core/cell.rs
1//! Shareable mutable containers.
2//!
3//! Rust memory safety is based on this rule: Given an object `T`, it is only possible to
4//! have one of the following:
5//!
6//! - Several immutable references (`&T`) to the object (also known as **aliasing**).
7//! - One mutable reference (`&mut T`) to the object (also known as **mutability**).
8//!
9//! This is enforced by the Rust compiler. However, there are situations where this rule is not
10//! flexible enough. Sometimes it is required to have multiple references to an object and yet
11//! mutate it.
12//!
13//! Shareable mutable containers exist to permit mutability in a controlled manner, even in the
14//! presence of aliasing. [`Cell<T>`], [`RefCell<T>`], and [`OnceCell<T>`] allow doing this in
15//! a single-threaded way—they do not implement [`Sync`]. (If you need to do aliasing and
16//! mutation among multiple threads, [`Mutex<T>`], [`RwLock<T>`], [`OnceLock<T>`] or [`atomic`]
17//! types are the correct data structures to do so).
18//!
19//! Values of the `Cell<T>`, `RefCell<T>`, and `OnceCell<T>` types may be mutated through shared
20//! references (i.e. the common `&T` type), whereas most Rust types can only be mutated through
21//! unique (`&mut T`) references. We say these cell types provide 'interior mutability'
22//! (mutable via `&T`), in contrast with typical Rust types that exhibit 'inherited mutability'
23//! (mutable only via `&mut T`).
24//!
25//! Cell types come in four flavors: `Cell<T>`, `RefCell<T>`, `OnceCell<T>`, and `LazyCell<T>`.
26//! Each provides a different way of providing safe interior mutability.
27//!
28//! ## `Cell<T>`
29//!
30//! [`Cell<T>`] implements interior mutability by moving values in and out of the cell. That is, a
31//! `&T` to the inner value can never be obtained, and the value itself cannot be directly
32//! obtained without replacing it with something else. This type provides the following
33//! methods:
34//!
35//! - For types that implement [`Copy`], the [`get`](Cell::get) method retrieves the current
36//! interior value by duplicating it.
37//! - For types that implement [`Default`], the [`take`](Cell::take) method replaces the current
38//! interior value with [`Default::default()`] and returns the replaced value.
39//! - All types have:
40//! - [`replace`](Cell::replace): replaces the current interior value and returns the replaced
41//! value.
42//! - [`into_inner`](Cell::into_inner): this method consumes the `Cell<T>` and returns the
43//! interior value.
44//! - [`set`](Cell::set): this method replaces the interior value, dropping the replaced value.
45//!
46//! `Cell<T>` is typically used for more simple types where copying or moving values isn't too
47//! resource intensive (e.g. numbers), and should usually be preferred over other cell types when
48//! possible. For larger and non-copy types, `RefCell` provides some advantages.
49//!
50//! ## `RefCell<T>`
51//!
52//! [`RefCell<T>`] uses Rust's lifetimes to implement "dynamic borrowing", a process whereby one can
53//! claim temporary, exclusive, mutable access to the inner value. Borrows for `RefCell<T>`s are
54//! tracked at _runtime_, unlike Rust's native reference types which are entirely tracked
55//! statically, at compile time.
56//!
57//! An immutable reference to a `RefCell`'s inner value (`&T`) can be obtained with
58//! [`borrow`](`RefCell::borrow`), and a mutable borrow (`&mut T`) can be obtained with
59//! [`borrow_mut`](`RefCell::borrow_mut`). When these functions are called, they first verify that
60//! Rust's borrow rules will be satisfied: any number of immutable borrows are allowed or a
61//! single mutable borrow is allowed, but never both. If a borrow is attempted that would violate
62//! these rules, the thread will panic.
63//!
64//! The corresponding [`Sync`] version of `RefCell<T>` is [`RwLock<T>`].
65//!
66//! ## `OnceCell<T>`
67//!
68//! [`OnceCell<T>`] is somewhat of a hybrid of `Cell` and `RefCell` that works for values that
69//! typically only need to be set once. This means that a reference `&T` can be obtained without
70//! moving or copying the inner value (unlike `Cell`) but also without runtime checks (unlike
71//! `RefCell`). However, its value can also not be updated once set unless you have a mutable
72//! reference to the `OnceCell`.
73//!
74//! `OnceCell` provides the following methods:
75//!
76//! - [`get`](OnceCell::get): obtain a reference to the inner value
77//! - [`set`](OnceCell::set): set the inner value if it is unset (returns a `Result`)
78//! - [`get_or_init`](OnceCell::get_or_init): return the inner value, initializing it if needed
79//! - [`get_mut`](OnceCell::get_mut): provide a mutable reference to the inner value, only available
80//! if you have a mutable reference to the cell itself.
81//!
82//! The corresponding [`Sync`] version of `OnceCell<T>` is [`OnceLock<T>`].
83//!
84//! ## `LazyCell<T, F>`
85//!
86//! A common pattern with OnceCell is, for a given OnceCell, to use the same function on every
87//! call to [`OnceCell::get_or_init`] with that cell. This is what is offered by [`LazyCell`],
88//! which pairs cells of `T` with functions of `F`, and always calls `F` before it yields `&T`.
89//! This happens implicitly by simply attempting to dereference the LazyCell to get its contents,
90//! so its use is much more transparent with a place which has been initialized by a constant.
91//!
92//! More complicated patterns that don't fit this description can be built on `OnceCell<T>` instead.
93//!
94//! `LazyCell` works by providing an implementation of `impl Deref` that calls the function,
95//! so you can just use it by dereference (e.g. `*lazy_cell` or `lazy_cell.deref()`).
96//!
97//! The corresponding [`Sync`] version of `LazyCell<T, F>` is [`LazyLock<T, F>`].
98//!
99//! # When to choose interior mutability
100//!
101//! The more common inherited mutability, where one must have unique access to mutate a value, is
102//! one of the key language elements that enables Rust to reason strongly about pointer aliasing,
103//! statically preventing crash bugs. Because of that, inherited mutability is preferred, and
104//! interior mutability is something of a last resort. Since cell types enable mutation where it
105//! would otherwise be disallowed though, there are occasions when interior mutability might be
106//! appropriate, or even *must* be used, e.g.
107//!
108//! * Introducing mutability 'inside' of something immutable
109//! * Implementation details of logically-immutable methods.
110//! * Mutating implementations of [`Clone`].
111//!
112//! ## Introducing mutability 'inside' of something immutable
113//!
114//! Many shared smart pointer types, including [`Rc<T>`] and [`Arc<T>`], provide containers that can
115//! be cloned and shared between multiple parties. Because the contained values may be
116//! multiply-aliased, they can only be borrowed with `&`, not `&mut`. Without cells it would be
117//! impossible to mutate data inside of these smart pointers at all.
118//!
119//! It's very common then to put a `RefCell<T>` inside shared pointer types to reintroduce
120//! mutability:
121//!
122//! ```
123//! use std::cell::{RefCell, RefMut};
124//! use std::collections::HashMap;
125//! use std::rc::Rc;
126//!
127//! fn main() {
128//! let shared_map: Rc<RefCell<_>> = Rc::new(RefCell::new(HashMap::new()));
129//! // Create a new block to limit the scope of the dynamic borrow
130//! {
131//! let mut map: RefMut<'_, _> = shared_map.borrow_mut();
132//! map.insert("africa", 92388);
133//! map.insert("kyoto", 11837);
134//! map.insert("piccadilly", 11826);
135//! map.insert("marbles", 38);
136//! }
137//!
138//! // Note that if we had not let the previous borrow of the cache fall out
139//! // of scope then the subsequent borrow would cause a dynamic thread panic.
140//! // This is the major hazard of using `RefCell`.
141//! let total: i32 = shared_map.borrow().values().sum();
142//! println!("{total}");
143//! }
144//! ```
145//!
146//! Note that this example uses `Rc<T>` and not `Arc<T>`. `RefCell<T>`s are for single-threaded
147//! scenarios. Consider using [`RwLock<T>`] or [`Mutex<T>`] if you need shared mutability in a
148//! multi-threaded situation.
149//!
150//! ## Implementation details of logically-immutable methods
151//!
152//! Occasionally it may be desirable not to expose in an API that there is mutation happening
153//! "under the hood". This may be because logically the operation is immutable, but e.g., caching
154//! forces the implementation to perform mutation; or because you must employ mutation to implement
155//! a trait method that was originally defined to take `&self`.
156//!
157//! ```
158//! # #![allow(dead_code)]
159//! use std::cell::OnceCell;
160//!
161//! struct Graph {
162//! edges: Vec<(i32, i32)>,
163//! span_tree_cache: OnceCell<Vec<(i32, i32)>>
164//! }
165//!
166//! impl Graph {
167//! fn minimum_spanning_tree(&self) -> Vec<(i32, i32)> {
168//! self.span_tree_cache
169//! .get_or_init(|| self.calc_span_tree())
170//! .clone()
171//! }
172//!
173//! fn calc_span_tree(&self) -> Vec<(i32, i32)> {
174//! // Expensive computation goes here
175//! vec![]
176//! }
177//! }
178//! ```
179//!
180//! ## Mutating implementations of `Clone`
181//!
182//! This is simply a special - but common - case of the previous: hiding mutability for operations
183//! that appear to be immutable. The [`clone`](Clone::clone) method is expected to not change the
184//! source value, and is declared to take `&self`, not `&mut self`. Therefore, any mutation that
185//! happens in the `clone` method must use cell types. For example, [`Rc<T>`] maintains its
186//! reference counts within a `Cell<T>`.
187//!
188//! ```
189//! use std::cell::Cell;
190//! use std::ptr::NonNull;
191//! use std::process::abort;
192//! use std::marker::PhantomData;
193//!
194//! struct Rc<T: ?Sized> {
195//! ptr: NonNull<RcInner<T>>,
196//! phantom: PhantomData<RcInner<T>>,
197//! }
198//!
199//! struct RcInner<T: ?Sized> {
200//! strong: Cell<usize>,
201//! refcount: Cell<usize>,
202//! value: T,
203//! }
204//!
205//! impl<T: ?Sized> Clone for Rc<T> {
206//! fn clone(&self) -> Rc<T> {
207//! self.inc_strong();
208//! Rc {
209//! ptr: self.ptr,
210//! phantom: PhantomData,
211//! }
212//! }
213//! }
214//!
215//! trait RcInnerPtr<T: ?Sized> {
216//!
217//! fn inner(&self) -> &RcInner<T>;
218//!
219//! fn strong(&self) -> usize {
220//! self.inner().strong.get()
221//! }
222//!
223//! fn inc_strong(&self) {
224//! self.inner()
225//! .strong
226//! .set(self.strong()
227//! .checked_add(1)
228//! .unwrap_or_else(|| abort() ));
229//! }
230//! }
231//!
232//! impl<T: ?Sized> RcInnerPtr<T> for Rc<T> {
233//! fn inner(&self) -> &RcInner<T> {
234//! unsafe {
235//! self.ptr.as_ref()
236//! }
237//! }
238//! }
239//! ```
240//!
241//! [`Arc<T>`]: ../../std/sync/struct.Arc.html
242//! [`Rc<T>`]: ../../std/rc/struct.Rc.html
243//! [`RwLock<T>`]: ../../std/sync/struct.RwLock.html
244//! [`Mutex<T>`]: ../../std/sync/struct.Mutex.html
245//! [`OnceLock<T>`]: ../../std/sync/struct.OnceLock.html
246//! [`LazyLock<T, F>`]: ../../std/sync/struct.LazyLock.html
247//! [`Sync`]: ../../std/marker/trait.Sync.html
248//! [`atomic`]: crate::sync::atomic
249
250#![stable(feature = "rust1", since = "1.0.0")]
251
252#[cfg(not(feature = "ferrocene_subset"))]
253use crate::cmp::Ordering;
254#[cfg(not(feature = "ferrocene_subset"))]
255use crate::fmt::{self, Debug, Display};
256#[cfg(not(feature = "ferrocene_subset"))]
257use crate::marker::{Destruct, PhantomData, Unsize};
258#[cfg(not(feature = "ferrocene_subset"))]
259use crate::mem::{self, ManuallyDrop};
260#[cfg(not(feature = "ferrocene_subset"))]
261use crate::ops::{self, CoerceUnsized, Deref, DerefMut, DerefPure, DispatchFromDyn};
262use crate::panic::const_panic;
263#[cfg(not(feature = "ferrocene_subset"))]
264use crate::pin::PinCoerceUnsized;
265#[cfg(not(feature = "ferrocene_subset"))]
266use crate::ptr::{self, NonNull};
267#[cfg(not(feature = "ferrocene_subset"))]
268use crate::range;
269
270// Ferrocene addition: imports for certified subset
271#[cfg(feature = "ferrocene_subset")]
272#[rustfmt::skip]
273use crate::{
274 marker::{Destruct, PhantomData},
275 mem,
276 ops::{Deref, DerefMut},
277 ptr::NonNull,
278};
279
280#[cfg(not(feature = "ferrocene_subset"))]
281mod lazy;
282#[cfg(not(feature = "ferrocene_subset"))]
283mod once;
284
285#[stable(feature = "lazy_cell", since = "1.80.0")]
286#[cfg(not(feature = "ferrocene_subset"))]
287pub use lazy::LazyCell;
288#[stable(feature = "once_cell", since = "1.70.0")]
289#[cfg(not(feature = "ferrocene_subset"))]
290pub use once::OnceCell;
291
292/// A mutable memory location.
293///
294/// # Memory layout
295///
296/// `Cell<T>` has the same [memory layout and caveats as
297/// `UnsafeCell<T>`](UnsafeCell#memory-layout). In particular, this means that
298/// `Cell<T>` has the same in-memory representation as its inner type `T`.
299///
300/// # Examples
301///
302/// In this example, you can see that `Cell<T>` enables mutation inside an
303/// immutable struct. In other words, it enables "interior mutability".
304///
305/// ```
306/// use std::cell::Cell;
307///
308/// struct SomeStruct {
309/// regular_field: u8,
310/// special_field: Cell<u8>,
311/// }
312///
313/// let my_struct = SomeStruct {
314/// regular_field: 0,
315/// special_field: Cell::new(1),
316/// };
317///
318/// let new_value = 100;
319///
320/// // ERROR: `my_struct` is immutable
321/// // my_struct.regular_field = new_value;
322///
323/// // WORKS: although `my_struct` is immutable, `special_field` is a `Cell`,
324/// // which can always be mutated
325/// my_struct.special_field.set(new_value);
326/// assert_eq!(my_struct.special_field.get(), new_value);
327/// ```
328///
329/// See the [module-level documentation](self) for more.
330#[rustc_diagnostic_item = "Cell"]
331#[stable(feature = "rust1", since = "1.0.0")]
332#[repr(transparent)]
333#[rustc_pub_transparent]
334pub struct Cell<T: ?Sized> {
335 value: UnsafeCell<T>,
336}
337
338#[stable(feature = "rust1", since = "1.0.0")]
339unsafe impl<T: ?Sized> Send for Cell<T> where T: Send {}
340
341// Note that this negative impl isn't strictly necessary for correctness,
342// as `Cell` wraps `UnsafeCell`, which is itself `!Sync`.
343// However, given how important `Cell`'s `!Sync`-ness is,
344// having an explicit negative impl is nice for documentation purposes
345// and results in nicer error messages.
