alloc/
sync.rs

1#![stable(feature = "rust1", since = "1.0.0")]
2
3//! Thread-safe reference-counting pointers.
4//!
5//! See the [`Arc<T>`][Arc] documentation for more details.
6//!
7//! **Note**: This module is only available on platforms that support atomic
8//! loads and stores of pointers. This may be detected at compile time using
9//! `#[cfg(target_has_atomic = "ptr")]`.
10
11use core::any::Any;
12#[cfg(not(no_global_oom_handling))]
13use core::clone::CloneToUninit;
14use core::clone::UseCloned;
15use core::cmp::Ordering;
16use core::hash::{Hash, Hasher};
17use core::intrinsics::abort;
18#[cfg(not(no_global_oom_handling))]
19use core::iter;
20use core::marker::{PhantomData, Unsize};
21use core::mem::{self, ManuallyDrop, align_of_val_raw};
22use core::num::NonZeroUsize;
23use core::ops::{CoerceUnsized, Deref, DerefMut, DerefPure, DispatchFromDyn, LegacyReceiver};
24use core::panic::{RefUnwindSafe, UnwindSafe};
25use core::pin::{Pin, PinCoerceUnsized};
26use core::ptr::{self, NonNull};
27#[cfg(not(no_global_oom_handling))]
28use core::slice::from_raw_parts_mut;
29use core::sync::atomic::Ordering::{Acquire, Relaxed, Release};
30use core::sync::atomic::{self, Atomic};
31use core::{borrow, fmt, hint};
32
33#[cfg(not(no_global_oom_handling))]
34use crate::alloc::handle_alloc_error;
35use crate::alloc::{AllocError, Allocator, Global, Layout};
36use crate::borrow::{Cow, ToOwned};
37use crate::boxed::Box;
38use crate::rc::is_dangling;
39#[cfg(not(no_global_oom_handling))]
40use crate::string::String;
41#[cfg(not(no_global_oom_handling))]
42use crate::vec::Vec;
43
44/// A soft limit on the amount of references that may be made to an `Arc`.
45///
46/// Going above this limit will abort your program (although not
47/// necessarily) at _exactly_ `MAX_REFCOUNT + 1` references.
48/// Trying to go above it might call a `panic` (if not actually going above it).
49///
50/// This is a global invariant, and also applies when using a compare-exchange loop.
51///
52/// See comment in `Arc::clone`.
53const MAX_REFCOUNT: usize = (isize::MAX) as usize;
54
55/// The error in case either counter reaches above `MAX_REFCOUNT`, and we can `panic` safely.
56const INTERNAL_OVERFLOW_ERROR: &str = "Arc counter overflow";
57
58#[cfg(not(sanitize = "thread"))]
59macro_rules! acquire {
60    ($x:expr) => {
61        atomic::fence(Acquire)
62    };
63}
64
65// ThreadSanitizer does not support memory fences. To avoid false positive
66// reports in Arc / Weak implementation use atomic loads for synchronization
67// instead.
68#[cfg(sanitize = "thread")]
69macro_rules! acquire {
70    ($x:expr) => {
71        $x.load(Acquire)
72    };
73}
74
75/// A thread-safe reference-counting pointer. 'Arc' stands for 'Atomically
76/// Reference Counted'.
77///
78/// The type `Arc<T>` provides shared ownership of a value of type `T`,
79/// allocated in the heap. Invoking [`clone`][clone] on `Arc` produces
80/// a new `Arc` instance, which points to the same allocation on the heap as the
81/// source `Arc`, while increasing a reference count. When the last `Arc`
82/// pointer to a given allocation is destroyed, the value stored in that allocation (often
83/// referred to as "inner value") is also dropped.
84///
85/// Shared references in Rust disallow mutation by default, and `Arc` is no
86/// exception: you cannot generally obtain a mutable reference to something
87/// inside an `Arc`. If you do need to mutate through an `Arc`, you have several options:
88///
89/// 1. Use interior mutability with synchronization primitives like [`Mutex`][mutex],
90///    [`RwLock`][rwlock], or one of the [`Atomic`][atomic] types.
91///
92/// 2. Use clone-on-write semantics with [`Arc::make_mut`] which provides efficient mutation
93///    without requiring interior mutability. This approach clones the data only when
94///    needed (when there are multiple references) and can be more efficient when mutations
95///    are infrequent.
96///
97/// 3. Use [`Arc::get_mut`] when you know your `Arc` is not shared (has a reference count of 1),
98///    which provides direct mutable access to the inner value without any cloning.
99///
100/// ```
101/// use std::sync::Arc;
102///
103/// let mut data = Arc::new(vec![1, 2, 3]);
104///
105/// // This will clone the vector only if there are other references to it
106/// Arc::make_mut(&mut data).push(4);
107///
108/// assert_eq!(*data, vec![1, 2, 3, 4]);
109/// ```
110///
111/// **Note**: This type is only available on platforms that support atomic
112/// loads and stores of pointers, which includes all platforms that support
113/// the `std` crate but not all those which only support [`alloc`](crate).
114/// This may be detected at compile time using `#[cfg(target_has_atomic = "ptr")]`.
115///
116/// ## Thread Safety
117///
118/// Unlike [`Rc<T>`], `Arc<T>` uses atomic operations for its reference
119/// counting. This means that it is thread-safe. The disadvantage is that
120/// atomic operations are more expensive than ordinary memory accesses. If you
121/// are not sharing reference-counted allocations between threads, consider using
122/// [`Rc<T>`] for lower overhead. [`Rc<T>`] is a safe default, because the
123/// compiler will catch any attempt to send an [`Rc<T>`] between threads.
124/// However, a library might choose `Arc<T>` in order to give library consumers
125/// more flexibility.
126///
127/// `Arc<T>` will implement [`Send`] and [`Sync`] as long as the `T` implements
128/// [`Send`] and [`Sync`]. Why can't you put a non-thread-safe type `T` in an
129/// `Arc<T>` to make it thread-safe? This may be a bit counter-intuitive at
130/// first: after all, isn't the point of `Arc<T>` thread safety? The key is
131/// this: `Arc<T>` makes it thread safe to have multiple ownership of the same
132/// data, but it  doesn't add thread safety to its data. Consider
133/// <code>Arc<[RefCell\<T>]></code>. [`RefCell<T>`] isn't [`Sync`], and if `Arc<T>` was always
134/// [`Send`], <code>Arc<[RefCell\<T>]></code> would be as well. But then we'd have a problem:
135/// [`RefCell<T>`] is not thread safe; it keeps track of the borrowing count using
136/// non-atomic operations.
137///
138/// In the end, this means that you may need to pair `Arc<T>` with some sort of
139/// [`std::sync`] type, usually [`Mutex<T>`][mutex].
140///
141/// ## Breaking cycles with `Weak`
142///
143/// The [`downgrade`][downgrade] method can be used to create a non-owning
144/// [`Weak`] pointer. A [`Weak`] pointer can be [`upgrade`][upgrade]d
145/// to an `Arc`, but this will return [`None`] if the value stored in the allocation has
146/// already been dropped. In other words, `Weak` pointers do not keep the value
147/// inside the allocation alive; however, they *do* keep the allocation
148/// (the backing store for the value) alive.
149///
150/// A cycle between `Arc` pointers will never be deallocated. For this reason,
151/// [`Weak`] is used to break cycles. For example, a tree could have
152/// strong `Arc` pointers from parent nodes to children, and [`Weak`]
153/// pointers from children back to their parents.
154///
155/// # Cloning references
156///
157/// Creating a new reference from an existing reference-counted pointer is done using the
158/// `Clone` trait implemented for [`Arc<T>`][Arc] and [`Weak<T>`][Weak].
159///
160/// ```
161/// use std::sync::Arc;
162/// let foo = Arc::new(vec![1.0, 2.0, 3.0]);
163/// // The two syntaxes below are equivalent.
164/// let a = foo.clone();
165/// let b = Arc::clone(&foo);
166/// // a, b, and foo are all Arcs that point to the same memory location
167/// ```
168///
169/// ## `Deref` behavior
170///
171/// `Arc<T>` automatically dereferences to `T` (via the [`Deref`] trait),
172/// so you can call `T`'s methods on a value of type `Arc<T>`. To avoid name
173/// clashes with `T`'s methods, the methods of `Arc<T>` itself are associated
174/// functions, called using [fully qualified syntax]:
175///
176/// ```
177/// use std::sync::Arc;
178///
179/// let my_arc = Arc::new(());
180/// let my_weak = Arc::downgrade(&my_arc);
181/// ```
182///
183/// `Arc<T>`'s implementations of traits like `Clone` may also be called using
184/// fully qualified syntax. Some people prefer to use fully qualified syntax,
185/// while others prefer using method-call syntax.
186///
187/// ```
188/// use std::sync::Arc;
189///
190/// let arc = Arc::new(());
191/// // Method-call syntax
192/// let arc2 = arc.clone();
193/// // Fully qualified syntax
194/// let arc3 = Arc::clone(&arc);
195/// ```
196///
197/// [`Weak<T>`][Weak] does not auto-dereference to `T`, because the inner value may have
198/// already been dropped.
199///
200/// [`Rc<T>`]: crate::rc::Rc
201/// [clone]: Clone::clone
202/// [mutex]: ../../std/sync/struct.Mutex.html
203/// [rwlock]: ../../std/sync/struct.RwLock.html
204/// [atomic]: core::sync::atomic
205/// [downgrade]: Arc::downgrade
206/// [upgrade]: Weak::upgrade
207/// [RefCell\<T>]: core::cell::RefCell
208/// [`RefCell<T>`]: core::cell::RefCell
209/// [`std::sync`]: ../../std/sync/index.html
210/// [`Arc::clone(&from)`]: Arc::clone
211/// [fully qualified syntax]: https://doc.rust-lang.org/book/ch19-03-advanced-traits.html#fully-qualified-syntax-for-disambiguation-calling-methods-with-the-same-name
212///
213/// # Examples
214///
215/// Sharing some immutable data between threads:
216///
217/// ```
218/// use std::sync::Arc;
219/// use std::thread;
220///
221/// let five = Arc::new(5);
222///
223/// for _ in 0..10 {
224///     let five = Arc::clone(&five);
225///
226///     thread::spawn(move || {
227///         println!("{five:?}");
228///     });
229/// }
230/// ```
231///
232/// Sharing a mutable [`AtomicUsize`]:
233///
234/// [`AtomicUsize`]: core::sync::atomic::AtomicUsize "sync::atomic::AtomicUsize"
235///
236/// ```
237/// use std::sync::Arc;
238/// use std::sync::atomic::{AtomicUsize, Ordering};
239/// use std::thread;
240///
241/// let val = Arc::new(AtomicUsize::new(5));
242///
243/// for _ in 0..10 {
244///     let val = Arc::clone(&val);
245///
246///     thread::spawn(move || {
247///         let v = val.fetch_add(1, Ordering::Relaxed);
248///         println!("{v:?}");
249///     });
250/// }
251/// ```
252///
253/// See the [`rc` documentation][rc_examples] for more examples of reference
254/// counting in general.
255///
256/// [rc_examples]: crate::rc#examples
257#[doc(search_unbox)]
258#[rustc_diagnostic_item = "Arc"]
259#[stable(feature = "rust1", since = "1.0.0")]
260#[rustc_insignificant_dtor]
261pub struct Arc<
262    T: ?Sized,
263    #[unstable(feature = "allocator_api", issue = "32838")] A: Allocator = Global,
264> {
265    ptr: NonNull<ArcInner<T>>,
266    phantom: PhantomData<ArcInner<T>>,
267    alloc: A,
268}
269
270#[stable(feature = "rust1", since = "1.0.0")]
271unsafe impl<T: ?Sized + Sync + Send, A: Allocator + Send> Send for Arc<T, A> {}
272#[stable(feature = "rust1", since = "1.0.0")]
273unsafe impl<T: ?Sized + Sync + Send, A: Allocator + Sync> Sync for Arc<T, A> {}
274
275#[stable(feature = "catch_unwind", since = "1.9.0")]
276impl<T: RefUnwindSafe + ?Sized, A: Allocator + UnwindSafe> UnwindSafe for Arc<T, A> {}
277
278#[unstable(feature = "coerce_unsized", issue = "18598")]
279impl<T: ?Sized + Unsize<U>, U: ?Sized, A: Allocator> CoerceUnsized<Arc<U, A>> for Arc<T, A> {}
280
281#[unstable(feature = "dispatch_from_dyn", issue = "none")]
282impl<T: ?Sized + Unsize<U>, U: ?Sized> DispatchFromDyn<Arc<U>> for Arc<T> {}
283
284impl<T: ?Sized> Arc<T> {
285    unsafe fn from_inner(ptr: NonNull<ArcInner<T>>) -> Self {
286        unsafe { Self::from_inner_in(ptr, Global) }
287    }
288
289    unsafe fn from_ptr(ptr: *mut ArcInner<T>) -> Self {
290        unsafe { Self::from_ptr_in(ptr, Global) }
291    }
292}
293
294impl<T: ?Sized, A: Allocator> Arc<T, A> {
295    #[inline]
296    fn into_inner_with_allocator(this: Self) -> (NonNull<ArcInner<T>>, A) {
297        let this = mem::ManuallyDrop::new(this);
298        (this.ptr, unsafe { ptr::read(&this.alloc) })
299    }
300
301    #[inline]
302    unsafe fn from_inner_in(ptr: NonNull<ArcInner<T>>, alloc: A) -> Self {
303        Self { ptr, phantom: PhantomData, alloc }
304    }
305
306    #[inline]
307    unsafe fn from_ptr_in(ptr: *mut ArcInner<T>, alloc: A) -> Self {
308        unsafe { Self::from_inner_in(NonNull::new_unchecked(ptr), alloc) }
309    }
310}
311
312/// `Weak` is a version of [`Arc`] that holds a non-owning reference to the
313/// managed allocation.
314///
315/// The allocation is accessed by calling [`upgrade`] on the `Weak`
316/// pointer, which returns an <code>[Option]<[Arc]\<T>></code>.
317///
318/// Since a `Weak` reference does not count towards ownership, it will not
319/// prevent the value stored in the allocation from being dropped, and `Weak` itself makes no
320/// guarantees about the value still being present. Thus it may return [`None`]
321/// when [`upgrade`]d. Note however that a `Weak` reference *does* prevent the allocation
322/// itself (the backing store) from being deallocated.
323///
324/// A `Weak` pointer is useful for keeping a temporary reference to the allocation
325/// managed by [`Arc`] without preventing its inner value from being dropped. It is also used to
326/// prevent circular references between [`Arc`] pointers, since mutual owning references
327/// would never allow either [`Arc`] to be dropped. For example, a tree could
328/// have strong [`Arc`] pointers from parent nodes to children, and `Weak`
329/// pointers from children back to their parents.
330///
331/// The typical way to obtain a `Weak` pointer is to call [`Arc::downgrade`].
332///
333/// [`upgrade`]: Weak::upgrade
334#[stable(feature = "arc_weak", since = "1.4.0")]
335#[rustc_diagnostic_item = "ArcWeak"]
336pub struct Weak<
337    T: ?Sized,
338    #[unstable(feature = "allocator_api", issue = "32838")] A: Allocator = Global,
339> {
340    // This is a `NonNull` to allow optimizing the size of this type in enums,
341    // but it is not necessarily a valid pointer.
342    // `Weak::new` sets this to `usize::MAX` so that it doesn’t need
343    // to allocate space on the heap. That's not a value a real pointer
344    // will ever have because RcInner has alignment at least 2.
345    ptr: NonNull<ArcInner<T>>,
346    alloc: A,
347}
348
349#[stable(feature = "arc_weak", since = "1.4.0")]
350unsafe impl<T: ?Sized + Sync + Send, A: Allocator + Send> Send for Weak<T, A> {}
351#[stable(feature = "arc_weak", since = "1.4.0")]
352unsafe impl<T: ?Sized + Sync + Send, A: Allocator + Sync> Sync for Weak<T, A> {}
353
354#[unstable(feature = "coerce_unsized", issue = "18598")]
355impl<T: ?Sized + Unsize<U>, U: ?Sized, A: Allocator> CoerceUnsized<Weak<U, A>> for Weak<T, A> {}
356#[unstable(feature = "dispatch_from_dyn", issue = "none")]
357impl<T: ?Sized + Unsize<U>, U: ?Sized> DispatchFromDyn<Weak<U>> for Weak<T> {}
358
359#[stable(feature = "arc_weak", since = "1.4.0")]
360impl<T: ?Sized, A: Allocator> fmt::Debug for Weak<T, A> {
361    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
362        write!(f, "(Weak)")
363    }
364}
365
366// This is repr(C) to future-proof against possible field-reordering, which
367// would interfere with otherwise safe [into|from]_raw() of transmutable
368// inner types.
369#[repr(C)]
370struct ArcInner<T: ?Sized> {
371    strong: Atomic<usize>,
372
373    // the value usize::MAX acts as a sentinel for temporarily "locking" the
374    // ability to upgrade weak pointers or downgrade strong ones; this is used
375    // to avoid races in `make_mut` and `get_mut`.
376    weak: Atomic<usize>,
377
378    data: T,
379}
380
381/// Calculate layout for `ArcInner<T>` using the inner value's layout
382fn arcinner_layout_for_value_layout(layout: Layout) -> Layout {
383    // Calculate layout using the given value layout.
384    // Previously, layout was calculated on the expression
385    // `&*(ptr as *const ArcInner<T>)`, but this created a misaligned
386    // reference (see #54908).
387    Layout::new::<ArcInner<()>>().extend(layout).unwrap().0.pad_to_align()
388}
389
390unsafe impl<T: ?Sized + Sync + Send> Send for ArcInner<T> {}
391unsafe impl<T: ?Sized + Sync + Send> Sync for ArcInner<T> {}
392
393impl<T> Arc<T> {
394    /// Constructs a new `Arc<T>`.
395    ///
396    /// # Examples
397    ///
398    /// ```
399    /// use std::sync::Arc;
400    ///
401    /// let five = Arc::new(5);
402    /// ```
403    #[cfg(not(no_global_oom_handling))]
404    #[inline]
405    #[stable(feature = "rust1", since = "1.0.0")]
406    pub fn new(data: T) -> Arc<T> {
407        // Start the weak pointer count as 1 which is the weak pointer that's
408        // held by all the strong pointers (kinda), see std/rc.rs for more info
409        let x: Box<_> = Box::new(ArcInner {
410            strong: atomic::AtomicUsize::new(1),
411            weak: atomic::AtomicUsize::new(1),
412            data,
413        });
414        unsafe { Self::from_inner(Box::leak(x).into()) }
415    }
416
417    /// Constructs a new `Arc<T>` while giving you a `Weak<T>` to the allocation,
418    /// to allow you to construct a `T` which holds a weak pointer to itself.
419    ///
420    /// Generally, a structure circularly referencing itself, either directly or
421    /// indirectly, should not hold a strong reference to itself to prevent a memory leak.
422    /// Using this function, you get access to the weak pointer during the
423    /// initialization of `T`, before the `Arc<T>` is created, such that you can
424    /// clone and store it inside the `T`.
425    ///
426    /// `new_cyclic` first allocates the managed allocation for the `Arc<T>`,
427    /// then calls your closure, giving it a `Weak<T>` to this allocation,
428    /// and only afterwards completes the construction of the `Arc<T>` by placing
429    /// the `T` returned from your closure into the allocation.
430    ///
431    /// Since the new `Arc<T>` is not fully-constructed until `Arc<T>::new_cyclic`
432    /// returns, calling [`upgrade`] on the weak reference inside your closure will
433    /// fail and result in a `None` value.
434    ///
435    /// # Panics
436    ///
437    /// If `data_fn` panics, the panic is propagated to the caller, and the
438    /// temporary [`Weak<T>`] is dropped normally.
439    ///
440    /// # Example
441    ///
442    /// ```
443    /// # #![allow(dead_code)]
444    /// use std::sync::{Arc, Weak};
445    ///
446    /// struct Gadget {
447    ///     me: Weak<Gadget>,
448    /// }
449    ///
450    /// impl Gadget {
451    ///     /// Constructs a reference counted Gadget.
452    ///     fn new() -> Arc<Self> {
453    ///         // `me` is a `Weak<Gadget>` pointing at the new allocation of the
454    ///         // `Arc` we're constructing.
455    ///         Arc::new_cyclic(|me| {
456    ///             // Create the actual struct here.
457    ///             Gadget { me: me.clone() }
458    ///         })
459    ///     }
460    ///
461    ///     /// Returns a reference counted pointer to Self.
462    ///     fn me(&self) -> Arc<Self> {
463    ///         self.me.upgrade().unwrap()
464    ///     }
465    /// }
466    /// ```
467    /// [`upgrade`]: Weak::upgrade
468    #[cfg(not(no_global_oom_handling))]
469    #[inline]
470    #[stable(feature = "arc_new_cyclic", since = "1.60.0")]
471    pub fn new_cyclic<F>(data_fn: F) -> Arc<T>
472    where
473        F: FnOnce(&Weak<T>) -> T,
474    {
475        Self::new_cyclic_in(data_fn, Global)
476    }
477
478    /// Constructs a new `Arc` with uninitialized contents.
479    ///
480    /// # Examples
481    ///
482    /// ```
483    /// #![feature(get_mut_unchecked)]
484    ///
485    /// use std::sync::Arc;
486    ///
487    /// let mut five = Arc::<u32>::new_uninit();
488    ///
489    /// // Deferred initialization:
490    /// Arc::get_mut(&mut five).unwrap().write(5);
491    ///
492    /// let five = unsafe { five.assume_init() };
493    ///
494    /// assert_eq!(*five, 5)
495    /// ```
496    #[cfg(not(no_global_oom_handling))]
497    #[inline]
498    #[stable(feature = "new_uninit", since = "1.82.0")]
499    #[must_use]
500    pub fn new_uninit() -> Arc<mem::MaybeUninit<T>> {
501        unsafe {
502            Arc::from_ptr(Arc::allocate_for_layout(
503                Layout::new::<T>(),
504                |layout| Global.allocate(layout),
505                <*mut u8>::cast,
506            ))
507        }
508    }
509
510    /// Constructs a new `Arc` with uninitialized contents, with the memory
511    /// being filled with `0` bytes.
512    ///
513    /// See [`MaybeUninit::zeroed`][zeroed] for examples of correct and incorrect usage
514    /// of this method.
515    ///
516    /// # Examples
517    ///
518    /// ```
519    /// #![feature(new_zeroed_alloc)]
520    ///
521    /// use std::sync::Arc;
522    ///
523    /// let zero = Arc::<u32>::new_zeroed();
524    /// let zero = unsafe { zero.assume_init() };
525    ///
526    /// assert_eq!(*zero, 0)
527    /// ```
528    ///
529    /// [zeroed]: mem::MaybeUninit::zeroed
530    #[cfg(not(no_global_oom_handling))]
531    #[inline]
532    #[unstable(feature = "new_zeroed_alloc", issue = "129396")]
533    #[must_use]
534    pub fn new_zeroed() -> Arc<mem::MaybeUninit<T>> {
535        unsafe {
536            Arc::from_ptr(Arc::allocate_for_layout(
537                Layout::new::<T>(),
538                |layout| Global.allocate_zeroed(layout),
539                <*mut u8>::cast,
540            ))
541        }
542    }
543
544    /// Constructs a new `Pin<Arc<T>>`. If `T` does not implement `Unpin`, then
545    /// `data` will be pinned in memory and unable to be moved.
546    #[cfg(not(no_global_oom_handling))]
547    #[stable(feature = "pin", since = "1.33.0")]
548    #[must_use]
549    pub fn pin(data: T) -> Pin<Arc<T>> {
550        unsafe { Pin::new_unchecked(Arc::new(data)) }
551    }
552
553    /// Constructs a new `Pin<Arc<T>>`, return an error if allocation fails.
