core/
cmp.rs

1//! Utilities for comparing and ordering values.
2//!
3//! This module contains various tools for comparing and ordering values. In
4//! summary:
5//!
6//! * [`PartialEq<Rhs>`] overloads the `==` and `!=` operators. In cases where
7//!   `Rhs` (the right hand side's type) is `Self`, this trait corresponds to a
8//!   partial equivalence relation.
9//! * [`Eq`] indicates that the overloaded `==` operator corresponds to an
10//!   equivalence relation.
11//! * [`Ord`] and [`PartialOrd`] are traits that allow you to define total and
12//!   partial orderings between values, respectively. Implementing them overloads
13//!   the `<`, `<=`, `>`, and `>=` operators.
14//! * [`Ordering`] is an enum returned by the main functions of [`Ord`] and
15//!   [`PartialOrd`], and describes an ordering of two values (less, equal, or
16//!   greater).
17//! * [`Reverse`] is a struct that allows you to easily reverse an ordering.
18//! * [`max`] and [`min`] are functions that build off of [`Ord`] and allow you
19//!   to find the maximum or minimum of two values.
20//!
21//! For more details, see the respective documentation of each item in the list.
22//!
23//! [`max`]: Ord::max
24//! [`min`]: Ord::min
25
26#![stable(feature = "rust1", since = "1.0.0")]
27
28#[cfg(not(feature = "ferrocene_certified"))]
29mod bytewise;
30#[cfg(not(feature = "ferrocene_certified"))]
31pub(crate) use bytewise::BytewiseEq;
32
33use self::Ordering::*;
34use crate::marker::{Destruct, PointeeSized};
35use crate::ops::ControlFlow;
36
37/// Trait for comparisons using the equality operator.
38///
39/// Implementing this trait for types provides the `==` and `!=` operators for
40/// those types.
41///
42/// `x.eq(y)` can also be written `x == y`, and `x.ne(y)` can be written `x != y`.
43/// We use the easier-to-read infix notation in the remainder of this documentation.
44///
45/// This trait allows for comparisons using the equality operator, for types
46/// that do not have a full equivalence relation. For example, in floating point
47/// numbers `NaN != NaN`, so floating point types implement `PartialEq` but not
48/// [`trait@Eq`]. Formally speaking, when `Rhs == Self`, this trait corresponds
49/// to a [partial equivalence relation].
50///
51/// [partial equivalence relation]: https://en.wikipedia.org/wiki/Partial_equivalence_relation
52///
53/// Implementations must ensure that `eq` and `ne` are consistent with each other:
54///
55/// - `a != b` if and only if `!(a == b)`.
56///
57/// The default implementation of `ne` provides this consistency and is almost
58/// always sufficient. It should not be overridden without very good reason.
59///
60/// If [`PartialOrd`] or [`Ord`] are also implemented for `Self` and `Rhs`, their methods must also
61/// be consistent with `PartialEq` (see the documentation of those traits for the exact
62/// requirements). It's easy to accidentally make them disagree by deriving some of the traits and
63/// manually implementing others.
64///
65/// The equality relation `==` must satisfy the following conditions
66/// (for all `a`, `b`, `c` of type `A`, `B`, `C`):
67///
68/// - **Symmetry**: if `A: PartialEq<B>` and `B: PartialEq<A>`, then **`a == b`
69///   implies `b == a`**; and
70///
71/// - **Transitivity**: if `A: PartialEq<B>` and `B: PartialEq<C>` and `A:
72///   PartialEq<C>`, then **`a == b` and `b == c` implies `a == c`**.
73///   This must also work for longer chains, such as when `A: PartialEq<B>`, `B: PartialEq<C>`,
74///   `C: PartialEq<D>`, and `A: PartialEq<D>` all exist.
75///
76/// Note that the `B: PartialEq<A>` (symmetric) and `A: PartialEq<C>`
77/// (transitive) impls are not forced to exist, but these requirements apply
78/// whenever they do exist.
79///
80/// Violating these requirements is a logic error. The behavior resulting from a logic error is not
81/// specified, but users of the trait must ensure that such logic errors do *not* result in
82/// undefined behavior. This means that `unsafe` code **must not** rely on the correctness of these
83/// methods.
84///
85/// ## Cross-crate considerations
86///
87/// Upholding the requirements stated above can become tricky when one crate implements `PartialEq`
88/// for a type of another crate (i.e., to allow comparing one of its own types with a type from the
89/// standard library). The recommendation is to never implement this trait for a foreign type. In
90/// other words, such a crate should do `impl PartialEq<ForeignType> for LocalType`, but it should
91/// *not* do `impl PartialEq<LocalType> for ForeignType`.
92///
93/// This avoids the problem of transitive chains that criss-cross crate boundaries: for all local
94/// types `T`, you may assume that no other crate will add `impl`s that allow comparing `T == U`. In
95/// other words, if other crates add `impl`s that allow building longer transitive chains `U1 == ...
96/// == T == V1 == ...`, then all the types that appear to the right of `T` must be types that the
97/// crate defining `T` already knows about. This rules out transitive chains where downstream crates
98/// can add new `impl`s that "stitch together" comparisons of foreign types in ways that violate
99/// transitivity.
100///
101/// Not having such foreign `impl`s also avoids forward compatibility issues where one crate adding
102/// more `PartialEq` implementations can cause build failures in downstream crates.
103///
104/// ## Derivable
105///
106/// This trait can be used with `#[derive]`. When `derive`d on structs, two
107/// instances are equal if all fields are equal, and not equal if any fields
108/// are not equal. When `derive`d on enums, two instances are equal if they
109/// are the same variant and all fields are equal.
110///
111/// ## How can I implement `PartialEq`?
112///
113/// An example implementation for a domain in which two books are considered
114/// the same book if their ISBN matches, even if the formats differ:
115///
116/// ```
117/// enum BookFormat {
118///     Paperback,
119///     Hardback,
120///     Ebook,
121/// }
122///
123/// struct Book {
124///     isbn: i32,
125///     format: BookFormat,
126/// }
127///
128/// impl PartialEq for Book {
129///     fn eq(&self, other: &Self) -> bool {
130///         self.isbn == other.isbn
131///     }
132/// }
133///
134/// let b1 = Book { isbn: 3, format: BookFormat::Paperback };
135/// let b2 = Book { isbn: 3, format: BookFormat::Ebook };
136/// let b3 = Book { isbn: 10, format: BookFormat::Paperback };
137///
138/// assert!(b1 == b2);
139/// assert!(b1 != b3);
140/// ```
141///
142/// ## How can I compare two different types?
143///
144/// The type you can compare with is controlled by `PartialEq`'s type parameter.
145/// For example, let's tweak our previous code a bit:
146///
147/// ```
148/// // The derive implements <BookFormat> == <BookFormat> comparisons
149/// #[derive(PartialEq)]
150/// enum BookFormat {
151///     Paperback,
152///     Hardback,
153///     Ebook,
154/// }
155///
156/// struct Book {
157///     isbn: i32,
158///     format: BookFormat,
159/// }
160///
161/// // Implement <Book> == <BookFormat> comparisons
162/// impl PartialEq<BookFormat> for Book {
163///     fn eq(&self, other: &BookFormat) -> bool {
164///         self.format == *other
165///     }
166/// }
167///
168/// // Implement <BookFormat> == <Book> comparisons
169/// impl PartialEq<Book> for BookFormat {
170///     fn eq(&self, other: &Book) -> bool {
171///         *self == other.format
172///     }
173/// }
174///
175/// let b1 = Book { isbn: 3, format: BookFormat::Paperback };
176///
177/// assert!(b1 == BookFormat::Paperback);
178/// assert!(BookFormat::Ebook != b1);
179/// ```
180///
181/// By changing `impl PartialEq for Book` to `impl PartialEq<BookFormat> for Book`,
182/// we allow `BookFormat`s to be compared with `Book`s.
183///
184/// A comparison like the one above, which ignores some fields of the struct,
185/// can be dangerous. It can easily lead to an unintended violation of the
186/// requirements for a partial equivalence relation. For example, if we kept
187/// the above implementation of `PartialEq<Book>` for `BookFormat` and added an
188/// implementation of `PartialEq<Book>` for `Book` (either via a `#[derive]` or
189/// via the manual implementation from the first example) then the result would
190/// violate transitivity:
191///
192/// ```should_panic
193/// #[derive(PartialEq)]
194/// enum BookFormat {
195///     Paperback,
196///     Hardback,
197///     Ebook,
198/// }
199///
200/// #[derive(PartialEq)]
201/// struct Book {
202///     isbn: i32,
203///     format: BookFormat,
204/// }
205///
206/// impl PartialEq<BookFormat> for Book {
207///     fn eq(&self, other: &BookFormat) -> bool {
208///         self.format == *other
209///     }
210/// }
211///
212/// impl PartialEq<Book> for BookFormat {
213///     fn eq(&self, other: &Book) -> bool {
214///         *self == other.format
215///     }
216/// }
217///
218/// fn main() {
219///     let b1 = Book { isbn: 1, format: BookFormat::Paperback };
220///     let b2 = Book { isbn: 2, format: BookFormat::Paperback };
221///
222///     assert!(b1 == BookFormat::Paperback);
223///     assert!(BookFormat::Paperback == b2);
224///
225///     // The following should hold by transitivity but doesn't.
226///     assert!(b1 == b2); // <-- PANICS
227/// }
228/// ```
229///
230/// # Examples
231///
232/// ```
233/// let x: u32 = 0;
234/// let y: u32 = 1;
235///
236/// assert_eq!(x == y, false);
237/// assert_eq!(x.eq(&y), false);
238/// ```
239///
240/// [`eq`]: PartialEq::eq
241/// [`ne`]: PartialEq::ne
242#[lang = "eq"]
243#[stable(feature = "rust1", since = "1.0.0")]
244#[doc(alias = "==")]
245#[doc(alias = "!=")]
246#[rustc_on_unimplemented(
247    message = "can't compare `{Self}` with `{Rhs}`",
248    label = "no implementation for `{Self} == {Rhs}`",
249    append_const_msg
250)]
251#[rustc_diagnostic_item = "PartialEq"]
252#[rustc_const_unstable(feature = "const_cmp", issue = "143800")]
253pub const trait PartialEq<Rhs: PointeeSized = Self>: PointeeSized {
254    /// Tests for `self` and `other` values to be equal, and is used by `==`.
255    #[must_use]
256    #[stable(feature = "rust1", since = "1.0.0")]
257    #[rustc_diagnostic_item = "cmp_partialeq_eq"]
258    fn eq(&self, other: &Rhs) -> bool;
259
260    /// Tests for `!=`. The default implementation is almost always sufficient,
261    /// and should not be overridden without very good reason.
262    #[inline]
263    #[must_use]
264    #[stable(feature = "rust1", since = "1.0.0")]
265    #[rustc_diagnostic_item = "cmp_partialeq_ne"]
266    fn ne(&self, other: &Rhs) -> bool {
267        !self.eq(other)
268    }
269}
270
271/// Derive macro generating an impl of the trait [`PartialEq`].
272/// The behavior of this macro is described in detail [here](PartialEq#derivable).
273#[rustc_builtin_macro]
274#[stable(feature = "builtin_macro_prelude", since = "1.38.0")]
275#[allow_internal_unstable(core_intrinsics, structural_match)]
276pub macro PartialEq($item:item) {
277    /* compiler built-in */
278}
279
280/// Trait for comparisons corresponding to [equivalence relations](
281/// https://en.wikipedia.org/wiki/Equivalence_relation).
