core/ffi/c_str.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829
//! [`CStr`] and its related types.
use crate::cmp::Ordering;
use crate::error::Error;
use crate::ffi::c_char;
use crate::intrinsics::const_eval_select;
use crate::iter::FusedIterator;
use crate::marker::PhantomData;
use crate::ptr::NonNull;
use crate::slice::memchr;
use crate::{fmt, ops, slice, str};
// FIXME: because this is doc(inline)d, we *have* to use intra-doc links because the actual link
// depends on where the item is being documented. however, since this is libcore, we can't
// actually reference libstd or liballoc in intra-doc links. so, the best we can do is remove the
// links to `CString` and `String` for now until a solution is developed
/// Representation of a borrowed C string.
///
/// This type represents a borrowed reference to a nul-terminated
/// array of bytes. It can be constructed safely from a <code>&[[u8]]</code>
/// slice, or unsafely from a raw `*const c_char`. It can be expressed as a
/// literal in the form `c"Hello world"`.
///
/// The `CStr` can then be converted to a Rust <code>&[str]</code> by performing
/// UTF-8 validation, or into an owned `CString`.
///
/// `&CStr` is to `CString` as <code>&[str]</code> is to `String`: the former
/// in each pair are borrowed references; the latter are owned
/// strings.
///
/// Note that this structure does **not** have a guaranteed layout (the `repr(transparent)`
/// notwithstanding) and should not be placed in the signatures of FFI functions.
/// Instead, safe wrappers of FFI functions may leverage [`CStr::as_ptr`] and the unsafe
/// [`CStr::from_ptr`] constructor to provide a safe interface to other consumers.
///
/// # Examples
///
/// Inspecting a foreign C string:
///
/// ```
/// use std::ffi::CStr;
/// use std::os::raw::c_char;
///
/// # /* Extern functions are awkward in doc comments - fake it instead
/// extern "C" { fn my_string() -> *const c_char; }
/// # */ unsafe extern "C" fn my_string() -> *const c_char { c"hello".as_ptr() }
///
/// unsafe {
/// let slice = CStr::from_ptr(my_string());
/// println!("string buffer size without nul terminator: {}", slice.to_bytes().len());
/// }
/// ```
///
/// Passing a Rust-originating C string:
///
/// ```
/// use std::ffi::{CString, CStr};
/// use std::os::raw::c_char;
///
/// fn work(data: &CStr) {
/// # /* Extern functions are awkward in doc comments - fake it instead
/// extern "C" { fn work_with(data: *const c_char); }
/// # */ unsafe extern "C" fn work_with(s: *const c_char) {}
///
/// unsafe { work_with(data.as_ptr()) }
/// }
///
/// let s = CString::new("data data data data").expect("CString::new failed");
/// work(&s);
/// ```
///
/// Converting a foreign C string into a Rust `String`:
///
/// ```
/// use std::ffi::CStr;
/// use std::os::raw::c_char;
///
/// # /* Extern functions are awkward in doc comments - fake it instead
/// extern "C" { fn my_string() -> *const c_char; }
/// # */ unsafe extern "C" fn my_string() -> *const c_char { c"hello".as_ptr() }
///
/// fn my_string_safe() -> String {
/// let cstr = unsafe { CStr::from_ptr(my_string()) };
/// // Get copy-on-write Cow<'_, str>, then guarantee a freshly-owned String allocation
/// String::from_utf8_lossy(cstr.to_bytes()).to_string()
/// }
///
/// println!("string: {}", my_string_safe());
/// ```
///
/// [str]: prim@str "str"
#[derive(PartialEq, Eq, Hash)]
#[stable(feature = "core_c_str", since = "1.64.0")]
#[rustc_diagnostic_item = "cstr_type"]
#[rustc_has_incoherent_inherent_impls]
#[lang = "CStr"]
// `fn from` in `impl From<&CStr> for Box<CStr>` current implementation relies
// on `CStr` being layout-compatible with `[u8]`.
// However, `CStr` layout is considered an implementation detail and must not be relied upon. We
// want `repr(transparent)` but we don't want it to show up in rustdoc, so we hide it under
// `cfg(doc)`. This is an ad-hoc implementation of attribute privacy.
