Skip to main content

core/
cmp.rs

1//! Utilities for comparing and ordering values.
2//!
3//! This module contains various tools for comparing and ordering values. In
4//! summary:
5//!
6//! * [`PartialEq<Rhs>`] overloads the `==` and `!=` operators. In cases where
7//!   `Rhs` (the right hand side's type) is `Self`, this trait corresponds to a
8//!   partial equivalence relation.
9//! * [`Eq`] indicates that the overloaded `==` operator corresponds to an
10//!   equivalence relation.
11//! * [`Ord`] and [`PartialOrd`] are traits that allow you to define total and
12//!   partial orderings between values, respectively. Implementing them overloads
13//!   the `<`, `<=`, `>`, and `>=` operators.
14//! * [`Ordering`] is an enum returned by the main functions of [`Ord`] and
15//!   [`PartialOrd`], and describes an ordering of two values (less, equal, or
16//!   greater).
17//! * [`Reverse`] is a struct that allows you to easily reverse an ordering.
18//! * [`max`] and [`min`] are functions that build off of [`Ord`] and allow you
19//!   to find the maximum or minimum of two values.
20//!
21//! For more details, see the respective documentation of each item in the list.
22//!
23//! [`max`]: Ord::max
24//! [`min`]: Ord::min
25
26#![stable(feature = "rust1", since = "1.0.0")]
27
28mod bytewise;
29pub(crate) use bytewise::BytewiseEq;
30
31use self::Ordering::*;
32use crate::marker::{Destruct, PointeeSized};
33use crate::ops::ControlFlow;
34
35/// Trait for comparisons using the equality operator.
36///
37/// Implementing this trait for types provides the `==` and `!=` operators for
38/// those types.
39///
40/// `x.eq(y)` can also be written `x == y`, and `x.ne(y)` can be written `x != y`.
41/// We use the easier-to-read infix notation in the remainder of this documentation.
42///
43/// This trait allows for comparisons using the equality operator, for types
44/// that do not have a full equivalence relation. For example, in floating point
45/// numbers `NaN != NaN`, so floating point types implement `PartialEq` but not
46/// [`trait@Eq`]. Formally speaking, when `Rhs == Self`, this trait corresponds
47/// to a [partial equivalence relation].
48///
49/// [partial equivalence relation]: https://en.wikipedia.org/wiki/Partial_equivalence_relation
50///
51/// Implementations must ensure that `eq` and `ne` are consistent with each other:
52///
53/// - `a != b` if and only if `!(a == b)`.
54///
55/// The default implementation of `ne` provides this consistency and is almost
56/// always sufficient. It should not be overridden without very good reason.
57///
58/// If [`PartialOrd`] or [`Ord`] are also implemented for `Self` and `Rhs`, their methods must also
59/// be consistent with `PartialEq` (see the documentation of those traits for the exact
60/// requirements). It's easy to accidentally make them disagree by deriving some of the traits and
61/// manually implementing others.
62///
63/// The equality relation `==` must satisfy the following conditions
64/// (for all `a`, `b`, `c` of type `A`, `B`, `C`):
65///
66/// - **Symmetry**: if `A: PartialEq<B>` and `B: PartialEq<A>`, then **`a == b`
67///   implies `b == a`**; and
68///
69/// - **Transitivity**: if `A: PartialEq<B>` and `B: PartialEq<C>` and `A:
70///   PartialEq<C>`, then **`a == b` and `b == c` implies `a == c`**.
71///   This must also work for longer chains, such as when `A: PartialEq<B>`, `B: PartialEq<C>`,
72///   `C: PartialEq<D>`, and `A: PartialEq<D>` all exist.
73///
74/// Note that the `B: PartialEq<A>` (symmetric) and `A: PartialEq<C>`
75/// (transitive) impls are not forced to exist, but these requirements apply
76/// whenever they do exist.
77///
78/// Violating these requirements is a logic error. The behavior resulting from a logic error is not
79/// specified, but users of the trait must ensure that such logic errors do *not* result in
80/// undefined behavior. This means that `unsafe` code **must not** rely on the correctness of these
81/// methods.
82///
83/// ## Cross-crate considerations
84///
85/// Upholding the requirements stated above can become tricky when one crate implements `PartialEq`
86/// for a type of another crate (i.e., to allow comparing one of its own types with a type from the
87/// standard library). The recommendation is to never implement this trait for a foreign type. In
88/// other words, such a crate should do `impl PartialEq<ForeignType> for LocalType`, but it should
89/// *not* do `impl PartialEq<LocalType> for ForeignType`.
90///
91/// This avoids the problem of transitive chains that criss-cross crate boundaries: for all local
92/// types `T`, you may assume that no other crate will add `impl`s that allow comparing `T == U`. In
93/// other words, if other crates add `impl`s that allow building longer transitive chains `U1 == ...
94/// == T == V1 == ...`, then all the types that appear to the right of `T` must be types that the
95/// crate defining `T` already knows about. This rules out transitive chains where downstream crates
96/// can add new `impl`s that "stitch together" comparisons of foreign types in ways that violate
97/// transitivity.
98///
99/// Not having such foreign `impl`s also avoids forward compatibility issues where one crate adding
100/// more `PartialEq` implementations can cause build failures in downstream crates.
101///
102/// ## Derivable
103///
104/// This trait can be used with `#[derive]`. When `derive`d on structs, two
105/// instances are equal if all fields are equal, and not equal if any fields
106/// are not equal. When `derive`d on enums, two instances are equal if they
107/// are the same variant and all fields are equal.
108///
109/// ## How can I implement `PartialEq`?
110///
111/// An example implementation for a domain in which two books are considered
112/// the same book if their ISBN matches, even if the formats differ:
113///
114/// ```
115/// enum BookFormat {
116///     Paperback,
117///     Hardback,
118///     Ebook,
119/// }
120///
121/// struct Book {
122///     isbn: i32,
123///     format: BookFormat,
124/// }
125///
126/// impl PartialEq for Book {
127///     fn eq(&self, other: &Self) -> bool {
128///         self.isbn == other.isbn
129///     }
130/// }
131///
132/// let b1 = Book { isbn: 3, format: BookFormat::Paperback };
133/// let b2 = Book { isbn: 3, format: BookFormat::Ebook };
134/// let b3 = Book { isbn: 10, format: BookFormat::Paperback };
135///
136/// assert!(b1 == b2);
137/// assert!(b1 != b3);
138/// ```
139///
140/// ## How can I compare two different types?
141///
142/// The type you can compare with is controlled by `PartialEq`'s type parameter.
143/// For example, let's tweak our previous code a bit:
144///
145/// ```
146/// // The derive implements <BookFormat> == <BookFormat> comparisons
147/// #[derive(PartialEq)]
148/// enum BookFormat {
149///     Paperback,
150///     Hardback,
151///     Ebook,
152/// }
153///
154/// struct Book {
155///     isbn: i32,
156///     format: BookFormat,
157/// }
158///
159/// // Implement <Book> == <BookFormat> comparisons
160/// impl PartialEq<BookFormat> for Book {
161///     fn eq(&self, other: &BookFormat) -> bool {
162///         self.format == *other
163///     }
164/// }
165///
166/// // Implement <BookFormat> == <Book> comparisons
167/// impl PartialEq<Book> for BookFormat {
168///     fn eq(&self, other: &Book) -> bool {
169///         *self == other.format
170///     }
171/// }
172///
173/// let b1 = Book { isbn: 3, format: BookFormat::Paperback };
174///
175/// assert!(b1 == BookFormat::Paperback);
176/// assert!(BookFormat::Ebook != b1);
177/// ```
178///
179/// By changing `impl PartialEq for Book` to `impl PartialEq<BookFormat> for Book`,
180/// we allow `BookFormat`s to be compared with `Book`s.
181///
182/// A comparison like the one above, which ignores some fields of the struct,
183/// can be dangerous. It can easily lead to an unintended violation of the
184/// requirements for a partial equivalence relation. For example, if we kept
185/// the above implementation of `PartialEq<Book>` for `BookFormat` and added an
186/// implementation of `PartialEq<Book>` for `Book` (either via a `#[derive]` or
187/// via the manual implementation from the first example) then the result would
188/// violate transitivity:
189///
190/// ```should_panic
191/// #[derive(PartialEq)]
192/// enum BookFormat {
193///     Paperback,
194///     Hardback,
195///     Ebook,
196/// }
197///
198/// #[derive(PartialEq)]
199/// struct Book {
200///     isbn: i32,
201///     format: BookFormat,
202/// }
203///
204/// impl PartialEq<BookFormat> for Book {
205///     fn eq(&self, other: &BookFormat) -> bool {
206///         self.format == *other
207///     }
208/// }
209///
210/// impl PartialEq<Book> for BookFormat {
211///     fn eq(&self, other: &Book) -> bool {
212///         *self == other.format
213///     }
214/// }
215///
216/// fn main() {
217///     let b1 = Book { isbn: 1, format: BookFormat::Paperback };
218///     let b2 = Book { isbn: 2, format: BookFormat::Paperback };
219///
220///     assert!(b1 == BookFormat::Paperback);
221///     assert!(BookFormat::Paperback == b2);
222///
223///     // The following should hold by transitivity but doesn't.
224///     assert!(b1 == b2); // <-- PANICS
225/// }
226/// ```
227///
228/// # Examples
229///
230/// ```
231/// let x: u32 = 0;
232/// let y: u32 = 1;
233///
234/// assert_eq!(x == y, false);
235/// assert_eq!(x.eq(&y), false);
236/// ```
237///
238/// [`eq`]: PartialEq::eq
239/// [`ne`]: PartialEq::ne
240#[lang = "eq"]
241#[stable(feature = "rust1", since = "1.0.0")]
242#[doc(alias = "==")]
243#[doc(alias = "!=")]
244#[rustc_on_unimplemented(
245    message = "can't compare `{Self}` with `{Rhs}`",
246    label = "no implementation for `{Self} == {Rhs}`",
247    append_const_msg
248)]
249#[rustc_diagnostic_item = "PartialEq"]
250#[rustc_const_unstable(feature = "const_cmp", issue = "143800")]
251pub const trait PartialEq<Rhs: PointeeSized = Self>: PointeeSized {
252    /// Tests for `self` and `other` values to be equal, and is used by `==`.
253    #[must_use]
254    #[stable(feature = "rust1", since = "1.0.0")]
255    #[rustc_diagnostic_item = "cmp_partialeq_eq"]
256    fn eq(&self, other: &Rhs) -> bool;
257
258    /// Tests for `!=`. The default implementation is almost always sufficient,
259    /// and should not be overridden without very good reason.
260    #[inline]
261    #[must_use]
262    #[stable(feature = "rust1", since = "1.0.0")]
263    #[rustc_diagnostic_item = "cmp_partialeq_ne"]
264    fn ne(&self, other: &Rhs) -> bool {
265        !self.eq(other)
266    }
267}
268
269/// Derive macro generating an impl of the trait [`PartialEq`].
270/// The behavior of this macro is described in detail [here](PartialEq#derivable).
271#[rustc_builtin_macro]
272#[stable(feature = "builtin_macro_prelude", since = "1.38.0")]
273#[allow_internal_unstable(core_intrinsics, structural_match)]
274pub macro PartialEq($item:item) {
275    /* compiler built-in */
276}
277
278/// Trait for comparisons corresponding to [equivalence relations](
279/// https://en.wikipedia.org/wiki/Equivalence_relation).