282///
283/// The primary difference to [`PartialEq`] is the additional requirement for reflexivity. A type
284/// that implements [`PartialEq`] guarantees that for all `a`, `b` and `c`:
285///
286/// - symmetric: `a == b` implies `b == a` and `a != b` implies `!(a == b)`
287/// - transitive: `a == b` and `b == c` implies `a == c`
288///
289/// `Eq`, which builds on top of [`PartialEq`] also implies:
290///
291/// - reflexive: `a == a`
292///
293/// This property cannot be checked by the compiler, and therefore `Eq` is a trait without methods.
294///
295/// Violating this property is a logic error. The behavior resulting from a logic error is not
296/// specified, but users of the trait must ensure that such logic errors do *not* result in
297/// undefined behavior. This means that `unsafe` code **must not** rely on the correctness of these
298/// methods.
299///
300/// Floating point types such as [`f32`] and [`f64`] implement only [`PartialEq`] but *not* `Eq`
301/// because `NaN` != `NaN`.
302///
303/// ## Derivable
304///
305/// This trait can be used with `#[derive]`. When `derive`d, because `Eq` has no extra methods, it
306/// is only informing the compiler that this is an equivalence relation rather than a partial
307/// equivalence relation. Note that the `derive` strategy requires all fields are `Eq`, which isn't
308/// always desired.
309///
310/// ## How can I implement `Eq`?
311///
312/// If you cannot use the `derive` strategy, specify that your type implements `Eq`, which has no
313/// extra methods:
314///
315/// ```
316/// enum BookFormat {
317///     Paperback,
318///     Hardback,
319///     Ebook,
320/// }
321///
322/// struct Book {
323///     isbn: i32,
324///     format: BookFormat,
325/// }
326///
327/// impl PartialEq for Book {
328///     fn eq(&self, other: &Self) -> bool {
329///         self.isbn == other.isbn
330///     }
331/// }
332///
333/// impl Eq for Book {}
334/// ```
335#[doc(alias = "==")]
336#[doc(alias = "!=")]
337#[stable(feature = "rust1", since = "1.0.0")]
338#[rustc_diagnostic_item = "Eq"]
339#[rustc_const_unstable(feature = "const_cmp", issue = "143800")]
340pub const trait Eq: [const] PartialEq<Self> + PointeeSized {
341    // this method is used solely by `impl Eq or #[derive(Eq)]` to assert that every component of a
342    // type implements `Eq` itself. The current deriving infrastructure means doing this assertion
343    // without using a method on this trait is nearly impossible.
344    //
345    // This should never be implemented by hand.
346    #[doc(hidden)]
347    #[coverage(off)]
348    #[inline]
349    #[stable(feature = "rust1", since = "1.0.0")]
350    fn assert_receiver_is_total_eq(&self) {}
351}
352
353/// Derive macro generating an impl of the trait [`Eq`].
354#[rustc_builtin_macro]
355#[stable(feature = "builtin_macro_prelude", since = "1.38.0")]
356#[allow_internal_unstable(core_intrinsics, derive_eq, structural_match)]
357#[allow_internal_unstable(coverage_attribute)]
358pub macro Eq($item:item) {
359    /* compiler built-in */
360}
361
362// FIXME: this struct is used solely by #[derive] to
363// assert that every component of a type implements Eq.
364//
365// This struct should never appear in user code.
366#[doc(hidden)]
367#[allow(missing_debug_implementations)]
368#[unstable(feature = "derive_eq", reason = "deriving hack, should not be public", issue = "none")]
369#[cfg(not(feature = "ferrocene_certified"))]
370pub struct AssertParamIsEq<T: Eq + PointeeSized> {
371    _field: crate::marker::PhantomData<T>,
372}
373
374/// An `Ordering` is the result of a comparison between two values.
375///
376/// # Examples
377///
378/// ```
379/// use std::cmp::Ordering;
380///
381/// assert_eq!(1.cmp(&2), Ordering::Less);
382///
383/// assert_eq!(1.cmp(&1), Ordering::Equal);
384///
385/// assert_eq!(2.cmp(&1), Ordering::Greater);
386/// ```
387#[cfg_attr(not(feature = "ferrocene_certified"), derive(Copy, Debug, Hash))]
388#[rustfmt::skip] // Ferrocene addition: avoid multi-line cfg_attr
389#[cfg_attr(not(feature = "ferrocene_certified"), derive_const(Clone, Eq, PartialOrd, Ord, PartialEq))]
390#[stable(feature = "rust1", since = "1.0.0")]
391// This is a lang item only so that `BinOp::Cmp` in MIR can return it.
392// It has no special behavior, but does require that the three variants
393// `Less`/`Equal`/`Greater` remain `-1_i8`/`0_i8`/`+1_i8` respectively.
394#[lang = "Ordering"]
395#[repr(i8)]
396pub enum Ordering {
397    /// An ordering where a compared value is less than another.
398    #[stable(feature = "rust1", since = "1.0.0")]
399    Less = -1,
400    /// An ordering where a compared value is equal to another.
401    #[stable(feature = "rust1", since = "1.0.0")]
402    Equal = 0,
403    /// An ordering where a compared value is greater than another.
404    #[stable(feature = "rust1", since = "1.0.0")]
405    Greater = 1,
406}
407
408impl Ordering {
409    #[inline]
410    const fn as_raw(self) -> i8 {
411        // FIXME(const-hack): just use `PartialOrd` against `Equal` once that's const
412        crate::intrinsics::discriminant_value(&self)
413    }
414
415    /// Returns `true` if the ordering is the `Equal` variant.
416    ///
417    /// # Examples
418    ///
419    /// ```
420    /// use std::cmp::Ordering;
421    ///
422    /// assert_eq!(Ordering::Less.is_eq(), false);
423    /// assert_eq!(Ordering::Equal.is_eq(), true);
424    /// assert_eq!(Ordering::Greater.is_eq(), false);
425    /// ```
426    #[inline]
427    #[must_use]
428    #[rustc_const_stable(feature = "ordering_helpers", since = "1.53.0")]
429    #[stable(feature = "ordering_helpers", since = "1.53.0")]
430    pub const fn is_eq(self) -> bool {
431        // All the `is_*` methods are implemented as comparisons against zero
432        // to follow how clang's libcxx implements their equivalents in
433        // <https://github.com/llvm/llvm-project/blob/60486292b79885b7800b082754153202bef5b1f0/libcxx/include/__compare/is_eq.h#L23-L28>
434
435        self.as_raw() == 0
436    }
437
438    /// Returns `true` if the ordering is not the `Equal` variant.
439    ///
440    /// # Examples
441    ///
442    /// ```
443    /// use std::cmp::Ordering;
444    ///
445    /// assert_eq!(Ordering::Less.is_ne(), true);
446    /// assert_eq!(Ordering::Equal.is_ne(), false);
447    /// assert_eq!(Ordering::Greater.is_ne(), true);
448    /// ```
449    #[inline]
450    #[must_use]
451    #[rustc_const_stable(feature = "ordering_helpers", since = "1.53.0")]
452    #[stable(feature = "ordering_helpers", since = "1.53.0")]
453    pub const fn is_ne(self) -> bool {
454        self.as_raw() != 0
455    }
456
457    /// Returns `true` if the ordering is the `Less` variant.
458    ///
459    /// # Examples
460    ///
461    /// ```
462    /// use std::cmp::Ordering;
463    ///
464    /// assert_eq!(Ordering::Less.is_lt(), true);
465    /// assert_eq!(Ordering::Equal.is_lt(), false);
466    /// assert_eq!(Ordering::Greater.is_lt(), false);
467    /// ```
468    #[inline]
469    #[must_use]
470    #[rustc_const_stable(feature = "ordering_helpers", since = "1.53.0")]
471    #[stable(feature = "ordering_helpers", since = "1.53.0")]
472    pub const fn is_lt(self) -> bool {
473        self.as_raw() < 0
474    }
475
476    /// Returns `true` if the ordering is the `Greater` variant.
477    ///
478    /// # Examples
479    ///
480    /// ```
481    /// use std::cmp::Ordering;
482    ///
483    /// assert_eq!(Ordering::Less.is_gt(), false);
484    /// assert_eq!(Ordering::Equal.is_gt(), false);
485    /// assert_eq!(Ordering::Greater.is_gt(), true);
486    /// ```
487    #[inline]
488    #[must_use]
489    #[rustc_const_stable(feature = "ordering_helpers", since = "1.53.0")]
490    #[stable(feature = "ordering_helpers", since = "1.53.0")]
491    pub const fn is_gt(self) -> bool {
492        self.as_raw() > 0
493    }
494
495    /// Returns `true` if the ordering is either the `Less` or `Equal` variant.
496    ///
497    /// # Examples
498    ///
499    /// ```
500    /// use std::cmp::Ordering;
501    ///
502    /// assert_eq!(Ordering::Less.is_le(), true);
503    /// assert_eq!(Ordering::Equal.is_le(), true);
504    /// assert_eq!(Ordering::Greater.is_le(), false);
505    /// ```
506    #[inline]
507    #[must_use]
508    #[rustc_const_stable(feature = "ordering_helpers", since = "1.53.0")]
509    #[stable(feature = "ordering_helpers", since = "1.53.0")]
510    pub const fn is_le(self) -> bool {
511        self.as_raw() <= 0
512    }
513
514    /// Returns `true` if the ordering is either the `Greater` or `Equal` variant.
515    ///
516    /// # Examples
517    ///
518    /// ```
519    /// use std::cmp::Ordering;
520    ///
521    /// assert_eq!(Ordering::Less.is_ge(), false);
522    /// assert_eq!(Ordering::Equal.is_ge(), true);
523    /// assert_eq!(Ordering::Greater.is_ge(), true);
524    /// ```
525    #[inline]
526    #[must_use]
527    #[rustc_const_stable(feature = "ordering_helpers", since = "1.53.0")]
528    #[stable(feature = "ordering_helpers", since = "1.53.0")]
529    pub const fn is_ge(self) -> bool {
530        self.as_raw() >= 0
531    }
532
533    /// Reverses the `Ordering`.
534    ///
535    /// * `Less` becomes `Greater`.
536    /// * `Greater` becomes `Less`.
537    /// * `Equal` becomes `Equal`.
538    ///
539    /// # Examples
540    ///
541    /// Basic behavior:
542    ///
543    /// ```
544    /// use std::cmp::Ordering;
545    ///
546    /// assert_eq!(Ordering::Less.reverse(), Ordering::Greater);
547    /// assert_eq!(Ordering::Equal.reverse(), Ordering::Equal);
548    /// assert_eq!(Ordering::Greater.reverse(), Ordering::Less);
549    /// ```
550    ///
551    /// This method can be used to reverse a comparison:
552    ///
553    /// ```
554    /// let data: &mut [_] = &mut [2, 10, 5, 8];
555    ///
556    /// // sort the array from largest to smallest.
557    /// data.sort_by(|a, b| a.cmp(b).reverse());
558    ///
559    /// let b: &mut [_] = &mut [10, 8, 5, 2];
560    /// assert!(data == b);
561    /// ```
562    #[inline]
563    #[must_use]
564    #[rustc_const_stable(feature = "const_ordering", since = "1.48.0")]
565    #[stable(feature = "rust1", since = "1.0.0")]
566    pub const fn reverse(self) -> Ordering {
567        match self {
568            Less => Greater,
569            Equal => Equal,
570            Greater => Less,
571        }
572    }
573
574    /// Chains two orderings.
