core/
cell.rs

1//! Shareable mutable containers.
2//!
3//! Rust memory safety is based on this rule: Given an object `T`, it is only possible to
4//! have one of the following:
5//!
6//! - Several immutable references (`&T`) to the object (also known as **aliasing**).
7//! - One mutable reference (`&mut T`) to the object (also known as **mutability**).
8//!
9//! This is enforced by the Rust compiler. However, there are situations where this rule is not
10//! flexible enough. Sometimes it is required to have multiple references to an object and yet
11//! mutate it.
12//!
13//! Shareable mutable containers exist to permit mutability in a controlled manner, even in the
14//! presence of aliasing. [`Cell<T>`], [`RefCell<T>`], and [`OnceCell<T>`] allow doing this in
15//! a single-threaded way—they do not implement [`Sync`]. (If you need to do aliasing and
16//! mutation among multiple threads, [`Mutex<T>`], [`RwLock<T>`], [`OnceLock<T>`] or [`atomic`]
17//! types are the correct data structures to do so).
18//!
19//! Values of the `Cell<T>`, `RefCell<T>`, and `OnceCell<T>` types may be mutated through shared
20//! references (i.e. the common `&T` type), whereas most Rust types can only be mutated through
21//! unique (`&mut T`) references. We say these cell types provide 'interior mutability'
22//! (mutable via `&T`), in contrast with typical Rust types that exhibit 'inherited mutability'
23//! (mutable only via `&mut T`).
24//!
25//! Cell types come in four flavors: `Cell<T>`, `RefCell<T>`, `OnceCell<T>`, and `LazyCell<T>`.
26//! Each provides a different way of providing safe interior mutability.
27//!
28//! ## `Cell<T>`
29//!
30//! [`Cell<T>`] implements interior mutability by moving values in and out of the cell. That is, an
31//! `&mut T` to the inner value can never be obtained, and the value itself cannot be directly
32//! obtained without replacing it with something else. Both of these rules ensure that there is
33//! never more than one reference pointing to the inner value. This type provides the following
34//! methods:
35//!
36//!  - For types that implement [`Copy`], the [`get`](Cell::get) method retrieves the current
37//!    interior value by duplicating it.
38//!  - For types that implement [`Default`], the [`take`](Cell::take) method replaces the current
39//!    interior value with [`Default::default()`] and returns the replaced value.
40//!  - All types have:
41//!    - [`replace`](Cell::replace): replaces the current interior value and returns the replaced
42//!      value.
43//!    - [`into_inner`](Cell::into_inner): this method consumes the `Cell<T>` and returns the
44//!      interior value.
45//!    - [`set`](Cell::set): this method replaces the interior value, dropping the replaced value.
46//!
47//! `Cell<T>` is typically used for more simple types where copying or moving values isn't too
48//! resource intensive (e.g. numbers), and should usually be preferred over other cell types when
49//! possible. For larger and non-copy types, `RefCell` provides some advantages.
50//!
51//! ## `RefCell<T>`
52//!
53//! [`RefCell<T>`] uses Rust's lifetimes to implement "dynamic borrowing", a process whereby one can
54//! claim temporary, exclusive, mutable access to the inner value. Borrows for `RefCell<T>`s are
55//! tracked at _runtime_, unlike Rust's native reference types which are entirely tracked
56//! statically, at compile time.
57//!
58//! An immutable reference to a `RefCell`'s inner value (`&T`) can be obtained with
59//! [`borrow`](`RefCell::borrow`), and a mutable borrow (`&mut T`) can be obtained with
60//! [`borrow_mut`](`RefCell::borrow_mut`). When these functions are called, they first verify that
61//! Rust's borrow rules will be satisfied: any number of immutable borrows are allowed or a
62//! single mutable borrow is allowed, but never both. If a borrow is attempted that would violate
63//! these rules, the thread will panic.
64//!
65//! The corresponding [`Sync`] version of `RefCell<T>` is [`RwLock<T>`].
66//!
67//! ## `OnceCell<T>`
68//!
69//! [`OnceCell<T>`] is somewhat of a hybrid of `Cell` and `RefCell` that works for values that
70//! typically only need to be set once. This means that a reference `&T` can be obtained without
71//! moving or copying the inner value (unlike `Cell`) but also without runtime checks (unlike
72//! `RefCell`). However, its value can also not be updated once set unless you have a mutable
73//! reference to the `OnceCell`.
74//!
75//! `OnceCell` provides the following methods:
76//!
77//! - [`get`](OnceCell::get): obtain a reference to the inner value
78//! - [`set`](OnceCell::set): set the inner value if it is unset (returns a `Result`)
79//! - [`get_or_init`](OnceCell::get_or_init): return the inner value, initializing it if needed
80//! - [`get_mut`](OnceCell::get_mut): provide a mutable reference to the inner value, only available
81//!   if you have a mutable reference to the cell itself.
82//!
83//! The corresponding [`Sync`] version of `OnceCell<T>` is [`OnceLock<T>`].
84//!
85//! ## `LazyCell<T, F>`
86//!
87//! A common pattern with OnceCell is, for a given OnceCell, to use the same function on every
88//! call to [`OnceCell::get_or_init`] with that cell. This is what is offered by [`LazyCell`],
89//! which pairs cells of `T` with functions of `F`, and always calls `F` before it yields `&T`.
90//! This happens implicitly by simply attempting to dereference the LazyCell to get its contents,
91//! so its use is much more transparent with a place which has been initialized by a constant.
92//!
93//! More complicated patterns that don't fit this description can be built on `OnceCell<T>` instead.
94//!
95//! `LazyCell` works by providing an implementation of `impl Deref` that calls the function,
96//! so you can just use it by dereference (e.g. `*lazy_cell` or `lazy_cell.deref()`).
97//!
98//! The corresponding [`Sync`] version of `LazyCell<T, F>` is [`LazyLock<T, F>`].
99//!
100//! # When to choose interior mutability
101//!
102//! The more common inherited mutability, where one must have unique access to mutate a value, is
103//! one of the key language elements that enables Rust to reason strongly about pointer aliasing,
104//! statically preventing crash bugs. Because of that, inherited mutability is preferred, and
105//! interior mutability is something of a last resort. Since cell types enable mutation where it
106//! would otherwise be disallowed though, there are occasions when interior mutability might be
107//! appropriate, or even *must* be used, e.g.
108//!
109//! * Introducing mutability 'inside' of something immutable
110//! * Implementation details of logically-immutable methods.
111//! * Mutating implementations of [`Clone`].
112//!
113//! ## Introducing mutability 'inside' of something immutable
114//!
115//! Many shared smart pointer types, including [`Rc<T>`] and [`Arc<T>`], provide containers that can
116//! be cloned and shared between multiple parties. Because the contained values may be
117//! multiply-aliased, they can only be borrowed with `&`, not `&mut`. Without cells it would be
118//! impossible to mutate data inside of these smart pointers at all.
119//!
120//! It's very common then to put a `RefCell<T>` inside shared pointer types to reintroduce
121//! mutability:
122//!
123//! ```
124//! use std::cell::{RefCell, RefMut};
125//! use std::collections::HashMap;
126//! use std::rc::Rc;
127//!
128//! fn main() {
129//!     let shared_map: Rc<RefCell<_>> = Rc::new(RefCell::new(HashMap::new()));
130//!     // Create a new block to limit the scope of the dynamic borrow
131//!     {
132//!         let mut map: RefMut<'_, _> = shared_map.borrow_mut();
133//!         map.insert("africa", 92388);
134//!         map.insert("kyoto", 11837);
135//!         map.insert("piccadilly", 11826);
136//!         map.insert("marbles", 38);
137//!     }
138//!
139//!     // Note that if we had not let the previous borrow of the cache fall out
140//!     // of scope then the subsequent borrow would cause a dynamic thread panic.
141//!     // This is the major hazard of using `RefCell`.
142//!     let total: i32 = shared_map.borrow().values().sum();
143//!     println!("{total}");
144//! }
145//! ```
146//!
147//! Note that this example uses `Rc<T>` and not `Arc<T>`. `RefCell<T>`s are for single-threaded
148//! scenarios. Consider using [`RwLock<T>`] or [`Mutex<T>`] if you need shared mutability in a
149//! multi-threaded situation.
150//!
151//! ## Implementation details of logically-immutable methods
152//!
153//! Occasionally it may be desirable not to expose in an API that there is mutation happening
154//! "under the hood". This may be because logically the operation is immutable, but e.g., caching
155//! forces the implementation to perform mutation; or because you must employ mutation to implement
156//! a trait method that was originally defined to take `&self`.
157//!
158//! ```
159//! # #![allow(dead_code)]
160//! use std::cell::OnceCell;
161//!
162//! struct Graph {
163//!     edges: Vec<(i32, i32)>,
164//!     span_tree_cache: OnceCell<Vec<(i32, i32)>>
165//! }
166//!
167//! impl Graph {
168//!     fn minimum_spanning_tree(&self) -> Vec<(i32, i32)> {
169//!         self.span_tree_cache
170//!             .get_or_init(|| self.calc_span_tree())
171//!             .clone()
172//!     }
173//!
174//!     fn calc_span_tree(&self) -> Vec<(i32, i32)> {
175//!         // Expensive computation goes here
176//!         vec![]
177//!     }
178//! }
179//! ```
180//!
181//! ## Mutating implementations of `Clone`
182//!
183//! This is simply a special - but common - case of the previous: hiding mutability for operations
184//! that appear to be immutable. The [`clone`](Clone::clone) method is expected to not change the
185//! source value, and is declared to take `&self`, not `&mut self`. Therefore, any mutation that
186//! happens in the `clone` method must use cell types. For example, [`Rc<T>`] maintains its
187//! reference counts within a `Cell<T>`.
188//!
189//! ```
190//! use std::cell::Cell;
191//! use std::ptr::NonNull;
192//! use std::process::abort;
193//! use std::marker::PhantomData;
194//!
195//! struct Rc<T: ?Sized> {
196//!     ptr: NonNull<RcInner<T>>,
197//!     phantom: PhantomData<RcInner<T>>,
198//! }
199//!
200//! struct RcInner<T: ?Sized> {
201//!     strong: Cell<usize>,
202//!     refcount: Cell<usize>,
203//!     value: T,
204//! }
205//!
206//! impl<T: ?Sized> Clone for Rc<T> {
207//!     fn clone(&self) -> Rc<T> {
208//!         self.inc_strong();
209//!         Rc {
210//!             ptr: self.ptr,
211//!             phantom: PhantomData,
212//!         }
213//!     }
214//! }
215//!
216//! trait RcInnerPtr<T: ?Sized> {
217//!
218//!     fn inner(&self) -> &RcInner<T>;
219//!
220//!     fn strong(&self) -> usize {
221//!         self.inner().strong.get()
222//!     }
223//!
224//!     fn inc_strong(&self) {
225//!         self.inner()
226//!             .strong
227//!             .set(self.strong()
228//!                      .checked_add(1)
229//!                      .unwrap_or_else(|| abort() ));
230//!     }
231//! }
232//!
233//! impl<T: ?Sized> RcInnerPtr<T> for Rc<T> {
234//!    fn inner(&self) -> &RcInner<T> {
235//!        unsafe {
236//!            self.ptr.as_ref()
237//!        }
238//!    }
239//! }
240//! ```
241//!
242//! [`Arc<T>`]: ../../std/sync/struct.Arc.html
243//! [`Rc<T>`]: ../../std/rc/struct.Rc.html
244//! [`RwLock<T>`]: ../../std/sync/struct.RwLock.html
245//! [`Mutex<T>`]: ../../std/sync/struct.Mutex.html
246//! [`OnceLock<T>`]: ../../std/sync/struct.OnceLock.html
247//! [`LazyLock<T, F>`]: ../../std/sync/struct.LazyLock.html
248//! [`Sync`]: ../../std/marker/trait.Sync.html
249//! [`atomic`]: crate::sync::atomic
250
251#![stable(feature = "rust1", since = "1.0.0")]
252
253#[cfg(not(feature = "ferrocene_certified"))]
254use crate::cmp::Ordering;
255#[cfg(not(feature = "ferrocene_certified"))]
256use crate::fmt::{self, Debug, Display};
257#[cfg(not(feature = "ferrocene_certified"))]
258use crate::marker::{PhantomData, Unsize};
259#[cfg(not(feature = "ferrocene_certified"))]
260use crate::mem;
261#[cfg(not(feature = "ferrocene_certified"))]
262use crate::ops::{CoerceUnsized, Deref, DerefMut, DerefPure, DispatchFromDyn};
263#[cfg(not(feature = "ferrocene_certified"))]
264use crate::panic::const_panic;
265#[cfg(not(feature = "ferrocene_certified"))]
266use crate::pin::PinCoerceUnsized;
267#[cfg(not(feature = "ferrocene_certified"))]
268use crate::ptr::{self, NonNull};
269
270#[cfg(not(feature = "ferrocene_certified"))]
271mod lazy;
272#[cfg(not(feature = "ferrocene_certified"))]
273mod once;
274
275#[stable(feature = "lazy_cell", since = "1.80.0")]
276#[cfg(not(feature = "ferrocene_certified"))]
277pub use lazy::LazyCell;
278#[stable(feature = "once_cell", since = "1.70.0")]
279#[cfg(not(feature = "ferrocene_certified"))]
280pub use once::OnceCell;
281
282/// A mutable memory location.
283///
284/// # Memory layout
285///
286/// `Cell<T>` has the same [memory layout and caveats as
287/// `UnsafeCell<T>`](UnsafeCell#memory-layout). In particular, this means that
288/// `Cell<T>` has the same in-memory representation as its inner type `T`.
289///
290/// # Examples
291///
292/// In this example, you can see that `Cell<T>` enables mutation inside an
293/// immutable struct. In other words, it enables "interior mutability".