#[repr(transparent)]
pub struct CStr {
// FIXME: this should not be represented with a DST slice but rather with
// just a raw `c_char` along with some form of marker to make
// this an unsized type. Essentially `sizeof(&CStr)` should be the
// same as `sizeof(&c_char)` but `CStr` should be an unsized type.
inner: [c_char],
}
/// An error indicating that a nul byte was not in the expected position.
///
/// The slice used to create a [`CStr`] must have one and only one nul byte,
/// positioned at the end.
///
/// This error is created by the [`CStr::from_bytes_with_nul`] method.
/// See its documentation for more.
///
/// # Examples
///
/// ```
/// use std::ffi::{CStr, FromBytesWithNulError};
///
/// let _: FromBytesWithNulError = CStr::from_bytes_with_nul(b"f\0oo").unwrap_err();
/// ```
#[derive(Clone, PartialEq, Eq, Debug)]
#[stable(feature = "core_c_str", since = "1.64.0")]
pub struct FromBytesWithNulError {
kind: FromBytesWithNulErrorKind,
}
#[derive(Clone, PartialEq, Eq, Debug)]
enum FromBytesWithNulErrorKind {
InteriorNul(usize),
NotNulTerminated,
}
// FIXME: const stability attributes should not be required here, I think
impl FromBytesWithNulError {
const fn interior_nul(pos: usize) -> FromBytesWithNulError {
FromBytesWithNulError { kind: FromBytesWithNulErrorKind::InteriorNul(pos) }
}
const fn not_nul_terminated() -> FromBytesWithNulError {
FromBytesWithNulError { kind: FromBytesWithNulErrorKind::NotNulTerminated }
}
}
#[stable(feature = "frombyteswithnulerror_impls", since = "1.17.0")]
impl Error for FromBytesWithNulError {
#[allow(deprecated)]
fn description(&self) -> &str {
match self.kind {
FromBytesWithNulErrorKind::InteriorNul(..) => {
"data provided contains an interior nul byte"
}
FromBytesWithNulErrorKind::NotNulTerminated => "data provided is not nul terminated",
}
}
}
/// An error indicating that no nul byte was present.
///
/// A slice used to create a [`CStr`] must contain a nul byte somewhere
/// within the slice.
///
/// This error is created by the [`CStr::from_bytes_until_nul`] method.
///
#[derive(Clone, PartialEq, Eq, Debug)]
#[stable(feature = "cstr_from_bytes_until_nul", since = "1.69.0")]
pub struct FromBytesUntilNulError(());
#[stable(feature = "cstr_from_bytes_until_nul", since = "1.69.0")]
impl fmt::Display for FromBytesUntilNulError {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
write!(f, "data provided does not contain a nul")
}
}
#[stable(feature = "cstr_debug", since = "1.3.0")]
impl fmt::Debug for CStr {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
write!(f, "\"{}\"", self.to_bytes().escape_ascii())
}
}
#[stable(feature = "cstr_default", since = "1.10.0")]
impl Default for &CStr {
#[inline]
fn default() -> Self {
const SLICE: &[c_char] = &[0];
// SAFETY: `SLICE` is indeed pointing to a valid nul-terminated string.
unsafe { CStr::from_ptr(SLICE.as_ptr()) }
}
}
#[stable(feature = "frombyteswithnulerror_impls", since = "1.17.0")]
impl fmt::Display for FromBytesWithNulError {
#[allow(deprecated, deprecated_in_future)]
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.write_str(self.description())?;
if let FromBytesWithNulErrorKind::InteriorNul(pos) = self.kind {
write!(f, " at byte pos {pos}")?;
}
Ok(())
}
}
impl CStr {
/// Wraps a raw C string with a safe C string wrapper.
///
/// This function will wrap the provided `ptr` with a `CStr` wrapper, which
/// allows inspection and interoperation of non-owned C strings. The total
/// size of the terminated buffer must be smaller than [`isize::MAX`] **bytes**
/// in memory (a restriction from [`slice::from_raw_parts`]).
///
/// # Safety
///
/// * The memory pointed to by `ptr` must contain a valid nul terminator at the
/// end of the string.
///
/// * `ptr` must be [valid] for reads of bytes up to and including the nul terminator.
/// This means in particular:
///
/// * The entire memory range of this `CStr` must be contained within a single allocated object!
/// * `ptr` must be non-null even for a zero-length cstr.
///
/// * The memory referenced by the returned `CStr` must not be mutated for
/// the duration of lifetime `'a`.
