core/cell.rs
1//! Shareable mutable containers.
2//!
3//! Rust memory safety is based on this rule: Given an object `T`, it is only possible to
4//! have one of the following:
5//!
6//! - Several immutable references (`&T`) to the object (also known as **aliasing**).
7//! - One mutable reference (`&mut T`) to the object (also known as **mutability**).
8//!
9//! This is enforced by the Rust compiler. However, there are situations where this rule is not
10//! flexible enough. Sometimes it is required to have multiple references to an object and yet
11//! mutate it.
12//!
13//! Shareable mutable containers exist to permit mutability in a controlled manner, even in the
14//! presence of aliasing. [`Cell<T>`], [`RefCell<T>`], and [`OnceCell<T>`] allow doing this in
15//! a single-threaded way—they do not implement [`Sync`]. (If you need to do aliasing and
16//! mutation among multiple threads, [`Mutex<T>`], [`RwLock<T>`], [`OnceLock<T>`] or [`atomic`]
17//! types are the correct data structures to do so).
18//!
19//! Values of the `Cell<T>`, `RefCell<T>`, and `OnceCell<T>` types may be mutated through shared
20//! references (i.e. the common `&T` type), whereas most Rust types can only be mutated through
21//! unique (`&mut T`) references. We say these cell types provide 'interior mutability'
22//! (mutable via `&T`), in contrast with typical Rust types that exhibit 'inherited mutability'
23//! (mutable only via `&mut T`).
24//!
25//! Cell types come in four flavors: `Cell<T>`, `RefCell<T>`, `OnceCell<T>`, and `LazyCell<T>`.
26//! Each provides a different way of providing safe interior mutability.
27//!
28//! ## `Cell<T>`
29//!
30//! [`Cell<T>`] implements interior mutability by moving values in and out of the cell. That is, an
31//! `&mut T` to the inner value can never be obtained, and the value itself cannot be directly
32//! obtained without replacing it with something else. Both of these rules ensure that there is
33//! never more than one reference pointing to the inner value. This type provides the following
34//! methods:
35//!
36//! - For types that implement [`Copy`], the [`get`](Cell::get) method retrieves the current
37//! interior value by duplicating it.
38//! - For types that implement [`Default`], the [`take`](Cell::take) method replaces the current
39//! interior value with [`Default::default()`] and returns the replaced value.
40//! - All types have:
41//! - [`replace`](Cell::replace): replaces the current interior value and returns the replaced
42//! value.
43//! - [`into_inner`](Cell::into_inner): this method consumes the `Cell<T>` and returns the
44//! interior value.
45//! - [`set`](Cell::set): this method replaces the interior value, dropping the replaced value.
46//!
47//! `Cell<T>` is typically used for more simple types where copying or moving values isn't too
48//! resource intensive (e.g. numbers), and should usually be preferred over other cell types when
49//! possible. For larger and non-copy types, `RefCell` provides some advantages.
50//!
51//! ## `RefCell<T>`
52//!
53//! [`RefCell<T>`] uses Rust's lifetimes to implement "dynamic borrowing", a process whereby one can
54//! claim temporary, exclusive, mutable access to the inner value. Borrows for `RefCell<T>`s are
55//! tracked at _runtime_, unlike Rust's native reference types which are entirely tracked
56//! statically, at compile time.
57//!
58//! An immutable reference to a `RefCell`'s inner value (`&T`) can be obtained with
59//! [`borrow`](`RefCell::borrow`), and a mutable borrow (`&mut T`) can be obtained with
60//! [`borrow_mut`](`RefCell::borrow_mut`). When these functions are called, they first verify that
61//! Rust's borrow rules will be satisfied: any number of immutable borrows are allowed or a
62//! single mutable borrow is allowed, but never both. If a borrow is attempted that would violate
63//! these rules, the thread will panic.
64//!
65//! The corresponding [`Sync`] version of `RefCell<T>` is [`RwLock<T>`].
66//!
67//! ## `OnceCell<T>`
68//!
69//! [`OnceCell<T>`] is somewhat of a hybrid of `Cell` and `RefCell` that works for values that
70//! typically only need to be set once. This means that a reference `&T` can be obtained without
71//! moving or copying the inner value (unlike `Cell`) but also without runtime checks (unlike
72//! `RefCell`). However, its value can also not be updated once set unless you have a mutable
73//! reference to the `OnceCell`.
74//!
75//! `OnceCell` provides the following methods:
76//!
77//! - [`get`](OnceCell::get): obtain a reference to the inner value
78//! - [`set`](OnceCell::set): set the inner value if it is unset (returns a `Result`)
79//! - [`get_or_init`](OnceCell::get_or_init): return the inner value, initializing it if needed
80//! - [`get_mut`](OnceCell::get_mut): provide a mutable reference to the inner value, only available
81//! if you have a mutable reference to the cell itself.
82//!
83//! The corresponding [`Sync`] version of `OnceCell<T>` is [`OnceLock<T>`].
84//!
85//! ## `LazyCell<T, F>`
86//!
87//! A common pattern with OnceCell is, for a given OnceCell, to use the same function on every
88//! call to [`OnceCell::get_or_init`] with that cell. This is what is offered by [`LazyCell`],
89//! which pairs cells of `T` with functions of `F`, and always calls `F` before it yields `&T`.
90//! This happens implicitly by simply attempting to dereference the LazyCell to get its contents,
91//! so its use is much more transparent with a place which has been initialized by a constant.
92//!
93//! More complicated patterns that don't fit this description can be built on `OnceCell<T>` instead.
94//!
95//! `LazyCell` works by providing an implementation of `impl Deref` that calls the function,
96//! so you can just use it by dereference (e.g. `*lazy_cell` or `lazy_cell.deref()`).
97//!
98//! The corresponding [`Sync`] version of `LazyCell<T, F>` is [`LazyLock<T, F>`].
99//!
100//! # When to choose interior mutability
101//!
102//! The more common inherited mutability, where one must have unique access to mutate a value, is
103//! one of the key language elements that enables Rust to reason strongly about pointer aliasing,
104//! statically preventing crash bugs. Because of that, inherited mutability is preferred, and
105//! interior mutability is something of a last resort. Since cell types enable mutation where it
106//! would otherwise be disallowed though, there are occasions when interior mutability might be
107//! appropriate, or even *must* be used, e.g.
108//!
109//! * Introducing mutability 'inside' of something immutable
110//! * Implementation details of logically-immutable methods.
111//! * Mutating implementations of [`Clone`].
112//!
113//! ## Introducing mutability 'inside' of something immutable
114//!
115//! Many shared smart pointer types, including [`Rc<T>`] and [`Arc<T>`], provide containers that can
116//! be cloned and shared between multiple parties. Because the contained values may be
117//! multiply-aliased, they can only be borrowed with `&`, not `&mut`. Without cells it would be
118//! impossible to mutate data inside of these smart pointers at all.
119//!
120//! It's very common then to put a `RefCell<T>` inside shared pointer types to reintroduce
121//! mutability:
122//!
123//! ```
124//! use std::cell::{RefCell, RefMut};
125//! use std::collections::HashMap;
126//! use std::rc::Rc;
127//!
128//! fn main() {
129//! let shared_map: Rc<RefCell<_>> = Rc::new(RefCell::new(HashMap::new()));
130//! // Create a new block to limit the scope of the dynamic borrow
131//! {
132//! let mut map: RefMut<'_, _> = shared_map.borrow_mut();
133//! map.insert("africa", 92388);
134//! map.insert("kyoto", 11837);
135//! map.insert("piccadilly", 11826);
136//! map.insert("marbles", 38);
137//! }
138//!
139//! // Note that if we had not let the previous borrow of the cache fall out
140//! // of scope then the subsequent borrow would cause a dynamic thread panic.
141//! // This is the major hazard of using `RefCell`.
142//! let total: i32 = shared_map.borrow().values().sum();
143//! println!("{total}");
144//! }
145//! ```
146//!
147//! Note that this example uses `Rc<T>` and not `Arc<T>`. `RefCell<T>`s are for single-threaded
148//! scenarios. Consider using [`RwLock<T>`] or [`Mutex<T>`] if you need shared mutability in a
149//! multi-threaded situation.
150//!
151//! ## Implementation details of logically-immutable methods
152//!
153//! Occasionally it may be desirable not to expose in an API that there is mutation happening
154//! "under the hood". This may be because logically the operation is immutable, but e.g., caching
155//! forces the implementation to perform mutation; or because you must employ mutation to implement
156//! a trait method that was originally defined to take `&self`.
157//!
158//! ```
159//! # #![allow(dead_code)]
160//! use std::cell::OnceCell;
161//!
162//! struct Graph {
163//! edges: Vec<(i32, i32)>,
164//! span_tree_cache: OnceCell<Vec<(i32, i32)>>
165//! }
166//!
167//! impl Graph {
168//! fn minimum_spanning_tree(&self) -> Vec<(i32, i32)> {
169//! self.span_tree_cache
170//! .get_or_init(|| self.calc_span_tree())
171//! .clone()
172//! }
173//!
174//! fn calc_span_tree(&self) -> Vec<(i32, i32)> {
175//! // Expensive computation goes here
176//! vec![]
177//! }
178//! }
179//! ```
180//!
181//! ## Mutating implementations of `Clone`
182//!
183//! This is simply a special - but common - case of the previous: hiding mutability for operations
184//! that appear to be immutable. The [`clone`](Clone::clone) method is expected to not change the
185//! source value, and is declared to take `&self`, not `&mut self`. Therefore, any mutation that
186//! happens in the `clone` method must use cell types. For example, [`Rc<T>`] maintains its
187//! reference counts within a `Cell<T>`.
188//!
189//! ```
190//! use std::cell::Cell;
191//! use std::ptr::NonNull;
192//! use std::process::abort;
193//! use std::marker::PhantomData;
194//!
195//! struct Rc<T: ?Sized> {
196//! ptr: NonNull<RcInner<T>>,
197//! phantom: PhantomData<RcInner<T>>,
198//! }
199//!
200//! struct RcInner<T: ?Sized> {
201//! strong: Cell<usize>,
202//! refcount: Cell<usize>,
203//! value: T,
204//! }
205//!
206//! impl<T: ?Sized> Clone for Rc<T> {
207//! fn clone(&self) -> Rc<T> {
208//! self.inc_strong();
209//! Rc {
210//! ptr: self.ptr,
211//! phantom: PhantomData,
212//! }
213//! }
214//! }
215//!
216//! trait RcInnerPtr<T: ?Sized> {
217//!
218//! fn inner(&self) -> &RcInner<T>;
219//!
220//! fn strong(&self) -> usize {
221//! self.inner().strong.get()
222//! }
223//!
224//! fn inc_strong(&self) {
225//! self.inner()
226//! .strong
227//! .set(self.strong()
228//! .checked_add(1)
229//! .unwrap_or_else(|| abort() ));
230//! }
231//! }
232//!
233//! impl<T: ?Sized> RcInnerPtr<T> for Rc<T> {
234//! fn inner(&self) -> &RcInner<T> {
235//! unsafe {
236//! self.ptr.as_ref()
237//! }
238//! }
239//! }
240//! ```
241//!
242//! [`Arc<T>`]: ../../std/sync/struct.Arc.html
243//! [`Rc<T>`]: ../../std/rc/struct.Rc.html
244//! [`RwLock<T>`]: ../../std/sync/struct.RwLock.html
245//! [`Mutex<T>`]: ../../std/sync/struct.Mutex.html
246//! [`OnceLock<T>`]: ../../std/sync/struct.OnceLock.html
247//! [`LazyLock<T, F>`]: ../../std/sync/struct.LazyLock.html
248//! [`Sync`]: ../../std/marker/trait.Sync.html
249//! [`atomic`]: crate::sync::atomic
250
251#![stable(feature = "rust1", since = "1.0.0")]
252
253#[cfg(not(feature = "ferrocene_subset"))]
254use crate::cmp::Ordering;
255#[cfg(not(feature = "ferrocene_subset"))]
256use crate::fmt::{self, Debug, Display};
257#[cfg(not(feature = "ferrocene_subset"))]
258use crate::marker::{Destruct, PhantomData, Unsize};
259#[cfg(not(feature = "ferrocene_subset"))]
260use crate::mem::{self, ManuallyDrop};
261#[cfg(not(feature = "ferrocene_subset"))]
262use crate::ops::{self, CoerceUnsized, Deref, DerefMut, DerefPure, DispatchFromDyn};
263use crate::panic::const_panic;
264#[cfg(not(feature = "ferrocene_subset"))]
265use crate::pin::PinCoerceUnsized;
266#[cfg(not(feature = "ferrocene_subset"))]
267use crate::ptr::{self, NonNull};
268#[cfg(not(feature = "ferrocene_subset"))]
269use crate::range;
270
271// Ferrocene addition: imports for certified subset
272#[cfg(feature = "ferrocene_subset")]
273#[rustfmt::skip]
274use crate::{
275 marker::{Destruct, PhantomData},
276 mem,
277 ops::{Deref, DerefMut},
278 ptr::NonNull,
279};
280
281#[cfg(not(feature = "ferrocene_subset"))]
282mod lazy;
283#[cfg(not(feature = "ferrocene_subset"))]
284mod once;
285
286#[stable(feature = "lazy_cell", since = "1.80.0")]
287#[cfg(not(feature = "ferrocene_subset"))]
288pub use lazy::LazyCell;
289#[stable(feature = "once_cell", since = "1.70.0")]
290#[cfg(not(feature = "ferrocene_subset"))]
291pub use once::OnceCell;
292
293/// A mutable memory location.
294///
295/// # Memory layout
296///
297/// `Cell<T>` has the same [memory layout and caveats as
298/// `UnsafeCell<T>`](UnsafeCell#memory-layout). In particular, this means that
299/// `Cell<T>` has the same in-memory representation as its inner type `T`.
300///
301/// # Examples
302///
303/// In this example, you can see that `Cell<T>` enables mutation inside an
304/// immutable struct. In other words, it enables "interior mutability".
305///
306/// ```
307/// use std::cell::Cell;
308///
309/// struct SomeStruct {
310/// regular_field: u8,
311/// special_field: Cell<u8>,
312/// }
313///
314/// let my_struct = SomeStruct {
315/// regular_field: 0,
316/// special_field: Cell::new(1),
317/// };
318///
319/// let new_value = 100;
320///
321/// // ERROR: `my_struct` is immutable
322/// // my_struct.regular_field = new_value;
323///
324/// // WORKS: although `my_struct` is immutable, `special_field` is a `Cell`,
325/// // which can always be mutated
326/// my_struct.special_field.set(new_value);
327/// assert_eq!(my_struct.special_field.get(), new_value);
328/// ```
329///
330/// See the [module-level documentation](self) for more.
331#[rustc_diagnostic_item = "Cell"]
332#[stable(feature = "rust1", since = "1.0.0")]
333#[repr(transparent)]
334#[rustc_pub_transparent]
335pub struct Cell<T: ?Sized> {
336 value: UnsafeCell<T>,
337}
338
339#[stable(feature = "rust1", since = "1.0.0")]
340unsafe impl<T: ?Sized> Send for Cell<T> where T: Send {}
341
342// Note that this negative impl isn't strictly necessary for correctness,
343// as `Cell` wraps `UnsafeCell`, which is itself `!Sync`.
344// However, given how important `Cell`'s `!Sync`-ness is,
345// having an explicit negative impl is nice for documentation purposes
346// and results in nicer error messages.
