core/
cell.rs

1//! Shareable mutable containers.
2//!
3//! Rust memory safety is based on this rule: Given an object `T`, it is only possible to
4//! have one of the following:
5//!
6//! - Several immutable references (`&T`) to the object (also known as **aliasing**).
7//! - One mutable reference (`&mut T`) to the object (also known as **mutability**).
8//!
9//! This is enforced by the Rust compiler. However, there are situations where this rule is not
10//! flexible enough. Sometimes it is required to have multiple references to an object and yet
11//! mutate it.
12//!
13//! Shareable mutable containers exist to permit mutability in a controlled manner, even in the
14//! presence of aliasing. [`Cell<T>`], [`RefCell<T>`], and [`OnceCell<T>`] allow doing this in
15//! a single-threaded way—they do not implement [`Sync`]. (If you need to do aliasing and
16//! mutation among multiple threads, [`Mutex<T>`], [`RwLock<T>`], [`OnceLock<T>`] or [`atomic`]
17//! types are the correct data structures to do so).
18//!
19//! Values of the `Cell<T>`, `RefCell<T>`, and `OnceCell<T>` types may be mutated through shared
20//! references (i.e. the common `&T` type), whereas most Rust types can only be mutated through
21//! unique (`&mut T`) references. We say these cell types provide 'interior mutability'
22//! (mutable via `&T`), in contrast with typical Rust types that exhibit 'inherited mutability'
23//! (mutable only via `&mut T`).
24//!
25//! Cell types come in four flavors: `Cell<T>`, `RefCell<T>`, `OnceCell<T>`, and `LazyCell<T>`.
26//! Each provides a different way of providing safe interior mutability.
27//!
28//! ## `Cell<T>`
29//!
30//! [`Cell<T>`] implements interior mutability by moving values in and out of the cell. That is, an
31//! `&mut T` to the inner value can never be obtained, and the value itself cannot be directly
32//! obtained without replacing it with something else. Both of these rules ensure that there is
33//! never more than one reference pointing to the inner value. This type provides the following
34//! methods:
35//!
36//!  - For types that implement [`Copy`], the [`get`](Cell::get) method retrieves the current
37//!    interior value by duplicating it.
38//!  - For types that implement [`Default`], the [`take`](Cell::take) method replaces the current
39//!    interior value with [`Default::default()`] and returns the replaced value.
40//!  - All types have:
41//!    - [`replace`](Cell::replace): replaces the current interior value and returns the replaced
42//!      value.
43//!    - [`into_inner`](Cell::into_inner): this method consumes the `Cell<T>` and returns the
44//!      interior value.
45//!    - [`set`](Cell::set): this method replaces the interior value, dropping the replaced value.
46//!
47//! `Cell<T>` is typically used for more simple types where copying or moving values isn't too
48//! resource intensive (e.g. numbers), and should usually be preferred over other cell types when
49//! possible. For larger and non-copy types, `RefCell` provides some advantages.
50//!
51//! ## `RefCell<T>`
52//!
53//! [`RefCell<T>`] uses Rust's lifetimes to implement "dynamic borrowing", a process whereby one can
54//! claim temporary, exclusive, mutable access to the inner value. Borrows for `RefCell<T>`s are
55//! tracked at _runtime_, unlike Rust's native reference types which are entirely tracked
56//! statically, at compile time.
57//!
58//! An immutable reference to a `RefCell`'s inner value (`&T`) can be obtained with
59//! [`borrow`](`RefCell::borrow`), and a mutable borrow (`&mut T`) can be obtained with
60//! [`borrow_mut`](`RefCell::borrow_mut`). When these functions are called, they first verify that
61//! Rust's borrow rules will be satisfied: any number of immutable borrows are allowed or a
62//! single mutable borrow is allowed, but never both. If a borrow is attempted that would violate
63//! these rules, the thread will panic.
64//!
65//! The corresponding [`Sync`] version of `RefCell<T>` is [`RwLock<T>`].
66//!
67//! ## `OnceCell<T>`
68//!
69//! [`OnceCell<T>`] is somewhat of a hybrid of `Cell` and `RefCell` that works for values that
70//! typically only need to be set once. This means that a reference `&T` can be obtained without
71//! moving or copying the inner value (unlike `Cell`) but also without runtime checks (unlike
72//! `RefCell`). However, its value can also not be updated once set unless you have a mutable
73//! reference to the `OnceCell`.
74//!
75//! `OnceCell` provides the following methods:
76//!
77//! - [`get`](OnceCell::get): obtain a reference to the inner value
78//! - [`set`](OnceCell::set): set the inner value if it is unset (returns a `Result`)
79//! - [`get_or_init`](OnceCell::get_or_init): return the inner value, initializing it if needed
80//! - [`get_mut`](OnceCell::get_mut): provide a mutable reference to the inner value, only available
81//!   if you have a mutable reference to the cell itself.
82//!
83//! The corresponding [`Sync`] version of `OnceCell<T>` is [`OnceLock<T>`].
84//!
85//! ## `LazyCell<T, F>`
86//!
87//! A common pattern with OnceCell is, for a given OnceCell, to use the same function on every
88//! call to [`OnceCell::get_or_init`] with that cell. This is what is offered by [`LazyCell`],
89//! which pairs cells of `T` with functions of `F`, and always calls `F` before it yields `&T`.
90//! This happens implicitly by simply attempting to dereference the LazyCell to get its contents,
91//! so its use is much more transparent with a place which has been initialized by a constant.
92//!
93//! More complicated patterns that don't fit this description can be built on `OnceCell<T>` instead.
94//!
95//! `LazyCell` works by providing an implementation of `impl Deref` that calls the function,
96//! so you can just use it by dereference (e.g. `*lazy_cell` or `lazy_cell.deref()`).
97//!
98//! The corresponding [`Sync`] version of `LazyCell<T, F>` is [`LazyLock<T, F>`].
99//!
100//! # When to choose interior mutability
101//!
102//! The more common inherited mutability, where one must have unique access to mutate a value, is
103//! one of the key language elements that enables Rust to reason strongly about pointer aliasing,
104//! statically preventing crash bugs. Because of that, inherited mutability is preferred, and
105//! interior mutability is something of a last resort. Since cell types enable mutation where it
106//! would otherwise be disallowed though, there are occasions when interior mutability might be
107//! appropriate, or even *must* be used, e.g.
108//!
109//! * Introducing mutability 'inside' of something immutable
110//! * Implementation details of logically-immutable methods.
111//! * Mutating implementations of [`Clone`].
112//!
113//! ## Introducing mutability 'inside' of something immutable
114//!
115//! Many shared smart pointer types, including [`Rc<T>`] and [`Arc<T>`], provide containers that can
116//! be cloned and shared between multiple parties. Because the contained values may be
117//! multiply-aliased, they can only be borrowed with `&`, not `&mut`. Without cells it would be
118//! impossible to mutate data inside of these smart pointers at all.
119//!
120//! It's very common then to put a `RefCell<T>` inside shared pointer types to reintroduce
121//! mutability:
122//!
123//! ```
124//! use std::cell::{RefCell, RefMut};
125//! use std::collections::HashMap;
126//! use std::rc::Rc;
127//!
128//! fn main() {
129//!     let shared_map: Rc<RefCell<_>> = Rc::new(RefCell::new(HashMap::new()));
130//!     // Create a new block to limit the scope of the dynamic borrow
131//!     {
132//!         let mut map: RefMut<'_, _> = shared_map.borrow_mut();
133//!         map.insert("africa", 92388);
134//!         map.insert("kyoto", 11837);
135//!         map.insert("piccadilly", 11826);
136//!         map.insert("marbles", 38);
137//!     }
138//!
139//!     // Note that if we had not let the previous borrow of the cache fall out
140//!     // of scope then the subsequent borrow would cause a dynamic thread panic.
141//!     // This is the major hazard of using `RefCell`.
142//!     let total: i32 = shared_map.borrow().values().sum();
143//!     println!("{total}");
144//! }
145//! ```
146//!
147//! Note that this example uses `Rc<T>` and not `Arc<T>`. `RefCell<T>`s are for single-threaded
148//! scenarios. Consider using [`RwLock<T>`] or [`Mutex<T>`] if you need shared mutability in a
149//! multi-threaded situation.
150//!
151//! ## Implementation details of logically-immutable methods
152//!
153//! Occasionally it may be desirable not to expose in an API that there is mutation happening
154//! "under the hood". This may be because logically the operation is immutable, but e.g., caching
155//! forces the implementation to perform mutation; or because you must employ mutation to implement
156//! a trait method that was originally defined to take `&self`.
157//!
158//! ```
159//! # #![allow(dead_code)]
160//! use std::cell::OnceCell;
161//!
162//! struct Graph {
163//!     edges: Vec<(i32, i32)>,
164//!     span_tree_cache: OnceCell<Vec<(i32, i32)>>
165//! }
166//!
167//! impl Graph {
168//!     fn minimum_spanning_tree(&self) -> Vec<(i32, i32)> {
169//!         self.span_tree_cache
170//!             .get_or_init(|| self.calc_span_tree())
171//!             .clone()
172//!     }
173//!
174//!     fn calc_span_tree(&self) -> Vec<(i32, i32)> {
175//!         // Expensive computation goes here
176//!         vec![]
177//!     }
178//! }
179//! ```
180//!
181//! ## Mutating implementations of `Clone`
182//!
183//! This is simply a special - but common - case of the previous: hiding mutability for operations
184//! that appear to be immutable. The [`clone`](Clone::clone) method is expected to not change the
185//! source value, and is declared to take `&self`, not `&mut self`. Therefore, any mutation that
186//! happens in the `clone` method must use cell types. For example, [`Rc<T>`] maintains its
187//! reference counts within a `Cell<T>`.
188//!
189//! ```
190//! use std::cell::Cell;
191//! use std::ptr::NonNull;
192//! use std::process::abort;
193//! use std::marker::PhantomData;
194//!
195//! struct Rc<T: ?Sized> {
196//!     ptr: NonNull<RcInner<T>>,
197//!     phantom: PhantomData<RcInner<T>>,
198//! }
199//!
200//! struct RcInner<T: ?Sized> {
201//!     strong: Cell<usize>,
202//!     refcount: Cell<usize>,
203//!     value: T,
204//! }
205//!
206//! impl<T: ?Sized> Clone for Rc<T> {
207//!     fn clone(&self) -> Rc<T> {
208//!         self.inc_strong();
209//!         Rc {
210//!             ptr: self.ptr,
211//!             phantom: PhantomData,
212//!         }
213//!     }
214//! }
215//!
216//! trait RcInnerPtr<T: ?Sized> {
217//!
218//!     fn inner(&self) -> &RcInner<T>;
219//!
220//!     fn strong(&self) -> usize {
221//!         self.inner().strong.get()
222//!     }
223//!
224//!     fn inc_strong(&self) {
225//!         self.inner()
226//!             .strong
227//!             .set(self.strong()
228//!                      .checked_add(1)
229//!                      .unwrap_or_else(|| abort() ));
230//!     }
231//! }
232//!
233//! impl<T: ?Sized> RcInnerPtr<T> for Rc<T> {
234//!    fn inner(&self) -> &RcInner<T> {
235//!        unsafe {
236//!            self.ptr.as_ref()
237//!        }
238//!    }
239//! }
240//! ```
241//!
242//! [`Arc<T>`]: ../../std/sync/struct.Arc.html
243//! [`Rc<T>`]: ../../std/rc/struct.Rc.html
244//! [`RwLock<T>`]: ../../std/sync/struct.RwLock.html
245//! [`Mutex<T>`]: ../../std/sync/struct.Mutex.html
246//! [`OnceLock<T>`]: ../../std/sync/struct.OnceLock.html
247//! [`LazyLock<T, F>`]: ../../std/sync/struct.LazyLock.html
248//! [`Sync`]: ../../std/marker/trait.Sync.html
249//! [`atomic`]: crate::sync::atomic
250
251#![stable(feature = "rust1", since = "1.0.0")]
252
253#[cfg(not(feature = "ferrocene_certified"))]
254use crate::cmp::Ordering;
255#[cfg(not(feature = "ferrocene_certified"))]
256use crate::fmt::{self, Debug, Display};
257#[cfg(not(feature = "ferrocene_certified"))]
258use crate::marker::{Destruct, PhantomData, Unsize};
259#[cfg(not(feature = "ferrocene_certified"))]
260use crate::mem::{self, ManuallyDrop};
261#[cfg(not(feature = "ferrocene_certified"))]
262use crate::ops::{self, CoerceUnsized, Deref, DerefMut, DerefPure, DispatchFromDyn};
263#[cfg(not(feature = "ferrocene_certified"))]
264use crate::panic::const_panic;
265#[cfg(not(feature = "ferrocene_certified"))]
266use crate::pin::PinCoerceUnsized;
267#[cfg(not(feature = "ferrocene_certified"))]
268use crate::ptr::{self, NonNull};
269#[cfg(not(feature = "ferrocene_certified"))]
270use crate::range;
271
272#[cfg(not(feature = "ferrocene_certified"))]
273mod lazy;
274#[cfg(not(feature = "ferrocene_certified"))]
275mod once;
276
277#[stable(feature = "lazy_cell", since = "1.80.0")]
278#[cfg(not(feature = "ferrocene_certified"))]
279pub use lazy::LazyCell;
280#[stable(feature = "once_cell", since = "1.70.0")]
281#[cfg(not(feature = "ferrocene_certified"))]
282pub use once::OnceCell;
283
284/// A mutable memory location.
285///
286/// # Memory layout
287///
288/// `Cell<T>` has the same [memory layout and caveats as
289/// `UnsafeCell<T>`](UnsafeCell#memory-layout). In particular, this means that
290/// `Cell<T>` has the same in-memory representation as its inner type `T`.
291///
292/// # Examples
293///
294/// In this example, you can see that `Cell<T>` enables mutation inside an
295/// immutable struct. In other words, it enables "interior mutability".
296///
297/// ```
298/// use std::cell::Cell;
299///
300/// struct SomeStruct {
301///     regular_field: u8,
302///     special_field: Cell<u8>,
303/// }
304///
305/// let my_struct = SomeStruct {
306///     regular_field: 0,
307///     special_field: Cell::new(1),
308/// };
309///
310/// let new_value = 100;
311///
312/// // ERROR: `my_struct` is immutable
313/// // my_struct.regular_field = new_value;
314///
315/// // WORKS: although `my_struct` is immutable, `special_field` is a `Cell`,
316/// // which can always be mutated
317/// my_struct.special_field.set(new_value);
318/// assert_eq!(my_struct.special_field.get(), new_value);
319/// ```
320///
321/// See the [module-level documentation](self) for more.
322#[rustc_diagnostic_item = "Cell"]
323#[stable(feature = "rust1", since = "1.0.0")]
324#[repr(transparent)]
325#[rustc_pub_transparent]
326#[cfg(not(feature = "ferrocene_certified"))]
327pub struct Cell<T: ?Sized> {
328    value: UnsafeCell<T>,
329}
330
331#[stable(feature = "rust1", since = "1.0.0")]
332#[cfg(not(feature = "ferrocene_certified"))]
333unsafe impl<T: ?Sized> Send for Cell<T> where T: Send {}
334
335// Note that this negative impl isn't strictly necessary for correctness,
336// as `Cell` wraps `UnsafeCell`, which is itself `!Sync`.
337// However, given how important `Cell`'s `!Sync`-ness is,
338// having an explicit negative impl is nice for documentation purposes
339// and results in nicer error messages.
