mut buffer = [0u8; 4];
614 self.encode_utf8(&mut buffer).is_contained_in(haystack)
615 }
616 }
617
618 #[inline]
619 fn is_prefix_of(self, haystack: &str) -> bool {
620 self.encode_utf8(&mut [0u8; 4]).is_prefix_of(haystack)
621 }
622
623 #[inline]
624 fn strip_prefix_of(self, haystack: &str) -> Option<&str> {
625 self.encode_utf8(&mut [0u8; 4]).strip_prefix_of(haystack)
626 }
627
628 #[inline]
629 fn is_suffix_of<'a>(self, haystack: &'a str) -> bool
630 where
631 Self::Searcher<'a>: ReverseSearcher<'a>,
632 {
633 self.encode_utf8(&mut [0u8; 4]).is_suffix_of(haystack)
634 }
635
636 #[inline]
637 fn strip_suffix_of<'a>(self, haystack: &'a str) -> Option<&'a str>
638 where
639 Self::Searcher<'a>: ReverseSearcher<'a>,
640 {
641 self.encode_utf8(&mut [0u8; 4]).strip_suffix_of(haystack)
642 }
643
644 #[inline]
645 fn as_utf8_pattern(&self) -> Option<Utf8Pattern<'_>> {
646 Some(Utf8Pattern::CharPattern(*self))
647 }
648}
649
650/////////////////////////////////////////////////////////////////////////////
651// Impl for a MultiCharEq wrapper
652/////////////////////////////////////////////////////////////////////////////
653
654#[doc(hidden)]
655#[cfg(not(feature = "ferrocene_certified"))]
656trait MultiCharEq {
657 fn matches(&mut self, c: char) -> bool;
658}
659
660#[cfg(not(feature = "ferrocene_certified"))]
661impl<F> MultiCharEq for F
662where
663 F: FnMut(char) -> bool,
664{
665 #[inline]
666 fn matches(&mut self, c: char) -> bool {
667 (*self)(c)
668 }
669}
670
671#[cfg(not(feature = "ferrocene_certified"))]
672impl<const N: usize> MultiCharEq for [char; N] {
673 #[inline]
674 fn matches(&mut self, c: char) -> bool {
675 self.contains(&c)
676 }
677}
678
679#[cfg(not(feature = "ferrocene_certified"))]
680impl<const N: usize> MultiCharEq for &[char; N] {
681 #[inline]
682 fn matches(&mut self, c: char) -> bool {
683 self.contains(&c)
684 }
685}
686
687#[cfg(not(feature = "ferrocene_certified"))]
688impl MultiCharEq for &[char] {
689 #[inline]
690 fn matches(&mut self, c: char) -> bool {
691 self.contains(&c)
692 }
693}
694
695#[cfg(not(feature = "ferrocene_certified"))]
696struct MultiCharEqPattern<C: MultiCharEq>(C);
697
698#[derive(Clone, Debug)]
699#[cfg(not(feature = "ferrocene_certified"))]
700struct MultiCharEqSearcher<'a, C: MultiCharEq> {
701 char_eq: C,
702 haystack: &'a str,
703 char_indices: super::CharIndices<'a>,
704}
705
706#[cfg(not(feature = "ferrocene_certified"))]
707impl<C: MultiCharEq> Pattern for MultiCharEqPattern<C> {
708 type Searcher<'a> = MultiCharEqSearcher<'a, C>;
709
710 #[inline]
711 fn into_searcher(self, haystack: &str) -> MultiCharEqSearcher<'_, C> {
712 MultiCharEqSearcher { haystack, char_eq: self.0, char_indices: haystack.char_indices() }
713 }
714}
715
716#[cfg(not(feature = "ferrocene_certified"))]
717unsafe impl<'a, C: MultiCharEq> Searcher<'a> for MultiCharEqSearcher<'a, C> {
718 #[inline]
719 fn haystack(&self) -> &'a str {
720 self.haystack
721 }
722
723 #[inline]
724 fn next(&mut self) -> SearchStep {
725 let s = &mut self.char_indices;
726 // Compare lengths of the internal byte slice iterator
727 // to find length of current char
728 let pre_len = s.iter.iter.len();
729 if let Some((i, c)) = s.next() {
730 let len = s.iter.iter.len();
731 let char_len = pre_len - len;
732 if self.char_eq.matches(c) {
733 return SearchStep::Match(i, i + char_len);
734 } else {
735 return SearchStep::Reject(i, i + char_len);
736 }
737 }
738 SearchStep::Done
739 }
740}
741
742#[cfg(not(feature = "ferrocene_certified"))]
743unsafe impl<'a, C: MultiCharEq> ReverseSearcher<'a> for MultiCharEqSearcher<'a, C> {
744 #[inline]
745 fn next_back(&mut self) -> SearchStep {
746 let s = &mut self.char_indices;
747 // Compare lengths of the internal byte slice iterator
748 // to find length of current char
749 let pre_len = s.iter.iter.len();
750 if let Some((i, c)) = s.next_back() {
751 let len = s.iter.iter.len();
752 let char_len = pre_len - len;
753 if self.char_eq.matches(c) {
754 return SearchStep::Match(i, i + char_len);
755 } else {
756 return SearchStep::Reject(i, i + char_len);
757 }
758 }
759 SearchStep::Done
760 }
761}
762
763#[cfg(not(feature = "ferrocene_certified"))]
764impl<'a, C: MultiCharEq> DoubleEndedSearcher<'a> for MultiCharEqSearcher<'a, C> {}
765
766/////////////////////////////////////////////////////////////////////////////
767
768#[cfg(not(feature = "ferrocene_certified"))]
769macro_rules! pattern_methods {
770 ($a:lifetime, $t:ty, $pmap:expr, $smap:expr) => {
771 type Searcher<$a> = $t;
772
773 #[inline]
774 fn into_searcher<$a>(self, haystack: &$a str) -> $t {
775 ($smap)(($pmap)(self).into_searcher(haystack))
776 }
777
778 #[inline]
779 fn is_contained_in<$a>(self, haystack: &$a str) -> bool {
780 ($pmap)(self).is_contained_in(haystack)
781 }
782
783 #[inline]
784 fn is_prefix_of<$a>(self, haystack: &$a str) -> bool {
785 ($pmap)(self).is_prefix_of(haystack)
786 }
787
788 #[inline]
789 fn strip_prefix_of<$a>(self, haystack: &$a str) -> Option<&$a str> {
790 ($pmap)(self).strip_prefix_of(haystack)
791 }
792
793 #[inline]
794 fn is_suffix_of<$a>(self, haystack: &$a str) -> bool
795 where
796 $t: ReverseSearcher<$a>,
797 {
798 ($pmap)(self).is_suffix_of(haystack)
799 }
800
801 #[inline]
802 fn strip_suffix_of<$a>(self, haystack: &$a str) -> Option<&$a str>
803 where
804 $t: ReverseSearcher<$a>,
805 {
806 ($pmap)(self).strip_suffix_of(haystack)
807 }
808 };
809}
810
811#[cfg(not(feature = "ferrocene_certified"))]
812macro_rules! searcher_methods {
813 (forward) => {
814 #[inline]
815 fn haystack(&self) -> &'a str {
816 self.0.haystack()
817 }
818 #[inline]
819 fn next(&mut self) -> SearchStep {
820 self.0.next()
821 }
822 #[inline]
823 fn next_match(&mut self) -> Option<(usize, usize)> {
824 self.0.next_match()
825 }
826 #[inline]
827 fn next_reject(&mut self) -> Option<(usize, usize)> {
828 self.0.next_reject()
829 }
830 };
831 (reverse) => {
832 #[inline]
833 fn next_back(&mut self) -> SearchStep {
834 self.0.next_back()
835 }
836 #[inline]
837 fn next_match_back(&mut self) -> Option<(usize, usize)> {
838 self.0.next_match_back()
839 }
840 #[inline]
841 fn next_reject_back(&mut self) -> Option<(usize, usize)> {
842 self.0.next_reject_back()
843 }
844 };
845}
846
847/// Associated type for `<[char; N] as Pattern>::Searcher<'a>`.