347#[stable(feature = "rust1", since = "1.0.0")]
348impl<T: ?Sized> !Sync for Cell<T> {}
349
350#[stable(feature = "rust1", since = "1.0.0")]
351#[cfg(not(feature = "ferrocene_subset"))]
352impl<T: Copy> Clone for Cell<T> {
353 #[inline]
354 fn clone(&self) -> Cell<T> {
355 Cell::new(self.get())
356 }
357}
358
359#[stable(feature = "rust1", since = "1.0.0")]
360#[rustc_const_unstable(feature = "const_default", issue = "143894")]
361#[cfg(not(feature = "ferrocene_subset"))]
362impl<T: [const] Default> const Default for Cell<T> {
363 /// Creates a `Cell<T>`, with the `Default` value for T.
364 #[inline]
365 fn default() -> Cell<T> {
366 Cell::new(Default::default())
367 }
368}
369
370#[stable(feature = "rust1", since = "1.0.0")]
371#[cfg(not(feature = "ferrocene_subset"))]
372impl<T: PartialEq + Copy> PartialEq for Cell<T> {
373 #[inline]
374 fn eq(&self, other: &Cell<T>) -> bool {
375 self.get() == other.get()
376 }
377}
378
379#[stable(feature = "cell_eq", since = "1.2.0")]
380#[cfg(not(feature = "ferrocene_subset"))]
381impl<T: Eq + Copy> Eq for Cell<T> {}
382
383#[stable(feature = "cell_ord", since = "1.10.0")]
384#[cfg(not(feature = "ferrocene_subset"))]
385impl<T: PartialOrd + Copy> PartialOrd for Cell<T> {
386 #[inline]
387 fn partial_cmp(&self, other: &Cell<T>) -> Option<Ordering> {
388 self.get().partial_cmp(&other.get())
389 }
390
391 #[inline]
392 fn lt(&self, other: &Cell<T>) -> bool {
393 self.get() < other.get()
394 }
395
396 #[inline]
397 fn le(&self, other: &Cell<T>) -> bool {
398 self.get() <= other.get()
399 }
400
401 #[inline]
402 fn gt(&self, other: &Cell<T>) -> bool {
403 self.get() > other.get()
404 }
405
406 #[inline]
407 fn ge(&self, other: &Cell<T>) -> bool {
408 self.get() >= other.get()
409 }
410}
411
412#[stable(feature = "cell_ord", since = "1.10.0")]
413#[cfg(not(feature = "ferrocene_subset"))]
414impl<T: Ord + Copy> Ord for Cell<T> {
415 #[inline]
416 fn cmp(&self, other: &Cell<T>) -> Ordering {
417 self.get().cmp(&other.get())
418 }
419}
420
421#[stable(feature = "cell_from", since = "1.12.0")]
422#[rustc_const_unstable(feature = "const_convert", issue = "143773")]
423#[cfg(not(feature = "ferrocene_subset"))]
424impl<T> const From<T> for Cell<T> {
425 /// Creates a new `Cell<T>` containing the given value.
426 fn from(t: T) -> Cell<T> {
427 Cell::new(t)
428 }
429}
430
431impl<T> Cell<T> {
432 /// Creates a new `Cell` containing the given value.
433 ///
434 /// # Examples
435 ///
436 /// ```
437 /// use std::cell::Cell;
438 ///
439 /// let c = Cell::new(5);
440 /// ```
441 #[stable(feature = "rust1", since = "1.0.0")]
442 #[rustc_const_stable(feature = "const_cell_new", since = "1.24.0")]
443 #[inline]
444 pub const fn new(value: T) -> Cell<T> {
445 Cell { value: UnsafeCell::new(value) }
446 }
447
448 /// Sets the contained value.
449 ///
450 /// # Examples
451 ///
452 /// ```
453 /// use std::cell::Cell;
454 ///
455 /// let c = Cell::new(5);
456 ///
457 /// c.set(10);
458 /// ```
459 #[inline]
460 #[stable(feature = "rust1", since = "1.0.0")]
461 #[rustc_const_unstable(feature = "const_cell_traits", issue = "147787")]
462 #[rustc_should_not_be_called_on_const_items]
463 pub const fn set(&self, val: T)
464 where
465 T: [const] Destruct,
466 {
467 self.replace(val);
468 }
469
470 /// Swaps the values of two `Cell`s.
471 ///
472 /// The difference with `std::mem::swap` is that this function doesn't
473 /// require a `&mut` reference.
474 ///
475 /// # Panics
476 ///
477 /// This function will panic if `self` and `other` are different `Cell`s that partially overlap.
478 /// (Using just standard library methods, it is impossible to create such partially overlapping `Cell`s.
479 /// However, unsafe code is allowed to e.g. create two `&Cell<[i32; 2]>` that partially overlap.)
480 ///
481 /// # Examples
482 ///
483 /// ```
484 /// use std::cell::Cell;
485 ///
486 /// let c1 = Cell::new(5i32);
487 /// let c2 = Cell::new(10i32);
488 /// c1.swap(&c2);
489 /// assert_eq!(10, c1.get());
490 /// assert_eq!(5, c2.get());
491 /// ```
492 #[inline]
493 #[stable(feature = "move_cell", since = "1.17.0")]
494 #[cfg(not(feature = "ferrocene_subset"))]
495 #[rustc_should_not_be_called_on_const_items]
496 pub fn swap(&self, other: &Self) {
497 // This function documents that it *will* panic, and intrinsics::is_nonoverlapping doesn't
498 // do the check in const, so trying to use it here would be inviting unnecessary fragility.
499 fn is_nonoverlapping<T>(src: *const T, dst: *const T) -> bool {
500 let src_usize = src.addr();
501 let dst_usize = dst.addr();
502 let diff = src_usize.abs_diff(dst_usize);
503 diff >= size_of::<T>()
504 }
505
506 if ptr::eq(self, other) {
507 // Swapping wouldn't change anything.
508 return;
509 }
510 if !is_nonoverlapping(self, other) {
511 // See <https://github.com/rust-lang/rust/issues/80778> for why we need to stop here.
512 panic!("`Cell::swap` on overlapping non-identical `Cell`s");
513 }
514 // SAFETY: This can be risky if called from separate threads, but `Cell`
515 // is `!Sync` so this won't happen. This also won't invalidate any
516 // pointers since `Cell` makes sure nothing else will be pointing into
517 // either of these `Cell`s. We also excluded shenanigans like partially overlapping `Cell`s,
518 // so `swap` will just properly copy two full values of type `T` back and forth.
519 unsafe {
520 mem::swap(&mut *self.value.get(), &mut *other.value.get());
521 }
522 }
523
524 /// Replaces the contained value with `val`, and returns the old contained value.
525 ///
526 /// # Examples
527 ///
528 /// ```
529 /// use std::cell::Cell;
530 ///
531 /// let cell = Cell::new(5);
532 /// assert_eq!(cell.get(), 5);
533 /// assert_eq!(cell.replace(10), 5);
534 /// assert_eq!(cell.get(), 10);
535 /// ```
536 #[inline]
537 #[stable(feature = "move_cell", since = "1.17.0")]
538 #[rustc_const_stable(feature = "const_cell", since = "1.88.0")]
539 #[rustc_confusables("swap")]
540 #[rustc_should_not_be_called_on_const_items]
541 pub const fn replace(&self, val: T) -> T {
542 // SAFETY: This can cause data races if called from a separate thread,
543 // but `Cell` is `!Sync` so this won't happen.
544 mem::replace(unsafe { &mut *self.value.get() }, val)
545 }
546
547 /// Unwraps the value, consuming the cell.
548 ///
549 /// # Examples
550 ///
551 /// ```
552 /// use std::cell::Cell;
553 ///
554 /// let c = Cell::new(5);
555 /// let five = c.into_inner();
556 ///
557 /// assert_eq!(five, 5);
558 /// ```
559 #[stable(feature = "move_cell", since = "1.17.0")]
560 #[rustc_const_stable(feature = "const_cell_into_inner", since = "1.83.0")]
561 #[rustc_allow_const_fn_unstable(const_precise_live_drops)]
562 #[cfg(not(feature = "ferrocene_subset"))]
563 pub const fn into_inner(self) -> T {
564 self.value.into_inner()
565 }
566}
567
568impl<T: Copy> Cell<T> {
569 /// Returns a copy of the contained value.
570 ///
571 /// # Examples
572 ///
573 /// ```
574 /// use std::cell::Cell;
575 ///
576 /// let c = Cell::new(5);
577 ///
578 /// let five = c.get();
579 /// ```
580 #[inline]
581 #[stable(feature = "rust1", since = "1.0.0")]
582 #[rustc_const_stable(feature = "const_cell", since = "1.88.0")]
583 #[rustc_should_not_be_called_on_const_items]
584 pub const fn get(&self) -> T {
585 // SAFETY: This can cause data races if called from a separate thread,
586 // but `Cell` is `!Sync` so this won't happen.
587 unsafe { *self.value.get() }
588 }
589
590 /// Updates the contained value using a function.
591 ///
592 /// # Examples
593 ///
594 /// ```
595 /// use std::cell::Cell;
596 ///
597 /// let c = Cell::new(5);
598 /// c.update(|x| x + 1);
599 /// assert_eq!(c.get(), 6);
600 /// ```
601 #[inline]
602 #[stable(feature = "cell_update", since = "1.88.0")]
603 #[rustc_const_unstable(feature = "const_cell_traits", issue = "147787")]
604 #[cfg(not(feature = "ferrocene_subset"))]
605 #[rustc_should_not_be_called_on_const_items]
606 pub const fn update(&self, f: impl [const] FnOnce(T) -> T)
607 where
608 // FIXME(const-hack): `Copy` should imply `const Destruct`
609 T: [const] Destruct,
610 {
611 let old = self.get();
612 self.set(f(old));
613 }
614}
615
616#[cfg(not(feature = "ferrocene_subset"))]
617impl<T: ?Sized> Cell<T> {
618 /// Returns a raw pointer to the underlying data in this cell.
619 ///
620 /// # Examples
621 ///
622 /// ```
623 /// use std::cell::Cell;
624 ///
625 /// let c = Cell::new(5);
626 ///
627 /// let ptr = c.as_ptr();
628 /// ```
629 #[inline]
630 #[stable(feature = "cell_as_ptr", since = "1.12.0")]
631 #[rustc_const_stable(feature = "const_cell_as_ptr", since = "1.32.0")]
632 #[rustc_as_ptr]
633 #[rustc_never_returns_null_ptr]
634 pub const fn as_ptr(&self) -> *mut T {
635 self.value.get()
636 }
637
638 /// Returns a mutable reference to the underlying data.
639 ///
640 /// This call borrows `Cell` mutably (at compile-time) which guarantees
641 /// that we possess the only reference.
642 ///
643 /// However be cautious: this method expects `self` to be mutable, which is
644 /// generally not the case when using a `Cell`. If you require interior
645 /// mutability by reference, consider using `RefCell` which provides
646 /// run-time checked mutable borrows through its [`borrow_mut`] method.
647 ///
648 /// [`borrow_mut`]: RefCell::borrow_mut()
649 ///
650 /// # Examples
651 ///
652 /// ```
653 /// use std::cell::Cell;
654 ///
655 /// let mut c = Cell::new(5);
656 /// *c.get_mut() += 1;
657 ///
658 /// assert_eq!(c.get(), 6);
659 /// ```
660 #[inline]
661 #[stable(feature = "cell_get_mut", since = "1.11.0")]
662 #[rustc_const_stable(feature = "const_cell", since = "1.88.0")]
663 pub const fn get_mut(&mut self) -> &mut T {
664 self.value.get_mut()
665 }
666
667 /// Returns a `&Cell<T>` from a `&mut T`
668 ///
669 /// # Examples
670 ///
671 /// ```
672 /// use std::cell::Cell;
673 ///
674 /// let slice: &mut [i32] = &mut [1, 2, 3];
675 /// let cell_slice: &Cell<[i32]> = Cell::from_mut(slice);
676 /// let slice_cell: &[Cell<i32>] = cell_slice.as_slice_of_cells();
677 ///
678 /// assert_eq!(slice_cell.len(), 3);
679 /// ```
680 #[inline]
681 #[stable(feature = "as_cell", since = "1.37.0")]
682 #[rustc_const_stable(feature = "const_cell", since = "1.88.0")]
683 pub const fn from_mut(t: &mut T) -> &Cell<T> {
684 // SAFETY: `&mut` ensures unique access.
685 unsafe { &*(t as *mut T as *const Cell<T>) }
686 }
687}
688
689#[cfg(not(feature = "ferrocene_subset"))]
690impl<T: Default> Cell<T> {
691 /// Takes the value of the cell, leaving `Default::default()` in its place.
692 ///
693 /// # Examples
694 ///
695 /// ```
696 /// use std::cell::Cell;
697 ///
698 /// let c = Cell::new(5);
699 /// let five = c.take();
700 ///
701 /// assert_eq!(five, 5);
702 /// assert_eq!(c.into_inner(), 0);
703 /// ```
704 #[stable(feature = "move_cell", since = "1.17.0")]
705 #[rustc_const_unstable(feature = "const_cell_traits", issue = "147787")]
706 pub const fn take(&self) -> T
707 where
708 T: [const] Default,
709 {
710 self.replace(Default::default())
711 }
712}
713
714#[unstable(feature = "coerce_unsized", issue = "18598")]
715#[cfg(not(feature = "ferrocene_subset"))]
716impl<T: CoerceUnsized<U>, U> CoerceUnsized<Cell<U>> for Cell<T> {}
717
718// Allow types that wrap `Cell` to also implement `DispatchFromDyn`
719// and become dyn-compatible method receivers.
720// Note that currently `Cell` itself cannot be a method receiver
721// because it does not implement Deref.
722// In other words:
723// `self: Cell<&Self>` won't work
724// `self: CellWrapper<Self>` becomes possible
725#[unstable(feature = "dispatch_from_dyn", issue = "none")]
726#[cfg(not(feature = "ferrocene_subset"))]
727impl<T: DispatchFromDyn<U>, U> DispatchFromDyn<Cell<U>> for Cell<T> {}
728
729#[cfg(not(feature = "ferrocene_subset"))]
730impl<T> Cell<[T]> {
731 /// Returns a `&[Cell<T>]` from a `&Cell<[T]>`
732 ///
733 /// # Examples
734 ///
735 /// ```
736 /// use std::cell::Cell;
737 ///
738 /// let slice: &mut [i32] = &mut [1, 2, 3];
739 /// let cell_slice: &Cell<[i32]> = Cell::from_mut(slice);
740 /// let slice_cell: &[Cell<i32>] = cell_slice.as_slice_of_cells();
741 ///
742 /// assert_eq!(slice_cell.len(), 3);
743 /// ```
744 #[stable(feature = "as_cell", since = "1.37.0")]
745 #[rustc_const_stable(feature = "const_cell", since = "1.88.0")]
746 pub const fn as_slice_of_cells(&self) -> &[Cell<T>] {
747 // SAFETY: `Cell<T>` has the same memory layout as `T`.