340#[stable(feature = "rust1", since = "1.0.0")]
341#[cfg(not(feature = "ferrocene_certified"))]
342impl<T: ?Sized> !Sync for Cell<T> {}
343
344#[stable(feature = "rust1", since = "1.0.0")]
345#[cfg(not(feature = "ferrocene_certified"))]
346impl<T: Copy> Clone for Cell<T> {
347    #[inline]
348    fn clone(&self) -> Cell<T> {
349        Cell::new(self.get())
350    }
351}
352
353#[stable(feature = "rust1", since = "1.0.0")]
354#[rustc_const_unstable(feature = "const_default", issue = "143894")]
355#[cfg(not(feature = "ferrocene_certified"))]
356impl<T: [const] Default> const Default for Cell<T> {
357    /// Creates a `Cell<T>`, with the `Default` value for T.
358    #[inline]
359    fn default() -> Cell<T> {
360        Cell::new(Default::default())
361    }
362}
363
364#[stable(feature = "rust1", since = "1.0.0")]
365#[cfg(not(feature = "ferrocene_certified"))]
366impl<T: PartialEq + Copy> PartialEq for Cell<T> {
367    #[inline]
368    fn eq(&self, other: &Cell<T>) -> bool {
369        self.get() == other.get()
370    }
371}
372
373#[stable(feature = "cell_eq", since = "1.2.0")]
374#[cfg(not(feature = "ferrocene_certified"))]
375impl<T: Eq + Copy> Eq for Cell<T> {}
376
377#[stable(feature = "cell_ord", since = "1.10.0")]
378#[cfg(not(feature = "ferrocene_certified"))]
379impl<T: PartialOrd + Copy> PartialOrd for Cell<T> {
380    #[inline]
381    fn partial_cmp(&self, other: &Cell<T>) -> Option<Ordering> {
382        self.get().partial_cmp(&other.get())
383    }
384
385    #[inline]
386    fn lt(&self, other: &Cell<T>) -> bool {
387        self.get() < other.get()
388    }
389
390    #[inline]
391    fn le(&self, other: &Cell<T>) -> bool {
392        self.get() <= other.get()
393    }
394
395    #[inline]
396    fn gt(&self, other: &Cell<T>) -> bool {
397        self.get() > other.get()
398    }
399
400    #[inline]
401    fn ge(&self, other: &Cell<T>) -> bool {
402        self.get() >= other.get()
403    }
404}
405
406#[stable(feature = "cell_ord", since = "1.10.0")]
407#[cfg(not(feature = "ferrocene_certified"))]
408impl<T: Ord + Copy> Ord for Cell<T> {
409    #[inline]
410    fn cmp(&self, other: &Cell<T>) -> Ordering {
411        self.get().cmp(&other.get())
412    }
413}
414
415#[stable(feature = "cell_from", since = "1.12.0")]
416#[rustc_const_unstable(feature = "const_convert", issue = "143773")]
417#[cfg(not(feature = "ferrocene_certified"))]
418impl<T> const From<T> for Cell<T> {
419    /// Creates a new `Cell<T>` containing the given value.
420    fn from(t: T) -> Cell<T> {
421        Cell::new(t)
422    }
423}
424
425#[cfg(not(feature = "ferrocene_certified"))]
426impl<T> Cell<T> {
427    /// Creates a new `Cell` containing the given value.
428    ///
429    /// # Examples
430    ///
431    /// ```
432    /// use std::cell::Cell;
433    ///
434    /// let c = Cell::new(5);
435    /// ```
436    #[stable(feature = "rust1", since = "1.0.0")]
437    #[rustc_const_stable(feature = "const_cell_new", since = "1.24.0")]
438    #[inline]
439    pub const fn new(value: T) -> Cell<T> {
440        Cell { value: UnsafeCell::new(value) }
441    }
442
443    /// Sets the contained value.
444    ///
445    /// # Examples
446    ///
447    /// ```
448    /// use std::cell::Cell;
449    ///
450    /// let c = Cell::new(5);
451    ///
452    /// c.set(10);
453    /// ```
454    #[inline]
455    #[stable(feature = "rust1", since = "1.0.0")]
456    #[rustc_const_unstable(feature = "const_cell_traits", issue = "147787")]
457    pub const fn set(&self, val: T)
458    where
459        T: [const] Destruct,
460    {
461        self.replace(val);
462    }
463
464    /// Swaps the values of two `Cell`s.
465    ///
466    /// The difference with `std::mem::swap` is that this function doesn't
467    /// require a `&mut` reference.
468    ///
469    /// # Panics
470    ///
471    /// This function will panic if `self` and `other` are different `Cell`s that partially overlap.
472    /// (Using just standard library methods, it is impossible to create such partially overlapping `Cell`s.
473    /// However, unsafe code is allowed to e.g. create two `&Cell<[i32; 2]>` that partially overlap.)
474    ///
475    /// # Examples
476    ///
477    /// ```
478    /// use std::cell::Cell;
479    ///
480    /// let c1 = Cell::new(5i32);
481    /// let c2 = Cell::new(10i32);
482    /// c1.swap(&c2);
483    /// assert_eq!(10, c1.get());
484    /// assert_eq!(5, c2.get());
485    /// ```
486    #[inline]
487    #[stable(feature = "move_cell", since = "1.17.0")]
488    pub fn swap(&self, other: &Self) {
489        // This function documents that it *will* panic, and intrinsics::is_nonoverlapping doesn't
490        // do the check in const, so trying to use it here would be inviting unnecessary fragility.
491        fn is_nonoverlapping<T>(src: *const T, dst: *const T) -> bool {
492            let src_usize = src.addr();
493            let dst_usize = dst.addr();
494            let diff = src_usize.abs_diff(dst_usize);
495            diff >= size_of::<T>()
496        }
497
498        if ptr::eq(self, other) {
499            // Swapping wouldn't change anything.
500            return;
501        }
502        if !is_nonoverlapping(self, other) {
503            // See <https://github.com/rust-lang/rust/issues/80778> for why we need to stop here.
504            panic!("`Cell::swap` on overlapping non-identical `Cell`s");
505        }
506        // SAFETY: This can be risky if called from separate threads, but `Cell`
507        // is `!Sync` so this won't happen. This also won't invalidate any
508        // pointers since `Cell` makes sure nothing else will be pointing into
509        // either of these `Cell`s. We also excluded shenanigans like partially overlapping `Cell`s,
510        // so `swap` will just properly copy two full values of type `T` back and forth.
511        unsafe {
512            mem::swap(&mut *self.value.get(), &mut *other.value.get());
513        }
514    }
515
516    /// Replaces the contained value with `val`, and returns the old contained value.
517    ///
518    /// # Examples
519    ///
520    /// ```
521    /// use std::cell::Cell;
522    ///
523    /// let cell = Cell::new(5);
524    /// assert_eq!(cell.get(), 5);
525    /// assert_eq!(cell.replace(10), 5);
526    /// assert_eq!(cell.get(), 10);
527    /// ```
528    #[inline]
529    #[stable(feature = "move_cell", since = "1.17.0")]
530    #[rustc_const_stable(feature = "const_cell", since = "1.88.0")]
531    #[rustc_confusables("swap")]
532    pub const fn replace(&self, val: T) -> T {
533        // SAFETY: This can cause data races if called from a separate thread,
534        // but `Cell` is `!Sync` so this won't happen.
535        mem::replace(unsafe { &mut *self.value.get() }, val)
536    }
537
538    /// Unwraps the value, consuming the cell.
539    ///
540    /// # Examples
541    ///
542    /// ```
543    /// use std::cell::Cell;
544    ///
545    /// let c = Cell::new(5);
546    /// let five = c.into_inner();
547    ///
548    /// assert_eq!(five, 5);
549    /// ```
550    #[stable(feature = "move_cell", since = "1.17.0")]
551    #[rustc_const_stable(feature = "const_cell_into_inner", since = "1.83.0")]
552    #[rustc_allow_const_fn_unstable(const_precise_live_drops)]
553    pub const fn into_inner(self) -> T {
554        self.value.into_inner()
555    }
556}
557
558#[cfg(not(feature = "ferrocene_certified"))]
559impl<T: Copy> Cell<T> {
560    /// Returns a copy of the contained value.
561    ///
562    /// # Examples
563    ///
564    /// ```
565    /// use std::cell::Cell;
566    ///
567    /// let c = Cell::new(5);
568    ///
569    /// let five = c.get();
570    /// ```
571    #[inline]
572    #[stable(feature = "rust1", since = "1.0.0")]
573    #[rustc_const_stable(feature = "const_cell", since = "1.88.0")]
574    pub const fn get(&self) -> T {
575        // SAFETY: This can cause data races if called from a separate thread,
576        // but `Cell` is `!Sync` so this won't happen.
577        unsafe { *self.value.get() }
578    }
579
580    /// Updates the contained value using a function.
581    ///
582    /// # Examples
583    ///
584    /// ```
585    /// use std::cell::Cell;
586    ///
587    /// let c = Cell::new(5);
588    /// c.update(|x| x + 1);
589    /// assert_eq!(c.get(), 6);
590    /// ```
591    #[inline]
592    #[stable(feature = "cell_update", since = "1.88.0")]
593    #[rustc_const_unstable(feature = "const_cell_traits", issue = "147787")]
594    pub const fn update(&self, f: impl [const] FnOnce(T) -> T)
595    where
596        // FIXME(const-hack): `Copy` should imply `const Destruct`
597        T: [const] Destruct,
598    {
599        let old = self.get();
600        self.set(f(old));
601    }
602}
603
604#[cfg(not(feature = "ferrocene_certified"))]
605impl<T: ?Sized> Cell<T> {
606    /// Returns a raw pointer to the underlying data in this cell.
607    ///
608    /// # Examples
609    ///
610    /// ```
611    /// use std::cell::Cell;
612    ///
613    /// let c = Cell::new(5);
614    ///
615    /// let ptr = c.as_ptr();
616    /// ```
617    #[inline]
618    #[stable(feature = "cell_as_ptr", since = "1.12.0")]
619    #[rustc_const_stable(feature = "const_cell_as_ptr", since = "1.32.0")]
620    #[rustc_as_ptr]
621    #[rustc_never_returns_null_ptr]
622    pub const fn as_ptr(&self) -> *mut T {
623        self.value.get()
624    }
625
626    /// Returns a mutable reference to the underlying data.
627    ///
628    /// This call borrows `Cell` mutably (at compile-time) which guarantees
629    /// that we possess the only reference.
630    ///
631    /// However be cautious: this method expects `self` to be mutable, which is
632    /// generally not the case when using a `Cell`. If you require interior
633    /// mutability by reference, consider using `RefCell` which provides
634    /// run-time checked mutable borrows through its [`borrow_mut`] method.
635    ///
636    /// [`borrow_mut`]: RefCell::borrow_mut()
637    ///
638    /// # Examples
639    ///
640    /// ```
641    /// use std::cell::Cell;
642    ///
643    /// let mut c = Cell::new(5);
644    /// *c.get_mut() += 1;
645    ///
646    /// assert_eq!(c.get(), 6);
647    /// ```
648    #[inline]
649    #[stable(feature = "cell_get_mut", since = "1.11.0")]
650    #[rustc_const_stable(feature = "const_cell", since = "1.88.0")]
651    pub const fn get_mut(&mut self) -> &mut T {
652        self.value.get_mut()
653    }
654
655    /// Returns a `&Cell<T>` from a `&mut T`
656    ///
657    /// # Examples
658    ///
659    /// ```
660    /// use std::cell::Cell;
661    ///
662    /// let slice: &mut [i32] = &mut [1, 2, 3];
663    /// let cell_slice: &Cell<[i32]> = Cell::from_mut(slice);
664    /// let slice_cell: &[Cell<i32>] = cell_slice.as_slice_of_cells();
665    ///
666    /// assert_eq!(slice_cell.len(), 3);
667    /// ```
668    #[inline]
669    #[stable(feature = "as_cell", since = "1.37.0")]
670    #[rustc_const_stable(feature = "const_cell", since = "1.88.0")]
671    pub const fn from_mut(t: &mut T) -> &Cell<T> {
672        // SAFETY: `&mut` ensures unique access.
673        unsafe { &*(t as *mut T as *const Cell<T>) }
674    }
675}
676
677#[cfg(not(feature = "ferrocene_certified"))]
678impl<T: Default> Cell<T> {
679    /// Takes the value of the cell, leaving `Default::default()` in its place.
680    ///
681    /// # Examples
682    ///
683    /// ```
684    /// use std::cell::Cell;
685    ///
686    /// let c = Cell::new(5);
687    /// let five = c.take();
688    ///
689    /// assert_eq!(five, 5);
690    /// assert_eq!(c.into_inner(), 0);
691    /// ```
692    #[stable(feature = "move_cell", since = "1.17.0")]
693    #[rustc_const_unstable(feature = "const_cell_traits", issue = "147787")]
694    pub const fn take(&self) -> T
695    where
696        T: [const] Default,
697    {
698        self.replace(Default::default())
699    }
700}
701
702#[unstable(feature = "coerce_unsized", issue = "18598")]
703#[cfg(not(feature = "ferrocene_certified"))]
704impl<T: CoerceUnsized<U>, U> CoerceUnsized<Cell<U>> for Cell<T> {}
705
706// Allow types that wrap `Cell` to also implement `DispatchFromDyn`
707// and become dyn-compatible method receivers.
708// Note that currently `Cell` itself cannot be a method receiver
709// because it does not implement Deref.
710// In other words:
711// `self: Cell<&Self>` won't work
712// `self: CellWrapper<Self>` becomes possible
713#[unstable(feature = "dispatch_from_dyn", issue = "none")]
714#[cfg(not(feature = "ferrocene_certified"))]
715impl<T: DispatchFromDyn<U>, U> DispatchFromDyn<Cell<U>> for Cell<T> {}
716
717#[cfg(not(feature = "ferrocene_certified"))]
718impl<T> Cell<[T]> {
719    /// Returns a `&[Cell<T>]` from a `&Cell<[T]>`
720    ///
721    /// # Examples
722    ///
723    /// ```
724    /// use std::cell::Cell;
725    ///
726    /// let slice: &mut [i32] = &mut [1, 2, 3];
727    /// let cell_slice: &Cell<[i32]> = Cell::from_mut(slice);
728    /// let slice_cell: &[Cell<i32>] = cell_slice.as_slice_of_cells();
729    ///
730    /// assert_eq!(slice_cell.len(), 3);
731    /// ```
732    #[stable(feature = "as_cell", since = "1.37.0")]
733    #[rustc_const_stable(feature = "const_cell", since = "1.88.0")]
734    pub const fn as_slice_of_cells(&self) -> &[Cell<T>] {
735        // SAFETY: `Cell<T>` has the same memory layout as `T`.
736        unsafe { &*(self as *const Cell<[T]> as *const [Cell<T>]) }
737    }
738}
739
740#[cfg(not(feature = "ferrocene_certified"))]
741impl<T, const N: usize> Cell<[T; N]> {
742    /// Returns a `&[Cell<T>; N]` from a `&Cell<[T; N]>`
743    ///
744    /// # Examples
745    ///
746    /// ```
747    /// use std::cell::Cell;
748    ///
749    /// let mut array: [i32; 3] = [1, 2, 3];
750    /// let cell_array: &Cell<[i32; 3]> = Cell::from_mut(&mut array);
751    /// let array_cell: &[Cell<i32>; 3] = cell_array.as_array_of_cells();
752    /// ```
753    #[stable(feature = "as_array_of_cells", since = "1.91.0")]
754    #[rustc_const_stable(feature = "as_array_of_cells", since = "1.91.0")]
755    pub const fn as_array_of_cells(&self) -> &[Cell<T>; N] {
756        // SAFETY: `Cell<T>` has the same memory layout as `T`.
