core/cell.rs
1//! Shareable mutable containers.
2//!
3//! Rust memory safety is based on this rule: Given an object `T`, it is only possible to
4//! have one of the following:
5//!
6//! - Several immutable references (`&T`) to the object (also known as **aliasing**).
7//! - One mutable reference (`&mut T`) to the object (also known as **mutability**).
8//!
9//! This is enforced by the Rust compiler. However, there are situations where this rule is not
10//! flexible enough. Sometimes it is required to have multiple references to an object and yet
11//! mutate it.
12//!
13//! Shareable mutable containers exist to permit mutability in a controlled manner, even in the
14//! presence of aliasing. [`Cell<T>`], [`RefCell<T>`], and [`OnceCell<T>`] allow doing this in
15//! a single-threaded way—they do not implement [`Sync`]. (If you need to do aliasing and
16//! mutation among multiple threads, [`Mutex<T>`], [`RwLock<T>`], [`OnceLock<T>`] or [`atomic`]
17//! types are the correct data structures to do so).
18//!
19//! Values of the `Cell<T>`, `RefCell<T>`, and `OnceCell<T>` types may be mutated through shared
20//! references (i.e. the common `&T` type), whereas most Rust types can only be mutated through
21//! unique (`&mut T`) references. We say these cell types provide 'interior mutability'
22//! (mutable via `&T`), in contrast with typical Rust types that exhibit 'inherited mutability'
23//! (mutable only via `&mut T`).
24//!
25//! Cell types come in four flavors: `Cell<T>`, `RefCell<T>`, `OnceCell<T>`, and `LazyCell<T>`.
26//! Each provides a different way of providing safe interior mutability.
27//!
28//! ## `Cell<T>`
29//!
30//! [`Cell<T>`] implements interior mutability by moving values in and out of the cell. That is, an
31//! `&mut T` to the inner value can never be obtained, and the value itself cannot be directly
32//! obtained without replacing it with something else. Both of these rules ensure that there is
33//! never more than one reference pointing to the inner value. This type provides the following
34//! methods:
35//!
36//! - For types that implement [`Copy`], the [`get`](Cell::get) method retrieves the current
37//! interior value by duplicating it.
38//! - For types that implement [`Default`], the [`take`](Cell::take) method replaces the current
39//! interior value with [`Default::default()`] and returns the replaced value.
40//! - All types have:
41//! - [`replace`](Cell::replace): replaces the current interior value and returns the replaced
42//! value.
43//! - [`into_inner`](Cell::into_inner): this method consumes the `Cell<T>` and returns the
44//! interior value.
45//! - [`set`](Cell::set): this method replaces the interior value, dropping the replaced value.
46//!
47//! `Cell<T>` is typically used for more simple types where copying or moving values isn't too
48//! resource intensive (e.g. numbers), and should usually be preferred over other cell types when
49//! possible. For larger and non-copy types, `RefCell` provides some advantages.
50//!
51//! ## `RefCell<T>`
52//!
53//! [`RefCell<T>`] uses Rust's lifetimes to implement "dynamic borrowing", a process whereby one can
54//! claim temporary, exclusive, mutable access to the inner value. Borrows for `RefCell<T>`s are
55//! tracked at _runtime_, unlike Rust's native reference types which are entirely tracked
56//! statically, at compile time.
57//!
58//! An immutable reference to a `RefCell`'s inner value (`&T`) can be obtained with
59//! [`borrow`](`RefCell::borrow`), and a mutable borrow (`&mut T`) can be obtained with
60//! [`borrow_mut`](`RefCell::borrow_mut`). When these functions are called, they first verify that
61//! Rust's borrow rules will be satisfied: any number of immutable borrows are allowed or a
62//! single mutable borrow is allowed, but never both. If a borrow is attempted that would violate
63//! these rules, the thread will panic.
64//!
65//! The corresponding [`Sync`] version of `RefCell<T>` is [`RwLock<T>`].
66//!
67//! ## `OnceCell<T>`
68//!
69//! [`OnceCell<T>`] is somewhat of a hybrid of `Cell` and `RefCell` that works for values that
70//! typically only need to be set once. This means that a reference `&T` can be obtained without
71//! moving or copying the inner value (unlike `Cell`) but also without runtime checks (unlike
72//! `RefCell`). However, its value can also not be updated once set unless you have a mutable
73//! reference to the `OnceCell`.
74//!
75//! `OnceCell` provides the following methods:
76//!
77//! - [`get`](OnceCell::get): obtain a reference to the inner value
78//! - [`set`](OnceCell::set): set the inner value if it is unset (returns a `Result`)
79//! - [`get_or_init`](OnceCell::get_or_init): return the inner value, initializing it if needed
80//! - [`get_mut`](OnceCell::get_mut): provide a mutable reference to the inner value, only available
81//! if you have a mutable reference to the cell itself.
82//!
83//! The corresponding [`Sync`] version of `OnceCell<T>` is [`OnceLock<T>`].
84//!
85//! ## `LazyCell<T, F>`
86//!
87//! A common pattern with OnceCell is, for a given OnceCell, to use the same function on every
88//! call to [`OnceCell::get_or_init`] with that cell. This is what is offered by [`LazyCell`],
89//! which pairs cells of `T` with functions of `F`, and always calls `F` before it yields `&T`.
90//! This happens implicitly by simply attempting to dereference the LazyCell to get its contents,
91//! so its use is much more transparent with a place which has been initialized by a constant.
92//!
93//! More complicated patterns that don't fit this description can be built on `OnceCell<T>` instead.
94//!
95//! `LazyCell` works by providing an implementation of `impl Deref` that calls the function,
96//! so you can just use it by dereference (e.g. `*lazy_cell` or `lazy_cell.deref()`).
97//!
98//! The corresponding [`Sync`] version of `LazyCell<T, F>` is [`LazyLock<T, F>`].
99//!
100//! # When to choose interior mutability
101//!
102//! The more common inherited mutability, where one must have unique access to mutate a value, is
103//! one of the key language elements that enables Rust to reason strongly about pointer aliasing,
104//! statically preventing crash bugs. Because of that, inherited mutability is preferred, and
105//! interior mutability is something of a last resort. Since cell types enable mutation where it
106//! would otherwise be disallowed though, there are occasions when interior mutability might be
107//! appropriate, or even *must* be used, e.g.
108//!
109//! * Introducing mutability 'inside' of something immutable
110//! * Implementation details of logically-immutable methods.
111//! * Mutating implementations of [`Clone`].
112//!
113//! ## Introducing mutability 'inside' of something immutable
114//!
115//! Many shared smart pointer types, including [`Rc<T>`] and [`Arc<T>`], provide containers that can
116//! be cloned and shared between multiple parties. Because the contained values may be
117//! multiply-aliased, they can only be borrowed with `&`, not `&mut`. Without cells it would be
118//! impossible to mutate data inside of these smart pointers at all.
119//!
120//! It's very common then to put a `RefCell<T>` inside shared pointer types to reintroduce
121//! mutability:
122//!
123//! ```
124//! use std::cell::{RefCell, RefMut};
125//! use std::collections::HashMap;
126//! use std::rc::Rc;
127//!
128//! fn main() {
129//! let shared_map: Rc<RefCell<_>> = Rc::new(RefCell::new(HashMap::new()));
130//! // Create a new block to limit the scope of the dynamic borrow
131//! {
132//! let mut map: RefMut<'_, _> = shared_map.borrow_mut();
133//! map.insert("africa", 92388);
134//! map.insert("kyoto", 11837);
135//! map.insert("piccadilly", 11826);
136//! map.insert("marbles", 38);
137//! }
138//!
139//! // Note that if we had not let the previous borrow of the cache fall out
140//! // of scope then the subsequent borrow would cause a dynamic thread panic.
141//! // This is the major hazard of using `RefCell`.
142//! let total: i32 = shared_map.borrow().values().sum();
143//! println!("{total}");
144//! }
145//! ```
146//!
147//! Note that this example uses `Rc<T>` and not `Arc<T>`. `RefCell<T>`s are for single-threaded
148//! scenarios. Consider using [`RwLock<T>`] or [`Mutex<T>`] if you need shared mutability in a
149//! multi-threaded situation.
150//!
151//! ## Implementation details of logically-immutable methods
152//!
153//! Occasionally it may be desirable not to expose in an API that there is mutation happening
154//! "under the hood". This may be because logically the operation is immutable, but e.g., caching
155//! forces the implementation to perform mutation; or because you must employ mutation to implement
156//! a trait method that was originally defined to take `&self`.
157//!
158//! ```
159//! # #![allow(dead_code)]
160//! use std::cell::OnceCell;
161//!
162//! struct Graph {
163//! edges: Vec<(i32, i32)>,
164//! span_tree_cache: OnceCell<Vec<(i32, i32)>>
165//! }
166//!
167//! impl Graph {
168//! fn minimum_spanning_tree(&self) -> Vec<(i32, i32)> {
169//! self.span_tree_cache
170//! .get_or_init(|| self.calc_span_tree())
171//! .clone()
172//! }
173//!
174//! fn calc_span_tree(&self) -> Vec<(i32, i32)> {
175//! // Expensive computation goes here
176//! vec![]
177//! }
178//! }
179//! ```
180//!
181//! ## Mutating implementations of `Clone`
182//!
183//! This is simply a special - but common - case of the previous: hiding mutability for operations
184//! that appear to be immutable. The [`clone`](Clone::clone) method is expected to not change the
185//! source value, and is declared to take `&self`, not `&mut self`. Therefore, any mutation that
186//! happens in the `clone` method must use cell types. For example, [`Rc<T>`] maintains its
187//! reference counts within a `Cell<T>`.
188//!
189//! ```
190//! use std::cell::Cell;
191//! use std::ptr::NonNull;
192//! use std::process::abort;
193//! use std::marker::PhantomData;
194//!
195//! struct Rc<T: ?Sized> {
196//! ptr: NonNull<RcInner<T>>,
197//! phantom: PhantomData<RcInner<T>>,
198//! }
199//!
200//! struct RcInner<T: ?Sized> {
201//! strong: Cell<usize>,
202//! refcount: Cell<usize>,
203//! value: T,
204//! }
205//!
206//! impl<T: ?Sized> Clone for Rc<T> {
207//! fn clone(&self) -> Rc<T> {
208//! self.inc_strong();
209//! Rc {
210//! ptr: self.ptr,
211//! phantom: PhantomData,
212//! }
213//! }
214//! }
215//!
216//! trait RcInnerPtr<T: ?Sized> {
217//!
218//! fn inner(&self) -> &RcInner<T>;
219//!
220//! fn strong(&self) -> usize {
221//! self.inner().strong.get()
222//! }
223//!
224//! fn inc_strong(&self) {
225//! self.inner()
226//! .strong
227//! .set(self.strong()
228//! .checked_add(1)
229//! .unwrap_or_else(|| abort() ));
230//! }
231//! }
232//!
233//! impl<T: ?Sized> RcInnerPtr<T> for Rc<T> {
234//! fn inner(&self) -> &RcInner<T> {
235//! unsafe {
236//! self.ptr.as_ref()
237//! }
238//! }
239//! }
240//! ```
241//!
242//! [`Arc<T>`]: ../../std/sync/struct.Arc.html
243//! [`Rc<T>`]: ../../std/rc/struct.Rc.html
244//! [`RwLock<T>`]: ../../std/sync/struct.RwLock.html
245//! [`Mutex<T>`]: ../../std/sync/struct.Mutex.html
246//! [`OnceLock<T>`]: ../../std/sync/struct.OnceLock.html
247//! [`LazyLock<T, F>`]: ../../std/sync/struct.LazyLock.html
248//! [`Sync`]: ../../std/marker/trait.Sync.html
249//! [`atomic`]: crate::sync::atomic
250
251#![stable(feature = "rust1", since = "1.0.0")]
252
253#[cfg(not(feature = "ferrocene_certified"))]
254use crate::cmp::Ordering;
255#[cfg(not(feature = "ferrocene_certified"))]
256use crate::fmt::{self, Debug, Display};
257#[cfg(not(feature = "ferrocene_certified"))]
258use crate::marker::{PhantomData, Unsize};
259#[cfg(not(feature = "ferrocene_certified"))]
260use crate::mem;
261#[cfg(not(feature = "ferrocene_certified"))]
262use crate::ops::{CoerceUnsized, Deref, DerefMut, DerefPure, DispatchFromDyn};
263#[cfg(not(feature = "ferrocene_certified"))]
264use crate::panic::const_panic;
265#[cfg(not(feature = "ferrocene_certified"))]
266use crate::pin::PinCoerceUnsized;
267#[cfg(not(feature = "ferrocene_certified"))]
268use crate::ptr::{self, NonNull};
269
270#[cfg(not(feature = "ferrocene_certified"))]
271mod lazy;
272#[cfg(not(feature = "ferrocene_certified"))]
273mod once;
274
275#[stable(feature = "lazy_cell", since = "1.80.0")]
276#[cfg(not(feature = "ferrocene_certified"))]
277pub use lazy::LazyCell;
278#[stable(feature = "once_cell", since = "1.70.0")]
279#[cfg(not(feature = "ferrocene_certified"))]
280pub use once::OnceCell;
281
282/// A mutable memory location.
283///
284/// # Memory layout
285///
286/// `Cell<T>` has the same [memory layout and caveats as
287/// `UnsafeCell<T>`](UnsafeCell#memory-layout). In particular, this means that
288/// `Cell<T>` has the same in-memory representation as its inner type `T`.
289///
290/// # Examples
291///
292/// In this example, you can see that `Cell<T>` enables mutation inside an
293/// immutable struct. In other words, it enables "interior mutability".
294///
295/// ```
296/// use std::cell::Cell;
297///
298/// struct SomeStruct {
299/// regular_field: u8,
300/// special_field: Cell<u8>,
301/// }
302///
303/// let my_struct = SomeStruct {
304/// regular_field: 0,
305/// special_field: Cell::new(1),
306/// };
307///
308/// let new_value = 100;
309///
310/// // ERROR: `my_struct` is immutable
311/// // my_struct.regular_field = new_value;
312///
313/// // WORKS: although `my_struct` is immutable, `special_field` is a `Cell`,
314/// // which can always be mutated
315/// my_struct.special_field.set(new_value);
316/// assert_eq!(my_struct.special_field.get(), new_value);
317/// ```
318///
319/// See the [module-level documentation](self) for more.
320#[rustc_diagnostic_item = "Cell"]
321#[stable(feature = "rust1", since = "1.0.0")]
322#[repr(transparent)]
323#[rustc_pub_transparent]
324#[cfg(not(feature = "ferrocene_certified"))]
325pub struct Cell<T: ?Sized> {
326 value: UnsafeCell<T>,
327}
328
329#[stable(feature = "rust1", since = "1.0.0")]
330#[cfg(not(feature = "ferrocene_certified"))]
331unsafe impl<T: ?Sized> Send for Cell<T> where T: Send {}
332
333// Note that this negative impl isn't strictly necessary for correctness,
334// as `Cell` wraps `UnsafeCell`, which is itself `!Sync`.
