alloc/vec/
mod.rs

1//! A contiguous growable array type with heap-allocated contents, written
2//! `Vec<T>`.
3//!
4//! Vectors have *O*(1) indexing, amortized *O*(1) push (to the end) and
5//! *O*(1) pop (from the end).
6//!
7//! Vectors ensure they never allocate more than `isize::MAX` bytes.
8//!
9//! # Examples
10//!
11//! You can explicitly create a [`Vec`] with [`Vec::new`]:
12//!
13//! ```
14//! let v: Vec<i32> = Vec::new();
15//! ```
16//!
17//! ...or by using the [`vec!`] macro:
18//!
19//! ```
20//! let v: Vec<i32> = vec![];
21//!
22//! let v = vec![1, 2, 3, 4, 5];
23//!
24//! let v = vec![0; 10]; // ten zeroes
25//! ```
26//!
27//! You can [`push`] values onto the end of a vector (which will grow the vector
28//! as needed):
29//!
30//! ```
31//! let mut v = vec![1, 2];
32//!
33//! v.push(3);
34//! ```
35//!
36//! Popping values works in much the same way:
37//!
38//! ```
39//! let mut v = vec![1, 2];
40//!
41//! let two = v.pop();
42//! ```
43//!
44//! Vectors also support indexing (through the [`Index`] and [`IndexMut`] traits):
45//!
46//! ```
47//! let mut v = vec![1, 2, 3];
48//! let three = v[2];
49//! v[1] = v[1] + 5;
50//! ```
51//!
52//! # Memory layout
53//!
54//! When the type is non-zero-sized and the capacity is nonzero, [`Vec`] uses the [`Global`]
55//! allocator for its allocation. It is valid to convert both ways between such a [`Vec`] and a raw
56//! pointer allocated with the [`Global`] allocator, provided that the [`Layout`] used with the
57//! allocator is correct for a sequence of `capacity` elements of the type, and the first `len`
58//! values pointed to by the raw pointer are valid. More precisely, a `ptr: *mut T` that has been
59//! allocated with the [`Global`] allocator with [`Layout::array::<T>(capacity)`][Layout::array] may
60//! be converted into a vec using
61//! [`Vec::<T>::from_raw_parts(ptr, len, capacity)`](Vec::from_raw_parts). Conversely, the memory
62//! backing a `value: *mut T` obtained from [`Vec::<T>::as_mut_ptr`] may be deallocated using the
63//! [`Global`] allocator with the same layout.
64//!
65//! For zero-sized types (ZSTs), or when the capacity is zero, the `Vec` pointer must be non-null
66//! and sufficiently aligned. The recommended way to build a `Vec` of ZSTs if [`vec!`] cannot be
67//! used is to use [`ptr::NonNull::dangling`].
68//!
69//! [`push`]: Vec::push
70//! [`ptr::NonNull::dangling`]: NonNull::dangling
71//! [`Layout`]: crate::alloc::Layout
72//! [Layout::array]: crate::alloc::Layout::array
73
74#![stable(feature = "rust1", since = "1.0.0")]
75
76#[cfg(not(no_global_oom_handling))]
77use core::clone::TrivialClone;
78#[cfg(not(no_global_oom_handling))]
79use core::cmp;
80use core::cmp::Ordering;
81use core::hash::{Hash, Hasher};
82#[cfg(not(no_global_oom_handling))]
83use core::iter;
84use core::marker::PhantomData;
85use core::mem::{self, Assume, ManuallyDrop, MaybeUninit, SizedTypeProperties, TransmuteFrom};
86use core::ops::{self, Index, IndexMut, Range, RangeBounds};
87use core::ptr::{self, NonNull};
88use core::slice::{self, SliceIndex};
89use core::{fmt, intrinsics, ub_checks};
90
91#[stable(feature = "extract_if", since = "1.87.0")]
92pub use self::extract_if::ExtractIf;
93use crate::alloc::{Allocator, Global};
94use crate::borrow::{Cow, ToOwned};
95use crate::boxed::Box;
96use crate::collections::TryReserveError;
97use crate::raw_vec::RawVec;
98
99mod extract_if;
100
101#[cfg(not(no_global_oom_handling))]
102#[stable(feature = "vec_splice", since = "1.21.0")]
103pub use self::splice::Splice;
104
105#[cfg(not(no_global_oom_handling))]
106mod splice;
107
108#[stable(feature = "drain", since = "1.6.0")]
109pub use self::drain::Drain;
110
111mod drain;
112
113#[cfg(not(no_global_oom_handling))]
114mod cow;
115
116#[cfg(not(no_global_oom_handling))]
117pub(crate) use self::in_place_collect::AsVecIntoIter;
118#[stable(feature = "rust1", since = "1.0.0")]
119pub use self::into_iter::IntoIter;
120
121mod into_iter;
122
123#[cfg(not(no_global_oom_handling))]
124use self::is_zero::IsZero;
125
126#[cfg(not(no_global_oom_handling))]
127mod is_zero;
128
129#[cfg(not(no_global_oom_handling))]
130mod in_place_collect;
131
132mod partial_eq;
133
134#[unstable(feature = "vec_peek_mut", issue = "122742")]
135pub use self::peek_mut::PeekMut;
136
137mod peek_mut;
138
139#[cfg(not(no_global_oom_handling))]
140use self::spec_from_elem::SpecFromElem;
141
142#[cfg(not(no_global_oom_handling))]
143mod spec_from_elem;
144
145#[cfg(not(no_global_oom_handling))]
146use self::set_len_on_drop::SetLenOnDrop;
147
148#[cfg(not(no_global_oom_handling))]
149mod set_len_on_drop;
150
151#[cfg(not(no_global_oom_handling))]
152use self::in_place_drop::{InPlaceDrop, InPlaceDstDataSrcBufDrop};
153
154#[cfg(not(no_global_oom_handling))]
155mod in_place_drop;
156
157#[cfg(not(no_global_oom_handling))]
158use self::spec_from_iter_nested::SpecFromIterNested;
159
160#[cfg(not(no_global_oom_handling))]
161mod spec_from_iter_nested;
162
163#[cfg(not(no_global_oom_handling))]
164use self::spec_from_iter::SpecFromIter;
165
166#[cfg(not(no_global_oom_handling))]
167mod spec_from_iter;
168
169#[cfg(not(no_global_oom_handling))]
170use self::spec_extend::SpecExtend;
171
172#[cfg(not(no_global_oom_handling))]
173mod spec_extend;
174
175/// A contiguous growable array type, written as `Vec<T>`, short for 'vector'.
176///
177/// # Examples
178///
179/// ```
180/// let mut vec = Vec::new();
181/// vec.push(1);
182/// vec.push(2);
183///
184/// assert_eq!(vec.len(), 2);
185/// assert_eq!(vec[0], 1);
186///
187/// assert_eq!(vec.pop(), Some(2));
188/// assert_eq!(vec.len(), 1);
189///
190/// vec[0] = 7;
191/// assert_eq!(vec[0], 7);
192///
193/// vec.extend([1, 2, 3]);
194///
195/// for x in &vec {
196///     println!("{x}");
197/// }
198/// assert_eq!(vec, [7, 1, 2, 3]);
199/// ```
200///
201/// The [`vec!`] macro is provided for convenient initialization:
202///
203/// ```
204/// let mut vec1 = vec![1, 2, 3];
205/// vec1.push(4);
206/// let vec2 = Vec::from([1, 2, 3, 4]);
207/// assert_eq!(vec1, vec2);
208/// ```
209///
210/// It can also initialize each element of a `Vec<T>` with a given value.
211/// This may be more efficient than performing allocation and initialization
212/// in separate steps, especially when initializing a vector of zeros:
213///
214/// ```
215/// let vec = vec![0; 5];
216/// assert_eq!(vec, [0, 0, 0, 0, 0]);
217///
218/// // The following is equivalent, but potentially slower:
219/// let mut vec = Vec::with_capacity(5);
220/// vec.resize(5, 0);
221/// assert_eq!(vec, [0, 0, 0, 0, 0]);
222/// ```
223///
224/// For more information, see
225/// [Capacity and Reallocation](#capacity-and-reallocation).
226///
227/// Use a `Vec<T>` as an efficient stack:
228///
229/// ```
230/// let mut stack = Vec::new();
231///
232/// stack.push(1);
233/// stack.push(2);
234/// stack.push(3);
235///
236/// while let Some(top) = stack.pop() {
237///     // Prints 3, 2, 1
238///     println!("{top}");
239/// }
240/// ```
241///
242/// # Indexing
243///
244/// The `Vec` type allows access to values by index, because it implements the
245/// [`Index`] trait. An example will be more explicit:
246///
247/// ```
248/// let v = vec![0, 2, 4, 6];
249/// println!("{}", v[1]); // it will display '2'
250/// ```
251///
252/// However be careful: if you try to access an index which isn't in the `Vec`,
253/// your software will panic! You cannot do this:
254///
255/// ```should_panic
256/// let v = vec![0, 2, 4, 6];
257/// println!("{}", v[6]); // it will panic!
258/// ```
259///
260/// Use [`get`] and [`get_mut`] if you want to check whether the index is in
261/// the `Vec`.
262///
263/// # Slicing
264///
265/// A `Vec` can be mutable. On the other hand, slices are read-only objects.
266/// To get a [slice][prim@slice], use [`&`]. Example:
267///
268/// ```
269/// fn read_slice(slice: &[usize]) {
270///     // ...
271/// }
272///
273/// let v = vec![0, 1];
274/// read_slice(&v);
275///
276/// // ... and that's all!
277/// // you can also do it like this:
278/// let u: &[usize] = &v;
279/// // or like this:
280/// let u: &[_] = &v;
281/// ```
282///
283/// In Rust, it's more common to pass slices as arguments rather than vectors
284/// when you just want to provide read access. The same goes for [`String`] and
285/// [`&str`].
286///
287/// # Capacity and reallocation
288///
289/// The capacity of a vector is the amount of space allocated for any future
290/// elements that will be added onto the vector. This is not to be confused with
291/// the *length* of a vector, which specifies the number of actual elements
292/// within the vector. If a vector's length exceeds its capacity, its capacity
293/// will automatically be increased, but its elements will have to be
294/// reallocated.
295///
296/// For example, a vector with capacity 10 and length 0 would be an empty vector
297/// with space for 10 more elements. Pushing 10 or fewer elements onto the
298/// vector will not change its capacity or cause reallocation to occur. However,
299/// if the vector's length is increased to 11, it will have to reallocate, which
300/// can be slow. For this reason, it is recommended to use [`Vec::with_capacity`]
301/// whenever possible to specify how big the vector is expected to get.
302///
303/// # Guarantees
304///
305/// Due to its incredibly fundamental nature, `Vec` makes a lot of guarantees
306/// about its design. This ensures that it's as low-overhead as possible in
307/// the general case, and can be correctly manipulated in primitive ways
308/// by unsafe code. Note that these guarantees refer to an unqualified `Vec<T>`.
309/// If additional type parameters are added (e.g., to support custom allocators),
310/// overriding their defaults may change the behavior.
311///
312/// Most fundamentally, `Vec` is and always will be a (pointer, capacity, length)
313/// triplet. No more, no less. The order of these fields is completely
314/// unspecified, and you should use the appropriate methods to modify these.
315/// The pointer will never be null, so this type is null-pointer-optimized.
316///
317/// However, the pointer might not actually point to allocated memory. In particular,
318/// if you construct a `Vec` with capacity 0 via [`Vec::new`], [`vec![]`][`vec!`],
319/// [`Vec::with_capacity(0)`][`Vec::with_capacity`], or by calling [`shrink_to_fit`]
320/// on an empty Vec, it will not allocate memory. Similarly, if you store zero-sized
321/// types inside a `Vec`, it will not allocate space for them. *Note that in this case
322/// the `Vec` might not report a [`capacity`] of 0*. `Vec` will allocate if and only
323/// if <code>[size_of::\<T>]\() * [capacity]\() > 0</code>. In general, `Vec`'s allocation
324/// details are very subtle --- if you intend to allocate memory using a `Vec`
325/// and use it for something else (either to pass to unsafe code, or to build your
326/// own memory-backed collection), be sure to deallocate this memory by using
327/// `from_raw_parts` to recover the `Vec` and then dropping it.
328///
329/// If a `Vec` *has* allocated memory, then the memory it points to is on the heap
330/// (as defined by the allocator Rust is configured to use by default), and its
331/// pointer points to [`len`] initialized, contiguous elements in order (what
332/// you would see if you coerced it to a slice), followed by <code>[capacity] - [len]</code>
333/// logically uninitialized, contiguous elements.
334///
335/// A vector containing the elements `'a'` and `'b'` with capacity 4 can be
336/// visualized as below. The top part is the `Vec` struct, it contains a
337/// pointer to the head of the allocation in the heap, length and capacity.
338/// The bottom part is the allocation on the heap, a contiguous memory block.
339///
340/// ```text
341///             ptr      len  capacity
342///        +--------+--------+--------+
343///        | 0x0123 |      2 |      4 |
344///        +--------+--------+--------+
345///             |
346///             v
347/// Heap   +--------+--------+--------+--------+
348///        |    'a' |    'b' | uninit | uninit |
349///        +--------+--------+--------+--------+
350/// ```
351///
352/// - **uninit** represents memory that is not initialized, see [`MaybeUninit`].
353/// - Note: the ABI is not stable and `Vec` makes no guarantees about its memory
354///   layout (including the order of fields).
355///
356/// `Vec` will never perform a "small optimization" where elements are actually
357/// stored on the stack for two reasons:
358///
359/// * It would make it more difficult for unsafe code to correctly manipulate
360///   a `Vec`. The contents of a `Vec` wouldn't have a stable address if it were
361///   only moved, and it would be more difficult to determine if a `Vec` had
362///   actually allocated memory.
363///
364/// * It would penalize the general case, incurring an additional branch
365///   on every access.
366///
367/// `Vec` will never automatically shrink itself, even if completely empty. This
368/// ensures no unnecessary allocations or deallocations occur. Emptying a `Vec`
369/// and then filling it back up to the same [`len`] should incur no calls to
370/// the allocator. If you wish to free up unused memory, use
371/// [`shrink_to_fit`] or [`shrink_to`].
372///
373/// [`push`] and [`insert`] will never (re)allocate if the reported capacity is
374/// sufficient. [`push`] and [`insert`] *will* (re)allocate if
375/// <code>[len] == [capacity]</code>. That is, the reported capacity is completely
376/// accurate, and can be relied on. It can even be used to manually free the memory
377/// allocated by a `Vec` if desired. Bulk insertion methods *may* reallocate, even
378/// when not necessary.
379///
380/// `Vec` does not guarantee any particular growth strategy when reallocating
381/// when full, nor when [`reserve`] is called. The current strategy is basic
382/// and it may prove desirable to use a non-constant growth factor. Whatever
383/// strategy is used will of course guarantee *O*(1) amortized [`push`].
384///
385/// It is guaranteed, in order to respect the intentions of the programmer, that
386/// all of `vec![e_1, e_2, ..., e_n]`, `vec![x; n]`, and [`Vec::with_capacity(n)`] produce a `Vec`
387/// that requests an allocation of the exact size needed for precisely `n` elements from the allocator,
388/// and no other size (such as, for example: a size rounded up to the nearest power of 2).
389/// The allocator will return an allocation that is at least as large as requested, but it may be larger.
390///
391/// It is guaranteed that the [`Vec::capacity`] method returns a value that is at least the requested capacity
392/// and not more than the allocated capacity.
393///
394/// The method [`Vec::shrink_to_fit`] will attempt to discard excess capacity an allocator has given to a `Vec`.
395/// If <code>[len] == [capacity]</code>, then a `Vec<T>` can be converted
396/// to and from a [`Box<[T]>`][owned slice] without reallocating or moving the elements.
397/// `Vec` exploits this fact as much as reasonable when implementing common conversions
398/// such as [`into_boxed_slice`].
399///
400/// `Vec` will not specifically overwrite any data that is removed from it,
401/// but also won't specifically preserve it. Its uninitialized memory is
402/// scratch space that it may use however it wants. It will generally just do
403/// whatever is most efficient or otherwise easy to implement. Do not rely on
404/// removed data to be erased for security purposes. Even if you drop a `Vec`, its
405/// buffer may simply be reused by another allocation. Even if you zero a `Vec`'s memory
406/// first, that might not actually happen because the optimizer does not consider
407/// this a side-effect that must be preserved. There is one case which we will
408/// not break, however: using `unsafe` code to write to the excess capacity,
409/// and then increasing the length to match, is always valid.
410///
411/// Currently, `Vec` does not guarantee the order in which elements are dropped.
412/// The order has changed in the past and may change again.
413///
414/// [`get`]: slice::get
415/// [`get_mut`]: slice::get_mut
416/// [`String`]: crate::string::String
417/// [`&str`]: type@str
418/// [`shrink_to_fit`]: Vec::shrink_to_fit
419/// [`shrink_to`]: Vec::shrink_to
420/// [capacity]: Vec::capacity
421/// [`capacity`]: Vec::capacity
422/// [`Vec::capacity`]: Vec::capacity
423/// [size_of::\<T>]: size_of
424/// [len]: Vec::len
425/// [`len`]: Vec::len
426/// [`push`]: Vec::push
427/// [`insert`]: Vec::insert
428/// [`reserve`]: Vec::reserve
429/// [`Vec::with_capacity(n)`]: Vec::with_capacity
430/// [`MaybeUninit`]: core::mem::MaybeUninit
431/// [owned slice]: Box
432/// [`into_boxed_slice`]: Vec::into_boxed_slice
433#[stable(feature = "rust1", since = "1.0.0")]
434#[rustc_diagnostic_item = "Vec"]
435#[rustc_insignificant_dtor]
436#[doc(alias = "list")]
437#[doc(alias = "vector")]
438pub struct Vec<T, #[unstable(feature = "allocator_api", issue = "32838")] A: Allocator = Global> {
439    buf: RawVec<T, A>,
440    len: usize,
441}
442
443////////////////////////////////////////////////////////////////////////////////
444// Inherent methods
445////////////////////////////////////////////////////////////////////////////////
446
447impl<T> Vec<T> {
448    /// Constructs a new, empty `Vec<T>`.
449    ///
450    /// The vector will not allocate until elements are pushed onto it.
451    ///
452    /// # Examples
453    ///
454    /// ```
455    /// # #![allow(unused_mut)]
456    /// let mut vec: Vec<i32> = Vec::new();
457    /// ```
458    #[inline]
459    #[rustc_const_stable(feature = "const_vec_new", since = "1.39.0")]
460    #[rustc_diagnostic_item = "vec_new"]
461    #[stable(feature = "rust1", since = "1.0.0")]
462    #[must_use]
463    pub const fn new() -> Self {
464        Vec { buf: RawVec::new(), len: 0 }
465    }
466
467    /// Constructs a new, empty `Vec<T>` with at least the specified capacity.
468    ///
469    /// The vector will be able to hold at least `capacity` elements without
470    /// reallocating. This method is allowed to allocate for more elements than
471    /// `capacity`. If `capacity` is zero, the vector will not allocate.
472    ///
473    /// It is important to note that although the returned vector has the
474    /// minimum *capacity* specified, the vector will have a zero *length*. For
475    /// an explanation of the difference between length and capacity, see
476    /// *[Capacity and reallocation]*.
477    ///
478    /// If it is important to know the exact allocated capacity of a `Vec`,
479    /// always use the [`capacity`] method after construction.
480    ///
481    /// For `Vec<T>` where `T` is a zero-sized type, there will be no allocation
482    /// and the capacity will always be `usize::MAX`.
483    ///
484    /// [Capacity and reallocation]: #capacity-and-reallocation
485    /// [`capacity`]: Vec::capacity
486    ///
487    /// # Panics
488    ///
489    /// Panics if the new capacity exceeds `isize::MAX` _bytes_.
490    ///
491    /// # Examples
492    ///
493    /// ```
494    /// let mut vec = Vec::with_capacity(10);
495    ///
496    /// // The vector contains no items, even though it has capacity for more
497    /// assert_eq!(vec.len(), 0);
498    /// assert!(vec.capacity() >= 10);
499    ///
500    /// // These are all done without reallocating...
501    /// for i in 0..10 {
502    ///     vec.push(i);
503    /// }
504    /// assert_eq!(vec.len(), 10);
505    /// assert!(vec.capacity() >= 10);
506    ///
507    /// // ...but this may make the vector reallocate
508    /// vec.push(11);
509    /// assert_eq!(vec.len(), 11);
510    /// assert!(vec.capacity() >= 11);
511    ///
512    /// // A vector of a zero-sized type will always over-allocate, since no
513    /// // allocation is necessary
514    /// let vec_units = Vec::<()>::with_capacity(10);
515    /// assert_eq!(vec_units.capacity(), usize::MAX);
516    /// ```
517    #[cfg(not(no_global_oom_handling))]
518    #[inline]
519    #[stable(feature = "rust1", since = "1.0.0")]
520    #[must_use]
521    #[rustc_diagnostic_item = "vec_with_capacity"]
522    pub fn with_capacity(capacity: usize) -> Self {
523        Self::with_capacity_in(capacity, Global)
524    }
525
526    /// Constructs a new, empty `Vec<T>` with at least the specified capacity.
527    ///
528    /// The vector will be able to hold at least `capacity` elements without
529    /// reallocating. This method is allowed to allocate for more elements than
530    /// `capacity`. If `capacity` is zero, the vector will not allocate.
531    ///
532    /// # Errors
533    ///
534    /// Returns an error if the capacity exceeds `isize::MAX` _bytes_,
535    /// or if the allocator reports allocation failure.
536    #[inline]
537    #[unstable(feature = "try_with_capacity", issue = "91913")]
538    pub fn try_with_capacity(capacity: usize) -> Result<Self, TryReserveError> {
539        Self::try_with_capacity_in(capacity, Global)
540    }
541
542    /// Creates a `Vec<T>` directly from a pointer, a length, and a capacity.
543    ///
544    /// # Safety
545    ///
546    /// This is highly unsafe, due to the number of invariants that aren't
547    /// checked:
548    ///
549    /// * If `T` is not a zero-sized type and the capacity is nonzero, `ptr` must have
550    ///   been allocated using the global allocator, such as via the [`alloc::alloc`]
551    ///   function. If `T` is a zero-sized type or the capacity is zero, `ptr` need
552    ///   only be non-null and aligned.
553    /// * `T` needs to have the same alignment as what `ptr` was allocated with,
554    ///   if the pointer is required to be allocated.
555    ///   (`T` having a less strict alignment is not sufficient, the alignment really
556    ///   needs to be equal to satisfy the [`dealloc`] requirement that memory must be
557    ///   allocated and deallocated with the same layout.)
558    /// * The size of `T` times the `capacity` (ie. the allocated size in bytes), if
559    ///   nonzero, needs to be the same size as the pointer was allocated with.
560    ///   (Because similar to alignment, [`dealloc`] must be called with the same
561    ///   layout `size`.)
562    /// * `length` needs to be less than or equal to `capacity`.
563    /// * The first `length` values must be properly initialized values of type `T`.
564    /// * `capacity` needs to be the capacity that the pointer was allocated with,
565    ///   if the pointer is required to be allocated.
