core/ffi/c_str.rs
1//! [`CStr`] and its related types.
2
3#[cfg(not(feature = "ferrocene_subset"))]
4use crate::cmp::Ordering;
5#[cfg(not(feature = "ferrocene_subset"))]
6use crate::error::Error;
7use crate::ffi::c_char;
8use crate::intrinsics::const_eval_select;
9#[cfg(not(feature = "ferrocene_subset"))]
10use crate::iter::FusedIterator;
11#[cfg(not(feature = "ferrocene_subset"))]
12use crate::marker::PhantomData;
13#[cfg(not(feature = "ferrocene_subset"))]
14use crate::ptr::NonNull;
15use crate::slice::memchr;
16#[cfg(not(feature = "ferrocene_subset"))]
17use crate::{fmt, ops, slice, str};
18
19// Ferrocene addition: imports for certified subset
20#[cfg(feature = "ferrocene_subset")]
21#[rustfmt::skip]
22use crate::slice;
23
24// FIXME: because this is doc(inline)d, we *have* to use intra-doc links because the actual link
25// depends on where the item is being documented. however, since this is libcore, we can't
26// actually reference libstd or liballoc in intra-doc links. so, the best we can do is remove the
27// links to `CString` and `String` for now until a solution is developed
28
29/// A dynamically-sized view of a C string.
30///
31/// The type `&CStr` represents a reference to a borrowed nul-terminated
32/// array of bytes. It can be constructed safely from a <code>&[[u8]]</code>
33/// slice, or unsafely from a raw `*const c_char`. It can be expressed as a
34/// literal in the form `c"Hello world"`.
35///
36/// The `&CStr` can then be converted to a Rust <code>&[str]</code> by performing
37/// UTF-8 validation, or into an owned `CString`.
38///
39/// `&CStr` is to `CString` as <code>&[str]</code> is to `String`: the former
40/// in each pair are borrowing references; the latter are owned
41/// strings.
42///
43/// Note that this structure does **not** have a guaranteed layout (the `repr(transparent)`
44/// notwithstanding) and should not be placed in the signatures of FFI functions.
45/// Instead, safe wrappers of FFI functions may leverage [`CStr::as_ptr`] and the unsafe
46/// [`CStr::from_ptr`] constructor to provide a safe interface to other consumers.
47///
48/// # Examples
49///
50/// Inspecting a foreign C string:
51///
52/// ```
53/// use std::ffi::CStr;
54/// use std::os::raw::c_char;
55///
56/// # /* Extern functions are awkward in doc comments - fake it instead
57/// extern "C" { fn my_string() -> *const c_char; }
58/// # */ unsafe extern "C" fn my_string() -> *const c_char { c"hello".as_ptr() }
59///
60/// unsafe {
61/// let slice = CStr::from_ptr(my_string());
62/// println!("string buffer size without nul terminator: {}", slice.to_bytes().len());
63/// }
64/// ```
65///
66/// Passing a Rust-originating C string:
67///
68/// ```
69/// use std::ffi::CStr;
70/// use std::os::raw::c_char;
71///
72/// fn work(data: &CStr) {
73/// unsafe extern "C" fn work_with(s: *const c_char) {}
74/// unsafe { work_with(data.as_ptr()) }
75/// }
76///
77/// let s = c"Hello world!";
78/// work(&s);
79/// ```
80///
81/// Converting a foreign C string into a Rust `String`:
82///
83/// ```
84/// use std::ffi::CStr;
85/// use std::os::raw::c_char;
86///
87/// # /* Extern functions are awkward in doc comments - fake it instead
88/// extern "C" { fn my_string() -> *const c_char; }
89/// # */ unsafe extern "C" fn my_string() -> *const c_char { c"hello".as_ptr() }
90///
91/// fn my_string_safe() -> String {
92/// let cstr = unsafe { CStr::from_ptr(my_string()) };
93/// // Get a copy-on-write Cow<'_, str>, then extract the
94/// // allocated String (or allocate a fresh one if needed).
95/// cstr.to_string_lossy().into_owned()
96/// }
97///
98/// println!("string: {}", my_string_safe());
99/// ```
100///
101/// [str]: prim@str "str"
102#[cfg_attr(not(feature = "ferrocene_subset"), derive(PartialEq, Eq, Hash))]
103#[stable(feature = "core_c_str", since = "1.64.0")]
104#[rustc_diagnostic_item = "cstr_type"]
105#[rustc_has_incoherent_inherent_impls]
106#[lang = "CStr"]
107// `fn from` in `impl From<&CStr> for Box<CStr>` current implementation relies
108// on `CStr` being layout-compatible with `[u8]`.
