1
macro_rules! uint_impl {
2
    (
3
        Self = $SelfT:ty,
4
        ActualT = $ActualT:ident,
5
        SignedT = $SignedT:ident,
6

            
7
        // These are all for use *only* in doc comments.
8
        // As such, they're all passed as literals -- passing them as a string
9
        // literal is fine if they need to be multiple code tokens.
10
        // In non-comments, use the associated constants rather than these.
11
        BITS = $BITS:literal,
12
        BITS_MINUS_ONE = $BITS_MINUS_ONE:literal,
13
        MAX = $MaxV:literal,
14
        rot = $rot:literal,
15
        rot_op = $rot_op:literal,
16
        rot_result = $rot_result:literal,
17
        fsh_op = $fsh_op:literal,
18
        fshl_result = $fshl_result:literal,
19
        fshr_result = $fshr_result:literal,
20
        swap_op = $swap_op:literal,
21
        swapped = $swapped:literal,
22
        reversed = $reversed:literal,
23
        le_bytes = $le_bytes:literal,
24
        be_bytes = $be_bytes:literal,
25
        to_xe_bytes_doc = $to_xe_bytes_doc:expr,
26
        from_xe_bytes_doc = $from_xe_bytes_doc:expr,
27
        bound_condition = $bound_condition:literal,
28
    ) => {
29
        /// The smallest value that can be represented by this integer type.
30
        ///
31
        /// # Examples
32
        ///
33
        /// ```
34
        #[doc = concat!("assert_eq!(", stringify!($SelfT), "::MIN, 0);")]
35
        /// ```
36
        #[stable(feature = "assoc_int_consts", since = "1.43.0")]
37
        pub const MIN: Self = 0;
38

            
39
        /// The largest value that can be represented by this integer type
40
        #[doc = concat!("(2<sup>", $BITS, "</sup> &minus; 1", $bound_condition, ").")]
41
        ///
42
        /// # Examples
43
        ///
44
        /// ```
45
        #[doc = concat!("assert_eq!(", stringify!($SelfT), "::MAX, ", stringify!($MaxV), ");")]
46
        /// ```
47
        #[stable(feature = "assoc_int_consts", since = "1.43.0")]
48
        pub const MAX: Self = !0;
49

            
50
        /// The size of this integer type in bits.
51
        ///
52
        /// # Examples
53
        ///
54
        /// ```
55
        #[doc = concat!("assert_eq!(", stringify!($SelfT), "::BITS, ", stringify!($BITS), ");")]
56
        /// ```
57
        #[stable(feature = "int_bits_const", since = "1.53.0")]
58
        #[cfg(not(feature = "ferrocene_certified"))]
59
        pub const BITS: u32 = Self::MAX.count_ones();
60

            
61
        /// Returns the number of ones in the binary representation of `self`.
62
        ///
63
        /// # Examples
64
        ///
65
        /// ```
66
        #[doc = concat!("let n = 0b01001100", stringify!($SelfT), ";")]
67
        /// assert_eq!(n.count_ones(), 3);
68
        ///
69
        #[doc = concat!("let max = ", stringify!($SelfT),"::MAX;")]
70
        #[doc = concat!("assert_eq!(max.count_ones(), ", stringify!($BITS), ");")]
71
        ///
72
        #[doc = concat!("let zero = 0", stringify!($SelfT), ";")]
73
        /// assert_eq!(zero.count_ones(), 0);
74
        /// ```
75
        #[stable(feature = "rust1", since = "1.0.0")]
76
        #[rustc_const_stable(feature = "const_math", since = "1.32.0")]
77
        #[doc(alias = "popcount")]
78
        #[doc(alias = "popcnt")]
79
        #[must_use = "this returns the result of the operation, \
80
                      without modifying the original"]
81
        #[inline(always)]
82
13108680
        pub const fn count_ones(self) -> u32 {
83
13108680
            return intrinsics::ctpop(self);
84
13108680
        }
85

            
86
        /// Returns the number of zeros in the binary representation of `self`.
87
        ///
88
        /// # Examples
89
        ///
90
        /// ```
91
        #[doc = concat!("let zero = 0", stringify!($SelfT), ";")]
92
        #[doc = concat!("assert_eq!(zero.count_zeros(), ", stringify!($BITS), ");")]
93
        ///
94
        #[doc = concat!("let max = ", stringify!($SelfT),"::MAX;")]
95
        /// assert_eq!(max.count_zeros(), 0);
96
        /// ```
97
        #[stable(feature = "rust1", since = "1.0.0")]
98
        #[rustc_const_stable(feature = "const_math", since = "1.32.0")]
99
        #[must_use = "this returns the result of the operation, \
100
                      without modifying the original"]
101
        #[inline(always)]
102
        #[cfg(not(feature = "ferrocene_certified"))]
103
        pub const fn count_zeros(self) -> u32 {
104
            (!self).count_ones()
105
        }
106

            
107
        /// Returns the number of leading zeros in the binary representation of `self`.
108
        ///
109
        /// Depending on what you're doing with the value, you might also be interested in the
110
        /// [`ilog2`] function which returns a consistent number, even if the type widens.
111
        ///
112
        /// # Examples
113
        ///
114
        /// ```
115
        #[doc = concat!("let n = ", stringify!($SelfT), "::MAX >> 2;")]
116
        /// assert_eq!(n.leading_zeros(), 2);
117
        ///
118
        #[doc = concat!("let zero = 0", stringify!($SelfT), ";")]
119
        #[doc = concat!("assert_eq!(zero.leading_zeros(), ", stringify!($BITS), ");")]
120
        ///
121
        #[doc = concat!("let max = ", stringify!($SelfT),"::MAX;")]
122
        /// assert_eq!(max.leading_zeros(), 0);
123
        /// ```
124
        #[doc = concat!("[`ilog2`]: ", stringify!($SelfT), "::ilog2")]
125
        #[stable(feature = "rust1", since = "1.0.0")]
126
        #[rustc_const_stable(feature = "const_math", since = "1.32.0")]
127
        #[must_use = "this returns the result of the operation, \
128
                      without modifying the original"]
129
        #[inline(always)]
130
        #[cfg(not(feature = "ferrocene_certified"))]
131
        pub const fn leading_zeros(self) -> u32 {
132
            return intrinsics::ctlz(self as $ActualT);
133
        }
134

            
135
        /// Returns the number of trailing zeros in the binary representation
136
        /// of `self`.
137
        ///
138
        /// # Examples
139
        ///
140
        /// ```
141
        #[doc = concat!("let n = 0b0101000", stringify!($SelfT), ";")]
142
        /// assert_eq!(n.trailing_zeros(), 3);
143
        ///
144
        #[doc = concat!("let zero = 0", stringify!($SelfT), ";")]
145
        #[doc = concat!("assert_eq!(zero.trailing_zeros(), ", stringify!($BITS), ");")]
146
        ///
147
        #[doc = concat!("let max = ", stringify!($SelfT),"::MAX;")]
148
        #[doc = concat!("assert_eq!(max.trailing_zeros(), 0);")]
149
        /// ```
150
        #[stable(feature = "rust1", since = "1.0.0")]
151
        #[rustc_const_stable(feature = "const_math", since = "1.32.0")]
152
        #[must_use = "this returns the result of the operation, \
153
                      without modifying the original"]
154
        #[inline(always)]
155
        #[cfg(not(feature = "ferrocene_certified"))]
156
        pub const fn trailing_zeros(self) -> u32 {
157
            return intrinsics::cttz(self);
158
        }
159

            
160
        /// Returns the number of leading ones in the binary representation of `self`.
161
        ///
162
        /// # Examples
163
        ///
164
        /// ```
165
        #[doc = concat!("let n = !(", stringify!($SelfT), "::MAX >> 2);")]
166
        /// assert_eq!(n.leading_ones(), 2);
167
        ///
168
        #[doc = concat!("let zero = 0", stringify!($SelfT), ";")]
169
        /// assert_eq!(zero.leading_ones(), 0);
170
        ///
171
        #[doc = concat!("let max = ", stringify!($SelfT),"::MAX;")]
172
        #[doc = concat!("assert_eq!(max.leading_ones(), ", stringify!($BITS), ");")]
173
        /// ```
174
        #[stable(feature = "leading_trailing_ones", since = "1.46.0")]
175
        #[rustc_const_stable(feature = "leading_trailing_ones", since = "1.46.0")]
176
        #[must_use = "this returns the result of the operation, \
177
                      without modifying the original"]
178
        #[inline(always)]
179
        #[cfg(not(feature = "ferrocene_certified"))]
180
        pub const fn leading_ones(self) -> u32 {
181
            (!self).leading_zeros()
182
        }
183

            
184
        /// Returns the number of trailing ones in the binary representation
185
        /// of `self`.
186
        ///
187
        /// # Examples
188
        ///
189
        /// ```
190
        #[doc = concat!("let n = 0b1010111", stringify!($SelfT), ";")]
191
        /// assert_eq!(n.trailing_ones(), 3);
192
        ///
193
        #[doc = concat!("let zero = 0", stringify!($SelfT), ";")]
194
        /// assert_eq!(zero.trailing_ones(), 0);
195
        ///
196
        #[doc = concat!("let max = ", stringify!($SelfT),"::MAX;")]
197
        #[doc = concat!("assert_eq!(max.trailing_ones(), ", stringify!($BITS), ");")]
198
        /// ```
199
        #[stable(feature = "leading_trailing_ones", since = "1.46.0")]
200
        #[rustc_const_stable(feature = "leading_trailing_ones", since = "1.46.0")]
201
        #[must_use = "this returns the result of the operation, \
202
                      without modifying the original"]
203
        #[inline(always)]
204
        #[cfg(not(feature = "ferrocene_certified"))]
205
        pub const fn trailing_ones(self) -> u32 {
206
            (!self).trailing_zeros()
207
        }
208

            
209
        /// Returns the minimum number of bits required to represent `self`.
210
        ///
211
        /// This method returns zero if `self` is zero.
212
        ///
213
        /// # Examples
214
        ///
215
        /// ```
216
        /// #![feature(uint_bit_width)]
217
        ///
218
        #[doc = concat!("assert_eq!(0_", stringify!($SelfT), ".bit_width(), 0);")]
219
        #[doc = concat!("assert_eq!(0b111_", stringify!($SelfT), ".bit_width(), 3);")]
220
        #[doc = concat!("assert_eq!(0b1110_", stringify!($SelfT), ".bit_width(), 4);")]
221
        #[doc = concat!("assert_eq!(", stringify!($SelfT), "::MAX.bit_width(), ", stringify!($BITS), ");")]
222
        /// ```
223
        #[unstable(feature = "uint_bit_width", issue = "142326")]
224
        #[must_use = "this returns the result of the operation, \
225
                      without modifying the original"]
226
        #[inline(always)]
227
        #[cfg(not(feature = "ferrocene_certified"))]
228
        pub const fn bit_width(self) -> u32 {
229
            Self::BITS - self.leading_zeros()
230
        }
231

            
232
        /// Returns `self` with only the most significant bit set, or `0` if
233
        /// the input is `0`.
234
        ///
235
        /// # Examples
236
        ///
237
        /// ```
238
        /// #![feature(isolate_most_least_significant_one)]
239
        ///
240
        #[doc = concat!("let n: ", stringify!($SelfT), " = 0b_01100100;")]
241
        ///
242
        /// assert_eq!(n.isolate_highest_one(), 0b_01000000);
243
        #[doc = concat!("assert_eq!(0_", stringify!($SelfT), ".isolate_highest_one(), 0);")]
244
        /// ```
245
        #[unstable(feature = "isolate_most_least_significant_one", issue = "136909")]
246
        #[must_use = "this returns the result of the operation, \
247
                      without modifying the original"]
248
        #[inline(always)]
249
        #[cfg(not(feature = "ferrocene_certified"))]
250
        pub const fn isolate_highest_one(self) -> Self {
251
            self & (((1 as $SelfT) << (<$SelfT>::BITS - 1)).wrapping_shr(self.leading_zeros()))
252
        }
253

            
254
        /// Returns `self` with only the least significant bit set, or `0` if
255
        /// the input is `0`.
256
        ///
257
        /// # Examples
258
        ///
259
        /// ```
260
        /// #![feature(isolate_most_least_significant_one)]
261
        ///
262
        #[doc = concat!("let n: ", stringify!($SelfT), " = 0b_01100100;")]
263
        ///
264
        /// assert_eq!(n.isolate_lowest_one(), 0b_00000100);
265
        #[doc = concat!("assert_eq!(0_", stringify!($SelfT), ".isolate_lowest_one(), 0);")]
266
        /// ```
267
        #[unstable(feature = "isolate_most_least_significant_one", issue = "136909")]
268
        #[must_use = "this returns the result of the operation, \
269
                      without modifying the original"]
270
        #[inline(always)]
271
        #[cfg(not(feature = "ferrocene_certified"))]
272
        pub const fn isolate_lowest_one(self) -> Self {
273
            self & self.wrapping_neg()
274
        }
275

            
276
        /// Returns the index of the highest bit set to one in `self`, or `None`
277
        /// if `self` is `0`.
278
        ///
279
        /// # Examples
280
        ///
281
        /// ```
282
        /// #![feature(int_lowest_highest_one)]
283
        ///
284
        #[doc = concat!("assert_eq!(0x0_", stringify!($SelfT), ".highest_one(), None);")]
285
        #[doc = concat!("assert_eq!(0x1_", stringify!($SelfT), ".highest_one(), Some(0));")]
286
        #[doc = concat!("assert_eq!(0x10_", stringify!($SelfT), ".highest_one(), Some(4));")]
287
        #[doc = concat!("assert_eq!(0x1f_", stringify!($SelfT), ".highest_one(), Some(4));")]
288
        /// ```
289
        #[unstable(feature = "int_lowest_highest_one", issue = "145203")]
290
        #[must_use = "this returns the result of the operation, \
291
                      without modifying the original"]
292
        #[inline(always)]
293
        #[cfg(not(feature = "ferrocene_certified"))]
294
        pub const fn highest_one(self) -> Option<u32> {
295
            match NonZero::new(self) {
296
                Some(v) => Some(v.highest_one()),
297
                None => None,
298
            }
299
        }
300

            
301
        /// Returns the index of the lowest bit set to one in `self`, or `None`
302
        /// if `self` is `0`.
303
        ///
304
        /// # Examples
305
        ///
306
        /// ```
307
        /// #![feature(int_lowest_highest_one)]
308
        ///
309
        #[doc = concat!("assert_eq!(0x0_", stringify!($SelfT), ".lowest_one(), None);")]
310
        #[doc = concat!("assert_eq!(0x1_", stringify!($SelfT), ".lowest_one(), Some(0));")]
311
        #[doc = concat!("assert_eq!(0x10_", stringify!($SelfT), ".lowest_one(), Some(4));")]
312
        #[doc = concat!("assert_eq!(0x1f_", stringify!($SelfT), ".lowest_one(), Some(0));")]
313
        /// ```
314
        #[unstable(feature = "int_lowest_highest_one", issue = "145203")]
315
        #[must_use = "this returns the result of the operation, \
316
                      without modifying the original"]
317
        #[inline(always)]
318
        #[cfg(not(feature = "ferrocene_certified"))]
319
        pub const fn lowest_one(self) -> Option<u32> {
320
            match NonZero::new(self) {
321
                Some(v) => Some(v.lowest_one()),
322
                None => None,
323
            }
324
        }
325

            
326
        /// Returns the bit pattern of `self` reinterpreted as a signed integer of the same size.
327
        ///
328
        /// This produces the same result as an `as` cast, but ensures that the bit-width remains
329
        /// the same.
330
        ///
331
        /// # Examples
332
        ///
333
        /// ```
334
        #[doc = concat!("let n = ", stringify!($SelfT), "::MAX;")]
335
        ///
336
        #[doc = concat!("assert_eq!(n.cast_signed(), -1", stringify!($SignedT), ");")]
337
        /// ```
338
        #[stable(feature = "integer_sign_cast", since = "1.87.0")]
339
        #[rustc_const_stable(feature = "integer_sign_cast", since = "1.87.0")]
340
        #[must_use = "this returns the result of the operation, \
341
                      without modifying the original"]
342
        #[inline(always)]
343
        #[cfg(not(feature = "ferrocene_certified"))]
344
        pub const fn cast_signed(self) -> $SignedT {
345
            self as $SignedT
346
        }
347

            
348
        /// Shifts the bits to the left by a specified amount, `n`,
349
        /// wrapping the truncated bits to the end of the resulting integer.
350
        ///
351
        /// Please note this isn't the same operation as the `<<` shifting operator!
352
        ///
353
        /// # Examples
354
        ///
355
        /// ```
356
        #[doc = concat!("let n = ", $rot_op, stringify!($SelfT), ";")]
357
        #[doc = concat!("let m = ", $rot_result, ";")]
358
        ///
359
        #[doc = concat!("assert_eq!(n.rotate_left(", $rot, "), m);")]
360
        /// ```
361
        #[stable(feature = "rust1", since = "1.0.0")]
362
        #[rustc_const_stable(feature = "const_math", since = "1.32.0")]
363
        #[must_use = "this returns the result of the operation, \
364
                      without modifying the original"]
365
        #[inline(always)]
366
        #[cfg(not(feature = "ferrocene_certified"))]
367
        pub const fn rotate_left(self, n: u32) -> Self {
368
            return intrinsics::rotate_left(self, n);
369
        }
370

            
371
        /// Shifts the bits to the right by a specified amount, `n`,
372
        /// wrapping the truncated bits to the beginning of the resulting
373
        /// integer.
374
        ///
375
        /// Please note this isn't the same operation as the `>>` shifting operator!
376
        ///
377
        /// # Examples
378
        ///
379
        /// ```
380
        #[doc = concat!("let n = ", $rot_result, stringify!($SelfT), ";")]
381
        #[doc = concat!("let m = ", $rot_op, ";")]
382
        ///
383
        #[doc = concat!("assert_eq!(n.rotate_right(", $rot, "), m);")]
384
        /// ```
385
        #[stable(feature = "rust1", since = "1.0.0")]
386
        #[rustc_const_stable(feature = "const_math", since = "1.32.0")]
387
        #[must_use = "this returns the result of the operation, \
388
                      without modifying the original"]
389
        #[inline(always)]
390
        #[cfg(not(feature = "ferrocene_certified"))]
391
        pub const fn rotate_right(self, n: u32) -> Self {
392
            return intrinsics::rotate_right(self, n);
393
        }
394

            
395
        /// Performs a left funnel shift (concatenates `self` with `rhs`, with `self`
396
        /// making up the most significant half, then shifts the combined value left
397
        /// by `n`, and most significant half is extracted to produce the result).
398
        ///
399
        /// Please note this isn't the same operation as the `<<` shifting operator or
400
        /// [`rotate_left`](Self::rotate_left), although `a.funnel_shl(a, n)` is *equivalent*
401
        /// to `a.rotate_left(n)`.
402
        ///
403
        /// # Panics
404
        ///
405
        /// If `n` is greater than or equal to the number of bits in `self`
406
        ///
407
        /// # Examples
408
        ///
409
        /// Basic usage:
410
        ///
411
        /// ```
412
        /// #![feature(funnel_shifts)]
413
        #[doc = concat!("let a = ", $rot_op, stringify!($SelfT), ";")]
414
        #[doc = concat!("let b = ", $fsh_op, stringify!($SelfT), ";")]
415
        #[doc = concat!("let m = ", $fshl_result, ";")]
416
        ///
417
        #[doc = concat!("assert_eq!(a.funnel_shl(b, ", $rot, "), m);")]
418
        /// ```
419
        #[rustc_const_unstable(feature = "funnel_shifts", issue = "145686")]
420
        #[unstable(feature = "funnel_shifts", issue = "145686")]
421
        #[must_use = "this returns the result of the operation, \
422
                      without modifying the original"]
423
        #[inline(always)]
424
        #[cfg(not(feature = "ferrocene_certified"))]
425
        pub const fn funnel_shl(self, rhs: Self, n: u32) -> Self {
426
            assert!(n < Self::BITS, "attempt to funnel shift left with overflow");
427
            // SAFETY: just checked that `shift` is in-range
428
            unsafe { intrinsics::unchecked_funnel_shl(self, rhs, n) }
429
        }
430