848#[derive(Clone, Debug)]
849#[cfg(not(feature = "ferrocene_certified"))]
850pub struct CharArraySearcher<'a, const N: usize>(
851 <MultiCharEqPattern<[char; N]> as Pattern>::Searcher<'a>,
852);
853
854/// Associated type for `<&[char; N] as Pattern>::Searcher<'a>`.
855#[derive(Clone, Debug)]
856#[cfg(not(feature = "ferrocene_certified"))]
857pub struct CharArrayRefSearcher<'a, 'b, const N: usize>(
858 <MultiCharEqPattern<&'b [char; N]> as Pattern>::Searcher<'a>,
859);
860
861/// Searches for chars that are equal to any of the [`char`]s in the array.
862///
863/// # Examples
864///
865/// ```
866/// assert_eq!("Hello world".find(['o', 'l']), Some(2));
867/// assert_eq!("Hello world".find(['h', 'w']), Some(6));
868/// ```
869#[cfg(not(feature = "ferrocene_certified"))]
870impl<const N: usize> Pattern for [char; N] {
871 pattern_methods!('a, CharArraySearcher<'a, N>, MultiCharEqPattern, CharArraySearcher);
872}
873
874#[cfg(not(feature = "ferrocene_certified"))]
875unsafe impl<'a, const N: usize> Searcher<'a> for CharArraySearcher<'a, N> {
876 searcher_methods!(forward);
877}
878
879#[cfg(not(feature = "ferrocene_certified"))]
880unsafe impl<'a, const N: usize> ReverseSearcher<'a> for CharArraySearcher<'a, N> {
881 searcher_methods!(reverse);
882}
883
884#[cfg(not(feature = "ferrocene_certified"))]
885impl<'a, const N: usize> DoubleEndedSearcher<'a> for CharArraySearcher<'a, N> {}
886
887/// Searches for chars that are equal to any of the [`char`]s in the array.
888///
889/// # Examples
890///
891/// ```
892/// assert_eq!("Hello world".find(&['o', 'l']), Some(2));
893/// assert_eq!("Hello world".find(&['h', 'w']), Some(6));
894/// ```
895#[cfg(not(feature = "ferrocene_certified"))]
896impl<'b, const N: usize> Pattern for &'b [char; N] {
897 pattern_methods!('a, CharArrayRefSearcher<'a, 'b, N>, MultiCharEqPattern, CharArrayRefSearcher);
898}
899
900#[cfg(not(feature = "ferrocene_certified"))]
901unsafe impl<'a, 'b, const N: usize> Searcher<'a> for CharArrayRefSearcher<'a, 'b, N> {
902 searcher_methods!(forward);
903}
904
905#[cfg(not(feature = "ferrocene_certified"))]
906unsafe impl<'a, 'b, const N: usize> ReverseSearcher<'a> for CharArrayRefSearcher<'a, 'b, N> {
907 searcher_methods!(reverse);
908}
909
910#[cfg(not(feature = "ferrocene_certified"))]
911impl<'a, 'b, const N: usize> DoubleEndedSearcher<'a> for CharArrayRefSearcher<'a, 'b, N> {}
912
913/////////////////////////////////////////////////////////////////////////////
914// Impl for &[char]
915/////////////////////////////////////////////////////////////////////////////
916
917// Todo: Change / Remove due to ambiguity in meaning.
918
919/// Associated type for `<&[char] as Pattern>::Searcher<'a>`.
920#[derive(Clone, Debug)]
921#[cfg(not(feature = "ferrocene_certified"))]
922pub struct CharSliceSearcher<'a, 'b>(<MultiCharEqPattern<&'b [char]> as Pattern>::Searcher<'a>);
923
924#[cfg(not(feature = "ferrocene_certified"))]
925unsafe impl<'a, 'b> Searcher<'a> for CharSliceSearcher<'a, 'b> {
926 searcher_methods!(forward);
927}
928
929#[cfg(not(feature = "ferrocene_certified"))]
930unsafe impl<'a, 'b> ReverseSearcher<'a> for CharSliceSearcher<'a, 'b> {
931 searcher_methods!(reverse);
932}
933
934#[cfg(not(feature = "ferrocene_certified"))]
935impl<'a, 'b> DoubleEndedSearcher<'a> for CharSliceSearcher<'a, 'b> {}
936
937/// Searches for chars that are equal to any of the [`char`]s in the slice.
938///
939/// # Examples
940///
941/// ```
942/// assert_eq!("Hello world".find(&['o', 'l'][..]), Some(2));
943/// assert_eq!("Hello world".find(&['h', 'w'][..]), Some(6));
944/// ```
945#[cfg(not(feature = "ferrocene_certified"))]
946impl<'b> Pattern for &'b [char] {
947 pattern_methods!('a, CharSliceSearcher<'a, 'b>, MultiCharEqPattern, CharSliceSearcher);
948}
949
950/////////////////////////////////////////////////////////////////////////////
951// Impl for F: FnMut(char) -> bool
952/////////////////////////////////////////////////////////////////////////////
953
954/// Associated type for `<F as Pattern>::Searcher<'a>`.
955#[derive(Clone)]
956#[cfg(not(feature = "ferrocene_certified"))]
957pub struct CharPredicateSearcher<'a, F>(<MultiCharEqPattern<F> as Pattern>::Searcher<'a>)
958where
959 F: FnMut(char) -> bool;
960
961#[cfg(not(feature = "ferrocene_certified"))]
962impl<F> fmt::Debug for CharPredicateSearcher<'_, F>
963where
964 F: FnMut(char) -> bool,
965{
966 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
967 f.debug_struct("CharPredicateSearcher")
968 .field("haystack", &self.0.haystack)
969 .field("char_indices", &self.0.char_indices)
970 .finish()
971 }
972}
973#[cfg(not(feature = "ferrocene_certified"))]
974unsafe impl<'a, F> Searcher<'a> for CharPredicateSearcher<'a, F>
975where
976 F: FnMut(char) -> bool,
977{
978 searcher_methods!(forward);
979}
980
981#[cfg(not(feature = "ferrocene_certified"))]
982unsafe impl<'a, F> ReverseSearcher<'a> for CharPredicateSearcher<'a, F>
983where
984 F: FnMut(char) -> bool,
985{
986 searcher_methods!(reverse);
987}
988
989#[cfg(not(feature = "ferrocene_certified"))]
990impl<'a, F> DoubleEndedSearcher<'a> for CharPredicateSearcher<'a, F> where F: FnMut(char) -> bool {}
991
992/// Searches for [`char`]s that match the given predicate.