///
/// * The nul terminator must be within `isize::MAX` from `ptr`
///
/// > **Note**: This operation is intended to be a 0-cost cast but it is
/// > currently implemented with an up-front calculation of the length of
/// > the string. This is not guaranteed to always be the case.
///
/// # Caveat
///
/// The lifetime for the returned slice is inferred from its usage. To prevent accidental misuse,
/// it's suggested to tie the lifetime to whichever source lifetime is safe in the context,
/// such as by providing a helper function taking the lifetime of a host value for the slice,
/// or by explicit annotation.
///
/// # Examples
///
/// ```
/// use std::ffi::{c_char, CStr};
///
/// fn my_string() -> *const c_char {
/// c"hello".as_ptr()
/// }
///
/// unsafe {
/// let slice = CStr::from_ptr(my_string());
/// assert_eq!(slice.to_str().unwrap(), "hello");
/// }
/// ```
///
/// ```
/// use std::ffi::{c_char, CStr};
///
/// const HELLO_PTR: *const c_char = {
/// const BYTES: &[u8] = b"Hello, world!\0";
/// BYTES.as_ptr().cast()
/// };
/// const HELLO: &CStr = unsafe { CStr::from_ptr(HELLO_PTR) };
///
/// assert_eq!(c"Hello, world!", HELLO);
/// ```
///
/// [valid]: core::ptr#safety
#[inline] // inline is necessary for codegen to see strlen.
#[must_use]
#[stable(feature = "rust1", since = "1.0.0")]
#[rustc_const_stable(feature = "const_cstr_from_ptr", since = "1.81.0")]
pub const unsafe fn from_ptr<'a>(ptr: *const c_char) -> &'a CStr {
// SAFETY: The caller has provided a pointer that points to a valid C
// string with a NUL terminator less than `isize::MAX` from `ptr`.
let len = unsafe { strlen(ptr) };
// SAFETY: The caller has provided a valid pointer with length less than
// `isize::MAX`, so `from_raw_parts` is safe. The content remains valid
// and doesn't change for the lifetime of the returned `CStr`. This
// means the call to `from_bytes_with_nul_unchecked` is correct.
//
// The cast from c_char to u8 is ok because a c_char is always one byte.
unsafe { Self::from_bytes_with_nul_unchecked(slice::from_raw_parts(ptr.cast(), len + 1)) }
}
/// Creates a C string wrapper from a byte slice with any number of nuls.
///
/// This method will create a `CStr` from any byte slice that contains at
/// least one nul byte. Unlike with [`CStr::from_bytes_with_nul`], the caller
/// does not need to know where the nul byte is located.
///
/// If the first byte is a nul character, this method will return an
/// empty `CStr`. If multiple nul characters are present, the `CStr` will
/// end at the first one.
///
/// If the slice only has a single nul byte at the end, this method is
/// equivalent to [`CStr::from_bytes_with_nul`].
///
/// # Examples
/// ```
/// use std::ffi::CStr;
///
/// let mut buffer = [0u8; 16];
/// unsafe {
/// // Here we might call an unsafe C function that writes a string
/// // into the buffer.
/// let buf_ptr = buffer.as_mut_ptr();
/// buf_ptr.write_bytes(b'A', 8);
/// }
/// // Attempt to extract a C nul-terminated string from the buffer.
/// let c_str = CStr::from_bytes_until_nul(&buffer[..]).unwrap();
/// assert_eq!(c_str.to_str().unwrap(), "AAAAAAAA");
/// ```
///
#[stable(feature = "cstr_from_bytes_until_nul", since = "1.69.0")]
#[rustc_const_stable(feature = "cstr_from_bytes_until_nul", since = "1.69.0")]
pub const fn from_bytes_until_nul(bytes: &[u8]) -> Result<&CStr, FromBytesUntilNulError> {
let nul_pos = memchr::memchr(0, bytes);
match nul_pos {
Some(nul_pos) => {
// FIXME(const-hack) replace with range index
// SAFETY: nul_pos + 1 <= bytes.len()
let subslice = unsafe { crate::slice::from_raw_parts(bytes.as_ptr(), nul_pos + 1) };
// SAFETY: We know there is a nul byte at nul_pos, so this slice
// (ending at the nul byte) is a well-formed C string.
Ok(unsafe { CStr::from_bytes_with_nul_unchecked(subslice) })
}
None => Err(FromBytesUntilNulError(())),
}
}
/// Creates a C string wrapper from a byte slice with exactly one nul
/// terminator.
