core/char/methods.rs
1//! impl char {}
2
3use super::*;
4use crate::panic::const_panic;
5use crate::slice;
6use crate::str::from_utf8_unchecked_mut;
7use crate::ub_checks::assert_unsafe_precondition;
8use crate::unicode::printable::is_printable;
9use crate::unicode::{self, conversions};
10
11impl char {
12 /// The lowest valid code point a `char` can have, `'\0'`.
13 ///
14 /// Unlike integer types, `char` actually has a gap in the middle,
15 /// meaning that the range of possible `char`s is smaller than you
16 /// might expect. Ranges of `char` will automatically hop this gap
17 /// for you:
18 ///
19 /// ```
20 /// let dist = u32::from(char::MAX) - u32::from(char::MIN);
21 /// let size = (char::MIN..=char::MAX).count() as u32;
22 /// assert!(size < dist);
23 /// ```
24 ///
25 /// Despite this gap, the `MIN` and [`MAX`] values can be used as bounds for
26 /// all `char` values.
27 ///
28 /// [`MAX`]: char::MAX
29 ///
30 /// # Examples
31 ///
32 /// ```
33 /// # fn something_which_returns_char() -> char { 'a' }
34 /// let c: char = something_which_returns_char();
35 /// assert!(char::MIN <= c);
36 ///
37 /// let value_at_min = u32::from(char::MIN);
38 /// assert_eq!(char::from_u32(value_at_min), Some('\0'));
39 /// ```
40 #[stable(feature = "char_min", since = "1.83.0")]
41 pub const MIN: char = '\0';
42
43 /// The highest valid code point a `char` can have, `'\u{10FFFF}'`.
44 ///
45 /// Unlike integer types, `char` actually has a gap in the middle,
46 /// meaning that the range of possible `char`s is smaller than you
47 /// might expect. Ranges of `char` will automatically hop this gap
48 /// for you:
49 ///
50 /// ```
51 /// let dist = u32::from(char::MAX) - u32::from(char::MIN);
52 /// let size = (char::MIN..=char::MAX).count() as u32;
53 /// assert!(size < dist);
54 /// ```
55 ///
56 /// Despite this gap, the [`MIN`] and `MAX` values can be used as bounds for
57 /// all `char` values.
58 ///
59 /// [`MIN`]: char::MIN
60 ///
61 /// # Examples
62 ///
63 /// ```
64 /// # fn something_which_returns_char() -> char { 'a' }
65 /// let c: char = something_which_returns_char();
66 /// assert!(c <= char::MAX);
67 ///
68 /// let value_at_max = u32::from(char::MAX);
69 /// assert_eq!(char::from_u32(value_at_max), Some('\u{10FFFF}'));
70 /// assert_eq!(char::from_u32(value_at_max + 1), None);
71 /// ```
72 #[stable(feature = "assoc_char_consts", since = "1.52.0")]
73 pub const MAX: char = '\u{10FFFF}';
74
75 /// The maximum number of bytes required to [encode](char::encode_utf8) a `char` to
76 /// UTF-8 encoding.
77 #[unstable(feature = "char_max_len", issue = "121714")]
78 pub const MAX_LEN_UTF8: usize = 4;
79
80 /// The maximum number of two-byte units required to [encode](char::encode_utf16) a `char`
81 /// to UTF-16 encoding.
82 #[unstable(feature = "char_max_len", issue = "121714")]
83 pub const MAX_LEN_UTF16: usize = 2;
84
85 /// `U+FFFD REPLACEMENT CHARACTER` (�) is used in Unicode to represent a
86 /// decoding error.
87 ///
88 /// It can occur, for example, when giving ill-formed UTF-8 bytes to
89 /// [`String::from_utf8_lossy`](../std/string/struct.String.html#method.from_utf8_lossy).
90 #[stable(feature = "assoc_char_consts", since = "1.52.0")]
91 pub const REPLACEMENT_CHARACTER: char = '\u{FFFD}';
92
93 /// The version of [Unicode](https://www.unicode.org/) that the Unicode parts of
94 /// `char` and `str` methods are based on.
95 ///
96 /// New versions of Unicode are released regularly and subsequently all methods
97 /// in the standard library depending on Unicode are updated. Therefore the
98 /// behavior of some `char` and `str` methods and the value of this constant
99 /// changes over time. This is *not* considered to be a breaking change.
100 ///
101 /// The version numbering scheme is explained in
102 /// [Unicode 11.0 or later, Section 3.1 Versions of the Unicode Standard](https://www.unicode.org/versions/Unicode11.0.0/ch03.pdf#page=4).
103 #[stable(feature = "assoc_char_consts", since = "1.52.0")]
104 pub const UNICODE_VERSION: (u8, u8, u8) = crate::unicode::UNICODE_VERSION;
105
106 /// Creates an iterator over the native endian UTF-16 encoded code points in `iter`,
107 /// returning unpaired surrogates as `Err`s.
108 ///
109 /// # Examples
110 ///
111 /// Basic usage:
112 ///
113 /// ```
114 /// // 𝄞mus<invalid>ic<invalid>
115 /// let v = [
116 /// 0xD834, 0xDD1E, 0x006d, 0x0075, 0x0073, 0xDD1E, 0x0069, 0x0063, 0xD834,
117 /// ];
118 ///
119 /// assert_eq!(
120 /// char::decode_utf16(v)
121 /// .map(|r| r.map_err(|e| e.unpaired_surrogate()))
122 /// .collect::<Vec<_>>(),
123 /// vec![
124 /// Ok('𝄞'),
125 /// Ok('m'), Ok('u'), Ok('s'),
126 /// Err(0xDD1E),
127 /// Ok('i'), Ok('c'),
128 /// Err(0xD834)
129 /// ]
130 /// );
131 /// ```
132 ///
133 /// A lossy decoder can be obtained by replacing `Err` results with the replacement character:
134 ///
135 /// ```
136 /// // 𝄞mus<invalid>ic<invalid>
137 /// let v = [
138 /// 0xD834, 0xDD1E, 0x006d, 0x0075, 0x0073, 0xDD1E, 0x0069, 0x0063, 0xD834,
139 /// ];
140 ///
141 /// assert_eq!(
142 /// char::decode_utf16(v)
143 /// .map(|r| r.unwrap_or(char::REPLACEMENT_CHARACTER))
144 /// .collect::<String>(),
145 /// "𝄞mus�ic�"
146 /// );
147 /// ```
148 #[stable(feature = "assoc_char_funcs", since = "1.52.0")]
149 #[inline]
150 pub fn decode_utf16<I: IntoIterator<Item = u16>>(iter: I) -> DecodeUtf16<I::IntoIter> {
151 super::decode::decode_utf16(iter)
152 }
153
154 /// Converts a `u32` to a `char`.
155 ///
156 /// Note that all `char`s are valid [`u32`]s, and can be cast to one with
157 /// [`as`](../std/keyword.as.html):
158 ///
159 /// ```
160 /// let c = '💯';
161 /// let i = c as u32;
162 ///
163 /// assert_eq!(128175, i);
164 /// ```
165 ///
166 /// However, the reverse is not true: not all valid [`u32`]s are valid
167 /// `char`s. `from_u32()` will return `None` if the input is not a valid value
168 /// for a `char`.
169 ///
170 /// For an unsafe version of this function which ignores these checks, see
171 /// [`from_u32_unchecked`].
172 ///
173 /// [`from_u32_unchecked`]: #method.from_u32_unchecked
174 ///
175 /// # Examples
176 ///
177 /// Basic usage:
178 ///
179 /// ```
180 /// let c = char::from_u32(0x2764);
181 ///
182 /// assert_eq!(Some('❤'), c);
183 /// ```
184 ///
185 /// Returning `None` when the input is not a valid `char`:
186 ///
187 /// ```
188 /// let c = char::from_u32(0x110000);
189 ///
190 /// assert_eq!(None, c);
191 /// ```
192 #[stable(feature = "assoc_char_funcs", since = "1.52.0")]
193 #[rustc_const_stable(feature = "const_char_convert", since = "1.67.0")]
194 #[must_use]
195 #[inline]
196 pub const fn from_u32(i: u32) -> Option<char> {
197 super::convert::from_u32(i)
198 }
199
200 /// Converts a `u32` to a `char`, ignoring validity.
201 ///
202 /// Note that all `char`s are valid [`u32`]s, and can be cast to one with
203 /// `as`:
204 ///
205 /// ```
206 /// let c = '💯';
207 /// let i = c as u32;
208 ///
209 /// assert_eq!(128175, i);
210 /// ```
211 ///
212 /// However, the reverse is not true: not all valid [`u32`]s are valid
213 /// `char`s. `from_u32_unchecked()` will ignore this, and blindly cast to
214 /// `char`, possibly creating an invalid one.
215 ///
216 /// # Safety
217 ///
218 /// This function is unsafe, as it may construct invalid `char` values.
219 ///
220 /// For a safe version of this function, see the [`from_u32`] function.
221 ///
222 /// [`from_u32`]: #method.from_u32
223 ///
224 /// # Examples
225 ///
226 /// Basic usage:
227 ///
228 /// ```
229 /// let c = unsafe { char::from_u32_unchecked(0x2764) };
230 ///
231 /// assert_eq!('❤', c);
232 /// ```
233 #[stable(feature = "assoc_char_funcs", since = "1.52.0")]
234 #[rustc_const_stable(feature = "const_char_from_u32_unchecked", since = "1.81.0")]
235 #[must_use]
236 #[inline]
237 pub const unsafe fn from_u32_unchecked(i: u32) -> char {
238 // SAFETY: the safety contract must be upheld by the caller.
239 unsafe { super::convert::from_u32_unchecked(i) }
240 }
241
242 /// Converts a digit in the given radix to a `char`.
243 ///
244 /// A 'radix' here is sometimes also called a 'base'. A radix of two
245 /// indicates a binary number, a radix of ten, decimal, and a radix of
246 /// sixteen, hexadecimal, to give some common values. Arbitrary
247 /// radices are supported.
