core/fmt/
mod.rs

1//! Utilities for formatting and printing strings.
2
3#![stable(feature = "rust1", since = "1.0.0")]
4
5use crate::cell::{Cell, Ref, RefCell, RefMut, SyncUnsafeCell, UnsafeCell};
6use crate::char::{EscapeDebugExtArgs, MAX_LEN_UTF8};
7use crate::marker::PhantomData;
8use crate::num::fmt as numfmt;
9use crate::ops::Deref;
10use crate::{iter, result, str};
11
12mod builders;
13#[cfg(not(no_fp_fmt_parse))]
14mod float;
15#[cfg(no_fp_fmt_parse)]
16mod nofloat;
17mod num;
18mod rt;
19
20#[stable(feature = "fmt_flags_align", since = "1.28.0")]
21#[rustc_diagnostic_item = "Alignment"]
22/// Possible alignments returned by `Formatter::align`
23#[derive(Copy, Clone, Debug, PartialEq, Eq)]
24pub enum Alignment {
25    #[stable(feature = "fmt_flags_align", since = "1.28.0")]
26    /// Indication that contents should be left-aligned.
27    Left,
28    #[stable(feature = "fmt_flags_align", since = "1.28.0")]
29    /// Indication that contents should be right-aligned.
30    Right,
31    #[stable(feature = "fmt_flags_align", since = "1.28.0")]
32    /// Indication that contents should be center-aligned.
33    Center,
34}
35
36#[stable(feature = "debug_builders", since = "1.2.0")]
37pub use self::builders::{DebugList, DebugMap, DebugSet, DebugStruct, DebugTuple};
38#[unstable(feature = "debug_closure_helpers", issue = "117729")]
39pub use self::builders::{FromFn, from_fn};
40
41/// The type returned by formatter methods.
42///
43/// # Examples
44///
45/// ```
46/// use std::fmt;
47///
48/// #[derive(Debug)]
49/// struct Triangle {
50///     a: f32,
51///     b: f32,
52///     c: f32
53/// }
54///
55/// impl fmt::Display for Triangle {
56///     fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
57///         write!(f, "({}, {}, {})", self.a, self.b, self.c)
58///     }
59/// }
60///
61/// let pythagorean_triple = Triangle { a: 3.0, b: 4.0, c: 5.0 };
62///
63/// assert_eq!(format!("{pythagorean_triple}"), "(3, 4, 5)");
64/// ```
65#[stable(feature = "rust1", since = "1.0.0")]
66pub type Result = result::Result<(), Error>;
67
68/// The error type which is returned from formatting a message into a stream.
69///
70/// This type does not support transmission of an error other than that an error
71/// occurred. This is because, despite the existence of this error,
72/// string formatting is considered an infallible operation.
73/// `fmt()` implementors should not return this `Error` unless they received it from their
74/// [`Formatter`]. The only time your code should create a new instance of this
75/// error is when implementing `fmt::Write`, in order to cancel the formatting operation when
76/// writing to the underlying stream fails.
77///
78/// Any extra information must be arranged to be transmitted through some other means,
79/// such as storing it in a field to be consulted after the formatting operation has been
80/// cancelled. (For example, this is how [`std::io::Write::write_fmt()`] propagates IO errors
81/// during writing.)
82///
83/// This type, `fmt::Error`, should not be
84/// confused with [`std::io::Error`] or [`std::error::Error`], which you may also
85/// have in scope.
86///
87/// [`std::io::Error`]: ../../std/io/struct.Error.html
88/// [`std::io::Write::write_fmt()`]: ../../std/io/trait.Write.html#method.write_fmt
89/// [`std::error::Error`]: ../../std/error/trait.Error.html
90///
91/// # Examples
92///
93/// ```rust
94/// use std::fmt::{self, write};
95///
96/// let mut output = String::new();
97/// if let Err(fmt::Error) = write(&mut output, format_args!("Hello {}!", "world")) {
98///     panic!("An error occurred");
99/// }
100/// ```
101#[stable(feature = "rust1", since = "1.0.0")]
102#[derive(Copy, Clone, Debug, Default, Eq, Hash, Ord, PartialEq, PartialOrd)]
103pub struct Error;
104
105/// A trait for writing or formatting into Unicode-accepting buffers or streams.
106///
107/// This trait only accepts UTF-8–encoded data and is not [flushable]. If you only
108/// want to accept Unicode and you don't need flushing, you should implement this trait;
109/// otherwise you should implement [`std::io::Write`].