554    #[unstable(feature = "allocator_api", issue = "32838")]
555    #[inline]
556    pub fn try_pin(data: T) -> Result<Pin<Arc<T>>, AllocError> {
557        unsafe { Ok(Pin::new_unchecked(Arc::try_new(data)?)) }
558    }
559
560    /// Constructs a new `Arc<T>`, returning an error if allocation fails.
561    ///
562    /// # Examples
563    ///
564    /// ```
565    /// #![feature(allocator_api)]
566    /// use std::sync::Arc;
567    ///
568    /// let five = Arc::try_new(5)?;
569    /// # Ok::<(), std::alloc::AllocError>(())
570    /// ```
571    #[unstable(feature = "allocator_api", issue = "32838")]
572    #[inline]
573    pub fn try_new(data: T) -> Result<Arc<T>, AllocError> {
574        // Start the weak pointer count as 1 which is the weak pointer that's
575        // held by all the strong pointers (kinda), see std/rc.rs for more info
576        let x: Box<_> = Box::try_new(ArcInner {
577            strong: atomic::AtomicUsize::new(1),
578            weak: atomic::AtomicUsize::new(1),
579            data,
580        })?;
581        unsafe { Ok(Self::from_inner(Box::leak(x).into())) }
582    }
583
584    /// Constructs a new `Arc` with uninitialized contents, returning an error
585    /// if allocation fails.
586    ///
587    /// # Examples
588    ///
589    /// ```
590    /// #![feature(allocator_api)]
591    /// #![feature(get_mut_unchecked)]
592    ///
593    /// use std::sync::Arc;
594    ///
595    /// let mut five = Arc::<u32>::try_new_uninit()?;
596    ///
597    /// // Deferred initialization:
598    /// Arc::get_mut(&mut five).unwrap().write(5);
599    ///
600    /// let five = unsafe { five.assume_init() };
601    ///
602    /// assert_eq!(*five, 5);
603    /// # Ok::<(), std::alloc::AllocError>(())
604    /// ```
605    #[unstable(feature = "allocator_api", issue = "32838")]
606    // #[unstable(feature = "new_uninit", issue = "63291")]
607    pub fn try_new_uninit() -> Result<Arc<mem::MaybeUninit<T>>, AllocError> {
608        unsafe {
609            Ok(Arc::from_ptr(Arc::try_allocate_for_layout(
610                Layout::new::<T>(),
611                |layout| Global.allocate(layout),
612                <*mut u8>::cast,
613            )?))
614        }
615    }
616
617    /// Constructs a new `Arc` with uninitialized contents, with the memory
618    /// being filled with `0` bytes, returning an error if allocation fails.
619    ///
620    /// See [`MaybeUninit::zeroed`][zeroed] for examples of correct and incorrect usage
621    /// of this method.
622    ///
623    /// # Examples
624    ///
625    /// ```
626    /// #![feature( allocator_api)]
627    ///
628    /// use std::sync::Arc;
629    ///
630    /// let zero = Arc::<u32>::try_new_zeroed()?;
631    /// let zero = unsafe { zero.assume_init() };
632    ///
633    /// assert_eq!(*zero, 0);
634    /// # Ok::<(), std::alloc::AllocError>(())
635    /// ```
636    ///
637    /// [zeroed]: mem::MaybeUninit::zeroed
638    #[unstable(feature = "allocator_api", issue = "32838")]
639    // #[unstable(feature = "new_uninit", issue = "63291")]
640    pub fn try_new_zeroed() -> Result<Arc<mem::MaybeUninit<T>>, AllocError> {
641        unsafe {
642            Ok(Arc::from_ptr(Arc::try_allocate_for_layout(
643                Layout::new::<T>(),
644                |layout| Global.allocate_zeroed(layout),
645                <*mut u8>::cast,
646            )?))
647        }
648    }
649}
650
651impl<T, A: Allocator> Arc<T, A> {
652    /// Constructs a new `Arc<T>` in the provided allocator.
653    ///
654    /// # Examples
655    ///
656    /// ```
657    /// #![feature(allocator_api)]
658    ///
659    /// use std::sync::Arc;
660    /// use std::alloc::System;
661    ///
662    /// let five = Arc::new_in(5, System);
663    /// ```
664    #[inline]
665    #[cfg(not(no_global_oom_handling))]
666    #[unstable(feature = "allocator_api", issue = "32838")]
667    pub fn new_in(data: T, alloc: A) -> Arc<T, A> {
668        // Start the weak pointer count as 1 which is the weak pointer that's
669        // held by all the strong pointers (kinda), see std/rc.rs for more info
670        let x = Box::new_in(
671            ArcInner {
672                strong: atomic::AtomicUsize::new(1),
673                weak: atomic::AtomicUsize::new(1),
674                data,
675            },
676            alloc,
677        );
678        let (ptr, alloc) = Box::into_unique(x);
679        unsafe { Self::from_inner_in(ptr.into(), alloc) }
680    }
681
682    /// Constructs a new `Arc` with uninitialized contents in the provided allocator.
683    ///
684    /// # Examples
685    ///
686    /// ```
687    /// #![feature(get_mut_unchecked)]
688    /// #![feature(allocator_api)]
689    ///
690    /// use std::sync::Arc;
691    /// use std::alloc::System;
692    ///
693    /// let mut five = Arc::<u32, _>::new_uninit_in(System);
694    ///
695    /// let five = unsafe {
696    ///     // Deferred initialization:
697    ///     Arc::get_mut_unchecked(&mut five).as_mut_ptr().write(5);
698    ///
699    ///     five.assume_init()
700    /// };
701    ///
702    /// assert_eq!(*five, 5)
703    /// ```
704    #[cfg(not(no_global_oom_handling))]
705    #[unstable(feature = "allocator_api", issue = "32838")]
706    // #[unstable(feature = "new_uninit", issue = "63291")]
707    #[inline]
708    pub fn new_uninit_in(alloc: A) -> Arc<mem::MaybeUninit<T>, A> {
709        unsafe {
710            Arc::from_ptr_in(
711                Arc::allocate_for_layout(
712                    Layout::new::<T>(),
713                    |layout| alloc.allocate(layout),
714                    <*mut u8>::cast,
715                ),
716                alloc,
717            )
718        }
719    }
720
721    /// Constructs a new `Arc` with uninitialized contents, with the memory
722    /// being filled with `0` bytes, in the provided allocator.
723    ///
724    /// See [`MaybeUninit::zeroed`][zeroed] for examples of correct and incorrect usage
725    /// of this method.
726    ///
727    /// # Examples
728    ///
729    /// ```
730    /// #![feature(allocator_api)]
731    ///
732    /// use std::sync::Arc;
733    /// use std::alloc::System;
734    ///
735    /// let zero = Arc::<u32, _>::new_zeroed_in(System);
736    /// let zero = unsafe { zero.assume_init() };
737    ///
738    /// assert_eq!(*zero, 0)
739    /// ```
740    ///
741    /// [zeroed]: mem::MaybeUninit::zeroed
742    #[cfg(not(no_global_oom_handling))]
743    #[unstable(feature = "allocator_api", issue = "32838")]
744    // #[unstable(feature = "new_uninit", issue = "63291")]
745    #[inline]
746    pub fn new_zeroed_in(alloc: A) -> Arc<mem::MaybeUninit<T>, A> {
747        unsafe {
748            Arc::from_ptr_in(
749                Arc::allocate_for_layout(
750                    Layout::new::<T>(),
751                    |layout| alloc.allocate_zeroed(layout),
752                    <*mut u8>::cast,
753                ),
754                alloc,
755            )
756        }
757    }
758
759    /// Constructs a new `Arc<T, A>` in the given allocator while giving you a `Weak<T, A>` to the allocation,
760    /// to allow you to construct a `T` which holds a weak pointer to itself.
761    ///
762    /// Generally, a structure circularly referencing itself, either directly or
763    /// indirectly, should not hold a strong reference to itself to prevent a memory leak.
764    /// Using this function, you get access to the weak pointer during the
765    /// initialization of `T`, before the `Arc<T, A>` is created, such that you can
766    /// clone and store it inside the `T`.
767    ///
768    /// `new_cyclic_in` first allocates the managed allocation for the `Arc<T, A>`,
769    /// then calls your closure, giving it a `Weak<T, A>` to this allocation,
770    /// and only afterwards completes the construction of the `Arc<T, A>` by placing
771    /// the `T` returned from your closure into the allocation.
772    ///
773    /// Since the new `Arc<T, A>` is not fully-constructed until `Arc<T, A>::new_cyclic_in`
774    /// returns, calling [`upgrade`] on the weak reference inside your closure will
775    /// fail and result in a `None` value.
776    ///
777    /// # Panics
778    ///
779    /// If `data_fn` panics, the panic is propagated to the caller, and the
780    /// temporary [`Weak<T>`] is dropped normally.
781    ///
782    /// # Example
783    ///
784    /// See [`new_cyclic`]
785    ///
786    /// [`new_cyclic`]: Arc::new_cyclic
787    /// [`upgrade`]: Weak::upgrade
788    #[cfg(not(no_global_oom_handling))]
789    #[inline]
790    #[unstable(feature = "allocator_api", issue = "32838")]
791    pub fn new_cyclic_in<F>(data_fn: F, alloc: A) -> Arc<T, A>
792    where
793        F: FnOnce(&Weak<T, A>) -> T,
794    {
795        // Construct the inner in the "uninitialized" state with a single
796        // weak reference.
797        let (uninit_raw_ptr, alloc) = Box::into_raw_with_allocator(Box::new_in(
798            ArcInner {
799                strong: atomic::AtomicUsize::new(0),
800                weak: atomic::AtomicUsize::new(1),
801                data: mem::MaybeUninit::<T>::uninit(),
802            },
803            alloc,
804        ));
805        let uninit_ptr: NonNull<_> = (unsafe { &mut *uninit_raw_ptr }).into();
806        let init_ptr: NonNull<ArcInner<T>> = uninit_ptr.cast();
807
808        let weak = Weak { ptr: init_ptr, alloc };
809
810        // It's important we don't give up ownership of the weak pointer, or
811        // else the memory might be freed by the time `data_fn` returns. If
812        // we really wanted to pass ownership, we could create an additional
813        // weak pointer for ourselves, but this would result in additional
814        // updates to the weak reference count which might not be necessary
815        // otherwise.
816        let data = data_fn(&weak);
817
818        // Now we can properly initialize the inner value and turn our weak
819        // reference into a strong reference.
820        let strong = unsafe {
821            let inner = init_ptr.as_ptr();
822            ptr::write(&raw mut (*inner).data, data);
823
824            // The above write to the data field must be visible to any threads which
825            // observe a non-zero strong count. Therefore we need at least "Release" ordering
826            // in order to synchronize with the `compare_exchange_weak` in `Weak::upgrade`.
827            //
828            // "Acquire" ordering is not required. When considering the possible behaviors
829            // of `data_fn` we only need to look at what it could do with a reference to a
830            // non-upgradeable `Weak`:
831            // - It can *clone* the `Weak`, increasing the weak reference count.
832            // - It can drop those clones, decreasing the weak reference count (but never to zero).
833            //
834            // These side effects do not impact us in any way, and no other side effects are
835            // possible with safe code alone.
836            let prev_value = (*inner).strong.fetch_add(1, Release);
837            debug_assert_eq!(prev_value, 0, "No prior strong references should exist");
838
839            // Strong references should collectively own a shared weak reference,
840            // so don't run the destructor for our old weak reference.
841            // Calling into_raw_with_allocator has the double effect of giving us back the allocator,
842            // and forgetting the weak reference.
843            let alloc = weak.into_raw_with_allocator().1;
844
845            Arc::from_inner_in(init_ptr, alloc)
846        };
847
848        strong
849    }
850
851    /// Constructs a new `Pin<Arc<T, A>>` in the provided allocator. If `T` does not implement `Unpin`,
852    /// then `data` will be pinned in memory and unable to be moved.
853    #[cfg(not(no_global_oom_handling))]
854    #[unstable(feature = "allocator_api", issue = "32838")]
855    #[inline]
856    pub fn pin_in(data: T, alloc: A) -> Pin<Arc<T, A>>
857    where
858        A: 'static,
859    {
860        unsafe { Pin::new_unchecked(Arc::new_in(data, alloc)) }
861    }
862
863    /// Constructs a new `Pin<Arc<T, A>>` in the provided allocator, return an error if allocation
864    /// fails.
865    #[inline]
866    #[unstable(feature = "allocator_api", issue = "32838")]
867    pub fn try_pin_in(data: T, alloc: A) -> Result<Pin<Arc<T, A>>, AllocError>
868    where
869        A: 'static,
870    {
871        unsafe { Ok(Pin::new_unchecked(Arc::try_new_in(data, alloc)?)) }
872    }
873
874    /// Constructs a new `Arc<T, A>` in the provided allocator, returning an error if allocation fails.
875    ///
876    /// # Examples
877    ///
878    /// ```
879    /// #![feature(allocator_api)]
880    ///
881    /// use std::sync::Arc;
882    /// use std::alloc::System;
883    ///
884    /// let five = Arc::try_new_in(5, System)?;
885    /// # Ok::<(), std::alloc::AllocError>(())
886    /// ```
887    #[inline]
888    #[unstable(feature = "allocator_api", issue = "32838")]
889    #[inline]
890    pub fn try_new_in(data: T, alloc: A) -> Result<Arc<T, A>, AllocError> {
891        // Start the weak pointer count as 1 which is the weak pointer that's
892        // held by all the strong pointers (kinda), see std/rc.rs for more info
893        let x = Box::try_new_in(
894            ArcInner {
895                strong: atomic::AtomicUsize::new(1),
896                weak: atomic::AtomicUsize::new(1),
897                data,
898            },
899            alloc,
900        )?;
901        let (ptr, alloc) = Box::into_unique(x);
902        Ok(unsafe { Self::from_inner_in(ptr.into(), alloc) })
903    }
904
905    /// Constructs a new `Arc` with uninitialized contents, in the provided allocator, returning an
906    /// error if allocation fails.
907    ///
908    /// # Examples
909    ///
910    /// ```
911    /// #![feature(allocator_api)]
912    /// #![feature(get_mut_unchecked)]
913    ///
914    /// use std::sync::Arc;
915    /// use std::alloc::System;
916    ///
917    /// let mut five = Arc::<u32, _>::try_new_uninit_in(System)?;
918    ///
919    /// let five = unsafe {
920    ///     // Deferred initialization:
921    ///     Arc::get_mut_unchecked(&mut five).as_mut_ptr().write(5);
922    ///
923    ///     five.assume_init()
924    /// };
925    ///
926    /// assert_eq!(*five, 5);
927    /// # Ok::<(), std::alloc::AllocError>(())
928    /// ```
929    #[unstable(feature = "allocator_api", issue = "32838")]
930    // #[unstable(feature = "new_uninit", issue = "63291")]
931    #[inline]
932    pub fn try_new_uninit_in(alloc: A) -> Result<Arc<mem::MaybeUninit<T>, A>, AllocError> {
933        unsafe {
934            Ok(Arc::from_ptr_in(
935                Arc::try_allocate_for_layout(
936                    Layout::new::<T>(),
937                    |layout| alloc.allocate(layout),
938                    <*mut u8>::cast,
939                )?,
940                alloc,
941            ))
942        }
943    }
944
945    /// Constructs a new `Arc` with uninitialized contents, with the memory
946    /// being filled with `0` bytes, in the provided allocator, returning an error if allocation
947    /// fails.
948    ///
949    /// See [`MaybeUninit::zeroed`][zeroed] for examples of correct and incorrect usage
950    /// of this method.
951    ///
952    /// # Examples
953    ///
954    /// ```
955    /// #![feature(allocator_api)]
956    ///
957    /// use std::sync::Arc;
958    /// use std::alloc::System;
959    ///
960    /// let zero = Arc::<u32, _>::try_new_zeroed_in(System)?;
961    /// let zero = unsafe { zero.assume_init() };
962    ///
963    /// assert_eq!(*zero, 0);
964    /// # Ok::<(), std::alloc::AllocError>(())
965    /// ```
966    ///
967    /// [zeroed]: mem::MaybeUninit::zeroed
968    #[unstable(feature = "allocator_api", issue = "32838")]
969    // #[unstable(feature = "new_uninit", issue = "63291")]
970    #[inline]
971    pub fn try_new_zeroed_in(alloc: A) -> Result<Arc<mem::MaybeUninit<T>, A>, AllocError> {
972        unsafe {
973            Ok(Arc::from_ptr_in(
974                Arc::try_allocate_for_layout(
975                    Layout::new::<T>(),
976                    |layout| alloc.allocate_zeroed(layout),
977                    <*mut u8>::cast,
978                )?,
979                alloc,
980            ))
981        }
982    }
983    /// Returns the inner value, if the `Arc` has exactly one strong reference.
984    ///
985    /// Otherwise, an [`Err`] is returned with the same `Arc` that was
986    /// passed in.
987    ///
988    /// This will succeed even if there are outstanding weak references.
989    ///
990    /// It is strongly recommended to use [`Arc::into_inner`] instead if you don't
991    /// keep the `Arc` in the [`Err`] case.
992    /// Immediately dropping the [`Err`]-value, as the expression
993    /// `Arc::try_unwrap(this).ok()` does, can cause the strong count to
994    /// drop to zero and the inner value of the `Arc` to be dropped.
995    /// For instance, if two threads execute such an expression in parallel,
996    /// there is a race condition without the possibility of unsafety:
997    /// The threads could first both check whether they own the last instance
998    /// in `Arc::try_unwrap`, determine that they both do not, and then both
999    /// discard and drop their instance in the call to [`ok`][`Result::ok`].
1000    /// In this scenario, the value inside the `Arc` is safely destroyed
1001    /// by exactly one of the threads, but neither thread will ever be able
1002    /// to use the value.
1003    ///
1004    /// # Examples
1005    ///
1006    /// ```
1007    /// use std::sync::Arc;
1008    ///
1009    /// let x = Arc::new(3);
1010    /// assert_eq!(Arc::try_unwrap(x), Ok(3));
1011    ///
1012    /// let x = Arc::new(4);
1013    /// let _y = Arc::clone(&x);
1014    /// assert_eq!(*Arc::try_unwrap(x).unwrap_err(), 4);
1015    /// ```
1016    #[inline]
1017    #[stable(feature = "arc_unique", since = "1.4.0")]
1018    pub fn try_unwrap(this: Self) -> Result<T, Self> {
1019        if this.inner().strong.compare_exchange(1, 0, Relaxed, Relaxed).is_err() {
1020            return Err(this);
1021        }
1022
1023        acquire!(this.inner().strong);
1024
1025        let this = ManuallyDrop::new(this);
1026        let elem: T = unsafe { ptr::read(&this.ptr.as_ref().data) };
1027        let alloc: A = unsafe { ptr::read(&this.alloc) }; // copy the allocator
1028
1029        // Make a weak pointer to clean up the implicit strong-weak reference
1030        let _weak = Weak { ptr: this.ptr, alloc };
1031
1032        Ok(elem)
1033    }
1034
1035    /// Returns the inner value, if the `Arc` has exactly one strong reference.
1036    ///
1037    /// Otherwise, [`None`] is returned and the `Arc` is dropped.
1038    ///
1039    /// This will succeed even if there are outstanding weak references.
1040    ///
1041    /// If `Arc::into_inner` is called on every clone of this `Arc`,
1042    /// it is guaranteed that exactly one of the calls returns the inner value.
1043    /// This means in particular that the inner value is not dropped.
1044    ///
1045    /// [`Arc::try_unwrap`] is conceptually similar to `Arc::into_inner`, but it
1046    /// is meant for different use-cases. If used as a direct replacement
1047    /// for `Arc::into_inner` anyway, such as with the expression
1048    /// <code>[Arc::try_unwrap]\(this).[ok][Result::ok]()</code>, then it does
1049    /// **not** give the same guarantee as described in the previous paragraph.
1050    /// For more information, see the examples below and read the documentation
1051    /// of [`Arc::try_unwrap`].
1052    ///
1053    /// # Examples
1054    ///
1055    /// Minimal example demonstrating the guarantee that `Arc::into_inner` gives.
1056    /// ```
1057    /// use std::sync::Arc;
1058    ///
1059    /// let x = Arc::new(3);
1060    /// let y = Arc::clone(&x);
1061    ///
1062    /// // Two threads calling `Arc::into_inner` on both clones of an `Arc`:
1063    /// let x_thread = std::thread::spawn(|| Arc::into_inner(x));
1064    /// let y_thread = std::thread::spawn(|| Arc::into_inner(y));
1065    ///
1066    /// let x_inner_value = x_thread.join().unwrap();
1067    /// let y_inner_value = y_thread.join().unwrap();
1068    ///
1069    /// // One of the threads is guaranteed to receive the inner value:
1070    /// assert!(matches!(
1071    ///     (x_inner_value, y_inner_value),
1072    ///     (None, Some(3)) | (Some(3), None)
1073    /// ));
1074    /// // The result could also be `(None, None)` if the threads called
1075    /// // `Arc::try_unwrap(x).ok()` and `Arc::try_unwrap(y).ok()` instead.
1076    /// ```
1077    ///
1078    /// A more practical example demonstrating the need for `Arc::into_inner`:
1079    /// ```
1080    /// use std::sync::Arc;
1081    ///
1082    /// // Definition of a simple singly linked list using `Arc`:
1083    /// #[derive(Clone)]
1084    /// struct LinkedList<T>(Option<Arc<Node<T>>>);
1085    /// struct Node<T>(T, Option<Arc<Node<T>>>);
1086    ///
1087    /// // Dropping a long `LinkedList<T>` relying on the destructor of `Arc`
1088    /// // can cause a stack overflow. To prevent this, we can provide a
1089    /// // manual `Drop` implementation that does the destruction in a loop:
1090    /// impl<T> Drop for LinkedList<T> {
1091    ///     fn drop(&mut self) {
1092    ///         let mut link = self.0.take();
1093    ///         while let Some(arc_node) = link.take() {
1094    ///             if let Some(Node(_value, next)) = Arc::into_inner(arc_node) {
1095    ///                 link = next;
1096    ///             }
1097    ///         }
1098    ///     }
1099    /// }
1100    ///
1101    /// // Implementation of `new` and `push` omitted
1102    /// impl<T> LinkedList<T> {
1103    ///     /* ... */
1104    /// #   fn new() -> Self {
1105    /// #       LinkedList(None)
1106    /// #   }
1107    /// #   fn push(&mut self, x: T) {
1108    /// #       self.0 = Some(Arc::new(Node(x, self.0.take())));
1109    /// #   }
1110    /// }
1111    ///
1112    /// // The following code could have still caused a stack overflow
1113    /// // despite the manual `Drop` impl if that `Drop` impl had used
1114    /// // `Arc::try_unwrap(arc).ok()` instead of `Arc::into_inner(arc)`.
1115    ///
1116    /// // Create a long list and clone it
1117    /// let mut x = LinkedList::new();
1118    /// let size = 100000;
1119    /// # let size = if cfg!(miri) { 100 } else { size };
1120    /// for i in 0..size {
1121    ///     x.push(i); // Adds i to the front of x
1122    /// }
1123    /// let y = x.clone();
1124    ///
1125    /// // Drop the clones in parallel
1126    /// let x_thread = std::thread::spawn(|| drop(x));
1127    /// let y_thread = std::thread::spawn(|| drop(y));
1128    /// x_thread.join().unwrap();
1129    /// y_thread.join().unwrap();
1130    /// ```
1131    #[inline]
1132    #[stable(feature = "arc_into_inner", since = "1.70.0")]
1133    pub fn into_inner(this: Self) -> Option<T> {
1134        // Make sure that the ordinary `Drop` implementation isn’t called as well
1135        let mut this = mem::ManuallyDrop::new(this);
1136
1137        // Following the implementation of `drop` and `drop_slow`
1138        if this.inner().strong.fetch_sub(1, Release) != 1 {
1139            return None;
1140        }
1141
1142        acquire!(this.inner().strong);
1143
1144        // SAFETY: This mirrors the line
1145        //
1146        //     unsafe { ptr::drop_in_place(Self::get_mut_unchecked(self)) };
1147        //
1148        // in `drop_slow`. Instead of dropping the value behind the pointer,
1149        // it is read and eventually returned; `ptr::read` has the same
1150        // safety conditions as `ptr::drop_in_place`.
