core/
clone.rs

1//! The `Clone` trait for types that cannot be 'implicitly copied'.
2//!
3//! In Rust, some simple types are "implicitly copyable" and when you
4//! assign them or pass them as arguments, the receiver will get a copy,
5//! leaving the original value in place. These types do not require
6//! allocation to copy and do not have finalizers (i.e., they do not
7//! contain owned boxes or implement [`Drop`]), so the compiler considers
8//! them cheap and safe to copy. For other types copies must be made
9//! explicitly, by convention implementing the [`Clone`] trait and calling
10//! the [`clone`] method.
11//!
12//! [`clone`]: Clone::clone
13//!
14//! Basic usage example:
15//!
16//! ```
17//! let s = String::new(); // String type implements Clone
18//! let copy = s.clone(); // so we can clone it
19//! ```
20//!
21//! To easily implement the Clone trait, you can also use
22//! `#[derive(Clone)]`. Example:
23//!
24//! ```
25//! #[derive(Clone)] // we add the Clone trait to Morpheus struct
26//! struct Morpheus {
27//!    blue_pill: f32,
28//!    red_pill: i64,
29//! }
30//!
31//! fn main() {
32//!    let f = Morpheus { blue_pill: 0.0, red_pill: 0 };
33//!    let copy = f.clone(); // and now we can clone it!
34//! }
35//! ```
36
37#![stable(feature = "rust1", since = "1.0.0")]
38
39use crate::marker::{Destruct, PointeeSized};
40
41#[cfg(not(feature = "ferrocene_certified"))]
42mod uninit;
43
44/// A common trait that allows explicit creation of a duplicate value.
45///
46/// Calling [`clone`] always produces a new value.
47/// However, for types that are references to other data (such as smart pointers or references),
48/// the new value may still point to the same underlying data, rather than duplicating it.
49/// See [`Clone::clone`] for more details.
50///
51/// This distinction is especially important when using `#[derive(Clone)]` on structs containing
52/// smart pointers like `Arc<Mutex<T>>` - the cloned struct will share mutable state with the
53/// original.
54///
55/// Differs from [`Copy`] in that [`Copy`] is implicit and an inexpensive bit-wise copy, while
56/// `Clone` is always explicit and may or may not be expensive. In order to enforce
57/// these characteristics, Rust does not allow you to reimplement [`Copy`], but you
58/// may reimplement `Clone` and run arbitrary code.
59///
60/// Since `Clone` is more general than [`Copy`], you can automatically make anything
61/// [`Copy`] be `Clone` as well.
62///
63/// ## Derivable
64///
65/// This trait can be used with `#[derive]` if all fields are `Clone`. The `derive`d
66/// implementation of [`Clone`] calls [`clone`] on each field.
67///
68/// [`clone`]: Clone::clone
69///
70/// For a generic struct, `#[derive]` implements `Clone` conditionally by adding bound `Clone` on
71/// generic parameters.
72///
73/// ```
74/// // `derive` implements Clone for Reading<T> when T is Clone.
75/// #[derive(Clone)]
76/// struct Reading<T> {
77///     frequency: T,
78/// }
79/// ```
80///
81/// ## How can I implement `Clone`?
82///
83/// Types that are [`Copy`] should have a trivial implementation of `Clone`. More formally:
84/// if `T: Copy`, `x: T`, and `y: &T`, then `let x = y.clone();` is equivalent to `let x = *y;`.
85/// Manual implementations should be careful to uphold this invariant; however, unsafe code
86/// must not rely on it to ensure memory safety.
87///
88/// An example is a generic struct holding a function pointer. In this case, the
89/// implementation of `Clone` cannot be `derive`d, but can be implemented as:
90///
91/// ```
92/// struct Generate<T>(fn() -> T);
93///
94/// impl<T> Copy for Generate<T> {}
95///
96/// impl<T> Clone for Generate<T> {
97///     fn clone(&self) -> Self {
98///         *self
99///     }
100/// }
101/// ```
102///
103/// If we `derive`:
104///
105/// ```
106/// #[derive(Copy, Clone)]
107/// struct Generate<T>(fn() -> T);
108/// ```
109///
110/// the auto-derived implementations will have unnecessary `T: Copy` and `T: Clone` bounds:
111///
112/// ```
113/// # struct Generate<T>(fn() -> T);
114///
115/// // Automatically derived
116/// impl<T: Copy> Copy for Generate<T> { }
117///
118/// // Automatically derived
119/// impl<T: Clone> Clone for Generate<T> {
120///     fn clone(&self) -> Generate<T> {
121///         Generate(Clone::clone(&self.0))
122///     }
123/// }
124/// ```
125///
126/// The bounds are unnecessary because clearly the function itself should be
127/// copy- and cloneable even if its return type is not:
128///
129/// ```compile_fail,E0599
130/// #[derive(Copy, Clone)]
131/// struct Generate<T>(fn() -> T);
132///
133/// struct NotCloneable;
134///
135/// fn generate_not_cloneable() -> NotCloneable {
136///     NotCloneable
137/// }
138///
139/// Generate(generate_not_cloneable).clone(); // error: trait bounds were not satisfied
140/// // Note: With the manual implementations the above line will compile.