280///
281/// The primary difference to [`PartialEq`] is the additional requirement for reflexivity. A type
282/// that implements [`PartialEq`] guarantees that for all `a`, `b` and `c`:
283///
284/// - symmetric: `a == b` implies `b == a` and `a != b` implies `!(a == b)`
285/// - transitive: `a == b` and `b == c` implies `a == c`
286///
287/// `Eq`, which builds on top of [`PartialEq`] also implies:
288///
289/// - reflexive: `a == a`
290///
291/// This property cannot be checked by the compiler, and therefore `Eq` is a trait without methods.
292///
293/// Violating this property is a logic error. The behavior resulting from a logic error is not
294/// specified, but users of the trait must ensure that such logic errors do *not* result in
295/// undefined behavior. This means that `unsafe` code **must not** rely on the correctness of these
296/// methods.
297///
298/// Floating point types such as [`f32`] and [`f64`] implement only [`PartialEq`] but *not* `Eq`
299/// because `NaN` != `NaN`.
300///
301/// ## Derivable
302///
303/// This trait can be used with `#[derive]`. When `derive`d, because `Eq` has no extra methods, it
304/// is only informing the compiler that this is an equivalence relation rather than a partial
305/// equivalence relation. Note that the `derive` strategy requires all fields are `Eq`, which isn't
306/// always desired.
307///
308/// ## How can I implement `Eq`?
309///
310/// If you cannot use the `derive` strategy, specify that your type implements `Eq`, which has no
311/// extra methods:
312///
313/// ```
314/// enum BookFormat {
315///     Paperback,
316///     Hardback,
317///     Ebook,
318/// }
319///
320/// struct Book {
321///     isbn: i32,
322///     format: BookFormat,
323/// }
324///
325/// impl PartialEq for Book {
326///     fn eq(&self, other: &Self) -> bool {
327///         self.isbn == other.isbn
328///     }
329/// }
330///
331/// impl Eq for Book {}
332/// ```
333#[doc(alias = "==")]
334#[doc(alias = "!=")]
335#[stable(feature = "rust1", since = "1.0.0")]
336#[rustc_diagnostic_item = "Eq"]
337#[rustc_const_unstable(feature = "const_cmp", issue = "143800")]
338pub const trait Eq: [const] PartialEq<Self> + PointeeSized {
339    // this method is used solely by `impl Eq or #[derive(Eq)]` to assert that every component of a
340    // type implements `Eq` itself. The current deriving infrastructure means doing this assertion
341    // without using a method on this trait is nearly impossible.
342    //
343    // This should never be implemented by hand.
344    #[doc(hidden)]
345    #[coverage(off)]
346    #[inline]
347    #[stable(feature = "rust1", since = "1.0.0")]
348    fn assert_receiver_is_total_eq(&self) {}
349}
350
351/// Derive macro generating an impl of the trait [`Eq`].
352#[rustc_builtin_macro]
353#[stable(feature = "builtin_macro_prelude", since = "1.38.0")]
354#[allow_internal_unstable(core_intrinsics, derive_eq_internals, structural_match)]
355#[allow_internal_unstable(coverage_attribute)]
356pub macro Eq($item:item) {
357    /* compiler built-in */
358}
359
360// FIXME: this struct is used solely by #[derive] to
361// assert that every component of a type implements Eq.
362//
363// This struct should never appear in user code.
364#[doc(hidden)]
365#[allow(missing_debug_implementations)]
366#[unstable(
367    feature = "derive_eq_internals",
368    reason = "deriving hack, should not be public",
369    issue = "none"
370)]
371pub struct AssertParamIsEq<T: Eq + PointeeSized> {
372    _field: crate::marker::PhantomData<T>,
373}
374
375/// An `Ordering` is the result of a comparison between two values.
376///
377/// # Examples
378///
379/// ```
380/// use std::cmp::Ordering;
381///
382/// assert_eq!(1.cmp(&2), Ordering::Less);
383///
384/// assert_eq!(1.cmp(&1), Ordering::Equal);
385///
386/// assert_eq!(2.cmp(&1), Ordering::Greater);
387/// ```
388#[derive(Copy, Debug, Hash)]
389#[derive_const(Clone, Eq, PartialOrd, Ord, PartialEq)]
390#[stable(feature = "rust1", since = "1.0.0")]
391// This is a lang item only so that `BinOp::Cmp` in MIR can return it.
392// It has no special behavior, but does require that the three variants
393// `Less`/`Equal`/`Greater` remain `-1_i8`/`0_i8`/`+1_i8` respectively.
394#[lang = "Ordering"]
395#[repr(i8)]
396pub enum Ordering {
397    /// An ordering where a compared value is less than another.
398    #[stable(feature = "rust1", since = "1.0.0")]
399    Less = -1,
400    /// An ordering where a compared value is equal to another.
401    #[stable(feature = "rust1", since = "1.0.0")]
402    Equal = 0,
403    /// An ordering where a compared value is greater than another.
404    #[stable(feature = "rust1", since = "1.0.0")]
405    Greater = 1,
406}
407
408impl Ordering {
409    #[inline]
410    const fn as_raw(self) -> i8 {
411        // FIXME(const-hack): just use `PartialOrd` against `Equal` once that's const
412        crate::intrinsics::discriminant_value(&self)
413    }
414
415    /// Returns `true` if the ordering is the `Equal` variant.
416    ///
417    /// # Examples
418    ///
419    /// ```
420    /// use std::cmp::Ordering;
421    ///
422    /// assert_eq!(Ordering::Less.is_eq(), false);
423    /// assert_eq!(Ordering::Equal.is_eq(), true);
424    /// assert_eq!(Ordering::Greater.is_eq(), false);
425    /// ```
426    #[inline]
427    #[must_use]
428    #[rustc_const_stable(feature = "ordering_helpers", since = "1.53.0")]
429    #[stable(feature = "ordering_helpers", since = "1.53.0")]
430    pub const fn is_eq(self) -> bool {
431        // All the `is_*` methods are implemented as comparisons against zero
432        // to follow how clang's libcxx implements their equivalents in
433        // <https://github.com/llvm/llvm-project/blob/60486292b79885b7800b082754153202bef5b1f0/libcxx/include/__compare/is_eq.h#L23-L28>
434
435        self.as_raw() == 0
436    }
437
438    /// Returns `true` if the ordering is not the `Equal` variant.
439    ///
440    /// # Examples
441    ///
442    /// ```
443    /// use std::cmp::Ordering;
444    ///
445    /// assert_eq!(Ordering::Less.is_ne(), true);
446    /// assert_eq!(Ordering::Equal.is_ne(), false);
447    /// assert_eq!(Ordering::Greater.is_ne(), true);
448    /// ```
449    #[inline]
450    #[must_use]
451    #[rustc_const_stable(feature = "ordering_helpers", since = "1.53.0")]
452    #[stable(feature = "ordering_helpers", since = "1.53.0")]
453    pub const fn is_ne(self) -> bool {
454        self.as_raw() != 0
455    }
456
457    /// Returns `true` if the ordering is the `Less` variant.
458    ///
459    /// # Examples
460    ///
461    /// ```
462    /// use std::cmp::Ordering;
463    ///
464    /// assert_eq!(Ordering::Less.is_lt(), true);
465    /// assert_eq!(Ordering::Equal.is_lt(), false);
466    /// assert_eq!(Ordering::Greater.is_lt(), false);
467    /// ```
468    #[inline]
469    #[must_use]
470    #[rustc_const_stable(feature = "ordering_helpers", since = "1.53.0")]
471    #[stable(feature = "ordering_helpers", since = "1.53.0")]
472    pub const fn is_lt(self) -> bool {
473        self.as_raw() < 0
474    }
475
476    /// Returns `true` if the ordering is the `Greater` variant.
477    ///
478    /// # Examples
479    ///
480    /// ```
481    /// use std::cmp::Ordering;
482    ///
483    /// assert_eq!(Ordering::Less.is_gt(), false);
484    /// assert_eq!(Ordering::Equal.is_gt(), false);
485    /// assert_eq!(Ordering::Greater.is_gt(), true);
486    /// ```
487    #[inline]
488    #[must_use]
489    #[rustc_const_stable(feature = "ordering_helpers", since = "1.53.0")]
490    #[stable(feature = "ordering_helpers", since = "1.53.0")]
491    pub const fn is_gt(self) -> bool {
492        self.as_raw() > 0
493    }
494
495    /// Returns `true` if the ordering is either the `Less` or `Equal` variant.
496    ///
497    /// # Examples
498    ///
499    /// ```
500    /// use std::cmp::Ordering;
501    ///
502    /// assert_eq!(Ordering::Less.is_le(), true);
503    /// assert_eq!(Ordering::Equal.is_le(), true);
504    /// assert_eq!(Ordering::Greater.is_le(), false);
505    /// ```
506    #[inline]
507    #[must_use]
508    #[rustc_const_stable(feature = "ordering_helpers", since = "1.53.0")]
509    #[stable(feature = "ordering_helpers", since = "1.53.0")]
510    pub const fn is_le(self) -> bool {
511        self.as_raw() <= 0
512    }
513
514    /// Returns `true` if the ordering is either the `Greater` or `Equal` variant.
515    ///
516    /// # Examples
517    ///
518    /// ```
519    /// use std::cmp::Ordering;
520    ///
521    /// assert_eq!(Ordering::Less.is_ge(), false);
522    /// assert_eq!(Ordering::Equal.is_ge(), true);
523    /// assert_eq!(Ordering::Greater.is_ge(), true);
524    /// ```
525    #[inline]
526    #[must_use]
527    #[rustc_const_stable(feature = "ordering_helpers", since = "1.53.0")]
528    #[stable(feature = "ordering_helpers", since = "1.53.0")]
529    pub const fn is_ge(self) -> bool {
530        self.as_raw() >= 0
531    }
532
533    /// Reverses the `Ordering`.
534    ///
535    /// * `Less` becomes `Greater`.
536    /// * `Greater` becomes `Less`.
537    /// * `Equal` becomes `Equal`.
538    ///
539    /// # Examples
540    ///
541    /// Basic behavior:
542    ///
543    /// ```
544    /// use std::cmp::Ordering;
545    ///
546    /// assert_eq!(Ordering::Less.reverse(), Ordering::Greater);
547    /// assert_eq!(Ordering::Equal.reverse(), Ordering::Equal);
548    /// assert_eq!(Ordering::Greater.reverse(), Ordering::Less);
549    /// ```
550    ///
551    /// This method can be used to reverse a comparison:
552    ///
553    /// ```
554    /// let data: &mut [_] = &mut [2, 10, 5, 8];
555    ///
556    /// // sort the array from largest to smallest.
557    /// data.sort_by(|a, b| a.cmp(b).reverse());
558    ///
559    /// let b: &mut [_] = &mut [10, 8, 5, 2];
560    /// assert!(data == b);
561    /// ```
562    #[inline]
563    #[must_use]
564    #[rustc_const_stable(feature = "const_ordering", since = "1.48.0")]
565    #[stable(feature = "rust1", since = "1.0.0")]
566    pub const fn reverse(self) -> Ordering {
567        match self {
568            Less => Greater,
569            Equal => Equal,
570            Greater => Less,
571        }
572    }
573
574    /// Chains two orderings.
575    ///
576    /// Returns `self` when it's not `Equal`. Otherwise returns `other`.
