alloc/vec/mod.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034
//! A contiguous growable array type with heap-allocated contents, written
//! `Vec<T>`.
//!
//! Vectors have *O*(1) indexing, amortized *O*(1) push (to the end) and
//! *O*(1) pop (from the end).
//!
//! Vectors ensure they never allocate more than `isize::MAX` bytes.
//!
//! # Examples
//!
//! You can explicitly create a [`Vec`] with [`Vec::new`]:
//!
//! ```
//! let v: Vec<i32> = Vec::new();
//! ```
//!
//! ...or by using the [`vec!`] macro:
//!
//! ```
//! let v: Vec<i32> = vec![];
//!
//! let v = vec![1, 2, 3, 4, 5];
//!
//! let v = vec![0; 10]; // ten zeroes
//! ```
//!
//! You can [`push`] values onto the end of a vector (which will grow the vector
//! as needed):
//!
//! ```
//! let mut v = vec![1, 2];
//!
//! v.push(3);
//! ```
//!
//! Popping values works in much the same way:
//!
//! ```
//! let mut v = vec![1, 2];
//!
//! let two = v.pop();
//! ```
//!
//! Vectors also support indexing (through the [`Index`] and [`IndexMut`] traits):
//!
//! ```
//! let mut v = vec![1, 2, 3];
//! let three = v[2];
//! v[1] = v[1] + 5;
//! ```
//!
//! [`push`]: Vec::push
#![stable(feature = "rust1", since = "1.0.0")]
#[cfg(not(no_global_oom_handling))]
use core::cmp;
use core::cmp::Ordering;
use core::fmt;
use core::hash::{Hash, Hasher};
#[cfg(not(no_global_oom_handling))]
use core::iter;
use core::marker::PhantomData;
use core::mem::{self, ManuallyDrop, MaybeUninit, SizedTypeProperties};
use core::ops::{self, Index, IndexMut, Range, RangeBounds};
use core::ptr::{self, NonNull};
use core::slice::{self, SliceIndex};
#[unstable(feature = "extract_if", reason = "recently added", issue = "43244")]
pub use self::extract_if::ExtractIf;
use crate::alloc::{Allocator, Global};
use crate::borrow::{Cow, ToOwned};
use crate::boxed::Box;
use crate::collections::TryReserveError;
use crate::raw_vec::RawVec;
mod extract_if;
#[cfg(not(no_global_oom_handling))]
#[stable(feature = "vec_splice", since = "1.21.0")]
pub use self::splice::Splice;
#[cfg(not(no_global_oom_handling))]
mod splice;
#[stable(feature = "drain", since = "1.6.0")]
pub use self::drain::Drain;
mod drain;
#[cfg(not(no_global_oom_handling))]
mod cow;
#[cfg(not(no_global_oom_handling))]
pub(crate) use self::in_place_collect::AsVecIntoIter;
#[stable(feature = "rust1", since = "1.0.0")]
pub use self::into_iter::IntoIter;
mod into_iter;
#[cfg(not(no_global_oom_handling))]
use self::is_zero::IsZero;
#[cfg(not(no_global_oom_handling))]
mod is_zero;
#[cfg(not(no_global_oom_handling))]
mod in_place_collect;
mod partial_eq;
#[cfg(not(no_global_oom_handling))]
use self::spec_from_elem::SpecFromElem;
#[cfg(not(no_global_oom_handling))]
mod spec_from_elem;
#[cfg(not(no_global_oom_handling))]
use self::set_len_on_drop::SetLenOnDrop;
#[cfg(not(no_global_oom_handling))]
mod set_len_on_drop;
#[cfg(not(no_global_oom_handling))]
use self::in_place_drop::{InPlaceDrop, InPlaceDstDataSrcBufDrop};
#[cfg(not(no_global_oom_handling))]
mod in_place_drop;
#[cfg(not(no_global_oom_handling))]
use self::spec_from_iter_nested::SpecFromIterNested;
#[cfg(not(no_global_oom_handling))]
mod spec_from_iter_nested;
#[cfg(not(no_global_oom_handling))]
use self::spec_from_iter::SpecFromIter;
#[cfg(not(no_global_oom_handling))]
mod spec_from_iter;
#[cfg(not(no_global_oom_handling))]
use self::spec_extend::SpecExtend;
#[cfg(not(no_global_oom_handling))]
mod spec_extend;
/// A contiguous growable array type, written as `Vec<T>`, short for 'vector'.
///
/// # Examples
///
/// ```
/// let mut vec = Vec::new();
/// vec.push(1);
/// vec.push(2);
///
/// assert_eq!(vec.len(), 2);
/// assert_eq!(vec[0], 1);
///
/// assert_eq!(vec.pop(), Some(2));
/// assert_eq!(vec.len(), 1);
///
/// vec[0] = 7;
/// assert_eq!(vec[0], 7);
///
/// vec.extend([1, 2, 3]);
///
/// for x in &vec {
/// println!("{x}");
/// }
/// assert_eq!(vec, [7, 1, 2, 3]);
/// ```
///
/// The [`vec!`] macro is provided for convenient initialization:
///
/// ```
/// let mut vec1 = vec![1, 2, 3];
/// vec1.push(4);
/// let vec2 = Vec::from([1, 2, 3, 4]);
/// assert_eq!(vec1, vec2);
/// ```
///
/// It can also initialize each element of a `Vec<T>` with a given value.
/// This may be more efficient than performing allocation and initialization
/// in separate steps, especially when initializing a vector of zeros:
///
/// ```
/// let vec = vec![0; 5];
/// assert_eq!(vec, [0, 0, 0, 0, 0]);
///
/// // The following is equivalent, but potentially slower:
/// let mut vec = Vec::with_capacity(5);
/// vec.resize(5, 0);
/// assert_eq!(vec, [0, 0, 0, 0, 0]);
/// ```
///
/// For more information, see
/// [Capacity and Reallocation](#capacity-and-reallocation).
///
/// Use a `Vec<T>` as an efficient stack:
///
/// ```
/// let mut stack = Vec::new();
///
/// stack.push(1);
/// stack.push(2);
/// stack.push(3);
///
/// while let Some(top) = stack.pop() {
/// // Prints 3, 2, 1
/// println!("{top}");
/// }
/// ```
///
/// # Indexing
///
/// The `Vec` type allows access to values by index, because it implements the
/// [`Index`] trait. An example will be more explicit:
///
/// ```
/// let v = vec![0, 2, 4, 6];
/// println!("{}", v[1]); // it will display '2'
/// ```
///
/// However be careful: if you try to access an index which isn't in the `Vec`,
/// your software will panic! You cannot do this:
///
/// ```should_panic
/// let v = vec![0, 2, 4, 6];
/// println!("{}", v[6]); // it will panic!
/// ```
///
/// Use [`get`] and [`get_mut`] if you want to check whether the index is in
/// the `Vec`.
///
/// # Slicing
///
/// A `Vec` can be mutable. On the other hand, slices are read-only objects.
/// To get a [slice][prim@slice], use [`&`]. Example:
///
/// ```
/// fn read_slice(slice: &[usize]) {
/// // ...
/// }
///
/// let v = vec![0, 1];
/// read_slice(&v);
///
/// // ... and that's all!
/// // you can also do it like this:
/// let u: &[usize] = &v;
/// // or like this:
/// let u: &[_] = &v;
/// ```
///
/// In Rust, it's more common to pass slices as arguments rather than vectors
/// when you just want to provide read access. The same goes for [`String`] and
/// [`&str`].
///
/// # Capacity and reallocation
///
/// The capacity of a vector is the amount of space allocated for any future
/// elements that will be added onto the vector. This is not to be confused with
/// the *length* of a vector, which specifies the number of actual elements
/// within the vector. If a vector's length exceeds its capacity, its capacity
/// will automatically be increased, but its elements will have to be
/// reallocated.
///
/// For example, a vector with capacity 10 and length 0 would be an empty vector
/// with space for 10 more elements. Pushing 10 or fewer elements onto the
/// vector will not change its capacity or cause reallocation to occur. However,
/// if the vector's length is increased to 11, it will have to reallocate, which
/// can be slow. For this reason, it is recommended to use [`Vec::with_capacity`]
/// whenever possible to specify how big the vector is expected to get.
///
/// # Guarantees
///
/// Due to its incredibly fundamental nature, `Vec` makes a lot of guarantees
/// about its design. This ensures that it's as low-overhead as possible in
/// the general case, and can be correctly manipulated in primitive ways
/// by unsafe code. Note that these guarantees refer to an unqualified `Vec<T>`.
/// If additional type parameters are added (e.g., to support custom allocators),
/// overriding their defaults may change the behavior.
///
/// Most fundamentally, `Vec` is and always will be a (pointer, capacity, length)
/// triplet. No more, no less. The order of these fields is completely
/// unspecified, and you should use the appropriate methods to modify these.
/// The pointer will never be null, so this type is null-pointer-optimized.
///
/// However, the pointer might not actually point to allocated memory. In particular,
/// if you construct a `Vec` with capacity 0 via [`Vec::new`], [`vec![]`][`vec!`],
/// [`Vec::with_capacity(0)`][`Vec::with_capacity`], or by calling [`shrink_to_fit`]
/// on an empty Vec, it will not allocate memory. Similarly, if you store zero-sized
/// types inside a `Vec`, it will not allocate space for them. *Note that in this case
/// the `Vec` might not report a [`capacity`] of 0*. `Vec` will allocate if and only
/// if <code>[mem::size_of::\<T>]\() * [capacity]\() > 0</code>. In general, `Vec`'s allocation
/// details are very subtle --- if you intend to allocate memory using a `Vec`
/// and use it for something else (either to pass to unsafe code, or to build your
/// own memory-backed collection), be sure to deallocate this memory by using
/// `from_raw_parts` to recover the `Vec` and then dropping it.
///
/// If a `Vec` *has* allocated memory, then the memory it points to is on the heap
/// (as defined by the allocator Rust is configured to use by default), and its
/// pointer points to [`len`] initialized, contiguous elements in order (what
/// you would see if you coerced it to a slice), followed by <code>[capacity] - [len]</code>
/// logically uninitialized, contiguous elements.
///
/// A vector containing the elements `'a'` and `'b'` with capacity 4 can be
/// visualized as below. The top part is the `Vec` struct, it contains a
/// pointer to the head of the allocation in the heap, length and capacity.
/// The bottom part is the allocation on the heap, a contiguous memory block.
///
/// ```text
/// ptr len capacity
/// +--------+--------+--------+
/// | 0x0123 | 2 | 4 |
/// +--------+--------+--------+
/// |
/// v
/// Heap +--------+--------+--------+--------+
/// | 'a' | 'b' | uninit | uninit |
/// +--------+--------+--------+--------+
/// ```
///
/// - **uninit** represents memory that is not initialized, see [`MaybeUninit`].
/// - Note: the ABI is not stable and `Vec` makes no guarantees about its memory
/// layout (including the order of fields).
///
/// `Vec` will never perform a "small optimization" where elements are actually
/// stored on the stack for two reasons:
///
/// * It would make it more difficult for unsafe code to correctly manipulate
/// a `Vec`. The contents of a `Vec` wouldn't have a stable address if it were
/// only moved, and it would be more difficult to determine if a `Vec` had
/// actually allocated memory.
///
/// * It would penalize the general case, incurring an additional branch
/// on every access.
///
/// `Vec` will never automatically shrink itself, even if completely empty. This
/// ensures no unnecessary allocations or deallocations occur. Emptying a `Vec`
/// and then filling it back up to the same [`len`] should incur no calls to
/// the allocator. If you wish to free up unused memory, use
/// [`shrink_to_fit`] or [`shrink_to`].
///
/// [`push`] and [`insert`] will never (re)allocate if the reported capacity is
/// sufficient. [`push`] and [`insert`] *will* (re)allocate if
/// <code>[len] == [capacity]</code>. That is, the reported capacity is completely
/// accurate, and can be relied on. It can even be used to manually free the memory
/// allocated by a `Vec` if desired. Bulk insertion methods *may* reallocate, even
/// when not necessary.
///
/// `Vec` does not guarantee any particular growth strategy when reallocating
/// when full, nor when [`reserve`] is called. The current strategy is basic
/// and it may prove desirable to use a non-constant growth factor. Whatever
/// strategy is used will of course guarantee *O*(1) amortized [`push`].
///
/// `vec![x; n]`, `vec![a, b, c, d]`, and
/// [`Vec::with_capacity(n)`][`Vec::with_capacity`], will all produce a `Vec`
/// with at least the requested capacity. If <code>[len] == [capacity]</code>,
/// (as is the case for the [`vec!`] macro), then a `Vec<T>` can be converted to
/// and from a [`Box<[T]>`][owned slice] without reallocating or moving the elements.
///
/// `Vec` will not specifically overwrite any data that is removed from it,
/// but also won't specifically preserve it. Its uninitialized memory is
/// scratch space that it may use however it wants. It will generally just do
/// whatever is most efficient or otherwise easy to implement. Do not rely on
/// removed data to be erased for security purposes. Even if you drop a `Vec`, its
/// buffer may simply be reused by another allocation. Even if you zero a `Vec`'s memory
/// first, that might not actually happen because the optimizer does not consider
/// this a side-effect that must be preserved. There is one case which we will
/// not break, however: using `unsafe` code to write to the excess capacity,
/// and then increasing the length to match, is always valid.
///
/// Currently, `Vec` does not guarantee the order in which elements are dropped.
/// The order has changed in the past and may change again.
///
/// [`get`]: slice::get
/// [`get_mut`]: slice::get_mut
/// [`String`]: crate::string::String
/// [`&str`]: type@str
/// [`shrink_to_fit`]: Vec::shrink_to_fit
/// [`shrink_to`]: Vec::shrink_to
/// [capacity]: Vec::capacity
/// [`capacity`]: Vec::capacity
/// [mem::size_of::\<T>]: core::mem::size_of
/// [len]: Vec::len
/// [`len`]: Vec::len
/// [`push`]: Vec::push
/// [`insert`]: Vec::insert
/// [`reserve`]: Vec::reserve
/// [`MaybeUninit`]: core::mem::MaybeUninit
/// [owned slice]: Box
#[stable(feature = "rust1", since = "1.0.0")]
#[cfg_attr(not(test), rustc_diagnostic_item = "Vec")]
#[rustc_insignificant_dtor]
pub struct Vec<T, #[unstable(feature = "allocator_api", issue = "32838")] A: Allocator = Global> {
buf: RawVec<T, A>,
len: usize,
}
////////////////////////////////////////////////////////////////////////////////
// Inherent methods
////////////////////////////////////////////////////////////////////////////////
impl<T> Vec<T> {
/// Constructs a new, empty `Vec<T>`.
///
/// The vector will not allocate until elements are pushed onto it.
///
/// # Examples
///
/// ```
/// # #![allow(unused_mut)]
/// let mut vec: Vec<i32> = Vec::new();
/// ```
#[inline]
#[rustc_const_stable(feature = "const_vec_new", since = "1.39.0")]
#[cfg_attr(not(test), rustc_diagnostic_item = "vec_new")]
#[stable(feature = "rust1", since = "1.0.0")]
#[must_use]
pub const fn new() -> Self {
Vec { buf: RawVec::new(), len: 0 }
}
/// Constructs a new, empty `Vec<T>` with at least the specified capacity.
///
/// The vector will be able to hold at least `capacity` elements without
/// reallocating. This method is allowed to allocate for more elements than
/// `capacity`. If `capacity` is 0, the vector will not allocate.
///
/// It is important to note that although the returned vector has the
/// minimum *capacity* specified, the vector will have a zero *length*. For
/// an explanation of the difference between length and capacity, see
/// *[Capacity and reallocation]*.
///
/// If it is important to know the exact allocated capacity of a `Vec`,
/// always use the [`capacity`] method after construction.
///
/// For `Vec<T>` where `T` is a zero-sized type, there will be no allocation
/// and the capacity will always be `usize::MAX`.
///
/// [Capacity and reallocation]: #capacity-and-reallocation
/// [`capacity`]: Vec::capacity
///
/// # Panics
///
/// Panics if the new capacity exceeds `isize::MAX` _bytes_.
///
/// # Examples
///
/// ```
/// let mut vec = Vec::with_capacity(10);
///
/// // The vector contains no items, even though it has capacity for more
/// assert_eq!(vec.len(), 0);
/// assert!(vec.capacity() >= 10);
///
/// // These are all done without reallocating...
/// for i in 0..10 {
/// vec.push(i);
/// }
/// assert_eq!(vec.len(), 10);
/// assert!(vec.capacity() >= 10);
///
/// // ...but this may make the vector reallocate
/// vec.push(11);
/// assert_eq!(vec.len(), 11);
/// assert!(vec.capacity() >= 11);
///
/// // A vector of a zero-sized type will always over-allocate, since no
/// // allocation is necessary
/// let vec_units = Vec::<()>::with_capacity(10);
/// assert_eq!(vec_units.capacity(), usize::MAX);
/// ```
#[cfg(not(no_global_oom_handling))]
#[inline]
#[stable(feature = "rust1", since = "1.0.0")]
#[must_use]
#[cfg_attr(not(test), rustc_diagnostic_item = "vec_with_capacity")]
#[track_caller]
pub fn with_capacity(capacity: usize) -> Self {
Self::with_capacity_in(capacity, Global)
}
/// Constructs a new, empty `Vec<T>` with at least the specified capacity.