141/// ```
142///
143/// ## `Clone` and `PartialEq`/`Eq`
144/// `Clone` is intended for the duplication of objects. Consequently, when implementing
145/// both `Clone` and [`PartialEq`], the following property is expected to hold:
146/// ```text
147/// x == x -> x.clone() == x
148/// ```
149/// In other words, if an object compares equal to itself,
150/// its clone must also compare equal to the original.
151///
152/// For types that also implement [`Eq`] – for which `x == x` always holds –
153/// this implies that `x.clone() == x` must always be true.
154/// Standard library collections such as
155/// [`HashMap`], [`HashSet`], [`BTreeMap`], [`BTreeSet`] and [`BinaryHeap`]
156/// rely on their keys respecting this property for correct behavior.
157/// Furthermore, these collections require that cloning a key preserves the outcome of the
158/// [`Hash`] and [`Ord`] methods. Thankfully, this follows automatically from `x.clone() == x`
159/// if `Hash` and `Ord` are correctly implemented according to their own requirements.
160///
161/// When deriving both `Clone` and [`PartialEq`] using `#[derive(Clone, PartialEq)]`
162/// or when additionally deriving [`Eq`] using `#[derive(Clone, PartialEq, Eq)]`,
163/// then this property is automatically upheld – provided that it is satisfied by
164/// the underlying types.
165///
166/// Violating this property is a logic error. The behavior resulting from a logic error is not
167/// specified, but users of the trait must ensure that such logic errors do *not* result in
168/// undefined behavior. This means that `unsafe` code **must not** rely on this property
169/// being satisfied.
170///
171/// ## Additional implementors
172///
173/// In addition to the [implementors listed below][impls],
174/// the following types also implement `Clone`:
175///
176/// * Function item types (i.e., the distinct types defined for each function)
177/// * Function pointer types (e.g., `fn() -> i32`)
178/// * Closure types, if they capture no value from the environment
179///   or if all such captured values implement `Clone` themselves.
180///   Note that variables captured by shared reference always implement `Clone`
181///   (even if the referent doesn't),
182///   while variables captured by mutable reference never implement `Clone`.
183///
184/// [`HashMap`]: ../../std/collections/struct.HashMap.html
185/// [`HashSet`]: ../../std/collections/struct.HashSet.html
186/// [`BTreeMap`]: ../../std/collections/struct.BTreeMap.html
187/// [`BTreeSet`]: ../../std/collections/struct.BTreeSet.html
188/// [`BinaryHeap`]: ../../std/collections/struct.BinaryHeap.html
189/// [impls]: #implementors
190#[stable(feature = "rust1", since = "1.0.0")]
191#[lang = "clone"]
192#[rustc_diagnostic_item = "Clone"]
193#[rustc_trivial_field_reads]
194#[rustc_const_unstable(feature = "const_clone", issue = "142757")]
195pub const trait Clone: Sized {
196    /// Returns a duplicate of the value.
197    ///
198    /// Note that what "duplicate" means varies by type:
199    /// - For most types, this creates a deep, independent copy
200    /// - For reference types like `&T`, this creates another reference to the same value
201    /// - For smart pointers like [`Arc`] or [`Rc`], this increments the reference count
202    ///   but still points to the same underlying data
203    ///
204    /// [`Arc`]: ../../std/sync/struct.Arc.html
205    /// [`Rc`]: ../../std/rc/struct.Rc.html
206    ///
207    /// # Examples
208    ///
209    /// ```
210    /// # #![allow(noop_method_call)]
211    /// let hello = "Hello"; // &str implements Clone
212    ///
213    /// assert_eq!("Hello", hello.clone());
214    /// ```
215    ///
216    /// Example with a reference-counted type:
217    ///
218    /// ```
219    /// use std::sync::{Arc, Mutex};
220    ///
221    /// let data = Arc::new(Mutex::new(vec![1, 2, 3]));
222    /// let data_clone = data.clone(); // Creates another Arc pointing to the same Mutex
223    ///
224    /// {
225    ///     let mut lock = data.lock().unwrap();
226    ///     lock.push(4);
227    /// }
228    ///
229    /// // Changes are visible through the clone because they share the same underlying data
230    /// assert_eq!(*data_clone.lock().unwrap(), vec![1, 2, 3, 4]);
231    /// ```
232    #[stable(feature = "rust1", since = "1.0.0")]
233    #[must_use = "cloning is often expensive and is not expected to have side effects"]
234    // Clone::clone is special because the compiler generates MIR to implement it for some types.