748 unsafe { &*(self as *const Cell<[T]> as *const [Cell<T>]) }
749 }
750}
751
752#[cfg(not(feature = "ferrocene_subset"))]
753impl<T, const N: usize> Cell<[T; N]> {
754 /// Returns a `&[Cell<T>; N]` from a `&Cell<[T; N]>`
755 ///
756 /// # Examples
757 ///
758 /// ```
759 /// use std::cell::Cell;
760 ///
761 /// let mut array: [i32; 3] = [1, 2, 3];
762 /// let cell_array: &Cell<[i32; 3]> = Cell::from_mut(&mut array);
763 /// let array_cell: &[Cell<i32>; 3] = cell_array.as_array_of_cells();
764 /// ```
765 #[stable(feature = "as_array_of_cells", since = "1.91.0")]
766 #[rustc_const_stable(feature = "as_array_of_cells", since = "1.91.0")]
767 pub const fn as_array_of_cells(&self) -> &[Cell<T>; N] {
768 // SAFETY: `Cell<T>` has the same memory layout as `T`.
769 unsafe { &*(self as *const Cell<[T; N]> as *const [Cell<T>; N]) }
770 }
771}
772
773/// Types for which cloning `Cell<Self>` is sound.
774///
775/// # Safety
776///
777/// Implementing this trait for a type is sound if and only if the following code is sound for T =
778/// that type.
779///
780/// ```
781/// #![feature(cell_get_cloned)]
782/// # use std::cell::{CloneFromCell, Cell};
783/// fn clone_from_cell<T: CloneFromCell>(cell: &Cell<T>) -> T {
784/// unsafe { T::clone(&*cell.as_ptr()) }
785/// }
786/// ```
787///
788/// Importantly, you can't just implement `CloneFromCell` for any arbitrary `Copy` type, e.g. the
789/// following is unsound:
790///
791/// ```rust
792/// #![feature(cell_get_cloned)]
793/// # use std::cell::Cell;
794///
795/// #[derive(Copy, Debug)]
796/// pub struct Bad<'a>(Option<&'a Cell<Bad<'a>>>, u8);
797///
798/// impl Clone for Bad<'_> {
799/// fn clone(&self) -> Self {
800/// let a: &u8 = &self.1;
801/// // when self.0 points to self, we write to self.1 while we have a live `&u8` pointing to
802/// // it -- this is UB
803/// self.0.unwrap().set(Self(None, 1));
804/// dbg!((a, self));
805/// Self(None, 0)
806/// }
807/// }
808///
809/// // this is not sound
810/// // unsafe impl CloneFromCell for Bad<'_> {}
811/// ```
812#[unstable(feature = "cell_get_cloned", issue = "145329")]
813// Allow potential overlapping implementations in user code
814#[marker]
815#[cfg(not(feature = "ferrocene_subset"))]
816pub unsafe trait CloneFromCell: Clone {}
817
818// `CloneFromCell` can be implemented for types that don't have indirection and which don't access
819// `Cell`s in their `Clone` implementation. A commonly-used subset is covered here.
820#[unstable(feature = "cell_get_cloned", issue = "145329")]
821#[cfg(not(feature = "ferrocene_subset"))]
822unsafe impl<T: CloneFromCell, const N: usize> CloneFromCell for [T; N] {}
823#[unstable(feature = "cell_get_cloned", issue = "145329")]
824#[cfg(not(feature = "ferrocene_subset"))]
825unsafe impl<T: CloneFromCell> CloneFromCell for Option<T> {}
826#[unstable(feature = "cell_get_cloned", issue = "145329")]
827#[cfg(not(feature = "ferrocene_subset"))]
828unsafe impl<T: CloneFromCell, E: CloneFromCell> CloneFromCell for Result<T, E> {}
829#[unstable(feature = "cell_get_cloned", issue = "145329")]
830#[cfg(not(feature = "ferrocene_subset"))]
831unsafe impl<T: ?Sized> CloneFromCell for PhantomData<T> {}
832#[unstable(feature = "cell_get_cloned", issue = "145329")]
833#[cfg(not(feature = "ferrocene_subset"))]
834unsafe impl<T: CloneFromCell> CloneFromCell for ManuallyDrop<T> {}
835#[unstable(feature = "cell_get_cloned", issue = "145329")]
836#[cfg(not(feature = "ferrocene_subset"))]
837unsafe impl<T: CloneFromCell> CloneFromCell for ops::Range<T> {}
838#[unstable(feature = "cell_get_cloned", issue = "145329")]
839#[cfg(not(feature = "ferrocene_subset"))]
840unsafe impl<T: CloneFromCell> CloneFromCell for range::Range<T> {}
841
842#[unstable(feature = "cell_get_cloned", issue = "145329")]
843#[cfg(not(feature = "ferrocene_subset"))]
844impl<T: CloneFromCell> Cell<T> {
845 /// Get a clone of the `Cell` that contains a copy of the original value.
846 ///
847 /// This allows a cheaply `Clone`-able type like an `Rc` to be stored in a `Cell`, exposing the
848 /// cheaper `clone()` method.
849 ///
850 /// # Examples
851 ///
852 /// ```
853 /// #![feature(cell_get_cloned)]
854 ///
855 /// use core::cell::Cell;
856 /// use std::rc::Rc;
857 ///
858 /// let rc = Rc::new(1usize);
859 /// let c1 = Cell::new(rc);
860 /// let c2 = c1.get_cloned();
861 /// assert_eq!(*c2.into_inner(), 1);
862 /// ```
863 pub fn get_cloned(&self) -> Self {
864 // SAFETY: T is CloneFromCell, which guarantees that this is sound.
865 Cell::new(T::clone(unsafe { &*self.as_ptr() }))
866 }
867}
868
869/// A mutable memory location with dynamically checked borrow rules
870///
871/// See the [module-level documentation](self) for more.
872#[rustc_diagnostic_item = "RefCell"]
873#[stable(feature = "rust1", since = "1.0.0")]
874pub struct RefCell<T: ?Sized> {
875 borrow: Cell<BorrowCounter>,
876 // Stores the location of the earliest currently active borrow.
877 // This gets updated whenever we go from having zero borrows
878 // to having a single borrow. When a borrow occurs, this gets included
879 // in the generated `BorrowError`/`BorrowMutError`
880 #[cfg(feature = "debug_refcell")]
881 borrowed_at: Cell<Option<&'static crate::panic::Location<'static>>>,
882 value: UnsafeCell<T>,
883}
884
885/// An error returned by [`RefCell::try_borrow`].
886#[stable(feature = "try_borrow", since = "1.13.0")]
887#[non_exhaustive]
888#[cfg_attr(not(feature = "ferrocene_subset"), derive(Debug))]
889pub struct BorrowError {
890 #[cfg(feature = "debug_refcell")]
891 location: &'static crate::panic::Location<'static>,
892}
893
894#[stable(feature = "try_borrow", since = "1.13.0")]
895#[cfg(not(feature = "ferrocene_subset"))]
896impl Display for BorrowError {
897 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
898 #[cfg(feature = "debug_refcell")]
899 let res = write!(
900 f,
901 "RefCell already mutably borrowed; a previous borrow was at {}",
902 self.location
903 );
904
905 #[cfg(not(feature = "debug_refcell"))]
906 let res = Display::fmt("RefCell already mutably borrowed", f);
907
908 res
909 }
910}
911
912/// An error returned by [`RefCell::try_borrow_mut`].
913#[stable(feature = "try_borrow", since = "1.13.0")]
914#[non_exhaustive]
915#[cfg_attr(not(feature = "ferrocene_subset"), derive(Debug))]
916pub struct BorrowMutError {
917 #[cfg(feature = "debug_refcell")]
918 location: &'static crate::panic::Location<'static>,
919}
920
921#[stable(feature = "try_borrow", since = "1.13.0")]
922#[cfg(not(feature = "ferrocene_subset"))]
923impl Display for BorrowMutError {
924 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
925 #[cfg(feature = "debug_refcell")]
926 let res = write!(f, "RefCell already borrowed; a previous borrow was at {}", self.location);
927
928 #[cfg(not(feature = "debug_refcell"))]
929 let res = Display::fmt("RefCell already borrowed", f);
930
931 res
932 }
933}
934
935// This ensures the panicking code is outlined from `borrow_mut` for `RefCell`.
936#[cfg_attr(not(panic = "immediate-abort"), inline(never))]
937#[track_caller]
938#[cold]
939const fn panic_already_borrowed(err: BorrowMutError) -> ! {
940 const_panic!(
941 "RefCell already borrowed",
942 "{err}",
943 err: BorrowMutError = err,
944 )
945}
946
947// This ensures the panicking code is outlined from `borrow` for `RefCell`.
948#[cfg_attr(not(panic = "immediate-abort"), inline(never))]
949#[track_caller]
950#[cold]
951const fn panic_already_mutably_borrowed(err: BorrowError) -> ! {
952 const_panic!(
953 "RefCell already mutably borrowed",
954 "{err}",
955 err: BorrowError = err,
956 )
957}
958
959// Positive values represent the number of `Ref` active. Negative values
960// represent the number of `RefMut` active. Multiple `RefMut`s can only be
961// active at a time if they refer to distinct, nonoverlapping components of a
962// `RefCell` (e.g., different ranges of a slice).
963//
964// `Ref` and `RefMut` are both two words in size, and so there will likely never
965// be enough `Ref`s or `RefMut`s in existence to overflow half of the `usize`
966// range. Thus, a `BorrowCounter` will probably never overflow or underflow.
967// However, this is not a guarantee, as a pathological program could repeatedly
968// create and then mem::forget `Ref`s or `RefMut`s. Thus, all code must
969// explicitly check for overflow and underflow in order to avoid unsafety, or at
970// least behave correctly in the event that overflow or underflow happens (e.g.,
971// see BorrowRef::new).
972type BorrowCounter = isize;
973const UNUSED: BorrowCounter = 0;
974
975#[inline(always)]
976const fn is_writing(x: BorrowCounter) -> bool {
977 x < UNUSED
978}
979
980#[inline(always)]
981const fn is_reading(x: BorrowCounter) -> bool {
982 x > UNUSED
983}
984
985impl<T> RefCell<T> {
986 /// Creates a new `RefCell` containing `value`.
987 ///
988 /// # Examples
989 ///
990 /// ```
991 /// use std::cell::RefCell;
992 ///
993 /// let c = RefCell::new(5);
994 /// ```
995 #[stable(feature = "rust1", since = "1.0.0")]
996 #[rustc_const_stable(feature = "const_refcell_new", since = "1.24.0")]
997 #[inline]
998 pub const fn new(value: T) -> RefCell<T> {
999 RefCell {
1000 value: UnsafeCell::new(value),
1001 borrow: Cell::new(UNUSED),
1002 #[cfg(feature = "debug_refcell")]
1003 borrowed_at: Cell::new(None),
1004 }
1005 }
1006
1007 /// Consumes the `RefCell`, returning the wrapped value.
1008 ///
1009 /// # Examples
1010 ///
1011 /// ```
1012 /// use std::cell::RefCell;
1013 ///
1014 /// let c = RefCell::new(5);
1015 ///
1016 /// let five = c.into_inner();
1017 /// ```
1018 #[stable(feature = "rust1", since = "1.0.0")]
1019 #[rustc_const_stable(feature = "const_cell_into_inner", since = "1.83.0")]
1020 #[rustc_allow_const_fn_unstable(const_precise_live_drops)]
1021 #[inline]
1022 #[cfg(not(feature = "ferrocene_subset"))]
1023 pub const fn into_inner(self) -> T {
1024 // Since this function takes `self` (the `RefCell`) by value, the
1025 // compiler statically verifies that it is not currently borrowed.
1026 self.value.into_inner()
1027 }
1028
1029 /// Replaces the wrapped value with a new one, returning the old value,
1030 /// without deinitializing either one.
1031 ///
1032 /// This function corresponds to [`std::mem::replace`](../mem/fn.replace.html).
1033 ///
1034 /// # Panics
1035 ///
1036 /// Panics if the value is currently borrowed.
1037 ///
1038 /// # Examples
1039 ///
1040 /// ```
1041 /// use std::cell::RefCell;
1042 /// let cell = RefCell::new(5);
1043 /// let old_value = cell.replace(6);
1044 /// assert_eq!(old_value, 5);
1045 /// assert_eq!(cell, RefCell::new(6));
1046 /// ```
1047 #[inline]
1048 #[stable(feature = "refcell_replace", since = "1.24.0")]
1049 #[track_caller]
1050 #[rustc_confusables("swap")]
1051 #[rustc_const_unstable(feature = "const_ref_cell", issue = "137844")]
1052 #[rustc_should_not_be_called_on_const_items]
1053 pub const fn replace(&self, t: T) -> T {
1054 mem::replace(&mut self.borrow_mut(), t)
1055 }
1056
1057 /// Replaces the wrapped value with a new one computed from `f`, returning
1058 /// the old value, without deinitializing either one.
1059 ///
1060 /// # Panics
1061 ///
1062 /// Panics if the value is currently borrowed.
1063 ///
1064 /// # Examples
1065 ///
1066 /// ```
1067 /// use std::cell::RefCell;
1068 /// let cell = RefCell::new(5);
1069 /// let old_value = cell.replace_with(|&mut old| old + 1);
1070 /// assert_eq!(old_value, 5);
1071 /// assert_eq!(cell, RefCell::new(6));
1072 /// ```
1073 #[inline]
1074 #[stable(feature = "refcell_replace_swap", since = "1.35.0")]
1075 #[track_caller]
1076 #[rustc_should_not_be_called_on_const_items]
1077 pub fn replace_with<F: FnOnce(&mut T) -> T>(&self, f: F) -> T {
1078 let mut_borrow = &mut *self.borrow_mut();
1079 let replacement = f(mut_borrow);
1080 mem::replace(mut_borrow, replacement)
1081 }
1082
1083 /// Swaps the wrapped value of `self` with the wrapped value of `other`,
1084 /// without deinitializing either one.
1085 ///
1086 /// This function corresponds to [`std::mem::swap`](../mem/fn.swap.html).
1087 ///
1088 /// # Panics
1089 ///
1090 /// Panics if the value in either `RefCell` is currently borrowed, or
1091 /// if `self` and `other` point to the same `RefCell`.
1092 ///
1093 /// # Examples
1094 ///
1095 /// ```
1096 /// use std::cell::RefCell;
1097 /// let c = RefCell::new(5);
1098 /// let d = RefCell::new(6);
1099 /// c.swap(&d);
1100 /// assert_eq!(c, RefCell::new(6));
1101 /// assert_eq!(d, RefCell::new(5));
1102 /// ```
1103 #[inline]
1104 #[stable(feature = "refcell_swap", since = "1.24.0")]
1105 #[rustc_const_unstable(feature = "const_ref_cell", issue = "137844")]
1106 #[cfg(not(feature = "ferrocene_subset"))]
1107 #[rustc_should_not_be_called_on_const_items]
1108 pub const fn swap(&self, other: &Self) {
1109 mem::swap(&mut *self.borrow_mut(), &mut *other.borrow_mut())
1110 }
1111}
1112
1113impl<T: ?Sized> RefCell<T> {
1114 /// Immutably borrows the wrapped value.
1115 ///
1116 /// The borrow lasts until the returned `Ref` exits scope. Multiple
1117 /// immutable borrows can be taken out at the same time.
1118 ///
1119 /// # Panics
1120 ///
1121 /// Panics if the value is currently mutably borrowed. For a non-panicking variant, use
1122 /// [`try_borrow`](#method.try_borrow).