///
/// The vector will be able to hold at least `capacity` elements without
/// reallocating. This method is allowed to allocate for more elements than
/// `capacity`. If `capacity` is 0, the vector will not allocate.
///
/// # Errors
///
/// Returns an error if the capacity exceeds `isize::MAX` _bytes_,
/// or if the allocator reports allocation failure.
#[inline]
#[unstable(feature = "try_with_capacity", issue = "91913")]
pub fn try_with_capacity(capacity: usize) -> Result<Self, TryReserveError> {
Self::try_with_capacity_in(capacity, Global)
}
/// Creates a `Vec<T>` directly from a pointer, a length, and a capacity.
///
/// # Safety
///
/// This is highly unsafe, due to the number of invariants that aren't
/// checked:
///
/// * `ptr` must have been allocated using the global allocator, such as via
/// the [`alloc::alloc`] function.
/// * `T` needs to have the same alignment as what `ptr` was allocated with.
/// (`T` having a less strict alignment is not sufficient, the alignment really
/// needs to be equal to satisfy the [`dealloc`] requirement that memory must be
/// allocated and deallocated with the same layout.)
/// * The size of `T` times the `capacity` (ie. the allocated size in bytes) needs
/// to be the same size as the pointer was allocated with. (Because similar to
/// alignment, [`dealloc`] must be called with the same layout `size`.)
/// * `length` needs to be less than or equal to `capacity`.
/// * The first `length` values must be properly initialized values of type `T`.
/// * `capacity` needs to be the capacity that the pointer was allocated with.
/// * The allocated size in bytes must be no larger than `isize::MAX`.
/// See the safety documentation of [`pointer::offset`].
///
/// These requirements are always upheld by any `ptr` that has been allocated
/// via `Vec<T>`. Other allocation sources are allowed if the invariants are
/// upheld.
///
/// Violating these may cause problems like corrupting the allocator's
/// internal data structures. For example it is normally **not** safe
/// to build a `Vec<u8>` from a pointer to a C `char` array with length
/// `size_t`, doing so is only safe if the array was initially allocated by
/// a `Vec` or `String`.
/// It's also not safe to build one from a `Vec<u16>` and its length, because
/// the allocator cares about the alignment, and these two types have different
/// alignments. The buffer was allocated with alignment 2 (for `u16`), but after
/// turning it into a `Vec<u8>` it'll be deallocated with alignment 1. To avoid
/// these issues, it is often preferable to do casting/transmuting using
/// [`slice::from_raw_parts`] instead.
///
/// The ownership of `ptr` is effectively transferred to the
/// `Vec<T>` which may then deallocate, reallocate or change the
/// contents of memory pointed to by the pointer at will. Ensure
/// that nothing else uses the pointer after calling this
/// function.
///
/// [`String`]: crate::string::String
/// [`alloc::alloc`]: crate::alloc::alloc
/// [`dealloc`]: crate::alloc::GlobalAlloc::dealloc
///
/// # Examples
///
/// ```
/// use std::ptr;
/// use std::mem;
///
/// let v = vec![1, 2, 3];
///
// FIXME Update this when vec_into_raw_parts is stabilized
/// // Prevent running `v`'s destructor so we are in complete control
/// // of the allocation.
/// let mut v = mem::ManuallyDrop::new(v);
///
/// // Pull out the various important pieces of information about `v`
/// let p = v.as_mut_ptr();
/// let len = v.len();
/// let cap = v.capacity();
///
/// unsafe {
/// // Overwrite memory with 4, 5, 6
/// for i in 0..len {
/// ptr::write(p.add(i), 4 + i);
/// }
///
/// // Put everything back together into a Vec
/// let rebuilt = Vec::from_raw_parts(p, len, cap);
/// assert_eq!(rebuilt, [4, 5, 6]);
/// }
/// ```
///
/// Using memory that was allocated elsewhere:
///
/// ```rust
/// use std::alloc::{alloc, Layout};
///
/// fn main() {
/// let layout = Layout::array::<u32>(16).expect("overflow cannot happen");
///
/// let vec = unsafe {
/// let mem = alloc(layout).cast::<u32>();
/// if mem.is_null() {
/// return;
/// }
///
/// mem.write(1_000_000);
///
/// Vec::from_raw_parts(mem, 1, 16)
/// };
///
/// assert_eq!(vec, &[1_000_000]);
/// assert_eq!(vec.capacity(), 16);
/// }
/// ```
#[inline]
#[stable(feature = "rust1", since = "1.0.0")]
pub unsafe fn from_raw_parts(ptr: *mut T, length: usize, capacity: usize) -> Self {
unsafe { Self::from_raw_parts_in(ptr, length, capacity, Global) }
}
#[doc(alias = "from_non_null_parts")]
/// Creates a `Vec<T>` directly from a `NonNull` pointer, a length, and a capacity.
///
/// # Safety
///
/// This is highly unsafe, due to the number of invariants that aren't
/// checked:
///
/// * `ptr` must have been allocated using the global allocator, such as via
/// the [`alloc::alloc`] function.
/// * `T` needs to have the same alignment as what `ptr` was allocated with.
/// (`T` having a less strict alignment is not sufficient, the alignment really
/// needs to be equal to satisfy the [`dealloc`] requirement that memory must be
/// allocated and deallocated with the same layout.)
/// * The size of `T` times the `capacity` (ie. the allocated size in bytes) needs
/// to be the same size as the pointer was allocated with. (Because similar to
/// alignment, [`dealloc`] must be called with the same layout `size`.)
/// * `length` needs to be less than or equal to `capacity`.
/// * The first `length` values must be properly initialized values of type `T`.
/// * `capacity` needs to be the capacity that the pointer was allocated with.
/// * The allocated size in bytes must be no larger than `isize::MAX`.
/// See the safety documentation of [`pointer::offset`].
///
/// These requirements are always upheld by any `ptr` that has been allocated
/// via `Vec<T>`. Other allocation sources are allowed if the invariants are
/// upheld.
///
/// Violating these may cause problems like corrupting the allocator's
/// internal data structures. For example it is normally **not** safe
/// to build a `Vec<u8>` from a pointer to a C `char` array with length
/// `size_t`, doing so is only safe if the array was initially allocated by
/// a `Vec` or `String`.
/// It's also not safe to build one from a `Vec<u16>` and its length, because
/// the allocator cares about the alignment, and these two types have different
/// alignments. The buffer was allocated with alignment 2 (for `u16`), but after
/// turning it into a `Vec<u8>` it'll be deallocated with alignment 1. To avoid
/// these issues, it is often preferable to do casting/transmuting using
/// [`NonNull::slice_from_raw_parts`] instead.
///
/// The ownership of `ptr` is effectively transferred to the
/// `Vec<T>` which may then deallocate, reallocate or change the
/// contents of memory pointed to by the pointer at will. Ensure
/// that nothing else uses the pointer after calling this
/// function.
///
/// [`String`]: crate::string::String
/// [`alloc::alloc`]: crate::alloc::alloc
/// [`dealloc`]: crate::alloc::GlobalAlloc::dealloc
///
/// # Examples
///
/// ```
/// #![feature(box_vec_non_null)]
///
/// use std::ptr::NonNull;
/// use std::mem;
///
/// let v = vec![1, 2, 3];
///
// FIXME Update this when vec_into_raw_parts is stabilized
/// // Prevent running `v`'s destructor so we are in complete control
/// // of the allocation.
/// let mut v = mem::ManuallyDrop::new(v);
///
/// // Pull out the various important pieces of information about `v`
/// let p = unsafe { NonNull::new_unchecked(v.as_mut_ptr()) };
/// let len = v.len();
/// let cap = v.capacity();
///
/// unsafe {
/// // Overwrite memory with 4, 5, 6
/// for i in 0..len {
/// p.add(i).write(4 + i);
/// }
///
/// // Put everything back together into a Vec
/// let rebuilt = Vec::from_parts(p, len, cap);
/// assert_eq!(rebuilt, [4, 5, 6]);
/// }
/// ```
///
/// Using memory that was allocated elsewhere:
///
/// ```rust
/// #![feature(box_vec_non_null)]
///
/// use std::alloc::{alloc, Layout};
/// use std::ptr::NonNull;
///
/// fn main() {
/// let layout = Layout::array::<u32>(16).expect("overflow cannot happen");
///
/// let vec = unsafe {
/// let Some(mem) = NonNull::new(alloc(layout).cast::<u32>()) else {
/// return;
/// };
///
/// mem.write(1_000_000);
///
/// Vec::from_parts(mem, 1, 16)
/// };
///
/// assert_eq!(vec, &[1_000_000]);
/// assert_eq!(vec.capacity(), 16);
/// }
/// ```
#[inline]
#[unstable(feature = "box_vec_non_null", reason = "new API", issue = "130364")]
pub unsafe fn from_parts(ptr: NonNull<T>, length: usize, capacity: usize) -> Self {
unsafe { Self::from_parts_in(ptr, length, capacity, Global) }
}
}
impl<T, A: Allocator> Vec<T, A> {
/// Constructs a new, empty `Vec<T, A>`.
///
/// The vector will not allocate until elements are pushed onto it.
///
/// # Examples
///
/// ```
/// #![feature(allocator_api)]
///
/// use std::alloc::System;
///
/// # #[allow(unused_mut)]
/// let mut vec: Vec<i32, _> = Vec::new_in(System);
/// ```
#[inline]
#[unstable(feature = "allocator_api", issue = "32838")]
pub const fn new_in(alloc: A) -> Self {
Vec { buf: RawVec::new_in(alloc), len: 0 }
}
/// Constructs a new, empty `Vec<T, A>` with at least the specified capacity
/// with the provided allocator.
///
/// The vector will be able to hold at least `capacity` elements without
/// reallocating. This method is allowed to allocate for more elements than
/// `capacity`. If `capacity` is 0, the vector will not allocate.
///
/// It is important to note that although the returned vector has the
/// minimum *capacity* specified, the vector will have a zero *length*. For
/// an explanation of the difference between length and capacity, see
/// *[Capacity and reallocation]*.
///
/// If it is important to know the exact allocated capacity of a `Vec`,
/// always use the [`capacity`] method after construction.
///
/// For `Vec<T, A>` where `T` is a zero-sized type, there will be no allocation
/// and the capacity will always be `usize::MAX`.
///
/// [Capacity and reallocation]: #capacity-and-reallocation
/// [`capacity`]: Vec::capacity
///
/// # Panics
///
/// Panics if the new capacity exceeds `isize::MAX` _bytes_.
///
/// # Examples
///
/// ```
/// #![feature(allocator_api)]
///
/// use std::alloc::System;
///
/// let mut vec = Vec::with_capacity_in(10, System);
///
/// // The vector contains no items, even though it has capacity for more
/// assert_eq!(vec.len(), 0);
/// assert!(vec.capacity() >= 10);
///
/// // These are all done without reallocating...
/// for i in 0..10 {
/// vec.push(i);
/// }
/// assert_eq!(vec.len(), 10);
/// assert!(vec.capacity() >= 10);
///
/// // ...but this may make the vector reallocate
/// vec.push(11);
/// assert_eq!(vec.len(), 11);
/// assert!(vec.capacity() >= 11);
///
/// // A vector of a zero-sized type will always over-allocate, since no
/// // allocation is necessary
/// let vec_units = Vec::<(), System>::with_capacity_in(10, System);
/// assert_eq!(vec_units.capacity(), usize::MAX);
/// ```
#[cfg(not(no_global_oom_handling))]
#[inline]
#[unstable(feature = "allocator_api", issue = "32838")]
#[track_caller]
pub fn with_capacity_in(capacity: usize, alloc: A) -> Self {
Vec { buf: RawVec::with_capacity_in(capacity, alloc), len: 0 }
}
/// Constructs a new, empty `Vec<T, A>` with at least the specified capacity
/// with the provided allocator.
///
/// The vector will be able to hold at least `capacity` elements without
/// reallocating. This method is allowed to allocate for more elements than
/// `capacity`. If `capacity` is 0, the vector will not allocate.
///
/// # Errors
///
/// Returns an error if the capacity exceeds `isize::MAX` _bytes_,
/// or if the allocator reports allocation failure.
#[inline]
#[unstable(feature = "allocator_api", issue = "32838")]
// #[unstable(feature = "try_with_capacity", issue = "91913")]
pub fn try_with_capacity_in(capacity: usize, alloc: A) -> Result<Self, TryReserveError> {
Ok(Vec { buf: RawVec::try_with_capacity_in(capacity, alloc)?, len: 0 })
}
/// Creates a `Vec<T, A>` directly from a pointer, a length, a capacity,
/// and an allocator.
///
/// # Safety
///
/// This is highly unsafe, due to the number of invariants that aren't
/// checked:
///
/// * `ptr` must be [*currently allocated*] via the given allocator `alloc`.
/// * `T` needs to have the same alignment as what `ptr` was allocated with.
/// (`T` having a less strict alignment is not sufficient, the alignment really
/// needs to be equal to satisfy the [`dealloc`] requirement that memory must be
/// allocated and deallocated with the same layout.)
/// * The size of `T` times the `capacity` (ie. the allocated size in bytes) needs
/// to be the same size as the pointer was allocated with. (Because similar to
/// alignment, [`dealloc`] must be called with the same layout `size`.)
/// * `length` needs to be less than or equal to `capacity`.
/// * The first `length` values must be properly initialized values of type `T`.
/// * `capacity` needs to [*fit*] the layout size that the pointer was allocated with.
/// * The allocated size in bytes must be no larger than `isize::MAX`.
/// See the safety documentation of [`pointer::offset`].
///
/// These requirements are always upheld by any `ptr` that has been allocated
/// via `Vec<T, A>`. Other allocation sources are allowed if the invariants are
/// upheld.
///
/// Violating these may cause problems like corrupting the allocator's
/// internal data structures. For example it is **not** safe
/// to build a `Vec<u8>` from a pointer to a C `char` array with length `size_t`.
/// It's also not safe to build one from a `Vec<u16>` and its length, because
/// the allocator cares about the alignment, and these two types have different
/// alignments. The buffer was allocated with alignment 2 (for `u16`), but after
/// turning it into a `Vec<u8>` it'll be deallocated with alignment 1.
///
/// The ownership of `ptr` is effectively transferred to the
/// `Vec<T>` which may then deallocate, reallocate or change the
/// contents of memory pointed to by the pointer at will. Ensure
/// that nothing else uses the pointer after calling this
/// function.
///
/// [`String`]: crate::string::String
/// [`dealloc`]: crate::alloc::GlobalAlloc::dealloc
/// [*currently allocated*]: crate::alloc::Allocator#currently-allocated-memory
/// [*fit*]: crate::alloc::Allocator#memory-fitting
///
/// # Examples
///
/// ```
/// #![feature(allocator_api)]
///
/// use std::alloc::System;
///
/// use std::ptr;
/// use std::mem;
///
/// let mut v = Vec::with_capacity_in(3, System);
/// v.push(1);
/// v.push(2);
/// v.push(3);
///
// FIXME Update this when vec_into_raw_parts is stabilized
/// // Prevent running `v`'s destructor so we are in complete control
/// // of the allocation.
/// let mut v = mem::ManuallyDrop::new(v);
///
/// // Pull out the various important pieces of information about `v`
/// let p = v.as_mut_ptr();
/// let len = v.len();
/// let cap = v.capacity();
/// let alloc = v.allocator();
///
/// unsafe {
/// // Overwrite memory with 4, 5, 6
/// for i in 0..len {
/// ptr::write(p.add(i), 4 + i);
/// }
///
/// // Put everything back together into a Vec
/// let rebuilt = Vec::from_raw_parts_in(p, len, cap, alloc.clone());
/// assert_eq!(rebuilt, [4, 5, 6]);
/// }
/// ```
///
/// Using memory that was allocated elsewhere:
///
/// ```rust
/// #![feature(allocator_api)]
///
/// use std::alloc::{AllocError, Allocator, Global, Layout};
///
/// fn main() {
/// let layout = Layout::array::<u32>(16).expect("overflow cannot happen");
///
/// let vec = unsafe {
/// let mem = match Global.allocate(layout) {
/// Ok(mem) => mem.cast::<u32>().as_ptr(),
/// Err(AllocError) => return,
/// };
///
/// mem.write(1_000_000);
///
/// Vec::from_raw_parts_in(mem, 1, 16, Global)
/// };
///
/// assert_eq!(vec, &[1_000_000]);
/// assert_eq!(vec.capacity(), 16);
/// }
/// ```
#[inline]
#[unstable(feature = "allocator_api", issue = "32838")]
pub unsafe fn from_raw_parts_in(ptr: *mut T, length: usize, capacity: usize, alloc: A) -> Self {
unsafe { Vec { buf: RawVec::from_raw_parts_in(ptr, capacity, alloc), len: length } }
}
#[doc(alias = "from_non_null_parts_in")]
/// Creates a `Vec<T, A>` directly from a `NonNull` pointer, a length, a capacity,
/// and an allocator.
///
/// # Safety
///
/// This is highly unsafe, due to the number of invariants that aren't
/// checked:
///
/// * `ptr` must be [*currently allocated*] via the given allocator `alloc`.
/// * `T` needs to have the same alignment as what `ptr` was allocated with.
/// (`T` having a less strict alignment is not sufficient, the alignment really
/// needs to be equal to satisfy the [`dealloc`] requirement that memory must be
/// allocated and deallocated with the same layout.)