109// However, `CStr` layout is considered an implementation detail and must not be relied upon. We
110// want `repr(transparent)` but we don't want it to show up in rustdoc, so we hide it under
111// `cfg(doc)`. This is an ad-hoc implementation of attribute privacy.
112#[repr(transparent)]
113pub struct CStr {
114 // FIXME: this should not be represented with a DST slice but rather with
115 // just a raw `c_char` along with some form of marker to make
116 // this an unsized type. Essentially `sizeof(&CStr)` should be the
117 // same as `sizeof(&c_char)` but `CStr` should be an unsized type.
118 inner: [c_char],
119}
120
121/// An error indicating that a nul byte was not in the expected position.
122///
123/// The slice used to create a [`CStr`] must have one and only one nul byte,
124/// positioned at the end.
125///
126/// This error is created by the [`CStr::from_bytes_with_nul`] method.
127/// See its documentation for more.
128///
129/// # Examples
130///
131/// ```
132/// use std::ffi::{CStr, FromBytesWithNulError};
133///
134/// let _: FromBytesWithNulError = CStr::from_bytes_with_nul(b"f\0oo").unwrap_err();
135/// ```
136#[cfg_attr(not(feature = "ferrocene_subset"), derive(Clone, Copy, PartialEq, Eq, Debug))]
137#[stable(feature = "core_c_str", since = "1.64.0")]
138pub enum FromBytesWithNulError {
139 /// Data provided contains an interior nul byte at byte `position`.
140 InteriorNul {
141 /// The position of the interior nul byte.
142 position: usize,
143 },
144 /// Data provided is not nul terminated.
145 NotNulTerminated,
146}
147
148#[cfg(not(feature = "ferrocene_subset"))]
149#[stable(feature = "frombyteswithnulerror_impls", since = "1.17.0")]
150impl fmt::Display for FromBytesWithNulError {
151 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
152 match self {
153 Self::InteriorNul { position } => {
154 write!(f, "data provided contains an interior nul byte at byte position {position}")
155 }
156 Self::NotNulTerminated => write!(f, "data provided is not nul terminated"),
157 }
158 }
159}
160
161#[cfg(not(feature = "ferrocene_subset"))]
162#[stable(feature = "frombyteswithnulerror_impls", since = "1.17.0")]
163impl Error for FromBytesWithNulError {}
164
165/// An error indicating that no nul byte was present.
166///
167/// A slice used to create a [`CStr`] must contain a nul byte somewhere
168/// within the slice.
169///
170/// This error is created by the [`CStr::from_bytes_until_nul`] method.
171#[cfg(not(feature = "ferrocene_subset"))]
172#[derive(Clone, PartialEq, Eq, Debug)]
173#[stable(feature = "cstr_from_bytes_until_nul", since = "1.69.0")]
174pub struct FromBytesUntilNulError(());
175
176#[cfg(not(feature = "ferrocene_subset"))]
177#[stable(feature = "cstr_from_bytes_until_nul", since = "1.69.0")]
178impl fmt::Display for FromBytesUntilNulError {
179 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
180 write!(f, "data provided does not contain a nul")
181 }
182}
183
184/// Shows the underlying bytes as a normal string, with invalid UTF-8
185/// presented as hex escape sequences.
186#[cfg(not(feature = "ferrocene_subset"))]
187#[stable(feature = "cstr_debug", since = "1.3.0")]
188impl fmt::Debug for CStr {
189 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
190 fmt::Debug::fmt(crate::bstr::ByteStr::from_bytes(self.to_bytes()), f)
191 }
192}
193
194#[cfg(not(feature = "ferrocene_subset"))]
195#[stable(feature = "cstr_default", since = "1.10.0")]
196impl Default for &CStr {
197 #[inline]
198 fn default() -> Self {
199 c""
200 }
201}
202
203impl CStr {
204 /// Wraps a raw C string with a safe C string wrapper.
205 ///
206 /// This function will wrap the provided `ptr` with a `CStr` wrapper, which
207 /// allows inspection and interoperation of non-owned C strings. The total
208 /// size of the terminated buffer must be smaller than [`isize::MAX`] **bytes**
209 /// in memory (a restriction from [`slice::from_raw_parts`]).
210 ///
211 /// # Safety
212 ///
213 /// * The memory pointed to by `ptr` must contain a valid nul terminator at the
214 /// end of the string.
215 ///
216 /// * `ptr` must be [valid] for reads of bytes up to and including the nul terminator.
