alloc/sync.rs
1#![stable(feature = "rust1", since = "1.0.0")]
2
3//! Thread-safe reference-counting pointers.
4//!
5//! See the [`Arc<T>`][Arc] documentation for more details.
6//!
7//! **Note**: This module is only available on platforms that support atomic
8//! loads and stores of pointers. This may be detected at compile time using
9//! `#[cfg(target_has_atomic = "ptr")]`.
10
11use core::any::Any;
12#[cfg(not(no_global_oom_handling))]
13use core::clone::CloneToUninit;
14use core::clone::UseCloned;
15use core::cmp::Ordering;
16use core::hash::{Hash, Hasher};
17use core::intrinsics::abort;
18#[cfg(not(no_global_oom_handling))]
19use core::iter;
20use core::marker::{PhantomData, Unsize};
21use core::mem::{self, ManuallyDrop, align_of_val_raw};
22use core::num::NonZeroUsize;
23use core::ops::{CoerceUnsized, Deref, DerefMut, DerefPure, DispatchFromDyn, LegacyReceiver};
24use core::panic::{RefUnwindSafe, UnwindSafe};
25use core::pin::{Pin, PinCoerceUnsized};
26use core::ptr::{self, NonNull};
27#[cfg(not(no_global_oom_handling))]
28use core::slice::from_raw_parts_mut;
29use core::sync::atomic::Ordering::{Acquire, Relaxed, Release};
30use core::sync::atomic::{self, Atomic};
31use core::{borrow, fmt, hint};
32
33#[cfg(not(no_global_oom_handling))]
34use crate::alloc::handle_alloc_error;
35use crate::alloc::{AllocError, Allocator, Global, Layout};
36use crate::borrow::{Cow, ToOwned};
37use crate::boxed::Box;
38use crate::rc::is_dangling;
39#[cfg(not(no_global_oom_handling))]
40use crate::string::String;
41#[cfg(not(no_global_oom_handling))]
42use crate::vec::Vec;
43
44/// A soft limit on the amount of references that may be made to an `Arc`.
45///
46/// Going above this limit will abort your program (although not
47/// necessarily) at _exactly_ `MAX_REFCOUNT + 1` references.
48/// Trying to go above it might call a `panic` (if not actually going above it).
49///
50/// This is a global invariant, and also applies when using a compare-exchange loop.
51///
52/// See comment in `Arc::clone`.
53const MAX_REFCOUNT: usize = (isize::MAX) as usize;
54
55/// The error in case either counter reaches above `MAX_REFCOUNT`, and we can `panic` safely.
56const INTERNAL_OVERFLOW_ERROR: &str = "Arc counter overflow";
57
58#[cfg(not(sanitize = "thread"))]
59macro_rules! acquire {
60 ($x:expr) => {
61 atomic::fence(Acquire)
62 };
63}
64
65// ThreadSanitizer does not support memory fences. To avoid false positive
66// reports in Arc / Weak implementation use atomic loads for synchronization
67// instead.
68#[cfg(sanitize = "thread")]
69macro_rules! acquire {
70 ($x:expr) => {
71 $x.load(Acquire)
72 };
73}
74
75/// A thread-safe reference-counting pointer. 'Arc' stands for 'Atomically
76/// Reference Counted'.
77///
78/// The type `Arc<T>` provides shared ownership of a value of type `T`,
79/// allocated in the heap. Invoking [`clone`][clone] on `Arc` produces
80/// a new `Arc` instance, which points to the same allocation on the heap as the
81/// source `Arc`, while increasing a reference count. When the last `Arc`
82/// pointer to a given allocation is destroyed, the value stored in that allocation (often
83/// referred to as "inner value") is also dropped.
84///
85/// Shared references in Rust disallow mutation by default, and `Arc` is no
86/// exception: you cannot generally obtain a mutable reference to something
87/// inside an `Arc`. If you do need to mutate through an `Arc`, you have several options:
88///
89/// 1. Use interior mutability with synchronization primitives like [`Mutex`][mutex],
90/// [`RwLock`][rwlock], or one of the [`Atomic`][atomic] types.
91///
92/// 2. Use clone-on-write semantics with [`Arc::make_mut`] which provides efficient mutation
93/// without requiring interior mutability. This approach clones the data only when
94/// needed (when there are multiple references) and can be more efficient when mutations
95/// are infrequent.
96///
97/// 3. Use [`Arc::get_mut`] when you know your `Arc` is not shared (has a reference count of 1),
98/// which provides direct mutable access to the inner value without any cloning.
99///
100/// ```
101/// use std::sync::Arc;
102///
103/// let mut data = Arc::new(vec![1, 2, 3]);
104///
105/// // This will clone the vector only if there are other references to it
106/// Arc::make_mut(&mut data).push(4);
107///
108/// assert_eq!(*data, vec![1, 2, 3, 4]);
109/// ```
110///
111/// **Note**: This type is only available on platforms that support atomic
112/// loads and stores of pointers, which includes all platforms that support
113/// the `std` crate but not all those which only support [`alloc`](crate).
114/// This may be detected at compile time using `#[cfg(target_has_atomic = "ptr")]`.
115///
116/// ## Thread Safety
117///
118/// Unlike [`Rc<T>`], `Arc<T>` uses atomic operations for its reference
119/// counting. This means that it is thread-safe. The disadvantage is that
120/// atomic operations are more expensive than ordinary memory accesses. If you
121/// are not sharing reference-counted allocations between threads, consider using
122/// [`Rc<T>`] for lower overhead. [`Rc<T>`] is a safe default, because the
123/// compiler will catch any attempt to send an [`Rc<T>`] between threads.
124/// However, a library might choose `Arc<T>` in order to give library consumers
125/// more flexibility.
126///
127/// `Arc<T>` will implement [`Send`] and [`Sync`] as long as the `T` implements
128/// [`Send`] and [`Sync`]. Why can't you put a non-thread-safe type `T` in an
129/// `Arc<T>` to make it thread-safe? This may be a bit counter-intuitive at
130/// first: after all, isn't the point of `Arc<T>` thread safety? The key is
131/// this: `Arc<T>` makes it thread safe to have multiple ownership of the same
132/// data, but it doesn't add thread safety to its data. Consider
133/// <code>Arc<[RefCell\<T>]></code>. [`RefCell<T>`] isn't [`Sync`], and if `Arc<T>` was always
134/// [`Send`], <code>Arc<[RefCell\<T>]></code> would be as well. But then we'd have a problem:
135/// [`RefCell<T>`] is not thread safe; it keeps track of the borrowing count using
136/// non-atomic operations.
137///
138/// In the end, this means that you may need to pair `Arc<T>` with some sort of
139/// [`std::sync`] type, usually [`Mutex<T>`][mutex].
140///
141/// ## Breaking cycles with `Weak`
142///
143/// The [`downgrade`][downgrade] method can be used to create a non-owning
144/// [`Weak`] pointer. A [`Weak`] pointer can be [`upgrade`][upgrade]d
145/// to an `Arc`, but this will return [`None`] if the value stored in the allocation has
146/// already been dropped. In other words, `Weak` pointers do not keep the value
147/// inside the allocation alive; however, they *do* keep the allocation
148/// (the backing store for the value) alive.
149///
150/// A cycle between `Arc` pointers will never be deallocated. For this reason,
151/// [`Weak`] is used to break cycles. For example, a tree could have
152/// strong `Arc` pointers from parent nodes to children, and [`Weak`]
153/// pointers from children back to their parents.
154///
155/// # Cloning references
156///
157/// Creating a new reference from an existing reference-counted pointer is done using the
158/// `Clone` trait implemented for [`Arc<T>`][Arc] and [`Weak<T>`][Weak].
159///
160/// ```
161/// use std::sync::Arc;
162/// let foo = Arc::new(vec![1.0, 2.0, 3.0]);
163/// // The two syntaxes below are equivalent.
164/// let a = foo.clone();
165/// let b = Arc::clone(&foo);
166/// // a, b, and foo are all Arcs that point to the same memory location
167/// ```
168///
169/// ## `Deref` behavior
170///
171/// `Arc<T>` automatically dereferences to `T` (via the [`Deref`] trait),
172/// so you can call `T`'s methods on a value of type `Arc<T>`. To avoid name
173/// clashes with `T`'s methods, the methods of `Arc<T>` itself are associated
174/// functions, called using [fully qualified syntax]:
175///
176/// ```
177/// use std::sync::Arc;
178///
179/// let my_arc = Arc::new(());
180/// let my_weak = Arc::downgrade(&my_arc);
181/// ```
182///
183/// `Arc<T>`'s implementations of traits like `Clone` may also be called using
184/// fully qualified syntax. Some people prefer to use fully qualified syntax,
185/// while others prefer using method-call syntax.
186///
187/// ```
188/// use std::sync::Arc;
189///
190/// let arc = Arc::new(());
191/// // Method-call syntax
192/// let arc2 = arc.clone();
193/// // Fully qualified syntax
194/// let arc3 = Arc::clone(&arc);
195/// ```
196///
197/// [`Weak<T>`][Weak] does not auto-dereference to `T`, because the inner value may have
198/// already been dropped.
199///
200/// [`Rc<T>`]: crate::rc::Rc
201/// [clone]: Clone::clone
202/// [mutex]: ../../std/sync/struct.Mutex.html
203/// [rwlock]: ../../std/sync/struct.RwLock.html
204/// [atomic]: core::sync::atomic
205/// [downgrade]: Arc::downgrade
206/// [upgrade]: Weak::upgrade
207/// [RefCell\<T>]: core::cell::RefCell
208/// [`RefCell<T>`]: core::cell::RefCell
209/// [`std::sync`]: ../../std/sync/index.html
210/// [`Arc::clone(&from)`]: Arc::clone
211/// [fully qualified syntax]: https://doc.rust-lang.org/book/ch19-03-advanced-traits.html#fully-qualified-syntax-for-disambiguation-calling-methods-with-the-same-name
212///
213/// # Examples
214///
215/// Sharing some immutable data between threads:
216///
217/// ```
218/// use std::sync::Arc;
219/// use std::thread;
220///
221/// let five = Arc::new(5);
222///
223/// for _ in 0..10 {
224/// let five = Arc::clone(&five);
225///
226/// thread::spawn(move || {
227/// println!("{five:?}");
228/// });
229/// }
230/// ```
231///
232/// Sharing a mutable [`AtomicUsize`]:
233///
234/// [`AtomicUsize`]: core::sync::atomic::AtomicUsize "sync::atomic::AtomicUsize"
235///
236/// ```
237/// use std::sync::Arc;
238/// use std::sync::atomic::{AtomicUsize, Ordering};
239/// use std::thread;
240///
241/// let val = Arc::new(AtomicUsize::new(5));
242///
243/// for _ in 0..10 {
244/// let val = Arc::clone(&val);
245///
246/// thread::spawn(move || {
247/// let v = val.fetch_add(1, Ordering::Relaxed);
248/// println!("{v:?}");
249/// });
250/// }
251/// ```
252///
253/// See the [`rc` documentation][rc_examples] for more examples of reference
254/// counting in general.
255///
256/// [rc_examples]: crate::rc#examples
257#[doc(search_unbox)]
258#[rustc_diagnostic_item = "Arc"]
259#[stable(feature = "rust1", since = "1.0.0")]
260#[rustc_insignificant_dtor]
261pub struct Arc<
262 T: ?Sized,
263 #[unstable(feature = "allocator_api", issue = "32838")] A: Allocator = Global,
264> {
265 ptr: NonNull<ArcInner<T>>,
266 phantom: PhantomData<ArcInner<T>>,
267 alloc: A,
268}
269
270#[stable(feature = "rust1", since = "1.0.0")]
271unsafe impl<T: ?Sized + Sync + Send, A: Allocator + Send> Send for Arc<T, A> {}
272#[stable(feature = "rust1", since = "1.0.0")]
273unsafe impl<T: ?Sized + Sync + Send, A: Allocator + Sync> Sync for Arc<T, A> {}
274
275#[stable(feature = "catch_unwind", since = "1.9.0")]
276impl<T: RefUnwindSafe + ?Sized, A: Allocator + UnwindSafe> UnwindSafe for Arc<T, A> {}
277
278#[unstable(feature = "coerce_unsized", issue = "18598")]
279impl<T: ?Sized + Unsize<U>, U: ?Sized, A: Allocator> CoerceUnsized<Arc<U, A>> for Arc<T, A> {}
280
281#[unstable(feature = "dispatch_from_dyn", issue = "none")]
282impl<T: ?Sized + Unsize<U>, U: ?Sized> DispatchFromDyn<Arc<U>> for Arc<T> {}
283
284impl<T: ?Sized> Arc<T> {
285 unsafe fn from_inner(ptr: NonNull<ArcInner<T>>) -> Self {
286 unsafe { Self::from_inner_in(ptr, Global) }
287 }
288
289 unsafe fn from_ptr(ptr: *mut ArcInner<T>) -> Self {
290 unsafe { Self::from_ptr_in(ptr, Global) }
291 }
292}
293
294impl<T: ?Sized, A: Allocator> Arc<T, A> {
295 #[inline]
296 fn into_inner_with_allocator(this: Self) -> (NonNull<ArcInner<T>>, A) {
297 let this = mem::ManuallyDrop::new(this);
298 (this.ptr, unsafe { ptr::read(&this.alloc) })
299 }
300
301 #[inline]
302 unsafe fn from_inner_in(ptr: NonNull<ArcInner<T>>, alloc: A) -> Self {
303 Self { ptr, phantom: PhantomData, alloc }
304 }
305
306 #[inline]
307 unsafe fn from_ptr_in(ptr: *mut ArcInner<T>, alloc: A) -> Self {
308 unsafe { Self::from_inner_in(NonNull::new_unchecked(ptr), alloc) }
309 }
310}
311
312/// `Weak` is a version of [`Arc`] that holds a non-owning reference to the
313/// managed allocation.
314///
315/// The allocation is accessed by calling [`upgrade`] on the `Weak`
316/// pointer, which returns an <code>[Option]<[Arc]\<T>></code>.
317///
318/// Since a `Weak` reference does not count towards ownership, it will not
319/// prevent the value stored in the allocation from being dropped, and `Weak` itself makes no
320/// guarantees about the value still being present. Thus it may return [`None`]
321/// when [`upgrade`]d. Note however that a `Weak` reference *does* prevent the allocation
322/// itself (the backing store) from being deallocated.
323///
324/// A `Weak` pointer is useful for keeping a temporary reference to the allocation
325/// managed by [`Arc`] without preventing its inner value from being dropped. It is also used to
326/// prevent circular references between [`Arc`] pointers, since mutual owning references
327/// would never allow either [`Arc`] to be dropped. For example, a tree could
328/// have strong [`Arc`] pointers from parent nodes to children, and `Weak`
329/// pointers from children back to their parents.
330///
331/// The typical way to obtain a `Weak` pointer is to call [`Arc::downgrade`].
332///
333/// [`upgrade`]: Weak::upgrade
334#[stable(feature = "arc_weak", since = "1.4.0")]
335#[rustc_diagnostic_item = "ArcWeak"]
336pub struct Weak<
337 T: ?Sized,
338 #[unstable(feature = "allocator_api", issue = "32838")] A: Allocator = Global,
339> {
340 // This is a `NonNull` to allow optimizing the size of this type in enums,
341 // but it is not necessarily a valid pointer.
342 // `Weak::new` sets this to `usize::MAX` so that it doesn’t need
343 // to allocate space on the heap. That's not a value a real pointer
344 // will ever have because RcInner has alignment at least 2.
345 ptr: NonNull<ArcInner<T>>,
346 alloc: A,
347}
348
349#[stable(feature = "arc_weak", since = "1.4.0")]
350unsafe impl<T: ?Sized + Sync + Send, A: Allocator + Send> Send for Weak<T, A> {}
351#[stable(feature = "arc_weak", since = "1.4.0")]
352unsafe impl<T: ?Sized + Sync + Send, A: Allocator + Sync> Sync for Weak<T, A> {}
353
354#[unstable(feature = "coerce_unsized", issue = "18598")]
355impl<T: ?Sized + Unsize<U>, U: ?Sized, A: Allocator> CoerceUnsized<Weak<U, A>> for Weak<T, A> {}
356#[unstable(feature = "dispatch_from_dyn", issue = "none")]
357impl<T: ?Sized + Unsize<U>, U: ?Sized> DispatchFromDyn<Weak<U>> for Weak<T> {}
358
359#[stable(feature = "arc_weak", since = "1.4.0")]
360impl<T: ?Sized, A: Allocator> fmt::Debug for Weak<T, A> {
361 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
362 write!(f, "(Weak)")
363 }
364}
365
366// This is repr(C) to future-proof against possible field-reordering, which
367// would interfere with otherwise safe [into|from]_raw() of transmutable
368// inner types.
369#[repr(C)]
370struct ArcInner<T: ?Sized> {
371 strong: Atomic<usize>,
372
373 // the value usize::MAX acts as a sentinel for temporarily "locking" the
374 // ability to upgrade weak pointers or downgrade strong ones; this is used
375 // to avoid races in `make_mut` and `get_mut`.
376 weak: Atomic<usize>,
377
378 data: T,
379}
380
381/// Calculate layout for `ArcInner<T>` using the inner value's layout
382fn arcinner_layout_for_value_layout(layout: Layout) -> Layout {
383 // Calculate layout using the given value layout.
384 // Previously, layout was calculated on the expression
385 // `&*(ptr as *const ArcInner<T>)`, but this created a misaligned
386 // reference (see #54908).
387 Layout::new::<ArcInner<()>>().extend(layout).unwrap().0.pad_to_align()
388}
389
390unsafe impl<T: ?Sized + Sync + Send> Send for ArcInner<T> {}
391unsafe impl<T: ?Sized + Sync + Send> Sync for ArcInner<T> {}
392
393impl<T> Arc<T> {
394 /// Constructs a new `Arc<T>`.
395 ///
396 /// # Examples
397 ///
398 /// ```
399 /// use std::sync::Arc;
400 ///
401 /// let five = Arc::new(5);
402 /// ```
403 #[cfg(not(no_global_oom_handling))]
404 #[inline]
405 #[stable(feature = "rust1", since = "1.0.0")]
406 pub fn new(data: T) -> Arc<T> {
407 // Start the weak pointer count as 1 which is the weak pointer that's
408 // held by all the strong pointers (kinda), see std/rc.rs for more info
409 let x: Box<_> = Box::new(ArcInner {
410 strong: atomic::AtomicUsize::new(1),
411 weak: atomic::AtomicUsize::new(1),
412 data,
413 });
414 unsafe { Self::from_inner(Box::leak(x).into()) }
415 }
416
417 /// Constructs a new `Arc<T>` while giving you a `Weak<T>` to the allocation,
418 /// to allow you to construct a `T` which holds a weak pointer to itself.
419 ///
420 /// Generally, a structure circularly referencing itself, either directly or
421 /// indirectly, should not hold a strong reference to itself to prevent a memory leak.
422 /// Using this function, you get access to the weak pointer during the
423 /// initialization of `T`, before the `Arc<T>` is created, such that you can
424 /// clone and store it inside the `T`.
425 ///
426 /// `new_cyclic` first allocates the managed allocation for the `Arc<T>`,
427 /// then calls your closure, giving it a `Weak<T>` to this allocation,
428 /// and only afterwards completes the construction of the `Arc<T>` by placing
429 /// the `T` returned from your closure into the allocation.
430 ///
431 /// Since the new `Arc<T>` is not fully-constructed until `Arc<T>::new_cyclic`
432 /// returns, calling [`upgrade`] on the weak reference inside your closure will
433 /// fail and result in a `None` value.
434 ///
435 /// # Panics
436 ///
437 /// If `data_fn` panics, the panic is propagated to the caller, and the
438 /// temporary [`Weak<T>`] is dropped normally.
439 ///
440 /// # Example
441 ///
442 /// ```
443 /// # #![allow(dead_code)]
444 /// use std::sync::{Arc, Weak};
445 ///
446 /// struct Gadget {
447 /// me: Weak<Gadget>,
448 /// }
449 ///
450 /// impl Gadget {
451 /// /// Constructs a reference counted Gadget.
452 /// fn new() -> Arc<Self> {
453 /// // `me` is a `Weak<Gadget>` pointing at the new allocation of the
454 /// // `Arc` we're constructing.
455 /// Arc::new_cyclic(|me| {
456 /// // Create the actual struct here.
457 /// Gadget { me: me.clone() }
458 /// })
459 /// }
460 ///
461 /// /// Returns a reference counted pointer to Self.
462 /// fn me(&self) -> Arc<Self> {
463 /// self.me.upgrade().unwrap()
464 /// }
465 /// }
466 /// ```
467 /// [`upgrade`]: Weak::upgrade
468 #[cfg(not(no_global_oom_handling))]
469 #[inline]
470 #[stable(feature = "arc_new_cyclic", since = "1.60.0")]
471 pub fn new_cyclic<F>(data_fn: F) -> Arc<T>
472 where
473 F: FnOnce(&Weak<T>) -> T,
474 {
475 Self::new_cyclic_in(data_fn, Global)
476 }
477
478 /// Constructs a new `Arc` with uninitialized contents.
479 ///
480 /// # Examples
481 ///
482 /// ```
483 /// #![feature(get_mut_unchecked)]
484 ///
485 /// use std::sync::Arc;
486 ///
487 /// let mut five = Arc::<u32>::new_uninit();
488 ///
489 /// // Deferred initialization:
490 /// Arc::get_mut(&mut five).unwrap().write(5);
491 ///
492 /// let five = unsafe { five.assume_init() };
493 ///
494 /// assert_eq!(*five, 5)
495 /// ```
496 #[cfg(not(no_global_oom_handling))]
497 #[inline]
498 #[stable(feature = "new_uninit", since = "1.82.0")]
499 #[must_use]
500 pub fn new_uninit() -> Arc<mem::MaybeUninit<T>> {
501 unsafe {
502 Arc::from_ptr(Arc::allocate_for_layout(
503 Layout::new::<T>(),
504 |layout| Global.allocate(layout),
505 <*mut u8>::cast,
506 ))
507 }
508 }
509
510 /// Constructs a new `Arc` with uninitialized contents, with the memory
511 /// being filled with `0` bytes.
512 ///
513 /// See [`MaybeUninit::zeroed`][zeroed] for examples of correct and incorrect usage
514 /// of this method.
515 ///
516 /// # Examples
517 ///
518 /// ```
519 /// #![feature(new_zeroed_alloc)]
520 ///
521 /// use std::sync::Arc;
522 ///
523 /// let zero = Arc::<u32>::new_zeroed();
524 /// let zero = unsafe { zero.assume_init() };
525 ///
526 /// assert_eq!(*zero, 0)
527 /// ```
528 ///
529 /// [zeroed]: mem::MaybeUninit::zeroed
530 #[cfg(not(no_global_oom_handling))]
531 #[inline]
532 #[unstable(feature = "new_zeroed_alloc", issue = "129396")]
533 #[must_use]
534 pub fn new_zeroed() -> Arc<mem::MaybeUninit<T>> {
535 unsafe {
536 Arc::from_ptr(Arc::allocate_for_layout(
537 Layout::new::<T>(),
538 |layout| Global.allocate_zeroed(layout),
539 <*mut u8>::cast,
540 ))
541 }
542 }
543
544 /// Constructs a new `Pin<Arc<T>>`. If `T` does not implement `Unpin`, then
545 /// `data` will be pinned in memory and unable to be moved.
546 #[cfg(not(no_global_oom_handling))]
547 #[stable(feature = "pin", since = "1.33.0")]
548 #[must_use]
549 pub fn pin(data: T) -> Pin<Arc<T>> {
550 unsafe { Pin::new_unchecked(Arc::new(data)) }
551 }
552
553 /// Constructs a new `Pin<Arc<T>>`, return an error if allocation fails.