248 ///
249 /// `from_digit()` will return `None` if the input is not a digit in
250 /// the given radix.
251 ///
252 /// # Panics
253 ///
254 /// Panics if given a radix larger than 36.
255 ///
256 /// # Examples
257 ///
258 /// Basic usage:
259 ///
260 /// ```
261 /// let c = char::from_digit(4, 10);
262 ///
263 /// assert_eq!(Some('4'), c);
264 ///
265 /// // Decimal 11 is a single digit in base 16
266 /// let c = char::from_digit(11, 16);
267 ///
268 /// assert_eq!(Some('b'), c);
269 /// ```
270 ///
271 /// Returning `None` when the input is not a digit:
272 ///
273 /// ```
274 /// let c = char::from_digit(20, 10);
275 ///
276 /// assert_eq!(None, c);
277 /// ```
278 ///
279 /// Passing a large radix, causing a panic:
280 ///
281 /// ```should_panic
282 /// // this panics
283 /// let _c = char::from_digit(1, 37);
284 /// ```
285 #[stable(feature = "assoc_char_funcs", since = "1.52.0")]
286 #[rustc_const_stable(feature = "const_char_convert", since = "1.67.0")]
287 #[must_use]
288 #[inline]
289 pub const fn from_digit(num: u32, radix: u32) -> Option<char> {
290 super::convert::from_digit(num, radix)
291 }
292
293 /// Checks if a `char` is a digit in the given radix.
294 ///
295 /// A 'radix' here is sometimes also called a 'base'. A radix of two
296 /// indicates a binary number, a radix of ten, decimal, and a radix of
297 /// sixteen, hexadecimal, to give some common values. Arbitrary
298 /// radices are supported.
299 ///
300 /// Compared to [`is_numeric()`], this function only recognizes the characters
301 /// `0-9`, `a-z` and `A-Z`.
302 ///
303 /// 'Digit' is defined to be only the following characters:
304 ///
305 /// * `0-9`
306 /// * `a-z`
307 /// * `A-Z`
308 ///
309 /// For a more comprehensive understanding of 'digit', see [`is_numeric()`].
310 ///
311 /// [`is_numeric()`]: #method.is_numeric
312 ///
313 /// # Panics
314 ///
315 /// Panics if given a radix smaller than 2 or larger than 36.
316 ///
317 /// # Examples
318 ///
319 /// Basic usage:
320 ///
321 /// ```
322 /// assert!('1'.is_digit(10));
323 /// assert!('f'.is_digit(16));
324 /// assert!(!'f'.is_digit(10));
325 /// ```
326 ///
327 /// Passing a large radix, causing a panic:
328 ///
329 /// ```should_panic
330 /// // this panics
331 /// '1'.is_digit(37);
332 /// ```
333 ///
334 /// Passing a small radix, causing a panic:
335 ///
336 /// ```should_panic
337 /// // this panics
338 /// '1'.is_digit(1);
339 /// ```
340 #[stable(feature = "rust1", since = "1.0.0")]
341 #[rustc_const_stable(feature = "const_char_classify", since = "1.87.0")]
342 #[inline]
343 pub const fn is_digit(self, radix: u32) -> bool {
344 self.to_digit(radix).is_some()
345 }
346
347 /// Converts a `char` to a digit in the given radix.
348 ///
349 /// A 'radix' here is sometimes also called a 'base'. A radix of two
350 /// indicates a binary number, a radix of ten, decimal, and a radix of
351 /// sixteen, hexadecimal, to give some common values. Arbitrary
352 /// radices are supported.
353 ///
354 /// 'Digit' is defined to be only the following characters:
355 ///
356 /// * `0-9`
357 /// * `a-z`
358 /// * `A-Z`
359 ///
360 /// # Errors
361 ///
362 /// Returns `None` if the `char` does not refer to a digit in the given radix.
363 ///
364 /// # Panics
365 ///
366 /// Panics if given a radix smaller than 2 or larger than 36.
367 ///
368 /// # Examples
369 ///
370 /// Basic usage:
371 ///
372 /// ```
373 /// assert_eq!('1'.to_digit(10), Some(1));
374 /// assert_eq!('f'.to_digit(16), Some(15));
375 /// ```
376 ///
377 /// Passing a non-digit results in failure:
378 ///
379 /// ```
380 /// assert_eq!('f'.to_digit(10), None);
381 /// assert_eq!('z'.to_digit(16), None);
382 /// ```
383 ///
384 /// Passing a large radix, causing a panic:
385 ///
386 /// ```should_panic
387 /// // this panics
388 /// let _ = '1'.to_digit(37);
389 /// ```
390 /// Passing a small radix, causing a panic:
391 ///
392 /// ```should_panic
393 /// // this panics
394 /// let _ = '1'.to_digit(1);
395 /// ```
396 #[stable(feature = "rust1", since = "1.0.0")]
397 #[rustc_const_stable(feature = "const_char_convert", since = "1.67.0")]
398 #[rustc_diagnostic_item = "char_to_digit"]
399 #[must_use = "this returns the result of the operation, \
400 without modifying the original"]
401 #[inline]
402 pub const fn to_digit(self, radix: u32) -> Option<u32> {
403 assert!(
404 radix >= 2 && radix <= 36,
405 "to_digit: invalid radix -- radix must be in the range 2 to 36 inclusive"
406 );
407 // check radix to remove letter handling code when radix is a known constant
408 let value = if self > '9' && radix > 10 {
409 // mask to convert ASCII letters to uppercase
410 const TO_UPPERCASE_MASK: u32 = !0b0010_0000;
411 // Converts an ASCII letter to its corresponding integer value:
412 // A-Z => 10-35, a-z => 10-35. Other characters produce values >= 36.
413 //
414 // Add Overflow Safety:
415 // By applying the mask after the subtraction, the first addendum is
416 // constrained such that it never exceeds u32::MAX - 0x20.
417 ((self as u32).wrapping_sub('A' as u32) & TO_UPPERCASE_MASK) + 10
418 } else {
419 // convert digit to value, non-digits wrap to values > 36
420 (self as u32).wrapping_sub('0' as u32)
421 };
422 // FIXME(const-hack): once then_some is const fn, use it here
423 if value < radix { Some(value) } else { None }
424 }
425
426 /// Returns an iterator that yields the hexadecimal Unicode escape of a
427 /// character as `char`s.
428 ///
429 /// This will escape characters with the Rust syntax of the form
430 /// `\u{NNNNNN}` where `NNNNNN` is a hexadecimal representation.
431 ///
432 /// # Examples
433 ///
434 /// As an iterator:
435 ///
436 /// ```
437 /// for c in '❤'.escape_unicode() {
438 /// print!("{c}");
439 /// }
440 /// println!();
441 /// ```
442 ///
443 /// Using `println!` directly:
444 ///
445 /// ```
446 /// println!("{}", '❤'.escape_unicode());
447 /// ```
448 ///
449 /// Both are equivalent to:
450 ///
451 /// ```
452 /// println!("\\u{{2764}}");
453 /// ```
454 ///
455 /// Using [`to_string`](../std/string/trait.ToString.html#tymethod.to_string):
456 ///
457 /// ```
458 /// assert_eq!('❤'.escape_unicode().to_string(), "\\u{2764}");
459 /// ```
460 #[must_use = "this returns the escaped char as an iterator, \
461 without modifying the original"]
462 #[stable(feature = "rust1", since = "1.0.0")]
463 #[inline]
464 pub fn escape_unicode(self) -> EscapeUnicode {
465 EscapeUnicode::new(self)
466 }
467
468 /// An extended version of `escape_debug` that optionally permits escaping
469 /// Extended Grapheme codepoints, single quotes, and double quotes. This
470 /// allows us to format characters like nonspacing marks better when they're
471 /// at the start of a string, and allows escaping single quotes in
472 /// characters, and double quotes in strings.
473 #[inline]
474 pub(crate) fn escape_debug_ext(self, args: EscapeDebugExtArgs) -> EscapeDebug {
475 match self {
476 '\0' => EscapeDebug::backslash(ascii::Char::Digit0),
477 '\t' => EscapeDebug::backslash(ascii::Char::SmallT),
478 '\r' => EscapeDebug::backslash(ascii::Char::SmallR),
479 '\n' => EscapeDebug::backslash(ascii::Char::SmallN),
480 '\\' => EscapeDebug::backslash(ascii::Char::ReverseSolidus),
481 '\"' if args.escape_double_quote => EscapeDebug::backslash(ascii::Char::QuotationMark),
482 '\'' if args.escape_single_quote => EscapeDebug::backslash(ascii::Char::Apostrophe),
483 _ if args.escape_grapheme_extended && self.is_grapheme_extended() => {
484 EscapeDebug::unicode(self)
485 }
486 _ if is_printable(self) => EscapeDebug::printable(self),
487 _ => EscapeDebug::unicode(self),
488 }
489 }
490
491 /// Returns an iterator that yields the literal escape code of a character
492 /// as `char`s.
493 ///
494 /// This will escape the characters similar to the [`Debug`](core::fmt::Debug) implementations
495 /// of `str` or `char`.
496 ///
497 /// # Examples
498 ///
499 /// As an iterator:
500 ///
501 /// ```
502 /// for c in '\n'.escape_debug() {
503 /// print!("{c}");
504 /// }
505 /// println!();
506 /// ```
507 ///
508 /// Using `println!` directly:
509 ///
510 /// ```
511 /// println!("{}", '\n'.escape_debug());
512 /// ```
513 ///
514 /// Both are equivalent to:
515 ///
516 /// ```
517 /// println!("\\n");
518 /// ```
519 ///
520 /// Using [`to_string`](../std/string/trait.ToString.html#tymethod.to_string):
521 ///
522 /// ```
523 /// assert_eq!('\n'.escape_debug().to_string(), "\\n");
524 /// ```
525 #[must_use = "this returns the escaped char as an iterator, \
526 without modifying the original"]
527 #[stable(feature = "char_escape_debug", since = "1.20.0")]
528 #[inline]
529 pub fn escape_debug(self) -> EscapeDebug {
530 self.escape_debug_ext(EscapeDebugExtArgs::ESCAPE_ALL)
531 }
532
533 /// Returns an iterator that yields the literal escape code of a character
534 /// as `char`s.