346#[stable(feature = "rust1", since = "1.0.0")]
347impl<T: ?Sized> !Sync for Cell<T> {}
348
349#[stable(feature = "rust1", since = "1.0.0")]
350#[cfg(not(feature = "ferrocene_subset"))]
351impl<T: Copy> Clone for Cell<T> {
352 #[inline]
353 fn clone(&self) -> Cell<T> {
354 Cell::new(self.get())
355 }
356}
357
358#[stable(feature = "rust1", since = "1.0.0")]
359#[rustc_const_unstable(feature = "const_default", issue = "143894")]
360#[cfg(not(feature = "ferrocene_subset"))]
361impl<T: [const] Default> const Default for Cell<T> {
362 /// Creates a `Cell<T>`, with the `Default` value for T.
363 #[inline]
364 fn default() -> Cell<T> {
365 Cell::new(Default::default())
366 }
367}
368
369#[stable(feature = "rust1", since = "1.0.0")]
370#[cfg(not(feature = "ferrocene_subset"))]
371impl<T: PartialEq + Copy> PartialEq for Cell<T> {
372 #[inline]
373 fn eq(&self, other: &Cell<T>) -> bool {
374 self.get() == other.get()
375 }
376}
377
378#[stable(feature = "cell_eq", since = "1.2.0")]
379#[cfg(not(feature = "ferrocene_subset"))]
380impl<T: Eq + Copy> Eq for Cell<T> {}
381
382#[stable(feature = "cell_ord", since = "1.10.0")]
383#[cfg(not(feature = "ferrocene_subset"))]
384impl<T: PartialOrd + Copy> PartialOrd for Cell<T> {
385 #[inline]
386 fn partial_cmp(&self, other: &Cell<T>) -> Option<Ordering> {
387 self.get().partial_cmp(&other.get())
388 }
389
390 #[inline]
391 fn lt(&self, other: &Cell<T>) -> bool {
392 self.get() < other.get()
393 }
394
395 #[inline]
396 fn le(&self, other: &Cell<T>) -> bool {
397 self.get() <= other.get()
398 }
399
400 #[inline]
401 fn gt(&self, other: &Cell<T>) -> bool {
402 self.get() > other.get()
403 }
404
405 #[inline]
406 fn ge(&self, other: &Cell<T>) -> bool {
407 self.get() >= other.get()
408 }
409}
410
411#[stable(feature = "cell_ord", since = "1.10.0")]
412#[cfg(not(feature = "ferrocene_subset"))]
413impl<T: Ord + Copy> Ord for Cell<T> {
414 #[inline]
415 fn cmp(&self, other: &Cell<T>) -> Ordering {
416 self.get().cmp(&other.get())
417 }
418}
419
420#[stable(feature = "cell_from", since = "1.12.0")]
421#[rustc_const_unstable(feature = "const_convert", issue = "143773")]
422#[cfg(not(feature = "ferrocene_subset"))]
423impl<T> const From<T> for Cell<T> {
424 /// Creates a new `Cell<T>` containing the given value.
425 fn from(t: T) -> Cell<T> {
426 Cell::new(t)
427 }
428}
429
430impl<T> Cell<T> {
431 /// Creates a new `Cell` containing the given value.
432 ///
433 /// # Examples
434 ///
435 /// ```
436 /// use std::cell::Cell;
437 ///
438 /// let c = Cell::new(5);
439 /// ```
440 #[stable(feature = "rust1", since = "1.0.0")]
441 #[rustc_const_stable(feature = "const_cell_new", since = "1.24.0")]
442 #[inline]
443 pub const fn new(value: T) -> Cell<T> {
444 Cell { value: UnsafeCell::new(value) }
445 }
446
447 /// Sets the contained value.
448 ///
449 /// # Examples
450 ///
451 /// ```
452 /// use std::cell::Cell;
453 ///
454 /// let c = Cell::new(5);
455 ///
456 /// c.set(10);
457 /// ```
458 #[inline]
459 #[stable(feature = "rust1", since = "1.0.0")]
460 #[rustc_const_unstable(feature = "const_cell_traits", issue = "147787")]
461 #[rustc_should_not_be_called_on_const_items]
462 pub const fn set(&self, val: T)
463 where
464 T: [const] Destruct,
465 {
466 self.replace(val);
467 }
468
469 /// Swaps the values of two `Cell`s.
470 ///
471 /// The difference with `std::mem::swap` is that this function doesn't
472 /// require a `&mut` reference.
473 ///
474 /// # Panics
475 ///
476 /// This function will panic if `self` and `other` are different `Cell`s that partially overlap.
477 /// (Using just standard library methods, it is impossible to create such partially overlapping `Cell`s.
478 /// However, unsafe code is allowed to e.g. create two `&Cell<[i32; 2]>` that partially overlap.)
479 ///
480 /// # Examples
481 ///
482 /// ```
483 /// use std::cell::Cell;
484 ///
485 /// let c1 = Cell::new(5i32);
486 /// let c2 = Cell::new(10i32);
487 /// c1.swap(&c2);
488 /// assert_eq!(10, c1.get());
489 /// assert_eq!(5, c2.get());
490 /// ```
491 #[inline]
492 #[stable(feature = "move_cell", since = "1.17.0")]
493 #[cfg(not(feature = "ferrocene_subset"))]
494 #[rustc_should_not_be_called_on_const_items]
495 pub fn swap(&self, other: &Self) {
496 // This function documents that it *will* panic, and intrinsics::is_nonoverlapping doesn't
497 // do the check in const, so trying to use it here would be inviting unnecessary fragility.
498 fn is_nonoverlapping<T>(src: *const T, dst: *const T) -> bool {
499 let src_usize = src.addr();
500 let dst_usize = dst.addr();
501 let diff = src_usize.abs_diff(dst_usize);
502 diff >= size_of::<T>()
503 }
504
505 if ptr::eq(self, other) {
506 // Swapping wouldn't change anything.
507 return;
508 }
509 if !is_nonoverlapping(self, other) {
510 // See <https://github.com/rust-lang/rust/issues/80778> for why we need to stop here.
511 panic!("`Cell::swap` on overlapping non-identical `Cell`s");
512 }
513 // SAFETY: This can be risky if called from separate threads, but `Cell`
514 // is `!Sync` so this won't happen. This also won't invalidate any
515 // pointers since `Cell` makes sure nothing else will be pointing into
516 // either of these `Cell`s. We also excluded shenanigans like partially overlapping `Cell`s,
517 // so `swap` will just properly copy two full values of type `T` back and forth.
518 unsafe {
519 mem::swap(&mut *self.value.get(), &mut *other.value.get());
520 }
521 }
522
523 /// Replaces the contained value with `val`, and returns the old contained value.
524 ///
525 /// # Examples
526 ///
527 /// ```
528 /// use std::cell::Cell;
529 ///
530 /// let cell = Cell::new(5);
531 /// assert_eq!(cell.get(), 5);
532 /// assert_eq!(cell.replace(10), 5);
533 /// assert_eq!(cell.get(), 10);
534 /// ```
535 #[inline]
536 #[stable(feature = "move_cell", since = "1.17.0")]
537 #[rustc_const_stable(feature = "const_cell", since = "1.88.0")]
538 #[rustc_confusables("swap")]
539 #[rustc_should_not_be_called_on_const_items]
540 pub const fn replace(&self, val: T) -> T {
541 // SAFETY: This can cause data races if called from a separate thread,
542 // but `Cell` is `!Sync` so this won't happen.
543 mem::replace(unsafe { &mut *self.value.get() }, val)
544 }
545
546 /// Unwraps the value, consuming the cell.
547 ///
548 /// # Examples
549 ///
550 /// ```
551 /// use std::cell::Cell;
552 ///
553 /// let c = Cell::new(5);
554 /// let five = c.into_inner();
555 ///
556 /// assert_eq!(five, 5);
557 /// ```
558 #[stable(feature = "move_cell", since = "1.17.0")]
559 #[rustc_const_stable(feature = "const_cell_into_inner", since = "1.83.0")]
560 #[rustc_allow_const_fn_unstable(const_precise_live_drops)]
561 #[cfg(not(feature = "ferrocene_subset"))]
562 pub const fn into_inner(self) -> T {
563 self.value.into_inner()
564 }
565}
566
567impl<T: Copy> Cell<T> {
568 /// Returns a copy of the contained value.
569 ///
570 /// # Examples
571 ///
572 /// ```
573 /// use std::cell::Cell;
574 ///
575 /// let c = Cell::new(5);
576 ///
577 /// let five = c.get();
578 /// ```
579 #[inline]
580 #[stable(feature = "rust1", since = "1.0.0")]
581 #[rustc_const_stable(feature = "const_cell", since = "1.88.0")]
582 #[rustc_should_not_be_called_on_const_items]
583 pub const fn get(&self) -> T {
584 // SAFETY: This can cause data races if called from a separate thread,
585 // but `Cell` is `!Sync` so this won't happen.
586 unsafe { *self.value.get() }
587 }
588
589 /// Updates the contained value using a function.
590 ///
591 /// # Examples
592 ///
593 /// ```
594 /// use std::cell::Cell;
595 ///
596 /// let c = Cell::new(5);
597 /// c.update(|x| x + 1);
598 /// assert_eq!(c.get(), 6);
599 /// ```
600 #[inline]
601 #[stable(feature = "cell_update", since = "1.88.0")]
602 #[rustc_const_unstable(feature = "const_cell_traits", issue = "147787")]
603 #[cfg(not(feature = "ferrocene_subset"))]
604 #[rustc_should_not_be_called_on_const_items]
605 pub const fn update(&self, f: impl [const] FnOnce(T) -> T)
606 where
607 // FIXME(const-hack): `Copy` should imply `const Destruct`
608 T: [const] Destruct,
609 {
610 let old = self.get();
611 self.set(f(old));
612 }
613}
614
615#[cfg(not(feature = "ferrocene_subset"))]
616impl<T: ?Sized> Cell<T> {
617 /// Returns a raw pointer to the underlying data in this cell.
618 ///
619 /// # Examples
620 ///
621 /// ```
622 /// use std::cell::Cell;
623 ///
624 /// let c = Cell::new(5);
625 ///
626 /// let ptr = c.as_ptr();
627 /// ```
628 #[inline]
629 #[stable(feature = "cell_as_ptr", since = "1.12.0")]
630 #[rustc_const_stable(feature = "const_cell_as_ptr", since = "1.32.0")]
631 #[rustc_as_ptr]
632 #[rustc_never_returns_null_ptr]
633 pub const fn as_ptr(&self) -> *mut T {
634 self.value.get()
635 }
636
637 /// Returns a mutable reference to the underlying data.
638 ///
639 /// This call borrows `Cell` mutably (at compile-time) which guarantees
640 /// that we possess the only reference.
641 ///
642 /// However be cautious: this method expects `self` to be mutable, which is
643 /// generally not the case when using a `Cell`. If you require interior
644 /// mutability by reference, consider using `RefCell` which provides
645 /// run-time checked mutable borrows through its [`borrow_mut`] method.
646 ///
647 /// [`borrow_mut`]: RefCell::borrow_mut()
648 ///
649 /// # Examples
650 ///
651 /// ```
652 /// use std::cell::Cell;
653 ///
654 /// let mut c = Cell::new(5);
655 /// *c.get_mut() += 1;
656 ///
657 /// assert_eq!(c.get(), 6);
658 /// ```
659 #[inline]
660 #[stable(feature = "cell_get_mut", since = "1.11.0")]
661 #[rustc_const_stable(feature = "const_cell", since = "1.88.0")]
662 pub const fn get_mut(&mut self) -> &mut T {
663 self.value.get_mut()
664 }
665
666 /// Returns a `&Cell<T>` from a `&mut T`
667 ///
668 /// # Examples
669 ///
670 /// ```
671 /// use std::cell::Cell;
672 ///
673 /// let slice: &mut [i32] = &mut [1, 2, 3];
674 /// let cell_slice: &Cell<[i32]> = Cell::from_mut(slice);
675 /// let slice_cell: &[Cell<i32>] = cell_slice.as_slice_of_cells();
676 ///
677 /// assert_eq!(slice_cell.len(), 3);
678 /// ```
679 #[inline]
680 #[stable(feature = "as_cell", since = "1.37.0")]
681 #[rustc_const_stable(feature = "const_cell", since = "1.88.0")]
682 pub const fn from_mut(t: &mut T) -> &Cell<T> {
683 // SAFETY: `&mut` ensures unique access.
684 unsafe { &*(t as *mut T as *const Cell<T>) }
685 }
686}
687
688#[cfg(not(feature = "ferrocene_subset"))]
689impl<T: Default> Cell<T> {
690 /// Takes the value of the cell, leaving `Default::default()` in its place.
691 ///
692 /// # Examples
693 ///
694 /// ```
695 /// use std::cell::Cell;
696 ///
697 /// let c = Cell::new(5);
698 /// let five = c.take();
699 ///
700 /// assert_eq!(five, 5);
701 /// assert_eq!(c.into_inner(), 0);
702 /// ```
703 #[stable(feature = "move_cell", since = "1.17.0")]
704 #[rustc_const_unstable(feature = "const_cell_traits", issue = "147787")]
705 pub const fn take(&self) -> T
706 where
707 T: [const] Default,
708 {
709 self.replace(Default::default())
710 }
711}
712
713#[unstable(feature = "coerce_unsized", issue = "18598")]
714#[cfg(not(feature = "ferrocene_subset"))]
715impl<T: CoerceUnsized<U>, U> CoerceUnsized<Cell<U>> for Cell<T> {}
716
717// Allow types that wrap `Cell` to also implement `DispatchFromDyn`
718// and become dyn-compatible method receivers.
719// Note that currently `Cell` itself cannot be a method receiver
720// because it does not implement Deref.
721// In other words:
722// `self: Cell<&Self>` won't work
723// `self: CellWrapper<Self>` becomes possible
724#[unstable(feature = "dispatch_from_dyn", issue = "none")]
725#[cfg(not(feature = "ferrocene_subset"))]
726impl<T: DispatchFromDyn<U>, U> DispatchFromDyn<Cell<U>> for Cell<T> {}
727
728#[cfg(not(feature = "ferrocene_subset"))]
729impl<T> Cell<[T]> {
730 /// Returns a `&[Cell<T>]` from a `&Cell<[T]>`
731 ///
732 /// # Examples
733 ///
734 /// ```
735 /// use std::cell::Cell;
736 ///
737 /// let slice: &mut [i32] = &mut [1, 2, 3];
738 /// let cell_slice: &Cell<[i32]> = Cell::from_mut(slice);
739 /// let slice_cell: &[Cell<i32>] = cell_slice.as_slice_of_cells();
740 ///
741 /// assert_eq!(slice_cell.len(), 3);
742 /// ```
743 #[stable(feature = "as_cell", since = "1.37.0")]
744 #[rustc_const_stable(feature = "const_cell", since = "1.88.0")]
745 pub const fn as_slice_of_cells(&self) -> &[Cell<T>] {
746 // SAFETY: `Cell<T>` has the same memory layout as `T`.
