core/
cmp.rs

1//! Utilities for comparing and ordering values.
2//!
3//! This module contains various tools for comparing and ordering values. In
4//! summary:
5//!
6//! * [`PartialEq<Rhs>`] overloads the `==` and `!=` operators. In cases where
7//!   `Rhs` (the right hand side's type) is `Self`, this trait corresponds to a
8//!   partial equivalence relation.
9//! * [`Eq`] indicates that the overloaded `==` operator corresponds to an
10//!   equivalence relation.
11//! * [`Ord`] and [`PartialOrd`] are traits that allow you to define total and
12//!   partial orderings between values, respectively. Implementing them overloads
13//!   the `<`, `<=`, `>`, and `>=` operators.
14//! * [`Ordering`] is an enum returned by the main functions of [`Ord`] and
15//!   [`PartialOrd`], and describes an ordering of two values (less, equal, or
16//!   greater).
17//! * [`Reverse`] is a struct that allows you to easily reverse an ordering.
18//! * [`max`] and [`min`] are functions that build off of [`Ord`] and allow you
19//!   to find the maximum or minimum of two values.
20//!
21//! For more details, see the respective documentation of each item in the list.
22//!
23//! [`max`]: Ord::max
24//! [`min`]: Ord::min
25
26#![stable(feature = "rust1", since = "1.0.0")]
27
28#[cfg(not(feature = "ferrocene_certified"))]
29mod bytewise;
30#[cfg(not(feature = "ferrocene_certified"))]
31pub(crate) use bytewise::BytewiseEq;
32
33use self::Ordering::*;
34use crate::marker::PointeeSized;
35use crate::ops::ControlFlow;
36
37/// Trait for comparisons using the equality operator.
38///
39/// Implementing this trait for types provides the `==` and `!=` operators for
40/// those types.
41///
42/// `x.eq(y)` can also be written `x == y`, and `x.ne(y)` can be written `x != y`.
43/// We use the easier-to-read infix notation in the remainder of this documentation.
44///
45/// This trait allows for comparisons using the equality operator, for types
46/// that do not have a full equivalence relation. For example, in floating point
47/// numbers `NaN != NaN`, so floating point types implement `PartialEq` but not
48/// [`trait@Eq`]. Formally speaking, when `Rhs == Self`, this trait corresponds
49/// to a [partial equivalence relation].
50///
51/// [partial equivalence relation]: https://en.wikipedia.org/wiki/Partial_equivalence_relation
52///
53/// Implementations must ensure that `eq` and `ne` are consistent with each other:
54///
55/// - `a != b` if and only if `!(a == b)`.
56///
57/// The default implementation of `ne` provides this consistency and is almost
58/// always sufficient. It should not be overridden without very good reason.
59///
60/// If [`PartialOrd`] or [`Ord`] are also implemented for `Self` and `Rhs`, their methods must also
61/// be consistent with `PartialEq` (see the documentation of those traits for the exact
62/// requirements). It's easy to accidentally make them disagree by deriving some of the traits and
63/// manually implementing others.
64///
65/// The equality relation `==` must satisfy the following conditions
66/// (for all `a`, `b`, `c` of type `A`, `B`, `C`):
67///
68/// - **Symmetry**: if `A: PartialEq<B>` and `B: PartialEq<A>`, then **`a == b`
69///   implies `b == a`**; and
70///
71/// - **Transitivity**: if `A: PartialEq<B>` and `B: PartialEq<C>` and `A:
72///   PartialEq<C>`, then **`a == b` and `b == c` implies `a == c`**.
73///   This must also work for longer chains, such as when `A: PartialEq<B>`, `B: PartialEq<C>`,
74///   `C: PartialEq<D>`, and `A: PartialEq<D>` all exist.
75///
76/// Note that the `B: PartialEq<A>` (symmetric) and `A: PartialEq<C>`
77/// (transitive) impls are not forced to exist, but these requirements apply
78/// whenever they do exist.
79///
80/// Violating these requirements is a logic error. The behavior resulting from a logic error is not
81/// specified, but users of the trait must ensure that such logic errors do *not* result in
82/// undefined behavior. This means that `unsafe` code **must not** rely on the correctness of these
83/// methods.
84///
85/// ## Cross-crate considerations
86///
87/// Upholding the requirements stated above can become tricky when one crate implements `PartialEq`
88/// for a type of another crate (i.e., to allow comparing one of its own types with a type from the
89/// standard library). The recommendation is to never implement this trait for a foreign type. In
90/// other words, such a crate should do `impl PartialEq<ForeignType> for LocalType`, but it should
91/// *not* do `impl PartialEq<LocalType> for ForeignType`.
92///
93/// This avoids the problem of transitive chains that criss-cross crate boundaries: for all local
94/// types `T`, you may assume that no other crate will add `impl`s that allow comparing `T == U`. In
95/// other words, if other crates add `impl`s that allow building longer transitive chains `U1 == ...
96/// == T == V1 == ...`, then all the types that appear to the right of `T` must be types that the
97/// crate defining `T` already knows about. This rules out transitive chains where downstream crates
98/// can add new `impl`s that "stitch together" comparisons of foreign types in ways that violate
99/// transitivity.
100///
101/// Not having such foreign `impl`s also avoids forward compatibility issues where one crate adding
102/// more `PartialEq` implementations can cause build failures in downstream crates.
103///
104/// ## Derivable
105///
106/// This trait can be used with `#[derive]`. When `derive`d on structs, two
107/// instances are equal if all fields are equal, and not equal if any fields
108/// are not equal. When `derive`d on enums, two instances are equal if they
109/// are the same variant and all fields are equal.
110///
111/// ## How can I implement `PartialEq`?
112///
113/// An example implementation for a domain in which two books are considered
114/// the same book if their ISBN matches, even if the formats differ:
115///
116/// ```
117/// enum BookFormat {
118///     Paperback,
119///     Hardback,
120///     Ebook,
121/// }
122///
123/// struct Book {
124///     isbn: i32,
125///     format: BookFormat,
126/// }
127///
128/// impl PartialEq for Book {
129///     fn eq(&self, other: &Self) -> bool {
130///         self.isbn == other.isbn
131///     }
132/// }
133///
134/// let b1 = Book { isbn: 3, format: BookFormat::Paperback };
135/// let b2 = Book { isbn: 3, format: BookFormat::Ebook };
136/// let b3 = Book { isbn: 10, format: BookFormat::Paperback };
137///
138/// assert!(b1 == b2);
139/// assert!(b1 != b3);
140/// ```
141///
142/// ## How can I compare two different types?
143///
144/// The type you can compare with is controlled by `PartialEq`'s type parameter.
145/// For example, let's tweak our previous code a bit:
146///
147/// ```
148/// // The derive implements <BookFormat> == <BookFormat> comparisons
149/// #[derive(PartialEq)]
150/// enum BookFormat {
151///     Paperback,
152///     Hardback,
153///     Ebook,
154/// }
155///
156/// struct Book {
157///     isbn: i32,
158///     format: BookFormat,
159/// }
160///
161/// // Implement <Book> == <BookFormat> comparisons
162/// impl PartialEq<BookFormat> for Book {
163///     fn eq(&self, other: &BookFormat) -> bool {
164///         self.format == *other
165///     }
166/// }
167///
168/// // Implement <BookFormat> == <Book> comparisons
169/// impl PartialEq<Book> for BookFormat {
170///     fn eq(&self, other: &Book) -> bool {
171///         *self == other.format
172///     }
173/// }
174///
175/// let b1 = Book { isbn: 3, format: BookFormat::Paperback };
176///
177/// assert!(b1 == BookFormat::Paperback);
178/// assert!(BookFormat::Ebook != b1);
179/// ```
180///
181/// By changing `impl PartialEq for Book` to `impl PartialEq<BookFormat> for Book`,
182/// we allow `BookFormat`s to be compared with `Book`s.
183///
184/// A comparison like the one above, which ignores some fields of the struct,
185/// can be dangerous. It can easily lead to an unintended violation of the
186/// requirements for a partial equivalence relation. For example, if we kept
187/// the above implementation of `PartialEq<Book>` for `BookFormat` and added an
188/// implementation of `PartialEq<Book>` for `Book` (either via a `#[derive]` or
189/// via the manual implementation from the first example) then the result would
190/// violate transitivity:
191///
192/// ```should_panic
193/// #[derive(PartialEq)]
194/// enum BookFormat {
195///     Paperback,
196///     Hardback,
197///     Ebook,
198/// }
199///
200/// #[derive(PartialEq)]
201/// struct Book {
202///     isbn: i32,
203///     format: BookFormat,
204/// }
205///
206/// impl PartialEq<BookFormat> for Book {
207///     fn eq(&self, other: &BookFormat) -> bool {
208///         self.format == *other
209///     }
210/// }
211///
212/// impl PartialEq<Book> for BookFormat {
213///     fn eq(&self, other: &Book) -> bool {
214///         *self == other.format
215///     }
216/// }
217///
218/// fn main() {
219///     let b1 = Book { isbn: 1, format: BookFormat::Paperback };
220///     let b2 = Book { isbn: 2, format: BookFormat::Paperback };
221///
222///     assert!(b1 == BookFormat::Paperback);
223///     assert!(BookFormat::Paperback == b2);
224///
225///     // The following should hold by transitivity but doesn't.
226///     assert!(b1 == b2); // <-- PANICS
227/// }
228/// ```
229///
230/// # Examples
231///
232/// ```
233/// let x: u32 = 0;
234/// let y: u32 = 1;
235///
236/// assert_eq!(x == y, false);
237/// assert_eq!(x.eq(&y), false);
238/// ```
239///
240/// [`eq`]: PartialEq::eq
241/// [`ne`]: PartialEq::ne
242#[lang = "eq"]
243#[stable(feature = "rust1", since = "1.0.0")]
244#[doc(alias = "==")]
245#[doc(alias = "!=")]
246#[rustc_on_unimplemented(
247    message = "can't compare `{Self}` with `{Rhs}`",
248    label = "no implementation for `{Self} == {Rhs}`",
249    append_const_msg
250)]
251#[rustc_diagnostic_item = "PartialEq"]
252#[const_trait]
253#[rustc_const_unstable(feature = "const_cmp", issue = "143800")]
254pub trait PartialEq<Rhs: PointeeSized = Self>: PointeeSized {
255    /// Tests for `self` and `other` values to be equal, and is used by `==`.
256    #[must_use]
257    #[stable(feature = "rust1", since = "1.0.0")]
258    #[rustc_diagnostic_item = "cmp_partialeq_eq"]
259    fn eq(&self, other: &Rhs) -> bool;
260
261    /// Tests for `!=`. The default implementation is almost always sufficient,
262    /// and should not be overridden without very good reason.
263    #[inline]
264    #[must_use]
265    #[stable(feature = "rust1", since = "1.0.0")]
266    #[rustc_diagnostic_item = "cmp_partialeq_ne"]
267    fn ne(&self, other: &Rhs) -> bool {
268        !self.eq(other)
269    }
270}
271
272/// Derive macro generating an impl of the trait [`PartialEq`].