554 #[unstable(feature = "allocator_api", issue = "32838")]
555 #[inline]
556 pub fn try_pin(data: T) -> Result<Pin<Arc<T>>, AllocError> {
557 unsafe { Ok(Pin::new_unchecked(Arc::try_new(data)?)) }
558 }
559
560 /// Constructs a new `Arc<T>`, returning an error if allocation fails.
561 ///
562 /// # Examples
563 ///
564 /// ```
565 /// #![feature(allocator_api)]
566 /// use std::sync::Arc;
567 ///
568 /// let five = Arc::try_new(5)?;
569 /// # Ok::<(), std::alloc::AllocError>(())
570 /// ```
571 #[unstable(feature = "allocator_api", issue = "32838")]
572 #[inline]
573 pub fn try_new(data: T) -> Result<Arc<T>, AllocError> {
574 // Start the weak pointer count as 1 which is the weak pointer that's
575 // held by all the strong pointers (kinda), see std/rc.rs for more info
576 let x: Box<_> = Box::try_new(ArcInner {
577 strong: atomic::AtomicUsize::new(1),
578 weak: atomic::AtomicUsize::new(1),
579 data,
580 })?;
581 unsafe { Ok(Self::from_inner(Box::leak(x).into())) }
582 }
583
584 /// Constructs a new `Arc` with uninitialized contents, returning an error
585 /// if allocation fails.
586 ///
587 /// # Examples
588 ///
589 /// ```
590 /// #![feature(allocator_api)]
591 /// #![feature(get_mut_unchecked)]
592 ///
593 /// use std::sync::Arc;
594 ///
595 /// let mut five = Arc::<u32>::try_new_uninit()?;
596 ///
597 /// // Deferred initialization:
598 /// Arc::get_mut(&mut five).unwrap().write(5);
599 ///
600 /// let five = unsafe { five.assume_init() };
601 ///
602 /// assert_eq!(*five, 5);
603 /// # Ok::<(), std::alloc::AllocError>(())
604 /// ```
605 #[unstable(feature = "allocator_api", issue = "32838")]
606 // #[unstable(feature = "new_uninit", issue = "63291")]
607 pub fn try_new_uninit() -> Result<Arc<mem::MaybeUninit<T>>, AllocError> {
608 unsafe {
609 Ok(Arc::from_ptr(Arc::try_allocate_for_layout(
610 Layout::new::<T>(),
611 |layout| Global.allocate(layout),
612 <*mut u8>::cast,
613 )?))
614 }
615 }
616
617 /// Constructs a new `Arc` with uninitialized contents, with the memory
618 /// being filled with `0` bytes, returning an error if allocation fails.
619 ///
620 /// See [`MaybeUninit::zeroed`][zeroed] for examples of correct and incorrect usage
621 /// of this method.
622 ///
623 /// # Examples
624 ///
625 /// ```
626 /// #![feature( allocator_api)]
627 ///
628 /// use std::sync::Arc;
629 ///
630 /// let zero = Arc::<u32>::try_new_zeroed()?;
631 /// let zero = unsafe { zero.assume_init() };
632 ///
633 /// assert_eq!(*zero, 0);
634 /// # Ok::<(), std::alloc::AllocError>(())
635 /// ```
636 ///
637 /// [zeroed]: mem::MaybeUninit::zeroed
638 #[unstable(feature = "allocator_api", issue = "32838")]
639 // #[unstable(feature = "new_uninit", issue = "63291")]
640 pub fn try_new_zeroed() -> Result<Arc<mem::MaybeUninit<T>>, AllocError> {
641 unsafe {
642 Ok(Arc::from_ptr(Arc::try_allocate_for_layout(
643 Layout::new::<T>(),
644 |layout| Global.allocate_zeroed(layout),
645 <*mut u8>::cast,
646 )?))
647 }
648 }
649}
650
651impl<T, A: Allocator> Arc<T, A> {
652 /// Constructs a new `Arc<T>` in the provided allocator.
653 ///
654 /// # Examples
655 ///
656 /// ```
657 /// #![feature(allocator_api)]
658 ///
659 /// use std::sync::Arc;
660 /// use std::alloc::System;
661 ///
662 /// let five = Arc::new_in(5, System);
663 /// ```
664 #[inline]
665 #[cfg(not(no_global_oom_handling))]
666 #[unstable(feature = "allocator_api", issue = "32838")]
667 pub fn new_in(data: T, alloc: A) -> Arc<T, A> {
668 // Start the weak pointer count as 1 which is the weak pointer that's
669 // held by all the strong pointers (kinda), see std/rc.rs for more info
670 let x = Box::new_in(
671 ArcInner {
672 strong: atomic::AtomicUsize::new(1),
673 weak: atomic::AtomicUsize::new(1),
674 data,
675 },
676 alloc,
677 );
678 let (ptr, alloc) = Box::into_unique(x);
679 unsafe { Self::from_inner_in(ptr.into(), alloc) }
680 }
681
682 /// Constructs a new `Arc` with uninitialized contents in the provided allocator.
683 ///
684 /// # Examples
685 ///
686 /// ```
687 /// #![feature(get_mut_unchecked)]
688 /// #![feature(allocator_api)]
689 ///
690 /// use std::sync::Arc;
691 /// use std::alloc::System;
692 ///
693 /// let mut five = Arc::<u32, _>::new_uninit_in(System);
694 ///
695 /// let five = unsafe {
696 /// // Deferred initialization:
697 /// Arc::get_mut_unchecked(&mut five).as_mut_ptr().write(5);
698 ///
699 /// five.assume_init()
700 /// };
701 ///
702 /// assert_eq!(*five, 5)
703 /// ```
704 #[cfg(not(no_global_oom_handling))]
705 #[unstable(feature = "allocator_api", issue = "32838")]
706 // #[unstable(feature = "new_uninit", issue = "63291")]
707 #[inline]
708 pub fn new_uninit_in(alloc: A) -> Arc<mem::MaybeUninit<T>, A> {
709 unsafe {
710 Arc::from_ptr_in(
711 Arc::allocate_for_layout(
712 Layout::new::<T>(),
713 |layout| alloc.allocate(layout),
714 <*mut u8>::cast,
715 ),
716 alloc,
717 )
718 }
719 }
720
721 /// Constructs a new `Arc` with uninitialized contents, with the memory
722 /// being filled with `0` bytes, in the provided allocator.
723 ///
724 /// See [`MaybeUninit::zeroed`][zeroed] for examples of correct and incorrect usage
725 /// of this method.
726 ///
727 /// # Examples
728 ///
729 /// ```
730 /// #![feature(allocator_api)]
731 ///
732 /// use std::sync::Arc;
733 /// use std::alloc::System;
734 ///
735 /// let zero = Arc::<u32, _>::new_zeroed_in(System);
736 /// let zero = unsafe { zero.assume_init() };
737 ///
738 /// assert_eq!(*zero, 0)
739 /// ```
740 ///
741 /// [zeroed]: mem::MaybeUninit::zeroed
742 #[cfg(not(no_global_oom_handling))]
743 #[unstable(feature = "allocator_api", issue = "32838")]
744 // #[unstable(feature = "new_uninit", issue = "63291")]
745 #[inline]
746 pub fn new_zeroed_in(alloc: A) -> Arc<mem::MaybeUninit<T>, A> {
747 unsafe {
748 Arc::from_ptr_in(
749 Arc::allocate_for_layout(
750 Layout::new::<T>(),
751 |layout| alloc.allocate_zeroed(layout),
752 <*mut u8>::cast,
753 ),
754 alloc,
755 )
756 }
757 }
758
759 /// Constructs a new `Arc<T, A>` in the given allocator while giving you a `Weak<T, A>` to the allocation,
760 /// to allow you to construct a `T` which holds a weak pointer to itself.
761 ///
762 /// Generally, a structure circularly referencing itself, either directly or
763 /// indirectly, should not hold a strong reference to itself to prevent a memory leak.
764 /// Using this function, you get access to the weak pointer during the
765 /// initialization of `T`, before the `Arc<T, A>` is created, such that you can
766 /// clone and store it inside the `T`.
767 ///
768 /// `new_cyclic_in` first allocates the managed allocation for the `Arc<T, A>`,
769 /// then calls your closure, giving it a `Weak<T, A>` to this allocation,
770 /// and only afterwards completes the construction of the `Arc<T, A>` by placing
771 /// the `T` returned from your closure into the allocation.
772 ///
773 /// Since the new `Arc<T, A>` is not fully-constructed until `Arc<T, A>::new_cyclic_in`
774 /// returns, calling [`upgrade`] on the weak reference inside your closure will
775 /// fail and result in a `None` value.
776 ///
777 /// # Panics
778 ///
779 /// If `data_fn` panics, the panic is propagated to the caller, and the
780 /// temporary [`Weak<T>`] is dropped normally.
781 ///
782 /// # Example
783 ///
784 /// See [`new_cyclic`]
785 ///
786 /// [`new_cyclic`]: Arc::new_cyclic
787 /// [`upgrade`]: Weak::upgrade
788 #[cfg(not(no_global_oom_handling))]
789 #[inline]
790 #[unstable(feature = "allocator_api", issue = "32838")]
791 pub fn new_cyclic_in<F>(data_fn: F, alloc: A) -> Arc<T, A>
792 where
793 F: FnOnce(&Weak<T, A>) -> T,
794 {
795 // Construct the inner in the "uninitialized" state with a single
796 // weak reference.
797 let (uninit_raw_ptr, alloc) = Box::into_raw_with_allocator(Box::new_in(
798 ArcInner {
799 strong: atomic::AtomicUsize::new(0),
800 weak: atomic::AtomicUsize::new(1),
801 data: mem::MaybeUninit::<T>::uninit(),
802 },
803 alloc,
804 ));
805 let uninit_ptr: NonNull<_> = (unsafe { &mut *uninit_raw_ptr }).into();
806 let init_ptr: NonNull<ArcInner<T>> = uninit_ptr.cast();
807
808 let weak = Weak { ptr: init_ptr, alloc };
809
810 // It's important we don't give up ownership of the weak pointer, or
811 // else the memory might be freed by the time `data_fn` returns. If
812 // we really wanted to pass ownership, we could create an additional
813 // weak pointer for ourselves, but this would result in additional
814 // updates to the weak reference count which might not be necessary
815 // otherwise.
816 let data = data_fn(&weak);
817
818 // Now we can properly initialize the inner value and turn our weak
819 // reference into a strong reference.
820 let strong = unsafe {
821 let inner = init_ptr.as_ptr();
822 ptr::write(&raw mut (*inner).data, data);
823
824 // The above write to the data field must be visible to any threads which
825 // observe a non-zero strong count. Therefore we need at least "Release" ordering
826 // in order to synchronize with the `compare_exchange_weak` in `Weak::upgrade`.
827 //
828 // "Acquire" ordering is not required. When considering the possible behaviors
829 // of `data_fn` we only need to look at what it could do with a reference to a
830 // non-upgradeable `Weak`:
831 // - It can *clone* the `Weak`, increasing the weak reference count.
832 // - It can drop those clones, decreasing the weak reference count (but never to zero).
833 //
834 // These side effects do not impact us in any way, and no other side effects are
835 // possible with safe code alone.
836 let prev_value = (*inner).strong.fetch_add(1, Release);
837 debug_assert_eq!(prev_value, 0, "No prior strong references should exist");
838
839 // Strong references should collectively own a shared weak reference,
840 // so don't run the destructor for our old weak reference.
841 // Calling into_raw_with_allocator has the double effect of giving us back the allocator,
842 // and forgetting the weak reference.
843 let alloc = weak.into_raw_with_allocator().1;
844
845 Arc::from_inner_in(init_ptr, alloc)
846 };
847
848 strong
849 }
850
851 /// Constructs a new `Pin<Arc<T, A>>` in the provided allocator. If `T` does not implement `Unpin`,
852 /// then `data` will be pinned in memory and unable to be moved.
853 #[cfg(not(no_global_oom_handling))]
854 #[unstable(feature = "allocator_api", issue = "32838")]
855 #[inline]
856 pub fn pin_in(data: T, alloc: A) -> Pin<Arc<T, A>>
857 where
858 A: 'static,
859 {
860 unsafe { Pin::new_unchecked(Arc::new_in(data, alloc)) }
861 }
862
863 /// Constructs a new `Pin<Arc<T, A>>` in the provided allocator, return an error if allocation
864 /// fails.
865 #[inline]
866 #[unstable(feature = "allocator_api", issue = "32838")]
867 pub fn try_pin_in(data: T, alloc: A) -> Result<Pin<Arc<T, A>>, AllocError>
868 where
869 A: 'static,
870 {
871 unsafe { Ok(Pin::new_unchecked(Arc::try_new_in(data, alloc)?)) }
872 }
873
874 /// Constructs a new `Arc<T, A>` in the provided allocator, returning an error if allocation fails.
875 ///
876 /// # Examples
877 ///
878 /// ```
879 /// #![feature(allocator_api)]
880 ///
881 /// use std::sync::Arc;
882 /// use std::alloc::System;
883 ///
884 /// let five = Arc::try_new_in(5, System)?;
885 /// # Ok::<(), std::alloc::AllocError>(())
886 /// ```
887 #[inline]
888 #[unstable(feature = "allocator_api", issue = "32838")]
889 #[inline]
890 pub fn try_new_in(data: T, alloc: A) -> Result<Arc<T, A>, AllocError> {
891 // Start the weak pointer count as 1 which is the weak pointer that's
892 // held by all the strong pointers (kinda), see std/rc.rs for more info
893 let x = Box::try_new_in(
894 ArcInner {
895 strong: atomic::AtomicUsize::new(1),
896 weak: atomic::AtomicUsize::new(1),
897 data,
898 },
899 alloc,
900 )?;
901 let (ptr, alloc) = Box::into_unique(x);
902 Ok(unsafe { Self::from_inner_in(ptr.into(), alloc) })
903 }
904
905 /// Constructs a new `Arc` with uninitialized contents, in the provided allocator, returning an
906 /// error if allocation fails.
907 ///
908 /// # Examples
909 ///
910 /// ```
911 /// #![feature(allocator_api)]
912 /// #![feature(get_mut_unchecked)]
913 ///
914 /// use std::sync::Arc;
915 /// use std::alloc::System;
916 ///
917 /// let mut five = Arc::<u32, _>::try_new_uninit_in(System)?;
918 ///
919 /// let five = unsafe {
920 /// // Deferred initialization:
921 /// Arc::get_mut_unchecked(&mut five).as_mut_ptr().write(5);
922 ///
923 /// five.assume_init()
924 /// };
925 ///
926 /// assert_eq!(*five, 5);
927 /// # Ok::<(), std::alloc::AllocError>(())
928 /// ```
929 #[unstable(feature = "allocator_api", issue = "32838")]
930 // #[unstable(feature = "new_uninit", issue = "63291")]
931 #[inline]
932 pub fn try_new_uninit_in(alloc: A) -> Result<Arc<mem::MaybeUninit<T>, A>, AllocError> {
933 unsafe {
934 Ok(Arc::from_ptr_in(
935 Arc::try_allocate_for_layout(
936 Layout::new::<T>(),
937 |layout| alloc.allocate(layout),
938 <*mut u8>::cast,
939 )?,
940 alloc,
941 ))
942 }
943 }
944
945 /// Constructs a new `Arc` with uninitialized contents, with the memory
946 /// being filled with `0` bytes, in the provided allocator, returning an error if allocation
947 /// fails.
948 ///
949 /// See [`MaybeUninit::zeroed`][zeroed] for examples of correct and incorrect usage
950 /// of this method.
951 ///
952 /// # Examples
953 ///
954 /// ```
955 /// #![feature(allocator_api)]
956 ///
957 /// use std::sync::Arc;
958 /// use std::alloc::System;
959 ///
960 /// let zero = Arc::<u32, _>::try_new_zeroed_in(System)?;
961 /// let zero = unsafe { zero.assume_init() };
962 ///
963 /// assert_eq!(*zero, 0);
964 /// # Ok::<(), std::alloc::AllocError>(())
965 /// ```
966 ///
967 /// [zeroed]: mem::MaybeUninit::zeroed
968 #[unstable(feature = "allocator_api", issue = "32838")]
969 // #[unstable(feature = "new_uninit", issue = "63291")]
970 #[inline]
971 pub fn try_new_zeroed_in(alloc: A) -> Result<Arc<mem::MaybeUninit<T>, A>, AllocError> {
972 unsafe {
973 Ok(Arc::from_ptr_in(
974 Arc::try_allocate_for_layout(
975 Layout::new::<T>(),
976 |layout| alloc.allocate_zeroed(layout),
977 <*mut u8>::cast,
978 )?,
979 alloc,
980 ))
981 }
982 }
983 /// Returns the inner value, if the `Arc` has exactly one strong reference.
984 ///
985 /// Otherwise, an [`Err`] is returned with the same `Arc` that was
986 /// passed in.
987 ///
988 /// This will succeed even if there are outstanding weak references.
989 ///
990 /// It is strongly recommended to use [`Arc::into_inner`] instead if you don't
991 /// keep the `Arc` in the [`Err`] case.
992 /// Immediately dropping the [`Err`]-value, as the expression
993 /// `Arc::try_unwrap(this).ok()` does, can cause the strong count to
994 /// drop to zero and the inner value of the `Arc` to be dropped.
995 /// For instance, if two threads execute such an expression in parallel,
996 /// there is a race condition without the possibility of unsafety:
997 /// The threads could first both check whether they own the last instance
998 /// in `Arc::try_unwrap`, determine that they both do not, and then both
999 /// discard and drop their instance in the call to [`ok`][`Result::ok`].
1000 /// In this scenario, the value inside the `Arc` is safely destroyed
1001 /// by exactly one of the threads, but neither thread will ever be able
1002 /// to use the value.
1003 ///
1004 /// # Examples
1005 ///
1006 /// ```
1007 /// use std::sync::Arc;
1008 ///
1009 /// let x = Arc::new(3);
1010 /// assert_eq!(Arc::try_unwrap(x), Ok(3));
1011 ///
1012 /// let x = Arc::new(4);
1013 /// let _y = Arc::clone(&x);
1014 /// assert_eq!(*Arc::try_unwrap(x).unwrap_err(), 4);
1015 /// ```
1016 #[inline]
1017 #[stable(feature = "arc_unique", since = "1.4.0")]
1018 pub fn try_unwrap(this: Self) -> Result<T, Self> {
1019 if this.inner().strong.compare_exchange(1, 0, Relaxed, Relaxed).is_err() {
1020 return Err(this);
1021 }
1022
1023 acquire!(this.inner().strong);
1024
1025 let this = ManuallyDrop::new(this);
1026 let elem: T = unsafe { ptr::read(&this.ptr.as_ref().data) };
1027 let alloc: A = unsafe { ptr::read(&this.alloc) }; // copy the allocator
1028
1029 // Make a weak pointer to clean up the implicit strong-weak reference
1030 let _weak = Weak { ptr: this.ptr, alloc };
1031
1032 Ok(elem)
1033 }
1034
1035 /// Returns the inner value, if the `Arc` has exactly one strong reference.
1036 ///
1037 /// Otherwise, [`None`] is returned and the `Arc` is dropped.
1038 ///
1039 /// This will succeed even if there are outstanding weak references.
1040 ///
1041 /// If `Arc::into_inner` is called on every clone of this `Arc`,
1042 /// it is guaranteed that exactly one of the calls returns the inner value.
1043 /// This means in particular that the inner value is not dropped.
1044 ///
1045 /// [`Arc::try_unwrap`] is conceptually similar to `Arc::into_inner`, but it
1046 /// is meant for different use-cases. If used as a direct replacement
1047 /// for `Arc::into_inner` anyway, such as with the expression
1048 /// <code>[Arc::try_unwrap]\(this).[ok][Result::ok]()</code>, then it does
1049 /// **not** give the same guarantee as described in the previous paragraph.
1050 /// For more information, see the examples below and read the documentation
1051 /// of [`Arc::try_unwrap`].
1052 ///
1053 /// # Examples
1054 ///
1055 /// Minimal example demonstrating the guarantee that `Arc::into_inner` gives.
1056 /// ```
1057 /// use std::sync::Arc;
1058 ///
1059 /// let x = Arc::new(3);
1060 /// let y = Arc::clone(&x);
1061 ///
1062 /// // Two threads calling `Arc::into_inner` on both clones of an `Arc`:
1063 /// let x_thread = std::thread::spawn(|| Arc::into_inner(x));
1064 /// let y_thread = std::thread::spawn(|| Arc::into_inner(y));
1065 ///
1066 /// let x_inner_value = x_thread.join().unwrap();
1067 /// let y_inner_value = y_thread.join().unwrap();
1068 ///
1069 /// // One of the threads is guaranteed to receive the inner value:
1070 /// assert!(matches!(
1071 /// (x_inner_value, y_inner_value),
1072 /// (None, Some(3)) | (Some(3), None)
1073 /// ));
1074 /// // The result could also be `(None, None)` if the threads called
1075 /// // `Arc::try_unwrap(x).ok()` and `Arc::try_unwrap(y).ok()` instead.
1076 /// ```
1077 ///
1078 /// A more practical example demonstrating the need for `Arc::into_inner`:
1079 /// ```
1080 /// use std::sync::Arc;
1081 ///
1082 /// // Definition of a simple singly linked list using `Arc`:
1083 /// #[derive(Clone)]
1084 /// struct LinkedList<T>(Option<Arc<Node<T>>>);
1085 /// struct Node<T>(T, Option<Arc<Node<T>>>);
1086 ///
1087 /// // Dropping a long `LinkedList<T>` relying on the destructor of `Arc`
1088 /// // can cause a stack overflow. To prevent this, we can provide a
1089 /// // manual `Drop` implementation that does the destruction in a loop:
1090 /// impl<T> Drop for LinkedList<T> {
1091 /// fn drop(&mut self) {
1092 /// let mut link = self.0.take();
1093 /// while let Some(arc_node) = link.take() {
1094 /// if let Some(Node(_value, next)) = Arc::into_inner(arc_node) {
1095 /// link = next;
1096 /// }
1097 /// }
1098 /// }
1099 /// }
1100 ///
1101 /// // Implementation of `new` and `push` omitted
1102 /// impl<T> LinkedList<T> {
1103 /// /* ... */
1104 /// # fn new() -> Self {
1105 /// # LinkedList(None)
1106 /// # }
1107 /// # fn push(&mut self, x: T) {
1108 /// # self.0 = Some(Arc::new(Node(x, self.0.take())));
1109 /// # }
1110 /// }
1111 ///
1112 /// // The following code could have still caused a stack overflow
1113 /// // despite the manual `Drop` impl if that `Drop` impl had used
1114 /// // `Arc::try_unwrap(arc).ok()` instead of `Arc::into_inner(arc)`.
1115 ///
1116 /// // Create a long list and clone it
1117 /// let mut x = LinkedList::new();
1118 /// let size = 100000;
1119 /// # let size = if cfg!(miri) { 100 } else { size };
1120 /// for i in 0..size {
1121 /// x.push(i); // Adds i to the front of x
1122 /// }
1123 /// let y = x.clone();
1124 ///
1125 /// // Drop the clones in parallel
1126 /// let x_thread = std::thread::spawn(|| drop(x));
1127 /// let y_thread = std::thread::spawn(|| drop(y));
1128 /// x_thread.join().unwrap();
1129 /// y_thread.join().unwrap();
1130 /// ```
1131 #[inline]
1132 #[stable(feature = "arc_into_inner", since = "1.70.0")]
1133 pub fn into_inner(this: Self) -> Option<T> {
1134 // Make sure that the ordinary `Drop` implementation isn’t called as well
1135 let mut this = mem::ManuallyDrop::new(this);
1136
1137 // Following the implementation of `drop` and `drop_slow`
1138 if this.inner().strong.fetch_sub(1, Release) != 1 {
1139 return None;
1140 }
1141
1142 acquire!(this.inner().strong);
1143
1144 // SAFETY: This mirrors the line
1145 //
1146 // unsafe { ptr::drop_in_place(Self::get_mut_unchecked(self)) };
1147 //
1148 // in `drop_slow`. Instead of dropping the value behind the pointer,
1149 // it is read and eventually returned; `ptr::read` has the same
1150 // safety conditions as `ptr::drop_in_place`.