747 unsafe { &*(self as *const Cell<[T]> as *const [Cell<T>]) }
748 }
749}
750
751#[cfg(not(feature = "ferrocene_subset"))]
752impl<T, const N: usize> Cell<[T; N]> {
753 /// Returns a `&[Cell<T>; N]` from a `&Cell<[T; N]>`
754 ///
755 /// # Examples
756 ///
757 /// ```
758 /// use std::cell::Cell;
759 ///
760 /// let mut array: [i32; 3] = [1, 2, 3];
761 /// let cell_array: &Cell<[i32; 3]> = Cell::from_mut(&mut array);
762 /// let array_cell: &[Cell<i32>; 3] = cell_array.as_array_of_cells();
763 /// ```
764 #[stable(feature = "as_array_of_cells", since = "1.91.0")]
765 #[rustc_const_stable(feature = "as_array_of_cells", since = "1.91.0")]
766 pub const fn as_array_of_cells(&self) -> &[Cell<T>; N] {
767 // SAFETY: `Cell<T>` has the same memory layout as `T`.
768 unsafe { &*(self as *const Cell<[T; N]> as *const [Cell<T>; N]) }
769 }
770}
771
772/// Types for which cloning `Cell<Self>` is sound.
773///
774/// # Safety
775///
776/// Implementing this trait for a type is sound if and only if the following code is sound for T =
777/// that type.
778///
779/// ```
780/// #![feature(cell_get_cloned)]
781/// # use std::cell::{CloneFromCell, Cell};
782/// fn clone_from_cell<T: CloneFromCell>(cell: &Cell<T>) -> T {
783/// unsafe { T::clone(&*cell.as_ptr()) }
784/// }
785/// ```
786///
787/// Importantly, you can't just implement `CloneFromCell` for any arbitrary `Copy` type, e.g. the
788/// following is unsound:
789///
790/// ```rust
791/// #![feature(cell_get_cloned)]
792/// # use std::cell::Cell;
793///
794/// #[derive(Copy, Debug)]
795/// pub struct Bad<'a>(Option<&'a Cell<Bad<'a>>>, u8);
796///
797/// impl Clone for Bad<'_> {
798/// fn clone(&self) -> Self {
799/// let a: &u8 = &self.1;
800/// // when self.0 points to self, we write to self.1 while we have a live `&u8` pointing to
801/// // it -- this is UB
802/// self.0.unwrap().set(Self(None, 1));
803/// dbg!((a, self));
804/// Self(None, 0)
805/// }
806/// }
807///
808/// // this is not sound
809/// // unsafe impl CloneFromCell for Bad<'_> {}
810/// ```
811#[unstable(feature = "cell_get_cloned", issue = "145329")]
812// Allow potential overlapping implementations in user code
813#[marker]
814#[cfg(not(feature = "ferrocene_subset"))]
815pub unsafe trait CloneFromCell: Clone {}
816
817// `CloneFromCell` can be implemented for types that don't have indirection and which don't access
818// `Cell`s in their `Clone` implementation. A commonly-used subset is covered here.
819#[unstable(feature = "cell_get_cloned", issue = "145329")]
820#[cfg(not(feature = "ferrocene_subset"))]
821unsafe impl<T: CloneFromCell, const N: usize> CloneFromCell for [T; N] {}
822#[unstable(feature = "cell_get_cloned", issue = "145329")]
823#[cfg(not(feature = "ferrocene_subset"))]
824unsafe impl<T: CloneFromCell> CloneFromCell for Option<T> {}
825#[unstable(feature = "cell_get_cloned", issue = "145329")]
826#[cfg(not(feature = "ferrocene_subset"))]
827unsafe impl<T: CloneFromCell, E: CloneFromCell> CloneFromCell for Result<T, E> {}
828#[unstable(feature = "cell_get_cloned", issue = "145329")]
829#[cfg(not(feature = "ferrocene_subset"))]
830unsafe impl<T: ?Sized> CloneFromCell for PhantomData<T> {}
831#[unstable(feature = "cell_get_cloned", issue = "145329")]
832#[cfg(not(feature = "ferrocene_subset"))]
833unsafe impl<T: CloneFromCell> CloneFromCell for ManuallyDrop<T> {}
834#[unstable(feature = "cell_get_cloned", issue = "145329")]
835#[cfg(not(feature = "ferrocene_subset"))]
836unsafe impl<T: CloneFromCell> CloneFromCell for ops::Range<T> {}
837#[unstable(feature = "cell_get_cloned", issue = "145329")]
838#[cfg(not(feature = "ferrocene_subset"))]
839unsafe impl<T: CloneFromCell> CloneFromCell for range::Range<T> {}
840
841#[unstable(feature = "cell_get_cloned", issue = "145329")]
842#[cfg(not(feature = "ferrocene_subset"))]
843impl<T: CloneFromCell> Cell<T> {
844 /// Get a clone of the `Cell` that contains a copy of the original value.
845 ///
846 /// This allows a cheaply `Clone`-able type like an `Rc` to be stored in a `Cell`, exposing the
847 /// cheaper `clone()` method.
848 ///
849 /// # Examples
850 ///
851 /// ```
852 /// #![feature(cell_get_cloned)]
853 ///
854 /// use core::cell::Cell;
855 /// use std::rc::Rc;
856 ///
857 /// let rc = Rc::new(1usize);
858 /// let c1 = Cell::new(rc);
859 /// let c2 = c1.get_cloned();
860 /// assert_eq!(*c2.into_inner(), 1);
861 /// ```
862 pub fn get_cloned(&self) -> Self {
863 // SAFETY: T is CloneFromCell, which guarantees that this is sound.
864 Cell::new(T::clone(unsafe { &*self.as_ptr() }))
865 }
866}
867
868/// A mutable memory location with dynamically checked borrow rules
869///
870/// See the [module-level documentation](self) for more.
871#[rustc_diagnostic_item = "RefCell"]
872#[stable(feature = "rust1", since = "1.0.0")]
873pub struct RefCell<T: ?Sized> {
874 borrow: Cell<BorrowCounter>,
875 // Stores the location of the earliest currently active borrow.
876 // This gets updated whenever we go from having zero borrows
877 // to having a single borrow. When a borrow occurs, this gets included
878 // in the generated `BorrowError`/`BorrowMutError`
879 #[cfg(feature = "debug_refcell")]
880 borrowed_at: Cell<Option<&'static crate::panic::Location<'static>>>,
881 value: UnsafeCell<T>,
882}
883
884/// An error returned by [`RefCell::try_borrow`].
885#[stable(feature = "try_borrow", since = "1.13.0")]
886#[non_exhaustive]
887#[cfg_attr(not(feature = "ferrocene_subset"), derive(Debug))]
888pub struct BorrowError {
889 #[cfg(feature = "debug_refcell")]
890 location: &'static crate::panic::Location<'static>,
891}
892
893#[stable(feature = "try_borrow", since = "1.13.0")]
894#[cfg(not(feature = "ferrocene_subset"))]
895impl Display for BorrowError {
896 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
897 #[cfg(feature = "debug_refcell")]
898 let res = write!(
899 f,
900 "RefCell already mutably borrowed; a previous borrow was at {}",
901 self.location
902 );
903
904 #[cfg(not(feature = "debug_refcell"))]
905 let res = Display::fmt("RefCell already mutably borrowed", f);
906
907 res
908 }
909}
910
911/// An error returned by [`RefCell::try_borrow_mut`].
912#[stable(feature = "try_borrow", since = "1.13.0")]
913#[non_exhaustive]
914#[cfg_attr(not(feature = "ferrocene_subset"), derive(Debug))]
915pub struct BorrowMutError {
916 #[cfg(feature = "debug_refcell")]
917 location: &'static crate::panic::Location<'static>,
918}
919
920#[stable(feature = "try_borrow", since = "1.13.0")]
921#[cfg(not(feature = "ferrocene_subset"))]
922impl Display for BorrowMutError {
923 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
924 #[cfg(feature = "debug_refcell")]
925 let res = write!(f, "RefCell already borrowed; a previous borrow was at {}", self.location);
926
927 #[cfg(not(feature = "debug_refcell"))]
928 let res = Display::fmt("RefCell already borrowed", f);
929
930 res
931 }
932}
933
934// This ensures the panicking code is outlined from `borrow_mut` for `RefCell`.
935#[cfg_attr(not(panic = "immediate-abort"), inline(never))]
936#[track_caller]
937#[cold]
938const fn panic_already_borrowed(err: BorrowMutError) -> ! {
939 const_panic!(
940 "RefCell already borrowed",
941 "{err}",
942 err: BorrowMutError = err,
943 )
944}
945
946// This ensures the panicking code is outlined from `borrow` for `RefCell`.
947#[cfg_attr(not(panic = "immediate-abort"), inline(never))]
948#[track_caller]
949#[cold]
950const fn panic_already_mutably_borrowed(err: BorrowError) -> ! {
951 const_panic!(
952 "RefCell already mutably borrowed",
953 "{err}",
954 err: BorrowError = err,
955 )
956}
957
958// Positive values represent the number of `Ref` active. Negative values
959// represent the number of `RefMut` active. Multiple `RefMut`s can only be
960// active at a time if they refer to distinct, nonoverlapping components of a
961// `RefCell` (e.g., different ranges of a slice).
962//
963// `Ref` and `RefMut` are both two words in size, and so there will likely never
964// be enough `Ref`s or `RefMut`s in existence to overflow half of the `usize`
965// range. Thus, a `BorrowCounter` will probably never overflow or underflow.
966// However, this is not a guarantee, as a pathological program could repeatedly
967// create and then mem::forget `Ref`s or `RefMut`s. Thus, all code must
968// explicitly check for overflow and underflow in order to avoid unsafety, or at
969// least behave correctly in the event that overflow or underflow happens (e.g.,
970// see BorrowRef::new).
971type BorrowCounter = isize;
972const UNUSED: BorrowCounter = 0;
973
974#[inline(always)]
975const fn is_writing(x: BorrowCounter) -> bool {
976 x < UNUSED
977}
978
979#[inline(always)]
980const fn is_reading(x: BorrowCounter) -> bool {
981 x > UNUSED
982}
983
984impl<T> RefCell<T> {
985 /// Creates a new `RefCell` containing `value`.
986 ///
987 /// # Examples
988 ///
989 /// ```
990 /// use std::cell::RefCell;
991 ///
992 /// let c = RefCell::new(5);
993 /// ```
994 #[stable(feature = "rust1", since = "1.0.0")]
995 #[rustc_const_stable(feature = "const_refcell_new", since = "1.24.0")]
996 #[inline]
997 pub const fn new(value: T) -> RefCell<T> {
998 RefCell {
999 value: UnsafeCell::new(value),
1000 borrow: Cell::new(UNUSED),
1001 #[cfg(feature = "debug_refcell")]
1002 borrowed_at: Cell::new(None),
1003 }
1004 }
1005
1006 /// Consumes the `RefCell`, returning the wrapped value.
1007 ///
1008 /// # Examples
1009 ///
1010 /// ```
1011 /// use std::cell::RefCell;
1012 ///
1013 /// let c = RefCell::new(5);
1014 ///
1015 /// let five = c.into_inner();
1016 /// ```
1017 #[stable(feature = "rust1", since = "1.0.0")]
1018 #[rustc_const_stable(feature = "const_cell_into_inner", since = "1.83.0")]
1019 #[rustc_allow_const_fn_unstable(const_precise_live_drops)]
1020 #[inline]
1021 #[cfg(not(feature = "ferrocene_subset"))]
1022 pub const fn into_inner(self) -> T {
1023 // Since this function takes `self` (the `RefCell`) by value, the
1024 // compiler statically verifies that it is not currently borrowed.
1025 self.value.into_inner()
1026 }
1027
1028 /// Replaces the wrapped value with a new one, returning the old value,
1029 /// without deinitializing either one.
1030 ///
1031 /// This function corresponds to [`std::mem::replace`](../mem/fn.replace.html).
1032 ///
1033 /// # Panics
1034 ///
1035 /// Panics if the value is currently borrowed.
1036 ///
1037 /// # Examples
1038 ///
1039 /// ```
1040 /// use std::cell::RefCell;
1041 /// let cell = RefCell::new(5);
1042 /// let old_value = cell.replace(6);
1043 /// assert_eq!(old_value, 5);
1044 /// assert_eq!(cell, RefCell::new(6));
1045 /// ```
1046 #[inline]
1047 #[stable(feature = "refcell_replace", since = "1.24.0")]
1048 #[track_caller]
1049 #[rustc_confusables("swap")]
1050 #[rustc_const_unstable(feature = "const_ref_cell", issue = "137844")]
1051 #[rustc_should_not_be_called_on_const_items]
1052 pub const fn replace(&self, t: T) -> T {
1053 mem::replace(&mut self.borrow_mut(), t)
1054 }
1055
1056 /// Replaces the wrapped value with a new one computed from `f`, returning
1057 /// the old value, without deinitializing either one.
1058 ///
1059 /// # Panics
1060 ///
1061 /// Panics if the value is currently borrowed.
1062 ///
1063 /// # Examples
1064 ///
1065 /// ```
1066 /// use std::cell::RefCell;
1067 /// let cell = RefCell::new(5);
1068 /// let old_value = cell.replace_with(|&mut old| old + 1);
1069 /// assert_eq!(old_value, 5);
1070 /// assert_eq!(cell, RefCell::new(6));
1071 /// ```
1072 #[inline]
1073 #[stable(feature = "refcell_replace_swap", since = "1.35.0")]
1074 #[track_caller]
1075 #[rustc_should_not_be_called_on_const_items]
1076 pub fn replace_with<F: FnOnce(&mut T) -> T>(&self, f: F) -> T {
1077 let mut_borrow = &mut *self.borrow_mut();
1078 let replacement = f(mut_borrow);
1079 mem::replace(mut_borrow, replacement)
1080 }
1081
1082 /// Swaps the wrapped value of `self` with the wrapped value of `other`,
1083 /// without deinitializing either one.
1084 ///
1085 /// This function corresponds to [`std::mem::swap`](../mem/fn.swap.html).
1086 ///
1087 /// # Panics
1088 ///
1089 /// Panics if the value in either `RefCell` is currently borrowed, or
1090 /// if `self` and `other` point to the same `RefCell`.
1091 ///
1092 /// # Examples
1093 ///
1094 /// ```
1095 /// use std::cell::RefCell;
1096 /// let c = RefCell::new(5);
1097 /// let d = RefCell::new(6);
1098 /// c.swap(&d);
1099 /// assert_eq!(c, RefCell::new(6));
1100 /// assert_eq!(d, RefCell::new(5));
1101 /// ```
1102 #[inline]
1103 #[stable(feature = "refcell_swap", since = "1.24.0")]
1104 #[rustc_const_unstable(feature = "const_ref_cell", issue = "137844")]
1105 #[cfg(not(feature = "ferrocene_subset"))]
1106 #[rustc_should_not_be_called_on_const_items]
1107 pub const fn swap(&self, other: &Self) {
1108 mem::swap(&mut *self.borrow_mut(), &mut *other.borrow_mut())
1109 }
1110}
1111
1112impl<T: ?Sized> RefCell<T> {
1113 /// Immutably borrows the wrapped value.
1114 ///
1115 /// The borrow lasts until the returned `Ref` exits scope. Multiple
1116 /// immutable borrows can be taken out at the same time.
1117 ///
1118 /// # Panics
1119 ///
1120 /// Panics if the value is currently mutably borrowed. For a non-panicking variant, use
1121 /// [`try_borrow`](#method.try_borrow).