294///
295/// ```
296/// use std::cell::Cell;
297///
298/// struct SomeStruct {
299///     regular_field: u8,
300///     special_field: Cell<u8>,
301/// }
302///
303/// let my_struct = SomeStruct {
304///     regular_field: 0,
305///     special_field: Cell::new(1),
306/// };
307///
308/// let new_value = 100;
309///
310/// // ERROR: `my_struct` is immutable
311/// // my_struct.regular_field = new_value;
312///
313/// // WORKS: although `my_struct` is immutable, `special_field` is a `Cell`,
314/// // which can always be mutated
315/// my_struct.special_field.set(new_value);
316/// assert_eq!(my_struct.special_field.get(), new_value);
317/// ```
318///
319/// See the [module-level documentation](self) for more.
320#[rustc_diagnostic_item = "Cell"]
321#[stable(feature = "rust1", since = "1.0.0")]
322#[repr(transparent)]
323#[rustc_pub_transparent]
324#[cfg(not(feature = "ferrocene_certified"))]
325pub struct Cell<T: ?Sized> {
326    value: UnsafeCell<T>,
327}
328
329#[stable(feature = "rust1", since = "1.0.0")]
330#[cfg(not(feature = "ferrocene_certified"))]
331unsafe impl<T: ?Sized> Send for Cell<T> where T: Send {}
332
333// Note that this negative impl isn't strictly necessary for correctness,
334// as `Cell` wraps `UnsafeCell`, which is itself `!Sync`.
335// However, given how important `Cell`'s `!Sync`-ness is,
336// having an explicit negative impl is nice for documentation purposes
337// and results in nicer error messages.
338#[stable(feature = "rust1", since = "1.0.0")]
339#[cfg(not(feature = "ferrocene_certified"))]
340impl<T: ?Sized> !Sync for Cell<T> {}
341
342#[stable(feature = "rust1", since = "1.0.0")]
343#[cfg(not(feature = "ferrocene_certified"))]
344impl<T: Copy> Clone for Cell<T> {
345    #[inline]
346    fn clone(&self) -> Cell<T> {
347        Cell::new(self.get())
348    }
349}
350
351#[stable(feature = "rust1", since = "1.0.0")]
352#[rustc_const_unstable(feature = "const_default", issue = "143894")]
353#[cfg(not(feature = "ferrocene_certified"))]
354impl<T: ~const Default> const Default for Cell<T> {
355    /// Creates a `Cell<T>`, with the `Default` value for T.
356    #[inline]
357    fn default() -> Cell<T> {
358        Cell::new(Default::default())
359    }
360}
361
362#[stable(feature = "rust1", since = "1.0.0")]
363#[cfg(not(feature = "ferrocene_certified"))]
364impl<T: PartialEq + Copy> PartialEq for Cell<T> {
365    #[inline]
366    fn eq(&self, other: &Cell<T>) -> bool {
367        self.get() == other.get()
368    }
369}
370
371#[stable(feature = "cell_eq", since = "1.2.0")]
372#[cfg(not(feature = "ferrocene_certified"))]
373impl<T: Eq + Copy> Eq for Cell<T> {}
374
375#[stable(feature = "cell_ord", since = "1.10.0")]
376#[cfg(not(feature = "ferrocene_certified"))]
377impl<T: PartialOrd + Copy> PartialOrd for Cell<T> {
378    #[inline]
379    fn partial_cmp(&self, other: &Cell<T>) -> Option<Ordering> {
380        self.get().partial_cmp(&other.get())
381    }
382
383    #[inline]
384    fn lt(&self, other: &Cell<T>) -> bool {
385        self.get() < other.get()
386    }
387
388    #[inline]
389    fn le(&self, other: &Cell<T>) -> bool {
390        self.get() <= other.get()
391    }
392
393    #[inline]
394    fn gt(&self, other: &Cell<T>) -> bool {
395        self.get() > other.get()
396    }
397
398    #[inline]
399    fn ge(&self, other: &Cell<T>) -> bool {
400        self.get() >= other.get()
401    }
402}
403
404#[stable(feature = "cell_ord", since = "1.10.0")]
405#[cfg(not(feature = "ferrocene_certified"))]
406impl<T: Ord + Copy> Ord for Cell<T> {
407    #[inline]
408    fn cmp(&self, other: &Cell<T>) -> Ordering {
409        self.get().cmp(&other.get())
410    }
411}
412
413#[stable(feature = "cell_from", since = "1.12.0")]
414#[cfg(not(feature = "ferrocene_certified"))]
415impl<T> From<T> for Cell<T> {
416    /// Creates a new `Cell<T>` containing the given value.
417    fn from(t: T) -> Cell<T> {
418        Cell::new(t)
419    }
420}
421
422#[cfg(not(feature = "ferrocene_certified"))]
423impl<T> Cell<T> {
424    /// Creates a new `Cell` containing the given value.
425    ///
426    /// # Examples
427    ///
428    /// ```
429    /// use std::cell::Cell;
430    ///
431    /// let c = Cell::new(5);
432    /// ```
433    #[stable(feature = "rust1", since = "1.0.0")]
434    #[rustc_const_stable(feature = "const_cell_new", since = "1.24.0")]
435    #[inline]
436    pub const fn new(value: T) -> Cell<T> {
437        Cell { value: UnsafeCell::new(value) }
438    }
439
440    /// Sets the contained value.
441    ///
442    /// # Examples
443    ///
444    /// ```
445    /// use std::cell::Cell;
446    ///
447    /// let c = Cell::new(5);
448    ///
449    /// c.set(10);
450    /// ```
451    #[inline]
452    #[stable(feature = "rust1", since = "1.0.0")]
453    pub fn set(&self, val: T) {
454        self.replace(val);
455    }
456
457    /// Swaps the values of two `Cell`s.
458    ///
459    /// The difference with `std::mem::swap` is that this function doesn't
460    /// require a `&mut` reference.
461    ///
462    /// # Panics
463    ///
464    /// This function will panic if `self` and `other` are different `Cell`s that partially overlap.
465    /// (Using just standard library methods, it is impossible to create such partially overlapping `Cell`s.
466    /// However, unsafe code is allowed to e.g. create two `&Cell<[i32; 2]>` that partially overlap.)
467    ///
468    /// # Examples
469    ///
470    /// ```
471    /// use std::cell::Cell;
472    ///
473    /// let c1 = Cell::new(5i32);
474    /// let c2 = Cell::new(10i32);
475    /// c1.swap(&c2);
476    /// assert_eq!(10, c1.get());
477    /// assert_eq!(5, c2.get());
478    /// ```
479    #[inline]
480    #[stable(feature = "move_cell", since = "1.17.0")]
481    pub fn swap(&self, other: &Self) {
482        // This function documents that it *will* panic, and intrinsics::is_nonoverlapping doesn't
483        // do the check in const, so trying to use it here would be inviting unnecessary fragility.
484        fn is_nonoverlapping<T>(src: *const T, dst: *const T) -> bool {
485            let src_usize = src.addr();
486            let dst_usize = dst.addr();
487            let diff = src_usize.abs_diff(dst_usize);
488            diff >= size_of::<T>()
489        }
490
491        if ptr::eq(self, other) {
492            // Swapping wouldn't change anything.
493            return;
494        }
495        if !is_nonoverlapping(self, other) {
496            // See <https://github.com/rust-lang/rust/issues/80778> for why we need to stop here.
497            panic!("`Cell::swap` on overlapping non-identical `Cell`s");
498        }
499        // SAFETY: This can be risky if called from separate threads, but `Cell`
500        // is `!Sync` so this won't happen. This also won't invalidate any
501        // pointers since `Cell` makes sure nothing else will be pointing into
502        // either of these `Cell`s. We also excluded shenanigans like partially overlapping `Cell`s,
503        // so `swap` will just properly copy two full values of type `T` back and forth.
504        unsafe {
505            mem::swap(&mut *self.value.get(), &mut *other.value.get());
506        }
507    }
508
509    /// Replaces the contained value with `val`, and returns the old contained value.
510    ///
511    /// # Examples
512    ///
513    /// ```
514    /// use std::cell::Cell;
515    ///
516    /// let cell = Cell::new(5);
517    /// assert_eq!(cell.get(), 5);
518    /// assert_eq!(cell.replace(10), 5);
519    /// assert_eq!(cell.get(), 10);
520    /// ```
521    #[inline]
522    #[stable(feature = "move_cell", since = "1.17.0")]
523    #[rustc_const_stable(feature = "const_cell", since = "1.88.0")]
524    #[rustc_confusables("swap")]
525    pub const fn replace(&self, val: T) -> T {
526        // SAFETY: This can cause data races if called from a separate thread,
527        // but `Cell` is `!Sync` so this won't happen.
528        mem::replace(unsafe { &mut *self.value.get() }, val)
529    }
530
531    /// Unwraps the value, consuming the cell.
532    ///
533    /// # Examples
534    ///
535    /// ```
536    /// use std::cell::Cell;
537    ///
538    /// let c = Cell::new(5);
539    /// let five = c.into_inner();
540    ///
541    /// assert_eq!(five, 5);
542    /// ```
543    #[stable(feature = "move_cell", since = "1.17.0")]
544    #[rustc_const_stable(feature = "const_cell_into_inner", since = "1.83.0")]
545    #[rustc_allow_const_fn_unstable(const_precise_live_drops)]
546    pub const fn into_inner(self) -> T {
547        self.value.into_inner()
548    }
549}
550
551#[cfg(not(feature = "ferrocene_certified"))]
552impl<T: Copy> Cell<T> {
553    /// Returns a copy of the contained value.
554    ///
555    /// # Examples
556    ///
557    /// ```
558    /// use std::cell::Cell;
559    ///
560    /// let c = Cell::new(5);
561    ///
562    /// let five = c.get();
563    /// ```
564    #[inline]
565    #[stable(feature = "rust1", since = "1.0.0")]
566    #[rustc_const_stable(feature = "const_cell", since = "1.88.0")]
567    pub const fn get(&self) -> T {
568        // SAFETY: This can cause data races if called from a separate thread,
569        // but `Cell` is `!Sync` so this won't happen.
570        unsafe { *self.value.get() }
571    }
572
573    /// Updates the contained value using a function.
574    ///
575    /// # Examples
576    ///
577    /// ```
578    /// use std::cell::Cell;
579    ///
580    /// let c = Cell::new(5);
581    /// c.update(|x| x + 1);
582    /// assert_eq!(c.get(), 6);
583    /// ```
584    #[inline]
585    #[stable(feature = "cell_update", since = "1.88.0")]
586    pub fn update(&self, f: impl FnOnce(T) -> T) {
587        let old = self.get();
588        self.set(f(old));
589    }
590}
591
592#[cfg(not(feature = "ferrocene_certified"))]
593impl<T: ?Sized> Cell<T> {
594    /// Returns a raw pointer to the underlying data in this cell.
595    ///
596    /// # Examples
597    ///
598    /// ```
599    /// use std::cell::Cell;
600    ///
601    /// let c = Cell::new(5);
602    ///
603    /// let ptr = c.as_ptr();
604    /// ```
605    #[inline]
606    #[stable(feature = "cell_as_ptr", since = "1.12.0")]
607    #[rustc_const_stable(feature = "const_cell_as_ptr", since = "1.32.0")]
608    #[rustc_as_ptr]
609    #[rustc_never_returns_null_ptr]
610    pub const fn as_ptr(&self) -> *mut T {
611        self.value.get()
612    }
613
614    /// Returns a mutable reference to the underlying data.
615    ///
616    /// This call borrows `Cell` mutably (at compile-time) which guarantees
617    /// that we possess the only reference.
618    ///
619    /// However be cautious: this method expects `self` to be mutable, which is
620    /// generally not the case when using a `Cell`. If you require interior
621    /// mutability by reference, consider using `RefCell` which provides
622    /// run-time checked mutable borrows through its [`borrow_mut`] method.
623    ///
624    /// [`borrow_mut`]: RefCell::borrow_mut()
625    ///
626    /// # Examples
627    ///
628    /// ```
629    /// use std::cell::Cell;
630    ///
631    /// let mut c = Cell::new(5);
632    /// *c.get_mut() += 1;
633    ///
634    /// assert_eq!(c.get(), 6);
635    /// ```
636    #[inline]
637    #[stable(feature = "cell_get_mut", since = "1.11.0")]
638    #[rustc_const_stable(feature = "const_cell", since = "1.88.0")]
639    pub const fn get_mut(&mut self) -> &mut T {
640        self.value.get_mut()
641    }
642
643    /// Returns a `&Cell<T>` from a `&mut T`
644    ///
645    /// # Examples
646    ///
647    /// ```
648    /// use std::cell::Cell;
649    ///
650    /// let slice: &mut [i32] = &mut [1, 2, 3];
651    /// let cell_slice: &Cell<[i32]> = Cell::from_mut(slice);
652    /// let slice_cell: &[Cell<i32>] = cell_slice.as_slice_of_cells();
653    ///
654    /// assert_eq!(slice_cell.len(), 3);
655    /// ```
656    #[inline]
657    #[stable(feature = "as_cell", since = "1.37.0")]
658    #[rustc_const_stable(feature = "const_cell", since = "1.88.0")]
659    pub const fn from_mut(t: &mut T) -> &Cell<T> {
660        // SAFETY: `&mut` ensures unique access.
661        unsafe { &*(t as *mut T as *const Cell<T>) }
662    }
663}
664
665#[cfg(not(feature = "ferrocene_certified"))]
666impl<T: Default> Cell<T> {
667    /// Takes the value of the cell, leaving `Default::default()` in its place.
668    ///
669    /// # Examples
670    ///
671    /// ```
672    /// use std::cell::Cell;
673    ///
674    /// let c = Cell::new(5);
675    /// let five = c.take();
676    ///
677    /// assert_eq!(five, 5);
678    /// assert_eq!(c.into_inner(), 0);
679    /// ```
680    #[stable(feature = "move_cell", since = "1.17.0")]
681    pub fn take(&self) -> T {
682        self.replace(Default::default())
683    }
684}
685
686#[unstable(feature = "coerce_unsized", issue = "18598")]
687#[cfg(not(feature = "ferrocene_certified"))]
688impl<T: CoerceUnsized<U>, U> CoerceUnsized<Cell<U>> for Cell<T> {}
689
690// Allow types that wrap `Cell` to also implement `DispatchFromDyn`
691// and become dyn-compatible method receivers.
692// Note that currently `Cell` itself cannot be a method receiver
693// because it does not implement Deref.