577    ///
578    /// # Examples
579    ///
580    /// ```
581    /// use std::cmp::Ordering;
582    ///
583    /// let result = Ordering::Equal.then(Ordering::Less);
584    /// assert_eq!(result, Ordering::Less);
585    ///
586    /// let result = Ordering::Less.then(Ordering::Equal);
587    /// assert_eq!(result, Ordering::Less);
588    ///
589    /// let result = Ordering::Less.then(Ordering::Greater);
590    /// assert_eq!(result, Ordering::Less);
591    ///
592    /// let result = Ordering::Equal.then(Ordering::Equal);
593    /// assert_eq!(result, Ordering::Equal);
594    ///
595    /// let x: (i64, i64, i64) = (1, 2, 7);
596    /// let y: (i64, i64, i64) = (1, 5, 3);
597    /// let result = x.0.cmp(&y.0).then(x.1.cmp(&y.1)).then(x.2.cmp(&y.2));
598    ///
599    /// assert_eq!(result, Ordering::Less);
600    /// ```
601    #[inline]
602    #[must_use]
603    #[rustc_const_stable(feature = "const_ordering", since = "1.48.0")]
604    #[stable(feature = "ordering_chaining", since = "1.17.0")]
605    pub const fn then(self, other: Ordering) -> Ordering {
606        match self {
607            Equal => other,
608            _ => self,
609        }
610    }
611
612    /// Chains the ordering with the given function.
613    ///
614    /// Returns `self` when it's not `Equal`. Otherwise calls `f` and returns
615    /// the result.
616    ///
617    /// # Examples
618    ///
619    /// ```
620    /// use std::cmp::Ordering;
621    ///
622    /// let result = Ordering::Equal.then_with(|| Ordering::Less);
623    /// assert_eq!(result, Ordering::Less);
624    ///
625    /// let result = Ordering::Less.then_with(|| Ordering::Equal);
626    /// assert_eq!(result, Ordering::Less);
627    ///
628    /// let result = Ordering::Less.then_with(|| Ordering::Greater);
629    /// assert_eq!(result, Ordering::Less);
630    ///
631    /// let result = Ordering::Equal.then_with(|| Ordering::Equal);
632    /// assert_eq!(result, Ordering::Equal);
633    ///
634    /// let x: (i64, i64, i64) = (1, 2, 7);
635    /// let y: (i64, i64, i64) = (1, 5, 3);
636    /// let result = x.0.cmp(&y.0).then_with(|| x.1.cmp(&y.1)).then_with(|| x.2.cmp(&y.2));
637    ///
638    /// assert_eq!(result, Ordering::Less);
639    /// ```
640    #[inline]
641    #[must_use]
642    #[stable(feature = "ordering_chaining", since = "1.17.0")]
643    #[rustc_const_unstable(feature = "const_cmp", issue = "143800")]
644    #[cfg(not(feature = "ferrocene_subset"))]
645    pub const fn then_with<F>(self, f: F) -> Ordering
646    where
647        F: [const] FnOnce() -> Ordering + [const] Destruct,
648    {
649        match self {
650            Equal => f(),
651            _ => self,
652        }
653    }
654}
655
656/// A helper struct for reverse ordering.
657///
658/// This struct is a helper to be used with functions like [`Vec::sort_by_key`] and
659/// can be used to reverse order a part of a key.
660///
661/// [`Vec::sort_by_key`]: ../../std/vec/struct.Vec.html#method.sort_by_key
662///
663/// # Examples
664///
665/// ```
666/// use std::cmp::Reverse;
667///
668/// let mut v = vec![1, 2, 3, 4, 5, 6];
669/// v.sort_by_key(|&num| (num > 3, Reverse(num)));
670/// assert_eq!(v, vec![3, 2, 1, 6, 5, 4]);
671/// ```
672#[derive(Copy, Debug, Hash)]
673#[derive_const(PartialEq, Eq, Default)]
674#[stable(feature = "reverse_cmp_key", since = "1.19.0")]
675#[repr(transparent)]
676#[cfg(not(feature = "ferrocene_subset"))]
677pub struct Reverse<T>(#[stable(feature = "reverse_cmp_key", since = "1.19.0")] pub T);
678
679#[stable(feature = "reverse_cmp_key", since = "1.19.0")]
680#[rustc_const_unstable(feature = "const_cmp", issue = "143800")]
681#[cfg(not(feature = "ferrocene_subset"))]
682impl<T: [const] PartialOrd> const PartialOrd for Reverse<T> {
683    #[inline]
684    fn partial_cmp(&self, other: &Reverse<T>) -> Option<Ordering> {
685        other.0.partial_cmp(&self.0)
686    }
687
688    #[inline]
689    fn lt(&self, other: &Self) -> bool {
690        other.0 < self.0
691    }
692    #[inline]
693    fn le(&self, other: &Self) -> bool {
694        other.0 <= self.0
695    }
696    #[inline]
697    fn gt(&self, other: &Self) -> bool {
698        other.0 > self.0
699    }
700    #[inline]
701    fn ge(&self, other: &Self) -> bool {
702        other.0 >= self.0
703    }
704}
705
706#[stable(feature = "reverse_cmp_key", since = "1.19.0")]
707#[rustc_const_unstable(feature = "const_cmp", issue = "143800")]
708#[cfg(not(feature = "ferrocene_subset"))]
709impl<T: [const] Ord> const Ord for Reverse<T> {
710    #[inline]
711    fn cmp(&self, other: &Reverse<T>) -> Ordering {
712        other.0.cmp(&self.0)
713    }
714}
715
716#[stable(feature = "reverse_cmp_key", since = "1.19.0")]
717#[cfg(not(feature = "ferrocene_subset"))]
718impl<T: Clone> Clone for Reverse<T> {
719    #[inline]
720    fn clone(&self) -> Reverse<T> {
721        Reverse(self.0.clone())
722    }
723
724    #[inline]
725    fn clone_from(&mut self, source: &Self) {
726        self.0.clone_from(&source.0)
727    }
728}
729
730/// Trait for types that form a [total order](https://en.wikipedia.org/wiki/Total_order).
731///
732/// Implementations must be consistent with the [`PartialOrd`] implementation, and ensure `max`,
733/// `min`, and `clamp` are consistent with `cmp`:
734///
735/// - `partial_cmp(a, b) == Some(cmp(a, b))`.
736/// - `max(a, b) == max_by(a, b, cmp)` (ensured by the default implementation).
737/// - `min(a, b) == min_by(a, b, cmp)` (ensured by the default implementation).
738/// - For `a.clamp(min, max)`, see the [method docs](#method.clamp) (ensured by the default
739///   implementation).
740///
741/// Violating these requirements is a logic error. The behavior resulting from a logic error is not
742/// specified, but users of the trait must ensure that such logic errors do *not* result in
743/// undefined behavior. This means that `unsafe` code **must not** rely on the correctness of these
744/// methods.
745///
746/// ## Corollaries
747///
748/// From the above and the requirements of `PartialOrd`, it follows that for all `a`, `b` and `c`:
749///
750/// - exactly one of `a < b`, `a == b` or `a > b` is true; and
751/// - `<` is transitive: `a < b` and `b < c` implies `a < c`. The same must hold for both `==` and
752///   `>`.
753///
754/// Mathematically speaking, the `<` operator defines a strict [weak order]. In cases where `==`
755/// conforms to mathematical equality, it also defines a strict [total order].
756///
757/// [weak order]: https://en.wikipedia.org/wiki/Weak_ordering
758/// [total order]: https://en.wikipedia.org/wiki/Total_order
759///
760/// ## Derivable
761///
762/// This trait can be used with `#[derive]`.
763///
764/// When `derive`d on structs, it will produce a
765/// [lexicographic](https://en.wikipedia.org/wiki/Lexicographic_order) ordering based on the
766/// top-to-bottom declaration order of the struct's members.
767///
768/// When `derive`d on enums, variants are ordered primarily by their discriminants. Secondarily,
769/// they are ordered by their fields. By default, the discriminant is smallest for variants at the
770/// top, and largest for variants at the bottom. Here's an example:
771///
772/// ```
773/// #[derive(PartialEq, Eq, PartialOrd, Ord)]
774/// enum E {
775///     Top,
776///     Bottom,
777/// }
778///
779/// assert!(E::Top < E::Bottom);
780/// ```
781///
782/// However, manually setting the discriminants can override this default behavior:
783///
784/// ```
785/// #[derive(PartialEq, Eq, PartialOrd, Ord)]
786/// enum E {
787///     Top = 2,
788///     Bottom = 1,
789/// }
790///
791/// assert!(E::Bottom < E::Top);
792/// ```
793///
794/// ## Lexicographical comparison
795///
796/// Lexicographical comparison is an operation with the following properties:
797///  - Two sequences are compared element by element.
798///  - The first mismatching element defines which sequence is lexicographically less or greater
799///    than the other.
800///  - If one sequence is a prefix of another, the shorter sequence is lexicographically less than
801///    the other.
802///  - If two sequences have equivalent elements and are of the same length, then the sequences are
803///    lexicographically equal.
804///  - An empty sequence is lexicographically less than any non-empty sequence.
805///  - Two empty sequences are lexicographically equal.
806///
807/// ## How can I implement `Ord`?
808///
809/// `Ord` requires that the type also be [`PartialOrd`], [`PartialEq`], and [`Eq`].
810///
811/// Because `Ord` implies a stronger ordering relationship than [`PartialOrd`], and both `Ord` and
812/// [`PartialOrd`] must agree, you must choose how to implement `Ord` **first**. You can choose to
813/// derive it, or implement it manually. If you derive it, you should derive all four traits. If you
814/// implement it manually, you should manually implement all four traits, based on the
815/// implementation of `Ord`.
816///
817/// Here's an example where you want to define the `Character` comparison by `health` and
818/// `experience` only, disregarding the field `mana`:
819///
820/// ```
821/// use std::cmp::Ordering;
822///
823/// struct Character {
824///     health: u32,
825///     experience: u32,
826///     mana: f32,
827/// }
828///
829/// impl Ord for Character {
830///     fn cmp(&self, other: &Self) -> Ordering {
831///         self.experience
832///             .cmp(&other.experience)
833///             .then(self.health.cmp(&other.health))
834///     }
835/// }
836///
837/// impl PartialOrd for Character {
838///     fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
839///         Some(self.cmp(other))
840///     }
841/// }
842///
843/// impl PartialEq for Character {
844///     fn eq(&self, other: &Self) -> bool {
845///         self.health == other.health && self.experience == other.experience
846///     }
847/// }
848///
849/// impl Eq for Character {}
850/// ```
851///
852/// If all you need is to `slice::sort` a type by a field value, it can be simpler to use
853/// `slice::sort_by_key`.
854///
855/// ## Examples of incorrect `Ord` implementations
856///
857/// ```
858/// use std::cmp::Ordering;
859///
860/// #[derive(Debug)]
861/// struct Character {
862///     health: f32,
863/// }
864///
865/// impl Ord for Character {
866///     fn cmp(&self, other: &Self) -> std::cmp::Ordering {
867///         if self.health < other.health {
868///             Ordering::Less
869///         } else if self.health > other.health {
870///             Ordering::Greater
871///         } else {
872///             Ordering::Equal
873///         }
874///     }
875/// }
876///
877/// impl PartialOrd for Character {
878///     fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
879///         Some(self.cmp(other))
880///     }
881/// }
882///
883/// impl PartialEq for Character {
884///     fn eq(&self, other: &Self) -> bool {
885///         self.health == other.health
886///     }
887/// }
888///
889/// impl Eq for Character {}
890///
891/// let a = Character { health: 4.5 };
892/// let b = Character { health: f32::NAN };
893///
894/// // Mistake: floating-point values do not form a total order and using the built-in comparison
895/// // operands to implement `Ord` irregardless of that reality does not change it. Use
896/// // `f32::total_cmp` if you need a total order for floating-point values.