1151
1152 let inner = unsafe { ptr::read(Self::get_mut_unchecked(&mut this)) };
1153 let alloc = unsafe { ptr::read(&this.alloc) };
1154
1155 drop(Weak { ptr: this.ptr, alloc });
1156
1157 Some(inner)
1158 }
1159}
1160
1161impl<T> Arc<[T]> {
1162 /// Constructs a new atomically reference-counted slice with uninitialized contents.
1163 ///
1164 /// # Examples
1165 ///
1166 /// ```
1167 /// #![feature(get_mut_unchecked)]
1168 ///
1169 /// use std::sync::Arc;
1170 ///
1171 /// let mut values = Arc::<[u32]>::new_uninit_slice(3);
1172 ///
1173 /// // Deferred initialization:
1174 /// let data = Arc::get_mut(&mut values).unwrap();
1175 /// data[0].write(1);
1176 /// data[1].write(2);
1177 /// data[2].write(3);
1178 ///
1179 /// let values = unsafe { values.assume_init() };
1180 ///
1181 /// assert_eq!(*values, [1, 2, 3])
1182 /// ```
1183 #[cfg(not(no_global_oom_handling))]
1184 #[inline]
1185 #[stable(feature = "new_uninit", since = "1.82.0")]
1186 #[must_use]
1187 pub fn new_uninit_slice(len: usize) -> Arc<[mem::MaybeUninit<T>]> {
1188 unsafe { Arc::from_ptr(Arc::allocate_for_slice(len)) }
1189 }
1190
1191 /// Constructs a new atomically reference-counted slice with uninitialized contents, with the memory being
1192 /// filled with `0` bytes.
1193 ///
1194 /// See [`MaybeUninit::zeroed`][zeroed] for examples of correct and
1195 /// incorrect usage of this method.
1196 ///
1197 /// # Examples
1198 ///
1199 /// ```
1200 /// #![feature(new_zeroed_alloc)]
1201 ///
1202 /// use std::sync::Arc;
1203 ///
1204 /// let values = Arc::<[u32]>::new_zeroed_slice(3);
1205 /// let values = unsafe { values.assume_init() };
1206 ///
1207 /// assert_eq!(*values, [0, 0, 0])
1208 /// ```
1209 ///
1210 /// [zeroed]: mem::MaybeUninit::zeroed
1211 #[cfg(not(no_global_oom_handling))]
1212 #[inline]
1213 #[unstable(feature = "new_zeroed_alloc", issue = "129396")]
1214 #[must_use]
1215 pub fn new_zeroed_slice(len: usize) -> Arc<[mem::MaybeUninit<T>]> {
1216 unsafe {
1217 Arc::from_ptr(Arc::allocate_for_layout(
1218 Layout::array::<T>(len).unwrap(),
1219 |layout| Global.allocate_zeroed(layout),
1220 |mem| {
1221 ptr::slice_from_raw_parts_mut(mem as *mut T, len)
1222 as *mut ArcInner<[mem::MaybeUninit<T>]>
1223 },
1224 ))
1225 }
1226 }
1227
1228 /// Converts the reference-counted slice into a reference-counted array.
1229 ///
1230 /// This operation does not reallocate; the underlying array of the slice is simply reinterpreted as an array type.
1231 ///
1232 /// If `N` is not exactly equal to the length of `self`, then this method returns `None`.
1233 #[unstable(feature = "slice_as_array", issue = "133508")]
1234 #[inline]
1235 #[must_use]
1236 pub fn into_array<const N: usize>(self) -> Option<Arc<[T; N]>> {
1237 if self.len() == N {
1238 let ptr = Self::into_raw(self) as *const [T; N];
1239
1240 // SAFETY: The underlying array of a slice has the exact same layout as an actual array `[T; N]` if `N` is equal to the slice's length.
1241 let me = unsafe { Arc::from_raw(ptr) };
1242 Some(me)
1243 } else {
1244 None
1245 }
1246 }
1247}
1248
1249impl<T, A: Allocator> Arc<[T], A> {
1250 /// Constructs a new atomically reference-counted slice with uninitialized contents in the
1251 /// provided allocator.
1252 ///
1253 /// # Examples
1254 ///
1255 /// ```
1256 /// #![feature(get_mut_unchecked)]
1257 /// #![feature(allocator_api)]
1258 ///
1259 /// use std::sync::Arc;
1260 /// use std::alloc::System;
1261 ///
1262 /// let mut values = Arc::<[u32], _>::new_uninit_slice_in(3, System);
1263 ///
1264 /// let values = unsafe {
1265 /// // Deferred initialization:
1266 /// Arc::get_mut_unchecked(&mut values)[0].as_mut_ptr().write(1);
1267 /// Arc::get_mut_unchecked(&mut values)[1].as_mut_ptr().write(2);
1268 /// Arc::get_mut_unchecked(&mut values)[2].as_mut_ptr().write(3);
1269 ///
1270 /// values.assume_init()
1271 /// };
1272 ///
1273 /// assert_eq!(*values, [1, 2, 3])
1274 /// ```
1275 #[cfg(not(no_global_oom_handling))]
1276 #[unstable(feature = "allocator_api", issue = "32838")]
1277 #[inline]
1278 pub fn new_uninit_slice_in(len: usize, alloc: A) -> Arc<[mem::MaybeUninit<T>], A> {
1279 unsafe { Arc::from_ptr_in(Arc::allocate_for_slice_in(len, &alloc), alloc) }
1280 }
1281
1282 /// Constructs a new atomically reference-counted slice with uninitialized contents, with the memory being
1283 /// filled with `0` bytes, in the provided allocator.
1284 ///
1285 /// See [`MaybeUninit::zeroed`][zeroed] for examples of correct and
1286 /// incorrect usage of this method.
1287 ///
1288 /// # Examples
1289 ///
1290 /// ```
1291 /// #![feature(allocator_api)]
1292 ///
1293 /// use std::sync::Arc;
1294 /// use std::alloc::System;
1295 ///
1296 /// let values = Arc::<[u32], _>::new_zeroed_slice_in(3, System);
1297 /// let values = unsafe { values.assume_init() };
1298 ///
1299 /// assert_eq!(*values, [0, 0, 0])
1300 /// ```
1301 ///
1302 /// [zeroed]: mem::MaybeUninit::zeroed
1303 #[cfg(not(no_global_oom_handling))]
1304 #[unstable(feature = "allocator_api", issue = "32838")]
1305 #[inline]
1306 pub fn new_zeroed_slice_in(len: usize, alloc: A) -> Arc<[mem::MaybeUninit<T>], A> {
1307 unsafe {
1308 Arc::from_ptr_in(
1309 Arc::allocate_for_layout(
1310 Layout::array::<T>(len).unwrap(),
1311 |layout| alloc.allocate_zeroed(layout),
1312 |mem| {
1313 ptr::slice_from_raw_parts_mut(mem.cast::<T>(), len)
1314 as *mut ArcInner<[mem::MaybeUninit<T>]>
1315 },
1316 ),
1317 alloc,
1318 )
1319 }
1320 }
1321}
1322
1323impl<T, A: Allocator> Arc<mem::MaybeUninit<T>, A> {
1324 /// Converts to `Arc<T>`.
1325 ///
1326 /// # Safety
1327 ///
1328 /// As with [`MaybeUninit::assume_init`],
1329 /// it is up to the caller to guarantee that the inner value
1330 /// really is in an initialized state.
1331 /// Calling this when the content is not yet fully initialized
1332 /// causes immediate undefined behavior.
1333 ///
1334 /// [`MaybeUninit::assume_init`]: mem::MaybeUninit::assume_init
1335 ///
1336 /// # Examples
1337 ///
1338 /// ```
1339 /// #![feature(get_mut_unchecked)]
1340 ///
1341 /// use std::sync::Arc;
1342 ///
1343 /// let mut five = Arc::<u32>::new_uninit();
1344 ///
1345 /// // Deferred initialization:
1346 /// Arc::get_mut(&mut five).unwrap().write(5);
1347 ///
1348 /// let five = unsafe { five.assume_init() };
1349 ///
1350 /// assert_eq!(*five, 5)
1351 /// ```
1352 #[stable(feature = "new_uninit", since = "1.82.0")]
1353 #[must_use = "`self` will be dropped if the result is not used"]
1354 #[inline]
1355 pub unsafe fn assume_init(self) -> Arc<T, A> {
1356 let (ptr, alloc) = Arc::into_inner_with_allocator(self);
1357 unsafe { Arc::from_inner_in(ptr.cast(), alloc) }
1358 }
1359}
1360
1361impl<T, A: Allocator> Arc<[mem::MaybeUninit<T>], A> {
1362 /// Converts to `Arc<[T]>`.
1363 ///
1364 /// # Safety
1365 ///
1366 /// As with [`MaybeUninit::assume_init`],
1367 /// it is up to the caller to guarantee that the inner value
1368 /// really is in an initialized state.
1369 /// Calling this when the content is not yet fully initialized
1370 /// causes immediate undefined behavior.
1371 ///
1372 /// [`MaybeUninit::assume_init`]: mem::MaybeUninit::assume_init
1373 ///
1374 /// # Examples
1375 ///
1376 /// ```
1377 /// #![feature(get_mut_unchecked)]
1378 ///
1379 /// use std::sync::Arc;
1380 ///
1381 /// let mut values = Arc::<[u32]>::new_uninit_slice(3);
1382 ///
1383 /// // Deferred initialization:
1384 /// let data = Arc::get_mut(&mut values).unwrap();
1385 /// data[0].write(1);
1386 /// data[1].write(2);
1387 /// data[2].write(3);
1388 ///
1389 /// let values = unsafe { values.assume_init() };
1390 ///
1391 /// assert_eq!(*values, [1, 2, 3])
1392 /// ```
1393 #[stable(feature = "new_uninit", since = "1.82.0")]
1394 #[must_use = "`self` will be dropped if the result is not used"]
1395 #[inline]
1396 pub unsafe fn assume_init(self) -> Arc<[T], A> {
1397 let (ptr, alloc) = Arc::into_inner_with_allocator(self);
1398 unsafe { Arc::from_ptr_in(ptr.as_ptr() as _, alloc) }
1399 }
1400}
1401
1402impl<T: ?Sized> Arc<T> {
1403 /// Constructs an `Arc<T>` from a raw pointer.
1404 ///
1405 /// The raw pointer must have been previously returned by a call to
1406 /// [`Arc<U>::into_raw`][into_raw] with the following requirements:
1407 ///
1408 /// * If `U` is sized, it must have the same size and alignment as `T`. This
1409 /// is trivially true if `U` is `T`.
1410 /// * If `U` is unsized, its data pointer must have the same size and
1411 /// alignment as `T`. This is trivially true if `Arc<U>` was constructed
1412 /// through `Arc<T>` and then converted to `Arc<U>` through an [unsized
1413 /// coercion].
1414 ///
1415 /// Note that if `U` or `U`'s data pointer is not `T` but has the same size
1416 /// and alignment, this is basically like transmuting references of
1417 /// different types. See [`mem::transmute`][transmute] for more information
1418 /// on what restrictions apply in this case.
1419 ///
1420 /// The raw pointer must point to a block of memory allocated by the global allocator.
1421 ///
1422 /// The user of `from_raw` has to make sure a specific value of `T` is only
1423 /// dropped once.
1424 ///
1425 /// This function is unsafe because improper use may lead to memory unsafety,
1426 /// even if the returned `Arc<T>` is never accessed.
1427 ///
1428 /// [into_raw]: Arc::into_raw
1429 /// [transmute]: core::mem::transmute
1430 /// [unsized coercion]: https://doc.rust-lang.org/reference/type-coercions.html#unsized-coercions
1431 ///
1432 /// # Examples
1433 ///
1434 /// ```
1435 /// use std::sync::Arc;
1436 ///
1437 /// let x = Arc::new("hello".to_owned());
1438 /// let x_ptr = Arc::into_raw(x);
1439 ///
1440 /// unsafe {
1441 /// // Convert back to an `Arc` to prevent leak.
1442 /// let x = Arc::from_raw(x_ptr);
1443 /// assert_eq!(&*x, "hello");
1444 ///
1445 /// // Further calls to `Arc::from_raw(x_ptr)` would be memory-unsafe.
1446 /// }
1447 ///
1448 /// // The memory was freed when `x` went out of scope above, so `x_ptr` is now dangling!
1449 /// ```
1450 ///
1451 /// Convert a slice back into its original array:
1452 ///
1453 /// ```
1454 /// use std::sync::Arc;
1455 ///
1456 /// let x: Arc<[u32]> = Arc::new([1, 2, 3]);
1457 /// let x_ptr: *const [u32] = Arc::into_raw(x);
1458 ///
1459 /// unsafe {
1460 /// let x: Arc<[u32; 3]> = Arc::from_raw(x_ptr.cast::<[u32; 3]>());
1461 /// assert_eq!(&*x, &[1, 2, 3]);
1462 /// }
1463 /// ```
1464 #[inline]
1465 #[stable(feature = "rc_raw", since = "1.17.0")]
1466 pub unsafe fn from_raw(ptr: *const T) -> Self {
1467 unsafe { Arc::from_raw_in(ptr, Global) }
1468 }
1469
1470 /// Consumes the `Arc`, returning the wrapped pointer.
1471 ///
1472 /// To avoid a memory leak the pointer must be converted back to an `Arc` using
1473 /// [`Arc::from_raw`].
1474 ///
1475 /// # Examples
1476 ///
1477 /// ```
1478 /// use std::sync::Arc;
1479 ///
1480 /// let x = Arc::new("hello".to_owned());
1481 /// let x_ptr = Arc::into_raw(x);
1482 /// assert_eq!(unsafe { &*x_ptr }, "hello");
1483 /// # // Prevent leaks for Miri.
1484 /// # drop(unsafe { Arc::from_raw(x_ptr) });
1485 /// ```
1486 #[must_use = "losing the pointer will leak memory"]
1487 #[stable(feature = "rc_raw", since = "1.17.0")]
1488 #[rustc_never_returns_null_ptr]
1489 pub fn into_raw(this: Self) -> *const T {
1490 let this = ManuallyDrop::new(this);
1491 Self::as_ptr(&*this)
1492 }
1493
1494 /// Increments the strong reference count on the `Arc<T>` associated with the
1495 /// provided pointer by one.
1496 ///
1497 /// # Safety
1498 ///
1499 /// The pointer must have been obtained through `Arc::into_raw` and must satisfy the
1500 /// same layout requirements specified in [`Arc::from_raw_in`][from_raw_in].
1501 /// The associated `Arc` instance must be valid (i.e. the strong count must be at
1502 /// least 1) for the duration of this method, and `ptr` must point to a block of memory
1503 /// allocated by the global allocator.
1504 ///
1505 /// [from_raw_in]: Arc::from_raw_in
1506 ///
1507 /// # Examples
1508 ///
1509 /// ```
1510 /// use std::sync::Arc;
1511 ///
1512 /// let five = Arc::new(5);
1513 ///
1514 /// unsafe {
1515 /// let ptr = Arc::into_raw(five);
1516 /// Arc::increment_strong_count(ptr);
1517 ///
1518 /// // This assertion is deterministic because we haven't shared
1519 /// // the `Arc` between threads.
1520 /// let five = Arc::from_raw(ptr);
1521 /// assert_eq!(2, Arc::strong_count(&five));
1522 /// # // Prevent leaks for Miri.
1523 /// # Arc::decrement_strong_count(ptr);
1524 /// }
1525 /// ```
1526 #[inline]
1527 #[stable(feature = "arc_mutate_strong_count", since = "1.51.0")]
1528 pub unsafe fn increment_strong_count(ptr: *const T) {
1529 unsafe { Arc::increment_strong_count_in(ptr, Global) }
1530 }
1531
1532 /// Decrements the strong reference count on the `Arc<T>` associated with the
1533 /// provided pointer by one.
1534 ///
1535 /// # Safety
1536 ///
1537 /// The pointer must have been obtained through `Arc::into_raw` and must satisfy the
1538 /// same layout requirements specified in [`Arc::from_raw_in`][from_raw_in].
1539 /// The associated `Arc` instance must be valid (i.e. the strong count must be at
1540 /// least 1) when invoking this method, and `ptr` must point to a block of memory
1541 /// allocated by the global allocator. This method can be used to release the final
1542 /// `Arc` and backing storage, but **should not** be called after the final `Arc` has been
1543 /// released.
1544 ///
1545 /// [from_raw_in]: Arc::from_raw_in
1546 ///
1547 /// # Examples
1548 ///
1549 /// ```
1550 /// use std::sync::Arc;
1551 ///
1552 /// let five = Arc::new(5);
1553 ///
1554 /// unsafe {
1555 /// let ptr = Arc::into_raw(five);
1556 /// Arc::increment_strong_count(ptr);
1557 ///
1558 /// // Those assertions are deterministic because we haven't shared
1559 /// // the `Arc` between threads.
1560 /// let five = Arc::from_raw(ptr);
1561 /// assert_eq!(2, Arc::strong_count(&five));
1562 /// Arc::decrement_strong_count(ptr);
1563 /// assert_eq!(1, Arc::strong_count(&five));
1564 /// }
1565 /// ```
1566 #[inline]
1567 #[stable(feature = "arc_mutate_strong_count", since = "1.51.0")]
1568 pub unsafe fn decrement_strong_count(ptr: *const T) {
1569 unsafe { Arc::decrement_strong_count_in(ptr, Global) }
1570 }
1571}
1572
1573impl<T: ?Sized, A: Allocator> Arc<T, A> {
1574 /// Returns a reference to the underlying allocator.
1575 ///
1576 /// Note: this is an associated function, which means that you have
1577 /// to call it as `Arc::allocator(&a)` instead of `a.allocator()`. This
1578 /// is so that there is no conflict with a method on the inner type.
1579 #[inline]
1580 #[unstable(feature = "allocator_api", issue = "32838")]
1581 pub fn allocator(this: &Self) -> &A {
1582 &this.alloc
1583 }
1584
1585 /// Consumes the `Arc`, returning the wrapped pointer and allocator.
1586 ///
1587 /// To avoid a memory leak the pointer must be converted back to an `Arc` using
1588 /// [`Arc::from_raw_in`].
1589 ///
1590 /// # Examples
1591 ///
1592 /// ```
1593 /// #![feature(allocator_api)]
1594 /// use std::sync::Arc;
1595 /// use std::alloc::System;
1596 ///
1597 /// let x = Arc::new_in("hello".to_owned(), System);
1598 /// let (ptr, alloc) = Arc::into_raw_with_allocator(x);
1599 /// assert_eq!(unsafe { &*ptr }, "hello");
1600 /// let x = unsafe { Arc::from_raw_in(ptr, alloc) };
1601 /// assert_eq!(&*x, "hello");
1602 /// ```
1603 #[must_use = "losing the pointer will leak memory"]
1604 #[unstable(feature = "allocator_api", issue = "32838")]
1605 pub fn into_raw_with_allocator(this: Self) -> (*const T, A) {
1606 let this = mem::ManuallyDrop::new(this);
1607 let ptr = Self::as_ptr(&this);
1608 // Safety: `this` is ManuallyDrop so the allocator will not be double-dropped
1609 let alloc = unsafe { ptr::read(&this.alloc) };
1610 (ptr, alloc)
1611 }
1612
1613 /// Provides a raw pointer to the data.
1614 ///
1615 /// The counts are not affected in any way and the `Arc` is not consumed. The pointer is valid for
1616 /// as long as there are strong counts in the `Arc`.
1617 ///
1618 /// # Examples
1619 ///
1620 /// ```
1621 /// use std::sync::Arc;
1622 ///
1623 /// let x = Arc::new("hello".to_owned());
1624 /// let y = Arc::clone(&x);
1625 /// let x_ptr = Arc::as_ptr(&x);
1626 /// assert_eq!(x_ptr, Arc::as_ptr(&y));
1627 /// assert_eq!(unsafe { &*x_ptr }, "hello");
1628 /// ```
1629 #[must_use]
1630 #[stable(feature = "rc_as_ptr", since = "1.45.0")]
1631 #[rustc_never_returns_null_ptr]
1632 pub fn as_ptr(this: &Self) -> *const T {
1633 let ptr: *mut ArcInner<T> = NonNull::as_ptr(this.ptr);
1634
1635 // SAFETY: This cannot go through Deref::deref or RcInnerPtr::inner because
1636 // this is required to retain raw/mut provenance such that e.g. `get_mut` can
1637 // write through the pointer after the Rc is recovered through `from_raw`.
1638 unsafe { &raw mut (*ptr).data }
1639 }
1640
1641 /// Constructs an `Arc<T, A>` from a raw pointer.
1642 ///
1643 /// The raw pointer must have been previously returned by a call to [`Arc<U,
1644 /// A>::into_raw`][into_raw] with the following requirements:
1645 ///
1646 /// * If `U` is sized, it must have the same size and alignment as `T`. This
1647 /// is trivially true if `U` is `T`.
1648 /// * If `U` is unsized, its data pointer must have the same size and
1649 /// alignment as `T`. This is trivially true if `Arc<U>` was constructed
1650 /// through `Arc<T>` and then converted to `Arc<U>` through an [unsized
1651 /// coercion].
1652 ///
1653 /// Note that if `U` or `U`'s data pointer is not `T` but has the same size
1654 /// and alignment, this is basically like transmuting references of
1655 /// different types. See [`mem::transmute`][transmute] for more information
1656 /// on what restrictions apply in this case.
1657 ///
1658 /// The raw pointer must point to a block of memory allocated by `alloc`
1659 ///
1660 /// The user of `from_raw` has to make sure a specific value of `T` is only
1661 /// dropped once.
1662 ///
1663 /// This function is unsafe because improper use may lead to memory unsafety,
1664 /// even if the returned `Arc<T>` is never accessed.
1665 ///
1666 /// [into_raw]: Arc::into_raw
1667 /// [transmute]: core::mem::transmute
1668 /// [unsized coercion]: https://doc.rust-lang.org/reference/type-coercions.html#unsized-coercions
1669 ///
1670 /// # Examples
1671 ///
1672 /// ```
1673 /// #![feature(allocator_api)]
1674 ///
1675 /// use std::sync::Arc;
1676 /// use std::alloc::System;
1677 ///
1678 /// let x = Arc::new_in("hello".to_owned(), System);
1679 /// let (x_ptr, alloc) = Arc::into_raw_with_allocator(x);
1680 ///
1681 /// unsafe {
1682 /// // Convert back to an `Arc` to prevent leak.
1683 /// let x = Arc::from_raw_in(x_ptr, System);
1684 /// assert_eq!(&*x, "hello");
1685 ///
1686 /// // Further calls to `Arc::from_raw(x_ptr)` would be memory-unsafe.
1687 /// }
1688 ///
1689 /// // The memory was freed when `x` went out of scope above, so `x_ptr` is now dangling!
1690 /// ```
1691 ///
1692 /// Convert a slice back into its original array:
1693 ///
1694 /// ```
1695 /// #![feature(allocator_api)]
1696 ///
1697 /// use std::sync::Arc;
1698 /// use std::alloc::System;
1699 ///
1700 /// let x: Arc<[u32], _> = Arc::new_in([1, 2, 3], System);
1701 /// let x_ptr: *const [u32] = Arc::into_raw_with_allocator(x).0;
1702 ///
1703 /// unsafe {
1704 /// let x: Arc<[u32; 3], _> = Arc::from_raw_in(x_ptr.cast::<[u32; 3]>(), System);
1705 /// assert_eq!(&*x, &[1, 2, 3]);
1706 /// }
1707 /// ```
1708 #[inline]
1709 #[unstable(feature = "allocator_api", issue = "32838")]
1710 pub unsafe fn from_raw_in(ptr: *const T, alloc: A) -> Self {
1711 unsafe {
1712 let offset = data_offset(ptr);
1713
1714 // Reverse the offset to find the original ArcInner.