694// In other words:
695// `self: Cell<&Self>` won't work
696// `self: CellWrapper<Self>` becomes possible
697#[unstable(feature = "dispatch_from_dyn", issue = "none")]
698#[cfg(not(feature = "ferrocene_certified"))]
699impl<T: DispatchFromDyn<U>, U> DispatchFromDyn<Cell<U>> for Cell<T> {}
700
701#[cfg(not(feature = "ferrocene_certified"))]
702impl<T> Cell<[T]> {
703    /// Returns a `&[Cell<T>]` from a `&Cell<[T]>`
704    ///
705    /// # Examples
706    ///
707    /// ```
708    /// use std::cell::Cell;
709    ///
710    /// let slice: &mut [i32] = &mut [1, 2, 3];
711    /// let cell_slice: &Cell<[i32]> = Cell::from_mut(slice);
712    /// let slice_cell: &[Cell<i32>] = cell_slice.as_slice_of_cells();
713    ///
714    /// assert_eq!(slice_cell.len(), 3);
715    /// ```
716    #[stable(feature = "as_cell", since = "1.37.0")]
717    #[rustc_const_stable(feature = "const_cell", since = "1.88.0")]
718    pub const fn as_slice_of_cells(&self) -> &[Cell<T>] {
719        // SAFETY: `Cell<T>` has the same memory layout as `T`.
720        unsafe { &*(self as *const Cell<[T]> as *const [Cell<T>]) }
721    }
722}
723
724#[cfg(not(feature = "ferrocene_certified"))]
725impl<T, const N: usize> Cell<[T; N]> {
726    /// Returns a `&[Cell<T>; N]` from a `&Cell<[T; N]>`
727    ///
728    /// # Examples
729    ///
730    /// ```
731    /// #![feature(as_array_of_cells)]
732    /// use std::cell::Cell;
733    ///
734    /// let mut array: [i32; 3] = [1, 2, 3];
735    /// let cell_array: &Cell<[i32; 3]> = Cell::from_mut(&mut array);
736    /// let array_cell: &[Cell<i32>; 3] = cell_array.as_array_of_cells();
737    /// ```
738    #[unstable(feature = "as_array_of_cells", issue = "88248")]
739    pub const fn as_array_of_cells(&self) -> &[Cell<T>; N] {
740        // SAFETY: `Cell<T>` has the same memory layout as `T`.
741        unsafe { &*(self as *const Cell<[T; N]> as *const [Cell<T>; N]) }
742    }
743}
744
745/// A mutable memory location with dynamically checked borrow rules
746///
747/// See the [module-level documentation](self) for more.
748#[rustc_diagnostic_item = "RefCell"]
749#[stable(feature = "rust1", since = "1.0.0")]
750#[cfg(not(feature = "ferrocene_certified"))]
751pub struct RefCell<T: ?Sized> {
752    borrow: Cell<BorrowCounter>,
753    // Stores the location of the earliest currently active borrow.
754    // This gets updated whenever we go from having zero borrows
755    // to having a single borrow. When a borrow occurs, this gets included
756    // in the generated `BorrowError`/`BorrowMutError`
757    #[cfg(feature = "debug_refcell")]
758    borrowed_at: Cell<Option<&'static crate::panic::Location<'static>>>,
759    value: UnsafeCell<T>,
760}
761
762/// An error returned by [`RefCell::try_borrow`].
763#[stable(feature = "try_borrow", since = "1.13.0")]
764#[non_exhaustive]
765#[cfg(not(feature = "ferrocene_certified"))]
766#[derive(Debug)]
767pub struct BorrowError {
768    #[cfg(feature = "debug_refcell")]
769    location: &'static crate::panic::Location<'static>,
770}
771
772#[stable(feature = "try_borrow", since = "1.13.0")]
773#[cfg(not(feature = "ferrocene_certified"))]
774impl Display for BorrowError {
775    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
776        #[cfg(feature = "debug_refcell")]
777        let res = write!(
778            f,
779            "RefCell already mutably borrowed; a previous borrow was at {}",
780            self.location
781        );
782
783        #[cfg(not(feature = "debug_refcell"))]
784        let res = Display::fmt("RefCell already mutably borrowed", f);
785
786        res
787    }
788}
789
790/// An error returned by [`RefCell::try_borrow_mut`].
791#[stable(feature = "try_borrow", since = "1.13.0")]
792#[non_exhaustive]
793#[cfg(not(feature = "ferrocene_certified"))]
794#[derive(Debug)]
795pub struct BorrowMutError {
796    #[cfg(feature = "debug_refcell")]
797    location: &'static crate::panic::Location<'static>,
798}
799
800#[stable(feature = "try_borrow", since = "1.13.0")]
801#[cfg(not(feature = "ferrocene_certified"))]
802impl Display for BorrowMutError {
803    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
804        #[cfg(feature = "debug_refcell")]
805        let res = write!(f, "RefCell already borrowed; a previous borrow was at {}", self.location);
806
807        #[cfg(not(feature = "debug_refcell"))]
808        let res = Display::fmt("RefCell already borrowed", f);
809
810        res
811    }
812}
813
814// This ensures the panicking code is outlined from `borrow_mut` for `RefCell`.
815#[cfg_attr(not(feature = "panic_immediate_abort"), inline(never))]
816#[track_caller]
817#[cold]
818#[cfg(not(feature = "ferrocene_certified"))]
819const fn panic_already_borrowed(err: BorrowMutError) -> ! {
820    const_panic!(
821        "RefCell already borrowed",
822        "{err}",
823        err: BorrowMutError = err,
824    )
825}
826
827// This ensures the panicking code is outlined from `borrow` for `RefCell`.
828#[cfg_attr(not(feature = "panic_immediate_abort"), inline(never))]
829#[track_caller]
830#[cold]
831#[cfg(not(feature = "ferrocene_certified"))]
832const fn panic_already_mutably_borrowed(err: BorrowError) -> ! {
833    const_panic!(
834        "RefCell already mutably borrowed",
835        "{err}",
836        err: BorrowError = err,
837    )
838}
839
840// Positive values represent the number of `Ref` active. Negative values
841// represent the number of `RefMut` active. Multiple `RefMut`s can only be
842// active at a time if they refer to distinct, nonoverlapping components of a
843// `RefCell` (e.g., different ranges of a slice).
844//
845// `Ref` and `RefMut` are both two words in size, and so there will likely never
846// be enough `Ref`s or `RefMut`s in existence to overflow half of the `usize`
847// range. Thus, a `BorrowCounter` will probably never overflow or underflow.
848// However, this is not a guarantee, as a pathological program could repeatedly
849// create and then mem::forget `Ref`s or `RefMut`s. Thus, all code must
850// explicitly check for overflow and underflow in order to avoid unsafety, or at
851// least behave correctly in the event that overflow or underflow happens (e.g.,
852// see BorrowRef::new).
853#[cfg(not(feature = "ferrocene_certified"))]
854type BorrowCounter = isize;
855#[cfg(not(feature = "ferrocene_certified"))]
856const UNUSED: BorrowCounter = 0;
857
858#[inline(always)]
859#[cfg(not(feature = "ferrocene_certified"))]
860const fn is_writing(x: BorrowCounter) -> bool {
861    x < UNUSED
862}
863
864#[inline(always)]
865#[cfg(not(feature = "ferrocene_certified"))]
866const fn is_reading(x: BorrowCounter) -> bool {
867    x > UNUSED
868}
869
870#[cfg(not(feature = "ferrocene_certified"))]
871impl<T> RefCell<T> {
872    /// Creates a new `RefCell` containing `value`.
873    ///
874    /// # Examples
875    ///
876    /// ```
877    /// use std::cell::RefCell;
878    ///
879    /// let c = RefCell::new(5);
880    /// ```
881    #[stable(feature = "rust1", since = "1.0.0")]
882    #[rustc_const_stable(feature = "const_refcell_new", since = "1.24.0")]
883    #[inline]
884    pub const fn new(value: T) -> RefCell<T> {
885        RefCell {
886            value: UnsafeCell::new(value),
887            borrow: Cell::new(UNUSED),
888            #[cfg(feature = "debug_refcell")]
889            borrowed_at: Cell::new(None),
890        }
891    }
892
893    /// Consumes the `RefCell`, returning the wrapped value.
894    ///
895    /// # Examples
896    ///
897    /// ```
898    /// use std::cell::RefCell;
899    ///
900    /// let c = RefCell::new(5);
901    ///
902    /// let five = c.into_inner();
903    /// ```
904    #[stable(feature = "rust1", since = "1.0.0")]
905    #[rustc_const_stable(feature = "const_cell_into_inner", since = "1.83.0")]
906    #[rustc_allow_const_fn_unstable(const_precise_live_drops)]
907    #[inline]
908    pub const fn into_inner(self) -> T {
909        // Since this function takes `self` (the `RefCell`) by value, the
910        // compiler statically verifies that it is not currently borrowed.
911        self.value.into_inner()
912    }
913
914    /// Replaces the wrapped value with a new one, returning the old value,
915    /// without deinitializing either one.
916    ///
917    /// This function corresponds to [`std::mem::replace`](../mem/fn.replace.html).
918    ///
919    /// # Panics
920    ///
921    /// Panics if the value is currently borrowed.
922    ///
923    /// # Examples
924    ///
925    /// ```
926    /// use std::cell::RefCell;
927    /// let cell = RefCell::new(5);
928    /// let old_value = cell.replace(6);
929    /// assert_eq!(old_value, 5);
930    /// assert_eq!(cell, RefCell::new(6));
931    /// ```
932    #[inline]
933    #[stable(feature = "refcell_replace", since = "1.24.0")]
934    #[track_caller]
935    #[rustc_confusables("swap")]
936    #[rustc_const_unstable(feature = "const_ref_cell", issue = "137844")]
937    pub const fn replace(&self, t: T) -> T {
938        mem::replace(&mut self.borrow_mut(), t)
939    }
940
941    /// Replaces the wrapped value with a new one computed from `f`, returning
942    /// the old value, without deinitializing either one.
943    ///
944    /// # Panics
945    ///
946    /// Panics if the value is currently borrowed.
947    ///
948    /// # Examples
949    ///
950    /// ```
951    /// use std::cell::RefCell;
952    /// let cell = RefCell::new(5);
953    /// let old_value = cell.replace_with(|&mut old| old + 1);
954    /// assert_eq!(old_value, 5);
955    /// assert_eq!(cell, RefCell::new(6));
956    /// ```
957    #[inline]
958    #[stable(feature = "refcell_replace_swap", since = "1.35.0")]
959    #[track_caller]
960    pub fn replace_with<F: FnOnce(&mut T) -> T>(&self, f: F) -> T {
961        let mut_borrow = &mut *self.borrow_mut();
962        let replacement = f(mut_borrow);
963        mem::replace(mut_borrow, replacement)
964    }
965
966    /// Swaps the wrapped value of `self` with the wrapped value of `other`,
967    /// without deinitializing either one.
968    ///
969    /// This function corresponds to [`std::mem::swap`](../mem/fn.swap.html).
970    ///
971    /// # Panics
972    ///
973    /// Panics if the value in either `RefCell` is currently borrowed, or
974    /// if `self` and `other` point to the same `RefCell`.
975    ///
976    /// # Examples
977    ///
978    /// ```
979    /// use std::cell::RefCell;
980    /// let c = RefCell::new(5);
981    /// let d = RefCell::new(6);
982    /// c.swap(&d);
983    /// assert_eq!(c, RefCell::new(6));
984    /// assert_eq!(d, RefCell::new(5));
985    /// ```
986    #[inline]
987    #[stable(feature = "refcell_swap", since = "1.24.0")]
988    #[rustc_const_unstable(feature = "const_ref_cell", issue = "137844")]
989    pub const fn swap(&self, other: &Self) {
990        mem::swap(&mut *self.borrow_mut(), &mut *other.borrow_mut())
991    }
992}
993
994#[cfg(not(feature = "ferrocene_certified"))]
995impl<T: ?Sized> RefCell<T> {
996    /// Immutably borrows the wrapped value.
997    ///
998    /// The borrow lasts until the returned `Ref` exits scope. Multiple
999    /// immutable borrows can be taken out at the same time.
1000    ///
1001    /// # Panics
1002    ///
1003    /// Panics if the value is currently mutably borrowed. For a non-panicking variant, use
1004    /// [`try_borrow`](#method.try_borrow).
1005    ///
1006    /// # Examples
1007    ///
1008    /// ```
1009    /// use std::cell::RefCell;
1010    ///
1011    /// let c = RefCell::new(5);
1012    ///
1013    /// let borrowed_five = c.borrow();
1014    /// let borrowed_five2 = c.borrow();
1015    /// ```
1016    ///
1017    /// An example of panic:
1018    ///
1019    /// ```should_panic
1020    /// use std::cell::RefCell;
1021    ///
1022    /// let c = RefCell::new(5);
1023    ///
1024    /// let m = c.borrow_mut();
1025    /// let b = c.borrow(); // this causes a panic
1026    /// ```
1027    #[stable(feature = "rust1", since = "1.0.0")]
1028    #[inline]
1029    #[track_caller]
1030    #[rustc_const_unstable(feature = "const_ref_cell", issue = "137844")]
1031    pub const fn borrow(&self) -> Ref<'_, T> {
1032        match self.try_borrow() {
1033            Ok(b) => b,
1034            Err(err) => panic_already_mutably_borrowed(err),
1035        }
1036    }
1037
1038    /// Immutably borrows the wrapped value, returning an error if the value is currently mutably
1039    /// borrowed.
1040    ///
1041    /// The borrow lasts until the returned `Ref` exits scope. Multiple immutable borrows can be
1042    /// taken out at the same time.
1043    ///
1044    /// This is the non-panicking variant of [`borrow`](#method.borrow).