897///
898/// // Reflexivity requirement of `Ord` is not given.
899/// assert!(a == a);
900/// assert!(b != b);
901///
902/// // Antisymmetry requirement of `Ord` is not given. Only one of a < c and c < a is allowed to be
903/// // true, not both or neither.
904/// assert_eq!((a < b) as u8 + (b < a) as u8, 0);
905/// ```
906///
907/// ```
908/// use std::cmp::Ordering;
909///
910/// #[derive(Debug)]
911/// struct Character {
912///     health: u32,
913///     experience: u32,
914/// }
915///
916/// impl PartialOrd for Character {
917///     fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
918///         Some(self.cmp(other))
919///     }
920/// }
921///
922/// impl Ord for Character {
923///     fn cmp(&self, other: &Self) -> std::cmp::Ordering {
924///         if self.health < 50 {
925///             self.health.cmp(&other.health)
926///         } else {
927///             self.experience.cmp(&other.experience)
928///         }
929///     }
930/// }
931///
932/// // For performance reasons implementing `PartialEq` this way is not the idiomatic way, but it
933/// // ensures consistent behavior between `PartialEq`, `PartialOrd` and `Ord` in this example.
934/// impl PartialEq for Character {
935///     fn eq(&self, other: &Self) -> bool {
936///         self.cmp(other) == Ordering::Equal
937///     }
938/// }
939///
940/// impl Eq for Character {}
941///
942/// let a = Character {
943///     health: 3,
944///     experience: 5,
945/// };
946/// let b = Character {
947///     health: 10,
948///     experience: 77,
949/// };
950/// let c = Character {
951///     health: 143,
952///     experience: 2,
953/// };
954///
955/// // Mistake: The implementation of `Ord` compares different fields depending on the value of
956/// // `self.health`, the resulting order is not total.
957///
958/// // Transitivity requirement of `Ord` is not given. If a is smaller than b and b is smaller than
959/// // c, by transitive property a must also be smaller than c.
960/// assert!(a < b && b < c && c < a);
961///
962/// // Antisymmetry requirement of `Ord` is not given. Only one of a < c and c < a is allowed to be
963/// // true, not both or neither.
964/// assert_eq!((a < c) as u8 + (c < a) as u8, 2);
965/// ```
966///
967/// The documentation of [`PartialOrd`] contains further examples, for example it's wrong for
968/// [`PartialOrd`] and [`PartialEq`] to disagree.
969///
970/// [`cmp`]: Ord::cmp
971#[doc(alias = "<")]
972#[doc(alias = ">")]
973#[doc(alias = "<=")]
974#[doc(alias = ">=")]
975#[stable(feature = "rust1", since = "1.0.0")]
976#[rustc_diagnostic_item = "Ord"]
977#[rustc_const_unstable(feature = "const_cmp", issue = "143800")]
978pub const trait Ord: [const] Eq + [const] PartialOrd<Self> + PointeeSized {
979    /// This method returns an [`Ordering`] between `self` and `other`.
980    ///
981    /// By convention, `self.cmp(&other)` returns the ordering matching the expression
982    /// `self <operator> other` if true.
983    ///
984    /// # Examples
985    ///
986    /// ```
987    /// use std::cmp::Ordering;
988    ///
989    /// assert_eq!(5.cmp(&10), Ordering::Less);
990    /// assert_eq!(10.cmp(&5), Ordering::Greater);
991    /// assert_eq!(5.cmp(&5), Ordering::Equal);
992    /// ```
993    #[must_use]
994    #[stable(feature = "rust1", since = "1.0.0")]
995    #[rustc_diagnostic_item = "ord_cmp_method"]
996    fn cmp(&self, other: &Self) -> Ordering;
997
998    /// Compares and returns the maximum of two values.
999    ///
1000    /// Returns the second argument if the comparison determines them to be equal.
1001    ///
1002    /// # Examples
1003    ///
1004    /// ```
1005    /// assert_eq!(1.max(2), 2);
1006    /// assert_eq!(2.max(2), 2);
1007    /// ```
1008    /// ```
1009    /// use std::cmp::Ordering;
1010    ///
1011    /// #[derive(Eq)]
1012    /// struct Equal(&'static str);
1013    ///
1014    /// impl PartialEq for Equal {
1015    ///     fn eq(&self, other: &Self) -> bool { true }
1016    /// }
1017    /// impl PartialOrd for Equal {
1018    ///     fn partial_cmp(&self, other: &Self) -> Option<Ordering> { Some(Ordering::Equal) }
1019    /// }
1020    /// impl Ord for Equal {
1021    ///     fn cmp(&self, other: &Self) -> Ordering { Ordering::Equal }
1022    /// }
1023    ///
1024    /// assert_eq!(Equal("self").max(Equal("other")).0, "other");
1025    /// ```
1026    #[stable(feature = "ord_max_min", since = "1.21.0")]
1027    #[inline]
1028    #[must_use]
1029    #[rustc_diagnostic_item = "cmp_ord_max"]
1030    fn max(self, other: Self) -> Self
1031    where
1032        Self: Sized + [const] Destruct,
1033    {
1034        if other < self { self } else { other }
1035    }
1036
1037    /// Compares and returns the minimum of two values.
1038    ///
1039    /// Returns the first argument if the comparison determines them to be equal.
1040    ///
1041    /// # Examples
1042    ///
1043    /// ```
1044    /// assert_eq!(1.min(2), 1);
1045    /// assert_eq!(2.min(2), 2);
1046    /// ```
1047    /// ```
1048    /// use std::cmp::Ordering;
1049    ///
1050    /// #[derive(Eq)]
1051    /// struct Equal(&'static str);
1052    ///
1053    /// impl PartialEq for Equal {
1054    ///     fn eq(&self, other: &Self) -> bool { true }
1055    /// }
1056    /// impl PartialOrd for Equal {
1057    ///     fn partial_cmp(&self, other: &Self) -> Option<Ordering> { Some(Ordering::Equal) }
1058    /// }
1059    /// impl Ord for Equal {
1060    ///     fn cmp(&self, other: &Self) -> Ordering { Ordering::Equal }
1061    /// }
1062    ///
1063    /// assert_eq!(Equal("self").min(Equal("other")).0, "self");
1064    /// ```
1065    #[stable(feature = "ord_max_min", since = "1.21.0")]
1066    #[inline]
1067    #[must_use]
1068    #[rustc_diagnostic_item = "cmp_ord_min"]
1069    fn min(self, other: Self) -> Self
1070    where
1071        Self: Sized + [const] Destruct,
1072    {
1073        if other < self { other } else { self }
1074    }
1075
1076    /// Restrict a value to a certain interval.
1077    ///
1078    /// Returns `max` if `self` is greater than `max`, and `min` if `self` is
1079    /// less than `min`. Otherwise this returns `self`.
1080    ///
1081    /// # Panics
1082    ///
1083    /// Panics if `min > max`.
1084    ///
1085    /// # Examples
1086    ///
1087    /// ```
1088    /// assert_eq!((-3).clamp(-2, 1), -2);
1089    /// assert_eq!(0.clamp(-2, 1), 0);
1090    /// assert_eq!(2.clamp(-2, 1), 1);
1091    /// ```
1092    #[must_use]
1093    #[inline]
1094    #[stable(feature = "clamp", since = "1.50.0")]
1095    fn clamp(self, min: Self, max: Self) -> Self
1096    where
1097        Self: Sized + [const] Destruct,
1098    {
1099        assert!(min <= max);
1100        if self < min {
1101            min
1102        } else if self > max {
1103            max
1104        } else {
1105            self
1106        }
1107    }
1108}
1109
1110/// Derive macro generating an impl of the trait [`Ord`].
1111/// The behavior of this macro is described in detail [here](Ord#derivable).
1112#[rustc_builtin_macro]
1113#[stable(feature = "builtin_macro_prelude", since = "1.38.0")]
1114#[allow_internal_unstable(core_intrinsics)]
1115pub macro Ord($item:item) {
1116    /* compiler built-in */
1117}
1118
1119/// Trait for types that form a [partial order](https://en.wikipedia.org/wiki/Partial_order).
1120///
1121/// The `lt`, `le`, `gt`, and `ge` methods of this trait can be called using the `<`, `<=`, `>`, and
1122/// `>=` operators, respectively.
1123///
1124/// This trait should **only** contain the comparison logic for a type **if one plans on only
1125/// implementing `PartialOrd` but not [`Ord`]**. Otherwise the comparison logic should be in [`Ord`]
1126/// and this trait implemented with `Some(self.cmp(other))`.
1127///
1128/// The methods of this trait must be consistent with each other and with those of [`PartialEq`].
1129/// The following conditions must hold:
1130///
1131/// 1. `a == b` if and only if `partial_cmp(a, b) == Some(Equal)`.
1132/// 2. `a < b` if and only if `partial_cmp(a, b) == Some(Less)`
1133/// 3. `a > b` if and only if `partial_cmp(a, b) == Some(Greater)`
1134/// 4. `a <= b` if and only if `a < b || a == b`
1135/// 5. `a >= b` if and only if `a > b || a == b`
1136/// 6. `a != b` if and only if `!(a == b)`.
1137///
1138/// Conditions 2–5 above are ensured by the default implementation. Condition 6 is already ensured
1139/// by [`PartialEq`].
1140///
1141/// If [`Ord`] is also implemented for `Self` and `Rhs`, it must also be consistent with
1142/// `partial_cmp` (see the documentation of that trait for the exact requirements). It's easy to
1143/// accidentally make them disagree by deriving some of the traits and manually implementing others.
1144///
1145/// The comparison relations must satisfy the following conditions (for all `a`, `b`, `c` of type
1146/// `A`, `B`, `C`):
1147///
1148/// - **Transitivity**: if `A: PartialOrd<B>` and `B: PartialOrd<C>` and `A: PartialOrd<C>`, then `a
1149///   < b` and `b < c` implies `a < c`. The same must hold for both `==` and `>`. This must also
1150///   work for longer chains, such as when `A: PartialOrd<B>`, `B: PartialOrd<C>`, `C:
1151///   PartialOrd<D>`, and `A: PartialOrd<D>` all exist.
1152/// - **Duality**: if `A: PartialOrd<B>` and `B: PartialOrd<A>`, then `a < b` if and only if `b >
1153///   a`.
1154///
1155/// Note that the `B: PartialOrd<A>` (dual) and `A: PartialOrd<C>` (transitive) impls are not forced
1156/// to exist, but these requirements apply whenever they do exist.
1157///
1158/// Violating these requirements is a logic error. The behavior resulting from a logic error is not
1159/// specified, but users of the trait must ensure that such logic errors do *not* result in
1160/// undefined behavior. This means that `unsafe` code **must not** rely on the correctness of these
1161/// methods.
1162///
1163/// ## Cross-crate considerations
1164///
1165/// Upholding the requirements stated above can become tricky when one crate implements `PartialOrd`
1166/// for a type of another crate (i.e., to allow comparing one of its own types with a type from the
1167/// standard library). The recommendation is to never implement this trait for a foreign type. In
1168/// other words, such a crate should do `impl PartialOrd<ForeignType> for LocalType`, but it should
1169/// *not* do `impl PartialOrd<LocalType> for ForeignType`.