566    /// * The allocated size in bytes must be no larger than `isize::MAX`.
567    ///   See the safety documentation of [`pointer::offset`].
568    ///
569    /// These requirements are always upheld by any `ptr` that has been allocated
570    /// via `Vec<T>`. Other allocation sources are allowed if the invariants are
571    /// upheld.
572    ///
573    /// Violating these may cause problems like corrupting the allocator's
574    /// internal data structures. For example it is normally **not** safe
575    /// to build a `Vec<u8>` from a pointer to a C `char` array with length
576    /// `size_t`, doing so is only safe if the array was initially allocated by
577    /// a `Vec` or `String`.
578    /// It's also not safe to build one from a `Vec<u16>` and its length, because
579    /// the allocator cares about the alignment, and these two types have different
580    /// alignments. The buffer was allocated with alignment 2 (for `u16`), but after
581    /// turning it into a `Vec<u8>` it'll be deallocated with alignment 1. To avoid
582    /// these issues, it is often preferable to do casting/transmuting using
583    /// [`slice::from_raw_parts`] instead.
584    ///
585    /// The ownership of `ptr` is effectively transferred to the
586    /// `Vec<T>` which may then deallocate, reallocate or change the
587    /// contents of memory pointed to by the pointer at will. Ensure
588    /// that nothing else uses the pointer after calling this
589    /// function.
590    ///
591    /// [`String`]: crate::string::String
592    /// [`alloc::alloc`]: crate::alloc::alloc
593    /// [`dealloc`]: crate::alloc::GlobalAlloc::dealloc
594    ///
595    /// # Examples
596    ///
597    /// ```
598    /// use std::ptr;
599    ///
600    /// let v = vec![1, 2, 3];
601    ///
602    /// // Deconstruct the vector into parts.
603    /// let (p, len, cap) = v.into_raw_parts();
604    ///
605    /// unsafe {
606    ///     // Overwrite memory with 4, 5, 6
607    ///     for i in 0..len {
608    ///         ptr::write(p.add(i), 4 + i);
609    ///     }
610    ///
611    ///     // Put everything back together into a Vec
612    ///     let rebuilt = Vec::from_raw_parts(p, len, cap);
613    ///     assert_eq!(rebuilt, [4, 5, 6]);
614    /// }
615    /// ```
616    ///
617    /// Using memory that was allocated elsewhere:
618    ///
619    /// ```rust
620    /// use std::alloc::{alloc, Layout};
621    ///
622    /// fn main() {
623    ///     let layout = Layout::array::<u32>(16).expect("overflow cannot happen");
624    ///
625    ///     let vec = unsafe {
626    ///         let mem = alloc(layout).cast::<u32>();
627    ///         if mem.is_null() {
628    ///             return;
629    ///         }
630    ///
631    ///         mem.write(1_000_000);
632    ///
633    ///         Vec::from_raw_parts(mem, 1, 16)
634    ///     };
635    ///
636    ///     assert_eq!(vec, &[1_000_000]);
637    ///     assert_eq!(vec.capacity(), 16);
638    /// }
639    /// ```
640    #[inline]
641    #[stable(feature = "rust1", since = "1.0.0")]
642    pub unsafe fn from_raw_parts(ptr: *mut T, length: usize, capacity: usize) -> Self {
643        unsafe { Self::from_raw_parts_in(ptr, length, capacity, Global) }
644    }
645
646    #[doc(alias = "from_non_null_parts")]
647    /// Creates a `Vec<T>` directly from a `NonNull` pointer, a length, and a capacity.
648    ///
649    /// # Safety
650    ///
651    /// This is highly unsafe, due to the number of invariants that aren't
652    /// checked:
653    ///
654    /// * `ptr` must have been allocated using the global allocator, such as via
655    ///   the [`alloc::alloc`] function.
656    /// * `T` needs to have the same alignment as what `ptr` was allocated with.
657    ///   (`T` having a less strict alignment is not sufficient, the alignment really
658    ///   needs to be equal to satisfy the [`dealloc`] requirement that memory must be
659    ///   allocated and deallocated with the same layout.)
660    /// * The size of `T` times the `capacity` (ie. the allocated size in bytes) needs
661    ///   to be the same size as the pointer was allocated with. (Because similar to
662    ///   alignment, [`dealloc`] must be called with the same layout `size`.)
663    /// * `length` needs to be less than or equal to `capacity`.
664    /// * The first `length` values must be properly initialized values of type `T`.
665    /// * `capacity` needs to be the capacity that the pointer was allocated with.
666    /// * The allocated size in bytes must be no larger than `isize::MAX`.
667    ///   See the safety documentation of [`pointer::offset`].
668    ///
669    /// These requirements are always upheld by any `ptr` that has been allocated
670    /// via `Vec<T>`. Other allocation sources are allowed if the invariants are
671    /// upheld.
672    ///
673    /// Violating these may cause problems like corrupting the allocator's
674    /// internal data structures. For example it is normally **not** safe
675    /// to build a `Vec<u8>` from a pointer to a C `char` array with length
676    /// `size_t`, doing so is only safe if the array was initially allocated by
677    /// a `Vec` or `String`.
678    /// It's also not safe to build one from a `Vec<u16>` and its length, because
679    /// the allocator cares about the alignment, and these two types have different
680    /// alignments. The buffer was allocated with alignment 2 (for `u16`), but after
681    /// turning it into a `Vec<u8>` it'll be deallocated with alignment 1. To avoid
682    /// these issues, it is often preferable to do casting/transmuting using
683    /// [`NonNull::slice_from_raw_parts`] instead.
684    ///
685    /// The ownership of `ptr` is effectively transferred to the
686    /// `Vec<T>` which may then deallocate, reallocate or change the
687    /// contents of memory pointed to by the pointer at will. Ensure
688    /// that nothing else uses the pointer after calling this
689    /// function.
690    ///
691    /// [`String`]: crate::string::String
692    /// [`alloc::alloc`]: crate::alloc::alloc
693    /// [`dealloc`]: crate::alloc::GlobalAlloc::dealloc
694    ///
695    /// # Examples
696    ///
697    /// ```
698    /// #![feature(box_vec_non_null)]
699    ///
700    /// let v = vec![1, 2, 3];
701    ///
702    /// // Deconstruct the vector into parts.
703    /// let (p, len, cap) = v.into_parts();
704    ///
705    /// unsafe {
706    ///     // Overwrite memory with 4, 5, 6
707    ///     for i in 0..len {
708    ///         p.add(i).write(4 + i);
709    ///     }
710    ///
711    ///     // Put everything back together into a Vec
712    ///     let rebuilt = Vec::from_parts(p, len, cap);
713    ///     assert_eq!(rebuilt, [4, 5, 6]);
714    /// }
715    /// ```
716    ///
717    /// Using memory that was allocated elsewhere:
718    ///
719    /// ```rust
720    /// #![feature(box_vec_non_null)]
721    ///
722    /// use std::alloc::{alloc, Layout};
723    /// use std::ptr::NonNull;
724    ///
725    /// fn main() {
726    ///     let layout = Layout::array::<u32>(16).expect("overflow cannot happen");
727    ///
728    ///     let vec = unsafe {
729    ///         let Some(mem) = NonNull::new(alloc(layout).cast::<u32>()) else {
730    ///             return;
731    ///         };
732    ///
733    ///         mem.write(1_000_000);
734    ///
735    ///         Vec::from_parts(mem, 1, 16)
736    ///     };
737    ///
738    ///     assert_eq!(vec, &[1_000_000]);
739    ///     assert_eq!(vec.capacity(), 16);
740    /// }
741    /// ```
742    #[inline]
743    #[unstable(feature = "box_vec_non_null", reason = "new API", issue = "130364")]
744    pub unsafe fn from_parts(ptr: NonNull<T>, length: usize, capacity: usize) -> Self {
745        unsafe { Self::from_parts_in(ptr, length, capacity, Global) }
746    }
747
748    /// Creates a `Vec<T>` where each element is produced by calling `f` with
749    /// that element's index while walking forward through the `Vec<T>`.
750    ///
751    /// This is essentially the same as writing
752    ///
753    /// ```text
754    /// vec![f(0), f(1), f(2), …, f(length - 2), f(length - 1)]
755    /// ```
756    /// and is similar to `(0..i).map(f)`, just for `Vec<T>`s not iterators.
757    ///
758    /// If `length == 0`, this produces an empty `Vec<T>` without ever calling `f`.
759    ///
760    /// # Example
761    ///
762    /// ```rust
763    /// #![feature(vec_from_fn)]
764    ///
765    /// let vec = Vec::from_fn(5, |i| i);
766    ///
767    /// // indexes are:  0  1  2  3  4
768    /// assert_eq!(vec, [0, 1, 2, 3, 4]);
769    ///
770    /// let vec2 = Vec::from_fn(8, |i| i * 2);
771    ///
772    /// // indexes are:   0  1  2  3  4  5   6   7
773    /// assert_eq!(vec2, [0, 2, 4, 6, 8, 10, 12, 14]);
774    ///
775    /// let bool_vec = Vec::from_fn(5, |i| i % 2 == 0);
776    ///
777    /// // indexes are:       0     1      2     3      4
778    /// assert_eq!(bool_vec, [true, false, true, false, true]);
779    /// ```
780    ///
781    /// The `Vec<T>` is generated in ascending index order, starting from the front
782    /// and going towards the back, so you can use closures with mutable state:
783    /// ```
784    /// #![feature(vec_from_fn)]
785    ///
786    /// let mut state = 1;
787    /// let a = Vec::from_fn(6, |_| { let x = state; state *= 2; x });
788    ///
789    /// assert_eq!(a, [1, 2, 4, 8, 16, 32]);
790    /// ```
791    #[cfg(not(no_global_oom_handling))]
792    #[inline]
793    #[unstable(feature = "vec_from_fn", reason = "new API", issue = "149698")]
794    pub fn from_fn<F>(length: usize, f: F) -> Self
795    where
796        F: FnMut(usize) -> T,
797    {
798        (0..length).map(f).collect()
799    }
800
801    /// Decomposes a `Vec<T>` into its raw components: `(pointer, length, capacity)`.
802    ///
803    /// Returns the raw pointer to the underlying data, the length of
804    /// the vector (in elements), and the allocated capacity of the
805    /// data (in elements). These are the same arguments in the same
806    /// order as the arguments to [`from_raw_parts`].
807    ///
808    /// After calling this function, the caller is responsible for the
809    /// memory previously managed by the `Vec`. Most often, one does
810    /// this by converting the raw pointer, length, and capacity back
811    /// into a `Vec` with the [`from_raw_parts`] function; more generally,
812    /// if `T` is non-zero-sized and the capacity is nonzero, one may use
813    /// any method that calls [`dealloc`] with a layout of
814    /// `Layout::array::<T>(capacity)`; if `T` is zero-sized or the
815    /// capacity is zero, nothing needs to be done.
816    ///
817    /// [`from_raw_parts`]: Vec::from_raw_parts
818    /// [`dealloc`]: crate::alloc::GlobalAlloc::dealloc
819    ///
820    /// # Examples
821    ///
822    /// ```
823    /// let v: Vec<i32> = vec![-1, 0, 1];
824    ///
825    /// let (ptr, len, cap) = v.into_raw_parts();
826    ///
827    /// let rebuilt = unsafe {
828    ///     // We can now make changes to the components, such as
829    ///     // transmuting the raw pointer to a compatible type.
830    ///     let ptr = ptr as *mut u32;
831    ///
832    ///     Vec::from_raw_parts(ptr, len, cap)
833    /// };
834    /// assert_eq!(rebuilt, [4294967295, 0, 1]);
835    /// ```
836    #[must_use = "losing the pointer will leak memory"]
837    #[stable(feature = "vec_into_raw_parts", since = "CURRENT_RUSTC_VERSION")]
838    pub fn into_raw_parts(self) -> (*mut T, usize, usize) {
839        let mut me = ManuallyDrop::new(self);
840        (me.as_mut_ptr(), me.len(), me.capacity())
841    }
842
843    #[doc(alias = "into_non_null_parts")]
844    /// Decomposes a `Vec<T>` into its raw components: `(NonNull pointer, length, capacity)`.
845    ///
846    /// Returns the `NonNull` pointer to the underlying data, the length of
847    /// the vector (in elements), and the allocated capacity of the
848    /// data (in elements). These are the same arguments in the same
849    /// order as the arguments to [`from_parts`].
850    ///
851    /// After calling this function, the caller is responsible for the
852    /// memory previously managed by the `Vec`. The only way to do
853    /// this is to convert the `NonNull` pointer, length, and capacity back
854    /// into a `Vec` with the [`from_parts`] function, allowing
855    /// the destructor to perform the cleanup.
856    ///
857    /// [`from_parts`]: Vec::from_parts
858    ///
859    /// # Examples
860    ///
861    /// ```
862    /// #![feature(box_vec_non_null)]
863    ///
864    /// let v: Vec<i32> = vec![-1, 0, 1];
865    ///
866    /// let (ptr, len, cap) = v.into_parts();
867    ///
868    /// let rebuilt = unsafe {
869    ///     // We can now make changes to the components, such as
870    ///     // transmuting the raw pointer to a compatible type.
871    ///     let ptr = ptr.cast::<u32>();
872    ///
873    ///     Vec::from_parts(ptr, len, cap)
874    /// };
875    /// assert_eq!(rebuilt, [4294967295, 0, 1]);
876    /// ```
877    #[must_use = "losing the pointer will leak memory"]
878    #[unstable(feature = "box_vec_non_null", reason = "new API", issue = "130364")]
879    pub fn into_parts(self) -> (NonNull<T>, usize, usize) {
880        let (ptr, len, capacity) = self.into_raw_parts();
881        // SAFETY: A `Vec` always has a non-null pointer.
882        (unsafe { NonNull::new_unchecked(ptr) }, len, capacity)
883    }
884}
885
886impl<T, A: Allocator> Vec<T, A> {
887    /// Constructs a new, empty `Vec<T, A>`.
888    ///
889    /// The vector will not allocate until elements are pushed onto it.
890    ///
891    /// # Examples
892    ///
893    /// ```
894    /// #![feature(allocator_api)]
895    ///
896    /// use std::alloc::System;
897    ///
898    /// # #[allow(unused_mut)]
899    /// let mut vec: Vec<i32, _> = Vec::new_in(System);
900    /// ```
901    #[inline]
902    #[unstable(feature = "allocator_api", issue = "32838")]
903    pub const fn new_in(alloc: A) -> Self {
904        Vec { buf: RawVec::new_in(alloc), len: 0 }
905    }
906
907    /// Constructs a new, empty `Vec<T, A>` with at least the specified capacity
908    /// with the provided allocator.
909    ///
910    /// The vector will be able to hold at least `capacity` elements without
911    /// reallocating. This method is allowed to allocate for more elements than
912    /// `capacity`. If `capacity` is zero, the vector will not allocate.
913    ///
914    /// It is important to note that although the returned vector has the
915    /// minimum *capacity* specified, the vector will have a zero *length*. For
916    /// an explanation of the difference between length and capacity, see
917    /// *[Capacity and reallocation]*.
918    ///
919    /// If it is important to know the exact allocated capacity of a `Vec`,
920    /// always use the [`capacity`] method after construction.
921    ///
922    /// For `Vec<T, A>` where `T` is a zero-sized type, there will be no allocation
923    /// and the capacity will always be `usize::MAX`.
924    ///
925    /// [Capacity and reallocation]: #capacity-and-reallocation
926    /// [`capacity`]: Vec::capacity
927    ///
928    /// # Panics
929    ///
930    /// Panics if the new capacity exceeds `isize::MAX` _bytes_.
931    ///
932    /// # Examples
933    ///
934    /// ```
935    /// #![feature(allocator_api)]
936    ///
937    /// use std::alloc::System;
938    ///
939    /// let mut vec = Vec::with_capacity_in(10, System);
940    ///
941    /// // The vector contains no items, even though it has capacity for more
942    /// assert_eq!(vec.len(), 0);
943    /// assert!(vec.capacity() >= 10);
944    ///
945    /// // These are all done without reallocating...
946    /// for i in 0..10 {
947    ///     vec.push(i);
948    /// }
949    /// assert_eq!(vec.len(), 10);
950    /// assert!(vec.capacity() >= 10);
951    ///
952    /// // ...but this may make the vector reallocate
953    /// vec.push(11);
954    /// assert_eq!(vec.len(), 11);
955    /// assert!(vec.capacity() >= 11);
956    ///
957    /// // A vector of a zero-sized type will always over-allocate, since no
958    /// // allocation is necessary
959    /// let vec_units = Vec::<(), System>::with_capacity_in(10, System);
960    /// assert_eq!(vec_units.capacity(), usize::MAX);
961    /// ```
962    #[cfg(not(no_global_oom_handling))]
963    #[inline]
964    #[unstable(feature = "allocator_api", issue = "32838")]
965    pub fn with_capacity_in(capacity: usize, alloc: A) -> Self {
966        Vec { buf: RawVec::with_capacity_in(capacity, alloc), len: 0 }
967    }
968
969    /// Constructs a new, empty `Vec<T, A>` with at least the specified capacity
970    /// with the provided allocator.
971    ///
972    /// The vector will be able to hold at least `capacity` elements without
973    /// reallocating. This method is allowed to allocate for more elements than
974    /// `capacity`. If `capacity` is zero, the vector will not allocate.
975    ///
976    /// # Errors
977    ///
978    /// Returns an error if the capacity exceeds `isize::MAX` _bytes_,
979    /// or if the allocator reports allocation failure.
980    #[inline]
981    #[unstable(feature = "allocator_api", issue = "32838")]
982    // #[unstable(feature = "try_with_capacity", issue = "91913")]
983    pub fn try_with_capacity_in(capacity: usize, alloc: A) -> Result<Self, TryReserveError> {
984        Ok(Vec { buf: RawVec::try_with_capacity_in(capacity, alloc)?, len: 0 })
985    }
986
987    /// Creates a `Vec<T, A>` directly from a pointer, a length, a capacity,
988    /// and an allocator.
989    ///
990    /// # Safety
991    ///
992    /// This is highly unsafe, due to the number of invariants that aren't
993    /// checked:
994    ///
995    /// * `ptr` must be [*currently allocated*] via the given allocator `alloc`.
996    /// * `T` needs to have the same alignment as what `ptr` was allocated with.
997    ///   (`T` having a less strict alignment is not sufficient, the alignment really
998    ///   needs to be equal to satisfy the [`dealloc`] requirement that memory must be
999    ///   allocated and deallocated with the same layout.)
1000    /// * The size of `T` times the `capacity` (ie. the allocated size in bytes) needs
1001    ///   to be the same size as the pointer was allocated with. (Because similar to
1002    ///   alignment, [`dealloc`] must be called with the same layout `size`.)
1003    /// * `length` needs to be less than or equal to `capacity`.
1004    /// * The first `length` values must be properly initialized values of type `T`.
1005    /// * `capacity` needs to [*fit*] the layout size that the pointer was allocated with.
1006    /// * The allocated size in bytes must be no larger than `isize::MAX`.
1007    ///   See the safety documentation of [`pointer::offset`].
1008    ///
1009    /// These requirements are always upheld by any `ptr` that has been allocated
1010    /// via `Vec<T, A>`. Other allocation sources are allowed if the invariants are
1011    /// upheld.
1012    ///
1013    /// Violating these may cause problems like corrupting the allocator's
1014    /// internal data structures. For example it is **not** safe
1015    /// to build a `Vec<u8>` from a pointer to a C `char` array with length `size_t`.
1016    /// It's also not safe to build one from a `Vec<u16>` and its length, because
1017    /// the allocator cares about the alignment, and these two types have different
1018    /// alignments. The buffer was allocated with alignment 2 (for `u16`), but after
1019    /// turning it into a `Vec<u8>` it'll be deallocated with alignment 1.
1020    ///
1021    /// The ownership of `ptr` is effectively transferred to the
1022    /// `Vec<T>` which may then deallocate, reallocate or change the
1023    /// contents of memory pointed to by the pointer at will. Ensure
1024    /// that nothing else uses the pointer after calling this
1025    /// function.
1026    ///
1027    /// [`String`]: crate::string::String
1028    /// [`dealloc`]: crate::alloc::GlobalAlloc::dealloc
1029    /// [*currently allocated*]: crate::alloc::Allocator#currently-allocated-memory
1030    /// [*fit*]: crate::alloc::Allocator#memory-fitting
1031    ///
1032    /// # Examples
1033    ///
1034    /// ```
1035    /// #![feature(allocator_api)]
1036    ///
1037    /// use std::alloc::System;
1038    ///
1039    /// use std::ptr;
1040    ///
1041    /// let mut v = Vec::with_capacity_in(3, System);
1042    /// v.push(1);
1043    /// v.push(2);
1044    /// v.push(3);
1045    ///
1046    /// // Deconstruct the vector into parts.
1047    /// let (p, len, cap, alloc) = v.into_raw_parts_with_alloc();
1048    ///
1049    /// unsafe {
1050    ///     // Overwrite memory with 4, 5, 6
1051    ///     for i in 0..len {
1052    ///         ptr::write(p.add(i), 4 + i);
1053    ///     }
1054    ///
1055    ///     // Put everything back together into a Vec
1056    ///     let rebuilt = Vec::from_raw_parts_in(p, len, cap, alloc.clone());
1057    ///     assert_eq!(rebuilt, [4, 5, 6]);
1058    /// }
1059    /// ```
1060    ///
1061    /// Using memory that was allocated elsewhere:
1062    ///
1063    /// ```rust
1064    /// #![feature(allocator_api)]
1065    ///
1066    /// use std::alloc::{AllocError, Allocator, Global, Layout};
1067    ///
1068    /// fn main() {
1069    ///     let layout = Layout::array::<u32>(16).expect("overflow cannot happen");
1070    ///
1071    ///     let vec = unsafe {
1072    ///         let mem = match Global.allocate(layout) {
1073    ///             Ok(mem) => mem.cast::<u32>().as_ptr(),
1074    ///             Err(AllocError) => return,
1075    ///         };
1076    ///
1077    ///         mem.write(1_000_000);
1078    ///
1079    ///         Vec::from_raw_parts_in(mem, 1, 16, Global)
1080    ///     };
1081    ///
1082    ///     assert_eq!(vec, &[1_000_000]);
1083    ///     assert_eq!(vec.capacity(), 16);
1084    /// }
1085    /// ```
1086    #[inline]
1087    #[unstable(feature = "allocator_api", issue = "32838")]
1088    pub unsafe fn from_raw_parts_in(ptr: *mut T, length: usize, capacity: usize, alloc: A) -> Self {
1089        ub_checks::assert_unsafe_precondition!(
1090            check_library_ub,
1091            "Vec::from_raw_parts_in requires that length <= capacity",
1092            (length: usize = length, capacity: usize = capacity) => length <= capacity
1093        );
1094        unsafe { Vec { buf: RawVec::from_raw_parts_in(ptr, capacity, alloc), len: length } }
1095    }
1096
1097    #[doc(alias = "from_non_null_parts_in")]
1098    /// Creates a `Vec<T, A>` directly from a `NonNull` pointer, a length, a capacity,
1099    /// and an allocator.