273/// The behavior of this macro is described in detail [here](PartialEq#derivable).
274#[rustc_builtin_macro]
275#[stable(feature = "builtin_macro_prelude", since = "1.38.0")]
276#[allow_internal_unstable(core_intrinsics, structural_match)]
277pub macro PartialEq($item:item) {
278    /* compiler built-in */
279}
280
281/// Trait for comparisons corresponding to [equivalence relations](
282/// https://en.wikipedia.org/wiki/Equivalence_relation).
283///
284/// The primary difference to [`PartialEq`] is the additional requirement for reflexivity. A type
285/// that implements [`PartialEq`] guarantees that for all `a`, `b` and `c`:
286///
287/// - symmetric: `a == b` implies `b == a` and `a != b` implies `!(a == b)`
288/// - transitive: `a == b` and `b == c` implies `a == c`
289///
290/// `Eq`, which builds on top of [`PartialEq`] also implies:
291///
292/// - reflexive: `a == a`
293///
294/// This property cannot be checked by the compiler, and therefore `Eq` is a trait without methods.
295///
296/// Violating this property is a logic error. The behavior resulting from a logic error is not
297/// specified, but users of the trait must ensure that such logic errors do *not* result in
298/// undefined behavior. This means that `unsafe` code **must not** rely on the correctness of these
299/// methods.
300///
301/// Floating point types such as [`f32`] and [`f64`] implement only [`PartialEq`] but *not* `Eq`
302/// because `NaN` != `NaN`.
303///
304/// ## Derivable
305///
306/// This trait can be used with `#[derive]`. When `derive`d, because `Eq` has no extra methods, it
307/// is only informing the compiler that this is an equivalence relation rather than a partial
308/// equivalence relation. Note that the `derive` strategy requires all fields are `Eq`, which isn't
309/// always desired.
310///
311/// ## How can I implement `Eq`?
312///
313/// If you cannot use the `derive` strategy, specify that your type implements `Eq`, which has no
314/// extra methods:
315///
316/// ```
317/// enum BookFormat {
318///     Paperback,
319///     Hardback,
320///     Ebook,
321/// }
322///
323/// struct Book {
324///     isbn: i32,
325///     format: BookFormat,
326/// }
327///
328/// impl PartialEq for Book {
329///     fn eq(&self, other: &Self) -> bool {
330///         self.isbn == other.isbn
331///     }
332/// }
333///
334/// impl Eq for Book {}
335/// ```
336#[doc(alias = "==")]
337#[doc(alias = "!=")]
338#[stable(feature = "rust1", since = "1.0.0")]
339#[rustc_diagnostic_item = "Eq"]
340pub trait Eq: PartialEq<Self> + PointeeSized {
341    // this method is used solely by `impl Eq or #[derive(Eq)]` to assert that every component of a
342    // type implements `Eq` itself. The current deriving infrastructure means doing this assertion
343    // without using a method on this trait is nearly impossible.
344    //
345    // This should never be implemented by hand.
346    #[doc(hidden)]
347    #[coverage(off)]
348    #[inline]
349    #[stable(feature = "rust1", since = "1.0.0")]
350    fn assert_receiver_is_total_eq(&self) {}
351}
352
353/// Derive macro generating an impl of the trait [`Eq`].
354#[rustc_builtin_macro]
355#[stable(feature = "builtin_macro_prelude", since = "1.38.0")]
356#[allow_internal_unstable(core_intrinsics, derive_eq, structural_match)]
357#[allow_internal_unstable(coverage_attribute)]
358pub macro Eq($item:item) {
359    /* compiler built-in */
360}
361
362// FIXME: this struct is used solely by #[derive] to
363// assert that every component of a type implements Eq.
364//
365// This struct should never appear in user code.
366#[doc(hidden)]
367#[allow(missing_debug_implementations)]
368#[unstable(feature = "derive_eq", reason = "deriving hack, should not be public", issue = "none")]
369#[cfg(not(feature = "ferrocene_certified"))]
370pub struct AssertParamIsEq<T: Eq + PointeeSized> {
371    _field: crate::marker::PhantomData<T>,
372}
373
374/// An `Ordering` is the result of a comparison between two values.
375///
376/// # Examples
377///
378/// ```
379/// use std::cmp::Ordering;
380///
381/// assert_eq!(1.cmp(&2), Ordering::Less);
382///
383/// assert_eq!(1.cmp(&1), Ordering::Equal);
384///
385/// assert_eq!(2.cmp(&1), Ordering::Greater);
386/// ```
387#[cfg_attr(
388    not(feature = "ferrocene_certified"),
389    derive(Clone, Copy, PartialEq, Eq, PartialOrd, Ord, Debug, Hash)
390)]
391#[stable(feature = "rust1", since = "1.0.0")]
392// This is a lang item only so that `BinOp::Cmp` in MIR can return it.
393// It has no special behavior, but does require that the three variants
394// `Less`/`Equal`/`Greater` remain `-1_i8`/`0_i8`/`+1_i8` respectively.
395#[lang = "Ordering"]
396#[repr(i8)]
397pub enum Ordering {
398    /// An ordering where a compared value is less than another.
399    #[stable(feature = "rust1", since = "1.0.0")]
400    Less = -1,
401    /// An ordering where a compared value is equal to another.
402    #[stable(feature = "rust1", since = "1.0.0")]
403    Equal = 0,
404    /// An ordering where a compared value is greater than another.
405    #[stable(feature = "rust1", since = "1.0.0")]
406    Greater = 1,
407}
408
409impl Ordering {
410    #[inline]
411    const fn as_raw(self) -> i8 {
412        // FIXME(const-hack): just use `PartialOrd` against `Equal` once that's const
413        crate::intrinsics::discriminant_value(&self)
414    }
415
416    /// Returns `true` if the ordering is the `Equal` variant.
417    ///
418    /// # Examples
419    ///
420    /// ```
421    /// use std::cmp::Ordering;
422    ///
423    /// assert_eq!(Ordering::Less.is_eq(), false);
424    /// assert_eq!(Ordering::Equal.is_eq(), true);
425    /// assert_eq!(Ordering::Greater.is_eq(), false);
426    /// ```
427    #[inline]
428    #[must_use]
429    #[rustc_const_stable(feature = "ordering_helpers", since = "1.53.0")]
430    #[stable(feature = "ordering_helpers", since = "1.53.0")]
431    pub const fn is_eq(self) -> bool {
432        // All the `is_*` methods are implemented as comparisons against zero
433        // to follow how clang's libcxx implements their equivalents in
434        // <https://github.com/llvm/llvm-project/blob/60486292b79885b7800b082754153202bef5b1f0/libcxx/include/__compare/is_eq.h#L23-L28>
435
436        self.as_raw() == 0
437    }
438
439    /// Returns `true` if the ordering is not the `Equal` variant.
440    ///
441    /// # Examples
442    ///
443    /// ```
444    /// use std::cmp::Ordering;
445    ///
446    /// assert_eq!(Ordering::Less.is_ne(), true);
447    /// assert_eq!(Ordering::Equal.is_ne(), false);
448    /// assert_eq!(Ordering::Greater.is_ne(), true);
449    /// ```
450    #[inline]
451    #[must_use]
452    #[rustc_const_stable(feature = "ordering_helpers", since = "1.53.0")]
453    #[stable(feature = "ordering_helpers", since = "1.53.0")]
454    pub const fn is_ne(self) -> bool {
455        self.as_raw() != 0
456    }
457
458    /// Returns `true` if the ordering is the `Less` variant.
459    ///
460    /// # Examples
461    ///
462    /// ```
463    /// use std::cmp::Ordering;
464    ///
465    /// assert_eq!(Ordering::Less.is_lt(), true);
466    /// assert_eq!(Ordering::Equal.is_lt(), false);
467    /// assert_eq!(Ordering::Greater.is_lt(), false);
468    /// ```
469    #[inline]
470    #[must_use]
471    #[rustc_const_stable(feature = "ordering_helpers", since = "1.53.0")]
472    #[stable(feature = "ordering_helpers", since = "1.53.0")]
473    pub const fn is_lt(self) -> bool {
474        self.as_raw() < 0
475    }
476
477    /// Returns `true` if the ordering is the `Greater` variant.
478    ///
479    /// # Examples
480    ///
481    /// ```
482    /// use std::cmp::Ordering;
483    ///
484    /// assert_eq!(Ordering::Less.is_gt(), false);
485    /// assert_eq!(Ordering::Equal.is_gt(), false);
486    /// assert_eq!(Ordering::Greater.is_gt(), true);
487    /// ```
488    #[inline]
489    #[must_use]
490    #[rustc_const_stable(feature = "ordering_helpers", since = "1.53.0")]
491    #[stable(feature = "ordering_helpers", since = "1.53.0")]
492    pub const fn is_gt(self) -> bool {
493        self.as_raw() > 0
494    }
495
496    /// Returns `true` if the ordering is either the `Less` or `Equal` variant.
497    ///
498    /// # Examples
499    ///
500    /// ```
501    /// use std::cmp::Ordering;
502    ///
503    /// assert_eq!(Ordering::Less.is_le(), true);
504    /// assert_eq!(Ordering::Equal.is_le(), true);
505    /// assert_eq!(Ordering::Greater.is_le(), false);
506    /// ```
507    #[inline]
508    #[must_use]
509    #[rustc_const_stable(feature = "ordering_helpers", since = "1.53.0")]
510    #[stable(feature = "ordering_helpers", since = "1.53.0")]
511    pub const fn is_le(self) -> bool {
512        self.as_raw() <= 0
513    }
514
515    /// Returns `true` if the ordering is either the `Greater` or `Equal` variant.
516    ///
517    /// # Examples
518    ///
519    /// ```
520    /// use std::cmp::Ordering;
521    ///
522    /// assert_eq!(Ordering::Less.is_ge(), false);
523    /// assert_eq!(Ordering::Equal.is_ge(), true);
524    /// assert_eq!(Ordering::Greater.is_ge(), true);
525    /// ```
526    #[inline]
527    #[must_use]
528    #[rustc_const_stable(feature = "ordering_helpers", since = "1.53.0")]
529    #[stable(feature = "ordering_helpers", since = "1.53.0")]
530    pub const fn is_ge(self) -> bool {
531        self.as_raw() >= 0
532    }
533
534    /// Reverses the `Ordering`.
535    ///
536    /// * `Less` becomes `Greater`.
537    /// * `Greater` becomes `Less`.
538    /// * `Equal` becomes `Equal`.
539    ///
540    /// # Examples
541    ///
542    /// Basic behavior:
543    ///
544    /// ```
545    /// use std::cmp::Ordering;
546    ///
547    /// assert_eq!(Ordering::Less.reverse(), Ordering::Greater);
548    /// assert_eq!(Ordering::Equal.reverse(), Ordering::Equal);
549    /// assert_eq!(Ordering::Greater.reverse(), Ordering::Less);
550    /// ```
551    ///
552    /// This method can be used to reverse a comparison:
553    ///
554    /// ```
555    /// let data: &mut [_] = &mut [2, 10, 5, 8];
556    ///
557    /// // sort the array from largest to smallest.