1151
1152        let inner = unsafe { ptr::read(Self::get_mut_unchecked(&mut this)) };
1153        let alloc = unsafe { ptr::read(&this.alloc) };
1154
1155        drop(Weak { ptr: this.ptr, alloc });
1156
1157        Some(inner)
1158    }
1159}
1160
1161impl<T> Arc<[T]> {
1162    /// Constructs a new atomically reference-counted slice with uninitialized contents.
1163    ///
1164    /// # Examples
1165    ///
1166    /// ```
1167    /// #![feature(get_mut_unchecked)]
1168    ///
1169    /// use std::sync::Arc;
1170    ///
1171    /// let mut values = Arc::<[u32]>::new_uninit_slice(3);
1172    ///
1173    /// // Deferred initialization:
1174    /// let data = Arc::get_mut(&mut values).unwrap();
1175    /// data[0].write(1);
1176    /// data[1].write(2);
1177    /// data[2].write(3);
1178    ///
1179    /// let values = unsafe { values.assume_init() };
1180    ///
1181    /// assert_eq!(*values, [1, 2, 3])
1182    /// ```
1183    #[cfg(not(no_global_oom_handling))]
1184    #[inline]
1185    #[stable(feature = "new_uninit", since = "1.82.0")]
1186    #[must_use]
1187    pub fn new_uninit_slice(len: usize) -> Arc<[mem::MaybeUninit<T>]> {
1188        unsafe { Arc::from_ptr(Arc::allocate_for_slice(len)) }
1189    }
1190
1191    /// Constructs a new atomically reference-counted slice with uninitialized contents, with the memory being
1192    /// filled with `0` bytes.
1193    ///
1194    /// See [`MaybeUninit::zeroed`][zeroed] for examples of correct and
1195    /// incorrect usage of this method.
1196    ///
1197    /// # Examples
1198    ///
1199    /// ```
1200    /// #![feature(new_zeroed_alloc)]
1201    ///
1202    /// use std::sync::Arc;
1203    ///
1204    /// let values = Arc::<[u32]>::new_zeroed_slice(3);
1205    /// let values = unsafe { values.assume_init() };
1206    ///
1207    /// assert_eq!(*values, [0, 0, 0])
1208    /// ```
1209    ///
1210    /// [zeroed]: mem::MaybeUninit::zeroed
1211    #[cfg(not(no_global_oom_handling))]
1212    #[inline]
1213    #[unstable(feature = "new_zeroed_alloc", issue = "129396")]
1214    #[must_use]
1215    pub fn new_zeroed_slice(len: usize) -> Arc<[mem::MaybeUninit<T>]> {
1216        unsafe {
1217            Arc::from_ptr(Arc::allocate_for_layout(
1218                Layout::array::<T>(len).unwrap(),
1219                |layout| Global.allocate_zeroed(layout),
1220                |mem| {
1221                    ptr::slice_from_raw_parts_mut(mem as *mut T, len)
1222                        as *mut ArcInner<[mem::MaybeUninit<T>]>
1223                },
1224            ))
1225        }
1226    }
1227
1228    /// Converts the reference-counted slice into a reference-counted array.
1229    ///
1230    /// This operation does not reallocate; the underlying array of the slice is simply reinterpreted as an array type.
1231    ///
1232    /// If `N` is not exactly equal to the length of `self`, then this method returns `None`.
1233    #[unstable(feature = "slice_as_array", issue = "133508")]
1234    #[inline]
1235    #[must_use]
1236    pub fn into_array<const N: usize>(self) -> Option<Arc<[T; N]>> {
1237        if self.len() == N {
1238            let ptr = Self::into_raw(self) as *const [T; N];
1239
1240            // SAFETY: The underlying array of a slice has the exact same layout as an actual array `[T; N]` if `N` is equal to the slice's length.
1241            let me = unsafe { Arc::from_raw(ptr) };
1242            Some(me)
1243        } else {
1244            None
1245        }
1246    }
1247}
1248
1249impl<T, A: Allocator> Arc<[T], A> {
1250    /// Constructs a new atomically reference-counted slice with uninitialized contents in the
1251    /// provided allocator.
1252    ///
1253    /// # Examples
1254    ///
1255    /// ```
1256    /// #![feature(get_mut_unchecked)]
1257    /// #![feature(allocator_api)]
1258    ///
1259    /// use std::sync::Arc;
1260    /// use std::alloc::System;
1261    ///
1262    /// let mut values = Arc::<[u32], _>::new_uninit_slice_in(3, System);
1263    ///
1264    /// let values = unsafe {
1265    ///     // Deferred initialization:
1266    ///     Arc::get_mut_unchecked(&mut values)[0].as_mut_ptr().write(1);
1267    ///     Arc::get_mut_unchecked(&mut values)[1].as_mut_ptr().write(2);
1268    ///     Arc::get_mut_unchecked(&mut values)[2].as_mut_ptr().write(3);
1269    ///
1270    ///     values.assume_init()
1271    /// };
1272    ///
1273    /// assert_eq!(*values, [1, 2, 3])
1274    /// ```
1275    #[cfg(not(no_global_oom_handling))]
1276    #[unstable(feature = "allocator_api", issue = "32838")]
1277    #[inline]
1278    pub fn new_uninit_slice_in(len: usize, alloc: A) -> Arc<[mem::MaybeUninit<T>], A> {
1279        unsafe { Arc::from_ptr_in(Arc::allocate_for_slice_in(len, &alloc), alloc) }
1280    }
1281
1282    /// Constructs a new atomically reference-counted slice with uninitialized contents, with the memory being
1283    /// filled with `0` bytes, in the provided allocator.
1284    ///
1285    /// See [`MaybeUninit::zeroed`][zeroed] for examples of correct and
1286    /// incorrect usage of this method.
1287    ///
1288    /// # Examples
1289    ///
1290    /// ```
1291    /// #![feature(allocator_api)]
1292    ///
1293    /// use std::sync::Arc;
1294    /// use std::alloc::System;
1295    ///
1296    /// let values = Arc::<[u32], _>::new_zeroed_slice_in(3, System);
1297    /// let values = unsafe { values.assume_init() };
1298    ///
1299    /// assert_eq!(*values, [0, 0, 0])
1300    /// ```
1301    ///
1302    /// [zeroed]: mem::MaybeUninit::zeroed
1303    #[cfg(not(no_global_oom_handling))]
1304    #[unstable(feature = "allocator_api", issue = "32838")]
1305    #[inline]
1306    pub fn new_zeroed_slice_in(len: usize, alloc: A) -> Arc<[mem::MaybeUninit<T>], A> {
1307        unsafe {
1308            Arc::from_ptr_in(
1309                Arc::allocate_for_layout(
1310                    Layout::array::<T>(len).unwrap(),
1311                    |layout| alloc.allocate_zeroed(layout),
1312                    |mem| {
1313                        ptr::slice_from_raw_parts_mut(mem.cast::<T>(), len)
1314                            as *mut ArcInner<[mem::MaybeUninit<T>]>
1315                    },
1316                ),
1317                alloc,
1318            )
1319        }
1320    }
1321}
1322
1323impl<T, A: Allocator> Arc<mem::MaybeUninit<T>, A> {
1324    /// Converts to `Arc<T>`.
1325    ///
1326    /// # Safety
1327    ///
1328    /// As with [`MaybeUninit::assume_init`],
1329    /// it is up to the caller to guarantee that the inner value
1330    /// really is in an initialized state.
1331    /// Calling this when the content is not yet fully initialized
1332    /// causes immediate undefined behavior.
1333    ///
1334    /// [`MaybeUninit::assume_init`]: mem::MaybeUninit::assume_init
1335    ///
1336    /// # Examples
1337    ///
1338    /// ```
1339    /// #![feature(get_mut_unchecked)]
1340    ///
1341    /// use std::sync::Arc;
1342    ///
1343    /// let mut five = Arc::<u32>::new_uninit();
1344    ///
1345    /// // Deferred initialization:
1346    /// Arc::get_mut(&mut five).unwrap().write(5);
1347    ///
1348    /// let five = unsafe { five.assume_init() };
1349    ///
1350    /// assert_eq!(*five, 5)
1351    /// ```
1352    #[stable(feature = "new_uninit", since = "1.82.0")]
1353    #[must_use = "`self` will be dropped if the result is not used"]
1354    #[inline]
1355    pub unsafe fn assume_init(self) -> Arc<T, A> {
1356        let (ptr, alloc) = Arc::into_inner_with_allocator(self);
1357        unsafe { Arc::from_inner_in(ptr.cast(), alloc) }
1358    }
1359}
1360
1361impl<T, A: Allocator> Arc<[mem::MaybeUninit<T>], A> {
1362    /// Converts to `Arc<[T]>`.
1363    ///
1364    /// # Safety
1365    ///
1366    /// As with [`MaybeUninit::assume_init`],
1367    /// it is up to the caller to guarantee that the inner value
1368    /// really is in an initialized state.
1369    /// Calling this when the content is not yet fully initialized
1370    /// causes immediate undefined behavior.
1371    ///
1372    /// [`MaybeUninit::assume_init`]: mem::MaybeUninit::assume_init
1373    ///
1374    /// # Examples
1375    ///
1376    /// ```
1377    /// #![feature(get_mut_unchecked)]
1378    ///
1379    /// use std::sync::Arc;
1380    ///
1381    /// let mut values = Arc::<[u32]>::new_uninit_slice(3);
1382    ///
1383    /// // Deferred initialization:
1384    /// let data = Arc::get_mut(&mut values).unwrap();
1385    /// data[0].write(1);
1386    /// data[1].write(2);
1387    /// data[2].write(3);
1388    ///
1389    /// let values = unsafe { values.assume_init() };
1390    ///
1391    /// assert_eq!(*values, [1, 2, 3])
1392    /// ```
1393    #[stable(feature = "new_uninit", since = "1.82.0")]
1394    #[must_use = "`self` will be dropped if the result is not used"]
1395    #[inline]
1396    pub unsafe fn assume_init(self) -> Arc<[T], A> {
1397        let (ptr, alloc) = Arc::into_inner_with_allocator(self);
1398        unsafe { Arc::from_ptr_in(ptr.as_ptr() as _, alloc) }
1399    }
1400}
1401
1402impl<T: ?Sized> Arc<T> {
1403    /// Constructs an `Arc<T>` from a raw pointer.
1404    ///
1405    /// The raw pointer must have been previously returned by a call to
1406    /// [`Arc<U>::into_raw`][into_raw] with the following requirements:
1407    ///
1408    /// * If `U` is sized, it must have the same size and alignment as `T`. This
1409    ///   is trivially true if `U` is `T`.
1410    /// * If `U` is unsized, its data pointer must have the same size and
1411    ///   alignment as `T`. This is trivially true if `Arc<U>` was constructed
1412    ///   through `Arc<T>` and then converted to `Arc<U>` through an [unsized
1413    ///   coercion].
1414    ///
1415    /// Note that if `U` or `U`'s data pointer is not `T` but has the same size
1416    /// and alignment, this is basically like transmuting references of
1417    /// different types. See [`mem::transmute`][transmute] for more information
1418    /// on what restrictions apply in this case.
1419    ///
1420    /// The raw pointer must point to a block of memory allocated by the global allocator.
1421    ///
1422    /// The user of `from_raw` has to make sure a specific value of `T` is only
1423    /// dropped once.
1424    ///
1425    /// This function is unsafe because improper use may lead to memory unsafety,
1426    /// even if the returned `Arc<T>` is never accessed.
1427    ///
1428    /// [into_raw]: Arc::into_raw
1429    /// [transmute]: core::mem::transmute
1430    /// [unsized coercion]: https://doc.rust-lang.org/reference/type-coercions.html#unsized-coercions
1431    ///
1432    /// # Examples
1433    ///
1434    /// ```
1435    /// use std::sync::Arc;
1436    ///
1437    /// let x = Arc::new("hello".to_owned());
1438    /// let x_ptr = Arc::into_raw(x);
1439    ///
1440    /// unsafe {
1441    ///     // Convert back to an `Arc` to prevent leak.
1442    ///     let x = Arc::from_raw(x_ptr);
1443    ///     assert_eq!(&*x, "hello");
1444    ///
1445    ///     // Further calls to `Arc::from_raw(x_ptr)` would be memory-unsafe.
1446    /// }
1447    ///
1448    /// // The memory was freed when `x` went out of scope above, so `x_ptr` is now dangling!
1449    /// ```
1450    ///
1451    /// Convert a slice back into its original array:
1452    ///
1453    /// ```
1454    /// use std::sync::Arc;
1455    ///
1456    /// let x: Arc<[u32]> = Arc::new([1, 2, 3]);
1457    /// let x_ptr: *const [u32] = Arc::into_raw(x);
1458    ///
1459    /// unsafe {
1460    ///     let x: Arc<[u32; 3]> = Arc::from_raw(x_ptr.cast::<[u32; 3]>());
1461    ///     assert_eq!(&*x, &[1, 2, 3]);
1462    /// }
1463    /// ```
1464    #[inline]
1465    #[stable(feature = "rc_raw", since = "1.17.0")]
1466    pub unsafe fn from_raw(ptr: *const T) -> Self {
1467        unsafe { Arc::from_raw_in(ptr, Global) }
1468    }
1469
1470    /// Consumes the `Arc`, returning the wrapped pointer.
1471    ///
1472    /// To avoid a memory leak the pointer must be converted back to an `Arc` using
1473    /// [`Arc::from_raw`].
1474    ///
1475    /// # Examples
1476    ///
1477    /// ```
1478    /// use std::sync::Arc;
1479    ///
1480    /// let x = Arc::new("hello".to_owned());
1481    /// let x_ptr = Arc::into_raw(x);
1482    /// assert_eq!(unsafe { &*x_ptr }, "hello");
1483    /// # // Prevent leaks for Miri.
1484    /// # drop(unsafe { Arc::from_raw(x_ptr) });
1485    /// ```
1486    #[must_use = "losing the pointer will leak memory"]
1487    #[stable(feature = "rc_raw", since = "1.17.0")]
1488    #[rustc_never_returns_null_ptr]
1489    pub fn into_raw(this: Self) -> *const T {
1490        let this = ManuallyDrop::new(this);
1491        Self::as_ptr(&*this)
1492    }
1493
1494    /// Increments the strong reference count on the `Arc<T>` associated with the
1495    /// provided pointer by one.
1496    ///
1497    /// # Safety
1498    ///
1499    /// The pointer must have been obtained through `Arc::into_raw` and must satisfy the
1500    /// same layout requirements specified in [`Arc::from_raw_in`][from_raw_in].
1501    /// The associated `Arc` instance must be valid (i.e. the strong count must be at
1502    /// least 1) for the duration of this method, and `ptr` must point to a block of memory
1503    /// allocated by the global allocator.
1504    ///
1505    /// [from_raw_in]: Arc::from_raw_in
1506    ///
1507    /// # Examples
1508    ///
1509    /// ```
1510    /// use std::sync::Arc;
1511    ///
1512    /// let five = Arc::new(5);
1513    ///
1514    /// unsafe {
1515    ///     let ptr = Arc::into_raw(five);
1516    ///     Arc::increment_strong_count(ptr);
1517    ///
1518    ///     // This assertion is deterministic because we haven't shared
1519    ///     // the `Arc` between threads.
1520    ///     let five = Arc::from_raw(ptr);
1521    ///     assert_eq!(2, Arc::strong_count(&five));
1522    /// #   // Prevent leaks for Miri.
1523    /// #   Arc::decrement_strong_count(ptr);
1524    /// }
1525    /// ```
1526    #[inline]
1527    #[stable(feature = "arc_mutate_strong_count", since = "1.51.0")]
1528    pub unsafe fn increment_strong_count(ptr: *const T) {
1529        unsafe { Arc::increment_strong_count_in(ptr, Global) }
1530    }
1531
1532    /// Decrements the strong reference count on the `Arc<T>` associated with the
1533    /// provided pointer by one.
1534    ///
1535    /// # Safety
1536    ///
1537    /// The pointer must have been obtained through `Arc::into_raw` and must satisfy the
1538    /// same layout requirements specified in [`Arc::from_raw_in`][from_raw_in].
1539    /// The associated `Arc` instance must be valid (i.e. the strong count must be at
1540    /// least 1) when invoking this method, and `ptr` must point to a block of memory
1541    /// allocated by the global allocator. This method can be used to release the final
1542    /// `Arc` and backing storage, but **should not** be called after the final `Arc` has been
1543    /// released.
1544    ///
1545    /// [from_raw_in]: Arc::from_raw_in
1546    ///
1547    /// # Examples
1548    ///
1549    /// ```
1550    /// use std::sync::Arc;
1551    ///
1552    /// let five = Arc::new(5);
1553    ///
1554    /// unsafe {
1555    ///     let ptr = Arc::into_raw(five);
1556    ///     Arc::increment_strong_count(ptr);
1557    ///
1558    ///     // Those assertions are deterministic because we haven't shared
1559    ///     // the `Arc` between threads.
1560    ///     let five = Arc::from_raw(ptr);
1561    ///     assert_eq!(2, Arc::strong_count(&five));
1562    ///     Arc::decrement_strong_count(ptr);
1563    ///     assert_eq!(1, Arc::strong_count(&five));
1564    /// }
1565    /// ```
1566    #[inline]
1567    #[stable(feature = "arc_mutate_strong_count", since = "1.51.0")]
1568    pub unsafe fn decrement_strong_count(ptr: *const T) {
1569        unsafe { Arc::decrement_strong_count_in(ptr, Global) }
1570    }
1571}
1572
1573impl<T: ?Sized, A: Allocator> Arc<T, A> {
1574    /// Returns a reference to the underlying allocator.
1575    ///
1576    /// Note: this is an associated function, which means that you have
1577    /// to call it as `Arc::allocator(&a)` instead of `a.allocator()`. This
1578    /// is so that there is no conflict with a method on the inner type.
1579    #[inline]
1580    #[unstable(feature = "allocator_api", issue = "32838")]
1581    pub fn allocator(this: &Self) -> &A {
1582        &this.alloc
1583    }
1584
1585    /// Consumes the `Arc`, returning the wrapped pointer and allocator.
1586    ///
1587    /// To avoid a memory leak the pointer must be converted back to an `Arc` using
1588    /// [`Arc::from_raw_in`].
1589    ///
1590    /// # Examples
1591    ///
1592    /// ```
1593    /// #![feature(allocator_api)]
1594    /// use std::sync::Arc;
1595    /// use std::alloc::System;
1596    ///
1597    /// let x = Arc::new_in("hello".to_owned(), System);
1598    /// let (ptr, alloc) = Arc::into_raw_with_allocator(x);
1599    /// assert_eq!(unsafe { &*ptr }, "hello");
1600    /// let x = unsafe { Arc::from_raw_in(ptr, alloc) };
1601    /// assert_eq!(&*x, "hello");
1602    /// ```
1603    #[must_use = "losing the pointer will leak memory"]
1604    #[unstable(feature = "allocator_api", issue = "32838")]
1605    pub fn into_raw_with_allocator(this: Self) -> (*const T, A) {
1606        let this = mem::ManuallyDrop::new(this);
1607        let ptr = Self::as_ptr(&this);
1608        // Safety: `this` is ManuallyDrop so the allocator will not be double-dropped
1609        let alloc = unsafe { ptr::read(&this.alloc) };
1610        (ptr, alloc)
1611    }
1612
1613    /// Provides a raw pointer to the data.
1614    ///
1615    /// The counts are not affected in any way and the `Arc` is not consumed. The pointer is valid for
1616    /// as long as there are strong counts in the `Arc`.
1617    ///
1618    /// # Examples
1619    ///
1620    /// ```
1621    /// use std::sync::Arc;
1622    ///
1623    /// let x = Arc::new("hello".to_owned());
1624    /// let y = Arc::clone(&x);
1625    /// let x_ptr = Arc::as_ptr(&x);
1626    /// assert_eq!(x_ptr, Arc::as_ptr(&y));
1627    /// assert_eq!(unsafe { &*x_ptr }, "hello");
1628    /// ```
1629    #[must_use]
1630    #[stable(feature = "rc_as_ptr", since = "1.45.0")]
1631    #[rustc_never_returns_null_ptr]
1632    pub fn as_ptr(this: &Self) -> *const T {
1633        let ptr: *mut ArcInner<T> = NonNull::as_ptr(this.ptr);
1634
1635        // SAFETY: This cannot go through Deref::deref or RcInnerPtr::inner because
1636        // this is required to retain raw/mut provenance such that e.g. `get_mut` can
1637        // write through the pointer after the Rc is recovered through `from_raw`.
1638        unsafe { &raw mut (*ptr).data }
1639    }
1640
1641    /// Constructs an `Arc<T, A>` from a raw pointer.
1642    ///
1643    /// The raw pointer must have been previously returned by a call to [`Arc<U,
1644    /// A>::into_raw`][into_raw] with the following requirements:
1645    ///
1646    /// * If `U` is sized, it must have the same size and alignment as `T`. This
1647    ///   is trivially true if `U` is `T`.
1648    /// * If `U` is unsized, its data pointer must have the same size and
1649    ///   alignment as `T`. This is trivially true if `Arc<U>` was constructed
1650    ///   through `Arc<T>` and then converted to `Arc<U>` through an [unsized
1651    ///   coercion].
1652    ///
1653    /// Note that if `U` or `U`'s data pointer is not `T` but has the same size
1654    /// and alignment, this is basically like transmuting references of
1655    /// different types. See [`mem::transmute`][transmute] for more information
1656    /// on what restrictions apply in this case.
1657    ///
1658    /// The raw pointer must point to a block of memory allocated by `alloc`
1659    ///
1660    /// The user of `from_raw` has to make sure a specific value of `T` is only
1661    /// dropped once.
1662    ///
1663    /// This function is unsafe because improper use may lead to memory unsafety,
1664    /// even if the returned `Arc<T>` is never accessed.
1665    ///
1666    /// [into_raw]: Arc::into_raw
1667    /// [transmute]: core::mem::transmute
1668    /// [unsized coercion]: https://doc.rust-lang.org/reference/type-coercions.html#unsized-coercions
1669    ///
1670    /// # Examples
1671    ///
1672    /// ```
1673    /// #![feature(allocator_api)]
1674    ///
1675    /// use std::sync::Arc;
1676    /// use std::alloc::System;
1677    ///
1678    /// let x = Arc::new_in("hello".to_owned(), System);
1679    /// let (x_ptr, alloc) = Arc::into_raw_with_allocator(x);
1680    ///
1681    /// unsafe {
1682    ///     // Convert back to an `Arc` to prevent leak.
1683    ///     let x = Arc::from_raw_in(x_ptr, System);
1684    ///     assert_eq!(&*x, "hello");
1685    ///
1686    ///     // Further calls to `Arc::from_raw(x_ptr)` would be memory-unsafe.
1687    /// }
1688    ///
1689    /// // The memory was freed when `x` went out of scope above, so `x_ptr` is now dangling!
1690    /// ```
1691    ///
1692    /// Convert a slice back into its original array:
1693    ///
1694    /// ```
1695    /// #![feature(allocator_api)]
1696    ///
1697    /// use std::sync::Arc;
1698    /// use std::alloc::System;
1699    ///
1700    /// let x: Arc<[u32], _> = Arc::new_in([1, 2, 3], System);
1701    /// let x_ptr: *const [u32] = Arc::into_raw_with_allocator(x).0;
1702    ///
1703    /// unsafe {
1704    ///     let x: Arc<[u32; 3], _> = Arc::from_raw_in(x_ptr.cast::<[u32; 3]>(), System);
1705    ///     assert_eq!(&*x, &[1, 2, 3]);
1706    /// }
1707    /// ```
1708    #[inline]
1709    #[unstable(feature = "allocator_api", issue = "32838")]
1710    pub unsafe fn from_raw_in(ptr: *const T, alloc: A) -> Self {
1711        unsafe {
1712            let offset = data_offset(ptr);
1713
1714            // Reverse the offset to find the original ArcInner.