///
/// This function will cast the provided `bytes` to a `CStr`
/// wrapper after ensuring that the byte slice is nul-terminated
/// and does not contain any interior nul bytes.
///
/// If the nul byte may not be at the end,
/// [`CStr::from_bytes_until_nul`] can be used instead.
///
/// # Examples
///
/// ```
/// use std::ffi::CStr;
///
/// let cstr = CStr::from_bytes_with_nul(b"hello\0");
/// assert!(cstr.is_ok());
/// ```
///
/// Creating a `CStr` without a trailing nul terminator is an error:
///
/// ```
/// use std::ffi::CStr;
///
/// let cstr = CStr::from_bytes_with_nul(b"hello");
/// assert!(cstr.is_err());
/// ```
///
/// Creating a `CStr` with an interior nul byte is an error:
///
/// ```
/// use std::ffi::CStr;
///
/// let cstr = CStr::from_bytes_with_nul(b"he\0llo\0");
/// assert!(cstr.is_err());
/// ```
#[stable(feature = "cstr_from_bytes", since = "1.10.0")]
#[rustc_const_stable(feature = "const_cstr_methods", since = "1.72.0")]
pub const fn from_bytes_with_nul(bytes: &[u8]) -> Result<&Self, FromBytesWithNulError> {
let nul_pos = memchr::memchr(0, bytes);
match nul_pos {
Some(nul_pos) if nul_pos + 1 == bytes.len() => {
// SAFETY: We know there is only one nul byte, at the end
// of the byte slice.
Ok(unsafe { Self::from_bytes_with_nul_unchecked(bytes) })
}
Some(nul_pos) => Err(FromBytesWithNulError::interior_nul(nul_pos)),
None => Err(FromBytesWithNulError::not_nul_terminated()),
}
}
/// Unsafely creates a C string wrapper from a byte slice.
///
/// This function will cast the provided `bytes` to a `CStr` wrapper without
/// performing any sanity checks.
///
/// # Safety
/// The provided slice **must** be nul-terminated and not contain any interior
/// nul bytes.
///
/// # Examples
///
/// ```
/// use std::ffi::{CStr, CString};
///
/// unsafe {
/// let cstring = CString::new("hello").expect("CString::new failed");
/// let cstr = CStr::from_bytes_with_nul_unchecked(cstring.to_bytes_with_nul());
/// assert_eq!(cstr, &*cstring);
/// }
/// ```
#[inline]
#[must_use]
#[stable(feature = "cstr_from_bytes", since = "1.10.0")]
#[rustc_const_stable(feature = "const_cstr_unchecked", since = "1.59.0")]
#[rustc_allow_const_fn_unstable(const_eval_select)]
pub const unsafe fn from_bytes_with_nul_unchecked(bytes: &[u8]) -> &CStr {
const_eval_select!(
@capture { bytes: &[u8] } -> &CStr:
if const {
// Saturating so that an empty slice panics in the assert with a good
// message, not here due to underflow.
let mut i = bytes.len().saturating_sub(1);
assert!(!bytes.is_empty() && bytes[i] == 0, "input was not nul-terminated");
// Ending nul byte exists, skip to the rest.
while i != 0 {
i -= 1;
let byte = bytes[i];
assert!(byte != 0, "input contained interior nul");
}
// SAFETY: See runtime cast comment below.
unsafe { &*(bytes as *const [u8] as *const CStr) }
} else {
// Chance at catching some UB at runtime with debug builds.
debug_assert!(!bytes.is_empty() && bytes[bytes.len() - 1] == 0);
// SAFETY: Casting to CStr is safe because its internal representation
// is a [u8] too (safe only inside std).
// Dereferencing the obtained pointer is safe because it comes from a
// reference. Making a reference is then safe because its lifetime
// is bound by the lifetime of the given `bytes`.
unsafe { &*(bytes as *const [u8] as *const CStr) }
}
)
}
/// Returns the inner pointer to this C string.
///
/// The returned pointer will be valid for as long as `self` is, and points
/// to a contiguous region of memory terminated with a 0 byte to represent
/// the end of the string.
///
/// The type of the returned pointer is
/// [`*const c_char`][crate::ffi::c_char], and whether it's
/// an alias for `*const i8` or `*const u8` is platform-specific.
///
/// **WARNING**
///
/// The returned pointer is read-only; writing to it (including passing it
/// to C code that writes to it) causes undefined behavior.