1100    ///
1101    /// # Safety
1102    ///
1103    /// This is highly unsafe, due to the number of invariants that aren't
1104    /// checked:
1105    ///
1106    /// * `ptr` must be [*currently allocated*] via the given allocator `alloc`.
1107    /// * `T` needs to have the same alignment as what `ptr` was allocated with.
1108    ///   (`T` having a less strict alignment is not sufficient, the alignment really
1109    ///   needs to be equal to satisfy the [`dealloc`] requirement that memory must be
1110    ///   allocated and deallocated with the same layout.)
1111    /// * The size of `T` times the `capacity` (ie. the allocated size in bytes) needs
1112    ///   to be the same size as the pointer was allocated with. (Because similar to
1113    ///   alignment, [`dealloc`] must be called with the same layout `size`.)
1114    /// * `length` needs to be less than or equal to `capacity`.
1115    /// * The first `length` values must be properly initialized values of type `T`.
1116    /// * `capacity` needs to [*fit*] the layout size that the pointer was allocated with.
1117    /// * The allocated size in bytes must be no larger than `isize::MAX`.
1118    ///   See the safety documentation of [`pointer::offset`].
1119    ///
1120    /// These requirements are always upheld by any `ptr` that has been allocated
1121    /// via `Vec<T, A>`. Other allocation sources are allowed if the invariants are
1122    /// upheld.
1123    ///
1124    /// Violating these may cause problems like corrupting the allocator's
1125    /// internal data structures. For example it is **not** safe
1126    /// to build a `Vec<u8>` from a pointer to a C `char` array with length `size_t`.
1127    /// It's also not safe to build one from a `Vec<u16>` and its length, because
1128    /// the allocator cares about the alignment, and these two types have different
1129    /// alignments. The buffer was allocated with alignment 2 (for `u16`), but after
1130    /// turning it into a `Vec<u8>` it'll be deallocated with alignment 1.
1131    ///
1132    /// The ownership of `ptr` is effectively transferred to the
1133    /// `Vec<T>` which may then deallocate, reallocate or change the
1134    /// contents of memory pointed to by the pointer at will. Ensure
1135    /// that nothing else uses the pointer after calling this
1136    /// function.
1137    ///
1138    /// [`String`]: crate::string::String
1139    /// [`dealloc`]: crate::alloc::GlobalAlloc::dealloc
1140    /// [*currently allocated*]: crate::alloc::Allocator#currently-allocated-memory
1141    /// [*fit*]: crate::alloc::Allocator#memory-fitting
1142    ///
1143    /// # Examples
1144    ///
1145    /// ```
1146    /// #![feature(allocator_api, box_vec_non_null)]
1147    ///
1148    /// use std::alloc::System;
1149    ///
1150    /// let mut v = Vec::with_capacity_in(3, System);
1151    /// v.push(1);
1152    /// v.push(2);
1153    /// v.push(3);
1154    ///
1155    /// // Deconstruct the vector into parts.
1156    /// let (p, len, cap, alloc) = v.into_parts_with_alloc();
1157    ///
1158    /// unsafe {
1159    ///     // Overwrite memory with 4, 5, 6
1160    ///     for i in 0..len {
1161    ///         p.add(i).write(4 + i);
1162    ///     }
1163    ///
1164    ///     // Put everything back together into a Vec
1165    ///     let rebuilt = Vec::from_parts_in(p, len, cap, alloc.clone());
1166    ///     assert_eq!(rebuilt, [4, 5, 6]);
1167    /// }
1168    /// ```
1169    ///
1170    /// Using memory that was allocated elsewhere:
1171    ///
1172    /// ```rust
1173    /// #![feature(allocator_api, box_vec_non_null)]
1174    ///
1175    /// use std::alloc::{AllocError, Allocator, Global, Layout};
1176    ///
1177    /// fn main() {
1178    ///     let layout = Layout::array::<u32>(16).expect("overflow cannot happen");
1179    ///
1180    ///     let vec = unsafe {
1181    ///         let mem = match Global.allocate(layout) {
1182    ///             Ok(mem) => mem.cast::<u32>(),
1183    ///             Err(AllocError) => return,
1184    ///         };
1185    ///
1186    ///         mem.write(1_000_000);
1187    ///
1188    ///         Vec::from_parts_in(mem, 1, 16, Global)
1189    ///     };
1190    ///
1191    ///     assert_eq!(vec, &[1_000_000]);
1192    ///     assert_eq!(vec.capacity(), 16);
1193    /// }
1194    /// ```
1195    #[inline]
1196    #[unstable(feature = "allocator_api", reason = "new API", issue = "32838")]
1197    // #[unstable(feature = "box_vec_non_null", issue = "130364")]
1198    pub unsafe fn from_parts_in(ptr: NonNull<T>, length: usize, capacity: usize, alloc: A) -> Self {
1199        ub_checks::assert_unsafe_precondition!(
1200            check_library_ub,
1201            "Vec::from_parts_in requires that length <= capacity",
1202            (length: usize = length, capacity: usize = capacity) => length <= capacity
1203        );
1204        unsafe { Vec { buf: RawVec::from_nonnull_in(ptr, capacity, alloc), len: length } }
1205    }
1206
1207    /// Decomposes a `Vec<T>` into its raw components: `(pointer, length, capacity, allocator)`.
1208    ///
1209    /// Returns the raw pointer to the underlying data, the length of the vector (in elements),
1210    /// the allocated capacity of the data (in elements), and the allocator. These are the same
1211    /// arguments in the same order as the arguments to [`from_raw_parts_in`].
1212    ///
1213    /// After calling this function, the caller is responsible for the
1214    /// memory previously managed by the `Vec`. The only way to do
1215    /// this is to convert the raw pointer, length, and capacity back
1216    /// into a `Vec` with the [`from_raw_parts_in`] function, allowing
1217    /// the destructor to perform the cleanup.
1218    ///
1219    /// [`from_raw_parts_in`]: Vec::from_raw_parts_in
1220    ///
1221    /// # Examples
1222    ///
1223    /// ```
1224    /// #![feature(allocator_api)]
1225    ///
1226    /// use std::alloc::System;
1227    ///
1228    /// let mut v: Vec<i32, System> = Vec::new_in(System);
1229    /// v.push(-1);
1230    /// v.push(0);
1231    /// v.push(1);
1232    ///
1233    /// let (ptr, len, cap, alloc) = v.into_raw_parts_with_alloc();
1234    ///
1235    /// let rebuilt = unsafe {
1236    ///     // We can now make changes to the components, such as
1237    ///     // transmuting the raw pointer to a compatible type.
1238    ///     let ptr = ptr as *mut u32;
1239    ///
1240    ///     Vec::from_raw_parts_in(ptr, len, cap, alloc)
1241    /// };
1242    /// assert_eq!(rebuilt, [4294967295, 0, 1]);
1243    /// ```
1244    #[must_use = "losing the pointer will leak memory"]
1245    #[unstable(feature = "allocator_api", issue = "32838")]
1246    pub fn into_raw_parts_with_alloc(self) -> (*mut T, usize, usize, A) {
1247        let mut me = ManuallyDrop::new(self);
1248        let len = me.len();
1249        let capacity = me.capacity();
1250        let ptr = me.as_mut_ptr();
1251        let alloc = unsafe { ptr::read(me.allocator()) };
1252        (ptr, len, capacity, alloc)
1253    }
1254
1255    #[doc(alias = "into_non_null_parts_with_alloc")]
1256    /// Decomposes a `Vec<T>` into its raw components: `(NonNull pointer, length, capacity, allocator)`.
1257    ///
1258    /// Returns the `NonNull` pointer to the underlying data, the length of the vector (in elements),
1259    /// the allocated capacity of the data (in elements), and the allocator. These are the same
1260    /// arguments in the same order as the arguments to [`from_parts_in`].
1261    ///
1262    /// After calling this function, the caller is responsible for the
1263    /// memory previously managed by the `Vec`. The only way to do
1264    /// this is to convert the `NonNull` pointer, length, and capacity back
1265    /// into a `Vec` with the [`from_parts_in`] function, allowing
1266    /// the destructor to perform the cleanup.
1267    ///
1268    /// [`from_parts_in`]: Vec::from_parts_in
1269    ///
1270    /// # Examples
1271    ///
1272    /// ```
1273    /// #![feature(allocator_api, box_vec_non_null)]
1274    ///
1275    /// use std::alloc::System;
1276    ///
1277    /// let mut v: Vec<i32, System> = Vec::new_in(System);
1278    /// v.push(-1);
1279    /// v.push(0);
1280    /// v.push(1);
1281    ///
1282    /// let (ptr, len, cap, alloc) = v.into_parts_with_alloc();
1283    ///
1284    /// let rebuilt = unsafe {
1285    ///     // We can now make changes to the components, such as
1286    ///     // transmuting the raw pointer to a compatible type.
1287    ///     let ptr = ptr.cast::<u32>();
1288    ///
1289    ///     Vec::from_parts_in(ptr, len, cap, alloc)
1290    /// };
1291    /// assert_eq!(rebuilt, [4294967295, 0, 1]);
1292    /// ```
1293    #[must_use = "losing the pointer will leak memory"]
1294    #[unstable(feature = "allocator_api", issue = "32838")]
1295    // #[unstable(feature = "box_vec_non_null", reason = "new API", issue = "130364")]
1296    pub fn into_parts_with_alloc(self) -> (NonNull<T>, usize, usize, A) {
1297        let (ptr, len, capacity, alloc) = self.into_raw_parts_with_alloc();
1298        // SAFETY: A `Vec` always has a non-null pointer.
1299        (unsafe { NonNull::new_unchecked(ptr) }, len, capacity, alloc)
1300    }
1301
1302    /// Returns the total number of elements the vector can hold without
1303    /// reallocating.
1304    ///
1305    /// # Examples
1306    ///
1307    /// ```
1308    /// let mut vec: Vec<i32> = Vec::with_capacity(10);
1309    /// vec.push(42);
1310    /// assert!(vec.capacity() >= 10);
1311    /// ```
1312    ///
1313    /// A vector with zero-sized elements will always have a capacity of usize::MAX:
1314    ///
1315    /// ```
1316    /// #[derive(Clone)]
1317    /// struct ZeroSized;
1318    ///
1319    /// fn main() {
1320    ///     assert_eq!(std::mem::size_of::<ZeroSized>(), 0);
1321    ///     let v = vec![ZeroSized; 0];
1322    ///     assert_eq!(v.capacity(), usize::MAX);
1323    /// }
1324    /// ```
1325    #[inline]
1326    #[stable(feature = "rust1", since = "1.0.0")]
1327    #[rustc_const_stable(feature = "const_vec_string_slice", since = "1.87.0")]
1328    pub const fn capacity(&self) -> usize {
1329        self.buf.capacity()
1330    }
1331
1332    /// Reserves capacity for at least `additional` more elements to be inserted
1333    /// in the given `Vec<T>`. The collection may reserve more space to
1334    /// speculatively avoid frequent reallocations. After calling `reserve`,
1335    /// capacity will be greater than or equal to `self.len() + additional`.
1336    /// Does nothing if capacity is already sufficient.
1337    ///
1338    /// # Panics
1339    ///
1340    /// Panics if the new capacity exceeds `isize::MAX` _bytes_.
1341    ///
1342    /// # Examples
1343    ///
1344    /// ```
1345    /// let mut vec = vec![1];
1346    /// vec.reserve(10);
1347    /// assert!(vec.capacity() >= 11);
1348    /// ```
1349    #[cfg(not(no_global_oom_handling))]
1350    #[stable(feature = "rust1", since = "1.0.0")]
1351    #[rustc_diagnostic_item = "vec_reserve"]
1352    pub fn reserve(&mut self, additional: usize) {
1353        self.buf.reserve(self.len, additional);
1354    }
1355
1356    /// Reserves the minimum capacity for at least `additional` more elements to
1357    /// be inserted in the given `Vec<T>`. Unlike [`reserve`], this will not
1358    /// deliberately over-allocate to speculatively avoid frequent allocations.
1359    /// After calling `reserve_exact`, capacity will be greater than or equal to
1360    /// `self.len() + additional`. Does nothing if the capacity is already
1361    /// sufficient.
1362    ///
1363    /// Note that the allocator may give the collection more space than it
1364    /// requests. Therefore, capacity can not be relied upon to be precisely
1365    /// minimal. Prefer [`reserve`] if future insertions are expected.
1366    ///
1367    /// [`reserve`]: Vec::reserve
1368    ///
1369    /// # Panics
1370    ///
1371    /// Panics if the new capacity exceeds `isize::MAX` _bytes_.
1372    ///
1373    /// # Examples
1374    ///
1375    /// ```
1376    /// let mut vec = vec![1];
1377    /// vec.reserve_exact(10);
1378    /// assert!(vec.capacity() >= 11);
1379    /// ```
1380    #[cfg(not(no_global_oom_handling))]
1381    #[stable(feature = "rust1", since = "1.0.0")]
1382    pub fn reserve_exact(&mut self, additional: usize) {
1383        self.buf.reserve_exact(self.len, additional);
1384    }
1385
1386    /// Tries to reserve capacity for at least `additional` more elements to be inserted
1387    /// in the given `Vec<T>`. The collection may reserve more space to speculatively avoid
1388    /// frequent reallocations. After calling `try_reserve`, capacity will be
1389    /// greater than or equal to `self.len() + additional` if it returns
1390    /// `Ok(())`. Does nothing if capacity is already sufficient. This method
1391    /// preserves the contents even if an error occurs.
1392    ///
1393    /// # Errors
1394    ///
1395    /// If the capacity overflows, or the allocator reports a failure, then an error
1396    /// is returned.
1397    ///
1398    /// # Examples
1399    ///
1400    /// ```
1401    /// use std::collections::TryReserveError;
1402    ///
1403    /// fn process_data(data: &[u32]) -> Result<Vec<u32>, TryReserveError> {
1404    ///     let mut output = Vec::new();
1405    ///
1406    ///     // Pre-reserve the memory, exiting if we can't
1407    ///     output.try_reserve(data.len())?;
1408    ///
1409    ///     // Now we know this can't OOM in the middle of our complex work
1410    ///     output.extend(data.iter().map(|&val| {
1411    ///         val * 2 + 5 // very complicated
1412    ///     }));
1413    ///
1414    ///     Ok(output)
1415    /// }
1416    /// # process_data(&[1, 2, 3]).expect("why is the test harness OOMing on 12 bytes?");
1417    /// ```
1418    #[stable(feature = "try_reserve", since = "1.57.0")]
1419    pub fn try_reserve(&mut self, additional: usize) -> Result<(), TryReserveError> {
1420        self.buf.try_reserve(self.len, additional)
1421    }
1422
1423    /// Tries to reserve the minimum capacity for at least `additional`
1424    /// elements to be inserted in the given `Vec<T>`. Unlike [`try_reserve`],
1425    /// this will not deliberately over-allocate to speculatively avoid frequent
1426    /// allocations. After calling `try_reserve_exact`, capacity will be greater
1427    /// than or equal to `self.len() + additional` if it returns `Ok(())`.
1428    /// Does nothing if the capacity is already sufficient.
1429    ///
1430    /// Note that the allocator may give the collection more space than it
1431    /// requests. Therefore, capacity can not be relied upon to be precisely
1432    /// minimal. Prefer [`try_reserve`] if future insertions are expected.
1433    ///
1434    /// [`try_reserve`]: Vec::try_reserve
1435    ///
1436    /// # Errors
1437    ///
1438    /// If the capacity overflows, or the allocator reports a failure, then an error
1439    /// is returned.
1440    ///
1441    /// # Examples
1442    ///
1443    /// ```
1444    /// use std::collections::TryReserveError;
1445    ///
1446    /// fn process_data(data: &[u32]) -> Result<Vec<u32>, TryReserveError> {
1447    ///     let mut output = Vec::new();
1448    ///
1449    ///     // Pre-reserve the memory, exiting if we can't
1450    ///     output.try_reserve_exact(data.len())?;
1451    ///
1452    ///     // Now we know this can't OOM in the middle of our complex work
1453    ///     output.extend(data.iter().map(|&val| {
1454    ///         val * 2 + 5 // very complicated
1455    ///     }));
1456    ///
1457    ///     Ok(output)
1458    /// }
1459    /// # process_data(&[1, 2, 3]).expect("why is the test harness OOMing on 12 bytes?");
1460    /// ```
1461    #[stable(feature = "try_reserve", since = "1.57.0")]
1462    pub fn try_reserve_exact(&mut self, additional: usize) -> Result<(), TryReserveError> {
1463        self.buf.try_reserve_exact(self.len, additional)
1464    }
1465
1466    /// Shrinks the capacity of the vector as much as possible.
1467    ///
1468    /// The behavior of this method depends on the allocator, which may either shrink the vector
1469    /// in-place or reallocate. The resulting vector might still have some excess capacity, just as
1470    /// is the case for [`with_capacity`]. See [`Allocator::shrink`] for more details.
1471    ///
1472    /// [`with_capacity`]: Vec::with_capacity
1473    ///
1474    /// # Examples
1475    ///
1476    /// ```
1477    /// let mut vec = Vec::with_capacity(10);
1478    /// vec.extend([1, 2, 3]);
1479    /// assert!(vec.capacity() >= 10);
1480    /// vec.shrink_to_fit();
1481    /// assert!(vec.capacity() >= 3);
1482    /// ```
1483    #[cfg(not(no_global_oom_handling))]
1484    #[stable(feature = "rust1", since = "1.0.0")]
1485    #[inline]
1486    pub fn shrink_to_fit(&mut self) {
1487        // The capacity is never less than the length, and there's nothing to do when
1488        // they are equal, so we can avoid the panic case in `RawVec::shrink_to_fit`
1489        // by only calling it with a greater capacity.
1490        if self.capacity() > self.len {
1491            self.buf.shrink_to_fit(self.len);
1492        }
1493    }
1494
1495    /// Shrinks the capacity of the vector with a lower bound.
1496    ///
1497    /// The capacity will remain at least as large as both the length
1498    /// and the supplied value.
1499    ///
1500    /// If the current capacity is less than the lower limit, this is a no-op.
1501    ///
1502    /// # Examples
1503    ///
1504    /// ```
1505    /// let mut vec = Vec::with_capacity(10);
1506    /// vec.extend([1, 2, 3]);
1507    /// assert!(vec.capacity() >= 10);
1508    /// vec.shrink_to(4);
1509    /// assert!(vec.capacity() >= 4);
1510    /// vec.shrink_to(0);
1511    /// assert!(vec.capacity() >= 3);
1512    /// ```
1513    #[cfg(not(no_global_oom_handling))]
1514    #[stable(feature = "shrink_to", since = "1.56.0")]
1515    pub fn shrink_to(&mut self, min_capacity: usize) {
1516        if self.capacity() > min_capacity {
1517            self.buf.shrink_to_fit(cmp::max(self.len, min_capacity));
1518        }
1519    }
1520
1521    /// Converts the vector into [`Box<[T]>`][owned slice].
1522    ///
1523    /// Before doing the conversion, this method discards excess capacity like [`shrink_to_fit`].
1524    ///
1525    /// [owned slice]: Box
1526    /// [`shrink_to_fit`]: Vec::shrink_to_fit
1527    ///
1528    /// # Examples
1529    ///
1530    /// ```
1531    /// let v = vec![1, 2, 3];
1532    ///
1533    /// let slice = v.into_boxed_slice();
1534    /// ```
1535    ///
1536    /// Any excess capacity is removed:
1537    ///
1538    /// ```
1539    /// let mut vec = Vec::with_capacity(10);
1540    /// vec.extend([1, 2, 3]);
1541    ///
1542    /// assert!(vec.capacity() >= 10);
1543    /// let slice = vec.into_boxed_slice();
1544    /// assert_eq!(slice.into_vec().capacity(), 3);
1545    /// ```
1546    #[cfg(not(no_global_oom_handling))]
1547    #[stable(feature = "rust1", since = "1.0.0")]
1548    pub fn into_boxed_slice(mut self) -> Box<[T], A> {
1549        unsafe {
1550            self.shrink_to_fit();
1551            let me = ManuallyDrop::new(self);
1552            let buf = ptr::read(&me.buf);
1553            let len = me.len();
1554            buf.into_box(len).assume_init()
1555        }
1556    }
1557
1558    /// Shortens the vector, keeping the first `len` elements and dropping
1559    /// the rest.
1560    ///
1561    /// If `len` is greater or equal to the vector's current length, this has
1562    /// no effect.
1563    ///
1564    /// The [`drain`] method can emulate `truncate`, but causes the excess
1565    /// elements to be returned instead of dropped.
1566    ///
1567    /// Note that this method has no effect on the allocated capacity
1568    /// of the vector.
1569    ///
1570    /// # Examples
1571    ///
1572    /// Truncating a five element vector to two elements:
1573    ///
1574    /// ```
1575    /// let mut vec = vec![1, 2, 3, 4, 5];
1576    /// vec.truncate(2);
1577    /// assert_eq!(vec, [1, 2]);
1578    /// ```
1579    ///
1580    /// No truncation occurs when `len` is greater than the vector's current
1581    /// length:
1582    ///
1583    /// ```
1584    /// let mut vec = vec![1, 2, 3];
1585    /// vec.truncate(8);
1586    /// assert_eq!(vec, [1, 2, 3]);
1587    /// ```
1588    ///
1589    /// Truncating when `len == 0` is equivalent to calling the [`clear`]
1590    /// method.
1591    ///
1592    /// ```
1593    /// let mut vec = vec![1, 2, 3];
1594    /// vec.truncate(0);
1595    /// assert_eq!(vec, []);
1596    /// ```
1597    ///
1598    /// [`clear`]: Vec::clear
1599    /// [`drain`]: Vec::drain
1600    #[stable(feature = "rust1", since = "1.0.0")]
1601    pub fn truncate(&mut self, len: usize) {
1602        // This is safe because:
1603        //
1604        // * the slice passed to `drop_in_place` is valid; the `len > self.len`
1605        //   case avoids creating an invalid slice, and
1606        // * the `len` of the vector is shrunk before calling `drop_in_place`,
1607        //   such that no value will be dropped twice in case `drop_in_place`
1608        //   were to panic once (if it panics twice, the program aborts).
1609        unsafe {
1610            // Note: It's intentional that this is `>` and not `>=`.
1611            //       Changing it to `>=` has negative performance
1612            //       implications in some cases. See #78884 for more.
1613            if len > self.len {
1614                return;
1615            }
1616            let remaining_len = self.len - len;
1617            let s = ptr::slice_from_raw_parts_mut(self.as_mut_ptr().add(len), remaining_len);
1618            self.len = len;
1619            ptr::drop_in_place(s);
1620        }
1621    }
1622
1623    /// Extracts a slice containing the entire vector.
1624    ///
1625    /// Equivalent to `&s[..]`.