993///
994/// # Examples
995///
996/// ```
997/// assert_eq!("Hello world".find(char::is_uppercase), Some(0));
998/// assert_eq!("Hello world".find(|c| "aeiou".contains(c)), Some(1));
999/// ```
1000#[cfg(not(feature = "ferrocene_certified"))]
1001impl<F> Pattern for F
1002where
1003 F: FnMut(char) -> bool,
1004{
1005 pattern_methods!('a, CharPredicateSearcher<'a, F>, MultiCharEqPattern, CharPredicateSearcher);
1006}
1007
1008/////////////////////////////////////////////////////////////////////////////
1009// Impl for &&str
1010/////////////////////////////////////////////////////////////////////////////
1011
1012/// Delegates to the `&str` impl.
1013#[cfg(not(feature = "ferrocene_certified"))]
1014impl<'b, 'c> Pattern for &'c &'b str {
1015 pattern_methods!('a, StrSearcher<'a, 'b>, |&s| s, |s| s);
1016}
1017
1018/////////////////////////////////////////////////////////////////////////////
1019// Impl for &str
1020/////////////////////////////////////////////////////////////////////////////
1021
1022/// Non-allocating substring search.
1023///
1024/// Will handle the pattern `""` as returning empty matches at each character
1025/// boundary.
1026///
1027/// # Examples
1028///
1029/// ```
1030/// assert_eq!("Hello world".find("world"), Some(6));
1031/// ```
1032impl<'b> Pattern for &'b str {
1033 type Searcher<'a> = StrSearcher<'a, 'b>;
1034
1035 #[inline]
1036 fn into_searcher(self, haystack: &str) -> StrSearcher<'_, 'b> {
1037 StrSearcher::new(haystack, self)
1038 }
1039
1040 /// Checks whether the pattern matches at the front of the haystack.
1041 #[inline]
1042 fn is_prefix_of(self, haystack: &str) -> bool {
1043 haystack.as_bytes().starts_with(self.as_bytes())
1044 }
1045
1046 /// Checks whether the pattern matches anywhere in the haystack
1047 #[inline]
1048 #[cfg(not(feature = "ferrocene_certified"))]
1049 fn is_contained_in(self, haystack: &str) -> bool {
1050 if self.len() == 0 {
1051 return true;
1052 }
1053
1054 match self.len().cmp(&haystack.len()) {
1055 Ordering::Less => {
1056 if self.len() == 1 {
1057 return haystack.as_bytes().contains(&self.as_bytes()[0]);
1058 }
1059
1060 #[cfg(any(
1061 all(target_arch = "x86_64", target_feature = "sse2"),
1062 all(target_arch = "loongarch64", target_feature = "lsx")
1063 ))]
1064 if self.len() <= 32 {
1065 if let Some(result) = simd_contains(self, haystack) {
1066 return result;
1067 }
1068 }
1069
1070 self.into_searcher(haystack).next_match().is_some()
1071 }
1072 _ => self == haystack,
1073 }
1074 }
1075
1076 /// Removes the pattern from the front of haystack, if it matches.
1077 #[inline]
1078 #[cfg(not(feature = "ferrocene_certified"))]
1079 fn strip_prefix_of(self, haystack: &str) -> Option<&str> {
1080 if self.is_prefix_of(haystack) {
1081 // SAFETY: prefix was just verified to exist.
1082 unsafe { Some(haystack.get_unchecked(self.as_bytes().len()..)) }
1083 } else {
1084 None
1085 }
1086 }
1087
1088 /// Checks whether the pattern matches at the back of the haystack.
1089 #[inline]
1090 #[cfg(not(feature = "ferrocene_certified"))]
1091 fn is_suffix_of<'a>(self, haystack: &'a str) -> bool
1092 where
1093 Self::Searcher<'a>: ReverseSearcher<'a>,
1094 {
1095 haystack.as_bytes().ends_with(self.as_bytes())
1096 }
1097
1098 /// Removes the pattern from the back of haystack, if it matches.
1099 #[inline]
1100 #[cfg(not(feature = "ferrocene_certified"))]
1101 fn strip_suffix_of<'a>(self, haystack: &'a str) -> Option<&'a str>
1102 where
1103 Self::Searcher<'a>: ReverseSearcher<'a>,
1104 {
1105 if self.is_suffix_of(haystack) {
1106 let i = haystack.len() - self.as_bytes().len();
1107 // SAFETY: suffix was just verified to exist.
1108 unsafe { Some(haystack.get_unchecked(..i)) }
1109 } else {
1110 None
1111 }
1112 }
1113
1114 #[inline]
1115 #[cfg(not(feature = "ferrocene_certified"))]
1116 fn as_utf8_pattern(&self) -> Option<Utf8Pattern<'_>> {
1117 Some(Utf8Pattern::StringPattern(self.as_bytes()))
1118 }
1119}
1120
1121/////////////////////////////////////////////////////////////////////////////
1122// Two Way substring searcher
1123/////////////////////////////////////////////////////////////////////////////
1124
1125#[cfg_attr(not(feature = "ferrocene_certified"), derive(Clone, Debug))]
1126/// Associated type for `<&str as Pattern>::Searcher<'a>`.
