core/convert/mod.rs
1//! Traits for conversions between types.
2//!
3//! The traits in this module provide a way to convert from one type to another type.
4//! Each trait serves a different purpose:
5//!
6//! - Implement the [`AsRef`] trait for cheap reference-to-reference conversions
7//! - Implement the [`AsMut`] trait for cheap mutable-to-mutable conversions
8//! - Implement the [`From`] trait for consuming value-to-value conversions
9//! - Implement the [`Into`] trait for consuming value-to-value conversions to types
10//! outside the current crate
11//! - The [`TryFrom`] and [`TryInto`] traits behave like [`From`] and [`Into`],
12//! but should be implemented when the conversion can fail.
13//!
14//! The traits in this module are often used as trait bounds for generic functions such that to
15//! arguments of multiple types are supported. See the documentation of each trait for examples.
16//!
17//! As a library author, you should always prefer implementing [`From<T>`][`From`] or
18//! [`TryFrom<T>`][`TryFrom`] rather than [`Into<U>`][`Into`] or [`TryInto<U>`][`TryInto`],
19//! as [`From`] and [`TryFrom`] provide greater flexibility and offer
20//! equivalent [`Into`] or [`TryInto`] implementations for free, thanks to a
21//! blanket implementation in the standard library. When targeting a version prior to Rust 1.41, it
22//! may be necessary to implement [`Into`] or [`TryInto`] directly when converting to a type
23//! outside the current crate.
24//!
25//! # Generic Implementations
26//!
27//! - [`AsRef`] and [`AsMut`] auto-dereference if the inner type is a reference
28//! (but not generally for all [dereferenceable types][core::ops::Deref])
29//! - [`From`]`<U> for T` implies [`Into`]`<T> for U`
30//! - [`TryFrom`]`<U> for T` implies [`TryInto`]`<T> for U`
31//! - [`From`] and [`Into`] are reflexive, which means that all types can
32//! `into` themselves and `from` themselves
33//!
34//! See each trait for usage examples.
35
36#![stable(feature = "rust1", since = "1.0.0")]
37
38#[cfg(not(feature = "ferrocene_certified"))]
39use crate::error::Error;
40#[cfg(not(feature = "ferrocene_certified"))]
41use crate::fmt;
42#[cfg(not(feature = "ferrocene_certified"))]
43use crate::hash::{Hash, Hasher};
44use crate::marker::PointeeSized;
45
46#[cfg(not(feature = "ferrocene_certified"))]
47mod num;
48
49#[unstable(feature = "convert_float_to_int", issue = "67057")]
50#[cfg(not(feature = "ferrocene_certified"))]
51pub use num::FloatToInt;
52
53/// The identity function.
54///
55/// Two things are important to note about this function:
56///
57/// - It is not always equivalent to a closure like `|x| x`, since the
58/// closure may coerce `x` into a different type.
59///
60/// - It moves the input `x` passed to the function.
61///
62/// While it might seem strange to have a function that just returns back the
63/// input, there are some interesting uses.
64///
65/// # Examples
66///
67/// Using `identity` to do nothing in a sequence of other, interesting,
68/// functions:
69///
70/// ```rust
71/// use std::convert::identity;
72///
73/// fn manipulation(x: u32) -> u32 {
74/// // Let's pretend that adding one is an interesting function.
75/// x + 1
76/// }
77///
78/// let _arr = &[identity, manipulation];
79/// ```
80///
81/// Using `identity` as a "do nothing" base case in a conditional:
82///
83/// ```rust
84/// use std::convert::identity;
85///
86/// # let condition = true;
87/// #
88/// # fn manipulation(x: u32) -> u32 { x + 1 }
89/// #
90/// let do_stuff = if condition { manipulation } else { identity };
91///
92/// // Do more interesting stuff...
93///
94/// let _results = do_stuff(42);
95/// ```
96///
97/// Using `identity` to keep the `Some` variants of an iterator of `Option<T>`:
98///
99/// ```rust
100/// use std::convert::identity;
101///
102/// let iter = [Some(1), None, Some(3)].into_iter();
103/// let filtered = iter.filter_map(identity).collect::<Vec<_>>();
104/// assert_eq!(vec![1, 3], filtered);
105/// ```
106#[stable(feature = "convert_id", since = "1.33.0")]
107#[rustc_const_stable(feature = "const_identity", since = "1.33.0")]
108#[inline(always)]
109#[rustc_diagnostic_item = "convert_identity"]
110pub const fn identity<T>(x: T) -> T {
111 x
112}
113
114/// Used to do a cheap reference-to-reference conversion.
115///
116/// This trait is similar to [`AsMut`] which is used for converting between mutable references.
117/// If you need to do a costly conversion it is better to implement [`From`] with type
118/// `&T` or write a custom function.
119///
120/// # Relation to `Borrow`
121///
122/// `AsRef` has the same signature as [`Borrow`], but [`Borrow`] is different in a few aspects:
123///
124/// - Unlike `AsRef`, [`Borrow`] has a blanket impl for any `T`, and can be used to accept either
125/// a reference or a value. (See also note on `AsRef`'s reflexibility below.)