535 ///
536 /// The default is chosen with a bias toward producing literals that are
537 /// legal in a variety of languages, including C++11 and similar C-family
538 /// languages. The exact rules are:
539 ///
540 /// * Tab is escaped as `\t`.
541 /// * Carriage return is escaped as `\r`.
542 /// * Line feed is escaped as `\n`.
543 /// * Single quote is escaped as `\'`.
544 /// * Double quote is escaped as `\"`.
545 /// * Backslash is escaped as `\\`.
546 /// * Any character in the 'printable ASCII' range `0x20` .. `0x7e`
547 /// inclusive is not escaped.
548 /// * All other characters are given hexadecimal Unicode escapes; see
549 /// [`escape_unicode`].
550 ///
551 /// [`escape_unicode`]: #method.escape_unicode
552 ///
553 /// # Examples
554 ///
555 /// As an iterator:
556 ///
557 /// ```
558 /// for c in '"'.escape_default() {
559 /// print!("{c}");
560 /// }
561 /// println!();
562 /// ```
563 ///
564 /// Using `println!` directly:
565 ///
566 /// ```
567 /// println!("{}", '"'.escape_default());
568 /// ```
569 ///
570 /// Both are equivalent to:
571 ///
572 /// ```
573 /// println!("\\\"");
574 /// ```
575 ///
576 /// Using [`to_string`](../std/string/trait.ToString.html#tymethod.to_string):
577 ///
578 /// ```
579 /// assert_eq!('"'.escape_default().to_string(), "\\\"");
580 /// ```
581 #[must_use = "this returns the escaped char as an iterator, \
582 without modifying the original"]
583 #[stable(feature = "rust1", since = "1.0.0")]
584 #[inline]
585 pub fn escape_default(self) -> EscapeDefault {
586 match self {
587 '\t' => EscapeDefault::backslash(ascii::Char::SmallT),
588 '\r' => EscapeDefault::backslash(ascii::Char::SmallR),
589 '\n' => EscapeDefault::backslash(ascii::Char::SmallN),
590 '\\' | '\'' | '\"' => EscapeDefault::backslash(self.as_ascii().unwrap()),
591 '\x20'..='\x7e' => EscapeDefault::printable(self.as_ascii().unwrap()),
592 _ => EscapeDefault::unicode(self),
593 }
594 }
595
596 /// Returns the number of bytes this `char` would need if encoded in UTF-8.
597 ///
598 /// That number of bytes is always between 1 and 4, inclusive.
599 ///
600 /// # Examples
601 ///
602 /// Basic usage:
603 ///
604 /// ```
605 /// let len = 'A'.len_utf8();
606 /// assert_eq!(len, 1);
607 ///
608 /// let len = 'ß'.len_utf8();
609 /// assert_eq!(len, 2);
610 ///
611 /// let len = 'ℝ'.len_utf8();
612 /// assert_eq!(len, 3);
613 ///
614 /// let len = '💣'.len_utf8();
615 /// assert_eq!(len, 4);
616 /// ```
617 ///
618 /// The `&str` type guarantees that its contents are UTF-8, and so we can compare the length it
619 /// would take if each code point was represented as a `char` vs in the `&str` itself:
620 ///
621 /// ```
622 /// // as chars
623 /// let eastern = '東';
624 /// let capital = '京';
625 ///
626 /// // both can be represented as three bytes
627 /// assert_eq!(3, eastern.len_utf8());
628 /// assert_eq!(3, capital.len_utf8());
629 ///
630 /// // as a &str, these two are encoded in UTF-8
631 /// let tokyo = "東京";
632 ///
633 /// let len = eastern.len_utf8() + capital.len_utf8();
634 ///
635 /// // we can see that they take six bytes total...
636 /// assert_eq!(6, tokyo.len());
637 ///
638 /// // ... just like the &str
639 /// assert_eq!(len, tokyo.len());
640 /// ```
641 #[stable(feature = "rust1", since = "1.0.0")]
642 #[rustc_const_stable(feature = "const_char_len_utf", since = "1.52.0")]
643 #[inline]
644 #[must_use]
645 pub const fn len_utf8(self) -> usize {
646 len_utf8(self as u32)
647 }
648
649 /// Returns the number of 16-bit code units this `char` would need if
650 /// encoded in UTF-16.
651 ///
652 /// That number of code units is always either 1 or 2, for unicode scalar values in
653 /// the [basic multilingual plane] or [supplementary planes] respectively.
654 ///
655 /// See the documentation for [`len_utf8()`] for more explanation of this
656 /// concept. This function is a mirror, but for UTF-16 instead of UTF-8.
657 ///
658 /// [basic multilingual plane]: http://www.unicode.org/glossary/#basic_multilingual_plane
659 /// [supplementary planes]: http://www.unicode.org/glossary/#supplementary_planes
660 /// [`len_utf8()`]: #method.len_utf8
661 ///
662 /// # Examples
663 ///
664 /// Basic usage:
665 ///
666 /// ```
667 /// let n = 'ß'.len_utf16();
668 /// assert_eq!(n, 1);
669 ///
670 /// let len = '💣'.len_utf16();
671 /// assert_eq!(len, 2);
672 /// ```
673 #[stable(feature = "rust1", since = "1.0.0")]
674 #[rustc_const_stable(feature = "const_char_len_utf", since = "1.52.0")]
675 #[inline]
676 #[must_use]
677 pub const fn len_utf16(self) -> usize {
678 len_utf16(self as u32)
679 }
680
681 /// Encodes this character as UTF-8 into the provided byte buffer,
682 /// and then returns the subslice of the buffer that contains the encoded character.
683 ///
684 /// # Panics
685 ///
686 /// Panics if the buffer is not large enough.
687 /// A buffer of length four is large enough to encode any `char`.
688 ///
689 /// # Examples
690 ///
691 /// In both of these examples, 'ß' takes two bytes to encode.
692 ///
693 /// ```
694 /// let mut b = [0; 2];
695 ///
696 /// let result = 'ß'.encode_utf8(&mut b);
697 ///
698 /// assert_eq!(result, "ß");
699 ///
700 /// assert_eq!(result.len(), 2);
701 /// ```
702 ///
703 /// A buffer that's too small:
704 ///
705 /// ```should_panic
706 /// let mut b = [0; 1];
707 ///
708 /// // this panics
709 /// 'ß'.encode_utf8(&mut b);
710 /// ```
711 #[stable(feature = "unicode_encode_char", since = "1.15.0")]
712 #[rustc_const_stable(feature = "const_char_encode_utf8", since = "1.83.0")]
713 #[inline]
714 pub const fn encode_utf8(self, dst: &mut [u8]) -> &mut str {
715 // SAFETY: `char` is not a surrogate, so this is valid UTF-8.
716 unsafe { from_utf8_unchecked_mut(encode_utf8_raw(self as u32, dst)) }
717 }
718
719 /// Encodes this character as native endian UTF-16 into the provided `u16` buffer,
720 /// and then returns the subslice of the buffer that contains the encoded character.
721 ///
722 /// # Panics
723 ///
724 /// Panics if the buffer is not large enough.
725 /// A buffer of length 2 is large enough to encode any `char`.
726 ///
727 /// # Examples
728 ///
729 /// In both of these examples, '𝕊' takes two `u16`s to encode.
730 ///
731 /// ```
732 /// let mut b = [0; 2];
733 ///
734 /// let result = '𝕊'.encode_utf16(&mut b);
735 ///
736 /// assert_eq!(result.len(), 2);
737 /// ```
738 ///
739 /// A buffer that's too small:
740 ///
741 /// ```should_panic
742 /// let mut b = [0; 1];
743 ///
744 /// // this panics
745 /// '𝕊'.encode_utf16(&mut b);
746 /// ```
747 #[stable(feature = "unicode_encode_char", since = "1.15.0")]
748 #[rustc_const_stable(feature = "const_char_encode_utf16", since = "1.84.0")]
749 #[inline]
750 pub const fn encode_utf16(self, dst: &mut [u16]) -> &mut [u16] {
751 encode_utf16_raw(self as u32, dst)
752 }
753
754 /// Returns `true` if this `char` has the `Alphabetic` property.
755 ///
756 /// `Alphabetic` is described in Chapter 4 (Character Properties) of the [Unicode Standard] and
757 /// specified in the [Unicode Character Database][ucd] [`DerivedCoreProperties.txt`].
758 ///
759 /// [Unicode Standard]: https://www.unicode.org/versions/latest/
760 /// [ucd]: https://www.unicode.org/reports/tr44/
761 /// [`DerivedCoreProperties.txt`]: https://www.unicode.org/Public/UCD/latest/ucd/DerivedCoreProperties.txt
762 ///
763 /// # Examples
764 ///
765 /// Basic usage:
766 ///
767 /// ```
768 /// assert!('a'.is_alphabetic());
769 /// assert!('京'.is_alphabetic());
770 ///
771 /// let c = '💝';
772 /// // love is many things, but it is not alphabetic
773 /// assert!(!c.is_alphabetic());
774 /// ```
775 #[must_use]
776 #[stable(feature = "rust1", since = "1.0.0")]
777 #[inline]
778 pub fn is_alphabetic(self) -> bool {
779 match self {
780 'a'..='z' | 'A'..='Z' => true,
781 c => c > '\x7f' && unicode::Alphabetic(c),
782 }
783 }
784
785 /// Returns `true` if this `char` has the `Lowercase` property.
786 ///
787 /// `Lowercase` is described in Chapter 4 (Character Properties) of the [Unicode Standard] and
788 /// specified in the [Unicode Character Database][ucd] [`DerivedCoreProperties.txt`].