1127pub struct StrSearcher<'a, 'b> {
1128 haystack: &'a str,
1129 needle: &'b str,
1130
1131 searcher: StrSearcherImpl,
1132}
1133
1134#[cfg_attr(not(feature = "ferrocene_certified"), derive(Clone, Debug))]
1135enum StrSearcherImpl {
1136 Empty(EmptyNeedle),
1137 TwoWay(TwoWaySearcher),
1138}
1139#[cfg_attr(not(feature = "ferrocene_certified"), derive(Clone, Debug))]
1140#[cfg_attr(feature = "ferrocene_certified", expect(dead_code))]
1141struct EmptyNeedle {
1142 position: usize,
1143 end: usize,
1144 is_match_fw: bool,
1145 is_match_bw: bool,
1146 // Needed in case of an empty haystack, see #85462
1147 is_finished: bool,
1148}
1149
1150impl<'a, 'b> StrSearcher<'a, 'b> {
1151 fn new(haystack: &'a str, needle: &'b str) -> StrSearcher<'a, 'b> {
1152 if needle.is_empty() {
1153 StrSearcher {
1154 haystack,
1155 needle,
1156 searcher: StrSearcherImpl::Empty(EmptyNeedle {
1157 position: 0,
1158 end: haystack.len(),
1159 is_match_fw: true,
1160 is_match_bw: true,
1161 is_finished: false,
1162 }),
1163 }
1164 } else {
1165 StrSearcher {
1166 haystack,
1167 needle,
1168 searcher: StrSearcherImpl::TwoWay(TwoWaySearcher::new(
1169 needle.as_bytes(),
1170 haystack.len(),
1171 )),
1172 }
1173 }
1174 }
1175}
1176
1177unsafe impl<'a, 'b> Searcher<'a> for StrSearcher<'a, 'b> {
1178 #[inline]
1179 #[cfg(not(feature = "ferrocene_certified"))]
1180 fn haystack(&self) -> &'a str {
1181 self.haystack
1182 }
1183
1184 #[inline]
1185 fn next(&mut self) -> SearchStep {
1186 match self.searcher {
1187 StrSearcherImpl::Empty(ref mut searcher) => {
1188 if searcher.is_finished {
1189 return SearchStep::Done;
1190 }
1191 // empty needle rejects every char and matches every empty string between them
1192 let is_match = searcher.is_match_fw;
1193 searcher.is_match_fw = !searcher.is_match_fw;
1194 let pos = searcher.position;
1195 match self.haystack[pos..].chars().next() {
1196 _ if is_match => SearchStep::Match(pos, pos),
1197 None => {
1198 searcher.is_finished = true;
1199 SearchStep::Done
1200 }
1201 Some(ch) => {
1202 searcher.position += ch.len_utf8();
1203 SearchStep::Reject(pos, searcher.position)
1204 }
1205 }
1206 }
1207 StrSearcherImpl::TwoWay(ref mut searcher) => {
1208 // TwoWaySearcher produces valid *Match* indices that split at char boundaries
1209 // as long as it does correct matching and that haystack and needle are
1210 // valid UTF-8
1211 // *Rejects* from the algorithm can fall on any indices, but we will walk them
1212 // manually to the next character boundary, so that they are utf-8 safe.
1213 if searcher.position == self.haystack.len() {
1214 return SearchStep::Done;
1215 }
1216 let is_long = searcher.memory == usize::MAX;
1217 match searcher.next::<RejectAndMatch>(
1218 self.haystack.as_bytes(),
1219 self.needle.as_bytes(),
1220 is_long,
1221 ) {
1222 SearchStep::Reject(a, mut b) => {
1223 // skip to next char boundary
1224 while !self.haystack.is_char_boundary(b) {
1225 b += 1;
1226 }
1227 searcher.position = cmp::max(b, searcher.position);
1228 SearchStep::Reject(a, b)
1229 }
1230 otherwise => otherwise,
1231 }
1232 }
1233 }
1234 }
1235
1236 #[inline]
1237 #[cfg(not(feature = "ferrocene_certified"))]
1238 fn next_match(&mut self) -> Option<(usize, usize)> {
1239 match self.searcher {
1240 StrSearcherImpl::Empty(..) => loop {
1241 match self.next() {
1242 SearchStep::Match(a, b) => return Some((a, b)),
1243 SearchStep::Done => return None,
1244 SearchStep::Reject(..) => {}
1245 }
1246 },
1247 StrSearcherImpl::TwoWay(ref mut searcher) => {
1248 let is_long = searcher.memory == usize::MAX;
1249 // write out `true` and `false` cases to encourage the compiler
1250 // to specialize the two cases separately.
1251 if is_long {
1252 searcher.next::<MatchOnly>(
1253 self.haystack.as_bytes(),
1254 self.needle.as_bytes(),
1255 true,
1256 )
1257 } else {
1258 searcher.next::<MatchOnly>(
1259 self.haystack.as_bytes(),
1260 self.needle.as_bytes(),
1261 false,
1262 )
1263 }
1264 }
1265 }
1266 }
1267}
1268
1269#[cfg(not(feature = "ferrocene_certified"))]
1270unsafe impl<'a, 'b> ReverseSearcher<'a> for StrSearcher<'a, 'b> {
1271 #[inline]
1272 fn next_back(&mut self) -> SearchStep {
1273 match self.searcher {
1274 StrSearcherImpl::Empty(ref mut searcher) => {
1275 if searcher.is_finished {
1276 return SearchStep::Done;
1277 }
1278 let is_match = searcher.is_match_bw;
1279 searcher.is_match_bw = !searcher.is_match_bw;
1280 let end = searcher.end;
1281 match self.haystack[..end].chars().next_back() {
1282 _ if is_match => SearchStep::Match(end, end),
1283 None => {
1284 searcher.is_finished = true;
1285 SearchStep::Done
1286 }
1287 Some(ch) => {
1288 searcher.end -= ch.len_utf8();
1289 SearchStep::Reject(searcher.end, end)
1290 }
1291 }
1292 }
1293 StrSearcherImpl::TwoWay(ref mut searcher) => {
1294 if searcher.end == 0 {
1295 return SearchStep::Done;
1296 }
1297 let is_long = searcher.memory == usize::MAX;
1298 match searcher.next_back::<RejectAndMatch>(
1299 self.haystack.as_bytes(),
1300 self.needle.as_bytes(),
1301 is_long,
1302 ) {
1303 SearchStep::Reject(mut a, b) => {
1304 // skip to next char boundary
1305 while !self.haystack.is_char_boundary(a) {
1306 a -= 1;
1307 }
1308 searcher.end = cmp::min(a, searcher.end);
1309 SearchStep::Reject(a, b)
1310 }
1311 otherwise => otherwise,
1312 }
1313 }
1314 }
1315 }
1316
1317 #[inline]
1318 fn next_match_back(&mut self) -> Option<(usize, usize)> {
1319 match self.searcher {
1320 StrSearcherImpl::Empty(..) => loop {
1321 match self.next_back() {
1322 SearchStep::Match(a, b) => return Some((a, b)),
1323 SearchStep::Done => return None,
1324 SearchStep::Reject(..) => {}
1325 }
1326 },
1327 StrSearcherImpl::TwoWay(ref mut searcher) => {
1328 let is_long = searcher.memory == usize::MAX;
1329 // write out `true` and `false`, like `next_match`
1330 if is_long {
1331 searcher.next_back::<MatchOnly>(
1332 self.haystack.as_bytes(),
1333 self.needle.as_bytes(),
1334 true,
1335 )
1336 } else {
1337 searcher.next_back::<MatchOnly>(
1338 self.haystack.as_bytes(),
1339 self.needle.as_bytes(),
1340 false,
1341 )
1342 }
1343 }
1344 }
1345 }
1346}
1347
1348/// The internal state of the two-way substring search algorithm.
1349#[cfg_attr(not(feature = "ferrocene_certified"), derive(Clone, Debug))]
1350#[cfg_attr(feature = "ferrocene_certified", expect(dead_code))]
1351struct TwoWaySearcher {
1352 // constants
1353 /// critical factorization index
1354 crit_pos: usize,
1355 /// critical factorization index for reversed needle
1356 crit_pos_back: usize,
1357 period: usize,
1358 /// `byteset` is an extension (not part of the two way algorithm);
1359 /// it's a 64-bit "fingerprint" where each set bit `j` corresponds
1360 /// to a (byte & 63) == j present in the needle.