558    /// data.sort_by(|a, b| a.cmp(b).reverse());
559    ///
560    /// let b: &mut [_] = &mut [10, 8, 5, 2];
561    /// assert!(data == b);
562    /// ```
563    #[inline]
564    #[must_use]
565    #[rustc_const_stable(feature = "const_ordering", since = "1.48.0")]
566    #[stable(feature = "rust1", since = "1.0.0")]
567    pub const fn reverse(self) -> Ordering {
568        match self {
569            Less => Greater,
570            Equal => Equal,
571            Greater => Less,
572        }
573    }
574
575    /// Chains two orderings.
576    ///
577    /// Returns `self` when it's not `Equal`. Otherwise returns `other`.
578    ///
579    /// # Examples
580    ///
581    /// ```
582    /// use std::cmp::Ordering;
583    ///
584    /// let result = Ordering::Equal.then(Ordering::Less);
585    /// assert_eq!(result, Ordering::Less);
586    ///
587    /// let result = Ordering::Less.then(Ordering::Equal);
588    /// assert_eq!(result, Ordering::Less);
589    ///
590    /// let result = Ordering::Less.then(Ordering::Greater);
591    /// assert_eq!(result, Ordering::Less);
592    ///
593    /// let result = Ordering::Equal.then(Ordering::Equal);
594    /// assert_eq!(result, Ordering::Equal);
595    ///
596    /// let x: (i64, i64, i64) = (1, 2, 7);
597    /// let y: (i64, i64, i64) = (1, 5, 3);
598    /// let result = x.0.cmp(&y.0).then(x.1.cmp(&y.1)).then(x.2.cmp(&y.2));
599    ///
600    /// assert_eq!(result, Ordering::Less);
601    /// ```
602    #[inline]
603    #[must_use]
604    #[rustc_const_stable(feature = "const_ordering", since = "1.48.0")]
605    #[stable(feature = "ordering_chaining", since = "1.17.0")]
606    pub const fn then(self, other: Ordering) -> Ordering {
607        match self {
608            Equal => other,
609            _ => self,
610        }
611    }
612
613    /// Chains the ordering with the given function.
614    ///
615    /// Returns `self` when it's not `Equal`. Otherwise calls `f` and returns
616    /// the result.
617    ///
618    /// # Examples
619    ///
620    /// ```
621    /// use std::cmp::Ordering;
622    ///
623    /// let result = Ordering::Equal.then_with(|| Ordering::Less);
624    /// assert_eq!(result, Ordering::Less);
625    ///
626    /// let result = Ordering::Less.then_with(|| Ordering::Equal);
627    /// assert_eq!(result, Ordering::Less);
628    ///
629    /// let result = Ordering::Less.then_with(|| Ordering::Greater);
630    /// assert_eq!(result, Ordering::Less);
631    ///
632    /// let result = Ordering::Equal.then_with(|| Ordering::Equal);
633    /// assert_eq!(result, Ordering::Equal);
634    ///
635    /// let x: (i64, i64, i64) = (1, 2, 7);
636    /// let y: (i64, i64, i64) = (1, 5, 3);
637    /// let result = x.0.cmp(&y.0).then_with(|| x.1.cmp(&y.1)).then_with(|| x.2.cmp(&y.2));
638    ///
639    /// assert_eq!(result, Ordering::Less);
640    /// ```
641    #[inline]
642    #[must_use]
643    #[stable(feature = "ordering_chaining", since = "1.17.0")]
644    #[cfg(not(feature = "ferrocene_certified"))]
645    pub fn then_with<F: FnOnce() -> Ordering>(self, f: F) -> Ordering {
646        match self {
647            Equal => f(),
648            _ => self,
649        }
650    }
651}
652
653/// A helper struct for reverse ordering.
654///
655/// This struct is a helper to be used with functions like [`Vec::sort_by_key`] and
656/// can be used to reverse order a part of a key.
657///
658/// [`Vec::sort_by_key`]: ../../std/vec/struct.Vec.html#method.sort_by_key
659///
660/// # Examples
661///
662/// ```
663/// use std::cmp::Reverse;
664///
665/// let mut v = vec![1, 2, 3, 4, 5, 6];
666/// v.sort_by_key(|&num| (num > 3, Reverse(num)));
667/// assert_eq!(v, vec![3, 2, 1, 6, 5, 4]);
668/// ```
669#[derive(PartialEq, Eq, Debug, Copy, Default, Hash)]
670#[stable(feature = "reverse_cmp_key", since = "1.19.0")]
671#[repr(transparent)]
672#[cfg(not(feature = "ferrocene_certified"))]
673pub struct Reverse<T>(#[stable(feature = "reverse_cmp_key", since = "1.19.0")] pub T);
674
675#[stable(feature = "reverse_cmp_key", since = "1.19.0")]
676#[cfg(not(feature = "ferrocene_certified"))]
677impl<T: PartialOrd> PartialOrd for Reverse<T> {
678    #[inline]
679    fn partial_cmp(&self, other: &Reverse<T>) -> Option<Ordering> {
680        other.0.partial_cmp(&self.0)
681    }
682
683    #[inline]
684    fn lt(&self, other: &Self) -> bool {
685        other.0 < self.0
686    }
687    #[inline]
688    fn le(&self, other: &Self) -> bool {
689        other.0 <= self.0
690    }
691    #[inline]
692    fn gt(&self, other: &Self) -> bool {
693        other.0 > self.0
694    }
695    #[inline]
696    fn ge(&self, other: &Self) -> bool {
697        other.0 >= self.0
698    }
699}
700
701#[stable(feature = "reverse_cmp_key", since = "1.19.0")]
702#[cfg(not(feature = "ferrocene_certified"))]
703impl<T: Ord> Ord for Reverse<T> {
704    #[inline]
705    fn cmp(&self, other: &Reverse<T>) -> Ordering {
706        other.0.cmp(&self.0)
707    }
708}
709
710#[stable(feature = "reverse_cmp_key", since = "1.19.0")]
711#[cfg(not(feature = "ferrocene_certified"))]
712impl<T: Clone> Clone for Reverse<T> {
713    #[inline]
714    fn clone(&self) -> Reverse<T> {
715        Reverse(self.0.clone())
716    }
717
718    #[inline]
719    fn clone_from(&mut self, source: &Self) {
720        self.0.clone_from(&source.0)
721    }
722}
723
724/// Trait for types that form a [total order](https://en.wikipedia.org/wiki/Total_order).
725///
726/// Implementations must be consistent with the [`PartialOrd`] implementation, and ensure `max`,
727/// `min`, and `clamp` are consistent with `cmp`:
728///
729/// - `partial_cmp(a, b) == Some(cmp(a, b))`.
730/// - `max(a, b) == max_by(a, b, cmp)` (ensured by the default implementation).
731/// - `min(a, b) == min_by(a, b, cmp)` (ensured by the default implementation).
732/// - For `a.clamp(min, max)`, see the [method docs](#method.clamp) (ensured by the default
733///   implementation).
734///
735/// Violating these requirements is a logic error. The behavior resulting from a logic error is not
736/// specified, but users of the trait must ensure that such logic errors do *not* result in
737/// undefined behavior. This means that `unsafe` code **must not** rely on the correctness of these
738/// methods.
739///
740/// ## Corollaries
741///
742/// From the above and the requirements of `PartialOrd`, it follows that for all `a`, `b` and `c`:
743///
744/// - exactly one of `a < b`, `a == b` or `a > b` is true; and
745/// - `<` is transitive: `a < b` and `b < c` implies `a < c`. The same must hold for both `==` and
746///   `>`.
747///
748/// Mathematically speaking, the `<` operator defines a strict [weak order]. In cases where `==`
749/// conforms to mathematical equality, it also defines a strict [total order].
750///
751/// [weak order]: https://en.wikipedia.org/wiki/Weak_ordering
752/// [total order]: https://en.wikipedia.org/wiki/Total_order
753///
754/// ## Derivable
755///
756/// This trait can be used with `#[derive]`.
757///
758/// When `derive`d on structs, it will produce a
759/// [lexicographic](https://en.wikipedia.org/wiki/Lexicographic_order) ordering based on the
760/// top-to-bottom declaration order of the struct's members.
761///
762/// When `derive`d on enums, variants are ordered primarily by their discriminants. Secondarily,
763/// they are ordered by their fields. By default, the discriminant is smallest for variants at the
764/// top, and largest for variants at the bottom. Here's an example:
765///
766/// ```
767/// #[derive(PartialEq, Eq, PartialOrd, Ord)]
768/// enum E {
769///     Top,
770///     Bottom,
771/// }
772///
773/// assert!(E::Top < E::Bottom);
774/// ```
775///
776/// However, manually setting the discriminants can override this default behavior:
777///
778/// ```
779/// #[derive(PartialEq, Eq, PartialOrd, Ord)]
780/// enum E {
781///     Top = 2,
782///     Bottom = 1,
783/// }
784///
785/// assert!(E::Bottom < E::Top);
786/// ```
787///
788/// ## Lexicographical comparison
789///
790/// Lexicographical comparison is an operation with the following properties:
791///  - Two sequences are compared element by element.
792///  - The first mismatching element defines which sequence is lexicographically less or greater
793///    than the other.
794///  - If one sequence is a prefix of another, the shorter sequence is lexicographically less than
795///    the other.
796///  - If two sequences have equivalent elements and are of the same length, then the sequences are
797///    lexicographically equal.
798///  - An empty sequence is lexicographically less than any non-empty sequence.
799///  - Two empty sequences are lexicographically equal.
800///
801/// ## How can I implement `Ord`?
802///
803/// `Ord` requires that the type also be [`PartialOrd`], [`PartialEq`], and [`Eq`].
804///
805/// Because `Ord` implies a stronger ordering relationship than [`PartialOrd`], and both `Ord` and
806/// [`PartialOrd`] must agree, you must choose how to implement `Ord` **first**. You can choose to
807/// derive it, or implement it manually. If you derive it, you should derive all four traits. If you
808/// implement it manually, you should manually implement all four traits, based on the
809/// implementation of `Ord`.
810///
811/// Here's an example where you want to define the `Character` comparison by `health` and
812/// `experience` only, disregarding the field `mana`:
813///
814/// ```
815/// use std::cmp::Ordering;
816///
817/// struct Character {
818///     health: u32,
819///     experience: u32,
820///     mana: f32,
821/// }
822///
823/// impl Ord for Character {
824///     fn cmp(&self, other: &Self) -> Ordering {
825///         self.experience
826///             .cmp(&other.experience)
827///             .then(self.health.cmp(&other.health))
828///     }
829/// }
830///
831/// impl PartialOrd for Character {
832///     fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
833///         Some(self.cmp(other))
834///     }
835/// }
836///
837/// impl PartialEq for Character {
838///     fn eq(&self, other: &Self) -> bool {
839///         self.health == other.health && self.experience == other.experience
840///     }
841/// }
842///
843/// impl Eq for Character {}
844/// ```
845///
846/// If all you need is to `slice::sort` a type by a field value, it can be simpler to use
847/// `slice::sort_by_key`.