126/// - [`Borrow`] also requires that [`Hash`], [`Eq`] and [`Ord`] for a borrowed value are
127/// equivalent to those of the owned value. For this reason, if you want to
128/// borrow only a single field of a struct you can implement `AsRef`, but not [`Borrow`].
129///
130/// **Note: This trait must not fail**. If the conversion can fail, use a
131/// dedicated method which returns an [`Option<T>`] or a [`Result<T, E>`].
132///
133/// # Generic Implementations
134///
135/// `AsRef` auto-dereferences if the inner type is a reference or a mutable reference
136/// (e.g.: `foo.as_ref()` will work the same if `foo` has type `&mut Foo` or `&&mut Foo`).
137///
138/// Note that due to historic reasons, the above currently does not hold generally for all
139/// [dereferenceable types], e.g. `foo.as_ref()` will *not* work the same as
140/// `Box::new(foo).as_ref()`. Instead, many smart pointers provide an `as_ref` implementation which
141/// simply returns a reference to the [pointed-to value] (but do not perform a cheap
142/// reference-to-reference conversion for that value). However, [`AsRef::as_ref`] should not be
143/// used for the sole purpose of dereferencing; instead ['`Deref` coercion'] can be used:
144///
145/// [dereferenceable types]: core::ops::Deref
146/// [pointed-to value]: core::ops::Deref::Target
147/// ['`Deref` coercion']: core::ops::Deref#deref-coercion
148///
149/// ```
150/// let x = Box::new(5i32);
151/// // Avoid this:
152/// // let y: &i32 = x.as_ref();
153/// // Better just write:
154/// let y: &i32 = &x;
155/// ```
156///
157/// Types which implement [`Deref`] should consider implementing `AsRef<T>` as follows:
158///
159/// [`Deref`]: core::ops::Deref
160///
161/// ```
162/// # use core::ops::Deref;
163/// # struct SomeType;
164/// # impl Deref for SomeType {
165/// # type Target = [u8];
166/// # fn deref(&self) -> &[u8] {
167/// # &[]
168/// # }
169/// # }
170/// impl<T> AsRef<T> for SomeType
171/// where
172/// T: ?Sized,
173/// <SomeType as Deref>::Target: AsRef<T>,
174/// {
175/// fn as_ref(&self) -> &T {
176/// self.deref().as_ref()
177/// }
178/// }
179/// ```
180///
181/// # Reflexivity
182///
183/// Ideally, `AsRef` would be reflexive, i.e. there would be an `impl<T: ?Sized> AsRef<T> for T`
184/// with [`as_ref`] simply returning its argument unchanged.
185/// Such a blanket implementation is currently *not* provided due to technical restrictions of
186/// Rust's type system (it would be overlapping with another existing blanket implementation for
187/// `&T where T: AsRef<U>` which allows `AsRef` to auto-dereference, see "Generic Implementations"
188/// above).
189///
190/// [`as_ref`]: AsRef::as_ref
191///
192/// A trivial implementation of `AsRef<T> for T` must be added explicitly for a particular type `T`
193/// where needed or desired. Note, however, that not all types from `std` contain such an
194/// implementation, and those cannot be added by external code due to orphan rules.
195///
196/// # Examples
197///
198/// By using trait bounds we can accept arguments of different types as long as they can be
199/// converted to the specified type `T`.
200///
201/// For example: By creating a generic function that takes an `AsRef<str>` we express that we
202/// want to accept all references that can be converted to [`&str`] as an argument.
203/// Since both [`String`] and [`&str`] implement `AsRef<str>` we can accept both as input argument.
204///
205/// [`&str`]: primitive@str
206/// [`Borrow`]: crate::borrow::Borrow
207/// [`Eq`]: crate::cmp::Eq
208/// [`Ord`]: crate::cmp::Ord
209/// [`String`]: ../../std/string/struct.String.html
210///
211/// ```
212/// fn is_hello<T: AsRef<str>>(s: T) {
213/// assert_eq!("hello", s.as_ref());
214/// }
215///
216/// let s = "hello";
217/// is_hello(s);
218///
219/// let s = "hello".to_string();
220/// is_hello(s);
221/// ```
222#[stable(feature = "rust1", since = "1.0.0")]
223#[rustc_diagnostic_item = "AsRef"]
224#[const_trait]
225#[rustc_const_unstable(feature = "const_try", issue = "74935")]
226pub trait AsRef<T: PointeeSized>: PointeeSized {
227 /// Converts this type into a shared reference of the (usually inferred) input type.
228 #[stable(feature = "rust1", since = "1.0.0")]
229 fn as_ref(&self) -> &T;
230}
231
232/// Used to do a cheap mutable-to-mutable reference conversion.
233///
234/// This trait is similar to [`AsRef`] but used for converting between mutable
235/// references. If you need to do a costly conversion it is better to
236/// implement [`From`] with type `&mut T` or write a custom function.
237///
238/// **Note: This trait must not fail**. If the conversion can fail, use a
239/// dedicated method which returns an [`Option<T>`] or a [`Result<T, E>`].
240///
241/// # Generic Implementations
242///
243/// `AsMut` auto-dereferences if the inner type is a mutable reference
244/// (e.g.: `foo.as_mut()` will work the same if `foo` has type `&mut Foo` or `&mut &mut Foo`).