1715 let arc_ptr = ptr.byte_sub(offset) as *mut ArcInner<T>;
1716
1717 Self::from_ptr_in(arc_ptr, alloc)
1718 }
1719 }
1720
1721 /// Creates a new [`Weak`] pointer to this allocation.
1722 ///
1723 /// # Examples
1724 ///
1725 /// ```
1726 /// use std::sync::Arc;
1727 ///
1728 /// let five = Arc::new(5);
1729 ///
1730 /// let weak_five = Arc::downgrade(&five);
1731 /// ```
1732 #[must_use = "this returns a new `Weak` pointer, \
1733 without modifying the original `Arc`"]
1734 #[stable(feature = "arc_weak", since = "1.4.0")]
1735 pub fn downgrade(this: &Self) -> Weak<T, A>
1736 where
1737 A: Clone,
1738 {
1739 // This Relaxed is OK because we're checking the value in the CAS
1740 // below.
1741 let mut cur = this.inner().weak.load(Relaxed);
1742
1743 loop {
1744 // check if the weak counter is currently "locked"; if so, spin.
1745 if cur == usize::MAX {
1746 hint::spin_loop();
1747 cur = this.inner().weak.load(Relaxed);
1748 continue;
1749 }
1750
1751 // We can't allow the refcount to increase much past `MAX_REFCOUNT`.
1752 assert!(cur <= MAX_REFCOUNT, "{}", INTERNAL_OVERFLOW_ERROR);
1753
1754 // NOTE: this code currently ignores the possibility of overflow
1755 // into usize::MAX; in general both Rc and Arc need to be adjusted
1756 // to deal with overflow.
1757
1758 // Unlike with Clone(), we need this to be an Acquire read to
1759 // synchronize with the write coming from `is_unique`, so that the
1760 // events prior to that write happen before this read.
1761 match this.inner().weak.compare_exchange_weak(cur, cur + 1, Acquire, Relaxed) {
1762 Ok(_) => {
1763 // Make sure we do not create a dangling Weak
1764 debug_assert!(!is_dangling(this.ptr.as_ptr()));
1765 return Weak { ptr: this.ptr, alloc: this.alloc.clone() };
1766 }
1767 Err(old) => cur = old,
1768 }
1769 }
1770 }
1771
1772 /// Gets the number of [`Weak`] pointers to this allocation.
1773 ///
1774 /// # Safety
1775 ///
1776 /// This method by itself is safe, but using it correctly requires extra care.
1777 /// Another thread can change the weak count at any time,
1778 /// including potentially between calling this method and acting on the result.
1779 ///
1780 /// # Examples
1781 ///
1782 /// ```
1783 /// use std::sync::Arc;
1784 ///
1785 /// let five = Arc::new(5);
1786 /// let _weak_five = Arc::downgrade(&five);
1787 ///
1788 /// // This assertion is deterministic because we haven't shared
1789 /// // the `Arc` or `Weak` between threads.
1790 /// assert_eq!(1, Arc::weak_count(&five));
1791 /// ```
1792 #[inline]
1793 #[must_use]
1794 #[stable(feature = "arc_counts", since = "1.15.0")]
1795 pub fn weak_count(this: &Self) -> usize {
1796 let cnt = this.inner().weak.load(Relaxed);
1797 // If the weak count is currently locked, the value of the
1798 // count was 0 just before taking the lock.
1799 if cnt == usize::MAX { 0 } else { cnt - 1 }
1800 }
1801
1802 /// Gets the number of strong (`Arc`) pointers to this allocation.
1803 ///
1804 /// # Safety
1805 ///
1806 /// This method by itself is safe, but using it correctly requires extra care.
1807 /// Another thread can change the strong count at any time,
1808 /// including potentially between calling this method and acting on the result.
1809 ///
1810 /// # Examples
1811 ///
1812 /// ```
1813 /// use std::sync::Arc;
1814 ///
1815 /// let five = Arc::new(5);
1816 /// let _also_five = Arc::clone(&five);
1817 ///
1818 /// // This assertion is deterministic because we haven't shared
1819 /// // the `Arc` between threads.
1820 /// assert_eq!(2, Arc::strong_count(&five));
1821 /// ```
1822 #[inline]
1823 #[must_use]
1824 #[stable(feature = "arc_counts", since = "1.15.0")]
1825 pub fn strong_count(this: &Self) -> usize {
1826 this.inner().strong.load(Relaxed)
1827 }
1828
1829 /// Increments the strong reference count on the `Arc<T>` associated with the
1830 /// provided pointer by one.
1831 ///
1832 /// # Safety
1833 ///
1834 /// The pointer must have been obtained through `Arc::into_raw` and must satisfy the
1835 /// same layout requirements specified in [`Arc::from_raw_in`][from_raw_in].
1836 /// The associated `Arc` instance must be valid (i.e. the strong count must be at
1837 /// least 1) for the duration of this method, and `ptr` must point to a block of memory
1838 /// allocated by `alloc`.
1839 ///
1840 /// [from_raw_in]: Arc::from_raw_in
1841 ///
1842 /// # Examples
1843 ///
1844 /// ```
1845 /// #![feature(allocator_api)]
1846 ///
1847 /// use std::sync::Arc;
1848 /// use std::alloc::System;
1849 ///
1850 /// let five = Arc::new_in(5, System);
1851 ///
1852 /// unsafe {
1853 /// let (ptr, _alloc) = Arc::into_raw_with_allocator(five);
1854 /// Arc::increment_strong_count_in(ptr, System);
1855 ///
1856 /// // This assertion is deterministic because we haven't shared
1857 /// // the `Arc` between threads.
1858 /// let five = Arc::from_raw_in(ptr, System);
1859 /// assert_eq!(2, Arc::strong_count(&five));
1860 /// # // Prevent leaks for Miri.
1861 /// # Arc::decrement_strong_count_in(ptr, System);
1862 /// }
1863 /// ```
1864 #[inline]
1865 #[unstable(feature = "allocator_api", issue = "32838")]
1866 pub unsafe fn increment_strong_count_in(ptr: *const T, alloc: A)
1867 where
1868 A: Clone,
1869 {
1870 // Retain Arc, but don't touch refcount by wrapping in ManuallyDrop
1871 let arc = unsafe { mem::ManuallyDrop::new(Arc::from_raw_in(ptr, alloc)) };
1872 // Now increase refcount, but don't drop new refcount either
1873 let _arc_clone: mem::ManuallyDrop<_> = arc.clone();
1874 }
1875
1876 /// Decrements the strong reference count on the `Arc<T>` associated with the
1877 /// provided pointer by one.
1878 ///
1879 /// # Safety
1880 ///
1881 /// The pointer must have been obtained through `Arc::into_raw` and must satisfy the
1882 /// same layout requirements specified in [`Arc::from_raw_in`][from_raw_in].
1883 /// The associated `Arc` instance must be valid (i.e. the strong count must be at
1884 /// least 1) when invoking this method, and `ptr` must point to a block of memory
1885 /// allocated by `alloc`. This method can be used to release the final
1886 /// `Arc` and backing storage, but **should not** be called after the final `Arc` has been
1887 /// released.
1888 ///
1889 /// [from_raw_in]: Arc::from_raw_in
1890 ///
1891 /// # Examples
1892 ///
1893 /// ```
1894 /// #![feature(allocator_api)]
1895 ///
1896 /// use std::sync::Arc;
1897 /// use std::alloc::System;
1898 ///
1899 /// let five = Arc::new_in(5, System);
1900 ///
1901 /// unsafe {
1902 /// let (ptr, _alloc) = Arc::into_raw_with_allocator(five);
1903 /// Arc::increment_strong_count_in(ptr, System);
1904 ///
1905 /// // Those assertions are deterministic because we haven't shared
1906 /// // the `Arc` between threads.
1907 /// let five = Arc::from_raw_in(ptr, System);
1908 /// assert_eq!(2, Arc::strong_count(&five));
1909 /// Arc::decrement_strong_count_in(ptr, System);
1910 /// assert_eq!(1, Arc::strong_count(&five));
1911 /// }
1912 /// ```
1913 #[inline]
1914 #[unstable(feature = "allocator_api", issue = "32838")]
1915 pub unsafe fn decrement_strong_count_in(ptr: *const T, alloc: A) {
1916 unsafe { drop(Arc::from_raw_in(ptr, alloc)) };
1917 }
1918
1919 #[inline]
1920 fn inner(&self) -> &ArcInner<T> {
1921 // This unsafety is ok because while this arc is alive we're guaranteed
1922 // that the inner pointer is valid. Furthermore, we know that the
1923 // `ArcInner` structure itself is `Sync` because the inner data is
1924 // `Sync` as well, so we're ok loaning out an immutable pointer to these
1925 // contents.
1926 unsafe { self.ptr.as_ref() }
1927 }
1928
1929 // Non-inlined part of `drop`.
1930 #[inline(never)]
1931 unsafe fn drop_slow(&mut self) {
1932 // Drop the weak ref collectively held by all strong references when this
1933 // variable goes out of scope. This ensures that the memory is deallocated
1934 // even if the destructor of `T` panics.
1935 // Take a reference to `self.alloc` instead of cloning because 1. it'll last long
1936 // enough, and 2. you should be able to drop `Arc`s with unclonable allocators
1937 let _weak = Weak { ptr: self.ptr, alloc: &self.alloc };
1938
1939 // Destroy the data at this time, even though we must not free the box
1940 // allocation itself (there might still be weak pointers lying around).
1941 // We cannot use `get_mut_unchecked` here, because `self.alloc` is borrowed.
1942 unsafe { ptr::drop_in_place(&mut (*self.ptr.as_ptr()).data) };
1943 }
1944
1945 /// Returns `true` if the two `Arc`s point to the same allocation in a vein similar to
1946 /// [`ptr::eq`]. This function ignores the metadata of `dyn Trait` pointers.
1947 ///
1948 /// # Examples
1949 ///
1950 /// ```
1951 /// use std::sync::Arc;
1952 ///
1953 /// let five = Arc::new(5);
1954 /// let same_five = Arc::clone(&five);
1955 /// let other_five = Arc::new(5);
1956 ///
1957 /// assert!(Arc::ptr_eq(&five, &same_five));
1958 /// assert!(!Arc::ptr_eq(&five, &other_five));
1959 /// ```
1960 ///
1961 /// [`ptr::eq`]: core::ptr::eq "ptr::eq"
1962 #[inline]
1963 #[must_use]
1964 #[stable(feature = "ptr_eq", since = "1.17.0")]
1965 pub fn ptr_eq(this: &Self, other: &Self) -> bool {
1966 ptr::addr_eq(this.ptr.as_ptr(), other.ptr.as_ptr())
1967 }
1968}
1969
1970impl<T: ?Sized> Arc<T> {
1971 /// Allocates an `ArcInner<T>` with sufficient space for
1972 /// a possibly-unsized inner value where the value has the layout provided.
1973 ///
1974 /// The function `mem_to_arcinner` is called with the data pointer
1975 /// and must return back a (potentially fat)-pointer for the `ArcInner<T>`.
1976 #[cfg(not(no_global_oom_handling))]
1977 unsafe fn allocate_for_layout(
1978 value_layout: Layout,
1979 allocate: impl FnOnce(Layout) -> Result<NonNull<[u8]>, AllocError>,
1980 mem_to_arcinner: impl FnOnce(*mut u8) -> *mut ArcInner<T>,
1981 ) -> *mut ArcInner<T> {
1982 let layout = arcinner_layout_for_value_layout(value_layout);
1983
1984 let ptr = allocate(layout).unwrap_or_else(|_| handle_alloc_error(layout));
1985
1986 unsafe { Self::initialize_arcinner(ptr, layout, mem_to_arcinner) }
1987 }
1988
1989 /// Allocates an `ArcInner<T>` with sufficient space for
1990 /// a possibly-unsized inner value where the value has the layout provided,
1991 /// returning an error if allocation fails.
1992 ///
1993 /// The function `mem_to_arcinner` is called with the data pointer
1994 /// and must return back a (potentially fat)-pointer for the `ArcInner<T>`.
1995 unsafe fn try_allocate_for_layout(
1996 value_layout: Layout,
1997 allocate: impl FnOnce(Layout) -> Result<NonNull<[u8]>, AllocError>,
1998 mem_to_arcinner: impl FnOnce(*mut u8) -> *mut ArcInner<T>,
1999 ) -> Result<*mut ArcInner<T>, AllocError> {
2000 let layout = arcinner_layout_for_value_layout(value_layout);
2001
2002 let ptr = allocate(layout)?;
2003
2004 let inner = unsafe { Self::initialize_arcinner(ptr, layout, mem_to_arcinner) };
2005
2006 Ok(inner)
2007 }
2008
2009 unsafe fn initialize_arcinner(
2010 ptr: NonNull<[u8]>,
2011 layout: Layout,
2012 mem_to_arcinner: impl FnOnce(*mut u8) -> *mut ArcInner<T>,
2013 ) -> *mut ArcInner<T> {
2014 let inner = mem_to_arcinner(ptr.as_non_null_ptr().as_ptr());
2015 debug_assert_eq!(unsafe { Layout::for_value_raw(inner) }, layout);
2016
2017 unsafe {
2018 (&raw mut (*inner).strong).write(atomic::AtomicUsize::new(1));
2019 (&raw mut (*inner).weak).write(atomic::AtomicUsize::new(1));
2020 }
2021
2022 inner
2023 }
2024}
2025
2026impl<T: ?Sized, A: Allocator> Arc<T, A> {
2027 /// Allocates an `ArcInner<T>` with sufficient space for an unsized inner value.
2028 #[inline]
2029 #[cfg(not(no_global_oom_handling))]
2030 unsafe fn allocate_for_ptr_in(ptr: *const T, alloc: &A) -> *mut ArcInner<T> {
2031 // Allocate for the `ArcInner<T>` using the given value.
2032 unsafe {
2033 Arc::allocate_for_layout(
2034 Layout::for_value_raw(ptr),
2035 |layout| alloc.allocate(layout),
2036 |mem| mem.with_metadata_of(ptr as *const ArcInner<T>),
2037 )
2038 }
2039 }
2040
2041 #[cfg(not(no_global_oom_handling))]
2042 fn from_box_in(src: Box<T, A>) -> Arc<T, A> {
2043 unsafe {
2044 let value_size = size_of_val(&*src);
2045 let ptr = Self::allocate_for_ptr_in(&*src, Box::allocator(&src));
2046
2047 // Copy value as bytes
2048 ptr::copy_nonoverlapping(
2049 (&raw const *src) as *const u8,
2050 (&raw mut (*ptr).data) as *mut u8,
2051 value_size,
2052 );
2053
2054 // Free the allocation without dropping its contents
2055 let (bptr, alloc) = Box::into_raw_with_allocator(src);
2056 let src = Box::from_raw_in(bptr as *mut mem::ManuallyDrop<T>, alloc.by_ref());
2057 drop(src);
2058
2059 Self::from_ptr_in(ptr, alloc)
2060 }
2061 }
2062}
2063
2064impl<T> Arc<[T]> {
2065 /// Allocates an `ArcInner<[T]>` with the given length.
2066 #[cfg(not(no_global_oom_handling))]
2067 unsafe fn allocate_for_slice(len: usize) -> *mut ArcInner<[T]> {
2068 unsafe {
2069 Self::allocate_for_layout(
2070 Layout::array::<T>(len).unwrap(),
2071 |layout| Global.allocate(layout),
2072 |mem| ptr::slice_from_raw_parts_mut(mem.cast::<T>(), len) as *mut ArcInner<[T]>,
2073 )
2074 }
2075 }
2076
2077 /// Copy elements from slice into newly allocated `Arc<[T]>`
2078 ///
2079 /// Unsafe because the caller must either take ownership or bind `T: Copy`.
2080 #[cfg(not(no_global_oom_handling))]
2081 unsafe fn copy_from_slice(v: &[T]) -> Arc<[T]> {
2082 unsafe {
2083 let ptr = Self::allocate_for_slice(v.len());
2084
2085 ptr::copy_nonoverlapping(v.as_ptr(), (&raw mut (*ptr).data) as *mut T, v.len());
2086
2087 Self::from_ptr(ptr)
2088 }
2089 }
2090
2091 /// Constructs an `Arc<[T]>` from an iterator known to be of a certain size.
2092 ///
2093 /// Behavior is undefined should the size be wrong.
2094 #[cfg(not(no_global_oom_handling))]
2095 unsafe fn from_iter_exact(iter: impl Iterator<Item = T>, len: usize) -> Arc<[T]> {
2096 // Panic guard while cloning T elements.
2097 // In the event of a panic, elements that have been written
2098 // into the new ArcInner will be dropped, then the memory freed.
2099 struct Guard<T> {
2100 mem: NonNull<u8>,
2101 elems: *mut T,
2102 layout: Layout,
2103 n_elems: usize,
2104 }
2105
2106 impl<T> Drop for Guard<T> {
2107 fn drop(&mut self) {
2108 unsafe {
2109 let slice = from_raw_parts_mut(self.elems, self.n_elems);
2110 ptr::drop_in_place(slice);
2111
2112 Global.deallocate(self.mem, self.layout);
2113 }
2114 }
2115 }
2116
2117 unsafe {
2118 let ptr = Self::allocate_for_slice(len);
2119
2120 let mem = ptr as *mut _ as *mut u8;
2121 let layout = Layout::for_value_raw(ptr);
2122
2123 // Pointer to first element
2124 let elems = (&raw mut (*ptr).data) as *mut T;
2125
2126 let mut guard = Guard { mem: NonNull::new_unchecked(mem), elems, layout, n_elems: 0 };
2127
2128 for (i, item) in iter.enumerate() {
2129 ptr::write(elems.add(i), item);
2130 guard.n_elems += 1;
2131 }
2132
2133 // All clear. Forget the guard so it doesn't free the new ArcInner.
2134 mem::forget(guard);
2135
2136 Self::from_ptr(ptr)
2137 }
2138 }
2139}
2140
2141impl<T, A: Allocator> Arc<[T], A> {
2142 /// Allocates an `ArcInner<[T]>` with the given length.
2143 #[inline]
2144 #[cfg(not(no_global_oom_handling))]
2145 unsafe fn allocate_for_slice_in(len: usize, alloc: &A) -> *mut ArcInner<[T]> {
2146 unsafe {
2147 Arc::allocate_for_layout(
2148 Layout::array::<T>(len).unwrap(),
2149 |layout| alloc.allocate(layout),
2150 |mem| ptr::slice_from_raw_parts_mut(mem.cast::<T>(), len) as *mut ArcInner<[T]>,
2151 )
2152 }
2153 }
2154}
2155
2156/// Specialization trait used for `From<&[T]>`.
2157#[cfg(not(no_global_oom_handling))]
2158trait ArcFromSlice<T> {
2159 fn from_slice(slice: &[T]) -> Self;
2160}
2161
2162#[cfg(not(no_global_oom_handling))]
2163impl<T: Clone> ArcFromSlice<T> for Arc<[T]> {
2164 #[inline]
2165 default fn from_slice(v: &[T]) -> Self {
2166 unsafe { Self::from_iter_exact(v.iter().cloned(), v.len()) }
2167 }
2168}
2169
2170#[cfg(not(no_global_oom_handling))]
2171impl<T: Copy> ArcFromSlice<T> for Arc<[T]> {
2172 #[inline]
2173 fn from_slice(v: &[T]) -> Self {
2174 unsafe { Arc::copy_from_slice(v) }
2175 }
2176}
2177
2178#[stable(feature = "rust1", since = "1.0.0")]
2179impl<T: ?Sized, A: Allocator + Clone> Clone for Arc<T, A> {
2180 /// Makes a clone of the `Arc` pointer.
2181 ///
2182 /// This creates another pointer to the same allocation, increasing the
2183 /// strong reference count.
2184 ///
2185 /// # Examples
2186 ///
2187 /// ```
2188 /// use std::sync::Arc;
2189 ///
2190 /// let five = Arc::new(5);
2191 ///
2192 /// let _ = Arc::clone(&five);
2193 /// ```
2194 #[inline]
2195 fn clone(&self) -> Arc<T, A> {
2196 // Using a relaxed ordering is alright here, as knowledge of the
2197 // original reference prevents other threads from erroneously deleting
2198 // the object.
2199 //
2200 // As explained in the [Boost documentation][1], Increasing the
2201 // reference counter can always be done with memory_order_relaxed: New
2202 // references to an object can only be formed from an existing
2203 // reference, and passing an existing reference from one thread to
2204 // another must already provide any required synchronization.
2205 //
2206 // [1]: (www.boost.org/doc/libs/1_55_0/doc/html/atomic/usage_examples.html)
2207 let old_size = self.inner().strong.fetch_add(1, Relaxed);
2208
2209 // However we need to guard against massive refcounts in case someone is `mem::forget`ing
2210 // Arcs. If we don't do this the count can overflow and users will use-after free. This
2211 // branch will never be taken in any realistic program. We abort because such a program is
2212 // incredibly degenerate, and we don't care to support it.
2213 //
2214 // This check is not 100% water-proof: we error when the refcount grows beyond `isize::MAX`.
2215 // But we do that check *after* having done the increment, so there is a chance here that
2216 // the worst already happened and we actually do overflow the `usize` counter. However, that
2217 // requires the counter to grow from `isize::MAX` to `usize::MAX` between the increment
2218 // above and the `abort` below, which seems exceedingly unlikely.
2219 //
2220 // This is a global invariant, and also applies when using a compare-exchange loop to increment
2221 // counters in other methods.
2222 // Otherwise, the counter could be brought to an almost-overflow using a compare-exchange loop,
2223 // and then overflow using a few `fetch_add`s.
2224 if old_size > MAX_REFCOUNT {
2225 abort();
2226 }
2227
2228 unsafe { Self::from_inner_in(self.ptr, self.alloc.clone()) }
2229 }
2230}
2231
2232#[unstable(feature = "ergonomic_clones", issue = "132290")]
2233impl<T: ?Sized, A: Allocator + Clone> UseCloned for Arc<T, A> {}
2234
2235#[stable(feature = "rust1", since = "1.0.0")]
2236impl<T: ?Sized, A: Allocator> Deref for Arc<T, A> {
2237 type Target = T;
2238
2239 #[inline]
2240 fn deref(&self) -> &T {
2241 &self.inner().data
2242 }
2243}
2244
2245#[unstable(feature = "pin_coerce_unsized_trait", issue = "123430")]
2246unsafe impl<T: ?Sized, A: Allocator> PinCoerceUnsized for Arc<T, A> {}
2247
2248#[unstable(feature = "pin_coerce_unsized_trait", issue = "123430")]
2249unsafe impl<T: ?Sized, A: Allocator> PinCoerceUnsized for Weak<T, A> {}
2250
2251#[unstable(feature = "deref_pure_trait", issue = "87121")]
2252unsafe impl<T: ?Sized, A: Allocator> DerefPure for Arc<T, A> {}
2253
2254#[unstable(feature = "legacy_receiver_trait", issue = "none")]
2255impl<T: ?Sized> LegacyReceiver for Arc<T> {}
2256
2257#[cfg(not(no_global_oom_handling))]
2258impl<T: ?Sized + CloneToUninit, A: Allocator + Clone> Arc<T, A> {
2259 /// Makes a mutable reference into the given `Arc`.
2260 ///
2261 /// If there are other `Arc` pointers to the same allocation, then `make_mut` will
2262 /// [`clone`] the inner value to a new allocation to ensure unique ownership. This is also
2263 /// referred to as clone-on-write.