1626    ///
1627    /// # Examples
1628    ///
1629    /// ```
1630    /// use std::io::{self, Write};
1631    /// let buffer = vec![1, 2, 3, 5, 8];
1632    /// io::sink().write(buffer.as_slice()).unwrap();
1633    /// ```
1634    #[inline]
1635    #[stable(feature = "vec_as_slice", since = "1.7.0")]
1636    #[rustc_diagnostic_item = "vec_as_slice"]
1637    #[rustc_const_stable(feature = "const_vec_string_slice", since = "1.87.0")]
1638    pub const fn as_slice(&self) -> &[T] {
1639        // SAFETY: `slice::from_raw_parts` requires pointee is a contiguous, aligned buffer of size
1640        // `len` containing properly-initialized `T`s. Data must not be mutated for the returned
1641        // lifetime. Further, `len * size_of::<T>` <= `isize::MAX`, and allocation does not
1642        // "wrap" through overflowing memory addresses.
1643        //
1644        // * Vec API guarantees that self.buf:
1645        //      * contains only properly-initialized items within 0..len
1646        //      * is aligned, contiguous, and valid for `len` reads
1647        //      * obeys size and address-wrapping constraints
1648        //
1649        // * We only construct `&mut` references to `self.buf` through `&mut self` methods; borrow-
1650        //   check ensures that it is not possible to mutably alias `self.buf` within the
1651        //   returned lifetime.
1652        unsafe { slice::from_raw_parts(self.as_ptr(), self.len) }
1653    }
1654
1655    /// Extracts a mutable slice of the entire vector.
1656    ///
1657    /// Equivalent to `&mut s[..]`.
1658    ///
1659    /// # Examples
1660    ///
1661    /// ```
1662    /// use std::io::{self, Read};
1663    /// let mut buffer = vec![0; 3];
1664    /// io::repeat(0b101).read_exact(buffer.as_mut_slice()).unwrap();
1665    /// ```
1666    #[inline]
1667    #[stable(feature = "vec_as_slice", since = "1.7.0")]
1668    #[rustc_diagnostic_item = "vec_as_mut_slice"]
1669    #[rustc_const_stable(feature = "const_vec_string_slice", since = "1.87.0")]
1670    pub const fn as_mut_slice(&mut self) -> &mut [T] {
1671        // SAFETY: `slice::from_raw_parts_mut` requires pointee is a contiguous, aligned buffer of
1672        // size `len` containing properly-initialized `T`s. Data must not be accessed through any
1673        // other pointer for the returned lifetime. Further, `len * size_of::<T>` <=
1674        // `ISIZE::MAX` and allocation does not "wrap" through overflowing memory addresses.
1675        //
1676        // * Vec API guarantees that self.buf:
1677        //      * contains only properly-initialized items within 0..len
1678        //      * is aligned, contiguous, and valid for `len` reads
1679        //      * obeys size and address-wrapping constraints
1680        //
1681        // * We only construct references to `self.buf` through `&self` and `&mut self` methods;
1682        //   borrow-check ensures that it is not possible to construct a reference to `self.buf`
1683        //   within the returned lifetime.
1684        unsafe { slice::from_raw_parts_mut(self.as_mut_ptr(), self.len) }
1685    }
1686
1687    /// Returns a raw pointer to the vector's buffer, or a dangling raw pointer
1688    /// valid for zero sized reads if the vector didn't allocate.
1689    ///
1690    /// The caller must ensure that the vector outlives the pointer this
1691    /// function returns, or else it will end up dangling.
1692    /// Modifying the vector may cause its buffer to be reallocated,
1693    /// which would also make any pointers to it invalid.
1694    ///
1695    /// The caller must also ensure that the memory the pointer (non-transitively) points to
1696    /// is never written to (except inside an `UnsafeCell`) using this pointer or any pointer
1697    /// derived from it. If you need to mutate the contents of the slice, use [`as_mut_ptr`].
1698    ///
1699    /// This method guarantees that for the purpose of the aliasing model, this method
1700    /// does not materialize a reference to the underlying slice, and thus the returned pointer
1701    /// will remain valid when mixed with other calls to [`as_ptr`], [`as_mut_ptr`],
1702    /// and [`as_non_null`].
1703    /// Note that calling other methods that materialize mutable references to the slice,
1704    /// or mutable references to specific elements you are planning on accessing through this pointer,
1705    /// as well as writing to those elements, may still invalidate this pointer.
1706    /// See the second example below for how this guarantee can be used.
1707    ///
1708    ///
1709    /// # Examples
1710    ///
1711    /// ```
1712    /// let x = vec![1, 2, 4];
1713    /// let x_ptr = x.as_ptr();
1714    ///
1715    /// unsafe {
1716    ///     for i in 0..x.len() {
1717    ///         assert_eq!(*x_ptr.add(i), 1 << i);
1718    ///     }
1719    /// }
1720    /// ```
1721    ///
1722    /// Due to the aliasing guarantee, the following code is legal:
1723    ///
1724    /// ```rust
1725    /// unsafe {
1726    ///     let mut v = vec![0, 1, 2];
1727    ///     let ptr1 = v.as_ptr();
1728    ///     let _ = ptr1.read();
1729    ///     let ptr2 = v.as_mut_ptr().offset(2);
1730    ///     ptr2.write(2);
1731    ///     // Notably, the write to `ptr2` did *not* invalidate `ptr1`
1732    ///     // because it mutated a different element:
1733    ///     let _ = ptr1.read();
1734    /// }
1735    /// ```
1736    ///
1737    /// [`as_mut_ptr`]: Vec::as_mut_ptr
1738    /// [`as_ptr`]: Vec::as_ptr
1739    /// [`as_non_null`]: Vec::as_non_null
1740    #[stable(feature = "vec_as_ptr", since = "1.37.0")]
1741    #[rustc_const_stable(feature = "const_vec_string_slice", since = "1.87.0")]
1742    #[rustc_never_returns_null_ptr]
1743    #[rustc_as_ptr]
1744    #[inline]
1745    pub const fn as_ptr(&self) -> *const T {
1746        // We shadow the slice method of the same name to avoid going through
1747        // `deref`, which creates an intermediate reference.
1748        self.buf.ptr()
1749    }
1750
1751    /// Returns a raw mutable pointer to the vector's buffer, or a dangling
1752    /// raw pointer valid for zero sized reads if the vector didn't allocate.
1753    ///
1754    /// The caller must ensure that the vector outlives the pointer this
1755    /// function returns, or else it will end up dangling.
1756    /// Modifying the vector may cause its buffer to be reallocated,
1757    /// which would also make any pointers to it invalid.
1758    ///
1759    /// This method guarantees that for the purpose of the aliasing model, this method
1760    /// does not materialize a reference to the underlying slice, and thus the returned pointer
1761    /// will remain valid when mixed with other calls to [`as_ptr`], [`as_mut_ptr`],
1762    /// and [`as_non_null`].
1763    /// Note that calling other methods that materialize references to the slice,
1764    /// or references to specific elements you are planning on accessing through this pointer,
1765    /// may still invalidate this pointer.
1766    /// See the second example below for how this guarantee can be used.
1767    ///
1768    /// The method also guarantees that, as long as `T` is not zero-sized and the capacity is
1769    /// nonzero, the pointer may be passed into [`dealloc`] with a layout of
1770    /// `Layout::array::<T>(capacity)` in order to deallocate the backing memory. If this is done,
1771    /// be careful not to run the destructor of the `Vec`, as dropping it will result in
1772    /// double-frees. Wrapping the `Vec` in a [`ManuallyDrop`] is the typical way to achieve this.
1773    ///
1774    /// # Examples
1775    ///
1776    /// ```
1777    /// // Allocate vector big enough for 4 elements.
1778    /// let size = 4;
1779    /// let mut x: Vec<i32> = Vec::with_capacity(size);
1780    /// let x_ptr = x.as_mut_ptr();
1781    ///
1782    /// // Initialize elements via raw pointer writes, then set length.
1783    /// unsafe {
1784    ///     for i in 0..size {
1785    ///         *x_ptr.add(i) = i as i32;
1786    ///     }
1787    ///     x.set_len(size);
1788    /// }
1789    /// assert_eq!(&*x, &[0, 1, 2, 3]);
1790    /// ```
1791    ///
1792    /// Due to the aliasing guarantee, the following code is legal:
1793    ///
1794    /// ```rust
1795    /// unsafe {
1796    ///     let mut v = vec![0];
1797    ///     let ptr1 = v.as_mut_ptr();
1798    ///     ptr1.write(1);
1799    ///     let ptr2 = v.as_mut_ptr();
1800    ///     ptr2.write(2);
1801    ///     // Notably, the write to `ptr2` did *not* invalidate `ptr1`:
1802    ///     ptr1.write(3);
1803    /// }
1804    /// ```
1805    ///
1806    /// Deallocating a vector using [`Box`] (which uses [`dealloc`] internally):
1807    ///
1808    /// ```
1809    /// use std::mem::{ManuallyDrop, MaybeUninit};
1810    ///
1811    /// let mut v = ManuallyDrop::new(vec![0, 1, 2]);
1812    /// let ptr = v.as_mut_ptr();
1813    /// let capacity = v.capacity();
1814    /// let slice_ptr: *mut [MaybeUninit<i32>] =
1815    ///     std::ptr::slice_from_raw_parts_mut(ptr.cast(), capacity);
1816    /// drop(unsafe { Box::from_raw(slice_ptr) });
1817    /// ```
1818    ///
1819    /// [`as_mut_ptr`]: Vec::as_mut_ptr
1820    /// [`as_ptr`]: Vec::as_ptr
1821    /// [`as_non_null`]: Vec::as_non_null
1822    /// [`dealloc`]: crate::alloc::GlobalAlloc::dealloc
1823    /// [`ManuallyDrop`]: core::mem::ManuallyDrop
1824    #[stable(feature = "vec_as_ptr", since = "1.37.0")]
1825    #[rustc_const_stable(feature = "const_vec_string_slice", since = "1.87.0")]
1826    #[rustc_never_returns_null_ptr]
1827    #[rustc_as_ptr]
1828    #[inline]
1829    pub const fn as_mut_ptr(&mut self) -> *mut T {
1830        // We shadow the slice method of the same name to avoid going through
1831        // `deref_mut`, which creates an intermediate reference.
1832        self.buf.ptr()
1833    }
1834
1835    /// Returns a `NonNull` pointer to the vector's buffer, or a dangling
1836    /// `NonNull` pointer valid for zero sized reads if the vector didn't allocate.
1837    ///
1838    /// The caller must ensure that the vector outlives the pointer this
1839    /// function returns, or else it will end up dangling.
1840    /// Modifying the vector may cause its buffer to be reallocated,
1841    /// which would also make any pointers to it invalid.
1842    ///
1843    /// This method guarantees that for the purpose of the aliasing model, this method
1844    /// does not materialize a reference to the underlying slice, and thus the returned pointer
1845    /// will remain valid when mixed with other calls to [`as_ptr`], [`as_mut_ptr`],
1846    /// and [`as_non_null`].
1847    /// Note that calling other methods that materialize references to the slice,
1848    /// or references to specific elements you are planning on accessing through this pointer,
1849    /// may still invalidate this pointer.
1850    /// See the second example below for how this guarantee can be used.
1851    ///
1852    /// # Examples
1853    ///
1854    /// ```
1855    /// #![feature(box_vec_non_null)]
1856    ///
1857    /// // Allocate vector big enough for 4 elements.
1858    /// let size = 4;
1859    /// let mut x: Vec<i32> = Vec::with_capacity(size);
1860    /// let x_ptr = x.as_non_null();
1861    ///
1862    /// // Initialize elements via raw pointer writes, then set length.
1863    /// unsafe {
1864    ///     for i in 0..size {
1865    ///         x_ptr.add(i).write(i as i32);
1866    ///     }
1867    ///     x.set_len(size);
1868    /// }
1869    /// assert_eq!(&*x, &[0, 1, 2, 3]);
1870    /// ```
1871    ///
1872    /// Due to the aliasing guarantee, the following code is legal:
1873    ///
1874    /// ```rust
1875    /// #![feature(box_vec_non_null)]
1876    ///
1877    /// unsafe {
1878    ///     let mut v = vec![0];
1879    ///     let ptr1 = v.as_non_null();
1880    ///     ptr1.write(1);
1881    ///     let ptr2 = v.as_non_null();
1882    ///     ptr2.write(2);
1883    ///     // Notably, the write to `ptr2` did *not* invalidate `ptr1`:
1884    ///     ptr1.write(3);
1885    /// }
1886    /// ```
1887    ///
1888    /// [`as_mut_ptr`]: Vec::as_mut_ptr
1889    /// [`as_ptr`]: Vec::as_ptr
1890    /// [`as_non_null`]: Vec::as_non_null
1891    #[unstable(feature = "box_vec_non_null", reason = "new API", issue = "130364")]
1892    #[rustc_const_unstable(feature = "box_vec_non_null", reason = "new API", issue = "130364")]
1893    #[inline]
1894    pub const fn as_non_null(&mut self) -> NonNull<T> {
1895        self.buf.non_null()
1896    }
1897
1898    /// Returns a reference to the underlying allocator.
1899    #[unstable(feature = "allocator_api", issue = "32838")]
1900    #[inline]
1901    pub fn allocator(&self) -> &A {
1902        self.buf.allocator()
1903    }
1904
1905    /// Forces the length of the vector to `new_len`.
1906    ///
1907    /// This is a low-level operation that maintains none of the normal
1908    /// invariants of the type. Normally changing the length of a vector
1909    /// is done using one of the safe operations instead, such as
1910    /// [`truncate`], [`resize`], [`extend`], or [`clear`].
1911    ///
1912    /// [`truncate`]: Vec::truncate
1913    /// [`resize`]: Vec::resize
1914    /// [`extend`]: Extend::extend
1915    /// [`clear`]: Vec::clear
1916    ///
1917    /// # Safety
1918    ///
1919    /// - `new_len` must be less than or equal to [`capacity()`].
1920    /// - The elements at `old_len..new_len` must be initialized.
1921    ///
1922    /// [`capacity()`]: Vec::capacity
1923    ///
1924    /// # Examples
1925    ///
1926    /// See [`spare_capacity_mut()`] for an example with safe
1927    /// initialization of capacity elements and use of this method.
1928    ///
1929    /// `set_len()` can be useful for situations in which the vector
1930    /// is serving as a buffer for other code, particularly over FFI:
1931    ///
1932    /// ```no_run
1933    /// # #![allow(dead_code)]
1934    /// # // This is just a minimal skeleton for the doc example;
1935    /// # // don't use this as a starting point for a real library.
1936    /// # pub struct StreamWrapper { strm: *mut std::ffi::c_void }
1937    /// # const Z_OK: i32 = 0;
1938    /// # unsafe extern "C" {
1939    /// #     fn deflateGetDictionary(
1940    /// #         strm: *mut std::ffi::c_void,
1941    /// #         dictionary: *mut u8,
1942    /// #         dictLength: *mut usize,
1943    /// #     ) -> i32;
1944    /// # }
1945    /// # impl StreamWrapper {
1946    /// pub fn get_dictionary(&self) -> Option<Vec<u8>> {
1947    ///     // Per the FFI method's docs, "32768 bytes is always enough".
1948    ///     let mut dict = Vec::with_capacity(32_768);
1949    ///     let mut dict_length = 0;
1950    ///     // SAFETY: When `deflateGetDictionary` returns `Z_OK`, it holds that:
1951    ///     // 1. `dict_length` elements were initialized.
1952    ///     // 2. `dict_length` <= the capacity (32_768)
1953    ///     // which makes `set_len` safe to call.
1954    ///     unsafe {
1955    ///         // Make the FFI call...
1956    ///         let r = deflateGetDictionary(self.strm, dict.as_mut_ptr(), &mut dict_length);
1957    ///         if r == Z_OK {
1958    ///             // ...and update the length to what was initialized.
1959    ///             dict.set_len(dict_length);
1960    ///             Some(dict)
1961    ///         } else {
1962    ///             None
1963    ///         }
1964    ///     }
1965    /// }
1966    /// # }
1967    /// ```
1968    ///
1969    /// While the following example is sound, there is a memory leak since
1970    /// the inner vectors were not freed prior to the `set_len` call:
1971    ///
1972    /// ```
1973    /// let mut vec = vec![vec![1, 0, 0],
1974    ///                    vec![0, 1, 0],
1975    ///                    vec![0, 0, 1]];
1976    /// // SAFETY:
1977    /// // 1. `old_len..0` is empty so no elements need to be initialized.
1978    /// // 2. `0 <= capacity` always holds whatever `capacity` is.
1979    /// unsafe {
1980    ///     vec.set_len(0);
1981    /// #   // FIXME(https://github.com/rust-lang/miri/issues/3670):
1982    /// #   // use -Zmiri-disable-leak-check instead of unleaking in tests meant to leak.
1983    /// #   vec.set_len(3);
1984    /// }
1985    /// ```
1986    ///
1987    /// Normally, here, one would use [`clear`] instead to correctly drop
1988    /// the contents and thus not leak memory.
1989    ///
1990    /// [`spare_capacity_mut()`]: Vec::spare_capacity_mut
1991    #[inline]
1992    #[stable(feature = "rust1", since = "1.0.0")]
1993    pub unsafe fn set_len(&mut self, new_len: usize) {
1994        ub_checks::assert_unsafe_precondition!(
1995            check_library_ub,
1996            "Vec::set_len requires that new_len <= capacity()",
1997            (new_len: usize = new_len, capacity: usize = self.capacity()) => new_len <= capacity
1998        );
1999
2000        self.len = new_len;
2001    }
2002
2003    /// Removes an element from the vector and returns it.
2004    ///
2005    /// The removed element is replaced by the last element of the vector.
2006    ///
2007    /// This does not preserve ordering of the remaining elements, but is *O*(1).
2008    /// If you need to preserve the element order, use [`remove`] instead.
2009    ///
2010    /// [`remove`]: Vec::remove
2011    ///
2012    /// # Panics
2013    ///
2014    /// Panics if `index` is out of bounds.
2015    ///
2016    /// # Examples
2017    ///
2018    /// ```
2019    /// let mut v = vec!["foo", "bar", "baz", "qux"];
2020    ///
2021    /// assert_eq!(v.swap_remove(1), "bar");
2022    /// assert_eq!(v, ["foo", "qux", "baz"]);
2023    ///
2024    /// assert_eq!(v.swap_remove(0), "foo");
2025    /// assert_eq!(v, ["baz", "qux"]);
2026    /// ```
2027    #[inline]
2028    #[stable(feature = "rust1", since = "1.0.0")]
2029    pub fn swap_remove(&mut self, index: usize) -> T {
2030        #[cfg_attr(feature = "ferrocene_certified_runtime", expect(unused_variables))]
2031        #[cold]
2032        #[cfg_attr(not(panic = "immediate-abort"), inline(never))]
2033        #[optimize(size)]
2034        fn assert_failed(index: usize, len: usize) -> ! {
2035            panic!("swap_remove index (is {index}) should be < len (is {len})");
2036        }
2037
2038        let len = self.len();
2039        if index >= len {
2040            assert_failed(index, len);
2041        }
2042        unsafe {
2043            // We replace self[index] with the last element. Note that if the
2044            // bounds check above succeeds there must be a last element (which
2045            // can be self[index] itself).
2046            let value = ptr::read(self.as_ptr().add(index));
2047            let base_ptr = self.as_mut_ptr();
2048            ptr::copy(base_ptr.add(len - 1), base_ptr.add(index), 1);
2049            self.set_len(len - 1);
2050            value
2051        }
2052    }
2053
2054    /// Inserts an element at position `index` within the vector, shifting all
2055    /// elements after it to the right.
2056    ///
2057    /// # Panics
2058    ///
2059    /// Panics if `index > len`.
2060    ///
2061    /// # Examples
2062    ///
2063    /// ```
2064    /// let mut vec = vec!['a', 'b', 'c'];
2065    /// vec.insert(1, 'd');
2066    /// assert_eq!(vec, ['a', 'd', 'b', 'c']);
2067    /// vec.insert(4, 'e');
2068    /// assert_eq!(vec, ['a', 'd', 'b', 'c', 'e']);
2069    /// ```
2070    ///
2071    /// # Time complexity
2072    ///
2073    /// Takes *O*([`Vec::len`]) time. All items after the insertion index must be
2074    /// shifted to the right. In the worst case, all elements are shifted when
2075    /// the insertion index is 0.
2076    #[cfg(not(no_global_oom_handling))]
2077    #[stable(feature = "rust1", since = "1.0.0")]
2078    #[track_caller]
2079    pub fn insert(&mut self, index: usize, element: T) {
2080        let _ = self.insert_mut(index, element);
2081    }
2082
2083    /// Inserts an element at position `index` within the vector, shifting all
2084    /// elements after it to the right, and returning a reference to the new
2085    /// element.
2086    ///
2087    /// # Panics
2088    ///
2089    /// Panics if `index > len`.
2090    ///
2091    /// # Examples
2092    ///
2093    /// ```
2094    /// #![feature(push_mut)]
2095    /// let mut vec = vec![1, 3, 5, 9];
2096    /// let x = vec.insert_mut(3, 6);
2097    /// *x += 1;
2098    /// assert_eq!(vec, [1, 3, 5, 7, 9]);
2099    /// ```
2100    ///
2101    /// # Time complexity
2102    ///
2103    /// Takes *O*([`Vec::len`]) time. All items after the insertion index must be
2104    /// shifted to the right. In the worst case, all elements are shifted when
2105    /// the insertion index is 0.
2106    #[cfg(not(no_global_oom_handling))]
2107    #[inline]
2108    #[unstable(feature = "push_mut", issue = "135974")]
2109    #[track_caller]
2110    #[must_use = "if you don't need a reference to the value, use `Vec::insert` instead"]
2111    pub fn insert_mut(&mut self, index: usize, element: T) -> &mut T {
2112        #[cfg_attr(feature = "ferrocene_certified_runtime", expect(unused_variables))]
2113        #[cold]
2114        #[cfg_attr(not(panic = "immediate-abort"), inline(never))]
2115        #[track_caller]
2116        #[optimize(size)]
2117        fn assert_failed(index: usize, len: usize) -> ! {
2118            panic!("insertion index (is {index}) should be <= len (is {len})");
2119        }
2120
2121        let len = self.len();
2122        if index > len {
2123            assert_failed(index, len);
2124        }
2125
2126        // space for the new element
2127        if len == self.buf.capacity() {
2128            self.buf.grow_one();
2129        }
2130
2131        unsafe {
2132            // infallible
2133            // The spot to put the new value
2134            let p = self.as_mut_ptr().add(index);
2135            {
2136                if index < len {
2137                    // Shift everything over to make space. (Duplicating the
2138                    // `index`th element into two consecutive places.)
2139                    ptr::copy(p, p.add(1), len - index);
2140                }
2141                // Write it in, overwriting the first copy of the `index`th
2142                // element.
2143                ptr::write(p, element);
2144            }
2145            self.set_len(len + 1);
2146            &mut *p
2147        }
2148    }
2149
2150    /// Removes and returns the element at position `index` within the vector,
2151    /// shifting all elements after it to the left.
2152    ///
2153    /// Note: Because this shifts over the remaining elements, it has a
2154    /// worst-case performance of *O*(*n*). If you don't need the order of elements
2155    /// to be preserved, use [`swap_remove`] instead. If you'd like to remove
2156    /// elements from the beginning of the `Vec`, consider using
2157    /// [`VecDeque::pop_front`] instead.