789 ///
790 /// [Unicode Standard]: https://www.unicode.org/versions/latest/
791 /// [ucd]: https://www.unicode.org/reports/tr44/
792 /// [`DerivedCoreProperties.txt`]: https://www.unicode.org/Public/UCD/latest/ucd/DerivedCoreProperties.txt
793 ///
794 /// # Examples
795 ///
796 /// Basic usage:
797 ///
798 /// ```
799 /// assert!('a'.is_lowercase());
800 /// assert!('δ'.is_lowercase());
801 /// assert!(!'A'.is_lowercase());
802 /// assert!(!'Δ'.is_lowercase());
803 ///
804 /// // The various Chinese scripts and punctuation do not have case, and so:
805 /// assert!(!'中'.is_lowercase());
806 /// assert!(!' '.is_lowercase());
807 /// ```
808 ///
809 /// In a const context:
810 ///
811 /// ```
812 /// const CAPITAL_DELTA_IS_LOWERCASE: bool = 'Δ'.is_lowercase();
813 /// assert!(!CAPITAL_DELTA_IS_LOWERCASE);
814 /// ```
815 #[must_use]
816 #[stable(feature = "rust1", since = "1.0.0")]
817 #[rustc_const_stable(feature = "const_unicode_case_lookup", since = "1.84.0")]
818 #[inline]
819 pub const fn is_lowercase(self) -> bool {
820 match self {
821 'a'..='z' => true,
822 c => c > '\x7f' && unicode::Lowercase(c),
823 }
824 }
825
826 /// Returns `true` if this `char` has the `Uppercase` property.
827 ///
828 /// `Uppercase` is described in Chapter 4 (Character Properties) of the [Unicode Standard] and
829 /// specified in the [Unicode Character Database][ucd] [`DerivedCoreProperties.txt`].
830 ///
831 /// [Unicode Standard]: https://www.unicode.org/versions/latest/
832 /// [ucd]: https://www.unicode.org/reports/tr44/
833 /// [`DerivedCoreProperties.txt`]: https://www.unicode.org/Public/UCD/latest/ucd/DerivedCoreProperties.txt
834 ///
835 /// # Examples
836 ///
837 /// Basic usage:
838 ///
839 /// ```
840 /// assert!(!'a'.is_uppercase());
841 /// assert!(!'δ'.is_uppercase());
842 /// assert!('A'.is_uppercase());
843 /// assert!('Δ'.is_uppercase());
844 ///
845 /// // The various Chinese scripts and punctuation do not have case, and so:
846 /// assert!(!'中'.is_uppercase());
847 /// assert!(!' '.is_uppercase());
848 /// ```
849 ///
850 /// In a const context:
851 ///
852 /// ```
853 /// const CAPITAL_DELTA_IS_UPPERCASE: bool = 'Δ'.is_uppercase();
854 /// assert!(CAPITAL_DELTA_IS_UPPERCASE);
855 /// ```
856 #[must_use]
857 #[stable(feature = "rust1", since = "1.0.0")]
858 #[rustc_const_stable(feature = "const_unicode_case_lookup", since = "1.84.0")]
859 #[inline]
860 pub const fn is_uppercase(self) -> bool {
861 match self {
862 'A'..='Z' => true,
863 c => c > '\x7f' && unicode::Uppercase(c),
864 }
865 }
866
867 /// Returns `true` if this `char` has the `White_Space` property.
868 ///
869 /// `White_Space` is specified in the [Unicode Character Database][ucd] [`PropList.txt`].
870 ///
871 /// [ucd]: https://www.unicode.org/reports/tr44/
872 /// [`PropList.txt`]: https://www.unicode.org/Public/UCD/latest/ucd/PropList.txt
873 ///
874 /// # Examples
875 ///
876 /// Basic usage:
877 ///
878 /// ```
879 /// assert!(' '.is_whitespace());
880 ///
881 /// // line break
882 /// assert!('\n'.is_whitespace());
883 ///
884 /// // a non-breaking space
885 /// assert!('\u{A0}'.is_whitespace());
886 ///
887 /// assert!(!'越'.is_whitespace());
888 /// ```
889 #[must_use]
890 #[stable(feature = "rust1", since = "1.0.0")]
891 #[rustc_const_stable(feature = "const_char_classify", since = "1.87.0")]
892 #[inline]
893 pub const fn is_whitespace(self) -> bool {
894 match self {
895 ' ' | '\x09'..='\x0d' => true,
896 c => c > '\x7f' && unicode::White_Space(c),
897 }
898 }
899
900 /// Returns `true` if this `char` satisfies either [`is_alphabetic()`] or [`is_numeric()`].
901 ///
902 /// [`is_alphabetic()`]: #method.is_alphabetic
903 /// [`is_numeric()`]: #method.is_numeric
904 ///
905 /// # Examples
906 ///
907 /// Basic usage:
908 ///
909 /// ```
910 /// assert!('٣'.is_alphanumeric());
911 /// assert!('7'.is_alphanumeric());
912 /// assert!('৬'.is_alphanumeric());
913 /// assert!('¾'.is_alphanumeric());
914 /// assert!('①'.is_alphanumeric());
915 /// assert!('K'.is_alphanumeric());
916 /// assert!('و'.is_alphanumeric());
917 /// assert!('藏'.is_alphanumeric());
918 /// ```
919 #[must_use]
920 #[stable(feature = "rust1", since = "1.0.0")]
921 #[inline]
922 pub fn is_alphanumeric(self) -> bool {
923 self.is_alphabetic() || self.is_numeric()
924 }
925
926 /// Returns `true` if this `char` has the general category for control codes.
927 ///
928 /// Control codes (code points with the general category of `Cc`) are described in Chapter 4
929 /// (Character Properties) of the [Unicode Standard] and specified in the [Unicode Character
930 /// Database][ucd] [`UnicodeData.txt`].
931 ///
932 /// [Unicode Standard]: https://www.unicode.org/versions/latest/
933 /// [ucd]: https://www.unicode.org/reports/tr44/
934 /// [`UnicodeData.txt`]: https://www.unicode.org/Public/UCD/latest/ucd/UnicodeData.txt
935 ///
936 /// # Examples
937 ///
938 /// Basic usage:
939 ///
940 /// ```
941 /// // U+009C, STRING TERMINATOR
942 /// assert!(''.is_control());
943 /// assert!(!'q'.is_control());
944 /// ```
945 #[must_use]
946 #[stable(feature = "rust1", since = "1.0.0")]
947 #[inline]
948 pub fn is_control(self) -> bool {
949 unicode::Cc(self)
950 }
951
952 /// Returns `true` if this `char` has the `Grapheme_Extend` property.
953 ///
954 /// `Grapheme_Extend` is described in [Unicode Standard Annex #29 (Unicode Text
955 /// Segmentation)][uax29] and specified in the [Unicode Character Database][ucd]
956 /// [`DerivedCoreProperties.txt`].
957 ///
958 /// [uax29]: https://www.unicode.org/reports/tr29/
959 /// [ucd]: https://www.unicode.org/reports/tr44/
960 /// [`DerivedCoreProperties.txt`]: https://www.unicode.org/Public/UCD/latest/ucd/DerivedCoreProperties.txt
961 #[must_use]
962 #[inline]
963 pub(crate) fn is_grapheme_extended(self) -> bool {
964 unicode::Grapheme_Extend(self)
965 }
966
967 /// Returns `true` if this `char` has one of the general categories for numbers.
968 ///
969 /// The general categories for numbers (`Nd` for decimal digits, `Nl` for letter-like numeric
970 /// characters, and `No` for other numeric characters) are specified in the [Unicode Character
971 /// Database][ucd] [`UnicodeData.txt`].
972 ///
973 /// This method doesn't cover everything that could be considered a number, e.g. ideographic numbers like '三'.
974 /// If you want everything including characters with overlapping purposes then you might want to use
975 /// a unicode or language-processing library that exposes the appropriate character properties instead
976 /// of looking at the unicode categories.
977 ///
978 /// If you want to parse ASCII decimal digits (0-9) or ASCII base-N, use
979 /// `is_ascii_digit` or `is_digit` instead.
980 ///
981 /// [Unicode Standard]: https://www.unicode.org/versions/latest/
982 /// [ucd]: https://www.unicode.org/reports/tr44/
983 /// [`UnicodeData.txt`]: https://www.unicode.org/Public/UCD/latest/ucd/UnicodeData.txt
984 ///
985 /// # Examples
986 ///
987 /// Basic usage:
988 ///
989 /// ```
990 /// assert!('٣'.is_numeric());
991 /// assert!('7'.is_numeric());
992 /// assert!('৬'.is_numeric());
993 /// assert!('¾'.is_numeric());
994 /// assert!('①'.is_numeric());
995 /// assert!(!'K'.is_numeric());
996 /// assert!(!'و'.is_numeric());
997 /// assert!(!'藏'.is_numeric());
998 /// assert!(!'三'.is_numeric());
999 /// ```
1000 #[must_use]
1001 #[stable(feature = "rust1", since = "1.0.0")]
1002 #[inline]
1003 pub fn is_numeric(self) -> bool {
1004 match self {
1005 '0'..='9' => true,
1006 c => c > '\x7f' && unicode::N(c),
1007 }
1008 }
1009
1010 /// Returns an iterator that yields the lowercase mapping of this `char` as one or more
1011 /// `char`s.
1012 ///
1013 /// If this `char` does not have a lowercase mapping, the iterator yields the same `char`.
1014 ///
1015 /// If this `char` has a one-to-one lowercase mapping given by the [Unicode Character
1016 /// Database][ucd] [`UnicodeData.txt`], the iterator yields that `char`.
1017 ///
1018 /// [ucd]: https://www.unicode.org/reports/tr44/
1019 /// [`UnicodeData.txt`]: https://www.unicode.org/Public/UCD/latest/ucd/UnicodeData.txt
1020 ///
1021 /// If this `char` requires special considerations (e.g. multiple `char`s) the iterator yields
1022 /// the `char`(s) given by [`SpecialCasing.txt`].
1023 ///
1024 /// [`SpecialCasing.txt`]: https://www.unicode.org/Public/UCD/latest/ucd/SpecialCasing.txt
1025 ///
1026 /// This operation performs an unconditional mapping without tailoring. That is, the conversion
1027 /// is independent of context and language.