245///
246/// Note that due to historic reasons, the above currently does not hold generally for all
247/// [mutably dereferenceable types], e.g. `foo.as_mut()` will *not* work the same as
248/// `Box::new(foo).as_mut()`. Instead, many smart pointers provide an `as_mut` implementation which
249/// simply returns a reference to the [pointed-to value] (but do not perform a cheap
250/// reference-to-reference conversion for that value). However, [`AsMut::as_mut`] should not be
251/// used for the sole purpose of mutable dereferencing; instead ['`Deref` coercion'] can be used:
252///
253/// [mutably dereferenceable types]: core::ops::DerefMut
254/// [pointed-to value]: core::ops::Deref::Target
255/// ['`Deref` coercion']: core::ops::DerefMut#mutable-deref-coercion
256///
257/// ```
258/// let mut x = Box::new(5i32);
259/// // Avoid this:
260/// // let y: &mut i32 = x.as_mut();
261/// // Better just write:
262/// let y: &mut i32 = &mut x;
263/// ```
264///
265/// Types which implement [`DerefMut`] should consider to add an implementation of `AsMut<T>` as
266/// follows:
267///
268/// [`DerefMut`]: core::ops::DerefMut
269///
270/// ```
271/// # use core::ops::{Deref, DerefMut};
272/// # struct SomeType;
273/// # impl Deref for SomeType {
274/// # type Target = [u8];
275/// # fn deref(&self) -> &[u8] {
276/// # &[]
277/// # }
278/// # }
279/// # impl DerefMut for SomeType {
280/// # fn deref_mut(&mut self) -> &mut [u8] {
281/// # &mut []
282/// # }
283/// # }
284/// impl<T> AsMut<T> for SomeType
285/// where
286/// <SomeType as Deref>::Target: AsMut<T>,
287/// {
288/// fn as_mut(&mut self) -> &mut T {
289/// self.deref_mut().as_mut()
290/// }
291/// }
292/// ```
293///
294/// # Reflexivity
295///
296/// Ideally, `AsMut` would be reflexive, i.e. there would be an `impl<T: ?Sized> AsMut<T> for T`
297/// with [`as_mut`] simply returning its argument unchanged.
298/// Such a blanket implementation is currently *not* provided due to technical restrictions of
299/// Rust's type system (it would be overlapping with another existing blanket implementation for
300/// `&mut T where T: AsMut<U>` which allows `AsMut` to auto-dereference, see "Generic
301/// Implementations" above).
302///
303/// [`as_mut`]: AsMut::as_mut
304///
305/// A trivial implementation of `AsMut<T> for T` must be added explicitly for a particular type `T`
306/// where needed or desired. Note, however, that not all types from `std` contain such an
307/// implementation, and those cannot be added by external code due to orphan rules.
308///
309/// # Examples
310///
311/// Using `AsMut` as trait bound for a generic function, we can accept all mutable references that
312/// can be converted to type `&mut T`. Unlike [dereference], which has a single [target type],
313/// there can be multiple implementations of `AsMut` for a type. In particular, `Vec<T>` implements
314/// both `AsMut<Vec<T>>` and `AsMut<[T]>`.
315///
316/// In the following, the example functions `caesar` and `null_terminate` provide a generic
317/// interface which work with any type that can be converted by cheap mutable-to-mutable conversion
318/// into a byte slice (`[u8]`) or byte vector (`Vec<u8>`), respectively.
319///
320/// [dereference]: core::ops::DerefMut
321/// [target type]: core::ops::Deref::Target
322///
323/// ```
324/// struct Document {
325/// info: String,
326/// content: Vec<u8>,
327/// }
328///
329/// impl<T: ?Sized> AsMut<T> for Document
330/// where
331/// Vec<u8>: AsMut<T>,
332/// {
333/// fn as_mut(&mut self) -> &mut T {
334/// self.content.as_mut()
335/// }
336/// }
337///
338/// fn caesar<T: AsMut<[u8]>>(data: &mut T, key: u8) {
339/// for byte in data.as_mut() {
340/// *byte = byte.wrapping_add(key);
341/// }
342/// }
343///
344/// fn null_terminate<T: AsMut<Vec<u8>>>(data: &mut T) {
345/// // Using a non-generic inner function, which contains most of the
346/// // functionality, helps to minimize monomorphization overhead.
347/// fn doit(data: &mut Vec<u8>) {
348/// let len = data.len();
349/// if len == 0 || data[len-1] != 0 {
350/// data.push(0);
351/// }
352/// }
353/// doit(data.as_mut());
354/// }
355///
356/// fn main() {
357/// let mut v: Vec<u8> = vec![1, 2, 3];
358/// caesar(&mut v, 5);
359/// assert_eq!(v, [6, 7, 8]);
360/// null_terminate(&mut v);
361/// assert_eq!(v, [6, 7, 8, 0]);
362/// let mut doc = Document {
363/// info: String::from("Example"),
364/// content: vec![17, 19, 8],
365/// };
366/// caesar(&mut doc, 1);
367/// assert_eq!(doc.content, [18, 20, 9]);
368/// null_terminate(&mut doc);
369/// assert_eq!(doc.content, [18, 20, 9, 0]);
370/// }
371/// ```
372///
373/// Note, however, that APIs don't need to be generic. In many cases taking a `&mut [u8]` or
374/// `&mut Vec<u8>`, for example, is the better choice (callers need to pass the correct type then).