1123 ///
1124 /// # Examples
1125 ///
1126 /// ```
1127 /// use std::cell::RefCell;
1128 ///
1129 /// let c = RefCell::new(5);
1130 ///
1131 /// let borrowed_five = c.borrow();
1132 /// let borrowed_five2 = c.borrow();
1133 /// ```
1134 ///
1135 /// An example of panic:
1136 ///
1137 /// ```should_panic
1138 /// use std::cell::RefCell;
1139 ///
1140 /// let c = RefCell::new(5);
1141 ///
1142 /// let m = c.borrow_mut();
1143 /// let b = c.borrow(); // this causes a panic
1144 /// ```
1145 #[stable(feature = "rust1", since = "1.0.0")]
1146 #[inline]
1147 #[track_caller]
1148 #[rustc_const_unstable(feature = "const_ref_cell", issue = "137844")]
1149 #[rustc_should_not_be_called_on_const_items]
1150 pub const fn borrow(&self) -> Ref<'_, T> {
1151 match self.try_borrow() {
1152 Ok(b) => b,
1153 Err(err) => panic_already_mutably_borrowed(err),
1154 }
1155 }
1156
1157 /// Immutably borrows the wrapped value, returning an error if the value is currently mutably
1158 /// borrowed.
1159 ///
1160 /// The borrow lasts until the returned `Ref` exits scope. Multiple immutable borrows can be
1161 /// taken out at the same time.
1162 ///
1163 /// This is the non-panicking variant of [`borrow`](#method.borrow).
1164 ///
1165 /// # Examples
1166 ///
1167 /// ```
1168 /// use std::cell::RefCell;
1169 ///
1170 /// let c = RefCell::new(5);
1171 ///
1172 /// {
1173 /// let m = c.borrow_mut();
1174 /// assert!(c.try_borrow().is_err());
1175 /// }
1176 ///
1177 /// {
1178 /// let m = c.borrow();
1179 /// assert!(c.try_borrow().is_ok());
1180 /// }
1181 /// ```
1182 #[stable(feature = "try_borrow", since = "1.13.0")]
1183 #[inline]
1184 #[cfg_attr(feature = "debug_refcell", track_caller)]
1185 #[rustc_const_unstable(feature = "const_ref_cell", issue = "137844")]
1186 #[rustc_should_not_be_called_on_const_items]
1187 pub const fn try_borrow(&self) -> Result<Ref<'_, T>, BorrowError> {
1188 match BorrowRef::new(&self.borrow) {
1189 Some(b) => {
1190 #[cfg(feature = "debug_refcell")]
1191 {
1192 // `borrowed_at` is always the *first* active borrow
1193 if b.borrow.get() == 1 {
1194 self.borrowed_at.replace(Some(crate::panic::Location::caller()));
1195 }
1196 }
1197
1198 // SAFETY: `BorrowRef` ensures that there is only immutable access
1199 // to the value while borrowed.
1200 let value = unsafe { NonNull::new_unchecked(self.value.get()) };
1201 Ok(Ref { value, borrow: b })
1202 }
1203 None => Err(BorrowError {
1204 // If a borrow occurred, then we must already have an outstanding borrow,
1205 // so `borrowed_at` will be `Some`
1206 #[cfg(feature = "debug_refcell")]
1207 location: self.borrowed_at.get().unwrap(),
1208 }),
1209 }
1210 }
1211
1212 /// Mutably borrows the wrapped value.
1213 ///
1214 /// The borrow lasts until the returned `RefMut` or all `RefMut`s derived
1215 /// from it exit scope. The value cannot be borrowed while this borrow is
1216 /// active.
1217 ///
1218 /// # Panics
1219 ///
1220 /// Panics if the value is currently borrowed. For a non-panicking variant, use
1221 /// [`try_borrow_mut`](#method.try_borrow_mut).
1222 ///
1223 /// # Examples
1224 ///
1225 /// ```
1226 /// use std::cell::RefCell;
1227 ///
1228 /// let c = RefCell::new("hello".to_owned());
1229 ///
1230 /// *c.borrow_mut() = "bonjour".to_owned();
1231 ///
1232 /// assert_eq!(&*c.borrow(), "bonjour");
1233 /// ```
1234 ///
1235 /// An example of panic:
1236 ///
1237 /// ```should_panic
1238 /// use std::cell::RefCell;
1239 ///
1240 /// let c = RefCell::new(5);
1241 /// let m = c.borrow();
1242 ///
1243 /// let b = c.borrow_mut(); // this causes a panic
1244 /// ```
1245 #[stable(feature = "rust1", since = "1.0.0")]
1246 #[inline]
1247 #[track_caller]
1248 #[rustc_const_unstable(feature = "const_ref_cell", issue = "137844")]
1249 #[rustc_should_not_be_called_on_const_items]
1250 pub const fn borrow_mut(&self) -> RefMut<'_, T> {
1251 match self.try_borrow_mut() {
1252 Ok(b) => b,
1253 Err(err) => panic_already_borrowed(err),
1254 }
1255 }
1256
1257 /// Mutably borrows the wrapped value, returning an error if the value is currently borrowed.
1258 ///
1259 /// The borrow lasts until the returned `RefMut` or all `RefMut`s derived
1260 /// from it exit scope. The value cannot be borrowed while this borrow is
1261 /// active.
1262 ///
1263 /// This is the non-panicking variant of [`borrow_mut`](#method.borrow_mut).
1264 ///
1265 /// # Examples
1266 ///
1267 /// ```
1268 /// use std::cell::RefCell;
1269 ///
1270 /// let c = RefCell::new(5);
1271 ///
1272 /// {
1273 /// let m = c.borrow();
1274 /// assert!(c.try_borrow_mut().is_err());
1275 /// }
1276 ///
1277 /// assert!(c.try_borrow_mut().is_ok());
1278 /// ```
1279 #[stable(feature = "try_borrow", since = "1.13.0")]
1280 #[inline]
1281 #[cfg_attr(feature = "debug_refcell", track_caller)]
1282 #[rustc_const_unstable(feature = "const_ref_cell", issue = "137844")]
1283 #[rustc_should_not_be_called_on_const_items]
1284 pub const fn try_borrow_mut(&self) -> Result<RefMut<'_, T>, BorrowMutError> {
1285 match BorrowRefMut::new(&self.borrow) {
1286 Some(b) => {
1287 #[cfg(feature = "debug_refcell")]
1288 {
1289 self.borrowed_at.replace(Some(crate::panic::Location::caller()));
1290 }
1291
1292 // SAFETY: `BorrowRefMut` guarantees unique access.
1293 let value = unsafe { NonNull::new_unchecked(self.value.get()) };
1294 Ok(RefMut { value, borrow: b, marker: PhantomData })
1295 }
1296 None => Err(BorrowMutError {
1297 // If a borrow occurred, then we must already have an outstanding borrow,
1298 // so `borrowed_at` will be `Some`
1299 #[cfg(feature = "debug_refcell")]
1300 location: self.borrowed_at.get().unwrap(),
1301 }),
1302 }
1303 }
1304
1305 /// Returns a raw pointer to the underlying data in this cell.
1306 ///
1307 /// # Examples
1308 ///
1309 /// ```
1310 /// use std::cell::RefCell;
1311 ///
1312 /// let c = RefCell::new(5);
1313 ///
1314 /// let ptr = c.as_ptr();
1315 /// ```
1316 #[inline]
1317 #[stable(feature = "cell_as_ptr", since = "1.12.0")]
1318 #[rustc_as_ptr]
1319 #[rustc_never_returns_null_ptr]
1320 #[rustc_const_unstable(feature = "const_ref_cell", issue = "137844")]
1321 #[cfg(not(feature = "ferrocene_subset"))]
1322 pub const fn as_ptr(&self) -> *mut T {
1323 self.value.get()
1324 }
1325
1326 /// Returns a mutable reference to the underlying data.
1327 ///
1328 /// Since this method borrows `RefCell` mutably, it is statically guaranteed
1329 /// that no borrows to the underlying data exist. The dynamic checks inherent
1330 /// in [`borrow_mut`] and most other methods of `RefCell` are therefore
1331 /// unnecessary. Note that this method does not reset the borrowing state if borrows were previously leaked
1332 /// (e.g., via [`forget()`] on a [`Ref`] or [`RefMut`]). For that purpose,
1333 /// consider using the unstable [`undo_leak`] method.
1334 ///
1335 /// This method can only be called if `RefCell` can be mutably borrowed,
1336 /// which in general is only the case directly after the `RefCell` has
1337 /// been created. In these situations, skipping the aforementioned dynamic
1338 /// borrowing checks may yield better ergonomics and runtime-performance.
1339 ///
1340 /// In most situations where `RefCell` is used, it can't be borrowed mutably.
1341 /// Use [`borrow_mut`] to get mutable access to the underlying data then.
1342 ///
1343 /// [`borrow_mut`]: RefCell::borrow_mut()
1344 /// [`forget()`]: mem::forget
1345 /// [`undo_leak`]: RefCell::undo_leak()
1346 ///
1347 /// # Examples
1348 ///
1349 /// ```
1350 /// use std::cell::RefCell;
1351 ///
1352 /// let mut c = RefCell::new(5);
1353 /// *c.get_mut() += 1;
1354 ///
1355 /// assert_eq!(c, RefCell::new(6));
1356 /// ```
1357 #[inline]
1358 #[stable(feature = "cell_get_mut", since = "1.11.0")]
1359 #[rustc_const_unstable(feature = "const_ref_cell", issue = "137844")]
1360 #[cfg(not(feature = "ferrocene_subset"))]
1361 pub const fn get_mut(&mut self) -> &mut T {
1362 self.value.get_mut()
1363 }
1364
1365 /// Undo the effect of leaked guards on the borrow state of the `RefCell`.
1366 ///
1367 /// This call is similar to [`get_mut`] but more specialized. It borrows `RefCell` mutably to
1368 /// ensure no borrows exist and then resets the state tracking shared borrows. This is relevant
1369 /// if some `Ref` or `RefMut` borrows have been leaked.
1370 ///
1371 /// [`get_mut`]: RefCell::get_mut()
1372 ///
1373 /// # Examples
1374 ///
1375 /// ```
1376 /// #![feature(cell_leak)]
1377 /// use std::cell::RefCell;
1378 ///
1379 /// let mut c = RefCell::new(0);
1380 /// std::mem::forget(c.borrow_mut());
1381 ///
1382 /// assert!(c.try_borrow().is_err());
1383 /// c.undo_leak();
1384 /// assert!(c.try_borrow().is_ok());
1385 /// ```
1386 #[unstable(feature = "cell_leak", issue = "69099")]
1387 #[rustc_const_unstable(feature = "const_ref_cell", issue = "137844")]
1388 #[cfg(not(feature = "ferrocene_subset"))]
1389 pub const fn undo_leak(&mut self) -> &mut T {
1390 *self.borrow.get_mut() = UNUSED;
1391 self.get_mut()
1392 }
1393
1394 /// Immutably borrows the wrapped value, returning an error if the value is
1395 /// currently mutably borrowed.
1396 ///
1397 /// # Safety
1398 ///
1399 /// Unlike `RefCell::borrow`, this method is unsafe because it does not
1400 /// return a `Ref`, thus leaving the borrow flag untouched. Mutably
1401 /// borrowing the `RefCell` while the reference returned by this method
1402 /// is alive is undefined behavior.
1403 ///
1404 /// # Examples
1405 ///
1406 /// ```
1407 /// use std::cell::RefCell;
1408 ///
1409 /// let c = RefCell::new(5);
1410 ///
1411 /// {
1412 /// let m = c.borrow_mut();
1413 /// assert!(unsafe { c.try_borrow_unguarded() }.is_err());
1414 /// }
1415 ///
1416 /// {
1417 /// let m = c.borrow();
1418 /// assert!(unsafe { c.try_borrow_unguarded() }.is_ok());
1419 /// }
1420 /// ```
1421 #[stable(feature = "borrow_state", since = "1.37.0")]
1422 #[inline]
1423 #[rustc_const_unstable(feature = "const_ref_cell", issue = "137844")]
1424 #[cfg(not(feature = "ferrocene_subset"))]
1425 pub const unsafe fn try_borrow_unguarded(&self) -> Result<&T, BorrowError> {
1426 if !is_writing(self.borrow.get()) {
1427 // SAFETY: We check that nobody is actively writing now, but it is
1428 // the caller's responsibility to ensure that nobody writes until
1429 // the returned reference is no longer in use.
1430 // Also, `self.value.get()` refers to the value owned by `self`
1431 // and is thus guaranteed to be valid for the lifetime of `self`.
1432 Ok(unsafe { &*self.value.get() })
1433 } else {
1434 Err(BorrowError {
1435 // If a borrow occurred, then we must already have an outstanding borrow,
1436 // so `borrowed_at` will be `Some`
1437 #[cfg(feature = "debug_refcell")]
1438 location: self.borrowed_at.get().unwrap(),
1439 })
1440 }
1441 }
1442}
1443
1444impl<T: Default> RefCell<T> {
1445 /// Takes the wrapped value, leaving `Default::default()` in its place.
1446 ///
1447 /// # Panics
1448 ///
1449 /// Panics if the value is currently borrowed.
1450 ///
1451 /// # Examples
1452 ///
1453 /// ```
1454 /// use std::cell::RefCell;
1455 ///
1456 /// let c = RefCell::new(5);
1457 /// let five = c.take();
1458 ///
1459 /// assert_eq!(five, 5);
1460 /// assert_eq!(c.into_inner(), 0);
1461 /// ```
1462 #[stable(feature = "refcell_take", since = "1.50.0")]
1463 pub fn take(&self) -> T {
1464 self.replace(Default::default())
1465 }
1466}
1467
1468#[stable(feature = "rust1", since = "1.0.0")]
1469unsafe impl<T: ?Sized> Send for RefCell<T> where T: Send {}
1470
1471#[stable(feature = "rust1", since = "1.0.0")]
1472impl<T: ?Sized> !Sync for RefCell<T> {}
1473
1474#[stable(feature = "rust1", since = "1.0.0")]
1475#[cfg(not(feature = "ferrocene_subset"))]
1476impl<T: Clone> Clone for RefCell<T> {
1477 /// # Panics
1478 ///
1479 /// Panics if the value is currently mutably borrowed.
1480 #[inline]
1481 #[track_caller]
1482 fn clone(&self) -> RefCell<T> {
1483 RefCell::new(self.borrow().clone())
1484 }
1485
1486 /// # Panics
1487 ///
1488 /// Panics if `source` is currently mutably borrowed.
1489 #[inline]
1490 #[track_caller]
1491 fn clone_from(&mut self, source: &Self) {
1492 self.get_mut().clone_from(&source.borrow())
1493 }
1494}
1495
1496#[stable(feature = "rust1", since = "1.0.0")]
1497#[rustc_const_unstable(feature = "const_default", issue = "143894")]
1498#[cfg(not(feature = "ferrocene_subset"))]
1499impl<T: [const] Default> const Default for RefCell<T> {
1500 /// Creates a `RefCell<T>`, with the `Default` value for T.
1501 #[inline]
1502 fn default() -> RefCell<T> {
1503 RefCell::new(Default::default())
1504 }
1505}
1506
1507#[stable(feature = "rust1", since = "1.0.0")]
1508#[cfg(not(feature = "ferrocene_subset"))]
1509impl<T: ?Sized + PartialEq> PartialEq for RefCell<T> {
1510 /// # Panics
1511 ///
1512 /// Panics if the value in either `RefCell` is currently mutably borrowed.