2264 ///
2265 /// However, if there are no other `Arc` pointers to this allocation, but some [`Weak`]
2266 /// pointers, then the [`Weak`] pointers will be dissociated and the inner value will not
2267 /// be cloned.
2268 ///
2269 /// See also [`get_mut`], which will fail rather than cloning the inner value
2270 /// or dissociating [`Weak`] pointers.
2271 ///
2272 /// [`clone`]: Clone::clone
2273 /// [`get_mut`]: Arc::get_mut
2274 ///
2275 /// # Examples
2276 ///
2277 /// ```
2278 /// use std::sync::Arc;
2279 ///
2280 /// let mut data = Arc::new(5);
2281 ///
2282 /// *Arc::make_mut(&mut data) += 1; // Won't clone anything
2283 /// let mut other_data = Arc::clone(&data); // Won't clone inner data
2284 /// *Arc::make_mut(&mut data) += 1; // Clones inner data
2285 /// *Arc::make_mut(&mut data) += 1; // Won't clone anything
2286 /// *Arc::make_mut(&mut other_data) *= 2; // Won't clone anything
2287 ///
2288 /// // Now `data` and `other_data` point to different allocations.
2289 /// assert_eq!(*data, 8);
2290 /// assert_eq!(*other_data, 12);
2291 /// ```
2292 ///
2293 /// [`Weak`] pointers will be dissociated:
2294 ///
2295 /// ```
2296 /// use std::sync::Arc;
2297 ///
2298 /// let mut data = Arc::new(75);
2299 /// let weak = Arc::downgrade(&data);
2300 ///
2301 /// assert!(75 == *data);
2302 /// assert!(75 == *weak.upgrade().unwrap());
2303 ///
2304 /// *Arc::make_mut(&mut data) += 1;
2305 ///
2306 /// assert!(76 == *data);
2307 /// assert!(weak.upgrade().is_none());
2308 /// ```
2309 #[inline]
2310 #[stable(feature = "arc_unique", since = "1.4.0")]
2311 pub fn make_mut(this: &mut Self) -> &mut T {
2312 let size_of_val = size_of_val::<T>(&**this);
2313
2314 // Note that we hold both a strong reference and a weak reference.
2315 // Thus, releasing our strong reference only will not, by itself, cause
2316 // the memory to be deallocated.
2317 //
2318 // Use Acquire to ensure that we see any writes to `weak` that happen
2319 // before release writes (i.e., decrements) to `strong`. Since we hold a
2320 // weak count, there's no chance the ArcInner itself could be
2321 // deallocated.
2322 if this.inner().strong.compare_exchange(1, 0, Acquire, Relaxed).is_err() {
2323 // Another strong pointer exists, so we must clone.
2324
2325 let this_data_ref: &T = &**this;
2326 // `in_progress` drops the allocation if we panic before finishing initializing it.
2327 let mut in_progress: UniqueArcUninit<T, A> =
2328 UniqueArcUninit::new(this_data_ref, this.alloc.clone());
2329
2330 let initialized_clone = unsafe {
2331 // Clone. If the clone panics, `in_progress` will be dropped and clean up.
2332 this_data_ref.clone_to_uninit(in_progress.data_ptr().cast());
2333 // Cast type of pointer, now that it is initialized.
2334 in_progress.into_arc()
2335 };
2336 *this = initialized_clone;
2337 } else if this.inner().weak.load(Relaxed) != 1 {
2338 // Relaxed suffices in the above because this is fundamentally an
2339 // optimization: we are always racing with weak pointers being
2340 // dropped. Worst case, we end up allocated a new Arc unnecessarily.
2341
2342 // We removed the last strong ref, but there are additional weak
2343 // refs remaining. We'll move the contents to a new Arc, and
2344 // invalidate the other weak refs.
2345
2346 // Note that it is not possible for the read of `weak` to yield
2347 // usize::MAX (i.e., locked), since the weak count can only be
2348 // locked by a thread with a strong reference.
2349
2350 // Materialize our own implicit weak pointer, so that it can clean
2351 // up the ArcInner as needed.
2352 let _weak = Weak { ptr: this.ptr, alloc: this.alloc.clone() };
2353
2354 // Can just steal the data, all that's left is Weaks
2355 //
2356 // We don't need panic-protection like the above branch does, but we might as well
2357 // use the same mechanism.
2358 let mut in_progress: UniqueArcUninit<T, A> =
2359 UniqueArcUninit::new(&**this, this.alloc.clone());
2360 unsafe {
2361 // Initialize `in_progress` with move of **this.
2362 // We have to express this in terms of bytes because `T: ?Sized`; there is no
2363 // operation that just copies a value based on its `size_of_val()`.
2364 ptr::copy_nonoverlapping(
2365 ptr::from_ref(&**this).cast::<u8>(),
2366 in_progress.data_ptr().cast::<u8>(),
2367 size_of_val,
2368 );
2369
2370 ptr::write(this, in_progress.into_arc());
2371 }
2372 } else {
2373 // We were the sole reference of either kind; bump back up the
2374 // strong ref count.
2375 this.inner().strong.store(1, Release);
2376 }
2377
2378 // As with `get_mut()`, the unsafety is ok because our reference was
2379 // either unique to begin with, or became one upon cloning the contents.
2380 unsafe { Self::get_mut_unchecked(this) }
2381 }
2382}
2383
2384impl<T: Clone, A: Allocator> Arc<T, A> {
2385 /// If we have the only reference to `T` then unwrap it. Otherwise, clone `T` and return the
2386 /// clone.
2387 ///
2388 /// Assuming `arc_t` is of type `Arc<T>`, this function is functionally equivalent to
2389 /// `(*arc_t).clone()`, but will avoid cloning the inner value where possible.
2390 ///
2391 /// # Examples
2392 ///
2393 /// ```
2394 /// # use std::{ptr, sync::Arc};
2395 /// let inner = String::from("test");
2396 /// let ptr = inner.as_ptr();
2397 ///
2398 /// let arc = Arc::new(inner);
2399 /// let inner = Arc::unwrap_or_clone(arc);
2400 /// // The inner value was not cloned
2401 /// assert!(ptr::eq(ptr, inner.as_ptr()));
2402 ///
2403 /// let arc = Arc::new(inner);
2404 /// let arc2 = arc.clone();
2405 /// let inner = Arc::unwrap_or_clone(arc);
2406 /// // Because there were 2 references, we had to clone the inner value.
2407 /// assert!(!ptr::eq(ptr, inner.as_ptr()));
2408 /// // `arc2` is the last reference, so when we unwrap it we get back
2409 /// // the original `String`.
2410 /// let inner = Arc::unwrap_or_clone(arc2);
2411 /// assert!(ptr::eq(ptr, inner.as_ptr()));
2412 /// ```
2413 #[inline]
2414 #[stable(feature = "arc_unwrap_or_clone", since = "1.76.0")]
2415 pub fn unwrap_or_clone(this: Self) -> T {
2416 Arc::try_unwrap(this).unwrap_or_else(|arc| (*arc).clone())
2417 }
2418}
2419
2420impl<T: ?Sized, A: Allocator> Arc<T, A> {
2421 /// Returns a mutable reference into the given `Arc`, if there are
2422 /// no other `Arc` or [`Weak`] pointers to the same allocation.
2423 ///
2424 /// Returns [`None`] otherwise, because it is not safe to
2425 /// mutate a shared value.
2426 ///
2427 /// See also [`make_mut`][make_mut], which will [`clone`][clone]
2428 /// the inner value when there are other `Arc` pointers.
2429 ///
2430 /// [make_mut]: Arc::make_mut
2431 /// [clone]: Clone::clone
2432 ///
2433 /// # Examples
2434 ///
2435 /// ```
2436 /// use std::sync::Arc;
2437 ///
2438 /// let mut x = Arc::new(3);
2439 /// *Arc::get_mut(&mut x).unwrap() = 4;
2440 /// assert_eq!(*x, 4);
2441 ///
2442 /// let _y = Arc::clone(&x);
2443 /// assert!(Arc::get_mut(&mut x).is_none());
2444 /// ```
2445 #[inline]
2446 #[stable(feature = "arc_unique", since = "1.4.0")]
2447 pub fn get_mut(this: &mut Self) -> Option<&mut T> {
2448 if Self::is_unique(this) {
2449 // This unsafety is ok because we're guaranteed that the pointer
2450 // returned is the *only* pointer that will ever be returned to T. Our
2451 // reference count is guaranteed to be 1 at this point, and we required
2452 // the Arc itself to be `mut`, so we're returning the only possible
2453 // reference to the inner data.
2454 unsafe { Some(Arc::get_mut_unchecked(this)) }
2455 } else {
2456 None
2457 }
2458 }
2459
2460 /// Returns a mutable reference into the given `Arc`,
2461 /// without any check.
2462 ///
2463 /// See also [`get_mut`], which is safe and does appropriate checks.
2464 ///
2465 /// [`get_mut`]: Arc::get_mut
2466 ///
2467 /// # Safety
2468 ///
2469 /// If any other `Arc` or [`Weak`] pointers to the same allocation exist, then
2470 /// they must not be dereferenced or have active borrows for the duration
2471 /// of the returned borrow, and their inner type must be exactly the same as the
2472 /// inner type of this Rc (including lifetimes). This is trivially the case if no
2473 /// such pointers exist, for example immediately after `Arc::new`.
2474 ///
2475 /// # Examples
2476 ///
2477 /// ```
2478 /// #![feature(get_mut_unchecked)]
2479 ///
2480 /// use std::sync::Arc;
2481 ///
2482 /// let mut x = Arc::new(String::new());
2483 /// unsafe {
2484 /// Arc::get_mut_unchecked(&mut x).push_str("foo")
2485 /// }
2486 /// assert_eq!(*x, "foo");
2487 /// ```
2488 /// Other `Arc` pointers to the same allocation must be to the same type.
2489 /// ```no_run
2490 /// #![feature(get_mut_unchecked)]
2491 ///
2492 /// use std::sync::Arc;
2493 ///
2494 /// let x: Arc<str> = Arc::from("Hello, world!");
2495 /// let mut y: Arc<[u8]> = x.clone().into();
2496 /// unsafe {
2497 /// // this is Undefined Behavior, because x's inner type is str, not [u8]
2498 /// Arc::get_mut_unchecked(&mut y).fill(0xff); // 0xff is invalid in UTF-8
2499 /// }
2500 /// println!("{}", &*x); // Invalid UTF-8 in a str
2501 /// ```
2502 /// Other `Arc` pointers to the same allocation must be to the exact same type, including lifetimes.
2503 /// ```no_run
2504 /// #![feature(get_mut_unchecked)]
2505 ///
2506 /// use std::sync::Arc;
2507 ///
2508 /// let x: Arc<&str> = Arc::new("Hello, world!");
2509 /// {
2510 /// let s = String::from("Oh, no!");
2511 /// let mut y: Arc<&str> = x.clone();
2512 /// unsafe {
2513 /// // this is Undefined Behavior, because x's inner type
2514 /// // is &'long str, not &'short str
2515 /// *Arc::get_mut_unchecked(&mut y) = &s;
2516 /// }
2517 /// }
2518 /// println!("{}", &*x); // Use-after-free
2519 /// ```
2520 #[inline]
2521 #[unstable(feature = "get_mut_unchecked", issue = "63292")]
2522 pub unsafe fn get_mut_unchecked(this: &mut Self) -> &mut T {
2523 // We are careful to *not* create a reference covering the "count" fields, as
2524 // this would alias with concurrent access to the reference counts (e.g. by `Weak`).
2525 unsafe { &mut (*this.ptr.as_ptr()).data }
2526 }
2527
2528 /// Determine whether this is the unique reference to the underlying data.
2529 ///
2530 /// Returns `true` if there are no other `Arc` or [`Weak`] pointers to the same allocation;
2531 /// returns `false` otherwise.
2532 ///
2533 /// If this function returns `true`, then is guaranteed to be safe to call [`get_mut_unchecked`]
2534 /// on this `Arc`, so long as no clones occur in between.
2535 ///
2536 /// # Examples
2537 ///
2538 /// ```
2539 /// #![feature(arc_is_unique)]
2540 ///
2541 /// use std::sync::Arc;
2542 ///
2543 /// let x = Arc::new(3);
2544 /// assert!(Arc::is_unique(&x));
2545 ///
2546 /// let y = Arc::clone(&x);
2547 /// assert!(!Arc::is_unique(&x));
2548 /// drop(y);
2549 ///
2550 /// // Weak references also count, because they could be upgraded at any time.
2551 /// let z = Arc::downgrade(&x);
2552 /// assert!(!Arc::is_unique(&x));
2553 /// ```
2554 ///
2555 /// # Pointer invalidation
2556 ///
2557 /// This function will always return the same value as `Arc::get_mut(arc).is_some()`. However,
2558 /// unlike that operation it does not produce any mutable references to the underlying data,
2559 /// meaning no pointers to the data inside the `Arc` are invalidated by the call. Thus, the
2560 /// following code is valid, even though it would be UB if it used `Arc::get_mut`:
2561 ///
2562 /// ```
2563 /// #![feature(arc_is_unique)]
2564 ///
2565 /// use std::sync::Arc;
2566 ///
2567 /// let arc = Arc::new(5);
2568 /// let pointer: *const i32 = &*arc;
2569 /// assert!(Arc::is_unique(&arc));
2570 /// assert_eq!(unsafe { *pointer }, 5);
2571 /// ```
2572 ///
2573 /// # Atomic orderings
2574 ///
2575 /// Concurrent drops to other `Arc` pointers to the same allocation will synchronize with this
2576 /// call - that is, this call performs an `Acquire` operation on the underlying strong and weak
2577 /// ref counts. This ensures that calling `get_mut_unchecked` is safe.
2578 ///
2579 /// Note that this operation requires locking the weak ref count, so concurrent calls to
2580 /// `downgrade` may spin-loop for a short period of time.
2581 ///
2582 /// [`get_mut_unchecked`]: Self::get_mut_unchecked
2583 #[inline]
2584 #[unstable(feature = "arc_is_unique", issue = "138938")]
2585 pub fn is_unique(this: &Self) -> bool {
2586 // lock the weak pointer count if we appear to be the sole weak pointer
2587 // holder.
2588 //
2589 // The acquire label here ensures a happens-before relationship with any
2590 // writes to `strong` (in particular in `Weak::upgrade`) prior to decrements
2591 // of the `weak` count (via `Weak::drop`, which uses release). If the upgraded
2592 // weak ref was never dropped, the CAS here will fail so we do not care to synchronize.
2593 if this.inner().weak.compare_exchange(1, usize::MAX, Acquire, Relaxed).is_ok() {
2594 // This needs to be an `Acquire` to synchronize with the decrement of the `strong`
2595 // counter in `drop` -- the only access that happens when any but the last reference
2596 // is being dropped.
2597 let unique = this.inner().strong.load(Acquire) == 1;
2598
2599 // The release write here synchronizes with a read in `downgrade`,
2600 // effectively preventing the above read of `strong` from happening
2601 // after the write.
2602 this.inner().weak.store(1, Release); // release the lock
2603 unique
2604 } else {
2605 false
2606 }
2607 }
2608}
2609
2610#[stable(feature = "rust1", since = "1.0.0")]
2611unsafe impl<#[may_dangle] T: ?Sized, A: Allocator> Drop for Arc<T, A> {
2612 /// Drops the `Arc`.
2613 ///
2614 /// This will decrement the strong reference count. If the strong reference
2615 /// count reaches zero then the only other references (if any) are
2616 /// [`Weak`], so we `drop` the inner value.
2617 ///
2618 /// # Examples
2619 ///
2620 /// ```
2621 /// use std::sync::Arc;
2622 ///
2623 /// struct Foo;
2624 ///
2625 /// impl Drop for Foo {
2626 /// fn drop(&mut self) {
2627 /// println!("dropped!");
2628 /// }
2629 /// }
2630 ///
2631 /// let foo = Arc::new(Foo);
2632 /// let foo2 = Arc::clone(&foo);
2633 ///
2634 /// drop(foo); // Doesn't print anything
2635 /// drop(foo2); // Prints "dropped!"
2636 /// ```
2637 #[inline]
2638 fn drop(&mut self) {
2639 // Because `fetch_sub` is already atomic, we do not need to synchronize
2640 // with other threads unless we are going to delete the object. This
2641 // same logic applies to the below `fetch_sub` to the `weak` count.
2642 if self.inner().strong.fetch_sub(1, Release) != 1 {
2643 return;
2644 }
2645
2646 // This fence is needed to prevent reordering of use of the data and
2647 // deletion of the data. Because it is marked `Release`, the decreasing
2648 // of the reference count synchronizes with this `Acquire` fence. This
2649 // means that use of the data happens before decreasing the reference
2650 // count, which happens before this fence, which happens before the
2651 // deletion of the data.
2652 //
2653 // As explained in the [Boost documentation][1],
2654 //
2655 // > It is important to enforce any possible access to the object in one
2656 // > thread (through an existing reference) to *happen before* deleting
2657 // > the object in a different thread. This is achieved by a "release"
2658 // > operation after dropping a reference (any access to the object
2659 // > through this reference must obviously happened before), and an
2660 // > "acquire" operation before deleting the object.
2661 //
2662 // In particular, while the contents of an Arc are usually immutable, it's
2663 // possible to have interior writes to something like a Mutex<T>. Since a
2664 // Mutex is not acquired when it is deleted, we can't rely on its
2665 // synchronization logic to make writes in thread A visible to a destructor
2666 // running in thread B.
2667 //
2668 // Also note that the Acquire fence here could probably be replaced with an
2669 // Acquire load, which could improve performance in highly-contended
2670 // situations. See [2].
2671 //
2672 // [1]: (www.boost.org/doc/libs/1_55_0/doc/html/atomic/usage_examples.html)
2673 // [2]: (https://github.com/rust-lang/rust/pull/41714)
2674 acquire!(self.inner().strong);
2675
2676 // Make sure we aren't trying to "drop" the shared static for empty slices
2677 // used by Default::default.
2678 debug_assert!(
2679 !ptr::addr_eq(self.ptr.as_ptr(), &STATIC_INNER_SLICE.inner),
2680 "Arcs backed by a static should never reach a strong count of 0. \
2681 Likely decrement_strong_count or from_raw were called too many times.",
2682 );
2683
2684 unsafe {
2685 self.drop_slow();
2686 }
2687 }
2688}
2689
2690impl<A: Allocator> Arc<dyn Any + Send + Sync, A> {
2691 /// Attempts to downcast the `Arc<dyn Any + Send + Sync>` to a concrete type.
2692 ///
2693 /// # Examples
2694 ///
2695 /// ```
2696 /// use std::any::Any;
2697 /// use std::sync::Arc;
2698 ///
2699 /// fn print_if_string(value: Arc<dyn Any + Send + Sync>) {
2700 /// if let Ok(string) = value.downcast::<String>() {
2701 /// println!("String ({}): {}", string.len(), string);
2702 /// }
2703 /// }
2704 ///
2705 /// let my_string = "Hello World".to_string();
2706 /// print_if_string(Arc::new(my_string));
2707 /// print_if_string(Arc::new(0i8));
2708 /// ```
2709 #[inline]
2710 #[stable(feature = "rc_downcast", since = "1.29.0")]
2711 pub fn downcast<T>(self) -> Result<Arc<T, A>, Self>
2712 where
2713 T: Any + Send + Sync,
2714 {
2715 if (*self).is::<T>() {
2716 unsafe {
2717 let (ptr, alloc) = Arc::into_inner_with_allocator(self);
2718 Ok(Arc::from_inner_in(ptr.cast(), alloc))
2719 }
2720 } else {
2721 Err(self)
2722 }
2723 }
2724
2725 /// Downcasts the `Arc<dyn Any + Send + Sync>` to a concrete type.
2726 ///
2727 /// For a safe alternative see [`downcast`].
2728 ///
2729 /// # Examples
2730 ///
2731 /// ```
2732 /// #![feature(downcast_unchecked)]
2733 ///
2734 /// use std::any::Any;
2735 /// use std::sync::Arc;
2736 ///
2737 /// let x: Arc<dyn Any + Send + Sync> = Arc::new(1_usize);
2738 ///
2739 /// unsafe {
2740 /// assert_eq!(*x.downcast_unchecked::<usize>(), 1);
2741 /// }
2742 /// ```
2743 ///
2744 /// # Safety
2745 ///
2746 /// The contained value must be of type `T`. Calling this method
2747 /// with the incorrect type is *undefined behavior*.
2748 ///
2749 ///
2750 /// [`downcast`]: Self::downcast
2751 #[inline]
2752 #[unstable(feature = "downcast_unchecked", issue = "90850")]
2753 pub unsafe fn downcast_unchecked<T>(self) -> Arc<T, A>
2754 where
2755 T: Any + Send + Sync,
2756 {
2757 unsafe {
2758 let (ptr, alloc) = Arc::into_inner_with_allocator(self);
2759 Arc::from_inner_in(ptr.cast(), alloc)
2760 }
2761 }
2762}
2763
2764impl<T> Weak<T> {
2765 /// Constructs a new `Weak<T>`, without allocating any memory.
2766 /// Calling [`upgrade`] on the return value always gives [`None`].
2767 ///
2768 /// [`upgrade`]: Weak::upgrade
2769 ///
2770 /// # Examples
2771 ///
2772 /// ```
2773 /// use std::sync::Weak;
2774 ///
2775 /// let empty: Weak<i64> = Weak::new();
2776 /// assert!(empty.upgrade().is_none());
2777 /// ```
2778 #[inline]
2779 #[stable(feature = "downgraded_weak", since = "1.10.0")]
2780 #[rustc_const_stable(feature = "const_weak_new", since = "1.73.0")]
2781 #[must_use]
2782 pub const fn new() -> Weak<T> {
2783 Weak { ptr: NonNull::without_provenance(NonZeroUsize::MAX), alloc: Global }
2784 }
2785}
2786
2787impl<T, A: Allocator> Weak<T, A> {
2788 /// Constructs a new `Weak<T, A>`, without allocating any memory, technically in the provided
2789 /// allocator.
2790 /// Calling [`upgrade`] on the return value always gives [`None`].
2791 ///
2792 /// [`upgrade`]: Weak::upgrade
2793 ///
2794 /// # Examples
2795 ///
2796 /// ```
2797 /// #![feature(allocator_api)]
2798 ///
2799 /// use std::sync::Weak;
2800 /// use std::alloc::System;
2801 ///
2802 /// let empty: Weak<i64, _> = Weak::new_in(System);
2803 /// assert!(empty.upgrade().is_none());
2804 /// ```
2805 #[inline]
2806 #[unstable(feature = "allocator_api", issue = "32838")]
2807 pub fn new_in(alloc: A) -> Weak<T, A> {
2808 Weak { ptr: NonNull::without_provenance(NonZeroUsize::MAX), alloc }
2809 }
2810}
2811
2812/// Helper type to allow accessing the reference counts without
2813/// making any assertions about the data field.
2814struct WeakInner<'a> {
2815 weak: &'a Atomic<usize>,
2816 strong: &'a Atomic<usize>,
2817}
2818
2819impl<T: ?Sized> Weak<T> {
2820 /// Converts a raw pointer previously created by [`into_raw`] back into `Weak<T>`.
2821 ///
2822 /// This can be used to safely get a strong reference (by calling [`upgrade`]
2823 /// later) or to deallocate the weak count by dropping the `Weak<T>`.
2824 ///
2825 /// It takes ownership of one weak reference (with the exception of pointers created by [`new`],
2826 /// as these don't own anything; the method still works on them).
2827 ///
2828 /// # Safety
2829 ///
2830 /// The pointer must have originated from the [`into_raw`] and must still own its potential
2831 /// weak reference, and must point to a block of memory allocated by global allocator.