1170///
1171/// This avoids the problem of transitive chains that criss-cross crate boundaries: for all local
1172/// types `T`, you may assume that no other crate will add `impl`s that allow comparing `T < U`. In
1173/// other words, if other crates add `impl`s that allow building longer transitive chains `U1 < ...
1174/// < T < V1 < ...`, then all the types that appear to the right of `T` must be types that the crate
1175/// defining `T` already knows about. This rules out transitive chains where downstream crates can
1176/// add new `impl`s that "stitch together" comparisons of foreign types in ways that violate
1177/// transitivity.
1178///
1179/// Not having such foreign `impl`s also avoids forward compatibility issues where one crate adding
1180/// more `PartialOrd` implementations can cause build failures in downstream crates.
1181///
1182/// ## Corollaries
1183///
1184/// The following corollaries follow from the above requirements:
1185///
1186/// - irreflexivity of `<` and `>`: `!(a < a)`, `!(a > a)`
1187/// - transitivity of `>`: if `a > b` and `b > c` then `a > c`
1188/// - duality of `partial_cmp`: `partial_cmp(a, b) == partial_cmp(b, a).map(Ordering::reverse)`
1189///
1190/// ## Strict and non-strict partial orders
1191///
1192/// The `<` and `>` operators behave according to a *strict* partial order. However, `<=` and `>=`
1193/// do **not** behave according to a *non-strict* partial order. That is because mathematically, a
1194/// non-strict partial order would require reflexivity, i.e. `a <= a` would need to be true for
1195/// every `a`. This isn't always the case for types that implement `PartialOrd`, for example:
1196///
1197/// ```
1198/// let a = f64::NAN;
1199/// assert_eq!(a <= a, false);
1200/// ```
1201///
1202/// ## Derivable
1203///
1204/// This trait can be used with `#[derive]`.
1205///
1206/// When `derive`d on structs, it will produce a
1207/// [lexicographic](https://en.wikipedia.org/wiki/Lexicographic_order) ordering based on the
1208/// top-to-bottom declaration order of the struct's members.
1209///
1210/// When `derive`d on enums, variants are primarily ordered by their discriminants. Secondarily,
1211/// they are ordered by their fields. By default, the discriminant is smallest for variants at the
1212/// top, and largest for variants at the bottom. Here's an example:
1213///
1214/// ```
1215/// #[derive(PartialEq, PartialOrd)]
1216/// enum E {
1217///     Top,
1218///     Bottom,
1219/// }
1220///
1221/// assert!(E::Top < E::Bottom);
1222/// ```
1223///
1224/// However, manually setting the discriminants can override this default behavior:
1225///
1226/// ```
1227/// #[derive(PartialEq, PartialOrd)]
1228/// enum E {
1229///     Top = 2,
1230///     Bottom = 1,
1231/// }
1232///
1233/// assert!(E::Bottom < E::Top);
1234/// ```
1235///
1236/// ## How can I implement `PartialOrd`?
1237///
1238/// `PartialOrd` only requires implementation of the [`partial_cmp`] method, with the others
1239/// generated from default implementations.
1240///
1241/// However it remains possible to implement the others separately for types which do not have a
1242/// total order. For example, for floating point numbers, `NaN < 0 == false` and `NaN >= 0 == false`
1243/// (cf. IEEE 754-2008 section 5.11).
1244///
1245/// `PartialOrd` requires your type to be [`PartialEq`].
1246///
1247/// If your type is [`Ord`], you can implement [`partial_cmp`] by using [`cmp`]:
1248///
1249/// ```
1250/// use std::cmp::Ordering;
1251///
1252/// struct Person {
1253///     id: u32,
1254///     name: String,
1255///     height: u32,
1256/// }
1257///
1258/// impl PartialOrd for Person {
1259///     fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
1260///         Some(self.cmp(other))
1261///     }
1262/// }
1263///
1264/// impl Ord for Person {
1265///     fn cmp(&self, other: &Self) -> Ordering {
1266///         self.height.cmp(&other.height)
1267///     }
1268/// }
1269///
1270/// impl PartialEq for Person {
1271///     fn eq(&self, other: &Self) -> bool {
1272///         self.height == other.height
1273///     }
1274/// }
1275///
1276/// impl Eq for Person {}
1277/// ```
1278///
1279/// You may also find it useful to use [`partial_cmp`] on your type's fields. Here is an example of
1280/// `Person` types who have a floating-point `height` field that is the only field to be used for
1281/// sorting:
1282///
1283/// ```
1284/// use std::cmp::Ordering;
1285///
1286/// struct Person {
1287///     id: u32,
1288///     name: String,
1289///     height: f64,
1290/// }
1291///
1292/// impl PartialOrd for Person {
1293///     fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
1294///         self.height.partial_cmp(&other.height)
1295///     }
1296/// }
1297///
1298/// impl PartialEq for Person {
1299///     fn eq(&self, other: &Self) -> bool {
1300///         self.height == other.height
1301///     }
1302/// }
1303/// ```
1304///
1305/// ## Examples of incorrect `PartialOrd` implementations
1306///
1307/// ```
1308/// use std::cmp::Ordering;
1309///
1310/// #[derive(PartialEq, Debug)]
1311/// struct Character {
1312///     health: u32,
1313///     experience: u32,
1314/// }
1315///
1316/// impl PartialOrd for Character {
1317///     fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
1318///         Some(self.health.cmp(&other.health))
1319///     }
1320/// }
1321///
1322/// let a = Character {
1323///     health: 10,
1324///     experience: 5,
1325/// };
1326/// let b = Character {
1327///     health: 10,
1328///     experience: 77,
1329/// };
1330///
1331/// // Mistake: `PartialEq` and `PartialOrd` disagree with each other.
1332///
1333/// assert_eq!(a.partial_cmp(&b).unwrap(), Ordering::Equal); // a == b according to `PartialOrd`.
1334/// assert_ne!(a, b); // a != b according to `PartialEq`.
1335/// ```
1336///
1337/// # Examples
1338///
1339/// ```
1340/// let x: u32 = 0;
1341/// let y: u32 = 1;
1342///
1343/// assert_eq!(x < y, true);
1344/// assert_eq!(x.lt(&y), true);
1345/// ```
1346///
1347/// [`partial_cmp`]: PartialOrd::partial_cmp
1348/// [`cmp`]: Ord::cmp
1349#[lang = "partial_ord"]
1350#[stable(feature = "rust1", since = "1.0.0")]
1351#[doc(alias = ">")]
1352#[doc(alias = "<")]
1353#[doc(alias = "<=")]
1354#[doc(alias = ">=")]
1355#[rustc_on_unimplemented(
1356    message = "can't compare `{Self}` with `{Rhs}`",
1357    label = "no implementation for `{Self} < {Rhs}` and `{Self} > {Rhs}`",
1358    append_const_msg
1359)]
1360#[rustc_diagnostic_item = "PartialOrd"]
1361#[allow(multiple_supertrait_upcastable)] // FIXME(sized_hierarchy): remove this
1362#[rustc_const_unstable(feature = "const_cmp", issue = "143800")]
1363pub const trait PartialOrd<Rhs: PointeeSized = Self>:
1364    [const] PartialEq<Rhs> + PointeeSized
1365{
1366    /// This method returns an ordering between `self` and `other` values if one exists.
1367    ///
1368    /// # Examples
1369    ///
1370    /// ```
1371    /// use std::cmp::Ordering;
1372    ///
1373    /// let result = 1.0.partial_cmp(&2.0);
1374    /// assert_eq!(result, Some(Ordering::Less));
1375    ///
1376    /// let result = 1.0.partial_cmp(&1.0);
1377    /// assert_eq!(result, Some(Ordering::Equal));
1378    ///
1379    /// let result = 2.0.partial_cmp(&1.0);
1380    /// assert_eq!(result, Some(Ordering::Greater));
1381    /// ```
1382    ///
1383    /// When comparison is impossible:
1384    ///
1385    /// ```
1386    /// let result = f64::NAN.partial_cmp(&1.0);
1387    /// assert_eq!(result, None);
1388    /// ```
1389    #[must_use]
1390    #[stable(feature = "rust1", since = "1.0.0")]
1391    #[rustc_diagnostic_item = "cmp_partialord_cmp"]
1392    fn partial_cmp(&self, other: &Rhs) -> Option<Ordering>;
1393
1394    /// Tests less than (for `self` and `other`) and is used by the `<` operator.
1395    ///
1396    /// # Examples
1397    ///
1398    /// ```
1399    /// assert_eq!(1.0 < 1.0, false);
1400    /// assert_eq!(1.0 < 2.0, true);
1401    /// assert_eq!(2.0 < 1.0, false);
1402    /// ```
1403    #[inline]
1404    #[must_use]
1405    #[stable(feature = "rust1", since = "1.0.0")]
1406    #[rustc_diagnostic_item = "cmp_partialord_lt"]
1407    fn lt(&self, other: &Rhs) -> bool {
1408        self.partial_cmp(other).is_some_and(Ordering::is_lt)
1409    }
1410
1411    /// Tests less than or equal to (for `self` and `other`) and is used by the
1412    /// `<=` operator.
1413    ///
1414    /// # Examples
1415    ///
1416    /// ```
1417    /// assert_eq!(1.0 <= 1.0, true);
1418    /// assert_eq!(1.0 <= 2.0, true);
1419    /// assert_eq!(2.0 <= 1.0, false);
1420    /// ```
1421    #[inline]
1422    #[must_use]
1423    #[stable(feature = "rust1", since = "1.0.0")]
1424    #[rustc_diagnostic_item = "cmp_partialord_le"]
1425    fn le(&self, other: &Rhs) -> bool {
1426        self.partial_cmp(other).is_some_and(Ordering::is_le)
1427    }
1428
1429    /// Tests greater than (for `self` and `other`) and is used by the `>`
1430    /// operator.
1431    ///
1432    /// # Examples
1433    ///
1434    /// ```
1435    /// assert_eq!(1.0 > 1.0, false);
1436    /// assert_eq!(1.0 > 2.0, false);
1437    /// assert_eq!(2.0 > 1.0, true);
1438    /// ```
1439    #[inline]
1440    #[must_use]
1441    #[stable(feature = "rust1", since = "1.0.0")]
1442    #[rustc_diagnostic_item = "cmp_partialord_gt"]
1443    fn gt(&self, other: &Rhs) -> bool {
1444        self.partial_cmp(other).is_some_and(Ordering::is_gt)
1445    }
1446
1447    /// Tests greater than or equal to (for `self` and `other`) and is used by
1448    /// the `>=` operator.
1449    ///
1450    /// # Examples
1451    ///
1452    /// ```
1453    /// assert_eq!(1.0 >= 1.0, true);
1454    /// assert_eq!(1.0 >= 2.0, false);
1455    /// assert_eq!(2.0 >= 1.0, true);
1456    /// ```
1457    #[inline]
1458    #[must_use]
1459    #[stable(feature = "rust1", since = "1.0.0")]
1460    #[rustc_diagnostic_item = "cmp_partialord_ge"]
1461    fn ge(&self, other: &Rhs) -> bool {
1462        self.partial_cmp(other).is_some_and(Ordering::is_ge)
1463    }
1464
1465    /// If `self == other`, returns `ControlFlow::Continue(())`.