1513 #[inline]
1514 fn eq(&self, other: &RefCell<T>) -> bool {
1515 *self.borrow() == *other.borrow()
1516 }
1517}
1518
1519#[stable(feature = "cell_eq", since = "1.2.0")]
1520#[cfg(not(feature = "ferrocene_subset"))]
1521impl<T: ?Sized + Eq> Eq for RefCell<T> {}
1522
1523#[stable(feature = "cell_ord", since = "1.10.0")]
1524#[cfg(not(feature = "ferrocene_subset"))]
1525impl<T: ?Sized + PartialOrd> PartialOrd for RefCell<T> {
1526 /// # Panics
1527 ///
1528 /// Panics if the value in either `RefCell` is currently mutably borrowed.
1529 #[inline]
1530 fn partial_cmp(&self, other: &RefCell<T>) -> Option<Ordering> {
1531 self.borrow().partial_cmp(&*other.borrow())
1532 }
1533
1534 /// # Panics
1535 ///
1536 /// Panics if the value in either `RefCell` is currently mutably borrowed.
1537 #[inline]
1538 fn lt(&self, other: &RefCell<T>) -> bool {
1539 *self.borrow() < *other.borrow()
1540 }
1541
1542 /// # Panics
1543 ///
1544 /// Panics if the value in either `RefCell` is currently mutably borrowed.
1545 #[inline]
1546 fn le(&self, other: &RefCell<T>) -> bool {
1547 *self.borrow() <= *other.borrow()
1548 }
1549
1550 /// # Panics
1551 ///
1552 /// Panics if the value in either `RefCell` is currently mutably borrowed.
1553 #[inline]
1554 fn gt(&self, other: &RefCell<T>) -> bool {
1555 *self.borrow() > *other.borrow()
1556 }
1557
1558 /// # Panics
1559 ///
1560 /// Panics if the value in either `RefCell` is currently mutably borrowed.
1561 #[inline]
1562 fn ge(&self, other: &RefCell<T>) -> bool {
1563 *self.borrow() >= *other.borrow()
1564 }
1565}
1566
1567#[stable(feature = "cell_ord", since = "1.10.0")]
1568#[cfg(not(feature = "ferrocene_subset"))]
1569impl<T: ?Sized + Ord> Ord for RefCell<T> {
1570 /// # Panics
1571 ///
1572 /// Panics if the value in either `RefCell` is currently mutably borrowed.
1573 #[inline]
1574 fn cmp(&self, other: &RefCell<T>) -> Ordering {
1575 self.borrow().cmp(&*other.borrow())
1576 }
1577}
1578
1579#[stable(feature = "cell_from", since = "1.12.0")]
1580#[rustc_const_unstable(feature = "const_convert", issue = "143773")]
1581#[cfg(not(feature = "ferrocene_subset"))]
1582impl<T> const From<T> for RefCell<T> {
1583 /// Creates a new `RefCell<T>` containing the given value.
1584 fn from(t: T) -> RefCell<T> {
1585 RefCell::new(t)
1586 }
1587}
1588
1589#[unstable(feature = "coerce_unsized", issue = "18598")]
1590#[cfg(not(feature = "ferrocene_subset"))]
1591impl<T: CoerceUnsized<U>, U> CoerceUnsized<RefCell<U>> for RefCell<T> {}
1592
1593struct BorrowRef<'b> {
1594 borrow: &'b Cell<BorrowCounter>,
1595}
1596
1597impl<'b> BorrowRef<'b> {
1598 #[inline]
1599 const fn new(borrow: &'b Cell<BorrowCounter>) -> Option<BorrowRef<'b>> {
1600 let b = borrow.get().wrapping_add(1);
1601 if !is_reading(b) {
1602 // Incrementing borrow can result in a non-reading value (<= 0) in these cases:
1603 // 1. It was < 0, i.e. there are writing borrows, so we can't allow a read borrow
1604 // due to Rust's reference aliasing rules
1605 // 2. It was isize::MAX (the max amount of reading borrows) and it overflowed
1606 // into isize::MIN (the max amount of writing borrows) so we can't allow
1607 // an additional read borrow because isize can't represent so many read borrows
1608 // (this can only happen if you mem::forget more than a small constant amount of
1609 // `Ref`s, which is not good practice)
1610 None
1611 } else {
1612 // Incrementing borrow can result in a reading value (> 0) in these cases:
1613 // 1. It was = 0, i.e. it wasn't borrowed, and we are taking the first read borrow
1614 // 2. It was > 0 and < isize::MAX, i.e. there were read borrows, and isize
1615 // is large enough to represent having one more read borrow
1616 borrow.replace(b);
1617 Some(BorrowRef { borrow })
1618 }
1619 }
1620}
1621
1622#[rustc_const_unstable(feature = "const_ref_cell", issue = "137844")]
1623impl const Drop for BorrowRef<'_> {
1624 #[inline]
1625 fn drop(&mut self) {
1626 let borrow = self.borrow.get();
1627 debug_assert!(is_reading(borrow));
1628 self.borrow.replace(borrow - 1);
1629 }
1630}
1631
1632#[rustc_const_unstable(feature = "const_ref_cell", issue = "137844")]
1633#[cfg(not(feature = "ferrocene_subset"))]
1634impl const Clone for BorrowRef<'_> {
1635 #[inline]
1636 fn clone(&self) -> Self {
1637 // Since this Ref exists, we know the borrow flag
1638 // is a reading borrow.
1639 let borrow = self.borrow.get();
1640 debug_assert!(is_reading(borrow));
1641 // Prevent the borrow counter from overflowing into
1642 // a writing borrow.
1643 assert!(borrow != BorrowCounter::MAX);
1644 self.borrow.replace(borrow + 1);
1645 BorrowRef { borrow: self.borrow }
1646 }
1647}
1648
1649/// Wraps a borrowed reference to a value in a `RefCell` box.
1650/// A wrapper type for an immutably borrowed value from a `RefCell<T>`.
1651///
1652/// See the [module-level documentation](self) for more.
1653#[stable(feature = "rust1", since = "1.0.0")]
1654#[must_not_suspend = "holding a Ref across suspend points can cause BorrowErrors"]
1655#[rustc_diagnostic_item = "RefCellRef"]
1656#[cfg_attr(feature = "ferrocene_subset", expect(dead_code))]
1657pub struct Ref<'b, T: ?Sized + 'b> {
1658 // NB: we use a pointer instead of `&'b T` to avoid `noalias` violations, because a
1659 // `Ref` argument doesn't hold immutability for its whole scope, only until it drops.
1660 // `NonNull` is also covariant over `T`, just like we would have with `&T`.
1661 value: NonNull<T>,
1662 borrow: BorrowRef<'b>,
1663}
1664
1665#[stable(feature = "rust1", since = "1.0.0")]
1666#[rustc_const_unstable(feature = "const_convert", issue = "143773")]
1667impl<T: ?Sized> const Deref for Ref<'_, T> {
1668 type Target = T;
1669
1670 #[inline]
1671 fn deref(&self) -> &T {
1672 // SAFETY: the value is accessible as long as we hold our borrow.
1673 unsafe { self.value.as_ref() }
1674 }
1675}
1676
1677#[unstable(feature = "deref_pure_trait", issue = "87121")]
1678#[cfg(not(feature = "ferrocene_subset"))]
1679unsafe impl<T: ?Sized> DerefPure for Ref<'_, T> {}
1680
1681#[cfg(not(feature = "ferrocene_subset"))]
1682impl<'b, T: ?Sized> Ref<'b, T> {
1683 /// Copies a `Ref`.
1684 ///
1685 /// The `RefCell` is already immutably borrowed, so this cannot fail.
1686 ///
1687 /// This is an associated function that needs to be used as
1688 /// `Ref::clone(...)`. A `Clone` implementation or a method would interfere
1689 /// with the widespread use of `r.borrow().clone()` to clone the contents of
1690 /// a `RefCell`.
1691 #[stable(feature = "cell_extras", since = "1.15.0")]
1692 #[must_use]
1693 #[inline]
1694 #[rustc_const_unstable(feature = "const_ref_cell", issue = "137844")]
1695 pub const fn clone(orig: &Ref<'b, T>) -> Ref<'b, T> {
1696 Ref { value: orig.value, borrow: orig.borrow.clone() }
1697 }
1698
1699 /// Makes a new `Ref` for a component of the borrowed data.
1700 ///
1701 /// The `RefCell` is already immutably borrowed, so this cannot fail.
1702 ///
1703 /// This is an associated function that needs to be used as `Ref::map(...)`.
1704 /// A method would interfere with methods of the same name on the contents
1705 /// of a `RefCell` used through `Deref`.
1706 ///
1707 /// # Examples
1708 ///
1709 /// ```
1710 /// use std::cell::{RefCell, Ref};
1711 ///
1712 /// let c = RefCell::new((5, 'b'));
1713 /// let b1: Ref<'_, (u32, char)> = c.borrow();
1714 /// let b2: Ref<'_, u32> = Ref::map(b1, |t| &t.0);
1715 /// assert_eq!(*b2, 5)
1716 /// ```
1717 #[stable(feature = "cell_map", since = "1.8.0")]
1718 #[inline]
1719 pub fn map<U: ?Sized, F>(orig: Ref<'b, T>, f: F) -> Ref<'b, U>
1720 where
1721 F: FnOnce(&T) -> &U,
1722 {
1723 Ref { value: NonNull::from(f(&*orig)), borrow: orig.borrow }
1724 }
1725
1726 /// Makes a new `Ref` for an optional component of the borrowed data. The
1727 /// original guard is returned as an `Err(..)` if the closure returns
1728 /// `None`.
1729 ///
1730 /// The `RefCell` is already immutably borrowed, so this cannot fail.
1731 ///
1732 /// This is an associated function that needs to be used as
1733 /// `Ref::filter_map(...)`. A method would interfere with methods of the same
1734 /// name on the contents of a `RefCell` used through `Deref`.
1735 ///
1736 /// # Examples
1737 ///
1738 /// ```
1739 /// use std::cell::{RefCell, Ref};
1740 ///
1741 /// let c = RefCell::new(vec![1, 2, 3]);
1742 /// let b1: Ref<'_, Vec<u32>> = c.borrow();
1743 /// let b2: Result<Ref<'_, u32>, _> = Ref::filter_map(b1, |v| v.get(1));
1744 /// assert_eq!(*b2.unwrap(), 2);
1745 /// ```
1746 #[stable(feature = "cell_filter_map", since = "1.63.0")]
1747 #[inline]
1748 pub fn filter_map<U: ?Sized, F>(orig: Ref<'b, T>, f: F) -> Result<Ref<'b, U>, Self>
1749 where
1750 F: FnOnce(&T) -> Option<&U>,
1751 {
1752 match f(&*orig) {
1753 Some(value) => Ok(Ref { value: NonNull::from(value), borrow: orig.borrow }),
1754 None => Err(orig),
1755 }
1756 }
1757
1758 /// Tries to makes a new `Ref` for a component of the borrowed data.
1759 /// On failure, the original guard is returned alongside with the error
1760 /// returned by the closure.
1761 ///
1762 /// The `RefCell` is already immutably borrowed, so this cannot fail.
1763 ///
1764 /// This is an associated function that needs to be used as
1765 /// `Ref::try_map(...)`. A method would interfere with methods of the same
1766 /// name on the contents of a `RefCell` used through `Deref`.
1767 ///
1768 /// # Examples
1769 ///
1770 /// ```
1771 /// #![feature(refcell_try_map)]
1772 /// use std::cell::{RefCell, Ref};
1773 /// use std::str::{from_utf8, Utf8Error};
1774 ///
1775 /// let c = RefCell::new(vec![0xF0, 0x9F, 0xA6 ,0x80]);
1776 /// let b1: Ref<'_, Vec<u8>> = c.borrow();
1777 /// let b2: Result<Ref<'_, str>, _> = Ref::try_map(b1, |v| from_utf8(v));
1778 /// assert_eq!(&*b2.unwrap(), "🦀");
1779 ///
1780 /// let c = RefCell::new(vec![0xF0, 0x9F, 0xA6]);
1781 /// let b1: Ref<'_, Vec<u8>> = c.borrow();
1782 /// let b2: Result<_, (Ref<'_, Vec<u8>>, Utf8Error)> = Ref::try_map(b1, |v| from_utf8(v));
1783 /// let (b3, e) = b2.unwrap_err();
1784 /// assert_eq!(*b3, vec![0xF0, 0x9F, 0xA6]);
1785 /// assert_eq!(e.valid_up_to(), 0);
1786 /// ```
1787 #[unstable(feature = "refcell_try_map", issue = "143801")]
1788 #[inline]
1789 pub fn try_map<U: ?Sized, E>(
1790 orig: Ref<'b, T>,
1791 f: impl FnOnce(&T) -> Result<&U, E>,
1792 ) -> Result<Ref<'b, U>, (Self, E)> {
1793 match f(&*orig) {
1794 Ok(value) => Ok(Ref { value: NonNull::from(value), borrow: orig.borrow }),
1795 Err(e) => Err((orig, e)),
1796 }
1797 }
1798
1799 /// Splits a `Ref` into multiple `Ref`s for different components of the
1800 /// borrowed data.
1801 ///
1802 /// The `RefCell` is already immutably borrowed, so this cannot fail.
1803 ///
1804 /// This is an associated function that needs to be used as
1805 /// `Ref::map_split(...)`. A method would interfere with methods of the same
1806 /// name on the contents of a `RefCell` used through `Deref`.
1807 ///
1808 /// # Examples
1809 ///
1810 /// ```
1811 /// use std::cell::{Ref, RefCell};
1812 ///
1813 /// let cell = RefCell::new([1, 2, 3, 4]);
1814 /// let borrow = cell.borrow();
1815 /// let (begin, end) = Ref::map_split(borrow, |slice| slice.split_at(2));
1816 /// assert_eq!(*begin, [1, 2]);
1817 /// assert_eq!(*end, [3, 4]);
1818 /// ```
1819 #[stable(feature = "refcell_map_split", since = "1.35.0")]
1820 #[inline]
1821 pub fn map_split<U: ?Sized, V: ?Sized, F>(orig: Ref<'b, T>, f: F) -> (Ref<'b, U>, Ref<'b, V>)
1822 where
1823 F: FnOnce(&T) -> (&U, &V),
1824 {
1825 let (a, b) = f(&*orig);
1826 let borrow = orig.borrow.clone();
1827 (
1828 Ref { value: NonNull::from(a), borrow },
1829 Ref { value: NonNull::from(b), borrow: orig.borrow },
1830 )
1831 }
1832
1833 /// Converts into a reference to the underlying data.
1834 ///
1835 /// The underlying `RefCell` can never be mutably borrowed from again and will always appear
1836 /// already immutably borrowed. It is not a good idea to leak more than a constant number of
1837 /// references. The `RefCell` can be immutably borrowed again if only a smaller number of leaks
1838 /// have occurred in total.
1839 ///
1840 /// This is an associated function that needs to be used as
1841 /// `Ref::leak(...)`. A method would interfere with methods of the
1842 /// same name on the contents of a `RefCell` used through `Deref`.
1843 ///
1844 /// # Examples
1845 ///
1846 /// ```
1847 /// #![feature(cell_leak)]
1848 /// use std::cell::{RefCell, Ref};
1849 /// let cell = RefCell::new(0);
1850 ///
1851 /// let value = Ref::leak(cell.borrow());
1852 /// assert_eq!(*value, 0);
1853 ///
1854 /// assert!(cell.try_borrow().is_ok());
1855 /// assert!(cell.try_borrow_mut().is_err());
1856 /// ```
1857 #[unstable(feature = "cell_leak", issue = "69099")]
1858 #[rustc_const_unstable(feature = "const_ref_cell", issue = "137844")]
1859 pub const fn leak(orig: Ref<'b, T>) -> &'b T {
1860 // By forgetting this Ref we ensure that the borrow counter in the RefCell can't go back to
1861 // UNUSED within the lifetime `'b`. Resetting the reference tracking state would require a
1862 // unique reference to the borrowed RefCell. No further mutable references can be created
1863 // from the original cell.