375#[stable(feature = "rust1", since = "1.0.0")]
376#[rustc_diagnostic_item = "AsMut"]
377#[const_trait]
378#[rustc_const_unstable(feature = "const_try", issue = "74935")]
379pub trait AsMut<T: PointeeSized>: PointeeSized {
380 /// Converts this type into a mutable reference of the (usually inferred) input type.
381 #[stable(feature = "rust1", since = "1.0.0")]
382 fn as_mut(&mut self) -> &mut T;
383}
384
385/// A value-to-value conversion that consumes the input value. The
386/// opposite of [`From`].
387///
388/// One should avoid implementing [`Into`] and implement [`From`] instead.
389/// Implementing [`From`] automatically provides one with an implementation of [`Into`]
390/// thanks to the blanket implementation in the standard library.
391///
392/// Prefer using [`Into`] over [`From`] when specifying trait bounds on a generic function
393/// to ensure that types that only implement [`Into`] can be used as well.
394///
395/// **Note: This trait must not fail**. If the conversion can fail, use [`TryInto`].
396///
397/// # Generic Implementations
398///
399/// - [`From`]`<T> for U` implies `Into<U> for T`
400/// - [`Into`] is reflexive, which means that `Into<T> for T` is implemented
401///
402/// # Implementing [`Into`] for conversions to external types in old versions of Rust
403///
404/// Prior to Rust 1.41, if the destination type was not part of the current crate
405/// then you couldn't implement [`From`] directly.
406/// For example, take this code:
407///
408/// ```
409/// # #![allow(non_local_definitions)]
410/// struct Wrapper<T>(Vec<T>);
411/// impl<T> From<Wrapper<T>> for Vec<T> {
412/// fn from(w: Wrapper<T>) -> Vec<T> {
413/// w.0
414/// }
415/// }
416/// ```
417/// This will fail to compile in older versions of the language because Rust's orphaning rules
418/// used to be a little bit more strict. To bypass this, you could implement [`Into`] directly:
419///
420/// ```
421/// struct Wrapper<T>(Vec<T>);
422/// impl<T> Into<Vec<T>> for Wrapper<T> {
423/// fn into(self) -> Vec<T> {
424/// self.0
425/// }
426/// }
427/// ```
428///
429/// It is important to understand that [`Into`] does not provide a [`From`] implementation
430/// (as [`From`] does with [`Into`]). Therefore, you should always try to implement [`From`]
431/// and then fall back to [`Into`] if [`From`] can't be implemented.
432///
433/// # Examples
434///
435/// [`String`] implements [`Into`]`<`[`Vec`]`<`[`u8`]`>>`:
436///
437/// In order to express that we want a generic function to take all arguments that can be
438/// converted to a specified type `T`, we can use a trait bound of [`Into`]`<T>`.
439/// For example: The function `is_hello` takes all arguments that can be converted into a
440/// [`Vec`]`<`[`u8`]`>`.
441///
442/// ```
443/// fn is_hello<T: Into<Vec<u8>>>(s: T) {
444/// let bytes = b"hello".to_vec();
445/// assert_eq!(bytes, s.into());
446/// }
447///
448/// let s = "hello".to_string();
449/// is_hello(s);
450/// ```
451///
452/// [`String`]: ../../std/string/struct.String.html
453/// [`Vec`]: ../../std/vec/struct.Vec.html
454#[rustc_diagnostic_item = "Into"]
455#[stable(feature = "rust1", since = "1.0.0")]
456#[doc(search_unbox)]
457#[rustc_const_unstable(feature = "const_from", issue = "143773")]
458#[const_trait]
459pub trait Into<T>: Sized {
460 /// Converts this type into the (usually inferred) input type.
461 #[must_use]
462 #[stable(feature = "rust1", since = "1.0.0")]
463 fn into(self) -> T;
464}
465
466/// Used to do value-to-value conversions while consuming the input value. It is the reciprocal of
467/// [`Into`].
468///
469/// One should always prefer implementing `From` over [`Into`]
470/// because implementing `From` automatically provides one with an implementation of [`Into`]
471/// thanks to the blanket implementation in the standard library.
472///
473/// Only implement [`Into`] when targeting a version prior to Rust 1.41 and converting to a type
474/// outside the current crate.
475/// `From` was not able to do these types of conversions in earlier versions because of Rust's
476/// orphaning rules.
477/// See [`Into`] for more details.
478///
479/// Prefer using [`Into`] over [`From`] when specifying trait bounds on a generic function
480/// to ensure that types that only implement [`Into`] can be used as well.
481///
482/// The `From` trait is also very useful when performing error handling. When constructing a function
483/// that is capable of failing, the return type will generally be of the form `Result<T, E>`.
484/// `From` simplifies error handling by allowing a function to return a single error type
485/// that encapsulates multiple error types. See the "Examples" section and [the book][book] for more
486/// details.
487///
488/// **Note: This trait must not fail**. The `From` trait is intended for perfect conversions.
489/// If the conversion can fail or is not perfect, use [`TryFrom`].