1122 ///
1123 /// # Examples
1124 ///
1125 /// ```
1126 /// use std::cell::RefCell;
1127 ///
1128 /// let c = RefCell::new(5);
1129 ///
1130 /// let borrowed_five = c.borrow();
1131 /// let borrowed_five2 = c.borrow();
1132 /// ```
1133 ///
1134 /// An example of panic:
1135 ///
1136 /// ```should_panic
1137 /// use std::cell::RefCell;
1138 ///
1139 /// let c = RefCell::new(5);
1140 ///
1141 /// let m = c.borrow_mut();
1142 /// let b = c.borrow(); // this causes a panic
1143 /// ```
1144 #[stable(feature = "rust1", since = "1.0.0")]
1145 #[inline]
1146 #[track_caller]
1147 #[rustc_const_unstable(feature = "const_ref_cell", issue = "137844")]
1148 #[rustc_should_not_be_called_on_const_items]
1149 pub const fn borrow(&self) -> Ref<'_, T> {
1150 match self.try_borrow() {
1151 Ok(b) => b,
1152 Err(err) => panic_already_mutably_borrowed(err),
1153 }
1154 }
1155
1156 /// Immutably borrows the wrapped value, returning an error if the value is currently mutably
1157 /// borrowed.
1158 ///
1159 /// The borrow lasts until the returned `Ref` exits scope. Multiple immutable borrows can be
1160 /// taken out at the same time.
1161 ///
1162 /// This is the non-panicking variant of [`borrow`](#method.borrow).
1163 ///
1164 /// # Examples
1165 ///
1166 /// ```
1167 /// use std::cell::RefCell;
1168 ///
1169 /// let c = RefCell::new(5);
1170 ///
1171 /// {
1172 /// let m = c.borrow_mut();
1173 /// assert!(c.try_borrow().is_err());
1174 /// }
1175 ///
1176 /// {
1177 /// let m = c.borrow();
1178 /// assert!(c.try_borrow().is_ok());
1179 /// }
1180 /// ```
1181 #[stable(feature = "try_borrow", since = "1.13.0")]
1182 #[inline]
1183 #[cfg_attr(feature = "debug_refcell", track_caller)]
1184 #[rustc_const_unstable(feature = "const_ref_cell", issue = "137844")]
1185 #[rustc_should_not_be_called_on_const_items]
1186 pub const fn try_borrow(&self) -> Result<Ref<'_, T>, BorrowError> {
1187 match BorrowRef::new(&self.borrow) {
1188 Some(b) => {
1189 #[cfg(feature = "debug_refcell")]
1190 {
1191 // `borrowed_at` is always the *first* active borrow
1192 if b.borrow.get() == 1 {
1193 self.borrowed_at.replace(Some(crate::panic::Location::caller()));
1194 }
1195 }
1196
1197 // SAFETY: `BorrowRef` ensures that there is only immutable access
1198 // to the value while borrowed.
1199 let value = unsafe { NonNull::new_unchecked(self.value.get()) };
1200 Ok(Ref { value, borrow: b })
1201 }
1202 None => Err(BorrowError {
1203 // If a borrow occurred, then we must already have an outstanding borrow,
1204 // so `borrowed_at` will be `Some`
1205 #[cfg(feature = "debug_refcell")]
1206 location: self.borrowed_at.get().unwrap(),
1207 }),
1208 }
1209 }
1210
1211 /// Mutably borrows the wrapped value.
1212 ///
1213 /// The borrow lasts until the returned `RefMut` or all `RefMut`s derived
1214 /// from it exit scope. The value cannot be borrowed while this borrow is
1215 /// active.
1216 ///
1217 /// # Panics
1218 ///
1219 /// Panics if the value is currently borrowed. For a non-panicking variant, use
1220 /// [`try_borrow_mut`](#method.try_borrow_mut).
1221 ///
1222 /// # Examples
1223 ///
1224 /// ```
1225 /// use std::cell::RefCell;
1226 ///
1227 /// let c = RefCell::new("hello".to_owned());
1228 ///
1229 /// *c.borrow_mut() = "bonjour".to_owned();
1230 ///
1231 /// assert_eq!(&*c.borrow(), "bonjour");
1232 /// ```
1233 ///
1234 /// An example of panic:
1235 ///
1236 /// ```should_panic
1237 /// use std::cell::RefCell;
1238 ///
1239 /// let c = RefCell::new(5);
1240 /// let m = c.borrow();
1241 ///
1242 /// let b = c.borrow_mut(); // this causes a panic
1243 /// ```
1244 #[stable(feature = "rust1", since = "1.0.0")]
1245 #[inline]
1246 #[track_caller]
1247 #[rustc_const_unstable(feature = "const_ref_cell", issue = "137844")]
1248 #[rustc_should_not_be_called_on_const_items]
1249 pub const fn borrow_mut(&self) -> RefMut<'_, T> {
1250 match self.try_borrow_mut() {
1251 Ok(b) => b,
1252 Err(err) => panic_already_borrowed(err),
1253 }
1254 }
1255
1256 /// Mutably borrows the wrapped value, returning an error if the value is currently borrowed.
1257 ///
1258 /// The borrow lasts until the returned `RefMut` or all `RefMut`s derived
1259 /// from it exit scope. The value cannot be borrowed while this borrow is
1260 /// active.
1261 ///
1262 /// This is the non-panicking variant of [`borrow_mut`](#method.borrow_mut).
1263 ///
1264 /// # Examples
1265 ///
1266 /// ```
1267 /// use std::cell::RefCell;
1268 ///
1269 /// let c = RefCell::new(5);
1270 ///
1271 /// {
1272 /// let m = c.borrow();
1273 /// assert!(c.try_borrow_mut().is_err());
1274 /// }
1275 ///
1276 /// assert!(c.try_borrow_mut().is_ok());
1277 /// ```
1278 #[stable(feature = "try_borrow", since = "1.13.0")]
1279 #[inline]
1280 #[cfg_attr(feature = "debug_refcell", track_caller)]
1281 #[rustc_const_unstable(feature = "const_ref_cell", issue = "137844")]
1282 #[rustc_should_not_be_called_on_const_items]
1283 pub const fn try_borrow_mut(&self) -> Result<RefMut<'_, T>, BorrowMutError> {
1284 match BorrowRefMut::new(&self.borrow) {
1285 Some(b) => {
1286 #[cfg(feature = "debug_refcell")]
1287 {
1288 self.borrowed_at.replace(Some(crate::panic::Location::caller()));
1289 }
1290
1291 // SAFETY: `BorrowRefMut` guarantees unique access.
1292 let value = unsafe { NonNull::new_unchecked(self.value.get()) };
1293 Ok(RefMut { value, borrow: b, marker: PhantomData })
1294 }
1295 None => Err(BorrowMutError {
1296 // If a borrow occurred, then we must already have an outstanding borrow,
1297 // so `borrowed_at` will be `Some`
1298 #[cfg(feature = "debug_refcell")]
1299 location: self.borrowed_at.get().unwrap(),
1300 }),
1301 }
1302 }
1303
1304 /// Returns a raw pointer to the underlying data in this cell.
1305 ///
1306 /// # Examples
1307 ///
1308 /// ```
1309 /// use std::cell::RefCell;
1310 ///
1311 /// let c = RefCell::new(5);
1312 ///
1313 /// let ptr = c.as_ptr();
1314 /// ```
1315 #[inline]
1316 #[stable(feature = "cell_as_ptr", since = "1.12.0")]
1317 #[rustc_as_ptr]
1318 #[rustc_never_returns_null_ptr]
1319 #[rustc_const_unstable(feature = "const_ref_cell", issue = "137844")]
1320 #[cfg(not(feature = "ferrocene_subset"))]
1321 pub const fn as_ptr(&self) -> *mut T {
1322 self.value.get()
1323 }
1324
1325 /// Returns a mutable reference to the underlying data.
1326 ///
1327 /// Since this method borrows `RefCell` mutably, it is statically guaranteed
1328 /// that no borrows to the underlying data exist. The dynamic checks inherent
1329 /// in [`borrow_mut`] and most other methods of `RefCell` are therefore
1330 /// unnecessary. Note that this method does not reset the borrowing state if borrows were previously leaked
1331 /// (e.g., via [`forget()`] on a [`Ref`] or [`RefMut`]). For that purpose,
1332 /// consider using the unstable [`undo_leak`] method.
1333 ///
1334 /// This method can only be called if `RefCell` can be mutably borrowed,
1335 /// which in general is only the case directly after the `RefCell` has
1336 /// been created. In these situations, skipping the aforementioned dynamic
1337 /// borrowing checks may yield better ergonomics and runtime-performance.
1338 ///
1339 /// In most situations where `RefCell` is used, it can't be borrowed mutably.
1340 /// Use [`borrow_mut`] to get mutable access to the underlying data then.
1341 ///
1342 /// [`borrow_mut`]: RefCell::borrow_mut()
1343 /// [`forget()`]: mem::forget
1344 /// [`undo_leak`]: RefCell::undo_leak()
1345 ///
1346 /// # Examples
1347 ///
1348 /// ```
1349 /// use std::cell::RefCell;
1350 ///
1351 /// let mut c = RefCell::new(5);
1352 /// *c.get_mut() += 1;
1353 ///
1354 /// assert_eq!(c, RefCell::new(6));
1355 /// ```
1356 #[inline]
1357 #[stable(feature = "cell_get_mut", since = "1.11.0")]
1358 #[rustc_const_unstable(feature = "const_ref_cell", issue = "137844")]
1359 #[cfg(not(feature = "ferrocene_subset"))]
1360 pub const fn get_mut(&mut self) -> &mut T {
1361 self.value.get_mut()
1362 }
1363
1364 /// Undo the effect of leaked guards on the borrow state of the `RefCell`.
1365 ///
1366 /// This call is similar to [`get_mut`] but more specialized. It borrows `RefCell` mutably to
1367 /// ensure no borrows exist and then resets the state tracking shared borrows. This is relevant
1368 /// if some `Ref` or `RefMut` borrows have been leaked.
1369 ///
1370 /// [`get_mut`]: RefCell::get_mut()
1371 ///
1372 /// # Examples
1373 ///
1374 /// ```
1375 /// #![feature(cell_leak)]
1376 /// use std::cell::RefCell;
1377 ///
1378 /// let mut c = RefCell::new(0);
1379 /// std::mem::forget(c.borrow_mut());
1380 ///
1381 /// assert!(c.try_borrow().is_err());
1382 /// c.undo_leak();
1383 /// assert!(c.try_borrow().is_ok());
1384 /// ```
1385 #[unstable(feature = "cell_leak", issue = "69099")]
1386 #[rustc_const_unstable(feature = "const_ref_cell", issue = "137844")]
1387 #[cfg(not(feature = "ferrocene_subset"))]
1388 pub const fn undo_leak(&mut self) -> &mut T {
1389 *self.borrow.get_mut() = UNUSED;
1390 self.get_mut()
1391 }
1392
1393 /// Immutably borrows the wrapped value, returning an error if the value is
1394 /// currently mutably borrowed.
1395 ///
1396 /// # Safety
1397 ///
1398 /// Unlike `RefCell::borrow`, this method is unsafe because it does not
1399 /// return a `Ref`, thus leaving the borrow flag untouched. Mutably
1400 /// borrowing the `RefCell` while the reference returned by this method
1401 /// is alive is undefined behavior.
1402 ///
1403 /// # Examples
1404 ///
1405 /// ```
1406 /// use std::cell::RefCell;
1407 ///
1408 /// let c = RefCell::new(5);
1409 ///
1410 /// {
1411 /// let m = c.borrow_mut();
1412 /// assert!(unsafe { c.try_borrow_unguarded() }.is_err());
1413 /// }
1414 ///
1415 /// {
1416 /// let m = c.borrow();
1417 /// assert!(unsafe { c.try_borrow_unguarded() }.is_ok());
1418 /// }
1419 /// ```
1420 #[stable(feature = "borrow_state", since = "1.37.0")]
1421 #[inline]
1422 #[rustc_const_unstable(feature = "const_ref_cell", issue = "137844")]
1423 #[cfg(not(feature = "ferrocene_subset"))]
1424 pub const unsafe fn try_borrow_unguarded(&self) -> Result<&T, BorrowError> {
1425 if !is_writing(self.borrow.get()) {
1426 // SAFETY: We check that nobody is actively writing now, but it is
1427 // the caller's responsibility to ensure that nobody writes until
1428 // the returned reference is no longer in use.
1429 // Also, `self.value.get()` refers to the value owned by `self`
1430 // and is thus guaranteed to be valid for the lifetime of `self`.
1431 Ok(unsafe { &*self.value.get() })
1432 } else {
1433 Err(BorrowError {
1434 // If a borrow occurred, then we must already have an outstanding borrow,
1435 // so `borrowed_at` will be `Some`
1436 #[cfg(feature = "debug_refcell")]
1437 location: self.borrowed_at.get().unwrap(),
1438 })
1439 }
1440 }
1441}
1442
1443impl<T: Default> RefCell<T> {
1444 /// Takes the wrapped value, leaving `Default::default()` in its place.
1445 ///
1446 /// # Panics
1447 ///
1448 /// Panics if the value is currently borrowed.
1449 ///
1450 /// # Examples
1451 ///
1452 /// ```
1453 /// use std::cell::RefCell;
1454 ///
1455 /// let c = RefCell::new(5);
1456 /// let five = c.take();
1457 ///
1458 /// assert_eq!(five, 5);
1459 /// assert_eq!(c.into_inner(), 0);
1460 /// ```
1461 #[stable(feature = "refcell_take", since = "1.50.0")]
1462 pub fn take(&self) -> T {
1463 self.replace(Default::default())
1464 }
1465}
1466
1467#[stable(feature = "rust1", since = "1.0.0")]
1468unsafe impl<T: ?Sized> Send for RefCell<T> where T: Send {}
1469
1470#[stable(feature = "rust1", since = "1.0.0")]
1471impl<T: ?Sized> !Sync for RefCell<T> {}
1472
1473#[stable(feature = "rust1", since = "1.0.0")]
1474#[cfg(not(feature = "ferrocene_subset"))]
1475impl<T: Clone> Clone for RefCell<T> {
1476 /// # Panics
1477 ///
1478 /// Panics if the value is currently mutably borrowed.
1479 #[inline]
1480 #[track_caller]
1481 fn clone(&self) -> RefCell<T> {
1482 RefCell::new(self.borrow().clone())
1483 }
1484
1485 /// # Panics
1486 ///
1487 /// Panics if `source` is currently mutably borrowed.
1488 #[inline]
1489 #[track_caller]
1490 fn clone_from(&mut self, source: &Self) {
1491 self.get_mut().clone_from(&source.borrow())
1492 }
1493}
1494
1495#[stable(feature = "rust1", since = "1.0.0")]
1496#[rustc_const_unstable(feature = "const_default", issue = "143894")]
1497#[cfg(not(feature = "ferrocene_subset"))]
1498impl<T: [const] Default> const Default for RefCell<T> {
1499 /// Creates a `RefCell<T>`, with the `Default` value for T.
1500 #[inline]
1501 fn default() -> RefCell<T> {
1502 RefCell::new(Default::default())
1503 }
1504}
1505
1506#[stable(feature = "rust1", since = "1.0.0")]
1507#[cfg(not(feature = "ferrocene_subset"))]
1508impl<T: ?Sized + PartialEq> PartialEq for RefCell<T> {
1509 /// # Panics
1510 ///
1511 /// Panics if the value in either `RefCell` is currently mutably borrowed.