///
/// It is your responsibility to make sure that the underlying memory is not
/// freed too early. For example, the following code will cause undefined
/// behavior when `ptr` is used inside the `unsafe` block:
///
/// ```no_run
/// # #![allow(unused_must_use)]
/// # #![expect(dangling_pointers_from_temporaries)]
/// use std::ffi::CString;
///
/// // Do not do this:
/// let ptr = CString::new("Hello").expect("CString::new failed").as_ptr();
/// unsafe {
/// // `ptr` is dangling
/// *ptr;
/// }
/// ```
///
/// This happens because the pointer returned by `as_ptr` does not carry any
/// lifetime information and the `CString` is deallocated immediately after
/// the `CString::new("Hello").expect("CString::new failed").as_ptr()`
/// expression is evaluated.
/// To fix the problem, bind the `CString` to a local variable:
///
/// ```no_run
/// # #![allow(unused_must_use)]
/// use std::ffi::CString;
///
/// let hello = CString::new("Hello").expect("CString::new failed");
/// let ptr = hello.as_ptr();
/// unsafe {
/// // `ptr` is valid because `hello` is in scope
/// *ptr;
/// }
/// ```
///
/// This way, the lifetime of the `CString` in `hello` encompasses
/// the lifetime of `ptr` and the `unsafe` block.
#[inline]
#[must_use]
#[stable(feature = "rust1", since = "1.0.0")]
#[rustc_const_stable(feature = "const_str_as_ptr", since = "1.32.0")]
#[rustc_as_ptr]
#[rustc_never_returns_null_ptr]
pub const fn as_ptr(&self) -> *const c_char {
self.inner.as_ptr()
}
/// We could eventually expose this publicly, if we wanted.
#[inline]
#[must_use]
const fn as_non_null_ptr(&self) -> NonNull<c_char> {
// FIXME(const_trait_impl) replace with `NonNull::from`
// SAFETY: a reference is never null
unsafe { NonNull::new_unchecked(&self.inner as *const [c_char] as *mut [c_char]) }
.as_non_null_ptr()
}
/// Returns the length of `self`. Like C's `strlen`, this does not include the nul terminator.
///
/// > **Note**: This method is currently implemented as a constant-time
/// > cast, but it is planned to alter its definition in the future to
/// > perform the length calculation whenever this method is called.
///
/// # Examples
///
/// ```
/// use std::ffi::CStr;
///
/// let cstr = CStr::from_bytes_with_nul(b"foo\0").unwrap();
/// assert_eq!(cstr.count_bytes(), 3);
///
/// let cstr = CStr::from_bytes_with_nul(b"\0").unwrap();
/// assert_eq!(cstr.count_bytes(), 0);
/// ```
#[inline]
#[must_use]
#[doc(alias("len", "strlen"))]
#[stable(feature = "cstr_count_bytes", since = "1.79.0")]
#[rustc_const_stable(feature = "const_cstr_from_ptr", since = "1.81.0")]
pub const fn count_bytes(&self) -> usize {
self.inner.len() - 1
}
/// Returns `true` if `self.to_bytes()` has a length of 0.
///
/// # Examples
///
/// ```
/// use std::ffi::CStr;
/// # use std::ffi::FromBytesWithNulError;
///
/// # fn main() { test().unwrap(); }
/// # fn test() -> Result<(), FromBytesWithNulError> {
/// let cstr = CStr::from_bytes_with_nul(b"foo\0")?;
/// assert!(!cstr.is_empty());
///
/// let empty_cstr = CStr::from_bytes_with_nul(b"\0")?;
/// assert!(empty_cstr.is_empty());
/// assert!(c"".is_empty());
/// # Ok(())
/// # }
/// ```
#[inline]
#[stable(feature = "cstr_is_empty", since = "1.71.0")]
#[rustc_const_stable(feature = "cstr_is_empty", since = "1.71.0")]
pub const fn is_empty(&self) -> bool {
// SAFETY: We know there is at least one byte; for empty strings it
// is the NUL terminator.
// FIXME(const-hack): use get_unchecked
unsafe { *self.inner.as_ptr() == 0 }
}
/// Converts this C string to a byte slice.
///
/// The returned slice will **not** contain the trailing nul terminator that this C
/// string has.