757        unsafe { &*(self as *const Cell<[T; N]> as *const [Cell<T>; N]) }
758    }
759}
760
761/// Types for which cloning `Cell<Self>` is sound.
762///
763/// # Safety
764///
765/// Implementing this trait for a type is sound if and only if the following code is sound for T =
766/// that type.
767///
768/// ```
769/// #![feature(cell_get_cloned)]
770/// # use std::cell::{CloneFromCell, Cell};
771/// fn clone_from_cell<T: CloneFromCell>(cell: &Cell<T>) -> T {
772///     unsafe { T::clone(&*cell.as_ptr()) }
773/// }
774/// ```
775///
776/// Importantly, you can't just implement `CloneFromCell` for any arbitrary `Copy` type, e.g. the
777/// following is unsound:
778///
779/// ```rust
780/// #![feature(cell_get_cloned)]
781/// # use std::cell::Cell;
782///
783/// #[derive(Copy, Debug)]
784/// pub struct Bad<'a>(Option<&'a Cell<Bad<'a>>>, u8);
785///
786/// impl Clone for Bad<'_> {
787///     fn clone(&self) -> Self {
788///         let a: &u8 = &self.1;
789///         // when self.0 points to self, we write to self.1 while we have a live `&u8` pointing to
790///         // it -- this is UB
791///         self.0.unwrap().set(Self(None, 1));
792///         dbg!((a, self));
793///         Self(None, 0)
794///     }
795/// }
796///
797/// // this is not sound
798/// // unsafe impl CloneFromCell for Bad<'_> {}
799/// ```
800#[unstable(feature = "cell_get_cloned", issue = "145329")]
801// Allow potential overlapping implementations in user code
802#[marker]
803#[cfg(not(feature = "ferrocene_certified"))]
804pub unsafe trait CloneFromCell: Clone {}
805
806// `CloneFromCell` can be implemented for types that don't have indirection and which don't access
807// `Cell`s in their `Clone` implementation. A commonly-used subset is covered here.
808#[unstable(feature = "cell_get_cloned", issue = "145329")]
809#[cfg(not(feature = "ferrocene_certified"))]
810unsafe impl<T: CloneFromCell, const N: usize> CloneFromCell for [T; N] {}
811#[unstable(feature = "cell_get_cloned", issue = "145329")]
812#[cfg(not(feature = "ferrocene_certified"))]
813unsafe impl<T: CloneFromCell> CloneFromCell for Option<T> {}
814#[unstable(feature = "cell_get_cloned", issue = "145329")]
815#[cfg(not(feature = "ferrocene_certified"))]
816unsafe impl<T: CloneFromCell, E: CloneFromCell> CloneFromCell for Result<T, E> {}
817#[unstable(feature = "cell_get_cloned", issue = "145329")]
818#[cfg(not(feature = "ferrocene_certified"))]
819unsafe impl<T: ?Sized> CloneFromCell for PhantomData<T> {}
820#[unstable(feature = "cell_get_cloned", issue = "145329")]
821#[cfg(not(feature = "ferrocene_certified"))]
822unsafe impl<T: CloneFromCell> CloneFromCell for ManuallyDrop<T> {}
823#[unstable(feature = "cell_get_cloned", issue = "145329")]
824#[cfg(not(feature = "ferrocene_certified"))]
825unsafe impl<T: CloneFromCell> CloneFromCell for ops::Range<T> {}
826#[unstable(feature = "cell_get_cloned", issue = "145329")]
827#[cfg(not(feature = "ferrocene_certified"))]
828unsafe impl<T: CloneFromCell> CloneFromCell for range::Range<T> {}
829
830#[unstable(feature = "cell_get_cloned", issue = "145329")]
831#[cfg(not(feature = "ferrocene_certified"))]
832impl<T: CloneFromCell> Cell<T> {
833    /// Get a clone of the `Cell` that contains a copy of the original value.
834    ///
835    /// This allows a cheaply `Clone`-able type like an `Rc` to be stored in a `Cell`, exposing the
836    /// cheaper `clone()` method.
837    ///
838    /// # Examples
839    ///
840    /// ```
841    /// #![feature(cell_get_cloned)]
842    ///
843    /// use core::cell::Cell;
844    /// use std::rc::Rc;
845    ///
846    /// let rc = Rc::new(1usize);
847    /// let c1 = Cell::new(rc);
848    /// let c2 = c1.get_cloned();
849    /// assert_eq!(*c2.into_inner(), 1);
850    /// ```
851    pub fn get_cloned(&self) -> Self {
852        // SAFETY: T is CloneFromCell, which guarantees that this is sound.
853        Cell::new(T::clone(unsafe { &*self.as_ptr() }))
854    }
855}
856
857/// A mutable memory location with dynamically checked borrow rules
858///
859/// See the [module-level documentation](self) for more.
860#[rustc_diagnostic_item = "RefCell"]
861#[stable(feature = "rust1", since = "1.0.0")]
862#[cfg(not(feature = "ferrocene_certified"))]
863pub struct RefCell<T: ?Sized> {
864    borrow: Cell<BorrowCounter>,
865    // Stores the location of the earliest currently active borrow.
866    // This gets updated whenever we go from having zero borrows
867    // to having a single borrow. When a borrow occurs, this gets included
868    // in the generated `BorrowError`/`BorrowMutError`
869    #[cfg(feature = "debug_refcell")]
870    borrowed_at: Cell<Option<&'static crate::panic::Location<'static>>>,
871    value: UnsafeCell<T>,
872}
873
874/// An error returned by [`RefCell::try_borrow`].
875#[stable(feature = "try_borrow", since = "1.13.0")]
876#[non_exhaustive]
877#[derive(Debug)]
878#[cfg(not(feature = "ferrocene_certified"))]
879pub struct BorrowError {
880    #[cfg(feature = "debug_refcell")]
881    location: &'static crate::panic::Location<'static>,
882}
883
884#[stable(feature = "try_borrow", since = "1.13.0")]
885#[cfg(not(feature = "ferrocene_certified"))]
886impl Display for BorrowError {
887    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
888        #[cfg(feature = "debug_refcell")]
889        let res = write!(
890            f,
891            "RefCell already mutably borrowed; a previous borrow was at {}",
892            self.location
893        );
894
895        #[cfg(not(feature = "debug_refcell"))]
896        let res = Display::fmt("RefCell already mutably borrowed", f);
897
898        res
899    }
900}
901
902/// An error returned by [`RefCell::try_borrow_mut`].
903#[stable(feature = "try_borrow", since = "1.13.0")]
904#[non_exhaustive]
905#[derive(Debug)]
906#[cfg(not(feature = "ferrocene_certified"))]
907pub struct BorrowMutError {
908    #[cfg(feature = "debug_refcell")]
909    location: &'static crate::panic::Location<'static>,
910}
911
912#[stable(feature = "try_borrow", since = "1.13.0")]
913#[cfg(not(feature = "ferrocene_certified"))]
914impl Display for BorrowMutError {
915    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
916        #[cfg(feature = "debug_refcell")]
917        let res = write!(f, "RefCell already borrowed; a previous borrow was at {}", self.location);
918
919        #[cfg(not(feature = "debug_refcell"))]
920        let res = Display::fmt("RefCell already borrowed", f);
921
922        res
923    }
924}
925
926// This ensures the panicking code is outlined from `borrow_mut` for `RefCell`.
927#[cfg_attr(not(panic = "immediate-abort"), inline(never))]
928#[track_caller]
929#[cold]
930#[cfg(not(feature = "ferrocene_certified"))]
931const fn panic_already_borrowed(err: BorrowMutError) -> ! {
932    const_panic!(
933        "RefCell already borrowed",
934        "{err}",
935        err: BorrowMutError = err,
936    )
937}
938
939// This ensures the panicking code is outlined from `borrow` for `RefCell`.
940#[cfg_attr(not(panic = "immediate-abort"), inline(never))]
941#[track_caller]
942#[cold]
943#[cfg(not(feature = "ferrocene_certified"))]
944const fn panic_already_mutably_borrowed(err: BorrowError) -> ! {
945    const_panic!(
946        "RefCell already mutably borrowed",
947        "{err}",
948        err: BorrowError = err,
949    )
950}
951
952// Positive values represent the number of `Ref` active. Negative values
953// represent the number of `RefMut` active. Multiple `RefMut`s can only be
954// active at a time if they refer to distinct, nonoverlapping components of a
955// `RefCell` (e.g., different ranges of a slice).
956//
957// `Ref` and `RefMut` are both two words in size, and so there will likely never
958// be enough `Ref`s or `RefMut`s in existence to overflow half of the `usize`
959// range. Thus, a `BorrowCounter` will probably never overflow or underflow.
960// However, this is not a guarantee, as a pathological program could repeatedly
961// create and then mem::forget `Ref`s or `RefMut`s. Thus, all code must
962// explicitly check for overflow and underflow in order to avoid unsafety, or at
963// least behave correctly in the event that overflow or underflow happens (e.g.,
964// see BorrowRef::new).
965#[cfg(not(feature = "ferrocene_certified"))]
966type BorrowCounter = isize;
967#[cfg(not(feature = "ferrocene_certified"))]
968const UNUSED: BorrowCounter = 0;
969
970#[inline(always)]
971#[cfg(not(feature = "ferrocene_certified"))]
972const fn is_writing(x: BorrowCounter) -> bool {
973    x < UNUSED
974}
975
976#[inline(always)]
977#[cfg(not(feature = "ferrocene_certified"))]
978const fn is_reading(x: BorrowCounter) -> bool {
979    x > UNUSED
980}
981
982#[cfg(not(feature = "ferrocene_certified"))]
983impl<T> RefCell<T> {
984    /// Creates a new `RefCell` containing `value`.
985    ///
986    /// # Examples
987    ///
988    /// ```
989    /// use std::cell::RefCell;
990    ///
991    /// let c = RefCell::new(5);
992    /// ```
993    #[stable(feature = "rust1", since = "1.0.0")]
994    #[rustc_const_stable(feature = "const_refcell_new", since = "1.24.0")]
995    #[inline]
996    pub const fn new(value: T) -> RefCell<T> {
997        RefCell {
998            value: UnsafeCell::new(value),
999            borrow: Cell::new(UNUSED),
1000            #[cfg(feature = "debug_refcell")]
1001            borrowed_at: Cell::new(None),
1002        }
1003    }
1004
1005    /// Consumes the `RefCell`, returning the wrapped value.
1006    ///
1007    /// # Examples
1008    ///
1009    /// ```
1010    /// use std::cell::RefCell;
1011    ///
1012    /// let c = RefCell::new(5);
1013    ///
1014    /// let five = c.into_inner();
1015    /// ```
1016    #[stable(feature = "rust1", since = "1.0.0")]
1017    #[rustc_const_stable(feature = "const_cell_into_inner", since = "1.83.0")]
1018    #[rustc_allow_const_fn_unstable(const_precise_live_drops)]
1019    #[inline]
1020    pub const fn into_inner(self) -> T {
1021        // Since this function takes `self` (the `RefCell`) by value, the
1022        // compiler statically verifies that it is not currently borrowed.
1023        self.value.into_inner()
1024    }
1025
1026    /// Replaces the wrapped value with a new one, returning the old value,
1027    /// without deinitializing either one.
1028    ///
1029    /// This function corresponds to [`std::mem::replace`](../mem/fn.replace.html).
1030    ///
1031    /// # Panics
1032    ///
1033    /// Panics if the value is currently borrowed.
1034    ///
1035    /// # Examples
1036    ///
1037    /// ```
1038    /// use std::cell::RefCell;
1039    /// let cell = RefCell::new(5);
1040    /// let old_value = cell.replace(6);
1041    /// assert_eq!(old_value, 5);
1042    /// assert_eq!(cell, RefCell::new(6));
1043    /// ```
1044    #[inline]
1045    #[stable(feature = "refcell_replace", since = "1.24.0")]
1046    #[track_caller]
1047    #[rustc_confusables("swap")]
1048    #[rustc_const_unstable(feature = "const_ref_cell", issue = "137844")]
1049    pub const fn replace(&self, t: T) -> T {
1050        mem::replace(&mut self.borrow_mut(), t)
1051    }
1052
1053    /// Replaces the wrapped value with a new one computed from `f`, returning
1054    /// the old value, without deinitializing either one.
1055    ///
1056    /// # Panics
1057    ///
1058    /// Panics if the value is currently borrowed.
1059    ///
1060    /// # Examples
1061    ///
1062    /// ```
1063    /// use std::cell::RefCell;
1064    /// let cell = RefCell::new(5);
1065    /// let old_value = cell.replace_with(|&mut old| old + 1);
1066    /// assert_eq!(old_value, 5);
1067    /// assert_eq!(cell, RefCell::new(6));
1068    /// ```
1069    #[inline]
1070    #[stable(feature = "refcell_replace_swap", since = "1.35.0")]
1071    #[track_caller]
1072    pub fn replace_with<F: FnOnce(&mut T) -> T>(&self, f: F) -> T {
1073        let mut_borrow = &mut *self.borrow_mut();
1074        let replacement = f(mut_borrow);
1075        mem::replace(mut_borrow, replacement)
1076    }
1077
1078    /// Swaps the wrapped value of `self` with the wrapped value of `other`,
1079    /// without deinitializing either one.
1080    ///
1081    /// This function corresponds to [`std::mem::swap`](../mem/fn.swap.html).
1082    ///
1083    /// # Panics
1084    ///
1085    /// Panics if the value in either `RefCell` is currently borrowed, or
1086    /// if `self` and `other` point to the same `RefCell`.
1087    ///
1088    /// # Examples
1089    ///
1090    /// ```
1091    /// use std::cell::RefCell;
1092    /// let c = RefCell::new(5);
1093    /// let d = RefCell::new(6);
1094    /// c.swap(&d);
1095    /// assert_eq!(c, RefCell::new(6));
1096    /// assert_eq!(d, RefCell::new(5));
1097    /// ```
1098    #[inline]
1099    #[stable(feature = "refcell_swap", since = "1.24.0")]
1100    #[rustc_const_unstable(feature = "const_ref_cell", issue = "137844")]
1101    pub const fn swap(&self, other: &Self) {
1102        mem::swap(&mut *self.borrow_mut(), &mut *other.borrow_mut())
1103    }
1104}
1105
1106#[cfg(not(feature = "ferrocene_certified"))]
1107impl<T: ?Sized> RefCell<T> {
1108    /// Immutably borrows the wrapped value.
1109    ///
1110    /// The borrow lasts until the returned `Ref` exits scope. Multiple
1111    /// immutable borrows can be taken out at the same time.
1112    ///
1113    /// # Panics
1114    ///
1115    /// Panics if the value is currently mutably borrowed. For a non-panicking variant, use
1116    /// [`try_borrow`](#method.try_borrow).