            
431
        /// Performs a right funnel shift (concatenates `self` and `rhs`, with `self`
432
        /// making up the most significant half, then shifts the combined value right
433
        /// by `n`, and least significant half is extracted to produce the result).
434
        ///
435
        /// Please note this isn't the same operation as the `>>` shifting operator or
436
        /// [`rotate_right`](Self::rotate_right), although `a.funnel_shr(a, n)` is *equivalent*
437
        /// to `a.rotate_right(n)`.
438
        ///
439
        /// # Panics
440
        ///
441
        /// If `n` is greater than or equal to the number of bits in `self`
442
        ///
443
        /// # Examples
444
        ///
445
        /// Basic usage:
446
        ///
447
        /// ```
448
        /// #![feature(funnel_shifts)]
449
        #[doc = concat!("let a = ", $rot_op, stringify!($SelfT), ";")]
450
        #[doc = concat!("let b = ", $fsh_op, stringify!($SelfT), ";")]
451
        #[doc = concat!("let m = ", $fshr_result, ";")]
452
        ///
453
        #[doc = concat!("assert_eq!(a.funnel_shr(b, ", $rot, "), m);")]
454
        /// ```
455
        #[rustc_const_unstable(feature = "funnel_shifts", issue = "145686")]
456
        #[unstable(feature = "funnel_shifts", issue = "145686")]
457
        #[must_use = "this returns the result of the operation, \
458
                      without modifying the original"]
459
        #[inline(always)]
460
        #[cfg(not(feature = "ferrocene_certified"))]
461
        pub const fn funnel_shr(self, rhs: Self, n: u32) -> Self {
462
            assert!(n < Self::BITS, "attempt to funnel shift right with overflow");
463
            // SAFETY: just checked that `shift` is in-range
464
            unsafe { intrinsics::unchecked_funnel_shr(self, rhs, n) }
465
        }
466

            
467
        /// Reverses the byte order of the integer.
468
        ///
469
        /// # Examples
470
        ///
471
        /// ```
472
        #[doc = concat!("let n = ", $swap_op, stringify!($SelfT), ";")]
473
        /// let m = n.swap_bytes();
474
        ///
475
        #[doc = concat!("assert_eq!(m, ", $swapped, ");")]
476
        /// ```
477
        #[stable(feature = "rust1", since = "1.0.0")]
478
        #[rustc_const_stable(feature = "const_math", since = "1.32.0")]
479
        #[must_use = "this returns the result of the operation, \
480
                      without modifying the original"]
481
        #[inline(always)]
482
        #[cfg(not(feature = "ferrocene_certified"))]
483
        pub const fn swap_bytes(self) -> Self {
484
            intrinsics::bswap(self as $ActualT) as Self
485
        }
486

            
487
        /// Reverses the order of bits in the integer. The least significant bit becomes the most significant bit,
488
        ///                 second least-significant bit becomes second most-significant bit, etc.
489
        ///
490
        /// # Examples
491
        ///
492
        /// ```
493
        #[doc = concat!("let n = ", $swap_op, stringify!($SelfT), ";")]
494
        /// let m = n.reverse_bits();
495
        ///
496
        #[doc = concat!("assert_eq!(m, ", $reversed, ");")]
497
        #[doc = concat!("assert_eq!(0, 0", stringify!($SelfT), ".reverse_bits());")]
498
        /// ```
499
        #[stable(feature = "reverse_bits", since = "1.37.0")]
500
        #[rustc_const_stable(feature = "reverse_bits", since = "1.37.0")]
501
        #[must_use = "this returns the result of the operation, \
502
                      without modifying the original"]
503
        #[inline(always)]
504
        #[cfg(not(feature = "ferrocene_certified"))]
505
        pub const fn reverse_bits(self) -> Self {
506
            intrinsics::bitreverse(self as $ActualT) as Self
507
        }
508

            
509
        /// Converts an integer from big endian to the target's endianness.
510
        ///
511
        /// On big endian this is a no-op. On little endian the bytes are
512
        /// swapped.
513
        ///
514
        /// # Examples
515
        ///
516
        /// ```
517
        #[doc = concat!("let n = 0x1A", stringify!($SelfT), ";")]
518
        ///
519
        /// if cfg!(target_endian = "big") {
520
        #[doc = concat!("    assert_eq!(", stringify!($SelfT), "::from_be(n), n)")]
521
        /// } else {
522
        #[doc = concat!("    assert_eq!(", stringify!($SelfT), "::from_be(n), n.swap_bytes())")]
523
        /// }
524
        /// ```
525
        #[stable(feature = "rust1", since = "1.0.0")]
526
        #[rustc_const_stable(feature = "const_math", since = "1.32.0")]
527
        #[must_use]
528
        #[inline(always)]
529
        #[cfg(not(feature = "ferrocene_certified"))]
530
        pub const fn from_be(x: Self) -> Self {
531
            #[cfg(target_endian = "big")]
532
            {
533
                x
534
            }
535
            #[cfg(not(target_endian = "big"))]
536
            {
537
                x.swap_bytes()
538
            }
539
        }
540

            
541
        /// Converts an integer from little endian to the target's endianness.
542
        ///
543
        /// On little endian this is a no-op. On big endian the bytes are
544
        /// swapped.
545
        ///
546
        /// # Examples
547
        ///
548
        /// ```
549
        #[doc = concat!("let n = 0x1A", stringify!($SelfT), ";")]
550
        ///
551
        /// if cfg!(target_endian = "little") {
552
        #[doc = concat!("    assert_eq!(", stringify!($SelfT), "::from_le(n), n)")]
553
        /// } else {
554
        #[doc = concat!("    assert_eq!(", stringify!($SelfT), "::from_le(n), n.swap_bytes())")]
555
        /// }
556
        /// ```
557
        #[stable(feature = "rust1", since = "1.0.0")]
558
        #[rustc_const_stable(feature = "const_math", since = "1.32.0")]
559
        #[must_use]
560
        #[inline(always)]
561
        #[cfg(not(feature = "ferrocene_certified"))]
562
        pub const fn from_le(x: Self) -> Self {
563
            #[cfg(target_endian = "little")]
564
            {
565
                x
566
            }
567
            #[cfg(not(target_endian = "little"))]
568
            {
569
                x.swap_bytes()
570
            }
571
        }
572

            
573
        /// Converts `self` to big endian from the target's endianness.
574
        ///
575
        /// On big endian this is a no-op. On little endian the bytes are
576
        /// swapped.
577
        ///
578
        /// # Examples
579
        ///
580
        /// ```
581
        #[doc = concat!("let n = 0x1A", stringify!($SelfT), ";")]
582
        ///
583
        /// if cfg!(target_endian = "big") {
584
        ///     assert_eq!(n.to_be(), n)
585
        /// } else {
586
        ///     assert_eq!(n.to_be(), n.swap_bytes())
587
        /// }
588
        /// ```
589
        #[stable(feature = "rust1", since = "1.0.0")]
590
        #[rustc_const_stable(feature = "const_math", since = "1.32.0")]
591
        #[must_use = "this returns the result of the operation, \
592
                      without modifying the original"]
593
        #[inline(always)]
594
        #[cfg(not(feature = "ferrocene_certified"))]
595
        pub const fn to_be(self) -> Self { // or not to be?
596
            #[cfg(target_endian = "big")]
597
            {
598
                self
599
            }
600
            #[cfg(not(target_endian = "big"))]
601
            {
602
                self.swap_bytes()
603
            }
604
        }
605

            
606
        /// Converts `self` to little endian from the target's endianness.
607
        ///
608
        /// On little endian this is a no-op. On big endian the bytes are
609
        /// swapped.
610
        ///
611
        /// # Examples
612
        ///
613
        /// ```
614
        #[doc = concat!("let n = 0x1A", stringify!($SelfT), ";")]
615
        ///
616
        /// if cfg!(target_endian = "little") {
617
        ///     assert_eq!(n.to_le(), n)
618
        /// } else {
619
        ///     assert_eq!(n.to_le(), n.swap_bytes())
620
        /// }
621
        /// ```
622
        #[stable(feature = "rust1", since = "1.0.0")]
623
        #[rustc_const_stable(feature = "const_math", since = "1.32.0")]
624
        #[must_use = "this returns the result of the operation, \
625
                      without modifying the original"]
626
        #[inline(always)]
627
        #[cfg(not(feature = "ferrocene_certified"))]
628
        pub const fn to_le(self) -> Self {
629
            #[cfg(target_endian = "little")]
630
            {
631
                self
632
            }
633
            #[cfg(not(target_endian = "little"))]
634
            {
635
                self.swap_bytes()
636
            }
637
        }
638

            
639
        /// Checked integer addition. Computes `self + rhs`, returning `None`
640
        /// if overflow occurred.
641
        ///
642
        /// # Examples
643
        ///
644
        /// ```
645
        #[doc = concat!(
646
            "assert_eq!((", stringify!($SelfT), "::MAX - 2).checked_add(1), ",
647
            "Some(", stringify!($SelfT), "::MAX - 1));"
648
        )]
649
        #[doc = concat!("assert_eq!((", stringify!($SelfT), "::MAX - 2).checked_add(3), None);")]
650
        /// ```
651
        #[stable(feature = "rust1", since = "1.0.0")]
652
        #[rustc_const_stable(feature = "const_checked_int_methods", since = "1.47.0")]
653
        #[must_use = "this returns the result of the operation, \
654
                      without modifying the original"]
655
        #[inline]
656
        #[cfg(not(feature = "ferrocene_certified"))]
657
        pub const fn checked_add(self, rhs: Self) -> Option<Self> {
658
            // This used to use `overflowing_add`, but that means it ends up being
659
            // a `wrapping_add`, losing some optimization opportunities. Notably,
660
            // phrasing it this way helps `.checked_add(1)` optimize to a check
661
            // against `MAX` and a `add nuw`.
662
            // Per <https://github.com/rust-lang/rust/pull/124114#issuecomment-2066173305>,
663
            // LLVM is happy to re-form the intrinsic later if useful.
664

            
665
            if intrinsics::unlikely(intrinsics::add_with_overflow(self, rhs).1) {
666
                None
667
            } else {
668
                // SAFETY: Just checked it doesn't overflow
669
                Some(unsafe { intrinsics::unchecked_add(self, rhs) })
670
            }
671
        }
672

            
673
        /// Strict integer addition. Computes `self + rhs`, panicking
674
        /// if overflow occurred.
675
        ///
676
        /// # Panics
677
        ///
678
        /// ## Overflow behavior
679
        ///
680
        /// This function will always panic on overflow, regardless of whether overflow checks are enabled.
681
        ///
682
        /// # Examples
683
        ///
684
        /// ```
685
        #[doc = concat!("assert_eq!((", stringify!($SelfT), "::MAX - 2).strict_add(1), ", stringify!($SelfT), "::MAX - 1);")]
686
        /// ```
687
        ///
688
        /// The following panics because of overflow:
689
        ///
690
        /// ```should_panic
691
        #[doc = concat!("let _ = (", stringify!($SelfT), "::MAX - 2).strict_add(3);")]
692
        /// ```
693
        #[stable(feature = "strict_overflow_ops", since = "CURRENT_RUSTC_VERSION")]
694
        #[rustc_const_stable(feature = "strict_overflow_ops", since = "CURRENT_RUSTC_VERSION")]
695
        #[must_use = "this returns the result of the operation, \
696
                      without modifying the original"]
697
        #[inline]
698
        #[track_caller]
699
        #[cfg(not(feature = "ferrocene_certified"))]
700
        pub const fn strict_add(self, rhs: Self) -> Self {
701
            let (a, b) = self.overflowing_add(rhs);
702
            if b { overflow_panic::add() } else { a }
703
        }
704

            
705
        /// Unchecked integer addition. Computes `self + rhs`, assuming overflow
706
        /// cannot occur.
707
        ///
708
        /// Calling `x.unchecked_add(y)` is semantically equivalent to calling
709
        /// `x.`[`checked_add`]`(y).`[`unwrap_unchecked`]`()`.
710
        ///
711
        /// If you're just trying to avoid the panic in debug mode, then **do not**
712
        /// use this.  Instead, you're looking for [`wrapping_add`].
713
        ///
714
        /// # Safety
715
        ///
716
        /// This results in undefined behavior when
717
        #[doc = concat!("`self + rhs > ", stringify!($SelfT), "::MAX` or `self + rhs < ", stringify!($SelfT), "::MIN`,")]
718
        /// i.e. when [`checked_add`] would return `None`.
719
        ///
720
        /// [`unwrap_unchecked`]: option/enum.Option.html#method.unwrap_unchecked
721
        #[doc = concat!("[`checked_add`]: ", stringify!($SelfT), "::checked_add")]
722
        #[doc = concat!("[`wrapping_add`]: ", stringify!($SelfT), "::wrapping_add")]
723
        #[stable(feature = "unchecked_math", since = "1.79.0")]
724
        #[rustc_const_stable(feature = "unchecked_math", since = "1.79.0")]
725
        #[must_use = "this returns the result of the operation, \
726
                      without modifying the original"]
727
        #[inline(always)]
728
        #[track_caller]
729
        #[cfg(not(feature = "ferrocene_certified"))]
730
        pub const unsafe fn unchecked_add(self, rhs: Self) -> Self {
731
            assert_unsafe_precondition!(
732
                check_language_ub,
733
                concat!(stringify!($SelfT), "::unchecked_add cannot overflow"),
734
                (
735
                    lhs: $SelfT = self,
736
                    rhs: $SelfT = rhs,
737
                ) => !lhs.overflowing_add(rhs).1,
738
            );
739

            
740
            // SAFETY: this is guaranteed to be safe by the caller.
741
            unsafe {
742
                intrinsics::unchecked_add(self, rhs)
743
            }
744
        }
745

            
746
        /// Checked addition with a signed integer. Computes `self + rhs`,
747
        /// returning `None` if overflow occurred.
748
        ///
749
        /// # Examples
750
        ///
751
        /// ```
752
        #[doc = concat!("assert_eq!(1", stringify!($SelfT), ".checked_add_signed(2), Some(3));")]
753
        #[doc = concat!("assert_eq!(1", stringify!($SelfT), ".checked_add_signed(-2), None);")]
754
        #[doc = concat!("assert_eq!((", stringify!($SelfT), "::MAX - 2).checked_add_signed(3), None);")]
755
        /// ```
756
        #[stable(feature = "mixed_integer_ops", since = "1.66.0")]
757
        #[rustc_const_stable(feature = "mixed_integer_ops", since = "1.66.0")]
758
        #[must_use = "this returns the result of the operation, \
759
                      without modifying the original"]
760
        #[inline]
761
        #[cfg(not(feature = "ferrocene_certified"))]
762
        pub const fn checked_add_signed(self, rhs: $SignedT) -> Option<Self> {
763
            let (a, b) = self.overflowing_add_signed(rhs);
764
            if intrinsics::unlikely(b) { None } else { Some(a) }
765
        }
766

            
767
        /// Strict addition with a signed integer. Computes `self + rhs`,
768
        /// panicking if overflow occurred.
769
        ///
770
        /// # Panics
771
        ///
772
        /// ## Overflow behavior
773
        ///
774
        /// This function will always panic on overflow, regardless of whether overflow checks are enabled.
775
        ///
776
        /// # Examples
777
        ///
778
        /// ```
779
        #[doc = concat!("assert_eq!(1", stringify!($SelfT), ".strict_add_signed(2), 3);")]
780
        /// ```
781
        ///
782
        /// The following panic because of overflow:
783
        ///
784
        /// ```should_panic
785
        #[doc = concat!("let _ = 1", stringify!($SelfT), ".strict_add_signed(-2);")]
786
        /// ```
787
        ///
788
        /// ```should_panic
789
        #[doc = concat!("let _ = (", stringify!($SelfT), "::MAX - 2).strict_add_signed(3);")]
790
        /// ```
791
        #[stable(feature = "strict_overflow_ops", since = "CURRENT_RUSTC_VERSION")]
792
        #[rustc_const_stable(feature = "strict_overflow_ops", since = "CURRENT_RUSTC_VERSION")]
793
        #[must_use = "this returns the result of the operation, \
794
                      without modifying the original"]
795
        #[inline]
796
        #[track_caller]
797
        #[cfg(not(feature = "ferrocene_certified"))]
798
        pub const fn strict_add_signed(self, rhs: $SignedT) -> Self {
799
            let (a, b) = self.overflowing_add_signed(rhs);
800
            if b { overflow_panic::add() } else { a }
801
        }
802

            
803
        /// Checked integer subtraction. Computes `self - rhs`, returning
804
        /// `None` if overflow occurred.
805
        ///
806
        /// # Examples
807
        ///
808
        /// ```
809
        #[doc = concat!("assert_eq!(1", stringify!($SelfT), ".checked_sub(1), Some(0));")]
810
        #[doc = concat!("assert_eq!(0", stringify!($SelfT), ".checked_sub(1), None);")]
811
        /// ```
812
        #[stable(feature = "rust1", since = "1.0.0")]
813
        #[rustc_const_stable(feature = "const_checked_int_methods", since = "1.47.0")]
814
        #[must_use = "this returns the result of the operation, \
815
                      without modifying the original"]
816
        #[inline]
817
        #[cfg(not(feature = "ferrocene_certified"))]
818
        pub const fn checked_sub(self, rhs: Self) -> Option<Self> {
819
            // Per PR#103299, there's no advantage to the `overflowing` intrinsic
820
            // for *unsigned* subtraction and we just emit the manual check anyway.
821
            // Thus, rather than using `overflowing_sub` that produces a wrapping
822
            // subtraction, check it ourself so we can use an unchecked one.
823

            
824
            if self < rhs {
825
                None
826
            } else {
827
                // SAFETY: just checked this can't overflow
828
                Some(unsafe { intrinsics::unchecked_sub(self, rhs) })
829
            }
830
        }
831

            
832
        /// Strict integer subtraction. Computes `self - rhs`, panicking if
833
        /// overflow occurred.
834
        ///
835
        /// # Panics
836
        ///
837
        /// ## Overflow behavior
838
        ///
839
        /// This function will always panic on overflow, regardless of whether overflow checks are enabled.
840
        ///
841
        /// # Examples
842
        ///
843
        /// ```
844
        #[doc = concat!("assert_eq!(1", stringify!($SelfT), ".strict_sub(1), 0);")]
845
        /// ```
846
        ///
847
        /// The following panics because of overflow:
848
        ///
849
        /// ```should_panic
850
        #[doc = concat!("let _ = 0", stringify!($SelfT), ".strict_sub(1);")]
851
        /// ```
852
        #[stable(feature = "strict_overflow_ops", since = "CURRENT_RUSTC_VERSION")]
853
        #[rustc_const_stable(feature = "strict_overflow_ops", since = "CURRENT_RUSTC_VERSION")]
854
        #[must_use = "this returns the result of the operation, \
855
                      without modifying the original"]
856
        #[inline]
857
        #[track_caller]
858
        #[cfg(not(feature = "ferrocene_certified"))]
859
        pub const fn strict_sub(self, rhs: Self) -> Self {
860
            let (a, b) = self.overflowing_sub(rhs);
861
            if b { overflow_panic::sub() } else { a }
862
        }
863

            
864
        /// Unchecked integer subtraction. Computes `self - rhs`, assuming overflow
865
        /// cannot occur.
866
        ///
867
        /// Calling `x.unchecked_sub(y)` is semantically equivalent to calling
868
        /// `x.`[`checked_sub`]`(y).`[`unwrap_unchecked`]`()`.
869
        ///
870
        /// If you're just trying to avoid the panic in debug mode, then **do not**
871
        /// use this.  Instead, you're looking for [`wrapping_sub`].
872
        ///
873
        /// If you find yourself writing code like this:
874
        ///
875
        /// ```
876
        /// # let foo = 30_u32;
877
        /// # let bar = 20;
878
        /// if foo >= bar {
879
        ///     // SAFETY: just checked it will not overflow
880
        ///     let diff = unsafe { foo.unchecked_sub(bar) };
881
        ///     // ... use diff ...
882
        /// }
883
        /// ```
884
        ///
885
        /// Consider changing it to
886
        ///
887
        /// ```
888
        /// # let foo = 30_u32;
889
        /// # let bar = 20;
890
        /// if let Some(diff) = foo.checked_sub(bar) {
891
        ///     // ... use diff ...
892
        /// }
893
        /// ```
894
        ///
895
        /// As that does exactly the same thing -- including telling the optimizer
896
        /// that the subtraction cannot overflow -- but avoids needing `unsafe`.
897
        ///
898
        /// # Safety
899
        ///
900
        /// This results in undefined behavior when
901
        #[doc = concat!("`self - rhs > ", stringify!($SelfT), "::MAX` or `self - rhs < ", stringify!($SelfT), "::MIN`,")]
902
        /// i.e. when [`checked_sub`] would return `None`.
903
        ///
904
        /// [`unwrap_unchecked`]: option/enum.Option.html#method.unwrap_unchecked
905
        #[doc = concat!("[`checked_sub`]: ", stringify!($SelfT), "::checked_sub")]
906
        #[doc = concat!("[`wrapping_sub`]: ", stringify!($SelfT), "::wrapping_sub")]
907
        #[stable(feature = "unchecked_math", since = "1.79.0")]
908
        #[rustc_const_stable(feature = "unchecked_math", since = "1.79.0")]
909
        #[must_use = "this returns the result of the operation, \
910
                      without modifying the original"]
911
        #[inline(always)]
912
        #[track_caller]
913
        #[cfg(not(feature = "ferrocene_certified"))]
914
        pub const unsafe fn unchecked_sub(self, rhs: Self) -> Self {
915
            assert_unsafe_precondition!(
916
                check_language_ub,
917
                concat!(stringify!($SelfT), "::unchecked_sub cannot overflow"),
918
                (
919
                    lhs: $SelfT = self,
920
                    rhs: $SelfT = rhs,
921
                ) => !lhs.overflowing_sub(rhs).1,
922
            );
923