490///
491/// # Generic Implementations
492///
493/// - `From<T> for U` implies [`Into`]`<U> for T`
494/// - `From` is reflexive, which means that `From<T> for T` is implemented
495///
496/// # When to implement `From`
497///
498/// While there's no technical restrictions on which conversions can be done using
499/// a `From` implementation, the general expectation is that the conversions
500/// should typically be restricted as follows:
501///
502/// * The conversion is *infallible*: if the conversion can fail, use [`TryFrom`]
503/// instead; don't provide a `From` impl that panics.
504///
505/// * The conversion is *lossless*: semantically, it should not lose or discard
506/// information. For example, `i32: From<u16>` exists, where the original
507/// value can be recovered using `u16: TryFrom<i32>`. And `String: From<&str>`
508/// exists, where you can get something equivalent to the original value via
509/// `Deref`. But `From` cannot be used to convert from `u32` to `u16`, since
510/// that cannot succeed in a lossless way. (There's some wiggle room here for
511/// information not considered semantically relevant. For example,
512/// `Box<[T]>: From<Vec<T>>` exists even though it might not preserve capacity,
513/// like how two vectors can be equal despite differing capacities.)
514///
515/// * The conversion is *value-preserving*: the conceptual kind and meaning of
516/// the resulting value is the same, even though the Rust type and technical
517/// representation might be different. For example `-1_i8 as u8` is *lossless*,
518/// since `as` casting back can recover the original value, but that conversion
519/// is *not* available via `From` because `-1` and `255` are different conceptual
520/// values (despite being identical bit patterns technically). But
521/// `f32: From<i16>` *is* available because `1_i16` and `1.0_f32` are conceptually
522/// the same real number (despite having very different bit patterns technically).
523/// `String: From<char>` is available because they're both *text*, but
524/// `String: From<u32>` is *not* available, since `1` (a number) and `"1"`
525/// (text) are too different. (Converting values to text is instead covered
526/// by the [`Display`](crate::fmt::Display) trait.)
527///
528/// * The conversion is *obvious*: it's the only reasonable conversion between
529/// the two types. Otherwise it's better to have it be a named method or
530/// constructor, like how [`str::as_bytes`] is a method and how integers have
531/// methods like [`u32::from_ne_bytes`], [`u32::from_le_bytes`], and
532/// [`u32::from_be_bytes`], none of which are `From` implementations. Whereas
533/// there's only one reasonable way to wrap an [`Ipv6Addr`](crate::net::Ipv6Addr)
534/// into an [`IpAddr`](crate::net::IpAddr), thus `IpAddr: From<Ipv6Addr>` exists.
535///
536/// # Examples
537///
538/// [`String`] implements `From<&str>`:
539///
540/// An explicit conversion from a `&str` to a String is done as follows:
541///
542/// ```
543/// let string = "hello".to_string();
544/// let other_string = String::from("hello");
545///
546/// assert_eq!(string, other_string);
547/// ```
548///
549/// While performing error handling it is often useful to implement `From` for your own error type.
550/// By converting underlying error types to our own custom error type that encapsulates the
551/// underlying error type, we can return a single error type without losing information on the
552/// underlying cause. The '?' operator automatically converts the underlying error type to our
553/// custom error type with `From::from`.
554///
555/// ```
556/// use std::fs;
557/// use std::io;
558/// use std::num;
559///
560/// enum CliError {
561/// IoError(io::Error),
562/// ParseError(num::ParseIntError),
563/// }
564///
565/// impl From<io::Error> for CliError {
566/// fn from(error: io::Error) -> Self {
567/// CliError::IoError(error)
568/// }
569/// }
570///
571/// impl From<num::ParseIntError> for CliError {
572/// fn from(error: num::ParseIntError) -> Self {
573/// CliError::ParseError(error)
574/// }
575/// }
576///
577/// fn open_and_parse_file(file_name: &str) -> Result<i32, CliError> {
578/// let mut contents = fs::read_to_string(&file_name)?;
579/// let num: i32 = contents.trim().parse()?;
580/// Ok(num)
581/// }
582/// ```
583///
584/// [`String`]: ../../std/string/struct.String.html
585/// [`from`]: From::from
586/// [book]: ../../book/ch09-00-error-handling.html
587#[rustc_diagnostic_item = "From"]
588#[stable(feature = "rust1", since = "1.0.0")]
589#[rustc_on_unimplemented(on(
590 all(Self = "&str", T = "alloc::string::String"),
591 note = "to coerce a `{T}` into a `{Self}`, use `&*` as a prefix",
592))]
593#[doc(search_unbox)]
594#[rustc_const_unstable(feature = "const_from", issue = "143773")]
595#[const_trait]
596pub trait From<T>: Sized {
597 /// Converts to this type from the input type.
598 #[rustc_diagnostic_item = "from_fn"]
599 #[must_use]
600 #[stable(feature = "rust1", since = "1.0.0")]
601 fn from(value: T) -> Self;
602}
603
604/// An attempted conversion that consumes `self`, which may or may not be
605/// expensive.
606///
607/// Library authors should usually not directly implement this trait,
608/// but should prefer implementing the [`TryFrom`] trait, which offers
609/// greater flexibility and provides an equivalent `TryInto`
610/// implementation for free, thanks to a blanket implementation in the
611/// standard library. For more information on this, see the
612/// documentation for [`Into`].