335// However, given how important `Cell`'s `!Sync`-ness is,
336// having an explicit negative impl is nice for documentation purposes
337// and results in nicer error messages.
338#[stable(feature = "rust1", since = "1.0.0")]
339#[cfg(not(feature = "ferrocene_certified"))]
340impl<T: ?Sized> !Sync for Cell<T> {}
341
342#[stable(feature = "rust1", since = "1.0.0")]
343#[cfg(not(feature = "ferrocene_certified"))]
344impl<T: Copy> Clone for Cell<T> {
345 #[inline]
346 fn clone(&self) -> Cell<T> {
347 Cell::new(self.get())
348 }
349}
350
351#[stable(feature = "rust1", since = "1.0.0")]
352#[rustc_const_unstable(feature = "const_default", issue = "143894")]
353#[cfg(not(feature = "ferrocene_certified"))]
354impl<T: [const] Default> const Default for Cell<T> {
355 /// Creates a `Cell<T>`, with the `Default` value for T.
356 #[inline]
357 fn default() -> Cell<T> {
358 Cell::new(Default::default())
359 }
360}
361
362#[stable(feature = "rust1", since = "1.0.0")]
363#[cfg(not(feature = "ferrocene_certified"))]
364impl<T: PartialEq + Copy> PartialEq for Cell<T> {
365 #[inline]
366 fn eq(&self, other: &Cell<T>) -> bool {
367 self.get() == other.get()
368 }
369}
370
371#[stable(feature = "cell_eq", since = "1.2.0")]
372#[cfg(not(feature = "ferrocene_certified"))]
373impl<T: Eq + Copy> Eq for Cell<T> {}
374
375#[stable(feature = "cell_ord", since = "1.10.0")]
376#[cfg(not(feature = "ferrocene_certified"))]
377impl<T: PartialOrd + Copy> PartialOrd for Cell<T> {
378 #[inline]
379 fn partial_cmp(&self, other: &Cell<T>) -> Option<Ordering> {
380 self.get().partial_cmp(&other.get())
381 }
382
383 #[inline]
384 fn lt(&self, other: &Cell<T>) -> bool {
385 self.get() < other.get()
386 }
387
388 #[inline]
389 fn le(&self, other: &Cell<T>) -> bool {
390 self.get() <= other.get()
391 }
392
393 #[inline]
394 fn gt(&self, other: &Cell<T>) -> bool {
395 self.get() > other.get()
396 }
397
398 #[inline]
399 fn ge(&self, other: &Cell<T>) -> bool {
400 self.get() >= other.get()
401 }
402}
403
404#[stable(feature = "cell_ord", since = "1.10.0")]
405#[cfg(not(feature = "ferrocene_certified"))]
406impl<T: Ord + Copy> Ord for Cell<T> {
407 #[inline]
408 fn cmp(&self, other: &Cell<T>) -> Ordering {
409 self.get().cmp(&other.get())
410 }
411}
412
413#[stable(feature = "cell_from", since = "1.12.0")]
414#[rustc_const_unstable(feature = "const_convert", issue = "143773")]
415#[cfg(not(feature = "ferrocene_certified"))]
416impl<T> const From<T> for Cell<T> {
417 /// Creates a new `Cell<T>` containing the given value.
418 fn from(t: T) -> Cell<T> {
419 Cell::new(t)
420 }
421}
422
423#[cfg(not(feature = "ferrocene_certified"))]
424impl<T> Cell<T> {
425 /// Creates a new `Cell` containing the given value.
426 ///
427 /// # Examples
428 ///
429 /// ```
430 /// use std::cell::Cell;
431 ///
432 /// let c = Cell::new(5);
433 /// ```
434 #[stable(feature = "rust1", since = "1.0.0")]
435 #[rustc_const_stable(feature = "const_cell_new", since = "1.24.0")]
436 #[inline]
437 pub const fn new(value: T) -> Cell<T> {
438 Cell { value: UnsafeCell::new(value) }
439 }
440
441 /// Sets the contained value.
442 ///
443 /// # Examples
444 ///
445 /// ```
446 /// use std::cell::Cell;
447 ///
448 /// let c = Cell::new(5);
449 ///
450 /// c.set(10);
451 /// ```
452 #[inline]
453 #[stable(feature = "rust1", since = "1.0.0")]
454 pub fn set(&self, val: T) {
455 self.replace(val);
456 }
457
458 /// Swaps the values of two `Cell`s.
459 ///
460 /// The difference with `std::mem::swap` is that this function doesn't
461 /// require a `&mut` reference.
462 ///
463 /// # Panics
464 ///
465 /// This function will panic if `self` and `other` are different `Cell`s that partially overlap.
466 /// (Using just standard library methods, it is impossible to create such partially overlapping `Cell`s.
467 /// However, unsafe code is allowed to e.g. create two `&Cell<[i32; 2]>` that partially overlap.)
468 ///
469 /// # Examples
470 ///
471 /// ```
472 /// use std::cell::Cell;
473 ///
474 /// let c1 = Cell::new(5i32);
475 /// let c2 = Cell::new(10i32);
476 /// c1.swap(&c2);
477 /// assert_eq!(10, c1.get());
478 /// assert_eq!(5, c2.get());
479 /// ```
480 #[inline]
481 #[stable(feature = "move_cell", since = "1.17.0")]
482 pub fn swap(&self, other: &Self) {
483 // This function documents that it *will* panic, and intrinsics::is_nonoverlapping doesn't
484 // do the check in const, so trying to use it here would be inviting unnecessary fragility.
485 fn is_nonoverlapping<T>(src: *const T, dst: *const T) -> bool {
486 let src_usize = src.addr();
487 let dst_usize = dst.addr();
488 let diff = src_usize.abs_diff(dst_usize);
489 diff >= size_of::<T>()
490 }
491
492 if ptr::eq(self, other) {
493 // Swapping wouldn't change anything.
494 return;
495 }
496 if !is_nonoverlapping(self, other) {
497 // See <https://github.com/rust-lang/rust/issues/80778> for why we need to stop here.
498 panic!("`Cell::swap` on overlapping non-identical `Cell`s");
499 }
500 // SAFETY: This can be risky if called from separate threads, but `Cell`
501 // is `!Sync` so this won't happen. This also won't invalidate any
502 // pointers since `Cell` makes sure nothing else will be pointing into
503 // either of these `Cell`s. We also excluded shenanigans like partially overlapping `Cell`s,
504 // so `swap` will just properly copy two full values of type `T` back and forth.
505 unsafe {
506 mem::swap(&mut *self.value.get(), &mut *other.value.get());
507 }
508 }
509
510 /// Replaces the contained value with `val`, and returns the old contained value.
511 ///
512 /// # Examples
513 ///
514 /// ```
515 /// use std::cell::Cell;
516 ///
517 /// let cell = Cell::new(5);
518 /// assert_eq!(cell.get(), 5);
519 /// assert_eq!(cell.replace(10), 5);
520 /// assert_eq!(cell.get(), 10);
521 /// ```
522 #[inline]
523 #[stable(feature = "move_cell", since = "1.17.0")]
524 #[rustc_const_stable(feature = "const_cell", since = "1.88.0")]
525 #[rustc_confusables("swap")]
526 pub const fn replace(&self, val: T) -> T {
527 // SAFETY: This can cause data races if called from a separate thread,
528 // but `Cell` is `!Sync` so this won't happen.
529 mem::replace(unsafe { &mut *self.value.get() }, val)
530 }
531
532 /// Unwraps the value, consuming the cell.
533 ///
534 /// # Examples
535 ///
536 /// ```
537 /// use std::cell::Cell;
538 ///
539 /// let c = Cell::new(5);
540 /// let five = c.into_inner();
541 ///
542 /// assert_eq!(five, 5);
543 /// ```
544 #[stable(feature = "move_cell", since = "1.17.0")]
545 #[rustc_const_stable(feature = "const_cell_into_inner", since = "1.83.0")]
546 #[rustc_allow_const_fn_unstable(const_precise_live_drops)]
547 pub const fn into_inner(self) -> T {
548 self.value.into_inner()
549 }
550}
551
552#[cfg(not(feature = "ferrocene_certified"))]
553impl<T: Copy> Cell<T> {
554 /// Returns a copy of the contained value.
555 ///
556 /// # Examples
557 ///
558 /// ```
559 /// use std::cell::Cell;
560 ///
561 /// let c = Cell::new(5);
562 ///
563 /// let five = c.get();
564 /// ```
565 #[inline]
566 #[stable(feature = "rust1", since = "1.0.0")]
567 #[rustc_const_stable(feature = "const_cell", since = "1.88.0")]
568 pub const fn get(&self) -> T {
569 // SAFETY: This can cause data races if called from a separate thread,
570 // but `Cell` is `!Sync` so this won't happen.
571 unsafe { *self.value.get() }
572 }
573
574 /// Updates the contained value using a function.
575 ///
576 /// # Examples
577 ///
578 /// ```
579 /// use std::cell::Cell;
580 ///
581 /// let c = Cell::new(5);
582 /// c.update(|x| x + 1);
583 /// assert_eq!(c.get(), 6);
584 /// ```
585 #[inline]
586 #[stable(feature = "cell_update", since = "1.88.0")]
587 pub fn update(&self, f: impl FnOnce(T) -> T) {
588 let old = self.get();
589 self.set(f(old));
590 }
591}
592
593#[cfg(not(feature = "ferrocene_certified"))]
594impl<T: ?Sized> Cell<T> {
595 /// Returns a raw pointer to the underlying data in this cell.
596 ///
597 /// # Examples
598 ///
599 /// ```
600 /// use std::cell::Cell;
601 ///
602 /// let c = Cell::new(5);
603 ///
604 /// let ptr = c.as_ptr();
605 /// ```
606 #[inline]
607 #[stable(feature = "cell_as_ptr", since = "1.12.0")]
608 #[rustc_const_stable(feature = "const_cell_as_ptr", since = "1.32.0")]
609 #[rustc_as_ptr]
610 #[rustc_never_returns_null_ptr]
611 pub const fn as_ptr(&self) -> *mut T {
612 self.value.get()
613 }
614
615 /// Returns a mutable reference to the underlying data.
616 ///
617 /// This call borrows `Cell` mutably (at compile-time) which guarantees
618 /// that we possess the only reference.
619 ///
620 /// However be cautious: this method expects `self` to be mutable, which is
621 /// generally not the case when using a `Cell`. If you require interior
622 /// mutability by reference, consider using `RefCell` which provides
623 /// run-time checked mutable borrows through its [`borrow_mut`] method.
624 ///
625 /// [`borrow_mut`]: RefCell::borrow_mut()
626 ///
627 /// # Examples
628 ///
629 /// ```
630 /// use std::cell::Cell;
631 ///
632 /// let mut c = Cell::new(5);
633 /// *c.get_mut() += 1;
634 ///
635 /// assert_eq!(c.get(), 6);
636 /// ```
637 #[inline]
638 #[stable(feature = "cell_get_mut", since = "1.11.0")]
639 #[rustc_const_stable(feature = "const_cell", since = "1.88.0")]
640 pub const fn get_mut(&mut self) -> &mut T {
641 self.value.get_mut()
642 }
643
644 /// Returns a `&Cell<T>` from a `&mut T`
645 ///
646 /// # Examples
647 ///
648 /// ```
649 /// use std::cell::Cell;
650 ///
651 /// let slice: &mut [i32] = &mut [1, 2, 3];
652 /// let cell_slice: &Cell<[i32]> = Cell::from_mut(slice);
653 /// let slice_cell: &[Cell<i32>] = cell_slice.as_slice_of_cells();
654 ///
655 /// assert_eq!(slice_cell.len(), 3);
656 /// ```
657 #[inline]
658 #[stable(feature = "as_cell", since = "1.37.0")]
659 #[rustc_const_stable(feature = "const_cell", since = "1.88.0")]
660 pub const fn from_mut(t: &mut T) -> &Cell<T> {
661 // SAFETY: `&mut` ensures unique access.
662 unsafe { &*(t as *mut T as *const Cell<T>) }
663 }
664}
665
666#[cfg(not(feature = "ferrocene_certified"))]
667impl<T: Default> Cell<T> {
668 /// Takes the value of the cell, leaving `Default::default()` in its place.
669 ///
670 /// # Examples
671 ///
672 /// ```
673 /// use std::cell::Cell;
674 ///
675 /// let c = Cell::new(5);
676 /// let five = c.take();
677 ///
678 /// assert_eq!(five, 5);
679 /// assert_eq!(c.into_inner(), 0);
680 /// ```
681 #[stable(feature = "move_cell", since = "1.17.0")]
682 pub fn take(&self) -> T {
683 self.replace(Default::default())
684 }
685}
686
687#[unstable(feature = "coerce_unsized", issue = "18598")]
688#[cfg(not(feature = "ferrocene_certified"))]
689impl<T: CoerceUnsized<U>, U> CoerceUnsized<Cell<U>> for Cell<T> {}
690
691// Allow types that wrap `Cell` to also implement `DispatchFromDyn`
692// and become dyn-compatible method receivers.
693// Note that currently `Cell` itself cannot be a method receiver
694// because it does not implement Deref.
695// In other words:
696// `self: Cell<&Self>` won't work
697// `self: CellWrapper<Self>` becomes possible
698#[unstable(feature = "dispatch_from_dyn", issue = "none")]
699#[cfg(not(feature = "ferrocene_certified"))]
700impl<T: DispatchFromDyn<U>, U> DispatchFromDyn<Cell<U>> for Cell<T> {}
701
702#[cfg(not(feature = "ferrocene_certified"))]
703impl<T> Cell<[T]> {
704 /// Returns a `&[Cell<T>]` from a `&Cell<[T]>`
705 ///
706 /// # Examples
707 ///
708 /// ```
709 /// use std::cell::Cell;
710 ///
711 /// let slice: &mut [i32] = &mut [1, 2, 3];
712 /// let cell_slice: &Cell<[i32]> = Cell::from_mut(slice);
713 /// let slice_cell: &[Cell<i32>] = cell_slice.as_slice_of_cells();
714 ///
715 /// assert_eq!(slice_cell.len(), 3);
716 /// ```
717 #[stable(feature = "as_cell", since = "1.37.0")]
718 #[rustc_const_stable(feature = "const_cell", since = "1.88.0")]
719 pub const fn as_slice_of_cells(&self) -> &[Cell<T>] {
720 // SAFETY: `Cell<T>` has the same memory layout as `T`.