217 /// This means in particular:
218 ///
219 /// * The entire memory range of this `CStr` must be contained within a single allocation!
220 /// * `ptr` must be non-null even for a zero-length cstr.
221 ///
222 /// * The memory referenced by the returned `CStr` must not be mutated for
223 /// the duration of lifetime `'a`.
224 ///
225 /// * The nul terminator must be within `isize::MAX` from `ptr`
226 ///
227 /// > **Note**: This operation is intended to be a 0-cost cast but it is
228 /// > currently implemented with an up-front calculation of the length of
229 /// > the string. This is not guaranteed to always be the case.
230 ///
231 /// # Caveat
232 ///
233 /// The lifetime for the returned slice is inferred from its usage. To prevent accidental misuse,
234 /// it's suggested to tie the lifetime to whichever source lifetime is safe in the context,
235 /// such as by providing a helper function taking the lifetime of a host value for the slice,
236 /// or by explicit annotation.
237 ///
238 /// # Examples
239 ///
240 /// ```
241 /// use std::ffi::{c_char, CStr};
242 ///
243 /// fn my_string() -> *const c_char {
244 /// c"hello".as_ptr()
245 /// }
246 ///
247 /// unsafe {
248 /// let slice = CStr::from_ptr(my_string());
249 /// assert_eq!(slice.to_str().unwrap(), "hello");
250 /// }
251 /// ```
252 ///
253 /// ```
254 /// use std::ffi::{c_char, CStr};
255 ///
256 /// const HELLO_PTR: *const c_char = {
257 /// const BYTES: &[u8] = b"Hello, world!\0";
258 /// BYTES.as_ptr().cast()
259 /// };
260 /// const HELLO: &CStr = unsafe { CStr::from_ptr(HELLO_PTR) };
261 ///
262 /// assert_eq!(c"Hello, world!", HELLO);
263 /// ```
264 ///
265 /// [valid]: core::ptr#safety
266 #[inline] // inline is necessary for codegen to see strlen.
267 #[must_use]
268 #[stable(feature = "rust1", since = "1.0.0")]
269 #[rustc_const_stable(feature = "const_cstr_from_ptr", since = "1.81.0")]
270 pub const unsafe fn from_ptr<'a>(ptr: *const c_char) -> &'a CStr {
271 // SAFETY: The caller has provided a pointer that points to a valid C
272 // string with a NUL terminator less than `isize::MAX` from `ptr`.
273 let len = unsafe { strlen(ptr) };
274
275 // SAFETY: The caller has provided a valid pointer with length less than
276 // `isize::MAX`, so `from_raw_parts` is safe. The content remains valid
277 // and doesn't change for the lifetime of the returned `CStr`. This
278 // means the call to `from_bytes_with_nul_unchecked` is correct.
279 //
280 // The cast from c_char to u8 is ok because a c_char is always one byte.
281 unsafe { Self::from_bytes_with_nul_unchecked(slice::from_raw_parts(ptr.cast(), len + 1)) }
282 }
283
284 /// Creates a C string wrapper from a byte slice with any number of nuls.
285 ///
286 /// This method will create a `CStr` from any byte slice that contains at
287 /// least one nul byte. Unlike with [`CStr::from_bytes_with_nul`], the caller
288 /// does not need to know where the nul byte is located.
289 ///
290 /// If the first byte is a nul character, this method will return an
291 /// empty `CStr`. If multiple nul characters are present, the `CStr` will
292 /// end at the first one.
293 ///
294 /// If the slice only has a single nul byte at the end, this method is
295 /// equivalent to [`CStr::from_bytes_with_nul`].
296 ///
297 /// # Examples
298 /// ```
299 /// use std::ffi::CStr;
300 ///
301 /// let mut buffer = [0u8; 16];
302 /// unsafe {
303 /// // Here we might call an unsafe C function that writes a string
304 /// // into the buffer.
305 /// let buf_ptr = buffer.as_mut_ptr();
306 /// buf_ptr.write_bytes(b'A', 8);
307 /// }
308 /// // Attempt to extract a C nul-terminated string from the buffer.