1864 mem::forget(orig.borrow);
1865 // SAFETY: after forgetting, we can form a reference for the rest of lifetime `'b`.
1866 unsafe { orig.value.as_ref() }
1867 }
1868}
1869
1870#[unstable(feature = "coerce_unsized", issue = "18598")]
1871#[cfg(not(feature = "ferrocene_subset"))]
1872impl<'b, T: ?Sized + Unsize<U>, U: ?Sized> CoerceUnsized<Ref<'b, U>> for Ref<'b, T> {}
1873
1874#[stable(feature = "std_guard_impls", since = "1.20.0")]
1875#[cfg(not(feature = "ferrocene_subset"))]
1876impl<T: ?Sized + fmt::Display> fmt::Display for Ref<'_, T> {
1877 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
1878 (**self).fmt(f)
1879 }
1880}
1881
1882#[cfg(not(feature = "ferrocene_subset"))]
1883impl<'b, T: ?Sized> RefMut<'b, T> {
1884 /// Makes a new `RefMut` for a component of the borrowed data, e.g., an enum
1885 /// variant.
1886 ///
1887 /// The `RefCell` is already mutably borrowed, so this cannot fail.
1888 ///
1889 /// This is an associated function that needs to be used as
1890 /// `RefMut::map(...)`. A method would interfere with methods of the same
1891 /// name on the contents of a `RefCell` used through `Deref`.
1892 ///
1893 /// # Examples
1894 ///
1895 /// ```
1896 /// use std::cell::{RefCell, RefMut};
1897 ///
1898 /// let c = RefCell::new((5, 'b'));
1899 /// {
1900 /// let b1: RefMut<'_, (u32, char)> = c.borrow_mut();
1901 /// let mut b2: RefMut<'_, u32> = RefMut::map(b1, |t| &mut t.0);
1902 /// assert_eq!(*b2, 5);
1903 /// *b2 = 42;
1904 /// }
1905 /// assert_eq!(*c.borrow(), (42, 'b'));
1906 /// ```
1907 #[stable(feature = "cell_map", since = "1.8.0")]
1908 #[inline]
1909 pub fn map<U: ?Sized, F>(mut orig: RefMut<'b, T>, f: F) -> RefMut<'b, U>
1910 where
1911 F: FnOnce(&mut T) -> &mut U,
1912 {
1913 let value = NonNull::from(f(&mut *orig));
1914 RefMut { value, borrow: orig.borrow, marker: PhantomData }
1915 }
1916
1917 /// Makes a new `RefMut` for an optional component of the borrowed data. The
1918 /// original guard is returned as an `Err(..)` if the closure returns
1919 /// `None`.
1920 ///
1921 /// The `RefCell` is already mutably borrowed, so this cannot fail.
1922 ///
1923 /// This is an associated function that needs to be used as
1924 /// `RefMut::filter_map(...)`. A method would interfere with methods of the
1925 /// same name on the contents of a `RefCell` used through `Deref`.
1926 ///
1927 /// # Examples
1928 ///
1929 /// ```
1930 /// use std::cell::{RefCell, RefMut};
1931 ///
1932 /// let c = RefCell::new(vec![1, 2, 3]);
1933 ///
1934 /// {
1935 /// let b1: RefMut<'_, Vec<u32>> = c.borrow_mut();
1936 /// let mut b2: Result<RefMut<'_, u32>, _> = RefMut::filter_map(b1, |v| v.get_mut(1));
1937 ///
1938 /// if let Ok(mut b2) = b2 {
1939 /// *b2 += 2;
1940 /// }
1941 /// }
1942 ///
1943 /// assert_eq!(*c.borrow(), vec![1, 4, 3]);
1944 /// ```
1945 #[stable(feature = "cell_filter_map", since = "1.63.0")]
1946 #[inline]
1947 pub fn filter_map<U: ?Sized, F>(mut orig: RefMut<'b, T>, f: F) -> Result<RefMut<'b, U>, Self>
1948 where
1949 F: FnOnce(&mut T) -> Option<&mut U>,
1950 {
1951 // SAFETY: function holds onto an exclusive reference for the duration
1952 // of its call through `orig`, and the pointer is only de-referenced
1953 // inside of the function call never allowing the exclusive reference to
1954 // escape.
1955 match f(&mut *orig) {
1956 Some(value) => {
1957 Ok(RefMut { value: NonNull::from(value), borrow: orig.borrow, marker: PhantomData })
1958 }
1959 None => Err(orig),
1960 }
1961 }
1962
1963 /// Tries to makes a new `RefMut` for a component of the borrowed data.
1964 /// On failure, the original guard is returned alongside with the error
1965 /// returned by the closure.
1966 ///
1967 /// The `RefCell` is already mutably borrowed, so this cannot fail.
1968 ///
1969 /// This is an associated function that needs to be used as
1970 /// `RefMut::try_map(...)`. A method would interfere with methods of the same
1971 /// name on the contents of a `RefCell` used through `Deref`.
1972 ///
1973 /// # Examples
1974 ///
1975 /// ```
1976 /// #![feature(refcell_try_map)]
1977 /// use std::cell::{RefCell, RefMut};
1978 /// use std::str::{from_utf8_mut, Utf8Error};
1979 ///
1980 /// let c = RefCell::new(vec![0x68, 0x65, 0x6C, 0x6C, 0x6F]);
1981 /// {
1982 /// let b1: RefMut<'_, Vec<u8>> = c.borrow_mut();
1983 /// let b2: Result<RefMut<'_, str>, _> = RefMut::try_map(b1, |v| from_utf8_mut(v));
1984 /// let mut b2 = b2.unwrap();
1985 /// assert_eq!(&*b2, "hello");
1986 /// b2.make_ascii_uppercase();
1987 /// }
1988 /// assert_eq!(*c.borrow(), "HELLO".as_bytes());
1989 ///
1990 /// let c = RefCell::new(vec![0xFF]);
1991 /// let b1: RefMut<'_, Vec<u8>> = c.borrow_mut();
1992 /// let b2: Result<_, (RefMut<'_, Vec<u8>>, Utf8Error)> = RefMut::try_map(b1, |v| from_utf8_mut(v));
1993 /// let (b3, e) = b2.unwrap_err();
1994 /// assert_eq!(*b3, vec![0xFF]);
1995 /// assert_eq!(e.valid_up_to(), 0);
1996 /// ```
1997 #[unstable(feature = "refcell_try_map", issue = "143801")]
1998 #[inline]
1999 pub fn try_map<U: ?Sized, E>(
2000 mut orig: RefMut<'b, T>,
2001 f: impl FnOnce(&mut T) -> Result<&mut U, E>,
2002 ) -> Result<RefMut<'b, U>, (Self, E)> {
2003 // SAFETY: function holds onto an exclusive reference for the duration
2004 // of its call through `orig`, and the pointer is only de-referenced
2005 // inside of the function call never allowing the exclusive reference to
2006 // escape.
2007 match f(&mut *orig) {
2008 Ok(value) => {
2009 Ok(RefMut { value: NonNull::from(value), borrow: orig.borrow, marker: PhantomData })
2010 }
2011 Err(e) => Err((orig, e)),
2012 }
2013 }
2014
2015 /// Splits a `RefMut` into multiple `RefMut`s for different components of the
2016 /// borrowed data.
2017 ///
2018 /// The underlying `RefCell` will remain mutably borrowed until both
2019 /// returned `RefMut`s go out of scope.
2020 ///
2021 /// The `RefCell` is already mutably borrowed, so this cannot fail.
2022 ///
2023 /// This is an associated function that needs to be used as
2024 /// `RefMut::map_split(...)`. A method would interfere with methods of the
2025 /// same name on the contents of a `RefCell` used through `Deref`.
2026 ///
2027 /// # Examples
2028 ///
2029 /// ```
2030 /// use std::cell::{RefCell, RefMut};
2031 ///
2032 /// let cell = RefCell::new([1, 2, 3, 4]);
2033 /// let borrow = cell.borrow_mut();
2034 /// let (mut begin, mut end) = RefMut::map_split(borrow, |slice| slice.split_at_mut(2));
2035 /// assert_eq!(*begin, [1, 2]);
2036 /// assert_eq!(*end, [3, 4]);
2037 /// begin.copy_from_slice(&[4, 3]);
2038 /// end.copy_from_slice(&[2, 1]);
2039 /// ```
2040 #[stable(feature = "refcell_map_split", since = "1.35.0")]
2041 #[inline]
2042 pub fn map_split<U: ?Sized, V: ?Sized, F>(
2043 mut orig: RefMut<'b, T>,
2044 f: F,
2045 ) -> (RefMut<'b, U>, RefMut<'b, V>)
2046 where
2047 F: FnOnce(&mut T) -> (&mut U, &mut V),
2048 {
2049 let borrow = orig.borrow.clone();
2050 let (a, b) = f(&mut *orig);
2051 (
2052 RefMut { value: NonNull::from(a), borrow, marker: PhantomData },
2053 RefMut { value: NonNull::from(b), borrow: orig.borrow, marker: PhantomData },
2054 )
2055 }
2056
2057 /// Converts into a mutable reference to the underlying data.
2058 ///
2059 /// The underlying `RefCell` can not be borrowed from again and will always appear already
2060 /// mutably borrowed, making the returned reference the only to the interior.
2061 ///
2062 /// This is an associated function that needs to be used as
2063 /// `RefMut::leak(...)`. A method would interfere with methods of the
2064 /// same name on the contents of a `RefCell` used through `Deref`.
2065 ///
2066 /// # Examples
2067 ///
2068 /// ```
2069 /// #![feature(cell_leak)]
2070 /// use std::cell::{RefCell, RefMut};
2071 /// let cell = RefCell::new(0);
2072 ///
2073 /// let value = RefMut::leak(cell.borrow_mut());
2074 /// assert_eq!(*value, 0);
2075 /// *value = 1;
2076 ///
2077 /// assert!(cell.try_borrow_mut().is_err());
2078 /// ```
2079 #[unstable(feature = "cell_leak", issue = "69099")]
2080 #[rustc_const_unstable(feature = "const_ref_cell", issue = "137844")]
2081 pub const fn leak(mut orig: RefMut<'b, T>) -> &'b mut T {
2082 // By forgetting this BorrowRefMut we ensure that the borrow counter in the RefCell can't
2083 // go back to UNUSED within the lifetime `'b`. Resetting the reference tracking state would
2084 // require a unique reference to the borrowed RefCell. No further references can be created
2085 // from the original cell within that lifetime, making the current borrow the only
2086 // reference for the remaining lifetime.
2087 mem::forget(orig.borrow);
2088 // SAFETY: after forgetting, we can form a reference for the rest of lifetime `'b`.
2089 unsafe { orig.value.as_mut() }
2090 }
2091}
2092
2093struct BorrowRefMut<'b> {
2094 borrow: &'b Cell<BorrowCounter>,
2095}
2096
2097#[rustc_const_unstable(feature = "const_ref_cell", issue = "137844")]
2098impl const Drop for BorrowRefMut<'_> {
2099 #[inline]
2100 fn drop(&mut self) {
2101 let borrow = self.borrow.get();
2102 debug_assert!(is_writing(borrow));
2103 self.borrow.replace(borrow + 1);
2104 }
2105}
2106
2107impl<'b> BorrowRefMut<'b> {
2108 #[inline]
2109 const fn new(borrow: &'b Cell<BorrowCounter>) -> Option<BorrowRefMut<'b>> {
2110 // NOTE: Unlike BorrowRefMut::clone, new is called to create the initial
2111 // mutable reference, and so there must currently be no existing
2112 // references. Thus, while clone increments the mutable refcount, here
2113 // we explicitly only allow going from UNUSED to UNUSED - 1.
2114 match borrow.get() {
2115 UNUSED => {
2116 borrow.replace(UNUSED - 1);
2117 Some(BorrowRefMut { borrow })
2118 }
2119 _ => None,
2120 }
2121 }
2122
2123 // Clones a `BorrowRefMut`.
2124 //
2125 // This is only valid if each `BorrowRefMut` is used to track a mutable
2126 // reference to a distinct, nonoverlapping range of the original object.
2127 // This isn't in a Clone impl so that code doesn't call this implicitly.
2128 #[inline]
2129 #[cfg(not(feature = "ferrocene_subset"))]
2130 fn clone(&self) -> BorrowRefMut<'b> {
2131 let borrow = self.borrow.get();
2132 debug_assert!(is_writing(borrow));
2133 // Prevent the borrow counter from underflowing.
2134 assert!(borrow != BorrowCounter::MIN);
2135 self.borrow.set(borrow - 1);
2136 BorrowRefMut { borrow: self.borrow }
2137 }
2138}
2139
2140/// A wrapper type for a mutably borrowed value from a `RefCell<T>`.
2141///
2142/// See the [module-level documentation](self) for more.
2143#[stable(feature = "rust1", since = "1.0.0")]
2144#[must_not_suspend = "holding a RefMut across suspend points can cause BorrowErrors"]
2145#[rustc_diagnostic_item = "RefCellRefMut"]
2146#[cfg_attr(feature = "ferrocene_subset", expect(dead_code))]
2147pub struct RefMut<'b, T: ?Sized + 'b> {
2148 // NB: we use a pointer instead of `&'b mut T` to avoid `noalias` violations, because a
2149 // `RefMut` argument doesn't hold exclusivity for its whole scope, only until it drops.
2150 value: NonNull<T>,
2151 borrow: BorrowRefMut<'b>,
2152 // `NonNull` is covariant over `T`, so we need to reintroduce invariance.
2153 marker: PhantomData<&'b mut T>,
2154}
2155
2156#[stable(feature = "rust1", since = "1.0.0")]
2157#[rustc_const_unstable(feature = "const_convert", issue = "143773")]
2158impl<T: ?Sized> const Deref for RefMut<'_, T> {
2159 type Target = T;
2160
2161 #[inline]
2162 fn deref(&self) -> &T {
2163 // SAFETY: the value is accessible as long as we hold our borrow.
2164 unsafe { self.value.as_ref() }
2165 }
2166}
2167
2168#[stable(feature = "rust1", since = "1.0.0")]
2169#[rustc_const_unstable(feature = "const_convert", issue = "143773")]
2170impl<T: ?Sized> const DerefMut for RefMut<'_, T> {
2171 #[inline]
2172 fn deref_mut(&mut self) -> &mut T {
2173 // SAFETY: the value is accessible as long as we hold our borrow.
2174 unsafe { self.value.as_mut() }
2175 }
2176}
2177
2178#[unstable(feature = "deref_pure_trait", issue = "87121")]
2179#[cfg(not(feature = "ferrocene_subset"))]
2180unsafe impl<T: ?Sized> DerefPure for RefMut<'_, T> {}
2181
2182#[unstable(feature = "coerce_unsized", issue = "18598")]
2183#[cfg(not(feature = "ferrocene_subset"))]
2184impl<'b, T: ?Sized + Unsize<U>, U: ?Sized> CoerceUnsized<RefMut<'b, U>> for RefMut<'b, T> {}
2185
2186#[stable(feature = "std_guard_impls", since = "1.20.0")]
2187#[cfg(not(feature = "ferrocene_subset"))]
2188impl<T: ?Sized + fmt::Display> fmt::Display for RefMut<'_, T> {
2189 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
2190 (**self).fmt(f)
2191 }
2192}
2193
2194/// The core primitive for interior mutability in Rust.