1361 byteset: u64,
1362
1363 // variables
1364 position: usize,
1365 end: usize,
1366 /// index into needle before which we have already matched
1367 memory: usize,
1368 /// index into needle after which we have already matched
1369 memory_back: usize,
1370}
1371
1372/*
1373 This is the Two-Way search algorithm, which was introduced in the paper:
1374 Crochemore, M., Perrin, D., 1991, Two-way string-matching, Journal of the ACM 38(3):651-675.
1375
1376 Here's some background information.
1377
1378 A *word* is a string of symbols. The *length* of a word should be a familiar
1379 notion, and here we denote it for any word x by |x|.
1380 (We also allow for the possibility of the *empty word*, a word of length zero).
1381
1382 If x is any non-empty word, then an integer p with 0 < p <= |x| is said to be a
1383 *period* for x iff for all i with 0 <= i <= |x| - p - 1, we have x[i] == x[i+p].
1384 For example, both 1 and 2 are periods for the string "aa". As another example,
1385 the only period of the string "abcd" is 4.
1386
1387 We denote by period(x) the *smallest* period of x (provided that x is non-empty).
1388 This is always well-defined since every non-empty word x has at least one period,
1389 |x|. We sometimes call this *the period* of x.
1390
1391 If u, v and x are words such that x = uv, where uv is the concatenation of u and
1392 v, then we say that (u, v) is a *factorization* of x.
1393
1394 Let (u, v) be a factorization for a word x. Then if w is a non-empty word such
1395 that both of the following hold
1396
1397 - either w is a suffix of u or u is a suffix of w
1398 - either w is a prefix of v or v is a prefix of w
1399
1400 then w is said to be a *repetition* for the factorization (u, v).
1401
1402 Just to unpack this, there are four possibilities here. Let w = "abc". Then we
1403 might have:
1404
1405 - w is a suffix of u and w is a prefix of v. ex: ("lolabc", "abcde")
1406 - w is a suffix of u and v is a prefix of w. ex: ("lolabc", "ab")
1407 - u is a suffix of w and w is a prefix of v. ex: ("bc", "abchi")
1408 - u is a suffix of w and v is a prefix of w. ex: ("bc", "a")
1409
1410 Note that the word vu is a repetition for any factorization (u,v) of x = uv,
1411 so every factorization has at least one repetition.
1412
1413 If x is a string and (u, v) is a factorization for x, then a *local period* for
1414 (u, v) is an integer r such that there is some word w such that |w| = r and w is
1415 a repetition for (u, v).
1416
1417 We denote by local_period(u, v) the smallest local period of (u, v). We sometimes
1418 call this *the local period* of (u, v). Provided that x = uv is non-empty, this
1419 is well-defined (because each non-empty word has at least one factorization, as
1420 noted above).
1421
1422 It can be proven that the following is an equivalent definition of a local period
1423 for a factorization (u, v): any positive integer r such that x[i] == x[i+r] for
1424 all i such that |u| - r <= i <= |u| - 1 and such that both x[i] and x[i+r] are
1425 defined. (i.e., i > 0 and i + r < |x|).
1426
1427 Using the above reformulation, it is easy to prove that
1428
1429 1 <= local_period(u, v) <= period(uv)
1430
1431 A factorization (u, v) of x such that local_period(u,v) = period(x) is called a
1432 *critical factorization*.
1433
1434 The algorithm hinges on the following theorem, which is stated without proof:
1435
1436 **Critical Factorization Theorem** Any word x has at least one critical
1437 factorization (u, v) such that |u| < period(x).
1438
1439 The purpose of maximal_suffix is to find such a critical factorization.
1440
1441 If the period is short, compute another factorization x = u' v' to use
1442 for reverse search, chosen instead so that |v'| < period(x).
1443
1444*/
1445impl TwoWaySearcher {
1446 fn new(needle: &[u8], end: usize) -> TwoWaySearcher {
1447 let (crit_pos_false, period_false) = TwoWaySearcher::maximal_suffix(needle, false);
1448 let (crit_pos_true, period_true) = TwoWaySearcher::maximal_suffix(needle, true);
1449
1450 let (crit_pos, period) = if crit_pos_false > crit_pos_true {
1451 (crit_pos_false, period_false)
1452 } else {
1453 (crit_pos_true, period_true)
1454 };
1455
1456 // A particularly readable explanation of what's going on here can be found
1457 // in Crochemore and Rytter's book "Text Algorithms", ch 13. Specifically
1458 // see the code for "Algorithm CP" on p. 323.
1459 //
1460 // What's going on is we have some critical factorization (u, v) of the
1461 // needle, and we want to determine whether u is a suffix of
1462 // &v[..period]. If it is, we use "Algorithm CP1". Otherwise we use
1463 // "Algorithm CP2", which is optimized for when the period of the needle
1464 // is large.
1465 if needle[..crit_pos] == needle[period..period + crit_pos] {
1466 // short period case -- the period is exact
1467 // compute a separate critical factorization for the reversed needle
1468 // x = u' v' where |v'| < period(x).
1469 //
1470 // This is sped up by the period being known already.
1471 // Note that a case like x = "acba" may be factored exactly forwards
1472 // (crit_pos = 1, period = 3) while being factored with approximate
1473 // period in reverse (crit_pos = 2, period = 2). We use the given
1474 // reverse factorization but keep the exact period.
1475 let crit_pos_back = needle.len()
1476 - cmp::max(
1477 TwoWaySearcher::reverse_maximal_suffix(needle, period, false),
1478 TwoWaySearcher::reverse_maximal_suffix(needle, period, true),
1479 );
1480
1481 TwoWaySearcher {
1482 crit_pos,
1483 crit_pos_back,
1484 period,
1485 byteset: Self::byteset_create(&needle[..period]),
1486
1487 position: 0,
1488 end,
1489 memory: 0,
1490 memory_back: needle.len(),
1491 }
1492 } else {
1493 // long period case -- we have an approximation to the actual period,
1494 // and don't use memorization.
1495 //
1496 // Approximate the period by lower bound max(|u|, |v|) + 1.
1497 // The critical factorization is efficient to use for both forward and
1498 // reverse search.
1499
1500 TwoWaySearcher {
1501 crit_pos,
1502 crit_pos_back: crit_pos,
1503 period: cmp::max(crit_pos, needle.len() - crit_pos) + 1,
1504 byteset: Self::byteset_create(needle),
1505
1506 position: 0,
1507 end,
1508 memory: usize::MAX, // Dummy value to signify that the period is long
1509 memory_back: usize::MAX,
1510 }
1511 }
1512 }
1513
1514 #[inline]
1515 fn byteset_create(bytes: &[u8]) -> u64 {
1516 bytes.iter().fold(0, |a, &b| (1 << (b & 0x3f)) | a)
1517 }
1518
1519 #[inline]
1520 fn byteset_contains(&self, byte: u8) -> bool {
1521 (self.byteset >> ((byte & 0x3f) as usize)) & 1 != 0
1522 }
1523
1524 // One of the main ideas of Two-Way is that we factorize the needle into
1525 // two halves, (u, v), and begin trying to find v in the haystack by scanning
1526 // left to right. If v matches, we try to match u by scanning right to left.