721 unsafe { &*(self as *const Cell<[T]> as *const [Cell<T>]) }
722 }
723}
724
725#[cfg(not(feature = "ferrocene_certified"))]
726impl<T, const N: usize> Cell<[T; N]> {
727 /// Returns a `&[Cell<T>; N]` from a `&Cell<[T; N]>`
728 ///
729 /// # Examples
730 ///
731 /// ```
732 /// use std::cell::Cell;
733 ///
734 /// let mut array: [i32; 3] = [1, 2, 3];
735 /// let cell_array: &Cell<[i32; 3]> = Cell::from_mut(&mut array);
736 /// let array_cell: &[Cell<i32>; 3] = cell_array.as_array_of_cells();
737 /// ```
738 #[stable(feature = "as_array_of_cells", since = "CURRENT_RUSTC_VERSION")]
739 #[rustc_const_stable(feature = "as_array_of_cells", since = "CURRENT_RUSTC_VERSION")]
740 pub const fn as_array_of_cells(&self) -> &[Cell<T>; N] {
741 // SAFETY: `Cell<T>` has the same memory layout as `T`.
742 unsafe { &*(self as *const Cell<[T; N]> as *const [Cell<T>; N]) }
743 }
744}
745
746/// A mutable memory location with dynamically checked borrow rules
747///
748/// See the [module-level documentation](self) for more.
749#[rustc_diagnostic_item = "RefCell"]
750#[stable(feature = "rust1", since = "1.0.0")]
751#[cfg(not(feature = "ferrocene_certified"))]
752pub struct RefCell<T: ?Sized> {
753 borrow: Cell<BorrowCounter>,
754 // Stores the location of the earliest currently active borrow.
755 // This gets updated whenever we go from having zero borrows
756 // to having a single borrow. When a borrow occurs, this gets included
757 // in the generated `BorrowError`/`BorrowMutError`
758 #[cfg(feature = "debug_refcell")]
759 borrowed_at: Cell<Option<&'static crate::panic::Location<'static>>>,
760 value: UnsafeCell<T>,
761}
762
763/// An error returned by [`RefCell::try_borrow`].
764#[stable(feature = "try_borrow", since = "1.13.0")]
765#[non_exhaustive]
766#[derive(Debug)]
767#[cfg(not(feature = "ferrocene_certified"))]
768pub struct BorrowError {
769 #[cfg(feature = "debug_refcell")]
770 location: &'static crate::panic::Location<'static>,
771}
772
773#[stable(feature = "try_borrow", since = "1.13.0")]
774#[cfg(not(feature = "ferrocene_certified"))]
775impl Display for BorrowError {
776 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
777 #[cfg(feature = "debug_refcell")]
778 let res = write!(
779 f,
780 "RefCell already mutably borrowed; a previous borrow was at {}",
781 self.location
782 );
783
784 #[cfg(not(feature = "debug_refcell"))]
785 let res = Display::fmt("RefCell already mutably borrowed", f);
786
787 res
788 }
789}
790
791/// An error returned by [`RefCell::try_borrow_mut`].
792#[stable(feature = "try_borrow", since = "1.13.0")]
793#[non_exhaustive]
794#[derive(Debug)]
795#[cfg(not(feature = "ferrocene_certified"))]
796pub struct BorrowMutError {
797 #[cfg(feature = "debug_refcell")]
798 location: &'static crate::panic::Location<'static>,
799}
800
801#[stable(feature = "try_borrow", since = "1.13.0")]
802#[cfg(not(feature = "ferrocene_certified"))]
803impl Display for BorrowMutError {
804 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
805 #[cfg(feature = "debug_refcell")]
806 let res = write!(f, "RefCell already borrowed; a previous borrow was at {}", self.location);
807
808 #[cfg(not(feature = "debug_refcell"))]
809 let res = Display::fmt("RefCell already borrowed", f);
810
811 res
812 }
813}
814
815// This ensures the panicking code is outlined from `borrow_mut` for `RefCell`.
816#[cfg_attr(not(feature = "panic_immediate_abort"), inline(never))]
817#[track_caller]
818#[cold]
819#[cfg(not(feature = "ferrocene_certified"))]
820const fn panic_already_borrowed(err: BorrowMutError) -> ! {
821 const_panic!(
822 "RefCell already borrowed",
823 "{err}",
824 err: BorrowMutError = err,
825 )
826}
827
828// This ensures the panicking code is outlined from `borrow` for `RefCell`.
829#[cfg_attr(not(feature = "panic_immediate_abort"), inline(never))]
830#[track_caller]
831#[cold]
832#[cfg(not(feature = "ferrocene_certified"))]
833const fn panic_already_mutably_borrowed(err: BorrowError) -> ! {
834 const_panic!(
835 "RefCell already mutably borrowed",
836 "{err}",
837 err: BorrowError = err,
838 )
839}
840
841// Positive values represent the number of `Ref` active. Negative values
842// represent the number of `RefMut` active. Multiple `RefMut`s can only be
843// active at a time if they refer to distinct, nonoverlapping components of a
844// `RefCell` (e.g., different ranges of a slice).
845//
846// `Ref` and `RefMut` are both two words in size, and so there will likely never
847// be enough `Ref`s or `RefMut`s in existence to overflow half of the `usize`
848// range. Thus, a `BorrowCounter` will probably never overflow or underflow.
849// However, this is not a guarantee, as a pathological program could repeatedly
850// create and then mem::forget `Ref`s or `RefMut`s. Thus, all code must
851// explicitly check for overflow and underflow in order to avoid unsafety, or at
852// least behave correctly in the event that overflow or underflow happens (e.g.,
853// see BorrowRef::new).
854#[cfg(not(feature = "ferrocene_certified"))]
855type BorrowCounter = isize;
856#[cfg(not(feature = "ferrocene_certified"))]
857const UNUSED: BorrowCounter = 0;
858
859#[inline(always)]
860#[cfg(not(feature = "ferrocene_certified"))]
861const fn is_writing(x: BorrowCounter) -> bool {
862 x < UNUSED
863}
864
865#[inline(always)]
866#[cfg(not(feature = "ferrocene_certified"))]
867const fn is_reading(x: BorrowCounter) -> bool {
868 x > UNUSED
869}
870
871#[cfg(not(feature = "ferrocene_certified"))]
872impl<T> RefCell<T> {
873 /// Creates a new `RefCell` containing `value`.
874 ///
875 /// # Examples
876 ///
877 /// ```
878 /// use std::cell::RefCell;
879 ///
880 /// let c = RefCell::new(5);
881 /// ```
882 #[stable(feature = "rust1", since = "1.0.0")]
883 #[rustc_const_stable(feature = "const_refcell_new", since = "1.24.0")]
884 #[inline]
885 pub const fn new(value: T) -> RefCell<T> {
886 RefCell {
887 value: UnsafeCell::new(value),
888 borrow: Cell::new(UNUSED),
889 #[cfg(feature = "debug_refcell")]
890 borrowed_at: Cell::new(None),
891 }
892 }
893
894 /// Consumes the `RefCell`, returning the wrapped value.
895 ///
896 /// # Examples
897 ///
898 /// ```
899 /// use std::cell::RefCell;
900 ///
901 /// let c = RefCell::new(5);
902 ///
903 /// let five = c.into_inner();
904 /// ```
905 #[stable(feature = "rust1", since = "1.0.0")]
906 #[rustc_const_stable(feature = "const_cell_into_inner", since = "1.83.0")]
907 #[rustc_allow_const_fn_unstable(const_precise_live_drops)]
908 #[inline]
909 pub const fn into_inner(self) -> T {
910 // Since this function takes `self` (the `RefCell`) by value, the
911 // compiler statically verifies that it is not currently borrowed.
912 self.value.into_inner()
913 }
914
915 /// Replaces the wrapped value with a new one, returning the old value,
916 /// without deinitializing either one.
917 ///
918 /// This function corresponds to [`std::mem::replace`](../mem/fn.replace.html).
919 ///
920 /// # Panics
921 ///
922 /// Panics if the value is currently borrowed.
923 ///
924 /// # Examples
925 ///
926 /// ```
927 /// use std::cell::RefCell;
928 /// let cell = RefCell::new(5);
929 /// let old_value = cell.replace(6);
930 /// assert_eq!(old_value, 5);
931 /// assert_eq!(cell, RefCell::new(6));
932 /// ```
933 #[inline]
934 #[stable(feature = "refcell_replace", since = "1.24.0")]
935 #[track_caller]
936 #[rustc_confusables("swap")]
937 #[rustc_const_unstable(feature = "const_ref_cell", issue = "137844")]
938 pub const fn replace(&self, t: T) -> T {
939 mem::replace(&mut self.borrow_mut(), t)
940 }
941
942 /// Replaces the wrapped value with a new one computed from `f`, returning
943 /// the old value, without deinitializing either one.
944 ///
945 /// # Panics
946 ///
947 /// Panics if the value is currently borrowed.
948 ///
949 /// # Examples
950 ///
951 /// ```
952 /// use std::cell::RefCell;
953 /// let cell = RefCell::new(5);
954 /// let old_value = cell.replace_with(|&mut old| old + 1);
955 /// assert_eq!(old_value, 5);
956 /// assert_eq!(cell, RefCell::new(6));
957 /// ```
958 #[inline]
959 #[stable(feature = "refcell_replace_swap", since = "1.35.0")]
960 #[track_caller]
961 pub fn replace_with<F: FnOnce(&mut T) -> T>(&self, f: F) -> T {
962 let mut_borrow = &mut *self.borrow_mut();
963 let replacement = f(mut_borrow);
964 mem::replace(mut_borrow, replacement)
965 }
966
967 /// Swaps the wrapped value of `self` with the wrapped value of `other`,
968 /// without deinitializing either one.
969 ///
970 /// This function corresponds to [`std::mem::swap`](../mem/fn.swap.html).
971 ///
972 /// # Panics
973 ///
974 /// Panics if the value in either `RefCell` is currently borrowed, or
975 /// if `self` and `other` point to the same `RefCell`.
976 ///
977 /// # Examples
978 ///
979 /// ```
980 /// use std::cell::RefCell;
981 /// let c = RefCell::new(5);
982 /// let d = RefCell::new(6);
983 /// c.swap(&d);
984 /// assert_eq!(c, RefCell::new(6));
985 /// assert_eq!(d, RefCell::new(5));
986 /// ```
987 #[inline]
988 #[stable(feature = "refcell_swap", since = "1.24.0")]
989 #[rustc_const_unstable(feature = "const_ref_cell", issue = "137844")]
990 pub const fn swap(&self, other: &Self) {
991 mem::swap(&mut *self.borrow_mut(), &mut *other.borrow_mut())
992 }
993}
994
995#[cfg(not(feature = "ferrocene_certified"))]
996impl<T: ?Sized> RefCell<T> {
997 /// Immutably borrows the wrapped value.
998 ///
999 /// The borrow lasts until the returned `Ref` exits scope. Multiple
1000 /// immutable borrows can be taken out at the same time.
1001 ///
1002 /// # Panics
1003 ///
1004 /// Panics if the value is currently mutably borrowed. For a non-panicking variant, use
1005 /// [`try_borrow`](#method.try_borrow).
1006 ///
1007 /// # Examples
1008 ///
1009 /// ```
1010 /// use std::cell::RefCell;
1011 ///
1012 /// let c = RefCell::new(5);
1013 ///
1014 /// let borrowed_five = c.borrow();
1015 /// let borrowed_five2 = c.borrow();
1016 /// ```
1017 ///
1018 /// An example of panic:
1019 ///
1020 /// ```should_panic
1021 /// use std::cell::RefCell;
1022 ///
1023 /// let c = RefCell::new(5);
1024 ///
1025 /// let m = c.borrow_mut();
1026 /// let b = c.borrow(); // this causes a panic
1027 /// ```
1028 #[stable(feature = "rust1", since = "1.0.0")]
1029 #[inline]
1030 #[track_caller]
1031 #[rustc_const_unstable(feature = "const_ref_cell", issue = "137844")]
1032 pub const fn borrow(&self) -> Ref<'_, T> {
1033 match self.try_borrow() {
1034 Ok(b) => b,
1035 Err(err) => panic_already_mutably_borrowed(err),
1036 }
1037 }
1038
1039 /// Immutably borrows the wrapped value, returning an error if the value is currently mutably
1040 /// borrowed.
1041 ///
1042 /// The borrow lasts until the returned `Ref` exits scope. Multiple immutable borrows can be
1043 /// taken out at the same time.
1044 ///
1045 /// This is the non-panicking variant of [`borrow`](#method.borrow).
1046 ///
1047 /// # Examples
1048 ///
1049 /// ```
1050 /// use std::cell::RefCell;
1051 ///
1052 /// let c = RefCell::new(5);
1053 ///
1054 /// {
1055 /// let m = c.borrow_mut();
1056 /// assert!(c.try_borrow().is_err());
1057 /// }
1058 ///
1059 /// {
1060 /// let m = c.borrow();
1061 /// assert!(c.try_borrow().is_ok());
1062 /// }
1063 /// ```
1064 #[stable(feature = "try_borrow", since = "1.13.0")]
1065 #[inline]
1066 #[cfg_attr(feature = "debug_refcell", track_caller)]
1067 #[rustc_const_unstable(feature = "const_ref_cell", issue = "137844")]
1068 pub const fn try_borrow(&self) -> Result<Ref<'_, T>, BorrowError> {
1069 match BorrowRef::new(&self.borrow) {
1070 Some(b) => {
1071 #[cfg(feature = "debug_refcell")]
1072 {
1073 // `borrowed_at` is always the *first* active borrow
1074 if b.borrow.get() == 1 {
1075 self.borrowed_at.replace(Some(crate::panic::Location::caller()));
1076 }
1077 }
1078
1079 // SAFETY: `BorrowRef` ensures that there is only immutable access
1080 // to the value while borrowed.
1081 let value = unsafe { NonNull::new_unchecked(self.value.get()) };
1082 Ok(Ref { value, borrow: b })
1083 }
1084 None => Err(BorrowError {
1085 // If a borrow occurred, then we must already have an outstanding borrow,
1086 // so `borrowed_at` will be `Some`
1087 #[cfg(feature = "debug_refcell")]
1088 location: self.borrowed_at.get().unwrap(),
1089 }),
1090 }
1091 }
1092
1093 /// Mutably borrows the wrapped value.
1094 ///
1095 /// The borrow lasts until the returned `RefMut` or all `RefMut`s derived
1096 /// from it exit scope. The value cannot be borrowed while this borrow is
1097 /// active.
1098 ///
1099 /// # Panics
1100 ///
1101 /// Panics if the value is currently borrowed. For a non-panicking variant, use
1102 /// [`try_borrow_mut`](#method.try_borrow_mut).