2832 ///
2833 /// It is allowed for the strong count to be 0 at the time of calling this. Nevertheless, this
2834 /// takes ownership of one weak reference currently represented as a raw pointer (the weak
2835 /// count is not modified by this operation) and therefore it must be paired with a previous
2836 /// call to [`into_raw`].
2837 /// # Examples
2838 ///
2839 /// ```
2840 /// use std::sync::{Arc, Weak};
2841 ///
2842 /// let strong = Arc::new("hello".to_owned());
2843 ///
2844 /// let raw_1 = Arc::downgrade(&strong).into_raw();
2845 /// let raw_2 = Arc::downgrade(&strong).into_raw();
2846 ///
2847 /// assert_eq!(2, Arc::weak_count(&strong));
2848 ///
2849 /// assert_eq!("hello", &*unsafe { Weak::from_raw(raw_1) }.upgrade().unwrap());
2850 /// assert_eq!(1, Arc::weak_count(&strong));
2851 ///
2852 /// drop(strong);
2853 ///
2854 /// // Decrement the last weak count.
2855 /// assert!(unsafe { Weak::from_raw(raw_2) }.upgrade().is_none());
2856 /// ```
2857 ///
2858 /// [`new`]: Weak::new
2859 /// [`into_raw`]: Weak::into_raw
2860 /// [`upgrade`]: Weak::upgrade
2861 #[inline]
2862 #[stable(feature = "weak_into_raw", since = "1.45.0")]
2863 pub unsafe fn from_raw(ptr: *const T) -> Self {
2864 unsafe { Weak::from_raw_in(ptr, Global) }
2865 }
2866
2867 /// Consumes the `Weak<T>` and turns it into a raw pointer.
2868 ///
2869 /// This converts the weak pointer into a raw pointer, while still preserving the ownership of
2870 /// one weak reference (the weak count is not modified by this operation). It can be turned
2871 /// back into the `Weak<T>` with [`from_raw`].
2872 ///
2873 /// The same restrictions of accessing the target of the pointer as with
2874 /// [`as_ptr`] apply.
2875 ///
2876 /// # Examples
2877 ///
2878 /// ```
2879 /// use std::sync::{Arc, Weak};
2880 ///
2881 /// let strong = Arc::new("hello".to_owned());
2882 /// let weak = Arc::downgrade(&strong);
2883 /// let raw = weak.into_raw();
2884 ///
2885 /// assert_eq!(1, Arc::weak_count(&strong));
2886 /// assert_eq!("hello", unsafe { &*raw });
2887 ///
2888 /// drop(unsafe { Weak::from_raw(raw) });
2889 /// assert_eq!(0, Arc::weak_count(&strong));
2890 /// ```
2891 ///
2892 /// [`from_raw`]: Weak::from_raw
2893 /// [`as_ptr`]: Weak::as_ptr
2894 #[must_use = "losing the pointer will leak memory"]
2895 #[stable(feature = "weak_into_raw", since = "1.45.0")]
2896 pub fn into_raw(self) -> *const T {
2897 ManuallyDrop::new(self).as_ptr()
2898 }
2899}
2900
2901impl<T: ?Sized, A: Allocator> Weak<T, A> {
2902 /// Returns a reference to the underlying allocator.
2903 #[inline]
2904 #[unstable(feature = "allocator_api", issue = "32838")]
2905 pub fn allocator(&self) -> &A {
2906 &self.alloc
2907 }
2908
2909 /// Returns a raw pointer to the object `T` pointed to by this `Weak<T>`.
2910 ///
2911 /// The pointer is valid only if there are some strong references. The pointer may be dangling,
2912 /// unaligned or even [`null`] otherwise.
2913 ///
2914 /// # Examples
2915 ///
2916 /// ```
2917 /// use std::sync::Arc;
2918 /// use std::ptr;
2919 ///
2920 /// let strong = Arc::new("hello".to_owned());
2921 /// let weak = Arc::downgrade(&strong);
2922 /// // Both point to the same object
2923 /// assert!(ptr::eq(&*strong, weak.as_ptr()));
2924 /// // The strong here keeps it alive, so we can still access the object.
2925 /// assert_eq!("hello", unsafe { &*weak.as_ptr() });
2926 ///
2927 /// drop(strong);
2928 /// // But not any more. We can do weak.as_ptr(), but accessing the pointer would lead to
2929 /// // undefined behavior.
2930 /// // assert_eq!("hello", unsafe { &*weak.as_ptr() });
2931 /// ```
2932 ///
2933 /// [`null`]: core::ptr::null "ptr::null"
2934 #[must_use]
2935 #[stable(feature = "weak_into_raw", since = "1.45.0")]
2936 pub fn as_ptr(&self) -> *const T {
2937 let ptr: *mut ArcInner<T> = NonNull::as_ptr(self.ptr);
2938
2939 if is_dangling(ptr) {
2940 // If the pointer is dangling, we return the sentinel directly. This cannot be
2941 // a valid payload address, as the payload is at least as aligned as ArcInner (usize).
2942 ptr as *const T
2943 } else {
2944 // SAFETY: if is_dangling returns false, then the pointer is dereferenceable.
2945 // The payload may be dropped at this point, and we have to maintain provenance,
2946 // so use raw pointer manipulation.
2947 unsafe { &raw mut (*ptr).data }
2948 }
2949 }
2950
2951 /// Consumes the `Weak<T>`, returning the wrapped pointer and allocator.
2952 ///
2953 /// This converts the weak pointer into a raw pointer, while still preserving the ownership of
2954 /// one weak reference (the weak count is not modified by this operation). It can be turned
2955 /// back into the `Weak<T>` with [`from_raw_in`].
2956 ///
2957 /// The same restrictions of accessing the target of the pointer as with
2958 /// [`as_ptr`] apply.
2959 ///
2960 /// # Examples
2961 ///
2962 /// ```
2963 /// #![feature(allocator_api)]
2964 /// use std::sync::{Arc, Weak};
2965 /// use std::alloc::System;
2966 ///
2967 /// let strong = Arc::new_in("hello".to_owned(), System);
2968 /// let weak = Arc::downgrade(&strong);
2969 /// let (raw, alloc) = weak.into_raw_with_allocator();
2970 ///
2971 /// assert_eq!(1, Arc::weak_count(&strong));
2972 /// assert_eq!("hello", unsafe { &*raw });
2973 ///
2974 /// drop(unsafe { Weak::from_raw_in(raw, alloc) });
2975 /// assert_eq!(0, Arc::weak_count(&strong));
2976 /// ```
2977 ///
2978 /// [`from_raw_in`]: Weak::from_raw_in
2979 /// [`as_ptr`]: Weak::as_ptr
2980 #[must_use = "losing the pointer will leak memory"]
2981 #[unstable(feature = "allocator_api", issue = "32838")]
2982 pub fn into_raw_with_allocator(self) -> (*const T, A) {
2983 let this = mem::ManuallyDrop::new(self);
2984 let result = this.as_ptr();
2985 // Safety: `this` is ManuallyDrop so the allocator will not be double-dropped
2986 let alloc = unsafe { ptr::read(&this.alloc) };
2987 (result, alloc)
2988 }
2989
2990 /// Converts a raw pointer previously created by [`into_raw`] back into `Weak<T>` in the provided
2991 /// allocator.
2992 ///
2993 /// This can be used to safely get a strong reference (by calling [`upgrade`]
2994 /// later) or to deallocate the weak count by dropping the `Weak<T>`.
2995 ///
2996 /// It takes ownership of one weak reference (with the exception of pointers created by [`new`],
2997 /// as these don't own anything; the method still works on them).
2998 ///
2999 /// # Safety
3000 ///
3001 /// The pointer must have originated from the [`into_raw`] and must still own its potential
3002 /// weak reference, and must point to a block of memory allocated by `alloc`.
3003 ///
3004 /// It is allowed for the strong count to be 0 at the time of calling this. Nevertheless, this
3005 /// takes ownership of one weak reference currently represented as a raw pointer (the weak
3006 /// count is not modified by this operation) and therefore it must be paired with a previous
3007 /// call to [`into_raw`].
3008 /// # Examples
3009 ///
3010 /// ```
3011 /// use std::sync::{Arc, Weak};
3012 ///
3013 /// let strong = Arc::new("hello".to_owned());
3014 ///
3015 /// let raw_1 = Arc::downgrade(&strong).into_raw();
3016 /// let raw_2 = Arc::downgrade(&strong).into_raw();
3017 ///
3018 /// assert_eq!(2, Arc::weak_count(&strong));
3019 ///
3020 /// assert_eq!("hello", &*unsafe { Weak::from_raw(raw_1) }.upgrade().unwrap());
3021 /// assert_eq!(1, Arc::weak_count(&strong));
3022 ///
3023 /// drop(strong);
3024 ///
3025 /// // Decrement the last weak count.
3026 /// assert!(unsafe { Weak::from_raw(raw_2) }.upgrade().is_none());
3027 /// ```
3028 ///
3029 /// [`new`]: Weak::new
3030 /// [`into_raw`]: Weak::into_raw
3031 /// [`upgrade`]: Weak::upgrade
3032 #[inline]
3033 #[unstable(feature = "allocator_api", issue = "32838")]
3034 pub unsafe fn from_raw_in(ptr: *const T, alloc: A) -> Self {
3035 // See Weak::as_ptr for context on how the input pointer is derived.
3036
3037 let ptr = if is_dangling(ptr) {
3038 // This is a dangling Weak.
3039 ptr as *mut ArcInner<T>
3040 } else {
3041 // Otherwise, we're guaranteed the pointer came from a nondangling Weak.
3042 // SAFETY: data_offset is safe to call, as ptr references a real (potentially dropped) T.
3043 let offset = unsafe { data_offset(ptr) };
3044 // Thus, we reverse the offset to get the whole RcInner.
3045 // SAFETY: the pointer originated from a Weak, so this offset is safe.
3046 unsafe { ptr.byte_sub(offset) as *mut ArcInner<T> }
3047 };
3048
3049 // SAFETY: we now have recovered the original Weak pointer, so can create the Weak.
3050 Weak { ptr: unsafe { NonNull::new_unchecked(ptr) }, alloc }
3051 }
3052}
3053
3054impl<T: ?Sized, A: Allocator> Weak<T, A> {
3055 /// Attempts to upgrade the `Weak` pointer to an [`Arc`], delaying
3056 /// dropping of the inner value if successful.
3057 ///
3058 /// Returns [`None`] if the inner value has since been dropped.
3059 ///
3060 /// # Examples
3061 ///
3062 /// ```
3063 /// use std::sync::Arc;
3064 ///
3065 /// let five = Arc::new(5);
3066 ///
3067 /// let weak_five = Arc::downgrade(&five);
3068 ///
3069 /// let strong_five: Option<Arc<_>> = weak_five.upgrade();
3070 /// assert!(strong_five.is_some());
3071 ///
3072 /// // Destroy all strong pointers.
3073 /// drop(strong_five);
3074 /// drop(five);
3075 ///
3076 /// assert!(weak_five.upgrade().is_none());
3077 /// ```
3078 #[must_use = "this returns a new `Arc`, \
3079 without modifying the original weak pointer"]
3080 #[stable(feature = "arc_weak", since = "1.4.0")]
3081 pub fn upgrade(&self) -> Option<Arc<T, A>>
3082 where
3083 A: Clone,
3084 {
3085 #[inline]
3086 fn checked_increment(n: usize) -> Option<usize> {
3087 // Any write of 0 we can observe leaves the field in permanently zero state.
3088 if n == 0 {
3089 return None;
3090 }
3091 // See comments in `Arc::clone` for why we do this (for `mem::forget`).
3092 assert!(n <= MAX_REFCOUNT, "{}", INTERNAL_OVERFLOW_ERROR);
3093 Some(n + 1)
3094 }
3095
3096 // We use a CAS loop to increment the strong count instead of a
3097 // fetch_add as this function should never take the reference count
3098 // from zero to one.
3099 //
3100 // Relaxed is fine for the failure case because we don't have any expectations about the new state.
3101 // Acquire is necessary for the success case to synchronise with `Arc::new_cyclic`, when the inner
3102 // value can be initialized after `Weak` references have already been created. In that case, we
3103 // expect to observe the fully initialized value.
3104 if self.inner()?.strong.fetch_update(Acquire, Relaxed, checked_increment).is_ok() {
3105 // SAFETY: pointer is not null, verified in checked_increment
3106 unsafe { Some(Arc::from_inner_in(self.ptr, self.alloc.clone())) }
3107 } else {
3108 None
3109 }
3110 }
3111
3112 /// Gets the number of strong (`Arc`) pointers pointing to this allocation.
3113 ///
3114 /// If `self` was created using [`Weak::new`], this will return 0.
3115 #[must_use]
3116 #[stable(feature = "weak_counts", since = "1.41.0")]
3117 pub fn strong_count(&self) -> usize {
3118 if let Some(inner) = self.inner() { inner.strong.load(Relaxed) } else { 0 }
3119 }
3120
3121 /// Gets an approximation of the number of `Weak` pointers pointing to this
3122 /// allocation.
3123 ///
3124 /// If `self` was created using [`Weak::new`], or if there are no remaining
3125 /// strong pointers, this will return 0.
3126 ///
3127 /// # Accuracy
3128 ///
3129 /// Due to implementation details, the returned value can be off by 1 in
3130 /// either direction when other threads are manipulating any `Arc`s or
3131 /// `Weak`s pointing to the same allocation.
3132 #[must_use]
3133 #[stable(feature = "weak_counts", since = "1.41.0")]
3134 pub fn weak_count(&self) -> usize {
3135 if let Some(inner) = self.inner() {
3136 let weak = inner.weak.load(Acquire);
3137 let strong = inner.strong.load(Relaxed);
3138 if strong == 0 {
3139 0
3140 } else {
3141 // Since we observed that there was at least one strong pointer
3142 // after reading the weak count, we know that the implicit weak
3143 // reference (present whenever any strong references are alive)
3144 // was still around when we observed the weak count, and can
3145 // therefore safely subtract it.
3146 weak - 1
3147 }
3148 } else {
3149 0
3150 }
3151 }
3152
3153 /// Returns `None` when the pointer is dangling and there is no allocated `ArcInner`,
3154 /// (i.e., when this `Weak` was created by `Weak::new`).
3155 #[inline]
3156 fn inner(&self) -> Option<WeakInner<'_>> {
3157 let ptr = self.ptr.as_ptr();
3158 if is_dangling(ptr) {
3159 None
3160 } else {
3161 // We are careful to *not* create a reference covering the "data" field, as
3162 // the field may be mutated concurrently (for example, if the last `Arc`
3163 // is dropped, the data field will be dropped in-place).
3164 Some(unsafe { WeakInner { strong: &(*ptr).strong, weak: &(*ptr).weak } })
3165 }
3166 }
3167
3168 /// Returns `true` if the two `Weak`s point to the same allocation similar to [`ptr::eq`], or if
3169 /// both don't point to any allocation (because they were created with `Weak::new()`). However,
3170 /// this function ignores the metadata of `dyn Trait` pointers.
3171 ///
3172 /// # Notes
3173 ///
3174 /// Since this compares pointers it means that `Weak::new()` will equal each
3175 /// other, even though they don't point to any allocation.
3176 ///
3177 /// # Examples
3178 ///
3179 /// ```
3180 /// use std::sync::Arc;
3181 ///
3182 /// let first_rc = Arc::new(5);
3183 /// let first = Arc::downgrade(&first_rc);
3184 /// let second = Arc::downgrade(&first_rc);
3185 ///
3186 /// assert!(first.ptr_eq(&second));
3187 ///
3188 /// let third_rc = Arc::new(5);
3189 /// let third = Arc::downgrade(&third_rc);
3190 ///
3191 /// assert!(!first.ptr_eq(&third));
3192 /// ```
3193 ///
3194 /// Comparing `Weak::new`.
3195 ///
3196 /// ```
3197 /// use std::sync::{Arc, Weak};
3198 ///
3199 /// let first = Weak::new();
3200 /// let second = Weak::new();
3201 /// assert!(first.ptr_eq(&second));
3202 ///
3203 /// let third_rc = Arc::new(());
3204 /// let third = Arc::downgrade(&third_rc);
3205 /// assert!(!first.ptr_eq(&third));
3206 /// ```
3207 ///
3208 /// [`ptr::eq`]: core::ptr::eq "ptr::eq"
3209 #[inline]
3210 #[must_use]
3211 #[stable(feature = "weak_ptr_eq", since = "1.39.0")]
3212 pub fn ptr_eq(&self, other: &Self) -> bool {
3213 ptr::addr_eq(self.ptr.as_ptr(), other.ptr.as_ptr())
3214 }
3215}
3216
3217#[stable(feature = "arc_weak", since = "1.4.0")]
3218impl<T: ?Sized, A: Allocator + Clone> Clone for Weak<T, A> {
3219 /// Makes a clone of the `Weak` pointer that points to the same allocation.
3220 ///
3221 /// # Examples
3222 ///
3223 /// ```
3224 /// use std::sync::{Arc, Weak};
3225 ///
3226 /// let weak_five = Arc::downgrade(&Arc::new(5));
3227 ///
3228 /// let _ = Weak::clone(&weak_five);
3229 /// ```
3230 #[inline]
3231 fn clone(&self) -> Weak<T, A> {
3232 if let Some(inner) = self.inner() {
3233 // See comments in Arc::clone() for why this is relaxed. This can use a
3234 // fetch_add (ignoring the lock) because the weak count is only locked
3235 // where are *no other* weak pointers in existence. (So we can't be
3236 // running this code in that case).
3237 let old_size = inner.weak.fetch_add(1, Relaxed);
3238
3239 // See comments in Arc::clone() for why we do this (for mem::forget).
3240 if old_size > MAX_REFCOUNT {
3241 abort();
3242 }
3243 }
3244
3245 Weak { ptr: self.ptr, alloc: self.alloc.clone() }
3246 }
3247}
3248
3249#[unstable(feature = "ergonomic_clones", issue = "132290")]
3250impl<T: ?Sized, A: Allocator + Clone> UseCloned for Weak<T, A> {}
3251
3252#[stable(feature = "downgraded_weak", since = "1.10.0")]
3253impl<T> Default for Weak<T> {
3254 /// Constructs a new `Weak<T>`, without allocating memory.
3255 /// Calling [`upgrade`] on the return value always
3256 /// gives [`None`].
3257 ///
3258 /// [`upgrade`]: Weak::upgrade
3259 ///
3260 /// # Examples
3261 ///
3262 /// ```
3263 /// use std::sync::Weak;
3264 ///
3265 /// let empty: Weak<i64> = Default::default();
3266 /// assert!(empty.upgrade().is_none());
3267 /// ```
3268 fn default() -> Weak<T> {
3269 Weak::new()
3270 }
3271}
3272
3273#[stable(feature = "arc_weak", since = "1.4.0")]
3274unsafe impl<#[may_dangle] T: ?Sized, A: Allocator> Drop for Weak<T, A> {
3275 /// Drops the `Weak` pointer.
3276 ///
3277 /// # Examples
3278 ///
3279 /// ```
3280 /// use std::sync::{Arc, Weak};
3281 ///
3282 /// struct Foo;
3283 ///
3284 /// impl Drop for Foo {
3285 /// fn drop(&mut self) {
3286 /// println!("dropped!");
3287 /// }
3288 /// }
3289 ///
3290 /// let foo = Arc::new(Foo);
3291 /// let weak_foo = Arc::downgrade(&foo);
3292 /// let other_weak_foo = Weak::clone(&weak_foo);
3293 ///
3294 /// drop(weak_foo); // Doesn't print anything
3295 /// drop(foo); // Prints "dropped!"
3296 ///
3297 /// assert!(other_weak_foo.upgrade().is_none());
3298 /// ```
3299 fn drop(&mut self) {
3300 // If we find out that we were the last weak pointer, then its time to
3301 // deallocate the data entirely. See the discussion in Arc::drop() about
3302 // the memory orderings
3303 //
3304 // It's not necessary to check for the locked state here, because the
3305 // weak count can only be locked if there was precisely one weak ref,
3306 // meaning that drop could only subsequently run ON that remaining weak
3307 // ref, which can only happen after the lock is released.
3308 let inner = if let Some(inner) = self.inner() { inner } else { return };
3309
3310 if inner.weak.fetch_sub(1, Release) == 1 {
3311 acquire!(inner.weak);
3312
3313 // Make sure we aren't trying to "deallocate" the shared static for empty slices
3314 // used by Default::default.
3315 debug_assert!(
3316 !ptr::addr_eq(self.ptr.as_ptr(), &STATIC_INNER_SLICE.inner),
3317 "Arc/Weaks backed by a static should never be deallocated. \
3318 Likely decrement_strong_count or from_raw were called too many times.",
3319 );
3320
3321 unsafe {
3322 self.alloc.deallocate(self.ptr.cast(), Layout::for_value_raw(self.ptr.as_ptr()))
3323 }
3324 }
3325 }
3326}
3327
3328#[stable(feature = "rust1", since = "1.0.0")]
3329trait ArcEqIdent<T: ?Sized + PartialEq, A: Allocator> {
3330 fn eq(&self, other: &Arc<T, A>) -> bool;
3331 fn ne(&self, other: &Arc<T, A>) -> bool;
3332}
3333
3334#[stable(feature = "rust1", since = "1.0.0")]
3335impl<T: ?Sized + PartialEq, A: Allocator> ArcEqIdent<T, A> for Arc<T, A> {
3336 #[inline]
3337 default fn eq(&self, other: &Arc<T, A>) -> bool {
3338 **self == **other
3339 }
3340 #[inline]
3341 default fn ne(&self, other: &Arc<T, A>) -> bool {
3342 **self != **other
3343 }
3344}
3345
3346/// We're doing this specialization here, and not as a more general optimization on `&T`, because it
3347/// would otherwise add a cost to all equality checks on refs. We assume that `Arc`s are used to
3348/// store large values, that are slow to clone, but also heavy to check for equality, causing this
3349/// cost to pay off more easily. It's also more likely to have two `Arc` clones, that point to
3350/// the same value, than two `&T`s.
3351///
3352/// We can only do this when `T: Eq` as a `PartialEq` might be deliberately irreflexive.
3353#[stable(feature = "rust1", since = "1.0.0")]
3354impl<T: ?Sized + crate::rc::MarkerEq, A: Allocator> ArcEqIdent<T, A> for Arc<T, A> {
3355 #[inline]
3356 fn eq(&self, other: &Arc<T, A>) -> bool {
3357 Arc::ptr_eq(self, other) || **self == **other
3358 }
3359
3360 #[inline]
3361 fn ne(&self, other: &Arc<T, A>) -> bool {
3362 !Arc::ptr_eq(self, other) && **self != **other
3363 }
3364}
3365
3366#[stable(feature = "rust1", since = "1.0.0")]
3367impl<T: ?Sized + PartialEq, A: Allocator> PartialEq for Arc<T, A> {
3368 /// Equality for two `Arc`s.
3369 ///
3370 /// Two `Arc`s are equal if their inner values are equal, even if they are
3371 /// stored in different allocation.
3372 ///
3373 /// If `T` also implements `Eq` (implying reflexivity of equality),
3374 /// two `Arc`s that point to the same allocation are always equal.
3375 ///
3376 /// # Examples
3377 ///
3378 /// ```
3379 /// use std::sync::Arc;
3380 ///
3381 /// let five = Arc::new(5);
3382 ///
3383 /// assert!(five == Arc::new(5));
3384 /// ```
3385 #[inline]
3386 fn eq(&self, other: &Arc<T, A>) -> bool {
3387 ArcEqIdent::eq(self, other)
3388 }
3389
3390 /// Inequality for two `Arc`s.
3391 ///
3392 /// Two `Arc`s are not equal if their inner values are not equal.
3393 ///
3394 /// If `T` also implements `Eq` (implying reflexivity of equality),
3395 /// two `Arc`s that point to the same value are always equal.