575    ///
576    /// Returns `self` when it's not `Equal`. Otherwise returns `other`.
577    ///
578    /// # Examples
579    ///
580    /// ```
581    /// use std::cmp::Ordering;
582    ///
583    /// let result = Ordering::Equal.then(Ordering::Less);
584    /// assert_eq!(result, Ordering::Less);
585    ///
586    /// let result = Ordering::Less.then(Ordering::Equal);
587    /// assert_eq!(result, Ordering::Less);
588    ///
589    /// let result = Ordering::Less.then(Ordering::Greater);
590    /// assert_eq!(result, Ordering::Less);
591    ///
592    /// let result = Ordering::Equal.then(Ordering::Equal);
593    /// assert_eq!(result, Ordering::Equal);
594    ///
595    /// let x: (i64, i64, i64) = (1, 2, 7);
596    /// let y: (i64, i64, i64) = (1, 5, 3);
597    /// let result = x.0.cmp(&y.0).then(x.1.cmp(&y.1)).then(x.2.cmp(&y.2));
598    ///
599    /// assert_eq!(result, Ordering::Less);
600    /// ```
601    #[inline]
602    #[must_use]
603    #[rustc_const_stable(feature = "const_ordering", since = "1.48.0")]
604    #[stable(feature = "ordering_chaining", since = "1.17.0")]
605    pub const fn then(self, other: Ordering) -> Ordering {
606        match self {
607            Equal => other,
608            _ => self,
609        }
610    }
611
612    /// Chains the ordering with the given function.
613    ///
614    /// Returns `self` when it's not `Equal`. Otherwise calls `f` and returns
615    /// the result.
616    ///
617    /// # Examples
618    ///
619    /// ```
620    /// use std::cmp::Ordering;
621    ///
622    /// let result = Ordering::Equal.then_with(|| Ordering::Less);
623    /// assert_eq!(result, Ordering::Less);
624    ///
625    /// let result = Ordering::Less.then_with(|| Ordering::Equal);
626    /// assert_eq!(result, Ordering::Less);
627    ///
628    /// let result = Ordering::Less.then_with(|| Ordering::Greater);
629    /// assert_eq!(result, Ordering::Less);
630    ///
631    /// let result = Ordering::Equal.then_with(|| Ordering::Equal);
632    /// assert_eq!(result, Ordering::Equal);
633    ///
634    /// let x: (i64, i64, i64) = (1, 2, 7);
635    /// let y: (i64, i64, i64) = (1, 5, 3);
636    /// let result = x.0.cmp(&y.0).then_with(|| x.1.cmp(&y.1)).then_with(|| x.2.cmp(&y.2));
637    ///
638    /// assert_eq!(result, Ordering::Less);
639    /// ```
640    #[inline]
641    #[must_use]
642    #[stable(feature = "ordering_chaining", since = "1.17.0")]
643    #[rustc_const_unstable(feature = "const_cmp", issue = "143800")]
644    #[cfg(not(feature = "ferrocene_certified"))]
645    pub const fn then_with<F>(self, f: F) -> Ordering
646    where
647        F: [const] FnOnce() -> Ordering + [const] Destruct,
648    {
649        match self {
650            Equal => f(),
651            _ => self,
652        }
653    }
654}
655
656/// A helper struct for reverse ordering.
657///
658/// This struct is a helper to be used with functions like [`Vec::sort_by_key`] and
659/// can be used to reverse order a part of a key.
660///
661/// [`Vec::sort_by_key`]: ../../std/vec/struct.Vec.html#method.sort_by_key
662///
663/// # Examples
664///
665/// ```
666/// use std::cmp::Reverse;
667///
668/// let mut v = vec![1, 2, 3, 4, 5, 6];
669/// v.sort_by_key(|&num| (num > 3, Reverse(num)));
670/// assert_eq!(v, vec![3, 2, 1, 6, 5, 4]);
671/// ```
672#[derive(Copy, Debug, Hash)]
673#[derive_const(PartialEq, Eq, Default)]
674#[stable(feature = "reverse_cmp_key", since = "1.19.0")]
675#[repr(transparent)]
676#[cfg(not(feature = "ferrocene_certified"))]
677pub struct Reverse<T>(#[stable(feature = "reverse_cmp_key", since = "1.19.0")] pub T);
678
679#[stable(feature = "reverse_cmp_key", since = "1.19.0")]
680#[rustc_const_unstable(feature = "const_cmp", issue = "143800")]
681#[cfg(not(feature = "ferrocene_certified"))]
682impl<T: [const] PartialOrd> const PartialOrd for Reverse<T> {
683    #[inline]
684    fn partial_cmp(&self, other: &Reverse<T>) -> Option<Ordering> {
685        other.0.partial_cmp(&self.0)
686    }
687
688    #[inline]
689    fn lt(&self, other: &Self) -> bool {
690        other.0 < self.0
691    }
692    #[inline]
693    fn le(&self, other: &Self) -> bool {
694        other.0 <= self.0
695    }
696    #[inline]
697    fn gt(&self, other: &Self) -> bool {
698        other.0 > self.0
699    }
700    #[inline]
701    fn ge(&self, other: &Self) -> bool {
702        other.0 >= self.0
703    }
704}
705
706#[stable(feature = "reverse_cmp_key", since = "1.19.0")]
707#[rustc_const_unstable(feature = "const_cmp", issue = "143800")]
708#[cfg(not(feature = "ferrocene_certified"))]
709impl<T: [const] Ord> const Ord for Reverse<T> {
710    #[inline]
711    fn cmp(&self, other: &Reverse<T>) -> Ordering {
712        other.0.cmp(&self.0)
713    }
714}
715
716#[stable(feature = "reverse_cmp_key", since = "1.19.0")]
717#[cfg(not(feature = "ferrocene_certified"))]
718impl<T: Clone> Clone for Reverse<T> {
719    #[inline]
720    fn clone(&self) -> Reverse<T> {
721        Reverse(self.0.clone())
722    }
723
724    #[inline]
725    fn clone_from(&mut self, source: &Self) {
726        self.0.clone_from(&source.0)
727    }
728}
729
730/// Trait for types that form a [total order](https://en.wikipedia.org/wiki/Total_order).
731///
732/// Implementations must be consistent with the [`PartialOrd`] implementation, and ensure `max`,
733/// `min`, and `clamp` are consistent with `cmp`:
734///
735/// - `partial_cmp(a, b) == Some(cmp(a, b))`.
736/// - `max(a, b) == max_by(a, b, cmp)` (ensured by the default implementation).
737/// - `min(a, b) == min_by(a, b, cmp)` (ensured by the default implementation).
738/// - For `a.clamp(min, max)`, see the [method docs](#method.clamp) (ensured by the default
739///   implementation).
740///
741/// Violating these requirements is a logic error. The behavior resulting from a logic error is not
742/// specified, but users of the trait must ensure that such logic errors do *not* result in
743/// undefined behavior. This means that `unsafe` code **must not** rely on the correctness of these
744/// methods.
745///
746/// ## Corollaries
747///
748/// From the above and the requirements of `PartialOrd`, it follows that for all `a`, `b` and `c`:
749///
750/// - exactly one of `a < b`, `a == b` or `a > b` is true; and
751/// - `<` is transitive: `a < b` and `b < c` implies `a < c`. The same must hold for both `==` and
752///   `>`.
753///
754/// Mathematically speaking, the `<` operator defines a strict [weak order]. In cases where `==`
755/// conforms to mathematical equality, it also defines a strict [total order].
756///
757/// [weak order]: https://en.wikipedia.org/wiki/Weak_ordering
758/// [total order]: https://en.wikipedia.org/wiki/Total_order
759///
760/// ## Derivable
761///
762/// This trait can be used with `#[derive]`.
763///
764/// When `derive`d on structs, it will produce a
765/// [lexicographic](https://en.wikipedia.org/wiki/Lexicographic_order) ordering based on the
766/// top-to-bottom declaration order of the struct's members.
767///
768/// When `derive`d on enums, variants are ordered primarily by their discriminants. Secondarily,
769/// they are ordered by their fields. By default, the discriminant is smallest for variants at the
770/// top, and largest for variants at the bottom. Here's an example:
771///
772/// ```
773/// #[derive(PartialEq, Eq, PartialOrd, Ord)]
774/// enum E {
775///     Top,
776///     Bottom,
777/// }
778///
779/// assert!(E::Top < E::Bottom);
780/// ```
781///
782/// However, manually setting the discriminants can override this default behavior:
783///
784/// ```
785/// #[derive(PartialEq, Eq, PartialOrd, Ord)]
786/// enum E {
787///     Top = 2,
788///     Bottom = 1,
789/// }
790///
791/// assert!(E::Bottom < E::Top);
792/// ```
793///
794/// ## Lexicographical comparison
795///
796/// Lexicographical comparison is an operation with the following properties:
797///  - Two sequences are compared element by element.
798///  - The first mismatching element defines which sequence is lexicographically less or greater
799///    than the other.
800///  - If one sequence is a prefix of another, the shorter sequence is lexicographically less than
801///    the other.
802///  - If two sequences have equivalent elements and are of the same length, then the sequences are
803///    lexicographically equal.
804///  - An empty sequence is lexicographically less than any non-empty sequence.
805///  - Two empty sequences are lexicographically equal.
806///
807/// ## How can I implement `Ord`?
808///
809/// `Ord` requires that the type also be [`PartialOrd`], [`PartialEq`], and [`Eq`].
810///
811/// Because `Ord` implies a stronger ordering relationship than [`PartialOrd`], and both `Ord` and
812/// [`PartialOrd`] must agree, you must choose how to implement `Ord` **first**. You can choose to
813/// derive it, or implement it manually. If you derive it, you should derive all four traits. If you
814/// implement it manually, you should manually implement all four traits, based on the
815/// implementation of `Ord`.
816///
817/// Here's an example where you want to define the `Character` comparison by `health` and
818/// `experience` only, disregarding the field `mana`:
819///
820/// ```
821/// use std::cmp::Ordering;
822///
823/// struct Character {
824///     health: u32,
825///     experience: u32,
826///     mana: f32,
827/// }
828///
829/// impl Ord for Character {
830///     fn cmp(&self, other: &Self) -> Ordering {
831///         self.experience
832///             .cmp(&other.experience)
833///             .then(self.health.cmp(&other.health))
834///     }
835/// }
836///
837/// impl PartialOrd for Character {
838///     fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
839///         Some(self.cmp(other))
840///     }
841/// }
842///
843/// impl PartialEq for Character {
844///     fn eq(&self, other: &Self) -> bool {
845///         self.health == other.health && self.experience == other.experience
846///     }
847/// }
848///
849/// impl Eq for Character {}
850/// ```
851///
852/// If all you need is to `slice::sort` a type by a field value, it can be simpler to use
853/// `slice::sort_by_key`.