1117    ///
1118    /// # Examples
1119    ///
1120    /// ```
1121    /// use std::cell::RefCell;
1122    ///
1123    /// let c = RefCell::new(5);
1124    ///
1125    /// let borrowed_five = c.borrow();
1126    /// let borrowed_five2 = c.borrow();
1127    /// ```
1128    ///
1129    /// An example of panic:
1130    ///
1131    /// ```should_panic
1132    /// use std::cell::RefCell;
1133    ///
1134    /// let c = RefCell::new(5);
1135    ///
1136    /// let m = c.borrow_mut();
1137    /// let b = c.borrow(); // this causes a panic
1138    /// ```
1139    #[stable(feature = "rust1", since = "1.0.0")]
1140    #[inline]
1141    #[track_caller]
1142    #[rustc_const_unstable(feature = "const_ref_cell", issue = "137844")]
1143    pub const fn borrow(&self) -> Ref<'_, T> {
1144        match self.try_borrow() {
1145            Ok(b) => b,
1146            Err(err) => panic_already_mutably_borrowed(err),
1147        }
1148    }
1149
1150    /// Immutably borrows the wrapped value, returning an error if the value is currently mutably
1151    /// borrowed.
1152    ///
1153    /// The borrow lasts until the returned `Ref` exits scope. Multiple immutable borrows can be
1154    /// taken out at the same time.
1155    ///
1156    /// This is the non-panicking variant of [`borrow`](#method.borrow).
1157    ///
1158    /// # Examples
1159    ///
1160    /// ```
1161    /// use std::cell::RefCell;
1162    ///
1163    /// let c = RefCell::new(5);
1164    ///
1165    /// {
1166    ///     let m = c.borrow_mut();
1167    ///     assert!(c.try_borrow().is_err());
1168    /// }
1169    ///
1170    /// {
1171    ///     let m = c.borrow();
1172    ///     assert!(c.try_borrow().is_ok());
1173    /// }
1174    /// ```
1175    #[stable(feature = "try_borrow", since = "1.13.0")]
1176    #[inline]
1177    #[cfg_attr(feature = "debug_refcell", track_caller)]
1178    #[rustc_const_unstable(feature = "const_ref_cell", issue = "137844")]
1179    pub const fn try_borrow(&self) -> Result<Ref<'_, T>, BorrowError> {
1180        match BorrowRef::new(&self.borrow) {
1181            Some(b) => {
1182                #[cfg(feature = "debug_refcell")]
1183                {
1184                    // `borrowed_at` is always the *first* active borrow
1185                    if b.borrow.get() == 1 {
1186                        self.borrowed_at.replace(Some(crate::panic::Location::caller()));
1187                    }
1188                }
1189
1190                // SAFETY: `BorrowRef` ensures that there is only immutable access
1191                // to the value while borrowed.
1192                let value = unsafe { NonNull::new_unchecked(self.value.get()) };
1193                Ok(Ref { value, borrow: b })
1194            }
1195            None => Err(BorrowError {
1196                // If a borrow occurred, then we must already have an outstanding borrow,
1197                // so `borrowed_at` will be `Some`
1198                #[cfg(feature = "debug_refcell")]
1199                location: self.borrowed_at.get().unwrap(),
1200            }),
1201        }
1202    }
1203
1204    /// Mutably borrows the wrapped value.
1205    ///
1206    /// The borrow lasts until the returned `RefMut` or all `RefMut`s derived
1207    /// from it exit scope. The value cannot be borrowed while this borrow is
1208    /// active.
1209    ///
1210    /// # Panics
1211    ///
1212    /// Panics if the value is currently borrowed. For a non-panicking variant, use
1213    /// [`try_borrow_mut`](#method.try_borrow_mut).
1214    ///
1215    /// # Examples
1216    ///
1217    /// ```
1218    /// use std::cell::RefCell;
1219    ///
1220    /// let c = RefCell::new("hello".to_owned());
1221    ///
1222    /// *c.borrow_mut() = "bonjour".to_owned();
1223    ///
1224    /// assert_eq!(&*c.borrow(), "bonjour");
1225    /// ```
1226    ///
1227    /// An example of panic:
1228    ///
1229    /// ```should_panic
1230    /// use std::cell::RefCell;
1231    ///
1232    /// let c = RefCell::new(5);
1233    /// let m = c.borrow();
1234    ///
1235    /// let b = c.borrow_mut(); // this causes a panic
1236    /// ```
1237    #[stable(feature = "rust1", since = "1.0.0")]
1238    #[inline]
1239    #[track_caller]
1240    #[rustc_const_unstable(feature = "const_ref_cell", issue = "137844")]
1241    pub const fn borrow_mut(&self) -> RefMut<'_, T> {
1242        match self.try_borrow_mut() {
1243            Ok(b) => b,
1244            Err(err) => panic_already_borrowed(err),
1245        }
1246    }
1247
1248    /// Mutably borrows the wrapped value, returning an error if the value is currently borrowed.
1249    ///
1250    /// The borrow lasts until the returned `RefMut` or all `RefMut`s derived
1251    /// from it exit scope. The value cannot be borrowed while this borrow is
1252    /// active.
1253    ///
1254    /// This is the non-panicking variant of [`borrow_mut`](#method.borrow_mut).
1255    ///
1256    /// # Examples
1257    ///
1258    /// ```
1259    /// use std::cell::RefCell;
1260    ///
1261    /// let c = RefCell::new(5);
1262    ///
1263    /// {
1264    ///     let m = c.borrow();
1265    ///     assert!(c.try_borrow_mut().is_err());
1266    /// }
1267    ///
1268    /// assert!(c.try_borrow_mut().is_ok());
1269    /// ```
1270    #[stable(feature = "try_borrow", since = "1.13.0")]
1271    #[inline]
1272    #[cfg_attr(feature = "debug_refcell", track_caller)]
1273    #[rustc_const_unstable(feature = "const_ref_cell", issue = "137844")]
1274    pub const fn try_borrow_mut(&self) -> Result<RefMut<'_, T>, BorrowMutError> {
1275        match BorrowRefMut::new(&self.borrow) {
1276            Some(b) => {
1277                #[cfg(feature = "debug_refcell")]
1278                {
1279                    self.borrowed_at.replace(Some(crate::panic::Location::caller()));
1280                }
1281
1282                // SAFETY: `BorrowRefMut` guarantees unique access.
1283                let value = unsafe { NonNull::new_unchecked(self.value.get()) };
1284                Ok(RefMut { value, borrow: b, marker: PhantomData })
1285            }
1286            None => Err(BorrowMutError {
1287                // If a borrow occurred, then we must already have an outstanding borrow,
1288                // so `borrowed_at` will be `Some`
1289                #[cfg(feature = "debug_refcell")]
1290                location: self.borrowed_at.get().unwrap(),
1291            }),
1292        }
1293    }
1294
1295    /// Returns a raw pointer to the underlying data in this cell.
1296    ///
1297    /// # Examples
1298    ///
1299    /// ```
1300    /// use std::cell::RefCell;
1301    ///
1302    /// let c = RefCell::new(5);
1303    ///
1304    /// let ptr = c.as_ptr();
1305    /// ```
1306    #[inline]
1307    #[stable(feature = "cell_as_ptr", since = "1.12.0")]
1308    #[rustc_as_ptr]
1309    #[rustc_never_returns_null_ptr]
1310    #[rustc_const_unstable(feature = "const_ref_cell", issue = "137844")]
1311    pub const fn as_ptr(&self) -> *mut T {
1312        self.value.get()
1313    }
1314
1315    /// Returns a mutable reference to the underlying data.
1316    ///
1317    /// Since this method borrows `RefCell` mutably, it is statically guaranteed
1318    /// that no borrows to the underlying data exist. The dynamic checks inherent
1319    /// in [`borrow_mut`] and most other methods of `RefCell` are therefore
1320    /// unnecessary. Note that this method does not reset the borrowing state if borrows were previously leaked
1321    /// (e.g., via [`forget()`] on a [`Ref`] or [`RefMut`]). For that purpose,
1322    /// consider using the unstable [`undo_leak`] method.
1323    ///
1324    /// This method can only be called if `RefCell` can be mutably borrowed,
1325    /// which in general is only the case directly after the `RefCell` has
1326    /// been created. In these situations, skipping the aforementioned dynamic
1327    /// borrowing checks may yield better ergonomics and runtime-performance.
1328    ///
1329    /// In most situations where `RefCell` is used, it can't be borrowed mutably.
1330    /// Use [`borrow_mut`] to get mutable access to the underlying data then.
1331    ///
1332    /// [`borrow_mut`]: RefCell::borrow_mut()
1333    /// [`forget()`]: mem::forget
1334    /// [`undo_leak`]: RefCell::undo_leak()
1335    ///
1336    /// # Examples
1337    ///
1338    /// ```
1339    /// use std::cell::RefCell;
1340    ///
1341    /// let mut c = RefCell::new(5);
1342    /// *c.get_mut() += 1;
1343    ///
1344    /// assert_eq!(c, RefCell::new(6));
1345    /// ```
1346    #[inline]
1347    #[stable(feature = "cell_get_mut", since = "1.11.0")]
1348    #[rustc_const_unstable(feature = "const_ref_cell", issue = "137844")]
1349    pub const fn get_mut(&mut self) -> &mut T {
1350        self.value.get_mut()
1351    }
1352
1353    /// Undo the effect of leaked guards on the borrow state of the `RefCell`.
1354    ///
1355    /// This call is similar to [`get_mut`] but more specialized. It borrows `RefCell` mutably to
1356    /// ensure no borrows exist and then resets the state tracking shared borrows. This is relevant
1357    /// if some `Ref` or `RefMut` borrows have been leaked.
1358    ///
1359    /// [`get_mut`]: RefCell::get_mut()
1360    ///
1361    /// # Examples
1362    ///
1363    /// ```
1364    /// #![feature(cell_leak)]
1365    /// use std::cell::RefCell;
1366    ///
1367    /// let mut c = RefCell::new(0);
1368    /// std::mem::forget(c.borrow_mut());
1369    ///
1370    /// assert!(c.try_borrow().is_err());
1371    /// c.undo_leak();
1372    /// assert!(c.try_borrow().is_ok());
1373    /// ```
1374    #[unstable(feature = "cell_leak", issue = "69099")]
1375    #[rustc_const_unstable(feature = "const_ref_cell", issue = "137844")]
1376    pub const fn undo_leak(&mut self) -> &mut T {
1377        *self.borrow.get_mut() = UNUSED;
1378        self.get_mut()
1379    }
1380
1381    /// Immutably borrows the wrapped value, returning an error if the value is
1382    /// currently mutably borrowed.
1383    ///
1384    /// # Safety
1385    ///
1386    /// Unlike `RefCell::borrow`, this method is unsafe because it does not
1387    /// return a `Ref`, thus leaving the borrow flag untouched. Mutably
1388    /// borrowing the `RefCell` while the reference returned by this method
1389    /// is alive is undefined behavior.
1390    ///
1391    /// # Examples
1392    ///
1393    /// ```
1394    /// use std::cell::RefCell;
1395    ///
1396    /// let c = RefCell::new(5);
1397    ///
1398    /// {
1399    ///     let m = c.borrow_mut();
1400    ///     assert!(unsafe { c.try_borrow_unguarded() }.is_err());
1401    /// }
1402    ///
1403    /// {
1404    ///     let m = c.borrow();
1405    ///     assert!(unsafe { c.try_borrow_unguarded() }.is_ok());
1406    /// }
1407    /// ```
1408    #[stable(feature = "borrow_state", since = "1.37.0")]
1409    #[inline]
1410    #[rustc_const_unstable(feature = "const_ref_cell", issue = "137844")]
1411    pub const unsafe fn try_borrow_unguarded(&self) -> Result<&T, BorrowError> {
1412        if !is_writing(self.borrow.get()) {
1413            // SAFETY: We check that nobody is actively writing now, but it is
1414            // the caller's responsibility to ensure that nobody writes until
1415            // the returned reference is no longer in use.
1416            // Also, `self.value.get()` refers to the value owned by `self`
1417            // and is thus guaranteed to be valid for the lifetime of `self`.
1418            Ok(unsafe { &*self.value.get() })
1419        } else {
1420            Err(BorrowError {
1421                // If a borrow occurred, then we must already have an outstanding borrow,
1422                // so `borrowed_at` will be `Some`
1423                #[cfg(feature = "debug_refcell")]
1424                location: self.borrowed_at.get().unwrap(),
1425            })
1426        }
1427    }
1428}
1429
1430#[cfg(not(feature = "ferrocene_certified"))]
1431impl<T: Default> RefCell<T> {
1432    /// Takes the wrapped value, leaving `Default::default()` in its place.
1433    ///
1434    /// # Panics
1435    ///
1436    /// Panics if the value is currently borrowed.
1437    ///
1438    /// # Examples
1439    ///
1440    /// ```
1441    /// use std::cell::RefCell;
1442    ///
1443    /// let c = RefCell::new(5);
1444    /// let five = c.take();
1445    ///
1446    /// assert_eq!(five, 5);
1447    /// assert_eq!(c.into_inner(), 0);
1448    /// ```
1449    #[stable(feature = "refcell_take", since = "1.50.0")]
1450    pub fn take(&self) -> T {
1451        self.replace(Default::default())
1452    }
1453}
1454
1455#[stable(feature = "rust1", since = "1.0.0")]
1456#[cfg(not(feature = "ferrocene_certified"))]
1457unsafe impl<T: ?Sized> Send for RefCell<T> where T: Send {}
1458
1459#[stable(feature = "rust1", since = "1.0.0")]
1460#[cfg(not(feature = "ferrocene_certified"))]
1461impl<T: ?Sized> !Sync for RefCell<T> {}
1462
1463#[stable(feature = "rust1", since = "1.0.0")]
1464#[cfg(not(feature = "ferrocene_certified"))]
1465impl<T: Clone> Clone for RefCell<T> {
1466    /// # Panics
1467    ///
1468    /// Panics if the value is currently mutably borrowed.
1469    #[inline]
1470    #[track_caller]
1471    fn clone(&self) -> RefCell<T> {
1472        RefCell::new(self.borrow().clone())
1473    }
1474
1475    /// # Panics
1476    ///
1477    /// Panics if `source` is currently mutably borrowed.
1478    #[inline]
1479    #[track_caller]
1480    fn clone_from(&mut self, source: &Self) {
1481        self.get_mut().clone_from(&source.borrow())
1482    }
1483}
1484
1485#[stable(feature = "rust1", since = "1.0.0")]
1486#[rustc_const_unstable(feature = "const_default", issue = "143894")]
1487#[cfg(not(feature = "ferrocene_certified"))]
1488impl<T: [const] Default> const Default for RefCell<T> {
1489    /// Creates a `RefCell<T>`, with the `Default` value for T.
1490    #[inline]
1491    fn default() -> RefCell<T> {
1492        RefCell::new(Default::default())
1493    }
1494}
1495
1496#[stable(feature = "rust1", since = "1.0.0")]
1497#[cfg(not(feature = "ferrocene_certified"))]
1498impl<T: ?Sized + PartialEq> PartialEq for RefCell<T> {
1499    /// # Panics
1500    ///
1501    /// Panics if the value in either `RefCell` is currently mutably borrowed.
1502    #[inline]
1503    fn eq(&self, other: &RefCell<T>) -> bool {
1504        *self.borrow() == *other.borrow()
1505    }
1506}
1507
1508#[stable(feature = "cell_eq", since = "1.2.0")]
1509#[cfg(not(feature = "ferrocene_certified"))]
1510impl<T: ?Sized + Eq> Eq for RefCell<T> {}
1511
1512#[stable(feature = "cell_ord", since = "1.10.0")]
1513#[cfg(not(feature = "ferrocene_certified"))]
1514impl<T: ?Sized + PartialOrd> PartialOrd for RefCell<T> {
1515    /// # Panics
1516    ///
1517    /// Panics if the value in either `RefCell` is currently mutably borrowed.