1045    ///
1046    /// # Examples
1047    ///
1048    /// ```
1049    /// use std::cell::RefCell;
1050    ///
1051    /// let c = RefCell::new(5);
1052    ///
1053    /// {
1054    ///     let m = c.borrow_mut();
1055    ///     assert!(c.try_borrow().is_err());
1056    /// }
1057    ///
1058    /// {
1059    ///     let m = c.borrow();
1060    ///     assert!(c.try_borrow().is_ok());
1061    /// }
1062    /// ```
1063    #[stable(feature = "try_borrow", since = "1.13.0")]
1064    #[inline]
1065    #[cfg_attr(feature = "debug_refcell", track_caller)]
1066    #[rustc_const_unstable(feature = "const_ref_cell", issue = "137844")]
1067    pub const fn try_borrow(&self) -> Result<Ref<'_, T>, BorrowError> {
1068        match BorrowRef::new(&self.borrow) {
1069            Some(b) => {
1070                #[cfg(feature = "debug_refcell")]
1071                {
1072                    // `borrowed_at` is always the *first* active borrow
1073                    if b.borrow.get() == 1 {
1074                        self.borrowed_at.replace(Some(crate::panic::Location::caller()));
1075                    }
1076                }
1077
1078                // SAFETY: `BorrowRef` ensures that there is only immutable access
1079                // to the value while borrowed.
1080                let value = unsafe { NonNull::new_unchecked(self.value.get()) };
1081                Ok(Ref { value, borrow: b })
1082            }
1083            None => Err(BorrowError {
1084                // If a borrow occurred, then we must already have an outstanding borrow,
1085                // so `borrowed_at` will be `Some`
1086                #[cfg(feature = "debug_refcell")]
1087                location: self.borrowed_at.get().unwrap(),
1088            }),
1089        }
1090    }
1091
1092    /// Mutably borrows the wrapped value.
1093    ///
1094    /// The borrow lasts until the returned `RefMut` or all `RefMut`s derived
1095    /// from it exit scope. The value cannot be borrowed while this borrow is
1096    /// active.
1097    ///
1098    /// # Panics
1099    ///
1100    /// Panics if the value is currently borrowed. For a non-panicking variant, use
1101    /// [`try_borrow_mut`](#method.try_borrow_mut).
1102    ///
1103    /// # Examples
1104    ///
1105    /// ```
1106    /// use std::cell::RefCell;
1107    ///
1108    /// let c = RefCell::new("hello".to_owned());
1109    ///
1110    /// *c.borrow_mut() = "bonjour".to_owned();
1111    ///
1112    /// assert_eq!(&*c.borrow(), "bonjour");
1113    /// ```
1114    ///
1115    /// An example of panic:
1116    ///
1117    /// ```should_panic
1118    /// use std::cell::RefCell;
1119    ///
1120    /// let c = RefCell::new(5);
1121    /// let m = c.borrow();
1122    ///
1123    /// let b = c.borrow_mut(); // this causes a panic
1124    /// ```
1125    #[stable(feature = "rust1", since = "1.0.0")]
1126    #[inline]
1127    #[track_caller]
1128    #[rustc_const_unstable(feature = "const_ref_cell", issue = "137844")]
1129    pub const fn borrow_mut(&self) -> RefMut<'_, T> {
1130        match self.try_borrow_mut() {
1131            Ok(b) => b,
1132            Err(err) => panic_already_borrowed(err),
1133        }
1134    }
1135
1136    /// Mutably borrows the wrapped value, returning an error if the value is currently borrowed.
1137    ///
1138    /// The borrow lasts until the returned `RefMut` or all `RefMut`s derived
1139    /// from it exit scope. The value cannot be borrowed while this borrow is
1140    /// active.
1141    ///
1142    /// This is the non-panicking variant of [`borrow_mut`](#method.borrow_mut).
1143    ///
1144    /// # Examples
1145    ///
1146    /// ```
1147    /// use std::cell::RefCell;
1148    ///
1149    /// let c = RefCell::new(5);
1150    ///
1151    /// {
1152    ///     let m = c.borrow();
1153    ///     assert!(c.try_borrow_mut().is_err());
1154    /// }
1155    ///
1156    /// assert!(c.try_borrow_mut().is_ok());
1157    /// ```
1158    #[stable(feature = "try_borrow", since = "1.13.0")]
1159    #[inline]
1160    #[cfg_attr(feature = "debug_refcell", track_caller)]
1161    #[rustc_const_unstable(feature = "const_ref_cell", issue = "137844")]
1162    pub const fn try_borrow_mut(&self) -> Result<RefMut<'_, T>, BorrowMutError> {
1163        match BorrowRefMut::new(&self.borrow) {
1164            Some(b) => {
1165                #[cfg(feature = "debug_refcell")]
1166                {
1167                    self.borrowed_at.replace(Some(crate::panic::Location::caller()));
1168                }
1169
1170                // SAFETY: `BorrowRefMut` guarantees unique access.
1171                let value = unsafe { NonNull::new_unchecked(self.value.get()) };
1172                Ok(RefMut { value, borrow: b, marker: PhantomData })
1173            }
1174            None => Err(BorrowMutError {
1175                // If a borrow occurred, then we must already have an outstanding borrow,
1176                // so `borrowed_at` will be `Some`
1177                #[cfg(feature = "debug_refcell")]
1178                location: self.borrowed_at.get().unwrap(),
1179            }),
1180        }
1181    }
1182
1183    /// Returns a raw pointer to the underlying data in this cell.
1184    ///
1185    /// # Examples
1186    ///
1187    /// ```
1188    /// use std::cell::RefCell;
1189    ///
1190    /// let c = RefCell::new(5);
1191    ///
1192    /// let ptr = c.as_ptr();
1193    /// ```
1194    #[inline]
1195    #[stable(feature = "cell_as_ptr", since = "1.12.0")]
1196    #[rustc_as_ptr]
1197    #[rustc_never_returns_null_ptr]
1198    #[rustc_const_unstable(feature = "const_ref_cell", issue = "137844")]
1199    pub const fn as_ptr(&self) -> *mut T {
1200        self.value.get()
1201    }
1202
1203    /// Returns a mutable reference to the underlying data.
1204    ///
1205    /// Since this method borrows `RefCell` mutably, it is statically guaranteed
1206    /// that no borrows to the underlying data exist. The dynamic checks inherent
1207    /// in [`borrow_mut`] and most other methods of `RefCell` are therefore
1208    /// unnecessary. Note that this method does not reset the borrowing state if borrows were previously leaked
1209    /// (e.g., via [`forget()`] on a [`Ref`] or [`RefMut`]). For that purpose,
1210    /// consider using the unstable [`undo_leak`] method.
1211    ///
1212    /// This method can only be called if `RefCell` can be mutably borrowed,
1213    /// which in general is only the case directly after the `RefCell` has
1214    /// been created. In these situations, skipping the aforementioned dynamic
1215    /// borrowing checks may yield better ergonomics and runtime-performance.
1216    ///
1217    /// In most situations where `RefCell` is used, it can't be borrowed mutably.
1218    /// Use [`borrow_mut`] to get mutable access to the underlying data then.
1219    ///
1220    /// [`borrow_mut`]: RefCell::borrow_mut()
1221    /// [`forget()`]: mem::forget
1222    /// [`undo_leak`]: RefCell::undo_leak()
1223    ///
1224    /// # Examples
1225    ///
1226    /// ```
1227    /// use std::cell::RefCell;
1228    ///
1229    /// let mut c = RefCell::new(5);
1230    /// *c.get_mut() += 1;
1231    ///
1232    /// assert_eq!(c, RefCell::new(6));
1233    /// ```
1234    #[inline]
1235    #[stable(feature = "cell_get_mut", since = "1.11.0")]
1236    #[rustc_const_unstable(feature = "const_ref_cell", issue = "137844")]
1237    pub const fn get_mut(&mut self) -> &mut T {
1238        self.value.get_mut()
1239    }
1240
1241    /// Undo the effect of leaked guards on the borrow state of the `RefCell`.
1242    ///
1243    /// This call is similar to [`get_mut`] but more specialized. It borrows `RefCell` mutably to
1244    /// ensure no borrows exist and then resets the state tracking shared borrows. This is relevant
1245    /// if some `Ref` or `RefMut` borrows have been leaked.
1246    ///
1247    /// [`get_mut`]: RefCell::get_mut()
1248    ///
1249    /// # Examples
1250    ///
1251    /// ```
1252    /// #![feature(cell_leak)]
1253    /// use std::cell::RefCell;
1254    ///
1255    /// let mut c = RefCell::new(0);
1256    /// std::mem::forget(c.borrow_mut());
1257    ///
1258    /// assert!(c.try_borrow().is_err());
1259    /// c.undo_leak();
1260    /// assert!(c.try_borrow().is_ok());
1261    /// ```
1262    #[unstable(feature = "cell_leak", issue = "69099")]
1263    #[rustc_const_unstable(feature = "const_ref_cell", issue = "137844")]
1264    pub const fn undo_leak(&mut self) -> &mut T {
1265        *self.borrow.get_mut() = UNUSED;
1266        self.get_mut()
1267    }
1268
1269    /// Immutably borrows the wrapped value, returning an error if the value is
1270    /// currently mutably borrowed.
1271    ///
1272    /// # Safety
1273    ///
1274    /// Unlike `RefCell::borrow`, this method is unsafe because it does not
1275    /// return a `Ref`, thus leaving the borrow flag untouched. Mutably
1276    /// borrowing the `RefCell` while the reference returned by this method
1277    /// is alive is undefined behavior.
1278    ///
1279    /// # Examples
1280    ///
1281    /// ```
1282    /// use std::cell::RefCell;
1283    ///
1284    /// let c = RefCell::new(5);
1285    ///
1286    /// {
1287    ///     let m = c.borrow_mut();
1288    ///     assert!(unsafe { c.try_borrow_unguarded() }.is_err());
1289    /// }
1290    ///
1291    /// {
1292    ///     let m = c.borrow();
1293    ///     assert!(unsafe { c.try_borrow_unguarded() }.is_ok());
1294    /// }
1295    /// ```
1296    #[stable(feature = "borrow_state", since = "1.37.0")]
1297    #[inline]
1298    #[rustc_const_unstable(feature = "const_ref_cell", issue = "137844")]
1299    pub const unsafe fn try_borrow_unguarded(&self) -> Result<&T, BorrowError> {
1300        if !is_writing(self.borrow.get()) {
1301            // SAFETY: We check that nobody is actively writing now, but it is
1302            // the caller's responsibility to ensure that nobody writes until
1303            // the returned reference is no longer in use.
1304            // Also, `self.value.get()` refers to the value owned by `self`
1305            // and is thus guaranteed to be valid for the lifetime of `self`.
1306            Ok(unsafe { &*self.value.get() })
1307        } else {
1308            Err(BorrowError {
1309                // If a borrow occurred, then we must already have an outstanding borrow,
1310                // so `borrowed_at` will be `Some`
1311                #[cfg(feature = "debug_refcell")]
1312                location: self.borrowed_at.get().unwrap(),
1313            })
1314        }
1315    }
1316}
1317
1318#[cfg(not(feature = "ferrocene_certified"))]
1319impl<T: Default> RefCell<T> {
1320    /// Takes the wrapped value, leaving `Default::default()` in its place.
1321    ///
1322    /// # Panics
1323    ///
1324    /// Panics if the value is currently borrowed.
1325    ///
1326    /// # Examples
1327    ///
1328    /// ```
1329    /// use std::cell::RefCell;
1330    ///
1331    /// let c = RefCell::new(5);
1332    /// let five = c.take();
1333    ///
1334    /// assert_eq!(five, 5);
1335    /// assert_eq!(c.into_inner(), 0);
1336    /// ```
1337    #[stable(feature = "refcell_take", since = "1.50.0")]
1338    pub fn take(&self) -> T {
1339        self.replace(Default::default())
1340    }
1341}
1342
1343#[stable(feature = "rust1", since = "1.0.0")]
1344#[cfg(not(feature = "ferrocene_certified"))]
1345unsafe impl<T: ?Sized> Send for RefCell<T> where T: Send {}
1346
1347#[stable(feature = "rust1", since = "1.0.0")]
1348#[cfg(not(feature = "ferrocene_certified"))]
1349impl<T: ?Sized> !Sync for RefCell<T> {}
1350
1351#[stable(feature = "rust1", since = "1.0.0")]
1352#[cfg(not(feature = "ferrocene_certified"))]
1353impl<T: Clone> Clone for RefCell<T> {
1354    /// # Panics
1355    ///
1356    /// Panics if the value is currently mutably borrowed.
1357    #[inline]
1358    #[track_caller]
1359    fn clone(&self) -> RefCell<T> {
1360        RefCell::new(self.borrow().clone())
1361    }
1362
1363    /// # Panics
1364    ///
1365    /// Panics if `source` is currently mutably borrowed.
1366    #[inline]
1367    #[track_caller]
1368    fn clone_from(&mut self, source: &Self) {
1369        self.get_mut().clone_from(&source.borrow())
1370    }
1371}
1372
1373#[stable(feature = "rust1", since = "1.0.0")]
1374#[rustc_const_unstable(feature = "const_default", issue = "143894")]
1375#[cfg(not(feature = "ferrocene_certified"))]
1376impl<T: ~const Default> const Default for RefCell<T> {
1377    /// Creates a `RefCell<T>`, with the `Default` value for T.
1378    #[inline]
1379    fn default() -> RefCell<T> {
1380        RefCell::new(Default::default())
1381    }
1382}
1383
1384#[stable(feature = "rust1", since = "1.0.0")]
1385#[cfg(not(feature = "ferrocene_certified"))]
1386impl<T: ?Sized + PartialEq> PartialEq for RefCell<T> {
1387    /// # Panics
1388    ///
1389    /// Panics if the value in either `RefCell` is currently mutably borrowed.
1390    #[inline]
1391    fn eq(&self, other: &RefCell<T>) -> bool {
1392        *self.borrow() == *other.borrow()
1393    }
1394}
1395
1396#[stable(feature = "cell_eq", since = "1.2.0")]
1397#[cfg(not(feature = "ferrocene_certified"))]
1398impl<T: ?Sized + Eq> Eq for RefCell<T> {}
1399
1400#[stable(feature = "cell_ord", since = "1.10.0")]
1401#[cfg(not(feature = "ferrocene_certified"))]
1402impl<T: ?Sized + PartialOrd> PartialOrd for RefCell<T> {
1403    /// # Panics
1404    ///
1405    /// Panics if the value in either `RefCell` is currently mutably borrowed.