1028 ///
1029 /// In the [Unicode Standard], Chapter 4 (Character Properties) discusses case mapping in
1030 /// general and Chapter 3 (Conformance) discusses the default algorithm for case conversion.
1031 ///
1032 /// [Unicode Standard]: https://www.unicode.org/versions/latest/
1033 ///
1034 /// # Examples
1035 ///
1036 /// As an iterator:
1037 ///
1038 /// ```
1039 /// for c in 'İ'.to_lowercase() {
1040 /// print!("{c}");
1041 /// }
1042 /// println!();
1043 /// ```
1044 ///
1045 /// Using `println!` directly:
1046 ///
1047 /// ```
1048 /// println!("{}", 'İ'.to_lowercase());
1049 /// ```
1050 ///
1051 /// Both are equivalent to:
1052 ///
1053 /// ```
1054 /// println!("i\u{307}");
1055 /// ```
1056 ///
1057 /// Using [`to_string`](../std/string/trait.ToString.html#tymethod.to_string):
1058 ///
1059 /// ```
1060 /// assert_eq!('C'.to_lowercase().to_string(), "c");
1061 ///
1062 /// // Sometimes the result is more than one character:
1063 /// assert_eq!('İ'.to_lowercase().to_string(), "i\u{307}");
1064 ///
1065 /// // Characters that do not have both uppercase and lowercase
1066 /// // convert into themselves.
1067 /// assert_eq!('山'.to_lowercase().to_string(), "山");
1068 /// ```
1069 #[must_use = "this returns the lowercase character as a new iterator, \
1070 without modifying the original"]
1071 #[stable(feature = "rust1", since = "1.0.0")]
1072 #[inline]
1073 pub fn to_lowercase(self) -> ToLowercase {
1074 ToLowercase(CaseMappingIter::new(conversions::to_lower(self)))
1075 }
1076
1077 /// Returns an iterator that yields the uppercase mapping of this `char` as one or more
1078 /// `char`s.
1079 ///
1080 /// If this `char` does not have an uppercase mapping, the iterator yields the same `char`.
1081 ///
1082 /// If this `char` has a one-to-one uppercase mapping given by the [Unicode Character
1083 /// Database][ucd] [`UnicodeData.txt`], the iterator yields that `char`.
1084 ///
1085 /// [ucd]: https://www.unicode.org/reports/tr44/
1086 /// [`UnicodeData.txt`]: https://www.unicode.org/Public/UCD/latest/ucd/UnicodeData.txt
1087 ///
1088 /// If this `char` requires special considerations (e.g. multiple `char`s) the iterator yields
1089 /// the `char`(s) given by [`SpecialCasing.txt`].
1090 ///
1091 /// [`SpecialCasing.txt`]: https://www.unicode.org/Public/UCD/latest/ucd/SpecialCasing.txt
1092 ///
1093 /// This operation performs an unconditional mapping without tailoring. That is, the conversion
1094 /// is independent of context and language.
1095 ///
1096 /// In the [Unicode Standard], Chapter 4 (Character Properties) discusses case mapping in
1097 /// general and Chapter 3 (Conformance) discusses the default algorithm for case conversion.
1098 ///
1099 /// [Unicode Standard]: https://www.unicode.org/versions/latest/
1100 ///
1101 /// # Examples
1102 ///
1103 /// As an iterator:
1104 ///
1105 /// ```
1106 /// for c in 'ß'.to_uppercase() {
1107 /// print!("{c}");
1108 /// }
1109 /// println!();
1110 /// ```
1111 ///
1112 /// Using `println!` directly:
1113 ///
1114 /// ```
1115 /// println!("{}", 'ß'.to_uppercase());
1116 /// ```
1117 ///
1118 /// Both are equivalent to:
1119 ///
1120 /// ```
1121 /// println!("SS");
1122 /// ```
1123 ///
1124 /// Using [`to_string`](../std/string/trait.ToString.html#tymethod.to_string):
1125 ///
1126 /// ```
1127 /// assert_eq!('c'.to_uppercase().to_string(), "C");
1128 ///
1129 /// // Sometimes the result is more than one character:
1130 /// assert_eq!('ß'.to_uppercase().to_string(), "SS");
1131 ///
1132 /// // Characters that do not have both uppercase and lowercase
1133 /// // convert into themselves.
1134 /// assert_eq!('山'.to_uppercase().to_string(), "山");
1135 /// ```
1136 ///
1137 /// # Note on locale
1138 ///
1139 /// In Turkish, the equivalent of 'i' in Latin has five forms instead of two:
1140 ///
1141 /// * 'Dotless': I / ı, sometimes written ï
1142 /// * 'Dotted': İ / i
1143 ///
1144 /// Note that the lowercase dotted 'i' is the same as the Latin. Therefore:
1145 ///
1146 /// ```
1147 /// let upper_i = 'i'.to_uppercase().to_string();
1148 /// ```
1149 ///
1150 /// The value of `upper_i` here relies on the language of the text: if we're
1151 /// in `en-US`, it should be `"I"`, but if we're in `tr_TR`, it should
1152 /// be `"İ"`. `to_uppercase()` does not take this into account, and so:
1153 ///
1154 /// ```
1155 /// let upper_i = 'i'.to_uppercase().to_string();
1156 ///
1157 /// assert_eq!(upper_i, "I");
1158 /// ```
1159 ///
1160 /// holds across languages.
1161 #[must_use = "this returns the uppercase character as a new iterator, \
1162 without modifying the original"]
1163 #[stable(feature = "rust1", since = "1.0.0")]
1164 #[inline]
1165 pub fn to_uppercase(self) -> ToUppercase {
1166 ToUppercase(CaseMappingIter::new(conversions::to_upper(self)))
1167 }
1168
1169 /// Checks if the value is within the ASCII range.
1170 ///
1171 /// # Examples
1172 ///
1173 /// ```
1174 /// let ascii = 'a';
1175 /// let non_ascii = '❤';
1176 ///
1177 /// assert!(ascii.is_ascii());
1178 /// assert!(!non_ascii.is_ascii());
1179 /// ```
1180 #[must_use]
1181 #[stable(feature = "ascii_methods_on_intrinsics", since = "1.23.0")]
1182 #[rustc_const_stable(feature = "const_char_is_ascii", since = "1.32.0")]
1183 #[rustc_diagnostic_item = "char_is_ascii"]
1184 #[inline]
1185 pub const fn is_ascii(&self) -> bool {
1186 *self as u32 <= 0x7F
1187 }
1188
1189 /// Returns `Some` if the value is within the ASCII range,
1190 /// or `None` if it's not.
1191 ///
1192 /// This is preferred to [`Self::is_ascii`] when you're passing the value
1193 /// along to something else that can take [`ascii::Char`] rather than
1194 /// needing to check again for itself whether the value is in ASCII.
1195 #[must_use]
1196 #[unstable(feature = "ascii_char", issue = "110998")]
1197 #[inline]
1198 pub const fn as_ascii(&self) -> Option<ascii::Char> {
1199 if self.is_ascii() {
1200 // SAFETY: Just checked that this is ASCII.
1201 Some(unsafe { ascii::Char::from_u8_unchecked(*self as u8) })
1202 } else {
1203 None
1204 }
1205 }
1206
1207 /// Converts this char into an [ASCII character](`ascii::Char`), without
1208 /// checking whether it is valid.
1209 ///
1210 /// # Safety
1211 ///
1212 /// This char must be within the ASCII range, or else this is UB.
1213 #[must_use]
1214 #[unstable(feature = "ascii_char", issue = "110998")]
1215 #[inline]
1216 pub const unsafe fn as_ascii_unchecked(&self) -> ascii::Char {
1217 assert_unsafe_precondition!(
1218 check_library_ub,
1219 "as_ascii_unchecked requires that the char is valid ASCII",
1220 (it: &char = self) => it.is_ascii()
1221 );
1222
1223 // SAFETY: the caller promised that this char is ASCII.
1224 unsafe { ascii::Char::from_u8_unchecked(*self as u8) }
1225 }
1226
1227 /// Makes a copy of the value in its ASCII upper case equivalent.
1228 ///
1229 /// ASCII letters 'a' to 'z' are mapped to 'A' to 'Z',
1230 /// but non-ASCII letters are unchanged.
1231 ///
1232 /// To uppercase the value in-place, use [`make_ascii_uppercase()`].
1233 ///
1234 /// To uppercase ASCII characters in addition to non-ASCII characters, use
1235 /// [`to_uppercase()`].
1236 ///
1237 /// # Examples
1238 ///
1239 /// ```
1240 /// let ascii = 'a';
1241 /// let non_ascii = '❤';
1242 ///
1243 /// assert_eq!('A', ascii.to_ascii_uppercase());
1244 /// assert_eq!('❤', non_ascii.to_ascii_uppercase());
1245 /// ```
1246 ///
1247 /// [`make_ascii_uppercase()`]: #method.make_ascii_uppercase
1248 /// [`to_uppercase()`]: #method.to_uppercase
1249 #[must_use = "to uppercase the value in-place, use `make_ascii_uppercase()`"]
1250 #[stable(feature = "ascii_methods_on_intrinsics", since = "1.23.0")]
1251 #[rustc_const_stable(feature = "const_ascii_methods_on_intrinsics", since = "1.52.0")]
1252 #[inline]
1253 pub const fn to_ascii_uppercase(&self) -> char {
1254 if self.is_ascii_lowercase() {
1255 (*self as u8).ascii_change_case_unchecked() as char
1256 } else {
1257 *self
1258 }
1259 }
1260
1261 /// Makes a copy of the value in its ASCII lower case equivalent.
1262 ///
1263 /// ASCII letters 'A' to 'Z' are mapped to 'a' to 'z',
1264 /// but non-ASCII letters are unchanged.
1265 ///
1266 /// To lowercase the value in-place, use [`make_ascii_lowercase()`].
1267 ///
1268 /// To lowercase ASCII characters in addition to non-ASCII characters, use
1269 /// [`to_lowercase()`].