309 /// let c_str = CStr::from_bytes_until_nul(&buffer[..]).unwrap();
310 /// assert_eq!(c_str.to_str().unwrap(), "AAAAAAAA");
311 /// ```
312 ///
313 #[cfg(not(feature = "ferrocene_subset"))]
314 #[stable(feature = "cstr_from_bytes_until_nul", since = "1.69.0")]
315 #[rustc_const_stable(feature = "cstr_from_bytes_until_nul", since = "1.69.0")]
316 pub const fn from_bytes_until_nul(bytes: &[u8]) -> Result<&CStr, FromBytesUntilNulError> {
317 let nul_pos = memchr::memchr(0, bytes);
318 match nul_pos {
319 Some(nul_pos) => {
320 // FIXME(const-hack) replace with range index
321 // SAFETY: nul_pos + 1 <= bytes.len()
322 let subslice = unsafe { crate::slice::from_raw_parts(bytes.as_ptr(), nul_pos + 1) };
323 // SAFETY: We know there is a nul byte at nul_pos, so this slice
324 // (ending at the nul byte) is a well-formed C string.
325 Ok(unsafe { CStr::from_bytes_with_nul_unchecked(subslice) })
326 }
327 None => Err(FromBytesUntilNulError(())),
328 }
329 }
330
331 /// Creates a C string wrapper from a byte slice with exactly one nul
332 /// terminator.
333 ///
334 /// This function will cast the provided `bytes` to a `CStr`
335 /// wrapper after ensuring that the byte slice is nul-terminated
336 /// and does not contain any interior nul bytes.
337 ///
338 /// If the nul byte may not be at the end,
339 /// [`CStr::from_bytes_until_nul`] can be used instead.
340 ///
341 /// # Examples
342 ///
343 /// ```
344 /// use std::ffi::CStr;
345 ///
346 /// let cstr = CStr::from_bytes_with_nul(b"hello\0");
347 /// assert_eq!(cstr, Ok(c"hello"));
348 /// ```
349 ///
350 /// Creating a `CStr` without a trailing nul terminator is an error:
351 ///
352 /// ```
353 /// use std::ffi::{CStr, FromBytesWithNulError};
354 ///
355 /// let cstr = CStr::from_bytes_with_nul(b"hello");
356 /// assert_eq!(cstr, Err(FromBytesWithNulError::NotNulTerminated));
357 /// ```
358 ///
359 /// Creating a `CStr` with an interior nul byte is an error:
360 ///
361 /// ```
362 /// use std::ffi::{CStr, FromBytesWithNulError};
363 ///
364 /// let cstr = CStr::from_bytes_with_nul(b"he\0llo\0");
365 /// assert_eq!(cstr, Err(FromBytesWithNulError::InteriorNul { position: 2 }));
366 /// ```
367 #[stable(feature = "cstr_from_bytes", since = "1.10.0")]
368 #[rustc_const_stable(feature = "const_cstr_methods", since = "1.72.0")]
369 pub const fn from_bytes_with_nul(bytes: &[u8]) -> Result<&Self, FromBytesWithNulError> {
370 let nul_pos = memchr::memchr(0, bytes);
371 match nul_pos {
372 Some(nul_pos) if nul_pos + 1 == bytes.len() => {
373 // SAFETY: We know there is only one nul byte, at the end
374 // of the byte slice.
375 Ok(unsafe { Self::from_bytes_with_nul_unchecked(bytes) })
376 }
377 Some(position) => Err(FromBytesWithNulError::InteriorNul { position }),
378 None => Err(FromBytesWithNulError::NotNulTerminated),
379 }
380 }
381
382 /// Unsafely creates a C string wrapper from a byte slice.
383 ///
384 /// This function will cast the provided `bytes` to a `CStr` wrapper without
385 /// performing any sanity checks.
386 ///
387 /// # Safety
388 /// The provided slice **must** be nul-terminated and not contain any interior
389 /// nul bytes.
390 ///
391 /// # Examples
392 ///
393 /// ```
394 /// use std::ffi::CStr;
395 ///
396 /// let bytes = b"Hello world!\0";
397 ///
398 /// let cstr = unsafe { CStr::from_bytes_with_nul_unchecked(bytes) };
399 /// assert_eq!(cstr.to_bytes_with_nul(), bytes);
400 /// ```
401 #[inline]
402 #[must_use]
403 #[stable(feature = "cstr_from_bytes", since = "1.10.0")]
404 #[rustc_const_stable(feature = "const_cstr_unchecked", since = "1.59.0")]
405 #[rustc_allow_const_fn_unstable(const_eval_select)]
406 pub const unsafe fn from_bytes_with_nul_unchecked(bytes: &[u8]) -> &CStr {
407 const_eval_select!(
408 @capture { bytes: &[u8] } -> &CStr:
409 if const {
410 // Saturating so that an empty slice panics in the assert with a good
411 // message, not here due to underflow.
412 let mut i = bytes.len().saturating_sub(1);
413 assert!(!bytes.is_empty() && bytes[i] == 0, "input was not nul-terminated");
414
415 // Ending nul byte exists, skip to the rest.