/// * The size of `T` times the `capacity` (ie. the allocated size in bytes) needs
/// to be the same size as the pointer was allocated with. (Because similar to
/// alignment, [`dealloc`] must be called with the same layout `size`.)
/// * `length` needs to be less than or equal to `capacity`.
/// * The first `length` values must be properly initialized values of type `T`.
/// * `capacity` needs to [*fit*] the layout size that the pointer was allocated with.
/// * The allocated size in bytes must be no larger than `isize::MAX`.
/// See the safety documentation of [`pointer::offset`].
///
/// These requirements are always upheld by any `ptr` that has been allocated
/// via `Vec<T, A>`. Other allocation sources are allowed if the invariants are
/// upheld.
///
/// Violating these may cause problems like corrupting the allocator's
/// internal data structures. For example it is **not** safe
/// to build a `Vec<u8>` from a pointer to a C `char` array with length `size_t`.
/// It's also not safe to build one from a `Vec<u16>` and its length, because
/// the allocator cares about the alignment, and these two types have different
/// alignments. The buffer was allocated with alignment 2 (for `u16`), but after
/// turning it into a `Vec<u8>` it'll be deallocated with alignment 1.
///
/// The ownership of `ptr` is effectively transferred to the
/// `Vec<T>` which may then deallocate, reallocate or change the
/// contents of memory pointed to by the pointer at will. Ensure
/// that nothing else uses the pointer after calling this
/// function.
///
/// [`String`]: crate::string::String
/// [`dealloc`]: crate::alloc::GlobalAlloc::dealloc
/// [*currently allocated*]: crate::alloc::Allocator#currently-allocated-memory
/// [*fit*]: crate::alloc::Allocator#memory-fitting
///
/// # Examples
///
/// ```
/// #![feature(allocator_api, box_vec_non_null)]
///
/// use std::alloc::System;
///
/// use std::ptr::NonNull;
/// use std::mem;
///
/// let mut v = Vec::with_capacity_in(3, System);
/// v.push(1);
/// v.push(2);
/// v.push(3);
///
// FIXME Update this when vec_into_raw_parts is stabilized
/// // Prevent running `v`'s destructor so we are in complete control
/// // of the allocation.
/// let mut v = mem::ManuallyDrop::new(v);
///
/// // Pull out the various important pieces of information about `v`
/// let p = unsafe { NonNull::new_unchecked(v.as_mut_ptr()) };
/// let len = v.len();
/// let cap = v.capacity();
/// let alloc = v.allocator();
///
/// unsafe {
/// // Overwrite memory with 4, 5, 6
/// for i in 0..len {
/// p.add(i).write(4 + i);
/// }
///
/// // Put everything back together into a Vec
/// let rebuilt = Vec::from_parts_in(p, len, cap, alloc.clone());
/// assert_eq!(rebuilt, [4, 5, 6]);
/// }
/// ```
///
/// Using memory that was allocated elsewhere:
///
/// ```rust
/// #![feature(allocator_api, box_vec_non_null)]
///
/// use std::alloc::{AllocError, Allocator, Global, Layout};
///
/// fn main() {
/// let layout = Layout::array::<u32>(16).expect("overflow cannot happen");
///
/// let vec = unsafe {
/// let mem = match Global.allocate(layout) {
/// Ok(mem) => mem.cast::<u32>(),
/// Err(AllocError) => return,
/// };
///
/// mem.write(1_000_000);
///
/// Vec::from_parts_in(mem, 1, 16, Global)
/// };
///
/// assert_eq!(vec, &[1_000_000]);
/// assert_eq!(vec.capacity(), 16);
/// }
/// ```
#[inline]
#[unstable(feature = "allocator_api", reason = "new API", issue = "32838")]
// #[unstable(feature = "box_vec_non_null", issue = "130364")]
pub unsafe fn from_parts_in(ptr: NonNull<T>, length: usize, capacity: usize, alloc: A) -> Self {
unsafe { Vec { buf: RawVec::from_nonnull_in(ptr, capacity, alloc), len: length } }
}
/// Decomposes a `Vec<T>` into its raw components: `(pointer, length, capacity)`.
///
/// Returns the raw pointer to the underlying data, the length of
/// the vector (in elements), and the allocated capacity of the
/// data (in elements). These are the same arguments in the same
/// order as the arguments to [`from_raw_parts`].
///
/// After calling this function, the caller is responsible for the
/// memory previously managed by the `Vec`. The only way to do
/// this is to convert the raw pointer, length, and capacity back
/// into a `Vec` with the [`from_raw_parts`] function, allowing
/// the destructor to perform the cleanup.
///
/// [`from_raw_parts`]: Vec::from_raw_parts
///
/// # Examples
///
/// ```
/// #![feature(vec_into_raw_parts)]
/// let v: Vec<i32> = vec![-1, 0, 1];
///
/// let (ptr, len, cap) = v.into_raw_parts();
///
/// let rebuilt = unsafe {
/// // We can now make changes to the components, such as
/// // transmuting the raw pointer to a compatible type.
/// let ptr = ptr as *mut u32;
///
/// Vec::from_raw_parts(ptr, len, cap)
/// };
/// assert_eq!(rebuilt, [4294967295, 0, 1]);
/// ```
#[must_use = "losing the pointer will leak memory"]
#[unstable(feature = "vec_into_raw_parts", reason = "new API", issue = "65816")]
pub fn into_raw_parts(self) -> (*mut T, usize, usize) {
let mut me = ManuallyDrop::new(self);
(me.as_mut_ptr(), me.len(), me.capacity())
}
#[doc(alias = "into_non_null_parts")]
/// Decomposes a `Vec<T>` into its raw components: `(NonNull pointer, length, capacity)`.
///
/// Returns the `NonNull` pointer to the underlying data, the length of
/// the vector (in elements), and the allocated capacity of the
/// data (in elements). These are the same arguments in the same
/// order as the arguments to [`from_parts`].
///
/// After calling this function, the caller is responsible for the
/// memory previously managed by the `Vec`. The only way to do
/// this is to convert the `NonNull` pointer, length, and capacity back
/// into a `Vec` with the [`from_parts`] function, allowing
/// the destructor to perform the cleanup.
///
/// [`from_parts`]: Vec::from_parts
///
/// # Examples
///
/// ```
/// #![feature(vec_into_raw_parts, box_vec_non_null)]
///
/// let v: Vec<i32> = vec![-1, 0, 1];
///
/// let (ptr, len, cap) = v.into_parts();
///
/// let rebuilt = unsafe {
/// // We can now make changes to the components, such as
/// // transmuting the raw pointer to a compatible type.
/// let ptr = ptr.cast::<u32>();
///
/// Vec::from_parts(ptr, len, cap)
/// };
/// assert_eq!(rebuilt, [4294967295, 0, 1]);
/// ```
#[must_use = "losing the pointer will leak memory"]
#[unstable(feature = "box_vec_non_null", reason = "new API", issue = "130364")]
// #[unstable(feature = "vec_into_raw_parts", reason = "new API", issue = "65816")]
pub fn into_parts(self) -> (NonNull<T>, usize, usize) {
let (ptr, len, capacity) = self.into_raw_parts();
// SAFETY: A `Vec` always has a non-null pointer.
(unsafe { NonNull::new_unchecked(ptr) }, len, capacity)
}
/// Decomposes a `Vec<T>` into its raw components: `(pointer, length, capacity, allocator)`.
///
/// Returns the raw pointer to the underlying data, the length of the vector (in elements),
/// the allocated capacity of the data (in elements), and the allocator. These are the same
/// arguments in the same order as the arguments to [`from_raw_parts_in`].
///
/// After calling this function, the caller is responsible for the
/// memory previously managed by the `Vec`. The only way to do
/// this is to convert the raw pointer, length, and capacity back
/// into a `Vec` with the [`from_raw_parts_in`] function, allowing
/// the destructor to perform the cleanup.
///
/// [`from_raw_parts_in`]: Vec::from_raw_parts_in
///
/// # Examples
///
/// ```
/// #![feature(allocator_api, vec_into_raw_parts)]
///
/// use std::alloc::System;
///
/// let mut v: Vec<i32, System> = Vec::new_in(System);
/// v.push(-1);
/// v.push(0);
/// v.push(1);
///
/// let (ptr, len, cap, alloc) = v.into_raw_parts_with_alloc();
///
/// let rebuilt = unsafe {
/// // We can now make changes to the components, such as
/// // transmuting the raw pointer to a compatible type.
/// let ptr = ptr as *mut u32;
///
/// Vec::from_raw_parts_in(ptr, len, cap, alloc)
/// };
/// assert_eq!(rebuilt, [4294967295, 0, 1]);
/// ```
#[must_use = "losing the pointer will leak memory"]
#[unstable(feature = "allocator_api", issue = "32838")]
// #[unstable(feature = "vec_into_raw_parts", reason = "new API", issue = "65816")]
pub fn into_raw_parts_with_alloc(self) -> (*mut T, usize, usize, A) {
let mut me = ManuallyDrop::new(self);
let len = me.len();
let capacity = me.capacity();
let ptr = me.as_mut_ptr();
let alloc = unsafe { ptr::read(me.allocator()) };
(ptr, len, capacity, alloc)
}
#[doc(alias = "into_non_null_parts_with_alloc")]
/// Decomposes a `Vec<T>` into its raw components: `(NonNull pointer, length, capacity, allocator)`.
///
/// Returns the `NonNull` pointer to the underlying data, the length of the vector (in elements),
/// the allocated capacity of the data (in elements), and the allocator. These are the same
/// arguments in the same order as the arguments to [`from_parts_in`].
///
/// After calling this function, the caller is responsible for the
/// memory previously managed by the `Vec`. The only way to do
/// this is to convert the `NonNull` pointer, length, and capacity back
/// into a `Vec` with the [`from_parts_in`] function, allowing
/// the destructor to perform the cleanup.
///
/// [`from_parts_in`]: Vec::from_parts_in
///
/// # Examples
///
/// ```
/// #![feature(allocator_api, vec_into_raw_parts, box_vec_non_null)]
///
/// use std::alloc::System;
///
/// let mut v: Vec<i32, System> = Vec::new_in(System);
/// v.push(-1);
/// v.push(0);
/// v.push(1);
///
/// let (ptr, len, cap, alloc) = v.into_parts_with_alloc();
///
/// let rebuilt = unsafe {
/// // We can now make changes to the components, such as
/// // transmuting the raw pointer to a compatible type.
/// let ptr = ptr.cast::<u32>();
///
/// Vec::from_parts_in(ptr, len, cap, alloc)
/// };
/// assert_eq!(rebuilt, [4294967295, 0, 1]);
/// ```
#[must_use = "losing the pointer will leak memory"]
#[unstable(feature = "allocator_api", issue = "32838")]
// #[unstable(feature = "box_vec_non_null", reason = "new API", issue = "130364")]
// #[unstable(feature = "vec_into_raw_parts", reason = "new API", issue = "65816")]
pub fn into_parts_with_alloc(self) -> (NonNull<T>, usize, usize, A) {
let (ptr, len, capacity, alloc) = self.into_raw_parts_with_alloc();
// SAFETY: A `Vec` always has a non-null pointer.
(unsafe { NonNull::new_unchecked(ptr) }, len, capacity, alloc)
}
/// Returns the total number of elements the vector can hold without
/// reallocating.
///
/// # Examples
///
/// ```
/// let mut vec: Vec<i32> = Vec::with_capacity(10);
/// vec.push(42);
/// assert!(vec.capacity() >= 10);
/// ```
#[inline]
#[stable(feature = "rust1", since = "1.0.0")]
#[rustc_const_unstable(feature = "const_vec_string_slice", issue = "129041")]
pub const fn capacity(&self) -> usize {
self.buf.capacity()
}
/// Reserves capacity for at least `additional` more elements to be inserted
/// in the given `Vec<T>`. The collection may reserve more space to
/// speculatively avoid frequent reallocations. After calling `reserve`,
/// capacity will be greater than or equal to `self.len() + additional`.
/// Does nothing if capacity is already sufficient.
///
/// # Panics
///
/// Panics if the new capacity exceeds `isize::MAX` _bytes_.
///
/// # Examples
///
/// ```
/// let mut vec = vec![1];
/// vec.reserve(10);
/// assert!(vec.capacity() >= 11);
/// ```
#[cfg(not(no_global_oom_handling))]
#[stable(feature = "rust1", since = "1.0.0")]
#[track_caller]
pub fn reserve(&mut self, additional: usize) {
self.buf.reserve(self.len, additional);
}
/// Reserves the minimum capacity for at least `additional` more elements to
/// be inserted in the given `Vec<T>`. Unlike [`reserve`], this will not
/// deliberately over-allocate to speculatively avoid frequent allocations.
/// After calling `reserve_exact`, capacity will be greater than or equal to
/// `self.len() + additional`. Does nothing if the capacity is already
/// sufficient.
///
/// Note that the allocator may give the collection more space than it
/// requests. Therefore, capacity can not be relied upon to be precisely
/// minimal. Prefer [`reserve`] if future insertions are expected.
///
/// [`reserve`]: Vec::reserve
///
/// # Panics
///
/// Panics if the new capacity exceeds `isize::MAX` _bytes_.
///
/// # Examples
///
/// ```
/// let mut vec = vec![1];
/// vec.reserve_exact(10);
/// assert!(vec.capacity() >= 11);
/// ```
#[cfg(not(no_global_oom_handling))]
#[stable(feature = "rust1", since = "1.0.0")]
#[track_caller]
pub fn reserve_exact(&mut self, additional: usize) {
self.buf.reserve_exact(self.len, additional);
}
/// Tries to reserve capacity for at least `additional` more elements to be inserted
/// in the given `Vec<T>`. The collection may reserve more space to speculatively avoid
/// frequent reallocations. After calling `try_reserve`, capacity will be
/// greater than or equal to `self.len() + additional` if it returns
/// `Ok(())`. Does nothing if capacity is already sufficient. This method
/// preserves the contents even if an error occurs.
///
/// # Errors
///
/// If the capacity overflows, or the allocator reports a failure, then an error
/// is returned.
///
/// # Examples
///
/// ```
/// use std::collections::TryReserveError;
///
/// fn process_data(data: &[u32]) -> Result<Vec<u32>, TryReserveError> {
/// let mut output = Vec::new();
///
/// // Pre-reserve the memory, exiting if we can't
/// output.try_reserve(data.len())?;
///
/// // Now we know this can't OOM in the middle of our complex work
/// output.extend(data.iter().map(|&val| {
/// val * 2 + 5 // very complicated
/// }));
///
/// Ok(output)
/// }
/// # process_data(&[1, 2, 3]).expect("why is the test harness OOMing on 12 bytes?");
/// ```
#[stable(feature = "try_reserve", since = "1.57.0")]
pub fn try_reserve(&mut self, additional: usize) -> Result<(), TryReserveError> {
self.buf.try_reserve(self.len, additional)
}
/// Tries to reserve the minimum capacity for at least `additional`
/// elements to be inserted in the given `Vec<T>`. Unlike [`try_reserve`],
/// this will not deliberately over-allocate to speculatively avoid frequent
/// allocations. After calling `try_reserve_exact`, capacity will be greater
/// than or equal to `self.len() + additional` if it returns `Ok(())`.
/// Does nothing if the capacity is already sufficient.
///
/// Note that the allocator may give the collection more space than it
/// requests. Therefore, capacity can not be relied upon to be precisely
/// minimal. Prefer [`try_reserve`] if future insertions are expected.
///
/// [`try_reserve`]: Vec::try_reserve
///
/// # Errors
///
/// If the capacity overflows, or the allocator reports a failure, then an error
/// is returned.
///
/// # Examples
///
/// ```
/// use std::collections::TryReserveError;
///
/// fn process_data(data: &[u32]) -> Result<Vec<u32>, TryReserveError> {
/// let mut output = Vec::new();
///
/// // Pre-reserve the memory, exiting if we can't
/// output.try_reserve_exact(data.len())?;
///
/// // Now we know this can't OOM in the middle of our complex work
/// output.extend(data.iter().map(|&val| {
/// val * 2 + 5 // very complicated
/// }));
///
/// Ok(output)
/// }
/// # process_data(&[1, 2, 3]).expect("why is the test harness OOMing on 12 bytes?");
/// ```
#[stable(feature = "try_reserve", since = "1.57.0")]
pub fn try_reserve_exact(&mut self, additional: usize) -> Result<(), TryReserveError> {
self.buf.try_reserve_exact(self.len, additional)
}
/// Shrinks the capacity of the vector as much as possible.
///
/// The behavior of this method depends on the allocator, which may either shrink the vector
/// in-place or reallocate. The resulting vector might still have some excess capacity, just as
/// is the case for [`with_capacity`]. See [`Allocator::shrink`] for more details.
///
/// [`with_capacity`]: Vec::with_capacity
///
/// # Examples
///
/// ```
/// let mut vec = Vec::with_capacity(10);
/// vec.extend([1, 2, 3]);
/// assert!(vec.capacity() >= 10);
/// vec.shrink_to_fit();
/// assert!(vec.capacity() >= 3);
/// ```
#[cfg(not(no_global_oom_handling))]
#[stable(feature = "rust1", since = "1.0.0")]
#[track_caller]
#[inline]
pub fn shrink_to_fit(&mut self) {
// The capacity is never less than the length, and there's nothing to do when
// they are equal, so we can avoid the panic case in `RawVec::shrink_to_fit`
// by only calling it with a greater capacity.
if self.capacity() > self.len {
self.buf.shrink_to_fit(self.len);
}
}
/// Shrinks the capacity of the vector with a lower bound.