1518    #[inline]
1519    fn partial_cmp(&self, other: &RefCell<T>) -> Option<Ordering> {
1520        self.borrow().partial_cmp(&*other.borrow())
1521    }
1522
1523    /// # Panics
1524    ///
1525    /// Panics if the value in either `RefCell` is currently mutably borrowed.
1526    #[inline]
1527    fn lt(&self, other: &RefCell<T>) -> bool {
1528        *self.borrow() < *other.borrow()
1529    }
1530
1531    /// # Panics
1532    ///
1533    /// Panics if the value in either `RefCell` is currently mutably borrowed.
1534    #[inline]
1535    fn le(&self, other: &RefCell<T>) -> bool {
1536        *self.borrow() <= *other.borrow()
1537    }
1538
1539    /// # Panics
1540    ///
1541    /// Panics if the value in either `RefCell` is currently mutably borrowed.
1542    #[inline]
1543    fn gt(&self, other: &RefCell<T>) -> bool {
1544        *self.borrow() > *other.borrow()
1545    }
1546
1547    /// # Panics
1548    ///
1549    /// Panics if the value in either `RefCell` is currently mutably borrowed.
1550    #[inline]
1551    fn ge(&self, other: &RefCell<T>) -> bool {
1552        *self.borrow() >= *other.borrow()
1553    }
1554}
1555
1556#[stable(feature = "cell_ord", since = "1.10.0")]
1557#[cfg(not(feature = "ferrocene_certified"))]
1558impl<T: ?Sized + Ord> Ord for RefCell<T> {
1559    /// # Panics
1560    ///
1561    /// Panics if the value in either `RefCell` is currently mutably borrowed.
1562    #[inline]
1563    fn cmp(&self, other: &RefCell<T>) -> Ordering {
1564        self.borrow().cmp(&*other.borrow())
1565    }
1566}
1567
1568#[stable(feature = "cell_from", since = "1.12.0")]
1569#[rustc_const_unstable(feature = "const_convert", issue = "143773")]
1570#[cfg(not(feature = "ferrocene_certified"))]
1571impl<T> const From<T> for RefCell<T> {
1572    /// Creates a new `RefCell<T>` containing the given value.
1573    fn from(t: T) -> RefCell<T> {
1574        RefCell::new(t)
1575    }
1576}
1577
1578#[unstable(feature = "coerce_unsized", issue = "18598")]
1579#[cfg(not(feature = "ferrocene_certified"))]
1580impl<T: CoerceUnsized<U>, U> CoerceUnsized<RefCell<U>> for RefCell<T> {}
1581
1582#[cfg(not(feature = "ferrocene_certified"))]
1583struct BorrowRef<'b> {
1584    borrow: &'b Cell<BorrowCounter>,
1585}
1586
1587#[cfg(not(feature = "ferrocene_certified"))]
1588impl<'b> BorrowRef<'b> {
1589    #[inline]
1590    const fn new(borrow: &'b Cell<BorrowCounter>) -> Option<BorrowRef<'b>> {
1591        let b = borrow.get().wrapping_add(1);
1592        if !is_reading(b) {
1593            // Incrementing borrow can result in a non-reading value (<= 0) in these cases:
1594            // 1. It was < 0, i.e. there are writing borrows, so we can't allow a read borrow
1595            //    due to Rust's reference aliasing rules
1596            // 2. It was isize::MAX (the max amount of reading borrows) and it overflowed
1597            //    into isize::MIN (the max amount of writing borrows) so we can't allow
1598            //    an additional read borrow because isize can't represent so many read borrows
1599            //    (this can only happen if you mem::forget more than a small constant amount of
1600            //    `Ref`s, which is not good practice)
1601            None
1602        } else {
1603            // Incrementing borrow can result in a reading value (> 0) in these cases:
1604            // 1. It was = 0, i.e. it wasn't borrowed, and we are taking the first read borrow
1605            // 2. It was > 0 and < isize::MAX, i.e. there were read borrows, and isize
1606            //    is large enough to represent having one more read borrow
1607            borrow.replace(b);
1608            Some(BorrowRef { borrow })
1609        }
1610    }
1611}
1612
1613#[rustc_const_unstable(feature = "const_ref_cell", issue = "137844")]
1614#[cfg(not(feature = "ferrocene_certified"))]
1615impl const Drop for BorrowRef<'_> {
1616    #[inline]
1617    fn drop(&mut self) {
1618        let borrow = self.borrow.get();
1619        debug_assert!(is_reading(borrow));
1620        self.borrow.replace(borrow - 1);
1621    }
1622}
1623
1624#[rustc_const_unstable(feature = "const_ref_cell", issue = "137844")]
1625#[cfg(not(feature = "ferrocene_certified"))]
1626impl const Clone for BorrowRef<'_> {
1627    #[inline]
1628    fn clone(&self) -> Self {
1629        // Since this Ref exists, we know the borrow flag
1630        // is a reading borrow.
1631        let borrow = self.borrow.get();
1632        debug_assert!(is_reading(borrow));
1633        // Prevent the borrow counter from overflowing into
1634        // a writing borrow.
1635        assert!(borrow != BorrowCounter::MAX);
1636        self.borrow.replace(borrow + 1);
1637        BorrowRef { borrow: self.borrow }
1638    }
1639}
1640
1641/// Wraps a borrowed reference to a value in a `RefCell` box.
1642/// A wrapper type for an immutably borrowed value from a `RefCell<T>`.
1643///
1644/// See the [module-level documentation](self) for more.
1645#[stable(feature = "rust1", since = "1.0.0")]
1646#[must_not_suspend = "holding a Ref across suspend points can cause BorrowErrors"]
1647#[rustc_diagnostic_item = "RefCellRef"]
1648#[cfg(not(feature = "ferrocene_certified"))]
1649pub struct Ref<'b, T: ?Sized + 'b> {
1650    // NB: we use a pointer instead of `&'b T` to avoid `noalias` violations, because a
1651    // `Ref` argument doesn't hold immutability for its whole scope, only until it drops.
1652    // `NonNull` is also covariant over `T`, just like we would have with `&T`.
1653    value: NonNull<T>,
1654    borrow: BorrowRef<'b>,
1655}
1656
1657#[stable(feature = "rust1", since = "1.0.0")]
1658#[rustc_const_unstable(feature = "const_convert", issue = "143773")]
1659#[cfg(not(feature = "ferrocene_certified"))]
1660impl<T: ?Sized> const Deref for Ref<'_, T> {
1661    type Target = T;
1662
1663    #[inline]
1664    fn deref(&self) -> &T {
1665        // SAFETY: the value is accessible as long as we hold our borrow.
1666        unsafe { self.value.as_ref() }
1667    }
1668}
1669
1670#[unstable(feature = "deref_pure_trait", issue = "87121")]
1671#[cfg(not(feature = "ferrocene_certified"))]
1672unsafe impl<T: ?Sized> DerefPure for Ref<'_, T> {}
1673
1674#[cfg(not(feature = "ferrocene_certified"))]
1675impl<'b, T: ?Sized> Ref<'b, T> {
1676    /// Copies a `Ref`.
1677    ///
1678    /// The `RefCell` is already immutably borrowed, so this cannot fail.
1679    ///
1680    /// This is an associated function that needs to be used as
1681    /// `Ref::clone(...)`. A `Clone` implementation or a method would interfere
1682    /// with the widespread use of `r.borrow().clone()` to clone the contents of
1683    /// a `RefCell`.
1684    #[stable(feature = "cell_extras", since = "1.15.0")]
1685    #[must_use]
1686    #[inline]
1687    #[rustc_const_unstable(feature = "const_ref_cell", issue = "137844")]
1688    pub const fn clone(orig: &Ref<'b, T>) -> Ref<'b, T> {
1689        Ref { value: orig.value, borrow: orig.borrow.clone() }
1690    }
1691
1692    /// Makes a new `Ref` for a component of the borrowed data.
1693    ///
1694    /// The `RefCell` is already immutably borrowed, so this cannot fail.
1695    ///
1696    /// This is an associated function that needs to be used as `Ref::map(...)`.
1697    /// A method would interfere with methods of the same name on the contents
1698    /// of a `RefCell` used through `Deref`.
1699    ///
1700    /// # Examples
1701    ///
1702    /// ```
1703    /// use std::cell::{RefCell, Ref};
1704    ///
1705    /// let c = RefCell::new((5, 'b'));
1706    /// let b1: Ref<'_, (u32, char)> = c.borrow();
1707    /// let b2: Ref<'_, u32> = Ref::map(b1, |t| &t.0);
1708    /// assert_eq!(*b2, 5)
1709    /// ```
1710    #[stable(feature = "cell_map", since = "1.8.0")]
1711    #[inline]
1712    pub fn map<U: ?Sized, F>(orig: Ref<'b, T>, f: F) -> Ref<'b, U>
1713    where
1714        F: FnOnce(&T) -> &U,
1715    {
1716        Ref { value: NonNull::from(f(&*orig)), borrow: orig.borrow }
1717    }
1718
1719    /// Makes a new `Ref` for an optional component of the borrowed data. The
1720    /// original guard is returned as an `Err(..)` if the closure returns
1721    /// `None`.
1722    ///
1723    /// The `RefCell` is already immutably borrowed, so this cannot fail.
1724    ///
1725    /// This is an associated function that needs to be used as
1726    /// `Ref::filter_map(...)`. A method would interfere with methods of the same
1727    /// name on the contents of a `RefCell` used through `Deref`.
1728    ///
1729    /// # Examples
1730    ///
1731    /// ```
1732    /// use std::cell::{RefCell, Ref};
1733    ///
1734    /// let c = RefCell::new(vec![1, 2, 3]);
1735    /// let b1: Ref<'_, Vec<u32>> = c.borrow();
1736    /// let b2: Result<Ref<'_, u32>, _> = Ref::filter_map(b1, |v| v.get(1));
1737    /// assert_eq!(*b2.unwrap(), 2);
1738    /// ```
1739    #[stable(feature = "cell_filter_map", since = "1.63.0")]
1740    #[inline]
1741    pub fn filter_map<U: ?Sized, F>(orig: Ref<'b, T>, f: F) -> Result<Ref<'b, U>, Self>
1742    where
1743        F: FnOnce(&T) -> Option<&U>,
1744    {
1745        match f(&*orig) {
1746            Some(value) => Ok(Ref { value: NonNull::from(value), borrow: orig.borrow }),
1747            None => Err(orig),
1748        }
1749    }
1750
1751    /// Tries to makes a new `Ref` for a component of the borrowed data.
1752    /// On failure, the original guard is returned alongside with the error
1753    /// returned by the closure.
1754    ///
1755    /// The `RefCell` is already immutably borrowed, so this cannot fail.
1756    ///
1757    /// This is an associated function that needs to be used as
1758    /// `Ref::try_map(...)`. A method would interfere with methods of the same
1759    /// name on the contents of a `RefCell` used through `Deref`.
1760    ///
1761    /// # Examples
1762    ///
1763    /// ```
1764    /// #![feature(refcell_try_map)]
1765    /// use std::cell::{RefCell, Ref};
1766    /// use std::str::{from_utf8, Utf8Error};
1767    ///
1768    /// let c = RefCell::new(vec![0xF0, 0x9F, 0xA6 ,0x80]);
1769    /// let b1: Ref<'_, Vec<u8>> = c.borrow();
1770    /// let b2: Result<Ref<'_, str>, _> = Ref::try_map(b1, |v| from_utf8(v));
1771    /// assert_eq!(&*b2.unwrap(), "🦀");
1772    ///
1773    /// let c = RefCell::new(vec![0xF0, 0x9F, 0xA6]);
1774    /// let b1: Ref<'_, Vec<u8>> = c.borrow();
1775    /// let b2: Result<_, (Ref<'_, Vec<u8>>, Utf8Error)> = Ref::try_map(b1, |v| from_utf8(v));
1776    /// let (b3, e) = b2.unwrap_err();
1777    /// assert_eq!(*b3, vec![0xF0, 0x9F, 0xA6]);
1778    /// assert_eq!(e.valid_up_to(), 0);
1779    /// ```
1780    #[unstable(feature = "refcell_try_map", issue = "143801")]
1781    #[inline]
1782    pub fn try_map<U: ?Sized, E>(
1783        orig: Ref<'b, T>,
1784        f: impl FnOnce(&T) -> Result<&U, E>,
1785    ) -> Result<Ref<'b, U>, (Self, E)> {
1786        match f(&*orig) {
1787            Ok(value) => Ok(Ref { value: NonNull::from(value), borrow: orig.borrow }),
1788            Err(e) => Err((orig, e)),
1789        }
1790    }
1791
1792    /// Splits a `Ref` into multiple `Ref`s for different components of the
1793    /// borrowed data.
1794    ///
1795    /// The `RefCell` is already immutably borrowed, so this cannot fail.
1796    ///
1797    /// This is an associated function that needs to be used as
1798    /// `Ref::map_split(...)`. A method would interfere with methods of the same
1799    /// name on the contents of a `RefCell` used through `Deref`.
1800    ///
1801    /// # Examples
1802    ///
1803    /// ```
1804    /// use std::cell::{Ref, RefCell};
1805    ///
1806    /// let cell = RefCell::new([1, 2, 3, 4]);
1807    /// let borrow = cell.borrow();
1808    /// let (begin, end) = Ref::map_split(borrow, |slice| slice.split_at(2));
1809    /// assert_eq!(*begin, [1, 2]);
1810    /// assert_eq!(*end, [3, 4]);
1811    /// ```
1812    #[stable(feature = "refcell_map_split", since = "1.35.0")]
1813    #[inline]
1814    pub fn map_split<U: ?Sized, V: ?Sized, F>(orig: Ref<'b, T>, f: F) -> (Ref<'b, U>, Ref<'b, V>)
1815    where
1816        F: FnOnce(&T) -> (&U, &V),
1817    {
1818        let (a, b) = f(&*orig);
1819        let borrow = orig.borrow.clone();
1820        (
1821            Ref { value: NonNull::from(a), borrow },
1822            Ref { value: NonNull::from(b), borrow: orig.borrow },
1823        )
1824    }
1825
1826    /// Converts into a reference to the underlying data.
1827    ///
1828    /// The underlying `RefCell` can never be mutably borrowed from again and will always appear
1829    /// already immutably borrowed. It is not a good idea to leak more than a constant number of
1830    /// references. The `RefCell` can be immutably borrowed again if only a smaller number of leaks
1831    /// have occurred in total.
1832    ///
1833    /// This is an associated function that needs to be used as
1834    /// `Ref::leak(...)`. A method would interfere with methods of the
1835    /// same name on the contents of a `RefCell` used through `Deref`.
1836    ///
1837    /// # Examples
1838    ///
1839    /// ```
1840    /// #![feature(cell_leak)]
1841    /// use std::cell::{RefCell, Ref};
1842    /// let cell = RefCell::new(0);
1843    ///
1844    /// let value = Ref::leak(cell.borrow());
1845    /// assert_eq!(*value, 0);
1846    ///
1847    /// assert!(cell.try_borrow().is_ok());
1848    /// assert!(cell.try_borrow_mut().is_err());
1849    /// ```
1850    #[unstable(feature = "cell_leak", issue = "69099")]
1851    #[rustc_const_unstable(feature = "const_ref_cell", issue = "137844")]
1852    pub const fn leak(orig: Ref<'b, T>) -> &'b T {
1853        // By forgetting this Ref we ensure that the borrow counter in the RefCell can't go back to
1854        // UNUSED within the lifetime `'b`. Resetting the reference tracking state would require a
1855        // unique reference to the borrowed RefCell. No further mutable references can be created
1856        // from the original cell.