416 while i != 0 {
417 i -= 1;
418 let byte = bytes[i];
419 assert!(byte != 0, "input contained interior nul");
420 }
421
422 // SAFETY: See runtime cast comment below.
423 unsafe { &*(bytes as *const [u8] as *const CStr) }
424 } else {
425 // Chance at catching some UB at runtime with debug builds.
426 debug_assert!(!bytes.is_empty() && bytes[bytes.len() - 1] == 0);
427
428 // SAFETY: Casting to CStr is safe because its internal representation
429 // is a [u8] too (safe only inside std).
430 // Dereferencing the obtained pointer is safe because it comes from a
431 // reference. Making a reference is then safe because its lifetime
432 // is bound by the lifetime of the given `bytes`.
433 unsafe { &*(bytes as *const [u8] as *const CStr) }
434 }
435 )
436 }
437
438 /// Returns the inner pointer to this C string.
439 ///
440 /// The returned pointer will be valid for as long as `self` is, and points
441 /// to a contiguous region of memory terminated with a 0 byte to represent
442 /// the end of the string.
443 ///
444 /// The type of the returned pointer is
445 /// [`*const c_char`][crate::ffi::c_char], and whether it's
446 /// an alias for `*const i8` or `*const u8` is platform-specific.
447 ///
448 /// **WARNING**
449 ///
450 /// The returned pointer is read-only; writing to it (including passing it
451 /// to C code that writes to it) causes undefined behavior.
452 ///
453 /// It is your responsibility to make sure that the underlying memory is not
454 /// freed too early. For example, the following code will cause undefined
455 /// behavior when `ptr` is used inside the `unsafe` block:
456 ///
457 /// ```no_run
458 /// # #![expect(dangling_pointers_from_temporaries)]
459 /// use std::ffi::{CStr, CString};
460 ///
461 /// // 💀 The meaning of this entire program is undefined,
462 /// // 💀 and nothing about its behavior is guaranteed,
463 /// // 💀 not even that its behavior resembles the code as written,
464 /// // 💀 just because it contains a single instance of undefined behavior!
465 ///
466 /// // 🚨 creates a dangling pointer to a temporary `CString`
467 /// // 🚨 that is deallocated at the end of the statement
468 /// let ptr = CString::new("Hi!".to_uppercase()).unwrap().as_ptr();
469 ///
470 /// // without undefined behavior, you would expect that `ptr` equals:
471 /// dbg!(CStr::from_bytes_with_nul(b"HI!\0").unwrap());
472 ///
473 /// // 🙏 Possibly the program behaved as expected so far,
474 /// // 🙏 and this just shows `ptr` is now garbage..., but
475 /// // 💀 this violates `CStr::from_ptr`'s safety contract
476 /// // 💀 leading to a dereference of a dangling pointer,
477 /// // 💀 which is immediate undefined behavior.
478 /// // 💀 *BOOM*, you're dead, your entire program has no meaning.
479 /// dbg!(unsafe { CStr::from_ptr(ptr) });
480 /// ```
481 ///
482 /// This happens because, the pointer returned by `as_ptr` does not carry any
483 /// lifetime information, and the `CString` is deallocated immediately after
484 /// the expression that it is part of has been evaluated.
485 /// To fix the problem, bind the `CString` to a local variable:
486 ///
487 /// ```
488 /// use std::ffi::{CStr, CString};
489 ///
490 /// let c_str = CString::new("Hi!".to_uppercase()).unwrap();
491 /// let ptr = c_str.as_ptr();
492 ///
493 /// assert_eq!(unsafe { CStr::from_ptr(ptr) }, c"HI!");
494 /// ```
495 #[cfg(not(feature = "ferrocene_subset"))]
496 #[inline]
497 #[must_use]
498 #[stable(feature = "rust1", since = "1.0.0")]
499 #[rustc_const_stable(feature = "const_str_as_ptr", since = "1.32.0")]
500 #[rustc_as_ptr]
501 #[rustc_never_returns_null_ptr]
502 pub const fn as_ptr(&self) -> *const c_char {
503 self.inner.as_ptr()
504 }
505
506 /// We could eventually expose this publicly, if we wanted.
507 #[cfg(not(feature = "ferrocene_subset"))]
508 #[inline]
509 #[must_use]
510 const fn as_non_null_ptr(&self) -> NonNull<c_char> {
511 // FIXME(const_trait_impl) replace with `NonNull::from`
512 // SAFETY: a reference is never null
513 unsafe { NonNull::new_unchecked(&self.inner as *const [c_char] as *mut [c_char]) }
514 .as_non_null_ptr()
515 }
516
517 /// Returns the length of `self`. Like C's `strlen`, this does not include the nul terminator.