            
924
            // SAFETY: this is guaranteed to be safe by the caller.
925
            unsafe {
926
                intrinsics::unchecked_sub(self, rhs)
927
            }
928
        }
929

            
930
        /// Checked subtraction with a signed integer. Computes `self - rhs`,
931
        /// returning `None` if overflow occurred.
932
        ///
933
        /// # Examples
934
        ///
935
        /// ```
936
        #[doc = concat!("assert_eq!(1", stringify!($SelfT), ".checked_sub_signed(2), None);")]
937
        #[doc = concat!("assert_eq!(1", stringify!($SelfT), ".checked_sub_signed(-2), Some(3));")]
938
        #[doc = concat!("assert_eq!((", stringify!($SelfT), "::MAX - 2).checked_sub_signed(-4), None);")]
939
        /// ```
940
        #[stable(feature = "mixed_integer_ops_unsigned_sub", since = "1.90.0")]
941
        #[rustc_const_stable(feature = "mixed_integer_ops_unsigned_sub", since = "1.90.0")]
942
        #[must_use = "this returns the result of the operation, \
943
                      without modifying the original"]
944
        #[inline]
945
        #[cfg(not(feature = "ferrocene_certified"))]
946
        pub const fn checked_sub_signed(self, rhs: $SignedT) -> Option<Self> {
947
            let (res, overflow) = self.overflowing_sub_signed(rhs);
948

            
949
            if !overflow {
950
                Some(res)
951
            } else {
952
                None
953
            }
954
        }
955

            
956
        /// Strict subtraction with a signed integer. Computes `self - rhs`,
957
        /// panicking if overflow occurred.
958
        ///
959
        /// # Panics
960
        ///
961
        /// ## Overflow behavior
962
        ///
963
        /// This function will always panic on overflow, regardless of whether overflow checks are enabled.
964
        ///
965
        /// # Examples
966
        ///
967
        /// ```
968
        #[doc = concat!("assert_eq!(3", stringify!($SelfT), ".strict_sub_signed(2), 1);")]
969
        /// ```
970
        ///
971
        /// The following panic because of overflow:
972
        ///
973
        /// ```should_panic
974
        #[doc = concat!("let _ = 1", stringify!($SelfT), ".strict_sub_signed(2);")]
975
        /// ```
976
        ///
977
        /// ```should_panic
978
        #[doc = concat!("let _ = (", stringify!($SelfT), "::MAX).strict_sub_signed(-1);")]
979
        /// ```
980
        #[stable(feature = "strict_overflow_ops", since = "CURRENT_RUSTC_VERSION")]
981
        #[rustc_const_stable(feature = "strict_overflow_ops", since = "CURRENT_RUSTC_VERSION")]
982
        #[must_use = "this returns the result of the operation, \
983
                      without modifying the original"]
984
        #[inline]
985
        #[track_caller]
986
        #[cfg(not(feature = "ferrocene_certified"))]
987
        pub const fn strict_sub_signed(self, rhs: $SignedT) -> Self {
988
            let (a, b) = self.overflowing_sub_signed(rhs);
989
            if b { overflow_panic::sub() } else { a }
990
        }
991