1406    #[inline]
1407    fn partial_cmp(&self, other: &RefCell<T>) -> Option<Ordering> {
1408        self.borrow().partial_cmp(&*other.borrow())
1409    }
1410
1411    /// # Panics
1412    ///
1413    /// Panics if the value in either `RefCell` is currently mutably borrowed.
1414    #[inline]
1415    fn lt(&self, other: &RefCell<T>) -> bool {
1416        *self.borrow() < *other.borrow()
1417    }
1418
1419    /// # Panics
1420    ///
1421    /// Panics if the value in either `RefCell` is currently mutably borrowed.
1422    #[inline]
1423    fn le(&self, other: &RefCell<T>) -> bool {
1424        *self.borrow() <= *other.borrow()
1425    }
1426
1427    /// # Panics
1428    ///
1429    /// Panics if the value in either `RefCell` is currently mutably borrowed.
1430    #[inline]
1431    fn gt(&self, other: &RefCell<T>) -> bool {
1432        *self.borrow() > *other.borrow()
1433    }
1434
1435    /// # Panics
1436    ///
1437    /// Panics if the value in either `RefCell` is currently mutably borrowed.
1438    #[inline]
1439    fn ge(&self, other: &RefCell<T>) -> bool {
1440        *self.borrow() >= *other.borrow()
1441    }
1442}
1443
1444#[stable(feature = "cell_ord", since = "1.10.0")]
1445#[cfg(not(feature = "ferrocene_certified"))]
1446impl<T: ?Sized + Ord> Ord for RefCell<T> {
1447    /// # Panics
1448    ///
1449    /// Panics if the value in either `RefCell` is currently mutably borrowed.
1450    #[inline]
1451    fn cmp(&self, other: &RefCell<T>) -> Ordering {
1452        self.borrow().cmp(&*other.borrow())
1453    }
1454}
1455
1456#[stable(feature = "cell_from", since = "1.12.0")]
1457#[cfg(not(feature = "ferrocene_certified"))]
1458impl<T> From<T> for RefCell<T> {
1459    /// Creates a new `RefCell<T>` containing the given value.
1460    fn from(t: T) -> RefCell<T> {
1461        RefCell::new(t)
1462    }
1463}
1464
1465#[unstable(feature = "coerce_unsized", issue = "18598")]
1466#[cfg(not(feature = "ferrocene_certified"))]
1467impl<T: CoerceUnsized<U>, U> CoerceUnsized<RefCell<U>> for RefCell<T> {}
1468
1469#[cfg(not(feature = "ferrocene_certified"))]
1470struct BorrowRef<'b> {
1471    borrow: &'b Cell<BorrowCounter>,
1472}
1473
1474#[cfg(not(feature = "ferrocene_certified"))]
1475impl<'b> BorrowRef<'b> {
1476    #[inline]
1477    const fn new(borrow: &'b Cell<BorrowCounter>) -> Option<BorrowRef<'b>> {
1478        let b = borrow.get().wrapping_add(1);
1479        if !is_reading(b) {
1480            // Incrementing borrow can result in a non-reading value (<= 0) in these cases:
1481            // 1. It was < 0, i.e. there are writing borrows, so we can't allow a read borrow
1482            //    due to Rust's reference aliasing rules
1483            // 2. It was isize::MAX (the max amount of reading borrows) and it overflowed
1484            //    into isize::MIN (the max amount of writing borrows) so we can't allow
1485            //    an additional read borrow because isize can't represent so many read borrows
1486            //    (this can only happen if you mem::forget more than a small constant amount of
1487            //    `Ref`s, which is not good practice)
1488            None
1489        } else {
1490            // Incrementing borrow can result in a reading value (> 0) in these cases:
1491            // 1. It was = 0, i.e. it wasn't borrowed, and we are taking the first read borrow
1492            // 2. It was > 0 and < isize::MAX, i.e. there were read borrows, and isize
1493            //    is large enough to represent having one more read borrow
1494            borrow.replace(b);
1495            Some(BorrowRef { borrow })
1496        }
1497    }
1498}
1499
1500#[rustc_const_unstable(feature = "const_ref_cell", issue = "137844")]
1501#[cfg(not(feature = "ferrocene_certified"))]
1502impl const Drop for BorrowRef<'_> {
1503    #[inline]
1504    fn drop(&mut self) {
1505        let borrow = self.borrow.get();
1506        debug_assert!(is_reading(borrow));
1507        self.borrow.replace(borrow - 1);
1508    }
1509}
1510
1511#[rustc_const_unstable(feature = "const_ref_cell", issue = "137844")]
1512#[cfg(not(feature = "ferrocene_certified"))]
1513impl const Clone for BorrowRef<'_> {
1514    #[inline]
1515    fn clone(&self) -> Self {
1516        // Since this Ref exists, we know the borrow flag
1517        // is a reading borrow.
1518        let borrow = self.borrow.get();
1519        debug_assert!(is_reading(borrow));
1520        // Prevent the borrow counter from overflowing into
1521        // a writing borrow.
1522        assert!(borrow != BorrowCounter::MAX);
1523        self.borrow.replace(borrow + 1);
1524        BorrowRef { borrow: self.borrow }
1525    }
1526}
1527
1528/// Wraps a borrowed reference to a value in a `RefCell` box.
1529/// A wrapper type for an immutably borrowed value from a `RefCell<T>`.
1530///
1531/// See the [module-level documentation](self) for more.
1532#[stable(feature = "rust1", since = "1.0.0")]
1533#[must_not_suspend = "holding a Ref across suspend points can cause BorrowErrors"]
1534#[rustc_diagnostic_item = "RefCellRef"]
1535#[cfg(not(feature = "ferrocene_certified"))]
1536pub struct Ref<'b, T: ?Sized + 'b> {
1537    // NB: we use a pointer instead of `&'b T` to avoid `noalias` violations, because a
1538    // `Ref` argument doesn't hold immutability for its whole scope, only until it drops.
1539    // `NonNull` is also covariant over `T`, just like we would have with `&T`.
1540    value: NonNull<T>,
1541    borrow: BorrowRef<'b>,
1542}
1543
1544#[stable(feature = "rust1", since = "1.0.0")]
1545#[rustc_const_unstable(feature = "const_deref", issue = "88955")]
1546#[cfg(not(feature = "ferrocene_certified"))]
1547impl<T: ?Sized> const Deref for Ref<'_, T> {
1548    type Target = T;
1549
1550    #[inline]
1551    fn deref(&self) -> &T {
1552        // SAFETY: the value is accessible as long as we hold our borrow.
1553        unsafe { self.value.as_ref() }
1554    }
1555}
1556
1557#[unstable(feature = "deref_pure_trait", issue = "87121")]
1558#[cfg(not(feature = "ferrocene_certified"))]
1559unsafe impl<T: ?Sized> DerefPure for Ref<'_, T> {}
1560
1561#[cfg(not(feature = "ferrocene_certified"))]
1562impl<'b, T: ?Sized> Ref<'b, T> {
1563    /// Copies a `Ref`.
1564    ///
1565    /// The `RefCell` is already immutably borrowed, so this cannot fail.
1566    ///
1567    /// This is an associated function that needs to be used as
1568    /// `Ref::clone(...)`. A `Clone` implementation or a method would interfere
1569    /// with the widespread use of `r.borrow().clone()` to clone the contents of
1570    /// a `RefCell`.
1571    #[stable(feature = "cell_extras", since = "1.15.0")]
1572    #[must_use]
1573    #[inline]
1574    #[rustc_const_unstable(feature = "const_ref_cell", issue = "137844")]
1575    pub const fn clone(orig: &Ref<'b, T>) -> Ref<'b, T> {
1576        Ref { value: orig.value, borrow: orig.borrow.clone() }
1577    }
1578
1579    /// Makes a new `Ref` for a component of the borrowed data.
1580    ///
1581    /// The `RefCell` is already immutably borrowed, so this cannot fail.
1582    ///
1583    /// This is an associated function that needs to be used as `Ref::map(...)`.
1584    /// A method would interfere with methods of the same name on the contents
1585    /// of a `RefCell` used through `Deref`.
1586    ///
1587    /// # Examples
1588    ///
1589    /// ```
1590    /// use std::cell::{RefCell, Ref};
1591    ///
1592    /// let c = RefCell::new((5, 'b'));
1593    /// let b1: Ref<'_, (u32, char)> = c.borrow();
1594    /// let b2: Ref<'_, u32> = Ref::map(b1, |t| &t.0);
1595    /// assert_eq!(*b2, 5)
1596    /// ```
1597    #[stable(feature = "cell_map", since = "1.8.0")]
1598    #[inline]
1599    pub fn map<U: ?Sized, F>(orig: Ref<'b, T>, f: F) -> Ref<'b, U>
1600    where
1601        F: FnOnce(&T) -> &U,
1602    {
1603        Ref { value: NonNull::from(f(&*orig)), borrow: orig.borrow }
1604    }
1605
1606    /// Makes a new `Ref` for an optional component of the borrowed data. The
1607    /// original guard is returned as an `Err(..)` if the closure returns
1608    /// `None`.
1609    ///
1610    /// The `RefCell` is already immutably borrowed, so this cannot fail.
1611    ///
1612    /// This is an associated function that needs to be used as
1613    /// `Ref::filter_map(...)`. A method would interfere with methods of the same
1614    /// name on the contents of a `RefCell` used through `Deref`.
1615    ///
1616    /// # Examples
1617    ///
1618    /// ```
1619    /// use std::cell::{RefCell, Ref};
1620    ///
1621    /// let c = RefCell::new(vec![1, 2, 3]);
1622    /// let b1: Ref<'_, Vec<u32>> = c.borrow();
1623    /// let b2: Result<Ref<'_, u32>, _> = Ref::filter_map(b1, |v| v.get(1));
1624    /// assert_eq!(*b2.unwrap(), 2);
1625    /// ```
1626    #[stable(feature = "cell_filter_map", since = "1.63.0")]
1627    #[inline]
1628    pub fn filter_map<U: ?Sized, F>(orig: Ref<'b, T>, f: F) -> Result<Ref<'b, U>, Self>
1629    where
1630        F: FnOnce(&T) -> Option<&U>,
1631    {
1632        match f(&*orig) {
1633            Some(value) => Ok(Ref { value: NonNull::from(value), borrow: orig.borrow }),
1634            None => Err(orig),
1635        }
1636    }
1637
1638    /// Splits a `Ref` into multiple `Ref`s for different components of the
1639    /// borrowed data.
1640    ///
1641    /// The `RefCell` is already immutably borrowed, so this cannot fail.
1642    ///
1643    /// This is an associated function that needs to be used as
1644    /// `Ref::map_split(...)`. A method would interfere with methods of the same
1645    /// name on the contents of a `RefCell` used through `Deref`.
1646    ///
1647    /// # Examples
1648    ///
1649    /// ```
1650    /// use std::cell::{Ref, RefCell};
1651    ///
1652    /// let cell = RefCell::new([1, 2, 3, 4]);
1653    /// let borrow = cell.borrow();
1654    /// let (begin, end) = Ref::map_split(borrow, |slice| slice.split_at(2));
1655    /// assert_eq!(*begin, [1, 2]);
1656    /// assert_eq!(*end, [3, 4]);
1657    /// ```
1658    #[stable(feature = "refcell_map_split", since = "1.35.0")]
1659    #[inline]
1660    pub fn map_split<U: ?Sized, V: ?Sized, F>(orig: Ref<'b, T>, f: F) -> (Ref<'b, U>, Ref<'b, V>)
1661    where
1662        F: FnOnce(&T) -> (&U, &V),
1663    {
1664        let (a, b) = f(&*orig);
1665        let borrow = orig.borrow.clone();
1666        (
1667            Ref { value: NonNull::from(a), borrow },
1668            Ref { value: NonNull::from(b), borrow: orig.borrow },
1669        )
1670    }
1671
1672    /// Converts into a reference to the underlying data.
1673    ///
1674    /// The underlying `RefCell` can never be mutably borrowed from again and will always appear
1675    /// already immutably borrowed. It is not a good idea to leak more than a constant number of
1676    /// references. The `RefCell` can be immutably borrowed again if only a smaller number of leaks
1677    /// have occurred in total.
1678    ///
1679    /// This is an associated function that needs to be used as
1680    /// `Ref::leak(...)`. A method would interfere with methods of the
1681    /// same name on the contents of a `RefCell` used through `Deref`.
1682    ///
1683    /// # Examples
1684    ///
1685    /// ```
1686    /// #![feature(cell_leak)]
1687    /// use std::cell::{RefCell, Ref};
1688    /// let cell = RefCell::new(0);
1689    ///
1690    /// let value = Ref::leak(cell.borrow());
1691    /// assert_eq!(*value, 0);
1692    ///
1693    /// assert!(cell.try_borrow().is_ok());
1694    /// assert!(cell.try_borrow_mut().is_err());
1695    /// ```
1696    #[unstable(feature = "cell_leak", issue = "69099")]
1697    #[rustc_const_unstable(feature = "const_ref_cell", issue = "137844")]
1698    pub const fn leak(orig: Ref<'b, T>) -> &'b T {
1699        // By forgetting this Ref we ensure that the borrow counter in the RefCell can't go back to
1700        // UNUSED within the lifetime `'b`. Resetting the reference tracking state would require a
1701        // unique reference to the borrowed RefCell. No further mutable references can be created
1702        // from the original cell.
1703        mem::forget(orig.borrow);
1704        // SAFETY: after forgetting, we can form a reference for the rest of lifetime `'b`.
1705        unsafe { orig.value.as_ref() }
1706    }
1707}
1708
1709#[unstable(feature = "coerce_unsized", issue = "18598")]
1710#[cfg(not(feature = "ferrocene_certified"))]
1711impl<'b, T: ?Sized + Unsize<U>, U: ?Sized> CoerceUnsized<Ref<'b, U>> for Ref<'b, T> {}
1712
1713#[stable(feature = "std_guard_impls", since = "1.20.0")]
1714#[cfg(not(feature = "ferrocene_certified"))]
1715impl<T: ?Sized + fmt::Display> fmt::Display for Ref<'_, T> {
1716    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
1717        (**self).fmt(f)
1718    }
1719}
1720
1721#[cfg(not(feature = "ferrocene_certified"))]
1722impl<'b, T: ?Sized> RefMut<'b, T> {
1723    /// Makes a new `RefMut` for a component of the borrowed data, e.g., an enum
1724    /// variant.