2195///
2196/// If you have a reference `&T`, then normally in Rust the compiler performs optimizations based on
2197/// the knowledge that `&T` points to immutable data. Mutating that data, for example through an
2198/// alias or by transmuting a `&T` into a `&mut T`, is considered undefined behavior.
2199/// `UnsafeCell<T>` opts-out of the immutability guarantee for `&T`: a shared reference
2200/// `&UnsafeCell<T>` may point to data that is being mutated. This is called "interior mutability".
2201///
2202/// All other types that allow internal mutability, such as [`Cell<T>`] and [`RefCell<T>`], internally
2203/// use `UnsafeCell` to wrap their data.
2204///
2205/// Note that only the immutability guarantee for shared references is affected by `UnsafeCell`. The
2206/// uniqueness guarantee for mutable references is unaffected. There is *no* legal way to obtain
2207/// aliasing `&mut`, not even with `UnsafeCell<T>`.
2208///
2209/// `UnsafeCell` does nothing to avoid data races; they are still undefined behavior. If multiple
2210/// threads have access to the same `UnsafeCell`, they must follow the usual rules of the
2211/// [concurrent memory model]: conflicting non-synchronized accesses must be done via the APIs in
2212/// [`core::sync::atomic`].
2213///
2214/// The `UnsafeCell` API itself is technically very simple: [`.get()`] gives you a raw pointer
2215/// `*mut T` to its contents. It is up to _you_ as the abstraction designer to use that raw pointer
2216/// correctly.
2217///
2218/// [`.get()`]: `UnsafeCell::get`
2219/// [concurrent memory model]: ../sync/atomic/index.html#memory-model-for-atomic-accesses
2220///
2221/// # Aliasing rules
2222///
2223/// The precise Rust aliasing rules are somewhat in flux, but the main points are not contentious:
2224///
2225/// - If you create a safe reference with lifetime `'a` (either a `&T` or `&mut T` reference), then
2226/// you must not access the data in any way that contradicts that reference for the remainder of
2227/// `'a`. For example, this means that if you take the `*mut T` from an `UnsafeCell<T>` and cast it
2228/// to an `&T`, then the data in `T` must remain immutable (modulo any `UnsafeCell` data found
2229/// within `T`, of course) until that reference's lifetime expires. Similarly, if you create a
2230/// `&mut T` reference that is released to safe code, then you must not access the data within the
2231/// `UnsafeCell` until that reference expires.
2232///
2233/// - For both `&T` without `UnsafeCell<_>` and `&mut T`, you must also not deallocate the data
2234/// until the reference expires. As a special exception, given an `&T`, any part of it that is
2235/// inside an `UnsafeCell<_>` may be deallocated during the lifetime of the reference, after the
2236/// last time the reference is used (dereferenced or reborrowed). Since you cannot deallocate a part
2237/// of what a reference points to, this means the memory an `&T` points to can be deallocated only if
2238/// *every part of it* (including padding) is inside an `UnsafeCell`.
2239///
2240/// However, whenever a `&UnsafeCell<T>` is constructed or dereferenced, it must still point to
2241/// live memory and the compiler is allowed to insert spurious reads if it can prove that this
2242/// memory has not yet been deallocated.
2243///
2244/// To assist with proper design, the following scenarios are explicitly declared legal
2245/// for single-threaded code:
2246///
2247/// 1. A `&T` reference can be released to safe code and there it can co-exist with other `&T`
2248/// references, but not with a `&mut T`
2249///
2250/// 2. A `&mut T` reference may be released to safe code provided neither other `&mut T` nor `&T`
2251/// co-exist with it. A `&mut T` must always be unique.
2252///
2253/// Note that whilst mutating the contents of an `&UnsafeCell<T>` (even while other
2254/// `&UnsafeCell<T>` references alias the cell) is
2255/// ok (provided you enforce the above invariants some other way), it is still undefined behavior
2256/// to have multiple `&mut UnsafeCell<T>` aliases. That is, `UnsafeCell` is a wrapper
2257/// designed to have a special interaction with _shared_ accesses (_i.e._, through an
2258/// `&UnsafeCell<_>` reference); there is no magic whatsoever when dealing with _exclusive_
2259/// accesses (_e.g._, through a `&mut UnsafeCell<_>`): neither the cell nor the wrapped value
2260/// may be aliased for the duration of that `&mut` borrow.
2261/// This is showcased by the [`.get_mut()`] accessor, which is a _safe_ getter that yields
2262/// a `&mut T`.
2263///
2264/// [`.get_mut()`]: `UnsafeCell::get_mut`
2265///
2266/// # Memory layout
2267///
2268/// `UnsafeCell<T>` has the same in-memory representation as its inner type `T`. A consequence
2269/// of this guarantee is that it is possible to convert between `T` and `UnsafeCell<T>`.
2270/// Special care has to be taken when converting a nested `T` inside of an `Outer<T>` type
2271/// to an `Outer<UnsafeCell<T>>` type: this is not sound when the `Outer<T>` type enables [niche]
2272/// optimizations. For example, the type `Option<NonNull<u8>>` is typically 8 bytes large on
2273/// 64-bit platforms, but the type `Option<UnsafeCell<NonNull<u8>>>` takes up 16 bytes of space.
2274/// Therefore this is not a valid conversion, despite `NonNull<u8>` and `UnsafeCell<NonNull<u8>>>`
2275/// having the same memory layout. This is because `UnsafeCell` disables niche optimizations in
2276/// order to avoid its interior mutability property from spreading from `T` into the `Outer` type,
2277/// thus this can cause distortions in the type size in these cases.
2278///
2279/// Note that the only valid way to obtain a `*mut T` pointer to the contents of a
2280/// _shared_ `UnsafeCell<T>` is through [`.get()`] or [`.raw_get()`]. A `&mut T` reference
2281/// can be obtained by either dereferencing this pointer or by calling [`.get_mut()`]
2282/// on an _exclusive_ `UnsafeCell<T>`. Even though `T` and `UnsafeCell<T>` have the
2283/// same memory layout, the following is not allowed and undefined behavior:
2284///
2285/// ```rust,compile_fail
2286/// # use std::cell::UnsafeCell;
2287/// unsafe fn not_allowed<T>(ptr: &UnsafeCell<T>) -> &mut T {
2288/// let t = ptr as *const UnsafeCell<T> as *mut T;
2289/// // This is undefined behavior, because the `*mut T` pointer
2290/// // was not obtained through `.get()` nor `.raw_get()`:
2291/// unsafe { &mut *t }
2292/// }
2293/// ```
2294///
2295/// Instead, do this:
2296///
2297/// ```rust
2298/// # use std::cell::UnsafeCell;
2299/// // Safety: the caller must ensure that there are no references that
2300/// // point to the *contents* of the `UnsafeCell`.
2301/// unsafe fn get_mut<T>(ptr: &UnsafeCell<T>) -> &mut T {
2302/// unsafe { &mut *ptr.get() }
2303/// }
2304/// ```
2305///
2306/// Converting in the other direction from a `&mut T`
2307/// to an `&UnsafeCell<T>` is allowed:
2308///
2309/// ```rust
2310/// # use std::cell::UnsafeCell;
2311/// fn get_shared<T>(ptr: &mut T) -> &UnsafeCell<T> {
2312/// let t = ptr as *mut T as *const UnsafeCell<T>;
2313/// // SAFETY: `T` and `UnsafeCell<T>` have the same memory layout
2314/// unsafe { &*t }
2315/// }
2316/// ```
2317///
2318/// [niche]: https://rust-lang.github.io/unsafe-code-guidelines/glossary.html#niche
2319/// [`.raw_get()`]: `UnsafeCell::raw_get`
2320///
2321/// # Examples
2322///
2323/// Here is an example showcasing how to soundly mutate the contents of an `UnsafeCell<_>` despite
2324/// there being multiple references aliasing the cell:
2325///
2326/// ```
2327/// use std::cell::UnsafeCell;
2328///
2329/// let x: UnsafeCell<i32> = 42.into();
2330/// // Get multiple / concurrent / shared references to the same `x`.
2331/// let (p1, p2): (&UnsafeCell<i32>, &UnsafeCell<i32>) = (&x, &x);
2332///
2333/// unsafe {
2334/// // SAFETY: within this scope there are no other references to `x`'s contents,
2335/// // so ours is effectively unique.
2336/// let p1_exclusive: &mut i32 = &mut *p1.get(); // -- borrow --+
2337/// *p1_exclusive += 27; // |
2338/// } // <---------- cannot go beyond this point -------------------+
2339///
2340/// unsafe {
2341/// // SAFETY: within this scope nobody expects to have exclusive access to `x`'s contents,
2342/// // so we can have multiple shared accesses concurrently.
2343/// let p2_shared: &i32 = &*p2.get();
2344/// assert_eq!(*p2_shared, 42 + 27);
2345/// let p1_shared: &i32 = &*p1.get();
2346/// assert_eq!(*p1_shared, *p2_shared);
2347/// }
2348/// ```
2349///
2350/// The following example showcases the fact that exclusive access to an `UnsafeCell<T>`
2351/// implies exclusive access to its `T`:
2352///
2353/// ```rust
2354/// #![forbid(unsafe_code)]
2355/// // with exclusive accesses, `UnsafeCell` is a transparent no-op wrapper, so no need for
2356/// // `unsafe` here.
2357/// use std::cell::UnsafeCell;
2358///
2359/// let mut x: UnsafeCell<i32> = 42.into();
2360///
2361/// // Get a compile-time-checked unique reference to `x`.
2362/// let p_unique: &mut UnsafeCell<i32> = &mut x;
2363/// // With an exclusive reference, we can mutate the contents for free.
2364/// *p_unique.get_mut() = 0;
2365/// // Or, equivalently:
2366/// x = UnsafeCell::new(0);
2367///
2368/// // When we own the value, we can extract the contents for free.
2369/// let contents: i32 = x.into_inner();
2370/// assert_eq!(contents, 0);
2371/// ```
2372#[lang = "unsafe_cell"]
2373#[stable(feature = "rust1", since = "1.0.0")]
2374#[repr(transparent)]
2375#[rustc_pub_transparent]
2376pub struct UnsafeCell<T: ?Sized> {
2377 value: T,
2378}
2379
2380#[stable(feature = "rust1", since = "1.0.0")]
2381impl<T: ?Sized> !Sync for UnsafeCell<T> {}
2382
2383impl<T> UnsafeCell<T> {
2384 /// Constructs a new instance of `UnsafeCell` which will wrap the specified
2385 /// value.
2386 ///
2387 /// All access to the inner value through `&UnsafeCell<T>` requires `unsafe` code.
2388 ///
2389 /// # Examples
2390 ///
2391 /// ```
2392 /// use std::cell::UnsafeCell;
2393 ///
2394 /// let uc = UnsafeCell::new(5);
2395 /// ```
2396 #[stable(feature = "rust1", since = "1.0.0")]
2397 #[rustc_const_stable(feature = "const_unsafe_cell_new", since = "1.32.0")]
2398 #[inline(always)]
2399 pub const fn new(value: T) -> UnsafeCell<T> {
2400 UnsafeCell { value }
2401 }
2402
2403 /// Unwraps the value, consuming the cell.
2404 ///
2405 /// # Examples
2406 ///
2407 /// ```
2408 /// use std::cell::UnsafeCell;
2409 ///
2410 /// let uc = UnsafeCell::new(5);
2411 ///
2412 /// let five = uc.into_inner();
2413 /// ```
2414 #[inline(always)]
2415 #[stable(feature = "rust1", since = "1.0.0")]
2416 #[rustc_const_stable(feature = "const_cell_into_inner", since = "1.83.0")]
2417 #[rustc_allow_const_fn_unstable(const_precise_live_drops)]
2418 pub const fn into_inner(self) -> T {
2419 self.value
2420 }
2421
2422 /// Replace the value in this `UnsafeCell` and return the old value.
2423 ///
2424 /// # Safety
2425 ///
2426 /// The caller must take care to avoid aliasing and data races.
2427 ///
2428 /// - It is Undefined Behavior to allow calls to race with
2429 /// any other access to the wrapped value.
2430 /// - It is Undefined Behavior to call this while any other
2431 /// reference(s) to the wrapped value are alive.
2432 ///
2433 /// # Examples
2434 ///
2435 /// ```
2436 /// #![feature(unsafe_cell_access)]
2437 /// use std::cell::UnsafeCell;
2438 ///
2439 /// let uc = UnsafeCell::new(5);
2440 ///
2441 /// let old = unsafe { uc.replace(10) };
2442 /// assert_eq!(old, 5);
2443 /// ```
2444 #[inline]
2445 #[unstable(feature = "unsafe_cell_access", issue = "136327")]
2446 #[cfg(not(feature = "ferrocene_subset"))]
2447 #[rustc_should_not_be_called_on_const_items]
2448 pub const unsafe fn replace(&self, value: T) -> T {
2449 // SAFETY: pointer comes from `&self` so naturally satisfies invariants.
2450 unsafe { ptr::replace(self.get(), value) }
2451 }
2452}
2453
2454impl<T: ?Sized> UnsafeCell<T> {
2455 /// Converts from `&mut T` to `&mut UnsafeCell<T>`.
2456 ///
2457 /// # Examples
2458 ///
2459 /// ```
2460 /// use std::cell::UnsafeCell;
2461 ///
2462 /// let mut val = 42;
2463 /// let uc = UnsafeCell::from_mut(&mut val);
2464 ///
2465 /// *uc.get_mut() -= 1;
2466 /// assert_eq!(*uc.get_mut(), 41);
2467 /// ```
2468 #[inline(always)]
2469 #[stable(feature = "unsafe_cell_from_mut", since = "1.84.0")]
2470 #[rustc_const_stable(feature = "unsafe_cell_from_mut", since = "1.84.0")]
2471 #[cfg(not(feature = "ferrocene_subset"))]
2472 pub const fn from_mut(value: &mut T) -> &mut UnsafeCell<T> {
2473 // SAFETY: `UnsafeCell<T>` has the same memory layout as `T` due to #[repr(transparent)].
2474 unsafe { &mut *(value as *mut T as *mut UnsafeCell<T>) }
2475 }
2476
2477 /// Gets a mutable pointer to the wrapped value.
2478 ///
2479 /// This can be cast to a pointer of any kind. When creating references, you must uphold the
2480 /// aliasing rules; see [the type-level docs][UnsafeCell#aliasing-rules] for more discussion and
2481 /// caveats.
2482 ///
2483 /// # Examples
2484 ///
2485 /// ```
2486 /// use std::cell::UnsafeCell;
2487 ///
2488 /// let uc = UnsafeCell::new(5);
2489 ///
2490 /// let five = uc.get();
2491 /// ```
2492 #[inline(always)]
2493 #[stable(feature = "rust1", since = "1.0.0")]
2494 #[rustc_const_stable(feature = "const_unsafecell_get", since = "1.32.0")]
2495 #[rustc_as_ptr]
2496 #[rustc_never_returns_null_ptr]
2497 #[rustc_should_not_be_called_on_const_items]
2498 pub const fn get(&self) -> *mut T {
2499 // We can just cast the pointer from `UnsafeCell<T>` to `T` because of
2500 // #[repr(transparent)]. This exploits std's special status, there is
2501 // no guarantee for user code that this will work in future versions of the compiler!