848///
849/// ## Examples of incorrect `Ord` implementations
850///
851/// ```
852/// use std::cmp::Ordering;
853///
854/// #[derive(Debug)]
855/// struct Character {
856///     health: f32,
857/// }
858///
859/// impl Ord for Character {
860///     fn cmp(&self, other: &Self) -> std::cmp::Ordering {
861///         if self.health < other.health {
862///             Ordering::Less
863///         } else if self.health > other.health {
864///             Ordering::Greater
865///         } else {
866///             Ordering::Equal
867///         }
868///     }
869/// }
870///
871/// impl PartialOrd for Character {
872///     fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
873///         Some(self.cmp(other))
874///     }
875/// }
876///
877/// impl PartialEq for Character {
878///     fn eq(&self, other: &Self) -> bool {
879///         self.health == other.health
880///     }
881/// }
882///
883/// impl Eq for Character {}
884///
885/// let a = Character { health: 4.5 };
886/// let b = Character { health: f32::NAN };
887///
888/// // Mistake: floating-point values do not form a total order and using the built-in comparison
889/// // operands to implement `Ord` irregardless of that reality does not change it. Use
890/// // `f32::total_cmp` if you need a total order for floating-point values.
891///
892/// // Reflexivity requirement of `Ord` is not given.
893/// assert!(a == a);
894/// assert!(b != b);
895///
896/// // Antisymmetry requirement of `Ord` is not given. Only one of a < c and c < a is allowed to be
897/// // true, not both or neither.
898/// assert_eq!((a < b) as u8 + (b < a) as u8, 0);
899/// ```
900///
901/// ```
902/// use std::cmp::Ordering;
903///
904/// #[derive(Debug)]
905/// struct Character {
906///     health: u32,
907///     experience: u32,
908/// }
909///
910/// impl PartialOrd for Character {
911///     fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
912///         Some(self.cmp(other))
913///     }
914/// }
915///
916/// impl Ord for Character {
917///     fn cmp(&self, other: &Self) -> std::cmp::Ordering {
918///         if self.health < 50 {
919///             self.health.cmp(&other.health)
920///         } else {
921///             self.experience.cmp(&other.experience)
922///         }
923///     }
924/// }
925///
926/// // For performance reasons implementing `PartialEq` this way is not the idiomatic way, but it
927/// // ensures consistent behavior between `PartialEq`, `PartialOrd` and `Ord` in this example.
928/// impl PartialEq for Character {
929///     fn eq(&self, other: &Self) -> bool {
930///         self.cmp(other) == Ordering::Equal
931///     }
932/// }
933///
934/// impl Eq for Character {}
935///
936/// let a = Character {
937///     health: 3,
938///     experience: 5,
939/// };
940/// let b = Character {
941///     health: 10,
942///     experience: 77,
943/// };
944/// let c = Character {
945///     health: 143,
946///     experience: 2,
947/// };
948///
949/// // Mistake: The implementation of `Ord` compares different fields depending on the value of
950/// // `self.health`, the resulting order is not total.
951///
952/// // Transitivity requirement of `Ord` is not given. If a is smaller than b and b is smaller than
953/// // c, by transitive property a must also be smaller than c.
954/// assert!(a < b && b < c && c < a);
955///
956/// // Antisymmetry requirement of `Ord` is not given. Only one of a < c and c < a is allowed to be
957/// // true, not both or neither.
958/// assert_eq!((a < c) as u8 + (c < a) as u8, 2);
959/// ```
960///
961/// The documentation of [`PartialOrd`] contains further examples, for example it's wrong for
962/// [`PartialOrd`] and [`PartialEq`] to disagree.
963///
964/// [`cmp`]: Ord::cmp
965#[doc(alias = "<")]
966#[doc(alias = ">")]
967#[doc(alias = "<=")]
968#[doc(alias = ">=")]
969#[stable(feature = "rust1", since = "1.0.0")]
970#[rustc_diagnostic_item = "Ord"]
971pub trait Ord: Eq + PartialOrd<Self> + PointeeSized {
972    /// This method returns an [`Ordering`] between `self` and `other`.
973    ///
974    /// By convention, `self.cmp(&other)` returns the ordering matching the expression
975    /// `self <operator> other` if true.
976    ///
977    /// # Examples
978    ///
979    /// ```
980    /// use std::cmp::Ordering;
981    ///
982    /// assert_eq!(5.cmp(&10), Ordering::Less);
983    /// assert_eq!(10.cmp(&5), Ordering::Greater);
984    /// assert_eq!(5.cmp(&5), Ordering::Equal);
985    /// ```
986    #[must_use]
987    #[stable(feature = "rust1", since = "1.0.0")]
988    #[rustc_diagnostic_item = "ord_cmp_method"]
989    fn cmp(&self, other: &Self) -> Ordering;
990
991    /// Compares and returns the maximum of two values.
992    ///
993    /// Returns the second argument if the comparison determines them to be equal.
994    ///
995    /// # Examples
996    ///
997    /// ```
998    /// assert_eq!(1.max(2), 2);
999    /// assert_eq!(2.max(2), 2);
1000    /// ```
1001    /// ```
1002    /// use std::cmp::Ordering;
1003    ///
1004    /// #[derive(Eq)]
1005    /// struct Equal(&'static str);
1006    ///
1007    /// impl PartialEq for Equal {
1008    ///     fn eq(&self, other: &Self) -> bool { true }
1009    /// }
1010    /// impl PartialOrd for Equal {
1011    ///     fn partial_cmp(&self, other: &Self) -> Option<Ordering> { Some(Ordering::Equal) }
1012    /// }
1013    /// impl Ord for Equal {
1014    ///     fn cmp(&self, other: &Self) -> Ordering { Ordering::Equal }
1015    /// }
1016    ///
1017    /// assert_eq!(Equal("self").max(Equal("other")).0, "other");
1018    /// ```
1019    #[stable(feature = "ord_max_min", since = "1.21.0")]
1020    #[inline]
1021    #[must_use]
1022    #[rustc_diagnostic_item = "cmp_ord_max"]
1023    fn max(self, other: Self) -> Self
1024    where
1025        Self: Sized,
1026    {
1027        if other < self { self } else { other }
1028    }
1029
1030    /// Compares and returns the minimum of two values.
1031    ///
1032    /// Returns the first argument if the comparison determines them to be equal.
1033    ///
1034    /// # Examples
1035    ///
1036    /// ```
1037    /// assert_eq!(1.min(2), 1);
1038    /// assert_eq!(2.min(2), 2);
1039    /// ```
1040    /// ```
1041    /// use std::cmp::Ordering;
1042    ///
1043    /// #[derive(Eq)]
1044    /// struct Equal(&'static str);
1045    ///
1046    /// impl PartialEq for Equal {
1047    ///     fn eq(&self, other: &Self) -> bool { true }
1048    /// }
1049    /// impl PartialOrd for Equal {
1050    ///     fn partial_cmp(&self, other: &Self) -> Option<Ordering> { Some(Ordering::Equal) }
1051    /// }
1052    /// impl Ord for Equal {
1053    ///     fn cmp(&self, other: &Self) -> Ordering { Ordering::Equal }
1054    /// }
1055    ///
1056    /// assert_eq!(Equal("self").min(Equal("other")).0, "self");
1057    /// ```
1058    #[stable(feature = "ord_max_min", since = "1.21.0")]
1059    #[inline]
1060    #[must_use]
1061    #[rustc_diagnostic_item = "cmp_ord_min"]
1062    fn min(self, other: Self) -> Self
1063    where
1064        Self: Sized,
1065    {
1066        if other < self { other } else { self }
1067    }
1068
1069    /// Restrict a value to a certain interval.
1070    ///
1071    /// Returns `max` if `self` is greater than `max`, and `min` if `self` is
1072    /// less than `min`. Otherwise this returns `self`.
1073    ///
1074    /// # Panics
1075    ///
1076    /// Panics if `min > max`.
1077    ///
1078    /// # Examples
1079    ///
1080    /// ```
1081    /// assert_eq!((-3).clamp(-2, 1), -2);
1082    /// assert_eq!(0.clamp(-2, 1), 0);
1083    /// assert_eq!(2.clamp(-2, 1), 1);
1084    /// ```
1085    #[must_use]
1086    #[inline]
1087    #[stable(feature = "clamp", since = "1.50.0")]
1088    fn clamp(self, min: Self, max: Self) -> Self
1089    where
1090        Self: Sized,
1091    {
1092        assert!(min <= max);
1093        if self < min {
1094            min
1095        } else if self > max {
1096            max
1097        } else {
1098            self
1099        }
1100    }
1101}
1102
1103/// Derive macro generating an impl of the trait [`Ord`].
1104/// The behavior of this macro is described in detail [here](Ord#derivable).
1105#[rustc_builtin_macro]
1106#[stable(feature = "builtin_macro_prelude", since = "1.38.0")]
1107#[allow_internal_unstable(core_intrinsics)]
1108#[cfg(not(feature = "ferrocene_certified"))]
1109pub macro Ord($item:item) {
1110    /* compiler built-in */
1111}
1112
1113/// Trait for types that form a [partial order](https://en.wikipedia.org/wiki/Partial_order).
1114///
1115/// The `lt`, `le`, `gt`, and `ge` methods of this trait can be called using the `<`, `<=`, `>`, and
1116/// `>=` operators, respectively.
1117///
1118/// This trait should **only** contain the comparison logic for a type **if one plans on only
1119/// implementing `PartialOrd` but not [`Ord`]**. Otherwise the comparison logic should be in [`Ord`]
1120/// and this trait implemented with `Some(self.cmp(other))`.
1121///
1122/// The methods of this trait must be consistent with each other and with those of [`PartialEq`].
1123/// The following conditions must hold:
1124///
1125/// 1. `a == b` if and only if `partial_cmp(a, b) == Some(Equal)`.
1126/// 2. `a < b` if and only if `partial_cmp(a, b) == Some(Less)`
1127/// 3. `a > b` if and only if `partial_cmp(a, b) == Some(Greater)`
1128/// 4. `a <= b` if and only if `a < b || a == b`
1129/// 5. `a >= b` if and only if `a > b || a == b`
1130/// 6. `a != b` if and only if `!(a == b)`.
1131///
1132/// Conditions 2–5 above are ensured by the default implementation. Condition 6 is already ensured
1133/// by [`PartialEq`].
1134///
1135/// If [`Ord`] is also implemented for `Self` and `Rhs`, it must also be consistent with
1136/// `partial_cmp` (see the documentation of that trait for the exact requirements). It's easy to
1137/// accidentally make them disagree by deriving some of the traits and manually implementing others.
1138///
1139/// The comparison relations must satisfy the following conditions (for all `a`, `b`, `c` of type
1140/// `A`, `B`, `C`):
1141///
1142/// - **Transitivity**: if `A: PartialOrd<B>` and `B: PartialOrd<C>` and `A: PartialOrd<C>`, then `a
1143///   < b` and `b < c` implies `a < c`. The same must hold for both `==` and `>`. This must also
1144///   work for longer chains, such as when `A: PartialOrd<B>`, `B: PartialOrd<C>`, `C:
1145///   PartialOrd<D>`, and `A: PartialOrd<D>` all exist.