1103 ///
1104 /// # Examples
1105 ///
1106 /// ```
1107 /// use std::cell::RefCell;
1108 ///
1109 /// let c = RefCell::new("hello".to_owned());
1110 ///
1111 /// *c.borrow_mut() = "bonjour".to_owned();
1112 ///
1113 /// assert_eq!(&*c.borrow(), "bonjour");
1114 /// ```
1115 ///
1116 /// An example of panic:
1117 ///
1118 /// ```should_panic
1119 /// use std::cell::RefCell;
1120 ///
1121 /// let c = RefCell::new(5);
1122 /// let m = c.borrow();
1123 ///
1124 /// let b = c.borrow_mut(); // this causes a panic
1125 /// ```
1126 #[stable(feature = "rust1", since = "1.0.0")]
1127 #[inline]
1128 #[track_caller]
1129 #[rustc_const_unstable(feature = "const_ref_cell", issue = "137844")]
1130 pub const fn borrow_mut(&self) -> RefMut<'_, T> {
1131 match self.try_borrow_mut() {
1132 Ok(b) => b,
1133 Err(err) => panic_already_borrowed(err),
1134 }
1135 }
1136
1137 /// Mutably borrows the wrapped value, returning an error if the value is currently borrowed.
1138 ///
1139 /// The borrow lasts until the returned `RefMut` or all `RefMut`s derived
1140 /// from it exit scope. The value cannot be borrowed while this borrow is
1141 /// active.
1142 ///
1143 /// This is the non-panicking variant of [`borrow_mut`](#method.borrow_mut).
1144 ///
1145 /// # Examples
1146 ///
1147 /// ```
1148 /// use std::cell::RefCell;
1149 ///
1150 /// let c = RefCell::new(5);
1151 ///
1152 /// {
1153 /// let m = c.borrow();
1154 /// assert!(c.try_borrow_mut().is_err());
1155 /// }
1156 ///
1157 /// assert!(c.try_borrow_mut().is_ok());
1158 /// ```
1159 #[stable(feature = "try_borrow", since = "1.13.0")]
1160 #[inline]
1161 #[cfg_attr(feature = "debug_refcell", track_caller)]
1162 #[rustc_const_unstable(feature = "const_ref_cell", issue = "137844")]
1163 pub const fn try_borrow_mut(&self) -> Result<RefMut<'_, T>, BorrowMutError> {
1164 match BorrowRefMut::new(&self.borrow) {
1165 Some(b) => {
1166 #[cfg(feature = "debug_refcell")]
1167 {
1168 self.borrowed_at.replace(Some(crate::panic::Location::caller()));
1169 }
1170
1171 // SAFETY: `BorrowRefMut` guarantees unique access.
1172 let value = unsafe { NonNull::new_unchecked(self.value.get()) };
1173 Ok(RefMut { value, borrow: b, marker: PhantomData })
1174 }
1175 None => Err(BorrowMutError {
1176 // If a borrow occurred, then we must already have an outstanding borrow,
1177 // so `borrowed_at` will be `Some`
1178 #[cfg(feature = "debug_refcell")]
1179 location: self.borrowed_at.get().unwrap(),
1180 }),
1181 }
1182 }
1183
1184 /// Returns a raw pointer to the underlying data in this cell.
1185 ///
1186 /// # Examples
1187 ///
1188 /// ```
1189 /// use std::cell::RefCell;
1190 ///
1191 /// let c = RefCell::new(5);
1192 ///
1193 /// let ptr = c.as_ptr();
1194 /// ```
1195 #[inline]
1196 #[stable(feature = "cell_as_ptr", since = "1.12.0")]
1197 #[rustc_as_ptr]
1198 #[rustc_never_returns_null_ptr]
1199 #[rustc_const_unstable(feature = "const_ref_cell", issue = "137844")]
1200 pub const fn as_ptr(&self) -> *mut T {
1201 self.value.get()
1202 }
1203
1204 /// Returns a mutable reference to the underlying data.
1205 ///
1206 /// Since this method borrows `RefCell` mutably, it is statically guaranteed
1207 /// that no borrows to the underlying data exist. The dynamic checks inherent
1208 /// in [`borrow_mut`] and most other methods of `RefCell` are therefore
1209 /// unnecessary. Note that this method does not reset the borrowing state if borrows were previously leaked
1210 /// (e.g., via [`forget()`] on a [`Ref`] or [`RefMut`]). For that purpose,
1211 /// consider using the unstable [`undo_leak`] method.
1212 ///
1213 /// This method can only be called if `RefCell` can be mutably borrowed,
1214 /// which in general is only the case directly after the `RefCell` has
1215 /// been created. In these situations, skipping the aforementioned dynamic
1216 /// borrowing checks may yield better ergonomics and runtime-performance.
1217 ///
1218 /// In most situations where `RefCell` is used, it can't be borrowed mutably.
1219 /// Use [`borrow_mut`] to get mutable access to the underlying data then.
1220 ///
1221 /// [`borrow_mut`]: RefCell::borrow_mut()
1222 /// [`forget()`]: mem::forget
1223 /// [`undo_leak`]: RefCell::undo_leak()
1224 ///
1225 /// # Examples
1226 ///
1227 /// ```
1228 /// use std::cell::RefCell;
1229 ///
1230 /// let mut c = RefCell::new(5);
1231 /// *c.get_mut() += 1;
1232 ///
1233 /// assert_eq!(c, RefCell::new(6));
1234 /// ```
1235 #[inline]
1236 #[stable(feature = "cell_get_mut", since = "1.11.0")]
1237 #[rustc_const_unstable(feature = "const_ref_cell", issue = "137844")]
1238 pub const fn get_mut(&mut self) -> &mut T {
1239 self.value.get_mut()
1240 }
1241
1242 /// Undo the effect of leaked guards on the borrow state of the `RefCell`.
1243 ///
1244 /// This call is similar to [`get_mut`] but more specialized. It borrows `RefCell` mutably to
1245 /// ensure no borrows exist and then resets the state tracking shared borrows. This is relevant
1246 /// if some `Ref` or `RefMut` borrows have been leaked.
1247 ///
1248 /// [`get_mut`]: RefCell::get_mut()
1249 ///
1250 /// # Examples
1251 ///
1252 /// ```
1253 /// #![feature(cell_leak)]
1254 /// use std::cell::RefCell;
1255 ///
1256 /// let mut c = RefCell::new(0);
1257 /// std::mem::forget(c.borrow_mut());
1258 ///
1259 /// assert!(c.try_borrow().is_err());
1260 /// c.undo_leak();
1261 /// assert!(c.try_borrow().is_ok());
1262 /// ```
1263 #[unstable(feature = "cell_leak", issue = "69099")]
1264 #[rustc_const_unstable(feature = "const_ref_cell", issue = "137844")]
1265 pub const fn undo_leak(&mut self) -> &mut T {
1266 *self.borrow.get_mut() = UNUSED;
1267 self.get_mut()
1268 }
1269
1270 /// Immutably borrows the wrapped value, returning an error if the value is
1271 /// currently mutably borrowed.
1272 ///
1273 /// # Safety
1274 ///
1275 /// Unlike `RefCell::borrow`, this method is unsafe because it does not
1276 /// return a `Ref`, thus leaving the borrow flag untouched. Mutably
1277 /// borrowing the `RefCell` while the reference returned by this method
1278 /// is alive is undefined behavior.
1279 ///
1280 /// # Examples
1281 ///
1282 /// ```
1283 /// use std::cell::RefCell;
1284 ///
1285 /// let c = RefCell::new(5);
1286 ///
1287 /// {
1288 /// let m = c.borrow_mut();
1289 /// assert!(unsafe { c.try_borrow_unguarded() }.is_err());
1290 /// }
1291 ///
1292 /// {
1293 /// let m = c.borrow();
1294 /// assert!(unsafe { c.try_borrow_unguarded() }.is_ok());
1295 /// }
1296 /// ```
1297 #[stable(feature = "borrow_state", since = "1.37.0")]
1298 #[inline]
1299 #[rustc_const_unstable(feature = "const_ref_cell", issue = "137844")]
1300 pub const unsafe fn try_borrow_unguarded(&self) -> Result<&T, BorrowError> {
1301 if !is_writing(self.borrow.get()) {
1302 // SAFETY: We check that nobody is actively writing now, but it is
1303 // the caller's responsibility to ensure that nobody writes until
1304 // the returned reference is no longer in use.
1305 // Also, `self.value.get()` refers to the value owned by `self`
1306 // and is thus guaranteed to be valid for the lifetime of `self`.
1307 Ok(unsafe { &*self.value.get() })
1308 } else {
1309 Err(BorrowError {
1310 // If a borrow occurred, then we must already have an outstanding borrow,
1311 // so `borrowed_at` will be `Some`
1312 #[cfg(feature = "debug_refcell")]
1313 location: self.borrowed_at.get().unwrap(),
1314 })
1315 }
1316 }
1317}
1318
1319#[cfg(not(feature = "ferrocene_certified"))]
1320impl<T: Default> RefCell<T> {
1321 /// Takes the wrapped value, leaving `Default::default()` in its place.
1322 ///
1323 /// # Panics
1324 ///
1325 /// Panics if the value is currently borrowed.
1326 ///
1327 /// # Examples
1328 ///
1329 /// ```
1330 /// use std::cell::RefCell;
1331 ///
1332 /// let c = RefCell::new(5);
1333 /// let five = c.take();
1334 ///
1335 /// assert_eq!(five, 5);
1336 /// assert_eq!(c.into_inner(), 0);
1337 /// ```
1338 #[stable(feature = "refcell_take", since = "1.50.0")]
1339 pub fn take(&self) -> T {
1340 self.replace(Default::default())
1341 }
1342}
1343
1344#[stable(feature = "rust1", since = "1.0.0")]
1345#[cfg(not(feature = "ferrocene_certified"))]
1346unsafe impl<T: ?Sized> Send for RefCell<T> where T: Send {}
1347
1348#[stable(feature = "rust1", since = "1.0.0")]
1349#[cfg(not(feature = "ferrocene_certified"))]
1350impl<T: ?Sized> !Sync for RefCell<T> {}
1351
1352#[stable(feature = "rust1", since = "1.0.0")]
1353#[cfg(not(feature = "ferrocene_certified"))]
1354impl<T: Clone> Clone for RefCell<T> {
1355 /// # Panics
1356 ///
1357 /// Panics if the value is currently mutably borrowed.
1358 #[inline]
1359 #[track_caller]
1360 fn clone(&self) -> RefCell<T> {
1361 RefCell::new(self.borrow().clone())
1362 }
1363
1364 /// # Panics
1365 ///
1366 /// Panics if `source` is currently mutably borrowed.
1367 #[inline]
1368 #[track_caller]
1369 fn clone_from(&mut self, source: &Self) {
1370 self.get_mut().clone_from(&source.borrow())
1371 }
1372}
1373
1374#[stable(feature = "rust1", since = "1.0.0")]
1375#[rustc_const_unstable(feature = "const_default", issue = "143894")]
1376#[cfg(not(feature = "ferrocene_certified"))]
1377impl<T: [const] Default> const Default for RefCell<T> {
1378 /// Creates a `RefCell<T>`, with the `Default` value for T.
1379 #[inline]
1380 fn default() -> RefCell<T> {
1381 RefCell::new(Default::default())
1382 }
1383}
1384
1385#[stable(feature = "rust1", since = "1.0.0")]
1386#[cfg(not(feature = "ferrocene_certified"))]
1387impl<T: ?Sized + PartialEq> PartialEq for RefCell<T> {
1388 /// # Panics
1389 ///
1390 /// Panics if the value in either `RefCell` is currently mutably borrowed.
1391 #[inline]
1392 fn eq(&self, other: &RefCell<T>) -> bool {
1393 *self.borrow() == *other.borrow()
1394 }
1395}
1396
1397#[stable(feature = "cell_eq", since = "1.2.0")]
1398#[cfg(not(feature = "ferrocene_certified"))]
1399impl<T: ?Sized + Eq> Eq for RefCell<T> {}
1400
1401#[stable(feature = "cell_ord", since = "1.10.0")]
1402#[cfg(not(feature = "ferrocene_certified"))]
1403impl<T: ?Sized + PartialOrd> PartialOrd for RefCell<T> {
1404 /// # Panics
1405 ///
1406 /// Panics if the value in either `RefCell` is currently mutably borrowed.
1407 #[inline]
1408 fn partial_cmp(&self, other: &RefCell<T>) -> Option<Ordering> {
1409 self.borrow().partial_cmp(&*other.borrow())
1410 }
1411
1412 /// # Panics
1413 ///
1414 /// Panics if the value in either `RefCell` is currently mutably borrowed.
1415 #[inline]
1416 fn lt(&self, other: &RefCell<T>) -> bool {
1417 *self.borrow() < *other.borrow()
1418 }
1419
1420 /// # Panics
1421 ///
1422 /// Panics if the value in either `RefCell` is currently mutably borrowed.
1423 #[inline]
1424 fn le(&self, other: &RefCell<T>) -> bool {
1425 *self.borrow() <= *other.borrow()
1426 }
1427
1428 /// # Panics
1429 ///
1430 /// Panics if the value in either `RefCell` is currently mutably borrowed.
1431 #[inline]
1432 fn gt(&self, other: &RefCell<T>) -> bool {
1433 *self.borrow() > *other.borrow()
1434 }
1435
1436 /// # Panics
1437 ///
1438 /// Panics if the value in either `RefCell` is currently mutably borrowed.
1439 #[inline]
1440 fn ge(&self, other: &RefCell<T>) -> bool {
1441 *self.borrow() >= *other.borrow()
1442 }
1443}
1444
1445#[stable(feature = "cell_ord", since = "1.10.0")]
1446#[cfg(not(feature = "ferrocene_certified"))]
1447impl<T: ?Sized + Ord> Ord for RefCell<T> {
1448 /// # Panics
1449 ///
1450 /// Panics if the value in either `RefCell` is currently mutably borrowed.
1451 #[inline]
1452 fn cmp(&self, other: &RefCell<T>) -> Ordering {
1453 self.borrow().cmp(&*other.borrow())
1454 }
1455}
1456
1457#[stable(feature = "cell_from", since = "1.12.0")]
1458#[rustc_const_unstable(feature = "const_convert", issue = "143773")]
1459#[cfg(not(feature = "ferrocene_certified"))]
1460impl<T> const From<T> for RefCell<T> {
1461 /// Creates a new `RefCell<T>` containing the given value.