1527 // How far we can jump when we encounter a mismatch is all based on the fact
1528 // that (u, v) is a critical factorization for the needle.
1529 #[inline]
1530 fn next<S>(&mut self, haystack: &[u8], needle: &[u8], long_period: bool) -> S::Output
1531 where
1532 S: TwoWayStrategy,
1533 {
1534 // `next()` uses `self.position` as its cursor
1535 let old_pos = self.position;
1536 let needle_last = needle.len() - 1;
1537 'search: loop {
1538 // Check that we have room to search in
1539 // position + needle_last can not overflow if we assume slices
1540 // are bounded by isize's range.
1541 let tail_byte = match haystack.get(self.position + needle_last) {
1542 Some(&b) => b,
1543 None => {
1544 self.position = haystack.len();
1545 return S::rejecting(old_pos, self.position);
1546 }
1547 };
1548
1549 if S::use_early_reject() && old_pos != self.position {
1550 return S::rejecting(old_pos, self.position);
1551 }
1552
1553 // Quickly skip by large portions unrelated to our substring
1554 if !self.byteset_contains(tail_byte) {
1555 self.position += needle.len();
1556 if !long_period {
1557 self.memory = 0;
1558 }
1559 continue 'search;
1560 }
1561
1562 // See if the right part of the needle matches
1563 let start =
1564 if long_period { self.crit_pos } else { cmp::max(self.crit_pos, self.memory) };
1565 for i in start..needle.len() {
1566 if needle[i] != haystack[self.position + i] {
1567 self.position += i - self.crit_pos + 1;
1568 if !long_period {
1569 self.memory = 0;
1570 }
1571 continue 'search;
1572 }
1573 }
1574
1575 // See if the left part of the needle matches
1576 let start = if long_period { 0 } else { self.memory };
1577 for i in (start..self.crit_pos).rev() {
1578 if needle[i] != haystack[self.position + i] {
1579 self.position += self.period;
1580 if !long_period {
1581 self.memory = needle.len() - self.period;
1582 }
1583 continue 'search;
1584 }
1585 }
1586
1587 // We have found a match!
1588 let match_pos = self.position;
1589
1590 // Note: add self.period instead of needle.len() to have overlapping matches
1591 self.position += needle.len();
1592 if !long_period {
1593 self.memory = 0; // set to needle.len() - self.period for overlapping matches
1594 }
1595
1596 return S::matching(match_pos, match_pos + needle.len());
1597 }
1598 }
1599
1600 // Follows the ideas in `next()`.
1601 //
1602 // The definitions are symmetrical, with period(x) = period(reverse(x))
1603 // and local_period(u, v) = local_period(reverse(v), reverse(u)), so if (u, v)
1604 // is a critical factorization, so is (reverse(v), reverse(u)).
1605 //
1606 // For the reverse case we have computed a critical factorization x = u' v'
1607 // (field `crit_pos_back`). We need |u| < period(x) for the forward case and
1608 // thus |v'| < period(x) for the reverse.
1609 //
1610 // To search in reverse through the haystack, we search forward through
1611 // a reversed haystack with a reversed needle, matching first u' and then v'.
1612 #[inline]
1613 #[cfg(not(feature = "ferrocene_certified"))]
1614 fn next_back<S>(&mut self, haystack: &[u8], needle: &[u8], long_period: bool) -> S::Output
1615 where
1616 S: TwoWayStrategy,
1617 {
1618 // `next_back()` uses `self.end` as its cursor -- so that `next()` and `next_back()`
1619 // are independent.
1620 let old_end = self.end;
1621 'search: loop {
1622 // Check that we have room to search in
1623 // end - needle.len() will wrap around when there is no more room,
1624 // but due to slice length limits it can never wrap all the way back
1625 // into the length of haystack.
1626 let front_byte = match haystack.get(self.end.wrapping_sub(needle.len())) {
1627 Some(&b) => b,
1628 None => {
1629 self.end = 0;
1630 return S::rejecting(0, old_end);
1631 }
1632 };
1633
1634 if S::use_early_reject() && old_end != self.end {
1635 return S::rejecting(self.end, old_end);
1636 }
1637
1638 // Quickly skip by large portions unrelated to our substring
1639 if !self.byteset_contains(front_byte) {
1640 self.end -= needle.len();
1641 if !long_period {
1642 self.memory_back = needle.len();
1643 }
1644 continue 'search;
1645 }
1646
1647 // See if the left part of the needle matches
1648 let crit = if long_period {
1649 self.crit_pos_back
1650 } else {
1651 cmp::min(self.crit_pos_back, self.memory_back)
1652 };
1653 for i in (0..crit).rev() {
1654 if needle[i] != haystack[self.end - needle.len() + i] {
1655 self.end -= self.crit_pos_back - i;
1656 if !long_period {
1657 self.memory_back = needle.len();
1658 }
1659 continue 'search;
1660 }
1661 }
1662
1663 // See if the right part of the needle matches
1664 let needle_end = if long_period { needle.len() } else { self.memory_back };
1665 for i in self.crit_pos_back..needle_end {
1666 if needle[i] != haystack[self.end - needle.len() + i] {
1667 self.end -= self.period;
1668 if !long_period {
1669 self.memory_back = self.period;
1670 }
1671 continue 'search;
1672 }
1673 }
1674
1675 // We have found a match!
1676 let match_pos = self.end - needle.len();
1677 // Note: sub self.period instead of needle.len() to have overlapping matches
1678 self.end -= needle.len();
1679 if !long_period {
1680 self.memory_back = needle.len();
1681 }
1682
1683 return S::matching(match_pos, match_pos + needle.len());
1684 }
1685 }
1686
1687 // Compute the maximal suffix of `arr`.
1688 //
1689 // The maximal suffix is a possible critical factorization (u, v) of `arr`.
1690 //
1691 // Returns (`i`, `p`) where `i` is the starting index of v and `p` is the
1692 // period of v.
1693 //
1694 // `order_greater` determines if lexical order is `<` or `>`. Both
1695 // orders must be computed -- the ordering with the largest `i` gives
1696 // a critical factorization.
1697 //
1698 // For long period cases, the resulting period is not exact (it is too short).
1699 #[inline]
1700 fn maximal_suffix(arr: &[u8], order_greater: bool) -> (usize, usize) {
1701 let mut left = 0; // Corresponds to i in the paper
1702 let mut right = 1; // Corresponds to j in the paper
1703 let mut offset = 0; // Corresponds to k in the paper, but starting at 0
1704 // to match 0-based indexing.