854///
855/// ## Examples of incorrect `Ord` implementations
856///
857/// ```
858/// use std::cmp::Ordering;
859///
860/// #[derive(Debug)]
861/// struct Character {
862///     health: f32,
863/// }
864///
865/// impl Ord for Character {
866///     fn cmp(&self, other: &Self) -> std::cmp::Ordering {
867///         if self.health < other.health {
868///             Ordering::Less
869///         } else if self.health > other.health {
870///             Ordering::Greater
871///         } else {
872///             Ordering::Equal
873///         }
874///     }
875/// }
876///
877/// impl PartialOrd for Character {
878///     fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
879///         Some(self.cmp(other))
880///     }
881/// }
882///
883/// impl PartialEq for Character {
884///     fn eq(&self, other: &Self) -> bool {
885///         self.health == other.health
886///     }
887/// }
888///
889/// impl Eq for Character {}
890///
891/// let a = Character { health: 4.5 };
892/// let b = Character { health: f32::NAN };
893///
894/// // Mistake: floating-point values do not form a total order and using the built-in comparison
895/// // operands to implement `Ord` irregardless of that reality does not change it. Use
896/// // `f32::total_cmp` if you need a total order for floating-point values.
897///
898/// // Reflexivity requirement of `Ord` is not given.
899/// assert!(a == a);
900/// assert!(b != b);
901///
902/// // Antisymmetry requirement of `Ord` is not given. Only one of a < c and c < a is allowed to be
903/// // true, not both or neither.
904/// assert_eq!((a < b) as u8 + (b < a) as u8, 0);
905/// ```
906///
907/// ```
908/// use std::cmp::Ordering;
909///
910/// #[derive(Debug)]
911/// struct Character {
912///     health: u32,
913///     experience: u32,
914/// }
915///
916/// impl PartialOrd for Character {
917///     fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
918///         Some(self.cmp(other))
919///     }
920/// }
921///
922/// impl Ord for Character {
923///     fn cmp(&self, other: &Self) -> std::cmp::Ordering {
924///         if self.health < 50 {
925///             self.health.cmp(&other.health)
926///         } else {
927///             self.experience.cmp(&other.experience)
928///         }
929///     }
930/// }
931///
932/// // For performance reasons implementing `PartialEq` this way is not the idiomatic way, but it
933/// // ensures consistent behavior between `PartialEq`, `PartialOrd` and `Ord` in this example.
934/// impl PartialEq for Character {
935///     fn eq(&self, other: &Self) -> bool {
936///         self.cmp(other) == Ordering::Equal
937///     }
938/// }
939///
940/// impl Eq for Character {}
941///
942/// let a = Character {
943///     health: 3,
944///     experience: 5,
945/// };
946/// let b = Character {
947///     health: 10,
948///     experience: 77,
949/// };
950/// let c = Character {
951///     health: 143,
952///     experience: 2,
953/// };
954///
955/// // Mistake: The implementation of `Ord` compares different fields depending on the value of
956/// // `self.health`, the resulting order is not total.
957///
958/// // Transitivity requirement of `Ord` is not given. If a is smaller than b and b is smaller than
959/// // c, by transitive property a must also be smaller than c.
960/// assert!(a < b && b < c && c < a);
961///
962/// // Antisymmetry requirement of `Ord` is not given. Only one of a < c and c < a is allowed to be
963/// // true, not both or neither.
964/// assert_eq!((a < c) as u8 + (c < a) as u8, 2);
965/// ```
966///
967/// The documentation of [`PartialOrd`] contains further examples, for example it's wrong for
968/// [`PartialOrd`] and [`PartialEq`] to disagree.
969///
970/// [`cmp`]: Ord::cmp
971#[doc(alias = "<")]
972#[doc(alias = ">")]
973#[doc(alias = "<=")]
974#[doc(alias = ">=")]
975#[stable(feature = "rust1", since = "1.0.0")]
976#[rustc_diagnostic_item = "Ord"]
977#[rustc_const_unstable(feature = "const_cmp", issue = "143800")]
978pub const trait Ord: [const] Eq + [const] PartialOrd<Self> + PointeeSized {
979    /// This method returns an [`Ordering`] between `self` and `other`.
980    ///
981    /// By convention, `self.cmp(&other)` returns the ordering matching the expression
982    /// `self <operator> other` if true.
983    ///
984    /// # Examples
985    ///
986    /// ```
987    /// use std::cmp::Ordering;
988    ///
989    /// assert_eq!(5.cmp(&10), Ordering::Less);
990    /// assert_eq!(10.cmp(&5), Ordering::Greater);
991    /// assert_eq!(5.cmp(&5), Ordering::Equal);
992    /// ```
993    #[must_use]
994    #[stable(feature = "rust1", since = "1.0.0")]
995    #[rustc_diagnostic_item = "ord_cmp_method"]
996    fn cmp(&self, other: &Self) -> Ordering;
997
998    /// Compares and returns the maximum of two values.
999    ///
1000    /// Returns the second argument if the comparison determines them to be equal.
1001    ///
1002    /// # Examples
1003    ///
1004    /// ```
1005    /// assert_eq!(1.max(2), 2);
1006    /// assert_eq!(2.max(2), 2);
1007    /// ```
1008    /// ```
1009    /// use std::cmp::Ordering;
1010    ///
1011    /// #[derive(Eq)]
1012    /// struct Equal(&'static str);
1013    ///
1014    /// impl PartialEq for Equal {
1015    ///     fn eq(&self, other: &Self) -> bool { true }
1016    /// }
1017    /// impl PartialOrd for Equal {
1018    ///     fn partial_cmp(&self, other: &Self) -> Option<Ordering> { Some(Ordering::Equal) }
1019    /// }
1020    /// impl Ord for Equal {
1021    ///     fn cmp(&self, other: &Self) -> Ordering { Ordering::Equal }
1022    /// }
1023    ///
1024    /// assert_eq!(Equal("self").max(Equal("other")).0, "other");
1025    /// ```
1026    #[stable(feature = "ord_max_min", since = "1.21.0")]
1027    #[inline]
1028    #[must_use]
1029    #[rustc_diagnostic_item = "cmp_ord_max"]
1030    fn max(self, other: Self) -> Self
1031    where
1032        Self: Sized + [const] Destruct,
1033    {
1034        if other < self { self } else { other }
1035    }
1036
1037    /// Compares and returns the minimum of two values.
1038    ///
1039    /// Returns the first argument if the comparison determines them to be equal.
1040    ///
1041    /// # Examples
1042    ///
1043    /// ```
1044    /// assert_eq!(1.min(2), 1);
1045    /// assert_eq!(2.min(2), 2);
1046    /// ```
1047    /// ```
1048    /// use std::cmp::Ordering;
1049    ///
1050    /// #[derive(Eq)]
1051    /// struct Equal(&'static str);
1052    ///
1053    /// impl PartialEq for Equal {
1054    ///     fn eq(&self, other: &Self) -> bool { true }
1055    /// }
1056    /// impl PartialOrd for Equal {
1057    ///     fn partial_cmp(&self, other: &Self) -> Option<Ordering> { Some(Ordering::Equal) }
1058    /// }
1059    /// impl Ord for Equal {
1060    ///     fn cmp(&self, other: &Self) -> Ordering { Ordering::Equal }
1061    /// }
1062    ///
1063    /// assert_eq!(Equal("self").min(Equal("other")).0, "self");
1064    /// ```
1065    #[stable(feature = "ord_max_min", since = "1.21.0")]
1066    #[inline]
1067    #[must_use]
1068    #[rustc_diagnostic_item = "cmp_ord_min"]
1069    fn min(self, other: Self) -> Self
1070    where
1071        Self: Sized + [const] Destruct,
1072    {
1073        if other < self { other } else { self }
1074    }
1075
1076    /// Restrict a value to a certain interval.
1077    ///
1078    /// Returns `max` if `self` is greater than `max`, and `min` if `self` is
1079    /// less than `min`. Otherwise this returns `self`.
1080    ///
1081    /// # Panics
1082    ///
1083    /// Panics if `min > max`.
1084    ///
1085    /// # Examples
1086    ///
1087    /// ```
1088    /// assert_eq!((-3).clamp(-2, 1), -2);
1089    /// assert_eq!(0.clamp(-2, 1), 0);
1090    /// assert_eq!(2.clamp(-2, 1), 1);
1091    /// ```
1092    #[must_use]
1093    #[inline]
1094    #[stable(feature = "clamp", since = "1.50.0")]
1095    fn clamp(self, min: Self, max: Self) -> Self
1096    where
1097        Self: Sized + [const] Destruct,
1098    {
1099        assert!(min <= max);
1100        if self < min {
1101            min
1102        } else if self > max {
1103            max
1104        } else {
1105            self
1106        }
1107    }
1108}
1109
1110/// Derive macro generating an impl of the trait [`Ord`].
1111/// The behavior of this macro is described in detail [here](Ord#derivable).
1112#[rustc_builtin_macro]
1113#[stable(feature = "builtin_macro_prelude", since = "1.38.0")]
1114#[allow_internal_unstable(core_intrinsics)]
1115#[cfg(not(feature = "ferrocene_certified"))]
1116pub macro Ord($item:item) {
1117    /* compiler built-in */
1118}
1119
1120/// Trait for types that form a [partial order](https://en.wikipedia.org/wiki/Partial_order).
1121///
1122/// The `lt`, `le`, `gt`, and `ge` methods of this trait can be called using the `<`, `<=`, `>`, and
1123/// `>=` operators, respectively.
1124///
1125/// This trait should **only** contain the comparison logic for a type **if one plans on only
1126/// implementing `PartialOrd` but not [`Ord`]**. Otherwise the comparison logic should be in [`Ord`]
1127/// and this trait implemented with `Some(self.cmp(other))`.
1128///
1129/// The methods of this trait must be consistent with each other and with those of [`PartialEq`].
1130/// The following conditions must hold:
1131///
1132/// 1. `a == b` if and only if `partial_cmp(a, b) == Some(Equal)`.
1133/// 2. `a < b` if and only if `partial_cmp(a, b) == Some(Less)`
1134/// 3. `a > b` if and only if `partial_cmp(a, b) == Some(Greater)`
1135/// 4. `a <= b` if and only if `a < b || a == b`
1136/// 5. `a >= b` if and only if `a > b || a == b`
1137/// 6. `a != b` if and only if `!(a == b)`.
1138///
1139/// Conditions 2–5 above are ensured by the default implementation. Condition 6 is already ensured
1140/// by [`PartialEq`].
1141///
1142/// If [`Ord`] is also implemented for `Self` and `Rhs`, it must also be consistent with
1143/// `partial_cmp` (see the documentation of that trait for the exact requirements). It's easy to
1144/// accidentally make them disagree by deriving some of the traits and manually implementing others.
1145///
1146/// The comparison relations must satisfy the following conditions (for all `a`, `b`, `c` of type
1147/// `A`, `B`, `C`):
1148///
1149/// - **Transitivity**: if `A: PartialOrd<B>` and `B: PartialOrd<C>` and `A: PartialOrd<C>`, then `a
1150///   < b` and `b < c` implies `a < c`. The same must hold for both `==` and `>`. This must also
1151///   work for longer chains, such as when `A: PartialOrd<B>`, `B: PartialOrd<C>`, `C:
1152///   PartialOrd<D>`, and `A: PartialOrd<D>` all exist.
1153/// - **Duality**: if `A: PartialOrd<B>` and `B: PartialOrd<A>`, then `a < b` if and only if `b >
1154///   a`.
1155///
1156/// Note that the `B: PartialOrd<A>` (dual) and `A: PartialOrd<C>` (transitive) impls are not forced
1157/// to exist, but these requirements apply whenever they do exist.