1715            let arc_ptr = ptr.byte_sub(offset) as *mut ArcInner<T>;
1716
1717            Self::from_ptr_in(arc_ptr, alloc)
1718        }
1719    }
1720
1721    /// Creates a new [`Weak`] pointer to this allocation.
1722    ///
1723    /// # Examples
1724    ///
1725    /// ```
1726    /// use std::sync::Arc;
1727    ///
1728    /// let five = Arc::new(5);
1729    ///
1730    /// let weak_five = Arc::downgrade(&five);
1731    /// ```
1732    #[must_use = "this returns a new `Weak` pointer, \
1733                  without modifying the original `Arc`"]
1734    #[stable(feature = "arc_weak", since = "1.4.0")]
1735    pub fn downgrade(this: &Self) -> Weak<T, A>
1736    where
1737        A: Clone,
1738    {
1739        // This Relaxed is OK because we're checking the value in the CAS
1740        // below.
1741        let mut cur = this.inner().weak.load(Relaxed);
1742
1743        loop {
1744            // check if the weak counter is currently "locked"; if so, spin.
1745            if cur == usize::MAX {
1746                hint::spin_loop();
1747                cur = this.inner().weak.load(Relaxed);
1748                continue;
1749            }
1750
1751            // We can't allow the refcount to increase much past `MAX_REFCOUNT`.
1752            assert!(cur <= MAX_REFCOUNT, "{}", INTERNAL_OVERFLOW_ERROR);
1753
1754            // NOTE: this code currently ignores the possibility of overflow
1755            // into usize::MAX; in general both Rc and Arc need to be adjusted
1756            // to deal with overflow.
1757
1758            // Unlike with Clone(), we need this to be an Acquire read to
1759            // synchronize with the write coming from `is_unique`, so that the
1760            // events prior to that write happen before this read.
1761            match this.inner().weak.compare_exchange_weak(cur, cur + 1, Acquire, Relaxed) {
1762                Ok(_) => {
1763                    // Make sure we do not create a dangling Weak
1764                    debug_assert!(!is_dangling(this.ptr.as_ptr()));
1765                    return Weak { ptr: this.ptr, alloc: this.alloc.clone() };
1766                }
1767                Err(old) => cur = old,
1768            }
1769        }
1770    }
1771
1772    /// Gets the number of [`Weak`] pointers to this allocation.
1773    ///
1774    /// # Safety
1775    ///
1776    /// This method by itself is safe, but using it correctly requires extra care.
1777    /// Another thread can change the weak count at any time,
1778    /// including potentially between calling this method and acting on the result.
1779    ///
1780    /// # Examples
1781    ///
1782    /// ```
1783    /// use std::sync::Arc;
1784    ///
1785    /// let five = Arc::new(5);
1786    /// let _weak_five = Arc::downgrade(&five);
1787    ///
1788    /// // This assertion is deterministic because we haven't shared
1789    /// // the `Arc` or `Weak` between threads.
1790    /// assert_eq!(1, Arc::weak_count(&five));
1791    /// ```
1792    #[inline]
1793    #[must_use]
1794    #[stable(feature = "arc_counts", since = "1.15.0")]
1795    pub fn weak_count(this: &Self) -> usize {
1796        let cnt = this.inner().weak.load(Relaxed);
1797        // If the weak count is currently locked, the value of the
1798        // count was 0 just before taking the lock.
1799        if cnt == usize::MAX { 0 } else { cnt - 1 }
1800    }
1801
1802    /// Gets the number of strong (`Arc`) pointers to this allocation.
1803    ///
1804    /// # Safety
1805    ///
1806    /// This method by itself is safe, but using it correctly requires extra care.
1807    /// Another thread can change the strong count at any time,
1808    /// including potentially between calling this method and acting on the result.
1809    ///
1810    /// # Examples
1811    ///
1812    /// ```
1813    /// use std::sync::Arc;
1814    ///
1815    /// let five = Arc::new(5);
1816    /// let _also_five = Arc::clone(&five);
1817    ///
1818    /// // This assertion is deterministic because we haven't shared
1819    /// // the `Arc` between threads.
1820    /// assert_eq!(2, Arc::strong_count(&five));
1821    /// ```
1822    #[inline]
1823    #[must_use]
1824    #[stable(feature = "arc_counts", since = "1.15.0")]
1825    pub fn strong_count(this: &Self) -> usize {
1826        this.inner().strong.load(Relaxed)
1827    }
1828
1829    /// Increments the strong reference count on the `Arc<T>` associated with the
1830    /// provided pointer by one.
1831    ///
1832    /// # Safety
1833    ///
1834    /// The pointer must have been obtained through `Arc::into_raw` and must satisfy the
1835    /// same layout requirements specified in [`Arc::from_raw_in`][from_raw_in].
1836    /// The associated `Arc` instance must be valid (i.e. the strong count must be at
1837    /// least 1) for the duration of this method, and `ptr` must point to a block of memory
1838    /// allocated by `alloc`.
1839    ///
1840    /// [from_raw_in]: Arc::from_raw_in
1841    ///
1842    /// # Examples
1843    ///
1844    /// ```
1845    /// #![feature(allocator_api)]
1846    ///
1847    /// use std::sync::Arc;
1848    /// use std::alloc::System;
1849    ///
1850    /// let five = Arc::new_in(5, System);
1851    ///
1852    /// unsafe {
1853    ///     let (ptr, _alloc) = Arc::into_raw_with_allocator(five);
1854    ///     Arc::increment_strong_count_in(ptr, System);
1855    ///
1856    ///     // This assertion is deterministic because we haven't shared
1857    ///     // the `Arc` between threads.
1858    ///     let five = Arc::from_raw_in(ptr, System);
1859    ///     assert_eq!(2, Arc::strong_count(&five));
1860    /// #   // Prevent leaks for Miri.
1861    /// #   Arc::decrement_strong_count_in(ptr, System);
1862    /// }
1863    /// ```
1864    #[inline]
1865    #[unstable(feature = "allocator_api", issue = "32838")]
1866    pub unsafe fn increment_strong_count_in(ptr: *const T, alloc: A)
1867    where
1868        A: Clone,
1869    {
1870        // Retain Arc, but don't touch refcount by wrapping in ManuallyDrop
1871        let arc = unsafe { mem::ManuallyDrop::new(Arc::from_raw_in(ptr, alloc)) };
1872        // Now increase refcount, but don't drop new refcount either
1873        let _arc_clone: mem::ManuallyDrop<_> = arc.clone();
1874    }
1875
1876    /// Decrements the strong reference count on the `Arc<T>` associated with the
1877    /// provided pointer by one.
1878    ///
1879    /// # Safety
1880    ///
1881    /// The pointer must have been obtained through `Arc::into_raw` and must satisfy the
1882    /// same layout requirements specified in [`Arc::from_raw_in`][from_raw_in].
1883    /// The associated `Arc` instance must be valid (i.e. the strong count must be at
1884    /// least 1) when invoking this method, and `ptr` must point to a block of memory
1885    /// allocated by `alloc`. This method can be used to release the final
1886    /// `Arc` and backing storage, but **should not** be called after the final `Arc` has been
1887    /// released.
1888    ///
1889    /// [from_raw_in]: Arc::from_raw_in
1890    ///
1891    /// # Examples
1892    ///
1893    /// ```
1894    /// #![feature(allocator_api)]
1895    ///
1896    /// use std::sync::Arc;
1897    /// use std::alloc::System;
1898    ///
1899    /// let five = Arc::new_in(5, System);
1900    ///
1901    /// unsafe {
1902    ///     let (ptr, _alloc) = Arc::into_raw_with_allocator(five);
1903    ///     Arc::increment_strong_count_in(ptr, System);
1904    ///
1905    ///     // Those assertions are deterministic because we haven't shared
1906    ///     // the `Arc` between threads.
1907    ///     let five = Arc::from_raw_in(ptr, System);
1908    ///     assert_eq!(2, Arc::strong_count(&five));
1909    ///     Arc::decrement_strong_count_in(ptr, System);
1910    ///     assert_eq!(1, Arc::strong_count(&five));
1911    /// }
1912    /// ```
1913    #[inline]
1914    #[unstable(feature = "allocator_api", issue = "32838")]
1915    pub unsafe fn decrement_strong_count_in(ptr: *const T, alloc: A) {
1916        unsafe { drop(Arc::from_raw_in(ptr, alloc)) };
1917    }
1918
1919    #[inline]
1920    fn inner(&self) -> &ArcInner<T> {
1921        // This unsafety is ok because while this arc is alive we're guaranteed
1922        // that the inner pointer is valid. Furthermore, we know that the
1923        // `ArcInner` structure itself is `Sync` because the inner data is
1924        // `Sync` as well, so we're ok loaning out an immutable pointer to these
1925        // contents.
1926        unsafe { self.ptr.as_ref() }
1927    }
1928
1929    // Non-inlined part of `drop`.
1930    #[inline(never)]
1931    unsafe fn drop_slow(&mut self) {
1932        // Drop the weak ref collectively held by all strong references when this
1933        // variable goes out of scope. This ensures that the memory is deallocated
1934        // even if the destructor of `T` panics.
1935        // Take a reference to `self.alloc` instead of cloning because 1. it'll last long
1936        // enough, and 2. you should be able to drop `Arc`s with unclonable allocators
1937        let _weak = Weak { ptr: self.ptr, alloc: &self.alloc };
1938
1939        // Destroy the data at this time, even though we must not free the box
1940        // allocation itself (there might still be weak pointers lying around).
1941        // We cannot use `get_mut_unchecked` here, because `self.alloc` is borrowed.
1942        unsafe { ptr::drop_in_place(&mut (*self.ptr.as_ptr()).data) };
1943    }
1944
1945    /// Returns `true` if the two `Arc`s point to the same allocation in a vein similar to
1946    /// [`ptr::eq`]. This function ignores the metadata of  `dyn Trait` pointers.
1947    ///
1948    /// # Examples
1949    ///
1950    /// ```
1951    /// use std::sync::Arc;
1952    ///
1953    /// let five = Arc::new(5);
1954    /// let same_five = Arc::clone(&five);
1955    /// let other_five = Arc::new(5);
1956    ///
1957    /// assert!(Arc::ptr_eq(&five, &same_five));
1958    /// assert!(!Arc::ptr_eq(&five, &other_five));
1959    /// ```
1960    ///
1961    /// [`ptr::eq`]: core::ptr::eq "ptr::eq"
1962    #[inline]
1963    #[must_use]
1964    #[stable(feature = "ptr_eq", since = "1.17.0")]
1965    pub fn ptr_eq(this: &Self, other: &Self) -> bool {
1966        ptr::addr_eq(this.ptr.as_ptr(), other.ptr.as_ptr())
1967    }
1968}
1969
1970impl<T: ?Sized> Arc<T> {
1971    /// Allocates an `ArcInner<T>` with sufficient space for
1972    /// a possibly-unsized inner value where the value has the layout provided.
1973    ///
1974    /// The function `mem_to_arcinner` is called with the data pointer
1975    /// and must return back a (potentially fat)-pointer for the `ArcInner<T>`.
1976    #[cfg(not(no_global_oom_handling))]
1977    unsafe fn allocate_for_layout(
1978        value_layout: Layout,
1979        allocate: impl FnOnce(Layout) -> Result<NonNull<[u8]>, AllocError>,
1980        mem_to_arcinner: impl FnOnce(*mut u8) -> *mut ArcInner<T>,
1981    ) -> *mut ArcInner<T> {
1982        let layout = arcinner_layout_for_value_layout(value_layout);
1983
1984        let ptr = allocate(layout).unwrap_or_else(|_| handle_alloc_error(layout));
1985
1986        unsafe { Self::initialize_arcinner(ptr, layout, mem_to_arcinner) }
1987    }
1988
1989    /// Allocates an `ArcInner<T>` with sufficient space for
1990    /// a possibly-unsized inner value where the value has the layout provided,
1991    /// returning an error if allocation fails.
1992    ///
1993    /// The function `mem_to_arcinner` is called with the data pointer
1994    /// and must return back a (potentially fat)-pointer for the `ArcInner<T>`.
1995    unsafe fn try_allocate_for_layout(
1996        value_layout: Layout,
1997        allocate: impl FnOnce(Layout) -> Result<NonNull<[u8]>, AllocError>,
1998        mem_to_arcinner: impl FnOnce(*mut u8) -> *mut ArcInner<T>,
1999    ) -> Result<*mut ArcInner<T>, AllocError> {
2000        let layout = arcinner_layout_for_value_layout(value_layout);
2001
2002        let ptr = allocate(layout)?;
2003
2004        let inner = unsafe { Self::initialize_arcinner(ptr, layout, mem_to_arcinner) };
2005
2006        Ok(inner)
2007    }
2008
2009    unsafe fn initialize_arcinner(
2010        ptr: NonNull<[u8]>,
2011        layout: Layout,
2012        mem_to_arcinner: impl FnOnce(*mut u8) -> *mut ArcInner<T>,
2013    ) -> *mut ArcInner<T> {
2014        let inner = mem_to_arcinner(ptr.as_non_null_ptr().as_ptr());
2015        debug_assert_eq!(unsafe { Layout::for_value_raw(inner) }, layout);
2016
2017        unsafe {
2018            (&raw mut (*inner).strong).write(atomic::AtomicUsize::new(1));
2019            (&raw mut (*inner).weak).write(atomic::AtomicUsize::new(1));
2020        }
2021
2022        inner
2023    }
2024}
2025
2026impl<T: ?Sized, A: Allocator> Arc<T, A> {
2027    /// Allocates an `ArcInner<T>` with sufficient space for an unsized inner value.
2028    #[inline]
2029    #[cfg(not(no_global_oom_handling))]
2030    unsafe fn allocate_for_ptr_in(ptr: *const T, alloc: &A) -> *mut ArcInner<T> {
2031        // Allocate for the `ArcInner<T>` using the given value.
2032        unsafe {
2033            Arc::allocate_for_layout(
2034                Layout::for_value_raw(ptr),
2035                |layout| alloc.allocate(layout),
2036                |mem| mem.with_metadata_of(ptr as *const ArcInner<T>),
2037            )
2038        }
2039    }
2040
2041    #[cfg(not(no_global_oom_handling))]
2042    fn from_box_in(src: Box<T, A>) -> Arc<T, A> {
2043        unsafe {
2044            let value_size = size_of_val(&*src);
2045            let ptr = Self::allocate_for_ptr_in(&*src, Box::allocator(&src));
2046
2047            // Copy value as bytes
2048            ptr::copy_nonoverlapping(
2049                (&raw const *src) as *const u8,
2050                (&raw mut (*ptr).data) as *mut u8,
2051                value_size,
2052            );
2053
2054            // Free the allocation without dropping its contents
2055            let (bptr, alloc) = Box::into_raw_with_allocator(src);
2056            let src = Box::from_raw_in(bptr as *mut mem::ManuallyDrop<T>, alloc.by_ref());
2057            drop(src);
2058
2059            Self::from_ptr_in(ptr, alloc)
2060        }
2061    }
2062}
2063
2064impl<T> Arc<[T]> {
2065    /// Allocates an `ArcInner<[T]>` with the given length.
2066    #[cfg(not(no_global_oom_handling))]
2067    unsafe fn allocate_for_slice(len: usize) -> *mut ArcInner<[T]> {
2068        unsafe {
2069            Self::allocate_for_layout(
2070                Layout::array::<T>(len).unwrap(),
2071                |layout| Global.allocate(layout),
2072                |mem| ptr::slice_from_raw_parts_mut(mem.cast::<T>(), len) as *mut ArcInner<[T]>,
2073            )
2074        }
2075    }
2076
2077    /// Copy elements from slice into newly allocated `Arc<[T]>`
2078    ///
2079    /// Unsafe because the caller must either take ownership or bind `T: Copy`.
2080    #[cfg(not(no_global_oom_handling))]
2081    unsafe fn copy_from_slice(v: &[T]) -> Arc<[T]> {
2082        unsafe {
2083            let ptr = Self::allocate_for_slice(v.len());
2084
2085            ptr::copy_nonoverlapping(v.as_ptr(), (&raw mut (*ptr).data) as *mut T, v.len());
2086
2087            Self::from_ptr(ptr)
2088        }
2089    }
2090
2091    /// Constructs an `Arc<[T]>` from an iterator known to be of a certain size.
2092    ///
2093    /// Behavior is undefined should the size be wrong.
2094    #[cfg(not(no_global_oom_handling))]
2095    unsafe fn from_iter_exact(iter: impl Iterator<Item = T>, len: usize) -> Arc<[T]> {
2096        // Panic guard while cloning T elements.
2097        // In the event of a panic, elements that have been written
2098        // into the new ArcInner will be dropped, then the memory freed.
2099        struct Guard<T> {
2100            mem: NonNull<u8>,
2101            elems: *mut T,
2102            layout: Layout,
2103            n_elems: usize,
2104        }
2105
2106        impl<T> Drop for Guard<T> {
2107            fn drop(&mut self) {
2108                unsafe {
2109                    let slice = from_raw_parts_mut(self.elems, self.n_elems);
2110                    ptr::drop_in_place(slice);
2111
2112                    Global.deallocate(self.mem, self.layout);
2113                }
2114            }
2115        }
2116
2117        unsafe {
2118            let ptr = Self::allocate_for_slice(len);
2119
2120            let mem = ptr as *mut _ as *mut u8;
2121            let layout = Layout::for_value_raw(ptr);
2122
2123            // Pointer to first element
2124            let elems = (&raw mut (*ptr).data) as *mut T;
2125
2126            let mut guard = Guard { mem: NonNull::new_unchecked(mem), elems, layout, n_elems: 0 };
2127
2128            for (i, item) in iter.enumerate() {
2129                ptr::write(elems.add(i), item);
2130                guard.n_elems += 1;
2131            }
2132
2133            // All clear. Forget the guard so it doesn't free the new ArcInner.
2134            mem::forget(guard);
2135
2136            Self::from_ptr(ptr)
2137        }
2138    }
2139}
2140
2141impl<T, A: Allocator> Arc<[T], A> {
2142    /// Allocates an `ArcInner<[T]>` with the given length.
2143    #[inline]
2144    #[cfg(not(no_global_oom_handling))]
2145    unsafe fn allocate_for_slice_in(len: usize, alloc: &A) -> *mut ArcInner<[T]> {
2146        unsafe {
2147            Arc::allocate_for_layout(
2148                Layout::array::<T>(len).unwrap(),
2149                |layout| alloc.allocate(layout),
2150                |mem| ptr::slice_from_raw_parts_mut(mem.cast::<T>(), len) as *mut ArcInner<[T]>,
2151            )
2152        }
2153    }
2154}
2155
2156/// Specialization trait used for `From<&[T]>`.
2157#[cfg(not(no_global_oom_handling))]
2158trait ArcFromSlice<T> {
2159    fn from_slice(slice: &[T]) -> Self;
2160}
2161
2162#[cfg(not(no_global_oom_handling))]
2163impl<T: Clone> ArcFromSlice<T> for Arc<[T]> {
2164    #[inline]
2165    default fn from_slice(v: &[T]) -> Self {
2166        unsafe { Self::from_iter_exact(v.iter().cloned(), v.len()) }
2167    }
2168}
2169
2170#[cfg(not(no_global_oom_handling))]
2171impl<T: Copy> ArcFromSlice<T> for Arc<[T]> {
2172    #[inline]
2173    fn from_slice(v: &[T]) -> Self {
2174        unsafe { Arc::copy_from_slice(v) }
2175    }
2176}
2177
2178#[stable(feature = "rust1", since = "1.0.0")]
2179impl<T: ?Sized, A: Allocator + Clone> Clone for Arc<T, A> {
2180    /// Makes a clone of the `Arc` pointer.
2181    ///
2182    /// This creates another pointer to the same allocation, increasing the
2183    /// strong reference count.
2184    ///
2185    /// # Examples
2186    ///
2187    /// ```
2188    /// use std::sync::Arc;
2189    ///
2190    /// let five = Arc::new(5);
2191    ///
2192    /// let _ = Arc::clone(&five);
2193    /// ```
2194    #[inline]
2195    fn clone(&self) -> Arc<T, A> {
2196        // Using a relaxed ordering is alright here, as knowledge of the
2197        // original reference prevents other threads from erroneously deleting
2198        // the object.
2199        //
2200        // As explained in the [Boost documentation][1], Increasing the
2201        // reference counter can always be done with memory_order_relaxed: New
2202        // references to an object can only be formed from an existing
2203        // reference, and passing an existing reference from one thread to
2204        // another must already provide any required synchronization.
2205        //
2206        // [1]: (www.boost.org/doc/libs/1_55_0/doc/html/atomic/usage_examples.html)
2207        let old_size = self.inner().strong.fetch_add(1, Relaxed);
2208
2209        // However we need to guard against massive refcounts in case someone is `mem::forget`ing
2210        // Arcs. If we don't do this the count can overflow and users will use-after free. This
2211        // branch will never be taken in any realistic program. We abort because such a program is
2212        // incredibly degenerate, and we don't care to support it.
2213        //
2214        // This check is not 100% water-proof: we error when the refcount grows beyond `isize::MAX`.
2215        // But we do that check *after* having done the increment, so there is a chance here that
2216        // the worst already happened and we actually do overflow the `usize` counter. However, that
2217        // requires the counter to grow from `isize::MAX` to `usize::MAX` between the increment
2218        // above and the `abort` below, which seems exceedingly unlikely.
2219        //
2220        // This is a global invariant, and also applies when using a compare-exchange loop to increment
2221        // counters in other methods.
2222        // Otherwise, the counter could be brought to an almost-overflow using a compare-exchange loop,
2223        // and then overflow using a few `fetch_add`s.
2224        if old_size > MAX_REFCOUNT {
2225            abort();
2226        }
2227
2228        unsafe { Self::from_inner_in(self.ptr, self.alloc.clone()) }
2229    }
2230}
2231
2232#[unstable(feature = "ergonomic_clones", issue = "132290")]
2233impl<T: ?Sized, A: Allocator + Clone> UseCloned for Arc<T, A> {}
2234
2235#[stable(feature = "rust1", since = "1.0.0")]
2236impl<T: ?Sized, A: Allocator> Deref for Arc<T, A> {
2237    type Target = T;
2238
2239    #[inline]
2240    fn deref(&self) -> &T {
2241        &self.inner().data
2242    }
2243}
2244
2245#[unstable(feature = "pin_coerce_unsized_trait", issue = "123430")]
2246unsafe impl<T: ?Sized, A: Allocator> PinCoerceUnsized for Arc<T, A> {}
2247
2248#[unstable(feature = "pin_coerce_unsized_trait", issue = "123430")]
2249unsafe impl<T: ?Sized, A: Allocator> PinCoerceUnsized for Weak<T, A> {}
2250
2251#[unstable(feature = "deref_pure_trait", issue = "87121")]
2252unsafe impl<T: ?Sized, A: Allocator> DerefPure for Arc<T, A> {}
2253
2254#[unstable(feature = "legacy_receiver_trait", issue = "none")]
2255impl<T: ?Sized> LegacyReceiver for Arc<T> {}
2256
2257#[cfg(not(no_global_oom_handling))]
2258impl<T: ?Sized + CloneToUninit, A: Allocator + Clone> Arc<T, A> {
2259    /// Makes a mutable reference into the given `Arc`.