///
/// The capacity will remain at least as large as both the length
/// and the supplied value.
///
/// If the current capacity is less than the lower limit, this is a no-op.
///
/// # Examples
///
/// ```
/// let mut vec = Vec::with_capacity(10);
/// vec.extend([1, 2, 3]);
/// assert!(vec.capacity() >= 10);
/// vec.shrink_to(4);
/// assert!(vec.capacity() >= 4);
/// vec.shrink_to(0);
/// assert!(vec.capacity() >= 3);
/// ```
#[cfg(not(no_global_oom_handling))]
#[stable(feature = "shrink_to", since = "1.56.0")]
#[track_caller]
pub fn shrink_to(&mut self, min_capacity: usize) {
if self.capacity() > min_capacity {
self.buf.shrink_to_fit(cmp::max(self.len, min_capacity));
}
}
/// Converts the vector into [`Box<[T]>`][owned slice].
///
/// Before doing the conversion, this method discards excess capacity like [`shrink_to_fit`].
///
/// [owned slice]: Box
/// [`shrink_to_fit`]: Vec::shrink_to_fit
///
/// # Examples
///
/// ```
/// let v = vec![1, 2, 3];
///
/// let slice = v.into_boxed_slice();
/// ```
///
/// Any excess capacity is removed:
///
/// ```
/// let mut vec = Vec::with_capacity(10);
/// vec.extend([1, 2, 3]);
///
/// assert!(vec.capacity() >= 10);
/// let slice = vec.into_boxed_slice();
/// assert_eq!(slice.into_vec().capacity(), 3);
/// ```
#[cfg(not(no_global_oom_handling))]
#[stable(feature = "rust1", since = "1.0.0")]
#[track_caller]
pub fn into_boxed_slice(mut self) -> Box<[T], A> {
unsafe {
self.shrink_to_fit();
let me = ManuallyDrop::new(self);
let buf = ptr::read(&me.buf);
let len = me.len();
buf.into_box(len).assume_init()
}
}
/// Shortens the vector, keeping the first `len` elements and dropping
/// the rest.
///
/// If `len` is greater or equal to the vector's current length, this has
/// no effect.
///
/// The [`drain`] method can emulate `truncate`, but causes the excess
/// elements to be returned instead of dropped.
///
/// Note that this method has no effect on the allocated capacity
/// of the vector.
///
/// # Examples
///
/// Truncating a five element vector to two elements:
///
/// ```
/// let mut vec = vec![1, 2, 3, 4, 5];
/// vec.truncate(2);
/// assert_eq!(vec, [1, 2]);
/// ```
///
/// No truncation occurs when `len` is greater than the vector's current
/// length:
///
/// ```
/// let mut vec = vec![1, 2, 3];
/// vec.truncate(8);
/// assert_eq!(vec, [1, 2, 3]);
/// ```
///
/// Truncating when `len == 0` is equivalent to calling the [`clear`]
/// method.
///
/// ```
/// let mut vec = vec![1, 2, 3];
/// vec.truncate(0);
/// assert_eq!(vec, []);
/// ```
///
/// [`clear`]: Vec::clear
/// [`drain`]: Vec::drain
#[stable(feature = "rust1", since = "1.0.0")]
pub fn truncate(&mut self, len: usize) {
// This is safe because:
//
// * the slice passed to `drop_in_place` is valid; the `len > self.len`
// case avoids creating an invalid slice, and
// * the `len` of the vector is shrunk before calling `drop_in_place`,
// such that no value will be dropped twice in case `drop_in_place`
// were to panic once (if it panics twice, the program aborts).
unsafe {
// Note: It's intentional that this is `>` and not `>=`.
// Changing it to `>=` has negative performance
// implications in some cases. See #78884 for more.
if len > self.len {
return;
}
let remaining_len = self.len - len;
let s = ptr::slice_from_raw_parts_mut(self.as_mut_ptr().add(len), remaining_len);
self.len = len;
ptr::drop_in_place(s);
}
}
/// Extracts a slice containing the entire vector.
///
/// Equivalent to `&s[..]`.
///
/// # Examples
///
/// ```
/// use std::io::{self, Write};
/// let buffer = vec![1, 2, 3, 5, 8];
/// io::sink().write(buffer.as_slice()).unwrap();
/// ```
#[inline]
#[stable(feature = "vec_as_slice", since = "1.7.0")]
#[cfg_attr(not(test), rustc_diagnostic_item = "vec_as_slice")]
#[rustc_const_unstable(feature = "const_vec_string_slice", issue = "129041")]
pub const fn as_slice(&self) -> &[T] {
// SAFETY: `slice::from_raw_parts` requires pointee is a contiguous, aligned buffer of size
// `len` containing properly-initialized `T`s. Data must not be mutated for the returned
// lifetime. Further, `len * mem::size_of::<T>` <= `ISIZE::MAX`, and allocation does not
// "wrap" through overflowing memory addresses.
//
// * Vec API guarantees that self.buf:
// * contains only properly-initialized items within 0..len
// * is aligned, contiguous, and valid for `len` reads
// * obeys size and address-wrapping constraints
//
// * We only construct `&mut` references to `self.buf` through `&mut self` methods; borrow-
// check ensures that it is not possible to mutably alias `self.buf` within the
// returned lifetime.
unsafe { slice::from_raw_parts(self.as_ptr(), self.len) }
}
/// Extracts a mutable slice of the entire vector.
///
/// Equivalent to `&mut s[..]`.
///
/// # Examples
///
/// ```
/// use std::io::{self, Read};
/// let mut buffer = vec![0; 3];
/// io::repeat(0b101).read_exact(buffer.as_mut_slice()).unwrap();
/// ```
#[inline]
#[stable(feature = "vec_as_slice", since = "1.7.0")]
#[cfg_attr(not(test), rustc_diagnostic_item = "vec_as_mut_slice")]
#[rustc_const_unstable(feature = "const_vec_string_slice", issue = "129041")]
pub const fn as_mut_slice(&mut self) -> &mut [T] {
// SAFETY: `slice::from_raw_parts_mut` requires pointee is a contiguous, aligned buffer of
// size `len` containing properly-initialized `T`s. Data must not be accessed through any
// other pointer for the returned lifetime. Further, `len * mem::size_of::<T>` <=
// `ISIZE::MAX` and allocation does not "wrap" through overflowing memory addresses.
//
// * Vec API guarantees that self.buf:
// * contains only properly-initialized items within 0..len
// * is aligned, contiguous, and valid for `len` reads
// * obeys size and address-wrapping constraints
//
// * We only construct references to `self.buf` through `&self` and `&mut self` methods;
// borrow-check ensures that it is not possible to construct a reference to `self.buf`
// within the returned lifetime.
unsafe { slice::from_raw_parts_mut(self.as_mut_ptr(), self.len) }
}
/// Returns a raw pointer to the vector's buffer, or a dangling raw pointer
/// valid for zero sized reads if the vector didn't allocate.
///
/// The caller must ensure that the vector outlives the pointer this
/// function returns, or else it will end up dangling.
/// Modifying the vector may cause its buffer to be reallocated,
/// which would also make any pointers to it invalid.
///
/// The caller must also ensure that the memory the pointer (non-transitively) points to
/// is never written to (except inside an `UnsafeCell`) using this pointer or any pointer
/// derived from it. If you need to mutate the contents of the slice, use [`as_mut_ptr`].
///
/// This method guarantees that for the purpose of the aliasing model, this method
/// does not materialize a reference to the underlying slice, and thus the returned pointer
/// will remain valid when mixed with other calls to [`as_ptr`], [`as_mut_ptr`],
/// and [`as_non_null`].
/// Note that calling other methods that materialize mutable references to the slice,
/// or mutable references to specific elements you are planning on accessing through this pointer,
/// as well as writing to those elements, may still invalidate this pointer.
/// See the second example below for how this guarantee can be used.
///
///
/// # Examples
///
/// ```
/// let x = vec![1, 2, 4];
/// let x_ptr = x.as_ptr();
///
/// unsafe {
/// for i in 0..x.len() {
/// assert_eq!(*x_ptr.add(i), 1 << i);
/// }
/// }
/// ```
///
/// Due to the aliasing guarantee, the following code is legal:
///
/// ```rust
/// unsafe {
/// let mut v = vec![0, 1, 2];
/// let ptr1 = v.as_ptr();
/// let _ = ptr1.read();
/// let ptr2 = v.as_mut_ptr().offset(2);
/// ptr2.write(2);
/// // Notably, the write to `ptr2` did *not* invalidate `ptr1`
/// // because it mutated a different element:
/// let _ = ptr1.read();
/// }
/// ```
///
/// [`as_mut_ptr`]: Vec::as_mut_ptr
/// [`as_ptr`]: Vec::as_ptr
/// [`as_non_null`]: Vec::as_non_null
#[stable(feature = "vec_as_ptr", since = "1.37.0")]
#[rustc_const_unstable(feature = "const_vec_string_slice", issue = "129041")]
#[rustc_never_returns_null_ptr]
#[cfg_attr(not(bootstrap), rustc_as_ptr)]
#[inline]
pub const fn as_ptr(&self) -> *const T {
// We shadow the slice method of the same name to avoid going through
// `deref`, which creates an intermediate reference.
self.buf.ptr()
}
/// Returns a raw mutable pointer to the vector's buffer, or a dangling
/// raw pointer valid for zero sized reads if the vector didn't allocate.
///
/// The caller must ensure that the vector outlives the pointer this
/// function returns, or else it will end up dangling.
/// Modifying the vector may cause its buffer to be reallocated,
/// which would also make any pointers to it invalid.
///
/// This method guarantees that for the purpose of the aliasing model, this method
/// does not materialize a reference to the underlying slice, and thus the returned pointer
/// will remain valid when mixed with other calls to [`as_ptr`], [`as_mut_ptr`],
/// and [`as_non_null`].
/// Note that calling other methods that materialize references to the slice,
/// or references to specific elements you are planning on accessing through this pointer,
/// may still invalidate this pointer.
/// See the second example below for how this guarantee can be used.
///
/// # Examples
///
/// ```
/// // Allocate vector big enough for 4 elements.
/// let size = 4;
/// let mut x: Vec<i32> = Vec::with_capacity(size);
/// let x_ptr = x.as_mut_ptr();
///
/// // Initialize elements via raw pointer writes, then set length.
/// unsafe {
/// for i in 0..size {
/// *x_ptr.add(i) = i as i32;
/// }
/// x.set_len(size);
/// }
/// assert_eq!(&*x, &[0, 1, 2, 3]);
/// ```
///
/// Due to the aliasing guarantee, the following code is legal:
///
/// ```rust
/// unsafe {
/// let mut v = vec![0];
/// let ptr1 = v.as_mut_ptr();
/// ptr1.write(1);
/// let ptr2 = v.as_mut_ptr();
/// ptr2.write(2);
/// // Notably, the write to `ptr2` did *not* invalidate `ptr1`:
/// ptr1.write(3);
/// }
/// ```
///
/// [`as_mut_ptr`]: Vec::as_mut_ptr
/// [`as_ptr`]: Vec::as_ptr
/// [`as_non_null`]: Vec::as_non_null
#[stable(feature = "vec_as_ptr", since = "1.37.0")]
#[rustc_const_unstable(feature = "const_vec_string_slice", issue = "129041")]
#[rustc_never_returns_null_ptr]
#[cfg_attr(not(bootstrap), rustc_as_ptr)]
#[inline]
pub const fn as_mut_ptr(&mut self) -> *mut T {
// We shadow the slice method of the same name to avoid going through
// `deref_mut`, which creates an intermediate reference.
self.buf.ptr()
}
/// Returns a `NonNull` pointer to the vector's buffer, or a dangling
/// `NonNull` pointer valid for zero sized reads if the vector didn't allocate.
///
/// The caller must ensure that the vector outlives the pointer this
/// function returns, or else it will end up dangling.
/// Modifying the vector may cause its buffer to be reallocated,
/// which would also make any pointers to it invalid.
///
/// This method guarantees that for the purpose of the aliasing model, this method
/// does not materialize a reference to the underlying slice, and thus the returned pointer
/// will remain valid when mixed with other calls to [`as_ptr`], [`as_mut_ptr`],
/// and [`as_non_null`].
/// Note that calling other methods that materialize references to the slice,
/// or references to specific elements you are planning on accessing through this pointer,
/// may still invalidate this pointer.
/// See the second example below for how this guarantee can be used.
///
/// # Examples
///
/// ```
/// #![feature(box_vec_non_null)]
///
/// // Allocate vector big enough for 4 elements.
/// let size = 4;
/// let mut x: Vec<i32> = Vec::with_capacity(size);
/// let x_ptr = x.as_non_null();
///
/// // Initialize elements via raw pointer writes, then set length.
/// unsafe {
/// for i in 0..size {
/// x_ptr.add(i).write(i as i32);
/// }
/// x.set_len(size);
/// }
/// assert_eq!(&*x, &[0, 1, 2, 3]);
/// ```
///
/// Due to the aliasing guarantee, the following code is legal:
///
/// ```rust
/// #![feature(box_vec_non_null)]
///
/// unsafe {
/// let mut v = vec![0];
/// let ptr1 = v.as_non_null();
/// ptr1.write(1);
/// let ptr2 = v.as_non_null();
/// ptr2.write(2);
/// // Notably, the write to `ptr2` did *not* invalidate `ptr1`:
/// ptr1.write(3);
/// }
/// ```
///
/// [`as_mut_ptr`]: Vec::as_mut_ptr
/// [`as_ptr`]: Vec::as_ptr
/// [`as_non_null`]: Vec::as_non_null
#[unstable(feature = "box_vec_non_null", reason = "new API", issue = "130364")]
#[inline]
pub fn as_non_null(&mut self) -> NonNull<T> {
// SAFETY: A `Vec` always has a non-null pointer.
unsafe { NonNull::new_unchecked(self.as_mut_ptr()) }
}
/// Returns a reference to the underlying allocator.
#[unstable(feature = "allocator_api", issue = "32838")]
#[inline]
pub fn allocator(&self) -> &A {
self.buf.allocator()
}
/// Forces the length of the vector to `new_len`.
///
/// This is a low-level operation that maintains none of the normal
/// invariants of the type. Normally changing the length of a vector
/// is done using one of the safe operations instead, such as
/// [`truncate`], [`resize`], [`extend`], or [`clear`].
///
/// [`truncate`]: Vec::truncate
/// [`resize`]: Vec::resize
/// [`extend`]: Extend::extend
/// [`clear`]: Vec::clear
///
/// # Safety
///
/// - `new_len` must be less than or equal to [`capacity()`].
/// - The elements at `old_len..new_len` must be initialized.
///
/// [`capacity()`]: Vec::capacity
///
/// # Examples
///
/// This method can be useful for situations in which the vector
/// is serving as a buffer for other code, particularly over FFI:
///
/// ```no_run
/// # #![allow(dead_code)]
/// # // This is just a minimal skeleton for the doc example;
/// # // don't use this as a starting point for a real library.
/// # pub struct StreamWrapper { strm: *mut std::ffi::c_void }
/// # const Z_OK: i32 = 0;
/// # extern "C" {
/// # fn deflateGetDictionary(
/// # strm: *mut std::ffi::c_void,
/// # dictionary: *mut u8,
/// # dictLength: *mut usize,
/// # ) -> i32;
/// # }
/// # impl StreamWrapper {
/// pub fn get_dictionary(&self) -> Option<Vec<u8>> {
/// // Per the FFI method's docs, "32768 bytes is always enough".
/// let mut dict = Vec::with_capacity(32_768);
/// let mut dict_length = 0;
/// // SAFETY: When `deflateGetDictionary` returns `Z_OK`, it holds that:
/// // 1. `dict_length` elements were initialized.
/// // 2. `dict_length` <= the capacity (32_768)
/// // which makes `set_len` safe to call.
/// unsafe {
/// // Make the FFI call...
/// let r = deflateGetDictionary(self.strm, dict.as_mut_ptr(), &mut dict_length);
/// if r == Z_OK {
/// // ...and update the length to what was initialized.
/// dict.set_len(dict_length);
/// Some(dict)
/// } else {
/// None
/// }
/// }
/// }
/// # }
/// ```
///
/// While the following example is sound, there is a memory leak since
/// the inner vectors were not freed prior to the `set_len` call:
///
/// ```
/// let mut vec = vec![vec![1, 0, 0],
/// vec![0, 1, 0],
/// vec![0, 0, 1]];
/// // SAFETY:
/// // 1. `old_len..0` is empty so no elements need to be initialized.
/// // 2. `0 <= capacity` always holds whatever `capacity` is.
/// unsafe {
/// vec.set_len(0);
/// # // FIXME(https://github.com/rust-lang/miri/issues/3670):
/// # // use -Zmiri-disable-leak-check instead of unleaking in tests meant to leak.
/// # vec.set_len(3);
/// }
/// ```
///
/// Normally, here, one would use [`clear`] instead to correctly drop
/// the contents and thus not leak memory.
#[inline]
#[stable(feature = "rust1", since = "1.0.0")]
pub unsafe fn set_len(&mut self, new_len: usize) {
debug_assert!(new_len <= self.capacity());
self.len = new_len;
}
/// Removes an element from the vector and returns it.