            
992
        #[doc = concat!(
993
            "Checked integer subtraction. Computes `self - rhs` and checks if the result fits into an [`",
994
            stringify!($SignedT), "`], returning `None` if overflow occurred."
995
        )]
996
        ///
997
        /// # Examples
998
        ///
999
        /// ```
        #[doc = concat!("assert_eq!(10", stringify!($SelfT), ".checked_signed_diff(2), Some(8));")]
        #[doc = concat!("assert_eq!(2", stringify!($SelfT), ".checked_signed_diff(10), Some(-8));")]
        #[doc = concat!(
            "assert_eq!(",
            stringify!($SelfT),
            "::MAX.checked_signed_diff(",
            stringify!($SignedT),
            "::MAX as ",
            stringify!($SelfT),
            "), None);"
        )]
        #[doc = concat!(
            "assert_eq!((",
            stringify!($SignedT),
            "::MAX as ",
            stringify!($SelfT),
            ").checked_signed_diff(",
            stringify!($SelfT),
            "::MAX), Some(",
            stringify!($SignedT),
            "::MIN));"
        )]
        #[doc = concat!(
            "assert_eq!((",
            stringify!($SignedT),
            "::MAX as ",
            stringify!($SelfT),
            " + 1).checked_signed_diff(0), None);"
        )]
        #[doc = concat!(
            "assert_eq!(",
            stringify!($SelfT),
            "::MAX.checked_signed_diff(",
            stringify!($SelfT),
            "::MAX), Some(0));"
        )]
        /// ```
        #[stable(feature = "unsigned_signed_diff", since = "CURRENT_RUSTC_VERSION")]
        #[rustc_const_stable(feature = "unsigned_signed_diff", since = "CURRENT_RUSTC_VERSION")]
        #[inline]
        #[cfg(not(feature = "ferrocene_certified"))]
        pub const fn checked_signed_diff(self, rhs: Self) -> Option<$SignedT> {
            let res = self.wrapping_sub(rhs) as $SignedT;
            let overflow = (self >= rhs) == (res < 0);
            if !overflow {
                Some(res)
            } else {
                None
            }
        }
        /// Checked integer multiplication. Computes `self * rhs`, returning
        /// `None` if overflow occurred.
        ///
        /// # Examples
        ///
        /// ```
        #[doc = concat!("assert_eq!(5", stringify!($SelfT), ".checked_mul(1), Some(5));")]
        #[doc = concat!("assert_eq!(", stringify!($SelfT), "::MAX.checked_mul(2), None);")]
        /// ```
        #[stable(feature = "rust1", since = "1.0.0")]
        #[rustc_const_stable(feature = "const_checked_int_methods", since = "1.47.0")]
        #[must_use = "this returns the result of the operation, \
                      without modifying the original"]
        #[inline]
        #[cfg(not(feature = "ferrocene_certified"))]
        pub const fn checked_mul(self, rhs: Self) -> Option<Self> {
            let (a, b) = self.overflowing_mul(rhs);
            if intrinsics::unlikely(b) { None } else { Some(a) }
        }
        /// Strict integer multiplication. Computes `self * rhs`, panicking if
        /// overflow occurred.
        ///
        /// # Panics
        ///
        /// ## Overflow behavior
        ///
        /// This function will always panic on overflow, regardless of whether overflow checks are enabled.
        ///
        /// # Examples
        ///
        /// ```
        #[doc = concat!("assert_eq!(5", stringify!($SelfT), ".strict_mul(1), 5);")]
        /// ```
        ///
        /// The following panics because of overflow:
        ///
        /// ``` should_panic
        #[doc = concat!("let _ = ", stringify!($SelfT), "::MAX.strict_mul(2);")]
        /// ```
        #[stable(feature = "strict_overflow_ops", since = "CURRENT_RUSTC_VERSION")]
        #[rustc_const_stable(feature = "strict_overflow_ops", since = "CURRENT_RUSTC_VERSION")]
        #[must_use = "this returns the result of the operation, \
                      without modifying the original"]
        #[inline]
        #[track_caller]
        #[cfg(not(feature = "ferrocene_certified"))]
        pub const fn strict_mul(self, rhs: Self) -> Self {
            let (a, b) = self.overflowing_mul(rhs);
            if b { overflow_panic::mul() } else { a }
        }
        /// Unchecked integer multiplication. Computes `self * rhs`, assuming overflow
        /// cannot occur.
        ///
        /// Calling `x.unchecked_mul(y)` is semantically equivalent to calling
        /// `x.`[`checked_mul`]`(y).`[`unwrap_unchecked`]`()`.
        ///
        /// If you're just trying to avoid the panic in debug mode, then **do not**
        /// use this.  Instead, you're looking for [`wrapping_mul`].
        ///
        /// # Safety
        ///
        /// This results in undefined behavior when
        #[doc = concat!("`self * rhs > ", stringify!($SelfT), "::MAX` or `self * rhs < ", stringify!($SelfT), "::MIN`,")]
        /// i.e. when [`checked_mul`] would return `None`.
        ///
        /// [`unwrap_unchecked`]: option/enum.Option.html#method.unwrap_unchecked
        #[doc = concat!("[`checked_mul`]: ", stringify!($SelfT), "::checked_mul")]
        #[doc = concat!("[`wrapping_mul`]: ", stringify!($SelfT), "::wrapping_mul")]
        #[stable(feature = "unchecked_math", since = "1.79.0")]
        #[rustc_const_stable(feature = "unchecked_math", since = "1.79.0")]
        #[must_use = "this returns the result of the operation, \
                      without modifying the original"]
        #[inline(always)]
        #[track_caller]
        #[cfg(not(feature = "ferrocene_certified"))]
        pub const unsafe fn unchecked_mul(self, rhs: Self) -> Self {
            assert_unsafe_precondition!(
                check_language_ub,
                concat!(stringify!($SelfT), "::unchecked_mul cannot overflow"),
                (
                    lhs: $SelfT = self,
                    rhs: $SelfT = rhs,
                ) => !lhs.overflowing_mul(rhs).1,
            );
            // SAFETY: this is guaranteed to be safe by the caller.
            unsafe {
                intrinsics::unchecked_mul(self, rhs)
            }
        }
        /// Checked integer division. Computes `self / rhs`, returning `None`
        /// if `rhs == 0`.
        ///
        /// # Examples
        ///
        /// ```
        #[doc = concat!("assert_eq!(128", stringify!($SelfT), ".checked_div(2), Some(64));")]
        #[doc = concat!("assert_eq!(1", stringify!($SelfT), ".checked_div(0), None);")]
        /// ```
        #[stable(feature = "rust1", since = "1.0.0")]
        #[rustc_const_stable(feature = "const_checked_int_div", since = "1.52.0")]
        #[must_use = "this returns the result of the operation, \
                      without modifying the original"]
        #[inline]
        #[cfg(not(feature = "ferrocene_certified"))]
        pub const fn checked_div(self, rhs: Self) -> Option<Self> {
            if intrinsics::unlikely(rhs == 0) {
                None
            } else {
                // SAFETY: div by zero has been checked above and unsigned types have no other
                // failure modes for division
                Some(unsafe { intrinsics::unchecked_div(self, rhs) })
            }
        }
        /// Strict integer division. Computes `self / rhs`.
        ///
        /// Strict division on unsigned types is just normal division. There's no
        /// way overflow could ever happen. This function exists so that all
        /// operations are accounted for in the strict operations.
        ///
        /// # Panics
        ///
        /// This function will panic if `rhs` is zero.
        ///
        /// # Examples
        ///
        /// ```
        #[doc = concat!("assert_eq!(100", stringify!($SelfT), ".strict_div(10), 10);")]
        /// ```
        ///
        /// The following panics because of division by zero:
        ///
        /// ```should_panic
        #[doc = concat!("let _ = (1", stringify!($SelfT), ").strict_div(0);")]
        /// ```
        #[stable(feature = "strict_overflow_ops", since = "CURRENT_RUSTC_VERSION")]
        #[rustc_const_stable(feature = "strict_overflow_ops", since = "CURRENT_RUSTC_VERSION")]
        #[must_use = "this returns the result of the operation, \
                      without modifying the original"]
        #[inline(always)]
        #[track_caller]
        #[cfg(not(feature = "ferrocene_certified"))]
        pub const fn strict_div(self, rhs: Self) -> Self {
            self / rhs
        }
        /// Checked Euclidean division. Computes `self.div_euclid(rhs)`, returning `None`
        /// if `rhs == 0`.
        ///
        /// # Examples
        ///
        /// ```
        #[doc = concat!("assert_eq!(128", stringify!($SelfT), ".checked_div_euclid(2), Some(64));")]
        #[doc = concat!("assert_eq!(1", stringify!($SelfT), ".checked_div_euclid(0), None);")]
        /// ```
        #[stable(feature = "euclidean_division", since = "1.38.0")]
        #[rustc_const_stable(feature = "const_euclidean_int_methods", since = "1.52.0")]
        #[must_use = "this returns the result of the operation, \
                      without modifying the original"]
        #[inline]
        #[cfg(not(feature = "ferrocene_certified"))]
        pub const fn checked_div_euclid(self, rhs: Self) -> Option<Self> {
            if intrinsics::unlikely(rhs == 0) {
                None
            } else {
                Some(self.div_euclid(rhs))
            }
        }
        /// Strict Euclidean division. Computes `self.div_euclid(rhs)`.
        ///
        /// Strict division on unsigned types is just normal division. There's no
        /// way overflow could ever happen. This function exists so that all
        /// operations are accounted for in the strict operations. Since, for the
        /// positive integers, all common definitions of division are equal, this
        /// is exactly equal to `self.strict_div(rhs)`.
        ///
        /// # Panics
        ///
        /// This function will panic if `rhs` is zero.
        ///
        /// # Examples
        ///
        /// ```
        #[doc = concat!("assert_eq!(100", stringify!($SelfT), ".strict_div_euclid(10), 10);")]
        /// ```
        /// The following panics because of division by zero:
        ///
        /// ```should_panic
        #[doc = concat!("let _ = (1", stringify!($SelfT), ").strict_div_euclid(0);")]
        /// ```
        #[stable(feature = "strict_overflow_ops", since = "CURRENT_RUSTC_VERSION")]
        #[rustc_const_stable(feature = "strict_overflow_ops", since = "CURRENT_RUSTC_VERSION")]
        #[must_use = "this returns the result of the operation, \
                      without modifying the original"]
        #[inline(always)]
        #[track_caller]
        #[cfg(not(feature = "ferrocene_certified"))]
        pub const fn strict_div_euclid(self, rhs: Self) -> Self {
            self / rhs
        }
        /// Checked integer division without remainder. Computes `self / rhs`,
        /// returning `None` if `rhs == 0` or if `self % rhs != 0`.
        ///
        /// # Examples
        ///
        /// ```
        /// #![feature(exact_div)]
        #[doc = concat!("assert_eq!(64", stringify!($SelfT), ".checked_exact_div(2), Some(32));")]
        #[doc = concat!("assert_eq!(64", stringify!($SelfT), ".checked_exact_div(32), Some(2));")]
        #[doc = concat!("assert_eq!(64", stringify!($SelfT), ".checked_exact_div(0), None);")]
        #[doc = concat!("assert_eq!(65", stringify!($SelfT), ".checked_exact_div(2), None);")]
        /// ```
        #[unstable(
            feature = "exact_div",
            issue = "139911",
        )]
        #[must_use = "this returns the result of the operation, \
                      without modifying the original"]
        #[inline]
        #[cfg(not(feature = "ferrocene_certified"))]
        pub const fn checked_exact_div(self, rhs: Self) -> Option<Self> {
            if intrinsics::unlikely(rhs == 0) {
                None
            } else {
                // SAFETY: division by zero is checked above
                unsafe {
                    if intrinsics::unlikely(intrinsics::unchecked_rem(self, rhs) != 0) {
                        None
                    } else {
                        Some(intrinsics::exact_div(self, rhs))
                    }
                }
            }
        }
        /// Checked integer division without remainder. Computes `self / rhs`.
        ///
        /// # Panics
        ///
        /// This function will panic  if `rhs == 0` or `self % rhs != 0`.
        ///
        /// # Examples
        ///
        /// ```
        /// #![feature(exact_div)]
        #[doc = concat!("assert_eq!(64", stringify!($SelfT), ".exact_div(2), 32);")]
        #[doc = concat!("assert_eq!(64", stringify!($SelfT), ".exact_div(32), 2);")]
        /// ```
        ///
        /// ```should_panic
        /// #![feature(exact_div)]
        #[doc = concat!("let _ = 65", stringify!($SelfT), ".exact_div(2);")]
        /// ```
        #[unstable(
            feature = "exact_div",
            issue = "139911",
        )]
        #[must_use = "this returns the result of the operation, \
                      without modifying the original"]
        #[inline]
        #[cfg(not(feature = "ferrocene_certified"))]
        pub const fn exact_div(self, rhs: Self) -> Self {
            match self.checked_exact_div(rhs) {
                Some(x) => x,
                None => panic!("Failed to divide without remainder"),
            }
        }
        /// Unchecked integer division without remainder. Computes `self / rhs`.
        ///
        /// # Safety
        ///
        /// This results in undefined behavior when `rhs == 0` or `self % rhs != 0`,
        /// i.e. when [`checked_exact_div`](Self::checked_exact_div) would return `None`.
        #[unstable(
            feature = "exact_div",
            issue = "139911",
        )]
        #[must_use = "this returns the result of the operation, \
                      without modifying the original"]
        #[inline]
        #[cfg(not(feature = "ferrocene_certified"))]
        pub const unsafe fn unchecked_exact_div(self, rhs: Self) -> Self {
            assert_unsafe_precondition!(
                check_language_ub,
                concat!(stringify!($SelfT), "::unchecked_exact_div divide by zero or leave a remainder"),
                (
                    lhs: $SelfT = self,
                    rhs: $SelfT = rhs,
                ) => rhs > 0 && lhs % rhs == 0,
            );
            // SAFETY: Same precondition
            unsafe { intrinsics::exact_div(self, rhs) }
        }
        /// Checked integer remainder. Computes `self % rhs`, returning `None`
        /// if `rhs == 0`.
        ///
        /// # Examples
        ///
        /// ```
        #[doc = concat!("assert_eq!(5", stringify!($SelfT), ".checked_rem(2), Some(1));")]
        #[doc = concat!("assert_eq!(5", stringify!($SelfT), ".checked_rem(0), None);")]
        /// ```
        #[stable(feature = "wrapping", since = "1.7.0")]
        #[rustc_const_stable(feature = "const_checked_int_div", since = "1.52.0")]
        #[must_use = "this returns the result of the operation, \
                      without modifying the original"]
        #[inline]
        #[cfg(not(feature = "ferrocene_certified"))]
        pub const fn checked_rem(self, rhs: Self) -> Option<Self> {
            if intrinsics::unlikely(rhs == 0) {
                None
            } else {
                // SAFETY: div by zero has been checked above and unsigned types have no other
                // failure modes for division
                Some(unsafe { intrinsics::unchecked_rem(self, rhs) })
            }
        }
        /// Strict integer remainder. Computes `self % rhs`.
        ///
        /// Strict remainder calculation on unsigned types is just the regular
        /// remainder calculation. There's no way overflow could ever happen.
        /// This function exists so that all operations are accounted for in the
        /// strict operations.
        ///
        /// # Panics
        ///
        /// This function will panic if `rhs` is zero.
        ///
        /// # Examples
        ///
        /// ```
        #[doc = concat!("assert_eq!(100", stringify!($SelfT), ".strict_rem(10), 0);")]
        /// ```
        ///
        /// The following panics because of division by zero:
        ///
        /// ```should_panic
        #[doc = concat!("let _ = 5", stringify!($SelfT), ".strict_rem(0);")]
        /// ```
        #[stable(feature = "strict_overflow_ops", since = "CURRENT_RUSTC_VERSION")]
        #[rustc_const_stable(feature = "strict_overflow_ops", since = "CURRENT_RUSTC_VERSION")]
        #[must_use = "this returns the result of the operation, \
                      without modifying the original"]
        #[inline(always)]
        #[track_caller]
        #[cfg(not(feature = "ferrocene_certified"))]
        pub const fn strict_rem(self, rhs: Self) -> Self {
            self % rhs
        }
        /// Checked Euclidean modulo. Computes `self.rem_euclid(rhs)`, returning `None`
        /// if `rhs == 0`.
        ///
        /// # Examples
        ///
        /// ```
        #[doc = concat!("assert_eq!(5", stringify!($SelfT), ".checked_rem_euclid(2), Some(1));")]
        #[doc = concat!("assert_eq!(5", stringify!($SelfT), ".checked_rem_euclid(0), None);")]
        /// ```
        #[stable(feature = "euclidean_division", since = "1.38.0")]
        #[rustc_const_stable(feature = "const_euclidean_int_methods", since = "1.52.0")]
        #[must_use = "this returns the result of the operation, \
                      without modifying the original"]
        #[inline]
        #[cfg(not(feature = "ferrocene_certified"))]
        pub const fn checked_rem_euclid(self, rhs: Self) -> Option<Self> {
            if intrinsics::unlikely(rhs == 0) {
                None
            } else {
                Some(self.rem_euclid(rhs))
            }
        }
        /// Strict Euclidean modulo. Computes `self.rem_euclid(rhs)`.
        ///
        /// Strict modulo calculation on unsigned types is just the regular
        /// remainder calculation. There's no way overflow could ever happen.
        /// This function exists so that all operations are accounted for in the
        /// strict operations. Since, for the positive integers, all common
        /// definitions of division are equal, this is exactly equal to
        /// `self.strict_rem(rhs)`.
        ///
        /// # Panics
        ///
        /// This function will panic if `rhs` is zero.
        ///
        /// # Examples
        ///
        /// ```
        #[doc = concat!("assert_eq!(100", stringify!($SelfT), ".strict_rem_euclid(10), 0);")]
        /// ```
        ///
        /// The following panics because of division by zero:
        ///
        /// ```should_panic
        #[doc = concat!("let _ = 5", stringify!($SelfT), ".strict_rem_euclid(0);")]
        /// ```
        #[stable(feature = "strict_overflow_ops", since = "CURRENT_RUSTC_VERSION")]
        #[rustc_const_stable(feature = "strict_overflow_ops", since = "CURRENT_RUSTC_VERSION")]
        #[must_use = "this returns the result of the operation, \
                      without modifying the original"]
        #[inline(always)]
        #[track_caller]
        #[cfg(not(feature = "ferrocene_certified"))]
        pub const fn strict_rem_euclid(self, rhs: Self) -> Self {
            self % rhs
        }
        /// Same value as `self | other`, but UB if any bit position is set in both inputs.
        ///
        /// This is a situational micro-optimization for places where you'd rather
        /// use addition on some platforms and bitwise or on other platforms, based
        /// on exactly which instructions combine better with whatever else you're
        /// doing.  Note that there's no reason to bother using this for places
        /// where it's clear from the operations involved that they can't overlap.
        /// For example, if you're combining `u16`s into a `u32` with
        /// `((a as u32) << 16) | (b as u32)`, that's fine, as the backend will
        /// know those sides of the `|` are disjoint without needing help.
        ///
        /// # Examples
        ///
        /// ```
        /// #![feature(disjoint_bitor)]
        ///
        /// // SAFETY: `1` and `4` have no bits in common.
        /// unsafe {
        #[doc = concat!("    assert_eq!(1_", stringify!($SelfT), ".unchecked_disjoint_bitor(4), 5);")]
        /// }
        /// ```
        ///
        /// # Safety
        ///
        /// Requires that `(self & other) == 0`, otherwise it's immediate UB.
        ///
        /// Equivalently, requires that `(self | other) == (self + other)`.
        #[unstable(feature = "disjoint_bitor", issue = "135758")]
        #[rustc_const_unstable(feature = "disjoint_bitor", issue = "135758")]
        #[inline]
        #[cfg(not(feature = "ferrocene_certified"))]
        pub const unsafe fn unchecked_disjoint_bitor(self, other: Self) -> Self {
            assert_unsafe_precondition!(
                check_language_ub,
                concat!(stringify!($SelfT), "::unchecked_disjoint_bitor cannot have overlapping bits"),
                (
                    lhs: $SelfT = self,
                    rhs: $SelfT = other,
                ) => (lhs & rhs) == 0,
            );
            // SAFETY: Same precondition
            unsafe { intrinsics::disjoint_bitor(self, other) }
        }
        /// Returns the logarithm of the number with respect to an arbitrary base,
        /// rounded down.
        ///
        /// This method might not be optimized owing to implementation details;
        /// `ilog2` can produce results more efficiently for base 2, and `ilog10`
        /// can produce results more efficiently for base 10.
        ///
        /// # Panics
        ///
        /// This function will panic if `self` is zero, or if `base` is less than 2.
        ///
        /// # Examples
        ///
        /// ```
        #[doc = concat!("assert_eq!(5", stringify!($SelfT), ".ilog(5), 1);")]
        /// ```
        #[stable(feature = "int_log", since = "1.67.0")]
        #[rustc_const_stable(feature = "int_log", since = "1.67.0")]
        #[must_use = "this returns the result of the operation, \
                      without modifying the original"]
        #[inline]
        #[track_caller]
        #[cfg(not(feature = "ferrocene_certified"))]
        pub const fn ilog(self, base: Self) -> u32 {
            assert!(base >= 2, "base of integer logarithm must be at least 2");
            if let Some(log) = self.checked_ilog(base) {
                log
            } else {
                int_log10::panic_for_nonpositive_argument()
            }
        }
        /// Returns the base 2 logarithm of the number, rounded down.
        ///
        /// # Panics
        ///
        /// This function will panic if `self` is zero.
        ///
        /// # Examples
        ///
        /// ```
        #[doc = concat!("assert_eq!(2", stringify!($SelfT), ".ilog2(), 1);")]
        /// ```
        #[stable(feature = "int_log", since = "1.67.0")]
        #[rustc_const_stable(feature = "int_log", since = "1.67.0")]
        #[must_use = "this returns the result of the operation, \
                      without modifying the original"]
        #[inline]
        #[track_caller]
        #[cfg(not(feature = "ferrocene_certified"))]
        pub const fn ilog2(self) -> u32 {
            if let Some(log) = self.checked_ilog2() {
                log
            } else {
                int_log10::panic_for_nonpositive_argument()
            }
        }
        /// Returns the base 10 logarithm of the number, rounded down.
        ///
        /// # Panics
        ///
        /// This function will panic if `self` is zero.
        ///
        /// # Example
        ///
        /// ```
        #[doc = concat!("assert_eq!(10", stringify!($SelfT), ".ilog10(), 1);")]
        /// ```
        #[stable(feature = "int_log", since = "1.67.0")]
        #[rustc_const_stable(feature = "int_log", since = "1.67.0")]
        #[must_use = "this returns the result of the operation, \
                      without modifying the original"]
        #[inline]
        #[track_caller]
        #[cfg(not(feature = "ferrocene_certified"))]
        pub const fn ilog10(self) -> u32 {
            if let Some(log) = self.checked_ilog10() {
                log
            } else {
                int_log10::panic_for_nonpositive_argument()
            }
        }
        /// Returns the logarithm of the number with respect to an arbitrary base,
        /// rounded down.
        ///
        /// Returns `None` if the number is zero, or if the base is not at least 2.
        ///
        /// This method might not be optimized owing to implementation details;
        /// `checked_ilog2` can produce results more efficiently for base 2, and
        /// `checked_ilog10` can produce results more efficiently for base 10.
        ///
        /// # Examples
        ///