2260    ///
2261    /// If there are other `Arc` pointers to the same allocation, then `make_mut` will
2262    /// [`clone`] the inner value to a new allocation to ensure unique ownership.  This is also
2263    /// referred to as clone-on-write.
2264    ///
2265    /// However, if there are no other `Arc` pointers to this allocation, but some [`Weak`]
2266    /// pointers, then the [`Weak`] pointers will be dissociated and the inner value will not
2267    /// be cloned.
2268    ///
2269    /// See also [`get_mut`], which will fail rather than cloning the inner value
2270    /// or dissociating [`Weak`] pointers.
2271    ///
2272    /// [`clone`]: Clone::clone
2273    /// [`get_mut`]: Arc::get_mut
2274    ///
2275    /// # Examples
2276    ///
2277    /// ```
2278    /// use std::sync::Arc;
2279    ///
2280    /// let mut data = Arc::new(5);
2281    ///
2282    /// *Arc::make_mut(&mut data) += 1;         // Won't clone anything
2283    /// let mut other_data = Arc::clone(&data); // Won't clone inner data
2284    /// *Arc::make_mut(&mut data) += 1;         // Clones inner data
2285    /// *Arc::make_mut(&mut data) += 1;         // Won't clone anything
2286    /// *Arc::make_mut(&mut other_data) *= 2;   // Won't clone anything
2287    ///
2288    /// // Now `data` and `other_data` point to different allocations.
2289    /// assert_eq!(*data, 8);
2290    /// assert_eq!(*other_data, 12);
2291    /// ```
2292    ///
2293    /// [`Weak`] pointers will be dissociated:
2294    ///
2295    /// ```
2296    /// use std::sync::Arc;
2297    ///
2298    /// let mut data = Arc::new(75);
2299    /// let weak = Arc::downgrade(&data);
2300    ///
2301    /// assert!(75 == *data);
2302    /// assert!(75 == *weak.upgrade().unwrap());
2303    ///
2304    /// *Arc::make_mut(&mut data) += 1;
2305    ///
2306    /// assert!(76 == *data);
2307    /// assert!(weak.upgrade().is_none());
2308    /// ```
2309    #[inline]
2310    #[stable(feature = "arc_unique", since = "1.4.0")]
2311    pub fn make_mut(this: &mut Self) -> &mut T {
2312        let size_of_val = size_of_val::<T>(&**this);
2313
2314        // Note that we hold both a strong reference and a weak reference.
2315        // Thus, releasing our strong reference only will not, by itself, cause
2316        // the memory to be deallocated.
2317        //
2318        // Use Acquire to ensure that we see any writes to `weak` that happen
2319        // before release writes (i.e., decrements) to `strong`. Since we hold a
2320        // weak count, there's no chance the ArcInner itself could be
2321        // deallocated.
2322        if this.inner().strong.compare_exchange(1, 0, Acquire, Relaxed).is_err() {
2323            // Another strong pointer exists, so we must clone.
2324
2325            let this_data_ref: &T = &**this;
2326            // `in_progress` drops the allocation if we panic before finishing initializing it.
2327            let mut in_progress: UniqueArcUninit<T, A> =
2328                UniqueArcUninit::new(this_data_ref, this.alloc.clone());
2329
2330            let initialized_clone = unsafe {
2331                // Clone. If the clone panics, `in_progress` will be dropped and clean up.
2332                this_data_ref.clone_to_uninit(in_progress.data_ptr().cast());
2333                // Cast type of pointer, now that it is initialized.
2334                in_progress.into_arc()
2335            };
2336            *this = initialized_clone;
2337        } else if this.inner().weak.load(Relaxed) != 1 {
2338            // Relaxed suffices in the above because this is fundamentally an
2339            // optimization: we are always racing with weak pointers being
2340            // dropped. Worst case, we end up allocated a new Arc unnecessarily.
2341
2342            // We removed the last strong ref, but there are additional weak
2343            // refs remaining. We'll move the contents to a new Arc, and
2344            // invalidate the other weak refs.
2345
2346            // Note that it is not possible for the read of `weak` to yield
2347            // usize::MAX (i.e., locked), since the weak count can only be
2348            // locked by a thread with a strong reference.
2349
2350            // Materialize our own implicit weak pointer, so that it can clean
2351            // up the ArcInner as needed.
2352            let _weak = Weak { ptr: this.ptr, alloc: this.alloc.clone() };
2353
2354            // Can just steal the data, all that's left is Weaks
2355            //
2356            // We don't need panic-protection like the above branch does, but we might as well
2357            // use the same mechanism.
2358            let mut in_progress: UniqueArcUninit<T, A> =
2359                UniqueArcUninit::new(&**this, this.alloc.clone());
2360            unsafe {
2361                // Initialize `in_progress` with move of **this.
2362                // We have to express this in terms of bytes because `T: ?Sized`; there is no
2363                // operation that just copies a value based on its `size_of_val()`.
2364                ptr::copy_nonoverlapping(
2365                    ptr::from_ref(&**this).cast::<u8>(),
2366                    in_progress.data_ptr().cast::<u8>(),
2367                    size_of_val,
2368                );
2369
2370                ptr::write(this, in_progress.into_arc());
2371            }
2372        } else {
2373            // We were the sole reference of either kind; bump back up the
2374            // strong ref count.
2375            this.inner().strong.store(1, Release);
2376        }
2377
2378        // As with `get_mut()`, the unsafety is ok because our reference was
2379        // either unique to begin with, or became one upon cloning the contents.
2380        unsafe { Self::get_mut_unchecked(this) }
2381    }
2382}
2383
2384impl<T: Clone, A: Allocator> Arc<T, A> {
2385    /// If we have the only reference to `T` then unwrap it. Otherwise, clone `T` and return the
2386    /// clone.
2387    ///
2388    /// Assuming `arc_t` is of type `Arc<T>`, this function is functionally equivalent to
2389    /// `(*arc_t).clone()`, but will avoid cloning the inner value where possible.
2390    ///
2391    /// # Examples
2392    ///
2393    /// ```
2394    /// # use std::{ptr, sync::Arc};
2395    /// let inner = String::from("test");
2396    /// let ptr = inner.as_ptr();
2397    ///
2398    /// let arc = Arc::new(inner);
2399    /// let inner = Arc::unwrap_or_clone(arc);
2400    /// // The inner value was not cloned
2401    /// assert!(ptr::eq(ptr, inner.as_ptr()));
2402    ///
2403    /// let arc = Arc::new(inner);
2404    /// let arc2 = arc.clone();
2405    /// let inner = Arc::unwrap_or_clone(arc);
2406    /// // Because there were 2 references, we had to clone the inner value.
2407    /// assert!(!ptr::eq(ptr, inner.as_ptr()));
2408    /// // `arc2` is the last reference, so when we unwrap it we get back
2409    /// // the original `String`.
2410    /// let inner = Arc::unwrap_or_clone(arc2);
2411    /// assert!(ptr::eq(ptr, inner.as_ptr()));
2412    /// ```
2413    #[inline]
2414    #[stable(feature = "arc_unwrap_or_clone", since = "1.76.0")]
2415    pub fn unwrap_or_clone(this: Self) -> T {
2416        Arc::try_unwrap(this).unwrap_or_else(|arc| (*arc).clone())
2417    }
2418}
2419
2420impl<T: ?Sized, A: Allocator> Arc<T, A> {
2421    /// Returns a mutable reference into the given `Arc`, if there are
2422    /// no other `Arc` or [`Weak`] pointers to the same allocation.
2423    ///
2424    /// Returns [`None`] otherwise, because it is not safe to
2425    /// mutate a shared value.
2426    ///
2427    /// See also [`make_mut`][make_mut], which will [`clone`][clone]
2428    /// the inner value when there are other `Arc` pointers.
2429    ///
2430    /// [make_mut]: Arc::make_mut
2431    /// [clone]: Clone::clone
2432    ///
2433    /// # Examples
2434    ///
2435    /// ```
2436    /// use std::sync::Arc;
2437    ///
2438    /// let mut x = Arc::new(3);
2439    /// *Arc::get_mut(&mut x).unwrap() = 4;
2440    /// assert_eq!(*x, 4);
2441    ///
2442    /// let _y = Arc::clone(&x);
2443    /// assert!(Arc::get_mut(&mut x).is_none());
2444    /// ```
2445    #[inline]
2446    #[stable(feature = "arc_unique", since = "1.4.0")]
2447    pub fn get_mut(this: &mut Self) -> Option<&mut T> {
2448        if Self::is_unique(this) {
2449            // This unsafety is ok because we're guaranteed that the pointer
2450            // returned is the *only* pointer that will ever be returned to T. Our
2451            // reference count is guaranteed to be 1 at this point, and we required
2452            // the Arc itself to be `mut`, so we're returning the only possible
2453            // reference to the inner data.
2454            unsafe { Some(Arc::get_mut_unchecked(this)) }
2455        } else {
2456            None
2457        }
2458    }
2459
2460    /// Returns a mutable reference into the given `Arc`,
2461    /// without any check.
2462    ///
2463    /// See also [`get_mut`], which is safe and does appropriate checks.
2464    ///
2465    /// [`get_mut`]: Arc::get_mut
2466    ///
2467    /// # Safety
2468    ///
2469    /// If any other `Arc` or [`Weak`] pointers to the same allocation exist, then
2470    /// they must not be dereferenced or have active borrows for the duration
2471    /// of the returned borrow, and their inner type must be exactly the same as the
2472    /// inner type of this Rc (including lifetimes). This is trivially the case if no
2473    /// such pointers exist, for example immediately after `Arc::new`.
2474    ///
2475    /// # Examples
2476    ///
2477    /// ```
2478    /// #![feature(get_mut_unchecked)]
2479    ///
2480    /// use std::sync::Arc;
2481    ///
2482    /// let mut x = Arc::new(String::new());
2483    /// unsafe {
2484    ///     Arc::get_mut_unchecked(&mut x).push_str("foo")
2485    /// }
2486    /// assert_eq!(*x, "foo");
2487    /// ```
2488    /// Other `Arc` pointers to the same allocation must be to the same type.
2489    /// ```no_run
2490    /// #![feature(get_mut_unchecked)]
2491    ///
2492    /// use std::sync::Arc;
2493    ///
2494    /// let x: Arc<str> = Arc::from("Hello, world!");
2495    /// let mut y: Arc<[u8]> = x.clone().into();
2496    /// unsafe {
2497    ///     // this is Undefined Behavior, because x's inner type is str, not [u8]
2498    ///     Arc::get_mut_unchecked(&mut y).fill(0xff); // 0xff is invalid in UTF-8
2499    /// }
2500    /// println!("{}", &*x); // Invalid UTF-8 in a str
2501    /// ```
2502    /// Other `Arc` pointers to the same allocation must be to the exact same type, including lifetimes.
2503    /// ```no_run
2504    /// #![feature(get_mut_unchecked)]
2505    ///
2506    /// use std::sync::Arc;
2507    ///
2508    /// let x: Arc<&str> = Arc::new("Hello, world!");
2509    /// {
2510    ///     let s = String::from("Oh, no!");
2511    ///     let mut y: Arc<&str> = x.clone();
2512    ///     unsafe {
2513    ///         // this is Undefined Behavior, because x's inner type
2514    ///         // is &'long str, not &'short str
2515    ///         *Arc::get_mut_unchecked(&mut y) = &s;
2516    ///     }
2517    /// }
2518    /// println!("{}", &*x); // Use-after-free
2519    /// ```
2520    #[inline]
2521    #[unstable(feature = "get_mut_unchecked", issue = "63292")]
2522    pub unsafe fn get_mut_unchecked(this: &mut Self) -> &mut T {
2523        // We are careful to *not* create a reference covering the "count" fields, as
2524        // this would alias with concurrent access to the reference counts (e.g. by `Weak`).
2525        unsafe { &mut (*this.ptr.as_ptr()).data }
2526    }
2527
2528    /// Determine whether this is the unique reference to the underlying data.
2529    ///
2530    /// Returns `true` if there are no other `Arc` or [`Weak`] pointers to the same allocation;
2531    /// returns `false` otherwise.
2532    ///
2533    /// If this function returns `true`, then is guaranteed to be safe to call [`get_mut_unchecked`]
2534    /// on this `Arc`, so long as no clones occur in between.
2535    ///
2536    /// # Examples
2537    ///
2538    /// ```
2539    /// #![feature(arc_is_unique)]
2540    ///
2541    /// use std::sync::Arc;
2542    ///
2543    /// let x = Arc::new(3);
2544    /// assert!(Arc::is_unique(&x));
2545    ///
2546    /// let y = Arc::clone(&x);
2547    /// assert!(!Arc::is_unique(&x));
2548    /// drop(y);
2549    ///
2550    /// // Weak references also count, because they could be upgraded at any time.
2551    /// let z = Arc::downgrade(&x);
2552    /// assert!(!Arc::is_unique(&x));
2553    /// ```
2554    ///
2555    /// # Pointer invalidation
2556    ///
2557    /// This function will always return the same value as `Arc::get_mut(arc).is_some()`. However,
2558    /// unlike that operation it does not produce any mutable references to the underlying data,
2559    /// meaning no pointers to the data inside the `Arc` are invalidated by the call. Thus, the
2560    /// following code is valid, even though it would be UB if it used `Arc::get_mut`:
2561    ///
2562    /// ```
2563    /// #![feature(arc_is_unique)]
2564    ///
2565    /// use std::sync::Arc;
2566    ///
2567    /// let arc = Arc::new(5);
2568    /// let pointer: *const i32 = &*arc;
2569    /// assert!(Arc::is_unique(&arc));
2570    /// assert_eq!(unsafe { *pointer }, 5);
2571    /// ```
2572    ///
2573    /// # Atomic orderings
2574    ///
2575    /// Concurrent drops to other `Arc` pointers to the same allocation will synchronize with this
2576    /// call - that is, this call performs an `Acquire` operation on the underlying strong and weak
2577    /// ref counts. This ensures that calling `get_mut_unchecked` is safe.
2578    ///
2579    /// Note that this operation requires locking the weak ref count, so concurrent calls to
2580    /// `downgrade` may spin-loop for a short period of time.
2581    ///
2582    /// [`get_mut_unchecked`]: Self::get_mut_unchecked
2583    #[inline]
2584    #[unstable(feature = "arc_is_unique", issue = "138938")]
2585    pub fn is_unique(this: &Self) -> bool {
2586        // lock the weak pointer count if we appear to be the sole weak pointer
2587        // holder.
2588        //
2589        // The acquire label here ensures a happens-before relationship with any
2590        // writes to `strong` (in particular in `Weak::upgrade`) prior to decrements
2591        // of the `weak` count (via `Weak::drop`, which uses release). If the upgraded
2592        // weak ref was never dropped, the CAS here will fail so we do not care to synchronize.
2593        if this.inner().weak.compare_exchange(1, usize::MAX, Acquire, Relaxed).is_ok() {
2594            // This needs to be an `Acquire` to synchronize with the decrement of the `strong`
2595            // counter in `drop` -- the only access that happens when any but the last reference
2596            // is being dropped.
2597            let unique = this.inner().strong.load(Acquire) == 1;
2598
2599            // The release write here synchronizes with a read in `downgrade`,
2600            // effectively preventing the above read of `strong` from happening
2601            // after the write.
2602            this.inner().weak.store(1, Release); // release the lock
2603            unique
2604        } else {
2605            false
2606        }
2607    }
2608}
2609
2610#[stable(feature = "rust1", since = "1.0.0")]
2611unsafe impl<#[may_dangle] T: ?Sized, A: Allocator> Drop for Arc<T, A> {
2612    /// Drops the `Arc`.
2613    ///
2614    /// This will decrement the strong reference count. If the strong reference
2615    /// count reaches zero then the only other references (if any) are
2616    /// [`Weak`], so we `drop` the inner value.
2617    ///
2618    /// # Examples
2619    ///
2620    /// ```
2621    /// use std::sync::Arc;
2622    ///
2623    /// struct Foo;
2624    ///
2625    /// impl Drop for Foo {
2626    ///     fn drop(&mut self) {
2627    ///         println!("dropped!");
2628    ///     }
2629    /// }
2630    ///
2631    /// let foo  = Arc::new(Foo);
2632    /// let foo2 = Arc::clone(&foo);
2633    ///
2634    /// drop(foo);    // Doesn't print anything
2635    /// drop(foo2);   // Prints "dropped!"
2636    /// ```
2637    #[inline]
2638    fn drop(&mut self) {
2639        // Because `fetch_sub` is already atomic, we do not need to synchronize
2640        // with other threads unless we are going to delete the object. This
2641        // same logic applies to the below `fetch_sub` to the `weak` count.
2642        if self.inner().strong.fetch_sub(1, Release) != 1 {
2643            return;
2644        }
2645
2646        // This fence is needed to prevent reordering of use of the data and
2647        // deletion of the data. Because it is marked `Release`, the decreasing
2648        // of the reference count synchronizes with this `Acquire` fence. This
2649        // means that use of the data happens before decreasing the reference
2650        // count, which happens before this fence, which happens before the
2651        // deletion of the data.
2652        //
2653        // As explained in the [Boost documentation][1],
2654        //
2655        // > It is important to enforce any possible access to the object in one
2656        // > thread (through an existing reference) to *happen before* deleting
2657        // > the object in a different thread. This is achieved by a "release"
2658        // > operation after dropping a reference (any access to the object
2659        // > through this reference must obviously happened before), and an
2660        // > "acquire" operation before deleting the object.
2661        //
2662        // In particular, while the contents of an Arc are usually immutable, it's
2663        // possible to have interior writes to something like a Mutex<T>. Since a
2664        // Mutex is not acquired when it is deleted, we can't rely on its
2665        // synchronization logic to make writes in thread A visible to a destructor
2666        // running in thread B.
2667        //
2668        // Also note that the Acquire fence here could probably be replaced with an
2669        // Acquire load, which could improve performance in highly-contended
2670        // situations. See [2].
2671        //
2672        // [1]: (www.boost.org/doc/libs/1_55_0/doc/html/atomic/usage_examples.html)
2673        // [2]: (https://github.com/rust-lang/rust/pull/41714)
2674        acquire!(self.inner().strong);
2675
2676        // Make sure we aren't trying to "drop" the shared static for empty slices
2677        // used by Default::default.
2678        debug_assert!(
2679            !ptr::addr_eq(self.ptr.as_ptr(), &STATIC_INNER_SLICE.inner),
2680            "Arcs backed by a static should never reach a strong count of 0. \
2681            Likely decrement_strong_count or from_raw were called too many times.",
2682        );
2683
2684        unsafe {
2685            self.drop_slow();
2686        }
2687    }
2688}
2689
2690impl<A: Allocator> Arc<dyn Any + Send + Sync, A> {
2691    /// Attempts to downcast the `Arc<dyn Any + Send + Sync>` to a concrete type.
2692    ///
2693    /// # Examples
2694    ///
2695    /// ```
2696    /// use std::any::Any;
2697    /// use std::sync::Arc;
2698    ///
2699    /// fn print_if_string(value: Arc<dyn Any + Send + Sync>) {
2700    ///     if let Ok(string) = value.downcast::<String>() {
2701    ///         println!("String ({}): {}", string.len(), string);
2702    ///     }
2703    /// }
2704    ///
2705    /// let my_string = "Hello World".to_string();
2706    /// print_if_string(Arc::new(my_string));
2707    /// print_if_string(Arc::new(0i8));
2708    /// ```
2709    #[inline]
2710    #[stable(feature = "rc_downcast", since = "1.29.0")]
2711    pub fn downcast<T>(self) -> Result<Arc<T, A>, Self>
2712    where
2713        T: Any + Send + Sync,
2714    {
2715        if (*self).is::<T>() {
2716            unsafe {
2717                let (ptr, alloc) = Arc::into_inner_with_allocator(self);
2718                Ok(Arc::from_inner_in(ptr.cast(), alloc))
2719            }
2720        } else {
2721            Err(self)
2722        }
2723    }
2724
2725    /// Downcasts the `Arc<dyn Any + Send + Sync>` to a concrete type.
2726    ///
2727    /// For a safe alternative see [`downcast`].
2728    ///
2729    /// # Examples
2730    ///
2731    /// ```
2732    /// #![feature(downcast_unchecked)]
2733    ///
2734    /// use std::any::Any;
2735    /// use std::sync::Arc;
2736    ///
2737    /// let x: Arc<dyn Any + Send + Sync> = Arc::new(1_usize);
2738    ///
2739    /// unsafe {
2740    ///     assert_eq!(*x.downcast_unchecked::<usize>(), 1);
2741    /// }
2742    /// ```
2743    ///
2744    /// # Safety
2745    ///
2746    /// The contained value must be of type `T`. Calling this method
2747    /// with the incorrect type is *undefined behavior*.
2748    ///
2749    ///
2750    /// [`downcast`]: Self::downcast
2751    #[inline]
2752    #[unstable(feature = "downcast_unchecked", issue = "90850")]
2753    pub unsafe fn downcast_unchecked<T>(self) -> Arc<T, A>
2754    where
2755        T: Any + Send + Sync,
2756    {
2757        unsafe {
2758            let (ptr, alloc) = Arc::into_inner_with_allocator(self);
2759            Arc::from_inner_in(ptr.cast(), alloc)
2760        }
2761    }
2762}
2763
2764impl<T> Weak<T> {
2765    /// Constructs a new `Weak<T>`, without allocating any memory.
2766    /// Calling [`upgrade`] on the return value always gives [`None`].
2767    ///
2768    /// [`upgrade`]: Weak::upgrade
2769    ///
2770    /// # Examples
2771    ///
2772    /// ```
2773    /// use std::sync::Weak;
2774    ///
2775    /// let empty: Weak<i64> = Weak::new();
2776    /// assert!(empty.upgrade().is_none());
2777    /// ```
2778    #[inline]
2779    #[stable(feature = "downgraded_weak", since = "1.10.0")]
2780    #[rustc_const_stable(feature = "const_weak_new", since = "1.73.0")]
2781    #[must_use]
2782    pub const fn new() -> Weak<T> {
2783        Weak { ptr: NonNull::without_provenance(NonZeroUsize::MAX), alloc: Global }
2784    }
2785}
2786
2787impl<T, A: Allocator> Weak<T, A> {
2788    /// Constructs a new `Weak<T, A>`, without allocating any memory, technically in the provided
2789    /// allocator.
2790    /// Calling [`upgrade`] on the return value always gives [`None`].
2791    ///
2792    /// [`upgrade`]: Weak::upgrade
2793    ///
2794    /// # Examples
2795    ///
2796    /// ```
2797    /// #![feature(allocator_api)]
2798    ///
2799    /// use std::sync::Weak;
2800    /// use std::alloc::System;
2801    ///
2802    /// let empty: Weak<i64, _> = Weak::new_in(System);
2803    /// assert!(empty.upgrade().is_none());
2804    /// ```
2805    #[inline]
2806    #[unstable(feature = "allocator_api", issue = "32838")]
2807    pub fn new_in(alloc: A) -> Weak<T, A> {
2808        Weak { ptr: NonNull::without_provenance(NonZeroUsize::MAX), alloc }
2809    }
2810}
2811
2812/// Helper type to allow accessing the reference counts without
2813/// making any assertions about the data field.
2814struct WeakInner<'a> {
2815    weak: &'a Atomic<usize>,
2816    strong: &'a Atomic<usize>,
2817}
2818
2819impl<T: ?Sized> Weak<T> {
2820    /// Converts a raw pointer previously created by [`into_raw`] back into `Weak<T>`.
2821    ///
2822    /// This can be used to safely get a strong reference (by calling [`upgrade`]
2823    /// later) or to deallocate the weak count by dropping the `Weak<T>`.
2824    ///
2825    /// It takes ownership of one weak reference (with the exception of pointers created by [`new`],
2826    /// as these don't own anything; the method still works on them).
2827    ///
2828    /// # Safety
2829    ///
2830    /// The pointer must have originated from the [`into_raw`] and must still own its potential
2831    /// weak reference, and must point to a block of memory allocated by global allocator.