///
/// The removed element is replaced by the last element of the vector.
///
/// This does not preserve ordering of the remaining elements, but is *O*(1).
/// If you need to preserve the element order, use [`remove`] instead.
///
/// [`remove`]: Vec::remove
///
/// # Panics
///
/// Panics if `index` is out of bounds.
///
/// # Examples
///
/// ```
/// let mut v = vec!["foo", "bar", "baz", "qux"];
///
/// assert_eq!(v.swap_remove(1), "bar");
/// assert_eq!(v, ["foo", "qux", "baz"]);
///
/// assert_eq!(v.swap_remove(0), "foo");
/// assert_eq!(v, ["baz", "qux"]);
/// ```
#[inline]
#[stable(feature = "rust1", since = "1.0.0")]
pub fn swap_remove(&mut self, index: usize) -> T {
#[cold]
#[cfg_attr(not(feature = "panic_immediate_abort"), inline(never))]
#[track_caller]
#[optimize(size)]
fn assert_failed(index: usize, len: usize) -> ! {
panic!("swap_remove index (is {index}) should be < len (is {len})");
}
let len = self.len();
if index >= len {
assert_failed(index, len);
}
unsafe {
// We replace self[index] with the last element. Note that if the
// bounds check above succeeds there must be a last element (which
// can be self[index] itself).
let value = ptr::read(self.as_ptr().add(index));
let base_ptr = self.as_mut_ptr();
ptr::copy(base_ptr.add(len - 1), base_ptr.add(index), 1);
self.set_len(len - 1);
value
}
}
/// Inserts an element at position `index` within the vector, shifting all
/// elements after it to the right.
///
/// # Panics
///
/// Panics if `index > len`.
///
/// # Examples
///
/// ```
/// let mut vec = vec![1, 2, 3];
/// vec.insert(1, 4);
/// assert_eq!(vec, [1, 4, 2, 3]);
/// vec.insert(4, 5);
/// assert_eq!(vec, [1, 4, 2, 3, 5]);
/// ```
///
/// # Time complexity
///
/// Takes *O*([`Vec::len`]) time. All items after the insertion index must be
/// shifted to the right. In the worst case, all elements are shifted when
/// the insertion index is 0.
#[cfg(not(no_global_oom_handling))]
#[stable(feature = "rust1", since = "1.0.0")]
#[track_caller]
pub fn insert(&mut self, index: usize, element: T) {
#[cold]
#[cfg_attr(not(feature = "panic_immediate_abort"), inline(never))]
#[track_caller]
#[optimize(size)]
fn assert_failed(index: usize, len: usize) -> ! {
panic!("insertion index (is {index}) should be <= len (is {len})");
}
let len = self.len();
if index > len {
assert_failed(index, len);
}
// space for the new element
if len == self.buf.capacity() {
self.buf.grow_one();
}
unsafe {
// infallible
// The spot to put the new value
{
let p = self.as_mut_ptr().add(index);
if index < len {
// Shift everything over to make space. (Duplicating the
// `index`th element into two consecutive places.)
ptr::copy(p, p.add(1), len - index);
}
// Write it in, overwriting the first copy of the `index`th
// element.
ptr::write(p, element);
}
self.set_len(len + 1);
}
}
/// Removes and returns the element at position `index` within the vector,
/// shifting all elements after it to the left.
///
/// Note: Because this shifts over the remaining elements, it has a
/// worst-case performance of *O*(*n*). If you don't need the order of elements
/// to be preserved, use [`swap_remove`] instead. If you'd like to remove
/// elements from the beginning of the `Vec`, consider using
/// [`VecDeque::pop_front`] instead.
///
/// [`swap_remove`]: Vec::swap_remove
/// [`VecDeque::pop_front`]: crate::collections::VecDeque::pop_front
///
/// # Panics
///
/// Panics if `index` is out of bounds.
///
/// # Examples
///
/// ```
/// let mut v = vec![1, 2, 3];
/// assert_eq!(v.remove(1), 2);
/// assert_eq!(v, [1, 3]);
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
#[track_caller]
#[rustc_confusables("delete", "take")]
pub fn remove(&mut self, index: usize) -> T {
#[cold]
#[cfg_attr(not(feature = "panic_immediate_abort"), inline(never))]
#[track_caller]
#[optimize(size)]
fn assert_failed(index: usize, len: usize) -> ! {
panic!("removal index (is {index}) should be < len (is {len})");
}
let len = self.len();
if index >= len {
assert_failed(index, len);
}
unsafe {
// infallible
let ret;
{
// the place we are taking from.
let ptr = self.as_mut_ptr().add(index);
// copy it out, unsafely having a copy of the value on
// the stack and in the vector at the same time.
ret = ptr::read(ptr);
// Shift everything down to fill in that spot.
ptr::copy(ptr.add(1), ptr, len - index - 1);
}
self.set_len(len - 1);
ret
}
}
/// Retains only the elements specified by the predicate.
///
/// In other words, remove all elements `e` for which `f(&e)` returns `false`.
/// This method operates in place, visiting each element exactly once in the
/// original order, and preserves the order of the retained elements.
///
/// # Examples
///
/// ```
/// let mut vec = vec![1, 2, 3, 4];
/// vec.retain(|&x| x % 2 == 0);
/// assert_eq!(vec, [2, 4]);
/// ```
///
/// Because the elements are visited exactly once in the original order,
/// external state may be used to decide which elements to keep.
///
/// ```
/// let mut vec = vec![1, 2, 3, 4, 5];
/// let keep = [false, true, true, false, true];
/// let mut iter = keep.iter();
/// vec.retain(|_| *iter.next().unwrap());
/// assert_eq!(vec, [2, 3, 5]);
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
pub fn retain<F>(&mut self, mut f: F)
where
F: FnMut(&T) -> bool,
{
self.retain_mut(|elem| f(elem));
}
/// Retains only the elements specified by the predicate, passing a mutable reference to it.
///
/// In other words, remove all elements `e` such that `f(&mut e)` returns `false`.
/// This method operates in place, visiting each element exactly once in the
/// original order, and preserves the order of the retained elements.
///
/// # Examples
///
/// ```
/// let mut vec = vec![1, 2, 3, 4];
/// vec.retain_mut(|x| if *x <= 3 {
/// *x += 1;
/// true
/// } else {
/// false
/// });
/// assert_eq!(vec, [2, 3, 4]);
/// ```
#[stable(feature = "vec_retain_mut", since = "1.61.0")]
pub fn retain_mut<F>(&mut self, mut f: F)
where
F: FnMut(&mut T) -> bool,
{
let original_len = self.len();
if original_len == 0 {
// Empty case: explicit return allows better optimization, vs letting compiler infer it
return;
}
// Avoid double drop if the drop guard is not executed,
// since we may make some holes during the process.
unsafe { self.set_len(0) };
// Vec: [Kept, Kept, Hole, Hole, Hole, Hole, Unchecked, Unchecked]
// |<- processed len ->| ^- next to check
// |<- deleted cnt ->|
// |<- original_len ->|
// Kept: Elements which predicate returns true on.
// Hole: Moved or dropped element slot.
// Unchecked: Unchecked valid elements.
//
// This drop guard will be invoked when predicate or `drop` of element panicked.
// It shifts unchecked elements to cover holes and `set_len` to the correct length.
// In cases when predicate and `drop` never panick, it will be optimized out.
struct BackshiftOnDrop<'a, T, A: Allocator> {
v: &'a mut Vec<T, A>,
processed_len: usize,
deleted_cnt: usize,
original_len: usize,
}
impl<T, A: Allocator> Drop for BackshiftOnDrop<'_, T, A> {
fn drop(&mut self) {
if self.deleted_cnt > 0 {
// SAFETY: Trailing unchecked items must be valid since we never touch them.
unsafe {
ptr::copy(
self.v.as_ptr().add(self.processed_len),
self.v.as_mut_ptr().add(self.processed_len - self.deleted_cnt),
self.original_len - self.processed_len,
);
}
}
// SAFETY: After filling holes, all items are in contiguous memory.
unsafe {
self.v.set_len(self.original_len - self.deleted_cnt);
}
}
}
let mut g = BackshiftOnDrop { v: self, processed_len: 0, deleted_cnt: 0, original_len };
fn process_loop<F, T, A: Allocator, const DELETED: bool>(
original_len: usize,
f: &mut F,
g: &mut BackshiftOnDrop<'_, T, A>,
) where
F: FnMut(&mut T) -> bool,
{
while g.processed_len != original_len {
// SAFETY: Unchecked element must be valid.
let cur = unsafe { &mut *g.v.as_mut_ptr().add(g.processed_len) };
if !f(cur) {
// Advance early to avoid double drop if `drop_in_place` panicked.
g.processed_len += 1;
g.deleted_cnt += 1;
// SAFETY: We never touch this element again after dropped.
unsafe { ptr::drop_in_place(cur) };
// We already advanced the counter.
if DELETED {
continue;
} else {
break;
}
}
if DELETED {
// SAFETY: `deleted_cnt` > 0, so the hole slot must not overlap with current element.
// We use copy for move, and never touch this element again.
unsafe {
let hole_slot = g.v.as_mut_ptr().add(g.processed_len - g.deleted_cnt);
ptr::copy_nonoverlapping(cur, hole_slot, 1);
}
}
g.processed_len += 1;
}
}
// Stage 1: Nothing was deleted.
process_loop::<F, T, A, false>(original_len, &mut f, &mut g);
// Stage 2: Some elements were deleted.
process_loop::<F, T, A, true>(original_len, &mut f, &mut g);
// All item are processed. This can be optimized to `set_len` by LLVM.
drop(g);
}
/// Removes all but the first of consecutive elements in the vector that resolve to the same
/// key.
///
/// If the vector is sorted, this removes all duplicates.
///
/// # Examples
///
/// ```
/// let mut vec = vec![10, 20, 21, 30, 20];
///
/// vec.dedup_by_key(|i| *i / 10);
///
/// assert_eq!(vec, [10, 20, 30, 20]);
/// ```
#[stable(feature = "dedup_by", since = "1.16.0")]
#[inline]
pub fn dedup_by_key<F, K>(&mut self, mut key: F)
where
F: FnMut(&mut T) -> K,
K: PartialEq,
{
self.dedup_by(|a, b| key(a) == key(b))
}
/// Removes all but the first of consecutive elements in the vector satisfying a given equality
/// relation.
///
/// The `same_bucket` function is passed references to two elements from the vector and
/// must determine if the elements compare equal. The elements are passed in opposite order
/// from their order in the slice, so if `same_bucket(a, b)` returns `true`, `a` is removed.
///
/// If the vector is sorted, this removes all duplicates.
///
/// # Examples
///
/// ```
/// let mut vec = vec!["foo", "bar", "Bar", "baz", "bar"];
///
/// vec.dedup_by(|a, b| a.eq_ignore_ascii_case(b));
///
/// assert_eq!(vec, ["foo", "bar", "baz", "bar"]);
/// ```
#[stable(feature = "dedup_by", since = "1.16.0")]
pub fn dedup_by<F>(&mut self, mut same_bucket: F)
where
F: FnMut(&mut T, &mut T) -> bool,
{
let len = self.len();
if len <= 1 {
return;
}
// Check if we ever want to remove anything.
// This allows to use copy_non_overlapping in next cycle.
// And avoids any memory writes if we don't need to remove anything.
let mut first_duplicate_idx: usize = 1;
let start = self.as_mut_ptr();
while first_duplicate_idx != len {
let found_duplicate = unsafe {
// SAFETY: first_duplicate always in range [1..len)
// Note that we start iteration from 1 so we never overflow.
let prev = start.add(first_duplicate_idx.wrapping_sub(1));
let current = start.add(first_duplicate_idx);
// We explicitly say in docs that references are reversed.
same_bucket(&mut *current, &mut *prev)
};
if found_duplicate {
break;
}
first_duplicate_idx += 1;
}
// Don't need to remove anything.
// We cannot get bigger than len.
if first_duplicate_idx == len {
return;
}
/* INVARIANT: vec.len() > read > write > write-1 >= 0 */
struct FillGapOnDrop<'a, T, A: core::alloc::Allocator> {
/* Offset of the element we want to check if it is duplicate */
read: usize,
/* Offset of the place where we want to place the non-duplicate
* when we find it. */
write: usize,
/* The Vec that would need correction if `same_bucket` panicked */
vec: &'a mut Vec<T, A>,
}
impl<'a, T, A: core::alloc::Allocator> Drop for FillGapOnDrop<'a, T, A> {
fn drop(&mut self) {
/* This code gets executed when `same_bucket` panics */
/* SAFETY: invariant guarantees that `read - write`
* and `len - read` never overflow and that the copy is always
* in-bounds. */
unsafe {
let ptr = self.vec.as_mut_ptr();
let len = self.vec.len();
/* How many items were left when `same_bucket` panicked.
* Basically vec[read..].len() */
let items_left = len.wrapping_sub(self.read);
/* Pointer to first item in vec[write..write+items_left] slice */
let dropped_ptr = ptr.add(self.write);
/* Pointer to first item in vec[read..] slice */
let valid_ptr = ptr.add(self.read);
/* Copy `vec[read..]` to `vec[write..write+items_left]`.
* The slices can overlap, so `copy_nonoverlapping` cannot be used */
ptr::copy(valid_ptr, dropped_ptr, items_left);
/* How many items have been already dropped
* Basically vec[read..write].len() */
let dropped = self.read.wrapping_sub(self.write);
self.vec.set_len(len - dropped);
}
}
}
/* Drop items while going through Vec, it should be more efficient than
* doing slice partition_dedup + truncate */
// Construct gap first and then drop item to avoid memory corruption if `T::drop` panics.
let mut gap =
FillGapOnDrop { read: first_duplicate_idx + 1, write: first_duplicate_idx, vec: self };
unsafe {
// SAFETY: we checked that first_duplicate_idx in bounds before.
// If drop panics, `gap` would remove this item without drop.
ptr::drop_in_place(start.add(first_duplicate_idx));
}
/* SAFETY: Because of the invariant, read_ptr, prev_ptr and write_ptr
* are always in-bounds and read_ptr never aliases prev_ptr */
unsafe {
while gap.read < len {
let read_ptr = start.add(gap.read);
let prev_ptr = start.add(gap.write.wrapping_sub(1));
// We explicitly say in docs that references are reversed.
let found_duplicate = same_bucket(&mut *read_ptr, &mut *prev_ptr);
if found_duplicate {
// Increase `gap.read` now since the drop may panic.
gap.read += 1;
/* We have found duplicate, drop it in-place */
ptr::drop_in_place(read_ptr);
} else {
let write_ptr = start.add(gap.write);
/* read_ptr cannot be equal to write_ptr because at this point
* we guaranteed to skip at least one element (before loop starts).
*/
ptr::copy_nonoverlapping(read_ptr, write_ptr, 1);
/* We have filled that place, so go further */
gap.write += 1;
gap.read += 1;
}
}
/* Technically we could let `gap` clean up with its Drop, but
* when `same_bucket` is guaranteed to not panic, this bloats a little
* the codegen, so we just do it manually */
gap.vec.set_len(gap.write);
mem::forget(gap);
}
}
/// Appends an element to the back of a collection.
///
/// # Panics
///
/// Panics if the new capacity exceeds `isize::MAX` _bytes_.
///
/// # Examples
///
/// ```
/// let mut vec = vec![1, 2];
/// vec.push(3);
/// assert_eq!(vec, [1, 2, 3]);
/// ```
///
/// # Time complexity
///
/// Takes amortized *O*(1) time. If the vector's length would exceed its
/// capacity after the push, *O*(*capacity*) time is taken to copy the
/// vector's elements to a larger allocation. This expensive operation is
/// offset by the *capacity* *O*(1) insertions it allows.
#[cfg(not(no_global_oom_handling))]
#[inline]
#[stable(feature = "rust1", since = "1.0.0")]
#[rustc_confusables("push_back", "put", "append")]
#[track_caller]
pub fn push(&mut self, value: T) {
// Inform codegen that the length does not change across grow_one().
let len = self.len;
// This will panic or abort if we would allocate > isize::MAX bytes
// or if the length increment would overflow for zero-sized types.
if len == self.buf.capacity() {
self.buf.grow_one();
}
unsafe {
let end = self.as_mut_ptr().add(len);
ptr::write(end, value);
self.len = len + 1;
}
}
/// Appends an element if there is sufficient spare capacity, otherwise an error is returned
/// with the element.
///
/// Unlike [`push`] this method will not reallocate when there's insufficient capacity.
/// The caller should use [`reserve`] or [`try_reserve`] to ensure that there is enough capacity.
///
/// [`push`]: Vec::push
/// [`reserve`]: Vec::reserve
/// [`try_reserve`]: Vec::try_reserve
///
/// # Examples
///
/// A manual, panic-free alternative to [`FromIterator`]:
///
/// ```
/// #![feature(vec_push_within_capacity)]
///
/// use std::collections::TryReserveError;
/// fn from_iter_fallible<T>(iter: impl Iterator<Item=T>) -> Result<Vec<T>, TryReserveError> {
/// let mut vec = Vec::new();
/// for value in iter {
/// if let Err(value) = vec.push_within_capacity(value) {
/// vec.try_reserve(1)?;
/// // this cannot fail, the previous line either returned or added at least 1 free slot
/// let _ = vec.push_within_capacity(value);
/// }
/// }
/// Ok(vec)
/// }
/// assert_eq!(from_iter_fallible(0..100), Ok(Vec::from_iter(0..100)));
/// ```
///
/// # Time complexity
///
/// Takes *O*(1) time.