1857        mem::forget(orig.borrow);
1858        // SAFETY: after forgetting, we can form a reference for the rest of lifetime `'b`.
1859        unsafe { orig.value.as_ref() }
1860    }
1861}
1862
1863#[unstable(feature = "coerce_unsized", issue = "18598")]
1864#[cfg(not(feature = "ferrocene_certified"))]
1865impl<'b, T: ?Sized + Unsize<U>, U: ?Sized> CoerceUnsized<Ref<'b, U>> for Ref<'b, T> {}
1866
1867#[stable(feature = "std_guard_impls", since = "1.20.0")]
1868#[cfg(not(feature = "ferrocene_certified"))]
1869impl<T: ?Sized + fmt::Display> fmt::Display for Ref<'_, T> {
1870    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
1871        (**self).fmt(f)
1872    }
1873}
1874
1875#[cfg(not(feature = "ferrocene_certified"))]
1876impl<'b, T: ?Sized> RefMut<'b, T> {
1877    /// Makes a new `RefMut` for a component of the borrowed data, e.g., an enum
1878    /// variant.
1879    ///
1880    /// The `RefCell` is already mutably borrowed, so this cannot fail.
1881    ///
1882    /// This is an associated function that needs to be used as
1883    /// `RefMut::map(...)`. A method would interfere with methods of the same
1884    /// name on the contents of a `RefCell` used through `Deref`.
1885    ///
1886    /// # Examples
1887    ///
1888    /// ```
1889    /// use std::cell::{RefCell, RefMut};
1890    ///
1891    /// let c = RefCell::new((5, 'b'));
1892    /// {
1893    ///     let b1: RefMut<'_, (u32, char)> = c.borrow_mut();
1894    ///     let mut b2: RefMut<'_, u32> = RefMut::map(b1, |t| &mut t.0);
1895    ///     assert_eq!(*b2, 5);
1896    ///     *b2 = 42;
1897    /// }
1898    /// assert_eq!(*c.borrow(), (42, 'b'));
1899    /// ```
1900    #[stable(feature = "cell_map", since = "1.8.0")]
1901    #[inline]
1902    pub fn map<U: ?Sized, F>(mut orig: RefMut<'b, T>, f: F) -> RefMut<'b, U>
1903    where
1904        F: FnOnce(&mut T) -> &mut U,
1905    {
1906        let value = NonNull::from(f(&mut *orig));
1907        RefMut { value, borrow: orig.borrow, marker: PhantomData }
1908    }
1909
1910    /// Makes a new `RefMut` for an optional component of the borrowed data. The
1911    /// original guard is returned as an `Err(..)` if the closure returns
1912    /// `None`.
1913    ///
1914    /// The `RefCell` is already mutably borrowed, so this cannot fail.
1915    ///
1916    /// This is an associated function that needs to be used as
1917    /// `RefMut::filter_map(...)`. A method would interfere with methods of the
1918    /// same name on the contents of a `RefCell` used through `Deref`.
1919    ///
1920    /// # Examples
1921    ///
1922    /// ```
1923    /// use std::cell::{RefCell, RefMut};
1924    ///
1925    /// let c = RefCell::new(vec![1, 2, 3]);
1926    ///
1927    /// {
1928    ///     let b1: RefMut<'_, Vec<u32>> = c.borrow_mut();
1929    ///     let mut b2: Result<RefMut<'_, u32>, _> = RefMut::filter_map(b1, |v| v.get_mut(1));
1930    ///
1931    ///     if let Ok(mut b2) = b2 {
1932    ///         *b2 += 2;
1933    ///     }
1934    /// }
1935    ///
1936    /// assert_eq!(*c.borrow(), vec![1, 4, 3]);
1937    /// ```
1938    #[stable(feature = "cell_filter_map", since = "1.63.0")]
1939    #[inline]
1940    pub fn filter_map<U: ?Sized, F>(mut orig: RefMut<'b, T>, f: F) -> Result<RefMut<'b, U>, Self>
1941    where
1942        F: FnOnce(&mut T) -> Option<&mut U>,
1943    {
1944        // SAFETY: function holds onto an exclusive reference for the duration
1945        // of its call through `orig`, and the pointer is only de-referenced
1946        // inside of the function call never allowing the exclusive reference to
1947        // escape.
1948        match f(&mut *orig) {
1949            Some(value) => {
1950                Ok(RefMut { value: NonNull::from(value), borrow: orig.borrow, marker: PhantomData })
1951            }
1952            None => Err(orig),
1953        }
1954    }
1955
1956    /// Tries to makes a new `RefMut` for a component of the borrowed data.
1957    /// On failure, the original guard is returned alongside with the error
1958    /// returned by the closure.
1959    ///
1960    /// The `RefCell` is already mutably borrowed, so this cannot fail.
1961    ///
1962    /// This is an associated function that needs to be used as
1963    /// `RefMut::try_map(...)`. A method would interfere with methods of the same
1964    /// name on the contents of a `RefCell` used through `Deref`.
1965    ///
1966    /// # Examples
1967    ///
1968    /// ```
1969    /// #![feature(refcell_try_map)]
1970    /// use std::cell::{RefCell, RefMut};
1971    /// use std::str::{from_utf8_mut, Utf8Error};
1972    ///
1973    /// let c = RefCell::new(vec![0x68, 0x65, 0x6C, 0x6C, 0x6F]);
1974    /// {
1975    ///     let b1: RefMut<'_, Vec<u8>> = c.borrow_mut();
1976    ///     let b2: Result<RefMut<'_, str>, _> = RefMut::try_map(b1, |v| from_utf8_mut(v));
1977    ///     let mut b2 = b2.unwrap();
1978    ///     assert_eq!(&*b2, "hello");
1979    ///     b2.make_ascii_uppercase();
1980    /// }
1981    /// assert_eq!(*c.borrow(), "HELLO".as_bytes());
1982    ///
1983    /// let c = RefCell::new(vec![0xFF]);
1984    /// let b1: RefMut<'_, Vec<u8>> = c.borrow_mut();
1985    /// let b2: Result<_, (RefMut<'_, Vec<u8>>, Utf8Error)> = RefMut::try_map(b1, |v| from_utf8_mut(v));
1986    /// let (b3, e) = b2.unwrap_err();
1987    /// assert_eq!(*b3, vec![0xFF]);
1988    /// assert_eq!(e.valid_up_to(), 0);
1989    /// ```
1990    #[unstable(feature = "refcell_try_map", issue = "143801")]
1991    #[inline]
1992    pub fn try_map<U: ?Sized, E>(
1993        mut orig: RefMut<'b, T>,
1994        f: impl FnOnce(&mut T) -> Result<&mut U, E>,
1995    ) -> Result<RefMut<'b, U>, (Self, E)> {
1996        // SAFETY: function holds onto an exclusive reference for the duration
1997        // of its call through `orig`, and the pointer is only de-referenced
1998        // inside of the function call never allowing the exclusive reference to
1999        // escape.
2000        match f(&mut *orig) {
2001            Ok(value) => {
2002                Ok(RefMut { value: NonNull::from(value), borrow: orig.borrow, marker: PhantomData })
2003            }
2004            Err(e) => Err((orig, e)),
2005        }
2006    }
2007
2008    /// Splits a `RefMut` into multiple `RefMut`s for different components of the
2009    /// borrowed data.
2010    ///
2011    /// The underlying `RefCell` will remain mutably borrowed until both
2012    /// returned `RefMut`s go out of scope.
2013    ///
2014    /// The `RefCell` is already mutably borrowed, so this cannot fail.
2015    ///
2016    /// This is an associated function that needs to be used as
2017    /// `RefMut::map_split(...)`. A method would interfere with methods of the
2018    /// same name on the contents of a `RefCell` used through `Deref`.
2019    ///
2020    /// # Examples
2021    ///
2022    /// ```
2023    /// use std::cell::{RefCell, RefMut};
2024    ///
2025    /// let cell = RefCell::new([1, 2, 3, 4]);
2026    /// let borrow = cell.borrow_mut();
2027    /// let (mut begin, mut end) = RefMut::map_split(borrow, |slice| slice.split_at_mut(2));
2028    /// assert_eq!(*begin, [1, 2]);
2029    /// assert_eq!(*end, [3, 4]);
2030    /// begin.copy_from_slice(&[4, 3]);
2031    /// end.copy_from_slice(&[2, 1]);
2032    /// ```
2033    #[stable(feature = "refcell_map_split", since = "1.35.0")]
2034    #[inline]
2035    pub fn map_split<U: ?Sized, V: ?Sized, F>(
2036        mut orig: RefMut<'b, T>,
2037        f: F,
2038    ) -> (RefMut<'b, U>, RefMut<'b, V>)
2039    where
2040        F: FnOnce(&mut T) -> (&mut U, &mut V),
2041    {
2042        let borrow = orig.borrow.clone();
2043        let (a, b) = f(&mut *orig);
2044        (
2045            RefMut { value: NonNull::from(a), borrow, marker: PhantomData },
2046            RefMut { value: NonNull::from(b), borrow: orig.borrow, marker: PhantomData },
2047        )
2048    }
2049
2050    /// Converts into a mutable reference to the underlying data.
2051    ///
2052    /// The underlying `RefCell` can not be borrowed from again and will always appear already
2053    /// mutably borrowed, making the returned reference the only to the interior.
2054    ///
2055    /// This is an associated function that needs to be used as
2056    /// `RefMut::leak(...)`. A method would interfere with methods of the
2057    /// same name on the contents of a `RefCell` used through `Deref`.
2058    ///
2059    /// # Examples
2060    ///
2061    /// ```
2062    /// #![feature(cell_leak)]
2063    /// use std::cell::{RefCell, RefMut};
2064    /// let cell = RefCell::new(0);
2065    ///
2066    /// let value = RefMut::leak(cell.borrow_mut());
2067    /// assert_eq!(*value, 0);
2068    /// *value = 1;
2069    ///
2070    /// assert!(cell.try_borrow_mut().is_err());
2071    /// ```
2072    #[unstable(feature = "cell_leak", issue = "69099")]
2073    #[rustc_const_unstable(feature = "const_ref_cell", issue = "137844")]
2074    pub const fn leak(mut orig: RefMut<'b, T>) -> &'b mut T {
2075        // By forgetting this BorrowRefMut we ensure that the borrow counter in the RefCell can't
2076        // go back to UNUSED within the lifetime `'b`. Resetting the reference tracking state would
2077        // require a unique reference to the borrowed RefCell. No further references can be created
2078        // from the original cell within that lifetime, making the current borrow the only
2079        // reference for the remaining lifetime.
2080        mem::forget(orig.borrow);
2081        // SAFETY: after forgetting, we can form a reference for the rest of lifetime `'b`.
2082        unsafe { orig.value.as_mut() }
2083    }
2084}
2085
2086#[cfg(not(feature = "ferrocene_certified"))]
2087struct BorrowRefMut<'b> {
2088    borrow: &'b Cell<BorrowCounter>,
2089}
2090
2091#[rustc_const_unstable(feature = "const_ref_cell", issue = "137844")]
2092#[cfg(not(feature = "ferrocene_certified"))]
2093impl const Drop for BorrowRefMut<'_> {
2094    #[inline]
2095    fn drop(&mut self) {
2096        let borrow = self.borrow.get();
2097        debug_assert!(is_writing(borrow));
2098        self.borrow.replace(borrow + 1);
2099    }
2100}
2101
2102#[cfg(not(feature = "ferrocene_certified"))]
2103impl<'b> BorrowRefMut<'b> {
2104    #[inline]
2105    const fn new(borrow: &'b Cell<BorrowCounter>) -> Option<BorrowRefMut<'b>> {
2106        // NOTE: Unlike BorrowRefMut::clone, new is called to create the initial
2107        // mutable reference, and so there must currently be no existing
2108        // references. Thus, while clone increments the mutable refcount, here
2109        // we explicitly only allow going from UNUSED to UNUSED - 1.
2110        match borrow.get() {
2111            UNUSED => {
2112                borrow.replace(UNUSED - 1);
2113                Some(BorrowRefMut { borrow })
2114            }
2115            _ => None,
2116        }
2117    }
2118
2119    // Clones a `BorrowRefMut`.
2120    //
2121    // This is only valid if each `BorrowRefMut` is used to track a mutable
2122    // reference to a distinct, nonoverlapping range of the original object.
2123    // This isn't in a Clone impl so that code doesn't call this implicitly.
2124    #[inline]
2125    fn clone(&self) -> BorrowRefMut<'b> {
2126        let borrow = self.borrow.get();
2127        debug_assert!(is_writing(borrow));
2128        // Prevent the borrow counter from underflowing.
2129        assert!(borrow != BorrowCounter::MIN);
2130        self.borrow.set(borrow - 1);
2131        BorrowRefMut { borrow: self.borrow }
2132    }
2133}
2134
2135/// A wrapper type for a mutably borrowed value from a `RefCell<T>`.
2136///
2137/// See the [module-level documentation](self) for more.
2138#[stable(feature = "rust1", since = "1.0.0")]
2139#[must_not_suspend = "holding a RefMut across suspend points can cause BorrowErrors"]
2140#[rustc_diagnostic_item = "RefCellRefMut"]
2141#[cfg(not(feature = "ferrocene_certified"))]
2142pub struct RefMut<'b, T: ?Sized + 'b> {
2143    // NB: we use a pointer instead of `&'b mut T` to avoid `noalias` violations, because a
2144    // `RefMut` argument doesn't hold exclusivity for its whole scope, only until it drops.
2145    value: NonNull<T>,
2146    borrow: BorrowRefMut<'b>,
2147    // `NonNull` is covariant over `T`, so we need to reintroduce invariance.
2148    marker: PhantomData<&'b mut T>,
2149}
2150
2151#[stable(feature = "rust1", since = "1.0.0")]
2152#[rustc_const_unstable(feature = "const_convert", issue = "143773")]
2153#[cfg(not(feature = "ferrocene_certified"))]
2154impl<T: ?Sized> const Deref for RefMut<'_, T> {
2155    type Target = T;
2156
2157    #[inline]
2158    fn deref(&self) -> &T {
2159        // SAFETY: the value is accessible as long as we hold our borrow.
2160        unsafe { self.value.as_ref() }
2161    }
2162}
2163
2164#[stable(feature = "rust1", since = "1.0.0")]
2165#[rustc_const_unstable(feature = "const_convert", issue = "143773")]
2166#[cfg(not(feature = "ferrocene_certified"))]
2167impl<T: ?Sized> const DerefMut for RefMut<'_, T> {
2168    #[inline]
2169    fn deref_mut(&mut self) -> &mut T {
2170        // SAFETY: the value is accessible as long as we hold our borrow.