1725    ///
1726    /// The `RefCell` is already mutably borrowed, so this cannot fail.
1727    ///
1728    /// This is an associated function that needs to be used as
1729    /// `RefMut::map(...)`. A method would interfere with methods of the same
1730    /// name on the contents of a `RefCell` used through `Deref`.
1731    ///
1732    /// # Examples
1733    ///
1734    /// ```
1735    /// use std::cell::{RefCell, RefMut};
1736    ///
1737    /// let c = RefCell::new((5, 'b'));
1738    /// {
1739    ///     let b1: RefMut<'_, (u32, char)> = c.borrow_mut();
1740    ///     let mut b2: RefMut<'_, u32> = RefMut::map(b1, |t| &mut t.0);
1741    ///     assert_eq!(*b2, 5);
1742    ///     *b2 = 42;
1743    /// }
1744    /// assert_eq!(*c.borrow(), (42, 'b'));
1745    /// ```
1746    #[stable(feature = "cell_map", since = "1.8.0")]
1747    #[inline]
1748    pub fn map<U: ?Sized, F>(mut orig: RefMut<'b, T>, f: F) -> RefMut<'b, U>
1749    where
1750        F: FnOnce(&mut T) -> &mut U,
1751    {
1752        let value = NonNull::from(f(&mut *orig));
1753        RefMut { value, borrow: orig.borrow, marker: PhantomData }
1754    }
1755
1756    /// Makes a new `RefMut` for an optional component of the borrowed data. The
1757    /// original guard is returned as an `Err(..)` if the closure returns
1758    /// `None`.
1759    ///
1760    /// The `RefCell` is already mutably borrowed, so this cannot fail.
1761    ///
1762    /// This is an associated function that needs to be used as
1763    /// `RefMut::filter_map(...)`. A method would interfere with methods of the
1764    /// same name on the contents of a `RefCell` used through `Deref`.
1765    ///
1766    /// # Examples
1767    ///
1768    /// ```
1769    /// use std::cell::{RefCell, RefMut};
1770    ///
1771    /// let c = RefCell::new(vec![1, 2, 3]);
1772    ///
1773    /// {
1774    ///     let b1: RefMut<'_, Vec<u32>> = c.borrow_mut();
1775    ///     let mut b2: Result<RefMut<'_, u32>, _> = RefMut::filter_map(b1, |v| v.get_mut(1));
1776    ///
1777    ///     if let Ok(mut b2) = b2 {
1778    ///         *b2 += 2;
1779    ///     }
1780    /// }
1781    ///
1782    /// assert_eq!(*c.borrow(), vec![1, 4, 3]);
1783    /// ```
1784    #[stable(feature = "cell_filter_map", since = "1.63.0")]
1785    #[inline]
1786    pub fn filter_map<U: ?Sized, F>(mut orig: RefMut<'b, T>, f: F) -> Result<RefMut<'b, U>, Self>
1787    where
1788        F: FnOnce(&mut T) -> Option<&mut U>,
1789    {
1790        // SAFETY: function holds onto an exclusive reference for the duration
1791        // of its call through `orig`, and the pointer is only de-referenced
1792        // inside of the function call never allowing the exclusive reference to
1793        // escape.
1794        match f(&mut *orig) {
1795            Some(value) => {
1796                Ok(RefMut { value: NonNull::from(value), borrow: orig.borrow, marker: PhantomData })
1797            }
1798            None => Err(orig),
1799        }
1800    }
1801
1802    /// Splits a `RefMut` into multiple `RefMut`s for different components of the
1803    /// borrowed data.
1804    ///
1805    /// The underlying `RefCell` will remain mutably borrowed until both
1806    /// returned `RefMut`s go out of scope.
1807    ///
1808    /// The `RefCell` is already mutably borrowed, so this cannot fail.
1809    ///
1810    /// This is an associated function that needs to be used as
1811    /// `RefMut::map_split(...)`. A method would interfere with methods of the
1812    /// same name on the contents of a `RefCell` used through `Deref`.
1813    ///
1814    /// # Examples
1815    ///
1816    /// ```
1817    /// use std::cell::{RefCell, RefMut};
1818    ///
1819    /// let cell = RefCell::new([1, 2, 3, 4]);
1820    /// let borrow = cell.borrow_mut();
1821    /// let (mut begin, mut end) = RefMut::map_split(borrow, |slice| slice.split_at_mut(2));
1822    /// assert_eq!(*begin, [1, 2]);
1823    /// assert_eq!(*end, [3, 4]);
1824    /// begin.copy_from_slice(&[4, 3]);
1825    /// end.copy_from_slice(&[2, 1]);
1826    /// ```
1827    #[stable(feature = "refcell_map_split", since = "1.35.0")]
1828    #[inline]
1829    pub fn map_split<U: ?Sized, V: ?Sized, F>(
1830        mut orig: RefMut<'b, T>,
1831        f: F,
1832    ) -> (RefMut<'b, U>, RefMut<'b, V>)
1833    where
1834        F: FnOnce(&mut T) -> (&mut U, &mut V),
1835    {
1836        let borrow = orig.borrow.clone();
1837        let (a, b) = f(&mut *orig);
1838        (
1839            RefMut { value: NonNull::from(a), borrow, marker: PhantomData },
1840            RefMut { value: NonNull::from(b), borrow: orig.borrow, marker: PhantomData },
1841        )
1842    }
1843
1844    /// Converts into a mutable reference to the underlying data.
1845    ///
1846    /// The underlying `RefCell` can not be borrowed from again and will always appear already
1847    /// mutably borrowed, making the returned reference the only to the interior.
1848    ///
1849    /// This is an associated function that needs to be used as
1850    /// `RefMut::leak(...)`. A method would interfere with methods of the
1851    /// same name on the contents of a `RefCell` used through `Deref`.
1852    ///
1853    /// # Examples
1854    ///
1855    /// ```
1856    /// #![feature(cell_leak)]
1857    /// use std::cell::{RefCell, RefMut};
1858    /// let cell = RefCell::new(0);
1859    ///
1860    /// let value = RefMut::leak(cell.borrow_mut());
1861    /// assert_eq!(*value, 0);
1862    /// *value = 1;
1863    ///
1864    /// assert!(cell.try_borrow_mut().is_err());
1865    /// ```
1866    #[unstable(feature = "cell_leak", issue = "69099")]
1867    #[rustc_const_unstable(feature = "const_ref_cell", issue = "137844")]
1868    pub const fn leak(mut orig: RefMut<'b, T>) -> &'b mut T {
1869        // By forgetting this BorrowRefMut we ensure that the borrow counter in the RefCell can't
1870        // go back to UNUSED within the lifetime `'b`. Resetting the reference tracking state would
1871        // require a unique reference to the borrowed RefCell. No further references can be created
1872        // from the original cell within that lifetime, making the current borrow the only
1873        // reference for the remaining lifetime.
1874        mem::forget(orig.borrow);
1875        // SAFETY: after forgetting, we can form a reference for the rest of lifetime `'b`.
1876        unsafe { orig.value.as_mut() }
1877    }
1878}
1879
1880#[cfg(not(feature = "ferrocene_certified"))]
1881struct BorrowRefMut<'b> {
1882    borrow: &'b Cell<BorrowCounter>,
1883}
1884
1885#[rustc_const_unstable(feature = "const_ref_cell", issue = "137844")]
1886#[cfg(not(feature = "ferrocene_certified"))]
1887impl const Drop for BorrowRefMut<'_> {
1888    #[inline]
1889    fn drop(&mut self) {
1890        let borrow = self.borrow.get();
1891        debug_assert!(is_writing(borrow));
1892        self.borrow.replace(borrow + 1);
1893    }
1894}
1895
1896#[cfg(not(feature = "ferrocene_certified"))]
1897impl<'b> BorrowRefMut<'b> {
1898    #[inline]
1899    const fn new(borrow: &'b Cell<BorrowCounter>) -> Option<BorrowRefMut<'b>> {
1900        // NOTE: Unlike BorrowRefMut::clone, new is called to create the initial
1901        // mutable reference, and so there must currently be no existing
1902        // references. Thus, while clone increments the mutable refcount, here
1903        // we explicitly only allow going from UNUSED to UNUSED - 1.
1904        match borrow.get() {
1905            UNUSED => {
1906                borrow.replace(UNUSED - 1);
1907                Some(BorrowRefMut { borrow })
1908            }
1909            _ => None,
1910        }
1911    }
1912
1913    // Clones a `BorrowRefMut`.
1914    //
1915    // This is only valid if each `BorrowRefMut` is used to track a mutable
1916    // reference to a distinct, nonoverlapping range of the original object.
1917    // This isn't in a Clone impl so that code doesn't call this implicitly.
1918    #[inline]
1919    fn clone(&self) -> BorrowRefMut<'b> {
1920        let borrow = self.borrow.get();
1921        debug_assert!(is_writing(borrow));
1922        // Prevent the borrow counter from underflowing.
1923        assert!(borrow != BorrowCounter::MIN);
1924        self.borrow.set(borrow - 1);
1925        BorrowRefMut { borrow: self.borrow }
1926    }
1927}
1928
1929/// A wrapper type for a mutably borrowed value from a `RefCell<T>`.
1930///
1931/// See the [module-level documentation](self) for more.
1932#[stable(feature = "rust1", since = "1.0.0")]
1933#[must_not_suspend = "holding a RefMut across suspend points can cause BorrowErrors"]
1934#[rustc_diagnostic_item = "RefCellRefMut"]
1935#[cfg(not(feature = "ferrocene_certified"))]
1936pub struct RefMut<'b, T: ?Sized + 'b> {
1937    // NB: we use a pointer instead of `&'b mut T` to avoid `noalias` violations, because a
1938    // `RefMut` argument doesn't hold exclusivity for its whole scope, only until it drops.
1939    value: NonNull<T>,
1940    borrow: BorrowRefMut<'b>,
1941    // `NonNull` is covariant over `T`, so we need to reintroduce invariance.
1942    marker: PhantomData<&'b mut T>,
1943}
1944
1945#[stable(feature = "rust1", since = "1.0.0")]
1946#[rustc_const_unstable(feature = "const_deref", issue = "88955")]
1947#[cfg(not(feature = "ferrocene_certified"))]
1948impl<T: ?Sized> const Deref for RefMut<'_, T> {
1949    type Target = T;
1950
1951    #[inline]
1952    fn deref(&self) -> &T {
1953        // SAFETY: the value is accessible as long as we hold our borrow.
1954        unsafe { self.value.as_ref() }
1955    }
1956}
1957
1958#[stable(feature = "rust1", since = "1.0.0")]
1959#[rustc_const_unstable(feature = "const_deref", issue = "88955")]
1960#[cfg(not(feature = "ferrocene_certified"))]
1961impl<T: ?Sized> const DerefMut for RefMut<'_, T> {
1962    #[inline]
1963    fn deref_mut(&mut self) -> &mut T {
1964        // SAFETY: the value is accessible as long as we hold our borrow.
1965        unsafe { self.value.as_mut() }
1966    }
1967}
1968
1969#[unstable(feature = "deref_pure_trait", issue = "87121")]
1970#[cfg(not(feature = "ferrocene_certified"))]
1971unsafe impl<T: ?Sized> DerefPure for RefMut<'_, T> {}
1972
1973#[unstable(feature = "coerce_unsized", issue = "18598")]
1974#[cfg(not(feature = "ferrocene_certified"))]
1975impl<'b, T: ?Sized + Unsize<U>, U: ?Sized> CoerceUnsized<RefMut<'b, U>> for RefMut<'b, T> {}
1976
1977#[stable(feature = "std_guard_impls", since = "1.20.0")]
1978#[cfg(not(feature = "ferrocene_certified"))]
1979impl<T: ?Sized + fmt::Display> fmt::Display for RefMut<'_, T> {
1980    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
1981        (**self).fmt(f)
1982    }
1983}
1984
1985/// The core primitive for interior mutability in Rust.
1986///
1987/// If you have a reference `&T`, then normally in Rust the compiler performs optimizations based on
1988/// the knowledge that `&T` points to immutable data. Mutating that data, for example through an
1989/// alias or by transmuting a `&T` into a `&mut T`, is considered undefined behavior.
1990/// `UnsafeCell<T>` opts-out of the immutability guarantee for `&T`: a shared reference
1991/// `&UnsafeCell<T>` may point to data that is being mutated. This is called "interior mutability".
1992///
1993/// All other types that allow internal mutability, such as [`Cell<T>`] and [`RefCell<T>`], internally
1994/// use `UnsafeCell` to wrap their data.
1995///
1996/// Note that only the immutability guarantee for shared references is affected by `UnsafeCell`. The
1997/// uniqueness guarantee for mutable references is unaffected. There is *no* legal way to obtain
1998/// aliasing `&mut`, not even with `UnsafeCell<T>`.
1999///
2000/// `UnsafeCell` does nothing to avoid data races; they are still undefined behavior. If multiple
2001/// threads have access to the same `UnsafeCell`, they must follow the usual rules of the
2002/// [concurrent memory model]: conflicting non-synchronized accesses must be done via the APIs in
2003/// [`core::sync::atomic`].
2004///
2005/// The `UnsafeCell` API itself is technically very simple: [`.get()`] gives you a raw pointer
2006/// `*mut T` to its contents. It is up to _you_ as the abstraction designer to use that raw pointer
2007/// correctly.
2008///
2009/// [`.get()`]: `UnsafeCell::get`
2010/// [concurrent memory model]: ../sync/atomic/index.html#memory-model-for-atomic-accesses
2011///
2012/// # Aliasing rules
2013///
2014/// The precise Rust aliasing rules are somewhat in flux, but the main points are not contentious:
2015///
2016/// - If you create a safe reference with lifetime `'a` (either a `&T` or `&mut T` reference), then
2017///   you must not access the data in any way that contradicts that reference for the remainder of
2018///   `'a`. For example, this means that if you take the `*mut T` from an `UnsafeCell<T>` and cast it
2019///   to an `&T`, then the data in `T` must remain immutable (modulo any `UnsafeCell` data found
2020///   within `T`, of course) until that reference's lifetime expires. Similarly, if you create a
2021///   `&mut T` reference that is released to safe code, then you must not access the data within the
2022///   `UnsafeCell` until that reference expires.