613///
614/// Prefer using [`TryInto`] over [`TryFrom`] when specifying trait bounds on a generic function
615/// to ensure that types that only implement [`TryInto`] can be used as well.
616///
617/// # Implementing `TryInto`
618///
619/// This suffers the same restrictions and reasoning as implementing
620/// [`Into`], see there for details.
621#[rustc_diagnostic_item = "TryInto"]
622#[stable(feature = "try_from", since = "1.34.0")]
623#[rustc_const_unstable(feature = "const_from", issue = "143773")]
624#[const_trait]
625pub trait TryInto<T>: Sized {
626 /// The type returned in the event of a conversion error.
627 #[stable(feature = "try_from", since = "1.34.0")]
628 type Error;
629
630 /// Performs the conversion.
631 #[stable(feature = "try_from", since = "1.34.0")]
632 fn try_into(self) -> Result<T, Self::Error>;
633}
634
635/// Simple and safe type conversions that may fail in a controlled
636/// way under some circumstances. It is the reciprocal of [`TryInto`].
637///
638/// This is useful when you are doing a type conversion that may
639/// trivially succeed but may also need special handling.
640/// For example, there is no way to convert an [`i64`] into an [`i32`]
641/// using the [`From`] trait, because an [`i64`] may contain a value
642/// that an [`i32`] cannot represent and so the conversion would lose data.
643/// This might be handled by truncating the [`i64`] to an [`i32`] or by
644/// simply returning [`i32::MAX`], or by some other method. The [`From`]
645/// trait is intended for perfect conversions, so the `TryFrom` trait
646/// informs the programmer when a type conversion could go bad and lets
647/// them decide how to handle it.
648///
649/// # Generic Implementations
650///
651/// - `TryFrom<T> for U` implies [`TryInto`]`<U> for T`
652/// - [`try_from`] is reflexive, which means that `TryFrom<T> for T`
653/// is implemented and cannot fail -- the associated `Error` type for
654/// calling `T::try_from()` on a value of type `T` is [`Infallible`].
655/// When the [`!`] type is stabilized [`Infallible`] and [`!`] will be
656/// equivalent.
657///
658/// Prefer using [`TryInto`] over [`TryFrom`] when specifying trait bounds on a generic function
659/// to ensure that types that only implement [`TryInto`] can be used as well.
660///
661/// `TryFrom<T>` can be implemented as follows:
662///
663/// ```
664/// struct GreaterThanZero(i32);
665///
666/// impl TryFrom<i32> for GreaterThanZero {
667/// type Error = &'static str;
668///
669/// fn try_from(value: i32) -> Result<Self, Self::Error> {
670/// if value <= 0 {
671/// Err("GreaterThanZero only accepts values greater than zero!")
672/// } else {
673/// Ok(GreaterThanZero(value))
674/// }
675/// }
676/// }
677/// ```
678///
679/// # Examples
680///
681/// As described, [`i32`] implements `TryFrom<`[`i64`]`>`:
682///
683/// ```
684/// let big_number = 1_000_000_000_000i64;
685/// // Silently truncates `big_number`, requires detecting
686/// // and handling the truncation after the fact.
687/// let smaller_number = big_number as i32;
688/// assert_eq!(smaller_number, -727379968);
689///
690/// // Returns an error because `big_number` is too big to
691/// // fit in an `i32`.
692/// let try_smaller_number = i32::try_from(big_number);
693/// assert!(try_smaller_number.is_err());
694///
695/// // Returns `Ok(3)`.
696/// let try_successful_smaller_number = i32::try_from(3);
697/// assert!(try_successful_smaller_number.is_ok());
698/// ```
699///
700/// [`try_from`]: TryFrom::try_from
701#[rustc_diagnostic_item = "TryFrom"]
702#[stable(feature = "try_from", since = "1.34.0")]
703#[rustc_const_unstable(feature = "const_from", issue = "143773")]
704#[const_trait]
705pub trait TryFrom<T>: Sized {
706 /// The type returned in the event of a conversion error.
707 #[stable(feature = "try_from", since = "1.34.0")]
708 type Error;
709
710 /// Performs the conversion.