1158///
1159/// Violating these requirements is a logic error. The behavior resulting from a logic error is not
1160/// specified, but users of the trait must ensure that such logic errors do *not* result in
1161/// undefined behavior. This means that `unsafe` code **must not** rely on the correctness of these
1162/// methods.
1163///
1164/// ## Cross-crate considerations
1165///
1166/// Upholding the requirements stated above can become tricky when one crate implements `PartialOrd`
1167/// for a type of another crate (i.e., to allow comparing one of its own types with a type from the
1168/// standard library). The recommendation is to never implement this trait for a foreign type. In
1169/// other words, such a crate should do `impl PartialOrd<ForeignType> for LocalType`, but it should
1170/// *not* do `impl PartialOrd<LocalType> for ForeignType`.
1171///
1172/// This avoids the problem of transitive chains that criss-cross crate boundaries: for all local
1173/// types `T`, you may assume that no other crate will add `impl`s that allow comparing `T < U`. In
1174/// other words, if other crates add `impl`s that allow building longer transitive chains `U1 < ...
1175/// < T < V1 < ...`, then all the types that appear to the right of `T` must be types that the crate
1176/// defining `T` already knows about. This rules out transitive chains where downstream crates can
1177/// add new `impl`s that "stitch together" comparisons of foreign types in ways that violate
1178/// transitivity.
1179///
1180/// Not having such foreign `impl`s also avoids forward compatibility issues where one crate adding
1181/// more `PartialOrd` implementations can cause build failures in downstream crates.
1182///
1183/// ## Corollaries
1184///
1185/// The following corollaries follow from the above requirements:
1186///
1187/// - irreflexivity of `<` and `>`: `!(a < a)`, `!(a > a)`
1188/// - transitivity of `>`: if `a > b` and `b > c` then `a > c`
1189/// - duality of `partial_cmp`: `partial_cmp(a, b) == partial_cmp(b, a).map(Ordering::reverse)`
1190///
1191/// ## Strict and non-strict partial orders
1192///
1193/// The `<` and `>` operators behave according to a *strict* partial order. However, `<=` and `>=`
1194/// do **not** behave according to a *non-strict* partial order. That is because mathematically, a
1195/// non-strict partial order would require reflexivity, i.e. `a <= a` would need to be true for
1196/// every `a`. This isn't always the case for types that implement `PartialOrd`, for example:
1197///
1198/// ```
1199/// let a = f64::sqrt(-1.0);
1200/// assert_eq!(a <= a, false);
1201/// ```
1202///
1203/// ## Derivable
1204///
1205/// This trait can be used with `#[derive]`.
1206///
1207/// When `derive`d on structs, it will produce a
1208/// [lexicographic](https://en.wikipedia.org/wiki/Lexicographic_order) ordering based on the
1209/// top-to-bottom declaration order of the struct's members.
1210///
1211/// When `derive`d on enums, variants are primarily ordered by their discriminants. Secondarily,
1212/// they are ordered by their fields. By default, the discriminant is smallest for variants at the
1213/// top, and largest for variants at the bottom. Here's an example:
1214///
1215/// ```
1216/// #[derive(PartialEq, PartialOrd)]
1217/// enum E {
1218///     Top,
1219///     Bottom,
1220/// }
1221///
1222/// assert!(E::Top < E::Bottom);
1223/// ```
1224///
1225/// However, manually setting the discriminants can override this default behavior:
1226///
1227/// ```
1228/// #[derive(PartialEq, PartialOrd)]
1229/// enum E {
1230///     Top = 2,
1231///     Bottom = 1,
1232/// }
1233///
1234/// assert!(E::Bottom < E::Top);
1235/// ```
1236///
1237/// ## How can I implement `PartialOrd`?
1238///
1239/// `PartialOrd` only requires implementation of the [`partial_cmp`] method, with the others
1240/// generated from default implementations.
1241///
1242/// However it remains possible to implement the others separately for types which do not have a
1243/// total order. For example, for floating point numbers, `NaN < 0 == false` and `NaN >= 0 == false`
1244/// (cf. IEEE 754-2008 section 5.11).
1245///
1246/// `PartialOrd` requires your type to be [`PartialEq`].
1247///
1248/// If your type is [`Ord`], you can implement [`partial_cmp`] by using [`cmp`]:
1249///
1250/// ```
1251/// use std::cmp::Ordering;
1252///
1253/// struct Person {
1254///     id: u32,
1255///     name: String,
1256///     height: u32,
1257/// }
1258///
1259/// impl PartialOrd for Person {
1260///     fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
1261///         Some(self.cmp(other))
1262///     }
1263/// }
1264///
1265/// impl Ord for Person {
1266///     fn cmp(&self, other: &Self) -> Ordering {
1267///         self.height.cmp(&other.height)
1268///     }
1269/// }
1270///
1271/// impl PartialEq for Person {
1272///     fn eq(&self, other: &Self) -> bool {
1273///         self.height == other.height
1274///     }
1275/// }
1276///
1277/// impl Eq for Person {}
1278/// ```
1279///
1280/// You may also find it useful to use [`partial_cmp`] on your type's fields. Here is an example of
1281/// `Person` types who have a floating-point `height` field that is the only field to be used for
1282/// sorting:
1283///
1284/// ```
1285/// use std::cmp::Ordering;
1286///
1287/// struct Person {
1288///     id: u32,
1289///     name: String,
1290///     height: f64,
1291/// }
1292///
1293/// impl PartialOrd for Person {
1294///     fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
1295///         self.height.partial_cmp(&other.height)
1296///     }
1297/// }
1298///
1299/// impl PartialEq for Person {
1300///     fn eq(&self, other: &Self) -> bool {
1301///         self.height == other.height
1302///     }
1303/// }
1304/// ```
1305///
1306/// ## Examples of incorrect `PartialOrd` implementations
1307///
1308/// ```
1309/// use std::cmp::Ordering;
1310///
1311/// #[derive(PartialEq, Debug)]
1312/// struct Character {
1313///     health: u32,
1314///     experience: u32,
1315/// }
1316///
1317/// impl PartialOrd for Character {
1318///     fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
1319///         Some(self.health.cmp(&other.health))
1320///     }
1321/// }
1322///
1323/// let a = Character {
1324///     health: 10,
1325///     experience: 5,
1326/// };
1327/// let b = Character {
1328///     health: 10,
1329///     experience: 77,
1330/// };
1331///
1332/// // Mistake: `PartialEq` and `PartialOrd` disagree with each other.
1333///
1334/// assert_eq!(a.partial_cmp(&b).unwrap(), Ordering::Equal); // a == b according to `PartialOrd`.
1335/// assert_ne!(a, b); // a != b according to `PartialEq`.
1336/// ```
1337///
1338/// # Examples
1339///
1340/// ```
1341/// let x: u32 = 0;
1342/// let y: u32 = 1;
1343///
1344/// assert_eq!(x < y, true);
1345/// assert_eq!(x.lt(&y), true);
1346/// ```
1347///
1348/// [`partial_cmp`]: PartialOrd::partial_cmp
1349/// [`cmp`]: Ord::cmp
1350#[lang = "partial_ord"]
1351#[stable(feature = "rust1", since = "1.0.0")]
1352#[doc(alias = ">")]
1353#[doc(alias = "<")]
1354#[doc(alias = "<=")]
1355#[doc(alias = ">=")]
1356#[rustc_on_unimplemented(
1357    message = "can't compare `{Self}` with `{Rhs}`",
1358    label = "no implementation for `{Self} < {Rhs}` and `{Self} > {Rhs}`",
1359    append_const_msg
1360)]
1361#[rustc_diagnostic_item = "PartialOrd"]
1362#[allow(multiple_supertrait_upcastable)] // FIXME(sized_hierarchy): remove this
1363#[rustc_const_unstable(feature = "const_cmp", issue = "143800")]
1364pub const trait PartialOrd<Rhs: PointeeSized = Self>:
1365    [const] PartialEq<Rhs> + PointeeSized
1366{
1367    /// This method returns an ordering between `self` and `other` values if one exists.
1368    ///
1369    /// # Examples
1370    ///
1371    /// ```
1372    /// use std::cmp::Ordering;
1373    ///
1374    /// let result = 1.0.partial_cmp(&2.0);
1375    /// assert_eq!(result, Some(Ordering::Less));
1376    ///
1377    /// let result = 1.0.partial_cmp(&1.0);
1378    /// assert_eq!(result, Some(Ordering::Equal));
1379    ///
1380    /// let result = 2.0.partial_cmp(&1.0);
1381    /// assert_eq!(result, Some(Ordering::Greater));
1382    /// ```
1383    ///
1384    /// When comparison is impossible:
1385    ///
1386    /// ```
1387    /// let result = f64::NAN.partial_cmp(&1.0);
1388    /// assert_eq!(result, None);
1389    /// ```
1390    #[must_use]
1391    #[stable(feature = "rust1", since = "1.0.0")]
1392    #[rustc_diagnostic_item = "cmp_partialord_cmp"]
1393    fn partial_cmp(&self, other: &Rhs) -> Option<Ordering>;
1394
1395    /// Tests less than (for `self` and `other`) and is used by the `<` operator.
1396    ///
1397    /// # Examples
1398    ///
1399    /// ```
1400    /// assert_eq!(1.0 < 1.0, false);
1401    /// assert_eq!(1.0 < 2.0, true);
1402    /// assert_eq!(2.0 < 1.0, false);
1403    /// ```
1404    #[inline]
1405    #[must_use]
1406    #[stable(feature = "rust1", since = "1.0.0")]
1407    #[rustc_diagnostic_item = "cmp_partialord_lt"]
1408    fn lt(&self, other: &Rhs) -> bool {
1409        self.partial_cmp(other).is_some_and(Ordering::is_lt)
1410    }
1411
1412    /// Tests less than or equal to (for `self` and `other`) and is used by the
1413    /// `<=` operator.
1414    ///
1415    /// # Examples
1416    ///
1417    /// ```
1418    /// assert_eq!(1.0 <= 1.0, true);
1419    /// assert_eq!(1.0 <= 2.0, true);
1420    /// assert_eq!(2.0 <= 1.0, false);
1421    /// ```
1422    #[inline]
1423    #[must_use]
1424    #[stable(feature = "rust1", since = "1.0.0")]
1425    #[rustc_diagnostic_item = "cmp_partialord_le"]
1426    fn le(&self, other: &Rhs) -> bool {
1427        self.partial_cmp(other).is_some_and(Ordering::is_le)
1428    }
1429
1430    /// Tests greater than (for `self` and `other`) and is used by the `>`
1431    /// operator.
1432    ///
1433    /// # Examples
1434    ///
1435    /// ```
1436    /// assert_eq!(1.0 > 1.0, false);
1437    /// assert_eq!(1.0 > 2.0, false);
1438    /// assert_eq!(2.0 > 1.0, true);
1439    /// ```
1440    #[inline]
1441    #[must_use]
1442    #[stable(feature = "rust1", since = "1.0.0")]
1443    #[rustc_diagnostic_item = "cmp_partialord_gt"]
1444    fn gt(&self, other: &Rhs) -> bool {
1445        self.partial_cmp(other).is_some_and(Ordering::is_gt)
1446    }
1447
1448    /// Tests greater than or equal to (for `self` and `other`) and is used by
1449    /// the `>=` operator.