235    // See InstanceKind::CloneShim.
236    #[lang = "clone_fn"]
237    fn clone(&self) -> Self;
238
239    /// Performs copy-assignment from `source`.
240    ///
241    /// `a.clone_from(&b)` is equivalent to `a = b.clone()` in functionality,
242    /// but can be overridden to reuse the resources of `a` to avoid unnecessary
243    /// allocations.
244    #[inline]
245    #[stable(feature = "rust1", since = "1.0.0")]
246    fn clone_from(&mut self, source: &Self)
247    where
248        Self: [const] Destruct,
249    {
250        *self = source.clone()
251    }
252}
253
254/// Derive macro generating an impl of the trait `Clone`.
255#[rustc_builtin_macro]
256#[stable(feature = "builtin_macro_prelude", since = "1.38.0")]
257#[allow_internal_unstable(core_intrinsics, derive_clone_copy)]
258pub macro Clone($item:item) {
259    /* compiler built-in */
260}
261
262/// Trait for objects whose [`Clone`] impl is lightweight (e.g. reference-counted)
263///
264/// Cloning an object implementing this trait should in general:
265/// - be O(1) (constant) time regardless of the amount of data managed by the object,
266/// - not require a memory allocation,
267/// - not require copying more than roughly 64 bytes (a typical cache line size),
268/// - not block the current thread,
269/// - not have any semantic side effects (e.g. allocating a file descriptor), and
270/// - not have overhead larger than a couple of atomic operations.
271///
272/// The `UseCloned` trait does not provide a method; instead, it indicates that
273/// `Clone::clone` is lightweight, and allows the use of the `.use` syntax.
274///
275/// ## .use postfix syntax
276///
277/// Values can be `.use`d by adding `.use` postfix to the value you want to use.
278///
279/// ```ignore (this won't work until we land use)
280/// fn foo(f: Foo) {
281///     // if `Foo` implements `Copy` f would be copied into x.
282///     // if `Foo` implements `UseCloned` f would be cloned into x.
283///     // otherwise f would be moved into x.
284///     let x = f.use;
285///     // ...
286/// }
287/// ```
288///
289/// ## use closures
290///
291/// Use closures allow captured values to be automatically used.
292/// This is similar to have a closure that you would call `.use` over each captured value.
293#[unstable(feature = "ergonomic_clones", issue = "132290")]
294#[lang = "use_cloned"]
295#[cfg(not(feature = "ferrocene_certified"))]
296pub trait UseCloned: Clone {
297    // Empty.
298}
299
300#[cfg(not(feature = "ferrocene_certified"))]
301macro_rules! impl_use_cloned {
302    ($($t:ty)*) => {
303        $(
304            #[unstable(feature = "ergonomic_clones", issue = "132290")]
305            impl UseCloned for $t {}
306        )*
307    }
308}
309
310#[cfg(not(feature = "ferrocene_certified"))]
311impl_use_cloned! {
312    usize u8 u16 u32 u64 u128
313    isize i8 i16 i32 i64 i128
314             f16 f32 f64 f128
315    bool char
316}
317
318// FIXME(aburka): these structs are used solely by #[derive] to
319// assert that every component of a type implements Clone or Copy.
320//
321// These structs should never appear in user code.
322#[doc(hidden)]
323#[allow(missing_debug_implementations)]
324#[unstable(
325    feature = "derive_clone_copy",
326    reason = "deriving hack, should not be public",
327    issue = "none"
328)]
329pub struct AssertParamIsClone<T: Clone + PointeeSized> {
330    _field: crate::marker::PhantomData<T>,
331}
332#[doc(hidden)]
333#[allow(missing_debug_implementations)]
334#[unstable(
335    feature = "derive_clone_copy",
336    reason = "deriving hack, should not be public",
337    issue = "none"
338)]
339#[cfg(not(feature = "ferrocene_certified"))]
340pub struct AssertParamIsCopy<T: Copy + PointeeSized> {
341    _field: crate::marker::PhantomData<T>,
342}
343
344/// A generalization of [`Clone`] to [dynamically-sized types][DST] stored in arbitrary containers.