2023///
2024/// - For both `&T` without `UnsafeCell<_>` and `&mut T`, you must also not deallocate the data
2025///   until the reference expires. As a special exception, given an `&T`, any part of it that is
2026///   inside an `UnsafeCell<_>` may be deallocated during the lifetime of the reference, after the
2027///   last time the reference is used (dereferenced or reborrowed). Since you cannot deallocate a part
2028///   of what a reference points to, this means the memory an `&T` points to can be deallocated only if
2029///   *every part of it* (including padding) is inside an `UnsafeCell`.
2030///
2031/// However, whenever a `&UnsafeCell<T>` is constructed or dereferenced, it must still point to
2032/// live memory and the compiler is allowed to insert spurious reads if it can prove that this
2033/// memory has not yet been deallocated.
2034///
2035/// To assist with proper design, the following scenarios are explicitly declared legal
2036/// for single-threaded code:
2037///
2038/// 1. A `&T` reference can be released to safe code and there it can co-exist with other `&T`
2039///    references, but not with a `&mut T`
2040///
2041/// 2. A `&mut T` reference may be released to safe code provided neither other `&mut T` nor `&T`
2042///    co-exist with it. A `&mut T` must always be unique.
2043///
2044/// Note that whilst mutating the contents of an `&UnsafeCell<T>` (even while other
2045/// `&UnsafeCell<T>` references alias the cell) is
2046/// ok (provided you enforce the above invariants some other way), it is still undefined behavior
2047/// to have multiple `&mut UnsafeCell<T>` aliases. That is, `UnsafeCell` is a wrapper
2048/// designed to have a special interaction with _shared_ accesses (_i.e._, through an
2049/// `&UnsafeCell<_>` reference); there is no magic whatsoever when dealing with _exclusive_
2050/// accesses (_e.g._, through a `&mut UnsafeCell<_>`): neither the cell nor the wrapped value
2051/// may be aliased for the duration of that `&mut` borrow.
2052/// This is showcased by the [`.get_mut()`] accessor, which is a _safe_ getter that yields
2053/// a `&mut T`.
2054///
2055/// [`.get_mut()`]: `UnsafeCell::get_mut`
2056///
2057/// # Memory layout
2058///
2059/// `UnsafeCell<T>` has the same in-memory representation as its inner type `T`. A consequence
2060/// of this guarantee is that it is possible to convert between `T` and `UnsafeCell<T>`.
2061/// Special care has to be taken when converting a nested `T` inside of an `Outer<T>` type
2062/// to an `Outer<UnsafeCell<T>>` type: this is not sound when the `Outer<T>` type enables [niche]
2063/// optimizations. For example, the type `Option<NonNull<u8>>` is typically 8 bytes large on
2064/// 64-bit platforms, but the type `Option<UnsafeCell<NonNull<u8>>>` takes up 16 bytes of space.
2065/// Therefore this is not a valid conversion, despite `NonNull<u8>` and `UnsafeCell<NonNull<u8>>>`
2066/// having the same memory layout. This is because `UnsafeCell` disables niche optimizations in
2067/// order to avoid its interior mutability property from spreading from `T` into the `Outer` type,
2068/// thus this can cause distortions in the type size in these cases.
2069///
2070/// Note that the only valid way to obtain a `*mut T` pointer to the contents of a
2071/// _shared_ `UnsafeCell<T>` is through [`.get()`]  or [`.raw_get()`]. A `&mut T` reference
2072/// can be obtained by either dereferencing this pointer or by calling [`.get_mut()`]
2073/// on an _exclusive_ `UnsafeCell<T>`. Even though `T` and `UnsafeCell<T>` have the
2074/// same memory layout, the following is not allowed and undefined behavior:
2075///
2076/// ```rust,compile_fail
2077/// # use std::cell::UnsafeCell;
2078/// unsafe fn not_allowed<T>(ptr: &UnsafeCell<T>) -> &mut T {
2079///   let t = ptr as *const UnsafeCell<T> as *mut T;
2080///   // This is undefined behavior, because the `*mut T` pointer
2081///   // was not obtained through `.get()` nor `.raw_get()`:
2082///   unsafe { &mut *t }
2083/// }
2084/// ```
2085///
2086/// Instead, do this:
2087///
2088/// ```rust
2089/// # use std::cell::UnsafeCell;
2090/// // Safety: the caller must ensure that there are no references that
2091/// // point to the *contents* of the `UnsafeCell`.
2092/// unsafe fn get_mut<T>(ptr: &UnsafeCell<T>) -> &mut T {
2093///   unsafe { &mut *ptr.get() }
2094/// }
2095/// ```
2096///
2097/// Converting in the other direction from a `&mut T`
2098/// to an `&UnsafeCell<T>` is allowed:
2099///
2100/// ```rust
2101/// # use std::cell::UnsafeCell;
2102/// fn get_shared<T>(ptr: &mut T) -> &UnsafeCell<T> {
2103///   let t = ptr as *mut T as *const UnsafeCell<T>;
2104///   // SAFETY: `T` and `UnsafeCell<T>` have the same memory layout
2105///   unsafe { &*t }
2106/// }
2107/// ```
2108///
2109/// [niche]: https://rust-lang.github.io/unsafe-code-guidelines/glossary.html#niche
2110/// [`.raw_get()`]: `UnsafeCell::raw_get`
2111///
2112/// # Examples
2113///
2114/// Here is an example showcasing how to soundly mutate the contents of an `UnsafeCell<_>` despite
2115/// there being multiple references aliasing the cell:
2116///
2117/// ```
2118/// use std::cell::UnsafeCell;
2119///
2120/// let x: UnsafeCell<i32> = 42.into();
2121/// // Get multiple / concurrent / shared references to the same `x`.
2122/// let (p1, p2): (&UnsafeCell<i32>, &UnsafeCell<i32>) = (&x, &x);
2123///
2124/// unsafe {
2125///     // SAFETY: within this scope there are no other references to `x`'s contents,
2126///     // so ours is effectively unique.
2127///     let p1_exclusive: &mut i32 = &mut *p1.get(); // -- borrow --+
2128///     *p1_exclusive += 27; //                                     |
2129/// } // <---------- cannot go beyond this point -------------------+
2130///
2131/// unsafe {
2132///     // SAFETY: within this scope nobody expects to have exclusive access to `x`'s contents,
2133///     // so we can have multiple shared accesses concurrently.
2134///     let p2_shared: &i32 = &*p2.get();
2135///     assert_eq!(*p2_shared, 42 + 27);
2136///     let p1_shared: &i32 = &*p1.get();
2137///     assert_eq!(*p1_shared, *p2_shared);
2138/// }
2139/// ```
2140///
2141/// The following example showcases the fact that exclusive access to an `UnsafeCell<T>`
2142/// implies exclusive access to its `T`:
2143///
2144/// ```rust
2145/// #![forbid(unsafe_code)] // with exclusive accesses,
2146///                         // `UnsafeCell` is a transparent no-op wrapper,
2147///                         // so no need for `unsafe` here.
2148/// use std::cell::UnsafeCell;
2149///
2150/// let mut x: UnsafeCell<i32> = 42.into();
2151///
2152/// // Get a compile-time-checked unique reference to `x`.
2153/// let p_unique: &mut UnsafeCell<i32> = &mut x;
2154/// // With an exclusive reference, we can mutate the contents for free.
2155/// *p_unique.get_mut() = 0;
2156/// // Or, equivalently:
2157/// x = UnsafeCell::new(0);
2158///
2159/// // When we own the value, we can extract the contents for free.
2160/// let contents: i32 = x.into_inner();
2161/// assert_eq!(contents, 0);
2162/// ```
2163#[lang = "unsafe_cell"]
2164#[stable(feature = "rust1", since = "1.0.0")]
2165#[repr(transparent)]
2166#[rustc_pub_transparent]
2167pub struct UnsafeCell<T: ?Sized> {
2168    value: T,
2169}
2170
2171#[stable(feature = "rust1", since = "1.0.0")]
2172#[cfg(not(feature = "ferrocene_certified"))]
2173impl<T: ?Sized> !Sync for UnsafeCell<T> {}
2174
2175impl<T> UnsafeCell<T> {
2176    /// Constructs a new instance of `UnsafeCell` which will wrap the specified
2177    /// value.
2178    ///
2179    /// All access to the inner value through `&UnsafeCell<T>` requires `unsafe` code.
2180    ///
2181    /// # Examples
2182    ///
2183    /// ```
2184    /// use std::cell::UnsafeCell;
2185    ///
2186    /// let uc = UnsafeCell::new(5);
2187    /// ```
2188    #[stable(feature = "rust1", since = "1.0.0")]
2189    #[rustc_const_stable(feature = "const_unsafe_cell_new", since = "1.32.0")]
2190    #[inline(always)]
2191    pub const fn new(value: T) -> UnsafeCell<T> {
2192        UnsafeCell { value }
2193    }
2194
2195    /// Unwraps the value, consuming the cell.
2196    ///
2197    /// # Examples
2198    ///
2199    /// ```
2200    /// use std::cell::UnsafeCell;
2201    ///
2202    /// let uc = UnsafeCell::new(5);
2203    ///
2204    /// let five = uc.into_inner();
2205    /// ```
2206    #[inline(always)]
2207    #[stable(feature = "rust1", since = "1.0.0")]
2208    #[rustc_const_stable(feature = "const_cell_into_inner", since = "1.83.0")]
2209    #[rustc_allow_const_fn_unstable(const_precise_live_drops)]
2210    pub const fn into_inner(self) -> T {
2211        self.value
2212    }
2213
2214    /// Replace the value in this `UnsafeCell` and return the old value.
2215    ///
2216    /// # Safety
2217    ///
2218    /// The caller must take care to avoid aliasing and data races.
2219    ///
2220    /// - It is Undefined Behavior to allow calls to race with
2221    ///   any other access to the wrapped value.
2222    /// - It is Undefined Behavior to call this while any other
2223    ///   reference(s) to the wrapped value are alive.
2224    ///
2225    /// # Examples
2226    ///
2227    /// ```
2228    /// #![feature(unsafe_cell_access)]
2229    /// use std::cell::UnsafeCell;
2230    ///
2231    /// let uc = UnsafeCell::new(5);
2232    ///
2233    /// let old = unsafe { uc.replace(10) };
2234    /// assert_eq!(old, 5);
2235    /// ```
2236    #[inline]
2237    #[unstable(feature = "unsafe_cell_access", issue = "136327")]
2238    #[cfg(not(feature = "ferrocene_certified"))]
2239    pub const unsafe fn replace(&self, value: T) -> T {
2240        // SAFETY: pointer comes from `&self` so naturally satisfies invariants.
2241        unsafe { ptr::replace(self.get(), value) }
2242    }
2243}
2244
2245impl<T: ?Sized> UnsafeCell<T> {
2246    /// Converts from `&mut T` to `&mut UnsafeCell<T>`.
2247    ///
2248    /// # Examples
2249    ///
2250    /// ```
2251    /// use std::cell::UnsafeCell;
2252    ///
2253    /// let mut val = 42;
2254    /// let uc = UnsafeCell::from_mut(&mut val);
2255    ///
2256    /// *uc.get_mut() -= 1;
2257    /// assert_eq!(*uc.get_mut(), 41);
2258    /// ```
2259    #[inline(always)]
2260    #[stable(feature = "unsafe_cell_from_mut", since = "1.84.0")]
2261    #[rustc_const_stable(feature = "unsafe_cell_from_mut", since = "1.84.0")]
2262    #[cfg(not(feature = "ferrocene_certified"))]
2263    pub const fn from_mut(value: &mut T) -> &mut UnsafeCell<T> {
2264        // SAFETY: `UnsafeCell<T>` has the same memory layout as `T` due to #[repr(transparent)].
2265        unsafe { &mut *(value as *mut T as *mut UnsafeCell<T>) }
2266    }
2267
2268    /// Gets a mutable pointer to the wrapped value.
2269    ///
2270    /// This can be cast to a pointer of any kind. When creating references, you must uphold the
2271    /// aliasing rules; see [the type-level docs][UnsafeCell#aliasing-rules] for more discussion and
2272    /// caveats.
2273    ///
2274    /// # Examples
2275    ///
2276    /// ```
2277    /// use std::cell::UnsafeCell;
2278    ///
2279    /// let uc = UnsafeCell::new(5);
2280    ///
2281    /// let five = uc.get();
2282    /// ```
2283    #[inline(always)]
2284    #[stable(feature = "rust1", since = "1.0.0")]
2285    #[rustc_const_stable(feature = "const_unsafecell_get", since = "1.32.0")]
2286    #[rustc_as_ptr]
2287    #[rustc_never_returns_null_ptr]
2288    pub const fn get(&self) -> *mut T {
2289        // We can just cast the pointer from `UnsafeCell<T>` to `T` because of
2290        // #[repr(transparent)]. This exploits std's special status, there is
2291        // no guarantee for user code that this will work in future versions of the compiler!
2292        self as *const UnsafeCell<T> as *const T as *mut T
2293    }
2294
2295    /// Returns a mutable reference to the underlying data.
2296    ///
2297    /// This call borrows the `UnsafeCell` mutably (at compile-time) which
2298    /// guarantees that we possess the only reference.
2299    ///
2300    /// # Examples
2301    ///
2302    /// ```
2303    /// use std::cell::UnsafeCell;
2304    ///
2305    /// let mut c = UnsafeCell::new(5);
2306    /// *c.get_mut() += 1;
2307    ///
2308    /// assert_eq!(*c.get_mut(), 6);
2309    /// ```
2310    #[inline(always)]
2311    #[stable(feature = "unsafe_cell_get_mut", since = "1.50.0")]
2312    #[rustc_const_stable(feature = "const_unsafecell_get_mut", since = "1.83.0")]
2313    pub const fn get_mut(&mut self) -> &mut T {
2314        &mut self.value
2315    }
2316
2317    /// Gets a mutable pointer to the wrapped value.