2832    ///
2833    /// It is allowed for the strong count to be 0 at the time of calling this. Nevertheless, this
2834    /// takes ownership of one weak reference currently represented as a raw pointer (the weak
2835    /// count is not modified by this operation) and therefore it must be paired with a previous
2836    /// call to [`into_raw`].
2837    /// # Examples
2838    ///
2839    /// ```
2840    /// use std::sync::{Arc, Weak};
2841    ///
2842    /// let strong = Arc::new("hello".to_owned());
2843    ///
2844    /// let raw_1 = Arc::downgrade(&strong).into_raw();
2845    /// let raw_2 = Arc::downgrade(&strong).into_raw();
2846    ///
2847    /// assert_eq!(2, Arc::weak_count(&strong));
2848    ///
2849    /// assert_eq!("hello", &*unsafe { Weak::from_raw(raw_1) }.upgrade().unwrap());
2850    /// assert_eq!(1, Arc::weak_count(&strong));
2851    ///
2852    /// drop(strong);
2853    ///
2854    /// // Decrement the last weak count.
2855    /// assert!(unsafe { Weak::from_raw(raw_2) }.upgrade().is_none());
2856    /// ```
2857    ///
2858    /// [`new`]: Weak::new
2859    /// [`into_raw`]: Weak::into_raw
2860    /// [`upgrade`]: Weak::upgrade
2861    #[inline]
2862    #[stable(feature = "weak_into_raw", since = "1.45.0")]
2863    pub unsafe fn from_raw(ptr: *const T) -> Self {
2864        unsafe { Weak::from_raw_in(ptr, Global) }
2865    }
2866
2867    /// Consumes the `Weak<T>` and turns it into a raw pointer.
2868    ///
2869    /// This converts the weak pointer into a raw pointer, while still preserving the ownership of
2870    /// one weak reference (the weak count is not modified by this operation). It can be turned
2871    /// back into the `Weak<T>` with [`from_raw`].
2872    ///
2873    /// The same restrictions of accessing the target of the pointer as with
2874    /// [`as_ptr`] apply.
2875    ///
2876    /// # Examples
2877    ///
2878    /// ```
2879    /// use std::sync::{Arc, Weak};
2880    ///
2881    /// let strong = Arc::new("hello".to_owned());
2882    /// let weak = Arc::downgrade(&strong);
2883    /// let raw = weak.into_raw();
2884    ///
2885    /// assert_eq!(1, Arc::weak_count(&strong));
2886    /// assert_eq!("hello", unsafe { &*raw });
2887    ///
2888    /// drop(unsafe { Weak::from_raw(raw) });
2889    /// assert_eq!(0, Arc::weak_count(&strong));
2890    /// ```
2891    ///
2892    /// [`from_raw`]: Weak::from_raw
2893    /// [`as_ptr`]: Weak::as_ptr
2894    #[must_use = "losing the pointer will leak memory"]
2895    #[stable(feature = "weak_into_raw", since = "1.45.0")]
2896    pub fn into_raw(self) -> *const T {
2897        ManuallyDrop::new(self).as_ptr()
2898    }
2899}
2900
2901impl<T: ?Sized, A: Allocator> Weak<T, A> {
2902    /// Returns a reference to the underlying allocator.
2903    #[inline]
2904    #[unstable(feature = "allocator_api", issue = "32838")]
2905    pub fn allocator(&self) -> &A {
2906        &self.alloc
2907    }
2908
2909    /// Returns a raw pointer to the object `T` pointed to by this `Weak<T>`.
2910    ///
2911    /// The pointer is valid only if there are some strong references. The pointer may be dangling,
2912    /// unaligned or even [`null`] otherwise.
2913    ///
2914    /// # Examples
2915    ///
2916    /// ```
2917    /// use std::sync::Arc;
2918    /// use std::ptr;
2919    ///
2920    /// let strong = Arc::new("hello".to_owned());
2921    /// let weak = Arc::downgrade(&strong);
2922    /// // Both point to the same object
2923    /// assert!(ptr::eq(&*strong, weak.as_ptr()));
2924    /// // The strong here keeps it alive, so we can still access the object.
2925    /// assert_eq!("hello", unsafe { &*weak.as_ptr() });
2926    ///
2927    /// drop(strong);
2928    /// // But not any more. We can do weak.as_ptr(), but accessing the pointer would lead to
2929    /// // undefined behavior.
2930    /// // assert_eq!("hello", unsafe { &*weak.as_ptr() });
2931    /// ```
2932    ///
2933    /// [`null`]: core::ptr::null "ptr::null"
2934    #[must_use]
2935    #[stable(feature = "weak_into_raw", since = "1.45.0")]
2936    pub fn as_ptr(&self) -> *const T {
2937        let ptr: *mut ArcInner<T> = NonNull::as_ptr(self.ptr);
2938
2939        if is_dangling(ptr) {
2940            // If the pointer is dangling, we return the sentinel directly. This cannot be
2941            // a valid payload address, as the payload is at least as aligned as ArcInner (usize).
2942            ptr as *const T
2943        } else {
2944            // SAFETY: if is_dangling returns false, then the pointer is dereferenceable.
2945            // The payload may be dropped at this point, and we have to maintain provenance,
2946            // so use raw pointer manipulation.
2947            unsafe { &raw mut (*ptr).data }
2948        }
2949    }
2950
2951    /// Consumes the `Weak<T>`, returning the wrapped pointer and allocator.
2952    ///
2953    /// This converts the weak pointer into a raw pointer, while still preserving the ownership of
2954    /// one weak reference (the weak count is not modified by this operation). It can be turned
2955    /// back into the `Weak<T>` with [`from_raw_in`].
2956    ///
2957    /// The same restrictions of accessing the target of the pointer as with
2958    /// [`as_ptr`] apply.
2959    ///
2960    /// # Examples
2961    ///
2962    /// ```
2963    /// #![feature(allocator_api)]
2964    /// use std::sync::{Arc, Weak};
2965    /// use std::alloc::System;
2966    ///
2967    /// let strong = Arc::new_in("hello".to_owned(), System);
2968    /// let weak = Arc::downgrade(&strong);
2969    /// let (raw, alloc) = weak.into_raw_with_allocator();
2970    ///
2971    /// assert_eq!(1, Arc::weak_count(&strong));
2972    /// assert_eq!("hello", unsafe { &*raw });
2973    ///
2974    /// drop(unsafe { Weak::from_raw_in(raw, alloc) });
2975    /// assert_eq!(0, Arc::weak_count(&strong));
2976    /// ```
2977    ///
2978    /// [`from_raw_in`]: Weak::from_raw_in
2979    /// [`as_ptr`]: Weak::as_ptr
2980    #[must_use = "losing the pointer will leak memory"]
2981    #[unstable(feature = "allocator_api", issue = "32838")]
2982    pub fn into_raw_with_allocator(self) -> (*const T, A) {
2983        let this = mem::ManuallyDrop::new(self);
2984        let result = this.as_ptr();
2985        // Safety: `this` is ManuallyDrop so the allocator will not be double-dropped
2986        let alloc = unsafe { ptr::read(&this.alloc) };
2987        (result, alloc)
2988    }
2989
2990    /// Converts a raw pointer previously created by [`into_raw`] back into `Weak<T>` in the provided
2991    /// allocator.
2992    ///
2993    /// This can be used to safely get a strong reference (by calling [`upgrade`]
2994    /// later) or to deallocate the weak count by dropping the `Weak<T>`.
2995    ///
2996    /// It takes ownership of one weak reference (with the exception of pointers created by [`new`],
2997    /// as these don't own anything; the method still works on them).
2998    ///
2999    /// # Safety
3000    ///
3001    /// The pointer must have originated from the [`into_raw`] and must still own its potential
3002    /// weak reference, and must point to a block of memory allocated by `alloc`.
3003    ///
3004    /// It is allowed for the strong count to be 0 at the time of calling this. Nevertheless, this
3005    /// takes ownership of one weak reference currently represented as a raw pointer (the weak
3006    /// count is not modified by this operation) and therefore it must be paired with a previous
3007    /// call to [`into_raw`].
3008    /// # Examples
3009    ///
3010    /// ```
3011    /// use std::sync::{Arc, Weak};
3012    ///
3013    /// let strong = Arc::new("hello".to_owned());
3014    ///
3015    /// let raw_1 = Arc::downgrade(&strong).into_raw();
3016    /// let raw_2 = Arc::downgrade(&strong).into_raw();
3017    ///
3018    /// assert_eq!(2, Arc::weak_count(&strong));
3019    ///
3020    /// assert_eq!("hello", &*unsafe { Weak::from_raw(raw_1) }.upgrade().unwrap());
3021    /// assert_eq!(1, Arc::weak_count(&strong));
3022    ///
3023    /// drop(strong);
3024    ///
3025    /// // Decrement the last weak count.
3026    /// assert!(unsafe { Weak::from_raw(raw_2) }.upgrade().is_none());
3027    /// ```
3028    ///
3029    /// [`new`]: Weak::new
3030    /// [`into_raw`]: Weak::into_raw
3031    /// [`upgrade`]: Weak::upgrade
3032    #[inline]
3033    #[unstable(feature = "allocator_api", issue = "32838")]
3034    pub unsafe fn from_raw_in(ptr: *const T, alloc: A) -> Self {
3035        // See Weak::as_ptr for context on how the input pointer is derived.
3036
3037        let ptr = if is_dangling(ptr) {
3038            // This is a dangling Weak.
3039            ptr as *mut ArcInner<T>
3040        } else {
3041            // Otherwise, we're guaranteed the pointer came from a nondangling Weak.
3042            // SAFETY: data_offset is safe to call, as ptr references a real (potentially dropped) T.
3043            let offset = unsafe { data_offset(ptr) };
3044            // Thus, we reverse the offset to get the whole RcInner.
3045            // SAFETY: the pointer originated from a Weak, so this offset is safe.
3046            unsafe { ptr.byte_sub(offset) as *mut ArcInner<T> }
3047        };
3048
3049        // SAFETY: we now have recovered the original Weak pointer, so can create the Weak.
3050        Weak { ptr: unsafe { NonNull::new_unchecked(ptr) }, alloc }
3051    }
3052}
3053
3054impl<T: ?Sized, A: Allocator> Weak<T, A> {
3055    /// Attempts to upgrade the `Weak` pointer to an [`Arc`], delaying
3056    /// dropping of the inner value if successful.
3057    ///
3058    /// Returns [`None`] if the inner value has since been dropped.
3059    ///
3060    /// # Examples
3061    ///
3062    /// ```
3063    /// use std::sync::Arc;
3064    ///
3065    /// let five = Arc::new(5);
3066    ///
3067    /// let weak_five = Arc::downgrade(&five);
3068    ///
3069    /// let strong_five: Option<Arc<_>> = weak_five.upgrade();
3070    /// assert!(strong_five.is_some());
3071    ///
3072    /// // Destroy all strong pointers.
3073    /// drop(strong_five);
3074    /// drop(five);
3075    ///
3076    /// assert!(weak_five.upgrade().is_none());
3077    /// ```
3078    #[must_use = "this returns a new `Arc`, \
3079                  without modifying the original weak pointer"]
3080    #[stable(feature = "arc_weak", since = "1.4.0")]
3081    pub fn upgrade(&self) -> Option<Arc<T, A>>
3082    where
3083        A: Clone,
3084    {
3085        #[inline]
3086        fn checked_increment(n: usize) -> Option<usize> {
3087            // Any write of 0 we can observe leaves the field in permanently zero state.
3088            if n == 0 {
3089                return None;
3090            }
3091            // See comments in `Arc::clone` for why we do this (for `mem::forget`).
3092            assert!(n <= MAX_REFCOUNT, "{}", INTERNAL_OVERFLOW_ERROR);
3093            Some(n + 1)
3094        }
3095
3096        // We use a CAS loop to increment the strong count instead of a
3097        // fetch_add as this function should never take the reference count
3098        // from zero to one.
3099        //
3100        // Relaxed is fine for the failure case because we don't have any expectations about the new state.
3101        // Acquire is necessary for the success case to synchronise with `Arc::new_cyclic`, when the inner
3102        // value can be initialized after `Weak` references have already been created. In that case, we
3103        // expect to observe the fully initialized value.
3104        if self.inner()?.strong.fetch_update(Acquire, Relaxed, checked_increment).is_ok() {
3105            // SAFETY: pointer is not null, verified in checked_increment
3106            unsafe { Some(Arc::from_inner_in(self.ptr, self.alloc.clone())) }
3107        } else {
3108            None
3109        }
3110    }
3111
3112    /// Gets the number of strong (`Arc`) pointers pointing to this allocation.
3113    ///
3114    /// If `self` was created using [`Weak::new`], this will return 0.
3115    #[must_use]
3116    #[stable(feature = "weak_counts", since = "1.41.0")]
3117    pub fn strong_count(&self) -> usize {
3118        if let Some(inner) = self.inner() { inner.strong.load(Relaxed) } else { 0 }
3119    }
3120
3121    /// Gets an approximation of the number of `Weak` pointers pointing to this
3122    /// allocation.
3123    ///
3124    /// If `self` was created using [`Weak::new`], or if there are no remaining
3125    /// strong pointers, this will return 0.
3126    ///
3127    /// # Accuracy
3128    ///
3129    /// Due to implementation details, the returned value can be off by 1 in
3130    /// either direction when other threads are manipulating any `Arc`s or
3131    /// `Weak`s pointing to the same allocation.
3132    #[must_use]
3133    #[stable(feature = "weak_counts", since = "1.41.0")]
3134    pub fn weak_count(&self) -> usize {
3135        if let Some(inner) = self.inner() {
3136            let weak = inner.weak.load(Acquire);
3137            let strong = inner.strong.load(Relaxed);
3138            if strong == 0 {
3139                0
3140            } else {
3141                // Since we observed that there was at least one strong pointer
3142                // after reading the weak count, we know that the implicit weak
3143                // reference (present whenever any strong references are alive)
3144                // was still around when we observed the weak count, and can
3145                // therefore safely subtract it.
3146                weak - 1
3147            }
3148        } else {
3149            0
3150        }
3151    }
3152
3153    /// Returns `None` when the pointer is dangling and there is no allocated `ArcInner`,
3154    /// (i.e., when this `Weak` was created by `Weak::new`).
3155    #[inline]
3156    fn inner(&self) -> Option<WeakInner<'_>> {
3157        let ptr = self.ptr.as_ptr();
3158        if is_dangling(ptr) {
3159            None
3160        } else {
3161            // We are careful to *not* create a reference covering the "data" field, as
3162            // the field may be mutated concurrently (for example, if the last `Arc`
3163            // is dropped, the data field will be dropped in-place).
3164            Some(unsafe { WeakInner { strong: &(*ptr).strong, weak: &(*ptr).weak } })
3165        }
3166    }
3167
3168    /// Returns `true` if the two `Weak`s point to the same allocation similar to [`ptr::eq`], or if
3169    /// both don't point to any allocation (because they were created with `Weak::new()`). However,
3170    /// this function ignores the metadata of  `dyn Trait` pointers.
3171    ///
3172    /// # Notes
3173    ///
3174    /// Since this compares pointers it means that `Weak::new()` will equal each
3175    /// other, even though they don't point to any allocation.
3176    ///
3177    /// # Examples
3178    ///
3179    /// ```
3180    /// use std::sync::Arc;
3181    ///
3182    /// let first_rc = Arc::new(5);
3183    /// let first = Arc::downgrade(&first_rc);
3184    /// let second = Arc::downgrade(&first_rc);
3185    ///
3186    /// assert!(first.ptr_eq(&second));
3187    ///
3188    /// let third_rc = Arc::new(5);
3189    /// let third = Arc::downgrade(&third_rc);
3190    ///
3191    /// assert!(!first.ptr_eq(&third));
3192    /// ```
3193    ///
3194    /// Comparing `Weak::new`.
3195    ///
3196    /// ```
3197    /// use std::sync::{Arc, Weak};
3198    ///
3199    /// let first = Weak::new();
3200    /// let second = Weak::new();
3201    /// assert!(first.ptr_eq(&second));
3202    ///
3203    /// let third_rc = Arc::new(());
3204    /// let third = Arc::downgrade(&third_rc);
3205    /// assert!(!first.ptr_eq(&third));
3206    /// ```
3207    ///
3208    /// [`ptr::eq`]: core::ptr::eq "ptr::eq"
3209    #[inline]
3210    #[must_use]
3211    #[stable(feature = "weak_ptr_eq", since = "1.39.0")]
3212    pub fn ptr_eq(&self, other: &Self) -> bool {
3213        ptr::addr_eq(self.ptr.as_ptr(), other.ptr.as_ptr())
3214    }
3215}
3216
3217#[stable(feature = "arc_weak", since = "1.4.0")]
3218impl<T: ?Sized, A: Allocator + Clone> Clone for Weak<T, A> {
3219    /// Makes a clone of the `Weak` pointer that points to the same allocation.
3220    ///
3221    /// # Examples
3222    ///
3223    /// ```
3224    /// use std::sync::{Arc, Weak};
3225    ///
3226    /// let weak_five = Arc::downgrade(&Arc::new(5));
3227    ///
3228    /// let _ = Weak::clone(&weak_five);
3229    /// ```
3230    #[inline]
3231    fn clone(&self) -> Weak<T, A> {
3232        if let Some(inner) = self.inner() {
3233            // See comments in Arc::clone() for why this is relaxed. This can use a
3234            // fetch_add (ignoring the lock) because the weak count is only locked
3235            // where are *no other* weak pointers in existence. (So we can't be
3236            // running this code in that case).
3237            let old_size = inner.weak.fetch_add(1, Relaxed);
3238
3239            // See comments in Arc::clone() for why we do this (for mem::forget).
3240            if old_size > MAX_REFCOUNT {
3241                abort();
3242            }
3243        }
3244
3245        Weak { ptr: self.ptr, alloc: self.alloc.clone() }
3246    }
3247}
3248
3249#[unstable(feature = "ergonomic_clones", issue = "132290")]
3250impl<T: ?Sized, A: Allocator + Clone> UseCloned for Weak<T, A> {}
3251
3252#[stable(feature = "downgraded_weak", since = "1.10.0")]
3253impl<T> Default for Weak<T> {
3254    /// Constructs a new `Weak<T>`, without allocating memory.
3255    /// Calling [`upgrade`] on the return value always
3256    /// gives [`None`].
3257    ///
3258    /// [`upgrade`]: Weak::upgrade
3259    ///
3260    /// # Examples
3261    ///
3262    /// ```
3263    /// use std::sync::Weak;
3264    ///
3265    /// let empty: Weak<i64> = Default::default();
3266    /// assert!(empty.upgrade().is_none());
3267    /// ```
3268    fn default() -> Weak<T> {
3269        Weak::new()
3270    }
3271}
3272
3273#[stable(feature = "arc_weak", since = "1.4.0")]
3274unsafe impl<#[may_dangle] T: ?Sized, A: Allocator> Drop for Weak<T, A> {
3275    /// Drops the `Weak` pointer.
3276    ///
3277    /// # Examples
3278    ///
3279    /// ```
3280    /// use std::sync::{Arc, Weak};
3281    ///
3282    /// struct Foo;
3283    ///
3284    /// impl Drop for Foo {
3285    ///     fn drop(&mut self) {
3286    ///         println!("dropped!");
3287    ///     }
3288    /// }
3289    ///
3290    /// let foo = Arc::new(Foo);
3291    /// let weak_foo = Arc::downgrade(&foo);
3292    /// let other_weak_foo = Weak::clone(&weak_foo);
3293    ///
3294    /// drop(weak_foo);   // Doesn't print anything
3295    /// drop(foo);        // Prints "dropped!"
3296    ///
3297    /// assert!(other_weak_foo.upgrade().is_none());
3298    /// ```
3299    fn drop(&mut self) {
3300        // If we find out that we were the last weak pointer, then its time to
3301        // deallocate the data entirely. See the discussion in Arc::drop() about
3302        // the memory orderings
3303        //
3304        // It's not necessary to check for the locked state here, because the
3305        // weak count can only be locked if there was precisely one weak ref,
3306        // meaning that drop could only subsequently run ON that remaining weak
3307        // ref, which can only happen after the lock is released.
3308        let inner = if let Some(inner) = self.inner() { inner } else { return };
3309
3310        if inner.weak.fetch_sub(1, Release) == 1 {
3311            acquire!(inner.weak);
3312
3313            // Make sure we aren't trying to "deallocate" the shared static for empty slices
3314            // used by Default::default.
3315            debug_assert!(
3316                !ptr::addr_eq(self.ptr.as_ptr(), &STATIC_INNER_SLICE.inner),
3317                "Arc/Weaks backed by a static should never be deallocated. \
3318                Likely decrement_strong_count or from_raw were called too many times.",
3319            );
3320
3321            unsafe {
3322                self.alloc.deallocate(self.ptr.cast(), Layout::for_value_raw(self.ptr.as_ptr()))
3323            }
3324        }
3325    }
3326}
3327
3328#[stable(feature = "rust1", since = "1.0.0")]
3329trait ArcEqIdent<T: ?Sized + PartialEq, A: Allocator> {
3330    fn eq(&self, other: &Arc<T, A>) -> bool;
3331    fn ne(&self, other: &Arc<T, A>) -> bool;
3332}
3333
3334#[stable(feature = "rust1", since = "1.0.0")]
3335impl<T: ?Sized + PartialEq, A: Allocator> ArcEqIdent<T, A> for Arc<T, A> {
3336    #[inline]
3337    default fn eq(&self, other: &Arc<T, A>) -> bool {
3338        **self == **other
3339    }
3340    #[inline]
3341    default fn ne(&self, other: &Arc<T, A>) -> bool {
3342        **self != **other
3343    }
3344}
3345
3346/// We're doing this specialization here, and not as a more general optimization on `&T`, because it
3347/// would otherwise add a cost to all equality checks on refs. We assume that `Arc`s are used to
3348/// store large values, that are slow to clone, but also heavy to check for equality, causing this
3349/// cost to pay off more easily. It's also more likely to have two `Arc` clones, that point to
3350/// the same value, than two `&T`s.
3351///
3352/// We can only do this when `T: Eq` as a `PartialEq` might be deliberately irreflexive.
3353#[stable(feature = "rust1", since = "1.0.0")]
3354impl<T: ?Sized + crate::rc::MarkerEq, A: Allocator> ArcEqIdent<T, A> for Arc<T, A> {
3355    #[inline]
3356    fn eq(&self, other: &Arc<T, A>) -> bool {
3357        Arc::ptr_eq(self, other) || **self == **other
3358    }
3359
3360    #[inline]
3361    fn ne(&self, other: &Arc<T, A>) -> bool {
3362        !Arc::ptr_eq(self, other) && **self != **other
3363    }
3364}
3365
3366#[stable(feature = "rust1", since = "1.0.0")]
3367impl<T: ?Sized + PartialEq, A: Allocator> PartialEq for Arc<T, A> {
3368    /// Equality for two `Arc`s.
3369    ///
3370    /// Two `Arc`s are equal if their inner values are equal, even if they are
3371    /// stored in different allocation.
3372    ///
3373    /// If `T` also implements `Eq` (implying reflexivity of equality),
3374    /// two `Arc`s that point to the same allocation are always equal.
3375    ///
3376    /// # Examples
3377    ///
3378    /// ```
3379    /// use std::sync::Arc;
3380    ///
3381    /// let five = Arc::new(5);
3382    ///
3383    /// assert!(five == Arc::new(5));
3384    /// ```
3385    #[inline]
3386    fn eq(&self, other: &Arc<T, A>) -> bool {
3387        ArcEqIdent::eq(self, other)
3388    }
3389
3390    /// Inequality for two `Arc`s.
3391    ///
3392    /// Two `Arc`s are not equal if their inner values are not equal.