        /// ```
        #[doc = concat!("assert_eq!(5", stringify!($SelfT), ".checked_ilog(5), Some(1));")]
        /// ```
        #[stable(feature = "int_log", since = "1.67.0")]
        #[rustc_const_stable(feature = "int_log", since = "1.67.0")]
        #[must_use = "this returns the result of the operation, \
                      without modifying the original"]
        #[inline]
        #[cfg(not(feature = "ferrocene_certified"))]
        pub const fn checked_ilog(self, base: Self) -> Option<u32> {
            // Inform compiler of optimizations when the base is known at
            // compile time and there's a cheaper method available.
            //
            // Note: Like all optimizations, this is not guaranteed to be
            // applied by the compiler. If you want those specific bases,
            // use `.checked_ilog2()` or `.checked_ilog10()` directly.
            if core::intrinsics::is_val_statically_known(base) {
                if base == 2 {
                    return self.checked_ilog2();
                } else if base == 10 {
                    return self.checked_ilog10();
                }
            }
            if self <= 0 || base <= 1 {
                None
            } else if self < base {
                Some(0)
            } else {
                // Since base >= self, n >= 1
                let mut n = 1;
                let mut r = base;
                // Optimization for 128 bit wide integers.
                if Self::BITS == 128 {
                    // The following is a correct lower bound for ⌊log(base,self)⌋ because
                    //
                    // log(base,self) = log(2,self) / log(2,base)
                    //                ≥ ⌊log(2,self)⌋ / (⌊log(2,base)⌋ + 1)
                    //
                    // hence
                    //
                    // ⌊log(base,self)⌋ ≥ ⌊ ⌊log(2,self)⌋ / (⌊log(2,base)⌋ + 1) ⌋ .
                    n = self.ilog2() / (base.ilog2() + 1);
                    r = base.pow(n);
                }
                while r <= self / base {
                    n += 1;
                    r *= base;
                }
                Some(n)
            }
        }
        /// Returns the base 2 logarithm of the number, rounded down.
        ///
        /// Returns `None` if the number is zero.
        ///
        /// # Examples
        ///
        /// ```
        #[doc = concat!("assert_eq!(2", stringify!($SelfT), ".checked_ilog2(), Some(1));")]
        /// ```
        #[stable(feature = "int_log", since = "1.67.0")]
        #[rustc_const_stable(feature = "int_log", since = "1.67.0")]
        #[must_use = "this returns the result of the operation, \
                      without modifying the original"]
        #[inline]
        #[cfg(not(feature = "ferrocene_certified"))]
        pub const fn checked_ilog2(self) -> Option<u32> {
            match NonZero::new(self) {
                Some(x) => Some(x.ilog2()),
                None => None,
            }
        }
        /// Returns the base 10 logarithm of the number, rounded down.
        ///
        /// Returns `None` if the number is zero.
        ///
        /// # Examples
        ///
        /// ```
        #[doc = concat!("assert_eq!(10", stringify!($SelfT), ".checked_ilog10(), Some(1));")]
        /// ```
        #[stable(feature = "int_log", since = "1.67.0")]
        #[rustc_const_stable(feature = "int_log", since = "1.67.0")]
        #[must_use = "this returns the result of the operation, \
                      without modifying the original"]
        #[inline]
        #[cfg(not(feature = "ferrocene_certified"))]
        pub const fn checked_ilog10(self) -> Option<u32> {
            match NonZero::new(self) {
                Some(x) => Some(x.ilog10()),
                None => None,
            }
        }
        /// Checked negation. Computes `-self`, returning `None` unless `self ==
        /// 0`.
        ///
        /// Note that negating any positive integer will overflow.
        ///
        /// # Examples
        ///
        /// ```
        #[doc = concat!("assert_eq!(0", stringify!($SelfT), ".checked_neg(), Some(0));")]
        #[doc = concat!("assert_eq!(1", stringify!($SelfT), ".checked_neg(), None);")]
        /// ```
        #[stable(feature = "wrapping", since = "1.7.0")]
        #[rustc_const_stable(feature = "const_checked_int_methods", since = "1.47.0")]
        #[must_use = "this returns the result of the operation, \
                      without modifying the original"]
        #[inline]
        #[cfg(not(feature = "ferrocene_certified"))]
        pub const fn checked_neg(self) -> Option<Self> {
            let (a, b) = self.overflowing_neg();
            if intrinsics::unlikely(b) { None } else { Some(a) }
        }
        /// Strict negation. Computes `-self`, panicking unless `self ==
        /// 0`.
        ///
        /// Note that negating any positive integer will overflow.
        ///
        /// # Panics
        ///
        /// ## Overflow behavior
        ///
        /// This function will always panic on overflow, regardless of whether overflow checks are enabled.
        ///
        /// # Examples
        ///
        /// ```
        #[doc = concat!("assert_eq!(0", stringify!($SelfT), ".strict_neg(), 0);")]
        /// ```
        ///
        /// The following panics because of overflow:
        ///
        /// ```should_panic
        #[doc = concat!("let _ = 1", stringify!($SelfT), ".strict_neg();")]
        /// ```
        #[stable(feature = "strict_overflow_ops", since = "CURRENT_RUSTC_VERSION")]
        #[rustc_const_stable(feature = "strict_overflow_ops", since = "CURRENT_RUSTC_VERSION")]
        #[must_use = "this returns the result of the operation, \
                      without modifying the original"]
        #[inline]
        #[track_caller]
        #[cfg(not(feature = "ferrocene_certified"))]
        pub const fn strict_neg(self) -> Self {
            let (a, b) = self.overflowing_neg();
            if b { overflow_panic::neg() } else { a }
        }
        /// Checked shift left. Computes `self << rhs`, returning `None`
        /// if `rhs` is larger than or equal to the number of bits in `self`.
        ///
        /// # Examples
        ///
        /// ```
        #[doc = concat!("assert_eq!(0x1", stringify!($SelfT), ".checked_shl(4), Some(0x10));")]
        #[doc = concat!("assert_eq!(0x10", stringify!($SelfT), ".checked_shl(129), None);")]
        #[doc = concat!("assert_eq!(0x10", stringify!($SelfT), ".checked_shl(", stringify!($BITS_MINUS_ONE), "), Some(0));")]
        /// ```
        #[stable(feature = "wrapping", since = "1.7.0")]
        #[rustc_const_stable(feature = "const_checked_int_methods", since = "1.47.0")]
        #[must_use = "this returns the result of the operation, \
                      without modifying the original"]
        #[inline]
        #[cfg(not(feature = "ferrocene_certified"))]
        pub const fn checked_shl(self, rhs: u32) -> Option<Self> {
            // Not using overflowing_shl as that's a wrapping shift
            if rhs < Self::BITS {
                // SAFETY: just checked the RHS is in-range
                Some(unsafe { self.unchecked_shl(rhs) })
            } else {
                None
            }
        }
        /// Strict shift left. Computes `self << rhs`, panicking if `rhs` is larger
        /// than or equal to the number of bits in `self`.
        ///
        /// # Panics
        ///
        /// ## Overflow behavior
        ///
        /// This function will always panic on overflow, regardless of whether overflow checks are enabled.
        ///
        /// # Examples
        ///
        /// ```
        #[doc = concat!("assert_eq!(0x1", stringify!($SelfT), ".strict_shl(4), 0x10);")]
        /// ```
        ///
        /// The following panics because of overflow:
        ///
        /// ```should_panic
        #[doc = concat!("let _ = 0x10", stringify!($SelfT), ".strict_shl(129);")]
        /// ```
        #[stable(feature = "strict_overflow_ops", since = "CURRENT_RUSTC_VERSION")]
        #[rustc_const_stable(feature = "strict_overflow_ops", since = "CURRENT_RUSTC_VERSION")]
        #[must_use = "this returns the result of the operation, \
                      without modifying the original"]
        #[inline]
        #[track_caller]
        #[cfg(not(feature = "ferrocene_certified"))]
        pub const fn strict_shl(self, rhs: u32) -> Self {
            let (a, b) = self.overflowing_shl(rhs);
            if b { overflow_panic::shl() } else { a }
        }
        /// Unchecked shift left. Computes `self << rhs`, assuming that
        /// `rhs` is less than the number of bits in `self`.
        ///
        /// # Safety
        ///
        /// This results in undefined behavior if `rhs` is larger than
        /// or equal to the number of bits in `self`,
        /// i.e. when [`checked_shl`] would return `None`.
        ///
        #[doc = concat!("[`checked_shl`]: ", stringify!($SelfT), "::checked_shl")]
        #[unstable(
            feature = "unchecked_shifts",
            reason = "niche optimization path",
            issue = "85122",
        )]
        #[must_use = "this returns the result of the operation, \
                      without modifying the original"]
        #[inline(always)]
        #[track_caller]
        #[cfg(not(feature = "ferrocene_certified"))]
        pub const unsafe fn unchecked_shl(self, rhs: u32) -> Self {
            assert_unsafe_precondition!(
                check_language_ub,
                concat!(stringify!($SelfT), "::unchecked_shl cannot overflow"),
                (
                    rhs: u32 = rhs,
                ) => rhs < <$ActualT>::BITS,
            );
            // SAFETY: this is guaranteed to be safe by the caller.
            unsafe {
                intrinsics::unchecked_shl(self, rhs)
            }
        }
        /// Unbounded shift left. Computes `self << rhs`, without bounding the value of `rhs`.
        ///
        /// If `rhs` is larger or equal to the number of bits in `self`,
        /// the entire value is shifted out, and `0` is returned.
        ///
        /// # Examples
        ///
        /// ```
        #[doc = concat!("assert_eq!(0x1", stringify!($SelfT), ".unbounded_shl(4), 0x10);")]
        #[doc = concat!("assert_eq!(0x1", stringify!($SelfT), ".unbounded_shl(129), 0);")]
        /// ```
        #[stable(feature = "unbounded_shifts", since = "1.87.0")]
        #[rustc_const_stable(feature = "unbounded_shifts", since = "1.87.0")]
        #[must_use = "this returns the result of the operation, \
                      without modifying the original"]
        #[inline]
        #[cfg(not(feature = "ferrocene_certified"))]
        pub const fn unbounded_shl(self, rhs: u32) -> $SelfT{
            if rhs < Self::BITS {
                // SAFETY:
                // rhs is just checked to be in-range above
                unsafe { self.unchecked_shl(rhs) }
            } else {
                0
            }
        }
        /// Checked shift right. Computes `self >> rhs`, returning `None`
        /// if `rhs` is larger than or equal to the number of bits in `self`.
        ///
        /// # Examples
        ///
        /// ```
        #[doc = concat!("assert_eq!(0x10", stringify!($SelfT), ".checked_shr(4), Some(0x1));")]
        #[doc = concat!("assert_eq!(0x10", stringify!($SelfT), ".checked_shr(129), None);")]
        /// ```
        #[stable(feature = "wrapping", since = "1.7.0")]
        #[rustc_const_stable(feature = "const_checked_int_methods", since = "1.47.0")]
        #[must_use = "this returns the result of the operation, \
                      without modifying the original"]
        #[inline]
        #[cfg(not(feature = "ferrocene_certified"))]
        pub const fn checked_shr(self, rhs: u32) -> Option<Self> {
            // Not using overflowing_shr as that's a wrapping shift
            if rhs < Self::BITS {
                // SAFETY: just checked the RHS is in-range
                Some(unsafe { self.unchecked_shr(rhs) })
            } else {
                None
            }
        }
        /// Strict shift right. Computes `self >> rhs`, panicking `rhs` is
        /// larger than or equal to the number of bits in `self`.
        ///
        /// # Panics
        ///
        /// ## Overflow behavior
        ///
        /// This function will always panic on overflow, regardless of whether overflow checks are enabled.
        ///
        /// # Examples
        ///
        /// ```
        #[doc = concat!("assert_eq!(0x10", stringify!($SelfT), ".strict_shr(4), 0x1);")]
        /// ```
        ///
        /// The following panics because of overflow:
        ///
        /// ```should_panic
        #[doc = concat!("let _ = 0x10", stringify!($SelfT), ".strict_shr(129);")]
        /// ```
        #[stable(feature = "strict_overflow_ops", since = "CURRENT_RUSTC_VERSION")]
        #[rustc_const_stable(feature = "strict_overflow_ops", since = "CURRENT_RUSTC_VERSION")]
        #[must_use = "this returns the result of the operation, \
                      without modifying the original"]
        #[inline]
        #[track_caller]
        #[cfg(not(feature = "ferrocene_certified"))]
        pub const fn strict_shr(self, rhs: u32) -> Self {
            let (a, b) = self.overflowing_shr(rhs);
            if b { overflow_panic::shr() } else { a }
        }
        /// Unchecked shift right. Computes `self >> rhs`, assuming that
        /// `rhs` is less than the number of bits in `self`.
        ///
        /// # Safety
        ///
        /// This results in undefined behavior if `rhs` is larger than
        /// or equal to the number of bits in `self`,
        /// i.e. when [`checked_shr`] would return `None`.
        ///
        #[doc = concat!("[`checked_shr`]: ", stringify!($SelfT), "::checked_shr")]
        #[unstable(
            feature = "unchecked_shifts",
            reason = "niche optimization path",
            issue = "85122",
        )]
        #[must_use = "this returns the result of the operation, \
                      without modifying the original"]
        #[inline(always)]
        #[track_caller]
        #[cfg(not(feature = "ferrocene_certified"))]
        pub const unsafe fn unchecked_shr(self, rhs: u32) -> Self {
            assert_unsafe_precondition!(
                check_language_ub,
                concat!(stringify!($SelfT), "::unchecked_shr cannot overflow"),
                (
                    rhs: u32 = rhs,
                ) => rhs < <$ActualT>::BITS,
            );
            // SAFETY: this is guaranteed to be safe by the caller.
            unsafe {
                intrinsics::unchecked_shr(self, rhs)
            }
        }
        /// Unbounded shift right. Computes `self >> rhs`, without bounding the value of `rhs`.
        ///
        /// If `rhs` is larger or equal to the number of bits in `self`,
        /// the entire value is shifted out, and `0` is returned.
        ///
        /// # Examples
        ///
        /// ```
        #[doc = concat!("assert_eq!(0x10", stringify!($SelfT), ".unbounded_shr(4), 0x1);")]
        #[doc = concat!("assert_eq!(0x10", stringify!($SelfT), ".unbounded_shr(129), 0);")]
        /// ```
        #[stable(feature = "unbounded_shifts", since = "1.87.0")]
        #[rustc_const_stable(feature = "unbounded_shifts", since = "1.87.0")]
        #[must_use = "this returns the result of the operation, \
                      without modifying the original"]
        #[inline]
        #[cfg(not(feature = "ferrocene_certified"))]
        pub const fn unbounded_shr(self, rhs: u32) -> $SelfT{
            if rhs < Self::BITS {
                // SAFETY:
                // rhs is just checked to be in-range above
                unsafe { self.unchecked_shr(rhs) }
            } else {
                0
            }
        }
        /// Checked exponentiation. Computes `self.pow(exp)`, returning `None` if
        /// overflow occurred.
        ///
        /// # Examples
        ///
        /// ```
        #[doc = concat!("assert_eq!(2", stringify!($SelfT), ".checked_pow(5), Some(32));")]
        #[doc = concat!("assert_eq!(", stringify!($SelfT), "::MAX.checked_pow(2), None);")]
        /// ```
        #[stable(feature = "no_panic_pow", since = "1.34.0")]
        #[rustc_const_stable(feature = "const_int_pow", since = "1.50.0")]
        #[must_use = "this returns the result of the operation, \
                      without modifying the original"]
        #[inline]
        #[cfg(not(feature = "ferrocene_certified"))]
        pub const fn checked_pow(self, mut exp: u32) -> Option<Self> {
            if exp == 0 {
                return Some(1);
            }
            let mut base = self;
            let mut acc: Self = 1;
            loop {
                if (exp & 1) == 1 {
                    acc = try_opt!(acc.checked_mul(base));
                    // since exp!=0, finally the exp must be 1.
                    if exp == 1 {
                        return Some(acc);
                    }
                }
                exp /= 2;
                base = try_opt!(base.checked_mul(base));
            }
        }
        /// Strict exponentiation. Computes `self.pow(exp)`, panicking if
        /// overflow occurred.
        ///
        /// # Panics
        ///
        /// ## Overflow behavior
        ///
        /// This function will always panic on overflow, regardless of whether overflow checks are enabled.
        ///
        /// # Examples
        ///
        /// ```
        #[doc = concat!("assert_eq!(2", stringify!($SelfT), ".strict_pow(5), 32);")]
        /// ```
        ///
        /// The following panics because of overflow:
        ///
        /// ```should_panic
        #[doc = concat!("let _ = ", stringify!($SelfT), "::MAX.strict_pow(2);")]
        /// ```
        #[stable(feature = "strict_overflow_ops", since = "CURRENT_RUSTC_VERSION")]
        #[rustc_const_stable(feature = "strict_overflow_ops", since = "CURRENT_RUSTC_VERSION")]
        #[must_use = "this returns the result of the operation, \
                      without modifying the original"]
        #[inline]
        #[track_caller]
        #[cfg(not(feature = "ferrocene_certified"))]
        pub const fn strict_pow(self, mut exp: u32) -> Self {
            if exp == 0 {
                return 1;
            }
            let mut base = self;
            let mut acc: Self = 1;
            loop {
                if (exp & 1) == 1 {
                    acc = acc.strict_mul(base);
                    // since exp!=0, finally the exp must be 1.
                    if exp == 1 {
                        return acc;
                    }
                }
                exp /= 2;
                base = base.strict_mul(base);
            }
        }
        /// Saturating integer addition. Computes `self + rhs`, saturating at
        /// the numeric bounds instead of overflowing.
        ///
        /// # Examples
        ///
        /// ```
        #[doc = concat!("assert_eq!(100", stringify!($SelfT), ".saturating_add(1), 101);")]
        #[doc = concat!("assert_eq!(", stringify!($SelfT), "::MAX.saturating_add(127), ", stringify!($SelfT), "::MAX);")]
        /// ```
        #[stable(feature = "rust1", since = "1.0.0")]
        #[must_use = "this returns the result of the operation, \
                      without modifying the original"]
        #[rustc_const_stable(feature = "const_saturating_int_methods", since = "1.47.0")]
        #[inline(always)]
        #[cfg(not(feature = "ferrocene_certified"))]
        pub const fn saturating_add(self, rhs: Self) -> Self {
            intrinsics::saturating_add(self, rhs)
        }
        /// Saturating addition with a signed integer. Computes `self + rhs`,
        /// saturating at the numeric bounds instead of overflowing.
        ///
        /// # Examples
        ///
        /// ```
        #[doc = concat!("assert_eq!(1", stringify!($SelfT), ".saturating_add_signed(2), 3);")]
        #[doc = concat!("assert_eq!(1", stringify!($SelfT), ".saturating_add_signed(-2), 0);")]
        #[doc = concat!("assert_eq!((", stringify!($SelfT), "::MAX - 2).saturating_add_signed(4), ", stringify!($SelfT), "::MAX);")]
        /// ```
        #[stable(feature = "mixed_integer_ops", since = "1.66.0")]
        #[rustc_const_stable(feature = "mixed_integer_ops", since = "1.66.0")]
        #[must_use = "this returns the result of the operation, \
                      without modifying the original"]
        #[inline]
        #[cfg(not(feature = "ferrocene_certified"))]
        pub const fn saturating_add_signed(self, rhs: $SignedT) -> Self {
            let (res, overflow) = self.overflowing_add(rhs as Self);
            if overflow == (rhs < 0) {
                res
            } else if overflow {
                Self::MAX
            } else {
                0
            }
        }
        /// Saturating integer subtraction. Computes `self - rhs`, saturating
        /// at the numeric bounds instead of overflowing.
        ///
        /// # Examples
        ///
        /// ```
        #[doc = concat!("assert_eq!(100", stringify!($SelfT), ".saturating_sub(27), 73);")]
        #[doc = concat!("assert_eq!(13", stringify!($SelfT), ".saturating_sub(127), 0);")]
        /// ```
        #[stable(feature = "rust1", since = "1.0.0")]
        #[must_use = "this returns the result of the operation, \
                      without modifying the original"]
        #[rustc_const_stable(feature = "const_saturating_int_methods", since = "1.47.0")]
        #[inline(always)]
        #[cfg(not(feature = "ferrocene_certified"))]
        pub const fn saturating_sub(self, rhs: Self) -> Self {
            intrinsics::saturating_sub(self, rhs)
        }
        /// Saturating integer subtraction. Computes `self` - `rhs`, saturating at
        /// the numeric bounds instead of overflowing.
        ///
        /// # Examples
        ///
        /// ```
        #[doc = concat!("assert_eq!(1", stringify!($SelfT), ".saturating_sub_signed(2), 0);")]
        #[doc = concat!("assert_eq!(1", stringify!($SelfT), ".saturating_sub_signed(-2), 3);")]
        #[doc = concat!("assert_eq!((", stringify!($SelfT), "::MAX - 2).saturating_sub_signed(-4), ", stringify!($SelfT), "::MAX);")]
        /// ```
        #[stable(feature = "mixed_integer_ops_unsigned_sub", since = "1.90.0")]
        #[rustc_const_stable(feature = "mixed_integer_ops_unsigned_sub", since = "1.90.0")]
        #[must_use = "this returns the result of the operation, \
                      without modifying the original"]
        #[inline]
        #[cfg(not(feature = "ferrocene_certified"))]
        pub const fn saturating_sub_signed(self, rhs: $SignedT) -> Self {
            let (res, overflow) = self.overflowing_sub_signed(rhs);
            if !overflow {
                res
            } else if rhs < 0 {
                Self::MAX
            } else {
                0
            }
        }
        /// Saturating integer multiplication. Computes `self * rhs`,
        /// saturating at the numeric bounds instead of overflowing.
        ///
        /// # Examples
        ///
        /// ```
        #[doc = concat!("assert_eq!(2", stringify!($SelfT), ".saturating_mul(10), 20);")]
        #[doc = concat!("assert_eq!((", stringify!($SelfT), "::MAX).saturating_mul(10), ", stringify!($SelfT),"::MAX);")]
        /// ```
        #[stable(feature = "wrapping", since = "1.7.0")]
        #[rustc_const_stable(feature = "const_saturating_int_methods", since = "1.47.0")]
        #[must_use = "this returns the result of the operation, \
                      without modifying the original"]
        #[inline]
        #[cfg(not(feature = "ferrocene_certified"))]
        pub const fn saturating_mul(self, rhs: Self) -> Self {
            match self.checked_mul(rhs) {
                Some(x) => x,
                None => Self::MAX,
            }
        }
        /// Saturating integer division. Computes `self / rhs`, saturating at the
        /// numeric bounds instead of overflowing.
        ///
        /// # Panics
        ///
        /// This function will panic if `rhs` is zero.
        ///
        /// # Examples
        ///
        /// ```
        #[doc = concat!("assert_eq!(5", stringify!($SelfT), ".saturating_div(2), 2);")]
        ///
        /// ```
        #[stable(feature = "saturating_div", since = "1.58.0")]
        #[rustc_const_stable(feature = "saturating_div", since = "1.58.0")]
        #[must_use = "this returns the result of the operation, \
                      without modifying the original"]
        #[inline]
        #[track_caller]
        #[cfg(not(feature = "ferrocene_certified"))]
        pub const fn saturating_div(self, rhs: Self) -> Self {
            // on unsigned types, there is no overflow in integer division
            self.wrapping_div(rhs)
        }
        /// Saturating integer exponentiation. Computes `self.pow(exp)`,
        /// saturating at the numeric bounds instead of overflowing.