2171        unsafe { self.value.as_mut() }
2172    }
2173}
2174
2175#[unstable(feature = "deref_pure_trait", issue = "87121")]
2176#[cfg(not(feature = "ferrocene_certified"))]
2177unsafe impl<T: ?Sized> DerefPure for RefMut<'_, T> {}
2178
2179#[unstable(feature = "coerce_unsized", issue = "18598")]
2180#[cfg(not(feature = "ferrocene_certified"))]
2181impl<'b, T: ?Sized + Unsize<U>, U: ?Sized> CoerceUnsized<RefMut<'b, U>> for RefMut<'b, T> {}
2182
2183#[stable(feature = "std_guard_impls", since = "1.20.0")]
2184#[cfg(not(feature = "ferrocene_certified"))]
2185impl<T: ?Sized + fmt::Display> fmt::Display for RefMut<'_, T> {
2186    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
2187        (**self).fmt(f)
2188    }
2189}
2190
2191/// The core primitive for interior mutability in Rust.
2192///
2193/// If you have a reference `&T`, then normally in Rust the compiler performs optimizations based on
2194/// the knowledge that `&T` points to immutable data. Mutating that data, for example through an
2195/// alias or by transmuting a `&T` into a `&mut T`, is considered undefined behavior.
2196/// `UnsafeCell<T>` opts-out of the immutability guarantee for `&T`: a shared reference
2197/// `&UnsafeCell<T>` may point to data that is being mutated. This is called "interior mutability".
2198///
2199/// All other types that allow internal mutability, such as [`Cell<T>`] and [`RefCell<T>`], internally
2200/// use `UnsafeCell` to wrap their data.
2201///
2202/// Note that only the immutability guarantee for shared references is affected by `UnsafeCell`. The
2203/// uniqueness guarantee for mutable references is unaffected. There is *no* legal way to obtain
2204/// aliasing `&mut`, not even with `UnsafeCell<T>`.
2205///
2206/// `UnsafeCell` does nothing to avoid data races; they are still undefined behavior. If multiple
2207/// threads have access to the same `UnsafeCell`, they must follow the usual rules of the
2208/// [concurrent memory model]: conflicting non-synchronized accesses must be done via the APIs in
2209/// [`core::sync::atomic`].
2210///
2211/// The `UnsafeCell` API itself is technically very simple: [`.get()`] gives you a raw pointer
2212/// `*mut T` to its contents. It is up to _you_ as the abstraction designer to use that raw pointer
2213/// correctly.
2214///
2215/// [`.get()`]: `UnsafeCell::get`
2216/// [concurrent memory model]: ../sync/atomic/index.html#memory-model-for-atomic-accesses
2217///
2218/// # Aliasing rules
2219///
2220/// The precise Rust aliasing rules are somewhat in flux, but the main points are not contentious:
2221///
2222/// - If you create a safe reference with lifetime `'a` (either a `&T` or `&mut T` reference), then
2223///   you must not access the data in any way that contradicts that reference for the remainder of
2224///   `'a`. For example, this means that if you take the `*mut T` from an `UnsafeCell<T>` and cast it
2225///   to an `&T`, then the data in `T` must remain immutable (modulo any `UnsafeCell` data found
2226///   within `T`, of course) until that reference's lifetime expires. Similarly, if you create a
2227///   `&mut T` reference that is released to safe code, then you must not access the data within the
2228///   `UnsafeCell` until that reference expires.
2229///
2230/// - For both `&T` without `UnsafeCell<_>` and `&mut T`, you must also not deallocate the data
2231///   until the reference expires. As a special exception, given an `&T`, any part of it that is
2232///   inside an `UnsafeCell<_>` may be deallocated during the lifetime of the reference, after the
2233///   last time the reference is used (dereferenced or reborrowed). Since you cannot deallocate a part
2234///   of what a reference points to, this means the memory an `&T` points to can be deallocated only if
2235///   *every part of it* (including padding) is inside an `UnsafeCell`.
2236///
2237/// However, whenever a `&UnsafeCell<T>` is constructed or dereferenced, it must still point to
2238/// live memory and the compiler is allowed to insert spurious reads if it can prove that this
2239/// memory has not yet been deallocated.
2240///
2241/// To assist with proper design, the following scenarios are explicitly declared legal
2242/// for single-threaded code:
2243///
2244/// 1. A `&T` reference can be released to safe code and there it can co-exist with other `&T`
2245///    references, but not with a `&mut T`
2246///
2247/// 2. A `&mut T` reference may be released to safe code provided neither other `&mut T` nor `&T`
2248///    co-exist with it. A `&mut T` must always be unique.
2249///
2250/// Note that whilst mutating the contents of an `&UnsafeCell<T>` (even while other
2251/// `&UnsafeCell<T>` references alias the cell) is
2252/// ok (provided you enforce the above invariants some other way), it is still undefined behavior
2253/// to have multiple `&mut UnsafeCell<T>` aliases. That is, `UnsafeCell` is a wrapper
2254/// designed to have a special interaction with _shared_ accesses (_i.e._, through an
2255/// `&UnsafeCell<_>` reference); there is no magic whatsoever when dealing with _exclusive_
2256/// accesses (_e.g._, through a `&mut UnsafeCell<_>`): neither the cell nor the wrapped value
2257/// may be aliased for the duration of that `&mut` borrow.
2258/// This is showcased by the [`.get_mut()`] accessor, which is a _safe_ getter that yields
2259/// a `&mut T`.
2260///
2261/// [`.get_mut()`]: `UnsafeCell::get_mut`
2262///
2263/// # Memory layout
2264///
2265/// `UnsafeCell<T>` has the same in-memory representation as its inner type `T`. A consequence
2266/// of this guarantee is that it is possible to convert between `T` and `UnsafeCell<T>`.
2267/// Special care has to be taken when converting a nested `T` inside of an `Outer<T>` type
2268/// to an `Outer<UnsafeCell<T>>` type: this is not sound when the `Outer<T>` type enables [niche]
2269/// optimizations. For example, the type `Option<NonNull<u8>>` is typically 8 bytes large on
2270/// 64-bit platforms, but the type `Option<UnsafeCell<NonNull<u8>>>` takes up 16 bytes of space.
2271/// Therefore this is not a valid conversion, despite `NonNull<u8>` and `UnsafeCell<NonNull<u8>>>`
2272/// having the same memory layout. This is because `UnsafeCell` disables niche optimizations in
2273/// order to avoid its interior mutability property from spreading from `T` into the `Outer` type,
2274/// thus this can cause distortions in the type size in these cases.
2275///
2276/// Note that the only valid way to obtain a `*mut T` pointer to the contents of a
2277/// _shared_ `UnsafeCell<T>` is through [`.get()`]  or [`.raw_get()`]. A `&mut T` reference
2278/// can be obtained by either dereferencing this pointer or by calling [`.get_mut()`]
2279/// on an _exclusive_ `UnsafeCell<T>`. Even though `T` and `UnsafeCell<T>` have the
2280/// same memory layout, the following is not allowed and undefined behavior:
2281///
2282/// ```rust,compile_fail
2283/// # use std::cell::UnsafeCell;
2284/// unsafe fn not_allowed<T>(ptr: &UnsafeCell<T>) -> &mut T {
2285///   let t = ptr as *const UnsafeCell<T> as *mut T;
2286///   // This is undefined behavior, because the `*mut T` pointer
2287///   // was not obtained through `.get()` nor `.raw_get()`:
2288///   unsafe { &mut *t }
2289/// }
2290/// ```
2291///
2292/// Instead, do this:
2293///
2294/// ```rust
2295/// # use std::cell::UnsafeCell;
2296/// // Safety: the caller must ensure that there are no references that
2297/// // point to the *contents* of the `UnsafeCell`.
2298/// unsafe fn get_mut<T>(ptr: &UnsafeCell<T>) -> &mut T {
2299///   unsafe { &mut *ptr.get() }
2300/// }
2301/// ```
2302///
2303/// Converting in the other direction from a `&mut T`
2304/// to an `&UnsafeCell<T>` is allowed:
2305///
2306/// ```rust
2307/// # use std::cell::UnsafeCell;
2308/// fn get_shared<T>(ptr: &mut T) -> &UnsafeCell<T> {
2309///   let t = ptr as *mut T as *const UnsafeCell<T>;
2310///   // SAFETY: `T` and `UnsafeCell<T>` have the same memory layout
2311///   unsafe { &*t }
2312/// }
2313/// ```
2314///
2315/// [niche]: https://rust-lang.github.io/unsafe-code-guidelines/glossary.html#niche
2316/// [`.raw_get()`]: `UnsafeCell::raw_get`
2317///
2318/// # Examples
2319///
2320/// Here is an example showcasing how to soundly mutate the contents of an `UnsafeCell<_>` despite
2321/// there being multiple references aliasing the cell:
2322///
2323/// ```
2324/// use std::cell::UnsafeCell;
2325///
2326/// let x: UnsafeCell<i32> = 42.into();
2327/// // Get multiple / concurrent / shared references to the same `x`.
2328/// let (p1, p2): (&UnsafeCell<i32>, &UnsafeCell<i32>) = (&x, &x);
2329///
2330/// unsafe {
2331///     // SAFETY: within this scope there are no other references to `x`'s contents,
2332///     // so ours is effectively unique.
2333///     let p1_exclusive: &mut i32 = &mut *p1.get(); // -- borrow --+
2334///     *p1_exclusive += 27; //                                     |
2335/// } // <---------- cannot go beyond this point -------------------+
2336///
2337/// unsafe {
2338///     // SAFETY: within this scope nobody expects to have exclusive access to `x`'s contents,
2339///     // so we can have multiple shared accesses concurrently.
2340///     let p2_shared: &i32 = &*p2.get();
2341///     assert_eq!(*p2_shared, 42 + 27);
2342///     let p1_shared: &i32 = &*p1.get();
2343///     assert_eq!(*p1_shared, *p2_shared);
2344/// }
2345/// ```
2346///
2347/// The following example showcases the fact that exclusive access to an `UnsafeCell<T>`
2348/// implies exclusive access to its `T`:
2349///
2350/// ```rust
2351/// #![forbid(unsafe_code)]
2352/// // with exclusive accesses, `UnsafeCell` is a transparent no-op wrapper, so no need for
2353/// // `unsafe` here.
2354/// use std::cell::UnsafeCell;
2355///
2356/// let mut x: UnsafeCell<i32> = 42.into();
2357///
2358/// // Get a compile-time-checked unique reference to `x`.
2359/// let p_unique: &mut UnsafeCell<i32> = &mut x;
2360/// // With an exclusive reference, we can mutate the contents for free.
2361/// *p_unique.get_mut() = 0;
2362/// // Or, equivalently:
2363/// x = UnsafeCell::new(0);
2364///
2365/// // When we own the value, we can extract the contents for free.
2366/// let contents: i32 = x.into_inner();
2367/// assert_eq!(contents, 0);
2368/// ```
2369#[lang = "unsafe_cell"]
2370#[stable(feature = "rust1", since = "1.0.0")]
2371#[repr(transparent)]
2372#[rustc_pub_transparent]
2373pub struct UnsafeCell<T: ?Sized> {
2374    value: T,
2375}
2376
2377#[stable(feature = "rust1", since = "1.0.0")]
2378#[cfg(not(feature = "ferrocene_certified"))]
2379impl<T: ?Sized> !Sync for UnsafeCell<T> {}
2380
2381impl<T> UnsafeCell<T> {
2382    /// Constructs a new instance of `UnsafeCell` which will wrap the specified
2383    /// value.
2384    ///
2385    /// All access to the inner value through `&UnsafeCell<T>` requires `unsafe` code.
2386    ///
2387    /// # Examples
2388    ///
2389    /// ```
2390    /// use std::cell::UnsafeCell;
2391    ///
2392    /// let uc = UnsafeCell::new(5);
2393    /// ```
2394    #[stable(feature = "rust1", since = "1.0.0")]
2395    #[rustc_const_stable(feature = "const_unsafe_cell_new", since = "1.32.0")]
2396    #[inline(always)]
2397    pub const fn new(value: T) -> UnsafeCell<T> {
2398        UnsafeCell { value }
2399    }
2400
2401    /// Unwraps the value, consuming the cell.
2402    ///
2403    /// # Examples
2404    ///
2405    /// ```
2406    /// use std::cell::UnsafeCell;
2407    ///
2408    /// let uc = UnsafeCell::new(5);
2409    ///
2410    /// let five = uc.into_inner();
2411    /// ```
2412    #[inline(always)]
2413    #[stable(feature = "rust1", since = "1.0.0")]
2414    #[rustc_const_stable(feature = "const_cell_into_inner", since = "1.83.0")]
2415    #[rustc_allow_const_fn_unstable(const_precise_live_drops)]
2416    pub const fn into_inner(self) -> T {
2417        self.value
2418    }
2419
2420    /// Replace the value in this `UnsafeCell` and return the old value.
2421    ///
2422    /// # Safety
2423    ///
2424    /// The caller must take care to avoid aliasing and data races.
2425    ///
2426    /// - It is Undefined Behavior to allow calls to race with
2427    ///   any other access to the wrapped value.
2428    /// - It is Undefined Behavior to call this while any other
2429    ///   reference(s) to the wrapped value are alive.
2430    ///
2431    /// # Examples
2432    ///
2433    /// ```
2434    /// #![feature(unsafe_cell_access)]
2435    /// use std::cell::UnsafeCell;
2436    ///
2437    /// let uc = UnsafeCell::new(5);
2438    ///
2439    /// let old = unsafe { uc.replace(10) };
2440    /// assert_eq!(old, 5);
2441    /// ```
2442    #[inline]
2443    #[unstable(feature = "unsafe_cell_access", issue = "136327")]
2444    #[cfg(not(feature = "ferrocene_certified"))]
2445    pub const unsafe fn replace(&self, value: T) -> T {
2446        // SAFETY: pointer comes from `&self` so naturally satisfies invariants.
2447        unsafe { ptr::replace(self.get(), value) }
2448    }
2449}
2450
2451impl<T: ?Sized> UnsafeCell<T> {
2452    /// Converts from `&mut T` to `&mut UnsafeCell<T>`.
2453    ///
2454    /// # Examples
2455    ///
2456    /// ```
2457    /// use std::cell::UnsafeCell;
2458    ///
2459    /// let mut val = 42;
2460    /// let uc = UnsafeCell::from_mut(&mut val);
2461    ///
2462    /// *uc.get_mut() -= 1;
2463    /// assert_eq!(*uc.get_mut(), 41);
2464    /// ```
2465    #[inline(always)]
2466    #[stable(feature = "unsafe_cell_from_mut", since = "1.84.0")]
2467    #[rustc_const_stable(feature = "unsafe_cell_from_mut", since = "1.84.0")]
2468    #[cfg(not(feature = "ferrocene_certified"))]
2469    pub const fn from_mut(value: &mut T) -> &mut UnsafeCell<T> {
2470        // SAFETY: `UnsafeCell<T>` has the same memory layout as `T` due to #[repr(transparent)].
2471        unsafe { &mut *(value as *mut T as *mut UnsafeCell<T>) }
2472    }
2473
2474    /// Gets a mutable pointer to the wrapped value.
2475    ///
2476    /// This can be cast to a pointer of any kind. When creating references, you must uphold the
2477    /// aliasing rules; see [the type-level docs][UnsafeCell#aliasing-rules] for more discussion and
2478    /// caveats.
2479    ///
2480    /// # Examples
2481    ///
2482    /// ```
2483    /// use std::cell::UnsafeCell;
2484    ///
2485    /// let uc = UnsafeCell::new(5);
2486    ///
2487    /// let five = uc.get();
2488    /// ```
2489    #[inline(always)]
2490    #[stable(feature = "rust1", since = "1.0.0")]
2491    #[rustc_const_stable(feature = "const_unsafecell_get", since = "1.32.0")]
2492    #[rustc_as_ptr]
2493    #[rustc_never_returns_null_ptr]
2494    pub const fn get(&self) -> *mut T {
2495        // We can just cast the pointer from `UnsafeCell<T>` to `T` because of
2496        // #[repr(transparent)]. This exploits std's special status, there is
2497        // no guarantee for user code that this will work in future versions of the compiler!