345///
346/// This trait is implemented for all types implementing [`Clone`], [slices](slice) of all
347/// such types, and other dynamically-sized types in the standard library.
348/// You may also implement this trait to enable cloning custom DSTs
349/// (structures containing dynamically-sized fields), or use it as a supertrait to enable
350/// cloning a [trait object].
351///
352/// This trait is normally used via operations on container types which support DSTs,
353/// so you should not typically need to call `.clone_to_uninit()` explicitly except when
354/// implementing such a container or otherwise performing explicit management of an allocation,
355/// or when implementing `CloneToUninit` itself.
356///
357/// # Safety
358///
359/// Implementations must ensure that when `.clone_to_uninit(dest)` returns normally rather than
360/// panicking, it always leaves `*dest` initialized as a valid value of type `Self`.
361///
362/// # Examples
363///
364// FIXME(#126799): when `Box::clone` allows use of `CloneToUninit`, rewrite these examples with it
365// since `Rc` is a distraction.
366///
367/// If you are defining a trait, you can add `CloneToUninit` as a supertrait to enable cloning of
368/// `dyn` values of your trait:
369///
370/// ```
371/// #![feature(clone_to_uninit)]
372/// use std::rc::Rc;
373///
374/// trait Foo: std::fmt::Debug + std::clone::CloneToUninit {
375///     fn modify(&mut self);
376///     fn value(&self) -> i32;
377/// }
378///
379/// impl Foo for i32 {
380///     fn modify(&mut self) {
381///         *self *= 10;
382///     }
383///     fn value(&self) -> i32 {
384///         *self
385///     }
386/// }
387///
388/// let first: Rc<dyn Foo> = Rc::new(1234);
389///
390/// let mut second = first.clone();
391/// Rc::make_mut(&mut second).modify(); // make_mut() will call clone_to_uninit()
392///
393/// assert_eq!(first.value(), 1234);
394/// assert_eq!(second.value(), 12340);
395/// ```
396///
397/// The following is an example of implementing `CloneToUninit` for a custom DST.
398/// (It is essentially a limited form of what `derive(CloneToUninit)` would do,
399/// if such a derive macro existed.)
400///
401/// ```
402/// #![feature(clone_to_uninit)]
403/// use std::clone::CloneToUninit;
404/// use std::mem::offset_of;
405/// use std::rc::Rc;
406///
407/// #[derive(PartialEq)]
408/// struct MyDst<T: ?Sized> {
409///     label: String,
410///     contents: T,
411/// }
412///
413/// unsafe impl<T: ?Sized + CloneToUninit> CloneToUninit for MyDst<T> {
414///     unsafe fn clone_to_uninit(&self, dest: *mut u8) {
415///         // The offset of `self.contents` is dynamic because it depends on the alignment of T
416///         // which can be dynamic (if `T = dyn SomeTrait`). Therefore, we have to obtain it
417///         // dynamically by examining `self`, rather than using `offset_of!`.
418///         //
419///         // SAFETY: `self` by definition points somewhere before `&self.contents` in the same
420///         // allocation.
421///         let offset_of_contents = unsafe {
422///             (&raw const self.contents).byte_offset_from_unsigned(self)
423///         };
424///
425///         // Clone the *sized* fields of `self` (just one, in this example).
426///         // (By cloning this first and storing it temporarily in a local variable, we avoid
427///         // leaking it in case of any panic, using the ordinary automatic cleanup of local
428///         // variables. Such a leak would be sound, but undesirable.)
429///         let label = self.label.clone();
430///
431///         // SAFETY: The caller must provide a `dest` such that these field offsets are valid
432///         // to write to.
433///         unsafe {
434///             // Clone the unsized field directly from `self` to `dest`.
435///             self.contents.clone_to_uninit(dest.add(offset_of_contents));
436///
437///             // Now write all the sized fields.
438///             //
439///             // Note that we only do this once all of the clone() and clone_to_uninit() calls
440///             // have completed, and therefore we know that there are no more possible panics;
441///             // this ensures no memory leaks in case of panic.