3396 ///
3397 /// # Examples
3398 ///
3399 /// ```
3400 /// use std::sync::Arc;
3401 ///
3402 /// let five = Arc::new(5);
3403 ///
3404 /// assert!(five != Arc::new(6));
3405 /// ```
3406 #[inline]
3407 fn ne(&self, other: &Arc<T, A>) -> bool {
3408 ArcEqIdent::ne(self, other)
3409 }
3410}
3411
3412#[stable(feature = "rust1", since = "1.0.0")]
3413impl<T: ?Sized + PartialOrd, A: Allocator> PartialOrd for Arc<T, A> {
3414 /// Partial comparison for two `Arc`s.
3415 ///
3416 /// The two are compared by calling `partial_cmp()` on their inner values.
3417 ///
3418 /// # Examples
3419 ///
3420 /// ```
3421 /// use std::sync::Arc;
3422 /// use std::cmp::Ordering;
3423 ///
3424 /// let five = Arc::new(5);
3425 ///
3426 /// assert_eq!(Some(Ordering::Less), five.partial_cmp(&Arc::new(6)));
3427 /// ```
3428 fn partial_cmp(&self, other: &Arc<T, A>) -> Option<Ordering> {
3429 (**self).partial_cmp(&**other)
3430 }
3431
3432 /// Less-than comparison for two `Arc`s.
3433 ///
3434 /// The two are compared by calling `<` on their inner values.
3435 ///
3436 /// # Examples
3437 ///
3438 /// ```
3439 /// use std::sync::Arc;
3440 ///
3441 /// let five = Arc::new(5);
3442 ///
3443 /// assert!(five < Arc::new(6));
3444 /// ```
3445 fn lt(&self, other: &Arc<T, A>) -> bool {
3446 *(*self) < *(*other)
3447 }
3448
3449 /// 'Less than or equal to' comparison for two `Arc`s.
3450 ///
3451 /// The two are compared by calling `<=` on their inner values.
3452 ///
3453 /// # Examples
3454 ///
3455 /// ```
3456 /// use std::sync::Arc;
3457 ///
3458 /// let five = Arc::new(5);
3459 ///
3460 /// assert!(five <= Arc::new(5));
3461 /// ```
3462 fn le(&self, other: &Arc<T, A>) -> bool {
3463 *(*self) <= *(*other)
3464 }
3465
3466 /// Greater-than comparison for two `Arc`s.
3467 ///
3468 /// The two are compared by calling `>` on their inner values.
3469 ///
3470 /// # Examples
3471 ///
3472 /// ```
3473 /// use std::sync::Arc;
3474 ///
3475 /// let five = Arc::new(5);
3476 ///
3477 /// assert!(five > Arc::new(4));
3478 /// ```
3479 fn gt(&self, other: &Arc<T, A>) -> bool {
3480 *(*self) > *(*other)
3481 }
3482
3483 /// 'Greater than or equal to' comparison for two `Arc`s.
3484 ///
3485 /// The two are compared by calling `>=` on their inner values.
3486 ///
3487 /// # Examples
3488 ///
3489 /// ```
3490 /// use std::sync::Arc;
3491 ///
3492 /// let five = Arc::new(5);
3493 ///
3494 /// assert!(five >= Arc::new(5));
3495 /// ```
3496 fn ge(&self, other: &Arc<T, A>) -> bool {
3497 *(*self) >= *(*other)
3498 }
3499}
3500#[stable(feature = "rust1", since = "1.0.0")]
3501impl<T: ?Sized + Ord, A: Allocator> Ord for Arc<T, A> {
3502 /// Comparison for two `Arc`s.
3503 ///
3504 /// The two are compared by calling `cmp()` on their inner values.
3505 ///
3506 /// # Examples
3507 ///
3508 /// ```
3509 /// use std::sync::Arc;
3510 /// use std::cmp::Ordering;
3511 ///
3512 /// let five = Arc::new(5);
3513 ///
3514 /// assert_eq!(Ordering::Less, five.cmp(&Arc::new(6)));
3515 /// ```
3516 fn cmp(&self, other: &Arc<T, A>) -> Ordering {
3517 (**self).cmp(&**other)
3518 }
3519}
3520#[stable(feature = "rust1", since = "1.0.0")]
3521impl<T: ?Sized + Eq, A: Allocator> Eq for Arc<T, A> {}
3522
3523#[stable(feature = "rust1", since = "1.0.0")]
3524impl<T: ?Sized + fmt::Display, A: Allocator> fmt::Display for Arc<T, A> {
3525 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
3526 fmt::Display::fmt(&**self, f)
3527 }
3528}
3529
3530#[stable(feature = "rust1", since = "1.0.0")]
3531impl<T: ?Sized + fmt::Debug, A: Allocator> fmt::Debug for Arc<T, A> {
3532 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
3533 fmt::Debug::fmt(&**self, f)
3534 }
3535}
3536
3537#[stable(feature = "rust1", since = "1.0.0")]
3538impl<T: ?Sized, A: Allocator> fmt::Pointer for Arc<T, A> {
3539 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
3540 fmt::Pointer::fmt(&(&raw const **self), f)
3541 }
3542}
3543
3544#[cfg(not(no_global_oom_handling))]
3545#[stable(feature = "rust1", since = "1.0.0")]
3546impl<T: Default> Default for Arc<T> {
3547 /// Creates a new `Arc<T>`, with the `Default` value for `T`.
3548 ///
3549 /// # Examples
3550 ///
3551 /// ```
3552 /// use std::sync::Arc;
3553 ///
3554 /// let x: Arc<i32> = Default::default();
3555 /// assert_eq!(*x, 0);
3556 /// ```
3557 fn default() -> Arc<T> {
3558 unsafe {
3559 Self::from_inner(
3560 Box::leak(Box::write(
3561 Box::new_uninit(),
3562 ArcInner {
3563 strong: atomic::AtomicUsize::new(1),
3564 weak: atomic::AtomicUsize::new(1),
3565 data: T::default(),
3566 },
3567 ))
3568 .into(),
3569 )
3570 }
3571 }
3572}
3573
3574/// Struct to hold the static `ArcInner` used for empty `Arc<str/CStr/[T]>` as
3575/// returned by `Default::default`.
3576///
3577/// Layout notes:
3578/// * `repr(align(16))` so we can use it for `[T]` with `align_of::<T>() <= 16`.
3579/// * `repr(C)` so `inner` is at offset 0 (and thus guaranteed to actually be aligned to 16).
3580/// * `[u8; 1]` (to be initialized with 0) so it can be used for `Arc<CStr>`.
3581#[repr(C, align(16))]
3582struct SliceArcInnerForStatic {
3583 inner: ArcInner<[u8; 1]>,
3584}
3585#[cfg(not(no_global_oom_handling))]
3586const MAX_STATIC_INNER_SLICE_ALIGNMENT: usize = 16;
3587
3588static STATIC_INNER_SLICE: SliceArcInnerForStatic = SliceArcInnerForStatic {
3589 inner: ArcInner {
3590 strong: atomic::AtomicUsize::new(1),
3591 weak: atomic::AtomicUsize::new(1),
3592 data: [0],
3593 },
3594};
3595
3596#[cfg(not(no_global_oom_handling))]
3597#[stable(feature = "more_rc_default_impls", since = "1.80.0")]
3598impl Default for Arc<str> {
3599 /// Creates an empty str inside an Arc
3600 ///
3601 /// This may or may not share an allocation with other Arcs.
3602 #[inline]
3603 fn default() -> Self {
3604 let arc: Arc<[u8]> = Default::default();
3605 debug_assert!(core::str::from_utf8(&*arc).is_ok());
3606 let (ptr, alloc) = Arc::into_inner_with_allocator(arc);
3607 unsafe { Arc::from_ptr_in(ptr.as_ptr() as *mut ArcInner<str>, alloc) }
3608 }
3609}
3610
3611#[cfg(not(no_global_oom_handling))]
3612#[stable(feature = "more_rc_default_impls", since = "1.80.0")]
3613impl Default for Arc<core::ffi::CStr> {
3614 /// Creates an empty CStr inside an Arc
3615 ///
3616 /// This may or may not share an allocation with other Arcs.
3617 #[inline]
3618 fn default() -> Self {
3619 use core::ffi::CStr;
3620 let inner: NonNull<ArcInner<[u8]>> = NonNull::from(&STATIC_INNER_SLICE.inner);
3621 let inner: NonNull<ArcInner<CStr>> =
3622 NonNull::new(inner.as_ptr() as *mut ArcInner<CStr>).unwrap();
3623 // `this` semantically is the Arc "owned" by the static, so make sure not to drop it.
3624 let this: mem::ManuallyDrop<Arc<CStr>> =
3625 unsafe { mem::ManuallyDrop::new(Arc::from_inner(inner)) };
3626 (*this).clone()
3627 }
3628}
3629
3630#[cfg(not(no_global_oom_handling))]
3631#[stable(feature = "more_rc_default_impls", since = "1.80.0")]
3632impl<T> Default for Arc<[T]> {
3633 /// Creates an empty `[T]` inside an Arc
3634 ///
3635 /// This may or may not share an allocation with other Arcs.
3636 #[inline]
3637 fn default() -> Self {
3638 if align_of::<T>() <= MAX_STATIC_INNER_SLICE_ALIGNMENT {
3639 // We take a reference to the whole struct instead of the ArcInner<[u8; 1]> inside it so
3640 // we don't shrink the range of bytes the ptr is allowed to access under Stacked Borrows.
3641 // (Miri complains on 32-bit targets with Arc<[Align16]> otherwise.)
3642 // (Note that NonNull::from(&STATIC_INNER_SLICE.inner) is fine under Tree Borrows.)
3643 let inner: NonNull<SliceArcInnerForStatic> = NonNull::from(&STATIC_INNER_SLICE);
3644 let inner: NonNull<ArcInner<[T; 0]>> = inner.cast();
3645 // `this` semantically is the Arc "owned" by the static, so make sure not to drop it.
3646 let this: mem::ManuallyDrop<Arc<[T; 0]>> =
3647 unsafe { mem::ManuallyDrop::new(Arc::from_inner(inner)) };
3648 return (*this).clone();
3649 }
3650
3651 // If T's alignment is too large for the static, make a new unique allocation.
3652 let arr: [T; 0] = [];
3653 Arc::from(arr)
3654 }
3655}
3656
3657#[stable(feature = "rust1", since = "1.0.0")]
3658impl<T: ?Sized + Hash, A: Allocator> Hash for Arc<T, A> {
3659 fn hash<H: Hasher>(&self, state: &mut H) {
3660 (**self).hash(state)
3661 }
3662}
3663
3664#[cfg(not(no_global_oom_handling))]
3665#[stable(feature = "from_for_ptrs", since = "1.6.0")]
3666impl<T> From<T> for Arc<T> {
3667 /// Converts a `T` into an `Arc<T>`
3668 ///
3669 /// The conversion moves the value into a
3670 /// newly allocated `Arc`. It is equivalent to
3671 /// calling `Arc::new(t)`.
3672 ///
3673 /// # Example
3674 /// ```rust
3675 /// # use std::sync::Arc;
3676 /// let x = 5;
3677 /// let arc = Arc::new(5);
3678 ///
3679 /// assert_eq!(Arc::from(x), arc);
3680 /// ```
3681 fn from(t: T) -> Self {
3682 Arc::new(t)
3683 }
3684}
3685
3686#[cfg(not(no_global_oom_handling))]
3687#[stable(feature = "shared_from_array", since = "1.74.0")]
3688impl<T, const N: usize> From<[T; N]> for Arc<[T]> {
3689 /// Converts a [`[T; N]`](prim@array) into an `Arc<[T]>`.
3690 ///
3691 /// The conversion moves the array into a newly allocated `Arc`.
3692 ///
3693 /// # Example
3694 ///
3695 /// ```
3696 /// # use std::sync::Arc;
3697 /// let original: [i32; 3] = [1, 2, 3];
3698 /// let shared: Arc<[i32]> = Arc::from(original);
3699 /// assert_eq!(&[1, 2, 3], &shared[..]);
3700 /// ```
3701 #[inline]
3702 fn from(v: [T; N]) -> Arc<[T]> {
3703 Arc::<[T; N]>::from(v)
3704 }
3705}
3706
3707#[cfg(not(no_global_oom_handling))]
3708#[stable(feature = "shared_from_slice", since = "1.21.0")]
3709impl<T: Clone> From<&[T]> for Arc<[T]> {
3710 /// Allocates a reference-counted slice and fills it by cloning `v`'s items.
3711 ///
3712 /// # Example
3713 ///
3714 /// ```
3715 /// # use std::sync::Arc;
3716 /// let original: &[i32] = &[1, 2, 3];
3717 /// let shared: Arc<[i32]> = Arc::from(original);
3718 /// assert_eq!(&[1, 2, 3], &shared[..]);
3719 /// ```
3720 #[inline]
3721 fn from(v: &[T]) -> Arc<[T]> {
3722 <Self as ArcFromSlice<T>>::from_slice(v)
3723 }
3724}
3725
3726#[cfg(not(no_global_oom_handling))]
3727#[stable(feature = "shared_from_mut_slice", since = "1.84.0")]
3728impl<T: Clone> From<&mut [T]> for Arc<[T]> {
3729 /// Allocates a reference-counted slice and fills it by cloning `v`'s items.
3730 ///
3731 /// # Example
3732 ///
3733 /// ```
3734 /// # use std::sync::Arc;
3735 /// let mut original = [1, 2, 3];
3736 /// let original: &mut [i32] = &mut original;
3737 /// let shared: Arc<[i32]> = Arc::from(original);
3738 /// assert_eq!(&[1, 2, 3], &shared[..]);
3739 /// ```
3740 #[inline]
3741 fn from(v: &mut [T]) -> Arc<[T]> {
3742 Arc::from(&*v)
3743 }
3744}
3745
3746#[cfg(not(no_global_oom_handling))]
3747#[stable(feature = "shared_from_slice", since = "1.21.0")]
3748impl From<&str> for Arc<str> {
3749 /// Allocates a reference-counted `str` and copies `v` into it.
3750 ///
3751 /// # Example
3752 ///
3753 /// ```
3754 /// # use std::sync::Arc;
3755 /// let shared: Arc<str> = Arc::from("eggplant");
3756 /// assert_eq!("eggplant", &shared[..]);
3757 /// ```
3758 #[inline]
3759 fn from(v: &str) -> Arc<str> {
3760 let arc = Arc::<[u8]>::from(v.as_bytes());
3761 unsafe { Arc::from_raw(Arc::into_raw(arc) as *const str) }
3762 }
3763}
3764
3765#[cfg(not(no_global_oom_handling))]
3766#[stable(feature = "shared_from_mut_slice", since = "1.84.0")]
3767impl From<&mut str> for Arc<str> {
3768 /// Allocates a reference-counted `str` and copies `v` into it.
3769 ///
3770 /// # Example
3771 ///
3772 /// ```
3773 /// # use std::sync::Arc;
3774 /// let mut original = String::from("eggplant");
3775 /// let original: &mut str = &mut original;
3776 /// let shared: Arc<str> = Arc::from(original);
3777 /// assert_eq!("eggplant", &shared[..]);
3778 /// ```
3779 #[inline]
3780 fn from(v: &mut str) -> Arc<str> {
3781 Arc::from(&*v)
3782 }
3783}
3784
3785#[cfg(not(no_global_oom_handling))]
3786#[stable(feature = "shared_from_slice", since = "1.21.0")]
3787impl From<String> for Arc<str> {
3788 /// Allocates a reference-counted `str` and copies `v` into it.
3789 ///
3790 /// # Example
3791 ///
3792 /// ```
3793 /// # use std::sync::Arc;
3794 /// let unique: String = "eggplant".to_owned();
3795 /// let shared: Arc<str> = Arc::from(unique);
3796 /// assert_eq!("eggplant", &shared[..]);
3797 /// ```
3798 #[inline]
3799 fn from(v: String) -> Arc<str> {
3800 Arc::from(&v[..])
3801 }
3802}
3803
3804#[cfg(not(no_global_oom_handling))]
3805#[stable(feature = "shared_from_slice", since = "1.21.0")]
3806impl<T: ?Sized, A: Allocator> From<Box<T, A>> for Arc<T, A> {
3807 /// Move a boxed object to a new, reference-counted allocation.
3808 ///
3809 /// # Example
3810 ///
3811 /// ```
3812 /// # use std::sync::Arc;
3813 /// let unique: Box<str> = Box::from("eggplant");
3814 /// let shared: Arc<str> = Arc::from(unique);
3815 /// assert_eq!("eggplant", &shared[..]);
3816 /// ```
3817 #[inline]
3818 fn from(v: Box<T, A>) -> Arc<T, A> {
3819 Arc::from_box_in(v)
3820 }
3821}
3822
3823#[cfg(not(no_global_oom_handling))]
3824#[stable(feature = "shared_from_slice", since = "1.21.0")]
3825impl<T, A: Allocator + Clone> From<Vec<T, A>> for Arc<[T], A> {
3826 /// Allocates a reference-counted slice and moves `v`'s items into it.
3827 ///
3828 /// # Example
3829 ///
3830 /// ```
3831 /// # use std::sync::Arc;
3832 /// let unique: Vec<i32> = vec![1, 2, 3];
3833 /// let shared: Arc<[i32]> = Arc::from(unique);
3834 /// assert_eq!(&[1, 2, 3], &shared[..]);
3835 /// ```
3836 #[inline]
3837 fn from(v: Vec<T, A>) -> Arc<[T], A> {
3838 unsafe {
3839 let (vec_ptr, len, cap, alloc) = v.into_raw_parts_with_alloc();
3840
3841 let rc_ptr = Self::allocate_for_slice_in(len, &alloc);
3842 ptr::copy_nonoverlapping(vec_ptr, (&raw mut (*rc_ptr).data) as *mut T, len);
3843
3844 // Create a `Vec<T, &A>` with length 0, to deallocate the buffer
3845 // without dropping its contents or the allocator
3846 let _ = Vec::from_raw_parts_in(vec_ptr, 0, cap, &alloc);
3847
3848 Self::from_ptr_in(rc_ptr, alloc)
3849 }
3850 }
3851}
3852
3853#[stable(feature = "shared_from_cow", since = "1.45.0")]
3854impl<'a, B> From<Cow<'a, B>> for Arc<B>
3855where
3856 B: ToOwned + ?Sized,
3857 Arc<B>: From<&'a B> + From<B::Owned>,
3858{
3859 /// Creates an atomically reference-counted pointer from a clone-on-write
3860 /// pointer by copying its content.
3861 ///
3862 /// # Example
3863 ///
3864 /// ```rust
3865 /// # use std::sync::Arc;
3866 /// # use std::borrow::Cow;
3867 /// let cow: Cow<'_, str> = Cow::Borrowed("eggplant");
3868 /// let shared: Arc<str> = Arc::from(cow);
3869 /// assert_eq!("eggplant", &shared[..]);
3870 /// ```
3871 #[inline]
3872 fn from(cow: Cow<'a, B>) -> Arc<B> {
3873 match cow {
3874 Cow::Borrowed(s) => Arc::from(s),
3875 Cow::Owned(s) => Arc::from(s),
3876 }
3877 }
3878}
3879
3880#[stable(feature = "shared_from_str", since = "1.62.0")]
3881impl From<Arc<str>> for Arc<[u8]> {
3882 /// Converts an atomically reference-counted string slice into a byte slice.
3883 ///
3884 /// # Example
3885 ///
3886 /// ```
3887 /// # use std::sync::Arc;
3888 /// let string: Arc<str> = Arc::from("eggplant");
3889 /// let bytes: Arc<[u8]> = Arc::from(string);
3890 /// assert_eq!("eggplant".as_bytes(), bytes.as_ref());
3891 /// ```
3892 #[inline]
3893 fn from(rc: Arc<str>) -> Self {
3894 // SAFETY: `str` has the same layout as `[u8]`.
3895 unsafe { Arc::from_raw(Arc::into_raw(rc) as *const [u8]) }
3896 }
3897}
3898
3899#[stable(feature = "boxed_slice_try_from", since = "1.43.0")]
3900impl<T, A: Allocator, const N: usize> TryFrom<Arc<[T], A>> for Arc<[T; N], A> {
3901 type Error = Arc<[T], A>;
3902
3903 fn try_from(boxed_slice: Arc<[T], A>) -> Result<Self, Self::Error> {
3904 if boxed_slice.len() == N {
3905 let (ptr, alloc) = Arc::into_inner_with_allocator(boxed_slice);
3906 Ok(unsafe { Arc::from_inner_in(ptr.cast(), alloc) })
3907 } else {
3908 Err(boxed_slice)
3909 }
3910 }
3911}
3912
3913#[cfg(not(no_global_oom_handling))]
3914#[stable(feature = "shared_from_iter", since = "1.37.0")]
3915impl<T> FromIterator<T> for Arc<[T]> {
3916 /// Takes each element in the `Iterator` and collects it into an `Arc<[T]>`.
3917 ///
3918 /// # Performance characteristics
3919 ///
3920 /// ## The general case
3921 ///
3922 /// In the general case, collecting into `Arc<[T]>` is done by first
3923 /// collecting into a `Vec<T>`. That is, when writing the following:
3924 ///
3925 /// ```rust
3926 /// # use std::sync::Arc;
3927 /// let evens: Arc<[u8]> = (0..10).filter(|&x| x % 2 == 0).collect();
3928 /// # assert_eq!(&*evens, &[0, 2, 4, 6, 8]);
3929 /// ```
3930 ///
3931 /// this behaves as if we wrote:
3932 ///
3933 /// ```rust
3934 /// # use std::sync::Arc;
3935 /// let evens: Arc<[u8]> = (0..10).filter(|&x| x % 2 == 0)
3936 /// .collect::<Vec<_>>() // The first set of allocations happens here.
3937 /// .into(); // A second allocation for `Arc<[T]>` happens here.
3938 /// # assert_eq!(&*evens, &[0, 2, 4, 6, 8]);
3939 /// ```
3940 ///
3941 /// This will allocate as many times as needed for constructing the `Vec<T>`
3942 /// and then it will allocate once for turning the `Vec<T>` into the `Arc<[T]>`.
3943 ///
3944 /// ## Iterators of known length
3945 ///
3946 /// When your `Iterator` implements `TrustedLen` and is of an exact size,
3947 /// a single allocation will be made for the `Arc<[T]>`. For example:
3948 ///
3949 /// ```rust
3950 /// # use std::sync::Arc;
3951 /// let evens: Arc<[u8]> = (0..10).collect(); // Just a single allocation happens here.
3952 /// # assert_eq!(&*evens, &*(0..10).collect::<Vec<_>>());
3953 /// ```
3954 fn from_iter<I: IntoIterator<Item = T>>(iter: I) -> Self {
3955 ToArcSlice::to_arc_slice(iter.into_iter())
3956 }
3957}
3958
3959#[cfg(not(no_global_oom_handling))]
3960/// Specialization trait used for collecting into `Arc<[T]>`.
3961trait ToArcSlice<T>: Iterator<Item = T> + Sized {
3962 fn to_arc_slice(self) -> Arc<[T]>;
3963}
3964
3965#[cfg(not(no_global_oom_handling))]
3966impl<T, I: Iterator<Item = T>> ToArcSlice<T> for I {
3967 default fn to_arc_slice(self) -> Arc<[T]> {
3968 self.collect::<Vec<T>>().into()
3969 }
3970}
3971
3972#[cfg(not(no_global_oom_handling))]
3973impl<T, I: iter::TrustedLen<Item = T>> ToArcSlice<T> for I {
3974 fn to_arc_slice(self) -> Arc<[T]> {
3975 // This is the case for a `TrustedLen` iterator.