1466    /// Otherwise, returns `ControlFlow::Break(self < other)`.
1467    ///
1468    /// This is useful for chaining together calls when implementing a lexical
1469    /// `PartialOrd::lt`, as it allows types (like primitives) which can cheaply
1470    /// check `==` and `<` separately to do rather than needing to calculate
1471    /// (then optimize out) the three-way `Ordering` result.
1472    #[inline]
1473    // Added to improve the behaviour of tuples; not necessarily stabilization-track.
1474    #[unstable(feature = "partial_ord_chaining_methods", issue = "none")]
1475    #[doc(hidden)]
1476    fn __chaining_lt(&self, other: &Rhs) -> ControlFlow<bool> {
1477        default_chaining_impl(self, other, Ordering::is_lt)
1478    }
1479
1480    /// Same as `__chaining_lt`, but for `<=` instead of `<`.
1481    #[inline]
1482    #[unstable(feature = "partial_ord_chaining_methods", issue = "none")]
1483    #[doc(hidden)]
1484    fn __chaining_le(&self, other: &Rhs) -> ControlFlow<bool> {
1485        default_chaining_impl(self, other, Ordering::is_le)
1486    }
1487
1488    /// Same as `__chaining_lt`, but for `>` instead of `<`.
1489    #[inline]
1490    #[unstable(feature = "partial_ord_chaining_methods", issue = "none")]
1491    #[doc(hidden)]
1492    fn __chaining_gt(&self, other: &Rhs) -> ControlFlow<bool> {
1493        default_chaining_impl(self, other, Ordering::is_gt)
1494    }
1495
1496    /// Same as `__chaining_lt`, but for `>=` instead of `<`.
1497    #[inline]
1498    #[unstable(feature = "partial_ord_chaining_methods", issue = "none")]
1499    #[doc(hidden)]
1500    fn __chaining_ge(&self, other: &Rhs) -> ControlFlow<bool> {
1501        default_chaining_impl(self, other, Ordering::is_ge)
1502    }
1503}
1504
1505#[rustc_const_unstable(feature = "const_cmp", issue = "143800")]
1506const fn default_chaining_impl<T, U>(
1507    lhs: &T,
1508    rhs: &U,
1509    p: impl [const] FnOnce(Ordering) -> bool + [const] Destruct,
1510) -> ControlFlow<bool>
1511where
1512    T: [const] PartialOrd<U> + PointeeSized,
1513    U: PointeeSized,
1514{
1515    // It's important that this only call `partial_cmp` once, not call `eq` then
1516    // one of the relational operators.  We don't want to `bcmp`-then-`memcp` a
1517    // `String`, for example, or similarly for other data structures (#108157).
1518    match <T as PartialOrd<U>>::partial_cmp(lhs, rhs) {
1519        Some(Equal) => ControlFlow::Continue(()),
1520        Some(c) => ControlFlow::Break(p(c)),
1521        None => ControlFlow::Break(false),
1522    }
1523}
1524
1525/// Derive macro generating an impl of the trait [`PartialOrd`].
1526/// The behavior of this macro is described in detail [here](PartialOrd#derivable).
1527#[rustc_builtin_macro]
1528#[stable(feature = "builtin_macro_prelude", since = "1.38.0")]
1529#[allow_internal_unstable(core_intrinsics)]
1530pub macro PartialOrd($item:item) {
1531    /* compiler built-in */
1532}
1533
1534/// Compares and returns the minimum of two values.
1535///
1536/// Returns the first argument if the comparison determines them to be equal.
1537///
1538/// Internally uses an alias to [`Ord::min`].
1539///
1540/// # Examples
1541///
1542/// ```
1543/// use std::cmp;
1544///
1545/// assert_eq!(cmp::min(1, 2), 1);
1546/// assert_eq!(cmp::min(2, 2), 2);
1547/// ```
1548/// ```
1549/// use std::cmp::{self, Ordering};
1550///
1551/// #[derive(Eq)]
1552/// struct Equal(&'static str);
1553///
1554/// impl PartialEq for Equal {
1555///     fn eq(&self, other: &Self) -> bool { true }
1556/// }
1557/// impl PartialOrd for Equal {
1558///     fn partial_cmp(&self, other: &Self) -> Option<Ordering> { Some(Ordering::Equal) }
1559/// }
1560/// impl Ord for Equal {
1561///     fn cmp(&self, other: &Self) -> Ordering { Ordering::Equal }
1562/// }
1563///
1564/// assert_eq!(cmp::min(Equal("v1"), Equal("v2")).0, "v1");
1565/// ```
1566#[inline]
1567#[must_use]
1568#[stable(feature = "rust1", since = "1.0.0")]
1569#[rustc_diagnostic_item = "cmp_min"]
1570#[rustc_const_unstable(feature = "const_cmp", issue = "143800")]
1571pub const fn min<T: [const] Ord + [const] Destruct>(v1: T, v2: T) -> T {
1572    v1.min(v2)
1573}
1574
1575/// Returns the minimum of two values with respect to the specified comparison function.
1576///
1577/// Returns the first argument if the comparison determines them to be equal.
1578///
1579/// The parameter order is preserved when calling the `compare` function, i.e. `v1` is
1580/// always passed as the first argument and `v2` as the second.
1581///
1582/// # Examples
1583///
1584/// ```
1585/// use std::cmp;
1586///
1587/// let abs_cmp = |x: &i32, y: &i32| x.abs().cmp(&y.abs());
1588///
1589/// let result = cmp::min_by(2, -1, abs_cmp);
1590/// assert_eq!(result, -1);
1591///
1592/// let result = cmp::min_by(2, -3, abs_cmp);
1593/// assert_eq!(result, 2);
1594///
1595/// let result = cmp::min_by(1, -1, abs_cmp);
1596/// assert_eq!(result, 1);
1597/// ```
1598#[inline]
1599#[must_use]
1600#[stable(feature = "cmp_min_max_by", since = "1.53.0")]
1601#[rustc_const_unstable(feature = "const_cmp", issue = "143800")]
1602#[cfg(not(feature = "ferrocene_subset"))]
1603pub const fn min_by<T: [const] Destruct, F: [const] FnOnce(&T, &T) -> Ordering>(
1604    v1: T,
1605    v2: T,
1606    compare: F,
1607) -> T {
1608    if compare(&v1, &v2).is_le() { v1 } else { v2 }
1609}
1610
1611/// Returns the element that gives the minimum value from the specified function.
1612///
1613/// Returns the first argument if the comparison determines them to be equal.
1614///
1615/// # Examples
1616///
1617/// ```
1618/// use std::cmp;
1619///
1620/// let result = cmp::min_by_key(2, -1, |x: &i32| x.abs());
1621/// assert_eq!(result, -1);
1622///
1623/// let result = cmp::min_by_key(2, -3, |x: &i32| x.abs());
1624/// assert_eq!(result, 2);
1625///
1626/// let result = cmp::min_by_key(1, -1, |x: &i32| x.abs());
1627/// assert_eq!(result, 1);
1628/// ```
1629#[inline]
1630#[must_use]
1631#[stable(feature = "cmp_min_max_by", since = "1.53.0")]
1632#[rustc_const_unstable(feature = "const_cmp", issue = "143800")]
1633#[cfg(not(feature = "ferrocene_subset"))]
1634pub const fn min_by_key<T, F, K>(v1: T, v2: T, mut f: F) -> T
1635where
1636    T: [const] Destruct,
1637    F: [const] FnMut(&T) -> K + [const] Destruct,
1638    K: [const] Ord + [const] Destruct,
1639{
1640    if f(&v2) < f(&v1) { v2 } else { v1 }
1641}
1642
1643/// Compares and returns the maximum of two values.
1644///
1645/// Returns the second argument if the comparison determines them to be equal.
1646///
1647/// Internally uses an alias to [`Ord::max`].
1648///
1649/// # Examples
1650///
1651/// ```
1652/// use std::cmp;
1653///
1654/// assert_eq!(cmp::max(1, 2), 2);
1655/// assert_eq!(cmp::max(2, 2), 2);
1656/// ```
1657/// ```
1658/// use std::cmp::{self, Ordering};
1659///
1660/// #[derive(Eq)]
1661/// struct Equal(&'static str);
1662///
1663/// impl PartialEq for Equal {
1664///     fn eq(&self, other: &Self) -> bool { true }
1665/// }
1666/// impl PartialOrd for Equal {
1667///     fn partial_cmp(&self, other: &Self) -> Option<Ordering> { Some(Ordering::Equal) }
1668/// }
1669/// impl Ord for Equal {
1670///     fn cmp(&self, other: &Self) -> Ordering { Ordering::Equal }
1671/// }
1672///
1673/// assert_eq!(cmp::max(Equal("v1"), Equal("v2")).0, "v2");
1674/// ```
1675#[inline]
1676#[must_use]
1677#[stable(feature = "rust1", since = "1.0.0")]
1678#[rustc_diagnostic_item = "cmp_max"]
1679#[rustc_const_unstable(feature = "const_cmp", issue = "143800")]
1680pub const fn max<T: [const] Ord + [const] Destruct>(v1: T, v2: T) -> T {
1681    v1.max(v2)
1682}
1683
1684/// Returns the maximum of two values with respect to the specified comparison function.
1685///
1686/// Returns the second argument if the comparison determines them to be equal.
1687///
1688/// The parameter order is preserved when calling the `compare` function, i.e. `v1` is
1689/// always passed as the first argument and `v2` as the second.
1690///
1691/// # Examples
1692///
1693/// ```
1694/// use std::cmp;
1695///
1696/// let abs_cmp = |x: &i32, y: &i32| x.abs().cmp(&y.abs());
1697///
1698/// let result = cmp::max_by(3, -2, abs_cmp) ;
1699/// assert_eq!(result, 3);
1700///
1701/// let result = cmp::max_by(1, -2, abs_cmp);
1702/// assert_eq!(result, -2);
1703///
1704/// let result = cmp::max_by(1, -1, abs_cmp);
1705/// assert_eq!(result, -1);
1706/// ```
1707#[inline]
1708#[must_use]
1709#[stable(feature = "cmp_min_max_by", since = "1.53.0")]
1710#[rustc_const_unstable(feature = "const_cmp", issue = "143800")]
1711pub const fn max_by<T: [const] Destruct, F: [const] FnOnce(&T, &T) -> Ordering>(
1712    v1: T,
1713    v2: T,
1714    compare: F,
1715) -> T {
1716    if compare(&v1, &v2).is_gt() { v1 } else { v2 }
1717}
1718
1719/// Returns the element that gives the maximum value from the specified function.
1720///
1721/// Returns the second argument if the comparison determines them to be equal.
1722///
1723/// # Examples
1724///
1725/// ```
1726/// use std::cmp;
1727///
1728/// let result = cmp::max_by_key(3, -2, |x: &i32| x.abs());
1729/// assert_eq!(result, 3);
1730///
1731/// let result = cmp::max_by_key(1, -2, |x: &i32| x.abs());
1732/// assert_eq!(result, -2);
1733///
1734/// let result = cmp::max_by_key(1, -1, |x: &i32| x.abs());
1735/// assert_eq!(result, -1);
1736/// ```
1737#[inline]
1738#[must_use]
1739#[stable(feature = "cmp_min_max_by", since = "1.53.0")]
1740#[rustc_const_unstable(feature = "const_cmp", issue = "143800")]
1741#[cfg(not(feature = "ferrocene_subset"))]
1742pub const fn max_by_key<T, F, K>(v1: T, v2: T, mut f: F) -> T
1743where
1744    T: [const] Destruct,
1745    F: [const] FnMut(&T) -> K + [const] Destruct,
1746    K: [const] Ord + [const] Destruct,
1747{
1748    if f(&v2) < f(&v1) { v1 } else { v2 }
1749}
1750
1751/// Compares and sorts two values, returning minimum and maximum.