711 #[stable(feature = "try_from", since = "1.34.0")]
712 #[rustc_diagnostic_item = "try_from_fn"]
713 fn try_from(value: T) -> Result<Self, Self::Error>;
714}
715
716////////////////////////////////////////////////////////////////////////////////
717// GENERIC IMPLS
718////////////////////////////////////////////////////////////////////////////////
719
720// As lifts over &
721#[stable(feature = "rust1", since = "1.0.0")]
722#[rustc_const_unstable(feature = "const_try", issue = "74935")]
723impl<T: PointeeSized, U: PointeeSized> const AsRef<U> for &T
724where
725 T: [const] AsRef<U>,
726{
727 #[inline]
728 fn as_ref(&self) -> &U {
729 <T as AsRef<U>>::as_ref(*self)
730 }
731}
732
733// As lifts over &mut
734#[stable(feature = "rust1", since = "1.0.0")]
735#[rustc_const_unstable(feature = "const_try", issue = "74935")]
736impl<T: PointeeSized, U: PointeeSized> const AsRef<U> for &mut T
737where
738 T: [const] AsRef<U>,
739{
740 #[inline]
741 fn as_ref(&self) -> &U {
742 <T as AsRef<U>>::as_ref(*self)
743 }
744}
745
746// FIXME (#45742): replace the above impls for &/&mut with the following more general one:
747// // As lifts over Deref
748// impl<D: ?Sized + Deref<Target: AsRef<U>>, U: ?Sized> AsRef<U> for D {
749// fn as_ref(&self) -> &U {
750// self.deref().as_ref()
751// }
752// }
753
754// AsMut lifts over &mut
755#[stable(feature = "rust1", since = "1.0.0")]
756#[rustc_const_unstable(feature = "const_try", issue = "74935")]
757impl<T: PointeeSized, U: PointeeSized> const AsMut<U> for &mut T
758where
759 T: [const] AsMut<U>,
760{
761 #[inline]
762 fn as_mut(&mut self) -> &mut U {
763 (*self).as_mut()
764 }
765}
766
767// FIXME (#45742): replace the above impl for &mut with the following more general one:
768// // AsMut lifts over DerefMut
769// impl<D: ?Sized + Deref<Target: AsMut<U>>, U: ?Sized> AsMut<U> for D {
770// fn as_mut(&mut self) -> &mut U {
771// self.deref_mut().as_mut()
772// }
773// }
774
775// From implies Into
776#[stable(feature = "rust1", since = "1.0.0")]
777#[rustc_const_unstable(feature = "const_from", issue = "143773")]
778impl<T, U> const Into<U> for T
779where
780 U: [const] From<T>,
781{
782 /// Calls `U::from(self)`.
783 ///
784 /// That is, this conversion is whatever the implementation of
785 /// <code>[From]<T> for U</code> chooses to do.
786 #[inline]
787 #[track_caller]
788 fn into(self) -> U {
789 U::from(self)
790 }
791}
792
793// From (and thus Into) is reflexive
794#[stable(feature = "rust1", since = "1.0.0")]
795#[rustc_const_unstable(feature = "const_from", issue = "143773")]
796impl<T> const From<T> for T {
797 /// Returns the argument unchanged.
798 #[inline(always)]
799 fn from(t: T) -> T {
800 t
801 }
802}
803
804/// **Stability note:** This impl does not yet exist, but we are
805/// "reserving space" to add it in the future. See
806/// [rust-lang/rust#64715][#64715] for details.
807///
808/// [#64715]: https://github.com/rust-lang/rust/issues/64715
809#[stable(feature = "convert_infallible", since = "1.34.0")]
810#[rustc_reservation_impl = "permitting this impl would forbid us from adding \
811 `impl<T> From<!> for T` later; see rust-lang/rust#64715 for details"]
812#[rustc_const_unstable(feature = "const_from", issue = "143773")]
813#[cfg(not(feature = "ferrocene_certified"))]
814impl<T> const From<!> for T {
815 fn from(t: !) -> T {
816 t
817 }
818}
819
820// TryFrom implies TryInto
821#[stable(feature = "try_from", since = "1.34.0")]
822#[rustc_const_unstable(feature = "const_from", issue = "143773")]
823impl<T, U> const TryInto<U> for T
824where
825 U: [const] TryFrom<T>,
826{
827 type Error = U::Error;
828
829 #[inline]
830 fn try_into(self) -> Result<U, U::Error> {
831 U::try_from(self)
832 }
833}
834
835// Infallible conversions are semantically equivalent to fallible conversions
836// with an uninhabited error type.
837#[stable(feature = "try_from", since = "1.34.0")]
838#[rustc_const_unstable(feature = "const_from", issue = "143773")]
839impl<T, U> const TryFrom<U> for T
840where
841 U: [const] Into<T>,
842{
843 type Error = Infallible;
844
845 #[inline]
846 fn try_from(value: U) -> Result<Self, Self::Error> {
847 Ok(U::into(value))
848 }
849}
850
851////////////////////////////////////////////////////////////////////////////////
852// CONCRETE IMPLS
853////////////////////////////////////////////////////////////////////////////////
854
855#[stable(feature = "rust1", since = "1.0.0")]
856#[rustc_const_unstable(feature = "const_try", issue = "74935")]
857#[cfg(not(feature = "ferrocene_certified"))]
858impl<T> const AsRef<[T]> for [T] {
859 #[inline(always)]
860 fn as_ref(&self) -> &[T] {
861 self
862 }
863}
864
865#[stable(feature = "rust1", since = "1.0.0")]
866#[rustc_const_unstable(feature = "const_try", issue = "74935")]
867impl<T> const AsMut<[T]> for [T] {
868 #[inline(always)]
869 fn as_mut(&mut self) -> &mut [T] {
870 self
871 }
872}
873
874#[stable(feature = "rust1", since = "1.0.0")]
875#[rustc_const_unstable(feature = "const_try", issue = "74935")]
876#[cfg(not(feature = "ferrocene_certified"))]
877impl const AsRef<str> for str {
878 #[inline(always)]
879 fn as_ref(&self) -> &str {
880 self
881 }
882}
883
884#[stable(feature = "as_mut_str_for_str", since = "1.51.0")]
885#[rustc_const_unstable(feature = "const_try", issue = "74935")]
886impl const AsMut<str> for str {
887 #[inline(always)]
888 fn as_mut(&mut self) -> &mut str {
889 self
890 }
891}
892
893////////////////////////////////////////////////////////////////////////////////
894// THE NO-ERROR ERROR TYPE
895////////////////////////////////////////////////////////////////////////////////
896
897/// The error type for errors that can never happen.