1462 fn from(t: T) -> RefCell<T> {
1463 RefCell::new(t)
1464 }
1465}
1466
1467#[unstable(feature = "coerce_unsized", issue = "18598")]
1468#[cfg(not(feature = "ferrocene_certified"))]
1469impl<T: CoerceUnsized<U>, U> CoerceUnsized<RefCell<U>> for RefCell<T> {}
1470
1471#[cfg(not(feature = "ferrocene_certified"))]
1472struct BorrowRef<'b> {
1473 borrow: &'b Cell<BorrowCounter>,
1474}
1475
1476#[cfg(not(feature = "ferrocene_certified"))]
1477impl<'b> BorrowRef<'b> {
1478 #[inline]
1479 const fn new(borrow: &'b Cell<BorrowCounter>) -> Option<BorrowRef<'b>> {
1480 let b = borrow.get().wrapping_add(1);
1481 if !is_reading(b) {
1482 // Incrementing borrow can result in a non-reading value (<= 0) in these cases:
1483 // 1. It was < 0, i.e. there are writing borrows, so we can't allow a read borrow
1484 // due to Rust's reference aliasing rules
1485 // 2. It was isize::MAX (the max amount of reading borrows) and it overflowed
1486 // into isize::MIN (the max amount of writing borrows) so we can't allow
1487 // an additional read borrow because isize can't represent so many read borrows
1488 // (this can only happen if you mem::forget more than a small constant amount of
1489 // `Ref`s, which is not good practice)
1490 None
1491 } else {
1492 // Incrementing borrow can result in a reading value (> 0) in these cases:
1493 // 1. It was = 0, i.e. it wasn't borrowed, and we are taking the first read borrow
1494 // 2. It was > 0 and < isize::MAX, i.e. there were read borrows, and isize
1495 // is large enough to represent having one more read borrow
1496 borrow.replace(b);
1497 Some(BorrowRef { borrow })
1498 }
1499 }
1500}
1501
1502#[rustc_const_unstable(feature = "const_ref_cell", issue = "137844")]
1503#[cfg(not(feature = "ferrocene_certified"))]
1504impl const Drop for BorrowRef<'_> {
1505 #[inline]
1506 fn drop(&mut self) {
1507 let borrow = self.borrow.get();
1508 debug_assert!(is_reading(borrow));
1509 self.borrow.replace(borrow - 1);
1510 }
1511}
1512
1513#[rustc_const_unstable(feature = "const_ref_cell", issue = "137844")]
1514#[cfg(not(feature = "ferrocene_certified"))]
1515impl const Clone for BorrowRef<'_> {
1516 #[inline]
1517 fn clone(&self) -> Self {
1518 // Since this Ref exists, we know the borrow flag
1519 // is a reading borrow.
1520 let borrow = self.borrow.get();
1521 debug_assert!(is_reading(borrow));
1522 // Prevent the borrow counter from overflowing into
1523 // a writing borrow.
1524 assert!(borrow != BorrowCounter::MAX);
1525 self.borrow.replace(borrow + 1);
1526 BorrowRef { borrow: self.borrow }
1527 }
1528}
1529
1530/// Wraps a borrowed reference to a value in a `RefCell` box.
1531/// A wrapper type for an immutably borrowed value from a `RefCell<T>`.
1532///
1533/// See the [module-level documentation](self) for more.
1534#[stable(feature = "rust1", since = "1.0.0")]
1535#[must_not_suspend = "holding a Ref across suspend points can cause BorrowErrors"]
1536#[rustc_diagnostic_item = "RefCellRef"]
1537#[cfg(not(feature = "ferrocene_certified"))]
1538pub struct Ref<'b, T: ?Sized + 'b> {
1539 // NB: we use a pointer instead of `&'b T` to avoid `noalias` violations, because a
1540 // `Ref` argument doesn't hold immutability for its whole scope, only until it drops.
1541 // `NonNull` is also covariant over `T`, just like we would have with `&T`.
1542 value: NonNull<T>,
1543 borrow: BorrowRef<'b>,
1544}
1545
1546#[stable(feature = "rust1", since = "1.0.0")]
1547#[rustc_const_unstable(feature = "const_convert", issue = "143773")]
1548#[cfg(not(feature = "ferrocene_certified"))]
1549impl<T: ?Sized> const Deref for Ref<'_, T> {
1550 type Target = T;
1551
1552 #[inline]
1553 fn deref(&self) -> &T {
1554 // SAFETY: the value is accessible as long as we hold our borrow.
1555 unsafe { self.value.as_ref() }
1556 }
1557}
1558
1559#[unstable(feature = "deref_pure_trait", issue = "87121")]
1560#[cfg(not(feature = "ferrocene_certified"))]
1561unsafe impl<T: ?Sized> DerefPure for Ref<'_, T> {}
1562
1563#[cfg(not(feature = "ferrocene_certified"))]
1564impl<'b, T: ?Sized> Ref<'b, T> {
1565 /// Copies a `Ref`.
1566 ///
1567 /// The `RefCell` is already immutably borrowed, so this cannot fail.
1568 ///
1569 /// This is an associated function that needs to be used as
1570 /// `Ref::clone(...)`. A `Clone` implementation or a method would interfere
1571 /// with the widespread use of `r.borrow().clone()` to clone the contents of
1572 /// a `RefCell`.
1573 #[stable(feature = "cell_extras", since = "1.15.0")]
1574 #[must_use]
1575 #[inline]
1576 #[rustc_const_unstable(feature = "const_ref_cell", issue = "137844")]
1577 pub const fn clone(orig: &Ref<'b, T>) -> Ref<'b, T> {
1578 Ref { value: orig.value, borrow: orig.borrow.clone() }
1579 }
1580
1581 /// Makes a new `Ref` for a component of the borrowed data.
1582 ///
1583 /// The `RefCell` is already immutably borrowed, so this cannot fail.
1584 ///
1585 /// This is an associated function that needs to be used as `Ref::map(...)`.
1586 /// A method would interfere with methods of the same name on the contents
1587 /// of a `RefCell` used through `Deref`.
1588 ///
1589 /// # Examples
1590 ///
1591 /// ```
1592 /// use std::cell::{RefCell, Ref};
1593 ///
1594 /// let c = RefCell::new((5, 'b'));
1595 /// let b1: Ref<'_, (u32, char)> = c.borrow();
1596 /// let b2: Ref<'_, u32> = Ref::map(b1, |t| &t.0);
1597 /// assert_eq!(*b2, 5)
1598 /// ```
1599 #[stable(feature = "cell_map", since = "1.8.0")]
1600 #[inline]
1601 pub fn map<U: ?Sized, F>(orig: Ref<'b, T>, f: F) -> Ref<'b, U>
1602 where
1603 F: FnOnce(&T) -> &U,
1604 {
1605 Ref { value: NonNull::from(f(&*orig)), borrow: orig.borrow }
1606 }
1607
1608 /// Makes a new `Ref` for an optional component of the borrowed data. The
1609 /// original guard is returned as an `Err(..)` if the closure returns
1610 /// `None`.
1611 ///
1612 /// The `RefCell` is already immutably borrowed, so this cannot fail.
1613 ///
1614 /// This is an associated function that needs to be used as
1615 /// `Ref::filter_map(...)`. A method would interfere with methods of the same
1616 /// name on the contents of a `RefCell` used through `Deref`.
1617 ///
1618 /// # Examples
1619 ///
1620 /// ```
1621 /// use std::cell::{RefCell, Ref};
1622 ///
1623 /// let c = RefCell::new(vec![1, 2, 3]);
1624 /// let b1: Ref<'_, Vec<u32>> = c.borrow();
1625 /// let b2: Result<Ref<'_, u32>, _> = Ref::filter_map(b1, |v| v.get(1));
1626 /// assert_eq!(*b2.unwrap(), 2);
1627 /// ```
1628 #[stable(feature = "cell_filter_map", since = "1.63.0")]
1629 #[inline]
1630 pub fn filter_map<U: ?Sized, F>(orig: Ref<'b, T>, f: F) -> Result<Ref<'b, U>, Self>
1631 where
1632 F: FnOnce(&T) -> Option<&U>,
1633 {
1634 match f(&*orig) {
1635 Some(value) => Ok(Ref { value: NonNull::from(value), borrow: orig.borrow }),
1636 None => Err(orig),
1637 }
1638 }
1639
1640 /// Tries to makes a new `Ref` for a component of the borrowed data.
1641 /// On failure, the original guard is returned alongside with the error
1642 /// returned by the closure.
1643 ///
1644 /// The `RefCell` is already immutably borrowed, so this cannot fail.
1645 ///
1646 /// This is an associated function that needs to be used as
1647 /// `Ref::try_map(...)`. A method would interfere with methods of the same
1648 /// name on the contents of a `RefCell` used through `Deref`.
1649 ///
1650 /// # Examples
1651 ///
1652 /// ```
1653 /// #![feature(refcell_try_map)]
1654 /// use std::cell::{RefCell, Ref};
1655 /// use std::str::{from_utf8, Utf8Error};
1656 ///
1657 /// let c = RefCell::new(vec![0xF0, 0x9F, 0xA6 ,0x80]);
1658 /// let b1: Ref<'_, Vec<u8>> = c.borrow();
1659 /// let b2: Result<Ref<'_, str>, _> = Ref::try_map(b1, |v| from_utf8(v));
1660 /// assert_eq!(&*b2.unwrap(), "🦀");
1661 ///
1662 /// let c = RefCell::new(vec![0xF0, 0x9F, 0xA6]);
1663 /// let b1: Ref<'_, Vec<u8>> = c.borrow();
1664 /// let b2: Result<_, (Ref<'_, Vec<u8>>, Utf8Error)> = Ref::try_map(b1, |v| from_utf8(v));
1665 /// let (b3, e) = b2.unwrap_err();
1666 /// assert_eq!(*b3, vec![0xF0, 0x9F, 0xA6]);
1667 /// assert_eq!(e.valid_up_to(), 0);
1668 /// ```
1669 #[unstable(feature = "refcell_try_map", issue = "143801")]
1670 #[inline]
1671 pub fn try_map<U: ?Sized, E>(
1672 orig: Ref<'b, T>,
1673 f: impl FnOnce(&T) -> Result<&U, E>,
1674 ) -> Result<Ref<'b, U>, (Self, E)> {
1675 match f(&*orig) {
1676 Ok(value) => Ok(Ref { value: NonNull::from(value), borrow: orig.borrow }),
1677 Err(e) => Err((orig, e)),
1678 }
1679 }
1680
1681 /// Splits a `Ref` into multiple `Ref`s for different components of the
1682 /// borrowed data.
1683 ///
1684 /// The `RefCell` is already immutably borrowed, so this cannot fail.
1685 ///
1686 /// This is an associated function that needs to be used as
1687 /// `Ref::map_split(...)`. A method would interfere with methods of the same
1688 /// name on the contents of a `RefCell` used through `Deref`.
1689 ///
1690 /// # Examples
1691 ///
1692 /// ```
1693 /// use std::cell::{Ref, RefCell};
1694 ///
1695 /// let cell = RefCell::new([1, 2, 3, 4]);
1696 /// let borrow = cell.borrow();
1697 /// let (begin, end) = Ref::map_split(borrow, |slice| slice.split_at(2));
1698 /// assert_eq!(*begin, [1, 2]);
1699 /// assert_eq!(*end, [3, 4]);
1700 /// ```
1701 #[stable(feature = "refcell_map_split", since = "1.35.0")]
1702 #[inline]
1703 pub fn map_split<U: ?Sized, V: ?Sized, F>(orig: Ref<'b, T>, f: F) -> (Ref<'b, U>, Ref<'b, V>)
1704 where
1705 F: FnOnce(&T) -> (&U, &V),
1706 {
1707 let (a, b) = f(&*orig);
1708 let borrow = orig.borrow.clone();
1709 (
1710 Ref { value: NonNull::from(a), borrow },
1711 Ref { value: NonNull::from(b), borrow: orig.borrow },
1712 )
1713 }
1714
1715 /// Converts into a reference to the underlying data.
1716 ///
1717 /// The underlying `RefCell` can never be mutably borrowed from again and will always appear
1718 /// already immutably borrowed. It is not a good idea to leak more than a constant number of
1719 /// references. The `RefCell` can be immutably borrowed again if only a smaller number of leaks
1720 /// have occurred in total.
1721 ///
1722 /// This is an associated function that needs to be used as
1723 /// `Ref::leak(...)`. A method would interfere with methods of the
1724 /// same name on the contents of a `RefCell` used through `Deref`.
1725 ///
1726 /// # Examples
1727 ///
1728 /// ```
1729 /// #![feature(cell_leak)]
1730 /// use std::cell::{RefCell, Ref};
1731 /// let cell = RefCell::new(0);
1732 ///
1733 /// let value = Ref::leak(cell.borrow());
1734 /// assert_eq!(*value, 0);
1735 ///
1736 /// assert!(cell.try_borrow().is_ok());
1737 /// assert!(cell.try_borrow_mut().is_err());
1738 /// ```
1739 #[unstable(feature = "cell_leak", issue = "69099")]
1740 #[rustc_const_unstable(feature = "const_ref_cell", issue = "137844")]
1741 pub const fn leak(orig: Ref<'b, T>) -> &'b T {
1742 // By forgetting this Ref we ensure that the borrow counter in the RefCell can't go back to
1743 // UNUSED within the lifetime `'b`. Resetting the reference tracking state would require a
1744 // unique reference to the borrowed RefCell. No further mutable references can be created
1745 // from the original cell.
1746 mem::forget(orig.borrow);
1747 // SAFETY: after forgetting, we can form a reference for the rest of lifetime `'b`.
1748 unsafe { orig.value.as_ref() }
1749 }
1750}
1751
1752#[unstable(feature = "coerce_unsized", issue = "18598")]
1753#[cfg(not(feature = "ferrocene_certified"))]
1754impl<'b, T: ?Sized + Unsize<U>, U: ?Sized> CoerceUnsized<Ref<'b, U>> for Ref<'b, T> {}
1755
1756#[stable(feature = "std_guard_impls", since = "1.20.0")]
1757#[cfg(not(feature = "ferrocene_certified"))]
1758impl<T: ?Sized + fmt::Display> fmt::Display for Ref<'_, T> {
1759 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
1760 (**self).fmt(f)
1761 }
1762}
1763
1764#[cfg(not(feature = "ferrocene_certified"))]
1765impl<'b, T: ?Sized> RefMut<'b, T> {
1766 /// Makes a new `RefMut` for a component of the borrowed data, e.g., an enum
1767 /// variant.
1768 ///
1769 /// The `RefCell` is already mutably borrowed, so this cannot fail.
1770 ///
1771 /// This is an associated function that needs to be used as
1772 /// `RefMut::map(...)`. A method would interfere with methods of the same
1773 /// name on the contents of a `RefCell` used through `Deref`.