#[inline]
#[unstable(feature = "vec_push_within_capacity", issue = "100486")]
pub fn push_within_capacity(&mut self, value: T) -> Result<(), T> {
if self.len == self.buf.capacity() {
return Err(value);
}
unsafe {
let end = self.as_mut_ptr().add(self.len);
ptr::write(end, value);
self.len += 1;
}
Ok(())
}
/// Removes the last element from a vector and returns it, or [`None`] if it
/// is empty.
///
/// If you'd like to pop the first element, consider using
/// [`VecDeque::pop_front`] instead.
///
/// [`VecDeque::pop_front`]: crate::collections::VecDeque::pop_front
///
/// # Examples
///
/// ```
/// let mut vec = vec![1, 2, 3];
/// assert_eq!(vec.pop(), Some(3));
/// assert_eq!(vec, [1, 2]);
/// ```
///
/// # Time complexity
///
/// Takes *O*(1) time.
#[inline]
#[stable(feature = "rust1", since = "1.0.0")]
#[cfg_attr(not(test), rustc_diagnostic_item = "vec_pop")]
pub fn pop(&mut self) -> Option<T> {
if self.len == 0 {
None
} else {
unsafe {
self.len -= 1;
core::hint::assert_unchecked(self.len < self.capacity());
Some(ptr::read(self.as_ptr().add(self.len())))
}
}
}
/// Removes and returns the last element in a vector if the predicate
/// returns `true`, or [`None`] if the predicate returns false or the vector
/// is empty.
///
/// # Examples
///
/// ```
/// #![feature(vec_pop_if)]
///
/// let mut vec = vec![1, 2, 3, 4];
/// let pred = |x: &mut i32| *x % 2 == 0;
///
/// assert_eq!(vec.pop_if(pred), Some(4));
/// assert_eq!(vec, [1, 2, 3]);
/// assert_eq!(vec.pop_if(pred), None);
/// ```
#[unstable(feature = "vec_pop_if", issue = "122741")]
pub fn pop_if<F>(&mut self, f: F) -> Option<T>
where
F: FnOnce(&mut T) -> bool,
{
let last = self.last_mut()?;
if f(last) { self.pop() } else { None }
}
/// Moves all the elements of `other` into `self`, leaving `other` empty.
///
/// # Panics
///
/// Panics if the new capacity exceeds `isize::MAX` _bytes_.
///
/// # Examples
///
/// ```
/// let mut vec = vec![1, 2, 3];
/// let mut vec2 = vec![4, 5, 6];
/// vec.append(&mut vec2);
/// assert_eq!(vec, [1, 2, 3, 4, 5, 6]);
/// assert_eq!(vec2, []);
/// ```
#[cfg(not(no_global_oom_handling))]
#[inline]
#[stable(feature = "append", since = "1.4.0")]
#[track_caller]
pub fn append(&mut self, other: &mut Self) {
unsafe {
self.append_elements(other.as_slice() as _);
other.set_len(0);
}
}
/// Appends elements to `self` from other buffer.
#[cfg(not(no_global_oom_handling))]
#[inline]
#[track_caller]
unsafe fn append_elements(&mut self, other: *const [T]) {
let count = unsafe { (*other).len() };
self.reserve(count);
let len = self.len();
unsafe { ptr::copy_nonoverlapping(other as *const T, self.as_mut_ptr().add(len), count) };
self.len += count;
}
/// Removes the specified range from the vector in bulk, returning all
/// removed elements as an iterator. If the iterator is dropped before
/// being fully consumed, it drops the remaining removed elements.
///
/// The returned iterator keeps a mutable borrow on the vector to optimize
/// its implementation.
///
/// # Panics
///
/// Panics if the starting point is greater than the end point or if
/// the end point is greater than the length of the vector.
///
/// # Leaking
///
/// If the returned iterator goes out of scope without being dropped (due to
/// [`mem::forget`], for example), the vector may have lost and leaked
/// elements arbitrarily, including elements outside the range.
///
/// # Examples
///
/// ```
/// let mut v = vec![1, 2, 3];
/// let u: Vec<_> = v.drain(1..).collect();
/// assert_eq!(v, &[1]);
/// assert_eq!(u, &[2, 3]);
///
/// // A full range clears the vector, like `clear()` does
/// v.drain(..);
/// assert_eq!(v, &[]);
/// ```
#[stable(feature = "drain", since = "1.6.0")]
pub fn drain<R>(&mut self, range: R) -> Drain<'_, T, A>
where
R: RangeBounds<usize>,
{
// Memory safety
//
// When the Drain is first created, it shortens the length of
// the source vector to make sure no uninitialized or moved-from elements
// are accessible at all if the Drain's destructor never gets to run.
//
// Drain will ptr::read out the values to remove.
// When finished, remaining tail of the vec is copied back to cover
// the hole, and the vector length is restored to the new length.
//
let len = self.len();
let Range { start, end } = slice::range(range, ..len);
unsafe {
// set self.vec length's to start, to be safe in case Drain is leaked
self.set_len(start);
let range_slice = slice::from_raw_parts(self.as_ptr().add(start), end - start);
Drain {
tail_start: end,
tail_len: len - end,
iter: range_slice.iter(),
vec: NonNull::from(self),
}
}
}
/// Clears the vector, removing all values.
///
/// Note that this method has no effect on the allocated capacity
/// of the vector.
///
/// # Examples
///
/// ```
/// let mut v = vec![1, 2, 3];
///
/// v.clear();
///
/// assert!(v.is_empty());
/// ```
#[inline]
#[stable(feature = "rust1", since = "1.0.0")]
pub fn clear(&mut self) {
let elems: *mut [T] = self.as_mut_slice();
// SAFETY:
// - `elems` comes directly from `as_mut_slice` and is therefore valid.
// - Setting `self.len` before calling `drop_in_place` means that,
// if an element's `Drop` impl panics, the vector's `Drop` impl will
// do nothing (leaking the rest of the elements) instead of dropping
// some twice.
unsafe {
self.len = 0;
ptr::drop_in_place(elems);
}
}
/// Returns the number of elements in the vector, also referred to
/// as its 'length'.
///
/// # Examples
///
/// ```
/// let a = vec![1, 2, 3];
/// assert_eq!(a.len(), 3);
/// ```
#[inline]
#[stable(feature = "rust1", since = "1.0.0")]
#[rustc_const_unstable(feature = "const_vec_string_slice", issue = "129041")]
#[rustc_confusables("length", "size")]
pub const fn len(&self) -> usize {
self.len
}
/// Returns `true` if the vector contains no elements.
///
/// # Examples
///
/// ```
/// let mut v = Vec::new();
/// assert!(v.is_empty());
///
/// v.push(1);
/// assert!(!v.is_empty());
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
#[cfg_attr(not(test), rustc_diagnostic_item = "vec_is_empty")]
#[rustc_const_unstable(feature = "const_vec_string_slice", issue = "129041")]
pub const fn is_empty(&self) -> bool {
self.len() == 0
}
/// Splits the collection into two at the given index.
///
/// Returns a newly allocated vector containing the elements in the range
/// `[at, len)`. After the call, the original vector will be left containing
/// the elements `[0, at)` with its previous capacity unchanged.
///
/// - If you want to take ownership of the entire contents and capacity of
/// the vector, see [`mem::take`] or [`mem::replace`].
/// - If you don't need the returned vector at all, see [`Vec::truncate`].
/// - If you want to take ownership of an arbitrary subslice, or you don't
/// necessarily want to store the removed items in a vector, see [`Vec::drain`].
///
/// # Panics
///
/// Panics if `at > len`.
///
/// # Examples
///
/// ```
/// let mut vec = vec![1, 2, 3];
/// let vec2 = vec.split_off(1);
/// assert_eq!(vec, [1]);
/// assert_eq!(vec2, [2, 3]);
/// ```
#[cfg(not(no_global_oom_handling))]
#[inline]
#[must_use = "use `.truncate()` if you don't need the other half"]
#[stable(feature = "split_off", since = "1.4.0")]
#[track_caller]
pub fn split_off(&mut self, at: usize) -> Self
where
A: Clone,
{
#[cold]
#[cfg_attr(not(feature = "panic_immediate_abort"), inline(never))]
#[track_caller]
#[optimize(size)]
fn assert_failed(at: usize, len: usize) -> ! {
panic!("`at` split index (is {at}) should be <= len (is {len})");
}
if at > self.len() {
assert_failed(at, self.len());
}
let other_len = self.len - at;
let mut other = Vec::with_capacity_in(other_len, self.allocator().clone());
// Unsafely `set_len` and copy items to `other`.
unsafe {
self.set_len(at);
other.set_len(other_len);
ptr::copy_nonoverlapping(self.as_ptr().add(at), other.as_mut_ptr(), other.len());
}
other
}
/// Resizes the `Vec` in-place so that `len` is equal to `new_len`.
///
/// If `new_len` is greater than `len`, the `Vec` is extended by the
/// difference, with each additional slot filled with the result of
/// calling the closure `f`. The return values from `f` will end up
/// in the `Vec` in the order they have been generated.
///
/// If `new_len` is less than `len`, the `Vec` is simply truncated.
///
/// This method uses a closure to create new values on every push. If
/// you'd rather [`Clone`] a given value, use [`Vec::resize`]. If you
/// want to use the [`Default`] trait to generate values, you can
/// pass [`Default::default`] as the second argument.
///
/// # Examples
///
/// ```
/// let mut vec = vec![1, 2, 3];
/// vec.resize_with(5, Default::default);
/// assert_eq!(vec, [1, 2, 3, 0, 0]);
///
/// let mut vec = vec![];
/// let mut p = 1;
/// vec.resize_with(4, || { p *= 2; p });
/// assert_eq!(vec, [2, 4, 8, 16]);
/// ```
#[cfg(not(no_global_oom_handling))]
#[stable(feature = "vec_resize_with", since = "1.33.0")]
#[track_caller]
pub fn resize_with<F>(&mut self, new_len: usize, f: F)
where
F: FnMut() -> T,
{
let len = self.len();
if new_len > len {
self.extend_trusted(iter::repeat_with(f).take(new_len - len));
} else {
self.truncate(new_len);
}
}
/// Consumes and leaks the `Vec`, returning a mutable reference to the contents,
/// `&'a mut [T]`.
///
/// Note that the type `T` must outlive the chosen lifetime `'a`. If the type
/// has only static references, or none at all, then this may be chosen to be
/// `'static`.
///
/// As of Rust 1.57, this method does not reallocate or shrink the `Vec`,
/// so the leaked allocation may include unused capacity that is not part
/// of the returned slice.
///
/// This function is mainly useful for data that lives for the remainder of
/// the program's life. Dropping the returned reference will cause a memory
/// leak.
///
/// # Examples
///
/// Simple usage:
///
/// ```
/// let x = vec![1, 2, 3];
/// let static_ref: &'static mut [usize] = x.leak();
/// static_ref[0] += 1;
/// assert_eq!(static_ref, &[2, 2, 3]);
/// # // FIXME(https://github.com/rust-lang/miri/issues/3670):
/// # // use -Zmiri-disable-leak-check instead of unleaking in tests meant to leak.
/// # drop(unsafe { Box::from_raw(static_ref) });
/// ```
#[stable(feature = "vec_leak", since = "1.47.0")]
#[inline]
pub fn leak<'a>(self) -> &'a mut [T]
where
A: 'a,
{
let mut me = ManuallyDrop::new(self);
unsafe { slice::from_raw_parts_mut(me.as_mut_ptr(), me.len) }
}
/// Returns the remaining spare capacity of the vector as a slice of
/// `MaybeUninit<T>`.
///
/// The returned slice can be used to fill the vector with data (e.g. by
/// reading from a file) before marking the data as initialized using the
/// [`set_len`] method.
///
/// [`set_len`]: Vec::set_len
///
/// # Examples
///
/// ```
/// // Allocate vector big enough for 10 elements.
/// let mut v = Vec::with_capacity(10);
///
/// // Fill in the first 3 elements.
/// let uninit = v.spare_capacity_mut();
/// uninit[0].write(0);
/// uninit[1].write(1);
/// uninit[2].write(2);
///
/// // Mark the first 3 elements of the vector as being initialized.
/// unsafe {
/// v.set_len(3);
/// }
///
/// assert_eq!(&v, &[0, 1, 2]);
/// ```
#[stable(feature = "vec_spare_capacity", since = "1.60.0")]
#[inline]
pub fn spare_capacity_mut(&mut self) -> &mut [MaybeUninit<T>] {
// Note:
// This method is not implemented in terms of `split_at_spare_mut`,
// to prevent invalidation of pointers to the buffer.
unsafe {
slice::from_raw_parts_mut(
self.as_mut_ptr().add(self.len) as *mut MaybeUninit<T>,
self.buf.capacity() - self.len,
)
}
}
/// Returns vector content as a slice of `T`, along with the remaining spare
/// capacity of the vector as a slice of `MaybeUninit<T>`.
///
/// The returned spare capacity slice can be used to fill the vector with data
/// (e.g. by reading from a file) before marking the data as initialized using
/// the [`set_len`] method.
///
/// [`set_len`]: Vec::set_len
///
/// Note that this is a low-level API, which should be used with care for
/// optimization purposes. If you need to append data to a `Vec`
/// you can use [`push`], [`extend`], [`extend_from_slice`],
/// [`extend_from_within`], [`insert`], [`append`], [`resize`] or
/// [`resize_with`], depending on your exact needs.
///
/// [`push`]: Vec::push
/// [`extend`]: Vec::extend
/// [`extend_from_slice`]: Vec::extend_from_slice
/// [`extend_from_within`]: Vec::extend_from_within
/// [`insert`]: Vec::insert
/// [`append`]: Vec::append
/// [`resize`]: Vec::resize
/// [`resize_with`]: Vec::resize_with
///
/// # Examples
///
/// ```
/// #![feature(vec_split_at_spare)]
///
/// let mut v = vec![1, 1, 2];
///
/// // Reserve additional space big enough for 10 elements.
/// v.reserve(10);
///
/// let (init, uninit) = v.split_at_spare_mut();
/// let sum = init.iter().copied().sum::<u32>();
///
/// // Fill in the next 4 elements.
/// uninit[0].write(sum);
/// uninit[1].write(sum * 2);
/// uninit[2].write(sum * 3);
/// uninit[3].write(sum * 4);
///
/// // Mark the 4 elements of the vector as being initialized.
/// unsafe {
/// let len = v.len();
/// v.set_len(len + 4);
/// }
///
/// assert_eq!(&v, &[1, 1, 2, 4, 8, 12, 16]);
/// ```
#[unstable(feature = "vec_split_at_spare", issue = "81944")]
#[inline]
pub fn split_at_spare_mut(&mut self) -> (&mut [T], &mut [MaybeUninit<T>]) {
// SAFETY:
// - len is ignored and so never changed
let (init, spare, _) = unsafe { self.split_at_spare_mut_with_len() };
(init, spare)
}
/// Safety: changing returned .2 (&mut usize) is considered the same as calling `.set_len(_)`.
///
/// This method provides unique access to all vec parts at once in `extend_from_within`.
unsafe fn split_at_spare_mut_with_len(
&mut self,
) -> (&mut [T], &mut [MaybeUninit<T>], &mut usize) {
let ptr = self.as_mut_ptr();
// SAFETY:
// - `ptr` is guaranteed to be valid for `self.len` elements
// - but the allocation extends out to `self.buf.capacity()` elements, possibly
// uninitialized
let spare_ptr = unsafe { ptr.add(self.len) };
let spare_ptr = spare_ptr.cast::<MaybeUninit<T>>();
let spare_len = self.buf.capacity() - self.len;
// SAFETY:
// - `ptr` is guaranteed to be valid for `self.len` elements
// - `spare_ptr` is pointing one element past the buffer, so it doesn't overlap with `initialized`
unsafe {
let initialized = slice::from_raw_parts_mut(ptr, self.len);
let spare = slice::from_raw_parts_mut(spare_ptr, spare_len);
(initialized, spare, &mut self.len)
}
}
}
impl<T: Clone, A: Allocator> Vec<T, A> {
/// Resizes the `Vec` in-place so that `len` is equal to `new_len`.
///
/// If `new_len` is greater than `len`, the `Vec` is extended by the
/// difference, with each additional slot filled with `value`.
/// If `new_len` is less than `len`, the `Vec` is simply truncated.
///
/// This method requires `T` to implement [`Clone`],
/// in order to be able to clone the passed value.
/// If you need more flexibility (or want to rely on [`Default`] instead of
/// [`Clone`]), use [`Vec::resize_with`].
/// If you only need to resize to a smaller size, use [`Vec::truncate`].
///
/// # Examples
///
/// ```
/// let mut vec = vec!["hello"];
/// vec.resize(3, "world");
/// assert_eq!(vec, ["hello", "world", "world"]);
///
/// let mut vec = vec![1, 2, 3, 4];
/// vec.resize(2, 0);
/// assert_eq!(vec, [1, 2]);
/// ```
#[cfg(not(no_global_oom_handling))]
#[stable(feature = "vec_resize", since = "1.5.0")]
#[track_caller]
pub fn resize(&mut self, new_len: usize, value: T) {
let len = self.len();
if new_len > len {
self.extend_with(new_len - len, value)
} else {
self.truncate(new_len);
}
}
/// Clones and appends all elements in a slice to the `Vec`.