1512 #[inline]
1513 fn eq(&self, other: &RefCell<T>) -> bool {
1514 *self.borrow() == *other.borrow()
1515 }
1516}
1517
1518#[stable(feature = "cell_eq", since = "1.2.0")]
1519#[cfg(not(feature = "ferrocene_subset"))]
1520impl<T: ?Sized + Eq> Eq for RefCell<T> {}
1521
1522#[stable(feature = "cell_ord", since = "1.10.0")]
1523#[cfg(not(feature = "ferrocene_subset"))]
1524impl<T: ?Sized + PartialOrd> PartialOrd for RefCell<T> {
1525 /// # Panics
1526 ///
1527 /// Panics if the value in either `RefCell` is currently mutably borrowed.
1528 #[inline]
1529 fn partial_cmp(&self, other: &RefCell<T>) -> Option<Ordering> {
1530 self.borrow().partial_cmp(&*other.borrow())
1531 }
1532
1533 /// # Panics
1534 ///
1535 /// Panics if the value in either `RefCell` is currently mutably borrowed.
1536 #[inline]
1537 fn lt(&self, other: &RefCell<T>) -> bool {
1538 *self.borrow() < *other.borrow()
1539 }
1540
1541 /// # Panics
1542 ///
1543 /// Panics if the value in either `RefCell` is currently mutably borrowed.
1544 #[inline]
1545 fn le(&self, other: &RefCell<T>) -> bool {
1546 *self.borrow() <= *other.borrow()
1547 }
1548
1549 /// # Panics
1550 ///
1551 /// Panics if the value in either `RefCell` is currently mutably borrowed.
1552 #[inline]
1553 fn gt(&self, other: &RefCell<T>) -> bool {
1554 *self.borrow() > *other.borrow()
1555 }
1556
1557 /// # Panics
1558 ///
1559 /// Panics if the value in either `RefCell` is currently mutably borrowed.
1560 #[inline]
1561 fn ge(&self, other: &RefCell<T>) -> bool {
1562 *self.borrow() >= *other.borrow()
1563 }
1564}
1565
1566#[stable(feature = "cell_ord", since = "1.10.0")]
1567#[cfg(not(feature = "ferrocene_subset"))]
1568impl<T: ?Sized + Ord> Ord for RefCell<T> {
1569 /// # Panics
1570 ///
1571 /// Panics if the value in either `RefCell` is currently mutably borrowed.
1572 #[inline]
1573 fn cmp(&self, other: &RefCell<T>) -> Ordering {
1574 self.borrow().cmp(&*other.borrow())
1575 }
1576}
1577
1578#[stable(feature = "cell_from", since = "1.12.0")]
1579#[rustc_const_unstable(feature = "const_convert", issue = "143773")]
1580#[cfg(not(feature = "ferrocene_subset"))]
1581impl<T> const From<T> for RefCell<T> {
1582 /// Creates a new `RefCell<T>` containing the given value.
1583 fn from(t: T) -> RefCell<T> {
1584 RefCell::new(t)
1585 }
1586}
1587
1588#[unstable(feature = "coerce_unsized", issue = "18598")]
1589#[cfg(not(feature = "ferrocene_subset"))]
1590impl<T: CoerceUnsized<U>, U> CoerceUnsized<RefCell<U>> for RefCell<T> {}
1591
1592struct BorrowRef<'b> {
1593 borrow: &'b Cell<BorrowCounter>,
1594}
1595
1596impl<'b> BorrowRef<'b> {
1597 #[inline]
1598 const fn new(borrow: &'b Cell<BorrowCounter>) -> Option<BorrowRef<'b>> {
1599 let b = borrow.get().wrapping_add(1);
1600 if !is_reading(b) {
1601 // Incrementing borrow can result in a non-reading value (<= 0) in these cases:
1602 // 1. It was < 0, i.e. there are writing borrows, so we can't allow a read borrow
1603 // due to Rust's reference aliasing rules
1604 // 2. It was isize::MAX (the max amount of reading borrows) and it overflowed
1605 // into isize::MIN (the max amount of writing borrows) so we can't allow
1606 // an additional read borrow because isize can't represent so many read borrows
1607 // (this can only happen if you mem::forget more than a small constant amount of
1608 // `Ref`s, which is not good practice)
1609 None
1610 } else {
1611 // Incrementing borrow can result in a reading value (> 0) in these cases:
1612 // 1. It was = 0, i.e. it wasn't borrowed, and we are taking the first read borrow
1613 // 2. It was > 0 and < isize::MAX, i.e. there were read borrows, and isize
1614 // is large enough to represent having one more read borrow
1615 borrow.replace(b);
1616 Some(BorrowRef { borrow })
1617 }
1618 }
1619}
1620
1621#[rustc_const_unstable(feature = "const_ref_cell", issue = "137844")]
1622impl const Drop for BorrowRef<'_> {
1623 #[inline]
1624 fn drop(&mut self) {
1625 let borrow = self.borrow.get();
1626 debug_assert!(is_reading(borrow));
1627 self.borrow.replace(borrow - 1);
1628 }
1629}
1630
1631#[rustc_const_unstable(feature = "const_ref_cell", issue = "137844")]
1632#[cfg(not(feature = "ferrocene_subset"))]
1633impl const Clone for BorrowRef<'_> {
1634 #[inline]
1635 fn clone(&self) -> Self {
1636 // Since this Ref exists, we know the borrow flag
1637 // is a reading borrow.
1638 let borrow = self.borrow.get();
1639 debug_assert!(is_reading(borrow));
1640 // Prevent the borrow counter from overflowing into
1641 // a writing borrow.
1642 assert!(borrow != BorrowCounter::MAX);
1643 self.borrow.replace(borrow + 1);
1644 BorrowRef { borrow: self.borrow }
1645 }
1646}
1647
1648/// Wraps a borrowed reference to a value in a `RefCell` box.
1649/// A wrapper type for an immutably borrowed value from a `RefCell<T>`.
1650///
1651/// See the [module-level documentation](self) for more.
1652#[stable(feature = "rust1", since = "1.0.0")]
1653#[must_not_suspend = "holding a Ref across suspend points can cause BorrowErrors"]
1654#[rustc_diagnostic_item = "RefCellRef"]
1655#[cfg_attr(feature = "ferrocene_subset", expect(dead_code))]
1656pub struct Ref<'b, T: ?Sized + 'b> {
1657 // NB: we use a pointer instead of `&'b T` to avoid `noalias` violations, because a
1658 // `Ref` argument doesn't hold immutability for its whole scope, only until it drops.
1659 // `NonNull` is also covariant over `T`, just like we would have with `&T`.
1660 value: NonNull<T>,
1661 borrow: BorrowRef<'b>,
1662}
1663
1664#[stable(feature = "rust1", since = "1.0.0")]
1665#[rustc_const_unstable(feature = "const_convert", issue = "143773")]
1666impl<T: ?Sized> const Deref for Ref<'_, T> {
1667 type Target = T;
1668
1669 #[inline]
1670 fn deref(&self) -> &T {
1671 // SAFETY: the value is accessible as long as we hold our borrow.
1672 unsafe { self.value.as_ref() }
1673 }
1674}
1675
1676#[unstable(feature = "deref_pure_trait", issue = "87121")]
1677#[cfg(not(feature = "ferrocene_subset"))]
1678unsafe impl<T: ?Sized> DerefPure for Ref<'_, T> {}
1679
1680#[cfg(not(feature = "ferrocene_subset"))]
1681impl<'b, T: ?Sized> Ref<'b, T> {
1682 /// Copies a `Ref`.
1683 ///
1684 /// The `RefCell` is already immutably borrowed, so this cannot fail.
1685 ///
1686 /// This is an associated function that needs to be used as
1687 /// `Ref::clone(...)`. A `Clone` implementation or a method would interfere
1688 /// with the widespread use of `r.borrow().clone()` to clone the contents of
1689 /// a `RefCell`.
1690 #[stable(feature = "cell_extras", since = "1.15.0")]
1691 #[must_use]
1692 #[inline]
1693 #[rustc_const_unstable(feature = "const_ref_cell", issue = "137844")]
1694 pub const fn clone(orig: &Ref<'b, T>) -> Ref<'b, T> {
1695 Ref { value: orig.value, borrow: orig.borrow.clone() }
1696 }
1697
1698 /// Makes a new `Ref` for a component of the borrowed data.
1699 ///
1700 /// The `RefCell` is already immutably borrowed, so this cannot fail.
1701 ///
1702 /// This is an associated function that needs to be used as `Ref::map(...)`.
1703 /// A method would interfere with methods of the same name on the contents
1704 /// of a `RefCell` used through `Deref`.
1705 ///
1706 /// # Examples
1707 ///
1708 /// ```
1709 /// use std::cell::{RefCell, Ref};
1710 ///
1711 /// let c = RefCell::new((5, 'b'));
1712 /// let b1: Ref<'_, (u32, char)> = c.borrow();
1713 /// let b2: Ref<'_, u32> = Ref::map(b1, |t| &t.0);
1714 /// assert_eq!(*b2, 5)
1715 /// ```
1716 #[stable(feature = "cell_map", since = "1.8.0")]
1717 #[inline]
1718 pub fn map<U: ?Sized, F>(orig: Ref<'b, T>, f: F) -> Ref<'b, U>
1719 where
1720 F: FnOnce(&T) -> &U,
1721 {
1722 Ref { value: NonNull::from(f(&*orig)), borrow: orig.borrow }
1723 }
1724
1725 /// Makes a new `Ref` for an optional component of the borrowed data. The
1726 /// original guard is returned as an `Err(..)` if the closure returns
1727 /// `None`.
1728 ///
1729 /// The `RefCell` is already immutably borrowed, so this cannot fail.
1730 ///
1731 /// This is an associated function that needs to be used as
1732 /// `Ref::filter_map(...)`. A method would interfere with methods of the same
1733 /// name on the contents of a `RefCell` used through `Deref`.
1734 ///
1735 /// # Examples
1736 ///
1737 /// ```
1738 /// use std::cell::{RefCell, Ref};
1739 ///
1740 /// let c = RefCell::new(vec![1, 2, 3]);
1741 /// let b1: Ref<'_, Vec<u32>> = c.borrow();
1742 /// let b2: Result<Ref<'_, u32>, _> = Ref::filter_map(b1, |v| v.get(1));
1743 /// assert_eq!(*b2.unwrap(), 2);
1744 /// ```
1745 #[stable(feature = "cell_filter_map", since = "1.63.0")]
1746 #[inline]
1747 pub fn filter_map<U: ?Sized, F>(orig: Ref<'b, T>, f: F) -> Result<Ref<'b, U>, Self>
1748 where
1749 F: FnOnce(&T) -> Option<&U>,
1750 {
1751 match f(&*orig) {
1752 Some(value) => Ok(Ref { value: NonNull::from(value), borrow: orig.borrow }),
1753 None => Err(orig),
1754 }
1755 }
1756
1757 /// Tries to makes a new `Ref` for a component of the borrowed data.
1758 /// On failure, the original guard is returned alongside with the error
1759 /// returned by the closure.
1760 ///
1761 /// The `RefCell` is already immutably borrowed, so this cannot fail.
1762 ///
1763 /// This is an associated function that needs to be used as
1764 /// `Ref::try_map(...)`. A method would interfere with methods of the same
1765 /// name on the contents of a `RefCell` used through `Deref`.
1766 ///
1767 /// # Examples
1768 ///
1769 /// ```
1770 /// #![feature(refcell_try_map)]
1771 /// use std::cell::{RefCell, Ref};
1772 /// use std::str::{from_utf8, Utf8Error};
1773 ///
1774 /// let c = RefCell::new(vec![0xF0, 0x9F, 0xA6 ,0x80]);
1775 /// let b1: Ref<'_, Vec<u8>> = c.borrow();
1776 /// let b2: Result<Ref<'_, str>, _> = Ref::try_map(b1, |v| from_utf8(v));
1777 /// assert_eq!(&*b2.unwrap(), "🦀");
1778 ///
1779 /// let c = RefCell::new(vec![0xF0, 0x9F, 0xA6]);
1780 /// let b1: Ref<'_, Vec<u8>> = c.borrow();
1781 /// let b2: Result<_, (Ref<'_, Vec<u8>>, Utf8Error)> = Ref::try_map(b1, |v| from_utf8(v));
1782 /// let (b3, e) = b2.unwrap_err();
1783 /// assert_eq!(*b3, vec![0xF0, 0x9F, 0xA6]);
1784 /// assert_eq!(e.valid_up_to(), 0);
1785 /// ```
1786 #[unstable(feature = "refcell_try_map", issue = "143801")]
1787 #[inline]
1788 pub fn try_map<U: ?Sized, E>(
1789 orig: Ref<'b, T>,
1790 f: impl FnOnce(&T) -> Result<&U, E>,
1791 ) -> Result<Ref<'b, U>, (Self, E)> {
1792 match f(&*orig) {
1793 Ok(value) => Ok(Ref { value: NonNull::from(value), borrow: orig.borrow }),
1794 Err(e) => Err((orig, e)),
1795 }
1796 }
1797
1798 /// Splits a `Ref` into multiple `Ref`s for different components of the
1799 /// borrowed data.
1800 ///
1801 /// The `RefCell` is already immutably borrowed, so this cannot fail.
1802 ///
1803 /// This is an associated function that needs to be used as
1804 /// `Ref::map_split(...)`. A method would interfere with methods of the same
1805 /// name on the contents of a `RefCell` used through `Deref`.
1806 ///
1807 /// # Examples
1808 ///
1809 /// ```
1810 /// use std::cell::{Ref, RefCell};
1811 ///
1812 /// let cell = RefCell::new([1, 2, 3, 4]);
1813 /// let borrow = cell.borrow();
1814 /// let (begin, end) = Ref::map_split(borrow, |slice| slice.split_at(2));
1815 /// assert_eq!(*begin, [1, 2]);
1816 /// assert_eq!(*end, [3, 4]);
1817 /// ```
1818 #[stable(feature = "refcell_map_split", since = "1.35.0")]
1819 #[inline]
1820 pub fn map_split<U: ?Sized, V: ?Sized, F>(orig: Ref<'b, T>, f: F) -> (Ref<'b, U>, Ref<'b, V>)
1821 where
1822 F: FnOnce(&T) -> (&U, &V),
1823 {
1824 let (a, b) = f(&*orig);
1825 let borrow = orig.borrow.clone();
1826 (
1827 Ref { value: NonNull::from(a), borrow },
1828 Ref { value: NonNull::from(b), borrow: orig.borrow },
1829 )
1830 }
1831
1832 /// Converts into a reference to the underlying data.
1833 ///
1834 /// The underlying `RefCell` can never be mutably borrowed from again and will always appear
1835 /// already immutably borrowed. It is not a good idea to leak more than a constant number of
1836 /// references. The `RefCell` can be immutably borrowed again if only a smaller number of leaks
1837 /// have occurred in total.
1838 ///
1839 /// This is an associated function that needs to be used as
1840 /// `Ref::leak(...)`. A method would interfere with methods of the
1841 /// same name on the contents of a `RefCell` used through `Deref`.
1842 ///
1843 /// # Examples
1844 ///
1845 /// ```
1846 /// #![feature(cell_leak)]
1847 /// use std::cell::{RefCell, Ref};
1848 /// let cell = RefCell::new(0);
1849 ///
1850 /// let value = Ref::leak(cell.borrow());
1851 /// assert_eq!(*value, 0);
1852 ///
1853 /// assert!(cell.try_borrow().is_ok());
1854 /// assert!(cell.try_borrow_mut().is_err());
1855 /// ```
1856 #[unstable(feature = "cell_leak", issue = "69099")]
1857 #[rustc_const_unstable(feature = "const_ref_cell", issue = "137844")]
1858 pub const fn leak(orig: Ref<'b, T>) -> &'b T {
1859 // By forgetting this Ref we ensure that the borrow counter in the RefCell can't go back to
1860 // UNUSED within the lifetime `'b`. Resetting the reference tracking state would require a
1861 // unique reference to the borrowed RefCell. No further mutable references can be created
1862 // from the original cell.