2502 self as *const UnsafeCell<T> as *const T as *mut T
2503 }
2504
2505 /// Returns a mutable reference to the underlying data.
2506 ///
2507 /// This call borrows the `UnsafeCell` mutably (at compile-time) which
2508 /// guarantees that we possess the only reference.
2509 ///
2510 /// # Examples
2511 ///
2512 /// ```
2513 /// use std::cell::UnsafeCell;
2514 ///
2515 /// let mut c = UnsafeCell::new(5);
2516 /// *c.get_mut() += 1;
2517 ///
2518 /// assert_eq!(*c.get_mut(), 6);
2519 /// ```
2520 #[inline(always)]
2521 #[stable(feature = "unsafe_cell_get_mut", since = "1.50.0")]
2522 #[rustc_const_stable(feature = "const_unsafecell_get_mut", since = "1.83.0")]
2523 pub const fn get_mut(&mut self) -> &mut T {
2524 &mut self.value
2525 }
2526
2527 /// Gets a mutable pointer to the wrapped value.
2528 /// The difference from [`get`] is that this function accepts a raw pointer,
2529 /// which is useful to avoid the creation of temporary references.
2530 ///
2531 /// This can be cast to a pointer of any kind. When creating references, you must uphold the
2532 /// aliasing rules; see [the type-level docs][UnsafeCell#aliasing-rules] for more discussion and
2533 /// caveats.
2534 ///
2535 /// [`get`]: UnsafeCell::get()
2536 ///
2537 /// # Examples
2538 ///
2539 /// Gradual initialization of an `UnsafeCell` requires `raw_get`, as
2540 /// calling `get` would require creating a reference to uninitialized data:
2541 ///
2542 /// ```
2543 /// use std::cell::UnsafeCell;
2544 /// use std::mem::MaybeUninit;
2545 ///
2546 /// let m = MaybeUninit::<UnsafeCell<i32>>::uninit();
2547 /// unsafe { UnsafeCell::raw_get(m.as_ptr()).write(5); }
2548 /// // avoid below which references to uninitialized data
2549 /// // unsafe { UnsafeCell::get(&*m.as_ptr()).write(5); }
2550 /// let uc = unsafe { m.assume_init() };
2551 ///
2552 /// assert_eq!(uc.into_inner(), 5);
2553 /// ```
2554 #[inline(always)]
2555 #[stable(feature = "unsafe_cell_raw_get", since = "1.56.0")]
2556 #[rustc_const_stable(feature = "unsafe_cell_raw_get", since = "1.56.0")]
2557 #[rustc_diagnostic_item = "unsafe_cell_raw_get"]
2558 pub const fn raw_get(this: *const Self) -> *mut T {
2559 // We can just cast the pointer from `UnsafeCell<T>` to `T` because of
2560 // #[repr(transparent)]. This exploits std's special status, there is
2561 // no guarantee for user code that this will work in future versions of the compiler!
2562 this as *const T as *mut T
2563 }
2564
2565 /// Get a shared reference to the value within the `UnsafeCell`.
2566 ///
2567 /// # Safety
2568 ///
2569 /// - It is Undefined Behavior to call this while any mutable
2570 /// reference to the wrapped value is alive.
2571 /// - Mutating the wrapped value while the returned
2572 /// reference is alive is Undefined Behavior.
2573 ///
2574 /// # Examples
2575 ///
2576 /// ```
2577 /// #![feature(unsafe_cell_access)]
2578 /// use std::cell::UnsafeCell;
2579 ///
2580 /// let uc = UnsafeCell::new(5);
2581 ///
2582 /// let val = unsafe { uc.as_ref_unchecked() };
2583 /// assert_eq!(val, &5);
2584 /// ```
2585 #[inline]
2586 #[unstable(feature = "unsafe_cell_access", issue = "136327")]
2587 #[cfg(not(feature = "ferrocene_subset"))]
2588 #[rustc_should_not_be_called_on_const_items]
2589 pub const unsafe fn as_ref_unchecked(&self) -> &T {
2590 // SAFETY: pointer comes from `&self` so naturally satisfies ptr-to-ref invariants.
2591 unsafe { self.get().as_ref_unchecked() }
2592 }
2593
2594 /// Get an exclusive reference to the value within the `UnsafeCell`.
2595 ///
2596 /// # Safety
2597 ///
2598 /// - It is Undefined Behavior to call this while any other
2599 /// reference(s) to the wrapped value are alive.
2600 /// - Mutating the wrapped value through other means while the
2601 /// returned reference is alive is Undefined Behavior.
2602 ///
2603 /// # Examples
2604 ///
2605 /// ```
2606 /// #![feature(unsafe_cell_access)]
2607 /// use std::cell::UnsafeCell;
2608 ///
2609 /// let uc = UnsafeCell::new(5);
2610 ///
2611 /// unsafe { *uc.as_mut_unchecked() += 1; }
2612 /// assert_eq!(uc.into_inner(), 6);
2613 /// ```
2614 #[inline]
2615 #[unstable(feature = "unsafe_cell_access", issue = "136327")]
2616 #[allow(clippy::mut_from_ref)]
2617 #[cfg(not(feature = "ferrocene_subset"))]
2618 #[rustc_should_not_be_called_on_const_items]
2619 pub const unsafe fn as_mut_unchecked(&self) -> &mut T {
2620 // SAFETY: pointer comes from `&self` so naturally satisfies ptr-to-ref invariants.
2621 unsafe { self.get().as_mut_unchecked() }
2622 }
2623}
2624
2625#[stable(feature = "unsafe_cell_default", since = "1.10.0")]
2626#[rustc_const_unstable(feature = "const_default", issue = "143894")]
2627#[cfg(not(feature = "ferrocene_subset"))]
2628impl<T: [const] Default> const Default for UnsafeCell<T> {
2629 /// Creates an `UnsafeCell`, with the `Default` value for T.
2630 fn default() -> UnsafeCell<T> {
2631 UnsafeCell::new(Default::default())
2632 }
2633}
2634
2635#[stable(feature = "cell_from", since = "1.12.0")]
2636#[rustc_const_unstable(feature = "const_convert", issue = "143773")]
2637#[cfg(not(feature = "ferrocene_subset"))]
2638impl<T> const From<T> for UnsafeCell<T> {
2639 /// Creates a new `UnsafeCell<T>` containing the given value.
2640 fn from(t: T) -> UnsafeCell<T> {
2641 UnsafeCell::new(t)
2642 }
2643}
2644
2645#[unstable(feature = "coerce_unsized", issue = "18598")]
2646#[cfg(not(feature = "ferrocene_subset"))]
2647impl<T: CoerceUnsized<U>, U> CoerceUnsized<UnsafeCell<U>> for UnsafeCell<T> {}
2648
2649// Allow types that wrap `UnsafeCell` to also implement `DispatchFromDyn`
2650// and become dyn-compatible method receivers.
2651// Note that currently `UnsafeCell` itself cannot be a method receiver
2652// because it does not implement Deref.
2653// In other words:
2654// `self: UnsafeCell<&Self>` won't work
2655// `self: UnsafeCellWrapper<Self>` becomes possible
2656#[unstable(feature = "dispatch_from_dyn", issue = "none")]
2657#[cfg(not(feature = "ferrocene_subset"))]
2658impl<T: DispatchFromDyn<U>, U> DispatchFromDyn<UnsafeCell<U>> for UnsafeCell<T> {}
2659
2660/// [`UnsafeCell`], but [`Sync`].
2661///
2662/// This is just an `UnsafeCell`, except it implements `Sync`
2663/// if `T` implements `Sync`.
2664///
2665/// `UnsafeCell` doesn't implement `Sync`, to prevent accidental mis-use.
2666/// You can use `SyncUnsafeCell` instead of `UnsafeCell` to allow it to be
2667/// shared between threads, if that's intentional.
2668/// Providing proper synchronization is still the task of the user,
2669/// making this type just as unsafe to use.
2670///
2671/// See [`UnsafeCell`] for details.
2672#[unstable(feature = "sync_unsafe_cell", issue = "95439")]
2673#[repr(transparent)]
2674#[rustc_diagnostic_item = "SyncUnsafeCell"]
2675#[rustc_pub_transparent]
2676#[cfg(not(feature = "ferrocene_subset"))]
2677pub struct SyncUnsafeCell<T: ?Sized> {
2678 value: UnsafeCell<T>,
2679}
2680
2681#[unstable(feature = "sync_unsafe_cell", issue = "95439")]
2682#[cfg(not(feature = "ferrocene_subset"))]
2683unsafe impl<T: ?Sized + Sync> Sync for SyncUnsafeCell<T> {}
2684
2685#[unstable(feature = "sync_unsafe_cell", issue = "95439")]
2686#[cfg(not(feature = "ferrocene_subset"))]
2687impl<T> SyncUnsafeCell<T> {
2688 /// Constructs a new instance of `SyncUnsafeCell` which will wrap the specified value.
2689 #[inline]
2690 pub const fn new(value: T) -> Self {
2691 Self { value: UnsafeCell { value } }
2692 }
2693
2694 /// Unwraps the value, consuming the cell.
2695 #[inline]
2696 #[rustc_const_unstable(feature = "sync_unsafe_cell", issue = "95439")]
2697 pub const fn into_inner(self) -> T {
2698 self.value.into_inner()
2699 }
2700}
2701
2702#[unstable(feature = "sync_unsafe_cell", issue = "95439")]
2703#[cfg(not(feature = "ferrocene_subset"))]
2704impl<T: ?Sized> SyncUnsafeCell<T> {
2705 /// Gets a mutable pointer to the wrapped value.
2706 ///
2707 /// This can be cast to a pointer of any kind.
2708 /// Ensure that the access is unique (no active references, mutable or not)
2709 /// when casting to `&mut T`, and ensure that there are no mutations
2710 /// or mutable aliases going on when casting to `&T`
2711 #[inline]
2712 #[rustc_as_ptr]
2713 #[rustc_never_returns_null_ptr]
2714 #[rustc_should_not_be_called_on_const_items]
2715 pub const fn get(&self) -> *mut T {
2716 self.value.get()
2717 }
2718
2719 /// Returns a mutable reference to the underlying data.
2720 ///
2721 /// This call borrows the `SyncUnsafeCell` mutably (at compile-time) which
2722 /// guarantees that we possess the only reference.
2723 #[inline]
2724 pub const fn get_mut(&mut self) -> &mut T {
2725 self.value.get_mut()
2726 }
2727
2728 /// Gets a mutable pointer to the wrapped value.
2729 ///
2730 /// See [`UnsafeCell::get`] for details.
2731 #[inline]
2732 pub const fn raw_get(this: *const Self) -> *mut T {
2733 // We can just cast the pointer from `SyncUnsafeCell<T>` to `T` because
2734 // of #[repr(transparent)] on both SyncUnsafeCell and UnsafeCell.
2735 // See UnsafeCell::raw_get.
2736 this as *const T as *mut T
2737 }
2738}
2739
2740#[unstable(feature = "sync_unsafe_cell", issue = "95439")]
2741#[rustc_const_unstable(feature = "const_default", issue = "143894")]
2742#[cfg(not(feature = "ferrocene_subset"))]
2743impl<T: [const] Default> const Default for SyncUnsafeCell<T> {
2744 /// Creates an `SyncUnsafeCell`, with the `Default` value for T.
2745 fn default() -> SyncUnsafeCell<T> {
2746 SyncUnsafeCell::new(Default::default())
2747 }
2748}
2749
2750#[unstable(feature = "sync_unsafe_cell", issue = "95439")]
2751#[rustc_const_unstable(feature = "const_convert", issue = "143773")]
2752#[cfg(not(feature = "ferrocene_subset"))]
2753impl<T> const From<T> for SyncUnsafeCell<T> {
2754 /// Creates a new `SyncUnsafeCell<T>` containing the given value.
2755 fn from(t: T) -> SyncUnsafeCell<T> {
2756 SyncUnsafeCell::new(t)
2757 }
2758}
2759
2760#[unstable(feature = "coerce_unsized", issue = "18598")]
2761//#[unstable(feature = "sync_unsafe_cell", issue = "95439")]
2762#[cfg(not(feature = "ferrocene_subset"))]
2763impl<T: CoerceUnsized<U>, U> CoerceUnsized<SyncUnsafeCell<U>> for SyncUnsafeCell<T> {}
2764
2765// Allow types that wrap `SyncUnsafeCell` to also implement `DispatchFromDyn`
2766// and become dyn-compatible method receivers.
2767// Note that currently `SyncUnsafeCell` itself cannot be a method receiver
2768// because it does not implement Deref.
2769// In other words:
2770// `self: SyncUnsafeCell<&Self>` won't work
2771// `self: SyncUnsafeCellWrapper<Self>` becomes possible
2772#[unstable(feature = "dispatch_from_dyn", issue = "none")]
2773//#[unstable(feature = "sync_unsafe_cell", issue = "95439")]
2774#[cfg(not(feature = "ferrocene_subset"))]
2775impl<T: DispatchFromDyn<U>, U> DispatchFromDyn<SyncUnsafeCell<U>> for SyncUnsafeCell<T> {}
2776
2777#[allow(unused)]
2778#[cfg(not(feature = "ferrocene_subset"))]
2779fn assert_coerce_unsized(
2780 a: UnsafeCell<&i32>,
2781 b: SyncUnsafeCell<&i32>,
2782 c: Cell<&i32>,
2783 d: RefCell<&i32>,
2784) {
2785 let _: UnsafeCell<&dyn Send> = a;
2786 let _: SyncUnsafeCell<&dyn Send> = b;
2787 let _: Cell<&dyn Send> = c;
2788 let _: RefCell<&dyn Send> = d;
2789}
2790
2791#[unstable(feature = "pin_coerce_unsized_trait", issue = "123430")]
2792#[cfg(not(feature = "ferrocene_subset"))]
2793unsafe impl<T: ?Sized> PinCoerceUnsized for UnsafeCell<T> {}
2794
2795#[unstable(feature = "pin_coerce_unsized_trait", issue = "123430")]
2796#[cfg(not(feature = "ferrocene_subset"))]
2797unsafe impl<T: ?Sized> PinCoerceUnsized for SyncUnsafeCell<T> {}
2798
2799#[unstable(feature = "pin_coerce_unsized_trait", issue = "123430")]
2800#[cfg(not(feature = "ferrocene_subset"))]
2801unsafe impl<T: ?Sized> PinCoerceUnsized for Cell<T> {}
2802
2803#[unstable(feature = "pin_coerce_unsized_trait", issue = "123430")]
2804#[cfg(not(feature = "ferrocene_subset"))]
2805unsafe impl<T: ?Sized> PinCoerceUnsized for RefCell<T> {}
2806
2807#[unstable(feature = "pin_coerce_unsized_trait", issue = "123430")]
2808#[cfg(not(feature = "ferrocene_subset"))]
2809unsafe impl<'b, T: ?Sized> PinCoerceUnsized for Ref<'b, T> {}
2810
2811#[unstable(feature = "pin_coerce_unsized_trait", issue = "123430")]
2812#[cfg(not(feature = "ferrocene_subset"))]
2813unsafe impl<'b, T: ?Sized> PinCoerceUnsized for RefMut<'b, T> {}