///
/// > **Note**: This method is currently implemented as a constant-time
/// > cast, but it is planned to alter its definition in the future to
/// > perform the length calculation whenever this method is called.
///
/// # Examples
///
/// ```
/// use std::ffi::CStr;
///
/// let cstr = CStr::from_bytes_with_nul(b"foo\0").expect("CStr::from_bytes_with_nul failed");
/// assert_eq!(cstr.to_bytes(), b"foo");
/// ```
#[inline]
#[must_use = "this returns the result of the operation, \
without modifying the original"]
#[stable(feature = "rust1", since = "1.0.0")]
#[rustc_const_stable(feature = "const_cstr_methods", since = "1.72.0")]
pub const fn to_bytes(&self) -> &[u8] {
let bytes = self.to_bytes_with_nul();
// FIXME(const-hack) replace with range index
// SAFETY: to_bytes_with_nul returns slice with length at least 1
unsafe { slice::from_raw_parts(bytes.as_ptr(), bytes.len() - 1) }
}
/// Converts this C string to a byte slice containing the trailing 0 byte.
///
/// This function is the equivalent of [`CStr::to_bytes`] except that it
/// will retain the trailing nul terminator instead of chopping it off.
///
/// > **Note**: This method is currently implemented as a 0-cost cast, but
/// > it is planned to alter its definition in the future to perform the
/// > length calculation whenever this method is called.
///
/// # Examples
///
/// ```
/// use std::ffi::CStr;
///
/// let cstr = CStr::from_bytes_with_nul(b"foo\0").expect("CStr::from_bytes_with_nul failed");
/// assert_eq!(cstr.to_bytes_with_nul(), b"foo\0");
/// ```
#[inline]
#[must_use = "this returns the result of the operation, \
without modifying the original"]
#[stable(feature = "rust1", since = "1.0.0")]
#[rustc_const_stable(feature = "const_cstr_methods", since = "1.72.0")]
pub const fn to_bytes_with_nul(&self) -> &[u8] {
// SAFETY: Transmuting a slice of `c_char`s to a slice of `u8`s
// is safe on all supported targets.
unsafe { &*((&raw const self.inner) as *const [u8]) }
}
/// Iterates over the bytes in this C string.
///
/// The returned iterator will **not** contain the trailing nul terminator
/// that this C string has.
///
/// # Examples
///
/// ```
/// #![feature(cstr_bytes)]
/// use std::ffi::CStr;
///
/// let cstr = CStr::from_bytes_with_nul(b"foo\0").expect("CStr::from_bytes_with_nul failed");
/// assert!(cstr.bytes().eq(*b"foo"));
/// ```
#[inline]
#[unstable(feature = "cstr_bytes", issue = "112115")]
pub fn bytes(&self) -> Bytes<'_> {
Bytes::new(self)
}
/// Yields a <code>&[str]</code> slice if the `CStr` contains valid UTF-8.
///
/// If the contents of the `CStr` are valid UTF-8 data, this
/// function will return the corresponding <code>&[str]</code> slice. Otherwise,
/// it will return an error with details of where UTF-8 validation failed.
///
/// [str]: prim@str "str"
///
/// # Examples
///
/// ```
/// use std::ffi::CStr;
///
/// let cstr = CStr::from_bytes_with_nul(b"foo\0").expect("CStr::from_bytes_with_nul failed");
/// assert_eq!(cstr.to_str(), Ok("foo"));
/// ```
#[stable(feature = "cstr_to_str", since = "1.4.0")]
#[rustc_const_stable(feature = "const_cstr_methods", since = "1.72.0")]
pub const fn to_str(&self) -> Result<&str, str::Utf8Error> {
// N.B., when `CStr` is changed to perform the length check in `.to_bytes()`
// instead of in `from_ptr()`, it may be worth considering if this should
// be rewritten to do the UTF-8 check inline with the length calculation
// instead of doing it afterwards.
str::from_utf8(self.to_bytes())
}
}
// `.to_bytes()` representations are compared instead of the inner `[c_char]`s,
// because `c_char` is `i8` (not `u8`) on some platforms.
// That is why this is implemented manually and not derived.