1270 ///
1271 /// # Examples
1272 ///
1273 /// ```
1274 /// let ascii = 'A';
1275 /// let non_ascii = '❤';
1276 ///
1277 /// assert_eq!('a', ascii.to_ascii_lowercase());
1278 /// assert_eq!('❤', non_ascii.to_ascii_lowercase());
1279 /// ```
1280 ///
1281 /// [`make_ascii_lowercase()`]: #method.make_ascii_lowercase
1282 /// [`to_lowercase()`]: #method.to_lowercase
1283 #[must_use = "to lowercase the value in-place, use `make_ascii_lowercase()`"]
1284 #[stable(feature = "ascii_methods_on_intrinsics", since = "1.23.0")]
1285 #[rustc_const_stable(feature = "const_ascii_methods_on_intrinsics", since = "1.52.0")]
1286 #[inline]
1287 pub const fn to_ascii_lowercase(&self) -> char {
1288 if self.is_ascii_uppercase() {
1289 (*self as u8).ascii_change_case_unchecked() as char
1290 } else {
1291 *self
1292 }
1293 }
1294
1295 /// Checks that two values are an ASCII case-insensitive match.
1296 ///
1297 /// Equivalent to <code>[to_ascii_lowercase]\(a) == [to_ascii_lowercase]\(b)</code>.
1298 ///
1299 /// # Examples
1300 ///
1301 /// ```
1302 /// let upper_a = 'A';
1303 /// let lower_a = 'a';
1304 /// let lower_z = 'z';
1305 ///
1306 /// assert!(upper_a.eq_ignore_ascii_case(&lower_a));
1307 /// assert!(upper_a.eq_ignore_ascii_case(&upper_a));
1308 /// assert!(!upper_a.eq_ignore_ascii_case(&lower_z));
1309 /// ```
1310 ///
1311 /// [to_ascii_lowercase]: #method.to_ascii_lowercase
1312 #[stable(feature = "ascii_methods_on_intrinsics", since = "1.23.0")]
1313 #[rustc_const_stable(feature = "const_ascii_methods_on_intrinsics", since = "1.52.0")]
1314 #[inline]
1315 pub const fn eq_ignore_ascii_case(&self, other: &char) -> bool {
1316 self.to_ascii_lowercase() == other.to_ascii_lowercase()
1317 }
1318
1319 /// Converts this type to its ASCII upper case equivalent in-place.
1320 ///
1321 /// ASCII letters 'a' to 'z' are mapped to 'A' to 'Z',
1322 /// but non-ASCII letters are unchanged.
1323 ///
1324 /// To return a new uppercased value without modifying the existing one, use
1325 /// [`to_ascii_uppercase()`].
1326 ///
1327 /// # Examples
1328 ///
1329 /// ```
1330 /// let mut ascii = 'a';
1331 ///
1332 /// ascii.make_ascii_uppercase();
1333 ///
1334 /// assert_eq!('A', ascii);
1335 /// ```
1336 ///
1337 /// [`to_ascii_uppercase()`]: #method.to_ascii_uppercase
1338 #[stable(feature = "ascii_methods_on_intrinsics", since = "1.23.0")]
1339 #[rustc_const_stable(feature = "const_make_ascii", since = "1.84.0")]
1340 #[inline]
1341 pub const fn make_ascii_uppercase(&mut self) {
1342 *self = self.to_ascii_uppercase();
1343 }
1344
1345 /// Converts this type to its ASCII lower case equivalent in-place.
1346 ///
1347 /// ASCII letters 'A' to 'Z' are mapped to 'a' to 'z',
1348 /// but non-ASCII letters are unchanged.
1349 ///
1350 /// To return a new lowercased value without modifying the existing one, use
1351 /// [`to_ascii_lowercase()`].
1352 ///
1353 /// # Examples
1354 ///
1355 /// ```
1356 /// let mut ascii = 'A';
1357 ///
1358 /// ascii.make_ascii_lowercase();
1359 ///
1360 /// assert_eq!('a', ascii);
1361 /// ```
1362 ///
1363 /// [`to_ascii_lowercase()`]: #method.to_ascii_lowercase
1364 #[stable(feature = "ascii_methods_on_intrinsics", since = "1.23.0")]
1365 #[rustc_const_stable(feature = "const_make_ascii", since = "1.84.0")]
1366 #[inline]
1367 pub const fn make_ascii_lowercase(&mut self) {
1368 *self = self.to_ascii_lowercase();
1369 }
1370
1371 /// Checks if the value is an ASCII alphabetic character:
1372 ///
1373 /// - U+0041 'A' ..= U+005A 'Z', or
1374 /// - U+0061 'a' ..= U+007A 'z'.
1375 ///
1376 /// # Examples
1377 ///
1378 /// ```
1379 /// let uppercase_a = 'A';
1380 /// let uppercase_g = 'G';
1381 /// let a = 'a';
1382 /// let g = 'g';
1383 /// let zero = '0';
1384 /// let percent = '%';
1385 /// let space = ' ';
1386 /// let lf = '\n';
1387 /// let esc = '\x1b';
1388 ///
1389 /// assert!(uppercase_a.is_ascii_alphabetic());
1390 /// assert!(uppercase_g.is_ascii_alphabetic());
1391 /// assert!(a.is_ascii_alphabetic());
1392 /// assert!(g.is_ascii_alphabetic());
1393 /// assert!(!zero.is_ascii_alphabetic());
1394 /// assert!(!percent.is_ascii_alphabetic());
1395 /// assert!(!space.is_ascii_alphabetic());
1396 /// assert!(!lf.is_ascii_alphabetic());
1397 /// assert!(!esc.is_ascii_alphabetic());
1398 /// ```
1399 #[must_use]
1400 #[stable(feature = "ascii_ctype_on_intrinsics", since = "1.24.0")]
1401 #[rustc_const_stable(feature = "const_ascii_ctype_on_intrinsics", since = "1.47.0")]
1402 #[inline]
1403 pub const fn is_ascii_alphabetic(&self) -> bool {
1404 matches!(*self, 'A'..='Z' | 'a'..='z')
1405 }
1406
1407 /// Checks if the value is an ASCII uppercase character:
1408 /// U+0041 'A' ..= U+005A 'Z'.
1409 ///
1410 /// # Examples
1411 ///
1412 /// ```
1413 /// let uppercase_a = 'A';
1414 /// let uppercase_g = 'G';
1415 /// let a = 'a';
1416 /// let g = 'g';
1417 /// let zero = '0';
1418 /// let percent = '%';
1419 /// let space = ' ';
1420 /// let lf = '\n';
1421 /// let esc = '\x1b';
1422 ///
1423 /// assert!(uppercase_a.is_ascii_uppercase());
1424 /// assert!(uppercase_g.is_ascii_uppercase());
1425 /// assert!(!a.is_ascii_uppercase());
1426 /// assert!(!g.is_ascii_uppercase());
1427 /// assert!(!zero.is_ascii_uppercase());
1428 /// assert!(!percent.is_ascii_uppercase());
1429 /// assert!(!space.is_ascii_uppercase());
1430 /// assert!(!lf.is_ascii_uppercase());
1431 /// assert!(!esc.is_ascii_uppercase());
1432 /// ```
1433 #[must_use]
1434 #[stable(feature = "ascii_ctype_on_intrinsics", since = "1.24.0")]
1435 #[rustc_const_stable(feature = "const_ascii_ctype_on_intrinsics", since = "1.47.0")]
1436 #[inline]
1437 pub const fn is_ascii_uppercase(&self) -> bool {
1438 matches!(*self, 'A'..='Z')
1439 }
1440
1441 /// Checks if the value is an ASCII lowercase character:
1442 /// U+0061 'a' ..= U+007A 'z'.
1443 ///
1444 /// # Examples
1445 ///
1446 /// ```
1447 /// let uppercase_a = 'A';
1448 /// let uppercase_g = 'G';
1449 /// let a = 'a';
1450 /// let g = 'g';
1451 /// let zero = '0';
1452 /// let percent = '%';
1453 /// let space = ' ';
1454 /// let lf = '\n';
1455 /// let esc = '\x1b';
1456 ///
1457 /// assert!(!uppercase_a.is_ascii_lowercase());
1458 /// assert!(!uppercase_g.is_ascii_lowercase());
1459 /// assert!(a.is_ascii_lowercase());
1460 /// assert!(g.is_ascii_lowercase());
1461 /// assert!(!zero.is_ascii_lowercase());
1462 /// assert!(!percent.is_ascii_lowercase());
1463 /// assert!(!space.is_ascii_lowercase());
1464 /// assert!(!lf.is_ascii_lowercase());
1465 /// assert!(!esc.is_ascii_lowercase());
1466 /// ```
1467 #[must_use]
1468 #[stable(feature = "ascii_ctype_on_intrinsics", since = "1.24.0")]
1469 #[rustc_const_stable(feature = "const_ascii_ctype_on_intrinsics", since = "1.47.0")]
1470 #[inline]
1471 pub const fn is_ascii_lowercase(&self) -> bool {
1472 matches!(*self, 'a'..='z')
1473 }
1474
1475 /// Checks if the value is an ASCII alphanumeric character:
1476 ///
1477 /// - U+0041 'A' ..= U+005A 'Z', or
1478 /// - U+0061 'a' ..= U+007A 'z', or
1479 /// - U+0030 '0' ..= U+0039 '9'.