442///             dest.add(offset_of!(Self, label)).cast::<String>().write(label);
443///         }
444///         // All fields of the struct have been initialized; therefore, the struct is initialized,
445///         // and we have satisfied our `unsafe impl CloneToUninit` obligations.
446///     }
447/// }
448///
449/// fn main() {
450///     // Construct MyDst<[u8; 4]>, then coerce to MyDst<[u8]>.
451///     let first: Rc<MyDst<[u8]>> = Rc::new(MyDst {
452///         label: String::from("hello"),
453///         contents: [1, 2, 3, 4],
454///     });
455///
456///     let mut second = first.clone();
457///     // make_mut() will call clone_to_uninit().
458///     for elem in Rc::make_mut(&mut second).contents.iter_mut() {
459///         *elem *= 10;
460///     }
461///
462///     assert_eq!(first.contents, [1, 2, 3, 4]);
463///     assert_eq!(second.contents, [10, 20, 30, 40]);
464///     assert_eq!(second.label, "hello");
465/// }
466/// ```
467///
468/// # See Also
469///
470/// * [`Clone::clone_from`] is a safe function which may be used instead when [`Self: Sized`](Sized)
471///   and the destination is already initialized; it may be able to reuse allocations owned by
472///   the destination, whereas `clone_to_uninit` cannot, since its destination is assumed to be
473///   uninitialized.
474/// * [`ToOwned`], which allocates a new destination container.
475///
476/// [`ToOwned`]: ../../std/borrow/trait.ToOwned.html
477/// [DST]: https://doc.rust-lang.org/reference/dynamically-sized-types.html
478/// [trait object]: https://doc.rust-lang.org/reference/types/trait-object.html
479#[unstable(feature = "clone_to_uninit", issue = "126799")]
480#[cfg(not(feature = "ferrocene_certified"))]
481pub unsafe trait CloneToUninit {
482    /// Performs copy-assignment from `self` to `dest`.
483    ///
484    /// This is analogous to `std::ptr::write(dest.cast(), self.clone())`,
485    /// except that `Self` may be a dynamically-sized type ([`!Sized`](Sized)).
486    ///
487    /// Before this function is called, `dest` may point to uninitialized memory.
488    /// After this function is called, `dest` will point to initialized memory; it will be
489    /// sound to create a `&Self` reference from the pointer with the [pointer metadata]
490    /// from `self`.
491    ///
492    /// # Safety
493    ///
494    /// Behavior is undefined if any of the following conditions are violated:
495    ///
496    /// * `dest` must be [valid] for writes for `size_of_val(self)` bytes.
497    /// * `dest` must be properly aligned to `align_of_val(self)`.
498    ///
499    /// [valid]: crate::ptr#safety
500    /// [pointer metadata]: crate::ptr::metadata()
501    ///
502    /// # Panics
503    ///
504    /// This function may panic. (For example, it might panic if memory allocation for a clone
505    /// of a value owned by `self` fails.)
506    /// If the call panics, then `*dest` should be treated as uninitialized memory; it must not be
507    /// read or dropped, because even if it was previously valid, it may have been partially
508    /// overwritten.
509    ///
510    /// The caller may wish to take care to deallocate the allocation pointed to by `dest`,
511    /// if applicable, to avoid a memory leak (but this is not a requirement).
512    ///
513    /// Implementors should avoid leaking values by, upon unwinding, dropping all component values
514    /// that might have already been created. (For example, if a `[Foo]` of length 3 is being
515    /// cloned, and the second of the three calls to `Foo::clone()` unwinds, then the first `Foo`
516    /// cloned should be dropped.)