///
/// Iterates over the slice `other`, clones each element, and then appends
/// it to this `Vec`. The `other` slice is traversed in-order.
///
/// Note that this function is same as [`extend`] except that it is
/// specialized to work with slices instead. If and when Rust gets
/// specialization this function will likely be deprecated (but still
/// available).
///
/// # Examples
///
/// ```
/// let mut vec = vec![1];
/// vec.extend_from_slice(&[2, 3, 4]);
/// assert_eq!(vec, [1, 2, 3, 4]);
/// ```
///
/// [`extend`]: Vec::extend
#[cfg(not(no_global_oom_handling))]
#[stable(feature = "vec_extend_from_slice", since = "1.6.0")]
#[track_caller]
pub fn extend_from_slice(&mut self, other: &[T]) {
self.spec_extend(other.iter())
}
/// Copies elements from `src` range to the end of the vector.
///
/// # Panics
///
/// Panics if the starting point is greater than the end point or if
/// the end point is greater than the length of the vector.
///
/// # Examples
///
/// ```
/// let mut vec = vec![0, 1, 2, 3, 4];
///
/// vec.extend_from_within(2..);
/// assert_eq!(vec, [0, 1, 2, 3, 4, 2, 3, 4]);
///
/// vec.extend_from_within(..2);
/// assert_eq!(vec, [0, 1, 2, 3, 4, 2, 3, 4, 0, 1]);
///
/// vec.extend_from_within(4..8);
/// assert_eq!(vec, [0, 1, 2, 3, 4, 2, 3, 4, 0, 1, 4, 2, 3, 4]);
/// ```
#[cfg(not(no_global_oom_handling))]
#[stable(feature = "vec_extend_from_within", since = "1.53.0")]
#[track_caller]
pub fn extend_from_within<R>(&mut self, src: R)
where
R: RangeBounds<usize>,
{
let range = slice::range(src, ..self.len());
self.reserve(range.len());
// SAFETY:
// - `slice::range` guarantees that the given range is valid for indexing self
unsafe {
self.spec_extend_from_within(range);
}
}
}
impl<T, A: Allocator, const N: usize> Vec<[T; N], A> {
/// Takes a `Vec<[T; N]>` and flattens it into a `Vec<T>`.
///
/// # Panics
///
/// Panics if the length of the resulting vector would overflow a `usize`.
///
/// This is only possible when flattening a vector of arrays of zero-sized
/// types, and thus tends to be irrelevant in practice. If
/// `size_of::<T>() > 0`, this will never panic.
///
/// # Examples
///
/// ```
/// let mut vec = vec![[1, 2, 3], [4, 5, 6], [7, 8, 9]];
/// assert_eq!(vec.pop(), Some([7, 8, 9]));
///
/// let mut flattened = vec.into_flattened();
/// assert_eq!(flattened.pop(), Some(6));
/// ```
#[stable(feature = "slice_flatten", since = "1.80.0")]
pub fn into_flattened(self) -> Vec<T, A> {
let (ptr, len, cap, alloc) = self.into_raw_parts_with_alloc();
let (new_len, new_cap) = if T::IS_ZST {
(len.checked_mul(N).expect("vec len overflow"), usize::MAX)
} else {
// SAFETY:
// - `cap * N` cannot overflow because the allocation is already in
// the address space.
// - Each `[T; N]` has `N` valid elements, so there are `len * N`
// valid elements in the allocation.
unsafe { (len.unchecked_mul(N), cap.unchecked_mul(N)) }
};
// SAFETY:
// - `ptr` was allocated by `self`
// - `ptr` is well-aligned because `[T; N]` has the same alignment as `T`.
// - `new_cap` refers to the same sized allocation as `cap` because
// `new_cap * size_of::<T>()` == `cap * size_of::<[T; N]>()`
// - `len` <= `cap`, so `len * N` <= `cap * N`.
unsafe { Vec::<T, A>::from_raw_parts_in(ptr.cast(), new_len, new_cap, alloc) }
}
}
impl<T: Clone, A: Allocator> Vec<T, A> {
#[cfg(not(no_global_oom_handling))]
#[track_caller]
/// Extend the vector by `n` clones of value.
fn extend_with(&mut self, n: usize, value: T) {
self.reserve(n);
unsafe {
let mut ptr = self.as_mut_ptr().add(self.len());
// Use SetLenOnDrop to work around bug where compiler
// might not realize the store through `ptr` through self.set_len()
// don't alias.
let mut local_len = SetLenOnDrop::new(&mut self.len);
// Write all elements except the last one
for _ in 1..n {
ptr::write(ptr, value.clone());
ptr = ptr.add(1);
// Increment the length in every step in case clone() panics
local_len.increment_len(1);
}
if n > 0 {
// We can write the last element directly without cloning needlessly
ptr::write(ptr, value);
local_len.increment_len(1);
}
// len set by scope guard
}
}
}
impl<T: PartialEq, A: Allocator> Vec<T, A> {
/// Removes consecutive repeated elements in the vector according to the
/// [`PartialEq`] trait implementation.
///
/// If the vector is sorted, this removes all duplicates.
///
/// # Examples
///
/// ```
/// let mut vec = vec![1, 2, 2, 3, 2];
///
/// vec.dedup();
///
/// assert_eq!(vec, [1, 2, 3, 2]);
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
#[inline]
pub fn dedup(&mut self) {
self.dedup_by(|a, b| a == b)
}
}
////////////////////////////////////////////////////////////////////////////////
// Internal methods and functions
////////////////////////////////////////////////////////////////////////////////
#[doc(hidden)]
#[cfg(not(no_global_oom_handling))]
#[stable(feature = "rust1", since = "1.0.0")]
#[cfg_attr(not(test), rustc_diagnostic_item = "vec_from_elem")]
#[track_caller]
pub fn from_elem<T: Clone>(elem: T, n: usize) -> Vec<T> {
<T as SpecFromElem>::from_elem(elem, n, Global)
}
#[doc(hidden)]
#[cfg(not(no_global_oom_handling))]
#[unstable(feature = "allocator_api", issue = "32838")]
#[track_caller]
pub fn from_elem_in<T: Clone, A: Allocator>(elem: T, n: usize, alloc: A) -> Vec<T, A> {
<T as SpecFromElem>::from_elem(elem, n, alloc)
}
#[cfg(not(no_global_oom_handling))]
trait ExtendFromWithinSpec {
/// # Safety
///
/// - `src` needs to be valid index
/// - `self.capacity() - self.len()` must be `>= src.len()`
unsafe fn spec_extend_from_within(&mut self, src: Range<usize>);
}
#[cfg(not(no_global_oom_handling))]
impl<T: Clone, A: Allocator> ExtendFromWithinSpec for Vec<T, A> {
default unsafe fn spec_extend_from_within(&mut self, src: Range<usize>) {
// SAFETY:
// - len is increased only after initializing elements
let (this, spare, len) = unsafe { self.split_at_spare_mut_with_len() };
// SAFETY:
// - caller guarantees that src is a valid index
let to_clone = unsafe { this.get_unchecked(src) };
iter::zip(to_clone, spare)
.map(|(src, dst)| dst.write(src.clone()))
// Note:
// - Element was just initialized with `MaybeUninit::write`, so it's ok to increase len
// - len is increased after each element to prevent leaks (see issue #82533)
.for_each(|_| *len += 1);
}
}
#[cfg(not(no_global_oom_handling))]
impl<T: Copy, A: Allocator> ExtendFromWithinSpec for Vec<T, A> {
unsafe fn spec_extend_from_within(&mut self, src: Range<usize>) {
let count = src.len();
{
let (init, spare) = self.split_at_spare_mut();
// SAFETY:
// - caller guarantees that `src` is a valid index
let source = unsafe { init.get_unchecked(src) };
// SAFETY:
// - Both pointers are created from unique slice references (`&mut [_]`)
// so they are valid and do not overlap.
// - Elements are :Copy so it's OK to copy them, without doing
// anything with the original values
// - `count` is equal to the len of `source`, so source is valid for
// `count` reads
// - `.reserve(count)` guarantees that `spare.len() >= count` so spare
// is valid for `count` writes
unsafe { ptr::copy_nonoverlapping(source.as_ptr(), spare.as_mut_ptr() as _, count) };
}
// SAFETY:
// - The elements were just initialized by `copy_nonoverlapping`
self.len += count;
}
}
////////////////////////////////////////////////////////////////////////////////
// Common trait implementations for Vec
////////////////////////////////////////////////////////////////////////////////
#[stable(feature = "rust1", since = "1.0.0")]
impl<T, A: Allocator> ops::Deref for Vec<T, A> {
type Target = [T];
#[inline]
fn deref(&self) -> &[T] {
self.as_slice()
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl<T, A: Allocator> ops::DerefMut for Vec<T, A> {
#[inline]
fn deref_mut(&mut self) -> &mut [T] {
self.as_mut_slice()
}
}
#[unstable(feature = "deref_pure_trait", issue = "87121")]
unsafe impl<T, A: Allocator> ops::DerefPure for Vec<T, A> {}
#[cfg(not(no_global_oom_handling))]
#[stable(feature = "rust1", since = "1.0.0")]
impl<T: Clone, A: Allocator + Clone> Clone for Vec<T, A> {
#[cfg(not(test))]
#[track_caller]
fn clone(&self) -> Self {
let alloc = self.allocator().clone();
<[T]>::to_vec_in(&**self, alloc)
}
// HACK(japaric): with cfg(test) the inherent `[T]::to_vec` method, which is
// required for this method definition, is not available. Instead use the
// `slice::to_vec` function which is only available with cfg(test)
// NB see the slice::hack module in slice.rs for more information
#[cfg(test)]
fn clone(&self) -> Self {
let alloc = self.allocator().clone();
crate::slice::to_vec(&**self, alloc)
}
/// Overwrites the contents of `self` with a clone of the contents of `source`.
///
/// This method is preferred over simply assigning `source.clone()` to `self`,
/// as it avoids reallocation if possible. Additionally, if the element type
/// `T` overrides `clone_from()`, this will reuse the resources of `self`'s
/// elements as well.
///
/// # Examples
///
/// ```
/// let x = vec![5, 6, 7];
/// let mut y = vec![8, 9, 10];
/// let yp: *const i32 = y.as_ptr();
///
/// y.clone_from(&x);
///
/// // The value is the same
/// assert_eq!(x, y);
///
/// // And no reallocation occurred
/// assert_eq!(yp, y.as_ptr());
/// ```
#[track_caller]
fn clone_from(&mut self, source: &Self) {
crate::slice::SpecCloneIntoVec::clone_into(source.as_slice(), self);
}
}
/// The hash of a vector is the same as that of the corresponding slice,
/// as required by the `core::borrow::Borrow` implementation.
///
/// ```
/// use std::hash::BuildHasher;
///
/// let b = std::hash::RandomState::new();
/// let v: Vec<u8> = vec![0xa8, 0x3c, 0x09];
/// let s: &[u8] = &[0xa8, 0x3c, 0x09];
/// assert_eq!(b.hash_one(v), b.hash_one(s));
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
impl<T: Hash, A: Allocator> Hash for Vec<T, A> {
#[inline]
fn hash<H: Hasher>(&self, state: &mut H) {
Hash::hash(&**self, state)
}
}
#[stable(feature = "rust1", since = "1.0.0")]
#[rustc_on_unimplemented(
message = "vector indices are of type `usize` or ranges of `usize`",
label = "vector indices are of type `usize` or ranges of `usize`"
)]
impl<T, I: SliceIndex<[T]>, A: Allocator> Index<I> for Vec<T, A> {
type Output = I::Output;
#[inline]
fn index(&self, index: I) -> &Self::Output {
Index::index(&**self, index)
}
}
#[stable(feature = "rust1", since = "1.0.0")]
#[rustc_on_unimplemented(
message = "vector indices are of type `usize` or ranges of `usize`",
label = "vector indices are of type `usize` or ranges of `usize`"
)]
impl<T, I: SliceIndex<[T]>, A: Allocator> IndexMut<I> for Vec<T, A> {
#[inline]
fn index_mut(&mut self, index: I) -> &mut Self::Output {
IndexMut::index_mut(&mut **self, index)
}
}
/// Collects an iterator into a Vec, commonly called via [`Iterator::collect()`]
///
/// # Allocation behavior
///
/// In general `Vec` does not guarantee any particular growth or allocation strategy.
/// That also applies to this trait impl.
///
/// **Note:** This section covers implementation details and is therefore exempt from
/// stability guarantees.
///
/// Vec may use any or none of the following strategies,
/// depending on the supplied iterator:
///
/// * preallocate based on [`Iterator::size_hint()`]
/// * and panic if the number of items is outside the provided lower/upper bounds
/// * use an amortized growth strategy similar to `pushing` one item at a time
/// * perform the iteration in-place on the original allocation backing the iterator
///
/// The last case warrants some attention. It is an optimization that in many cases reduces peak memory
/// consumption and improves cache locality. But when big, short-lived allocations are created,
/// only a small fraction of their items get collected, no further use is made of the spare capacity
/// and the resulting `Vec` is moved into a longer-lived structure, then this can lead to the large
/// allocations having their lifetimes unnecessarily extended which can result in increased memory
/// footprint.
///
/// In cases where this is an issue, the excess capacity can be discarded with [`Vec::shrink_to()`],
/// [`Vec::shrink_to_fit()`] or by collecting into [`Box<[T]>`][owned slice] instead, which additionally reduces
/// the size of the long-lived struct.
///
/// [owned slice]: Box
///
/// ```rust
/// # use std::sync::Mutex;
/// static LONG_LIVED: Mutex<Vec<Vec<u16>>> = Mutex::new(Vec::new());
///
/// for i in 0..10 {
/// let big_temporary: Vec<u16> = (0..1024).collect();
/// // discard most items
/// let mut result: Vec<_> = big_temporary.into_iter().filter(|i| i % 100 == 0).collect();
/// // without this a lot of unused capacity might be moved into the global
/// result.shrink_to_fit();
/// LONG_LIVED.lock().unwrap().push(result);
/// }
/// ```
#[cfg(not(no_global_oom_handling))]
#[stable(feature = "rust1", since = "1.0.0")]
impl<T> FromIterator<T> for Vec<T> {
#[inline]
#[track_caller]
fn from_iter<I: IntoIterator<Item = T>>(iter: I) -> Vec<T> {
<Self as SpecFromIter<T, I::IntoIter>>::from_iter(iter.into_iter())
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl<T, A: Allocator> IntoIterator for Vec<T, A> {
type Item = T;
type IntoIter = IntoIter<T, A>;
/// Creates a consuming iterator, that is, one that moves each value out of
/// the vector (from start to end). The vector cannot be used after calling
/// this.
///
/// # Examples
///
/// ```
/// let v = vec!["a".to_string(), "b".to_string()];
/// let mut v_iter = v.into_iter();
///
/// let first_element: Option<String> = v_iter.next();
///
/// assert_eq!(first_element, Some("a".to_string()));
/// assert_eq!(v_iter.next(), Some("b".to_string()));
/// assert_eq!(v_iter.next(), None);
/// ```
#[inline]
fn into_iter(self) -> Self::IntoIter {
unsafe {
let me = ManuallyDrop::new(self);
let alloc = ManuallyDrop::new(ptr::read(me.allocator()));
let buf = me.buf.non_null();
let begin = buf.as_ptr();
let end = if T::IS_ZST {
begin.wrapping_byte_add(me.len())
} else {
begin.add(me.len()) as *const T
};
let cap = me.buf.capacity();
IntoIter { buf, phantom: PhantomData, cap, alloc, ptr: buf, end }
}
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl<'a, T, A: Allocator> IntoIterator for &'a Vec<T, A> {
type Item = &'a T;
type IntoIter = slice::Iter<'a, T>;
fn into_iter(self) -> Self::IntoIter {
self.iter()
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl<'a, T, A: Allocator> IntoIterator for &'a mut Vec<T, A> {
type Item = &'a mut T;
type IntoIter = slice::IterMut<'a, T>;
fn into_iter(self) -> Self::IntoIter {
self.iter_mut()
}
}
#[cfg(not(no_global_oom_handling))]
#[stable(feature = "rust1", since = "1.0.0")]
impl<T, A: Allocator> Extend<T> for Vec<T, A> {
#[inline]
#[track_caller]
fn extend<I: IntoIterator<Item = T>>(&mut self, iter: I) {
<Self as SpecExtend<T, I::IntoIter>>::spec_extend(self, iter.into_iter())
}
#[inline]
#[track_caller]
fn extend_one(&mut self, item: T) {
self.push(item);
}
#[inline]
#[track_caller]
fn extend_reserve(&mut self, additional: usize) {
self.reserve(additional);
}
#[inline]
unsafe fn extend_one_unchecked(&mut self, item: T) {
// SAFETY: Our preconditions ensure the space has been reserved, and `extend_reserve` is implemented correctly.
unsafe {
let len = self.len();
ptr::write(self.as_mut_ptr().add(len), item);
self.set_len(len + 1);
}
}
}
impl<T, A: Allocator> Vec<T, A> {
// leaf method to which various SpecFrom/SpecExtend implementations delegate when
// they have no further optimizations to apply
#[cfg(not(no_global_oom_handling))]
#[track_caller]
fn extend_desugared<I: Iterator<Item = T>>(&mut self, mut iterator: I) {
// This is the case for a general iterator.