3393    ///
3394    /// If `T` also implements `Eq` (implying reflexivity of equality),
3395    /// two `Arc`s that point to the same value are always equal.
3396    ///
3397    /// # Examples
3398    ///
3399    /// ```
3400    /// use std::sync::Arc;
3401    ///
3402    /// let five = Arc::new(5);
3403    ///
3404    /// assert!(five != Arc::new(6));
3405    /// ```
3406    #[inline]
3407    fn ne(&self, other: &Arc<T, A>) -> bool {
3408        ArcEqIdent::ne(self, other)
3409    }
3410}
3411
3412#[stable(feature = "rust1", since = "1.0.0")]
3413impl<T: ?Sized + PartialOrd, A: Allocator> PartialOrd for Arc<T, A> {
3414    /// Partial comparison for two `Arc`s.
3415    ///
3416    /// The two are compared by calling `partial_cmp()` on their inner values.
3417    ///
3418    /// # Examples
3419    ///
3420    /// ```
3421    /// use std::sync::Arc;
3422    /// use std::cmp::Ordering;
3423    ///
3424    /// let five = Arc::new(5);
3425    ///
3426    /// assert_eq!(Some(Ordering::Less), five.partial_cmp(&Arc::new(6)));
3427    /// ```
3428    fn partial_cmp(&self, other: &Arc<T, A>) -> Option<Ordering> {
3429        (**self).partial_cmp(&**other)
3430    }
3431
3432    /// Less-than comparison for two `Arc`s.
3433    ///
3434    /// The two are compared by calling `<` on their inner values.
3435    ///
3436    /// # Examples
3437    ///
3438    /// ```
3439    /// use std::sync::Arc;
3440    ///
3441    /// let five = Arc::new(5);
3442    ///
3443    /// assert!(five < Arc::new(6));
3444    /// ```
3445    fn lt(&self, other: &Arc<T, A>) -> bool {
3446        *(*self) < *(*other)
3447    }
3448
3449    /// 'Less than or equal to' comparison for two `Arc`s.
3450    ///
3451    /// The two are compared by calling `<=` on their inner values.
3452    ///
3453    /// # Examples
3454    ///
3455    /// ```
3456    /// use std::sync::Arc;
3457    ///
3458    /// let five = Arc::new(5);
3459    ///
3460    /// assert!(five <= Arc::new(5));
3461    /// ```
3462    fn le(&self, other: &Arc<T, A>) -> bool {
3463        *(*self) <= *(*other)
3464    }
3465
3466    /// Greater-than comparison for two `Arc`s.
3467    ///
3468    /// The two are compared by calling `>` on their inner values.
3469    ///
3470    /// # Examples
3471    ///
3472    /// ```
3473    /// use std::sync::Arc;
3474    ///
3475    /// let five = Arc::new(5);
3476    ///
3477    /// assert!(five > Arc::new(4));
3478    /// ```
3479    fn gt(&self, other: &Arc<T, A>) -> bool {
3480        *(*self) > *(*other)
3481    }
3482
3483    /// 'Greater than or equal to' comparison for two `Arc`s.
3484    ///
3485    /// The two are compared by calling `>=` on their inner values.
3486    ///
3487    /// # Examples
3488    ///
3489    /// ```
3490    /// use std::sync::Arc;
3491    ///
3492    /// let five = Arc::new(5);
3493    ///
3494    /// assert!(five >= Arc::new(5));
3495    /// ```
3496    fn ge(&self, other: &Arc<T, A>) -> bool {
3497        *(*self) >= *(*other)
3498    }
3499}
3500#[stable(feature = "rust1", since = "1.0.0")]
3501impl<T: ?Sized + Ord, A: Allocator> Ord for Arc<T, A> {
3502    /// Comparison for two `Arc`s.
3503    ///
3504    /// The two are compared by calling `cmp()` on their inner values.
3505    ///
3506    /// # Examples
3507    ///
3508    /// ```
3509    /// use std::sync::Arc;
3510    /// use std::cmp::Ordering;
3511    ///
3512    /// let five = Arc::new(5);
3513    ///
3514    /// assert_eq!(Ordering::Less, five.cmp(&Arc::new(6)));
3515    /// ```
3516    fn cmp(&self, other: &Arc<T, A>) -> Ordering {
3517        (**self).cmp(&**other)
3518    }
3519}
3520#[stable(feature = "rust1", since = "1.0.0")]
3521impl<T: ?Sized + Eq, A: Allocator> Eq for Arc<T, A> {}
3522
3523#[stable(feature = "rust1", since = "1.0.0")]
3524impl<T: ?Sized + fmt::Display, A: Allocator> fmt::Display for Arc<T, A> {
3525    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
3526        fmt::Display::fmt(&**self, f)
3527    }
3528}
3529
3530#[stable(feature = "rust1", since = "1.0.0")]
3531impl<T: ?Sized + fmt::Debug, A: Allocator> fmt::Debug for Arc<T, A> {
3532    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
3533        fmt::Debug::fmt(&**self, f)
3534    }
3535}
3536
3537#[stable(feature = "rust1", since = "1.0.0")]
3538impl<T: ?Sized, A: Allocator> fmt::Pointer for Arc<T, A> {
3539    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
3540        fmt::Pointer::fmt(&(&raw const **self), f)
3541    }
3542}
3543
3544#[cfg(not(no_global_oom_handling))]
3545#[stable(feature = "rust1", since = "1.0.0")]
3546impl<T: Default> Default for Arc<T> {
3547    /// Creates a new `Arc<T>`, with the `Default` value for `T`.
3548    ///
3549    /// # Examples
3550    ///
3551    /// ```
3552    /// use std::sync::Arc;
3553    ///
3554    /// let x: Arc<i32> = Default::default();
3555    /// assert_eq!(*x, 0);
3556    /// ```
3557    fn default() -> Arc<T> {
3558        unsafe {
3559            Self::from_inner(
3560                Box::leak(Box::write(
3561                    Box::new_uninit(),
3562                    ArcInner {
3563                        strong: atomic::AtomicUsize::new(1),
3564                        weak: atomic::AtomicUsize::new(1),
3565                        data: T::default(),
3566                    },
3567                ))
3568                .into(),
3569            )
3570        }
3571    }
3572}
3573
3574/// Struct to hold the static `ArcInner` used for empty `Arc<str/CStr/[T]>` as
3575/// returned by `Default::default`.
3576///
3577/// Layout notes:
3578/// * `repr(align(16))` so we can use it for `[T]` with `align_of::<T>() <= 16`.
3579/// * `repr(C)` so `inner` is at offset 0 (and thus guaranteed to actually be aligned to 16).
3580/// * `[u8; 1]` (to be initialized with 0) so it can be used for `Arc<CStr>`.
3581#[repr(C, align(16))]
3582struct SliceArcInnerForStatic {
3583    inner: ArcInner<[u8; 1]>,
3584}
3585#[cfg(not(no_global_oom_handling))]
3586const MAX_STATIC_INNER_SLICE_ALIGNMENT: usize = 16;
3587
3588static STATIC_INNER_SLICE: SliceArcInnerForStatic = SliceArcInnerForStatic {
3589    inner: ArcInner {
3590        strong: atomic::AtomicUsize::new(1),
3591        weak: atomic::AtomicUsize::new(1),
3592        data: [0],
3593    },
3594};
3595
3596#[cfg(not(no_global_oom_handling))]
3597#[stable(feature = "more_rc_default_impls", since = "1.80.0")]
3598impl Default for Arc<str> {
3599    /// Creates an empty str inside an Arc
3600    ///
3601    /// This may or may not share an allocation with other Arcs.
3602    #[inline]
3603    fn default() -> Self {
3604        let arc: Arc<[u8]> = Default::default();
3605        debug_assert!(core::str::from_utf8(&*arc).is_ok());
3606        let (ptr, alloc) = Arc::into_inner_with_allocator(arc);
3607        unsafe { Arc::from_ptr_in(ptr.as_ptr() as *mut ArcInner<str>, alloc) }
3608    }
3609}
3610
3611#[cfg(not(no_global_oom_handling))]
3612#[stable(feature = "more_rc_default_impls", since = "1.80.0")]
3613impl Default for Arc<core::ffi::CStr> {
3614    /// Creates an empty CStr inside an Arc
3615    ///
3616    /// This may or may not share an allocation with other Arcs.
3617    #[inline]
3618    fn default() -> Self {
3619        use core::ffi::CStr;
3620        let inner: NonNull<ArcInner<[u8]>> = NonNull::from(&STATIC_INNER_SLICE.inner);
3621        let inner: NonNull<ArcInner<CStr>> =
3622            NonNull::new(inner.as_ptr() as *mut ArcInner<CStr>).unwrap();
3623        // `this` semantically is the Arc "owned" by the static, so make sure not to drop it.
3624        let this: mem::ManuallyDrop<Arc<CStr>> =
3625            unsafe { mem::ManuallyDrop::new(Arc::from_inner(inner)) };
3626        (*this).clone()
3627    }
3628}
3629
3630#[cfg(not(no_global_oom_handling))]
3631#[stable(feature = "more_rc_default_impls", since = "1.80.0")]
3632impl<T> Default for Arc<[T]> {
3633    /// Creates an empty `[T]` inside an Arc
3634    ///
3635    /// This may or may not share an allocation with other Arcs.
3636    #[inline]
3637    fn default() -> Self {
3638        if align_of::<T>() <= MAX_STATIC_INNER_SLICE_ALIGNMENT {
3639            // We take a reference to the whole struct instead of the ArcInner<[u8; 1]> inside it so
3640            // we don't shrink the range of bytes the ptr is allowed to access under Stacked Borrows.
3641            // (Miri complains on 32-bit targets with Arc<[Align16]> otherwise.)
3642            // (Note that NonNull::from(&STATIC_INNER_SLICE.inner) is fine under Tree Borrows.)
3643            let inner: NonNull<SliceArcInnerForStatic> = NonNull::from(&STATIC_INNER_SLICE);
3644            let inner: NonNull<ArcInner<[T; 0]>> = inner.cast();
3645            // `this` semantically is the Arc "owned" by the static, so make sure not to drop it.
3646            let this: mem::ManuallyDrop<Arc<[T; 0]>> =
3647                unsafe { mem::ManuallyDrop::new(Arc::from_inner(inner)) };
3648            return (*this).clone();
3649        }
3650
3651        // If T's alignment is too large for the static, make a new unique allocation.
3652        let arr: [T; 0] = [];
3653        Arc::from(arr)
3654    }
3655}
3656
3657#[stable(feature = "rust1", since = "1.0.0")]
3658impl<T: ?Sized + Hash, A: Allocator> Hash for Arc<T, A> {
3659    fn hash<H: Hasher>(&self, state: &mut H) {
3660        (**self).hash(state)
3661    }
3662}
3663
3664#[cfg(not(no_global_oom_handling))]
3665#[stable(feature = "from_for_ptrs", since = "1.6.0")]
3666impl<T> From<T> for Arc<T> {
3667    /// Converts a `T` into an `Arc<T>`
3668    ///
3669    /// The conversion moves the value into a
3670    /// newly allocated `Arc`. It is equivalent to
3671    /// calling `Arc::new(t)`.
3672    ///
3673    /// # Example
3674    /// ```rust
3675    /// # use std::sync::Arc;
3676    /// let x = 5;
3677    /// let arc = Arc::new(5);
3678    ///
3679    /// assert_eq!(Arc::from(x), arc);
3680    /// ```
3681    fn from(t: T) -> Self {
3682        Arc::new(t)
3683    }
3684}
3685
3686#[cfg(not(no_global_oom_handling))]
3687#[stable(feature = "shared_from_array", since = "1.74.0")]
3688impl<T, const N: usize> From<[T; N]> for Arc<[T]> {
3689    /// Converts a [`[T; N]`](prim@array) into an `Arc<[T]>`.
3690    ///
3691    /// The conversion moves the array into a newly allocated `Arc`.
3692    ///
3693    /// # Example
3694    ///
3695    /// ```
3696    /// # use std::sync::Arc;
3697    /// let original: [i32; 3] = [1, 2, 3];
3698    /// let shared: Arc<[i32]> = Arc::from(original);
3699    /// assert_eq!(&[1, 2, 3], &shared[..]);
3700    /// ```
3701    #[inline]
3702    fn from(v: [T; N]) -> Arc<[T]> {
3703        Arc::<[T; N]>::from(v)
3704    }
3705}
3706
3707#[cfg(not(no_global_oom_handling))]
3708#[stable(feature = "shared_from_slice", since = "1.21.0")]
3709impl<T: Clone> From<&[T]> for Arc<[T]> {
3710    /// Allocates a reference-counted slice and fills it by cloning `v`'s items.
3711    ///
3712    /// # Example
3713    ///
3714    /// ```
3715    /// # use std::sync::Arc;
3716    /// let original: &[i32] = &[1, 2, 3];
3717    /// let shared: Arc<[i32]> = Arc::from(original);
3718    /// assert_eq!(&[1, 2, 3], &shared[..]);
3719    /// ```
3720    #[inline]
3721    fn from(v: &[T]) -> Arc<[T]> {
3722        <Self as ArcFromSlice<T>>::from_slice(v)
3723    }
3724}
3725
3726#[cfg(not(no_global_oom_handling))]
3727#[stable(feature = "shared_from_mut_slice", since = "1.84.0")]
3728impl<T: Clone> From<&mut [T]> for Arc<[T]> {
3729    /// Allocates a reference-counted slice and fills it by cloning `v`'s items.
3730    ///
3731    /// # Example
3732    ///
3733    /// ```
3734    /// # use std::sync::Arc;
3735    /// let mut original = [1, 2, 3];
3736    /// let original: &mut [i32] = &mut original;
3737    /// let shared: Arc<[i32]> = Arc::from(original);
3738    /// assert_eq!(&[1, 2, 3], &shared[..]);
3739    /// ```
3740    #[inline]
3741    fn from(v: &mut [T]) -> Arc<[T]> {
3742        Arc::from(&*v)
3743    }
3744}
3745
3746#[cfg(not(no_global_oom_handling))]
3747#[stable(feature = "shared_from_slice", since = "1.21.0")]
3748impl From<&str> for Arc<str> {
3749    /// Allocates a reference-counted `str` and copies `v` into it.
3750    ///
3751    /// # Example
3752    ///
3753    /// ```
3754    /// # use std::sync::Arc;
3755    /// let shared: Arc<str> = Arc::from("eggplant");
3756    /// assert_eq!("eggplant", &shared[..]);
3757    /// ```
3758    #[inline]
3759    fn from(v: &str) -> Arc<str> {
3760        let arc = Arc::<[u8]>::from(v.as_bytes());
3761        unsafe { Arc::from_raw(Arc::into_raw(arc) as *const str) }
3762    }
3763}
3764
3765#[cfg(not(no_global_oom_handling))]
3766#[stable(feature = "shared_from_mut_slice", since = "1.84.0")]
3767impl From<&mut str> for Arc<str> {
3768    /// Allocates a reference-counted `str` and copies `v` into it.
3769    ///
3770    /// # Example
3771    ///
3772    /// ```
3773    /// # use std::sync::Arc;
3774    /// let mut original = String::from("eggplant");
3775    /// let original: &mut str = &mut original;
3776    /// let shared: Arc<str> = Arc::from(original);
3777    /// assert_eq!("eggplant", &shared[..]);
3778    /// ```
3779    #[inline]
3780    fn from(v: &mut str) -> Arc<str> {
3781        Arc::from(&*v)
3782    }
3783}
3784
3785#[cfg(not(no_global_oom_handling))]
3786#[stable(feature = "shared_from_slice", since = "1.21.0")]
3787impl From<String> for Arc<str> {
3788    /// Allocates a reference-counted `str` and copies `v` into it.
3789    ///
3790    /// # Example
3791    ///
3792    /// ```
3793    /// # use std::sync::Arc;
3794    /// let unique: String = "eggplant".to_owned();
3795    /// let shared: Arc<str> = Arc::from(unique);
3796    /// assert_eq!("eggplant", &shared[..]);
3797    /// ```
3798    #[inline]
3799    fn from(v: String) -> Arc<str> {
3800        Arc::from(&v[..])
3801    }
3802}
3803
3804#[cfg(not(no_global_oom_handling))]
3805#[stable(feature = "shared_from_slice", since = "1.21.0")]
3806impl<T: ?Sized, A: Allocator> From<Box<T, A>> for Arc<T, A> {
3807    /// Move a boxed object to a new, reference-counted allocation.
3808    ///
3809    /// # Example
3810    ///
3811    /// ```
3812    /// # use std::sync::Arc;
3813    /// let unique: Box<str> = Box::from("eggplant");
3814    /// let shared: Arc<str> = Arc::from(unique);
3815    /// assert_eq!("eggplant", &shared[..]);
3816    /// ```
3817    #[inline]
3818    fn from(v: Box<T, A>) -> Arc<T, A> {
3819        Arc::from_box_in(v)
3820    }
3821}
3822
3823#[cfg(not(no_global_oom_handling))]
3824#[stable(feature = "shared_from_slice", since = "1.21.0")]
3825impl<T, A: Allocator + Clone> From<Vec<T, A>> for Arc<[T], A> {
3826    /// Allocates a reference-counted slice and moves `v`'s items into it.
3827    ///
3828    /// # Example
3829    ///
3830    /// ```
3831    /// # use std::sync::Arc;
3832    /// let unique: Vec<i32> = vec![1, 2, 3];
3833    /// let shared: Arc<[i32]> = Arc::from(unique);
3834    /// assert_eq!(&[1, 2, 3], &shared[..]);
3835    /// ```
3836    #[inline]
3837    fn from(v: Vec<T, A>) -> Arc<[T], A> {
3838        unsafe {
3839            let (vec_ptr, len, cap, alloc) = v.into_raw_parts_with_alloc();
3840
3841            let rc_ptr = Self::allocate_for_slice_in(len, &alloc);
3842            ptr::copy_nonoverlapping(vec_ptr, (&raw mut (*rc_ptr).data) as *mut T, len);
3843
3844            // Create a `Vec<T, &A>` with length 0, to deallocate the buffer
3845            // without dropping its contents or the allocator
3846            let _ = Vec::from_raw_parts_in(vec_ptr, 0, cap, &alloc);
3847
3848            Self::from_ptr_in(rc_ptr, alloc)
3849        }
3850    }
3851}
3852
3853#[stable(feature = "shared_from_cow", since = "1.45.0")]
3854impl<'a, B> From<Cow<'a, B>> for Arc<B>
3855where
3856    B: ToOwned + ?Sized,
3857    Arc<B>: From<&'a B> + From<B::Owned>,
3858{
3859    /// Creates an atomically reference-counted pointer from a clone-on-write
3860    /// pointer by copying its content.
3861    ///
3862    /// # Example
3863    ///
3864    /// ```rust
3865    /// # use std::sync::Arc;
3866    /// # use std::borrow::Cow;
3867    /// let cow: Cow<'_, str> = Cow::Borrowed("eggplant");
3868    /// let shared: Arc<str> = Arc::from(cow);
3869    /// assert_eq!("eggplant", &shared[..]);
3870    /// ```
3871    #[inline]
3872    fn from(cow: Cow<'a, B>) -> Arc<B> {
3873        match cow {
3874            Cow::Borrowed(s) => Arc::from(s),
3875            Cow::Owned(s) => Arc::from(s),
3876        }
3877    }
3878}
3879
3880#[stable(feature = "shared_from_str", since = "1.62.0")]
3881impl From<Arc<str>> for Arc<[u8]> {
3882    /// Converts an atomically reference-counted string slice into a byte slice.
3883    ///
3884    /// # Example
3885    ///
3886    /// ```
3887    /// # use std::sync::Arc;
3888    /// let string: Arc<str> = Arc::from("eggplant");
3889    /// let bytes: Arc<[u8]> = Arc::from(string);
3890    /// assert_eq!("eggplant".as_bytes(), bytes.as_ref());
3891    /// ```
3892    #[inline]
3893    fn from(rc: Arc<str>) -> Self {
3894        // SAFETY: `str` has the same layout as `[u8]`.
3895        unsafe { Arc::from_raw(Arc::into_raw(rc) as *const [u8]) }
3896    }
3897}
3898
3899#[stable(feature = "boxed_slice_try_from", since = "1.43.0")]
3900impl<T, A: Allocator, const N: usize> TryFrom<Arc<[T], A>> for Arc<[T; N], A> {
3901    type Error = Arc<[T], A>;
3902
3903    fn try_from(boxed_slice: Arc<[T], A>) -> Result<Self, Self::Error> {
3904        if boxed_slice.len() == N {
3905            let (ptr, alloc) = Arc::into_inner_with_allocator(boxed_slice);
3906            Ok(unsafe { Arc::from_inner_in(ptr.cast(), alloc) })
3907        } else {
3908            Err(boxed_slice)
3909        }
3910    }
3911}
3912
3913#[cfg(not(no_global_oom_handling))]
3914#[stable(feature = "shared_from_iter", since = "1.37.0")]
3915impl<T> FromIterator<T> for Arc<[T]> {
3916    /// Takes each element in the `Iterator` and collects it into an `Arc<[T]>`.
3917    ///
3918    /// # Performance characteristics
3919    ///
3920    /// ## The general case
3921    ///
3922    /// In the general case, collecting into `Arc<[T]>` is done by first
3923    /// collecting into a `Vec<T>`. That is, when writing the following:
3924    ///
3925    /// ```rust
3926    /// # use std::sync::Arc;
3927    /// let evens: Arc<[u8]> = (0..10).filter(|&x| x % 2 == 0).collect();
3928    /// # assert_eq!(&*evens, &[0, 2, 4, 6, 8]);
3929    /// ```
3930    ///
3931    /// this behaves as if we wrote:
3932    ///
3933    /// ```rust
3934    /// # use std::sync::Arc;
3935    /// let evens: Arc<[u8]> = (0..10).filter(|&x| x % 2 == 0)
3936    ///     .collect::<Vec<_>>() // The first set of allocations happens here.
3937    ///     .into(); // A second allocation for `Arc<[T]>` happens here.
3938    /// # assert_eq!(&*evens, &[0, 2, 4, 6, 8]);
3939    /// ```
3940    ///
3941    /// This will allocate as many times as needed for constructing the `Vec<T>`
3942    /// and then it will allocate once for turning the `Vec<T>` into the `Arc<[T]>`.
3943    ///
3944    /// ## Iterators of known length
3945    ///
3946    /// When your `Iterator` implements `TrustedLen` and is of an exact size,
3947    /// a single allocation will be made for the `Arc<[T]>`. For example:
3948    ///
3949    /// ```rust
3950    /// # use std::sync::Arc;
3951    /// let evens: Arc<[u8]> = (0..10).collect(); // Just a single allocation happens here.
3952    /// # assert_eq!(&*evens, &*(0..10).collect::<Vec<_>>());
3953    /// ```
3954    fn from_iter<I: IntoIterator<Item = T>>(iter: I) -> Self {
3955        ToArcSlice::to_arc_slice(iter.into_iter())
3956    }
3957}
3958
3959#[cfg(not(no_global_oom_handling))]
3960/// Specialization trait used for collecting into `Arc<[T]>`.
3961trait ToArcSlice<T>: Iterator<Item = T> + Sized {
3962    fn to_arc_slice(self) -> Arc<[T]>;
3963}
3964
3965#[cfg(not(no_global_oom_handling))]
3966impl<T, I: Iterator<Item = T>> ToArcSlice<T> for I {
3967    default fn to_arc_slice(self) -> Arc<[T]> {
3968        self.collect::<Vec<T>>().into()
3969    }
3970}
3971
3972#[cfg(not(no_global_oom_handling))]
3973impl<T, I: iter::TrustedLen<Item = T>> ToArcSlice<T> for I {
3974    fn to_arc_slice(self) -> Arc<[T]> {
3975        // This is the case for a `TrustedLen` iterator.