3976 let (low, high) = self.size_hint();
3977 if let Some(high) = high {
3978 debug_assert_eq!(
3979 low,
3980 high,
3981 "TrustedLen iterator's size hint is not exact: {:?}",
3982 (low, high)
3983 );
3984
3985 unsafe {
3986 // SAFETY: We need to ensure that the iterator has an exact length and we have.
3987 Arc::from_iter_exact(self, low)
3988 }
3989 } else {
3990 // TrustedLen contract guarantees that `upper_bound == None` implies an iterator
3991 // length exceeding `usize::MAX`.
3992 // The default implementation would collect into a vec which would panic.
3993 // Thus we panic here immediately without invoking `Vec` code.
3994 panic!("capacity overflow");
3995 }
3996 }
3997}
3998
3999#[stable(feature = "rust1", since = "1.0.0")]
4000impl<T: ?Sized, A: Allocator> borrow::Borrow<T> for Arc<T, A> {
4001 fn borrow(&self) -> &T {
4002 &**self
4003 }
4004}
4005
4006#[stable(since = "1.5.0", feature = "smart_ptr_as_ref")]
4007impl<T: ?Sized, A: Allocator> AsRef<T> for Arc<T, A> {
4008 fn as_ref(&self) -> &T {
4009 &**self
4010 }
4011}
4012
4013#[stable(feature = "pin", since = "1.33.0")]
4014impl<T: ?Sized, A: Allocator> Unpin for Arc<T, A> {}
4015
4016/// Gets the offset within an `ArcInner` for the payload behind a pointer.
4017///
4018/// # Safety
4019///
4020/// The pointer must point to (and have valid metadata for) a previously
4021/// valid instance of T, but the T is allowed to be dropped.
4022unsafe fn data_offset<T: ?Sized>(ptr: *const T) -> usize {
4023 // Align the unsized value to the end of the ArcInner.
4024 // Because RcInner is repr(C), it will always be the last field in memory.
4025 // SAFETY: since the only unsized types possible are slices, trait objects,
4026 // and extern types, the input safety requirement is currently enough to
4027 // satisfy the requirements of align_of_val_raw; this is an implementation
4028 // detail of the language that must not be relied upon outside of std.
4029 unsafe { data_offset_align(align_of_val_raw(ptr)) }
4030}
4031
4032#[inline]
4033fn data_offset_align(align: usize) -> usize {
4034 let layout = Layout::new::<ArcInner<()>>();
4035 layout.size() + layout.padding_needed_for(align)
4036}
4037
4038/// A unique owning pointer to an [`ArcInner`] **that does not imply the contents are initialized,**
4039/// but will deallocate it (without dropping the value) when dropped.
4040///
4041/// This is a helper for [`Arc::make_mut()`] to ensure correct cleanup on panic.
4042#[cfg(not(no_global_oom_handling))]
4043struct UniqueArcUninit<T: ?Sized, A: Allocator> {
4044 ptr: NonNull<ArcInner<T>>,
4045 layout_for_value: Layout,
4046 alloc: Option<A>,
4047}
4048
4049#[cfg(not(no_global_oom_handling))]
4050impl<T: ?Sized, A: Allocator> UniqueArcUninit<T, A> {
4051 /// Allocates an ArcInner with layout suitable to contain `for_value` or a clone of it.
4052 fn new(for_value: &T, alloc: A) -> UniqueArcUninit<T, A> {
4053 let layout = Layout::for_value(for_value);
4054 let ptr = unsafe {
4055 Arc::allocate_for_layout(
4056 layout,
4057 |layout_for_arcinner| alloc.allocate(layout_for_arcinner),
4058 |mem| mem.with_metadata_of(ptr::from_ref(for_value) as *const ArcInner<T>),
4059 )
4060 };
4061 Self { ptr: NonNull::new(ptr).unwrap(), layout_for_value: layout, alloc: Some(alloc) }
4062 }
4063
4064 /// Returns the pointer to be written into to initialize the [`Arc`].
4065 fn data_ptr(&mut self) -> *mut T {
4066 let offset = data_offset_align(self.layout_for_value.align());
4067 unsafe { self.ptr.as_ptr().byte_add(offset) as *mut T }
4068 }
4069
4070 /// Upgrade this into a normal [`Arc`].
4071 ///
4072 /// # Safety
4073 ///
4074 /// The data must have been initialized (by writing to [`Self::data_ptr()`]).
4075 unsafe fn into_arc(self) -> Arc<T, A> {
4076 let mut this = ManuallyDrop::new(self);
4077 let ptr = this.ptr.as_ptr();
4078 let alloc = this.alloc.take().unwrap();
4079
4080 // SAFETY: The pointer is valid as per `UniqueArcUninit::new`, and the caller is responsible
4081 // for having initialized the data.
4082 unsafe { Arc::from_ptr_in(ptr, alloc) }
4083 }
4084}
4085
4086#[cfg(not(no_global_oom_handling))]
4087impl<T: ?Sized, A: Allocator> Drop for UniqueArcUninit<T, A> {
4088 fn drop(&mut self) {
4089 // SAFETY:
4090 // * new() produced a pointer safe to deallocate.
4091 // * We own the pointer unless into_arc() was called, which forgets us.
4092 unsafe {
4093 self.alloc.take().unwrap().deallocate(
4094 self.ptr.cast(),
4095 arcinner_layout_for_value_layout(self.layout_for_value),
4096 );
4097 }
4098 }
4099}
4100
4101#[stable(feature = "arc_error", since = "1.52.0")]
4102impl<T: core::error::Error + ?Sized> core::error::Error for Arc<T> {
4103 #[allow(deprecated, deprecated_in_future)]
4104 fn description(&self) -> &str {
4105 core::error::Error::description(&**self)
4106 }
4107
4108 #[allow(deprecated)]
4109 fn cause(&self) -> Option<&dyn core::error::Error> {
4110 core::error::Error::cause(&**self)
4111 }
4112
4113 fn source(&self) -> Option<&(dyn core::error::Error + 'static)> {
4114 core::error::Error::source(&**self)
4115 }
4116
4117 fn provide<'a>(&'a self, req: &mut core::error::Request<'a>) {
4118 core::error::Error::provide(&**self, req);
4119 }
4120}
4121
4122/// A uniquely owned [`Arc`].
4123///
4124/// This represents an `Arc` that is known to be uniquely owned -- that is, have exactly one strong
4125/// reference. Multiple weak pointers can be created, but attempts to upgrade those to strong
4126/// references will fail unless the `UniqueArc` they point to has been converted into a regular `Arc`.
4127///
4128/// Because it is uniquely owned, the contents of a `UniqueArc` can be freely mutated. A common
4129/// use case is to have an object be mutable during its initialization phase but then have it become
4130/// immutable and converted to a normal `Arc`.
4131///
4132/// This can be used as a flexible way to create cyclic data structures, as in the example below.
4133///
4134/// ```
4135/// #![feature(unique_rc_arc)]
4136/// use std::sync::{Arc, Weak, UniqueArc};
4137///
4138/// struct Gadget {
4139/// me: Weak<Gadget>,
4140/// }
4141///
4142/// fn create_gadget() -> Option<Arc<Gadget>> {
4143/// let mut rc = UniqueArc::new(Gadget {
4144/// me: Weak::new(),
4145/// });
4146/// rc.me = UniqueArc::downgrade(&rc);
4147/// Some(UniqueArc::into_arc(rc))
4148/// }
4149///
4150/// create_gadget().unwrap();
4151/// ```
4152///
4153/// An advantage of using `UniqueArc` over [`Arc::new_cyclic`] to build cyclic data structures is that
4154/// [`Arc::new_cyclic`]'s `data_fn` parameter cannot be async or return a [`Result`]. As shown in the
4155/// previous example, `UniqueArc` allows for more flexibility in the construction of cyclic data,
4156/// including fallible or async constructors.
4157#[unstable(feature = "unique_rc_arc", issue = "112566")]
4158pub struct UniqueArc<
4159 T: ?Sized,
4160 #[unstable(feature = "allocator_api", issue = "32838")] A: Allocator = Global,
4161> {
4162 ptr: NonNull<ArcInner<T>>,
4163 // Define the ownership of `ArcInner<T>` for drop-check
4164 _marker: PhantomData<ArcInner<T>>,
4165 // Invariance is necessary for soundness: once other `Weak`
4166 // references exist, we already have a form of shared mutability!
4167 _marker2: PhantomData<*mut T>,
4168 alloc: A,
4169}
4170
4171#[unstable(feature = "unique_rc_arc", issue = "112566")]
4172unsafe impl<T: ?Sized + Sync + Send, A: Allocator + Send> Send for UniqueArc<T, A> {}
4173
4174#[unstable(feature = "unique_rc_arc", issue = "112566")]
4175unsafe impl<T: ?Sized + Sync + Send, A: Allocator + Sync> Sync for UniqueArc<T, A> {}
4176
4177#[unstable(feature = "unique_rc_arc", issue = "112566")]
4178// #[unstable(feature = "coerce_unsized", issue = "18598")]
4179impl<T: ?Sized + Unsize<U>, U: ?Sized, A: Allocator> CoerceUnsized<UniqueArc<U, A>>
4180 for UniqueArc<T, A>
4181{
4182}
4183
4184//#[unstable(feature = "unique_rc_arc", issue = "112566")]
4185#[unstable(feature = "dispatch_from_dyn", issue = "none")]
4186impl<T: ?Sized + Unsize<U>, U: ?Sized> DispatchFromDyn<UniqueArc<U>> for UniqueArc<T> {}
4187
4188#[unstable(feature = "unique_rc_arc", issue = "112566")]
4189impl<T: ?Sized + fmt::Display, A: Allocator> fmt::Display for UniqueArc<T, A> {
4190 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
4191 fmt::Display::fmt(&**self, f)
4192 }
4193}
4194
4195#[unstable(feature = "unique_rc_arc", issue = "112566")]
4196impl<T: ?Sized + fmt::Debug, A: Allocator> fmt::Debug for UniqueArc<T, A> {
4197 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
4198 fmt::Debug::fmt(&**self, f)
4199 }
4200}
4201
4202#[unstable(feature = "unique_rc_arc", issue = "112566")]
4203impl<T: ?Sized, A: Allocator> fmt::Pointer for UniqueArc<T, A> {
4204 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
4205 fmt::Pointer::fmt(&(&raw const **self), f)
4206 }
4207}
4208
4209#[unstable(feature = "unique_rc_arc", issue = "112566")]
4210impl<T: ?Sized, A: Allocator> borrow::Borrow<T> for UniqueArc<T, A> {
4211 fn borrow(&self) -> &T {
4212 &**self
4213 }
4214}
4215
4216#[unstable(feature = "unique_rc_arc", issue = "112566")]
4217impl<T: ?Sized, A: Allocator> borrow::BorrowMut<T> for UniqueArc<T, A> {
4218 fn borrow_mut(&mut self) -> &mut T {
4219 &mut **self
4220 }
4221}
4222
4223#[unstable(feature = "unique_rc_arc", issue = "112566")]
4224impl<T: ?Sized, A: Allocator> AsRef<T> for UniqueArc<T, A> {
4225 fn as_ref(&self) -> &T {
4226 &**self
4227 }
4228}
4229
4230#[unstable(feature = "unique_rc_arc", issue = "112566")]
4231impl<T: ?Sized, A: Allocator> AsMut<T> for UniqueArc<T, A> {
4232 fn as_mut(&mut self) -> &mut T {
4233 &mut **self
4234 }
4235}
4236
4237#[unstable(feature = "unique_rc_arc", issue = "112566")]
4238impl<T: ?Sized, A: Allocator> Unpin for UniqueArc<T, A> {}
4239
4240#[unstable(feature = "unique_rc_arc", issue = "112566")]
4241impl<T: ?Sized + PartialEq, A: Allocator> PartialEq for UniqueArc<T, A> {
4242 /// Equality for two `UniqueArc`s.
4243 ///
4244 /// Two `UniqueArc`s are equal if their inner values are equal.
4245 ///
4246 /// # Examples
4247 ///
4248 /// ```
4249 /// #![feature(unique_rc_arc)]
4250 /// use std::sync::UniqueArc;
4251 ///
4252 /// let five = UniqueArc::new(5);
4253 ///
4254 /// assert!(five == UniqueArc::new(5));
4255 /// ```
4256 #[inline]
4257 fn eq(&self, other: &Self) -> bool {
4258 PartialEq::eq(&**self, &**other)
4259 }
4260}
4261
4262#[unstable(feature = "unique_rc_arc", issue = "112566")]
4263impl<T: ?Sized + PartialOrd, A: Allocator> PartialOrd for UniqueArc<T, A> {
4264 /// Partial comparison for two `UniqueArc`s.
4265 ///
4266 /// The two are compared by calling `partial_cmp()` on their inner values.
4267 ///
4268 /// # Examples
4269 ///
4270 /// ```
4271 /// #![feature(unique_rc_arc)]
4272 /// use std::sync::UniqueArc;
4273 /// use std::cmp::Ordering;
4274 ///
4275 /// let five = UniqueArc::new(5);
4276 ///
4277 /// assert_eq!(Some(Ordering::Less), five.partial_cmp(&UniqueArc::new(6)));
4278 /// ```
4279 #[inline(always)]
4280 fn partial_cmp(&self, other: &UniqueArc<T, A>) -> Option<Ordering> {
4281 (**self).partial_cmp(&**other)
4282 }
4283
4284 /// Less-than comparison for two `UniqueArc`s.
4285 ///
4286 /// The two are compared by calling `<` on their inner values.
4287 ///
4288 /// # Examples
4289 ///
4290 /// ```
4291 /// #![feature(unique_rc_arc)]
4292 /// use std::sync::UniqueArc;
4293 ///
4294 /// let five = UniqueArc::new(5);
4295 ///
4296 /// assert!(five < UniqueArc::new(6));
4297 /// ```
4298 #[inline(always)]
4299 fn lt(&self, other: &UniqueArc<T, A>) -> bool {
4300 **self < **other
4301 }
4302
4303 /// 'Less than or equal to' comparison for two `UniqueArc`s.
4304 ///
4305 /// The two are compared by calling `<=` on their inner values.
4306 ///
4307 /// # Examples
4308 ///
4309 /// ```
4310 /// #![feature(unique_rc_arc)]
4311 /// use std::sync::UniqueArc;
4312 ///
4313 /// let five = UniqueArc::new(5);
4314 ///
4315 /// assert!(five <= UniqueArc::new(5));
4316 /// ```
4317 #[inline(always)]
4318 fn le(&self, other: &UniqueArc<T, A>) -> bool {
4319 **self <= **other
4320 }
4321
4322 /// Greater-than comparison for two `UniqueArc`s.
4323 ///
4324 /// The two are compared by calling `>` on their inner values.
4325 ///
4326 /// # Examples
4327 ///
4328 /// ```
4329 /// #![feature(unique_rc_arc)]
4330 /// use std::sync::UniqueArc;
4331 ///
4332 /// let five = UniqueArc::new(5);
4333 ///
4334 /// assert!(five > UniqueArc::new(4));
4335 /// ```
4336 #[inline(always)]
4337 fn gt(&self, other: &UniqueArc<T, A>) -> bool {
4338 **self > **other
4339 }
4340
4341 /// 'Greater than or equal to' comparison for two `UniqueArc`s.
4342 ///
4343 /// The two are compared by calling `>=` on their inner values.
4344 ///
4345 /// # Examples
4346 ///
4347 /// ```
4348 /// #![feature(unique_rc_arc)]
4349 /// use std::sync::UniqueArc;
4350 ///
4351 /// let five = UniqueArc::new(5);
4352 ///
4353 /// assert!(five >= UniqueArc::new(5));
4354 /// ```
4355 #[inline(always)]
4356 fn ge(&self, other: &UniqueArc<T, A>) -> bool {
4357 **self >= **other
4358 }
4359}
4360
4361#[unstable(feature = "unique_rc_arc", issue = "112566")]
4362impl<T: ?Sized + Ord, A: Allocator> Ord for UniqueArc<T, A> {
4363 /// Comparison for two `UniqueArc`s.
4364 ///
4365 /// The two are compared by calling `cmp()` on their inner values.
4366 ///
4367 /// # Examples
4368 ///
4369 /// ```
4370 /// #![feature(unique_rc_arc)]
4371 /// use std::sync::UniqueArc;
4372 /// use std::cmp::Ordering;
4373 ///
4374 /// let five = UniqueArc::new(5);
4375 ///
4376 /// assert_eq!(Ordering::Less, five.cmp(&UniqueArc::new(6)));
4377 /// ```
4378 #[inline]
4379 fn cmp(&self, other: &UniqueArc<T, A>) -> Ordering {
4380 (**self).cmp(&**other)
4381 }
4382}
4383
4384#[unstable(feature = "unique_rc_arc", issue = "112566")]
4385impl<T: ?Sized + Eq, A: Allocator> Eq for UniqueArc<T, A> {}
4386
4387#[unstable(feature = "unique_rc_arc", issue = "112566")]
4388impl<T: ?Sized + Hash, A: Allocator> Hash for UniqueArc<T, A> {
4389 fn hash<H: Hasher>(&self, state: &mut H) {
4390 (**self).hash(state);
4391 }
4392}
4393
4394impl<T> UniqueArc<T, Global> {
4395 /// Creates a new `UniqueArc`.
4396 ///
4397 /// Weak references to this `UniqueArc` can be created with [`UniqueArc::downgrade`]. Upgrading
4398 /// these weak references will fail before the `UniqueArc` has been converted into an [`Arc`].
4399 /// After converting the `UniqueArc` into an [`Arc`], any weak references created beforehand will
4400 /// point to the new [`Arc`].
4401 #[cfg(not(no_global_oom_handling))]
4402 #[unstable(feature = "unique_rc_arc", issue = "112566")]
4403 #[must_use]
4404 pub fn new(value: T) -> Self {
4405 Self::new_in(value, Global)
4406 }
4407}
4408
4409impl<T, A: Allocator> UniqueArc<T, A> {
4410 /// Creates a new `UniqueArc` in the provided allocator.
4411 ///
4412 /// Weak references to this `UniqueArc` can be created with [`UniqueArc::downgrade`]. Upgrading
4413 /// these weak references will fail before the `UniqueArc` has been converted into an [`Arc`].
4414 /// After converting the `UniqueArc` into an [`Arc`], any weak references created beforehand will
4415 /// point to the new [`Arc`].
4416 #[cfg(not(no_global_oom_handling))]
4417 #[unstable(feature = "unique_rc_arc", issue = "112566")]
4418 #[must_use]
4419 // #[unstable(feature = "allocator_api", issue = "32838")]
4420 pub fn new_in(data: T, alloc: A) -> Self {
4421 let (ptr, alloc) = Box::into_unique(Box::new_in(
4422 ArcInner {
4423 strong: atomic::AtomicUsize::new(0),
4424 // keep one weak reference so if all the weak pointers that are created are dropped
4425 // the UniqueArc still stays valid.
4426 weak: atomic::AtomicUsize::new(1),
4427 data,
4428 },
4429 alloc,
4430 ));
4431 Self { ptr: ptr.into(), _marker: PhantomData, _marker2: PhantomData, alloc }
4432 }
4433}
4434
4435impl<T: ?Sized, A: Allocator> UniqueArc<T, A> {
4436 /// Converts the `UniqueArc` into a regular [`Arc`].
4437 ///
4438 /// This consumes the `UniqueArc` and returns a regular [`Arc`] that contains the `value` that
4439 /// is passed to `into_arc`.
4440 ///
4441 /// Any weak references created before this method is called can now be upgraded to strong
4442 /// references.
4443 #[unstable(feature = "unique_rc_arc", issue = "112566")]
4444 #[must_use]
4445 pub fn into_arc(this: Self) -> Arc<T, A> {
4446 let this = ManuallyDrop::new(this);
4447
4448 // Move the allocator out.
4449 // SAFETY: `this.alloc` will not be accessed again, nor dropped because it is in
4450 // a `ManuallyDrop`.
4451 let alloc: A = unsafe { ptr::read(&this.alloc) };
4452
4453 // SAFETY: This pointer was allocated at creation time so we know it is valid.
4454 unsafe {
4455 // Convert our weak reference into a strong reference
4456 (*this.ptr.as_ptr()).strong.store(1, Release);
4457 Arc::from_inner_in(this.ptr, alloc)
4458 }
4459 }
4460}
4461
4462impl<T: ?Sized, A: Allocator + Clone> UniqueArc<T, A> {
4463 /// Creates a new weak reference to the `UniqueArc`.
4464 ///
4465 /// Attempting to upgrade this weak reference will fail before the `UniqueArc` has been converted
4466 /// to a [`Arc`] using [`UniqueArc::into_arc`].
4467 #[unstable(feature = "unique_rc_arc", issue = "112566")]
4468 #[must_use]
4469 pub fn downgrade(this: &Self) -> Weak<T, A> {
4470 // Using a relaxed ordering is alright here, as knowledge of the
4471 // original reference prevents other threads from erroneously deleting
4472 // the object or converting the object to a normal `Arc<T, A>`.
4473 //
4474 // Note that we don't need to test if the weak counter is locked because there
4475 // are no such operations like `Arc::get_mut` or `Arc::make_mut` that will lock
4476 // the weak counter.
4477 //
4478 // SAFETY: This pointer was allocated at creation time so we know it is valid.
4479 let old_size = unsafe { (*this.ptr.as_ptr()).weak.fetch_add(1, Relaxed) };
4480
4481 // See comments in Arc::clone() for why we do this (for mem::forget).
4482 if old_size > MAX_REFCOUNT {
4483 abort();
4484 }
4485
4486 Weak { ptr: this.ptr, alloc: this.alloc.clone() }
4487 }
4488}
4489
4490#[unstable(feature = "unique_rc_arc", issue = "112566")]
4491impl<T: ?Sized, A: Allocator> Deref for UniqueArc<T, A> {
4492 type Target = T;
4493
4494 fn deref(&self) -> &T {
4495 // SAFETY: This pointer was allocated at creation time so we know it is valid.
4496 unsafe { &self.ptr.as_ref().data }
4497 }
4498}
4499
4500// #[unstable(feature = "unique_rc_arc", issue = "112566")]
4501#[unstable(feature = "pin_coerce_unsized_trait", issue = "123430")]
4502unsafe impl<T: ?Sized> PinCoerceUnsized for UniqueArc<T> {}
4503
4504#[unstable(feature = "unique_rc_arc", issue = "112566")]
4505impl<T: ?Sized, A: Allocator> DerefMut for UniqueArc<T, A> {
4506 fn deref_mut(&mut self) -> &mut T {
4507 // SAFETY: This pointer was allocated at creation time so we know it is valid. We know we
4508 // have unique ownership and therefore it's safe to make a mutable reference because
4509 // `UniqueArc` owns the only strong reference to itself.
4510 // We also need to be careful to only create a mutable reference to the `data` field,
4511 // as a mutable reference to the entire `ArcInner` would assert uniqueness over the
4512 // ref count fields too, invalidating any attempt by `Weak`s to access the ref count.
4513 unsafe { &mut (*self.ptr.as_ptr()).data }
4514 }
4515}
4516
4517#[unstable(feature = "unique_rc_arc", issue = "112566")]
4518// #[unstable(feature = "deref_pure_trait", issue = "87121")]
4519unsafe impl<T: ?Sized, A: Allocator> DerefPure for UniqueArc<T, A> {}
4520
4521#[unstable(feature = "unique_rc_arc", issue = "112566")]
4522unsafe impl<#[may_dangle] T: ?Sized, A: Allocator> Drop for UniqueArc<T, A> {
4523 fn drop(&mut self) {
4524 // See `Arc::drop_slow` which drops an `Arc` with a strong count of 0.
4525 // SAFETY: This pointer was allocated at creation time so we know it is valid.
4526 let _weak = Weak { ptr: self.ptr, alloc: &self.alloc };
4527
4528 unsafe { ptr::drop_in_place(&mut (*self.ptr.as_ptr()).data) };
4529 }
4530}