518 ///
519 /// > **Note**: This method is currently implemented as a constant-time
520 /// > cast, but it is planned to alter its definition in the future to
521 /// > perform the length calculation whenever this method is called.
522 ///
523 /// # Examples
524 ///
525 /// ```
526 /// assert_eq!(c"foo".count_bytes(), 3);
527 /// assert_eq!(c"".count_bytes(), 0);
528 /// ```
529 #[cfg(not(feature = "ferrocene_subset"))]
530 #[inline]
531 #[must_use]
532 #[doc(alias("len", "strlen"))]
533 #[stable(feature = "cstr_count_bytes", since = "1.79.0")]
534 #[rustc_const_stable(feature = "const_cstr_from_ptr", since = "1.81.0")]
535 pub const fn count_bytes(&self) -> usize {
536 self.inner.len() - 1
537 }
538
539 /// Returns `true` if `self.to_bytes()` has a length of 0.
540 ///
541 /// # Examples
542 ///
543 /// ```
544 /// assert!(!c"foo".is_empty());
545 /// assert!(c"".is_empty());
546 /// ```
547 #[cfg(not(feature = "ferrocene_subset"))]
548 #[inline]
549 #[stable(feature = "cstr_is_empty", since = "1.71.0")]
550 #[rustc_const_stable(feature = "cstr_is_empty", since = "1.71.0")]
551 pub const fn is_empty(&self) -> bool {
552 // SAFETY: We know there is at least one byte; for empty strings it
553 // is the NUL terminator.
554 // FIXME(const-hack): use get_unchecked
555 unsafe { *self.inner.as_ptr() == 0 }
556 }
557
558 /// Converts this C string to a byte slice.
559 ///
560 /// The returned slice will **not** contain the trailing nul terminator that this C
561 /// string has.
562 ///
563 /// > **Note**: This method is currently implemented as a constant-time
564 /// > cast, but it is planned to alter its definition in the future to
565 /// > perform the length calculation whenever this method is called.
566 ///
567 /// # Examples
568 ///
569 /// ```
570 /// assert_eq!(c"foo".to_bytes(), b"foo");
571 /// ```
572 #[cfg(not(feature = "ferrocene_subset"))]
573 #[inline]
574 #[must_use = "this returns the result of the operation, \
575 without modifying the original"]
576 #[stable(feature = "rust1", since = "1.0.0")]
577 #[rustc_const_stable(feature = "const_cstr_methods", since = "1.72.0")]
578 pub const fn to_bytes(&self) -> &[u8] {
579 let bytes = self.to_bytes_with_nul();
580 // FIXME(const-hack) replace with range index
581 // SAFETY: to_bytes_with_nul returns slice with length at least 1
582 unsafe { slice::from_raw_parts(bytes.as_ptr(), bytes.len() - 1) }
583 }
584
585 /// Converts this C string to a byte slice containing the trailing 0 byte.
586 ///
587 /// This function is the equivalent of [`CStr::to_bytes`] except that it
588 /// will retain the trailing nul terminator instead of chopping it off.
589 ///
590 /// > **Note**: This method is currently implemented as a 0-cost cast, but
591 /// > it is planned to alter its definition in the future to perform the
592 /// > length calculation whenever this method is called.
593 ///
594 /// # Examples
595 ///
596 /// ```
597 /// assert_eq!(c"foo".to_bytes_with_nul(), b"foo\0");
598 /// ```
599 #[inline]
600 #[must_use = "this returns the result of the operation, \
601 without modifying the original"]
602 #[stable(feature = "rust1", since = "1.0.0")]
603 #[rustc_const_stable(feature = "const_cstr_methods", since = "1.72.0")]
604 pub const fn to_bytes_with_nul(&self) -> &[u8] {
605 // SAFETY: Transmuting a slice of `c_char`s to a slice of `u8`s
606 // is safe on all supported targets.
607 unsafe { &*((&raw const self.inner) as *const [u8]) }
608 }
609
610 /// Iterates over the bytes in this C string.
611 ///
612 /// The returned iterator will **not** contain the trailing nul terminator
613 /// that this C string has.