3976        let (low, high) = self.size_hint();
3977        if let Some(high) = high {
3978            debug_assert_eq!(
3979                low,
3980                high,
3981                "TrustedLen iterator's size hint is not exact: {:?}",
3982                (low, high)
3983            );
3984
3985            unsafe {
3986                // SAFETY: We need to ensure that the iterator has an exact length and we have.
3987                Arc::from_iter_exact(self, low)
3988            }
3989        } else {
3990            // TrustedLen contract guarantees that `upper_bound == None` implies an iterator
3991            // length exceeding `usize::MAX`.
3992            // The default implementation would collect into a vec which would panic.
3993            // Thus we panic here immediately without invoking `Vec` code.
3994            panic!("capacity overflow");
3995        }
3996    }
3997}
3998
3999#[stable(feature = "rust1", since = "1.0.0")]
4000impl<T: ?Sized, A: Allocator> borrow::Borrow<T> for Arc<T, A> {
4001    fn borrow(&self) -> &T {
4002        &**self
4003    }
4004}
4005
4006#[stable(since = "1.5.0", feature = "smart_ptr_as_ref")]
4007impl<T: ?Sized, A: Allocator> AsRef<T> for Arc<T, A> {
4008    fn as_ref(&self) -> &T {
4009        &**self
4010    }
4011}
4012
4013#[stable(feature = "pin", since = "1.33.0")]
4014impl<T: ?Sized, A: Allocator> Unpin for Arc<T, A> {}
4015
4016/// Gets the offset within an `ArcInner` for the payload behind a pointer.
4017///
4018/// # Safety
4019///
4020/// The pointer must point to (and have valid metadata for) a previously
4021/// valid instance of T, but the T is allowed to be dropped.
4022unsafe fn data_offset<T: ?Sized>(ptr: *const T) -> usize {
4023    // Align the unsized value to the end of the ArcInner.
4024    // Because RcInner is repr(C), it will always be the last field in memory.
4025    // SAFETY: since the only unsized types possible are slices, trait objects,
4026    // and extern types, the input safety requirement is currently enough to
4027    // satisfy the requirements of align_of_val_raw; this is an implementation
4028    // detail of the language that must not be relied upon outside of std.
4029    unsafe { data_offset_align(align_of_val_raw(ptr)) }
4030}
4031
4032#[inline]
4033fn data_offset_align(align: usize) -> usize {
4034    let layout = Layout::new::<ArcInner<()>>();
4035    layout.size() + layout.padding_needed_for(align)
4036}
4037
4038/// A unique owning pointer to an [`ArcInner`] **that does not imply the contents are initialized,**
4039/// but will deallocate it (without dropping the value) when dropped.
4040///
4041/// This is a helper for [`Arc::make_mut()`] to ensure correct cleanup on panic.
4042#[cfg(not(no_global_oom_handling))]
4043struct UniqueArcUninit<T: ?Sized, A: Allocator> {
4044    ptr: NonNull<ArcInner<T>>,
4045    layout_for_value: Layout,
4046    alloc: Option<A>,
4047}
4048
4049#[cfg(not(no_global_oom_handling))]
4050impl<T: ?Sized, A: Allocator> UniqueArcUninit<T, A> {
4051    /// Allocates an ArcInner with layout suitable to contain `for_value` or a clone of it.
4052    fn new(for_value: &T, alloc: A) -> UniqueArcUninit<T, A> {
4053        let layout = Layout::for_value(for_value);
4054        let ptr = unsafe {
4055            Arc::allocate_for_layout(
4056                layout,
4057                |layout_for_arcinner| alloc.allocate(layout_for_arcinner),
4058                |mem| mem.with_metadata_of(ptr::from_ref(for_value) as *const ArcInner<T>),
4059            )
4060        };
4061        Self { ptr: NonNull::new(ptr).unwrap(), layout_for_value: layout, alloc: Some(alloc) }
4062    }
4063
4064    /// Returns the pointer to be written into to initialize the [`Arc`].
4065    fn data_ptr(&mut self) -> *mut T {
4066        let offset = data_offset_align(self.layout_for_value.align());
4067        unsafe { self.ptr.as_ptr().byte_add(offset) as *mut T }
4068    }
4069
4070    /// Upgrade this into a normal [`Arc`].
4071    ///
4072    /// # Safety
4073    ///
4074    /// The data must have been initialized (by writing to [`Self::data_ptr()`]).
4075    unsafe fn into_arc(self) -> Arc<T, A> {
4076        let mut this = ManuallyDrop::new(self);
4077        let ptr = this.ptr.as_ptr();
4078        let alloc = this.alloc.take().unwrap();
4079
4080        // SAFETY: The pointer is valid as per `UniqueArcUninit::new`, and the caller is responsible
4081        // for having initialized the data.
4082        unsafe { Arc::from_ptr_in(ptr, alloc) }
4083    }
4084}
4085
4086#[cfg(not(no_global_oom_handling))]
4087impl<T: ?Sized, A: Allocator> Drop for UniqueArcUninit<T, A> {
4088    fn drop(&mut self) {
4089        // SAFETY:
4090        // * new() produced a pointer safe to deallocate.
4091        // * We own the pointer unless into_arc() was called, which forgets us.
4092        unsafe {
4093            self.alloc.take().unwrap().deallocate(
4094                self.ptr.cast(),
4095                arcinner_layout_for_value_layout(self.layout_for_value),
4096            );
4097        }
4098    }
4099}
4100
4101#[stable(feature = "arc_error", since = "1.52.0")]
4102impl<T: core::error::Error + ?Sized> core::error::Error for Arc<T> {
4103    #[allow(deprecated, deprecated_in_future)]
4104    fn description(&self) -> &str {
4105        core::error::Error::description(&**self)
4106    }
4107
4108    #[allow(deprecated)]
4109    fn cause(&self) -> Option<&dyn core::error::Error> {
4110        core::error::Error::cause(&**self)
4111    }
4112
4113    fn source(&self) -> Option<&(dyn core::error::Error + 'static)> {
4114        core::error::Error::source(&**self)
4115    }
4116
4117    fn provide<'a>(&'a self, req: &mut core::error::Request<'a>) {
4118        core::error::Error::provide(&**self, req);
4119    }
4120}
4121
4122/// A uniquely owned [`Arc`].
4123///
4124/// This represents an `Arc` that is known to be uniquely owned -- that is, have exactly one strong
4125/// reference. Multiple weak pointers can be created, but attempts to upgrade those to strong
4126/// references will fail unless the `UniqueArc` they point to has been converted into a regular `Arc`.
4127///
4128/// Because it is uniquely owned, the contents of a `UniqueArc` can be freely mutated. A common
4129/// use case is to have an object be mutable during its initialization phase but then have it become
4130/// immutable and converted to a normal `Arc`.
4131///
4132/// This can be used as a flexible way to create cyclic data structures, as in the example below.
4133///
4134/// ```
4135/// #![feature(unique_rc_arc)]
4136/// use std::sync::{Arc, Weak, UniqueArc};
4137///
4138/// struct Gadget {
4139///     me: Weak<Gadget>,
4140/// }
4141///
4142/// fn create_gadget() -> Option<Arc<Gadget>> {
4143///     let mut rc = UniqueArc::new(Gadget {
4144///         me: Weak::new(),
4145///     });
4146///     rc.me = UniqueArc::downgrade(&rc);
4147///     Some(UniqueArc::into_arc(rc))
4148/// }
4149///
4150/// create_gadget().unwrap();
4151/// ```
4152///
4153/// An advantage of using `UniqueArc` over [`Arc::new_cyclic`] to build cyclic data structures is that
4154/// [`Arc::new_cyclic`]'s `data_fn` parameter cannot be async or return a [`Result`]. As shown in the
4155/// previous example, `UniqueArc` allows for more flexibility in the construction of cyclic data,
4156/// including fallible or async constructors.
4157#[unstable(feature = "unique_rc_arc", issue = "112566")]
4158pub struct UniqueArc<
4159    T: ?Sized,
4160    #[unstable(feature = "allocator_api", issue = "32838")] A: Allocator = Global,
4161> {
4162    ptr: NonNull<ArcInner<T>>,
4163    // Define the ownership of `ArcInner<T>` for drop-check
4164    _marker: PhantomData<ArcInner<T>>,
4165    // Invariance is necessary for soundness: once other `Weak`
4166    // references exist, we already have a form of shared mutability!
4167    _marker2: PhantomData<*mut T>,
4168    alloc: A,
4169}
4170
4171#[unstable(feature = "unique_rc_arc", issue = "112566")]
4172unsafe impl<T: ?Sized + Sync + Send, A: Allocator + Send> Send for UniqueArc<T, A> {}
4173
4174#[unstable(feature = "unique_rc_arc", issue = "112566")]
4175unsafe impl<T: ?Sized + Sync + Send, A: Allocator + Sync> Sync for UniqueArc<T, A> {}
4176
4177#[unstable(feature = "unique_rc_arc", issue = "112566")]
4178// #[unstable(feature = "coerce_unsized", issue = "18598")]
4179impl<T: ?Sized + Unsize<U>, U: ?Sized, A: Allocator> CoerceUnsized<UniqueArc<U, A>>
4180    for UniqueArc<T, A>
4181{
4182}
4183
4184//#[unstable(feature = "unique_rc_arc", issue = "112566")]
4185#[unstable(feature = "dispatch_from_dyn", issue = "none")]
4186impl<T: ?Sized + Unsize<U>, U: ?Sized> DispatchFromDyn<UniqueArc<U>> for UniqueArc<T> {}
4187
4188#[unstable(feature = "unique_rc_arc", issue = "112566")]
4189impl<T: ?Sized + fmt::Display, A: Allocator> fmt::Display for UniqueArc<T, A> {
4190    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
4191        fmt::Display::fmt(&**self, f)
4192    }
4193}
4194
4195#[unstable(feature = "unique_rc_arc", issue = "112566")]
4196impl<T: ?Sized + fmt::Debug, A: Allocator> fmt::Debug for UniqueArc<T, A> {
4197    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
4198        fmt::Debug::fmt(&**self, f)
4199    }
4200}
4201
4202#[unstable(feature = "unique_rc_arc", issue = "112566")]
4203impl<T: ?Sized, A: Allocator> fmt::Pointer for UniqueArc<T, A> {
4204    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
4205        fmt::Pointer::fmt(&(&raw const **self), f)
4206    }
4207}
4208
4209#[unstable(feature = "unique_rc_arc", issue = "112566")]
4210impl<T: ?Sized, A: Allocator> borrow::Borrow<T> for UniqueArc<T, A> {
4211    fn borrow(&self) -> &T {
4212        &**self
4213    }
4214}
4215
4216#[unstable(feature = "unique_rc_arc", issue = "112566")]
4217impl<T: ?Sized, A: Allocator> borrow::BorrowMut<T> for UniqueArc<T, A> {
4218    fn borrow_mut(&mut self) -> &mut T {
4219        &mut **self
4220    }
4221}
4222
4223#[unstable(feature = "unique_rc_arc", issue = "112566")]
4224impl<T: ?Sized, A: Allocator> AsRef<T> for UniqueArc<T, A> {
4225    fn as_ref(&self) -> &T {
4226        &**self
4227    }
4228}
4229
4230#[unstable(feature = "unique_rc_arc", issue = "112566")]
4231impl<T: ?Sized, A: Allocator> AsMut<T> for UniqueArc<T, A> {
4232    fn as_mut(&mut self) -> &mut T {
4233        &mut **self
4234    }
4235}
4236
4237#[unstable(feature = "unique_rc_arc", issue = "112566")]
4238impl<T: ?Sized, A: Allocator> Unpin for UniqueArc<T, A> {}
4239
4240#[unstable(feature = "unique_rc_arc", issue = "112566")]
4241impl<T: ?Sized + PartialEq, A: Allocator> PartialEq for UniqueArc<T, A> {
4242    /// Equality for two `UniqueArc`s.
4243    ///
4244    /// Two `UniqueArc`s are equal if their inner values are equal.
4245    ///
4246    /// # Examples
4247    ///
4248    /// ```
4249    /// #![feature(unique_rc_arc)]
4250    /// use std::sync::UniqueArc;
4251    ///
4252    /// let five = UniqueArc::new(5);
4253    ///
4254    /// assert!(five == UniqueArc::new(5));
4255    /// ```
4256    #[inline]
4257    fn eq(&self, other: &Self) -> bool {
4258        PartialEq::eq(&**self, &**other)
4259    }
4260}
4261
4262#[unstable(feature = "unique_rc_arc", issue = "112566")]
4263impl<T: ?Sized + PartialOrd, A: Allocator> PartialOrd for UniqueArc<T, A> {
4264    /// Partial comparison for two `UniqueArc`s.
4265    ///
4266    /// The two are compared by calling `partial_cmp()` on their inner values.
4267    ///
4268    /// # Examples
4269    ///
4270    /// ```
4271    /// #![feature(unique_rc_arc)]
4272    /// use std::sync::UniqueArc;
4273    /// use std::cmp::Ordering;
4274    ///
4275    /// let five = UniqueArc::new(5);
4276    ///
4277    /// assert_eq!(Some(Ordering::Less), five.partial_cmp(&UniqueArc::new(6)));
4278    /// ```
4279    #[inline(always)]
4280    fn partial_cmp(&self, other: &UniqueArc<T, A>) -> Option<Ordering> {
4281        (**self).partial_cmp(&**other)
4282    }
4283
4284    /// Less-than comparison for two `UniqueArc`s.
4285    ///
4286    /// The two are compared by calling `<` on their inner values.
4287    ///
4288    /// # Examples
4289    ///
4290    /// ```
4291    /// #![feature(unique_rc_arc)]
4292    /// use std::sync::UniqueArc;
4293    ///
4294    /// let five = UniqueArc::new(5);
4295    ///
4296    /// assert!(five < UniqueArc::new(6));
4297    /// ```
4298    #[inline(always)]
4299    fn lt(&self, other: &UniqueArc<T, A>) -> bool {
4300        **self < **other
4301    }
4302
4303    /// 'Less than or equal to' comparison for two `UniqueArc`s.
4304    ///
4305    /// The two are compared by calling `<=` on their inner values.
4306    ///
4307    /// # Examples
4308    ///
4309    /// ```
4310    /// #![feature(unique_rc_arc)]
4311    /// use std::sync::UniqueArc;
4312    ///
4313    /// let five = UniqueArc::new(5);
4314    ///
4315    /// assert!(five <= UniqueArc::new(5));
4316    /// ```
4317    #[inline(always)]
4318    fn le(&self, other: &UniqueArc<T, A>) -> bool {
4319        **self <= **other
4320    }
4321
4322    /// Greater-than comparison for two `UniqueArc`s.
4323    ///
4324    /// The two are compared by calling `>` on their inner values.
4325    ///
4326    /// # Examples
4327    ///
4328    /// ```
4329    /// #![feature(unique_rc_arc)]
4330    /// use std::sync::UniqueArc;
4331    ///
4332    /// let five = UniqueArc::new(5);
4333    ///
4334    /// assert!(five > UniqueArc::new(4));
4335    /// ```
4336    #[inline(always)]
4337    fn gt(&self, other: &UniqueArc<T, A>) -> bool {
4338        **self > **other
4339    }
4340
4341    /// 'Greater than or equal to' comparison for two `UniqueArc`s.
4342    ///
4343    /// The two are compared by calling `>=` on their inner values.
4344    ///
4345    /// # Examples
4346    ///
4347    /// ```
4348    /// #![feature(unique_rc_arc)]
4349    /// use std::sync::UniqueArc;
4350    ///
4351    /// let five = UniqueArc::new(5);
4352    ///
4353    /// assert!(five >= UniqueArc::new(5));
4354    /// ```
4355    #[inline(always)]
4356    fn ge(&self, other: &UniqueArc<T, A>) -> bool {
4357        **self >= **other
4358    }
4359}
4360
4361#[unstable(feature = "unique_rc_arc", issue = "112566")]
4362impl<T: ?Sized + Ord, A: Allocator> Ord for UniqueArc<T, A> {
4363    /// Comparison for two `UniqueArc`s.
4364    ///
4365    /// The two are compared by calling `cmp()` on their inner values.
4366    ///
4367    /// # Examples
4368    ///
4369    /// ```
4370    /// #![feature(unique_rc_arc)]
4371    /// use std::sync::UniqueArc;
4372    /// use std::cmp::Ordering;
4373    ///
4374    /// let five = UniqueArc::new(5);
4375    ///
4376    /// assert_eq!(Ordering::Less, five.cmp(&UniqueArc::new(6)));
4377    /// ```
4378    #[inline]
4379    fn cmp(&self, other: &UniqueArc<T, A>) -> Ordering {
4380        (**self).cmp(&**other)
4381    }
4382}
4383
4384#[unstable(feature = "unique_rc_arc", issue = "112566")]
4385impl<T: ?Sized + Eq, A: Allocator> Eq for UniqueArc<T, A> {}
4386
4387#[unstable(feature = "unique_rc_arc", issue = "112566")]
4388impl<T: ?Sized + Hash, A: Allocator> Hash for UniqueArc<T, A> {
4389    fn hash<H: Hasher>(&self, state: &mut H) {
4390        (**self).hash(state);
4391    }
4392}
4393
4394impl<T> UniqueArc<T, Global> {
4395    /// Creates a new `UniqueArc`.
4396    ///
4397    /// Weak references to this `UniqueArc` can be created with [`UniqueArc::downgrade`]. Upgrading
4398    /// these weak references will fail before the `UniqueArc` has been converted into an [`Arc`].
4399    /// After converting the `UniqueArc` into an [`Arc`], any weak references created beforehand will
4400    /// point to the new [`Arc`].
4401    #[cfg(not(no_global_oom_handling))]
4402    #[unstable(feature = "unique_rc_arc", issue = "112566")]
4403    #[must_use]
4404    pub fn new(value: T) -> Self {
4405        Self::new_in(value, Global)
4406    }
4407}
4408
4409impl<T, A: Allocator> UniqueArc<T, A> {
4410    /// Creates a new `UniqueArc` in the provided allocator.
4411    ///
4412    /// Weak references to this `UniqueArc` can be created with [`UniqueArc::downgrade`]. Upgrading
4413    /// these weak references will fail before the `UniqueArc` has been converted into an [`Arc`].
4414    /// After converting the `UniqueArc` into an [`Arc`], any weak references created beforehand will
4415    /// point to the new [`Arc`].
4416    #[cfg(not(no_global_oom_handling))]
4417    #[unstable(feature = "unique_rc_arc", issue = "112566")]
4418    #[must_use]
4419    // #[unstable(feature = "allocator_api", issue = "32838")]
4420    pub fn new_in(data: T, alloc: A) -> Self {
4421        let (ptr, alloc) = Box::into_unique(Box::new_in(
4422            ArcInner {
4423                strong: atomic::AtomicUsize::new(0),
4424                // keep one weak reference so if all the weak pointers that are created are dropped
4425                // the UniqueArc still stays valid.
4426                weak: atomic::AtomicUsize::new(1),
4427                data,
4428            },
4429            alloc,
4430        ));
4431        Self { ptr: ptr.into(), _marker: PhantomData, _marker2: PhantomData, alloc }
4432    }
4433}
4434
4435impl<T: ?Sized, A: Allocator> UniqueArc<T, A> {
4436    /// Converts the `UniqueArc` into a regular [`Arc`].
4437    ///
4438    /// This consumes the `UniqueArc` and returns a regular [`Arc`] that contains the `value` that
4439    /// is passed to `into_arc`.
4440    ///
4441    /// Any weak references created before this method is called can now be upgraded to strong
4442    /// references.
4443    #[unstable(feature = "unique_rc_arc", issue = "112566")]
4444    #[must_use]
4445    pub fn into_arc(this: Self) -> Arc<T, A> {
4446        let this = ManuallyDrop::new(this);
4447
4448        // Move the allocator out.
4449        // SAFETY: `this.alloc` will not be accessed again, nor dropped because it is in
4450        // a `ManuallyDrop`.
4451        let alloc: A = unsafe { ptr::read(&this.alloc) };
4452
4453        // SAFETY: This pointer was allocated at creation time so we know it is valid.
4454        unsafe {
4455            // Convert our weak reference into a strong reference
4456            (*this.ptr.as_ptr()).strong.store(1, Release);
4457            Arc::from_inner_in(this.ptr, alloc)
4458        }
4459    }
4460}
4461
4462impl<T: ?Sized, A: Allocator + Clone> UniqueArc<T, A> {
4463    /// Creates a new weak reference to the `UniqueArc`.
4464    ///
4465    /// Attempting to upgrade this weak reference will fail before the `UniqueArc` has been converted
4466    /// to a [`Arc`] using [`UniqueArc::into_arc`].
4467    #[unstable(feature = "unique_rc_arc", issue = "112566")]
4468    #[must_use]
4469    pub fn downgrade(this: &Self) -> Weak<T, A> {
4470        // Using a relaxed ordering is alright here, as knowledge of the
4471        // original reference prevents other threads from erroneously deleting
4472        // the object or converting the object to a normal `Arc<T, A>`.
4473        //
4474        // Note that we don't need to test if the weak counter is locked because there
4475        // are no such operations like `Arc::get_mut` or `Arc::make_mut` that will lock
4476        // the weak counter.
4477        //
4478        // SAFETY: This pointer was allocated at creation time so we know it is valid.
4479        let old_size = unsafe { (*this.ptr.as_ptr()).weak.fetch_add(1, Relaxed) };
4480
4481        // See comments in Arc::clone() for why we do this (for mem::forget).
4482        if old_size > MAX_REFCOUNT {
4483            abort();
4484        }
4485
4486        Weak { ptr: this.ptr, alloc: this.alloc.clone() }
4487    }
4488}
4489
4490#[unstable(feature = "unique_rc_arc", issue = "112566")]
4491impl<T: ?Sized, A: Allocator> Deref for UniqueArc<T, A> {
4492    type Target = T;
4493
4494    fn deref(&self) -> &T {
4495        // SAFETY: This pointer was allocated at creation time so we know it is valid.
4496        unsafe { &self.ptr.as_ref().data }
4497    }
4498}
4499
4500// #[unstable(feature = "unique_rc_arc", issue = "112566")]
4501#[unstable(feature = "pin_coerce_unsized_trait", issue = "123430")]
4502unsafe impl<T: ?Sized> PinCoerceUnsized for UniqueArc<T> {}
4503
4504#[unstable(feature = "unique_rc_arc", issue = "112566")]
4505impl<T: ?Sized, A: Allocator> DerefMut for UniqueArc<T, A> {
4506    fn deref_mut(&mut self) -> &mut T {
4507        // SAFETY: This pointer was allocated at creation time so we know it is valid. We know we
4508        // have unique ownership and therefore it's safe to make a mutable reference because
4509        // `UniqueArc` owns the only strong reference to itself.
4510        // We also need to be careful to only create a mutable reference to the `data` field,
4511        // as a mutable reference to the entire `ArcInner` would assert uniqueness over the
4512        // ref count fields too, invalidating any attempt by `Weak`s to access the ref count.
4513        unsafe { &mut (*self.ptr.as_ptr()).data }
4514    }
4515}
4516
4517#[unstable(feature = "unique_rc_arc", issue = "112566")]
4518// #[unstable(feature = "deref_pure_trait", issue = "87121")]
4519unsafe impl<T: ?Sized, A: Allocator> DerefPure for UniqueArc<T, A> {}
4520
4521#[unstable(feature = "unique_rc_arc", issue = "112566")]
4522unsafe impl<#[may_dangle] T: ?Sized, A: Allocator> Drop for UniqueArc<T, A> {
4523    fn drop(&mut self) {
4524        // See `Arc::drop_slow` which drops an `Arc` with a strong count of 0.
4525        // SAFETY: This pointer was allocated at creation time so we know it is valid.
4526        let _weak = Weak { ptr: self.ptr, alloc: &self.alloc };
4527
4528        unsafe { ptr::drop_in_place(&mut (*self.ptr.as_ptr()).data) };
4529    }
4530}