1146/// - **Duality**: if `A: PartialOrd<B>` and `B: PartialOrd<A>`, then `a < b` if and only if `b >
1147///   a`.
1148///
1149/// Note that the `B: PartialOrd<A>` (dual) and `A: PartialOrd<C>` (transitive) impls are not forced
1150/// to exist, but these requirements apply whenever they do exist.
1151///
1152/// Violating these requirements is a logic error. The behavior resulting from a logic error is not
1153/// specified, but users of the trait must ensure that such logic errors do *not* result in
1154/// undefined behavior. This means that `unsafe` code **must not** rely on the correctness of these
1155/// methods.
1156///
1157/// ## Cross-crate considerations
1158///
1159/// Upholding the requirements stated above can become tricky when one crate implements `PartialOrd`
1160/// for a type of another crate (i.e., to allow comparing one of its own types with a type from the
1161/// standard library). The recommendation is to never implement this trait for a foreign type. In
1162/// other words, such a crate should do `impl PartialOrd<ForeignType> for LocalType`, but it should
1163/// *not* do `impl PartialOrd<LocalType> for ForeignType`.
1164///
1165/// This avoids the problem of transitive chains that criss-cross crate boundaries: for all local
1166/// types `T`, you may assume that no other crate will add `impl`s that allow comparing `T < U`. In
1167/// other words, if other crates add `impl`s that allow building longer transitive chains `U1 < ...
1168/// < T < V1 < ...`, then all the types that appear to the right of `T` must be types that the crate
1169/// defining `T` already knows about. This rules out transitive chains where downstream crates can
1170/// add new `impl`s that "stitch together" comparisons of foreign types in ways that violate
1171/// transitivity.
1172///
1173/// Not having such foreign `impl`s also avoids forward compatibility issues where one crate adding
1174/// more `PartialOrd` implementations can cause build failures in downstream crates.
1175///
1176/// ## Corollaries
1177///
1178/// The following corollaries follow from the above requirements:
1179///
1180/// - irreflexivity of `<` and `>`: `!(a < a)`, `!(a > a)`
1181/// - transitivity of `>`: if `a > b` and `b > c` then `a > c`
1182/// - duality of `partial_cmp`: `partial_cmp(a, b) == partial_cmp(b, a).map(Ordering::reverse)`
1183///
1184/// ## Strict and non-strict partial orders
1185///
1186/// The `<` and `>` operators behave according to a *strict* partial order. However, `<=` and `>=`
1187/// do **not** behave according to a *non-strict* partial order. That is because mathematically, a
1188/// non-strict partial order would require reflexivity, i.e. `a <= a` would need to be true for
1189/// every `a`. This isn't always the case for types that implement `PartialOrd`, for example:
1190///
1191/// ```
1192/// let a = f64::sqrt(-1.0);
1193/// assert_eq!(a <= a, false);
1194/// ```
1195///
1196/// ## Derivable
1197///
1198/// This trait can be used with `#[derive]`.
1199///
1200/// When `derive`d on structs, it will produce a
1201/// [lexicographic](https://en.wikipedia.org/wiki/Lexicographic_order) ordering based on the
1202/// top-to-bottom declaration order of the struct's members.
1203///
1204/// When `derive`d on enums, variants are primarily ordered by their discriminants. Secondarily,
1205/// they are ordered by their fields. By default, the discriminant is smallest for variants at the
1206/// top, and largest for variants at the bottom. Here's an example:
1207///
1208/// ```
1209/// #[derive(PartialEq, PartialOrd)]
1210/// enum E {
1211///     Top,
1212///     Bottom,
1213/// }
1214///
1215/// assert!(E::Top < E::Bottom);
1216/// ```
1217///
1218/// However, manually setting the discriminants can override this default behavior:
1219///
1220/// ```
1221/// #[derive(PartialEq, PartialOrd)]
1222/// enum E {
1223///     Top = 2,
1224///     Bottom = 1,
1225/// }
1226///
1227/// assert!(E::Bottom < E::Top);
1228/// ```
1229///
1230/// ## How can I implement `PartialOrd`?
1231///
1232/// `PartialOrd` only requires implementation of the [`partial_cmp`] method, with the others
1233/// generated from default implementations.
1234///
1235/// However it remains possible to implement the others separately for types which do not have a
1236/// total order. For example, for floating point numbers, `NaN < 0 == false` and `NaN >= 0 == false`
1237/// (cf. IEEE 754-2008 section 5.11).
1238///
1239/// `PartialOrd` requires your type to be [`PartialEq`].
1240///
1241/// If your type is [`Ord`], you can implement [`partial_cmp`] by using [`cmp`]:
1242///
1243/// ```
1244/// use std::cmp::Ordering;
1245///
1246/// struct Person {
1247///     id: u32,
1248///     name: String,
1249///     height: u32,
1250/// }
1251///
1252/// impl PartialOrd for Person {
1253///     fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
1254///         Some(self.cmp(other))
1255///     }
1256/// }
1257///
1258/// impl Ord for Person {
1259///     fn cmp(&self, other: &Self) -> Ordering {
1260///         self.height.cmp(&other.height)
1261///     }
1262/// }
1263///
1264/// impl PartialEq for Person {
1265///     fn eq(&self, other: &Self) -> bool {
1266///         self.height == other.height
1267///     }
1268/// }
1269///
1270/// impl Eq for Person {}
1271/// ```
1272///
1273/// You may also find it useful to use [`partial_cmp`] on your type's fields. Here is an example of
1274/// `Person` types who have a floating-point `height` field that is the only field to be used for
1275/// sorting:
1276///
1277/// ```
1278/// use std::cmp::Ordering;
1279///
1280/// struct Person {
1281///     id: u32,
1282///     name: String,
1283///     height: f64,
1284/// }
1285///
1286/// impl PartialOrd for Person {
1287///     fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
1288///         self.height.partial_cmp(&other.height)
1289///     }
1290/// }
1291///
1292/// impl PartialEq for Person {
1293///     fn eq(&self, other: &Self) -> bool {
1294///         self.height == other.height
1295///     }
1296/// }
1297/// ```
1298///
1299/// ## Examples of incorrect `PartialOrd` implementations
1300///
1301/// ```
1302/// use std::cmp::Ordering;
1303///
1304/// #[derive(PartialEq, Debug)]
1305/// struct Character {
1306///     health: u32,
1307///     experience: u32,
1308/// }
1309///
1310/// impl PartialOrd for Character {
1311///     fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
1312///         Some(self.health.cmp(&other.health))
1313///     }
1314/// }
1315///
1316/// let a = Character {
1317///     health: 10,
1318///     experience: 5,
1319/// };
1320/// let b = Character {
1321///     health: 10,
1322///     experience: 77,
1323/// };
1324///
1325/// // Mistake: `PartialEq` and `PartialOrd` disagree with each other.
1326///
1327/// assert_eq!(a.partial_cmp(&b).unwrap(), Ordering::Equal); // a == b according to `PartialOrd`.
1328/// assert_ne!(a, b); // a != b according to `PartialEq`.
1329/// ```
1330///
1331/// # Examples
1332///
1333/// ```
1334/// let x: u32 = 0;
1335/// let y: u32 = 1;
1336///
1337/// assert_eq!(x < y, true);
1338/// assert_eq!(x.lt(&y), true);
1339/// ```
1340///
1341/// [`partial_cmp`]: PartialOrd::partial_cmp
1342/// [`cmp`]: Ord::cmp
1343#[lang = "partial_ord"]
1344#[stable(feature = "rust1", since = "1.0.0")]
1345#[doc(alias = ">")]
1346#[doc(alias = "<")]
1347#[doc(alias = "<=")]
1348#[doc(alias = ">=")]
1349#[rustc_on_unimplemented(
1350    message = "can't compare `{Self}` with `{Rhs}`",
1351    label = "no implementation for `{Self} < {Rhs}` and `{Self} > {Rhs}`",
1352    append_const_msg
1353)]
1354#[rustc_diagnostic_item = "PartialOrd"]
1355#[allow(multiple_supertrait_upcastable)] // FIXME(sized_hierarchy): remove this
1356pub trait PartialOrd<Rhs: PointeeSized = Self>: PartialEq<Rhs> + PointeeSized {
1357    /// This method returns an ordering between `self` and `other` values if one exists.
1358    ///
1359    /// # Examples
1360    ///
1361    /// ```
1362    /// use std::cmp::Ordering;
1363    ///
1364    /// let result = 1.0.partial_cmp(&2.0);
1365    /// assert_eq!(result, Some(Ordering::Less));
1366    ///
1367    /// let result = 1.0.partial_cmp(&1.0);
1368    /// assert_eq!(result, Some(Ordering::Equal));
1369    ///
1370    /// let result = 2.0.partial_cmp(&1.0);
1371    /// assert_eq!(result, Some(Ordering::Greater));
1372    /// ```
1373    ///
1374    /// When comparison is impossible:
1375    ///
1376    /// ```
1377    /// let result = f64::NAN.partial_cmp(&1.0);
1378    /// assert_eq!(result, None);
1379    /// ```
1380    #[must_use]
1381    #[stable(feature = "rust1", since = "1.0.0")]
1382    #[rustc_diagnostic_item = "cmp_partialord_cmp"]
1383    fn partial_cmp(&self, other: &Rhs) -> Option<Ordering>;
1384
1385    /// Tests less than (for `self` and `other`) and is used by the `<` operator.
1386    ///
1387    /// # Examples
1388    ///
1389    /// ```
1390    /// assert_eq!(1.0 < 1.0, false);
1391    /// assert_eq!(1.0 < 2.0, true);
1392    /// assert_eq!(2.0 < 1.0, false);
1393    /// ```
1394    #[inline]
1395    #[must_use]
1396    #[stable(feature = "rust1", since = "1.0.0")]
1397    #[rustc_diagnostic_item = "cmp_partialord_lt"]
1398    fn lt(&self, other: &Rhs) -> bool {
1399        self.partial_cmp(other).is_some_and(Ordering::is_lt)
1400    }
1401
1402    /// Tests less than or equal to (for `self` and `other`) and is used by the
1403    /// `<=` operator.
1404    ///
1405    /// # Examples
1406    ///
1407    /// ```
1408    /// assert_eq!(1.0 <= 1.0, true);
1409    /// assert_eq!(1.0 <= 2.0, true);
1410    /// assert_eq!(2.0 <= 1.0, false);
1411    /// ```
1412    #[inline]
1413    #[must_use]
1414    #[stable(feature = "rust1", since = "1.0.0")]
1415    #[rustc_diagnostic_item = "cmp_partialord_le"]
1416    fn le(&self, other: &Rhs) -> bool {
1417        self.partial_cmp(other).is_some_and(Ordering::is_le)
1418    }
1419
1420    /// Tests greater than (for `self` and `other`) and is used by the `>`
1421    /// operator.