2498        self as *const UnsafeCell<T> as *const T as *mut T
2499    }
2500
2501    /// Returns a mutable reference to the underlying data.
2502    ///
2503    /// This call borrows the `UnsafeCell` mutably (at compile-time) which
2504    /// guarantees that we possess the only reference.
2505    ///
2506    /// # Examples
2507    ///
2508    /// ```
2509    /// use std::cell::UnsafeCell;
2510    ///
2511    /// let mut c = UnsafeCell::new(5);
2512    /// *c.get_mut() += 1;
2513    ///
2514    /// assert_eq!(*c.get_mut(), 6);
2515    /// ```
2516    #[inline(always)]
2517    #[stable(feature = "unsafe_cell_get_mut", since = "1.50.0")]
2518    #[rustc_const_stable(feature = "const_unsafecell_get_mut", since = "1.83.0")]
2519    pub const fn get_mut(&mut self) -> &mut T {
2520        &mut self.value
2521    }
2522
2523    /// Gets a mutable pointer to the wrapped value.
2524    /// The difference from [`get`] is that this function accepts a raw pointer,
2525    /// which is useful to avoid the creation of temporary references.
2526    ///
2527    /// This can be cast to a pointer of any kind. When creating references, you must uphold the
2528    /// aliasing rules; see [the type-level docs][UnsafeCell#aliasing-rules] for more discussion and
2529    /// caveats.
2530    ///
2531    /// [`get`]: UnsafeCell::get()
2532    ///
2533    /// # Examples
2534    ///
2535    /// Gradual initialization of an `UnsafeCell` requires `raw_get`, as
2536    /// calling `get` would require creating a reference to uninitialized data:
2537    ///
2538    /// ```
2539    /// use std::cell::UnsafeCell;
2540    /// use std::mem::MaybeUninit;
2541    ///
2542    /// let m = MaybeUninit::<UnsafeCell<i32>>::uninit();
2543    /// unsafe { UnsafeCell::raw_get(m.as_ptr()).write(5); }
2544    /// // avoid below which references to uninitialized data
2545    /// // unsafe { UnsafeCell::get(&*m.as_ptr()).write(5); }
2546    /// let uc = unsafe { m.assume_init() };
2547    ///
2548    /// assert_eq!(uc.into_inner(), 5);
2549    /// ```
2550    #[inline(always)]
2551    #[stable(feature = "unsafe_cell_raw_get", since = "1.56.0")]
2552    #[rustc_const_stable(feature = "unsafe_cell_raw_get", since = "1.56.0")]
2553    #[rustc_diagnostic_item = "unsafe_cell_raw_get"]
2554    #[cfg(not(feature = "ferrocene_certified"))]
2555    pub const fn raw_get(this: *const Self) -> *mut T {
2556        // We can just cast the pointer from `UnsafeCell<T>` to `T` because of
2557        // #[repr(transparent)]. This exploits std's special status, there is
2558        // no guarantee for user code that this will work in future versions of the compiler!
2559        this as *const T as *mut T
2560    }
2561
2562    /// Get a shared reference to the value within the `UnsafeCell`.
2563    ///
2564    /// # Safety
2565    ///
2566    /// - It is Undefined Behavior to call this while any mutable
2567    ///   reference to the wrapped value is alive.
2568    /// - Mutating the wrapped value while the returned
2569    ///   reference is alive is Undefined Behavior.
2570    ///
2571    /// # Examples
2572    ///
2573    /// ```
2574    /// #![feature(unsafe_cell_access)]
2575    /// use std::cell::UnsafeCell;
2576    ///
2577    /// let uc = UnsafeCell::new(5);
2578    ///
2579    /// let val = unsafe { uc.as_ref_unchecked() };
2580    /// assert_eq!(val, &5);
2581    /// ```
2582    #[inline]
2583    #[unstable(feature = "unsafe_cell_access", issue = "136327")]
2584    #[cfg(not(feature = "ferrocene_certified"))]
2585    pub const unsafe fn as_ref_unchecked(&self) -> &T {
2586        // SAFETY: pointer comes from `&self` so naturally satisfies ptr-to-ref invariants.
2587        unsafe { self.get().as_ref_unchecked() }
2588    }
2589
2590    /// Get an exclusive reference to the value within the `UnsafeCell`.
2591    ///
2592    /// # Safety
2593    ///
2594    /// - It is Undefined Behavior to call this while any other
2595    ///   reference(s) to the wrapped value are alive.
2596    /// - Mutating the wrapped value through other means while the
2597    ///   returned reference is alive is Undefined Behavior.
2598    ///
2599    /// # Examples
2600    ///
2601    /// ```
2602    /// #![feature(unsafe_cell_access)]
2603    /// use std::cell::UnsafeCell;
2604    ///
2605    /// let uc = UnsafeCell::new(5);
2606    ///
2607    /// unsafe { *uc.as_mut_unchecked() += 1; }
2608    /// assert_eq!(uc.into_inner(), 6);
2609    /// ```
2610    #[inline]
2611    #[unstable(feature = "unsafe_cell_access", issue = "136327")]
2612    #[allow(clippy::mut_from_ref)]
2613    #[cfg(not(feature = "ferrocene_certified"))]
2614    pub const unsafe fn as_mut_unchecked(&self) -> &mut T {
2615        // SAFETY: pointer comes from `&self` so naturally satisfies ptr-to-ref invariants.
2616        unsafe { self.get().as_mut_unchecked() }
2617    }
2618}
2619
2620#[stable(feature = "unsafe_cell_default", since = "1.10.0")]
2621#[rustc_const_unstable(feature = "const_default", issue = "143894")]
2622#[cfg(not(feature = "ferrocene_certified"))]
2623impl<T: [const] Default> const Default for UnsafeCell<T> {
2624    /// Creates an `UnsafeCell`, with the `Default` value for T.
2625    fn default() -> UnsafeCell<T> {
2626        UnsafeCell::new(Default::default())
2627    }
2628}
2629
2630#[stable(feature = "cell_from", since = "1.12.0")]
2631#[rustc_const_unstable(feature = "const_convert", issue = "143773")]
2632#[cfg(not(feature = "ferrocene_certified"))]
2633impl<T> const From<T> for UnsafeCell<T> {
2634    /// Creates a new `UnsafeCell<T>` containing the given value.
2635    fn from(t: T) -> UnsafeCell<T> {
2636        UnsafeCell::new(t)
2637    }
2638}
2639
2640#[unstable(feature = "coerce_unsized", issue = "18598")]
2641#[cfg(not(feature = "ferrocene_certified"))]
2642impl<T: CoerceUnsized<U>, U> CoerceUnsized<UnsafeCell<U>> for UnsafeCell<T> {}
2643
2644// Allow types that wrap `UnsafeCell` to also implement `DispatchFromDyn`
2645// and become dyn-compatible method receivers.
2646// Note that currently `UnsafeCell` itself cannot be a method receiver
2647// because it does not implement Deref.
2648// In other words:
2649// `self: UnsafeCell<&Self>` won't work
2650// `self: UnsafeCellWrapper<Self>` becomes possible
2651#[unstable(feature = "dispatch_from_dyn", issue = "none")]
2652#[cfg(not(feature = "ferrocene_certified"))]
2653impl<T: DispatchFromDyn<U>, U> DispatchFromDyn<UnsafeCell<U>> for UnsafeCell<T> {}
2654
2655/// [`UnsafeCell`], but [`Sync`].
2656///
2657/// This is just an `UnsafeCell`, except it implements `Sync`
2658/// if `T` implements `Sync`.
2659///
2660/// `UnsafeCell` doesn't implement `Sync`, to prevent accidental mis-use.
2661/// You can use `SyncUnsafeCell` instead of `UnsafeCell` to allow it to be
2662/// shared between threads, if that's intentional.
2663/// Providing proper synchronization is still the task of the user,
2664/// making this type just as unsafe to use.
2665///
2666/// See [`UnsafeCell`] for details.
2667#[unstable(feature = "sync_unsafe_cell", issue = "95439")]
2668#[repr(transparent)]
2669#[rustc_diagnostic_item = "SyncUnsafeCell"]
2670#[rustc_pub_transparent]
2671#[cfg(not(feature = "ferrocene_certified"))]
2672pub struct SyncUnsafeCell<T: ?Sized> {
2673    value: UnsafeCell<T>,
2674}
2675
2676#[unstable(feature = "sync_unsafe_cell", issue = "95439")]
2677#[cfg(not(feature = "ferrocene_certified"))]
2678unsafe impl<T: ?Sized + Sync> Sync for SyncUnsafeCell<T> {}
2679
2680#[unstable(feature = "sync_unsafe_cell", issue = "95439")]
2681#[cfg(not(feature = "ferrocene_certified"))]
2682impl<T> SyncUnsafeCell<T> {
2683    /// Constructs a new instance of `SyncUnsafeCell` which will wrap the specified value.
2684    #[inline]
2685    pub const fn new(value: T) -> Self {
2686        Self { value: UnsafeCell { value } }
2687    }
2688
2689    /// Unwraps the value, consuming the cell.
2690    #[inline]
2691    #[rustc_const_unstable(feature = "sync_unsafe_cell", issue = "95439")]
2692    pub const fn into_inner(self) -> T {
2693        self.value.into_inner()
2694    }
2695}
2696
2697#[unstable(feature = "sync_unsafe_cell", issue = "95439")]
2698#[cfg(not(feature = "ferrocene_certified"))]
2699impl<T: ?Sized> SyncUnsafeCell<T> {
2700    /// Gets a mutable pointer to the wrapped value.
2701    ///
2702    /// This can be cast to a pointer of any kind.
2703    /// Ensure that the access is unique (no active references, mutable or not)
2704    /// when casting to `&mut T`, and ensure that there are no mutations
2705    /// or mutable aliases going on when casting to `&T`
2706    #[inline]
2707    #[rustc_as_ptr]
2708    #[rustc_never_returns_null_ptr]
2709    pub const fn get(&self) -> *mut T {
2710        self.value.get()
2711    }
2712
2713    /// Returns a mutable reference to the underlying data.
2714    ///
2715    /// This call borrows the `SyncUnsafeCell` mutably (at compile-time) which
2716    /// guarantees that we possess the only reference.
2717    #[inline]
2718    pub const fn get_mut(&mut self) -> &mut T {
2719        self.value.get_mut()
2720    }
2721
2722    /// Gets a mutable pointer to the wrapped value.
2723    ///
2724    /// See [`UnsafeCell::get`] for details.
2725    #[inline]
2726    pub const fn raw_get(this: *const Self) -> *mut T {
2727        // We can just cast the pointer from `SyncUnsafeCell<T>` to `T` because
2728        // of #[repr(transparent)] on both SyncUnsafeCell and UnsafeCell.
2729        // See UnsafeCell::raw_get.
2730        this as *const T as *mut T
2731    }
2732}
2733
2734#[unstable(feature = "sync_unsafe_cell", issue = "95439")]
2735#[rustc_const_unstable(feature = "const_default", issue = "143894")]
2736#[cfg(not(feature = "ferrocene_certified"))]
2737impl<T: [const] Default> const Default for SyncUnsafeCell<T> {
2738    /// Creates an `SyncUnsafeCell`, with the `Default` value for T.
2739    fn default() -> SyncUnsafeCell<T> {
2740        SyncUnsafeCell::new(Default::default())
2741    }
2742}
2743
2744#[unstable(feature = "sync_unsafe_cell", issue = "95439")]
2745#[rustc_const_unstable(feature = "const_convert", issue = "143773")]
2746#[cfg(not(feature = "ferrocene_certified"))]
2747impl<T> const From<T> for SyncUnsafeCell<T> {
2748    /// Creates a new `SyncUnsafeCell<T>` containing the given value.
2749    fn from(t: T) -> SyncUnsafeCell<T> {
2750        SyncUnsafeCell::new(t)
2751    }
2752}
2753
2754#[unstable(feature = "coerce_unsized", issue = "18598")]
2755//#[unstable(feature = "sync_unsafe_cell", issue = "95439")]
2756#[cfg(not(feature = "ferrocene_certified"))]
2757impl<T: CoerceUnsized<U>, U> CoerceUnsized<SyncUnsafeCell<U>> for SyncUnsafeCell<T> {}
2758
2759// Allow types that wrap `SyncUnsafeCell` to also implement `DispatchFromDyn`
2760// and become dyn-compatible method receivers.
2761// Note that currently `SyncUnsafeCell` itself cannot be a method receiver
2762// because it does not implement Deref.
2763// In other words:
2764// `self: SyncUnsafeCell<&Self>` won't work
2765// `self: SyncUnsafeCellWrapper<Self>` becomes possible
2766#[unstable(feature = "dispatch_from_dyn", issue = "none")]
2767//#[unstable(feature = "sync_unsafe_cell", issue = "95439")]
2768#[cfg(not(feature = "ferrocene_certified"))]
2769impl<T: DispatchFromDyn<U>, U> DispatchFromDyn<SyncUnsafeCell<U>> for SyncUnsafeCell<T> {}
2770
2771#[allow(unused)]
2772#[cfg(not(feature = "ferrocene_certified"))]
2773fn assert_coerce_unsized(
2774    a: UnsafeCell<&i32>,
2775    b: SyncUnsafeCell<&i32>,
2776    c: Cell<&i32>,
2777    d: RefCell<&i32>,
2778) {
2779    let _: UnsafeCell<&dyn Send> = a;
2780    let _: SyncUnsafeCell<&dyn Send> = b;
2781    let _: Cell<&dyn Send> = c;
2782    let _: RefCell<&dyn Send> = d;
2783}
2784
2785#[unstable(feature = "pin_coerce_unsized_trait", issue = "123430")]
2786#[cfg(not(feature = "ferrocene_certified"))]
2787unsafe impl<T: ?Sized> PinCoerceUnsized for UnsafeCell<T> {}
2788
2789#[unstable(feature = "pin_coerce_unsized_trait", issue = "123430")]
2790#[cfg(not(feature = "ferrocene_certified"))]
2791unsafe impl<T: ?Sized> PinCoerceUnsized for SyncUnsafeCell<T> {}
2792
2793#[unstable(feature = "pin_coerce_unsized_trait", issue = "123430")]
2794#[cfg(not(feature = "ferrocene_certified"))]
2795unsafe impl<T: ?Sized> PinCoerceUnsized for Cell<T> {}
2796
2797#[unstable(feature = "pin_coerce_unsized_trait", issue = "123430")]
2798#[cfg(not(feature = "ferrocene_certified"))]
2799unsafe impl<T: ?Sized> PinCoerceUnsized for RefCell<T> {}
2800
2801#[unstable(feature = "pin_coerce_unsized_trait", issue = "123430")]
2802#[cfg(not(feature = "ferrocene_certified"))]
2803unsafe impl<'b, T: ?Sized> PinCoerceUnsized for Ref<'b, T> {}
2804
2805#[unstable(feature = "pin_coerce_unsized_trait", issue = "123430")]
2806#[cfg(not(feature = "ferrocene_certified"))]
2807unsafe impl<'b, T: ?Sized> PinCoerceUnsized for RefMut<'b, T> {}