        ///
        /// # Examples
        ///
        /// ```
        #[doc = concat!("assert_eq!(4", stringify!($SelfT), ".saturating_pow(3), 64);")]
        #[doc = concat!("assert_eq!(", stringify!($SelfT), "::MAX.saturating_pow(2), ", stringify!($SelfT), "::MAX);")]
        /// ```
        #[stable(feature = "no_panic_pow", since = "1.34.0")]
        #[rustc_const_stable(feature = "const_int_pow", since = "1.50.0")]
        #[must_use = "this returns the result of the operation, \
                      without modifying the original"]
        #[inline]
        #[cfg(not(feature = "ferrocene_certified"))]
        pub const fn saturating_pow(self, exp: u32) -> Self {
            match self.checked_pow(exp) {
                Some(x) => x,
                None => Self::MAX,
            }
        }
        /// Wrapping (modular) addition. Computes `self + rhs`,
        /// wrapping around at the boundary of the type.
        ///
        /// # Examples
        ///
        /// ```
        #[doc = concat!("assert_eq!(200", stringify!($SelfT), ".wrapping_add(55), 255);")]
        #[doc = concat!("assert_eq!(200", stringify!($SelfT), ".wrapping_add(", stringify!($SelfT), "::MAX), 199);")]
        /// ```
        #[stable(feature = "rust1", since = "1.0.0")]
        #[rustc_const_stable(feature = "const_wrapping_math", since = "1.32.0")]
        #[must_use = "this returns the result of the operation, \
                      without modifying the original"]
        #[inline(always)]
        #[cfg(not(feature = "ferrocene_certified"))]
        pub const fn wrapping_add(self, rhs: Self) -> Self {
            intrinsics::wrapping_add(self, rhs)
        }
        /// Wrapping (modular) addition with a signed integer. Computes
        /// `self + rhs`, wrapping around at the boundary of the type.
        ///
        /// # Examples
        ///
        /// ```
        #[doc = concat!("assert_eq!(1", stringify!($SelfT), ".wrapping_add_signed(2), 3);")]
        #[doc = concat!("assert_eq!(1", stringify!($SelfT), ".wrapping_add_signed(-2), ", stringify!($SelfT), "::MAX);")]
        #[doc = concat!("assert_eq!((", stringify!($SelfT), "::MAX - 2).wrapping_add_signed(4), 1);")]
        /// ```
        #[stable(feature = "mixed_integer_ops", since = "1.66.0")]
        #[rustc_const_stable(feature = "mixed_integer_ops", since = "1.66.0")]
        #[must_use = "this returns the result of the operation, \
                      without modifying the original"]
        #[inline]
        #[cfg(not(feature = "ferrocene_certified"))]
        pub const fn wrapping_add_signed(self, rhs: $SignedT) -> Self {
            self.wrapping_add(rhs as Self)
        }
        /// Wrapping (modular) subtraction. Computes `self - rhs`,
        /// wrapping around at the boundary of the type.
        ///
        /// # Examples
        ///
        /// ```
        #[doc = concat!("assert_eq!(100", stringify!($SelfT), ".wrapping_sub(100), 0);")]
        #[doc = concat!("assert_eq!(100", stringify!($SelfT), ".wrapping_sub(", stringify!($SelfT), "::MAX), 101);")]
        /// ```
        #[stable(feature = "rust1", since = "1.0.0")]
        #[rustc_const_stable(feature = "const_wrapping_math", since = "1.32.0")]
        #[must_use = "this returns the result of the operation, \
                      without modifying the original"]
        #[inline(always)]
        #[cfg(not(feature = "ferrocene_certified"))]
        pub const fn wrapping_sub(self, rhs: Self) -> Self {
            intrinsics::wrapping_sub(self, rhs)
        }
        /// Wrapping (modular) subtraction with a signed integer. Computes
        /// `self - rhs`, wrapping around at the boundary of the type.
        ///
        /// # Examples
        ///
        /// ```
        #[doc = concat!("assert_eq!(1", stringify!($SelfT), ".wrapping_sub_signed(2), ", stringify!($SelfT), "::MAX);")]
        #[doc = concat!("assert_eq!(1", stringify!($SelfT), ".wrapping_sub_signed(-2), 3);")]
        #[doc = concat!("assert_eq!((", stringify!($SelfT), "::MAX - 2).wrapping_sub_signed(-4), 1);")]
        /// ```
        #[stable(feature = "mixed_integer_ops_unsigned_sub", since = "1.90.0")]
        #[rustc_const_stable(feature = "mixed_integer_ops_unsigned_sub", since = "1.90.0")]
        #[must_use = "this returns the result of the operation, \
                      without modifying the original"]
        #[inline]
        #[cfg(not(feature = "ferrocene_certified"))]
        pub const fn wrapping_sub_signed(self, rhs: $SignedT) -> Self {
            self.wrapping_sub(rhs as Self)
        }
        /// Wrapping (modular) multiplication. Computes `self *
        /// rhs`, wrapping around at the boundary of the type.
        ///
        /// # Examples
        ///
        /// Please note that this example is shared among integer types, which is why `u8` is used.
        ///
        /// ```
        /// assert_eq!(10u8.wrapping_mul(12), 120);
        /// assert_eq!(25u8.wrapping_mul(12), 44);
        /// ```
        #[stable(feature = "rust1", since = "1.0.0")]
        #[rustc_const_stable(feature = "const_wrapping_math", since = "1.32.0")]
        #[must_use = "this returns the result of the operation, \
                      without modifying the original"]
        #[inline(always)]
        #[cfg(not(feature = "ferrocene_certified"))]
        pub const fn wrapping_mul(self, rhs: Self) -> Self {
            intrinsics::wrapping_mul(self, rhs)
        }
        /// Wrapping (modular) division. Computes `self / rhs`.
        ///
        /// Wrapped division on unsigned types is just normal division. There's
        /// no way wrapping could ever happen. This function exists so that all
        /// operations are accounted for in the wrapping operations.
        ///
        /// # Panics
        ///
        /// This function will panic if `rhs` is zero.
        ///
        /// # Examples
        ///
        /// ```
        #[doc = concat!("assert_eq!(100", stringify!($SelfT), ".wrapping_div(10), 10);")]
        /// ```
        #[stable(feature = "num_wrapping", since = "1.2.0")]
        #[rustc_const_stable(feature = "const_wrapping_int_methods", since = "1.52.0")]
        #[must_use = "this returns the result of the operation, \
                      without modifying the original"]
        #[inline(always)]
        #[track_caller]
        #[cfg(not(feature = "ferrocene_certified"))]
        pub const fn wrapping_div(self, rhs: Self) -> Self {
            self / rhs
        }
        /// Wrapping Euclidean division. Computes `self.div_euclid(rhs)`.
        ///
        /// Wrapped division on unsigned types is just normal division. There's
        /// no way wrapping could ever happen. This function exists so that all
        /// operations are accounted for in the wrapping operations. Since, for
        /// the positive integers, all common definitions of division are equal,
        /// this is exactly equal to `self.wrapping_div(rhs)`.
        ///
        /// # Panics
        ///
        /// This function will panic if `rhs` is zero.
        ///
        /// # Examples
        ///
        /// ```
        #[doc = concat!("assert_eq!(100", stringify!($SelfT), ".wrapping_div_euclid(10), 10);")]
        /// ```
        #[stable(feature = "euclidean_division", since = "1.38.0")]
        #[rustc_const_stable(feature = "const_euclidean_int_methods", since = "1.52.0")]
        #[must_use = "this returns the result of the operation, \
                      without modifying the original"]
        #[inline(always)]
        #[track_caller]
        #[cfg(not(feature = "ferrocene_certified"))]
        pub const fn wrapping_div_euclid(self, rhs: Self) -> Self {
            self / rhs
        }
        /// Wrapping (modular) remainder. Computes `self % rhs`.
        ///
        /// Wrapped remainder calculation on unsigned types is just the regular
        /// remainder calculation. There's no way wrapping could ever happen.
        /// This function exists so that all operations are accounted for in the
        /// wrapping operations.
        ///
        /// # Panics
        ///
        /// This function will panic if `rhs` is zero.
        ///
        /// # Examples
        ///
        /// ```
        #[doc = concat!("assert_eq!(100", stringify!($SelfT), ".wrapping_rem(10), 0);")]
        /// ```
        #[stable(feature = "num_wrapping", since = "1.2.0")]
        #[rustc_const_stable(feature = "const_wrapping_int_methods", since = "1.52.0")]
        #[must_use = "this returns the result of the operation, \
                      without modifying the original"]
        #[inline(always)]
        #[track_caller]
        #[cfg(not(feature = "ferrocene_certified"))]
        pub const fn wrapping_rem(self, rhs: Self) -> Self {
            self % rhs
        }
        /// Wrapping Euclidean modulo. Computes `self.rem_euclid(rhs)`.
        ///
        /// Wrapped modulo calculation on unsigned types is just the regular
        /// remainder calculation. There's no way wrapping could ever happen.
        /// This function exists so that all operations are accounted for in the
        /// wrapping operations. Since, for the positive integers, all common
        /// definitions of division are equal, this is exactly equal to
        /// `self.wrapping_rem(rhs)`.
        ///
        /// # Panics
        ///
        /// This function will panic if `rhs` is zero.
        ///
        /// # Examples
        ///
        /// ```
        #[doc = concat!("assert_eq!(100", stringify!($SelfT), ".wrapping_rem_euclid(10), 0);")]
        /// ```
        #[stable(feature = "euclidean_division", since = "1.38.0")]
        #[rustc_const_stable(feature = "const_euclidean_int_methods", since = "1.52.0")]
        #[must_use = "this returns the result of the operation, \
                      without modifying the original"]
        #[inline(always)]
        #[track_caller]
        #[cfg(not(feature = "ferrocene_certified"))]
        pub const fn wrapping_rem_euclid(self, rhs: Self) -> Self {
            self % rhs
        }
        /// Wrapping (modular) negation. Computes `-self`,
        /// wrapping around at the boundary of the type.
        ///
        /// Since unsigned types do not have negative equivalents
        /// all applications of this function will wrap (except for `-0`).
        /// For values smaller than the corresponding signed type's maximum
        /// the result is the same as casting the corresponding signed value.
        /// Any larger values are equivalent to `MAX + 1 - (val - MAX - 1)` where
        /// `MAX` is the corresponding signed type's maximum.
        ///
        /// # Examples
        ///
        /// ```
        #[doc = concat!("assert_eq!(0_", stringify!($SelfT), ".wrapping_neg(), 0);")]
        #[doc = concat!("assert_eq!(", stringify!($SelfT), "::MAX.wrapping_neg(), 1);")]
        #[doc = concat!("assert_eq!(13_", stringify!($SelfT), ".wrapping_neg(), (!13) + 1);")]
        #[doc = concat!("assert_eq!(42_", stringify!($SelfT), ".wrapping_neg(), !(42 - 1));")]
        /// ```
        #[stable(feature = "num_wrapping", since = "1.2.0")]
        #[rustc_const_stable(feature = "const_wrapping_math", since = "1.32.0")]
        #[must_use = "this returns the result of the operation, \
                      without modifying the original"]
        #[inline(always)]
        #[cfg(not(feature = "ferrocene_certified"))]
        pub const fn wrapping_neg(self) -> Self {
            (0 as $SelfT).wrapping_sub(self)
        }
        /// Panic-free bitwise shift-left; yields `self << mask(rhs)`,
        /// where `mask` removes any high-order bits of `rhs` that
        /// would cause the shift to exceed the bitwidth of the type.
        ///
        /// Note that this is *not* the same as a rotate-left; the
        /// RHS of a wrapping shift-left is restricted to the range
        /// of the type, rather than the bits shifted out of the LHS
        /// being returned to the other end. The primitive integer
        /// types all implement a [`rotate_left`](Self::rotate_left) function,
        /// which may be what you want instead.
        ///
        /// # Examples
        ///
        /// ```
        #[doc = concat!("assert_eq!(1", stringify!($SelfT), ".wrapping_shl(7), 128);")]
        #[doc = concat!("assert_eq!(1", stringify!($SelfT), ".wrapping_shl(128), 1);")]
        /// ```
        #[stable(feature = "num_wrapping", since = "1.2.0")]
        #[rustc_const_stable(feature = "const_wrapping_math", since = "1.32.0")]
        #[must_use = "this returns the result of the operation, \
                      without modifying the original"]
        #[inline(always)]
        #[cfg(not(feature = "ferrocene_certified"))]
        pub const fn wrapping_shl(self, rhs: u32) -> Self {
            // SAFETY: the masking by the bitsize of the type ensures that we do not shift
            // out of bounds
            unsafe {
                self.unchecked_shl(rhs & (Self::BITS - 1))
            }
        }
        /// Panic-free bitwise shift-right; yields `self >> mask(rhs)`,
        /// where `mask` removes any high-order bits of `rhs` that
        /// would cause the shift to exceed the bitwidth of the type.
        ///
        /// Note that this is *not* the same as a rotate-right; the
        /// RHS of a wrapping shift-right is restricted to the range
        /// of the type, rather than the bits shifted out of the LHS
        /// being returned to the other end. The primitive integer
        /// types all implement a [`rotate_right`](Self::rotate_right) function,
        /// which may be what you want instead.
        ///
        /// # Examples
        ///
        /// ```
        #[doc = concat!("assert_eq!(128", stringify!($SelfT), ".wrapping_shr(7), 1);")]
        #[doc = concat!("assert_eq!(128", stringify!($SelfT), ".wrapping_shr(128), 128);")]
        /// ```
        #[stable(feature = "num_wrapping", since = "1.2.0")]
        #[rustc_const_stable(feature = "const_wrapping_math", since = "1.32.0")]
        #[must_use = "this returns the result of the operation, \
                      without modifying the original"]
        #[inline(always)]
        #[cfg(not(feature = "ferrocene_certified"))]
        pub const fn wrapping_shr(self, rhs: u32) -> Self {
            // SAFETY: the masking by the bitsize of the type ensures that we do not shift
            // out of bounds
            unsafe {
                self.unchecked_shr(rhs & (Self::BITS - 1))
            }
        }
        /// Wrapping (modular) exponentiation. Computes `self.pow(exp)`,
        /// wrapping around at the boundary of the type.
        ///
        /// # Examples
        ///
        /// ```
        #[doc = concat!("assert_eq!(3", stringify!($SelfT), ".wrapping_pow(5), 243);")]
        /// assert_eq!(3u8.wrapping_pow(6), 217);
        /// ```
        #[stable(feature = "no_panic_pow", since = "1.34.0")]
        #[rustc_const_stable(feature = "const_int_pow", since = "1.50.0")]
        #[must_use = "this returns the result of the operation, \
                      without modifying the original"]
        #[inline]
        #[cfg(not(feature = "ferrocene_certified"))]
        pub const fn wrapping_pow(self, mut exp: u32) -> Self {
            if exp == 0 {
                return 1;
            }
            let mut base = self;
            let mut acc: Self = 1;
            if intrinsics::is_val_statically_known(exp) {
                while exp > 1 {
                    if (exp & 1) == 1 {
                        acc = acc.wrapping_mul(base);
                    }
                    exp /= 2;
                    base = base.wrapping_mul(base);
                }
                // since exp!=0, finally the exp must be 1.
                // Deal with the final bit of the exponent separately, since
                // squaring the base afterwards is not necessary.
                acc.wrapping_mul(base)
            } else {
                // This is faster than the above when the exponent is not known
                // at compile time. We can't use the same code for the constant
                // exponent case because LLVM is currently unable to unroll
                // this loop.
                loop {
                    if (exp & 1) == 1 {
                        acc = acc.wrapping_mul(base);
                        // since exp!=0, finally the exp must be 1.
                        if exp == 1 {
                            return acc;
                        }
                    }
                    exp /= 2;
                    base = base.wrapping_mul(base);
                }
            }
        }
        /// Calculates `self` + `rhs`.
        ///
        /// Returns a tuple of the addition along with a boolean indicating
        /// whether an arithmetic overflow would occur. If an overflow would
        /// have occurred then the wrapped value is returned.
        ///
        /// # Examples
        ///
        /// ```
        #[doc = concat!("assert_eq!(5", stringify!($SelfT), ".overflowing_add(2), (7, false));")]
        #[doc = concat!("assert_eq!(", stringify!($SelfT), "::MAX.overflowing_add(1), (0, true));")]
        /// ```
        #[stable(feature = "wrapping", since = "1.7.0")]
        #[rustc_const_stable(feature = "const_wrapping_math", since = "1.32.0")]
        #[must_use = "this returns the result of the operation, \
                      without modifying the original"]
        #[inline(always)]
        #[cfg(not(feature = "ferrocene_certified"))]
        pub const fn overflowing_add(self, rhs: Self) -> (Self, bool) {
            let (a, b) = intrinsics::add_with_overflow(self as $ActualT, rhs as $ActualT);
            (a as Self, b)
        }
        /// Calculates `self` + `rhs` + `carry` and returns a tuple containing
        /// the sum and the output carry (in that order).
        ///
        /// Performs "ternary addition" of two integer operands and a carry-in
        /// bit, and returns an output integer and a carry-out bit. This allows
        /// chaining together multiple additions to create a wider addition, and
        /// can be useful for bignum addition.
        ///
        #[doc = concat!("This can be thought of as a ", stringify!($BITS), "-bit \"full adder\", in the electronics sense.")]
        ///
        /// If the input carry is false, this method is equivalent to
        /// [`overflowing_add`](Self::overflowing_add), and the output carry is
        /// equal to the overflow flag. Note that although carry and overflow
        /// flags are similar for unsigned integers, they are different for
        /// signed integers.
        ///
        /// # Examples
        ///
        /// ```
        #[doc = concat!("//    3  MAX    (a = 3 × 2^", stringify!($BITS), " + 2^", stringify!($BITS), " - 1)")]
        #[doc = concat!("// +  5    7    (b = 5 × 2^", stringify!($BITS), " + 7)")]
        /// // ---------
        #[doc = concat!("//    9    6    (sum = 9 × 2^", stringify!($BITS), " + 6)")]
        ///
        #[doc = concat!("let (a1, a0): (", stringify!($SelfT), ", ", stringify!($SelfT), ") = (3, ", stringify!($SelfT), "::MAX);")]
        #[doc = concat!("let (b1, b0): (", stringify!($SelfT), ", ", stringify!($SelfT), ") = (5, 7);")]
        /// let carry0 = false;
        ///
        /// let (sum0, carry1) = a0.carrying_add(b0, carry0);
        /// assert_eq!(carry1, true);
        /// let (sum1, carry2) = a1.carrying_add(b1, carry1);
        /// assert_eq!(carry2, false);
        ///
        /// assert_eq!((sum1, sum0), (9, 6));
        /// ```
        #[stable(feature = "unsigned_bigint_helpers", since = "CURRENT_RUSTC_VERSION")]
        #[rustc_const_unstable(feature = "bigint_helper_methods", issue = "85532")]
        #[must_use = "this returns the result of the operation, \
                      without modifying the original"]
        #[inline]
        #[cfg(not(feature = "ferrocene_certified"))]
        pub const fn carrying_add(self, rhs: Self, carry: bool) -> (Self, bool) {
            // note: longer-term this should be done via an intrinsic, but this has been shown
            //   to generate optimal code for now, and LLVM doesn't have an equivalent intrinsic
            let (a, c1) = self.overflowing_add(rhs);
            let (b, c2) = a.overflowing_add(carry as $SelfT);
            // Ideally LLVM would know this is disjoint without us telling them,
            // but it doesn't <https://github.com/llvm/llvm-project/issues/118162>
            // SAFETY: Only one of `c1` and `c2` can be set.
            // For c1 to be set we need to have overflowed, but if we did then
            // `a` is at most `MAX-1`, which means that `c2` cannot possibly
            // overflow because it's adding at most `1` (since it came from `bool`)
            (b, unsafe { intrinsics::disjoint_bitor(c1, c2) })
        }
        /// Calculates `self` + `rhs` with a signed `rhs`.
        ///
        /// Returns a tuple of the addition along with a boolean indicating
        /// whether an arithmetic overflow would occur. If an overflow would
        /// have occurred then the wrapped value is returned.
        ///
        /// # Examples
        ///
        /// ```
        #[doc = concat!("assert_eq!(1", stringify!($SelfT), ".overflowing_add_signed(2), (3, false));")]
        #[doc = concat!("assert_eq!(1", stringify!($SelfT), ".overflowing_add_signed(-2), (", stringify!($SelfT), "::MAX, true));")]
        #[doc = concat!("assert_eq!((", stringify!($SelfT), "::MAX - 2).overflowing_add_signed(4), (1, true));")]
        /// ```
        #[stable(feature = "mixed_integer_ops", since = "1.66.0")]
        #[rustc_const_stable(feature = "mixed_integer_ops", since = "1.66.0")]
        #[must_use = "this returns the result of the operation, \
                      without modifying the original"]
        #[inline]
        #[cfg(not(feature = "ferrocene_certified"))]
        pub const fn overflowing_add_signed(self, rhs: $SignedT) -> (Self, bool) {
            let (res, overflowed) = self.overflowing_add(rhs as Self);
            (res, overflowed ^ (rhs < 0))
        }
        /// Calculates `self` - `rhs`.
        ///
        /// Returns a tuple of the subtraction along with a boolean indicating
        /// whether an arithmetic overflow would occur. If an overflow would
        /// have occurred then the wrapped value is returned.
        ///
        /// # Examples
        ///
        /// ```
        #[doc = concat!("assert_eq!(5", stringify!($SelfT), ".overflowing_sub(2), (3, false));")]
        #[doc = concat!("assert_eq!(0", stringify!($SelfT), ".overflowing_sub(1), (", stringify!($SelfT), "::MAX, true));")]
        /// ```
        #[stable(feature = "wrapping", since = "1.7.0")]
        #[rustc_const_stable(feature = "const_wrapping_math", since = "1.32.0")]
        #[must_use = "this returns the result of the operation, \
                      without modifying the original"]
        #[inline(always)]
        #[cfg(not(feature = "ferrocene_certified"))]
        pub const fn overflowing_sub(self, rhs: Self) -> (Self, bool) {
            let (a, b) = intrinsics::sub_with_overflow(self as $ActualT, rhs as $ActualT);
            (a as Self, b)
        }
        /// Calculates `self` &minus; `rhs` &minus; `borrow` and returns a tuple
        /// containing the difference and the output borrow.
        ///
        /// Performs "ternary subtraction" by subtracting both an integer
        /// operand and a borrow-in bit from `self`, and returns an output
        /// integer and a borrow-out bit. This allows chaining together multiple
        /// subtractions to create a wider subtraction, and can be useful for
        /// bignum subtraction.
        ///
        /// # Examples
        ///
        /// ```
        #[doc = concat!("//    9    6    (a = 9 × 2^", stringify!($BITS), " + 6)")]
        #[doc = concat!("// -  5    7    (b = 5 × 2^", stringify!($BITS), " + 7)")]
        /// // ---------
        #[doc = concat!("//    3  MAX    (diff = 3 × 2^", stringify!($BITS), " + 2^", stringify!($BITS), " - 1)")]
        ///
        #[doc = concat!("let (a1, a0): (", stringify!($SelfT), ", ", stringify!($SelfT), ") = (9, 6);")]
        #[doc = concat!("let (b1, b0): (", stringify!($SelfT), ", ", stringify!($SelfT), ") = (5, 7);")]
        /// let borrow0 = false;
        ///
        /// let (diff0, borrow1) = a0.borrowing_sub(b0, borrow0);
        /// assert_eq!(borrow1, true);
        /// let (diff1, borrow2) = a1.borrowing_sub(b1, borrow1);
        /// assert_eq!(borrow2, false);
        ///
        #[doc = concat!("assert_eq!((diff1, diff0), (3, ", stringify!($SelfT), "::MAX));")]
        /// ```
        #[stable(feature = "unsigned_bigint_helpers", since = "CURRENT_RUSTC_VERSION")]
        #[rustc_const_unstable(feature = "bigint_helper_methods", issue = "85532")]
        #[must_use = "this returns the result of the operation, \
                      without modifying the original"]
        #[inline]
        #[cfg(not(feature = "ferrocene_certified"))]