1422    ///
1423    /// # Examples
1424    ///
1425    /// ```
1426    /// assert_eq!(1.0 > 1.0, false);
1427    /// assert_eq!(1.0 > 2.0, false);
1428    /// assert_eq!(2.0 > 1.0, true);
1429    /// ```
1430    #[inline]
1431    #[must_use]
1432    #[stable(feature = "rust1", since = "1.0.0")]
1433    #[rustc_diagnostic_item = "cmp_partialord_gt"]
1434    fn gt(&self, other: &Rhs) -> bool {
1435        self.partial_cmp(other).is_some_and(Ordering::is_gt)
1436    }
1437
1438    /// Tests greater than or equal to (for `self` and `other`) and is used by
1439    /// the `>=` operator.
1440    ///
1441    /// # Examples
1442    ///
1443    /// ```
1444    /// assert_eq!(1.0 >= 1.0, true);
1445    /// assert_eq!(1.0 >= 2.0, false);
1446    /// assert_eq!(2.0 >= 1.0, true);
1447    /// ```
1448    #[inline]
1449    #[must_use]
1450    #[stable(feature = "rust1", since = "1.0.0")]
1451    #[rustc_diagnostic_item = "cmp_partialord_ge"]
1452    fn ge(&self, other: &Rhs) -> bool {
1453        self.partial_cmp(other).is_some_and(Ordering::is_ge)
1454    }
1455
1456    /// If `self == other`, returns `ControlFlow::Continue(())`.
1457    /// Otherwise, returns `ControlFlow::Break(self < other)`.
1458    ///
1459    /// This is useful for chaining together calls when implementing a lexical
1460    /// `PartialOrd::lt`, as it allows types (like primitives) which can cheaply
1461    /// check `==` and `<` separately to do rather than needing to calculate
1462    /// (then optimize out) the three-way `Ordering` result.
1463    #[inline]
1464    // Added to improve the behaviour of tuples; not necessarily stabilization-track.
1465    #[unstable(feature = "partial_ord_chaining_methods", issue = "none")]
1466    #[doc(hidden)]
1467    fn __chaining_lt(&self, other: &Rhs) -> ControlFlow<bool> {
1468        default_chaining_impl(self, other, Ordering::is_lt)
1469    }
1470
1471    /// Same as `__chaining_lt`, but for `<=` instead of `<`.
1472    #[inline]
1473    #[unstable(feature = "partial_ord_chaining_methods", issue = "none")]
1474    #[doc(hidden)]
1475    fn __chaining_le(&self, other: &Rhs) -> ControlFlow<bool> {
1476        default_chaining_impl(self, other, Ordering::is_le)
1477    }
1478
1479    /// Same as `__chaining_lt`, but for `>` instead of `<`.
1480    #[inline]
1481    #[unstable(feature = "partial_ord_chaining_methods", issue = "none")]
1482    #[doc(hidden)]
1483    fn __chaining_gt(&self, other: &Rhs) -> ControlFlow<bool> {
1484        default_chaining_impl(self, other, Ordering::is_gt)
1485    }
1486
1487    /// Same as `__chaining_lt`, but for `>=` instead of `<`.
1488    #[inline]
1489    #[unstable(feature = "partial_ord_chaining_methods", issue = "none")]
1490    #[doc(hidden)]
1491    fn __chaining_ge(&self, other: &Rhs) -> ControlFlow<bool> {
1492        default_chaining_impl(self, other, Ordering::is_ge)
1493    }
1494}
1495
1496fn default_chaining_impl<T: PointeeSized, U: PointeeSized>(
1497    lhs: &T,
1498    rhs: &U,
1499    p: impl FnOnce(Ordering) -> bool,
1500) -> ControlFlow<bool>
1501where
1502    T: PartialOrd<U>,
1503{
1504    // It's important that this only call `partial_cmp` once, not call `eq` then
1505    // one of the relational operators.  We don't want to `bcmp`-then-`memcp` a
1506    // `String`, for example, or similarly for other data structures (#108157).
1507    match <T as PartialOrd<U>>::partial_cmp(lhs, rhs) {
1508        Some(Equal) => ControlFlow::Continue(()),
1509        Some(c) => ControlFlow::Break(p(c)),
1510        None => ControlFlow::Break(false),
1511    }
1512}
1513
1514/// Derive macro generating an impl of the trait [`PartialOrd`].
1515/// The behavior of this macro is described in detail [here](PartialOrd#derivable).
1516#[rustc_builtin_macro]
1517#[stable(feature = "builtin_macro_prelude", since = "1.38.0")]
1518#[allow_internal_unstable(core_intrinsics)]
1519#[cfg(not(feature = "ferrocene_certified"))]
1520pub macro PartialOrd($item:item) {
1521    /* compiler built-in */
1522}
1523
1524/// Compares and returns the minimum of two values.
1525///
1526/// Returns the first argument if the comparison determines them to be equal.
1527///
1528/// Internally uses an alias to [`Ord::min`].
1529///
1530/// # Examples
1531///
1532/// ```
1533/// use std::cmp;
1534///
1535/// assert_eq!(cmp::min(1, 2), 1);
1536/// assert_eq!(cmp::min(2, 2), 2);
1537/// ```
1538/// ```
1539/// use std::cmp::{self, Ordering};
1540///
1541/// #[derive(Eq)]
1542/// struct Equal(&'static str);
1543///
1544/// impl PartialEq for Equal {
1545///     fn eq(&self, other: &Self) -> bool { true }
1546/// }
1547/// impl PartialOrd for Equal {
1548///     fn partial_cmp(&self, other: &Self) -> Option<Ordering> { Some(Ordering::Equal) }
1549/// }
1550/// impl Ord for Equal {
1551///     fn cmp(&self, other: &Self) -> Ordering { Ordering::Equal }
1552/// }
1553///
1554/// assert_eq!(cmp::min(Equal("v1"), Equal("v2")).0, "v1");
1555/// ```
1556#[inline]
1557#[must_use]
1558#[stable(feature = "rust1", since = "1.0.0")]
1559#[rustc_diagnostic_item = "cmp_min"]
1560pub fn min<T: Ord>(v1: T, v2: T) -> T {
1561    v1.min(v2)
1562}
1563
1564/// Returns the minimum of two values with respect to the specified comparison function.
1565///
1566/// Returns the first argument if the comparison determines them to be equal.
1567///
1568/// # Examples
1569///
1570/// ```
1571/// use std::cmp;
1572///
1573/// let abs_cmp = |x: &i32, y: &i32| x.abs().cmp(&y.abs());
1574///
1575/// let result = cmp::min_by(2, -1, abs_cmp);
1576/// assert_eq!(result, -1);
1577///
1578/// let result = cmp::min_by(2, -3, abs_cmp);
1579/// assert_eq!(result, 2);
1580///
1581/// let result = cmp::min_by(1, -1, abs_cmp);
1582/// assert_eq!(result, 1);
1583/// ```
1584#[inline]
1585#[must_use]
1586#[stable(feature = "cmp_min_max_by", since = "1.53.0")]
1587#[cfg(not(feature = "ferrocene_certified"))]
1588pub fn min_by<T, F: FnOnce(&T, &T) -> Ordering>(v1: T, v2: T, compare: F) -> T {
1589    if compare(&v2, &v1).is_lt() { v2 } else { v1 }
1590}
1591
1592/// Returns the element that gives the minimum value from the specified function.
1593///
1594/// Returns the first argument if the comparison determines them to be equal.
1595///
1596/// # Examples
1597///
1598/// ```
1599/// use std::cmp;
1600///
1601/// let result = cmp::min_by_key(2, -1, |x: &i32| x.abs());
1602/// assert_eq!(result, -1);
1603///
1604/// let result = cmp::min_by_key(2, -3, |x: &i32| x.abs());
1605/// assert_eq!(result, 2);
1606///
1607/// let result = cmp::min_by_key(1, -1, |x: &i32| x.abs());
1608/// assert_eq!(result, 1);
1609/// ```
1610#[inline]
1611#[must_use]
1612#[stable(feature = "cmp_min_max_by", since = "1.53.0")]
1613#[cfg(not(feature = "ferrocene_certified"))]
1614pub fn min_by_key<T, F: FnMut(&T) -> K, K: Ord>(v1: T, v2: T, mut f: F) -> T {
1615    if f(&v2) < f(&v1) { v2 } else { v1 }
1616}
1617
1618/// Compares and returns the maximum of two values.
1619///
1620/// Returns the second argument if the comparison determines them to be equal.
1621///
1622/// Internally uses an alias to [`Ord::max`].
1623///
1624/// # Examples
1625///
1626/// ```
1627/// use std::cmp;
1628///
1629/// assert_eq!(cmp::max(1, 2), 2);
1630/// assert_eq!(cmp::max(2, 2), 2);
1631/// ```
1632/// ```
1633/// use std::cmp::{self, Ordering};
1634///
1635/// #[derive(Eq)]
1636/// struct Equal(&'static str);
1637///
1638/// impl PartialEq for Equal {
1639///     fn eq(&self, other: &Self) -> bool { true }
1640/// }
1641/// impl PartialOrd for Equal {
1642///     fn partial_cmp(&self, other: &Self) -> Option<Ordering> { Some(Ordering::Equal) }
1643/// }
1644/// impl Ord for Equal {
1645///     fn cmp(&self, other: &Self) -> Ordering { Ordering::Equal }
1646/// }
1647///
1648/// assert_eq!(cmp::max(Equal("v1"), Equal("v2")).0, "v2");
1649/// ```
1650#[inline]
1651#[must_use]
1652#[stable(feature = "rust1", since = "1.0.0")]
1653#[rustc_diagnostic_item = "cmp_max"]
1654pub fn max<T: Ord>(v1: T, v2: T) -> T {
1655    v1.max(v2)
1656}
1657
1658/// Returns the maximum of two values with respect to the specified comparison function.
1659///
1660/// Returns the second argument if the comparison determines them to be equal.
1661///
1662/// # Examples
1663///
1664/// ```
1665/// use std::cmp;
1666///
1667/// let abs_cmp = |x: &i32, y: &i32| x.abs().cmp(&y.abs());
1668///
1669/// let result = cmp::max_by(3, -2, abs_cmp) ;
1670/// assert_eq!(result, 3);
1671///
1672/// let result = cmp::max_by(1, -2, abs_cmp);
1673/// assert_eq!(result, -2);
1674///
1675/// let result = cmp::max_by(1, -1, abs_cmp);
1676/// assert_eq!(result, -1);
1677/// ```
1678#[inline]
1679#[must_use]
1680#[stable(feature = "cmp_min_max_by", since = "1.53.0")]
1681#[cfg(not(feature = "ferrocene_certified"))]
1682pub fn max_by<T, F: FnOnce(&T, &T) -> Ordering>(v1: T, v2: T, compare: F) -> T {
1683    if compare(&v2, &v1).is_lt() { v1 } else { v2 }
1684}
1685
1686/// Returns the element that gives the maximum value from the specified function.
1687///
1688/// Returns the second argument if the comparison determines them to be equal.