898///
899/// Since this enum has no variant, a value of this type can never actually exist.
900/// This can be useful for generic APIs that use [`Result`] and parameterize the error type,
901/// to indicate that the result is always [`Ok`].
902///
903/// For example, the [`TryFrom`] trait (conversion that returns a [`Result`])
904/// has a blanket implementation for all types where a reverse [`Into`] implementation exists.
905///
906/// ```ignore (illustrates std code, duplicating the impl in a doctest would be an error)
907/// impl<T, U> TryFrom<U> for T where U: Into<T> {
908/// type Error = Infallible;
909///
910/// fn try_from(value: U) -> Result<Self, Infallible> {
911/// Ok(U::into(value)) // Never returns `Err`
912/// }
913/// }
914/// ```
915///
916/// # Future compatibility
917///
918/// This enum has the same role as [the `!` “never” type][never],
919/// which is unstable in this version of Rust.
920/// When `!` is stabilized, we plan to make `Infallible` a type alias to it:
921///
922/// ```ignore (illustrates future std change)
923/// pub type Infallible = !;
924/// ```
925///
926/// … and eventually deprecate `Infallible`.
927///
928/// However there is one case where `!` syntax can be used
929/// before `!` is stabilized as a full-fledged type: in the position of a function’s return type.
930/// Specifically, it is possible to have implementations for two different function pointer types:
931///
932/// ```
933/// trait MyTrait {}
934/// impl MyTrait for fn() -> ! {}
935/// impl MyTrait for fn() -> std::convert::Infallible {}
936/// ```
937///
938/// With `Infallible` being an enum, this code is valid.
939/// However when `Infallible` becomes an alias for the never type,
940/// the two `impl`s will start to overlap
941/// and therefore will be disallowed by the language’s trait coherence rules.
942#[stable(feature = "convert_infallible", since = "1.34.0")]
943#[derive(Copy)]
944pub enum Infallible {}
945
946#[stable(feature = "convert_infallible", since = "1.34.0")]
947#[rustc_const_unstable(feature = "const_try", issue = "74935")]
948impl const Clone for Infallible {
949 fn clone(&self) -> Infallible {
950 match *self {}
951 }
952}
953
954#[stable(feature = "convert_infallible", since = "1.34.0")]
955#[cfg(not(feature = "ferrocene_certified"))]
956impl fmt::Debug for Infallible {
957 fn fmt(&self, _: &mut fmt::Formatter<'_>) -> fmt::Result {
958 match *self {}
959 }
960}
961
962#[stable(feature = "convert_infallible", since = "1.34.0")]
963#[cfg(not(feature = "ferrocene_certified"))]
964impl fmt::Display for Infallible {
965 fn fmt(&self, _: &mut fmt::Formatter<'_>) -> fmt::Result {
966 match *self {}
967 }
968}
969
970#[stable(feature = "str_parse_error2", since = "1.8.0")]
971#[cfg(not(feature = "ferrocene_certified"))]
972impl Error for Infallible {
973 fn description(&self) -> &str {
974 match *self {}
975 }
976}
977
978#[stable(feature = "convert_infallible", since = "1.34.0")]
979#[rustc_const_unstable(feature = "const_cmp", issue = "143800")]
980#[cfg(not(feature = "ferrocene_certified"))]
981impl const PartialEq for Infallible {
982 fn eq(&self, _: &Infallible) -> bool {
983 match *self {}
984 }
985}
986
987#[stable(feature = "convert_infallible", since = "1.34.0")]
988#[cfg(not(feature = "ferrocene_certified"))]
989impl Eq for Infallible {}
990
991#[stable(feature = "convert_infallible", since = "1.34.0")]
992#[cfg(not(feature = "ferrocene_certified"))]
993impl PartialOrd for Infallible {
994 fn partial_cmp(&self, _other: &Self) -> Option<crate::cmp::Ordering> {
995 match *self {}
996 }
997}
998
999#[stable(feature = "convert_infallible", since = "1.34.0")]
1000#[cfg(not(feature = "ferrocene_certified"))]
1001impl Ord for Infallible {
1002 fn cmp(&self, _other: &Self) -> crate::cmp::Ordering {
1003 match *self {}
1004 }
1005}
1006
1007#[stable(feature = "convert_infallible", since = "1.34.0")]
1008#[rustc_const_unstable(feature = "const_try", issue = "74935")]
1009#[cfg(not(feature = "ferrocene_certified"))]
1010impl const From<!> for Infallible {
1011 #[inline]
1012 fn from(x: !) -> Self {
1013 x
1014 }
1015}
1016
1017#[stable(feature = "convert_infallible_hash", since = "1.44.0")]
1018#[cfg(not(feature = "ferrocene_certified"))]
1019impl Hash for Infallible {
1020 fn hash<H: Hasher>(&self, _: &mut H) {
1021 match *self {}
1022 }
1023}