1863 mem::forget(orig.borrow);
1864 // SAFETY: after forgetting, we can form a reference for the rest of lifetime `'b`.
1865 unsafe { orig.value.as_ref() }
1866 }
1867}
1868
1869#[unstable(feature = "coerce_unsized", issue = "18598")]
1870#[cfg(not(feature = "ferrocene_subset"))]
1871impl<'b, T: ?Sized + Unsize<U>, U: ?Sized> CoerceUnsized<Ref<'b, U>> for Ref<'b, T> {}
1872
1873#[stable(feature = "std_guard_impls", since = "1.20.0")]
1874#[cfg(not(feature = "ferrocene_subset"))]
1875impl<T: ?Sized + fmt::Display> fmt::Display for Ref<'_, T> {
1876 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
1877 (**self).fmt(f)
1878 }
1879}
1880
1881#[cfg(not(feature = "ferrocene_subset"))]
1882impl<'b, T: ?Sized> RefMut<'b, T> {
1883 /// Makes a new `RefMut` for a component of the borrowed data, e.g., an enum
1884 /// variant.
1885 ///
1886 /// The `RefCell` is already mutably borrowed, so this cannot fail.
1887 ///
1888 /// This is an associated function that needs to be used as
1889 /// `RefMut::map(...)`. A method would interfere with methods of the same
1890 /// name on the contents of a `RefCell` used through `Deref`.
1891 ///
1892 /// # Examples
1893 ///
1894 /// ```
1895 /// use std::cell::{RefCell, RefMut};
1896 ///
1897 /// let c = RefCell::new((5, 'b'));
1898 /// {
1899 /// let b1: RefMut<'_, (u32, char)> = c.borrow_mut();
1900 /// let mut b2: RefMut<'_, u32> = RefMut::map(b1, |t| &mut t.0);
1901 /// assert_eq!(*b2, 5);
1902 /// *b2 = 42;
1903 /// }
1904 /// assert_eq!(*c.borrow(), (42, 'b'));
1905 /// ```
1906 #[stable(feature = "cell_map", since = "1.8.0")]
1907 #[inline]
1908 pub fn map<U: ?Sized, F>(mut orig: RefMut<'b, T>, f: F) -> RefMut<'b, U>
1909 where
1910 F: FnOnce(&mut T) -> &mut U,
1911 {
1912 let value = NonNull::from(f(&mut *orig));
1913 RefMut { value, borrow: orig.borrow, marker: PhantomData }
1914 }
1915
1916 /// Makes a new `RefMut` for an optional component of the borrowed data. The
1917 /// original guard is returned as an `Err(..)` if the closure returns
1918 /// `None`.
1919 ///
1920 /// The `RefCell` is already mutably borrowed, so this cannot fail.
1921 ///
1922 /// This is an associated function that needs to be used as
1923 /// `RefMut::filter_map(...)`. A method would interfere with methods of the
1924 /// same name on the contents of a `RefCell` used through `Deref`.
1925 ///
1926 /// # Examples
1927 ///
1928 /// ```
1929 /// use std::cell::{RefCell, RefMut};
1930 ///
1931 /// let c = RefCell::new(vec![1, 2, 3]);
1932 ///
1933 /// {
1934 /// let b1: RefMut<'_, Vec<u32>> = c.borrow_mut();
1935 /// let mut b2: Result<RefMut<'_, u32>, _> = RefMut::filter_map(b1, |v| v.get_mut(1));
1936 ///
1937 /// if let Ok(mut b2) = b2 {
1938 /// *b2 += 2;
1939 /// }
1940 /// }
1941 ///
1942 /// assert_eq!(*c.borrow(), vec![1, 4, 3]);
1943 /// ```
1944 #[stable(feature = "cell_filter_map", since = "1.63.0")]
1945 #[inline]
1946 pub fn filter_map<U: ?Sized, F>(mut orig: RefMut<'b, T>, f: F) -> Result<RefMut<'b, U>, Self>
1947 where
1948 F: FnOnce(&mut T) -> Option<&mut U>,
1949 {
1950 // SAFETY: function holds onto an exclusive reference for the duration
1951 // of its call through `orig`, and the pointer is only de-referenced
1952 // inside of the function call never allowing the exclusive reference to
1953 // escape.
1954 match f(&mut *orig) {
1955 Some(value) => {
1956 Ok(RefMut { value: NonNull::from(value), borrow: orig.borrow, marker: PhantomData })
1957 }
1958 None => Err(orig),
1959 }
1960 }
1961
1962 /// Tries to makes a new `RefMut` for a component of the borrowed data.
1963 /// On failure, the original guard is returned alongside with the error
1964 /// returned by the closure.
1965 ///
1966 /// The `RefCell` is already mutably borrowed, so this cannot fail.
1967 ///
1968 /// This is an associated function that needs to be used as
1969 /// `RefMut::try_map(...)`. A method would interfere with methods of the same
1970 /// name on the contents of a `RefCell` used through `Deref`.
1971 ///
1972 /// # Examples
1973 ///
1974 /// ```
1975 /// #![feature(refcell_try_map)]
1976 /// use std::cell::{RefCell, RefMut};
1977 /// use std::str::{from_utf8_mut, Utf8Error};
1978 ///
1979 /// let c = RefCell::new(vec![0x68, 0x65, 0x6C, 0x6C, 0x6F]);
1980 /// {
1981 /// let b1: RefMut<'_, Vec<u8>> = c.borrow_mut();
1982 /// let b2: Result<RefMut<'_, str>, _> = RefMut::try_map(b1, |v| from_utf8_mut(v));
1983 /// let mut b2 = b2.unwrap();
1984 /// assert_eq!(&*b2, "hello");
1985 /// b2.make_ascii_uppercase();
1986 /// }
1987 /// assert_eq!(*c.borrow(), "HELLO".as_bytes());
1988 ///
1989 /// let c = RefCell::new(vec![0xFF]);
1990 /// let b1: RefMut<'_, Vec<u8>> = c.borrow_mut();
1991 /// let b2: Result<_, (RefMut<'_, Vec<u8>>, Utf8Error)> = RefMut::try_map(b1, |v| from_utf8_mut(v));
1992 /// let (b3, e) = b2.unwrap_err();
1993 /// assert_eq!(*b3, vec![0xFF]);
1994 /// assert_eq!(e.valid_up_to(), 0);
1995 /// ```
1996 #[unstable(feature = "refcell_try_map", issue = "143801")]
1997 #[inline]
1998 pub fn try_map<U: ?Sized, E>(
1999 mut orig: RefMut<'b, T>,
2000 f: impl FnOnce(&mut T) -> Result<&mut U, E>,
2001 ) -> Result<RefMut<'b, U>, (Self, E)> {
2002 // SAFETY: function holds onto an exclusive reference for the duration
2003 // of its call through `orig`, and the pointer is only de-referenced
2004 // inside of the function call never allowing the exclusive reference to
2005 // escape.
2006 match f(&mut *orig) {
2007 Ok(value) => {
2008 Ok(RefMut { value: NonNull::from(value), borrow: orig.borrow, marker: PhantomData })
2009 }
2010 Err(e) => Err((orig, e)),
2011 }
2012 }
2013
2014 /// Splits a `RefMut` into multiple `RefMut`s for different components of the
2015 /// borrowed data.
2016 ///
2017 /// The underlying `RefCell` will remain mutably borrowed until both
2018 /// returned `RefMut`s go out of scope.
2019 ///
2020 /// The `RefCell` is already mutably borrowed, so this cannot fail.
2021 ///
2022 /// This is an associated function that needs to be used as
2023 /// `RefMut::map_split(...)`. A method would interfere with methods of the
2024 /// same name on the contents of a `RefCell` used through `Deref`.
2025 ///
2026 /// # Examples
2027 ///
2028 /// ```
2029 /// use std::cell::{RefCell, RefMut};
2030 ///
2031 /// let cell = RefCell::new([1, 2, 3, 4]);
2032 /// let borrow = cell.borrow_mut();
2033 /// let (mut begin, mut end) = RefMut::map_split(borrow, |slice| slice.split_at_mut(2));
2034 /// assert_eq!(*begin, [1, 2]);
2035 /// assert_eq!(*end, [3, 4]);
2036 /// begin.copy_from_slice(&[4, 3]);
2037 /// end.copy_from_slice(&[2, 1]);
2038 /// ```
2039 #[stable(feature = "refcell_map_split", since = "1.35.0")]
2040 #[inline]
2041 pub fn map_split<U: ?Sized, V: ?Sized, F>(
2042 mut orig: RefMut<'b, T>,
2043 f: F,
2044 ) -> (RefMut<'b, U>, RefMut<'b, V>)
2045 where
2046 F: FnOnce(&mut T) -> (&mut U, &mut V),
2047 {
2048 let borrow = orig.borrow.clone();
2049 let (a, b) = f(&mut *orig);
2050 (
2051 RefMut { value: NonNull::from(a), borrow, marker: PhantomData },
2052 RefMut { value: NonNull::from(b), borrow: orig.borrow, marker: PhantomData },
2053 )
2054 }
2055
2056 /// Converts into a mutable reference to the underlying data.
2057 ///
2058 /// The underlying `RefCell` can not be borrowed from again and will always appear already
2059 /// mutably borrowed, making the returned reference the only to the interior.
2060 ///
2061 /// This is an associated function that needs to be used as
2062 /// `RefMut::leak(...)`. A method would interfere with methods of the
2063 /// same name on the contents of a `RefCell` used through `Deref`.
2064 ///
2065 /// # Examples
2066 ///
2067 /// ```
2068 /// #![feature(cell_leak)]
2069 /// use std::cell::{RefCell, RefMut};
2070 /// let cell = RefCell::new(0);
2071 ///
2072 /// let value = RefMut::leak(cell.borrow_mut());
2073 /// assert_eq!(*value, 0);
2074 /// *value = 1;
2075 ///
2076 /// assert!(cell.try_borrow_mut().is_err());
2077 /// ```
2078 #[unstable(feature = "cell_leak", issue = "69099")]
2079 #[rustc_const_unstable(feature = "const_ref_cell", issue = "137844")]
2080 pub const fn leak(mut orig: RefMut<'b, T>) -> &'b mut T {
2081 // By forgetting this BorrowRefMut we ensure that the borrow counter in the RefCell can't
2082 // go back to UNUSED within the lifetime `'b`. Resetting the reference tracking state would
2083 // require a unique reference to the borrowed RefCell. No further references can be created
2084 // from the original cell within that lifetime, making the current borrow the only
2085 // reference for the remaining lifetime.
2086 mem::forget(orig.borrow);
2087 // SAFETY: after forgetting, we can form a reference for the rest of lifetime `'b`.
2088 unsafe { orig.value.as_mut() }
2089 }
2090}
2091
2092struct BorrowRefMut<'b> {
2093 borrow: &'b Cell<BorrowCounter>,
2094}
2095
2096#[rustc_const_unstable(feature = "const_ref_cell", issue = "137844")]
2097impl const Drop for BorrowRefMut<'_> {
2098 #[inline]
2099 fn drop(&mut self) {
2100 let borrow = self.borrow.get();
2101 debug_assert!(is_writing(borrow));
2102 self.borrow.replace(borrow + 1);
2103 }
2104}
2105
2106impl<'b> BorrowRefMut<'b> {
2107 #[inline]
2108 const fn new(borrow: &'b Cell<BorrowCounter>) -> Option<BorrowRefMut<'b>> {
2109 // NOTE: Unlike BorrowRefMut::clone, new is called to create the initial
2110 // mutable reference, and so there must currently be no existing
2111 // references. Thus, while clone increments the mutable refcount, here
2112 // we explicitly only allow going from UNUSED to UNUSED - 1.
2113 match borrow.get() {
2114 UNUSED => {
2115 borrow.replace(UNUSED - 1);
2116 Some(BorrowRefMut { borrow })
2117 }
2118 _ => None,
2119 }
2120 }
2121
2122 // Clones a `BorrowRefMut`.
2123 //
2124 // This is only valid if each `BorrowRefMut` is used to track a mutable
2125 // reference to a distinct, nonoverlapping range of the original object.
2126 // This isn't in a Clone impl so that code doesn't call this implicitly.
2127 #[inline]
2128 #[cfg(not(feature = "ferrocene_subset"))]
2129 fn clone(&self) -> BorrowRefMut<'b> {
2130 let borrow = self.borrow.get();
2131 debug_assert!(is_writing(borrow));
2132 // Prevent the borrow counter from underflowing.
2133 assert!(borrow != BorrowCounter::MIN);
2134 self.borrow.set(borrow - 1);
2135 BorrowRefMut { borrow: self.borrow }
2136 }
2137}
2138
2139/// A wrapper type for a mutably borrowed value from a `RefCell<T>`.
2140///
2141/// See the [module-level documentation](self) for more.
2142#[stable(feature = "rust1", since = "1.0.0")]
2143#[must_not_suspend = "holding a RefMut across suspend points can cause BorrowErrors"]
2144#[rustc_diagnostic_item = "RefCellRefMut"]
2145#[cfg_attr(feature = "ferrocene_subset", expect(dead_code))]
2146pub struct RefMut<'b, T: ?Sized + 'b> {
2147 // NB: we use a pointer instead of `&'b mut T` to avoid `noalias` violations, because a
2148 // `RefMut` argument doesn't hold exclusivity for its whole scope, only until it drops.
2149 value: NonNull<T>,
2150 borrow: BorrowRefMut<'b>,
2151 // `NonNull` is covariant over `T`, so we need to reintroduce invariance.
2152 marker: PhantomData<&'b mut T>,
2153}
2154
2155#[stable(feature = "rust1", since = "1.0.0")]
2156#[rustc_const_unstable(feature = "const_convert", issue = "143773")]
2157impl<T: ?Sized> const Deref for RefMut<'_, T> {
2158 type Target = T;
2159
2160 #[inline]
2161 fn deref(&self) -> &T {
2162 // SAFETY: the value is accessible as long as we hold our borrow.
2163 unsafe { self.value.as_ref() }
2164 }
2165}
2166
2167#[stable(feature = "rust1", since = "1.0.0")]
2168#[rustc_const_unstable(feature = "const_convert", issue = "143773")]
2169impl<T: ?Sized> const DerefMut for RefMut<'_, T> {
2170 #[inline]
2171 fn deref_mut(&mut self) -> &mut T {
2172 // SAFETY: the value is accessible as long as we hold our borrow.
2173 unsafe { self.value.as_mut() }
2174 }
2175}
2176
2177#[unstable(feature = "deref_pure_trait", issue = "87121")]
2178#[cfg(not(feature = "ferrocene_subset"))]
2179unsafe impl<T: ?Sized> DerefPure for RefMut<'_, T> {}
2180
2181#[unstable(feature = "coerce_unsized", issue = "18598")]
2182#[cfg(not(feature = "ferrocene_subset"))]
2183impl<'b, T: ?Sized + Unsize<U>, U: ?Sized> CoerceUnsized<RefMut<'b, U>> for RefMut<'b, T> {}
2184
2185#[stable(feature = "std_guard_impls", since = "1.20.0")]
2186#[cfg(not(feature = "ferrocene_subset"))]
2187impl<T: ?Sized + fmt::Display> fmt::Display for RefMut<'_, T> {
2188 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
2189 (**self).fmt(f)
2190 }
2191}
2192
2193/// The core primitive for interior mutability in Rust.