//
// This function should be the moral equivalent of:
//
// for item in iterator {
// self.push(item);
// }
while let Some(element) = iterator.next() {
let len = self.len();
if len == self.capacity() {
let (lower, _) = iterator.size_hint();
self.reserve(lower.saturating_add(1));
}
unsafe {
ptr::write(self.as_mut_ptr().add(len), element);
// Since next() executes user code which can panic we have to bump the length
// after each step.
// NB can't overflow since we would have had to alloc the address space
self.set_len(len + 1);
}
}
}
// specific extend for `TrustedLen` iterators, called both by the specializations
// and internal places where resolving specialization makes compilation slower
#[cfg(not(no_global_oom_handling))]
#[track_caller]
fn extend_trusted(&mut self, iterator: impl iter::TrustedLen<Item = T>) {
let (low, high) = iterator.size_hint();
if let Some(additional) = high {
debug_assert_eq!(
low,
additional,
"TrustedLen iterator's size hint is not exact: {:?}",
(low, high)
);
self.reserve(additional);
unsafe {
let ptr = self.as_mut_ptr();
let mut local_len = SetLenOnDrop::new(&mut self.len);
iterator.for_each(move |element| {
ptr::write(ptr.add(local_len.current_len()), element);
// Since the loop executes user code which can panic we have to update
// the length every step to correctly drop what we've written.
// NB can't overflow since we would have had to alloc the address space
local_len.increment_len(1);
});
}
} else {
// Per TrustedLen contract a `None` upper bound means that the iterator length
// truly exceeds usize::MAX, which would eventually lead to a capacity overflow anyway.
// Since the other branch already panics eagerly (via `reserve()`) we do the same here.
// This avoids additional codegen for a fallback code path which would eventually
// panic anyway.
panic!("capacity overflow");
}
}
/// Creates a splicing iterator that replaces the specified range in the vector
/// with the given `replace_with` iterator and yields the removed items.
/// `replace_with` does not need to be the same length as `range`.
///
/// `range` is removed even if the iterator is not consumed until the end.
///
/// It is unspecified how many elements are removed from the vector
/// if the `Splice` value is leaked.
///
/// The input iterator `replace_with` is only consumed when the `Splice` value is dropped.
///
/// This is optimal if:
///
/// * The tail (elements in the vector after `range`) is empty,
/// * or `replace_with` yields fewer or equal elements than `range`’s length
/// * or the lower bound of its `size_hint()` is exact.
///
/// Otherwise, a temporary vector is allocated and the tail is moved twice.
///
/// # Panics
///
/// Panics if the starting point is greater than the end point or if
/// the end point is greater than the length of the vector.
///
/// # Examples
///
/// ```
/// let mut v = vec![1, 2, 3, 4];
/// let new = [7, 8, 9];
/// let u: Vec<_> = v.splice(1..3, new).collect();
/// assert_eq!(v, &[1, 7, 8, 9, 4]);
/// assert_eq!(u, &[2, 3]);
/// ```
#[cfg(not(no_global_oom_handling))]
#[inline]
#[stable(feature = "vec_splice", since = "1.21.0")]
pub fn splice<R, I>(&mut self, range: R, replace_with: I) -> Splice<'_, I::IntoIter, A>
where
R: RangeBounds<usize>,
I: IntoIterator<Item = T>,
{
Splice { drain: self.drain(range), replace_with: replace_with.into_iter() }
}
/// Creates an iterator which uses a closure to determine if an element should be removed.
///
/// If the closure returns true, then the element is removed and yielded.
/// If the closure returns false, the element will remain in the vector and will not be yielded
/// by the iterator.
///
/// If the returned `ExtractIf` is not exhausted, e.g. because it is dropped without iterating
/// or the iteration short-circuits, then the remaining elements will be retained.
/// Use [`retain`] with a negated predicate if you do not need the returned iterator.
///
/// [`retain`]: Vec::retain
///
/// Using this method is equivalent to the following code:
///
/// ```
/// # let some_predicate = |x: &mut i32| { *x == 2 || *x == 3 || *x == 6 };
/// # let mut vec = vec![1, 2, 3, 4, 5, 6];
/// let mut i = 0;
/// while i < vec.len() {
/// if some_predicate(&mut vec[i]) {
/// let val = vec.remove(i);
/// // your code here
/// } else {
/// i += 1;
/// }
/// }
///
/// # assert_eq!(vec, vec![1, 4, 5]);
/// ```
///
/// But `extract_if` is easier to use. `extract_if` is also more efficient,
/// because it can backshift the elements of the array in bulk.
///
/// Note that `extract_if` also lets you mutate every element in the filter closure,
/// regardless of whether you choose to keep or remove it.
///
/// # Examples
///
/// Splitting an array into evens and odds, reusing the original allocation:
///
/// ```
/// #![feature(extract_if)]
/// let mut numbers = vec![1, 2, 3, 4, 5, 6, 8, 9, 11, 13, 14, 15];
///
/// let evens = numbers.extract_if(|x| *x % 2 == 0).collect::<Vec<_>>();
/// let odds = numbers;
///
/// assert_eq!(evens, vec![2, 4, 6, 8, 14]);
/// assert_eq!(odds, vec![1, 3, 5, 9, 11, 13, 15]);
/// ```
#[unstable(feature = "extract_if", reason = "recently added", issue = "43244")]
pub fn extract_if<F>(&mut self, filter: F) -> ExtractIf<'_, T, F, A>
where
F: FnMut(&mut T) -> bool,
{
let old_len = self.len();
// Guard against us getting leaked (leak amplification)
unsafe {
self.set_len(0);
}
ExtractIf { vec: self, idx: 0, del: 0, old_len, pred: filter }
}
}
/// Extend implementation that copies elements out of references before pushing them onto the Vec.
///
/// This implementation is specialized for slice iterators, where it uses [`copy_from_slice`] to
/// append the entire slice at once.
///
/// [`copy_from_slice`]: slice::copy_from_slice
#[cfg(not(no_global_oom_handling))]
#[stable(feature = "extend_ref", since = "1.2.0")]
impl<'a, T: Copy + 'a, A: Allocator> Extend<&'a T> for Vec<T, A> {
#[track_caller]
fn extend<I: IntoIterator<Item = &'a T>>(&mut self, iter: I) {
self.spec_extend(iter.into_iter())
}
#[inline]
#[track_caller]
fn extend_one(&mut self, &item: &'a T) {
self.push(item);
}
#[inline]
#[track_caller]
fn extend_reserve(&mut self, additional: usize) {
self.reserve(additional);
}
#[inline]
unsafe fn extend_one_unchecked(&mut self, &item: &'a T) {
// SAFETY: Our preconditions ensure the space has been reserved, and `extend_reserve` is implemented correctly.
unsafe {
let len = self.len();
ptr::write(self.as_mut_ptr().add(len), item);
self.set_len(len + 1);
}
}
}
/// Implements comparison of vectors, [lexicographically](Ord#lexicographical-comparison).
#[stable(feature = "rust1", since = "1.0.0")]
impl<T, A1, A2> PartialOrd<Vec<T, A2>> for Vec<T, A1>
where
T: PartialOrd,
A1: Allocator,
A2: Allocator,
{
#[inline]
fn partial_cmp(&self, other: &Vec<T, A2>) -> Option<Ordering> {
PartialOrd::partial_cmp(&**self, &**other)
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl<T: Eq, A: Allocator> Eq for Vec<T, A> {}
/// Implements ordering of vectors, [lexicographically](Ord#lexicographical-comparison).
#[stable(feature = "rust1", since = "1.0.0")]
impl<T: Ord, A: Allocator> Ord for Vec<T, A> {
#[inline]
fn cmp(&self, other: &Self) -> Ordering {
Ord::cmp(&**self, &**other)
}
}
#[stable(feature = "rust1", since = "1.0.0")]
unsafe impl<#[may_dangle] T, A: Allocator> Drop for Vec<T, A> {
fn drop(&mut self) {
unsafe {
// use drop for [T]
// use a raw slice to refer to the elements of the vector as weakest necessary type;
// could avoid questions of validity in certain cases
ptr::drop_in_place(ptr::slice_from_raw_parts_mut(self.as_mut_ptr(), self.len))
}
// RawVec handles deallocation
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl<T> Default for Vec<T> {
/// Creates an empty `Vec<T>`.
///
/// The vector will not allocate until elements are pushed onto it.
fn default() -> Vec<T> {
Vec::new()
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl<T: fmt::Debug, A: Allocator> fmt::Debug for Vec<T, A> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
fmt::Debug::fmt(&**self, f)
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl<T, A: Allocator> AsRef<Vec<T, A>> for Vec<T, A> {
fn as_ref(&self) -> &Vec<T, A> {
self
}
}
#[stable(feature = "vec_as_mut", since = "1.5.0")]
impl<T, A: Allocator> AsMut<Vec<T, A>> for Vec<T, A> {
fn as_mut(&mut self) -> &mut Vec<T, A> {
self
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl<T, A: Allocator> AsRef<[T]> for Vec<T, A> {
fn as_ref(&self) -> &[T] {
self
}
}
#[stable(feature = "vec_as_mut", since = "1.5.0")]
impl<T, A: Allocator> AsMut<[T]> for Vec<T, A> {
fn as_mut(&mut self) -> &mut [T] {
self
}
}
#[cfg(not(no_global_oom_handling))]
#[stable(feature = "rust1", since = "1.0.0")]
impl<T: Clone> From<&[T]> for Vec<T> {
/// Allocates a `Vec<T>` and fills it by cloning `s`'s items.
///
/// # Examples
///
/// ```
/// assert_eq!(Vec::from(&[1, 2, 3][..]), vec![1, 2, 3]);
/// ```
#[cfg(not(test))]
#[track_caller]
fn from(s: &[T]) -> Vec<T> {
s.to_vec()
}
#[cfg(test)]
fn from(s: &[T]) -> Vec<T> {
crate::slice::to_vec(s, Global)
}
}
#[cfg(not(no_global_oom_handling))]
#[stable(feature = "vec_from_mut", since = "1.19.0")]
impl<T: Clone> From<&mut [T]> for Vec<T> {
/// Allocates a `Vec<T>` and fills it by cloning `s`'s items.
///
/// # Examples
///
/// ```
/// assert_eq!(Vec::from(&mut [1, 2, 3][..]), vec![1, 2, 3]);
/// ```
#[cfg(not(test))]
#[track_caller]
fn from(s: &mut [T]) -> Vec<T> {
s.to_vec()
}
#[cfg(test)]
fn from(s: &mut [T]) -> Vec<T> {
crate::slice::to_vec(s, Global)
}
}
#[cfg(not(no_global_oom_handling))]
#[stable(feature = "vec_from_array_ref", since = "1.74.0")]
impl<T: Clone, const N: usize> From<&[T; N]> for Vec<T> {
/// Allocates a `Vec<T>` and fills it by cloning `s`'s items.
///
/// # Examples
///
/// ```
/// assert_eq!(Vec::from(&[1, 2, 3]), vec![1, 2, 3]);
/// ```
#[track_caller]
fn from(s: &[T; N]) -> Vec<T> {
Self::from(s.as_slice())
}
}
#[cfg(not(no_global_oom_handling))]
#[stable(feature = "vec_from_array_ref", since = "1.74.0")]
impl<T: Clone, const N: usize> From<&mut [T; N]> for Vec<T> {
/// Allocates a `Vec<T>` and fills it by cloning `s`'s items.
///
/// # Examples
///
/// ```
/// assert_eq!(Vec::from(&mut [1, 2, 3]), vec![1, 2, 3]);
/// ```
#[track_caller]
fn from(s: &mut [T; N]) -> Vec<T> {
Self::from(s.as_mut_slice())
}
}
#[cfg(not(no_global_oom_handling))]
#[stable(feature = "vec_from_array", since = "1.44.0")]
impl<T, const N: usize> From<[T; N]> for Vec<T> {
/// Allocates a `Vec<T>` and moves `s`'s items into it.
///
/// # Examples
///
/// ```
/// assert_eq!(Vec::from([1, 2, 3]), vec![1, 2, 3]);
/// ```
#[cfg(not(test))]
#[track_caller]
fn from(s: [T; N]) -> Vec<T> {
<[T]>::into_vec(Box::new(s))
}
#[cfg(test)]
fn from(s: [T; N]) -> Vec<T> {
crate::slice::into_vec(Box::new(s))
}
}
#[stable(feature = "vec_from_cow_slice", since = "1.14.0")]
impl<'a, T> From<Cow<'a, [T]>> for Vec<T>
where
[T]: ToOwned<Owned = Vec<T>>,
{
/// Converts a clone-on-write slice into a vector.
///
/// If `s` already owns a `Vec<T>`, it will be returned directly.
/// If `s` is borrowing a slice, a new `Vec<T>` will be allocated and
/// filled by cloning `s`'s items into it.
///
/// # Examples
///
/// ```
/// # use std::borrow::Cow;
/// let o: Cow<'_, [i32]> = Cow::Owned(vec![1, 2, 3]);
/// let b: Cow<'_, [i32]> = Cow::Borrowed(&[1, 2, 3]);
/// assert_eq!(Vec::from(o), Vec::from(b));
/// ```
#[track_caller]
fn from(s: Cow<'a, [T]>) -> Vec<T> {
s.into_owned()
}
}
// note: test pulls in std, which causes errors here
#[cfg(not(test))]
#[stable(feature = "vec_from_box", since = "1.18.0")]
impl<T, A: Allocator> From<Box<[T], A>> for Vec<T, A> {
/// Converts a boxed slice into a vector by transferring ownership of
/// the existing heap allocation.
///
/// # Examples
///
/// ```
/// let b: Box<[i32]> = vec![1, 2, 3].into_boxed_slice();
/// assert_eq!(Vec::from(b), vec![1, 2, 3]);
/// ```
fn from(s: Box<[T], A>) -> Self {
s.into_vec()
}
}
// note: test pulls in std, which causes errors here
#[cfg(not(no_global_oom_handling))]
#[cfg(not(test))]
#[stable(feature = "box_from_vec", since = "1.20.0")]
impl<T, A: Allocator> From<Vec<T, A>> for Box<[T], A> {
/// Converts a vector into a boxed slice.
///
/// Before doing the conversion, this method discards excess capacity like [`Vec::shrink_to_fit`].
///
/// [owned slice]: Box
/// [`Vec::shrink_to_fit`]: Vec::shrink_to_fit
///
/// # Examples
///
/// ```
/// assert_eq!(Box::from(vec![1, 2, 3]), vec![1, 2, 3].into_boxed_slice());
/// ```
///
/// Any excess capacity is removed:
/// ```
/// let mut vec = Vec::with_capacity(10);
/// vec.extend([1, 2, 3]);
///
/// assert_eq!(Box::from(vec), vec![1, 2, 3].into_boxed_slice());
/// ```
#[track_caller]
fn from(v: Vec<T, A>) -> Self {
v.into_boxed_slice()
}
}
#[cfg(not(no_global_oom_handling))]
#[stable(feature = "rust1", since = "1.0.0")]
impl From<&str> for Vec<u8> {
/// Allocates a `Vec<u8>` and fills it with a UTF-8 string.
///
/// # Examples
///
/// ```
/// assert_eq!(Vec::from("123"), vec![b'1', b'2', b'3']);
/// ```
#[track_caller]
fn from(s: &str) -> Vec<u8> {
From::from(s.as_bytes())
}
}
#[stable(feature = "array_try_from_vec", since = "1.48.0")]
impl<T, A: Allocator, const N: usize> TryFrom<Vec<T, A>> for [T; N] {
type Error = Vec<T, A>;
/// Gets the entire contents of the `Vec<T>` as an array,
/// if its size exactly matches that of the requested array.
///
/// # Examples
///
/// ```
/// assert_eq!(vec![1, 2, 3].try_into(), Ok([1, 2, 3]));
/// assert_eq!(<Vec<i32>>::new().try_into(), Ok([]));
/// ```
///
/// If the length doesn't match, the input comes back in `Err`:
/// ```
/// let r: Result<[i32; 4], _> = (0..10).collect::<Vec<_>>().try_into();
/// assert_eq!(r, Err(vec![0, 1, 2, 3, 4, 5, 6, 7, 8, 9]));
/// ```
///
/// If you're fine with just getting a prefix of the `Vec<T>`,
/// you can call [`.truncate(N)`](Vec::truncate) first.
/// ```
/// let mut v = String::from("hello world").into_bytes();
/// v.sort();
/// v.truncate(2);
/// let [a, b]: [_; 2] = v.try_into().unwrap();
/// assert_eq!(a, b' ');
/// assert_eq!(b, b'd');
/// ```
fn try_from(mut vec: Vec<T, A>) -> Result<[T; N], Vec<T, A>> {
if vec.len() != N {
return Err(vec);
}
// SAFETY: `.set_len(0)` is always sound.
unsafe { vec.set_len(0) };
// SAFETY: A `Vec`'s pointer is always aligned properly, and
// the alignment the array needs is the same as the items.
// We checked earlier that we have sufficient items.
// The items will not double-drop as the `set_len`
// tells the `Vec` not to also drop them.
let array = unsafe { ptr::read(vec.as_ptr() as *const [T; N]) };
Ok(array)
}
}