614 ///
615 /// # Examples
616 ///
617 /// ```
618 /// #![feature(cstr_bytes)]
619 ///
620 /// assert!(c"foo".bytes().eq(*b"foo"));
621 /// ```
622 #[cfg(not(feature = "ferrocene_subset"))]
623 #[inline]
624 #[unstable(feature = "cstr_bytes", issue = "112115")]
625 pub fn bytes(&self) -> Bytes<'_> {
626 Bytes::new(self)
627 }
628
629 /// Yields a <code>&[str]</code> slice if the `CStr` contains valid UTF-8.
630 ///
631 /// If the contents of the `CStr` are valid UTF-8 data, this
632 /// function will return the corresponding <code>&[str]</code> slice. Otherwise,
633 /// it will return an error with details of where UTF-8 validation failed.
634 ///
635 /// [str]: prim@str "str"
636 ///
637 /// # Examples
638 ///
639 /// ```
640 /// assert_eq!(c"foo".to_str(), Ok("foo"));
641 /// ```
642 #[cfg(not(feature = "ferrocene_subset"))]
643 #[stable(feature = "cstr_to_str", since = "1.4.0")]
644 #[rustc_const_stable(feature = "const_cstr_methods", since = "1.72.0")]
645 pub const fn to_str(&self) -> Result<&str, str::Utf8Error> {
646 // N.B., when `CStr` is changed to perform the length check in `.to_bytes()`
647 // instead of in `from_ptr()`, it may be worth considering if this should
648 // be rewritten to do the UTF-8 check inline with the length calculation
649 // instead of doing it afterwards.
650 str::from_utf8(self.to_bytes())
651 }
652
653 /// Returns an object that implements [`Display`] for safely printing a [`CStr`] that may
654 /// contain non-Unicode data.
655 ///
656 /// Behaves as if `self` were first lossily converted to a `str`, with invalid UTF-8 presented
657 /// as the Unicode replacement character: �.
658 ///
659 /// [`Display`]: fmt::Display
660 ///
661 /// # Examples
662 ///
663 /// ```
664 /// #![feature(cstr_display)]
665 ///
666 /// let cstr = c"Hello, world!";
667 /// println!("{}", cstr.display());
668 /// ```
669 #[cfg(not(feature = "ferrocene_subset"))]
670 #[unstable(feature = "cstr_display", issue = "139984")]
671 #[must_use = "this does not display the `CStr`; \
672 it returns an object that can be displayed"]
673 #[inline]
674 pub fn display(&self) -> impl fmt::Display {
675 crate::bstr::ByteStr::from_bytes(self.to_bytes())
676 }
677}
678
679#[cfg(not(feature = "ferrocene_subset"))]
680#[stable(feature = "c_string_eq_c_str", since = "1.90.0")]
681impl PartialEq<&Self> for CStr {
682 #[inline]
683 fn eq(&self, other: &&Self) -> bool {
684 *self == **other
685 }
686
687 #[inline]
688 fn ne(&self, other: &&Self) -> bool {
689 *self != **other
690 }
691}
692
693// `.to_bytes()` representations are compared instead of the inner `[c_char]`s,
694// because `c_char` is `i8` (not `u8`) on some platforms.
695// That is why this is implemented manually and not derived.
696#[cfg(not(feature = "ferrocene_subset"))]
697#[stable(feature = "rust1", since = "1.0.0")]
698impl PartialOrd for CStr {
699 #[inline]
700 fn partial_cmp(&self, other: &CStr) -> Option<Ordering> {
701 self.to_bytes().partial_cmp(&other.to_bytes())
702 }
703}
704
705#[cfg(not(feature = "ferrocene_subset"))]
706#[stable(feature = "rust1", since = "1.0.0")]
707impl Ord for CStr {
708 #[inline]
709 fn cmp(&self, other: &CStr) -> Ordering {
710 self.to_bytes().cmp(&other.to_bytes())
711 }
712}
713
714#[cfg(not(feature = "ferrocene_subset"))]
715#[stable(feature = "cstr_range_from", since = "1.47.0")]
716impl ops::Index<ops::RangeFrom<usize>> for CStr {
717 type Output = CStr;
718
719 #[inline]
720 fn index(&self, index: ops::RangeFrom<usize>) -> &CStr {
721 let bytes = self.to_bytes_with_nul();
722 // we need to manually check the starting index to account for the null
723 // byte, since otherwise we could get an empty string that doesn't end
724 // in a null.
725 if index.start < bytes.len() {
726 // SAFETY: Non-empty tail of a valid `CStr` is still a valid `CStr`.