2194///
2195/// If you have a reference `&T`, then normally in Rust the compiler performs optimizations based on
2196/// the knowledge that `&T` points to immutable data. Mutating that data, for example through an
2197/// alias or by transmuting a `&T` into a `&mut T`, is considered undefined behavior.
2198/// `UnsafeCell<T>` opts-out of the immutability guarantee for `&T`: a shared reference
2199/// `&UnsafeCell<T>` may point to data that is being mutated. This is called "interior mutability".
2200///
2201/// All other types that allow internal mutability, such as [`Cell<T>`] and [`RefCell<T>`], internally
2202/// use `UnsafeCell` to wrap their data.
2203///
2204/// Note that only the immutability guarantee for shared references is affected by `UnsafeCell`. The
2205/// uniqueness guarantee for mutable references is unaffected. There is *no* legal way to obtain
2206/// aliasing `&mut`, not even with `UnsafeCell<T>`.
2207///
2208/// `UnsafeCell` does nothing to avoid data races; they are still undefined behavior. If multiple
2209/// threads have access to the same `UnsafeCell`, they must follow the usual rules of the
2210/// [concurrent memory model]: conflicting non-synchronized accesses must be done via the APIs in
2211/// [`core::sync::atomic`].
2212///
2213/// The `UnsafeCell` API itself is technically very simple: [`.get()`] gives you a raw pointer
2214/// `*mut T` to its contents. It is up to _you_ as the abstraction designer to use that raw pointer
2215/// correctly.
2216///
2217/// [`.get()`]: `UnsafeCell::get`
2218/// [concurrent memory model]: ../sync/atomic/index.html#memory-model-for-atomic-accesses
2219///
2220/// # Aliasing rules
2221///
2222/// The precise Rust aliasing rules are somewhat in flux, but the main points are not contentious:
2223///
2224/// - If you create a safe reference with lifetime `'a` (either a `&T` or `&mut T` reference), then
2225/// you must not access the data in any way that contradicts that reference for the remainder of
2226/// `'a`. For example, this means that if you take the `*mut T` from an `UnsafeCell<T>` and cast it
2227/// to an `&T`, then the data in `T` must remain immutable (modulo any `UnsafeCell` data found
2228/// within `T`, of course) until that reference's lifetime expires. Similarly, if you create a
2229/// `&mut T` reference that is released to safe code, then you must not access the data within the
2230/// `UnsafeCell` until that reference expires.
2231///
2232/// - For both `&T` without `UnsafeCell<_>` and `&mut T`, you must also not deallocate the data
2233/// until the reference expires. As a special exception, given an `&T`, any part of it that is
2234/// inside an `UnsafeCell<_>` may be deallocated during the lifetime of the reference, after the
2235/// last time the reference is used (dereferenced or reborrowed). Since you cannot deallocate a part
2236/// of what a reference points to, this means the memory an `&T` points to can be deallocated only if
2237/// *every part of it* (including padding) is inside an `UnsafeCell`.
2238///
2239/// However, whenever a `&UnsafeCell<T>` is constructed or dereferenced, it must still point to
2240/// live memory and the compiler is allowed to insert spurious reads if it can prove that this
2241/// memory has not yet been deallocated.
2242///
2243/// To assist with proper design, the following scenarios are explicitly declared legal
2244/// for single-threaded code:
2245///
2246/// 1. A `&T` reference can be released to safe code and there it can co-exist with other `&T`
2247/// references, but not with a `&mut T`
2248///
2249/// 2. A `&mut T` reference may be released to safe code provided neither other `&mut T` nor `&T`
2250/// co-exist with it. A `&mut T` must always be unique.
2251///
2252/// Note that whilst mutating the contents of an `&UnsafeCell<T>` (even while other
2253/// `&UnsafeCell<T>` references alias the cell) is
2254/// ok (provided you enforce the above invariants some other way), it is still undefined behavior
2255/// to have multiple `&mut UnsafeCell<T>` aliases. That is, `UnsafeCell` is a wrapper
2256/// designed to have a special interaction with _shared_ accesses (_i.e._, through an
2257/// `&UnsafeCell<_>` reference); there is no magic whatsoever when dealing with _exclusive_
2258/// accesses (_e.g._, through a `&mut UnsafeCell<_>`): neither the cell nor the wrapped value
2259/// may be aliased for the duration of that `&mut` borrow.
2260/// This is showcased by the [`.get_mut()`] accessor, which is a _safe_ getter that yields
2261/// a `&mut T`.
2262///
2263/// [`.get_mut()`]: `UnsafeCell::get_mut`
2264///
2265/// # Memory layout
2266///
2267/// `UnsafeCell<T>` has the same in-memory representation as its inner type `T`. A consequence
2268/// of this guarantee is that it is possible to convert between `T` and `UnsafeCell<T>`.
2269/// Special care has to be taken when converting a nested `T` inside of an `Outer<T>` type
2270/// to an `Outer<UnsafeCell<T>>` type: this is not sound when the `Outer<T>` type enables [niche]
2271/// optimizations. For example, the type `Option<NonNull<u8>>` is typically 8 bytes large on
2272/// 64-bit platforms, but the type `Option<UnsafeCell<NonNull<u8>>>` takes up 16 bytes of space.
2273/// Therefore this is not a valid conversion, despite `NonNull<u8>` and `UnsafeCell<NonNull<u8>>>`
2274/// having the same memory layout. This is because `UnsafeCell` disables niche optimizations in
2275/// order to avoid its interior mutability property from spreading from `T` into the `Outer` type,
2276/// thus this can cause distortions in the type size in these cases.
2277///
2278/// Note that the only valid way to obtain a `*mut T` pointer to the contents of a
2279/// _shared_ `UnsafeCell<T>` is through [`.get()`] or [`.raw_get()`]. A `&mut T` reference
2280/// can be obtained by either dereferencing this pointer or by calling [`.get_mut()`]
2281/// on an _exclusive_ `UnsafeCell<T>`. Even though `T` and `UnsafeCell<T>` have the
2282/// same memory layout, the following is not allowed and undefined behavior:
2283///
2284/// ```rust,compile_fail
2285/// # use std::cell::UnsafeCell;
2286/// unsafe fn not_allowed<T>(ptr: &UnsafeCell<T>) -> &mut T {
2287/// let t = ptr as *const UnsafeCell<T> as *mut T;
2288/// // This is undefined behavior, because the `*mut T` pointer
2289/// // was not obtained through `.get()` nor `.raw_get()`:
2290/// unsafe { &mut *t }
2291/// }
2292/// ```
2293///
2294/// Instead, do this:
2295///
2296/// ```rust
2297/// # use std::cell::UnsafeCell;
2298/// // Safety: the caller must ensure that there are no references that
2299/// // point to the *contents* of the `UnsafeCell`.
2300/// unsafe fn get_mut<T>(ptr: &UnsafeCell<T>) -> &mut T {
2301/// unsafe { &mut *ptr.get() }
2302/// }
2303/// ```
2304///
2305/// Converting in the other direction from a `&mut T`
2306/// to an `&UnsafeCell<T>` is allowed:
2307///
2308/// ```rust
2309/// # use std::cell::UnsafeCell;
2310/// fn get_shared<T>(ptr: &mut T) -> &UnsafeCell<T> {
2311/// let t = ptr as *mut T as *const UnsafeCell<T>;
2312/// // SAFETY: `T` and `UnsafeCell<T>` have the same memory layout
2313/// unsafe { &*t }
2314/// }
2315/// ```
2316///
2317/// [niche]: https://rust-lang.github.io/unsafe-code-guidelines/glossary.html#niche
2318/// [`.raw_get()`]: `UnsafeCell::raw_get`
2319///
2320/// # Examples
2321///
2322/// Here is an example showcasing how to soundly mutate the contents of an `UnsafeCell<_>` despite
2323/// there being multiple references aliasing the cell:
2324///
2325/// ```
2326/// use std::cell::UnsafeCell;
2327///
2328/// let x: UnsafeCell<i32> = 42.into();
2329/// // Get multiple / concurrent / shared references to the same `x`.
2330/// let (p1, p2): (&UnsafeCell<i32>, &UnsafeCell<i32>) = (&x, &x);
2331///
2332/// unsafe {
2333/// // SAFETY: within this scope there are no other references to `x`'s contents,
2334/// // so ours is effectively unique.
2335/// let p1_exclusive: &mut i32 = &mut *p1.get(); // -- borrow --+
2336/// *p1_exclusive += 27; // |
2337/// } // <---------- cannot go beyond this point -------------------+
2338///
2339/// unsafe {
2340/// // SAFETY: within this scope nobody expects to have exclusive access to `x`'s contents,
2341/// // so we can have multiple shared accesses concurrently.
2342/// let p2_shared: &i32 = &*p2.get();
2343/// assert_eq!(*p2_shared, 42 + 27);
2344/// let p1_shared: &i32 = &*p1.get();
2345/// assert_eq!(*p1_shared, *p2_shared);
2346/// }
2347/// ```
2348///
2349/// The following example showcases the fact that exclusive access to an `UnsafeCell<T>`
2350/// implies exclusive access to its `T`:
2351///
2352/// ```rust
2353/// #![forbid(unsafe_code)]
2354/// // with exclusive accesses, `UnsafeCell` is a transparent no-op wrapper, so no need for
2355/// // `unsafe` here.
2356/// use std::cell::UnsafeCell;
2357///
2358/// let mut x: UnsafeCell<i32> = 42.into();
2359///
2360/// // Get a compile-time-checked unique reference to `x`.
2361/// let p_unique: &mut UnsafeCell<i32> = &mut x;
2362/// // With an exclusive reference, we can mutate the contents for free.
2363/// *p_unique.get_mut() = 0;
2364/// // Or, equivalently:
2365/// x = UnsafeCell::new(0);
2366///
2367/// // When we own the value, we can extract the contents for free.
2368/// let contents: i32 = x.into_inner();
2369/// assert_eq!(contents, 0);
2370/// ```
2371#[lang = "unsafe_cell"]
2372#[stable(feature = "rust1", since = "1.0.0")]
2373#[repr(transparent)]
2374#[rustc_pub_transparent]
2375pub struct UnsafeCell<T: ?Sized> {
2376 value: T,
2377}
2378
2379#[stable(feature = "rust1", since = "1.0.0")]
2380impl<T: ?Sized> !Sync for UnsafeCell<T> {}
2381
2382impl<T> UnsafeCell<T> {
2383 /// Constructs a new instance of `UnsafeCell` which will wrap the specified
2384 /// value.
2385 ///
2386 /// All access to the inner value through `&UnsafeCell<T>` requires `unsafe` code.
2387 ///
2388 /// # Examples
2389 ///
2390 /// ```
2391 /// use std::cell::UnsafeCell;
2392 ///
2393 /// let uc = UnsafeCell::new(5);
2394 /// ```
2395 #[stable(feature = "rust1", since = "1.0.0")]
2396 #[rustc_const_stable(feature = "const_unsafe_cell_new", since = "1.32.0")]
2397 #[inline(always)]
2398 pub const fn new(value: T) -> UnsafeCell<T> {
2399 UnsafeCell { value }
2400 }
2401
2402 /// Unwraps the value, consuming the cell.
2403 ///
2404 /// # Examples
2405 ///
2406 /// ```
2407 /// use std::cell::UnsafeCell;
2408 ///
2409 /// let uc = UnsafeCell::new(5);
2410 ///
2411 /// let five = uc.into_inner();
2412 /// ```
2413 #[inline(always)]
2414 #[stable(feature = "rust1", since = "1.0.0")]
2415 #[rustc_const_stable(feature = "const_cell_into_inner", since = "1.83.0")]
2416 #[rustc_allow_const_fn_unstable(const_precise_live_drops)]
2417 pub const fn into_inner(self) -> T {
2418 self.value
2419 }
2420
2421 /// Replace the value in this `UnsafeCell` and return the old value.
2422 ///
2423 /// # Safety
2424 ///
2425 /// The caller must take care to avoid aliasing and data races.
2426 ///
2427 /// - It is Undefined Behavior to allow calls to race with
2428 /// any other access to the wrapped value.
2429 /// - It is Undefined Behavior to call this while any other
2430 /// reference(s) to the wrapped value are alive.
2431 ///
2432 /// # Examples
2433 ///
2434 /// ```
2435 /// #![feature(unsafe_cell_access)]
2436 /// use std::cell::UnsafeCell;
2437 ///
2438 /// let uc = UnsafeCell::new(5);
2439 ///
2440 /// let old = unsafe { uc.replace(10) };
2441 /// assert_eq!(old, 5);
2442 /// ```
2443 #[inline]
2444 #[unstable(feature = "unsafe_cell_access", issue = "136327")]
2445 #[cfg(not(feature = "ferrocene_subset"))]
2446 #[rustc_should_not_be_called_on_const_items]
2447 pub const unsafe fn replace(&self, value: T) -> T {
2448 // SAFETY: pointer comes from `&self` so naturally satisfies invariants.
2449 unsafe { ptr::replace(self.get(), value) }
2450 }
2451}
2452
2453impl<T: ?Sized> UnsafeCell<T> {
2454 /// Converts from `&mut T` to `&mut UnsafeCell<T>`.
2455 ///
2456 /// # Examples
2457 ///
2458 /// ```
2459 /// use std::cell::UnsafeCell;
2460 ///
2461 /// let mut val = 42;
2462 /// let uc = UnsafeCell::from_mut(&mut val);
2463 ///
2464 /// *uc.get_mut() -= 1;
2465 /// assert_eq!(*uc.get_mut(), 41);
2466 /// ```
2467 #[inline(always)]
2468 #[stable(feature = "unsafe_cell_from_mut", since = "1.84.0")]
2469 #[rustc_const_stable(feature = "unsafe_cell_from_mut", since = "1.84.0")]
2470 #[cfg(not(feature = "ferrocene_subset"))]
2471 pub const fn from_mut(value: &mut T) -> &mut UnsafeCell<T> {
2472 // SAFETY: `UnsafeCell<T>` has the same memory layout as `T` due to #[repr(transparent)].
2473 unsafe { &mut *(value as *mut T as *mut UnsafeCell<T>) }
2474 }
2475
2476 /// Gets a mutable pointer to the wrapped value.
2477 ///
2478 /// This can be cast to a pointer of any kind. When creating references, you must uphold the
2479 /// aliasing rules; see [the type-level docs][UnsafeCell#aliasing-rules] for more discussion and
2480 /// caveats.
2481 ///
2482 /// # Examples
2483 ///
2484 /// ```
2485 /// use std::cell::UnsafeCell;
2486 ///
2487 /// let uc = UnsafeCell::new(5);
2488 ///
2489 /// let five = uc.get();
2490 /// ```
2491 #[inline(always)]
2492 #[stable(feature = "rust1", since = "1.0.0")]
2493 #[rustc_const_stable(feature = "const_unsafecell_get", since = "1.32.0")]
2494 #[rustc_as_ptr]
2495 #[rustc_never_returns_null_ptr]
2496 #[rustc_should_not_be_called_on_const_items]
2497 pub const fn get(&self) -> *mut T {
2498 // We can just cast the pointer from `UnsafeCell<T>` to `T` because of
2499 // #[repr(transparent)]. This exploits std's special status, there is
2500 // no guarantee for user code that this will work in future versions of the compiler!