1774 ///
1775 /// # Examples
1776 ///
1777 /// ```
1778 /// use std::cell::{RefCell, RefMut};
1779 ///
1780 /// let c = RefCell::new((5, 'b'));
1781 /// {
1782 /// let b1: RefMut<'_, (u32, char)> = c.borrow_mut();
1783 /// let mut b2: RefMut<'_, u32> = RefMut::map(b1, |t| &mut t.0);
1784 /// assert_eq!(*b2, 5);
1785 /// *b2 = 42;
1786 /// }
1787 /// assert_eq!(*c.borrow(), (42, 'b'));
1788 /// ```
1789 #[stable(feature = "cell_map", since = "1.8.0")]
1790 #[inline]
1791 pub fn map<U: ?Sized, F>(mut orig: RefMut<'b, T>, f: F) -> RefMut<'b, U>
1792 where
1793 F: FnOnce(&mut T) -> &mut U,
1794 {
1795 let value = NonNull::from(f(&mut *orig));
1796 RefMut { value, borrow: orig.borrow, marker: PhantomData }
1797 }
1798
1799 /// Makes a new `RefMut` for an optional component of the borrowed data. The
1800 /// original guard is returned as an `Err(..)` if the closure returns
1801 /// `None`.
1802 ///
1803 /// The `RefCell` is already mutably borrowed, so this cannot fail.
1804 ///
1805 /// This is an associated function that needs to be used as
1806 /// `RefMut::filter_map(...)`. A method would interfere with methods of the
1807 /// same name on the contents of a `RefCell` used through `Deref`.
1808 ///
1809 /// # Examples
1810 ///
1811 /// ```
1812 /// use std::cell::{RefCell, RefMut};
1813 ///
1814 /// let c = RefCell::new(vec![1, 2, 3]);
1815 ///
1816 /// {
1817 /// let b1: RefMut<'_, Vec<u32>> = c.borrow_mut();
1818 /// let mut b2: Result<RefMut<'_, u32>, _> = RefMut::filter_map(b1, |v| v.get_mut(1));
1819 ///
1820 /// if let Ok(mut b2) = b2 {
1821 /// *b2 += 2;
1822 /// }
1823 /// }
1824 ///
1825 /// assert_eq!(*c.borrow(), vec![1, 4, 3]);
1826 /// ```
1827 #[stable(feature = "cell_filter_map", since = "1.63.0")]
1828 #[inline]
1829 pub fn filter_map<U: ?Sized, F>(mut orig: RefMut<'b, T>, f: F) -> Result<RefMut<'b, U>, Self>
1830 where
1831 F: FnOnce(&mut T) -> Option<&mut U>,
1832 {
1833 // SAFETY: function holds onto an exclusive reference for the duration
1834 // of its call through `orig`, and the pointer is only de-referenced
1835 // inside of the function call never allowing the exclusive reference to
1836 // escape.
1837 match f(&mut *orig) {
1838 Some(value) => {
1839 Ok(RefMut { value: NonNull::from(value), borrow: orig.borrow, marker: PhantomData })
1840 }
1841 None => Err(orig),
1842 }
1843 }
1844
1845 /// Tries to makes a new `RefMut` for a component of the borrowed data.
1846 /// On failure, the original guard is returned alongside with the error
1847 /// returned by the closure.
1848 ///
1849 /// The `RefCell` is already mutably borrowed, so this cannot fail.
1850 ///
1851 /// This is an associated function that needs to be used as
1852 /// `RefMut::try_map(...)`. A method would interfere with methods of the same
1853 /// name on the contents of a `RefCell` used through `Deref`.
1854 ///
1855 /// # Examples
1856 ///
1857 /// ```
1858 /// #![feature(refcell_try_map)]
1859 /// use std::cell::{RefCell, RefMut};
1860 /// use std::str::{from_utf8_mut, Utf8Error};
1861 ///
1862 /// let c = RefCell::new(vec![0x68, 0x65, 0x6C, 0x6C, 0x6F]);
1863 /// {
1864 /// let b1: RefMut<'_, Vec<u8>> = c.borrow_mut();
1865 /// let b2: Result<RefMut<'_, str>, _> = RefMut::try_map(b1, |v| from_utf8_mut(v));
1866 /// let mut b2 = b2.unwrap();
1867 /// assert_eq!(&*b2, "hello");
1868 /// b2.make_ascii_uppercase();
1869 /// }
1870 /// assert_eq!(*c.borrow(), "HELLO".as_bytes());
1871 ///
1872 /// let c = RefCell::new(vec![0xFF]);
1873 /// let b1: RefMut<'_, Vec<u8>> = c.borrow_mut();
1874 /// let b2: Result<_, (RefMut<'_, Vec<u8>>, Utf8Error)> = RefMut::try_map(b1, |v| from_utf8_mut(v));
1875 /// let (b3, e) = b2.unwrap_err();
1876 /// assert_eq!(*b3, vec![0xFF]);
1877 /// assert_eq!(e.valid_up_to(), 0);
1878 /// ```
1879 #[unstable(feature = "refcell_try_map", issue = "143801")]
1880 #[inline]
1881 pub fn try_map<U: ?Sized, E>(
1882 mut orig: RefMut<'b, T>,
1883 f: impl FnOnce(&mut T) -> Result<&mut U, E>,
1884 ) -> Result<RefMut<'b, U>, (Self, E)> {
1885 // SAFETY: function holds onto an exclusive reference for the duration
1886 // of its call through `orig`, and the pointer is only de-referenced
1887 // inside of the function call never allowing the exclusive reference to
1888 // escape.
1889 match f(&mut *orig) {
1890 Ok(value) => {
1891 Ok(RefMut { value: NonNull::from(value), borrow: orig.borrow, marker: PhantomData })
1892 }
1893 Err(e) => Err((orig, e)),
1894 }
1895 }
1896
1897 /// Splits a `RefMut` into multiple `RefMut`s for different components of the
1898 /// borrowed data.
1899 ///
1900 /// The underlying `RefCell` will remain mutably borrowed until both
1901 /// returned `RefMut`s go out of scope.
1902 ///
1903 /// The `RefCell` is already mutably borrowed, so this cannot fail.
1904 ///
1905 /// This is an associated function that needs to be used as
1906 /// `RefMut::map_split(...)`. A method would interfere with methods of the
1907 /// same name on the contents of a `RefCell` used through `Deref`.
1908 ///
1909 /// # Examples
1910 ///
1911 /// ```
1912 /// use std::cell::{RefCell, RefMut};
1913 ///
1914 /// let cell = RefCell::new([1, 2, 3, 4]);
1915 /// let borrow = cell.borrow_mut();
1916 /// let (mut begin, mut end) = RefMut::map_split(borrow, |slice| slice.split_at_mut(2));
1917 /// assert_eq!(*begin, [1, 2]);
1918 /// assert_eq!(*end, [3, 4]);
1919 /// begin.copy_from_slice(&[4, 3]);
1920 /// end.copy_from_slice(&[2, 1]);
1921 /// ```
1922 #[stable(feature = "refcell_map_split", since = "1.35.0")]
1923 #[inline]
1924 pub fn map_split<U: ?Sized, V: ?Sized, F>(
1925 mut orig: RefMut<'b, T>,
1926 f: F,
1927 ) -> (RefMut<'b, U>, RefMut<'b, V>)
1928 where
1929 F: FnOnce(&mut T) -> (&mut U, &mut V),
1930 {
1931 let borrow = orig.borrow.clone();
1932 let (a, b) = f(&mut *orig);
1933 (
1934 RefMut { value: NonNull::from(a), borrow, marker: PhantomData },
1935 RefMut { value: NonNull::from(b), borrow: orig.borrow, marker: PhantomData },
1936 )
1937 }
1938
1939 /// Converts into a mutable reference to the underlying data.
1940 ///
1941 /// The underlying `RefCell` can not be borrowed from again and will always appear already
1942 /// mutably borrowed, making the returned reference the only to the interior.
1943 ///
1944 /// This is an associated function that needs to be used as
1945 /// `RefMut::leak(...)`. A method would interfere with methods of the
1946 /// same name on the contents of a `RefCell` used through `Deref`.
1947 ///
1948 /// # Examples
1949 ///
1950 /// ```
1951 /// #![feature(cell_leak)]
1952 /// use std::cell::{RefCell, RefMut};
1953 /// let cell = RefCell::new(0);
1954 ///
1955 /// let value = RefMut::leak(cell.borrow_mut());
1956 /// assert_eq!(*value, 0);
1957 /// *value = 1;
1958 ///
1959 /// assert!(cell.try_borrow_mut().is_err());
1960 /// ```
1961 #[unstable(feature = "cell_leak", issue = "69099")]
1962 #[rustc_const_unstable(feature = "const_ref_cell", issue = "137844")]
1963 pub const fn leak(mut orig: RefMut<'b, T>) -> &'b mut T {
1964 // By forgetting this BorrowRefMut we ensure that the borrow counter in the RefCell can't
1965 // go back to UNUSED within the lifetime `'b`. Resetting the reference tracking state would
1966 // require a unique reference to the borrowed RefCell. No further references can be created
1967 // from the original cell within that lifetime, making the current borrow the only
1968 // reference for the remaining lifetime.
1969 mem::forget(orig.borrow);
1970 // SAFETY: after forgetting, we can form a reference for the rest of lifetime `'b`.
1971 unsafe { orig.value.as_mut() }
1972 }
1973}
1974
1975#[cfg(not(feature = "ferrocene_certified"))]
1976struct BorrowRefMut<'b> {
1977 borrow: &'b Cell<BorrowCounter>,
1978}
1979
1980#[rustc_const_unstable(feature = "const_ref_cell", issue = "137844")]
1981#[cfg(not(feature = "ferrocene_certified"))]
1982impl const Drop for BorrowRefMut<'_> {
1983 #[inline]
1984 fn drop(&mut self) {
1985 let borrow = self.borrow.get();
1986 debug_assert!(is_writing(borrow));
1987 self.borrow.replace(borrow + 1);
1988 }
1989}
1990
1991#[cfg(not(feature = "ferrocene_certified"))]
1992impl<'b> BorrowRefMut<'b> {
1993 #[inline]
1994 const fn new(borrow: &'b Cell<BorrowCounter>) -> Option<BorrowRefMut<'b>> {
1995 // NOTE: Unlike BorrowRefMut::clone, new is called to create the initial
1996 // mutable reference, and so there must currently be no existing
1997 // references. Thus, while clone increments the mutable refcount, here
1998 // we explicitly only allow going from UNUSED to UNUSED - 1.
1999 match borrow.get() {
2000 UNUSED => {
2001 borrow.replace(UNUSED - 1);
2002 Some(BorrowRefMut { borrow })
2003 }
2004 _ => None,
2005 }
2006 }
2007
2008 // Clones a `BorrowRefMut`.
2009 //
2010 // This is only valid if each `BorrowRefMut` is used to track a mutable
2011 // reference to a distinct, nonoverlapping range of the original object.
2012 // This isn't in a Clone impl so that code doesn't call this implicitly.
2013 #[inline]
2014 fn clone(&self) -> BorrowRefMut<'b> {
2015 let borrow = self.borrow.get();
2016 debug_assert!(is_writing(borrow));
2017 // Prevent the borrow counter from underflowing.
2018 assert!(borrow != BorrowCounter::MIN);
2019 self.borrow.set(borrow - 1);
2020 BorrowRefMut { borrow: self.borrow }
2021 }
2022}
2023
2024/// A wrapper type for a mutably borrowed value from a `RefCell<T>`.
2025///
2026/// See the [module-level documentation](self) for more.
2027#[stable(feature = "rust1", since = "1.0.0")]
2028#[must_not_suspend = "holding a RefMut across suspend points can cause BorrowErrors"]
2029#[rustc_diagnostic_item = "RefCellRefMut"]
2030#[cfg(not(feature = "ferrocene_certified"))]
2031pub struct RefMut<'b, T: ?Sized + 'b> {
2032 // NB: we use a pointer instead of `&'b mut T` to avoid `noalias` violations, because a
2033 // `RefMut` argument doesn't hold exclusivity for its whole scope, only until it drops.
2034 value: NonNull<T>,
2035 borrow: BorrowRefMut<'b>,
2036 // `NonNull` is covariant over `T`, so we need to reintroduce invariance.
2037 marker: PhantomData<&'b mut T>,
2038}
2039
2040#[stable(feature = "rust1", since = "1.0.0")]
2041#[rustc_const_unstable(feature = "const_convert", issue = "143773")]
2042#[cfg(not(feature = "ferrocene_certified"))]
2043impl<T: ?Sized> const Deref for RefMut<'_, T> {
2044 type Target = T;
2045
2046 #[inline]
2047 fn deref(&self) -> &T {
2048 // SAFETY: the value is accessible as long as we hold our borrow.
2049 unsafe { self.value.as_ref() }
2050 }
2051}
2052
2053#[stable(feature = "rust1", since = "1.0.0")]
2054#[rustc_const_unstable(feature = "const_convert", issue = "143773")]
2055#[cfg(not(feature = "ferrocene_certified"))]
2056impl<T: ?Sized> const DerefMut for RefMut<'_, T> {
2057 #[inline]
2058 fn deref_mut(&mut self) -> &mut T {
2059 // SAFETY: the value is accessible as long as we hold our borrow.
2060 unsafe { self.value.as_mut() }
2061 }
2062}
2063
2064#[unstable(feature = "deref_pure_trait", issue = "87121")]
2065#[cfg(not(feature = "ferrocene_certified"))]
2066unsafe impl<T: ?Sized> DerefPure for RefMut<'_, T> {}
2067
2068#[unstable(feature = "coerce_unsized", issue = "18598")]
2069#[cfg(not(feature = "ferrocene_certified"))]
2070impl<'b, T: ?Sized + Unsize<U>, U: ?Sized> CoerceUnsized<RefMut<'b, U>> for RefMut<'b, T> {}
2071
2072#[stable(feature = "std_guard_impls", since = "1.20.0")]
2073#[cfg(not(feature = "ferrocene_certified"))]
2074impl<T: ?Sized + fmt::Display> fmt::Display for RefMut<'_, T> {
2075 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
2076 (**self).fmt(f)
2077 }
2078}
2079
2080/// The core primitive for interior mutability in Rust.
2081///
2082/// If you have a reference `&T`, then normally in Rust the compiler performs optimizations based on
2083/// the knowledge that `&T` points to immutable data. Mutating that data, for example through an
2084/// alias or by transmuting a `&T` into a `&mut T`, is considered undefined behavior.
2085/// `UnsafeCell<T>` opts-out of the immutability guarantee for `&T`: a shared reference
2086/// `&UnsafeCell<T>` may point to data that is being mutated. This is called "interior mutability".
2087///
2088/// All other types that allow internal mutability, such as [`Cell<T>`] and [`RefCell<T>`], internally
2089/// use `UnsafeCell` to wrap their data.
2090///
2091/// Note that only the immutability guarantee for shared references is affected by `UnsafeCell`. The
2092/// uniqueness guarantee for mutable references is unaffected. There is *no* legal way to obtain
2093/// aliasing `&mut`, not even with `UnsafeCell<T>`.