1705 let mut period = 1; // Corresponds to p in the paper
1706
1707 while let Some(&a) = arr.get(right + offset) {
1708 // `left` will be inbounds when `right` is.
1709 let b = arr[left + offset];
1710 if (a < b && !order_greater) || (a > b && order_greater) {
1711 // Suffix is smaller, period is entire prefix so far.
1712 right += offset + 1;
1713 offset = 0;
1714 period = right - left;
1715 } else if a == b {
1716 // Advance through repetition of the current period.
1717 if offset + 1 == period {
1718 right += offset + 1;
1719 offset = 0;
1720 } else {
1721 offset += 1;
1722 }
1723 } else {
1724 // Suffix is larger, start over from current location.
1725 left = right;
1726 right += 1;
1727 offset = 0;
1728 period = 1;
1729 }
1730 }
1731 (left, period)
1732 }
1733
1734 // Compute the maximal suffix of the reverse of `arr`.
1735 //
1736 // The maximal suffix is a possible critical factorization (u', v') of `arr`.
1737 //
1738 // Returns `i` where `i` is the starting index of v', from the back;
1739 // returns immediately when a period of `known_period` is reached.
1740 //
1741 // `order_greater` determines if lexical order is `<` or `>`. Both
1742 // orders must be computed -- the ordering with the largest `i` gives
1743 // a critical factorization.
1744 //
1745 // For long period cases, the resulting period is not exact (it is too short).
1746 fn reverse_maximal_suffix(arr: &[u8], known_period: usize, order_greater: bool) -> usize {
1747 let mut left = 0; // Corresponds to i in the paper
1748 let mut right = 1; // Corresponds to j in the paper
1749 let mut offset = 0; // Corresponds to k in the paper, but starting at 0
1750 // to match 0-based indexing.
1751 let mut period = 1; // Corresponds to p in the paper
1752 let n = arr.len();
1753
1754 while right + offset < n {
1755 let a = arr[n - (1 + right + offset)];
1756 let b = arr[n - (1 + left + offset)];
1757 if (a < b && !order_greater) || (a > b && order_greater) {
1758 // Suffix is smaller, period is entire prefix so far.
1759 right += offset + 1;
1760 offset = 0;
1761 period = right - left;
1762 } else if a == b {
1763 // Advance through repetition of the current period.
1764 if offset + 1 == period {
1765 right += offset + 1;
1766 offset = 0;
1767 } else {
1768 offset += 1;
1769 }
1770 } else {
1771 // Suffix is larger, start over from current location.
1772 left = right;
1773 right += 1;
1774 offset = 0;
1775 period = 1;
1776 }
1777 if period == known_period {
1778 break;
1779 }
1780 }
1781 debug_assert!(period <= known_period);
1782 left
1783 }
1784}
1785
1786// TwoWayStrategy allows the algorithm to either skip non-matches as quickly
1787// as possible, or to work in a mode where it emits Rejects relatively quickly.
1788trait TwoWayStrategy {
1789 type Output;
1790 fn use_early_reject() -> bool;
1791 fn rejecting(a: usize, b: usize) -> Self::Output;
1792 fn matching(a: usize, b: usize) -> Self::Output;
1793}
1794
1795/// Skip to match intervals as quickly as possible
1796#[cfg(not(feature = "ferrocene_certified"))]
1797enum MatchOnly {}
1798
1799#[cfg(not(feature = "ferrocene_certified"))]
1800impl TwoWayStrategy for MatchOnly {
1801 type Output = Option<(usize, usize)>;
1802
1803 #[inline]
1804 fn use_early_reject() -> bool {
1805 false
1806 }
1807 #[inline]
1808 fn rejecting(_a: usize, _b: usize) -> Self::Output {
1809 None
1810 }
1811 #[inline]
1812 fn matching(a: usize, b: usize) -> Self::Output {
1813 Some((a, b))
1814 }
1815}
1816
1817/// Emit Rejects regularly
1818enum RejectAndMatch {}
1819
1820impl TwoWayStrategy for RejectAndMatch {
1821 type Output = SearchStep;
1822
1823 #[inline]
1824 fn use_early_reject() -> bool {
1825 true
1826 }
1827 #[inline]
1828 fn rejecting(a: usize, b: usize) -> Self::Output {
1829 SearchStep::Reject(a, b)
1830 }
1831 #[inline]
1832 fn matching(a: usize, b: usize) -> Self::Output {
1833 SearchStep::Match(a, b)
1834 }
1835}
1836
1837/// SIMD search for short needles based on
1838/// Wojciech Muła's "SIMD-friendly algorithms for substring searching"[0]
1839///
1840/// It skips ahead by the vector width on each iteration (rather than the needle length as two-way
1841/// does) by probing the first and last byte of the needle for the whole vector width
1842/// and only doing full needle comparisons when the vectorized probe indicated potential matches.
1843///
1844/// Since the x86_64 baseline only offers SSE2 we only use u8x16 here.
1845/// If we ever ship std with for x86-64-v3 or adapt this for other platforms then wider vectors
1846/// should be evaluated.
1847///
1848/// Similarly, on LoongArch the 128-bit LSX vector extension is the baseline,
1849/// so we also use `u8x16` there. Wider vector widths may be considered
1850/// for future LoongArch extensions (e.g., LASX).
1851///
1852/// For haystacks smaller than vector-size + needle length it falls back to
1853/// a naive O(n*m) search so this implementation should not be called on larger needles.
1854///
1855/// [0]: http://0x80.pl/articles/simd-strfind.html#sse-avx2
1856#[cfg(any(
1857 all(target_arch = "x86_64", target_feature = "sse2"),
1858 all(target_arch = "loongarch64", target_feature = "lsx")
1859))]
1860#[inline]
1861#[cfg(not(feature = "ferrocene_certified"))]
1862fn simd_contains(needle: &str, haystack: &str) -> Option<bool> {
1863 let needle = needle.as_bytes();
1864 let haystack = haystack.as_bytes();
1865
1866 debug_assert!(needle.len() > 1);
1867
1868 use crate::ops::BitAnd;
1869 use crate::simd::cmp::SimdPartialEq;
1870 use crate::simd::{mask8x16 as Mask, u8x16 as Block};
1871
1872 let first_probe = needle[0];
1873 let last_byte_offset = needle.len() - 1;
1874
1875 // the offset used for the 2nd vector
1876 let second_probe_offset = if needle.len() == 2 {
1877 // never bail out on len=2 needles because the probes will fully cover them and have
1878 // no degenerate cases.
1879 1
1880 } else {
1881 // try a few bytes in case first and last byte of the needle are the same
1882 let Some(second_probe_offset) =
1883 (needle.len().saturating_sub(4)..needle.len()).rfind(|&idx| needle[idx] != first_probe)
1884 else {
1885 // fall back to other search methods if we can't find any different bytes
1886 // since we could otherwise hit some degenerate cases
1887 return None;
1888 };
1889 second_probe_offset
1890 };
1891
1892 // do a naive search if the haystack is too small to fit
1893 if haystack.len() < Block::LEN + last_byte_offset {
1894 return Some(haystack.windows(needle.len()).any(|c| c == needle));
1895 }
1896
1897 let first_probe: Block = Block::splat(first_probe);
1898 let second_probe: Block = Block::splat(needle[second_probe_offset]);
1899 // first byte are already checked by the outer loop. to verify a match only the
1900 // remainder has to be compared.