1689///
1690/// # Examples
1691///
1692/// ```
1693/// use std::cmp;
1694///
1695/// let result = cmp::max_by_key(3, -2, |x: &i32| x.abs());
1696/// assert_eq!(result, 3);
1697///
1698/// let result = cmp::max_by_key(1, -2, |x: &i32| x.abs());
1699/// assert_eq!(result, -2);
1700///
1701/// let result = cmp::max_by_key(1, -1, |x: &i32| x.abs());
1702/// assert_eq!(result, -1);
1703/// ```
1704#[inline]
1705#[must_use]
1706#[stable(feature = "cmp_min_max_by", since = "1.53.0")]
1707#[cfg(not(feature = "ferrocene_certified"))]
1708pub fn max_by_key<T, F: FnMut(&T) -> K, K: Ord>(v1: T, v2: T, mut f: F) -> T {
1709    if f(&v2) < f(&v1) { v1 } else { v2 }
1710}
1711
1712/// Compares and sorts two values, returning minimum and maximum.
1713///
1714/// Returns `[v1, v2]` if the comparison determines them to be equal.
1715///
1716/// # Examples
1717///
1718/// ```
1719/// #![feature(cmp_minmax)]
1720/// use std::cmp;
1721///
1722/// assert_eq!(cmp::minmax(1, 2), [1, 2]);
1723/// assert_eq!(cmp::minmax(2, 1), [1, 2]);
1724///
1725/// // You can destructure the result using array patterns
1726/// let [min, max] = cmp::minmax(42, 17);
1727/// assert_eq!(min, 17);
1728/// assert_eq!(max, 42);
1729/// ```
1730/// ```
1731/// #![feature(cmp_minmax)]
1732/// use std::cmp::{self, Ordering};
1733///
1734/// #[derive(Eq)]
1735/// struct Equal(&'static str);
1736///
1737/// impl PartialEq for Equal {
1738///     fn eq(&self, other: &Self) -> bool { true }
1739/// }
1740/// impl PartialOrd for Equal {
1741///     fn partial_cmp(&self, other: &Self) -> Option<Ordering> { Some(Ordering::Equal) }
1742/// }
1743/// impl Ord for Equal {
1744///     fn cmp(&self, other: &Self) -> Ordering { Ordering::Equal }
1745/// }
1746///
1747/// assert_eq!(cmp::minmax(Equal("v1"), Equal("v2")).map(|v| v.0), ["v1", "v2"]);
1748/// ```
1749#[inline]
1750#[must_use]
1751#[unstable(feature = "cmp_minmax", issue = "115939")]
1752#[cfg(not(feature = "ferrocene_certified"))]
1753pub fn minmax<T>(v1: T, v2: T) -> [T; 2]
1754where
1755    T: Ord,
1756{
1757    if v2 < v1 { [v2, v1] } else { [v1, v2] }
1758}
1759
1760/// Returns minimum and maximum values with respect to the specified comparison function.
1761///
1762/// Returns `[v1, v2]` if the comparison determines them to be equal.
1763///
1764/// # Examples
1765///
1766/// ```
1767/// #![feature(cmp_minmax)]
1768/// use std::cmp;
1769///
1770/// let abs_cmp = |x: &i32, y: &i32| x.abs().cmp(&y.abs());
1771///
1772/// assert_eq!(cmp::minmax_by(-2, 1, abs_cmp), [1, -2]);
1773/// assert_eq!(cmp::minmax_by(-1, 2, abs_cmp), [-1, 2]);
1774/// assert_eq!(cmp::minmax_by(-2, 2, abs_cmp), [-2, 2]);
1775///
1776/// // You can destructure the result using array patterns
1777/// let [min, max] = cmp::minmax_by(-42, 17, abs_cmp);
1778/// assert_eq!(min, 17);
1779/// assert_eq!(max, -42);
1780/// ```
1781#[inline]
1782#[must_use]
1783#[unstable(feature = "cmp_minmax", issue = "115939")]
1784#[cfg(not(feature = "ferrocene_certified"))]
1785pub fn minmax_by<T, F>(v1: T, v2: T, compare: F) -> [T; 2]
1786where
1787    F: FnOnce(&T, &T) -> Ordering,
1788{
1789    if compare(&v2, &v1).is_lt() { [v2, v1] } else { [v1, v2] }
1790}
1791
1792/// Returns minimum and maximum values with respect to the specified key function.
1793///
1794/// Returns `[v1, v2]` if the comparison determines them to be equal.
1795///
1796/// # Examples
1797///
1798/// ```
1799/// #![feature(cmp_minmax)]
1800/// use std::cmp;
1801///
1802/// assert_eq!(cmp::minmax_by_key(-2, 1, |x: &i32| x.abs()), [1, -2]);
1803/// assert_eq!(cmp::minmax_by_key(-2, 2, |x: &i32| x.abs()), [-2, 2]);
1804///
1805/// // You can destructure the result using array patterns
1806/// let [min, max] = cmp::minmax_by_key(-42, 17, |x: &i32| x.abs());
1807/// assert_eq!(min, 17);
1808/// assert_eq!(max, -42);
1809/// ```
1810#[inline]
1811#[must_use]
1812#[unstable(feature = "cmp_minmax", issue = "115939")]
1813#[cfg(not(feature = "ferrocene_certified"))]
1814pub fn minmax_by_key<T, F, K>(v1: T, v2: T, mut f: F) -> [T; 2]
1815where
1816    F: FnMut(&T) -> K,
1817    K: Ord,
1818{
1819    if f(&v2) < f(&v1) { [v2, v1] } else { [v1, v2] }
1820}
1821
1822// Implementation of PartialEq, Eq, PartialOrd and Ord for primitive types
1823mod impls {
1824    use crate::cmp::Ordering::{self, Equal, Greater, Less};
1825    use crate::hint::unreachable_unchecked;
1826    #[cfg(not(feature = "ferrocene_certified"))]
1827    use crate::marker::PointeeSized;
1828    use crate::ops::ControlFlow::{self, Break, Continue};
1829
1830    macro_rules! partial_eq_impl {
1831        ($($t:ty)*) => ($(
1832            #[stable(feature = "rust1", since = "1.0.0")]
1833            #[rustc_const_unstable(feature = "const_cmp", issue = "143800")]
1834            impl const PartialEq for $t {
1835                #[inline]
1836                fn eq(&self, other: &Self) -> bool { *self == *other }
1837                #[inline]
1838                fn ne(&self, other: &Self) -> bool { *self != *other }
1839            }
1840        )*)
1841    }
1842
1843    #[stable(feature = "rust1", since = "1.0.0")]
1844    #[cfg(not(feature = "ferrocene_certified"))]
1845    impl PartialEq for () {
1846        #[inline]
1847        fn eq(&self, _other: &()) -> bool {
1848            true
1849        }
1850        #[inline]
1851        fn ne(&self, _other: &()) -> bool {
1852            false
1853        }
1854    }
1855
1856    #[cfg(not(feature = "ferrocene_certified"))]
1857    partial_eq_impl! {
1858        bool char usize u8 u16 u32 u64 u128 isize i8 i16 i32 i64 i128 f16 f32 f64 f128
1859    }
1860
1861    #[cfg(feature = "ferrocene_certified")]
1862    partial_eq_impl! {
1863        bool usize u8 u16 u32 u64 u128 isize i8 i16 i32 i64 i128 f32 f64
1864    }
1865
1866    macro_rules! eq_impl {
1867        ($($t:ty)*) => ($(
1868            #[stable(feature = "rust1", since = "1.0.0")]
1869            impl Eq for $t {}
1870        )*)
1871    }
1872
1873    #[cfg(not(feature = "ferrocene_certified"))]
1874    eq_impl! { () bool char usize u8 u16 u32 u64 u128 isize i8 i16 i32 i64 i128 }
1875
1876    #[cfg(feature = "ferrocene_certified")]
1877    eq_impl! { bool usize u8 u16 u32 u64 u128 isize i8 i16 i32 i64 i128 }
1878
1879    #[rustfmt::skip]
1880    macro_rules! partial_ord_methods_primitive_impl {
1881        () => {
1882            #[inline(always)]
1883            fn lt(&self, other: &Self) -> bool { *self <  *other }
1884            #[inline(always)]
1885            fn le(&self, other: &Self) -> bool { *self <= *other }
1886            #[inline(always)]
1887            fn gt(&self, other: &Self) -> bool { *self >  *other }
1888            #[inline(always)]
1889            fn ge(&self, other: &Self) -> bool { *self >= *other }
1890
1891            // These implementations are the same for `Ord` or `PartialOrd` types
1892            // because if either is NAN the `==` test will fail so we end up in
1893            // the `Break` case and the comparison will correctly return `false`.
1894
1895            #[inline]
1896            fn __chaining_lt(&self, other: &Self) -> ControlFlow<bool> {
1897                let (lhs, rhs) = (*self, *other);
1898                if lhs == rhs { Continue(()) } else { Break(lhs < rhs) }
1899            }
1900            #[inline]
1901            fn __chaining_le(&self, other: &Self) -> ControlFlow<bool> {
1902                let (lhs, rhs) = (*self, *other);
1903                if lhs == rhs { Continue(()) } else { Break(lhs <= rhs) }
1904            }
1905            #[inline]
1906            fn __chaining_gt(&self, other: &Self) -> ControlFlow<bool> {
1907                let (lhs, rhs) = (*self, *other);
1908                if lhs == rhs { Continue(()) } else { Break(lhs > rhs) }
1909            }
1910            #[inline]
1911            fn __chaining_ge(&self, other: &Self) -> ControlFlow<bool> {
1912                let (lhs, rhs) = (*self, *other);
1913                if lhs == rhs { Continue(()) } else { Break(lhs >= rhs) }
1914            }
1915        };
1916    }
1917
1918    macro_rules! partial_ord_impl {
1919        ($($t:ty)*) => ($(
1920            #[stable(feature = "rust1", since = "1.0.0")]
1921            impl PartialOrd for $t {
1922                #[inline]
1923                fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
1924                    match (*self <= *other, *self >= *other) {
1925                        (false, false) => None,
1926                        (false, true) => Some(Greater),
1927                        (true, false) => Some(Less),
1928                        (true, true) => Some(Equal),
1929                    }
1930                }
1931
1932                partial_ord_methods_primitive_impl!();
1933            }
1934        )*)
1935    }
1936
1937    #[stable(feature = "rust1", since = "1.0.0")]
1938    #[cfg(not(feature = "ferrocene_certified"))]
1939    impl PartialOrd for () {
1940        #[inline]
1941        fn partial_cmp(&self, _: &()) -> Option<Ordering> {
1942            Some(Equal)
1943        }
1944    }
1945
1946    #[stable(feature = "rust1", since = "1.0.0")]
1947    impl PartialOrd for bool {
1948        #[inline]
1949        fn partial_cmp(&self, other: &bool) -> Option<Ordering> {
1950            Some(self.cmp(other))
1951        }
1952
1953        partial_ord_methods_primitive_impl!();
1954    }
1955
1956    #[cfg(not(feature = "ferrocene_certified"))]
1957    partial_ord_impl! { f16 f32 f64 f128 }
1958
1959    #[cfg(feature = "ferrocene_certified")]
1960    partial_ord_impl! { f32 f64 }
1961
1962    macro_rules! ord_impl {
1963        ($($t:ty)*) => ($(
1964            #[stable(feature = "rust1", since = "1.0.0")]
1965            impl PartialOrd for $t {
1966                #[inline]
1967                fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
1968                    Some(crate::intrinsics::three_way_compare(*self, *other))
1969                }
1970
1971                partial_ord_methods_primitive_impl!();
1972            }
1973
1974            #[stable(feature = "rust1", since = "1.0.0")]
1975            impl Ord for $t {
1976                #[inline]
1977                fn cmp(&self, other: &Self) -> Ordering {
1978                    crate::intrinsics::three_way_compare(*self, *other)
1979                }
1980            }
1981        )*)
1982    }
1983
1984    #[stable(feature = "rust1", since = "1.0.0")]
1985    #[cfg(not(feature = "ferrocene_certified"))]
1986    impl Ord for () {
1987        #[inline]
1988        fn cmp(&self, _other: &()) -> Ordering {
1989            Equal
1990        }
1991    }
1992
1993    #[stable(feature = "rust1", since = "1.0.0")]
1994    impl Ord for bool {
1995        #[inline]
1996        fn cmp(&self, other: &bool) -> Ordering {
1997            // Casting to i8's and converting the difference to an Ordering generates
1998            // more optimal assembly.