1480 ///
1481 /// # Examples
1482 ///
1483 /// ```
1484 /// let uppercase_a = 'A';
1485 /// let uppercase_g = 'G';
1486 /// let a = 'a';
1487 /// let g = 'g';
1488 /// let zero = '0';
1489 /// let percent = '%';
1490 /// let space = ' ';
1491 /// let lf = '\n';
1492 /// let esc = '\x1b';
1493 ///
1494 /// assert!(uppercase_a.is_ascii_alphanumeric());
1495 /// assert!(uppercase_g.is_ascii_alphanumeric());
1496 /// assert!(a.is_ascii_alphanumeric());
1497 /// assert!(g.is_ascii_alphanumeric());
1498 /// assert!(zero.is_ascii_alphanumeric());
1499 /// assert!(!percent.is_ascii_alphanumeric());
1500 /// assert!(!space.is_ascii_alphanumeric());
1501 /// assert!(!lf.is_ascii_alphanumeric());
1502 /// assert!(!esc.is_ascii_alphanumeric());
1503 /// ```
1504 #[must_use]
1505 #[stable(feature = "ascii_ctype_on_intrinsics", since = "1.24.0")]
1506 #[rustc_const_stable(feature = "const_ascii_ctype_on_intrinsics", since = "1.47.0")]
1507 #[inline]
1508 pub const fn is_ascii_alphanumeric(&self) -> bool {
1509 matches!(*self, '0'..='9') | matches!(*self, 'A'..='Z') | matches!(*self, 'a'..='z')
1510 }
1511
1512 /// Checks if the value is an ASCII decimal digit:
1513 /// U+0030 '0' ..= U+0039 '9'.
1514 ///
1515 /// # Examples
1516 ///
1517 /// ```
1518 /// let uppercase_a = 'A';
1519 /// let uppercase_g = 'G';
1520 /// let a = 'a';
1521 /// let g = 'g';
1522 /// let zero = '0';
1523 /// let percent = '%';
1524 /// let space = ' ';
1525 /// let lf = '\n';
1526 /// let esc = '\x1b';
1527 ///
1528 /// assert!(!uppercase_a.is_ascii_digit());
1529 /// assert!(!uppercase_g.is_ascii_digit());
1530 /// assert!(!a.is_ascii_digit());
1531 /// assert!(!g.is_ascii_digit());
1532 /// assert!(zero.is_ascii_digit());
1533 /// assert!(!percent.is_ascii_digit());
1534 /// assert!(!space.is_ascii_digit());
1535 /// assert!(!lf.is_ascii_digit());
1536 /// assert!(!esc.is_ascii_digit());
1537 /// ```
1538 #[must_use]
1539 #[stable(feature = "ascii_ctype_on_intrinsics", since = "1.24.0")]
1540 #[rustc_const_stable(feature = "const_ascii_ctype_on_intrinsics", since = "1.47.0")]
1541 #[inline]
1542 pub const fn is_ascii_digit(&self) -> bool {
1543 matches!(*self, '0'..='9')
1544 }
1545
1546 /// Checks if the value is an ASCII octal digit:
1547 /// U+0030 '0' ..= U+0037 '7'.
1548 ///
1549 /// # Examples
1550 ///
1551 /// ```
1552 /// #![feature(is_ascii_octdigit)]
1553 ///
1554 /// let uppercase_a = 'A';
1555 /// let a = 'a';
1556 /// let zero = '0';
1557 /// let seven = '7';
1558 /// let nine = '9';
1559 /// let percent = '%';
1560 /// let lf = '\n';
1561 ///
1562 /// assert!(!uppercase_a.is_ascii_octdigit());
1563 /// assert!(!a.is_ascii_octdigit());
1564 /// assert!(zero.is_ascii_octdigit());
1565 /// assert!(seven.is_ascii_octdigit());
1566 /// assert!(!nine.is_ascii_octdigit());
1567 /// assert!(!percent.is_ascii_octdigit());
1568 /// assert!(!lf.is_ascii_octdigit());
1569 /// ```
1570 #[must_use]
1571 #[unstable(feature = "is_ascii_octdigit", issue = "101288")]
1572 #[inline]
1573 pub const fn is_ascii_octdigit(&self) -> bool {
1574 matches!(*self, '0'..='7')
1575 }
1576
1577 /// Checks if the value is an ASCII hexadecimal digit:
1578 ///
1579 /// - U+0030 '0' ..= U+0039 '9', or
1580 /// - U+0041 'A' ..= U+0046 'F', or
1581 /// - U+0061 'a' ..= U+0066 'f'.
1582 ///
1583 /// # Examples
1584 ///
1585 /// ```
1586 /// let uppercase_a = 'A';
1587 /// let uppercase_g = 'G';
1588 /// let a = 'a';
1589 /// let g = 'g';
1590 /// let zero = '0';
1591 /// let percent = '%';
1592 /// let space = ' ';
1593 /// let lf = '\n';
1594 /// let esc = '\x1b';
1595 ///
1596 /// assert!(uppercase_a.is_ascii_hexdigit());
1597 /// assert!(!uppercase_g.is_ascii_hexdigit());
1598 /// assert!(a.is_ascii_hexdigit());
1599 /// assert!(!g.is_ascii_hexdigit());
1600 /// assert!(zero.is_ascii_hexdigit());
1601 /// assert!(!percent.is_ascii_hexdigit());
1602 /// assert!(!space.is_ascii_hexdigit());
1603 /// assert!(!lf.is_ascii_hexdigit());
1604 /// assert!(!esc.is_ascii_hexdigit());
1605 /// ```
1606 #[must_use]
1607 #[stable(feature = "ascii_ctype_on_intrinsics", since = "1.24.0")]
1608 #[rustc_const_stable(feature = "const_ascii_ctype_on_intrinsics", since = "1.47.0")]
1609 #[inline]
1610 pub const fn is_ascii_hexdigit(&self) -> bool {
1611 matches!(*self, '0'..='9') | matches!(*self, 'A'..='F') | matches!(*self, 'a'..='f')
1612 }
1613
1614 /// Checks if the value is an ASCII punctuation character:
1615 ///
1616 /// - U+0021 ..= U+002F `! " # $ % & ' ( ) * + , - . /`, or
1617 /// - U+003A ..= U+0040 `: ; < = > ? @`, or
1618 /// - U+005B ..= U+0060 ``[ \ ] ^ _ ` ``, or
1619 /// - U+007B ..= U+007E `{ | } ~`
1620 ///
1621 /// # Examples
1622 ///
1623 /// ```
1624 /// let uppercase_a = 'A';
1625 /// let uppercase_g = 'G';
1626 /// let a = 'a';
1627 /// let g = 'g';
1628 /// let zero = '0';
1629 /// let percent = '%';
1630 /// let space = ' ';
1631 /// let lf = '\n';
1632 /// let esc = '\x1b';
1633 ///
1634 /// assert!(!uppercase_a.is_ascii_punctuation());
1635 /// assert!(!uppercase_g.is_ascii_punctuation());
1636 /// assert!(!a.is_ascii_punctuation());
1637 /// assert!(!g.is_ascii_punctuation());
1638 /// assert!(!zero.is_ascii_punctuation());
1639 /// assert!(percent.is_ascii_punctuation());
1640 /// assert!(!space.is_ascii_punctuation());
1641 /// assert!(!lf.is_ascii_punctuation());
1642 /// assert!(!esc.is_ascii_punctuation());
1643 /// ```
1644 #[must_use]
1645 #[stable(feature = "ascii_ctype_on_intrinsics", since = "1.24.0")]
1646 #[rustc_const_stable(feature = "const_ascii_ctype_on_intrinsics", since = "1.47.0")]
1647 #[inline]
1648 pub const fn is_ascii_punctuation(&self) -> bool {
1649 matches!(*self, '!'..='/')
1650 | matches!(*self, ':'..='@')
1651 | matches!(*self, '['..='`')
1652 | matches!(*self, '{'..='~')
1653 }
1654
1655 /// Checks if the value is an ASCII graphic character:
1656 /// U+0021 '!' ..= U+007E '~'.
1657 ///
1658 /// # Examples
1659 ///
1660 /// ```
1661 /// let uppercase_a = 'A';
1662 /// let uppercase_g = 'G';
1663 /// let a = 'a';
1664 /// let g = 'g';
1665 /// let zero = '0';
1666 /// let percent = '%';
1667 /// let space = ' ';
1668 /// let lf = '\n';
1669 /// let esc = '\x1b';
1670 ///
1671 /// assert!(uppercase_a.is_ascii_graphic());
1672 /// assert!(uppercase_g.is_ascii_graphic());
1673 /// assert!(a.is_ascii_graphic());
1674 /// assert!(g.is_ascii_graphic());
1675 /// assert!(zero.is_ascii_graphic());
1676 /// assert!(percent.is_ascii_graphic());
1677 /// assert!(!space.is_ascii_graphic());
1678 /// assert!(!lf.is_ascii_graphic());
1679 /// assert!(!esc.is_ascii_graphic());
1680 /// ```
1681 #[must_use]
1682 #[stable(feature = "ascii_ctype_on_intrinsics", since = "1.24.0")]
1683 #[rustc_const_stable(feature = "const_ascii_ctype_on_intrinsics", since = "1.47.0")]
1684 #[inline]
1685 pub const fn is_ascii_graphic(&self) -> bool {
1686 matches!(*self, '!'..='~')
1687 }
1688
1689 /// Checks if the value is an ASCII whitespace character:
1690 /// U+0020 SPACE, U+0009 HORIZONTAL TAB, U+000A LINE FEED,
1691 /// U+000C FORM FEED, or U+000D CARRIAGE RETURN.
1692 ///
1693 /// Rust uses the WhatWG Infra Standard's [definition of ASCII
1694 /// whitespace][infra-aw]. There are several other definitions in
1695 /// wide use. For instance, [the POSIX locale][pct] includes
1696 /// U+000B VERTICAL TAB as well as all the above characters,
1697 /// but—from the very same specification—[the default rule for
1698 /// "field splitting" in the Bourne shell][bfs] considers *only*
1699 /// SPACE, HORIZONTAL TAB, and LINE FEED as whitespace.
1700 ///
1701 /// If you are writing a program that will process an existing
1702 /// file format, check what that format's definition of whitespace is
1703 /// before using this function.