1450    ///
1451    /// # Examples
1452    ///
1453    /// ```
1454    /// assert_eq!(1.0 >= 1.0, true);
1455    /// assert_eq!(1.0 >= 2.0, false);
1456    /// assert_eq!(2.0 >= 1.0, true);
1457    /// ```
1458    #[inline]
1459    #[must_use]
1460    #[stable(feature = "rust1", since = "1.0.0")]
1461    #[rustc_diagnostic_item = "cmp_partialord_ge"]
1462    fn ge(&self, other: &Rhs) -> bool {
1463        self.partial_cmp(other).is_some_and(Ordering::is_ge)
1464    }
1465
1466    /// If `self == other`, returns `ControlFlow::Continue(())`.
1467    /// Otherwise, returns `ControlFlow::Break(self < other)`.
1468    ///
1469    /// This is useful for chaining together calls when implementing a lexical
1470    /// `PartialOrd::lt`, as it allows types (like primitives) which can cheaply
1471    /// check `==` and `<` separately to do rather than needing to calculate
1472    /// (then optimize out) the three-way `Ordering` result.
1473    #[inline]
1474    // Added to improve the behaviour of tuples; not necessarily stabilization-track.
1475    #[unstable(feature = "partial_ord_chaining_methods", issue = "none")]
1476    #[doc(hidden)]
1477    fn __chaining_lt(&self, other: &Rhs) -> ControlFlow<bool> {
1478        default_chaining_impl(self, other, Ordering::is_lt)
1479    }
1480
1481    /// Same as `__chaining_lt`, but for `<=` instead of `<`.
1482    #[inline]
1483    #[unstable(feature = "partial_ord_chaining_methods", issue = "none")]
1484    #[doc(hidden)]
1485    fn __chaining_le(&self, other: &Rhs) -> ControlFlow<bool> {
1486        default_chaining_impl(self, other, Ordering::is_le)
1487    }
1488
1489    /// Same as `__chaining_lt`, but for `>` instead of `<`.
1490    #[inline]
1491    #[unstable(feature = "partial_ord_chaining_methods", issue = "none")]
1492    #[doc(hidden)]
1493    fn __chaining_gt(&self, other: &Rhs) -> ControlFlow<bool> {
1494        default_chaining_impl(self, other, Ordering::is_gt)
1495    }
1496
1497    /// Same as `__chaining_lt`, but for `>=` instead of `<`.
1498    #[inline]
1499    #[unstable(feature = "partial_ord_chaining_methods", issue = "none")]
1500    #[doc(hidden)]
1501    fn __chaining_ge(&self, other: &Rhs) -> ControlFlow<bool> {
1502        default_chaining_impl(self, other, Ordering::is_ge)
1503    }
1504}
1505
1506#[rustc_const_unstable(feature = "const_cmp", issue = "143800")]
1507const fn default_chaining_impl<T, U>(
1508    lhs: &T,
1509    rhs: &U,
1510    p: impl [const] FnOnce(Ordering) -> bool + [const] Destruct,
1511) -> ControlFlow<bool>
1512where
1513    T: [const] PartialOrd<U> + PointeeSized,
1514    U: PointeeSized,
1515{
1516    // It's important that this only call `partial_cmp` once, not call `eq` then
1517    // one of the relational operators.  We don't want to `bcmp`-then-`memcp` a
1518    // `String`, for example, or similarly for other data structures (#108157).
1519    match <T as PartialOrd<U>>::partial_cmp(lhs, rhs) {
1520        Some(Equal) => ControlFlow::Continue(()),
1521        Some(c) => ControlFlow::Break(p(c)),
1522        None => ControlFlow::Break(false),
1523    }
1524}
1525
1526/// Derive macro generating an impl of the trait [`PartialOrd`].
1527/// The behavior of this macro is described in detail [here](PartialOrd#derivable).
1528#[rustc_builtin_macro]
1529#[stable(feature = "builtin_macro_prelude", since = "1.38.0")]
1530#[allow_internal_unstable(core_intrinsics)]
1531#[cfg(not(feature = "ferrocene_certified"))]
1532pub macro PartialOrd($item:item) {
1533    /* compiler built-in */
1534}
1535
1536/// Compares and returns the minimum of two values.
1537///
1538/// Returns the first argument if the comparison determines them to be equal.
1539///
1540/// Internally uses an alias to [`Ord::min`].
1541///
1542/// # Examples
1543///
1544/// ```
1545/// use std::cmp;
1546///
1547/// assert_eq!(cmp::min(1, 2), 1);
1548/// assert_eq!(cmp::min(2, 2), 2);
1549/// ```
1550/// ```
1551/// use std::cmp::{self, Ordering};
1552///
1553/// #[derive(Eq)]
1554/// struct Equal(&'static str);
1555///
1556/// impl PartialEq for Equal {
1557///     fn eq(&self, other: &Self) -> bool { true }
1558/// }
1559/// impl PartialOrd for Equal {
1560///     fn partial_cmp(&self, other: &Self) -> Option<Ordering> { Some(Ordering::Equal) }
1561/// }
1562/// impl Ord for Equal {
1563///     fn cmp(&self, other: &Self) -> Ordering { Ordering::Equal }
1564/// }
1565///
1566/// assert_eq!(cmp::min(Equal("v1"), Equal("v2")).0, "v1");
1567/// ```
1568#[inline]
1569#[must_use]
1570#[stable(feature = "rust1", since = "1.0.0")]
1571#[rustc_diagnostic_item = "cmp_min"]
1572#[rustc_const_unstable(feature = "const_cmp", issue = "143800")]
1573pub const fn min<T: [const] Ord + [const] Destruct>(v1: T, v2: T) -> T {
1574    v1.min(v2)
1575}
1576
1577/// Returns the minimum of two values with respect to the specified comparison function.
1578///
1579/// Returns the first argument if the comparison determines them to be equal.
1580///
1581/// The parameter order is preserved when calling the `compare` function, i.e. `v1` is
1582/// always passed as the first argument and `v2` as the second.
1583///
1584/// # Examples
1585///
1586/// ```
1587/// use std::cmp;
1588///
1589/// let abs_cmp = |x: &i32, y: &i32| x.abs().cmp(&y.abs());
1590///
1591/// let result = cmp::min_by(2, -1, abs_cmp);
1592/// assert_eq!(result, -1);
1593///
1594/// let result = cmp::min_by(2, -3, abs_cmp);
1595/// assert_eq!(result, 2);
1596///
1597/// let result = cmp::min_by(1, -1, abs_cmp);
1598/// assert_eq!(result, 1);
1599/// ```
1600#[inline]
1601#[must_use]
1602#[stable(feature = "cmp_min_max_by", since = "1.53.0")]
1603#[rustc_const_unstable(feature = "const_cmp", issue = "143800")]
1604#[cfg(not(feature = "ferrocene_certified"))]
1605pub const fn min_by<T: [const] Destruct, F: [const] FnOnce(&T, &T) -> Ordering>(
1606    v1: T,
1607    v2: T,
1608    compare: F,
1609) -> T {
1610    if compare(&v1, &v2).is_le() { v1 } else { v2 }
1611}
1612
1613/// Returns the element that gives the minimum value from the specified function.
1614///
1615/// Returns the first argument if the comparison determines them to be equal.
1616///
1617/// # Examples
1618///
1619/// ```
1620/// use std::cmp;
1621///
1622/// let result = cmp::min_by_key(2, -1, |x: &i32| x.abs());
1623/// assert_eq!(result, -1);
1624///
1625/// let result = cmp::min_by_key(2, -3, |x: &i32| x.abs());
1626/// assert_eq!(result, 2);
1627///
1628/// let result = cmp::min_by_key(1, -1, |x: &i32| x.abs());
1629/// assert_eq!(result, 1);
1630/// ```
1631#[inline]
1632#[must_use]
1633#[stable(feature = "cmp_min_max_by", since = "1.53.0")]
1634#[rustc_const_unstable(feature = "const_cmp", issue = "143800")]
1635#[cfg(not(feature = "ferrocene_certified"))]
1636pub const fn min_by_key<T, F, K>(v1: T, v2: T, mut f: F) -> T
1637where
1638    T: [const] Destruct,
1639    F: [const] FnMut(&T) -> K + [const] Destruct,
1640    K: [const] Ord + [const] Destruct,
1641{
1642    if f(&v2) < f(&v1) { v2 } else { v1 }
1643}
1644
1645/// Compares and returns the maximum of two values.
1646///
1647/// Returns the second argument if the comparison determines them to be equal.
1648///
1649/// Internally uses an alias to [`Ord::max`].
1650///
1651/// # Examples
1652///
1653/// ```
1654/// use std::cmp;
1655///
1656/// assert_eq!(cmp::max(1, 2), 2);
1657/// assert_eq!(cmp::max(2, 2), 2);
1658/// ```
1659/// ```
1660/// use std::cmp::{self, Ordering};
1661///
1662/// #[derive(Eq)]
1663/// struct Equal(&'static str);
1664///
1665/// impl PartialEq for Equal {
1666///     fn eq(&self, other: &Self) -> bool { true }
1667/// }
1668/// impl PartialOrd for Equal {
1669///     fn partial_cmp(&self, other: &Self) -> Option<Ordering> { Some(Ordering::Equal) }
1670/// }
1671/// impl Ord for Equal {
1672///     fn cmp(&self, other: &Self) -> Ordering { Ordering::Equal }
1673/// }
1674///
1675/// assert_eq!(cmp::max(Equal("v1"), Equal("v2")).0, "v2");
1676/// ```
1677#[inline]
1678#[must_use]
1679#[stable(feature = "rust1", since = "1.0.0")]
1680#[rustc_diagnostic_item = "cmp_max"]
1681#[rustc_const_unstable(feature = "const_cmp", issue = "143800")]
1682pub const fn max<T: [const] Ord + [const] Destruct>(v1: T, v2: T) -> T {
1683    v1.max(v2)
1684}
1685
1686/// Returns the maximum of two values with respect to the specified comparison function.
1687///
1688/// Returns the second argument if the comparison determines them to be equal.
1689///
1690/// The parameter order is preserved when calling the `compare` function, i.e. `v1` is
1691/// always passed as the first argument and `v2` as the second.
1692///
1693/// # Examples
1694///
1695/// ```
1696/// use std::cmp;
1697///
1698/// let abs_cmp = |x: &i32, y: &i32| x.abs().cmp(&y.abs());
1699///
1700/// let result = cmp::max_by(3, -2, abs_cmp) ;
1701/// assert_eq!(result, 3);
1702///
1703/// let result = cmp::max_by(1, -2, abs_cmp);
1704/// assert_eq!(result, -2);
1705///
1706/// let result = cmp::max_by(1, -1, abs_cmp);
1707/// assert_eq!(result, -1);
1708/// ```
1709#[inline]
1710#[must_use]
1711#[stable(feature = "cmp_min_max_by", since = "1.53.0")]
1712#[rustc_const_unstable(feature = "const_cmp", issue = "143800")]
1713#[cfg(not(feature = "ferrocene_certified"))]
1714pub const fn max_by<T: [const] Destruct, F: [const] FnOnce(&T, &T) -> Ordering>(
1715    v1: T,
1716    v2: T,
1717    compare: F,
1718) -> T {
1719    if compare(&v1, &v2).is_gt() { v1 } else { v2 }
1720}
1721
1722/// Returns the element that gives the maximum value from the specified function.
1723///
1724/// Returns the second argument if the comparison determines them to be equal.