2501 self as *const UnsafeCell<T> as *const T as *mut T
2502 }
2503
2504 /// Returns a mutable reference to the underlying data.
2505 ///
2506 /// This call borrows the `UnsafeCell` mutably (at compile-time) which
2507 /// guarantees that we possess the only reference.
2508 ///
2509 /// # Examples
2510 ///
2511 /// ```
2512 /// use std::cell::UnsafeCell;
2513 ///
2514 /// let mut c = UnsafeCell::new(5);
2515 /// *c.get_mut() += 1;
2516 ///
2517 /// assert_eq!(*c.get_mut(), 6);
2518 /// ```
2519 #[inline(always)]
2520 #[stable(feature = "unsafe_cell_get_mut", since = "1.50.0")]
2521 #[rustc_const_stable(feature = "const_unsafecell_get_mut", since = "1.83.0")]
2522 pub const fn get_mut(&mut self) -> &mut T {
2523 &mut self.value
2524 }
2525
2526 /// Gets a mutable pointer to the wrapped value.
2527 /// The difference from [`get`] is that this function accepts a raw pointer,
2528 /// which is useful to avoid the creation of temporary references.
2529 ///
2530 /// This can be cast to a pointer of any kind. When creating references, you must uphold the
2531 /// aliasing rules; see [the type-level docs][UnsafeCell#aliasing-rules] for more discussion and
2532 /// caveats.
2533 ///
2534 /// [`get`]: UnsafeCell::get()
2535 ///
2536 /// # Examples
2537 ///
2538 /// Gradual initialization of an `UnsafeCell` requires `raw_get`, as
2539 /// calling `get` would require creating a reference to uninitialized data:
2540 ///
2541 /// ```
2542 /// use std::cell::UnsafeCell;
2543 /// use std::mem::MaybeUninit;
2544 ///
2545 /// let m = MaybeUninit::<UnsafeCell<i32>>::uninit();
2546 /// unsafe { UnsafeCell::raw_get(m.as_ptr()).write(5); }
2547 /// // avoid below which references to uninitialized data
2548 /// // unsafe { UnsafeCell::get(&*m.as_ptr()).write(5); }
2549 /// let uc = unsafe { m.assume_init() };
2550 ///
2551 /// assert_eq!(uc.into_inner(), 5);
2552 /// ```
2553 #[inline(always)]
2554 #[stable(feature = "unsafe_cell_raw_get", since = "1.56.0")]
2555 #[rustc_const_stable(feature = "unsafe_cell_raw_get", since = "1.56.0")]
2556 #[rustc_diagnostic_item = "unsafe_cell_raw_get"]
2557 pub const fn raw_get(this: *const Self) -> *mut T {
2558 // We can just cast the pointer from `UnsafeCell<T>` to `T` because of
2559 // #[repr(transparent)]. This exploits std's special status, there is
2560 // no guarantee for user code that this will work in future versions of the compiler!
2561 this as *const T as *mut T
2562 }
2563
2564 /// Get a shared reference to the value within the `UnsafeCell`.
2565 ///
2566 /// # Safety
2567 ///
2568 /// - It is Undefined Behavior to call this while any mutable
2569 /// reference to the wrapped value is alive.
2570 /// - Mutating the wrapped value while the returned
2571 /// reference is alive is Undefined Behavior.
2572 ///
2573 /// # Examples
2574 ///
2575 /// ```
2576 /// #![feature(unsafe_cell_access)]
2577 /// use std::cell::UnsafeCell;
2578 ///
2579 /// let uc = UnsafeCell::new(5);
2580 ///
2581 /// let val = unsafe { uc.as_ref_unchecked() };
2582 /// assert_eq!(val, &5);
2583 /// ```
2584 #[inline]
2585 #[unstable(feature = "unsafe_cell_access", issue = "136327")]
2586 #[cfg(not(feature = "ferrocene_subset"))]
2587 #[rustc_should_not_be_called_on_const_items]
2588 pub const unsafe fn as_ref_unchecked(&self) -> &T {
2589 // SAFETY: pointer comes from `&self` so naturally satisfies ptr-to-ref invariants.
2590 unsafe { self.get().as_ref_unchecked() }
2591 }
2592
2593 /// Get an exclusive reference to the value within the `UnsafeCell`.
2594 ///
2595 /// # Safety
2596 ///
2597 /// - It is Undefined Behavior to call this while any other
2598 /// reference(s) to the wrapped value are alive.
2599 /// - Mutating the wrapped value through other means while the
2600 /// returned reference is alive is Undefined Behavior.
2601 ///
2602 /// # Examples
2603 ///
2604 /// ```
2605 /// #![feature(unsafe_cell_access)]
2606 /// use std::cell::UnsafeCell;
2607 ///
2608 /// let uc = UnsafeCell::new(5);
2609 ///
2610 /// unsafe { *uc.as_mut_unchecked() += 1; }
2611 /// assert_eq!(uc.into_inner(), 6);
2612 /// ```
2613 #[inline]
2614 #[unstable(feature = "unsafe_cell_access", issue = "136327")]
2615 #[allow(clippy::mut_from_ref)]
2616 #[cfg(not(feature = "ferrocene_subset"))]
2617 #[rustc_should_not_be_called_on_const_items]
2618 pub const unsafe fn as_mut_unchecked(&self) -> &mut T {
2619 // SAFETY: pointer comes from `&self` so naturally satisfies ptr-to-ref invariants.
2620 unsafe { self.get().as_mut_unchecked() }
2621 }
2622}
2623
2624#[stable(feature = "unsafe_cell_default", since = "1.10.0")]
2625#[rustc_const_unstable(feature = "const_default", issue = "143894")]
2626#[cfg(not(feature = "ferrocene_subset"))]
2627impl<T: [const] Default> const Default for UnsafeCell<T> {
2628 /// Creates an `UnsafeCell`, with the `Default` value for T.
2629 fn default() -> UnsafeCell<T> {
2630 UnsafeCell::new(Default::default())
2631 }
2632}
2633
2634#[stable(feature = "cell_from", since = "1.12.0")]
2635#[rustc_const_unstable(feature = "const_convert", issue = "143773")]
2636#[cfg(not(feature = "ferrocene_subset"))]
2637impl<T> const From<T> for UnsafeCell<T> {
2638 /// Creates a new `UnsafeCell<T>` containing the given value.
2639 fn from(t: T) -> UnsafeCell<T> {
2640 UnsafeCell::new(t)
2641 }
2642}
2643
2644#[unstable(feature = "coerce_unsized", issue = "18598")]
2645#[cfg(not(feature = "ferrocene_subset"))]
2646impl<T: CoerceUnsized<U>, U> CoerceUnsized<UnsafeCell<U>> for UnsafeCell<T> {}
2647
2648// Allow types that wrap `UnsafeCell` to also implement `DispatchFromDyn`
2649// and become dyn-compatible method receivers.
2650// Note that currently `UnsafeCell` itself cannot be a method receiver
2651// because it does not implement Deref.
2652// In other words:
2653// `self: UnsafeCell<&Self>` won't work
2654// `self: UnsafeCellWrapper<Self>` becomes possible
2655#[unstable(feature = "dispatch_from_dyn", issue = "none")]
2656#[cfg(not(feature = "ferrocene_subset"))]
2657impl<T: DispatchFromDyn<U>, U> DispatchFromDyn<UnsafeCell<U>> for UnsafeCell<T> {}
2658
2659/// [`UnsafeCell`], but [`Sync`].
2660///
2661/// This is just an `UnsafeCell`, except it implements `Sync`
2662/// if `T` implements `Sync`.
2663///
2664/// `UnsafeCell` doesn't implement `Sync`, to prevent accidental mis-use.
2665/// You can use `SyncUnsafeCell` instead of `UnsafeCell` to allow it to be
2666/// shared between threads, if that's intentional.
2667/// Providing proper synchronization is still the task of the user,
2668/// making this type just as unsafe to use.
2669///
2670/// See [`UnsafeCell`] for details.
2671#[unstable(feature = "sync_unsafe_cell", issue = "95439")]
2672#[repr(transparent)]
2673#[rustc_diagnostic_item = "SyncUnsafeCell"]
2674#[rustc_pub_transparent]
2675#[cfg(not(feature = "ferrocene_subset"))]
2676pub struct SyncUnsafeCell<T: ?Sized> {
2677 value: UnsafeCell<T>,
2678}
2679
2680#[unstable(feature = "sync_unsafe_cell", issue = "95439")]
2681#[cfg(not(feature = "ferrocene_subset"))]
2682unsafe impl<T: ?Sized + Sync> Sync for SyncUnsafeCell<T> {}
2683
2684#[unstable(feature = "sync_unsafe_cell", issue = "95439")]
2685#[cfg(not(feature = "ferrocene_subset"))]
2686impl<T> SyncUnsafeCell<T> {
2687 /// Constructs a new instance of `SyncUnsafeCell` which will wrap the specified value.
2688 #[inline]
2689 pub const fn new(value: T) -> Self {
2690 Self { value: UnsafeCell { value } }
2691 }
2692
2693 /// Unwraps the value, consuming the cell.
2694 #[inline]
2695 #[rustc_const_unstable(feature = "sync_unsafe_cell", issue = "95439")]
2696 pub const fn into_inner(self) -> T {
2697 self.value.into_inner()
2698 }
2699}
2700
2701#[unstable(feature = "sync_unsafe_cell", issue = "95439")]
2702#[cfg(not(feature = "ferrocene_subset"))]
2703impl<T: ?Sized> SyncUnsafeCell<T> {
2704 /// Gets a mutable pointer to the wrapped value.
2705 ///
2706 /// This can be cast to a pointer of any kind.
2707 /// Ensure that the access is unique (no active references, mutable or not)
2708 /// when casting to `&mut T`, and ensure that there are no mutations
2709 /// or mutable aliases going on when casting to `&T`
2710 #[inline]
2711 #[rustc_as_ptr]
2712 #[rustc_never_returns_null_ptr]
2713 #[rustc_should_not_be_called_on_const_items]
2714 pub const fn get(&self) -> *mut T {
2715 self.value.get()
2716 }
2717
2718 /// Returns a mutable reference to the underlying data.
2719 ///
2720 /// This call borrows the `SyncUnsafeCell` mutably (at compile-time) which
2721 /// guarantees that we possess the only reference.
2722 #[inline]
2723 pub const fn get_mut(&mut self) -> &mut T {
2724 self.value.get_mut()
2725 }
2726
2727 /// Gets a mutable pointer to the wrapped value.
2728 ///
2729 /// See [`UnsafeCell::get`] for details.
2730 #[inline]
2731 pub const fn raw_get(this: *const Self) -> *mut T {
2732 // We can just cast the pointer from `SyncUnsafeCell<T>` to `T` because
2733 // of #[repr(transparent)] on both SyncUnsafeCell and UnsafeCell.
2734 // See UnsafeCell::raw_get.
2735 this as *const T as *mut T
2736 }
2737}
2738
2739#[unstable(feature = "sync_unsafe_cell", issue = "95439")]
2740#[rustc_const_unstable(feature = "const_default", issue = "143894")]
2741#[cfg(not(feature = "ferrocene_subset"))]
2742impl<T: [const] Default> const Default for SyncUnsafeCell<T> {
2743 /// Creates an `SyncUnsafeCell`, with the `Default` value for T.
2744 fn default() -> SyncUnsafeCell<T> {
2745 SyncUnsafeCell::new(Default::default())
2746 }
2747}
2748
2749#[unstable(feature = "sync_unsafe_cell", issue = "95439")]
2750#[rustc_const_unstable(feature = "const_convert", issue = "143773")]
2751#[cfg(not(feature = "ferrocene_subset"))]
2752impl<T> const From<T> for SyncUnsafeCell<T> {
2753 /// Creates a new `SyncUnsafeCell<T>` containing the given value.
2754 fn from(t: T) -> SyncUnsafeCell<T> {
2755 SyncUnsafeCell::new(t)
2756 }
2757}
2758
2759#[unstable(feature = "coerce_unsized", issue = "18598")]
2760//#[unstable(feature = "sync_unsafe_cell", issue = "95439")]
2761#[cfg(not(feature = "ferrocene_subset"))]
2762impl<T: CoerceUnsized<U>, U> CoerceUnsized<SyncUnsafeCell<U>> for SyncUnsafeCell<T> {}
2763
2764// Allow types that wrap `SyncUnsafeCell` to also implement `DispatchFromDyn`
2765// and become dyn-compatible method receivers.
2766// Note that currently `SyncUnsafeCell` itself cannot be a method receiver
2767// because it does not implement Deref.
2768// In other words:
2769// `self: SyncUnsafeCell<&Self>` won't work
2770// `self: SyncUnsafeCellWrapper<Self>` becomes possible
2771#[unstable(feature = "dispatch_from_dyn", issue = "none")]
2772//#[unstable(feature = "sync_unsafe_cell", issue = "95439")]
2773#[cfg(not(feature = "ferrocene_subset"))]
2774impl<T: DispatchFromDyn<U>, U> DispatchFromDyn<SyncUnsafeCell<U>> for SyncUnsafeCell<T> {}
2775
2776#[allow(unused)]
2777#[cfg(not(feature = "ferrocene_subset"))]
2778fn assert_coerce_unsized(
2779 a: UnsafeCell<&i32>,
2780 b: SyncUnsafeCell<&i32>,
2781 c: Cell<&i32>,
2782 d: RefCell<&i32>,
2783) {
2784 let _: UnsafeCell<&dyn Send> = a;
2785 let _: SyncUnsafeCell<&dyn Send> = b;
2786 let _: Cell<&dyn Send> = c;
2787 let _: RefCell<&dyn Send> = d;
2788}
2789
2790#[cfg(not(feature = "ferrocene_subset"))]
2791#[unstable(feature = "pin_coerce_unsized_trait", issue = "150112")]
2792unsafe impl<T: ?Sized> PinCoerceUnsized for UnsafeCell<T> {}
2793
2794#[cfg(not(feature = "ferrocene_subset"))]
2795#[unstable(feature = "pin_coerce_unsized_trait", issue = "150112")]
2796unsafe impl<T: ?Sized> PinCoerceUnsized for SyncUnsafeCell<T> {}
2797
2798#[cfg(not(feature = "ferrocene_subset"))]
2799#[unstable(feature = "pin_coerce_unsized_trait", issue = "150112")]
2800unsafe impl<T: ?Sized> PinCoerceUnsized for Cell<T> {}
2801
2802#[cfg(not(feature = "ferrocene_subset"))]
2803#[unstable(feature = "pin_coerce_unsized_trait", issue = "150112")]
2804unsafe impl<T: ?Sized> PinCoerceUnsized for RefCell<T> {}
2805
2806#[cfg(not(feature = "ferrocene_subset"))]
2807#[unstable(feature = "pin_coerce_unsized_trait", issue = "150112")]
2808unsafe impl<'b, T: ?Sized> PinCoerceUnsized for Ref<'b, T> {}
2809
2810#[cfg(not(feature = "ferrocene_subset"))]
2811#[unstable(feature = "pin_coerce_unsized_trait", issue = "150112")]
2812unsafe impl<'b, T: ?Sized> PinCoerceUnsized for RefMut<'b, T> {}