2158    ///
2159    /// [`swap_remove`]: Vec::swap_remove
2160    /// [`VecDeque::pop_front`]: crate::collections::VecDeque::pop_front
2161    ///
2162    /// # Panics
2163    ///
2164    /// Panics if `index` is out of bounds.
2165    ///
2166    /// # Examples
2167    ///
2168    /// ```
2169    /// let mut v = vec!['a', 'b', 'c'];
2170    /// assert_eq!(v.remove(1), 'b');
2171    /// assert_eq!(v, ['a', 'c']);
2172    /// ```
2173    #[stable(feature = "rust1", since = "1.0.0")]
2174    #[track_caller]
2175    #[rustc_confusables("delete", "take")]
2176    pub fn remove(&mut self, index: usize) -> T {
2177        #[cfg_attr(feature = "ferrocene_certified_runtime", expect(unused_variables))]
2178        #[cold]
2179        #[cfg_attr(not(panic = "immediate-abort"), inline(never))]
2180        #[track_caller]
2181        #[optimize(size)]
2182        fn assert_failed(index: usize, len: usize) -> ! {
2183            panic!("removal index (is {index}) should be < len (is {len})");
2184        }
2185
2186        match self.try_remove(index) {
2187            Some(elem) => elem,
2188            None => assert_failed(index, self.len()),
2189        }
2190    }
2191
2192    /// Remove and return the element at position `index` within the vector,
2193    /// shifting all elements after it to the left, or [`None`] if it does not
2194    /// exist.
2195    ///
2196    /// Note: Because this shifts over the remaining elements, it has a
2197    /// worst-case performance of *O*(*n*). If you'd like to remove
2198    /// elements from the beginning of the `Vec`, consider using
2199    /// [`VecDeque::pop_front`] instead.
2200    ///
2201    /// [`VecDeque::pop_front`]: crate::collections::VecDeque::pop_front
2202    ///
2203    /// # Examples
2204    ///
2205    /// ```
2206    /// #![feature(vec_try_remove)]
2207    /// let mut v = vec![1, 2, 3];
2208    /// assert_eq!(v.try_remove(0), Some(1));
2209    /// assert_eq!(v.try_remove(2), None);
2210    /// ```
2211    #[unstable(feature = "vec_try_remove", issue = "146954")]
2212    #[rustc_confusables("delete", "take", "remove")]
2213    pub fn try_remove(&mut self, index: usize) -> Option<T> {
2214        let len = self.len();
2215        if index >= len {
2216            return None;
2217        }
2218        unsafe {
2219            // infallible
2220            let ret;
2221            {
2222                // the place we are taking from.
2223                let ptr = self.as_mut_ptr().add(index);
2224                // copy it out, unsafely having a copy of the value on
2225                // the stack and in the vector at the same time.
2226                ret = ptr::read(ptr);
2227
2228                // Shift everything down to fill in that spot.
2229                ptr::copy(ptr.add(1), ptr, len - index - 1);
2230            }
2231            self.set_len(len - 1);
2232            Some(ret)
2233        }
2234    }
2235
2236    /// Retains only the elements specified by the predicate.
2237    ///
2238    /// In other words, remove all elements `e` for which `f(&e)` returns `false`.
2239    /// This method operates in place, visiting each element exactly once in the
2240    /// original order, and preserves the order of the retained elements.
2241    ///
2242    /// # Examples
2243    ///
2244    /// ```
2245    /// let mut vec = vec![1, 2, 3, 4];
2246    /// vec.retain(|&x| x % 2 == 0);
2247    /// assert_eq!(vec, [2, 4]);
2248    /// ```
2249    ///
2250    /// Because the elements are visited exactly once in the original order,
2251    /// external state may be used to decide which elements to keep.
2252    ///
2253    /// ```
2254    /// let mut vec = vec![1, 2, 3, 4, 5];
2255    /// let keep = [false, true, true, false, true];
2256    /// let mut iter = keep.iter();
2257    /// vec.retain(|_| *iter.next().unwrap());
2258    /// assert_eq!(vec, [2, 3, 5]);
2259    /// ```
2260    #[stable(feature = "rust1", since = "1.0.0")]
2261    pub fn retain<F>(&mut self, mut f: F)
2262    where
2263        F: FnMut(&T) -> bool,
2264    {
2265        self.retain_mut(|elem| f(elem));
2266    }
2267
2268    /// Retains only the elements specified by the predicate, passing a mutable reference to it.
2269    ///
2270    /// In other words, remove all elements `e` such that `f(&mut e)` returns `false`.
2271    /// This method operates in place, visiting each element exactly once in the
2272    /// original order, and preserves the order of the retained elements.
2273    ///
2274    /// # Examples
2275    ///
2276    /// ```
2277    /// let mut vec = vec![1, 2, 3, 4];
2278    /// vec.retain_mut(|x| if *x <= 3 {
2279    ///     *x += 1;
2280    ///     true
2281    /// } else {
2282    ///     false
2283    /// });
2284    /// assert_eq!(vec, [2, 3, 4]);
2285    /// ```
2286    #[stable(feature = "vec_retain_mut", since = "1.61.0")]
2287    pub fn retain_mut<F>(&mut self, mut f: F)
2288    where
2289        F: FnMut(&mut T) -> bool,
2290    {
2291        let original_len = self.len();
2292
2293        if original_len == 0 {
2294            // Empty case: explicit return allows better optimization, vs letting compiler infer it
2295            return;
2296        }
2297
2298        // Avoid double drop if the drop guard is not executed,
2299        // since we may make some holes during the process.
2300        unsafe { self.set_len(0) };
2301
2302        // Vec: [Kept, Kept, Hole, Hole, Hole, Hole, Unchecked, Unchecked]
2303        //      |<-              processed len   ->| ^- next to check
2304        //                  |<-  deleted cnt     ->|
2305        //      |<-              original_len                          ->|
2306        // Kept: Elements which predicate returns true on.
2307        // Hole: Moved or dropped element slot.
2308        // Unchecked: Unchecked valid elements.
2309        //
2310        // This drop guard will be invoked when predicate or `drop` of element panicked.
2311        // It shifts unchecked elements to cover holes and `set_len` to the correct length.
2312        // In cases when predicate and `drop` never panick, it will be optimized out.
2313        struct BackshiftOnDrop<'a, T, A: Allocator> {
2314            v: &'a mut Vec<T, A>,
2315            processed_len: usize,
2316            deleted_cnt: usize,
2317            original_len: usize,
2318        }
2319
2320        impl<T, A: Allocator> Drop for BackshiftOnDrop<'_, T, A> {
2321            fn drop(&mut self) {
2322                if self.deleted_cnt > 0 {
2323                    // SAFETY: Trailing unchecked items must be valid since we never touch them.
2324                    unsafe {
2325                        ptr::copy(
2326                            self.v.as_ptr().add(self.processed_len),
2327                            self.v.as_mut_ptr().add(self.processed_len - self.deleted_cnt),
2328                            self.original_len - self.processed_len,
2329                        );
2330                    }
2331                }
2332                // SAFETY: After filling holes, all items are in contiguous memory.
2333                unsafe {
2334                    self.v.set_len(self.original_len - self.deleted_cnt);
2335                }
2336            }
2337        }
2338
2339        let mut g = BackshiftOnDrop { v: self, processed_len: 0, deleted_cnt: 0, original_len };
2340
2341        fn process_loop<F, T, A: Allocator, const DELETED: bool>(
2342            original_len: usize,
2343            f: &mut F,
2344            g: &mut BackshiftOnDrop<'_, T, A>,
2345        ) where
2346            F: FnMut(&mut T) -> bool,
2347        {
2348            while g.processed_len != original_len {
2349                // SAFETY: Unchecked element must be valid.
2350                let cur = unsafe { &mut *g.v.as_mut_ptr().add(g.processed_len) };
2351                if !f(cur) {
2352                    // Advance early to avoid double drop if `drop_in_place` panicked.
2353                    g.processed_len += 1;
2354                    g.deleted_cnt += 1;
2355                    // SAFETY: We never touch this element again after dropped.
2356                    unsafe { ptr::drop_in_place(cur) };
2357                    // We already advanced the counter.
2358                    if DELETED {
2359                        continue;
2360                    } else {
2361                        break;
2362                    }
2363                }
2364                if DELETED {
2365                    // SAFETY: `deleted_cnt` > 0, so the hole slot must not overlap with current element.
2366                    // We use copy for move, and never touch this element again.
2367                    unsafe {
2368                        let hole_slot = g.v.as_mut_ptr().add(g.processed_len - g.deleted_cnt);
2369                        ptr::copy_nonoverlapping(cur, hole_slot, 1);
2370                    }
2371                }
2372                g.processed_len += 1;
2373            }
2374        }
2375
2376        // Stage 1: Nothing was deleted.
2377        process_loop::<F, T, A, false>(original_len, &mut f, &mut g);
2378
2379        // Stage 2: Some elements were deleted.
2380        process_loop::<F, T, A, true>(original_len, &mut f, &mut g);
2381
2382        // All item are processed. This can be optimized to `set_len` by LLVM.
2383        drop(g);
2384    }
2385
2386    /// Removes all but the first of consecutive elements in the vector that resolve to the same
2387    /// key.
2388    ///
2389    /// If the vector is sorted, this removes all duplicates.
2390    ///
2391    /// # Examples
2392    ///
2393    /// ```
2394    /// let mut vec = vec![10, 20, 21, 30, 20];
2395    ///
2396    /// vec.dedup_by_key(|i| *i / 10);
2397    ///
2398    /// assert_eq!(vec, [10, 20, 30, 20]);
2399    /// ```
2400    #[stable(feature = "dedup_by", since = "1.16.0")]
2401    #[inline]
2402    pub fn dedup_by_key<F, K>(&mut self, mut key: F)
2403    where
2404        F: FnMut(&mut T) -> K,
2405        K: PartialEq,
2406    {
2407        self.dedup_by(|a, b| key(a) == key(b))
2408    }
2409
2410    /// Removes all but the first of consecutive elements in the vector satisfying a given equality
2411    /// relation.
2412    ///
2413    /// The `same_bucket` function is passed references to two elements from the vector and
2414    /// must determine if the elements compare equal. The elements are passed in opposite order
2415    /// from their order in the slice, so if `same_bucket(a, b)` returns `true`, `a` is removed.
2416    ///
2417    /// If the vector is sorted, this removes all duplicates.
2418    ///
2419    /// # Examples
2420    ///
2421    /// ```
2422    /// let mut vec = vec!["foo", "bar", "Bar", "baz", "bar"];
2423    ///
2424    /// vec.dedup_by(|a, b| a.eq_ignore_ascii_case(b));
2425    ///
2426    /// assert_eq!(vec, ["foo", "bar", "baz", "bar"]);
2427    /// ```
2428    #[stable(feature = "dedup_by", since = "1.16.0")]
2429    pub fn dedup_by<F>(&mut self, mut same_bucket: F)
2430    where
2431        F: FnMut(&mut T, &mut T) -> bool,
2432    {
2433        let len = self.len();
2434        if len <= 1 {
2435            return;
2436        }
2437
2438        // Check if we ever want to remove anything.
2439        // This allows to use copy_non_overlapping in next cycle.
2440        // And avoids any memory writes if we don't need to remove anything.
2441        let mut first_duplicate_idx: usize = 1;
2442        let start = self.as_mut_ptr();
2443        while first_duplicate_idx != len {
2444            let found_duplicate = unsafe {
2445                // SAFETY: first_duplicate always in range [1..len)
2446                // Note that we start iteration from 1 so we never overflow.
2447                let prev = start.add(first_duplicate_idx.wrapping_sub(1));
2448                let current = start.add(first_duplicate_idx);
2449                // We explicitly say in docs that references are reversed.
2450                same_bucket(&mut *current, &mut *prev)
2451            };
2452            if found_duplicate {
2453                break;
2454            }
2455            first_duplicate_idx += 1;
2456        }
2457        // Don't need to remove anything.
2458        // We cannot get bigger than len.
2459        if first_duplicate_idx == len {
2460            return;
2461        }
2462
2463        /* INVARIANT: vec.len() > read > write > write-1 >= 0 */
2464        struct FillGapOnDrop<'a, T, A: core::alloc::Allocator> {
2465            /* Offset of the element we want to check if it is duplicate */
2466            read: usize,
2467
2468            /* Offset of the place where we want to place the non-duplicate
2469             * when we find it. */
2470            write: usize,
2471
2472            /* The Vec that would need correction if `same_bucket` panicked */
2473            vec: &'a mut Vec<T, A>,
2474        }
2475
2476        impl<'a, T, A: core::alloc::Allocator> Drop for FillGapOnDrop<'a, T, A> {
2477            fn drop(&mut self) {
2478                /* This code gets executed when `same_bucket` panics */
2479
2480                /* SAFETY: invariant guarantees that `read - write`
2481                 * and `len - read` never overflow and that the copy is always
2482                 * in-bounds. */
2483                unsafe {
2484                    let ptr = self.vec.as_mut_ptr();
2485                    let len = self.vec.len();
2486
2487                    /* How many items were left when `same_bucket` panicked.
2488                     * Basically vec[read..].len() */
2489                    let items_left = len.wrapping_sub(self.read);
2490
2491                    /* Pointer to first item in vec[write..write+items_left] slice */
2492                    let dropped_ptr = ptr.add(self.write);
2493                    /* Pointer to first item in vec[read..] slice */
2494                    let valid_ptr = ptr.add(self.read);
2495
2496                    /* Copy `vec[read..]` to `vec[write..write+items_left]`.
2497                     * The slices can overlap, so `copy_nonoverlapping` cannot be used */
2498                    ptr::copy(valid_ptr, dropped_ptr, items_left);
2499
2500                    /* How many items have been already dropped
2501                     * Basically vec[read..write].len() */
2502                    let dropped = self.read.wrapping_sub(self.write);
2503
2504                    self.vec.set_len(len - dropped);
2505                }
2506            }
2507        }
2508
2509        /* Drop items while going through Vec, it should be more efficient than
2510         * doing slice partition_dedup + truncate */
2511
2512        // Construct gap first and then drop item to avoid memory corruption if `T::drop` panics.
2513        let mut gap =
2514            FillGapOnDrop { read: first_duplicate_idx + 1, write: first_duplicate_idx, vec: self };
2515        unsafe {
2516            // SAFETY: we checked that first_duplicate_idx in bounds before.
2517            // If drop panics, `gap` would remove this item without drop.
2518            ptr::drop_in_place(start.add(first_duplicate_idx));
2519        }
2520
2521        /* SAFETY: Because of the invariant, read_ptr, prev_ptr and write_ptr
2522         * are always in-bounds and read_ptr never aliases prev_ptr */
2523        unsafe {
2524            while gap.read < len {
2525                let read_ptr = start.add(gap.read);
2526                let prev_ptr = start.add(gap.write.wrapping_sub(1));
2527
2528                // We explicitly say in docs that references are reversed.
2529                let found_duplicate = same_bucket(&mut *read_ptr, &mut *prev_ptr);
2530                if found_duplicate {
2531                    // Increase `gap.read` now since the drop may panic.
2532                    gap.read += 1;
2533                    /* We have found duplicate, drop it in-place */
2534                    ptr::drop_in_place(read_ptr);
2535                } else {
2536                    let write_ptr = start.add(gap.write);
2537
2538                    /* read_ptr cannot be equal to write_ptr because at this point
2539                     * we guaranteed to skip at least one element (before loop starts).
2540                     */
2541                    ptr::copy_nonoverlapping(read_ptr, write_ptr, 1);
2542
2543                    /* We have filled that place, so go further */
2544                    gap.write += 1;
2545                    gap.read += 1;
2546                }
2547            }
2548
2549            /* Technically we could let `gap` clean up with its Drop, but
2550             * when `same_bucket` is guaranteed to not panic, this bloats a little
2551             * the codegen, so we just do it manually */
2552            gap.vec.set_len(gap.write);
2553            mem::forget(gap);
2554        }
2555    }
2556
2557    /// Appends an element to the back of a collection.
2558    ///
2559    /// # Panics
2560    ///
2561    /// Panics if the new capacity exceeds `isize::MAX` _bytes_.
2562    ///
2563    /// # Examples
2564    ///
2565    /// ```
2566    /// let mut vec = vec![1, 2];
2567    /// vec.push(3);
2568    /// assert_eq!(vec, [1, 2, 3]);
2569    /// ```
2570    ///
2571    /// # Time complexity
2572    ///
2573    /// Takes amortized *O*(1) time. If the vector's length would exceed its
2574    /// capacity after the push, *O*(*capacity*) time is taken to copy the
2575    /// vector's elements to a larger allocation. This expensive operation is
2576    /// offset by the *capacity* *O*(1) insertions it allows.
2577    #[cfg(not(no_global_oom_handling))]
2578    #[inline]
2579    #[stable(feature = "rust1", since = "1.0.0")]
2580    #[rustc_confusables("push_back", "put", "append")]
2581    pub fn push(&mut self, value: T) {
2582        let _ = self.push_mut(value);
2583    }
2584
2585    /// Appends an element and returns a reference to it if there is sufficient spare capacity,
2586    /// otherwise an error is returned with the element.
2587    ///
2588    /// Unlike [`push`] this method will not reallocate when there's insufficient capacity.
2589    /// The caller should use [`reserve`] or [`try_reserve`] to ensure that there is enough capacity.
2590    ///
2591    /// [`push`]: Vec::push
2592    /// [`reserve`]: Vec::reserve
2593    /// [`try_reserve`]: Vec::try_reserve
2594    ///
2595    /// # Examples
2596    ///
2597    /// A manual, panic-free alternative to [`FromIterator`]:
2598    ///
2599    /// ```
2600    /// #![feature(vec_push_within_capacity)]
2601    ///
2602    /// use std::collections::TryReserveError;
2603    /// fn from_iter_fallible<T>(iter: impl Iterator<Item=T>) -> Result<Vec<T>, TryReserveError> {
2604    ///     let mut vec = Vec::new();
2605    ///     for value in iter {
2606    ///         if let Err(value) = vec.push_within_capacity(value) {
2607    ///             vec.try_reserve(1)?;
2608    ///             // this cannot fail, the previous line either returned or added at least 1 free slot
2609    ///             let _ = vec.push_within_capacity(value);
2610    ///         }
2611    ///     }
2612    ///     Ok(vec)
2613    /// }
2614    /// assert_eq!(from_iter_fallible(0..100), Ok(Vec::from_iter(0..100)));
2615    /// ```
2616    ///
2617    /// # Time complexity
2618    ///
2619    /// Takes *O*(1) time.
2620    #[inline]
2621    #[unstable(feature = "vec_push_within_capacity", issue = "100486")]
2622    // #[unstable(feature = "push_mut", issue = "135974")]
2623    pub fn push_within_capacity(&mut self, value: T) -> Result<&mut T, T> {
2624        if self.len == self.buf.capacity() {
2625            return Err(value);
2626        }
2627
2628        unsafe {
2629            let end = self.as_mut_ptr().add(self.len);
2630            ptr::write(end, value);
2631            self.len += 1;
2632
2633            // SAFETY: We just wrote a value to the pointer that will live the lifetime of the reference.
2634            Ok(&mut *end)
2635        }
2636    }
2637
2638    /// Appends an element to the back of a collection, returning a reference to it.
2639    ///
2640    /// # Panics
2641    ///
2642    /// Panics if the new capacity exceeds `isize::MAX` _bytes_.
2643    ///
2644    /// # Examples
2645    ///
2646    /// ```
2647    /// #![feature(push_mut)]
2648    ///
2649    ///
2650    /// let mut vec = vec![1, 2];
2651    /// let last = vec.push_mut(3);
2652    /// assert_eq!(*last, 3);
2653    /// assert_eq!(vec, [1, 2, 3]);
2654    ///
2655    /// let last = vec.push_mut(3);
2656    /// *last += 1;
2657    /// assert_eq!(vec, [1, 2, 3, 4]);
2658    /// ```
2659    ///
2660    /// # Time complexity
2661    ///
2662    /// Takes amortized *O*(1) time. If the vector's length would exceed its
2663    /// capacity after the push, *O*(*capacity*) time is taken to copy the
2664    /// vector's elements to a larger allocation. This expensive operation is
2665    /// offset by the *capacity* *O*(1) insertions it allows.
2666    #[cfg(not(no_global_oom_handling))]
2667    #[inline]
2668    #[unstable(feature = "push_mut", issue = "135974")]
2669    #[must_use = "if you don't need a reference to the value, use `Vec::push` instead"]
2670    pub fn push_mut(&mut self, value: T) -> &mut T {
2671        // Inform codegen that the length does not change across grow_one().
2672        let len = self.len;
2673        // This will panic or abort if we would allocate > isize::MAX bytes
2674        // or if the length increment would overflow for zero-sized types.
2675        if len == self.buf.capacity() {
2676            self.buf.grow_one();
2677        }
2678        unsafe {
2679            let end = self.as_mut_ptr().add(len);
2680            ptr::write(end, value);
2681            self.len = len + 1;
2682            // SAFETY: We just wrote a value to the pointer that will live the lifetime of the reference.
2683            &mut *end
2684        }
2685    }
2686
2687    /// Removes the last element from a vector and returns it, or [`None`] if it
2688    /// is empty.
2689    ///
2690    /// If you'd like to pop the first element, consider using
2691    /// [`VecDeque::pop_front`] instead.
2692    ///
2693    /// [`VecDeque::pop_front`]: crate::collections::VecDeque::pop_front
2694    ///
2695    /// # Examples
2696    ///
2697    /// ```
2698    /// let mut vec = vec![1, 2, 3];
2699    /// assert_eq!(vec.pop(), Some(3));
2700    /// assert_eq!(vec, [1, 2]);
2701    /// ```
2702    ///
2703    /// # Time complexity
2704    ///
2705    /// Takes *O*(1) time.
2706    #[inline]
2707    #[stable(feature = "rust1", since = "1.0.0")]
2708    #[rustc_diagnostic_item = "vec_pop"]
2709    pub fn pop(&mut self) -> Option<T> {
2710        if self.len == 0 {
2711            None
2712        } else {
2713            unsafe {
2714                self.len -= 1;
2715                core::hint::assert_unchecked(self.len < self.capacity());
2716                Some(ptr::read(self.as_ptr().add(self.len())))
2717            }
2718        }
2719    }
2720
2721    /// Removes and returns the last element from a vector if the predicate
2722    /// returns `true`, or [`None`] if the predicate returns false or the vector
2723    /// is empty (the predicate will not be called in that case).
2724    ///
2725    /// # Examples
2726    ///
2727    /// ```
2728    /// let mut vec = vec![1, 2, 3, 4];
2729    /// let pred = |x: &mut i32| *x % 2 == 0;
2730    ///
2731    /// assert_eq!(vec.pop_if(pred), Some(4));
2732    /// assert_eq!(vec, [1, 2, 3]);
2733    /// assert_eq!(vec.pop_if(pred), None);
2734    /// ```
2735    #[stable(feature = "vec_pop_if", since = "1.86.0")]
2736    pub fn pop_if(&mut self, predicate: impl FnOnce(&mut T) -> bool) -> Option<T> {
2737        let last = self.last_mut()?;
2738        if predicate(last) { self.pop() } else { None }
2739    }
2740
2741    /// Returns a mutable reference to the last item in the vector, or
2742    /// `None` if it is empty.