1999            // See <https://github.com/rust-lang/rust/issues/66780> for more info.
2000            match (*self as i8) - (*other as i8) {
2001                -1 => Less,
2002                0 => Equal,
2003                1 => Greater,
2004                // SAFETY: bool as i8 returns 0 or 1, so the difference can't be anything else
2005                _ => unsafe { unreachable_unchecked() },
2006            }
2007        }
2008
2009        #[inline]
2010        fn min(self, other: bool) -> bool {
2011            self & other
2012        }
2013
2014        #[inline]
2015        fn max(self, other: bool) -> bool {
2016            self | other
2017        }
2018
2019        #[inline]
2020        fn clamp(self, min: bool, max: bool) -> bool {
2021            assert!(min <= max);
2022            self.max(min).min(max)
2023        }
2024    }
2025
2026    #[cfg(not(feature = "ferrocene_certified"))]
2027    ord_impl! { char usize u8 u16 u32 u64 u128 isize i8 i16 i32 i64 i128 }
2028
2029    #[cfg(feature = "ferrocene_certified")]
2030    ord_impl! { usize u8 u16 u32 u64 u128 isize i8 i16 i32 i64 i128 }
2031
2032    #[unstable(feature = "never_type", issue = "35121")]
2033    #[cfg(not(feature = "ferrocene_certified"))]
2034    impl PartialEq for ! {
2035        #[inline]
2036        fn eq(&self, _: &!) -> bool {
2037            *self
2038        }
2039    }
2040
2041    #[unstable(feature = "never_type", issue = "35121")]
2042    #[cfg(not(feature = "ferrocene_certified"))]
2043    impl Eq for ! {}
2044
2045    #[unstable(feature = "never_type", issue = "35121")]
2046    #[cfg(not(feature = "ferrocene_certified"))]
2047    impl PartialOrd for ! {
2048        #[inline]
2049        fn partial_cmp(&self, _: &!) -> Option<Ordering> {
2050            *self
2051        }
2052    }
2053
2054    #[unstable(feature = "never_type", issue = "35121")]
2055    #[cfg(not(feature = "ferrocene_certified"))]
2056    impl Ord for ! {
2057        #[inline]
2058        fn cmp(&self, _: &!) -> Ordering {
2059            *self
2060        }
2061    }
2062
2063    // & pointers
2064
2065    #[stable(feature = "rust1", since = "1.0.0")]
2066    #[rustc_const_unstable(feature = "const_cmp", issue = "143800")]
2067    #[cfg(not(feature = "ferrocene_certified"))]
2068    impl<A: PointeeSized, B: PointeeSized> const PartialEq<&B> for &A
2069    where
2070        A: ~const PartialEq<B>,
2071    {
2072        #[inline]
2073        fn eq(&self, other: &&B) -> bool {
2074            PartialEq::eq(*self, *other)
2075        }
2076        #[inline]
2077        fn ne(&self, other: &&B) -> bool {
2078            PartialEq::ne(*self, *other)
2079        }
2080    }
2081    #[stable(feature = "rust1", since = "1.0.0")]
2082    #[cfg(not(feature = "ferrocene_certified"))]
2083    impl<A: PointeeSized, B: PointeeSized> PartialOrd<&B> for &A
2084    where
2085        A: PartialOrd<B>,
2086    {
2087        #[inline]
2088        fn partial_cmp(&self, other: &&B) -> Option<Ordering> {
2089            PartialOrd::partial_cmp(*self, *other)
2090        }
2091        #[inline]
2092        fn lt(&self, other: &&B) -> bool {
2093            PartialOrd::lt(*self, *other)
2094        }
2095        #[inline]
2096        fn le(&self, other: &&B) -> bool {
2097            PartialOrd::le(*self, *other)
2098        }
2099        #[inline]
2100        fn gt(&self, other: &&B) -> bool {
2101            PartialOrd::gt(*self, *other)
2102        }
2103        #[inline]
2104        fn ge(&self, other: &&B) -> bool {
2105            PartialOrd::ge(*self, *other)
2106        }
2107        #[inline]
2108        fn __chaining_lt(&self, other: &&B) -> ControlFlow<bool> {
2109            PartialOrd::__chaining_lt(*self, *other)
2110        }
2111        #[inline]
2112        fn __chaining_le(&self, other: &&B) -> ControlFlow<bool> {
2113            PartialOrd::__chaining_le(*self, *other)
2114        }
2115        #[inline]
2116        fn __chaining_gt(&self, other: &&B) -> ControlFlow<bool> {
2117            PartialOrd::__chaining_gt(*self, *other)
2118        }
2119        #[inline]
2120        fn __chaining_ge(&self, other: &&B) -> ControlFlow<bool> {
2121            PartialOrd::__chaining_ge(*self, *other)
2122        }
2123    }
2124    #[stable(feature = "rust1", since = "1.0.0")]
2125    #[cfg(not(feature = "ferrocene_certified"))]
2126    impl<A: PointeeSized> Ord for &A
2127    where
2128        A: Ord,
2129    {
2130        #[inline]
2131        fn cmp(&self, other: &Self) -> Ordering {
2132            Ord::cmp(*self, *other)
2133        }
2134    }
2135    #[stable(feature = "rust1", since = "1.0.0")]
2136    #[cfg(not(feature = "ferrocene_certified"))]
2137    impl<A: PointeeSized> Eq for &A where A: Eq {}
2138
2139    // &mut pointers
2140
2141    #[stable(feature = "rust1", since = "1.0.0")]
2142    #[rustc_const_unstable(feature = "const_cmp", issue = "143800")]
2143    #[cfg(not(feature = "ferrocene_certified"))]
2144    impl<A: PointeeSized, B: PointeeSized> const PartialEq<&mut B> for &mut A
2145    where
2146        A: ~const PartialEq<B>,
2147    {
2148        #[inline]
2149        fn eq(&self, other: &&mut B) -> bool {
2150            PartialEq::eq(*self, *other)
2151        }
2152        #[inline]
2153        fn ne(&self, other: &&mut B) -> bool {
2154            PartialEq::ne(*self, *other)
2155        }
2156    }
2157    #[stable(feature = "rust1", since = "1.0.0")]
2158    #[cfg(not(feature = "ferrocene_certified"))]
2159    impl<A: PointeeSized, B: PointeeSized> PartialOrd<&mut B> for &mut A
2160    where
2161        A: PartialOrd<B>,
2162    {
2163        #[inline]
2164        fn partial_cmp(&self, other: &&mut B) -> Option<Ordering> {
2165            PartialOrd::partial_cmp(*self, *other)
2166        }
2167        #[inline]
2168        fn lt(&self, other: &&mut B) -> bool {
2169            PartialOrd::lt(*self, *other)
2170        }
2171        #[inline]
2172        fn le(&self, other: &&mut B) -> bool {
2173            PartialOrd::le(*self, *other)
2174        }
2175        #[inline]
2176        fn gt(&self, other: &&mut B) -> bool {
2177            PartialOrd::gt(*self, *other)
2178        }
2179        #[inline]
2180        fn ge(&self, other: &&mut B) -> bool {
2181            PartialOrd::ge(*self, *other)
2182        }
2183        #[inline]
2184        fn __chaining_lt(&self, other: &&mut B) -> ControlFlow<bool> {
2185            PartialOrd::__chaining_lt(*self, *other)
2186        }
2187        #[inline]
2188        fn __chaining_le(&self, other: &&mut B) -> ControlFlow<bool> {
2189            PartialOrd::__chaining_le(*self, *other)
2190        }
2191        #[inline]
2192        fn __chaining_gt(&self, other: &&mut B) -> ControlFlow<bool> {
2193            PartialOrd::__chaining_gt(*self, *other)
2194        }
2195        #[inline]
2196        fn __chaining_ge(&self, other: &&mut B) -> ControlFlow<bool> {
2197            PartialOrd::__chaining_ge(*self, *other)
2198        }
2199    }
2200    #[stable(feature = "rust1", since = "1.0.0")]
2201    #[cfg(not(feature = "ferrocene_certified"))]
2202    impl<A: PointeeSized> Ord for &mut A
2203    where
2204        A: Ord,
2205    {
2206        #[inline]
2207        fn cmp(&self, other: &Self) -> Ordering {
2208            Ord::cmp(*self, *other)
2209        }
2210    }
2211    #[stable(feature = "rust1", since = "1.0.0")]
2212    #[cfg(not(feature = "ferrocene_certified"))]
2213    impl<A: PointeeSized> Eq for &mut A where A: Eq {}
2214
2215    #[stable(feature = "rust1", since = "1.0.0")]
2216    #[rustc_const_unstable(feature = "const_cmp", issue = "143800")]
2217    #[cfg(not(feature = "ferrocene_certified"))]
2218    impl<A: PointeeSized, B: PointeeSized> const PartialEq<&mut B> for &A
2219    where
2220        A: ~const PartialEq<B>,
2221    {
2222        #[inline]
2223        fn eq(&self, other: &&mut B) -> bool {
2224            PartialEq::eq(*self, *other)
2225        }
2226        #[inline]
2227        fn ne(&self, other: &&mut B) -> bool {
2228            PartialEq::ne(*self, *other)
2229        }
2230    }
2231
2232    #[stable(feature = "rust1", since = "1.0.0")]
2233    #[rustc_const_unstable(feature = "const_cmp", issue = "143800")]
2234    #[cfg(not(feature = "ferrocene_certified"))]
2235    impl<A: PointeeSized, B: PointeeSized> const PartialEq<&B> for &mut A
2236    where
2237        A: ~const PartialEq<B>,
2238    {
2239        #[inline]
2240        fn eq(&self, other: &&B) -> bool {
2241            PartialEq::eq(*self, *other)
2242        }
2243        #[inline]
2244        fn ne(&self, other: &&B) -> bool {
2245            PartialEq::ne(*self, *other)
2246        }
2247    }
2248}