1752///
1753/// Returns `[v1, v2]` if the comparison determines them to be equal.
1754///
1755/// # Examples
1756///
1757/// ```
1758/// #![feature(cmp_minmax)]
1759/// use std::cmp;
1760///
1761/// assert_eq!(cmp::minmax(1, 2), [1, 2]);
1762/// assert_eq!(cmp::minmax(2, 1), [1, 2]);
1763///
1764/// // You can destructure the result using array patterns
1765/// let [min, max] = cmp::minmax(42, 17);
1766/// assert_eq!(min, 17);
1767/// assert_eq!(max, 42);
1768/// ```
1769/// ```
1770/// #![feature(cmp_minmax)]
1771/// use std::cmp::{self, Ordering};
1772///
1773/// #[derive(Eq)]
1774/// struct Equal(&'static str);
1775///
1776/// impl PartialEq for Equal {
1777///     fn eq(&self, other: &Self) -> bool { true }
1778/// }
1779/// impl PartialOrd for Equal {
1780///     fn partial_cmp(&self, other: &Self) -> Option<Ordering> { Some(Ordering::Equal) }
1781/// }
1782/// impl Ord for Equal {
1783///     fn cmp(&self, other: &Self) -> Ordering { Ordering::Equal }
1784/// }
1785///
1786/// assert_eq!(cmp::minmax(Equal("v1"), Equal("v2")).map(|v| v.0), ["v1", "v2"]);
1787/// ```
1788#[inline]
1789#[must_use]
1790#[unstable(feature = "cmp_minmax", issue = "115939")]
1791#[rustc_const_unstable(feature = "const_cmp", issue = "143800")]
1792#[cfg(not(feature = "ferrocene_subset"))]
1793pub const fn minmax<T>(v1: T, v2: T) -> [T; 2]
1794where
1795    T: [const] Ord,
1796{
1797    if v2 < v1 { [v2, v1] } else { [v1, v2] }
1798}
1799
1800/// Returns minimum and maximum values with respect to the specified comparison function.
1801///
1802/// Returns `[v1, v2]` if the comparison determines them to be equal.
1803///
1804/// The parameter order is preserved when calling the `compare` function, i.e. `v1` is
1805/// always passed as the first argument and `v2` as the second.
1806///
1807/// # Examples
1808///
1809/// ```
1810/// #![feature(cmp_minmax)]
1811/// use std::cmp;
1812///
1813/// let abs_cmp = |x: &i32, y: &i32| x.abs().cmp(&y.abs());
1814///
1815/// assert_eq!(cmp::minmax_by(-2, 1, abs_cmp), [1, -2]);
1816/// assert_eq!(cmp::minmax_by(-1, 2, abs_cmp), [-1, 2]);
1817/// assert_eq!(cmp::minmax_by(-2, 2, abs_cmp), [-2, 2]);
1818///
1819/// // You can destructure the result using array patterns
1820/// let [min, max] = cmp::minmax_by(-42, 17, abs_cmp);
1821/// assert_eq!(min, 17);
1822/// assert_eq!(max, -42);
1823/// ```
1824#[inline]
1825#[must_use]
1826#[unstable(feature = "cmp_minmax", issue = "115939")]
1827#[rustc_const_unstable(feature = "const_cmp", issue = "143800")]
1828#[cfg(not(feature = "ferrocene_subset"))]
1829pub const fn minmax_by<T, F>(v1: T, v2: T, compare: F) -> [T; 2]
1830where
1831    F: [const] FnOnce(&T, &T) -> Ordering,
1832{
1833    if compare(&v1, &v2).is_le() { [v1, v2] } else { [v2, v1] }
1834}
1835
1836/// Returns minimum and maximum values with respect to the specified key function.
1837///
1838/// Returns `[v1, v2]` if the comparison determines them to be equal.
1839///
1840/// # Examples
1841///
1842/// ```
1843/// #![feature(cmp_minmax)]
1844/// use std::cmp;
1845///
1846/// assert_eq!(cmp::minmax_by_key(-2, 1, |x: &i32| x.abs()), [1, -2]);
1847/// assert_eq!(cmp::minmax_by_key(-2, 2, |x: &i32| x.abs()), [-2, 2]);
1848///
1849/// // You can destructure the result using array patterns
1850/// let [min, max] = cmp::minmax_by_key(-42, 17, |x: &i32| x.abs());
1851/// assert_eq!(min, 17);
1852/// assert_eq!(max, -42);
1853/// ```
1854#[inline]
1855#[must_use]
1856#[unstable(feature = "cmp_minmax", issue = "115939")]
1857#[rustc_const_unstable(feature = "const_cmp", issue = "143800")]
1858#[cfg(not(feature = "ferrocene_subset"))]
1859pub const fn minmax_by_key<T, F, K>(v1: T, v2: T, mut f: F) -> [T; 2]
1860where
1861    F: [const] FnMut(&T) -> K + [const] Destruct,
1862    K: [const] Ord + [const] Destruct,
1863{
1864    if f(&v2) < f(&v1) { [v2, v1] } else { [v1, v2] }
1865}
1866
1867// Implementation of PartialEq, Eq, PartialOrd and Ord for primitive types
1868mod impls {
1869    use crate::cmp::Ordering::{self, Equal, Greater, Less};
1870    use crate::hint::unreachable_unchecked;
1871    use crate::marker::PointeeSized;
1872    use crate::ops::ControlFlow::{self, Break, Continue};
1873    #[cfg(not(feature = "ferrocene_subset"))]
1874    use crate::panic::const_assert;
1875
1876    macro_rules! partial_eq_impl {
1877        ($($t:ty)*) => ($(
1878            #[stable(feature = "rust1", since = "1.0.0")]
1879            #[rustc_const_unstable(feature = "const_cmp", issue = "143800")]
1880            impl const PartialEq for $t {
1881                #[inline]
1882                fn eq(&self, other: &Self) -> bool { *self == *other }
1883                #[inline]
1884                fn ne(&self, other: &Self) -> bool { *self != *other }
1885            }
1886        )*)
1887    }
1888
1889    #[stable(feature = "rust1", since = "1.0.0")]
1890    #[rustc_const_unstable(feature = "const_cmp", issue = "143800")]
1891    impl const PartialEq for () {
1892        #[inline]
1893        fn eq(&self, _other: &()) -> bool {
1894            true
1895        }
1896        #[inline]
1897        fn ne(&self, _other: &()) -> bool {
1898            false
1899        }
1900    }
1901
1902    partial_eq_impl! {
1903        bool char usize u8 u16 u32 u64 u128 isize i8 i16 i32 i64 i128 f16 f32 f64 f128
1904    }
1905
1906    macro_rules! eq_impl {
1907        ($($t:ty)*) => ($(
1908            #[stable(feature = "rust1", since = "1.0.0")]
1909            #[rustc_const_unstable(feature = "const_cmp", issue = "143800")]
1910            impl const Eq for $t {}
1911        )*)
1912    }
1913
1914    eq_impl! { () bool char usize u8 u16 u32 u64 u128 isize i8 i16 i32 i64 i128 }
1915
1916    #[rustfmt::skip]
1917    macro_rules! partial_ord_methods_primitive_impl {
1918        () => {
1919            #[inline(always)]
1920            fn lt(&self, other: &Self) -> bool { *self <  *other }
1921            #[inline(always)]
1922            fn le(&self, other: &Self) -> bool { *self <= *other }
1923            #[inline(always)]
1924            fn gt(&self, other: &Self) -> bool { *self >  *other }
1925            #[inline(always)]
1926            fn ge(&self, other: &Self) -> bool { *self >= *other }
1927
1928            // These implementations are the same for `Ord` or `PartialOrd` types
1929            // because if either is NAN the `==` test will fail so we end up in
1930            // the `Break` case and the comparison will correctly return `false`.
1931
1932            #[inline]
1933            fn __chaining_lt(&self, other: &Self) -> ControlFlow<bool> {
1934                let (lhs, rhs) = (*self, *other);
1935                if lhs == rhs { Continue(()) } else { Break(lhs < rhs) }
1936            }
1937            #[inline]
1938            fn __chaining_le(&self, other: &Self) -> ControlFlow<bool> {
1939                let (lhs, rhs) = (*self, *other);
1940                if lhs == rhs { Continue(()) } else { Break(lhs <= rhs) }
1941            }
1942            #[inline]
1943            fn __chaining_gt(&self, other: &Self) -> ControlFlow<bool> {
1944                let (lhs, rhs) = (*self, *other);
1945                if lhs == rhs { Continue(()) } else { Break(lhs > rhs) }
1946            }
1947            #[inline]
1948            fn __chaining_ge(&self, other: &Self) -> ControlFlow<bool> {
1949                let (lhs, rhs) = (*self, *other);
1950                if lhs == rhs { Continue(()) } else { Break(lhs >= rhs) }
1951            }
1952        };
1953    }
1954
1955    macro_rules! partial_ord_impl {
1956        ($($t:ty)*) => ($(
1957            #[stable(feature = "rust1", since = "1.0.0")]
1958            #[rustc_const_unstable(feature = "const_cmp", issue = "143800")]
1959            impl const PartialOrd for $t {
1960                #[inline]
1961                fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
1962                    match (*self <= *other, *self >= *other) {
1963                        (false, false) => None,
1964                        (false, true) => Some(Greater),
1965                        (true, false) => Some(Less),
1966                        (true, true) => Some(Equal),
1967                    }
1968                }
1969
1970                partial_ord_methods_primitive_impl!();
1971            }
1972        )*)
1973    }
1974
1975    #[stable(feature = "rust1", since = "1.0.0")]
1976    #[rustc_const_unstable(feature = "const_cmp", issue = "143800")]
1977    impl const PartialOrd for () {
1978        #[inline]
1979        fn partial_cmp(&self, _: &()) -> Option<Ordering> {
1980            Some(Equal)
1981        }
1982    }
1983
1984    #[stable(feature = "rust1", since = "1.0.0")]
1985    #[rustc_const_unstable(feature = "const_cmp", issue = "143800")]
1986    impl const PartialOrd for bool {
1987        #[inline]
1988        fn partial_cmp(&self, other: &bool) -> Option<Ordering> {
1989            Some(self.cmp(other))
1990        }
1991
1992        partial_ord_methods_primitive_impl!();
1993    }
1994
1995    partial_ord_impl! { f16 f32 f64 f128 }
1996
1997    macro_rules! ord_impl {
1998        ($($t:ty)*) => ($(
1999            #[stable(feature = "rust1", since = "1.0.0")]
2000            #[rustc_const_unstable(feature = "const_cmp", issue = "143800")]
2001            impl const PartialOrd for $t {
2002                #[inline]
2003                fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
2004                    Some(crate::intrinsics::three_way_compare(*self, *other))
2005                }
2006
2007                partial_ord_methods_primitive_impl!();
2008            }
2009
2010            #[stable(feature = "rust1", since = "1.0.0")]
2011            #[rustc_const_unstable(feature = "const_cmp", issue = "143800")]
2012            impl const Ord for $t {
2013                #[inline]
2014                fn cmp(&self, other: &Self) -> Ordering {
2015                    crate::intrinsics::three_way_compare(*self, *other)
2016                }
2017
2018                #[cfg(not(feature = "ferrocene_subset"))]
2019                #[inline]
2020                #[track_caller]
2021                fn clamp(self, min: Self, max: Self) -> Self
2022                {
2023                    const_assert!(
2024                        min <= max,
2025                        "min > max",
2026                        "min > max. min = {min:?}, max = {max:?}",
2027                        min: $t,
2028                        max: $t,
2029                    );
2030                    if self < min {
2031                        min
2032                    } else if self > max {
2033                        max
2034                    } else {
2035                        self
2036                    }
2037                }
2038            }
2039        )*)
2040    }
2041
2042    #[stable(feature = "rust1", since = "1.0.0")]
2043    #[rustc_const_unstable(feature = "const_cmp", issue = "143800")]
2044    impl const Ord for () {
2045        #[inline]
2046        fn cmp(&self, _other: &()) -> Ordering {
2047            Equal
2048        }
2049    }
2050
2051    #[stable(feature = "rust1", since = "1.0.0")]
2052    #[rustc_const_unstable(feature = "const_cmp", issue = "143800")]
2053    impl const Ord for bool {
2054        #[inline]
2055        fn cmp(&self, other: &bool) -> Ordering {
2056            // Casting to i8's and converting the difference to an Ordering generates
2057            // more optimal assembly.