2094///
2095/// `UnsafeCell` does nothing to avoid data races; they are still undefined behavior. If multiple
2096/// threads have access to the same `UnsafeCell`, they must follow the usual rules of the
2097/// [concurrent memory model]: conflicting non-synchronized accesses must be done via the APIs in
2098/// [`core::sync::atomic`].
2099///
2100/// The `UnsafeCell` API itself is technically very simple: [`.get()`] gives you a raw pointer
2101/// `*mut T` to its contents. It is up to _you_ as the abstraction designer to use that raw pointer
2102/// correctly.
2103///
2104/// [`.get()`]: `UnsafeCell::get`
2105/// [concurrent memory model]: ../sync/atomic/index.html#memory-model-for-atomic-accesses
2106///
2107/// # Aliasing rules
2108///
2109/// The precise Rust aliasing rules are somewhat in flux, but the main points are not contentious:
2110///
2111/// - If you create a safe reference with lifetime `'a` (either a `&T` or `&mut T` reference), then
2112/// you must not access the data in any way that contradicts that reference for the remainder of
2113/// `'a`. For example, this means that if you take the `*mut T` from an `UnsafeCell<T>` and cast it
2114/// to an `&T`, then the data in `T` must remain immutable (modulo any `UnsafeCell` data found
2115/// within `T`, of course) until that reference's lifetime expires. Similarly, if you create a
2116/// `&mut T` reference that is released to safe code, then you must not access the data within the
2117/// `UnsafeCell` until that reference expires.
2118///
2119/// - For both `&T` without `UnsafeCell<_>` and `&mut T`, you must also not deallocate the data
2120/// until the reference expires. As a special exception, given an `&T`, any part of it that is
2121/// inside an `UnsafeCell<_>` may be deallocated during the lifetime of the reference, after the
2122/// last time the reference is used (dereferenced or reborrowed). Since you cannot deallocate a part
2123/// of what a reference points to, this means the memory an `&T` points to can be deallocated only if
2124/// *every part of it* (including padding) is inside an `UnsafeCell`.
2125///
2126/// However, whenever a `&UnsafeCell<T>` is constructed or dereferenced, it must still point to
2127/// live memory and the compiler is allowed to insert spurious reads if it can prove that this
2128/// memory has not yet been deallocated.
2129///
2130/// To assist with proper design, the following scenarios are explicitly declared legal
2131/// for single-threaded code:
2132///
2133/// 1. A `&T` reference can be released to safe code and there it can co-exist with other `&T`
2134/// references, but not with a `&mut T`
2135///
2136/// 2. A `&mut T` reference may be released to safe code provided neither other `&mut T` nor `&T`
2137/// co-exist with it. A `&mut T` must always be unique.
2138///
2139/// Note that whilst mutating the contents of an `&UnsafeCell<T>` (even while other
2140/// `&UnsafeCell<T>` references alias the cell) is
2141/// ok (provided you enforce the above invariants some other way), it is still undefined behavior
2142/// to have multiple `&mut UnsafeCell<T>` aliases. That is, `UnsafeCell` is a wrapper
2143/// designed to have a special interaction with _shared_ accesses (_i.e._, through an
2144/// `&UnsafeCell<_>` reference); there is no magic whatsoever when dealing with _exclusive_
2145/// accesses (_e.g._, through a `&mut UnsafeCell<_>`): neither the cell nor the wrapped value
2146/// may be aliased for the duration of that `&mut` borrow.
2147/// This is showcased by the [`.get_mut()`] accessor, which is a _safe_ getter that yields
2148/// a `&mut T`.
2149///
2150/// [`.get_mut()`]: `UnsafeCell::get_mut`
2151///
2152/// # Memory layout
2153///
2154/// `UnsafeCell<T>` has the same in-memory representation as its inner type `T`. A consequence
2155/// of this guarantee is that it is possible to convert between `T` and `UnsafeCell<T>`.
2156/// Special care has to be taken when converting a nested `T` inside of an `Outer<T>` type
2157/// to an `Outer<UnsafeCell<T>>` type: this is not sound when the `Outer<T>` type enables [niche]
2158/// optimizations. For example, the type `Option<NonNull<u8>>` is typically 8 bytes large on
2159/// 64-bit platforms, but the type `Option<UnsafeCell<NonNull<u8>>>` takes up 16 bytes of space.
2160/// Therefore this is not a valid conversion, despite `NonNull<u8>` and `UnsafeCell<NonNull<u8>>>`
2161/// having the same memory layout. This is because `UnsafeCell` disables niche optimizations in
2162/// order to avoid its interior mutability property from spreading from `T` into the `Outer` type,
2163/// thus this can cause distortions in the type size in these cases.
2164///
2165/// Note that the only valid way to obtain a `*mut T` pointer to the contents of a
2166/// _shared_ `UnsafeCell<T>` is through [`.get()`] or [`.raw_get()`]. A `&mut T` reference
2167/// can be obtained by either dereferencing this pointer or by calling [`.get_mut()`]
2168/// on an _exclusive_ `UnsafeCell<T>`. Even though `T` and `UnsafeCell<T>` have the
2169/// same memory layout, the following is not allowed and undefined behavior:
2170///
2171/// ```rust,compile_fail
2172/// # use std::cell::UnsafeCell;
2173/// unsafe fn not_allowed<T>(ptr: &UnsafeCell<T>) -> &mut T {
2174/// let t = ptr as *const UnsafeCell<T> as *mut T;
2175/// // This is undefined behavior, because the `*mut T` pointer
2176/// // was not obtained through `.get()` nor `.raw_get()`:
2177/// unsafe { &mut *t }
2178/// }
2179/// ```
2180///
2181/// Instead, do this:
2182///
2183/// ```rust
2184/// # use std::cell::UnsafeCell;
2185/// // Safety: the caller must ensure that there are no references that
2186/// // point to the *contents* of the `UnsafeCell`.
2187/// unsafe fn get_mut<T>(ptr: &UnsafeCell<T>) -> &mut T {
2188/// unsafe { &mut *ptr.get() }
2189/// }
2190/// ```
2191///
2192/// Converting in the other direction from a `&mut T`
2193/// to an `&UnsafeCell<T>` is allowed:
2194///
2195/// ```rust
2196/// # use std::cell::UnsafeCell;
2197/// fn get_shared<T>(ptr: &mut T) -> &UnsafeCell<T> {
2198/// let t = ptr as *mut T as *const UnsafeCell<T>;
2199/// // SAFETY: `T` and `UnsafeCell<T>` have the same memory layout
2200/// unsafe { &*t }
2201/// }
2202/// ```
2203///
2204/// [niche]: https://rust-lang.github.io/unsafe-code-guidelines/glossary.html#niche
2205/// [`.raw_get()`]: `UnsafeCell::raw_get`
2206///
2207/// # Examples
2208///
2209/// Here is an example showcasing how to soundly mutate the contents of an `UnsafeCell<_>` despite
2210/// there being multiple references aliasing the cell:
2211///
2212/// ```
2213/// use std::cell::UnsafeCell;
2214///
2215/// let x: UnsafeCell<i32> = 42.into();
2216/// // Get multiple / concurrent / shared references to the same `x`.
2217/// let (p1, p2): (&UnsafeCell<i32>, &UnsafeCell<i32>) = (&x, &x);
2218///
2219/// unsafe {
2220/// // SAFETY: within this scope there are no other references to `x`'s contents,
2221/// // so ours is effectively unique.
2222/// let p1_exclusive: &mut i32 = &mut *p1.get(); // -- borrow --+
2223/// *p1_exclusive += 27; // |
2224/// } // <---------- cannot go beyond this point -------------------+
2225///
2226/// unsafe {
2227/// // SAFETY: within this scope nobody expects to have exclusive access to `x`'s contents,
2228/// // so we can have multiple shared accesses concurrently.
2229/// let p2_shared: &i32 = &*p2.get();
2230/// assert_eq!(*p2_shared, 42 + 27);
2231/// let p1_shared: &i32 = &*p1.get();
2232/// assert_eq!(*p1_shared, *p2_shared);
2233/// }
2234/// ```
2235///
2236/// The following example showcases the fact that exclusive access to an `UnsafeCell<T>`
2237/// implies exclusive access to its `T`:
2238///
2239/// ```rust
2240/// #![forbid(unsafe_code)]
2241/// // with exclusive accesses, `UnsafeCell` is a transparent no-op wrapper, so no need for
2242/// // `unsafe` here.
2243/// use std::cell::UnsafeCell;
2244///
2245/// let mut x: UnsafeCell<i32> = 42.into();
2246///
2247/// // Get a compile-time-checked unique reference to `x`.
2248/// let p_unique: &mut UnsafeCell<i32> = &mut x;
2249/// // With an exclusive reference, we can mutate the contents for free.
2250/// *p_unique.get_mut() = 0;
2251/// // Or, equivalently:
2252/// x = UnsafeCell::new(0);
2253///
2254/// // When we own the value, we can extract the contents for free.
2255/// let contents: i32 = x.into_inner();
2256/// assert_eq!(contents, 0);
2257/// ```
2258#[lang = "unsafe_cell"]
2259#[stable(feature = "rust1", since = "1.0.0")]
2260#[repr(transparent)]
2261#[rustc_pub_transparent]
2262pub struct UnsafeCell<T: ?Sized> {
2263 value: T,
2264}
2265
2266#[stable(feature = "rust1", since = "1.0.0")]
2267#[cfg(not(feature = "ferrocene_certified"))]
2268impl<T: ?Sized> !Sync for UnsafeCell<T> {}
2269
2270impl<T> UnsafeCell<T> {
2271 /// Constructs a new instance of `UnsafeCell` which will wrap the specified
2272 /// value.
2273 ///
2274 /// All access to the inner value through `&UnsafeCell<T>` requires `unsafe` code.
2275 ///
2276 /// # Examples
2277 ///
2278 /// ```
2279 /// use std::cell::UnsafeCell;
2280 ///
2281 /// let uc = UnsafeCell::new(5);
2282 /// ```
2283 #[stable(feature = "rust1", since = "1.0.0")]
2284 #[rustc_const_stable(feature = "const_unsafe_cell_new", since = "1.32.0")]
2285 #[inline(always)]
2286 pub const fn new(value: T) -> UnsafeCell<T> {
2287 UnsafeCell { value }
2288 }
2289
2290 /// Unwraps the value, consuming the cell.
2291 ///
2292 /// # Examples
2293 ///
2294 /// ```
2295 /// use std::cell::UnsafeCell;
2296 ///
2297 /// let uc = UnsafeCell::new(5);
2298 ///
2299 /// let five = uc.into_inner();
2300 /// ```
2301 #[inline(always)]
2302 #[stable(feature = "rust1", since = "1.0.0")]
2303 #[rustc_const_stable(feature = "const_cell_into_inner", since = "1.83.0")]
2304 #[rustc_allow_const_fn_unstable(const_precise_live_drops)]
2305 pub const fn into_inner(self) -> T {
2306 self.value
2307 }
2308
2309 /// Replace the value in this `UnsafeCell` and return the old value.
2310 ///
2311 /// # Safety
2312 ///
2313 /// The caller must take care to avoid aliasing and data races.
2314 ///
2315 /// - It is Undefined Behavior to allow calls to race with
2316 /// any other access to the wrapped value.
2317 /// - It is Undefined Behavior to call this while any other
2318 /// reference(s) to the wrapped value are alive.
2319 ///
2320 /// # Examples
2321 ///
2322 /// ```
2323 /// #![feature(unsafe_cell_access)]
2324 /// use std::cell::UnsafeCell;
2325 ///
2326 /// let uc = UnsafeCell::new(5);
2327 ///
2328 /// let old = unsafe { uc.replace(10) };
2329 /// assert_eq!(old, 5);
2330 /// ```
2331 #[inline]
2332 #[unstable(feature = "unsafe_cell_access", issue = "136327")]
2333 #[cfg(not(feature = "ferrocene_certified"))]
2334 pub const unsafe fn replace(&self, value: T) -> T {
2335 // SAFETY: pointer comes from `&self` so naturally satisfies invariants.
2336 unsafe { ptr::replace(self.get(), value) }
2337 }
2338}
2339
2340impl<T: ?Sized> UnsafeCell<T> {
2341 /// Converts from `&mut T` to `&mut UnsafeCell<T>`.
2342 ///
2343 /// # Examples
2344 ///
2345 /// ```
2346 /// use std::cell::UnsafeCell;
2347 ///
2348 /// let mut val = 42;
2349 /// let uc = UnsafeCell::from_mut(&mut val);
2350 ///
2351 /// *uc.get_mut() -= 1;
2352 /// assert_eq!(*uc.get_mut(), 41);
2353 /// ```
2354 #[inline(always)]
2355 #[stable(feature = "unsafe_cell_from_mut", since = "1.84.0")]
2356 #[rustc_const_stable(feature = "unsafe_cell_from_mut", since = "1.84.0")]
2357 #[cfg(not(feature = "ferrocene_certified"))]
2358 pub const fn from_mut(value: &mut T) -> &mut UnsafeCell<T> {
2359 // SAFETY: `UnsafeCell<T>` has the same memory layout as `T` due to #[repr(transparent)].
2360 unsafe { &mut *(value as *mut T as *mut UnsafeCell<T>) }
2361 }
2362
2363 /// Gets a mutable pointer to the wrapped value.
2364 ///
2365 /// This can be cast to a pointer of any kind. When creating references, you must uphold the
2366 /// aliasing rules; see [the type-level docs][UnsafeCell#aliasing-rules] for more discussion and
2367 /// caveats.
2368 ///
2369 /// # Examples
2370 ///
2371 /// ```
2372 /// use std::cell::UnsafeCell;
2373 ///
2374 /// let uc = UnsafeCell::new(5);
2375 ///
2376 /// let five = uc.get();
2377 /// ```
2378 #[inline(always)]
2379 #[stable(feature = "rust1", since = "1.0.0")]
2380 #[rustc_const_stable(feature = "const_unsafecell_get", since = "1.32.0")]
2381 #[rustc_as_ptr]
2382 #[rustc_never_returns_null_ptr]
2383 pub const fn get(&self) -> *mut T {
2384 // We can just cast the pointer from `UnsafeCell<T>` to `T` because of
2385 // #[repr(transparent)]. This exploits std's special status, there is
2386 // no guarantee for user code that this will work in future versions of the compiler!
2387 self as *const UnsafeCell<T> as *const T as *mut T
2388 }
2389
2390 /// Returns a mutable reference to the underlying data.
2391 ///
2392 /// This call borrows the `UnsafeCell` mutably (at compile-time) which
2393 /// guarantees that we possess the only reference.