1725///
1726/// # Examples
1727///
1728/// ```
1729/// use std::cmp;
1730///
1731/// let result = cmp::max_by_key(3, -2, |x: &i32| x.abs());
1732/// assert_eq!(result, 3);
1733///
1734/// let result = cmp::max_by_key(1, -2, |x: &i32| x.abs());
1735/// assert_eq!(result, -2);
1736///
1737/// let result = cmp::max_by_key(1, -1, |x: &i32| x.abs());
1738/// assert_eq!(result, -1);
1739/// ```
1740#[inline]
1741#[must_use]
1742#[stable(feature = "cmp_min_max_by", since = "1.53.0")]
1743#[rustc_const_unstable(feature = "const_cmp", issue = "143800")]
1744#[cfg(not(feature = "ferrocene_certified"))]
1745pub const fn max_by_key<T, F, K>(v1: T, v2: T, mut f: F) -> T
1746where
1747    T: [const] Destruct,
1748    F: [const] FnMut(&T) -> K + [const] Destruct,
1749    K: [const] Ord + [const] Destruct,
1750{
1751    if f(&v2) < f(&v1) { v1 } else { v2 }
1752}
1753
1754/// Compares and sorts two values, returning minimum and maximum.
1755///
1756/// Returns `[v1, v2]` if the comparison determines them to be equal.
1757///
1758/// # Examples
1759///
1760/// ```
1761/// #![feature(cmp_minmax)]
1762/// use std::cmp;
1763///
1764/// assert_eq!(cmp::minmax(1, 2), [1, 2]);
1765/// assert_eq!(cmp::minmax(2, 1), [1, 2]);
1766///
1767/// // You can destructure the result using array patterns
1768/// let [min, max] = cmp::minmax(42, 17);
1769/// assert_eq!(min, 17);
1770/// assert_eq!(max, 42);
1771/// ```
1772/// ```
1773/// #![feature(cmp_minmax)]
1774/// use std::cmp::{self, Ordering};
1775///
1776/// #[derive(Eq)]
1777/// struct Equal(&'static str);
1778///
1779/// impl PartialEq for Equal {
1780///     fn eq(&self, other: &Self) -> bool { true }
1781/// }
1782/// impl PartialOrd for Equal {
1783///     fn partial_cmp(&self, other: &Self) -> Option<Ordering> { Some(Ordering::Equal) }
1784/// }
1785/// impl Ord for Equal {
1786///     fn cmp(&self, other: &Self) -> Ordering { Ordering::Equal }
1787/// }
1788///
1789/// assert_eq!(cmp::minmax(Equal("v1"), Equal("v2")).map(|v| v.0), ["v1", "v2"]);
1790/// ```
1791#[inline]
1792#[must_use]
1793#[unstable(feature = "cmp_minmax", issue = "115939")]
1794#[rustc_const_unstable(feature = "const_cmp", issue = "143800")]
1795#[cfg(not(feature = "ferrocene_certified"))]
1796pub const fn minmax<T>(v1: T, v2: T) -> [T; 2]
1797where
1798    T: [const] Ord,
1799{
1800    if v2 < v1 { [v2, v1] } else { [v1, v2] }
1801}
1802
1803/// Returns minimum and maximum values with respect to the specified comparison function.
1804///
1805/// Returns `[v1, v2]` if the comparison determines them to be equal.
1806///
1807/// The parameter order is preserved when calling the `compare` function, i.e. `v1` is
1808/// always passed as the first argument and `v2` as the second.
1809///
1810/// # Examples
1811///
1812/// ```
1813/// #![feature(cmp_minmax)]
1814/// use std::cmp;
1815///
1816/// let abs_cmp = |x: &i32, y: &i32| x.abs().cmp(&y.abs());
1817///
1818/// assert_eq!(cmp::minmax_by(-2, 1, abs_cmp), [1, -2]);
1819/// assert_eq!(cmp::minmax_by(-1, 2, abs_cmp), [-1, 2]);
1820/// assert_eq!(cmp::minmax_by(-2, 2, abs_cmp), [-2, 2]);
1821///
1822/// // You can destructure the result using array patterns
1823/// let [min, max] = cmp::minmax_by(-42, 17, abs_cmp);
1824/// assert_eq!(min, 17);
1825/// assert_eq!(max, -42);
1826/// ```
1827#[inline]
1828#[must_use]
1829#[unstable(feature = "cmp_minmax", issue = "115939")]
1830#[rustc_const_unstable(feature = "const_cmp", issue = "143800")]
1831#[cfg(not(feature = "ferrocene_certified"))]
1832pub const fn minmax_by<T, F>(v1: T, v2: T, compare: F) -> [T; 2]
1833where
1834    F: [const] FnOnce(&T, &T) -> Ordering,
1835{
1836    if compare(&v1, &v2).is_le() { [v1, v2] } else { [v2, v1] }
1837}
1838
1839/// Returns minimum and maximum values with respect to the specified key function.
1840///
1841/// Returns `[v1, v2]` if the comparison determines them to be equal.
1842///
1843/// # Examples
1844///
1845/// ```
1846/// #![feature(cmp_minmax)]
1847/// use std::cmp;
1848///
1849/// assert_eq!(cmp::minmax_by_key(-2, 1, |x: &i32| x.abs()), [1, -2]);
1850/// assert_eq!(cmp::minmax_by_key(-2, 2, |x: &i32| x.abs()), [-2, 2]);
1851///
1852/// // You can destructure the result using array patterns
1853/// let [min, max] = cmp::minmax_by_key(-42, 17, |x: &i32| x.abs());
1854/// assert_eq!(min, 17);
1855/// assert_eq!(max, -42);
1856/// ```
1857#[inline]
1858#[must_use]
1859#[unstable(feature = "cmp_minmax", issue = "115939")]
1860#[rustc_const_unstable(feature = "const_cmp", issue = "143800")]
1861#[cfg(not(feature = "ferrocene_certified"))]
1862pub const fn minmax_by_key<T, F, K>(v1: T, v2: T, mut f: F) -> [T; 2]
1863where
1864    F: [const] FnMut(&T) -> K + [const] Destruct,
1865    K: [const] Ord + [const] Destruct,
1866{
1867    if f(&v2) < f(&v1) { [v2, v1] } else { [v1, v2] }
1868}
1869
1870// Implementation of PartialEq, Eq, PartialOrd and Ord for primitive types
1871mod impls {
1872    use crate::cmp::Ordering::{self, Equal, Greater, Less};
1873    use crate::hint::unreachable_unchecked;
1874    use crate::marker::PointeeSized;
1875    use crate::ops::ControlFlow::{self, Break, Continue};
1876
1877    macro_rules! partial_eq_impl {
1878        ($($t:ty)*) => ($(
1879            #[stable(feature = "rust1", since = "1.0.0")]
1880            #[rustc_const_unstable(feature = "const_cmp", issue = "143800")]
1881            impl const PartialEq for $t {
1882                #[inline]
1883                fn eq(&self, other: &Self) -> bool { *self == *other }
1884                #[inline]
1885                fn ne(&self, other: &Self) -> bool { *self != *other }
1886            }
1887        )*)
1888    }
1889
1890    #[stable(feature = "rust1", since = "1.0.0")]
1891    #[rustc_const_unstable(feature = "const_cmp", issue = "143800")]
1892    impl const PartialEq for () {
1893        #[inline]
1894        fn eq(&self, _other: &()) -> bool {
1895            true
1896        }
1897        #[inline]
1898        fn ne(&self, _other: &()) -> bool {
1899            false
1900        }
1901    }
1902
1903    partial_eq_impl! {
1904        bool char usize u8 u16 u32 u64 u128 isize i8 i16 i32 i64 i128 f16 f32 f64 f128
1905    }
1906
1907    macro_rules! eq_impl {
1908        ($($t:ty)*) => ($(
1909            #[stable(feature = "rust1", since = "1.0.0")]
1910            #[rustc_const_unstable(feature = "const_cmp", issue = "143800")]
1911            impl const Eq for $t {}
1912        )*)
1913    }
1914
1915    eq_impl! { () bool char usize u8 u16 u32 u64 u128 isize i8 i16 i32 i64 i128 }
1916
1917    #[rustfmt::skip]
1918    macro_rules! partial_ord_methods_primitive_impl {
1919        () => {
1920            #[inline(always)]
1921            fn lt(&self, other: &Self) -> bool { *self <  *other }
1922            #[inline(always)]
1923            fn le(&self, other: &Self) -> bool { *self <= *other }
1924            #[inline(always)]
1925            fn gt(&self, other: &Self) -> bool { *self >  *other }
1926            #[inline(always)]
1927            fn ge(&self, other: &Self) -> bool { *self >= *other }
1928
1929            // These implementations are the same for `Ord` or `PartialOrd` types
1930            // because if either is NAN the `==` test will fail so we end up in
1931            // the `Break` case and the comparison will correctly return `false`.
1932
1933            #[inline]
1934            fn __chaining_lt(&self, other: &Self) -> ControlFlow<bool> {
1935                let (lhs, rhs) = (*self, *other);
1936                if lhs == rhs { Continue(()) } else { Break(lhs < rhs) }
1937            }
1938            #[inline]
1939            fn __chaining_le(&self, other: &Self) -> ControlFlow<bool> {
1940                let (lhs, rhs) = (*self, *other);
1941                if lhs == rhs { Continue(()) } else { Break(lhs <= rhs) }
1942            }
1943            #[inline]
1944            fn __chaining_gt(&self, other: &Self) -> ControlFlow<bool> {
1945                let (lhs, rhs) = (*self, *other);
1946                if lhs == rhs { Continue(()) } else { Break(lhs > rhs) }
1947            }
1948            #[inline]
1949            fn __chaining_ge(&self, other: &Self) -> ControlFlow<bool> {
1950                let (lhs, rhs) = (*self, *other);
1951                if lhs == rhs { Continue(()) } else { Break(lhs >= rhs) }
1952            }
1953        };
1954    }
1955
1956    macro_rules! partial_ord_impl {
1957        ($($t:ty)*) => ($(
1958            #[stable(feature = "rust1", since = "1.0.0")]
1959            #[rustc_const_unstable(feature = "const_cmp", issue = "143800")]
1960            impl const PartialOrd for $t {
1961                #[inline]
1962                fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
1963                    match (*self <= *other, *self >= *other) {
1964                        (false, false) => None,
1965                        (false, true) => Some(Greater),
1966                        (true, false) => Some(Less),
1967                        (true, true) => Some(Equal),
1968                    }
1969                }
1970
1971                partial_ord_methods_primitive_impl!();
1972            }
1973        )*)
1974    }
1975
1976    #[stable(feature = "rust1", since = "1.0.0")]
1977    #[rustc_const_unstable(feature = "const_cmp", issue = "143800")]
1978    impl const PartialOrd for () {
1979        #[inline]
1980        fn partial_cmp(&self, _: &()) -> Option<Ordering> {
1981            Some(Equal)
1982        }
1983    }
1984
1985    #[stable(feature = "rust1", since = "1.0.0")]
1986    #[rustc_const_unstable(feature = "const_cmp", issue = "143800")]
1987    impl const PartialOrd for bool {
1988        #[inline]
1989        fn partial_cmp(&self, other: &bool) -> Option<Ordering> {
1990            Some(self.cmp(other))
1991        }
1992
1993        partial_ord_methods_primitive_impl!();
1994    }
1995
1996    partial_ord_impl! { f16 f32 f64 f128 }
1997
1998    macro_rules! ord_impl {
1999        ($($t:ty)*) => ($(
2000            #[stable(feature = "rust1", since = "1.0.0")]
2001            #[rustc_const_unstable(feature = "const_cmp", issue = "143800")]
2002            impl const PartialOrd for $t {
2003                #[inline]
2004                fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
2005                    Some(crate::intrinsics::three_way_compare(*self, *other))
2006                }
2007
2008                partial_ord_methods_primitive_impl!();
2009            }
2010
2011            #[stable(feature = "rust1", since = "1.0.0")]
2012            #[rustc_const_unstable(feature = "const_cmp", issue = "143800")]
2013            impl const Ord for $t {
2014                #[inline]
2015                fn cmp(&self, other: &Self) -> Ordering {
2016                    crate::intrinsics::three_way_compare(*self, *other)
2017                }
2018            }
2019        )*)
2020    }
2021
2022    #[stable(feature = "rust1", since = "1.0.0")]
2023    #[rustc_const_unstable(feature = "const_cmp", issue = "143800")]
2024    impl const Ord for () {
2025        #[inline]
2026        fn cmp(&self, _other: &()) -> Ordering {
2027            Equal
2028        }
2029    }
2030
2031    #[stable(feature = "rust1", since = "1.0.0")]
2032    #[rustc_const_unstable(feature = "const_cmp", issue = "143800")]
2033    impl const Ord for bool {
2034        #[inline]
2035        fn cmp(&self, other: &bool) -> Ordering {
2036            // Casting to i8's and converting the difference to an Ordering generates
2037            // more optimal assembly.