2318    /// The difference from [`get`] is that this function accepts a raw pointer,
2319    /// which is useful to avoid the creation of temporary references.
2320    ///
2321    /// This can be cast to a pointer of any kind. When creating references, you must uphold the
2322    /// aliasing rules; see [the type-level docs][UnsafeCell#aliasing-rules] for more discussion and
2323    /// caveats.
2324    ///
2325    /// [`get`]: UnsafeCell::get()
2326    ///
2327    /// # Examples
2328    ///
2329    /// Gradual initialization of an `UnsafeCell` requires `raw_get`, as
2330    /// calling `get` would require creating a reference to uninitialized data:
2331    ///
2332    /// ```
2333    /// use std::cell::UnsafeCell;
2334    /// use std::mem::MaybeUninit;
2335    ///
2336    /// let m = MaybeUninit::<UnsafeCell<i32>>::uninit();
2337    /// unsafe { UnsafeCell::raw_get(m.as_ptr()).write(5); }
2338    /// // avoid below which references to uninitialized data
2339    /// // unsafe { UnsafeCell::get(&*m.as_ptr()).write(5); }
2340    /// let uc = unsafe { m.assume_init() };
2341    ///
2342    /// assert_eq!(uc.into_inner(), 5);
2343    /// ```
2344    #[inline(always)]
2345    #[stable(feature = "unsafe_cell_raw_get", since = "1.56.0")]
2346    #[rustc_const_stable(feature = "unsafe_cell_raw_get", since = "1.56.0")]
2347    #[rustc_diagnostic_item = "unsafe_cell_raw_get"]
2348    #[cfg(not(feature = "ferrocene_certified"))]
2349    pub const fn raw_get(this: *const Self) -> *mut T {
2350        // We can just cast the pointer from `UnsafeCell<T>` to `T` because of
2351        // #[repr(transparent)]. This exploits std's special status, there is
2352        // no guarantee for user code that this will work in future versions of the compiler!
2353        this as *const T as *mut T
2354    }
2355
2356    /// Get a shared reference to the value within the `UnsafeCell`.
2357    ///
2358    /// # Safety
2359    ///
2360    /// - It is Undefined Behavior to call this while any mutable
2361    ///   reference to the wrapped value is alive.
2362    /// - Mutating the wrapped value while the returned
2363    ///   reference is alive is Undefined Behavior.
2364    ///
2365    /// # Examples
2366    ///
2367    /// ```
2368    /// #![feature(unsafe_cell_access)]
2369    /// use std::cell::UnsafeCell;
2370    ///
2371    /// let uc = UnsafeCell::new(5);
2372    ///
2373    /// let val = unsafe { uc.as_ref_unchecked() };
2374    /// assert_eq!(val, &5);
2375    /// ```
2376    #[inline]
2377    #[unstable(feature = "unsafe_cell_access", issue = "136327")]
2378    #[cfg(not(feature = "ferrocene_certified"))]
2379    pub const unsafe fn as_ref_unchecked(&self) -> &T {
2380        // SAFETY: pointer comes from `&self` so naturally satisfies ptr-to-ref invariants.
2381        unsafe { self.get().as_ref_unchecked() }
2382    }
2383
2384    /// Get an exclusive reference to the value within the `UnsafeCell`.
2385    ///
2386    /// # Safety
2387    ///
2388    /// - It is Undefined Behavior to call this while any other
2389    ///   reference(s) to the wrapped value are alive.
2390    /// - Mutating the wrapped value through other means while the
2391    ///   returned reference is alive is Undefined Behavior.
2392    ///
2393    /// # Examples
2394    ///
2395    /// ```
2396    /// #![feature(unsafe_cell_access)]
2397    /// use std::cell::UnsafeCell;
2398    ///
2399    /// let uc = UnsafeCell::new(5);
2400    ///
2401    /// unsafe { *uc.as_mut_unchecked() += 1; }
2402    /// assert_eq!(uc.into_inner(), 6);
2403    /// ```
2404    #[inline]
2405    #[unstable(feature = "unsafe_cell_access", issue = "136327")]
2406    #[allow(clippy::mut_from_ref)]
2407    #[cfg(not(feature = "ferrocene_certified"))]
2408    pub const unsafe fn as_mut_unchecked(&self) -> &mut T {
2409        // SAFETY: pointer comes from `&self` so naturally satisfies ptr-to-ref invariants.
2410        unsafe { self.get().as_mut_unchecked() }
2411    }
2412}
2413
2414#[stable(feature = "unsafe_cell_default", since = "1.10.0")]
2415#[rustc_const_unstable(feature = "const_default", issue = "143894")]
2416#[cfg(not(feature = "ferrocene_certified"))]
2417impl<T: ~const Default> const Default for UnsafeCell<T> {
2418    /// Creates an `UnsafeCell`, with the `Default` value for T.
2419    fn default() -> UnsafeCell<T> {
2420        UnsafeCell::new(Default::default())
2421    }
2422}
2423
2424#[stable(feature = "cell_from", since = "1.12.0")]
2425#[cfg(not(feature = "ferrocene_certified"))]
2426impl<T> From<T> for UnsafeCell<T> {
2427    /// Creates a new `UnsafeCell<T>` containing the given value.
2428    fn from(t: T) -> UnsafeCell<T> {
2429        UnsafeCell::new(t)
2430    }
2431}
2432
2433#[unstable(feature = "coerce_unsized", issue = "18598")]
2434#[cfg(not(feature = "ferrocene_certified"))]
2435impl<T: CoerceUnsized<U>, U> CoerceUnsized<UnsafeCell<U>> for UnsafeCell<T> {}
2436
2437// Allow types that wrap `UnsafeCell` to also implement `DispatchFromDyn`
2438// and become dyn-compatible method receivers.
2439// Note that currently `UnsafeCell` itself cannot be a method receiver
2440// because it does not implement Deref.
2441// In other words:
2442// `self: UnsafeCell<&Self>` won't work
2443// `self: UnsafeCellWrapper<Self>` becomes possible
2444#[unstable(feature = "dispatch_from_dyn", issue = "none")]
2445#[cfg(not(feature = "ferrocene_certified"))]
2446impl<T: DispatchFromDyn<U>, U> DispatchFromDyn<UnsafeCell<U>> for UnsafeCell<T> {}
2447
2448/// [`UnsafeCell`], but [`Sync`].
2449///
2450/// This is just an `UnsafeCell`, except it implements `Sync`
2451/// if `T` implements `Sync`.
2452///
2453/// `UnsafeCell` doesn't implement `Sync`, to prevent accidental mis-use.
2454/// You can use `SyncUnsafeCell` instead of `UnsafeCell` to allow it to be
2455/// shared between threads, if that's intentional.
2456/// Providing proper synchronization is still the task of the user,
2457/// making this type just as unsafe to use.
2458///
2459/// See [`UnsafeCell`] for details.
2460#[unstable(feature = "sync_unsafe_cell", issue = "95439")]
2461#[repr(transparent)]
2462#[rustc_diagnostic_item = "SyncUnsafeCell"]
2463#[rustc_pub_transparent]
2464#[cfg(not(feature = "ferrocene_certified"))]
2465pub struct SyncUnsafeCell<T: ?Sized> {
2466    value: UnsafeCell<T>,
2467}
2468
2469#[unstable(feature = "sync_unsafe_cell", issue = "95439")]
2470#[cfg(not(feature = "ferrocene_certified"))]
2471unsafe impl<T: ?Sized + Sync> Sync for SyncUnsafeCell<T> {}
2472
2473#[unstable(feature = "sync_unsafe_cell", issue = "95439")]
2474#[cfg(not(feature = "ferrocene_certified"))]
2475impl<T> SyncUnsafeCell<T> {
2476    /// Constructs a new instance of `SyncUnsafeCell` which will wrap the specified value.
2477    #[inline]
2478    pub const fn new(value: T) -> Self {
2479        Self { value: UnsafeCell { value } }
2480    }
2481
2482    /// Unwraps the value, consuming the cell.
2483    #[inline]
2484    #[rustc_const_unstable(feature = "sync_unsafe_cell", issue = "95439")]
2485    pub const fn into_inner(self) -> T {
2486        self.value.into_inner()
2487    }
2488}
2489
2490#[unstable(feature = "sync_unsafe_cell", issue = "95439")]
2491#[cfg(not(feature = "ferrocene_certified"))]
2492impl<T: ?Sized> SyncUnsafeCell<T> {
2493    /// Gets a mutable pointer to the wrapped value.
2494    ///
2495    /// This can be cast to a pointer of any kind.
2496    /// Ensure that the access is unique (no active references, mutable or not)
2497    /// when casting to `&mut T`, and ensure that there are no mutations
2498    /// or mutable aliases going on when casting to `&T`
2499    #[inline]
2500    #[rustc_as_ptr]
2501    #[rustc_never_returns_null_ptr]
2502    pub const fn get(&self) -> *mut T {
2503        self.value.get()
2504    }
2505
2506    /// Returns a mutable reference to the underlying data.
2507    ///
2508    /// This call borrows the `SyncUnsafeCell` mutably (at compile-time) which
2509    /// guarantees that we possess the only reference.
2510    #[inline]
2511    pub const fn get_mut(&mut self) -> &mut T {
2512        self.value.get_mut()
2513    }
2514
2515    /// Gets a mutable pointer to the wrapped value.
2516    ///
2517    /// See [`UnsafeCell::get`] for details.
2518    #[inline]
2519    pub const fn raw_get(this: *const Self) -> *mut T {
2520        // We can just cast the pointer from `SyncUnsafeCell<T>` to `T` because
2521        // of #[repr(transparent)] on both SyncUnsafeCell and UnsafeCell.
2522        // See UnsafeCell::raw_get.
2523        this as *const T as *mut T
2524    }
2525}
2526
2527#[unstable(feature = "sync_unsafe_cell", issue = "95439")]
2528#[rustc_const_unstable(feature = "const_default", issue = "143894")]
2529#[cfg(not(feature = "ferrocene_certified"))]
2530impl<T: ~const Default> const Default for SyncUnsafeCell<T> {
2531    /// Creates an `SyncUnsafeCell`, with the `Default` value for T.
2532    fn default() -> SyncUnsafeCell<T> {
2533        SyncUnsafeCell::new(Default::default())
2534    }
2535}
2536
2537#[unstable(feature = "sync_unsafe_cell", issue = "95439")]
2538#[cfg(not(feature = "ferrocene_certified"))]
2539impl<T> From<T> for SyncUnsafeCell<T> {
2540    /// Creates a new `SyncUnsafeCell<T>` containing the given value.
2541    fn from(t: T) -> SyncUnsafeCell<T> {
2542        SyncUnsafeCell::new(t)
2543    }
2544}
2545
2546#[unstable(feature = "coerce_unsized", issue = "18598")]
2547//#[unstable(feature = "sync_unsafe_cell", issue = "95439")]
2548#[cfg(not(feature = "ferrocene_certified"))]
2549impl<T: CoerceUnsized<U>, U> CoerceUnsized<SyncUnsafeCell<U>> for SyncUnsafeCell<T> {}
2550
2551// Allow types that wrap `SyncUnsafeCell` to also implement `DispatchFromDyn`
2552// and become dyn-compatible method receivers.
2553// Note that currently `SyncUnsafeCell` itself cannot be a method receiver
2554// because it does not implement Deref.
2555// In other words:
2556// `self: SyncUnsafeCell<&Self>` won't work
2557// `self: SyncUnsafeCellWrapper<Self>` becomes possible
2558#[unstable(feature = "dispatch_from_dyn", issue = "none")]
2559//#[unstable(feature = "sync_unsafe_cell", issue = "95439")]
2560#[cfg(not(feature = "ferrocene_certified"))]
2561impl<T: DispatchFromDyn<U>, U> DispatchFromDyn<SyncUnsafeCell<U>> for SyncUnsafeCell<T> {}
2562
2563#[allow(unused)]
2564#[cfg(not(feature = "ferrocene_certified"))]
2565fn assert_coerce_unsized(
2566    a: UnsafeCell<&i32>,
2567    b: SyncUnsafeCell<&i32>,
2568    c: Cell<&i32>,
2569    d: RefCell<&i32>,
2570) {
2571    let _: UnsafeCell<&dyn Send> = a;
2572    let _: SyncUnsafeCell<&dyn Send> = b;
2573    let _: Cell<&dyn Send> = c;
2574    let _: RefCell<&dyn Send> = d;
2575}
2576
2577#[unstable(feature = "pin_coerce_unsized_trait", issue = "123430")]
2578#[cfg(not(feature = "ferrocene_certified"))]
2579unsafe impl<T: ?Sized> PinCoerceUnsized for UnsafeCell<T> {}
2580
2581#[unstable(feature = "pin_coerce_unsized_trait", issue = "123430")]
2582#[cfg(not(feature = "ferrocene_certified"))]
2583unsafe impl<T: ?Sized> PinCoerceUnsized for SyncUnsafeCell<T> {}
2584
2585#[unstable(feature = "pin_coerce_unsized_trait", issue = "123430")]
2586#[cfg(not(feature = "ferrocene_certified"))]
2587unsafe impl<T: ?Sized> PinCoerceUnsized for Cell<T> {}
2588
2589#[unstable(feature = "pin_coerce_unsized_trait", issue = "123430")]
2590#[cfg(not(feature = "ferrocene_certified"))]
2591unsafe impl<T: ?Sized> PinCoerceUnsized for RefCell<T> {}
2592
2593#[unstable(feature = "pin_coerce_unsized_trait", issue = "123430")]
2594#[cfg(not(feature = "ferrocene_certified"))]
2595unsafe impl<'b, T: ?Sized> PinCoerceUnsized for Ref<'b, T> {}
2596
2597#[unstable(feature = "pin_coerce_unsized_trait", issue = "123430")]
2598#[cfg(not(feature = "ferrocene_certified"))]
2599unsafe impl<'b, T: ?Sized> PinCoerceUnsized for RefMut<'b, T> {}