1704 ///
1705 /// [infra-aw]: https://infra.spec.whatwg.org/#ascii-whitespace
1706 /// [pct]: https://pubs.opengroup.org/onlinepubs/9699919799/basedefs/V1_chap07.html#tag_07_03_01
1707 /// [bfs]: https://pubs.opengroup.org/onlinepubs/9699919799/utilities/V3_chap02.html#tag_18_06_05
1708 ///
1709 /// # Examples
1710 ///
1711 /// ```
1712 /// let uppercase_a = 'A';
1713 /// let uppercase_g = 'G';
1714 /// let a = 'a';
1715 /// let g = 'g';
1716 /// let zero = '0';
1717 /// let percent = '%';
1718 /// let space = ' ';
1719 /// let lf = '\n';
1720 /// let esc = '\x1b';
1721 ///
1722 /// assert!(!uppercase_a.is_ascii_whitespace());
1723 /// assert!(!uppercase_g.is_ascii_whitespace());
1724 /// assert!(!a.is_ascii_whitespace());
1725 /// assert!(!g.is_ascii_whitespace());
1726 /// assert!(!zero.is_ascii_whitespace());
1727 /// assert!(!percent.is_ascii_whitespace());
1728 /// assert!(space.is_ascii_whitespace());
1729 /// assert!(lf.is_ascii_whitespace());
1730 /// assert!(!esc.is_ascii_whitespace());
1731 /// ```
1732 #[must_use]
1733 #[stable(feature = "ascii_ctype_on_intrinsics", since = "1.24.0")]
1734 #[rustc_const_stable(feature = "const_ascii_ctype_on_intrinsics", since = "1.47.0")]
1735 #[inline]
1736 pub const fn is_ascii_whitespace(&self) -> bool {
1737 matches!(*self, '\t' | '\n' | '\x0C' | '\r' | ' ')
1738 }
1739
1740 /// Checks if the value is an ASCII control character:
1741 /// U+0000 NUL ..= U+001F UNIT SEPARATOR, or U+007F DELETE.
1742 /// Note that most ASCII whitespace characters are control
1743 /// characters, but SPACE is not.
1744 ///
1745 /// # Examples
1746 ///
1747 /// ```
1748 /// let uppercase_a = 'A';
1749 /// let uppercase_g = 'G';
1750 /// let a = 'a';
1751 /// let g = 'g';
1752 /// let zero = '0';
1753 /// let percent = '%';
1754 /// let space = ' ';
1755 /// let lf = '\n';
1756 /// let esc = '\x1b';
1757 ///
1758 /// assert!(!uppercase_a.is_ascii_control());
1759 /// assert!(!uppercase_g.is_ascii_control());
1760 /// assert!(!a.is_ascii_control());
1761 /// assert!(!g.is_ascii_control());
1762 /// assert!(!zero.is_ascii_control());
1763 /// assert!(!percent.is_ascii_control());
1764 /// assert!(!space.is_ascii_control());
1765 /// assert!(lf.is_ascii_control());
1766 /// assert!(esc.is_ascii_control());
1767 /// ```
1768 #[must_use]
1769 #[stable(feature = "ascii_ctype_on_intrinsics", since = "1.24.0")]
1770 #[rustc_const_stable(feature = "const_ascii_ctype_on_intrinsics", since = "1.47.0")]
1771 #[inline]
1772 pub const fn is_ascii_control(&self) -> bool {
1773 matches!(*self, '\0'..='\x1F' | '\x7F')
1774 }
1775}
1776
1777pub(crate) struct EscapeDebugExtArgs {
1778 /// Escape Extended Grapheme codepoints?
1779 pub(crate) escape_grapheme_extended: bool,
1780
1781 /// Escape single quotes?
1782 pub(crate) escape_single_quote: bool,
1783
1784 /// Escape double quotes?
1785 pub(crate) escape_double_quote: bool,
1786}
1787
1788impl EscapeDebugExtArgs {
1789 pub(crate) const ESCAPE_ALL: Self = Self {
1790 escape_grapheme_extended: true,
1791 escape_single_quote: true,
1792 escape_double_quote: true,
1793 };
1794}
1795
1796#[inline]
1797#[must_use]
1798const fn len_utf8(code: u32) -> usize {
1799 match code {
1800 ..MAX_ONE_B => 1,
1801 ..MAX_TWO_B => 2,
1802 ..MAX_THREE_B => 3,
1803 _ => 4,
1804 }
1805}
1806
1807#[inline]
1808#[must_use]
1809const fn len_utf16(code: u32) -> usize {
1810 if (code & 0xFFFF) == code { 1 } else { 2 }
1811}
1812
1813/// Encodes a raw `u32` value as UTF-8 into the provided byte buffer,
1814/// and then returns the subslice of the buffer that contains the encoded character.
1815///
1816/// Unlike `char::encode_utf8`, this method also handles codepoints in the surrogate range.
1817/// (Creating a `char` in the surrogate range is UB.)
1818/// The result is valid [generalized UTF-8] but not valid UTF-8.
1819///
1820/// [generalized UTF-8]: https://simonsapin.github.io/wtf-8/#generalized-utf8
1821///
1822/// # Panics
1823///
1824/// Panics if the buffer is not large enough.
1825/// A buffer of length four is large enough to encode any `char`.
1826#[unstable(feature = "char_internals", reason = "exposed only for libstd", issue = "none")]
1827#[doc(hidden)]
1828#[inline]
1829pub const fn encode_utf8_raw(code: u32, dst: &mut [u8]) -> &mut [u8] {
1830 let len = len_utf8(code);
1831 if dst.len() < len {
1832 const_panic!(
1833 "encode_utf8: buffer does not have enough bytes to encode code point",
1834 "encode_utf8: need {len} bytes to encode U+{code:04X} but buffer has just {dst_len}",
1835 code: u32 = code,
1836 len: usize = len,
1837 dst_len: usize = dst.len(),
1838 );
1839 }
1840
1841 // SAFETY: `dst` is checked to be at least the length needed to encode the codepoint.
1842 unsafe { encode_utf8_raw_unchecked(code, dst.as_mut_ptr()) };
1843
1844 // SAFETY: `<&mut [u8]>::as_mut_ptr` is guaranteed to return a valid pointer and `len` has been tested to be within bounds.
1845 unsafe { slice::from_raw_parts_mut(dst.as_mut_ptr(), len) }
1846}
1847
1848/// Encodes a raw `u32` value as UTF-8 into the byte buffer pointed to by `dst`.
1849///
1850/// Unlike `char::encode_utf8`, this method also handles codepoints in the surrogate range.
1851/// (Creating a `char` in the surrogate range is UB.)
1852/// The result is valid [generalized UTF-8] but not valid UTF-8.
1853///
1854/// [generalized UTF-8]: https://simonsapin.github.io/wtf-8/#generalized-utf8
1855///
1856/// # Safety
1857///
1858/// The behavior is undefined if the buffer pointed to by `dst` is not
1859/// large enough to hold the encoded codepoint. A buffer of length four
1860/// is large enough to encode any `char`.
1861///
1862/// For a safe version of this function, see the [`encode_utf8_raw`] function.
1863#[unstable(feature = "char_internals", reason = "exposed only for libstd", issue = "none")]
1864#[doc(hidden)]
1865#[inline]
1866pub const unsafe fn encode_utf8_raw_unchecked(code: u32, dst: *mut u8) {
1867 let len = len_utf8(code);
1868 // SAFETY: The caller must guarantee that the buffer pointed to by `dst`
1869 // is at least `len` bytes long.
1870 unsafe {
1871 match len {
1872 1 => {
1873 *dst = code as u8;
1874 }
1875 2 => {
1876 *dst = (code >> 6 & 0x1F) as u8 | TAG_TWO_B;
1877 *dst.add(1) = (code & 0x3F) as u8 | TAG_CONT;
1878 }
1879 3 => {
1880 *dst = (code >> 12 & 0x0F) as u8 | TAG_THREE_B;
1881 *dst.add(1) = (code >> 6 & 0x3F) as u8 | TAG_CONT;
1882 *dst.add(2) = (code & 0x3F) as u8 | TAG_CONT;
1883 }
1884 4 => {
1885 *dst = (code >> 18 & 0x07) as u8 | TAG_FOUR_B;
1886 *dst.add(1) = (code >> 12 & 0x3F) as u8 | TAG_CONT;
1887 *dst.add(2) = (code >> 6 & 0x3F) as u8 | TAG_CONT;
1888 *dst.add(3) = (code & 0x3F) as u8 | TAG_CONT;
1889 }
1890 // SAFETY: `char` always takes between 1 and 4 bytes to encode in UTF-8.
1891 _ => crate::hint::unreachable_unchecked(),
1892 }
1893 }
1894}
1895
1896/// Encodes a raw `u32` value as native endian UTF-16 into the provided `u16` buffer,
1897/// and then returns the subslice of the buffer that contains the encoded character.
1898///
1899/// Unlike `char::encode_utf16`, this method also handles codepoints in the surrogate range.
1900/// (Creating a `char` in the surrogate range is UB.)
1901///
1902/// # Panics
1903///
1904/// Panics if the buffer is not large enough.
1905/// A buffer of length 2 is large enough to encode any `char`.
1906#[unstable(feature = "char_internals", reason = "exposed only for libstd", issue = "none")]
1907#[doc(hidden)]
1908#[inline]
1909pub const fn encode_utf16_raw(mut code: u32, dst: &mut [u16]) -> &mut [u16] {
1910 let len = len_utf16(code);
1911 match (len, &mut *dst) {
1912 (1, [a, ..]) => {
1913 *a = code as u16;
1914 }
1915 (2, [a, b, ..]) => {
1916 code -= 0x1_0000;
1917 *a = (code >> 10) as u16 | 0xD800;
1918 *b = (code & 0x3FF) as u16 | 0xDC00;
1919 }
1920 _ => {
1921 const_panic!(
1922 "encode_utf16: buffer does not have enough bytes to encode code point",
1923 "encode_utf16: need {len} bytes to encode U+{code:04X} but buffer has just {dst_len}",
1924 code: u32 = code,
1925 len: usize = len,
1926 dst_len: usize = dst.len(),
1927 )
1928 }
1929 };
1930 // SAFETY: `<&mut [u16]>::as_mut_ptr` is guaranteed to return a valid pointer and `len` has been tested to be within bounds.
1931 unsafe { slice::from_raw_parts_mut(dst.as_mut_ptr(), len) }
1932}