2743    ///
2744    /// # Examples
2745    ///
2746    /// Basic usage:
2747    ///
2748    /// ```
2749    /// #![feature(vec_peek_mut)]
2750    /// let mut vec = Vec::new();
2751    /// assert!(vec.peek_mut().is_none());
2752    ///
2753    /// vec.push(1);
2754    /// vec.push(5);
2755    /// vec.push(2);
2756    /// assert_eq!(vec.last(), Some(&2));
2757    /// if let Some(mut val) = vec.peek_mut() {
2758    ///     *val = 0;
2759    /// }
2760    /// assert_eq!(vec.last(), Some(&0));
2761    /// ```
2762    #[inline]
2763    #[unstable(feature = "vec_peek_mut", issue = "122742")]
2764    pub fn peek_mut(&mut self) -> Option<PeekMut<'_, T, A>> {
2765        PeekMut::new(self)
2766    }
2767
2768    /// Moves all the elements of `other` into `self`, leaving `other` empty.
2769    ///
2770    /// # Panics
2771    ///
2772    /// Panics if the new capacity exceeds `isize::MAX` _bytes_.
2773    ///
2774    /// # Examples
2775    ///
2776    /// ```
2777    /// let mut vec = vec![1, 2, 3];
2778    /// let mut vec2 = vec![4, 5, 6];
2779    /// vec.append(&mut vec2);
2780    /// assert_eq!(vec, [1, 2, 3, 4, 5, 6]);
2781    /// assert_eq!(vec2, []);
2782    /// ```
2783    #[cfg(not(no_global_oom_handling))]
2784    #[inline]
2785    #[stable(feature = "append", since = "1.4.0")]
2786    pub fn append(&mut self, other: &mut Self) {
2787        unsafe {
2788            self.append_elements(other.as_slice() as _);
2789            other.set_len(0);
2790        }
2791    }
2792
2793    /// Appends elements to `self` from other buffer.
2794    #[cfg(not(no_global_oom_handling))]
2795    #[inline]
2796    unsafe fn append_elements(&mut self, other: *const [T]) {
2797        let count = other.len();
2798        self.reserve(count);
2799        let len = self.len();
2800        unsafe { ptr::copy_nonoverlapping(other as *const T, self.as_mut_ptr().add(len), count) };
2801        self.len += count;
2802    }
2803
2804    /// Removes the subslice indicated by the given range from the vector,
2805    /// returning a double-ended iterator over the removed subslice.
2806    ///
2807    /// If the iterator is dropped before being fully consumed,
2808    /// it drops the remaining removed elements.
2809    ///
2810    /// The returned iterator keeps a mutable borrow on the vector to optimize
2811    /// its implementation.
2812    ///
2813    /// # Panics
2814    ///
2815    /// Panics if the range has `start_bound > end_bound`, or, if the range is
2816    /// bounded on either end and past the length of the vector.
2817    ///
2818    /// # Leaking
2819    ///
2820    /// If the returned iterator goes out of scope without being dropped (due to
2821    /// [`mem::forget`], for example), the vector may have lost and leaked
2822    /// elements arbitrarily, including elements outside the range.
2823    ///
2824    /// # Examples
2825    ///
2826    /// ```
2827    /// let mut v = vec![1, 2, 3];
2828    /// let u: Vec<_> = v.drain(1..).collect();
2829    /// assert_eq!(v, &[1]);
2830    /// assert_eq!(u, &[2, 3]);
2831    ///
2832    /// // A full range clears the vector, like `clear()` does
2833    /// v.drain(..);
2834    /// assert_eq!(v, &[]);
2835    /// ```
2836    #[stable(feature = "drain", since = "1.6.0")]
2837    pub fn drain<R>(&mut self, range: R) -> Drain<'_, T, A>
2838    where
2839        R: RangeBounds<usize>,
2840    {
2841        // Memory safety
2842        //
2843        // When the Drain is first created, it shortens the length of
2844        // the source vector to make sure no uninitialized or moved-from elements
2845        // are accessible at all if the Drain's destructor never gets to run.
2846        //
2847        // Drain will ptr::read out the values to remove.
2848        // When finished, remaining tail of the vec is copied back to cover
2849        // the hole, and the vector length is restored to the new length.
2850        //
2851        let len = self.len();
2852        let Range { start, end } = slice::range(range, ..len);
2853
2854        unsafe {
2855            // set self.vec length's to start, to be safe in case Drain is leaked
2856            self.set_len(start);
2857            let range_slice = slice::from_raw_parts(self.as_ptr().add(start), end - start);
2858            Drain {
2859                tail_start: end,
2860                tail_len: len - end,
2861                iter: range_slice.iter(),
2862                vec: NonNull::from(self),
2863            }
2864        }
2865    }
2866
2867    /// Clears the vector, removing all values.
2868    ///
2869    /// Note that this method has no effect on the allocated capacity
2870    /// of the vector.
2871    ///
2872    /// # Examples
2873    ///
2874    /// ```
2875    /// let mut v = vec![1, 2, 3];
2876    ///
2877    /// v.clear();
2878    ///
2879    /// assert!(v.is_empty());
2880    /// ```
2881    #[inline]
2882    #[stable(feature = "rust1", since = "1.0.0")]
2883    pub fn clear(&mut self) {
2884        let elems: *mut [T] = self.as_mut_slice();
2885
2886        // SAFETY:
2887        // - `elems` comes directly from `as_mut_slice` and is therefore valid.
2888        // - Setting `self.len` before calling `drop_in_place` means that,
2889        //   if an element's `Drop` impl panics, the vector's `Drop` impl will
2890        //   do nothing (leaking the rest of the elements) instead of dropping
2891        //   some twice.
2892        unsafe {
2893            self.len = 0;
2894            ptr::drop_in_place(elems);
2895        }
2896    }
2897
2898    /// Returns the number of elements in the vector, also referred to
2899    /// as its 'length'.
2900    ///
2901    /// # Examples
2902    ///
2903    /// ```
2904    /// let a = vec![1, 2, 3];
2905    /// assert_eq!(a.len(), 3);
2906    /// ```
2907    #[inline]
2908    #[stable(feature = "rust1", since = "1.0.0")]
2909    #[rustc_const_stable(feature = "const_vec_string_slice", since = "1.87.0")]
2910    #[rustc_confusables("length", "size")]
2911    pub const fn len(&self) -> usize {
2912        let len = self.len;
2913
2914        // SAFETY: The maximum capacity of `Vec<T>` is `isize::MAX` bytes, so the maximum value can
2915        // be returned is `usize::checked_div(size_of::<T>()).unwrap_or(usize::MAX)`, which
2916        // matches the definition of `T::MAX_SLICE_LEN`.
2917        unsafe { intrinsics::assume(len <= T::MAX_SLICE_LEN) };
2918
2919        len
2920    }
2921
2922    /// Returns `true` if the vector contains no elements.
2923    ///
2924    /// # Examples
2925    ///
2926    /// ```
2927    /// let mut v = Vec::new();
2928    /// assert!(v.is_empty());
2929    ///
2930    /// v.push(1);
2931    /// assert!(!v.is_empty());
2932    /// ```
2933    #[stable(feature = "rust1", since = "1.0.0")]
2934    #[rustc_diagnostic_item = "vec_is_empty"]
2935    #[rustc_const_stable(feature = "const_vec_string_slice", since = "1.87.0")]
2936    pub const fn is_empty(&self) -> bool {
2937        self.len() == 0
2938    }
2939
2940    /// Splits the collection into two at the given index.
2941    ///
2942    /// Returns a newly allocated vector containing the elements in the range
2943    /// `[at, len)`. After the call, the original vector will be left containing
2944    /// the elements `[0, at)` with its previous capacity unchanged.
2945    ///
2946    /// - If you want to take ownership of the entire contents and capacity of
2947    ///   the vector, see [`mem::take`] or [`mem::replace`].
2948    /// - If you don't need the returned vector at all, see [`Vec::truncate`].
2949    /// - If you want to take ownership of an arbitrary subslice, or you don't
2950    ///   necessarily want to store the removed items in a vector, see [`Vec::drain`].
2951    ///
2952    /// # Panics
2953    ///
2954    /// Panics if `at > len`.
2955    ///
2956    /// # Examples
2957    ///
2958    /// ```
2959    /// let mut vec = vec!['a', 'b', 'c'];
2960    /// let vec2 = vec.split_off(1);
2961    /// assert_eq!(vec, ['a']);
2962    /// assert_eq!(vec2, ['b', 'c']);
2963    /// ```
2964    #[cfg(not(no_global_oom_handling))]
2965    #[inline]
2966    #[must_use = "use `.truncate()` if you don't need the other half"]
2967    #[stable(feature = "split_off", since = "1.4.0")]
2968    #[track_caller]
2969    pub fn split_off(&mut self, at: usize) -> Self
2970    where
2971        A: Clone,
2972    {
2973        #[cfg_attr(feature = "ferrocene_certified_runtime", expect(unused_variables))]
2974        #[cold]
2975        #[cfg_attr(not(panic = "immediate-abort"), inline(never))]
2976        #[track_caller]
2977        #[optimize(size)]
2978        fn assert_failed(at: usize, len: usize) -> ! {
2979            panic!("`at` split index (is {at}) should be <= len (is {len})");
2980        }
2981
2982        if at > self.len() {
2983            assert_failed(at, self.len());
2984        }
2985
2986        let other_len = self.len - at;
2987        let mut other = Vec::with_capacity_in(other_len, self.allocator().clone());
2988
2989        // Unsafely `set_len` and copy items to `other`.
2990        unsafe {
2991            self.set_len(at);
2992            other.set_len(other_len);
2993
2994            ptr::copy_nonoverlapping(self.as_ptr().add(at), other.as_mut_ptr(), other.len());
2995        }
2996        other
2997    }
2998
2999    /// Resizes the `Vec` in-place so that `len` is equal to `new_len`.
3000    ///
3001    /// If `new_len` is greater than `len`, the `Vec` is extended by the
3002    /// difference, with each additional slot filled with the result of
3003    /// calling the closure `f`. The return values from `f` will end up
3004    /// in the `Vec` in the order they have been generated.
3005    ///
3006    /// If `new_len` is less than `len`, the `Vec` is simply truncated.
3007    ///
3008    /// This method uses a closure to create new values on every push. If
3009    /// you'd rather [`Clone`] a given value, use [`Vec::resize`]. If you
3010    /// want to use the [`Default`] trait to generate values, you can
3011    /// pass [`Default::default`] as the second argument.
3012    ///
3013    /// # Panics
3014    ///
3015    /// Panics if the new capacity exceeds `isize::MAX` _bytes_.
3016    ///
3017    /// # Examples
3018    ///
3019    /// ```
3020    /// let mut vec = vec![1, 2, 3];
3021    /// vec.resize_with(5, Default::default);
3022    /// assert_eq!(vec, [1, 2, 3, 0, 0]);
3023    ///
3024    /// let mut vec = vec![];
3025    /// let mut p = 1;
3026    /// vec.resize_with(4, || { p *= 2; p });
3027    /// assert_eq!(vec, [2, 4, 8, 16]);
3028    /// ```
3029    #[cfg(not(no_global_oom_handling))]
3030    #[stable(feature = "vec_resize_with", since = "1.33.0")]
3031    pub fn resize_with<F>(&mut self, new_len: usize, f: F)
3032    where
3033        F: FnMut() -> T,
3034    {
3035        let len = self.len();
3036        if new_len > len {
3037            self.extend_trusted(iter::repeat_with(f).take(new_len - len));
3038        } else {
3039            self.truncate(new_len);
3040        }
3041    }
3042
3043    /// Consumes and leaks the `Vec`, returning a mutable reference to the contents,
3044    /// `&'a mut [T]`.
3045    ///
3046    /// Note that the type `T` must outlive the chosen lifetime `'a`. If the type
3047    /// has only static references, or none at all, then this may be chosen to be
3048    /// `'static`.
3049    ///
3050    /// As of Rust 1.57, this method does not reallocate or shrink the `Vec`,
3051    /// so the leaked allocation may include unused capacity that is not part
3052    /// of the returned slice.
3053    ///
3054    /// This function is mainly useful for data that lives for the remainder of
3055    /// the program's life. Dropping the returned reference will cause a memory
3056    /// leak.
3057    ///
3058    /// # Examples
3059    ///
3060    /// Simple usage:
3061    ///
3062    /// ```
3063    /// let x = vec![1, 2, 3];
3064    /// let static_ref: &'static mut [usize] = x.leak();
3065    /// static_ref[0] += 1;
3066    /// assert_eq!(static_ref, &[2, 2, 3]);
3067    /// # // FIXME(https://github.com/rust-lang/miri/issues/3670):
3068    /// # // use -Zmiri-disable-leak-check instead of unleaking in tests meant to leak.
3069    /// # drop(unsafe { Box::from_raw(static_ref) });
3070    /// ```
3071    #[stable(feature = "vec_leak", since = "1.47.0")]
3072    #[inline]
3073    pub fn leak<'a>(self) -> &'a mut [T]
3074    where
3075        A: 'a,
3076    {
3077        let mut me = ManuallyDrop::new(self);
3078        unsafe { slice::from_raw_parts_mut(me.as_mut_ptr(), me.len) }
3079    }
3080
3081    /// Returns the remaining spare capacity of the vector as a slice of
3082    /// `MaybeUninit<T>`.
3083    ///
3084    /// The returned slice can be used to fill the vector with data (e.g. by
3085    /// reading from a file) before marking the data as initialized using the
3086    /// [`set_len`] method.
3087    ///
3088    /// [`set_len`]: Vec::set_len
3089    ///
3090    /// # Examples
3091    ///
3092    /// ```
3093    /// // Allocate vector big enough for 10 elements.
3094    /// let mut v = Vec::with_capacity(10);
3095    ///
3096    /// // Fill in the first 3 elements.
3097    /// let uninit = v.spare_capacity_mut();
3098    /// uninit[0].write(0);
3099    /// uninit[1].write(1);
3100    /// uninit[2].write(2);
3101    ///
3102    /// // Mark the first 3 elements of the vector as being initialized.
3103    /// unsafe {
3104    ///     v.set_len(3);
3105    /// }
3106    ///
3107    /// assert_eq!(&v, &[0, 1, 2]);
3108    /// ```
3109    #[stable(feature = "vec_spare_capacity", since = "1.60.0")]
3110    #[inline]
3111    pub fn spare_capacity_mut(&mut self) -> &mut [MaybeUninit<T>] {
3112        // Note:
3113        // This method is not implemented in terms of `split_at_spare_mut`,
3114        // to prevent invalidation of pointers to the buffer.
3115        unsafe {
3116            slice::from_raw_parts_mut(
3117                self.as_mut_ptr().add(self.len) as *mut MaybeUninit<T>,
3118                self.buf.capacity() - self.len,
3119            )
3120        }
3121    }
3122
3123    /// Returns vector content as a slice of `T`, along with the remaining spare
3124    /// capacity of the vector as a slice of `MaybeUninit<T>`.
3125    ///
3126    /// The returned spare capacity slice can be used to fill the vector with data
3127    /// (e.g. by reading from a file) before marking the data as initialized using
3128    /// the [`set_len`] method.
3129    ///
3130    /// [`set_len`]: Vec::set_len
3131    ///
3132    /// Note that this is a low-level API, which should be used with care for
3133    /// optimization purposes. If you need to append data to a `Vec`
3134    /// you can use [`push`], [`extend`], [`extend_from_slice`],
3135    /// [`extend_from_within`], [`insert`], [`append`], [`resize`] or
3136    /// [`resize_with`], depending on your exact needs.
3137    ///
3138    /// [`push`]: Vec::push
3139    /// [`extend`]: Vec::extend
3140    /// [`extend_from_slice`]: Vec::extend_from_slice
3141    /// [`extend_from_within`]: Vec::extend_from_within
3142    /// [`insert`]: Vec::insert
3143    /// [`append`]: Vec::append
3144    /// [`resize`]: Vec::resize
3145    /// [`resize_with`]: Vec::resize_with
3146    ///
3147    /// # Examples
3148    ///
3149    /// ```
3150    /// #![feature(vec_split_at_spare)]
3151    ///
3152    /// let mut v = vec![1, 1, 2];
3153    ///
3154    /// // Reserve additional space big enough for 10 elements.
3155    /// v.reserve(10);
3156    ///
3157    /// let (init, uninit) = v.split_at_spare_mut();
3158    /// let sum = init.iter().copied().sum::<u32>();
3159    ///
3160    /// // Fill in the next 4 elements.
3161    /// uninit[0].write(sum);
3162    /// uninit[1].write(sum * 2);
3163    /// uninit[2].write(sum * 3);
3164    /// uninit[3].write(sum * 4);
3165    ///
3166    /// // Mark the 4 elements of the vector as being initialized.
3167    /// unsafe {
3168    ///     let len = v.len();
3169    ///     v.set_len(len + 4);
3170    /// }
3171    ///
3172    /// assert_eq!(&v, &[1, 1, 2, 4, 8, 12, 16]);
3173    /// ```
3174    #[unstable(feature = "vec_split_at_spare", issue = "81944")]
3175    #[inline]
3176    pub fn split_at_spare_mut(&mut self) -> (&mut [T], &mut [MaybeUninit<T>]) {
3177        // SAFETY:
3178        // - len is ignored and so never changed
3179        let (init, spare, _) = unsafe { self.split_at_spare_mut_with_len() };
3180        (init, spare)
3181    }
3182
3183    /// Safety: changing returned .2 (&mut usize) is considered the same as calling `.set_len(_)`.
3184    ///
3185    /// This method provides unique access to all vec parts at once in `extend_from_within`.
3186    unsafe fn split_at_spare_mut_with_len(
3187        &mut self,
3188    ) -> (&mut [T], &mut [MaybeUninit<T>], &mut usize) {
3189        let ptr = self.as_mut_ptr();
3190        // SAFETY:
3191        // - `ptr` is guaranteed to be valid for `self.len` elements
3192        // - but the allocation extends out to `self.buf.capacity()` elements, possibly
3193        // uninitialized
3194        let spare_ptr = unsafe { ptr.add(self.len) };
3195        let spare_ptr = spare_ptr.cast_uninit();
3196        let spare_len = self.buf.capacity() - self.len;
3197
3198        // SAFETY:
3199        // - `ptr` is guaranteed to be valid for `self.len` elements
3200        // - `spare_ptr` is pointing one element past the buffer, so it doesn't overlap with `initialized`
3201        unsafe {
3202            let initialized = slice::from_raw_parts_mut(ptr, self.len);
3203            let spare = slice::from_raw_parts_mut(spare_ptr, spare_len);
3204
3205            (initialized, spare, &mut self.len)
3206        }
3207    }
3208
3209    /// Groups every `N` elements in the `Vec<T>` into chunks to produce a `Vec<[T; N]>`, dropping
3210    /// elements in the remainder. `N` must be greater than zero.
3211    ///
3212    /// If the capacity is not a multiple of the chunk size, the buffer will shrink down to the
3213    /// nearest multiple with a reallocation or deallocation.
3214    ///
3215    /// This function can be used to reverse [`Vec::into_flattened`].
3216    ///
3217    /// # Examples
3218    ///
3219    /// ```
3220    /// #![feature(vec_into_chunks)]
3221    ///
3222    /// let vec = vec![0, 1, 2, 3, 4, 5, 6, 7];
3223    /// assert_eq!(vec.into_chunks::<3>(), [[0, 1, 2], [3, 4, 5]]);
3224    ///
3225    /// let vec = vec![0, 1, 2, 3];
3226    /// let chunks: Vec<[u8; 10]> = vec.into_chunks();
3227    /// assert!(chunks.is_empty());
3228    ///
3229    /// let flat = vec![0; 8 * 8 * 8];
3230    /// let reshaped: Vec<[[[u8; 8]; 8]; 8]> = flat.into_chunks().into_chunks().into_chunks();
3231    /// assert_eq!(reshaped.len(), 1);
3232    /// ```
3233    #[cfg(not(no_global_oom_handling))]
3234    #[unstable(feature = "vec_into_chunks", issue = "142137")]
3235    pub fn into_chunks<const N: usize>(mut self) -> Vec<[T; N], A> {
3236        const {
3237            assert!(N != 0, "chunk size must be greater than zero");
3238        }
3239
3240        let (len, cap) = (self.len(), self.capacity());
3241
3242        let len_remainder = len % N;
3243        if len_remainder != 0 {
3244            self.truncate(len - len_remainder);
3245        }
3246
3247        let cap_remainder = cap % N;
3248        if !T::IS_ZST && cap_remainder != 0 {
3249            self.buf.shrink_to_fit(cap - cap_remainder);
3250        }
3251
3252        let (ptr, _, _, alloc) = self.into_raw_parts_with_alloc();
3253
3254        // SAFETY:
3255        // - `ptr` and `alloc` were just returned from `self.into_raw_parts_with_alloc()`
3256        // - `[T; N]` has the same alignment as `T`
3257        // - `size_of::<[T; N]>() * cap / N == size_of::<T>() * cap`
3258        // - `len / N <= cap / N` because `len <= cap`
3259        // - the allocated memory consists of `len / N` valid values of type `[T; N]`
3260        // - `cap / N` fits the size of the allocated memory after shrinking
3261        unsafe { Vec::from_raw_parts_in(ptr.cast(), len / N, cap / N, alloc) }
3262    }
3263
3264    /// This clears out this `Vec` and recycles the allocation into a new `Vec`.
3265    /// The item type of the resulting `Vec` needs to have the same size and
3266    /// alignment as the item type of the original `Vec`.