2394 ///
2395 /// # Examples
2396 ///
2397 /// ```
2398 /// use std::cell::UnsafeCell;
2399 ///
2400 /// let mut c = UnsafeCell::new(5);
2401 /// *c.get_mut() += 1;
2402 ///
2403 /// assert_eq!(*c.get_mut(), 6);
2404 /// ```
2405 #[inline(always)]
2406 #[stable(feature = "unsafe_cell_get_mut", since = "1.50.0")]
2407 #[rustc_const_stable(feature = "const_unsafecell_get_mut", since = "1.83.0")]
2408 pub const fn get_mut(&mut self) -> &mut T {
2409 &mut self.value
2410 }
2411
2412 /// Gets a mutable pointer to the wrapped value.
2413 /// The difference from [`get`] is that this function accepts a raw pointer,
2414 /// which is useful to avoid the creation of temporary references.
2415 ///
2416 /// This can be cast to a pointer of any kind. When creating references, you must uphold the
2417 /// aliasing rules; see [the type-level docs][UnsafeCell#aliasing-rules] for more discussion and
2418 /// caveats.
2419 ///
2420 /// [`get`]: UnsafeCell::get()
2421 ///
2422 /// # Examples
2423 ///
2424 /// Gradual initialization of an `UnsafeCell` requires `raw_get`, as
2425 /// calling `get` would require creating a reference to uninitialized data:
2426 ///
2427 /// ```
2428 /// use std::cell::UnsafeCell;
2429 /// use std::mem::MaybeUninit;
2430 ///
2431 /// let m = MaybeUninit::<UnsafeCell<i32>>::uninit();
2432 /// unsafe { UnsafeCell::raw_get(m.as_ptr()).write(5); }
2433 /// // avoid below which references to uninitialized data
2434 /// // unsafe { UnsafeCell::get(&*m.as_ptr()).write(5); }
2435 /// let uc = unsafe { m.assume_init() };
2436 ///
2437 /// assert_eq!(uc.into_inner(), 5);
2438 /// ```
2439 #[inline(always)]
2440 #[stable(feature = "unsafe_cell_raw_get", since = "1.56.0")]
2441 #[rustc_const_stable(feature = "unsafe_cell_raw_get", since = "1.56.0")]
2442 #[rustc_diagnostic_item = "unsafe_cell_raw_get"]
2443 #[cfg(not(feature = "ferrocene_certified"))]
2444 pub const fn raw_get(this: *const Self) -> *mut T {
2445 // We can just cast the pointer from `UnsafeCell<T>` to `T` because of
2446 // #[repr(transparent)]. This exploits std's special status, there is
2447 // no guarantee for user code that this will work in future versions of the compiler!
2448 this as *const T as *mut T
2449 }
2450
2451 /// Get a shared reference to the value within the `UnsafeCell`.
2452 ///
2453 /// # Safety
2454 ///
2455 /// - It is Undefined Behavior to call this while any mutable
2456 /// reference to the wrapped value is alive.
2457 /// - Mutating the wrapped value while the returned
2458 /// reference is alive is Undefined Behavior.
2459 ///
2460 /// # Examples
2461 ///
2462 /// ```
2463 /// #![feature(unsafe_cell_access)]
2464 /// use std::cell::UnsafeCell;
2465 ///
2466 /// let uc = UnsafeCell::new(5);
2467 ///
2468 /// let val = unsafe { uc.as_ref_unchecked() };
2469 /// assert_eq!(val, &5);
2470 /// ```
2471 #[inline]
2472 #[unstable(feature = "unsafe_cell_access", issue = "136327")]
2473 #[cfg(not(feature = "ferrocene_certified"))]
2474 pub const unsafe fn as_ref_unchecked(&self) -> &T {
2475 // SAFETY: pointer comes from `&self` so naturally satisfies ptr-to-ref invariants.
2476 unsafe { self.get().as_ref_unchecked() }
2477 }
2478
2479 /// Get an exclusive reference to the value within the `UnsafeCell`.
2480 ///
2481 /// # Safety
2482 ///
2483 /// - It is Undefined Behavior to call this while any other
2484 /// reference(s) to the wrapped value are alive.
2485 /// - Mutating the wrapped value through other means while the
2486 /// returned reference is alive is Undefined Behavior.
2487 ///
2488 /// # Examples
2489 ///
2490 /// ```
2491 /// #![feature(unsafe_cell_access)]
2492 /// use std::cell::UnsafeCell;
2493 ///
2494 /// let uc = UnsafeCell::new(5);
2495 ///
2496 /// unsafe { *uc.as_mut_unchecked() += 1; }
2497 /// assert_eq!(uc.into_inner(), 6);
2498 /// ```
2499 #[inline]
2500 #[unstable(feature = "unsafe_cell_access", issue = "136327")]
2501 #[allow(clippy::mut_from_ref)]
2502 #[cfg(not(feature = "ferrocene_certified"))]
2503 pub const unsafe fn as_mut_unchecked(&self) -> &mut T {
2504 // SAFETY: pointer comes from `&self` so naturally satisfies ptr-to-ref invariants.
2505 unsafe { self.get().as_mut_unchecked() }
2506 }
2507}
2508
2509#[stable(feature = "unsafe_cell_default", since = "1.10.0")]
2510#[rustc_const_unstable(feature = "const_default", issue = "143894")]
2511#[cfg(not(feature = "ferrocene_certified"))]
2512impl<T: [const] Default> const Default for UnsafeCell<T> {
2513 /// Creates an `UnsafeCell`, with the `Default` value for T.
2514 fn default() -> UnsafeCell<T> {
2515 UnsafeCell::new(Default::default())
2516 }
2517}
2518
2519#[stable(feature = "cell_from", since = "1.12.0")]
2520#[rustc_const_unstable(feature = "const_convert", issue = "143773")]
2521#[cfg(not(feature = "ferrocene_certified"))]
2522impl<T> const From<T> for UnsafeCell<T> {
2523 /// Creates a new `UnsafeCell<T>` containing the given value.
2524 fn from(t: T) -> UnsafeCell<T> {
2525 UnsafeCell::new(t)
2526 }
2527}
2528
2529#[unstable(feature = "coerce_unsized", issue = "18598")]
2530#[cfg(not(feature = "ferrocene_certified"))]
2531impl<T: CoerceUnsized<U>, U> CoerceUnsized<UnsafeCell<U>> for UnsafeCell<T> {}
2532
2533// Allow types that wrap `UnsafeCell` to also implement `DispatchFromDyn`
2534// and become dyn-compatible method receivers.
2535// Note that currently `UnsafeCell` itself cannot be a method receiver
2536// because it does not implement Deref.
2537// In other words:
2538// `self: UnsafeCell<&Self>` won't work
2539// `self: UnsafeCellWrapper<Self>` becomes possible
2540#[unstable(feature = "dispatch_from_dyn", issue = "none")]
2541#[cfg(not(feature = "ferrocene_certified"))]
2542impl<T: DispatchFromDyn<U>, U> DispatchFromDyn<UnsafeCell<U>> for UnsafeCell<T> {}
2543
2544/// [`UnsafeCell`], but [`Sync`].
2545///
2546/// This is just an `UnsafeCell`, except it implements `Sync`
2547/// if `T` implements `Sync`.
2548///
2549/// `UnsafeCell` doesn't implement `Sync`, to prevent accidental mis-use.
2550/// You can use `SyncUnsafeCell` instead of `UnsafeCell` to allow it to be
2551/// shared between threads, if that's intentional.
2552/// Providing proper synchronization is still the task of the user,
2553/// making this type just as unsafe to use.
2554///
2555/// See [`UnsafeCell`] for details.
2556#[unstable(feature = "sync_unsafe_cell", issue = "95439")]
2557#[repr(transparent)]
2558#[rustc_diagnostic_item = "SyncUnsafeCell"]
2559#[rustc_pub_transparent]
2560#[cfg(not(feature = "ferrocene_certified"))]
2561pub struct SyncUnsafeCell<T: ?Sized> {
2562 value: UnsafeCell<T>,
2563}
2564
2565#[unstable(feature = "sync_unsafe_cell", issue = "95439")]
2566#[cfg(not(feature = "ferrocene_certified"))]
2567unsafe impl<T: ?Sized + Sync> Sync for SyncUnsafeCell<T> {}
2568
2569#[unstable(feature = "sync_unsafe_cell", issue = "95439")]
2570#[cfg(not(feature = "ferrocene_certified"))]
2571impl<T> SyncUnsafeCell<T> {
2572 /// Constructs a new instance of `SyncUnsafeCell` which will wrap the specified value.
2573 #[inline]
2574 pub const fn new(value: T) -> Self {
2575 Self { value: UnsafeCell { value } }
2576 }
2577
2578 /// Unwraps the value, consuming the cell.
2579 #[inline]
2580 #[rustc_const_unstable(feature = "sync_unsafe_cell", issue = "95439")]
2581 pub const fn into_inner(self) -> T {
2582 self.value.into_inner()
2583 }
2584}
2585
2586#[unstable(feature = "sync_unsafe_cell", issue = "95439")]
2587#[cfg(not(feature = "ferrocene_certified"))]
2588impl<T: ?Sized> SyncUnsafeCell<T> {
2589 /// Gets a mutable pointer to the wrapped value.
2590 ///
2591 /// This can be cast to a pointer of any kind.
2592 /// Ensure that the access is unique (no active references, mutable or not)
2593 /// when casting to `&mut T`, and ensure that there are no mutations
2594 /// or mutable aliases going on when casting to `&T`
2595 #[inline]
2596 #[rustc_as_ptr]
2597 #[rustc_never_returns_null_ptr]
2598 pub const fn get(&self) -> *mut T {
2599 self.value.get()
2600 }
2601
2602 /// Returns a mutable reference to the underlying data.
2603 ///
2604 /// This call borrows the `SyncUnsafeCell` mutably (at compile-time) which
2605 /// guarantees that we possess the only reference.
2606 #[inline]
2607 pub const fn get_mut(&mut self) -> &mut T {
2608 self.value.get_mut()
2609 }
2610
2611 /// Gets a mutable pointer to the wrapped value.
2612 ///
2613 /// See [`UnsafeCell::get`] for details.
2614 #[inline]
2615 pub const fn raw_get(this: *const Self) -> *mut T {
2616 // We can just cast the pointer from `SyncUnsafeCell<T>` to `T` because
2617 // of #[repr(transparent)] on both SyncUnsafeCell and UnsafeCell.
2618 // See UnsafeCell::raw_get.
2619 this as *const T as *mut T
2620 }
2621}
2622
2623#[unstable(feature = "sync_unsafe_cell", issue = "95439")]
2624#[rustc_const_unstable(feature = "const_default", issue = "143894")]
2625#[cfg(not(feature = "ferrocene_certified"))]
2626impl<T: [const] Default> const Default for SyncUnsafeCell<T> {
2627 /// Creates an `SyncUnsafeCell`, with the `Default` value for T.
2628 fn default() -> SyncUnsafeCell<T> {
2629 SyncUnsafeCell::new(Default::default())
2630 }
2631}
2632
2633#[unstable(feature = "sync_unsafe_cell", issue = "95439")]
2634#[rustc_const_unstable(feature = "const_convert", issue = "143773")]
2635#[cfg(not(feature = "ferrocene_certified"))]
2636impl<T> const From<T> for SyncUnsafeCell<T> {
2637 /// Creates a new `SyncUnsafeCell<T>` containing the given value.
2638 fn from(t: T) -> SyncUnsafeCell<T> {
2639 SyncUnsafeCell::new(t)
2640 }
2641}
2642
2643#[unstable(feature = "coerce_unsized", issue = "18598")]
2644//#[unstable(feature = "sync_unsafe_cell", issue = "95439")]
2645#[cfg(not(feature = "ferrocene_certified"))]
2646impl<T: CoerceUnsized<U>, U> CoerceUnsized<SyncUnsafeCell<U>> for SyncUnsafeCell<T> {}
2647
2648// Allow types that wrap `SyncUnsafeCell` to also implement `DispatchFromDyn`
2649// and become dyn-compatible method receivers.
2650// Note that currently `SyncUnsafeCell` itself cannot be a method receiver
2651// because it does not implement Deref.
2652// In other words:
2653// `self: SyncUnsafeCell<&Self>` won't work
2654// `self: SyncUnsafeCellWrapper<Self>` becomes possible
2655#[unstable(feature = "dispatch_from_dyn", issue = "none")]
2656//#[unstable(feature = "sync_unsafe_cell", issue = "95439")]
2657#[cfg(not(feature = "ferrocene_certified"))]
2658impl<T: DispatchFromDyn<U>, U> DispatchFromDyn<SyncUnsafeCell<U>> for SyncUnsafeCell<T> {}
2659
2660#[allow(unused)]
2661#[cfg(not(feature = "ferrocene_certified"))]
2662fn assert_coerce_unsized(
2663 a: UnsafeCell<&i32>,
2664 b: SyncUnsafeCell<&i32>,
2665 c: Cell<&i32>,
2666 d: RefCell<&i32>,
2667) {
2668 let _: UnsafeCell<&dyn Send> = a;
2669 let _: SyncUnsafeCell<&dyn Send> = b;
2670 let _: Cell<&dyn Send> = c;
2671 let _: RefCell<&dyn Send> = d;
2672}
2673
2674#[unstable(feature = "pin_coerce_unsized_trait", issue = "123430")]
2675#[cfg(not(feature = "ferrocene_certified"))]
2676unsafe impl<T: ?Sized> PinCoerceUnsized for UnsafeCell<T> {}
2677
2678#[unstable(feature = "pin_coerce_unsized_trait", issue = "123430")]
2679#[cfg(not(feature = "ferrocene_certified"))]
2680unsafe impl<T: ?Sized> PinCoerceUnsized for SyncUnsafeCell<T> {}
2681
2682#[unstable(feature = "pin_coerce_unsized_trait", issue = "123430")]
2683#[cfg(not(feature = "ferrocene_certified"))]
2684unsafe impl<T: ?Sized> PinCoerceUnsized for Cell<T> {}
2685
2686#[unstable(feature = "pin_coerce_unsized_trait", issue = "123430")]
2687#[cfg(not(feature = "ferrocene_certified"))]
2688unsafe impl<T: ?Sized> PinCoerceUnsized for RefCell<T> {}
2689
2690#[unstable(feature = "pin_coerce_unsized_trait", issue = "123430")]
2691#[cfg(not(feature = "ferrocene_certified"))]
2692unsafe impl<'b, T: ?Sized> PinCoerceUnsized for Ref<'b, T> {}
2693
2694#[unstable(feature = "pin_coerce_unsized_trait", issue = "123430")]
2695#[cfg(not(feature = "ferrocene_certified"))]
2696unsafe impl<'b, T: ?Sized> PinCoerceUnsized for RefMut<'b, T> {}