        pub const fn borrowing_sub(self, rhs: Self, borrow: bool) -> (Self, bool) {
            // note: longer-term this should be done via an intrinsic, but this has been shown
            //   to generate optimal code for now, and LLVM doesn't have an equivalent intrinsic
            let (a, c1) = self.overflowing_sub(rhs);
            let (b, c2) = a.overflowing_sub(borrow as $SelfT);
            // SAFETY: Only one of `c1` and `c2` can be set.
            // For c1 to be set we need to have underflowed, but if we did then
            // `a` is nonzero, which means that `c2` cannot possibly
            // underflow because it's subtracting at most `1` (since it came from `bool`)
            (b, unsafe { intrinsics::disjoint_bitor(c1, c2) })
        }
        /// Calculates `self` - `rhs` with a signed `rhs`
        ///
        /// Returns a tuple of the subtraction along with a boolean indicating
        /// whether an arithmetic overflow would occur. If an overflow would
        /// have occurred then the wrapped value is returned.
        ///
        /// # Examples
        ///
        /// ```
        #[doc = concat!("assert_eq!(1", stringify!($SelfT), ".overflowing_sub_signed(2), (", stringify!($SelfT), "::MAX, true));")]
        #[doc = concat!("assert_eq!(1", stringify!($SelfT), ".overflowing_sub_signed(-2), (3, false));")]
        #[doc = concat!("assert_eq!((", stringify!($SelfT), "::MAX - 2).overflowing_sub_signed(-4), (1, true));")]
        /// ```
        #[stable(feature = "mixed_integer_ops_unsigned_sub", since = "1.90.0")]
        #[rustc_const_stable(feature = "mixed_integer_ops_unsigned_sub", since = "1.90.0")]
        #[must_use = "this returns the result of the operation, \
                      without modifying the original"]
        #[inline]
        #[cfg(not(feature = "ferrocene_certified"))]
        pub const fn overflowing_sub_signed(self, rhs: $SignedT) -> (Self, bool) {
            let (res, overflow) = self.overflowing_sub(rhs as Self);
            (res, overflow ^ (rhs < 0))
        }
        /// Computes the absolute difference between `self` and `other`.
        ///
        /// # Examples
        ///
        /// ```
        #[doc = concat!("assert_eq!(100", stringify!($SelfT), ".abs_diff(80), 20", stringify!($SelfT), ");")]
        #[doc = concat!("assert_eq!(100", stringify!($SelfT), ".abs_diff(110), 10", stringify!($SelfT), ");")]
        /// ```
        #[stable(feature = "int_abs_diff", since = "1.60.0")]
        #[rustc_const_stable(feature = "int_abs_diff", since = "1.60.0")]
        #[must_use = "this returns the result of the operation, \
                      without modifying the original"]
        #[inline]
        #[cfg(not(feature = "ferrocene_certified"))]
        pub const fn abs_diff(self, other: Self) -> Self {
            if size_of::<Self>() == 1 {
                // Trick LLVM into generating the psadbw instruction when SSE2
                // is available and this function is autovectorized for u8's.
                (self as i32).wrapping_sub(other as i32).unsigned_abs() as Self
            } else {
                if self < other {
                    other - self
                } else {
                    self - other
                }
            }
        }
        /// Calculates the multiplication of `self` and `rhs`.
        ///
        /// Returns a tuple of the multiplication along with a boolean
        /// indicating whether an arithmetic overflow would occur. If an
        /// overflow would have occurred then the wrapped value is returned.
        ///
        /// If you want the *value* of the overflow, rather than just *whether*
        /// an overflow occurred, see [`Self::carrying_mul`].
        ///
        /// # Examples
        ///
        /// Please note that this example is shared among integer types, which is why `u32` is used.
        ///
        /// ```
        /// assert_eq!(5u32.overflowing_mul(2), (10, false));
        /// assert_eq!(1_000_000_000u32.overflowing_mul(10), (1410065408, true));
        /// ```
        #[stable(feature = "wrapping", since = "1.7.0")]
        #[rustc_const_stable(feature = "const_wrapping_math", since = "1.32.0")]
        #[must_use = "this returns the result of the operation, \
                          without modifying the original"]
        #[inline(always)]
        #[cfg(not(feature = "ferrocene_certified"))]
        pub const fn overflowing_mul(self, rhs: Self) -> (Self, bool) {
            let (a, b) = intrinsics::mul_with_overflow(self as $ActualT, rhs as $ActualT);
            (a as Self, b)
        }
        /// Calculates the complete double-width product `self * rhs`.
        ///
        /// This returns the low-order (wrapping) bits and the high-order (overflow) bits
        /// of the result as two separate values, in that order. As such,
        /// `a.widening_mul(b).0` produces the same result as `a.wrapping_mul(b)`.
        ///
        /// If you also need to add a value and carry to the wide result, then you want
        /// [`Self::carrying_mul_add`] instead.
        ///
        /// If you also need to add a carry to the wide result, then you want
        /// [`Self::carrying_mul`] instead.
        ///
        /// If you just want to know *whether* the multiplication overflowed, then you
        /// want [`Self::overflowing_mul`] instead.
        ///
        /// # Examples
        ///
        /// ```
        /// #![feature(bigint_helper_methods)]
        #[doc = concat!("assert_eq!(5_", stringify!($SelfT), ".widening_mul(7), (35, 0));")]
        #[doc = concat!("assert_eq!(", stringify!($SelfT), "::MAX.widening_mul(", stringify!($SelfT), "::MAX), (1, ", stringify!($SelfT), "::MAX - 1));")]
        /// ```
        ///
        /// Compared to other `*_mul` methods:
        /// ```
        /// #![feature(bigint_helper_methods)]
        #[doc = concat!("assert_eq!(", stringify!($SelfT), "::widening_mul(1 << ", stringify!($BITS_MINUS_ONE), ", 6), (0, 3));")]
        #[doc = concat!("assert_eq!(", stringify!($SelfT), "::overflowing_mul(1 << ", stringify!($BITS_MINUS_ONE), ", 6), (0, true));")]
        #[doc = concat!("assert_eq!(", stringify!($SelfT), "::wrapping_mul(1 << ", stringify!($BITS_MINUS_ONE), ", 6), 0);")]
        #[doc = concat!("assert_eq!(", stringify!($SelfT), "::checked_mul(1 << ", stringify!($BITS_MINUS_ONE), ", 6), None);")]
        /// ```
        ///
        /// Please note that this example is shared among integer types, which is why `u32` is used.
        ///
        /// ```
        /// #![feature(bigint_helper_methods)]
        /// assert_eq!(5u32.widening_mul(2), (10, 0));
        /// assert_eq!(1_000_000_000u32.widening_mul(10), (1410065408, 2));
        /// ```
        #[unstable(feature = "bigint_helper_methods", issue = "85532")]
        #[rustc_const_unstable(feature = "bigint_helper_methods", issue = "85532")]
        #[must_use = "this returns the result of the operation, \
                      without modifying the original"]
        #[inline]
        #[cfg(not(feature = "ferrocene_certified"))]
        pub const fn widening_mul(self, rhs: Self) -> (Self, Self) {
            Self::carrying_mul_add(self, rhs, 0, 0)
        }
        /// Calculates the "full multiplication" `self * rhs + carry`
        /// without the possibility to overflow.
        ///
        /// This returns the low-order (wrapping) bits and the high-order (overflow) bits
        /// of the result as two separate values, in that order.
        ///
        /// Performs "long multiplication" which takes in an extra amount to add, and may return an
        /// additional amount of overflow. This allows for chaining together multiple
        /// multiplications to create "big integers" which represent larger values.
        ///
        /// If you also need to add a value, then use [`Self::carrying_mul_add`].
        ///
        /// # Examples
        ///
        /// Please note that this example is shared among integer types, which is why `u32` is used.
        ///
        /// ```
        /// assert_eq!(5u32.carrying_mul(2, 0), (10, 0));
        /// assert_eq!(5u32.carrying_mul(2, 10), (20, 0));
        /// assert_eq!(1_000_000_000u32.carrying_mul(10, 0), (1410065408, 2));
        /// assert_eq!(1_000_000_000u32.carrying_mul(10, 10), (1410065418, 2));
        #[doc = concat!("assert_eq!(",
            stringify!($SelfT), "::MAX.carrying_mul(", stringify!($SelfT), "::MAX, ", stringify!($SelfT), "::MAX), ",
            "(0, ", stringify!($SelfT), "::MAX));"
        )]
        /// ```
        ///
        /// This is the core operation needed for scalar multiplication when
        /// implementing it for wider-than-native types.
        ///
        /// ```
        /// #![feature(bigint_helper_methods)]
        /// fn scalar_mul_eq(little_endian_digits: &mut Vec<u16>, multiplicand: u16) {
        ///     let mut carry = 0;
        ///     for d in little_endian_digits.iter_mut() {
        ///         (*d, carry) = d.carrying_mul(multiplicand, carry);
        ///     }
        ///     if carry != 0 {
        ///         little_endian_digits.push(carry);
        ///     }
        /// }
        ///
        /// let mut v = vec![10, 20];
        /// scalar_mul_eq(&mut v, 3);
        /// assert_eq!(v, [30, 60]);
        ///
        /// assert_eq!(0x87654321_u64 * 0xFEED, 0x86D3D159E38D);
        /// let mut v = vec![0x4321, 0x8765];
        /// scalar_mul_eq(&mut v, 0xFEED);
        /// assert_eq!(v, [0xE38D, 0xD159, 0x86D3]);
        /// ```
        ///
        /// If `carry` is zero, this is similar to [`overflowing_mul`](Self::overflowing_mul),
        /// except that it gives the value of the overflow instead of just whether one happened:
        ///
        /// ```
        /// #![feature(bigint_helper_methods)]
        /// let r = u8::carrying_mul(7, 13, 0);
        /// assert_eq!((r.0, r.1 != 0), u8::overflowing_mul(7, 13));
        /// let r = u8::carrying_mul(13, 42, 0);
        /// assert_eq!((r.0, r.1 != 0), u8::overflowing_mul(13, 42));
        /// ```
        ///
        /// The value of the first field in the returned tuple matches what you'd get
        /// by combining the [`wrapping_mul`](Self::wrapping_mul) and
        /// [`wrapping_add`](Self::wrapping_add) methods:
        ///
        /// ```
        /// #![feature(bigint_helper_methods)]
        /// assert_eq!(
        ///     789_u16.carrying_mul(456, 123).0,
        ///     789_u16.wrapping_mul(456).wrapping_add(123),
        /// );
        /// ```
        #[stable(feature = "unsigned_bigint_helpers", since = "CURRENT_RUSTC_VERSION")]
        #[rustc_const_unstable(feature = "bigint_helper_methods", issue = "85532")]
        #[must_use = "this returns the result of the operation, \
                      without modifying the original"]
        #[inline]
        #[cfg(not(feature = "ferrocene_certified"))]
        pub const fn carrying_mul(self, rhs: Self, carry: Self) -> (Self, Self) {
            Self::carrying_mul_add(self, rhs, carry, 0)
        }
        /// Calculates the "full multiplication" `self * rhs + carry1 + carry2`.
        ///
        /// This returns the low-order (wrapping) bits and the high-order (overflow) bits
        /// of the result as two separate values, in that order.
        ///
        /// This cannot overflow, as the double-width result has exactly enough
        /// space for the largest possible result. This is equivalent to how, in
        /// decimal, 9 × 9 + 9 + 9 = 81 + 18 = 99 = 9×10⁰ + 9×10¹ = 10² - 1.
        ///
        /// Performs "long multiplication" which takes in an extra amount to add, and may return an
        /// additional amount of overflow. This allows for chaining together multiple
        /// multiplications to create "big integers" which represent larger values.
        ///
        /// If you don't need the `add` part, then you can use [`Self::carrying_mul`] instead.
        ///
        /// # Examples
        ///
        /// Please note that this example is shared between integer types,
        /// which explains why `u32` is used here.
        ///
        /// ```
        /// assert_eq!(5u32.carrying_mul_add(2, 0, 0), (10, 0));
        /// assert_eq!(5u32.carrying_mul_add(2, 10, 10), (30, 0));
        /// assert_eq!(1_000_000_000u32.carrying_mul_add(10, 0, 0), (1410065408, 2));
        /// assert_eq!(1_000_000_000u32.carrying_mul_add(10, 10, 10), (1410065428, 2));
        #[doc = concat!("assert_eq!(",
            stringify!($SelfT), "::MAX.carrying_mul_add(", stringify!($SelfT), "::MAX, ", stringify!($SelfT), "::MAX, ", stringify!($SelfT), "::MAX), ",
            "(", stringify!($SelfT), "::MAX, ", stringify!($SelfT), "::MAX));"
        )]
        /// ```
        ///
        /// This is the core per-digit operation for "grade school" O(n²) multiplication.
        ///
        /// Please note that this example is shared between integer types,
        /// using `u8` for simplicity of the demonstration.
        ///
        /// ```
        /// fn quadratic_mul<const N: usize>(a: [u8; N], b: [u8; N]) -> [u8; N] {
        ///     let mut out = [0; N];
        ///     for j in 0..N {
        ///         let mut carry = 0;
        ///         for i in 0..(N - j) {
        ///             (out[j + i], carry) = u8::carrying_mul_add(a[i], b[j], out[j + i], carry);
        ///         }
        ///     }
        ///     out
        /// }
        ///
        /// // -1 * -1 == 1
        /// assert_eq!(quadratic_mul([0xFF; 3], [0xFF; 3]), [1, 0, 0]);
        ///
        /// assert_eq!(u32::wrapping_mul(0x9e3779b9, 0x7f4a7c15), 0xcffc982d);
        /// assert_eq!(
        ///     quadratic_mul(u32::to_le_bytes(0x9e3779b9), u32::to_le_bytes(0x7f4a7c15)),
        ///     u32::to_le_bytes(0xcffc982d)
        /// );
        /// ```
        #[stable(feature = "unsigned_bigint_helpers", since = "CURRENT_RUSTC_VERSION")]
        #[rustc_const_unstable(feature = "bigint_helper_methods", issue = "85532")]
        #[must_use = "this returns the result of the operation, \
                      without modifying the original"]
        #[inline]
        #[cfg(not(feature = "ferrocene_certified"))]
        pub const fn carrying_mul_add(self, rhs: Self, carry: Self, add: Self) -> (Self, Self) {
            intrinsics::carrying_mul_add(self, rhs, carry, add)
        }
        /// Calculates the divisor when `self` is divided by `rhs`.
        ///
        /// Returns a tuple of the divisor along with a boolean indicating
        /// whether an arithmetic overflow would occur. Note that for unsigned
        /// integers overflow never occurs, so the second value is always
        /// `false`.
        ///
        /// # Panics
        ///
        /// This function will panic if `rhs` is zero.
        ///
        /// # Examples
        ///
        /// ```
        #[doc = concat!("assert_eq!(5", stringify!($SelfT), ".overflowing_div(2), (2, false));")]
        /// ```
        #[inline(always)]
        #[stable(feature = "wrapping", since = "1.7.0")]
        #[rustc_const_stable(feature = "const_overflowing_int_methods", since = "1.52.0")]
        #[must_use = "this returns the result of the operation, \
                      without modifying the original"]
        #[track_caller]
        #[cfg(not(feature = "ferrocene_certified"))]
        pub const fn overflowing_div(self, rhs: Self) -> (Self, bool) {
            (self / rhs, false)
        }
        /// Calculates the quotient of Euclidean division `self.div_euclid(rhs)`.
        ///
        /// Returns a tuple of the divisor along with a boolean indicating
        /// whether an arithmetic overflow would occur. Note that for unsigned
        /// integers overflow never occurs, so the second value is always
        /// `false`.
        /// Since, for the positive integers, all common
        /// definitions of division are equal, this
        /// is exactly equal to `self.overflowing_div(rhs)`.
        ///
        /// # Panics
        ///
        /// This function will panic if `rhs` is zero.
        ///
        /// # Examples
        ///
        /// ```
        #[doc = concat!("assert_eq!(5", stringify!($SelfT), ".overflowing_div_euclid(2), (2, false));")]
        /// ```
        #[inline(always)]
        #[stable(feature = "euclidean_division", since = "1.38.0")]
        #[rustc_const_stable(feature = "const_euclidean_int_methods", since = "1.52.0")]
        #[must_use = "this returns the result of the operation, \
                      without modifying the original"]
        #[track_caller]
        #[cfg(not(feature = "ferrocene_certified"))]
        pub const fn overflowing_div_euclid(self, rhs: Self) -> (Self, bool) {
            (self / rhs, false)
        }
        /// Calculates the remainder when `self` is divided by `rhs`.
        ///
        /// Returns a tuple of the remainder after dividing along with a boolean
        /// indicating whether an arithmetic overflow would occur. Note that for
        /// unsigned integers overflow never occurs, so the second value is
        /// always `false`.
        ///
        /// # Panics
        ///
        /// This function will panic if `rhs` is zero.
        ///
        /// # Examples
        ///
        /// ```
        #[doc = concat!("assert_eq!(5", stringify!($SelfT), ".overflowing_rem(2), (1, false));")]
        /// ```
        #[inline(always)]
        #[stable(feature = "wrapping", since = "1.7.0")]
        #[rustc_const_stable(feature = "const_overflowing_int_methods", since = "1.52.0")]
        #[must_use = "this returns the result of the operation, \
                      without modifying the original"]
        #[track_caller]
        #[cfg(not(feature = "ferrocene_certified"))]
        pub const fn overflowing_rem(self, rhs: Self) -> (Self, bool) {
            (self % rhs, false)
        }
        /// Calculates the remainder `self.rem_euclid(rhs)` as if by Euclidean division.
        ///
        /// Returns a tuple of the modulo after dividing along with a boolean
        /// indicating whether an arithmetic overflow would occur. Note that for
        /// unsigned integers overflow never occurs, so the second value is
        /// always `false`.
        /// Since, for the positive integers, all common
        /// definitions of division are equal, this operation
        /// is exactly equal to `self.overflowing_rem(rhs)`.
        ///
        /// # Panics
        ///
        /// This function will panic if `rhs` is zero.
        ///
        /// # Examples
        ///
        /// ```
        #[doc = concat!("assert_eq!(5", stringify!($SelfT), ".overflowing_rem_euclid(2), (1, false));")]
        /// ```
        #[inline(always)]
        #[stable(feature = "euclidean_division", since = "1.38.0")]
        #[rustc_const_stable(feature = "const_euclidean_int_methods", since = "1.52.0")]
        #[must_use = "this returns the result of the operation, \
                      without modifying the original"]
        #[track_caller]
        #[cfg(not(feature = "ferrocene_certified"))]
        pub const fn overflowing_rem_euclid(self, rhs: Self) -> (Self, bool) {
            (self % rhs, false)
        }
        /// Negates self in an overflowing fashion.
        ///
        /// Returns `!self + 1` using wrapping operations to return the value
        /// that represents the negation of this unsigned value. Note that for
        /// positive unsigned values overflow always occurs, but negating 0 does
        /// not overflow.
        ///
        /// # Examples
        ///
        /// ```
        #[doc = concat!("assert_eq!(0", stringify!($SelfT), ".overflowing_neg(), (0, false));")]
        #[doc = concat!("assert_eq!(2", stringify!($SelfT), ".overflowing_neg(), (-2i32 as ", stringify!($SelfT), ", true));")]
        /// ```
        #[inline(always)]
        #[stable(feature = "wrapping", since = "1.7.0")]
        #[rustc_const_stable(feature = "const_wrapping_math", since = "1.32.0")]
        #[must_use = "this returns the result of the operation, \
                      without modifying the original"]
        #[cfg(not(feature = "ferrocene_certified"))]
        pub const fn overflowing_neg(self) -> (Self, bool) {
            ((!self).wrapping_add(1), self != 0)
        }
        /// Shifts self left by `rhs` bits.
        ///
        /// Returns a tuple of the shifted version of self along with a boolean
        /// indicating whether the shift value was larger than or equal to the
        /// number of bits. If the shift value is too large, then value is
        /// masked (N-1) where N is the number of bits, and this value is then
        /// used to perform the shift.
        ///
        /// # Examples
        ///
        /// ```
        #[doc = concat!("assert_eq!(0x1", stringify!($SelfT), ".overflowing_shl(4), (0x10, false));")]
        #[doc = concat!("assert_eq!(0x1", stringify!($SelfT), ".overflowing_shl(132), (0x10, true));")]
        #[doc = concat!("assert_eq!(0x10", stringify!($SelfT), ".overflowing_shl(", stringify!($BITS_MINUS_ONE), "), (0, false));")]
        /// ```
        #[stable(feature = "wrapping", since = "1.7.0")]
        #[rustc_const_stable(feature = "const_wrapping_math", since = "1.32.0")]
        #[must_use = "this returns the result of the operation, \
                      without modifying the original"]
        #[inline(always)]
        #[cfg(not(feature = "ferrocene_certified"))]
        pub const fn overflowing_shl(self, rhs: u32) -> (Self, bool) {
            (self.wrapping_shl(rhs), rhs >= Self::BITS)
        }
        /// Shifts self right by `rhs` bits.
        ///
        /// Returns a tuple of the shifted version of self along with a boolean
        /// indicating whether the shift value was larger than or equal to the
        /// number of bits. If the shift value is too large, then value is
        /// masked (N-1) where N is the number of bits, and this value is then
        /// used to perform the shift.
        ///
        /// # Examples
        ///
        /// ```
        #[doc = concat!("assert_eq!(0x10", stringify!($SelfT), ".overflowing_shr(4), (0x1, false));")]
        #[doc = concat!("assert_eq!(0x10", stringify!($SelfT), ".overflowing_shr(132), (0x1, true));")]
        /// ```
        #[stable(feature = "wrapping", since = "1.7.0")]
        #[rustc_const_stable(feature = "const_wrapping_math", since = "1.32.0")]
        #[must_use = "this returns the result of the operation, \
                      without modifying the original"]
        #[inline(always)]
        #[cfg(not(feature = "ferrocene_certified"))]
        pub const fn overflowing_shr(self, rhs: u32) -> (Self, bool) {
            (self.wrapping_shr(rhs), rhs >= Self::BITS)
        }
        /// Raises self to the power of `exp`, using exponentiation by squaring.
        ///
        /// Returns a tuple of the exponentiation along with a bool indicating
        /// whether an overflow happened.
        ///
        /// # Examples
        ///
        /// ```
        #[doc = concat!("assert_eq!(3", stringify!($SelfT), ".overflowing_pow(5), (243, false));")]
        /// assert_eq!(3u8.overflowing_pow(6), (217, true));
        /// ```
        #[stable(feature = "no_panic_pow", since = "1.34.0")]
        #[rustc_const_stable(feature = "const_int_pow", since = "1.50.0")]
        #[must_use = "this returns the result of the operation, \
                      without modifying the original"]
        #[inline]
        #[cfg(not(feature = "ferrocene_certified"))]
        pub const fn overflowing_pow(self, mut exp: u32) -> (Self, bool) {
            if exp == 0{
                return (1,false);
            }
            let mut base = self;
            let mut acc: Self = 1;
            let mut overflown = false;
            // Scratch space for storing results of overflowing_mul.
            let mut r;
            loop {
                if (exp & 1) == 1 {
                    r = acc.overflowing_mul(base);
                    // since exp!=0, finally the exp must be 1.
                    if exp == 1 {
                        r.1 |= overflown;
                        return r;
                    }
                    acc = r.0;
                    overflown |= r.1;
                }
                exp /= 2;
                r = base.overflowing_mul(base);
                base = r.0;
                overflown |= r.1;
            }
        }
        /// Raises self to the power of `exp`, using exponentiation by squaring.
        ///
        /// # Examples
        ///
        /// ```
        #[doc = concat!("assert_eq!(2", stringify!($SelfT), ".pow(5), 32);")]
        /// ```
        #[stable(feature = "rust1", since = "1.0.0")]
        #[rustc_const_stable(feature = "const_int_pow", since = "1.50.0")]
        #[must_use = "this returns the result of the operation, \
                      without modifying the original"]
        #[inline]
        #[rustc_inherit_overflow_checks]
        #[cfg(not(feature = "ferrocene_certified"))]
        pub const fn pow(self, mut exp: u32) -> Self {
            if exp == 0 {
                return 1;