2058            // See <https://github.com/rust-lang/rust/issues/66780> for more info.
2059            match (*self as i8) - (*other as i8) {
2060                -1 => Less,
2061                0 => Equal,
2062                1 => Greater,
2063                #[ferrocene::annotation(
2064                    "This match arm cannot be covered because it is unreachable. See the safety comment below."
2065                )]
2066                // SAFETY: bool as i8 returns 0 or 1, so the difference can't be anything else
2067                _ => unsafe { unreachable_unchecked() },
2068            }
2069        }
2070
2071        #[inline]
2072        fn min(self, other: bool) -> bool {
2073            self & other
2074        }
2075
2076        #[inline]
2077        fn max(self, other: bool) -> bool {
2078            self | other
2079        }
2080
2081        #[inline]
2082        fn clamp(self, min: bool, max: bool) -> bool {
2083            assert!(min <= max);
2084            self.max(min).min(max)
2085        }
2086    }
2087
2088    ord_impl! { char usize u8 u16 u32 u64 u128 isize i8 i16 i32 i64 i128 }
2089
2090    #[unstable(feature = "never_type", issue = "35121")]
2091    #[rustc_const_unstable(feature = "const_cmp", issue = "143800")]
2092    impl const PartialEq for ! {
2093        #[inline]
2094        fn eq(&self, _: &!) -> bool {
2095            *self
2096        }
2097    }
2098
2099    #[unstable(feature = "never_type", issue = "35121")]
2100    #[rustc_const_unstable(feature = "const_cmp", issue = "143800")]
2101    impl const Eq for ! {}
2102
2103    #[unstable(feature = "never_type", issue = "35121")]
2104    #[rustc_const_unstable(feature = "const_cmp", issue = "143800")]
2105    impl const PartialOrd for ! {
2106        #[inline]
2107        fn partial_cmp(&self, _: &!) -> Option<Ordering> {
2108            *self
2109        }
2110    }
2111
2112    #[unstable(feature = "never_type", issue = "35121")]
2113    #[rustc_const_unstable(feature = "const_cmp", issue = "143800")]
2114    impl const Ord for ! {
2115        #[inline]
2116        fn cmp(&self, _: &!) -> Ordering {
2117            *self
2118        }
2119    }
2120
2121    // & pointers
2122
2123    #[stable(feature = "rust1", since = "1.0.0")]
2124    #[rustc_const_unstable(feature = "const_cmp", issue = "143800")]
2125    impl<A: PointeeSized, B: PointeeSized> const PartialEq<&B> for &A
2126    where
2127        A: [const] PartialEq<B>,
2128    {
2129        #[inline]
2130        fn eq(&self, other: &&B) -> bool {
2131            PartialEq::eq(*self, *other)
2132        }
2133        #[inline]
2134        fn ne(&self, other: &&B) -> bool {
2135            PartialEq::ne(*self, *other)
2136        }
2137    }
2138    #[stable(feature = "rust1", since = "1.0.0")]
2139    #[rustc_const_unstable(feature = "const_cmp", issue = "143800")]
2140    impl<A: PointeeSized, B: PointeeSized> const PartialOrd<&B> for &A
2141    where
2142        A: [const] PartialOrd<B>,
2143    {
2144        #[inline]
2145        fn partial_cmp(&self, other: &&B) -> Option<Ordering> {
2146            PartialOrd::partial_cmp(*self, *other)
2147        }
2148        #[inline]
2149        fn lt(&self, other: &&B) -> bool {
2150            PartialOrd::lt(*self, *other)
2151        }
2152        #[inline]
2153        fn le(&self, other: &&B) -> bool {
2154            PartialOrd::le(*self, *other)
2155        }
2156        #[inline]
2157        fn gt(&self, other: &&B) -> bool {
2158            PartialOrd::gt(*self, *other)
2159        }
2160        #[inline]
2161        fn ge(&self, other: &&B) -> bool {
2162            PartialOrd::ge(*self, *other)
2163        }
2164        #[inline]
2165        fn __chaining_lt(&self, other: &&B) -> ControlFlow<bool> {
2166            PartialOrd::__chaining_lt(*self, *other)
2167        }
2168        #[inline]
2169        fn __chaining_le(&self, other: &&B) -> ControlFlow<bool> {
2170            PartialOrd::__chaining_le(*self, *other)
2171        }
2172        #[inline]
2173        fn __chaining_gt(&self, other: &&B) -> ControlFlow<bool> {
2174            PartialOrd::__chaining_gt(*self, *other)
2175        }
2176        #[inline]
2177        fn __chaining_ge(&self, other: &&B) -> ControlFlow<bool> {
2178            PartialOrd::__chaining_ge(*self, *other)
2179        }
2180    }
2181    #[stable(feature = "rust1", since = "1.0.0")]
2182    #[rustc_const_unstable(feature = "const_cmp", issue = "143800")]
2183    #[cfg(not(feature = "ferrocene_subset"))]
2184    impl<A: PointeeSized> const Ord for &A
2185    where
2186        A: [const] Ord,
2187    {
2188        #[inline]
2189        fn cmp(&self, other: &Self) -> Ordering {
2190            Ord::cmp(*self, *other)
2191        }
2192    }
2193    #[stable(feature = "rust1", since = "1.0.0")]
2194    #[rustc_const_unstable(feature = "const_cmp", issue = "143800")]
2195    impl<A: PointeeSized> const Eq for &A where A: [const] Eq {}
2196
2197    // &mut pointers
2198
2199    #[stable(feature = "rust1", since = "1.0.0")]
2200    #[rustc_const_unstable(feature = "const_cmp", issue = "143800")]
2201    impl<A: PointeeSized, B: PointeeSized> const PartialEq<&mut B> for &mut A
2202    where
2203        A: [const] PartialEq<B>,
2204    {
2205        #[inline]
2206        fn eq(&self, other: &&mut B) -> bool {
2207            PartialEq::eq(*self, *other)
2208        }
2209        #[inline]
2210        fn ne(&self, other: &&mut B) -> bool {
2211            PartialEq::ne(*self, *other)
2212        }
2213    }
2214    #[stable(feature = "rust1", since = "1.0.0")]
2215    #[rustc_const_unstable(feature = "const_cmp", issue = "143800")]
2216    #[cfg(not(feature = "ferrocene_subset"))]
2217    impl<A: PointeeSized, B: PointeeSized> const PartialOrd<&mut B> for &mut A
2218    where
2219        A: [const] PartialOrd<B>,
2220    {
2221        #[inline]
2222        fn partial_cmp(&self, other: &&mut B) -> Option<Ordering> {
2223            PartialOrd::partial_cmp(*self, *other)
2224        }
2225        #[inline]
2226        fn lt(&self, other: &&mut B) -> bool {
2227            PartialOrd::lt(*self, *other)
2228        }
2229        #[inline]
2230        fn le(&self, other: &&mut B) -> bool {
2231            PartialOrd::le(*self, *other)
2232        }
2233        #[inline]
2234        fn gt(&self, other: &&mut B) -> bool {
2235            PartialOrd::gt(*self, *other)
2236        }
2237        #[inline]
2238        fn ge(&self, other: &&mut B) -> bool {
2239            PartialOrd::ge(*self, *other)
2240        }
2241        #[inline]
2242        fn __chaining_lt(&self, other: &&mut B) -> ControlFlow<bool> {
2243            PartialOrd::__chaining_lt(*self, *other)
2244        }
2245        #[inline]
2246        fn __chaining_le(&self, other: &&mut B) -> ControlFlow<bool> {
2247            PartialOrd::__chaining_le(*self, *other)
2248        }
2249        #[inline]
2250        fn __chaining_gt(&self, other: &&mut B) -> ControlFlow<bool> {
2251            PartialOrd::__chaining_gt(*self, *other)
2252        }
2253        #[inline]
2254        fn __chaining_ge(&self, other: &&mut B) -> ControlFlow<bool> {
2255            PartialOrd::__chaining_ge(*self, *other)
2256        }
2257    }
2258    #[stable(feature = "rust1", since = "1.0.0")]
2259    #[rustc_const_unstable(feature = "const_cmp", issue = "143800")]
2260    #[cfg(not(feature = "ferrocene_subset"))]
2261    impl<A: PointeeSized> const Ord for &mut A
2262    where
2263        A: [const] Ord,
2264    {
2265        #[inline]
2266        fn cmp(&self, other: &Self) -> Ordering {
2267            Ord::cmp(*self, *other)
2268        }
2269    }
2270    #[stable(feature = "rust1", since = "1.0.0")]
2271    #[rustc_const_unstable(feature = "const_cmp", issue = "143800")]
2272    impl<A: PointeeSized> const Eq for &mut A where A: [const] Eq {}
2273
2274    #[stable(feature = "rust1", since = "1.0.0")]
2275    #[rustc_const_unstable(feature = "const_cmp", issue = "143800")]
2276    impl<A: PointeeSized, B: PointeeSized> const PartialEq<&mut B> for &A
2277    where
2278        A: [const] PartialEq<B>,
2279    {
2280        #[inline]
2281        fn eq(&self, other: &&mut B) -> bool {
2282            PartialEq::eq(*self, *other)
2283        }
2284        #[inline]
2285        fn ne(&self, other: &&mut B) -> bool {
2286            PartialEq::ne(*self, *other)
2287        }
2288    }
2289
2290    #[stable(feature = "rust1", since = "1.0.0")]
2291    #[rustc_const_unstable(feature = "const_cmp", issue = "143800")]
2292    impl<A: PointeeSized, B: PointeeSized> const PartialEq<&B> for &mut A
2293    where
2294        A: [const] PartialEq<B>,
2295    {
2296        #[inline]
2297        fn eq(&self, other: &&B) -> bool {
2298            PartialEq::eq(*self, *other)
2299        }
2300        #[inline]
2301        fn ne(&self, other: &&B) -> bool {
2302            PartialEq::ne(*self, *other)
2303        }
2304    }
2305}