3267    ///
3268    /// # Examples
3269    ///
3270    ///  ```
3271    /// #![feature(vec_recycle, transmutability)]
3272    /// let a: Vec<u8> = vec![0; 100];
3273    /// let capacity = a.capacity();
3274    /// let addr = a.as_ptr().addr();
3275    /// let b: Vec<i8> = a.recycle();
3276    /// assert_eq!(b.len(), 0);
3277    /// assert_eq!(b.capacity(), capacity);
3278    /// assert_eq!(b.as_ptr().addr(), addr);
3279    /// ```
3280    ///
3281    /// The `Recyclable` bound prevents this method from being called when `T` and `U` have different sizes; e.g.:
3282    ///
3283    ///  ```compile_fail,E0277
3284    /// #![feature(vec_recycle, transmutability)]
3285    /// let vec: Vec<[u8; 2]> = Vec::new();
3286    /// let _: Vec<[u8; 1]> = vec.recycle();
3287    /// ```
3288    /// ...or different alignments:
3289    ///
3290    ///  ```compile_fail,E0277
3291    /// #![feature(vec_recycle, transmutability)]
3292    /// let vec: Vec<[u16; 0]> = Vec::new();
3293    /// let _: Vec<[u8; 0]> = vec.recycle();
3294    /// ```
3295    ///
3296    /// However, due to temporary implementation limitations of `Recyclable`,
3297    /// this method is not yet callable when `T` or `U` are slices, trait objects,
3298    /// or other exotic types; e.g.:
3299    ///
3300    /// ```compile_fail,E0277
3301    /// #![feature(vec_recycle, transmutability)]
3302    /// # let inputs = ["a b c", "d e f"];
3303    /// # fn process(_: &[&str]) {}
3304    /// let mut storage: Vec<&[&str]> = Vec::new();
3305    ///
3306    /// for input in inputs {
3307    ///     let mut buffer: Vec<&str> = storage.recycle();
3308    ///     buffer.extend(input.split(" "));
3309    ///     process(&buffer);
3310    ///     storage = buffer.recycle();
3311    /// }
3312    /// ```
3313    #[unstable(feature = "vec_recycle", issue = "148227")]
3314    #[expect(private_bounds)]
3315    pub fn recycle<U>(mut self) -> Vec<U, A>
3316    where
3317        U: Recyclable<T>,
3318    {
3319        self.clear();
3320        const {
3321            // FIXME(const-hack, 146097): compare `Layout`s
3322            assert!(size_of::<T>() == size_of::<U>());
3323            assert!(align_of::<T>() == align_of::<U>());
3324        };
3325        let (ptr, length, capacity, alloc) = self.into_parts_with_alloc();
3326        debug_assert_eq!(length, 0);
3327        // SAFETY:
3328        // - `ptr` and `alloc` were just returned from `self.into_raw_parts_with_alloc()`
3329        // - `T` & `U` have the same layout, so `capacity` does not need to be changed and we can safely use `alloc.dealloc` later
3330        // - the original vector was cleared, so there is no problem with "transmuting" the stored values
3331        unsafe { Vec::from_parts_in(ptr.cast::<U>(), length, capacity, alloc) }
3332    }
3333}
3334
3335/// Denotes that an allocation of `From` can be recycled into an allocation of `Self`.
3336///
3337/// # Safety
3338///
3339/// `Self` is `Recyclable<From>` if `Layout::new::<Self>() == Layout::new::<From>()`.
3340unsafe trait Recyclable<From: Sized>: Sized {}
3341
3342#[unstable_feature_bound(transmutability)]
3343// SAFETY: enforced by `TransmuteFrom`
3344unsafe impl<From, To> Recyclable<From> for To
3345where
3346    for<'a> &'a MaybeUninit<To>: TransmuteFrom<&'a MaybeUninit<From>, { Assume::SAFETY }>,
3347    for<'a> &'a MaybeUninit<From>: TransmuteFrom<&'a MaybeUninit<To>, { Assume::SAFETY }>,
3348{
3349}
3350
3351impl<T: Clone, A: Allocator> Vec<T, A> {
3352    /// Resizes the `Vec` in-place so that `len` is equal to `new_len`.
3353    ///
3354    /// If `new_len` is greater than `len`, the `Vec` is extended by the
3355    /// difference, with each additional slot filled with `value`.
3356    /// If `new_len` is less than `len`, the `Vec` is simply truncated.
3357    ///
3358    /// This method requires `T` to implement [`Clone`],
3359    /// in order to be able to clone the passed value.
3360    /// If you need more flexibility (or want to rely on [`Default`] instead of
3361    /// [`Clone`]), use [`Vec::resize_with`].
3362    /// If you only need to resize to a smaller size, use [`Vec::truncate`].
3363    ///
3364    /// # Panics
3365    ///
3366    /// Panics if the new capacity exceeds `isize::MAX` _bytes_.
3367    ///
3368    /// # Examples
3369    ///
3370    /// ```
3371    /// let mut vec = vec!["hello"];
3372    /// vec.resize(3, "world");
3373    /// assert_eq!(vec, ["hello", "world", "world"]);
3374    ///
3375    /// let mut vec = vec!['a', 'b', 'c', 'd'];
3376    /// vec.resize(2, '_');
3377    /// assert_eq!(vec, ['a', 'b']);
3378    /// ```
3379    #[cfg(not(no_global_oom_handling))]
3380    #[stable(feature = "vec_resize", since = "1.5.0")]
3381    pub fn resize(&mut self, new_len: usize, value: T) {
3382        let len = self.len();
3383
3384        if new_len > len {
3385            self.extend_with(new_len - len, value)
3386        } else {
3387            self.truncate(new_len);
3388        }
3389    }
3390
3391    /// Clones and appends all elements in a slice to the `Vec`.
3392    ///
3393    /// Iterates over the slice `other`, clones each element, and then appends
3394    /// it to this `Vec`. The `other` slice is traversed in-order.
3395    ///
3396    /// Note that this function is the same as [`extend`],
3397    /// except that it also works with slice elements that are Clone but not Copy.
3398    /// If Rust gets specialization this function may be deprecated.
3399    ///
3400    /// # Panics
3401    ///
3402    /// Panics if the new capacity exceeds `isize::MAX` _bytes_.
3403    ///
3404    /// # Examples
3405    ///
3406    /// ```
3407    /// let mut vec = vec![1];
3408    /// vec.extend_from_slice(&[2, 3, 4]);
3409    /// assert_eq!(vec, [1, 2, 3, 4]);
3410    /// ```
3411    ///
3412    /// [`extend`]: Vec::extend
3413    #[cfg(not(no_global_oom_handling))]
3414    #[stable(feature = "vec_extend_from_slice", since = "1.6.0")]
3415    pub fn extend_from_slice(&mut self, other: &[T]) {
3416        self.spec_extend(other.iter())
3417    }
3418
3419    /// Given a range `src`, clones a slice of elements in that range and appends it to the end.
3420    ///
3421    /// `src` must be a range that can form a valid subslice of the `Vec`.
3422    ///
3423    /// # Panics
3424    ///
3425    /// Panics if starting index is greater than the end index, if the index is
3426    /// greater than the length of the vector, or if the new capacity exceeds
3427    /// `isize::MAX` _bytes_.
3428    ///
3429    /// # Examples
3430    ///
3431    /// ```
3432    /// let mut characters = vec!['a', 'b', 'c', 'd', 'e'];
3433    /// characters.extend_from_within(2..);
3434    /// assert_eq!(characters, ['a', 'b', 'c', 'd', 'e', 'c', 'd', 'e']);
3435    ///
3436    /// let mut numbers = vec![0, 1, 2, 3, 4];
3437    /// numbers.extend_from_within(..2);
3438    /// assert_eq!(numbers, [0, 1, 2, 3, 4, 0, 1]);
3439    ///
3440    /// let mut strings = vec![String::from("hello"), String::from("world"), String::from("!")];
3441    /// strings.extend_from_within(1..=2);
3442    /// assert_eq!(strings, ["hello", "world", "!", "world", "!"]);
3443    /// ```
3444    #[cfg(not(no_global_oom_handling))]
3445    #[stable(feature = "vec_extend_from_within", since = "1.53.0")]
3446    pub fn extend_from_within<R>(&mut self, src: R)
3447    where
3448        R: RangeBounds<usize>,
3449    {
3450        let range = slice::range(src, ..self.len());
3451        self.reserve(range.len());
3452
3453        // SAFETY:
3454        // - `slice::range` guarantees that the given range is valid for indexing self
3455        unsafe {
3456            self.spec_extend_from_within(range);
3457        }
3458    }
3459}
3460
3461impl<T, A: Allocator, const N: usize> Vec<[T; N], A> {
3462    /// Takes a `Vec<[T; N]>` and flattens it into a `Vec<T>`.
3463    ///
3464    /// # Panics
3465    ///
3466    /// Panics if the length of the resulting vector would overflow a `usize`.
3467    ///
3468    /// This is only possible when flattening a vector of arrays of zero-sized
3469    /// types, and thus tends to be irrelevant in practice. If
3470    /// `size_of::<T>() > 0`, this will never panic.
3471    ///
3472    /// # Examples
3473    ///
3474    /// ```
3475    /// let mut vec = vec![[1, 2, 3], [4, 5, 6], [7, 8, 9]];
3476    /// assert_eq!(vec.pop(), Some([7, 8, 9]));
3477    ///
3478    /// let mut flattened = vec.into_flattened();
3479    /// assert_eq!(flattened.pop(), Some(6));
3480    /// ```
3481    #[stable(feature = "slice_flatten", since = "1.80.0")]
3482    pub fn into_flattened(self) -> Vec<T, A> {
3483        let (ptr, len, cap, alloc) = self.into_raw_parts_with_alloc();
3484        let (new_len, new_cap) = if T::IS_ZST {
3485            (len.checked_mul(N).expect("vec len overflow"), usize::MAX)
3486        } else {
3487            // SAFETY:
3488            // - `cap * N` cannot overflow because the allocation is already in
3489            // the address space.
3490            // - Each `[T; N]` has `N` valid elements, so there are `len * N`
3491            // valid elements in the allocation.
3492            unsafe { (len.unchecked_mul(N), cap.unchecked_mul(N)) }
3493        };
3494        // SAFETY:
3495        // - `ptr` was allocated by `self`
3496        // - `ptr` is well-aligned because `[T; N]` has the same alignment as `T`.
3497        // - `new_cap` refers to the same sized allocation as `cap` because
3498        // `new_cap * size_of::<T>()` == `cap * size_of::<[T; N]>()`
3499        // - `len` <= `cap`, so `len * N` <= `cap * N`.
3500        unsafe { Vec::<T, A>::from_raw_parts_in(ptr.cast(), new_len, new_cap, alloc) }
3501    }
3502}
3503
3504impl<T: Clone, A: Allocator> Vec<T, A> {
3505    #[cfg(not(no_global_oom_handling))]
3506    /// Extend the vector by `n` clones of value.
3507    fn extend_with(&mut self, n: usize, value: T) {
3508        self.reserve(n);
3509
3510        unsafe {
3511            let mut ptr = self.as_mut_ptr().add(self.len());
3512            // Use SetLenOnDrop to work around bug where compiler
3513            // might not realize the store through `ptr` through self.set_len()
3514            // don't alias.
3515            let mut local_len = SetLenOnDrop::new(&mut self.len);
3516
3517            // Write all elements except the last one
3518            for _ in 1..n {
3519                ptr::write(ptr, value.clone());
3520                ptr = ptr.add(1);
3521                // Increment the length in every step in case clone() panics
3522                local_len.increment_len(1);
3523            }
3524
3525            if n > 0 {
3526                // We can write the last element directly without cloning needlessly
3527                ptr::write(ptr, value);
3528                local_len.increment_len(1);
3529            }
3530
3531            // len set by scope guard
3532        }
3533    }
3534}
3535
3536impl<T: PartialEq, A: Allocator> Vec<T, A> {
3537    /// Removes consecutive repeated elements in the vector according to the
3538    /// [`PartialEq`] trait implementation.
3539    ///
3540    /// If the vector is sorted, this removes all duplicates.
3541    ///
3542    /// # Examples
3543    ///
3544    /// ```
3545    /// let mut vec = vec![1, 2, 2, 3, 2];
3546    ///
3547    /// vec.dedup();
3548    ///
3549    /// assert_eq!(vec, [1, 2, 3, 2]);
3550    /// ```
3551    #[stable(feature = "rust1", since = "1.0.0")]
3552    #[inline]
3553    pub fn dedup(&mut self) {
3554        self.dedup_by(|a, b| a == b)
3555    }
3556}
3557
3558////////////////////////////////////////////////////////////////////////////////
3559// Internal methods and functions
3560////////////////////////////////////////////////////////////////////////////////
3561
3562#[doc(hidden)]
3563#[cfg(not(no_global_oom_handling))]
3564#[stable(feature = "rust1", since = "1.0.0")]
3565#[rustc_diagnostic_item = "vec_from_elem"]
3566pub fn from_elem<T: Clone>(elem: T, n: usize) -> Vec<T> {
3567    <T as SpecFromElem>::from_elem(elem, n, Global)
3568}
3569
3570#[doc(hidden)]
3571#[cfg(not(no_global_oom_handling))]
3572#[unstable(feature = "allocator_api", issue = "32838")]
3573pub fn from_elem_in<T: Clone, A: Allocator>(elem: T, n: usize, alloc: A) -> Vec<T, A> {
3574    <T as SpecFromElem>::from_elem(elem, n, alloc)
3575}
3576
3577#[cfg(not(no_global_oom_handling))]
3578trait ExtendFromWithinSpec {
3579    /// # Safety
3580    ///
3581    /// - `src` needs to be valid index
3582    /// - `self.capacity() - self.len()` must be `>= src.len()`
3583    unsafe fn spec_extend_from_within(&mut self, src: Range<usize>);
3584}
3585
3586#[cfg(not(no_global_oom_handling))]
3587impl<T: Clone, A: Allocator> ExtendFromWithinSpec for Vec<T, A> {
3588    default unsafe fn spec_extend_from_within(&mut self, src: Range<usize>) {
3589        // SAFETY:
3590        // - len is increased only after initializing elements
3591        let (this, spare, len) = unsafe { self.split_at_spare_mut_with_len() };
3592
3593        // SAFETY:
3594        // - caller guarantees that src is a valid index
3595        let to_clone = unsafe { this.get_unchecked(src) };
3596
3597        iter::zip(to_clone, spare)
3598            .map(|(src, dst)| dst.write(src.clone()))
3599            // Note:
3600            // - Element was just initialized with `MaybeUninit::write`, so it's ok to increase len
3601            // - len is increased after each element to prevent leaks (see issue #82533)
3602            .for_each(|_| *len += 1);
3603    }
3604}
3605
3606#[cfg(not(no_global_oom_handling))]
3607impl<T: TrivialClone, A: Allocator> ExtendFromWithinSpec for Vec<T, A> {
3608    unsafe fn spec_extend_from_within(&mut self, src: Range<usize>) {
3609        let count = src.len();
3610        {
3611            let (init, spare) = self.split_at_spare_mut();
3612
3613            // SAFETY:
3614            // - caller guarantees that `src` is a valid index
3615            let source = unsafe { init.get_unchecked(src) };
3616
3617            // SAFETY:
3618            // - Both pointers are created from unique slice references (`&mut [_]`)
3619            //   so they are valid and do not overlap.
3620            // - Elements implement `TrivialClone` so this is equivalent to calling
3621            //   `clone` on every one of them.
3622            // - `count` is equal to the len of `source`, so source is valid for
3623            //   `count` reads
3624            // - `.reserve(count)` guarantees that `spare.len() >= count` so spare
3625            //   is valid for `count` writes
3626            unsafe { ptr::copy_nonoverlapping(source.as_ptr(), spare.as_mut_ptr() as _, count) };
3627        }
3628
3629        // SAFETY:
3630        // - The elements were just initialized by `copy_nonoverlapping`
3631        self.len += count;
3632    }
3633}
3634
3635////////////////////////////////////////////////////////////////////////////////
3636// Common trait implementations for Vec
3637////////////////////////////////////////////////////////////////////////////////
3638
3639#[stable(feature = "rust1", since = "1.0.0")]
3640impl<T, A: Allocator> ops::Deref for Vec<T, A> {
3641    type Target = [T];
3642
3643    #[inline]
3644    fn deref(&self) -> &[T] {
3645        self.as_slice()
3646    }
3647}
3648
3649#[stable(feature = "rust1", since = "1.0.0")]
3650impl<T, A: Allocator> ops::DerefMut for Vec<T, A> {
3651    #[inline]
3652    fn deref_mut(&mut self) -> &mut [T] {
3653        self.as_mut_slice()
3654    }
3655}
3656
3657#[unstable(feature = "deref_pure_trait", issue = "87121")]
3658unsafe impl<T, A: Allocator> ops::DerefPure for Vec<T, A> {}
3659
3660#[cfg(not(no_global_oom_handling))]
3661#[stable(feature = "rust1", since = "1.0.0")]
3662impl<T: Clone, A: Allocator + Clone> Clone for Vec<T, A> {
3663    fn clone(&self) -> Self {
3664        let alloc = self.allocator().clone();
3665        <[T]>::to_vec_in(&**self, alloc)
3666    }
3667
3668    /// Overwrites the contents of `self` with a clone of the contents of `source`.
3669    ///
3670    /// This method is preferred over simply assigning `source.clone()` to `self`,
3671    /// as it avoids reallocation if possible. Additionally, if the element type
3672    /// `T` overrides `clone_from()`, this will reuse the resources of `self`'s
3673    /// elements as well.
3674    ///
3675    /// # Examples
3676    ///
3677    /// ```
3678    /// let x = vec![5, 6, 7];
3679    /// let mut y = vec![8, 9, 10];
3680    /// let yp: *const i32 = y.as_ptr();
3681    ///
3682    /// y.clone_from(&x);
3683    ///
3684    /// // The value is the same
3685    /// assert_eq!(x, y);
3686    ///
3687    /// // And no reallocation occurred
3688    /// assert_eq!(yp, y.as_ptr());
3689    /// ```
3690    fn clone_from(&mut self, source: &Self) {
3691        crate::slice::SpecCloneIntoVec::clone_into(source.as_slice(), self);
3692    }
3693}
3694
3695/// The hash of a vector is the same as that of the corresponding slice,
3696/// as required by the `core::borrow::Borrow` implementation.
3697///
3698/// ```
3699/// use std::hash::BuildHasher;
3700///
3701/// let b = std::hash::RandomState::new();
3702/// let v: Vec<u8> = vec![0xa8, 0x3c, 0x09];
3703/// let s: &[u8] = &[0xa8, 0x3c, 0x09];
3704/// assert_eq!(b.hash_one(v), b.hash_one(s));
3705/// ```
3706#[stable(feature = "rust1", since = "1.0.0")]
3707impl<T: Hash, A: Allocator> Hash for Vec<T, A> {
3708    #[inline]
3709    fn hash<H: Hasher>(&self, state: &mut H) {
3710        Hash::hash(&**self, state)
3711    }
3712}
3713
3714#[stable(feature = "rust1", since = "1.0.0")]
3715impl<T, I: SliceIndex<[T]>, A: Allocator> Index<I> for Vec<T, A> {
3716    type Output = I::Output;
3717
3718    #[inline]
3719    fn index(&self, index: I) -> &Self::Output {
3720        Index::index(&**self, index)
3721    }
3722}
3723
3724#[stable(feature = "rust1", since = "1.0.0")]
3725impl<T, I: SliceIndex<[T]>, A: Allocator> IndexMut<I> for Vec<T, A> {
3726    #[inline]
3727    fn index_mut(&mut self, index: I) -> &mut Self::Output {
3728        IndexMut::index_mut(&mut **self, index)
3729    }
3730}
3731
3732/// Collects an iterator into a Vec, commonly called via [`Iterator::collect()`]
3733///
3734/// # Allocation behavior
3735///
3736/// In general `Vec` does not guarantee any particular growth or allocation strategy.
3737/// That also applies to this trait impl.
3738///
3739/// **Note:** This section covers implementation details and is therefore exempt from
3740/// stability guarantees.
3741///
3742/// Vec may use any or none of the following strategies,
3743/// depending on the supplied iterator:
3744///
3745/// * preallocate based on [`Iterator::size_hint()`]
3746///   * and panic if the number of items is outside the provided lower/upper bounds
3747/// * use an amortized growth strategy similar to `pushing` one item at a time
3748/// * perform the iteration in-place on the original allocation backing the iterator
3749///
3750/// The last case warrants some attention. It is an optimization that in many cases reduces peak memory
3751/// consumption and improves cache locality. But when big, short-lived allocations are created,
3752/// only a small fraction of their items get collected, no further use is made of the spare capacity
3753/// and the resulting `Vec` is moved into a longer-lived structure, then this can lead to the large
3754/// allocations having their lifetimes unnecessarily extended which can result in increased memory
3755/// footprint.
3756///
3757/// In cases where this is an issue, the excess capacity can be discarded with [`Vec::shrink_to()`],
3758/// [`Vec::shrink_to_fit()`] or by collecting into [`Box<[T]>`][owned slice] instead, which additionally reduces
3759/// the size of the long-lived struct.
3760///
3761/// [owned slice]: Box
3762///
3763/// ```rust
3764/// # use std::sync::Mutex;
3765/// static LONG_LIVED: Mutex<Vec<Vec<u16>>> = Mutex::new(Vec::new());
3766///
3767/// for i in 0..10 {
3768///     let big_temporary: Vec<u16> = (0..1024).collect();
3769///     // discard most items
3770///     let mut result: Vec<_> = big_temporary.into_iter().filter(|i| i % 100 == 0).collect();
3771///     // without this a lot of unused capacity might be moved into the global
3772///     result.shrink_to_fit();
3773///     LONG_LIVED.lock().unwrap().push(result);
3774/// }
3775/// ```
3776#[cfg(not(no_global_oom_handling))]
3777#[stable(feature = "rust1", since = "1.0.0")]
3778impl<T> FromIterator<T> for Vec<T> {
3779    #[inline]
3780    fn from_iter<I: IntoIterator<Item = T>>(iter: I) -> Vec<T> {
3781        <Self as SpecFromIter<T, I::IntoIter>>::from_iter(iter.into_iter())
3782    }
3783}
3784
3785#[stable(feature = "rust1", since = "1.0.0")]
3786impl<T, A: Allocator> IntoIterator for Vec<T, A> {
3787    type Item = T;
3788    type IntoIter = IntoIter<T, A>;
3789
3790    /// Creates a consuming iterator, that is, one that moves each value out of
3791    /// the vector (from start to end). The vector cannot be used after calling
3792    /// this.
3793    ///
3794    /// # Examples
3795    ///
3796    /// ```
3797    /// let v = vec!["a".to_string(), "b".to_string()];
3798    /// let mut v_iter = v.into_iter();
3799    ///
3800    /// let first_element: Option<String> = v_iter.next();
3801    ///
3802    /// assert_eq!(first_element, Some("a".to_string()));
3803    /// assert_eq!(v_iter.next(), Some("b".to_string()));
3804    /// assert_eq!(v_iter.next(), None);
3805    /// ```
3806    #[inline]
3807    fn into_iter(self) -> Self::IntoIter {
3808        unsafe {
3809            let me = ManuallyDrop::new(self);
3810            let alloc = ManuallyDrop::new(ptr::read(me.allocator()));
3811            let buf = me.buf.non_null();
3812            let begin = buf.as_ptr();
3813            let end = if T::IS_ZST {
3814                begin.wrapping_byte_add(me.len())
3815            } else {
3816                begin.add(me.len()) as *const T
3817            };
3818            let cap = me.buf.capacity();
3819            IntoIter { buf, phantom: PhantomData, cap, alloc, ptr: buf, end }
3820        }
3821    }
3822}
3823
3824#[stable(feature = "rust1", since = "1.0.0")]
3825impl<'a, T, A: Allocator> IntoIterator for &'a Vec<T, A> {
3826    type Item = &'a T;
3827    type IntoIter = slice::Iter<'a, T>;
3828
3829    fn into_iter(self) -> Self::IntoIter {
3830        self.iter()
3831    }
3832}
3833
3834#[stable(feature = "rust1", since = "1.0.0")]
3835impl<'a, T, A: Allocator> IntoIterator for &'a mut Vec<T, A> {
3836    type Item = &'a mut T;
3837    type IntoIter = slice::IterMut<'a, T>;
3838
3839    fn into_iter(self) -> Self::IntoIter {
3840        self.iter_mut()
3841    }
3842}
3843
3844#[cfg(not(no_global_oom_handling))]
3845#[stable(feature = "rust1", since = "1.0.0")]
3846impl<T, A: Allocator> Extend<T> for Vec<T, A> {
3847    #[inline]
3848    fn extend<I: IntoIterator<Item = T>>(&mut self, iter: I) {
3849        <Self as SpecExtend<T, I::IntoIter>>::spec_extend(self, iter.into_iter())
3850    }
3851
3852    #[inline]
3853    fn extend_one(&mut self, item: T) {
3854        self.push(item);
3855    }
3856
3857    #[inline]
3858    fn extend_reserve(&mut self, additional: usize) {
3859        self.reserve(additional);
3860    }
3861
3862    #[inline]
3863    unsafe fn extend_one_unchecked(&mut self, item: T) {
3864        // SAFETY: Our preconditions ensure the space has been reserved, and `extend_reserve` is implemented correctly.