#[stable(feature = "rust1", since = "1.0.0")]
impl PartialOrd for CStr {
#[inline]
fn partial_cmp(&self, other: &CStr) -> Option<Ordering> {
self.to_bytes().partial_cmp(&other.to_bytes())
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl Ord for CStr {
#[inline]
fn cmp(&self, other: &CStr) -> Ordering {
self.to_bytes().cmp(&other.to_bytes())
}
}
#[stable(feature = "cstr_range_from", since = "1.47.0")]
impl ops::Index<ops::RangeFrom<usize>> for CStr {
type Output = CStr;
#[inline]
fn index(&self, index: ops::RangeFrom<usize>) -> &CStr {
let bytes = self.to_bytes_with_nul();
// we need to manually check the starting index to account for the null
// byte, since otherwise we could get an empty string that doesn't end
// in a null.
if index.start < bytes.len() {
// SAFETY: Non-empty tail of a valid `CStr` is still a valid `CStr`.
unsafe { CStr::from_bytes_with_nul_unchecked(&bytes[index.start..]) }
} else {
panic!(
"index out of bounds: the len is {} but the index is {}",
bytes.len(),
index.start
);
}
}
}
#[stable(feature = "cstring_asref", since = "1.7.0")]
impl AsRef<CStr> for CStr {
#[inline]
fn as_ref(&self) -> &CStr {
self
}
}
/// Calculate the length of a nul-terminated string. Defers to C's `strlen` when possible.
///
/// # Safety
///
/// The pointer must point to a valid buffer that contains a NUL terminator. The NUL must be
/// located within `isize::MAX` from `ptr`.
#[inline]
#[unstable(feature = "cstr_internals", issue = "none")]
#[rustc_allow_const_fn_unstable(const_eval_select)]
const unsafe fn strlen(ptr: *const c_char) -> usize {
const_eval_select!(
@capture { s: *const c_char = ptr } -> usize:
if const {
let mut len = 0;
// SAFETY: Outer caller has provided a pointer to a valid C string.
while unsafe { *s.add(len) } != 0 {
len += 1;
}
len
} else {
extern "C" {
/// Provided by libc or compiler_builtins.
fn strlen(s: *const c_char) -> usize;
}
// SAFETY: Outer caller has provided a pointer to a valid C string.
unsafe { strlen(s) }
}
)
}
/// An iterator over the bytes of a [`CStr`], without the nul terminator.
///
/// This struct is created by the [`bytes`] method on [`CStr`].
/// See its documentation for more.
///
/// [`bytes`]: CStr::bytes
#[must_use = "iterators are lazy and do nothing unless consumed"]
#[unstable(feature = "cstr_bytes", issue = "112115")]
#[derive(Clone, Debug)]
pub struct Bytes<'a> {
// since we know the string is nul-terminated, we only need one pointer
ptr: NonNull<u8>,
phantom: PhantomData<&'a [c_char]>,
}
#[unstable(feature = "cstr_bytes", issue = "112115")]
unsafe impl Send for Bytes<'_> {}
#[unstable(feature = "cstr_bytes", issue = "112115")]
unsafe impl Sync for Bytes<'_> {}
impl<'a> Bytes<'a> {
#[inline]
fn new(s: &'a CStr) -> Self {
Self { ptr: s.as_non_null_ptr().cast(), phantom: PhantomData }
}
#[inline]
fn is_empty(&self) -> bool {
// SAFETY: We uphold that the pointer is always valid to dereference
// by starting with a valid C string and then never incrementing beyond
// the nul terminator.
unsafe { self.ptr.read() == 0 }
}
}
#[unstable(feature = "cstr_bytes", issue = "112115")]
impl Iterator for Bytes<'_> {
type Item = u8;
#[inline]
fn next(&mut self) -> Option<u8> {
// SAFETY: We only choose a pointer from a valid C string, which must
// be non-null and contain at least one value. Since we always stop at
// the nul terminator, which is guaranteed to exist, we can assume that
// the pointer is non-null and valid. This lets us safely dereference
// it and assume that adding 1 will create a new, non-null, valid
// pointer.
unsafe {
let ret = self.ptr.read();
if ret == 0 {
None
} else {
self.ptr = self.ptr.add(1);
Some(ret)
}
}
}
#[inline]
fn size_hint(&self) -> (usize, Option<usize>) {
if self.is_empty() { (0, Some(0)) } else { (1, None) }
}
#[inline]
fn count(self) -> usize {
// SAFETY: We always hold a valid pointer to a C string
unsafe { strlen(self.ptr.as_ptr().cast()) }
}
}
#[unstable(feature = "cstr_bytes", issue = "112115")]
impl FusedIterator for Bytes<'_> {}