517    unsafe fn clone_to_uninit(&self, dest: *mut u8);
518}
519
520#[unstable(feature = "clone_to_uninit", issue = "126799")]
521#[cfg(not(feature = "ferrocene_certified"))]
522unsafe impl<T: Clone> CloneToUninit for T {
523    #[inline]
524    unsafe fn clone_to_uninit(&self, dest: *mut u8) {
525        // SAFETY: we're calling a specialization with the same contract
526        unsafe { <T as self::uninit::CopySpec>::clone_one(self, dest.cast::<T>()) }
527    }
528}
529
530#[unstable(feature = "clone_to_uninit", issue = "126799")]
531#[cfg(not(feature = "ferrocene_certified"))]
532unsafe impl<T: Clone> CloneToUninit for [T] {
533    #[inline]
534    #[cfg_attr(debug_assertions, track_caller)]
535    unsafe fn clone_to_uninit(&self, dest: *mut u8) {
536        let dest: *mut [T] = dest.with_metadata_of(self);
537        // SAFETY: we're calling a specialization with the same contract
538        unsafe { <T as self::uninit::CopySpec>::clone_slice(self, dest) }
539    }
540}
541
542#[unstable(feature = "clone_to_uninit", issue = "126799")]
543#[cfg(not(feature = "ferrocene_certified"))]
544unsafe impl CloneToUninit for str {
545    #[inline]
546    #[cfg_attr(debug_assertions, track_caller)]
547    unsafe fn clone_to_uninit(&self, dest: *mut u8) {
548        // SAFETY: str is just a [u8] with UTF-8 invariant
549        unsafe { self.as_bytes().clone_to_uninit(dest) }
550    }
551}
552
553#[unstable(feature = "clone_to_uninit", issue = "126799")]
554#[cfg(not(feature = "ferrocene_certified"))]
555unsafe impl CloneToUninit for crate::ffi::CStr {
556    #[cfg_attr(debug_assertions, track_caller)]
557    unsafe fn clone_to_uninit(&self, dest: *mut u8) {
558        // SAFETY: For now, CStr is just a #[repr(trasnsparent)] [c_char] with some invariants.
559        // And we can cast [c_char] to [u8] on all supported platforms (see: to_bytes_with_nul).
560        // The pointer metadata properly preserves the length (so NUL is also copied).
561        // See: `cstr_metadata_is_length_with_nul` in tests.
562        unsafe { self.to_bytes_with_nul().clone_to_uninit(dest) }
563    }
564}
565
566#[unstable(feature = "bstr", issue = "134915")]
567#[cfg(not(feature = "ferrocene_certified"))]
568unsafe impl CloneToUninit for crate::bstr::ByteStr {
569    #[inline]
570    #[cfg_attr(debug_assertions, track_caller)]
571    unsafe fn clone_to_uninit(&self, dst: *mut u8) {
572        // SAFETY: ByteStr is a `#[repr(transparent)]` wrapper around `[u8]`
573        unsafe { self.as_bytes().clone_to_uninit(dst) }
574    }
575}
576
577/// Implementations of `Clone` for primitive types.
578///
579/// Implementations that cannot be described in Rust
580/// are implemented in `traits::SelectionContext::copy_clone_conditions()`
581/// in `rustc_trait_selection`.
582mod impls {
583    use crate::marker::PointeeSized;
584
585    macro_rules! impl_clone {
586        ($($t:ty)*) => {
587            $(
588                #[stable(feature = "rust1", since = "1.0.0")]
589                impl Clone for $t {
590                    #[inline(always)]
591                    fn clone(&self) -> Self {
592                        *self
593                    }
594                }
595            )*
596        }
597    }
598
599    #[cfg(not(feature = "ferrocene_certified"))]
600    impl_clone! {
601        usize u8 u16 u32 u64 u128
602        isize i8 i16 i32 i64 i128
603        f16 f32 f64 f128
604        bool char
605    }
606
607    #[cfg(feature = "ferrocene_certified")]
608    impl_clone! {
609        usize u8 u16 u32 u64 u128
610        isize i8 i16 i32 i64 i128
611        f32 f64
612        bool
613    }
614
615    #[unstable(feature = "never_type", issue = "35121")]
616    #[cfg(not(feature = "ferrocene_certified"))]
617    impl Clone for ! {
618        #[inline]
619        fn clone(&self) -> Self {
620            *self
621        }
622    }
623
624    #[stable(feature = "rust1", since = "1.0.0")]
625    impl<T: PointeeSized> Clone for *const T {
626        #[inline(always)]
627        fn clone(&self) -> Self {
628            *self
629        }
630    }
631
632    #[stable(feature = "rust1", since = "1.0.0")]
633    impl<T: PointeeSized> Clone for *mut T {
634        #[inline(always)]
635        fn clone(&self) -> Self {
636            *self
637        }
638    }
639
640    /// Shared references can be cloned, but mutable references *cannot*!
641    #[stable(feature = "rust1", since = "1.0.0")]
642    impl<T: PointeeSized> Clone for &T {
643        #[inline(always)]
644        #[rustc_diagnostic_item = "noop_method_clone"]
645        fn clone(&self) -> Self {
646            self
647        }
648    }
649
650    /// Shared references can be cloned, but mutable references *cannot*!
651    #[stable(feature = "rust1", since = "1.0.0")]
652    #[cfg(not(feature = "ferrocene_certified"))]
653    impl<T: PointeeSized> !Clone for &mut T {}
654}