3865        unsafe {
3866            let len = self.len();
3867            ptr::write(self.as_mut_ptr().add(len), item);
3868            self.set_len(len + 1);
3869        }
3870    }
3871}
3872
3873impl<T, A: Allocator> Vec<T, A> {
3874    // leaf method to which various SpecFrom/SpecExtend implementations delegate when
3875    // they have no further optimizations to apply
3876    #[cfg(not(no_global_oom_handling))]
3877    fn extend_desugared<I: Iterator<Item = T>>(&mut self, mut iterator: I) {
3878        // This is the case for a general iterator.
3879        //
3880        // This function should be the moral equivalent of:
3881        //
3882        //      for item in iterator {
3883        //          self.push(item);
3884        //      }
3885        while let Some(element) = iterator.next() {
3886            let len = self.len();
3887            if len == self.capacity() {
3888                let (lower, _) = iterator.size_hint();
3889                self.reserve(lower.saturating_add(1));
3890            }
3891            unsafe {
3892                ptr::write(self.as_mut_ptr().add(len), element);
3893                // Since next() executes user code which can panic we have to bump the length
3894                // after each step.
3895                // NB can't overflow since we would have had to alloc the address space
3896                self.set_len(len + 1);
3897            }
3898        }
3899    }
3900
3901    // specific extend for `TrustedLen` iterators, called both by the specializations
3902    // and internal places where resolving specialization makes compilation slower
3903    #[cfg(not(no_global_oom_handling))]
3904    fn extend_trusted(&mut self, iterator: impl iter::TrustedLen<Item = T>) {
3905        let (low, high) = iterator.size_hint();
3906        if let Some(additional) = high {
3907            debug_assert_eq!(
3908                low,
3909                additional,
3910                "TrustedLen iterator's size hint is not exact: {:?}",
3911                (low, high)
3912            );
3913            self.reserve(additional);
3914            unsafe {
3915                let ptr = self.as_mut_ptr();
3916                let mut local_len = SetLenOnDrop::new(&mut self.len);
3917                iterator.for_each(move |element| {
3918                    ptr::write(ptr.add(local_len.current_len()), element);
3919                    // Since the loop executes user code which can panic we have to update
3920                    // the length every step to correctly drop what we've written.
3921                    // NB can't overflow since we would have had to alloc the address space
3922                    local_len.increment_len(1);
3923                });
3924            }
3925        } else {
3926            // Per TrustedLen contract a `None` upper bound means that the iterator length
3927            // truly exceeds usize::MAX, which would eventually lead to a capacity overflow anyway.
3928            // Since the other branch already panics eagerly (via `reserve()`) we do the same here.
3929            // This avoids additional codegen for a fallback code path which would eventually
3930            // panic anyway.
3931            panic!("capacity overflow");
3932        }
3933    }
3934
3935    /// Creates a splicing iterator that replaces the specified range in the vector
3936    /// with the given `replace_with` iterator and yields the removed items.
3937    /// `replace_with` does not need to be the same length as `range`.
3938    ///
3939    /// `range` is removed even if the `Splice` iterator is not consumed before it is dropped.
3940    ///
3941    /// It is unspecified how many elements are removed from the vector
3942    /// if the `Splice` value is leaked.
3943    ///
3944    /// The input iterator `replace_with` is only consumed when the `Splice` value is dropped.
3945    ///
3946    /// This is optimal if:
3947    ///
3948    /// * The tail (elements in the vector after `range`) is empty,
3949    /// * or `replace_with` yields fewer or equal elements than `range`'s length
3950    /// * or the lower bound of its `size_hint()` is exact.
3951    ///
3952    /// Otherwise, a temporary vector is allocated and the tail is moved twice.
3953    ///
3954    /// # Panics
3955    ///
3956    /// Panics if the range has `start_bound > end_bound`, or, if the range is
3957    /// bounded on either end and past the length of the vector.
3958    ///
3959    /// # Examples
3960    ///
3961    /// ```
3962    /// let mut v = vec![1, 2, 3, 4];
3963    /// let new = [7, 8, 9];
3964    /// let u: Vec<_> = v.splice(1..3, new).collect();
3965    /// assert_eq!(v, [1, 7, 8, 9, 4]);
3966    /// assert_eq!(u, [2, 3]);
3967    /// ```
3968    ///
3969    /// Using `splice` to insert new items into a vector efficiently at a specific position
3970    /// indicated by an empty range:
3971    ///
3972    /// ```
3973    /// let mut v = vec![1, 5];
3974    /// let new = [2, 3, 4];
3975    /// v.splice(1..1, new);
3976    /// assert_eq!(v, [1, 2, 3, 4, 5]);
3977    /// ```
3978    #[cfg(not(no_global_oom_handling))]
3979    #[inline]
3980    #[stable(feature = "vec_splice", since = "1.21.0")]
3981    pub fn splice<R, I>(&mut self, range: R, replace_with: I) -> Splice<'_, I::IntoIter, A>
3982    where
3983        R: RangeBounds<usize>,
3984        I: IntoIterator<Item = T>,
3985    {
3986        Splice { drain: self.drain(range), replace_with: replace_with.into_iter() }
3987    }
3988
3989    /// Creates an iterator which uses a closure to determine if an element in the range should be removed.
3990    ///
3991    /// If the closure returns `true`, the element is removed from the vector
3992    /// and yielded. If the closure returns `false`, or panics, the element
3993    /// remains in the vector and will not be yielded.
3994    ///
3995    /// Only elements that fall in the provided range are considered for extraction, but any elements
3996    /// after the range will still have to be moved if any element has been extracted.
3997    ///
3998    /// If the returned `ExtractIf` is not exhausted, e.g. because it is dropped without iterating
3999    /// or the iteration short-circuits, then the remaining elements will be retained.
4000    /// Use `extract_if().for_each(drop)` if you do not need the returned iterator,
4001    /// or [`retain_mut`] with a negated predicate if you also do not need to restrict the range.
4002    ///
4003    /// [`retain_mut`]: Vec::retain_mut
4004    ///
4005    /// Using this method is equivalent to the following code:
4006    ///
4007    /// ```
4008    /// # let some_predicate = |x: &mut i32| { *x % 2 == 1 };
4009    /// # let mut vec = vec![0, 1, 2, 3, 4, 5, 6];
4010    /// # let mut vec2 = vec.clone();
4011    /// # let range = 1..5;
4012    /// let mut i = range.start;
4013    /// let end_items = vec.len() - range.end;
4014    /// # let mut extracted = vec![];
4015    ///
4016    /// while i < vec.len() - end_items {
4017    ///     if some_predicate(&mut vec[i]) {
4018    ///         let val = vec.remove(i);
4019    ///         // your code here
4020    /// #         extracted.push(val);
4021    ///     } else {
4022    ///         i += 1;
4023    ///     }
4024    /// }
4025    ///
4026    /// # let extracted2: Vec<_> = vec2.extract_if(range, some_predicate).collect();
4027    /// # assert_eq!(vec, vec2);
4028    /// # assert_eq!(extracted, extracted2);
4029    /// ```
4030    ///
4031    /// But `extract_if` is easier to use. `extract_if` is also more efficient,
4032    /// because it can backshift the elements of the array in bulk.
4033    ///
4034    /// The iterator also lets you mutate the value of each element in the
4035    /// closure, regardless of whether you choose to keep or remove it.
4036    ///
4037    /// # Panics
4038    ///
4039    /// If `range` is out of bounds.
4040    ///
4041    /// # Examples
4042    ///
4043    /// Splitting a vector into even and odd values, reusing the original vector:
4044    ///
4045    /// ```
4046    /// let mut numbers = vec![1, 2, 3, 4, 5, 6, 8, 9, 11, 13, 14, 15];
4047    ///
4048    /// let evens = numbers.extract_if(.., |x| *x % 2 == 0).collect::<Vec<_>>();
4049    /// let odds = numbers;
4050    ///
4051    /// assert_eq!(evens, vec![2, 4, 6, 8, 14]);
4052    /// assert_eq!(odds, vec![1, 3, 5, 9, 11, 13, 15]);
4053    /// ```
4054    ///
4055    /// Using the range argument to only process a part of the vector:
4056    ///
4057    /// ```
4058    /// let mut items = vec![0, 0, 0, 0, 0, 0, 0, 1, 2, 1, 2, 1, 2];
4059    /// let ones = items.extract_if(7.., |x| *x == 1).collect::<Vec<_>>();
4060    /// assert_eq!(items, vec![0, 0, 0, 0, 0, 0, 0, 2, 2, 2]);
4061    /// assert_eq!(ones.len(), 3);
4062    /// ```
4063    #[stable(feature = "extract_if", since = "1.87.0")]
4064    pub fn extract_if<F, R>(&mut self, range: R, filter: F) -> ExtractIf<'_, T, F, A>
4065    where
4066        F: FnMut(&mut T) -> bool,
4067        R: RangeBounds<usize>,
4068    {
4069        ExtractIf::new(self, filter, range)
4070    }
4071}
4072
4073/// Extend implementation that copies elements out of references before pushing them onto the Vec.
4074///
4075/// This implementation is specialized for slice iterators, where it uses [`copy_from_slice`] to
4076/// append the entire slice at once.
4077///
4078/// [`copy_from_slice`]: slice::copy_from_slice
4079#[cfg(not(no_global_oom_handling))]
4080#[stable(feature = "extend_ref", since = "1.2.0")]
4081impl<'a, T: Copy + 'a, A: Allocator> Extend<&'a T> for Vec<T, A> {
4082    fn extend<I: IntoIterator<Item = &'a T>>(&mut self, iter: I) {
4083        self.spec_extend(iter.into_iter())
4084    }
4085
4086    #[inline]
4087    fn extend_one(&mut self, &item: &'a T) {
4088        self.push(item);
4089    }
4090
4091    #[inline]
4092    fn extend_reserve(&mut self, additional: usize) {
4093        self.reserve(additional);
4094    }
4095
4096    #[inline]
4097    unsafe fn extend_one_unchecked(&mut self, &item: &'a T) {
4098        // SAFETY: Our preconditions ensure the space has been reserved, and `extend_reserve` is implemented correctly.
4099        unsafe {
4100            let len = self.len();
4101            ptr::write(self.as_mut_ptr().add(len), item);
4102            self.set_len(len + 1);
4103        }
4104    }
4105}
4106
4107/// Implements comparison of vectors, [lexicographically](Ord#lexicographical-comparison).
4108#[stable(feature = "rust1", since = "1.0.0")]
4109impl<T, A1, A2> PartialOrd<Vec<T, A2>> for Vec<T, A1>
4110where
4111    T: PartialOrd,
4112    A1: Allocator,
4113    A2: Allocator,
4114{
4115    #[inline]
4116    fn partial_cmp(&self, other: &Vec<T, A2>) -> Option<Ordering> {
4117        PartialOrd::partial_cmp(&**self, &**other)
4118    }
4119}
4120
4121#[stable(feature = "rust1", since = "1.0.0")]
4122impl<T: Eq, A: Allocator> Eq for Vec<T, A> {}
4123
4124/// Implements ordering of vectors, [lexicographically](Ord#lexicographical-comparison).
4125#[stable(feature = "rust1", since = "1.0.0")]
4126impl<T: Ord, A: Allocator> Ord for Vec<T, A> {
4127    #[inline]
4128    fn cmp(&self, other: &Self) -> Ordering {
4129        Ord::cmp(&**self, &**other)
4130    }
4131}
4132
4133#[stable(feature = "rust1", since = "1.0.0")]
4134unsafe impl<#[may_dangle] T, A: Allocator> Drop for Vec<T, A> {
4135    fn drop(&mut self) {
4136        unsafe {
4137            // use drop for [T]
4138            // use a raw slice to refer to the elements of the vector as weakest necessary type;
4139            // could avoid questions of validity in certain cases
4140            ptr::drop_in_place(ptr::slice_from_raw_parts_mut(self.as_mut_ptr(), self.len))
4141        }
4142        // RawVec handles deallocation
4143    }
4144}
4145
4146#[stable(feature = "rust1", since = "1.0.0")]
4147#[rustc_const_unstable(feature = "const_default", issue = "143894")]
4148impl<T> const Default for Vec<T> {
4149    /// Creates an empty `Vec<T>`.
4150    ///
4151    /// The vector will not allocate until elements are pushed onto it.
4152    fn default() -> Vec<T> {
4153        Vec::new()
4154    }
4155}
4156
4157#[stable(feature = "rust1", since = "1.0.0")]
4158impl<T: fmt::Debug, A: Allocator> fmt::Debug for Vec<T, A> {
4159    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
4160        fmt::Debug::fmt(&**self, f)
4161    }
4162}
4163
4164#[stable(feature = "rust1", since = "1.0.0")]
4165impl<T, A: Allocator> AsRef<Vec<T, A>> for Vec<T, A> {
4166    fn as_ref(&self) -> &Vec<T, A> {
4167        self
4168    }
4169}
4170
4171#[stable(feature = "vec_as_mut", since = "1.5.0")]
4172impl<T, A: Allocator> AsMut<Vec<T, A>> for Vec<T, A> {
4173    fn as_mut(&mut self) -> &mut Vec<T, A> {
4174        self
4175    }
4176}
4177
4178#[stable(feature = "rust1", since = "1.0.0")]
4179impl<T, A: Allocator> AsRef<[T]> for Vec<T, A> {
4180    fn as_ref(&self) -> &[T] {
4181        self
4182    }
4183}
4184
4185#[stable(feature = "vec_as_mut", since = "1.5.0")]
4186impl<T, A: Allocator> AsMut<[T]> for Vec<T, A> {
4187    fn as_mut(&mut self) -> &mut [T] {
4188        self
4189    }
4190}
4191
4192#[cfg(not(no_global_oom_handling))]
4193#[stable(feature = "rust1", since = "1.0.0")]
4194impl<T: Clone> From<&[T]> for Vec<T> {
4195    /// Allocates a `Vec<T>` and fills it by cloning `s`'s items.
4196    ///
4197    /// # Examples
4198    ///
4199    /// ```
4200    /// assert_eq!(Vec::from(&[1, 2, 3][..]), vec![1, 2, 3]);
4201    /// ```
4202    fn from(s: &[T]) -> Vec<T> {
4203        s.to_vec()
4204    }
4205}
4206
4207#[cfg(not(no_global_oom_handling))]
4208#[stable(feature = "vec_from_mut", since = "1.19.0")]
4209impl<T: Clone> From<&mut [T]> for Vec<T> {
4210    /// Allocates a `Vec<T>` and fills it by cloning `s`'s items.
4211    ///
4212    /// # Examples
4213    ///
4214    /// ```
4215    /// assert_eq!(Vec::from(&mut [1, 2, 3][..]), vec![1, 2, 3]);
4216    /// ```
4217    fn from(s: &mut [T]) -> Vec<T> {
4218        s.to_vec()
4219    }
4220}
4221
4222#[cfg(not(no_global_oom_handling))]
4223#[stable(feature = "vec_from_array_ref", since = "1.74.0")]
4224impl<T: Clone, const N: usize> From<&[T; N]> for Vec<T> {
4225    /// Allocates a `Vec<T>` and fills it by cloning `s`'s items.
4226    ///
4227    /// # Examples
4228    ///
4229    /// ```
4230    /// assert_eq!(Vec::from(&[1, 2, 3]), vec![1, 2, 3]);
4231    /// ```
4232    fn from(s: &[T; N]) -> Vec<T> {
4233        Self::from(s.as_slice())
4234    }
4235}
4236
4237#[cfg(not(no_global_oom_handling))]
4238#[stable(feature = "vec_from_array_ref", since = "1.74.0")]
4239impl<T: Clone, const N: usize> From<&mut [T; N]> for Vec<T> {
4240    /// Allocates a `Vec<T>` and fills it by cloning `s`'s items.
4241    ///
4242    /// # Examples
4243    ///
4244    /// ```
4245    /// assert_eq!(Vec::from(&mut [1, 2, 3]), vec![1, 2, 3]);
4246    /// ```
4247    fn from(s: &mut [T; N]) -> Vec<T> {
4248        Self::from(s.as_mut_slice())
4249    }
4250}
4251
4252#[cfg(not(no_global_oom_handling))]
4253#[stable(feature = "vec_from_array", since = "1.44.0")]
4254impl<T, const N: usize> From<[T; N]> for Vec<T> {
4255    /// Allocates a `Vec<T>` and moves `s`'s items into it.
4256    ///
4257    /// # Examples
4258    ///
4259    /// ```
4260    /// assert_eq!(Vec::from([1, 2, 3]), vec![1, 2, 3]);
4261    /// ```
4262    fn from(s: [T; N]) -> Vec<T> {
4263        <[T]>::into_vec(Box::new(s))
4264    }
4265}
4266
4267#[stable(feature = "vec_from_cow_slice", since = "1.14.0")]
4268impl<'a, T> From<Cow<'a, [T]>> for Vec<T>
4269where
4270    [T]: ToOwned<Owned = Vec<T>>,
4271{
4272    /// Converts a clone-on-write slice into a vector.
4273    ///
4274    /// If `s` already owns a `Vec<T>`, it will be returned directly.
4275    /// If `s` is borrowing a slice, a new `Vec<T>` will be allocated and
4276    /// filled by cloning `s`'s items into it.
4277    ///
4278    /// # Examples
4279    ///
4280    /// ```
4281    /// # use std::borrow::Cow;
4282    /// let o: Cow<'_, [i32]> = Cow::Owned(vec![1, 2, 3]);
4283    /// let b: Cow<'_, [i32]> = Cow::Borrowed(&[1, 2, 3]);
4284    /// assert_eq!(Vec::from(o), Vec::from(b));
4285    /// ```
4286    fn from(s: Cow<'a, [T]>) -> Vec<T> {
4287        s.into_owned()
4288    }
4289}
4290
4291// note: test pulls in std, which causes errors here
4292#[stable(feature = "vec_from_box", since = "1.18.0")]
4293impl<T, A: Allocator> From<Box<[T], A>> for Vec<T, A> {
4294    /// Converts a boxed slice into a vector by transferring ownership of
4295    /// the existing heap allocation.
4296    ///
4297    /// # Examples
4298    ///
4299    /// ```
4300    /// let b: Box<[i32]> = vec![1, 2, 3].into_boxed_slice();
4301    /// assert_eq!(Vec::from(b), vec![1, 2, 3]);
4302    /// ```
4303    fn from(s: Box<[T], A>) -> Self {
4304        s.into_vec()
4305    }
4306}
4307
4308// note: test pulls in std, which causes errors here
4309#[cfg(not(no_global_oom_handling))]
4310#[stable(feature = "box_from_vec", since = "1.20.0")]
4311impl<T, A: Allocator> From<Vec<T, A>> for Box<[T], A> {
4312    /// Converts a vector into a boxed slice.
4313    ///
4314    /// Before doing the conversion, this method discards excess capacity like [`Vec::shrink_to_fit`].
4315    ///
4316    /// [owned slice]: Box
4317    /// [`Vec::shrink_to_fit`]: Vec::shrink_to_fit
4318    ///
4319    /// # Examples
4320    ///
4321    /// ```
4322    /// assert_eq!(Box::from(vec![1, 2, 3]), vec![1, 2, 3].into_boxed_slice());
4323    /// ```
4324    ///
4325    /// Any excess capacity is removed:
4326    /// ```
4327    /// let mut vec = Vec::with_capacity(10);
4328    /// vec.extend([1, 2, 3]);
4329    ///
4330    /// assert_eq!(Box::from(vec), vec![1, 2, 3].into_boxed_slice());
4331    /// ```
4332    fn from(v: Vec<T, A>) -> Self {
4333        v.into_boxed_slice()
4334    }
4335}
4336
4337#[cfg(not(no_global_oom_handling))]
4338#[stable(feature = "rust1", since = "1.0.0")]
4339impl From<&str> for Vec<u8> {
4340    /// Allocates a `Vec<u8>` and fills it with a UTF-8 string.
4341    ///
4342    /// # Examples
4343    ///
4344    /// ```
4345    /// assert_eq!(Vec::from("123"), vec![b'1', b'2', b'3']);
4346    /// ```
4347    fn from(s: &str) -> Vec<u8> {
4348        From::from(s.as_bytes())
4349    }
4350}
4351
4352#[stable(feature = "array_try_from_vec", since = "1.48.0")]
4353impl<T, A: Allocator, const N: usize> TryFrom<Vec<T, A>> for [T; N] {
4354    type Error = Vec<T, A>;
4355
4356    /// Gets the entire contents of the `Vec<T>` as an array,
4357    /// if its size exactly matches that of the requested array.
4358    ///
4359    /// # Examples
4360    ///
4361    /// ```
4362    /// assert_eq!(vec![1, 2, 3].try_into(), Ok([1, 2, 3]));
4363    /// assert_eq!(<Vec<i32>>::new().try_into(), Ok([]));
4364    /// ```
4365    ///
4366    /// If the length doesn't match, the input comes back in `Err`:
4367    /// ```
4368    /// let r: Result<[i32; 4], _> = (0..10).collect::<Vec<_>>().try_into();
4369    /// assert_eq!(r, Err(vec![0, 1, 2, 3, 4, 5, 6, 7, 8, 9]));
4370    /// ```
4371    ///
4372    /// If you're fine with just getting a prefix of the `Vec<T>`,
4373    /// you can call [`.truncate(N)`](Vec::truncate) first.
4374    /// ```
4375    /// let mut v = String::from("hello world").into_bytes();
4376    /// v.sort();
4377    /// v.truncate(2);
4378    /// let [a, b]: [_; 2] = v.try_into().unwrap();
4379    /// assert_eq!(a, b' ');
4380    /// assert_eq!(b, b'd');
4381    /// ```
4382    fn try_from(mut vec: Vec<T, A>) -> Result<[T; N], Vec<T, A>> {
4383        if vec.len() != N {
4384            return Err(vec);
4385        }
4386
4387        // SAFETY: `.set_len(0)` is always sound.
4388        unsafe { vec.set_len(0) };
4389
4390        // SAFETY: A `Vec`'s pointer is always aligned properly, and
4391        // the alignment the array needs is the same as the items.
4392        // We checked earlier that we have sufficient items.
4393        // The items will not double-drop as the `set_len`
4394        // tells the `Vec` not to also drop them.
4395        let array = unsafe { ptr::read(vec.as_ptr() as *const [T; N]) };
4396        Ok(array)
4397    }
4398}