2038            // See <https://github.com/rust-lang/rust/issues/66780> for more info.
2039            match (*self as i8) - (*other as i8) {
2040                -1 => Less,
2041                0 => Equal,
2042                1 => Greater,
2043                #[ferrocene::annotation(
2044                    "This match arm cannot be covered because it is unreachable. See the safety comment below."
2045                )]
2046                // SAFETY: bool as i8 returns 0 or 1, so the difference can't be anything else
2047                _ => unsafe { unreachable_unchecked() },
2048            }
2049        }
2050
2051        #[inline]
2052        fn min(self, other: bool) -> bool {
2053            self & other
2054        }
2055
2056        #[inline]
2057        fn max(self, other: bool) -> bool {
2058            self | other
2059        }
2060
2061        #[inline]
2062        fn clamp(self, min: bool, max: bool) -> bool {
2063            assert!(min <= max);
2064            self.max(min).min(max)
2065        }
2066    }
2067
2068    ord_impl! { char usize u8 u16 u32 u64 u128 isize i8 i16 i32 i64 i128 }
2069
2070    #[unstable(feature = "never_type", issue = "35121")]
2071    #[rustc_const_unstable(feature = "const_cmp", issue = "143800")]
2072    impl const PartialEq for ! {
2073        #[inline]
2074        fn eq(&self, _: &!) -> bool {
2075            *self
2076        }
2077    }
2078
2079    #[unstable(feature = "never_type", issue = "35121")]
2080    #[rustc_const_unstable(feature = "const_cmp", issue = "143800")]
2081    impl const Eq for ! {}
2082
2083    #[unstable(feature = "never_type", issue = "35121")]
2084    #[rustc_const_unstable(feature = "const_cmp", issue = "143800")]
2085    impl const PartialOrd for ! {
2086        #[inline]
2087        fn partial_cmp(&self, _: &!) -> Option<Ordering> {
2088            *self
2089        }
2090    }
2091
2092    #[unstable(feature = "never_type", issue = "35121")]
2093    #[rustc_const_unstable(feature = "const_cmp", issue = "143800")]
2094    impl const Ord for ! {
2095        #[inline]
2096        fn cmp(&self, _: &!) -> Ordering {
2097            *self
2098        }
2099    }
2100
2101    // & pointers
2102
2103    #[stable(feature = "rust1", since = "1.0.0")]
2104    #[rustc_const_unstable(feature = "const_cmp", issue = "143800")]
2105    impl<A: PointeeSized, B: PointeeSized> const PartialEq<&B> for &A
2106    where
2107        A: [const] PartialEq<B>,
2108    {
2109        #[inline]
2110        fn eq(&self, other: &&B) -> bool {
2111            PartialEq::eq(*self, *other)
2112        }
2113        #[inline]
2114        fn ne(&self, other: &&B) -> bool {
2115            PartialEq::ne(*self, *other)
2116        }
2117    }
2118    #[stable(feature = "rust1", since = "1.0.0")]
2119    #[rustc_const_unstable(feature = "const_cmp", issue = "143800")]
2120    #[cfg(not(feature = "ferrocene_certified"))]
2121    impl<A: PointeeSized, B: PointeeSized> const PartialOrd<&B> for &A
2122    where
2123        A: [const] PartialOrd<B>,
2124    {
2125        #[inline]
2126        fn partial_cmp(&self, other: &&B) -> Option<Ordering> {
2127            PartialOrd::partial_cmp(*self, *other)
2128        }
2129        #[inline]
2130        fn lt(&self, other: &&B) -> bool {
2131            PartialOrd::lt(*self, *other)
2132        }
2133        #[inline]
2134        fn le(&self, other: &&B) -> bool {
2135            PartialOrd::le(*self, *other)
2136        }
2137        #[inline]
2138        fn gt(&self, other: &&B) -> bool {
2139            PartialOrd::gt(*self, *other)
2140        }
2141        #[inline]
2142        fn ge(&self, other: &&B) -> bool {
2143            PartialOrd::ge(*self, *other)
2144        }
2145        #[inline]
2146        fn __chaining_lt(&self, other: &&B) -> ControlFlow<bool> {
2147            PartialOrd::__chaining_lt(*self, *other)
2148        }
2149        #[inline]
2150        fn __chaining_le(&self, other: &&B) -> ControlFlow<bool> {
2151            PartialOrd::__chaining_le(*self, *other)
2152        }
2153        #[inline]
2154        fn __chaining_gt(&self, other: &&B) -> ControlFlow<bool> {
2155            PartialOrd::__chaining_gt(*self, *other)
2156        }
2157        #[inline]
2158        fn __chaining_ge(&self, other: &&B) -> ControlFlow<bool> {
2159            PartialOrd::__chaining_ge(*self, *other)
2160        }
2161    }
2162    #[stable(feature = "rust1", since = "1.0.0")]
2163    #[rustc_const_unstable(feature = "const_cmp", issue = "143800")]
2164    #[cfg(not(feature = "ferrocene_certified"))]
2165    impl<A: PointeeSized> const Ord for &A
2166    where
2167        A: [const] Ord,
2168    {
2169        #[inline]
2170        fn cmp(&self, other: &Self) -> Ordering {
2171            Ord::cmp(*self, *other)
2172        }
2173    }
2174    #[stable(feature = "rust1", since = "1.0.0")]
2175    #[rustc_const_unstable(feature = "const_cmp", issue = "143800")]
2176    impl<A: PointeeSized> const Eq for &A where A: [const] Eq {}
2177
2178    // &mut pointers
2179
2180    #[stable(feature = "rust1", since = "1.0.0")]
2181    #[rustc_const_unstable(feature = "const_cmp", issue = "143800")]
2182    impl<A: PointeeSized, B: PointeeSized> const PartialEq<&mut B> for &mut A
2183    where
2184        A: [const] PartialEq<B>,
2185    {
2186        #[inline]
2187        fn eq(&self, other: &&mut B) -> bool {
2188            PartialEq::eq(*self, *other)
2189        }
2190        #[inline]
2191        fn ne(&self, other: &&mut B) -> bool {
2192            PartialEq::ne(*self, *other)
2193        }
2194    }
2195    #[stable(feature = "rust1", since = "1.0.0")]
2196    #[rustc_const_unstable(feature = "const_cmp", issue = "143800")]
2197    #[cfg(not(feature = "ferrocene_certified"))]
2198    impl<A: PointeeSized, B: PointeeSized> const PartialOrd<&mut B> for &mut A
2199    where
2200        A: [const] PartialOrd<B>,
2201    {
2202        #[inline]
2203        fn partial_cmp(&self, other: &&mut B) -> Option<Ordering> {
2204            PartialOrd::partial_cmp(*self, *other)
2205        }
2206        #[inline]
2207        fn lt(&self, other: &&mut B) -> bool {
2208            PartialOrd::lt(*self, *other)
2209        }
2210        #[inline]
2211        fn le(&self, other: &&mut B) -> bool {
2212            PartialOrd::le(*self, *other)
2213        }
2214        #[inline]
2215        fn gt(&self, other: &&mut B) -> bool {
2216            PartialOrd::gt(*self, *other)
2217        }
2218        #[inline]
2219        fn ge(&self, other: &&mut B) -> bool {
2220            PartialOrd::ge(*self, *other)
2221        }
2222        #[inline]
2223        fn __chaining_lt(&self, other: &&mut B) -> ControlFlow<bool> {
2224            PartialOrd::__chaining_lt(*self, *other)
2225        }
2226        #[inline]
2227        fn __chaining_le(&self, other: &&mut B) -> ControlFlow<bool> {
2228            PartialOrd::__chaining_le(*self, *other)
2229        }
2230        #[inline]
2231        fn __chaining_gt(&self, other: &&mut B) -> ControlFlow<bool> {
2232            PartialOrd::__chaining_gt(*self, *other)
2233        }
2234        #[inline]
2235        fn __chaining_ge(&self, other: &&mut B) -> ControlFlow<bool> {
2236            PartialOrd::__chaining_ge(*self, *other)
2237        }
2238    }
2239    #[stable(feature = "rust1", since = "1.0.0")]
2240    #[rustc_const_unstable(feature = "const_cmp", issue = "143800")]
2241    #[cfg(not(feature = "ferrocene_certified"))]
2242    impl<A: PointeeSized> const Ord for &mut A
2243    where
2244        A: [const] Ord,
2245    {
2246        #[inline]
2247        fn cmp(&self, other: &Self) -> Ordering {
2248            Ord::cmp(*self, *other)
2249        }
2250    }
2251    #[stable(feature = "rust1", since = "1.0.0")]
2252    #[rustc_const_unstable(feature = "const_cmp", issue = "143800")]
2253    impl<A: PointeeSized> const Eq for &mut A where A: [const] Eq {}
2254
2255    #[stable(feature = "rust1", since = "1.0.0")]
2256    #[rustc_const_unstable(feature = "const_cmp", issue = "143800")]
2257    impl<A: PointeeSized, B: PointeeSized> const PartialEq<&mut B> for &A
2258    where
2259        A: [const] PartialEq<B>,
2260    {
2261        #[inline]
2262        fn eq(&self, other: &&mut B) -> bool {
2263            PartialEq::eq(*self, *other)
2264        }
2265        #[inline]
2266        fn ne(&self, other: &&mut B) -> bool {
2267            PartialEq::ne(*self, *other)
2268        }
2269    }
2270
2271    #[stable(feature = "rust1", since = "1.0.0")]
2272    #[rustc_const_unstable(feature = "const_cmp", issue = "143800")]
2273    impl<A: PointeeSized, B: PointeeSized> const PartialEq<&B> for &mut A
2274    where
2275        A: [const] PartialEq<B>,
2276    {
2277        #[inline]
2278        fn eq(&self, other: &&B) -> bool {
2279            PartialEq::eq(*self, *other)
2280        }
2281        #[inline]
2282        fn ne(&self, other: &&B) -> bool {
2283            PartialEq::ne(*self, *other)
2284        }
2285    }
2286}