1901 let trimmed_needle = &needle[1..];
1902
1903 // this #[cold] is load-bearing, benchmark before removing it...
1904 let check_mask = #[cold]
1905 |idx, mask: u16, skip: bool| -> bool {
1906 if skip {
1907 return false;
1908 }
1909
1910 // and so is this. optimizations are weird.
1911 let mut mask = mask;
1912
1913 while mask != 0 {
1914 let trailing = mask.trailing_zeros();
1915 let offset = idx + trailing as usize + 1;
1916 // SAFETY: mask is between 0 and 15 trailing zeroes, we skip one additional byte that was already compared
1917 // and then take trimmed_needle.len() bytes. This is within the bounds defined by the outer loop
1918 unsafe {
1919 let sub = haystack.get_unchecked(offset..).get_unchecked(..trimmed_needle.len());
1920 if small_slice_eq(sub, trimmed_needle) {
1921 return true;
1922 }
1923 }
1924 mask &= !(1 << trailing);
1925 }
1926 false
1927 };
1928
1929 let test_chunk = |idx| -> u16 {
1930 // SAFETY: this requires at least LANES bytes being readable at idx
1931 // that is ensured by the loop ranges (see comments below)
1932 let a: Block = unsafe { haystack.as_ptr().add(idx).cast::<Block>().read_unaligned() };
1933 // SAFETY: this requires LANES + block_offset bytes being readable at idx
1934 let b: Block = unsafe {
1935 haystack.as_ptr().add(idx).add(second_probe_offset).cast::<Block>().read_unaligned()
1936 };
1937 let eq_first: Mask = a.simd_eq(first_probe);
1938 let eq_last: Mask = b.simd_eq(second_probe);
1939 let both = eq_first.bitand(eq_last);
1940 let mask = both.to_bitmask() as u16;
1941
1942 mask
1943 };
1944
1945 let mut i = 0;
1946 let mut result = false;
1947 // The loop condition must ensure that there's enough headroom to read LANE bytes,
1948 // and not only at the current index but also at the index shifted by block_offset
1949 const UNROLL: usize = 4;
1950 while i + last_byte_offset + UNROLL * Block::LEN < haystack.len() && !result {
1951 let mut masks = [0u16; UNROLL];
1952 for j in 0..UNROLL {
1953 masks[j] = test_chunk(i + j * Block::LEN);
1954 }
1955 for j in 0..UNROLL {
1956 let mask = masks[j];
1957 if mask != 0 {
1958 result |= check_mask(i + j * Block::LEN, mask, result);
1959 }
1960 }
1961 i += UNROLL * Block::LEN;
1962 }
1963 while i + last_byte_offset + Block::LEN < haystack.len() && !result {
1964 let mask = test_chunk(i);
1965 if mask != 0 {
1966 result |= check_mask(i, mask, result);
1967 }
1968 i += Block::LEN;
1969 }
1970
1971 // Process the tail that didn't fit into LANES-sized steps.
1972 // This simply repeats the same procedure but as right-aligned chunk instead
1973 // of a left-aligned one. The last byte must be exactly flush with the string end so
1974 // we don't miss a single byte or read out of bounds.
1975 let i = haystack.len() - last_byte_offset - Block::LEN;
1976 let mask = test_chunk(i);
1977 if mask != 0 {
1978 result |= check_mask(i, mask, result);
1979 }
1980
1981 Some(result)
1982}
1983
1984/// Compares short slices for equality.
1985///
1986/// It avoids a call to libc's memcmp which is faster on long slices
1987/// due to SIMD optimizations but it incurs a function call overhead.
1988///
1989/// # Safety
1990///
1991/// Both slices must have the same length.
1992#[cfg(any(
1993 all(target_arch = "x86_64", target_feature = "sse2"),
1994 all(target_arch = "loongarch64", target_feature = "lsx")
1995))]
1996#[inline]
1997#[cfg(not(feature = "ferrocene_certified"))]
1998unsafe fn small_slice_eq(x: &[u8], y: &[u8]) -> bool {
1999 debug_assert_eq!(x.len(), y.len());
2000 // This function is adapted from
2001 // https://github.com/BurntSushi/memchr/blob/8037d11b4357b0f07be2bb66dc2659d9cf28ad32/src/memmem/util.rs#L32
2002
2003 // If we don't have enough bytes to do 4-byte at a time loads, then
2004 // fall back to the naive slow version.
2005 //
2006 // Potential alternative: We could do a copy_nonoverlapping combined with a mask instead
2007 // of a loop. Benchmark it.
2008 if x.len() < 4 {
2009 for (&b1, &b2) in x.iter().zip(y) {
2010 if b1 != b2 {
2011 return false;
2012 }
2013 }
2014 return true;
2015 }
2016 // When we have 4 or more bytes to compare, then proceed in chunks of 4 at
2017 // a time using unaligned loads.
2018 //
2019 // Also, why do 4 byte loads instead of, say, 8 byte loads? The reason is
2020 // that this particular version of memcmp is likely to be called with tiny
2021 // needles. That means that if we do 8 byte loads, then a higher proportion
2022 // of memcmp calls will use the slower variant above. With that said, this
2023 // is a hypothesis and is only loosely supported by benchmarks. There's
2024 // likely some improvement that could be made here. The main thing here
2025 // though is to optimize for latency, not throughput.
2026
2027 // SAFETY: Via the conditional above, we know that both `px` and `py`
2028 // have the same length, so `px < pxend` implies that `py < pyend`.
2029 // Thus, dereferencing both `px` and `py` in the loop below is safe.
2030 //
2031 // Moreover, we set `pxend` and `pyend` to be 4 bytes before the actual
2032 // end of `px` and `py`. Thus, the final dereference outside of the
2033 // loop is guaranteed to be valid. (The final comparison will overlap with
2034 // the last comparison done in the loop for lengths that aren't multiples
2035 // of four.)
2036 //
2037 // Finally, we needn't worry about alignment here, since we do unaligned
2038 // loads.
2039 unsafe {
2040 let (mut px, mut py) = (x.as_ptr(), y.as_ptr());
2041 let (pxend, pyend) = (px.add(x.len() - 4), py.add(y.len() - 4));
2042 while px < pxend {
2043 let vx = (px as *const u32).read_unaligned();
2044 let vy = (py as *const u32).read_unaligned();
2045 if vx != vy {
2046 return false;
2047 }
2048 px = px.add(4);
2049 py = py.add(4);
2050 }
2051 let vx = (pxend as *const u32).read_unaligned();
2052 let vy = (pyend as *const u32).read_unaligned();
2053 vx == vy
2054 }
2055}