727 unsafe { CStr::from_bytes_with_nul_unchecked(&bytes[index.start..]) }
728 } else {
729 panic!(
730 "index out of bounds: the len is {} but the index is {}",
731 bytes.len(),
732 index.start
733 );
734 }
735 }
736}
737
738#[cfg(not(feature = "ferrocene_subset"))]
739#[stable(feature = "cstring_asref", since = "1.7.0")]
740#[rustc_const_unstable(feature = "const_convert", issue = "143773")]
741impl const AsRef<CStr> for CStr {
742 #[inline]
743 fn as_ref(&self) -> &CStr {
744 self
745 }
746}
747
748/// Calculate the length of a nul-terminated string. Defers to C's `strlen` when possible.
749///
750/// # Safety
751///
752/// The pointer must point to a valid buffer that contains a NUL terminator. The NUL must be
753/// located within `isize::MAX` from `ptr`.
754#[inline]
755#[unstable(feature = "cstr_internals", issue = "none")]
756#[rustc_allow_const_fn_unstable(const_eval_select)]
757const unsafe fn strlen(ptr: *const c_char) -> usize {
758 const_eval_select!(
759 @capture { s: *const c_char = ptr } -> usize:
760 if const {
761 let mut len = 0;
762
763 // SAFETY: Outer caller has provided a pointer to a valid C string.
764 while unsafe { *s.add(len) } != 0 {
765 len += 1;
766 }
767
768 len
769 } else {
770 unsafe extern "C" {
771 /// Provided by libc or compiler_builtins.
772 fn strlen(s: *const c_char) -> usize;
773 }
774
775 // SAFETY: Outer caller has provided a pointer to a valid C string.
776 unsafe { strlen(s) }
777 }
778 )
779}
780
781/// An iterator over the bytes of a [`CStr`], without the nul terminator.
782///
783/// This struct is created by the [`bytes`] method on [`CStr`].
784/// See its documentation for more.
785///
786/// [`bytes`]: CStr::bytes
787#[cfg(not(feature = "ferrocene_subset"))]
788#[must_use = "iterators are lazy and do nothing unless consumed"]
789#[unstable(feature = "cstr_bytes", issue = "112115")]
790#[derive(Clone, Debug)]
791pub struct Bytes<'a> {
792 // since we know the string is nul-terminated, we only need one pointer
793 ptr: NonNull<u8>,
794 phantom: PhantomData<&'a [c_char]>,
795}
796
797#[cfg(not(feature = "ferrocene_subset"))]
798#[unstable(feature = "cstr_bytes", issue = "112115")]
799unsafe impl Send for Bytes<'_> {}
800
801#[cfg(not(feature = "ferrocene_subset"))]
802#[unstable(feature = "cstr_bytes", issue = "112115")]
803unsafe impl Sync for Bytes<'_> {}
804
805#[cfg(not(feature = "ferrocene_subset"))]
806impl<'a> Bytes<'a> {
807 #[inline]
808 fn new(s: &'a CStr) -> Self {
809 Self { ptr: s.as_non_null_ptr().cast(), phantom: PhantomData }
810 }
811
812 #[inline]
813 fn is_empty(&self) -> bool {
814 // SAFETY: We uphold that the pointer is always valid to dereference
815 // by starting with a valid C string and then never incrementing beyond
816 // the nul terminator.
817 unsafe { self.ptr.read() == 0 }
818 }
819}
820
821#[cfg(not(feature = "ferrocene_subset"))]
822#[unstable(feature = "cstr_bytes", issue = "112115")]
823impl Iterator for Bytes<'_> {
824 type Item = u8;
825
826 #[inline]
827 fn next(&mut self) -> Option<u8> {
828 // SAFETY: We only choose a pointer from a valid C string, which must
829 // be non-null and contain at least one value. Since we always stop at
830 // the nul terminator, which is guaranteed to exist, we can assume that
831 // the pointer is non-null and valid. This lets us safely dereference
832 // it and assume that adding 1 will create a new, non-null, valid
833 // pointer.
834 unsafe {
835 let ret = self.ptr.read();
836 if ret == 0 {
837 None
838 } else {
839 self.ptr = self.ptr.add(1);
840 Some(ret)
841 }
842 }
843 }
844
845 #[inline]
846 fn size_hint(&self) -> (usize, Option<usize>) {
847 if self.is_empty() { (0, Some(0)) } else { (1, None) }
848 }
849
850 #[inline]
851 fn count(self) -> usize {
852 // SAFETY: We always hold a valid pointer to a C string
853 unsafe { strlen(self.ptr.as_ptr().cast()) }
854 }
855}
856
857#[cfg(not(feature = "ferrocene_subset"))]
858#[unstable(feature = "cstr_bytes", issue = "112115")]
859impl FusedIterator for Bytes<'_> {}