            }
            let mut base = self;
            let mut acc = 1;
            if intrinsics::is_val_statically_known(exp) {
                while exp > 1 {
                    if (exp & 1) == 1 {
                        acc = acc * base;
                    }
                    exp /= 2;
                    base = base * base;
                }
                // since exp!=0, finally the exp must be 1.
                // Deal with the final bit of the exponent separately, since
                // squaring the base afterwards is not necessary and may cause a
                // needless overflow.
                acc * base
            } else {
                // This is faster than the above when the exponent is not known
                // at compile time. We can't use the same code for the constant
                // exponent case because LLVM is currently unable to unroll
                // this loop.
                loop {
                    if (exp & 1) == 1 {
                        acc = acc * base;
                        // since exp!=0, finally the exp must be 1.
                        if exp == 1 {
                            return acc;
                        }
                    }
                    exp /= 2;
                    base = base * base;
                }
            }
        }
        /// Returns the square root of the number, rounded down.
        ///
        /// # Examples
        ///
        /// ```
        #[doc = concat!("assert_eq!(10", stringify!($SelfT), ".isqrt(), 3);")]
        /// ```
        #[stable(feature = "isqrt", since = "1.84.0")]
        #[rustc_const_stable(feature = "isqrt", since = "1.84.0")]
        #[must_use = "this returns the result of the operation, \
                      without modifying the original"]
        #[inline]
        #[cfg(not(feature = "ferrocene_certified"))]
        pub const fn isqrt(self) -> Self {
            let result = crate::num::int_sqrt::$ActualT(self as $ActualT) as $SelfT;
            // Inform the optimizer what the range of outputs is. If testing
            // `core` crashes with no panic message and a `num::int_sqrt::u*`
            // test failed, it's because your edits caused these assertions or
            // the assertions in `fn isqrt` of `nonzero.rs` to become false.
            //
            // SAFETY: Integer square root is a monotonically nondecreasing
            // function, which means that increasing the input will never
            // cause the output to decrease. Thus, since the input for unsigned
            // integers is bounded by `[0, <$ActualT>::MAX]`, sqrt(n) will be
            // bounded by `[sqrt(0), sqrt(<$ActualT>::MAX)]`.
            unsafe {
                const MAX_RESULT: $SelfT = crate::num::int_sqrt::$ActualT(<$ActualT>::MAX) as $SelfT;
                crate::hint::assert_unchecked(result <= MAX_RESULT);
            }
            result
        }
        /// Performs Euclidean division.
        ///
        /// Since, for the positive integers, all common
        /// definitions of division are equal, this
        /// is exactly equal to `self / rhs`.
        ///
        /// # Panics
        ///
        /// This function will panic if `rhs` is zero.
        ///
        /// # Examples
        ///
        /// ```
        #[doc = concat!("assert_eq!(7", stringify!($SelfT), ".div_euclid(4), 1); // or any other integer type")]
        /// ```
        #[stable(feature = "euclidean_division", since = "1.38.0")]
        #[rustc_const_stable(feature = "const_euclidean_int_methods", since = "1.52.0")]
        #[must_use = "this returns the result of the operation, \
                      without modifying the original"]
        #[inline(always)]
        #[track_caller]
        #[cfg(not(feature = "ferrocene_certified"))]
        pub const fn div_euclid(self, rhs: Self) -> Self {
            self / rhs
        }
        /// Calculates the least remainder of `self (mod rhs)`.
        ///
        /// Since, for the positive integers, all common
        /// definitions of division are equal, this
        /// is exactly equal to `self % rhs`.
        ///
        /// # Panics
        ///
        /// This function will panic if `rhs` is zero.
        ///
        /// # Examples
        ///
        /// ```
        #[doc = concat!("assert_eq!(7", stringify!($SelfT), ".rem_euclid(4), 3); // or any other integer type")]
        /// ```
        #[doc(alias = "modulo", alias = "mod")]
        #[stable(feature = "euclidean_division", since = "1.38.0")]
        #[rustc_const_stable(feature = "const_euclidean_int_methods", since = "1.52.0")]
        #[must_use = "this returns the result of the operation, \
                      without modifying the original"]
        #[inline(always)]
        #[track_caller]
        #[cfg(not(feature = "ferrocene_certified"))]
        pub const fn rem_euclid(self, rhs: Self) -> Self {
            self % rhs
        }
        /// Calculates the quotient of `self` and `rhs`, rounding the result towards negative infinity.
        ///
        /// This is the same as performing `self / rhs` for all unsigned integers.
        ///
        /// # Panics
        ///
        /// This function will panic if `rhs` is zero.
        ///
        /// # Examples
        ///
        /// ```
        /// #![feature(int_roundings)]
        #[doc = concat!("assert_eq!(7_", stringify!($SelfT), ".div_floor(4), 1);")]
        /// ```
        #[unstable(feature = "int_roundings", issue = "88581")]
        #[must_use = "this returns the result of the operation, \
                      without modifying the original"]
        #[inline(always)]
        #[track_caller]
        #[cfg(not(feature = "ferrocene_certified"))]
        pub const fn div_floor(self, rhs: Self) -> Self {
            self / rhs
        }
        /// Calculates the quotient of `self` and `rhs`, rounding the result towards positive infinity.
        ///
        /// # Panics
        ///
        /// This function will panic if `rhs` is zero.
        ///
        /// # Examples
        ///
        /// ```
        #[doc = concat!("assert_eq!(7_", stringify!($SelfT), ".div_ceil(4), 2);")]
        /// ```
        #[stable(feature = "int_roundings1", since = "1.73.0")]
        #[rustc_const_stable(feature = "int_roundings1", since = "1.73.0")]
        #[must_use = "this returns the result of the operation, \
                      without modifying the original"]
        #[inline]
        #[track_caller]
        #[cfg(not(feature = "ferrocene_certified"))]
        pub const fn div_ceil(self, rhs: Self) -> Self {
            let d = self / rhs;
            let r = self % rhs;
            if r > 0 {
                d + 1
            } else {
                d
            }
        }
        /// Calculates the smallest value greater than or equal to `self` that
        /// is a multiple of `rhs`.
        ///
        /// # Panics
        ///
        /// This function will panic if `rhs` is zero.
        ///
        /// ## Overflow behavior
        ///
        /// On overflow, this function will panic if overflow checks are enabled (default in debug
        /// mode) and wrap if overflow checks are disabled (default in release mode).
        ///
        /// # Examples
        ///
        /// ```
        #[doc = concat!("assert_eq!(16_", stringify!($SelfT), ".next_multiple_of(8), 16);")]
        #[doc = concat!("assert_eq!(23_", stringify!($SelfT), ".next_multiple_of(8), 24);")]
        /// ```
        #[stable(feature = "int_roundings1", since = "1.73.0")]
        #[rustc_const_stable(feature = "int_roundings1", since = "1.73.0")]
        #[must_use = "this returns the result of the operation, \
                      without modifying the original"]
        #[inline]
        #[rustc_inherit_overflow_checks]
        #[cfg(not(feature = "ferrocene_certified"))]
        pub const fn next_multiple_of(self, rhs: Self) -> Self {
            match self % rhs {
                0 => self,
                r => self + (rhs - r)
            }
        }
        /// Calculates the smallest value greater than or equal to `self` that
        /// is a multiple of `rhs`. Returns `None` if `rhs` is zero or the
        /// operation would result in overflow.
        ///
        /// # Examples
        ///
        /// ```
        #[doc = concat!("assert_eq!(16_", stringify!($SelfT), ".checked_next_multiple_of(8), Some(16));")]
        #[doc = concat!("assert_eq!(23_", stringify!($SelfT), ".checked_next_multiple_of(8), Some(24));")]
        #[doc = concat!("assert_eq!(1_", stringify!($SelfT), ".checked_next_multiple_of(0), None);")]
        #[doc = concat!("assert_eq!(", stringify!($SelfT), "::MAX.checked_next_multiple_of(2), None);")]
        /// ```
        #[stable(feature = "int_roundings1", since = "1.73.0")]
        #[rustc_const_stable(feature = "int_roundings1", since = "1.73.0")]
        #[must_use = "this returns the result of the operation, \
                      without modifying the original"]
        #[inline]
        #[cfg(not(feature = "ferrocene_certified"))]
        pub const fn checked_next_multiple_of(self, rhs: Self) -> Option<Self> {
            match try_opt!(self.checked_rem(rhs)) {
                0 => Some(self),
                // rhs - r cannot overflow because r is smaller than rhs
                r => self.checked_add(rhs - r)
            }
        }
        /// Returns `true` if `self` is an integer multiple of `rhs`, and false otherwise.
        ///
        /// This function is equivalent to `self % rhs == 0`, except that it will not panic
        /// for `rhs == 0`. Instead, `0.is_multiple_of(0) == true`, and for any non-zero `n`,
        /// `n.is_multiple_of(0) == false`.
        ///
        /// # Examples
        ///
        /// ```
        #[doc = concat!("assert!(6_", stringify!($SelfT), ".is_multiple_of(2));")]
        #[doc = concat!("assert!(!5_", stringify!($SelfT), ".is_multiple_of(2));")]
        ///
        #[doc = concat!("assert!(0_", stringify!($SelfT), ".is_multiple_of(0));")]
        #[doc = concat!("assert!(!6_", stringify!($SelfT), ".is_multiple_of(0));")]
        /// ```
        #[stable(feature = "unsigned_is_multiple_of", since = "1.87.0")]
        #[rustc_const_stable(feature = "unsigned_is_multiple_of", since = "1.87.0")]
        #[must_use]
        #[inline]
        #[rustc_inherit_overflow_checks]
        #[cfg(not(feature = "ferrocene_certified"))]
        pub const fn is_multiple_of(self, rhs: Self) -> bool {
            match rhs {
                0 => self == 0,
                _ => self % rhs == 0,
            }
        }
        /// Returns `true` if and only if `self == 2^k` for some unsigned integer `k`.
        ///
        /// # Examples
        ///
        /// ```
        #[doc = concat!("assert!(16", stringify!($SelfT), ".is_power_of_two());")]
        #[doc = concat!("assert!(!10", stringify!($SelfT), ".is_power_of_two());")]
        /// ```
        #[must_use]
        #[stable(feature = "rust1", since = "1.0.0")]
        #[rustc_const_stable(feature = "const_is_power_of_two", since = "1.32.0")]
        #[inline(always)]
13108680
        pub const fn is_power_of_two(self) -> bool {
13108680
            self.count_ones() == 1
13108680
        }
        // Returns one less than next power of two.
        // (For 8u8 next power of two is 8u8 and for 6u8 it is 8u8)
        //
        // 8u8.one_less_than_next_power_of_two() == 7
        // 6u8.one_less_than_next_power_of_two() == 7
        //
        // This method cannot overflow, as in the `next_power_of_two`
        // overflow cases it instead ends up returning the maximum value
        // of the type, and can return 0 for 0.
        #[inline]
        #[cfg(not(feature = "ferrocene_certified"))]
        const fn one_less_than_next_power_of_two(self) -> Self {
            if self <= 1 { return 0; }
            let p = self - 1;
            // SAFETY: Because `p > 0`, it cannot consist entirely of leading zeros.
            // That means the shift is always in-bounds, and some processors
            // (such as intel pre-haswell) have more efficient ctlz
            // intrinsics when the argument is non-zero.
            let z = unsafe { intrinsics::ctlz_nonzero(p) };
            <$SelfT>::MAX >> z
        }
        /// Returns the smallest power of two greater than or equal to `self`.
        ///
        /// When return value overflows (i.e., `self > (1 << (N-1))` for type
        /// `uN`), it panics in debug mode and the return value is wrapped to 0 in
        /// release mode (the only situation in which this method can return 0).
        ///
        /// # Examples
        ///
        /// ```
        #[doc = concat!("assert_eq!(2", stringify!($SelfT), ".next_power_of_two(), 2);")]
        #[doc = concat!("assert_eq!(3", stringify!($SelfT), ".next_power_of_two(), 4);")]
        #[doc = concat!("assert_eq!(0", stringify!($SelfT), ".next_power_of_two(), 1);")]
        /// ```
        #[stable(feature = "rust1", since = "1.0.0")]
        #[rustc_const_stable(feature = "const_int_pow", since = "1.50.0")]
        #[must_use = "this returns the result of the operation, \
                      without modifying the original"]
        #[inline]
        #[rustc_inherit_overflow_checks]
        #[cfg(not(feature = "ferrocene_certified"))]
        pub const fn next_power_of_two(self) -> Self {
            self.one_less_than_next_power_of_two() + 1
        }
        /// Returns the smallest power of two greater than or equal to `self`. If
        /// the next power of two is greater than the type's maximum value,
        /// `None` is returned, otherwise the power of two is wrapped in `Some`.
        ///
        /// # Examples
        ///
        /// ```
        #[doc = concat!("assert_eq!(2", stringify!($SelfT), ".checked_next_power_of_two(), Some(2));")]
        #[doc = concat!("assert_eq!(3", stringify!($SelfT), ".checked_next_power_of_two(), Some(4));")]
        #[doc = concat!("assert_eq!(", stringify!($SelfT), "::MAX.checked_next_power_of_two(), None);")]
        /// ```
        #[inline]
        #[stable(feature = "rust1", since = "1.0.0")]
        #[rustc_const_stable(feature = "const_int_pow", since = "1.50.0")]
        #[must_use = "this returns the result of the operation, \
                      without modifying the original"]
        #[cfg(not(feature = "ferrocene_certified"))]
        pub const fn checked_next_power_of_two(self) -> Option<Self> {
            self.one_less_than_next_power_of_two().checked_add(1)
        }
        /// Returns the smallest power of two greater than or equal to `n`. If
        /// the next power of two is greater than the type's maximum value,
        /// the return value is wrapped to `0`.
        ///
        /// # Examples
        ///
        /// ```
        /// #![feature(wrapping_next_power_of_two)]
        ///
        #[doc = concat!("assert_eq!(2", stringify!($SelfT), ".wrapping_next_power_of_two(), 2);")]
        #[doc = concat!("assert_eq!(3", stringify!($SelfT), ".wrapping_next_power_of_two(), 4);")]
        #[doc = concat!("assert_eq!(", stringify!($SelfT), "::MAX.wrapping_next_power_of_two(), 0);")]
        /// ```
        #[inline]
        #[unstable(feature = "wrapping_next_power_of_two", issue = "32463",
                   reason = "needs decision on wrapping behavior")]
        #[must_use = "this returns the result of the operation, \
                      without modifying the original"]
        #[cfg(not(feature = "ferrocene_certified"))]
        pub const fn wrapping_next_power_of_two(self) -> Self {
            self.one_less_than_next_power_of_two().wrapping_add(1)
        }
        /// Returns the memory representation of this integer as a byte array in
        /// big-endian (network) byte order.
        ///
        #[doc = $to_xe_bytes_doc]
        ///
        /// # Examples
        ///
        /// ```
        #[doc = concat!("let bytes = ", $swap_op, stringify!($SelfT), ".to_be_bytes();")]
        #[doc = concat!("assert_eq!(bytes, ", $be_bytes, ");")]
        /// ```
        #[stable(feature = "int_to_from_bytes", since = "1.32.0")]
        #[rustc_const_stable(feature = "const_int_conversion", since = "1.44.0")]
        #[must_use = "this returns the result of the operation, \
                      without modifying the original"]
        #[inline]
        #[cfg(not(feature = "ferrocene_certified"))]
        pub const fn to_be_bytes(self) -> [u8; size_of::<Self>()] {
            self.to_be().to_ne_bytes()
        }
        /// Returns the memory representation of this integer as a byte array in
        /// little-endian byte order.
        ///
        #[doc = $to_xe_bytes_doc]
        ///
        /// # Examples
        ///
        /// ```
        #[doc = concat!("let bytes = ", $swap_op, stringify!($SelfT), ".to_le_bytes();")]
        #[doc = concat!("assert_eq!(bytes, ", $le_bytes, ");")]
        /// ```
        #[stable(feature = "int_to_from_bytes", since = "1.32.0")]
        #[rustc_const_stable(feature = "const_int_conversion", since = "1.44.0")]
        #[must_use = "this returns the result of the operation, \
                      without modifying the original"]
        #[inline]
        #[cfg(not(feature = "ferrocene_certified"))]
        pub const fn to_le_bytes(self) -> [u8; size_of::<Self>()] {
            self.to_le().to_ne_bytes()
        }
        /// Returns the memory representation of this integer as a byte array in
        /// native byte order.
        ///
        /// As the target platform's native endianness is used, portable code
        /// should use [`to_be_bytes`] or [`to_le_bytes`], as appropriate,
        /// instead.
        ///
        #[doc = $to_xe_bytes_doc]
        ///
        /// [`to_be_bytes`]: Self::to_be_bytes
        /// [`to_le_bytes`]: Self::to_le_bytes
        ///
        /// # Examples
        ///
        /// ```
        #[doc = concat!("let bytes = ", $swap_op, stringify!($SelfT), ".to_ne_bytes();")]
        /// assert_eq!(
        ///     bytes,
        ///     if cfg!(target_endian = "big") {
        #[doc = concat!("        ", $be_bytes)]
        ///     } else {
        #[doc = concat!("        ", $le_bytes)]
        ///     }
        /// );
        /// ```
        #[stable(feature = "int_to_from_bytes", since = "1.32.0")]
        #[rustc_const_stable(feature = "const_int_conversion", since = "1.44.0")]
        #[must_use = "this returns the result of the operation, \
                      without modifying the original"]
        #[allow(unnecessary_transmutes)]
        // SAFETY: const sound because integers are plain old datatypes so we can always
        // transmute them to arrays of bytes
        #[inline]
        #[cfg(not(feature = "ferrocene_certified"))]
        pub const fn to_ne_bytes(self) -> [u8; size_of::<Self>()] {
            // SAFETY: integers are plain old datatypes so we can always transmute them to
            // arrays of bytes
            unsafe { mem::transmute(self) }
        }
        /// Creates a native endian integer value from its representation
        /// as a byte array in big endian.
        ///
        #[doc = $from_xe_bytes_doc]
        ///
        /// # Examples
        ///
        /// ```
        #[doc = concat!("let value = ", stringify!($SelfT), "::from_be_bytes(", $be_bytes, ");")]
        #[doc = concat!("assert_eq!(value, ", $swap_op, ");")]
        /// ```
        ///
        /// When starting from a slice rather than an array, fallible conversion APIs can be used:
        ///
        /// ```
        #[doc = concat!("fn read_be_", stringify!($SelfT), "(input: &mut &[u8]) -> ", stringify!($SelfT), " {")]
        #[doc = concat!("    let (int_bytes, rest) = input.split_at(size_of::<", stringify!($SelfT), ">());")]
        ///     *input = rest;
        #[doc = concat!("    ", stringify!($SelfT), "::from_be_bytes(int_bytes.try_into().unwrap())")]
        /// }
        /// ```
        #[stable(feature = "int_to_from_bytes", since = "1.32.0")]
        #[rustc_const_stable(feature = "const_int_conversion", since = "1.44.0")]
        #[must_use]
        #[inline]
        #[cfg(not(feature = "ferrocene_certified"))]
        pub const fn from_be_bytes(bytes: [u8; size_of::<Self>()]) -> Self {
            Self::from_be(Self::from_ne_bytes(bytes))
        }
        /// Creates a native endian integer value from its representation
        /// as a byte array in little endian.
        ///
        #[doc = $from_xe_bytes_doc]
        ///
        /// # Examples
        ///
        /// ```
        #[doc = concat!("let value = ", stringify!($SelfT), "::from_le_bytes(", $le_bytes, ");")]
        #[doc = concat!("assert_eq!(value, ", $swap_op, ");")]
        /// ```
        ///
        /// When starting from a slice rather than an array, fallible conversion APIs can be used:
        ///
        /// ```
        #[doc = concat!("fn read_le_", stringify!($SelfT), "(input: &mut &[u8]) -> ", stringify!($SelfT), " {")]
        #[doc = concat!("    let (int_bytes, rest) = input.split_at(size_of::<", stringify!($SelfT), ">());")]
        ///     *input = rest;
        #[doc = concat!("    ", stringify!($SelfT), "::from_le_bytes(int_bytes.try_into().unwrap())")]
        /// }
        /// ```
        #[stable(feature = "int_to_from_bytes", since = "1.32.0")]
        #[rustc_const_stable(feature = "const_int_conversion", since = "1.44.0")]
        #[must_use]
        #[inline]
        #[cfg(not(feature = "ferrocene_certified"))]
        pub const fn from_le_bytes(bytes: [u8; size_of::<Self>()]) -> Self {
            Self::from_le(Self::from_ne_bytes(bytes))
        }
        /// Creates a native endian integer value from its memory representation
        /// as a byte array in native endianness.
        ///
        /// As the target platform's native endianness is used, portable code
        /// likely wants to use [`from_be_bytes`] or [`from_le_bytes`], as
        /// appropriate instead.
        ///
        /// [`from_be_bytes`]: Self::from_be_bytes
        /// [`from_le_bytes`]: Self::from_le_bytes
        ///
        #[doc = $from_xe_bytes_doc]
        ///
        /// # Examples
        ///
        /// ```
        #[doc = concat!("let value = ", stringify!($SelfT), "::from_ne_bytes(if cfg!(target_endian = \"big\") {")]
        #[doc = concat!("    ", $be_bytes, "")]
        /// } else {
        #[doc = concat!("    ", $le_bytes, "")]
        /// });
        #[doc = concat!("assert_eq!(value, ", $swap_op, ");")]
        /// ```
        ///
        /// When starting from a slice rather than an array, fallible conversion APIs can be used:
        ///
        /// ```
        #[doc = concat!("fn read_ne_", stringify!($SelfT), "(input: &mut &[u8]) -> ", stringify!($SelfT), " {")]
        #[doc = concat!("    let (int_bytes, rest) = input.split_at(size_of::<", stringify!($SelfT), ">());")]
        ///     *input = rest;
        #[doc = concat!("    ", stringify!($SelfT), "::from_ne_bytes(int_bytes.try_into().unwrap())")]
        /// }
        /// ```
        #[stable(feature = "int_to_from_bytes", since = "1.32.0")]
        #[rustc_const_stable(feature = "const_int_conversion", since = "1.44.0")]
        #[allow(unnecessary_transmutes)]
        #[must_use]
        // SAFETY: const sound because integers are plain old datatypes so we can always
        // transmute to them
        #[inline]
        #[cfg(not(feature = "ferrocene_certified"))]
        pub const fn from_ne_bytes(bytes: [u8; size_of::<Self>()]) -> Self {
            // SAFETY: integers are plain old datatypes so we can always transmute to them
            unsafe { mem::transmute(bytes) }
        }
        /// New code should prefer to use
        #[doc = concat!("[`", stringify!($SelfT), "::MIN", "`] instead.")]
        ///
        /// Returns the smallest value that can be represented by this integer type.
        #[stable(feature = "rust1", since = "1.0.0")]
        #[rustc_promotable]
        #[inline(always)]
        #[rustc_const_stable(feature = "const_max_value", since = "1.32.0")]
        #[deprecated(since = "TBD", note = "replaced by the `MIN` associated constant on this type")]
        #[rustc_diagnostic_item = concat!(stringify!($SelfT), "_legacy_fn_min_value")]
        #[cfg(not(feature = "ferrocene_certified"))]
        pub const fn min_value() -> Self { Self::MIN }
        /// New code should prefer to use
        #[doc = concat!("[`", stringify!($SelfT), "::MAX", "`] instead.")]
        ///
        /// Returns the largest value that can be represented by this integer type.
        #[stable(feature = "rust1", since = "1.0.0")]
        #[rustc_promotable]
        #[inline(always)]
        #[rustc_const_stable(feature = "const_max_value", since = "1.32.0")]
        #[deprecated(since = "TBD", note = "replaced by the `MAX` associated constant on this type")]
        #[rustc_diagnostic_item = concat!(stringify!($SelfT), "_legacy_fn_max_value")]
        #[cfg(not(feature = "ferrocene_certified"))]
        pub const fn max_value() -> Self { Self::MAX }
    }
}