110///
111/// [`std::io::Write`]: ../../std/io/trait.Write.html
112/// [flushable]: ../../std/io/trait.Write.html#tymethod.flush
113#[stable(feature = "rust1", since = "1.0.0")]
114pub trait Write {
115    /// Writes a string slice into this writer, returning whether the write
116    /// succeeded.
117    ///
118    /// This method can only succeed if the entire string slice was successfully
119    /// written, and this method will not return until all data has been
120    /// written or an error occurs.
121    ///
122    /// # Errors
123    ///
124    /// This function will return an instance of [`std::fmt::Error`][Error] on error.
125    ///
126    /// The purpose of that error is to abort the formatting operation when the underlying
127    /// destination encounters some error preventing it from accepting more text;
128    /// in particular, it does not communicate any information about *what* error occurred.
129    /// It should generally be propagated rather than handled, at least when implementing
130    /// formatting traits.
131    ///
132    /// # Examples
133    ///
134    /// ```
135    /// use std::fmt::{Error, Write};
136    ///
137    /// fn writer<W: Write>(f: &mut W, s: &str) -> Result<(), Error> {
138    ///     f.write_str(s)
139    /// }
140    ///
141    /// let mut buf = String::new();
142    /// writer(&mut buf, "hola")?;
143    /// assert_eq!(&buf, "hola");
144    /// # std::fmt::Result::Ok(())
145    /// ```
146    #[stable(feature = "rust1", since = "1.0.0")]
147    fn write_str(&mut self, s: &str) -> Result;
148
149    /// Writes a [`char`] into this writer, returning whether the write succeeded.
150    ///
151    /// A single [`char`] may be encoded as more than one byte.
152    /// This method can only succeed if the entire byte sequence was successfully
153    /// written, and this method will not return until all data has been
154    /// written or an error occurs.
155    ///
156    /// # Errors
157    ///
158    /// This function will return an instance of [`Error`] on error.
159    ///
160    /// # Examples
161    ///
162    /// ```
163    /// use std::fmt::{Error, Write};
164    ///
165    /// fn writer<W: Write>(f: &mut W, c: char) -> Result<(), Error> {
166    ///     f.write_char(c)
167    /// }
168    ///
169    /// let mut buf = String::new();
170    /// writer(&mut buf, 'a')?;
171    /// writer(&mut buf, 'b')?;
172    /// assert_eq!(&buf, "ab");
173    /// # std::fmt::Result::Ok(())
174    /// ```
175    #[stable(feature = "fmt_write_char", since = "1.1.0")]
176    fn write_char(&mut self, c: char) -> Result {
177        self.write_str(c.encode_utf8(&mut [0; MAX_LEN_UTF8]))
178    }
179
180    /// Glue for usage of the [`write!`] macro with implementors of this trait.
181    ///
182    /// This method should generally not be invoked manually, but rather through
183    /// the [`write!`] macro itself.
184    ///
185    /// # Errors
186    ///
187    /// This function will return an instance of [`Error`] on error. Please see
188    /// [write_str](Write::write_str) for details.
189    ///
190    /// # Examples
191    ///
192    /// ```
193    /// use std::fmt::{Error, Write};
194    ///
195    /// fn writer<W: Write>(f: &mut W, s: &str) -> Result<(), Error> {
196    ///     f.write_fmt(format_args!("{s}"))
197    /// }
198    ///
199    /// let mut buf = String::new();
200    /// writer(&mut buf, "world")?;
201    /// assert_eq!(&buf, "world");
202    /// # std::fmt::Result::Ok(())
203    /// ```
204    #[stable(feature = "rust1", since = "1.0.0")]
205    fn write_fmt(&mut self, args: Arguments<'_>) -> Result {
206        // We use a specialization for `Sized` types to avoid an indirection
207        // through `&mut self`
208        trait SpecWriteFmt {
209            fn spec_write_fmt(self, args: Arguments<'_>) -> Result;
210        }
211
212        impl<W: Write + ?Sized> SpecWriteFmt for &mut W {
213            #[inline]
214            default fn spec_write_fmt(mut self, args: Arguments<'_>) -> Result {
215                if let Some(s) = args.as_statically_known_str() {
216                    self.write_str(s)
217                } else {
218                    write(&mut self, args)
219                }
220            }
221        }
222
223        impl<W: Write> SpecWriteFmt for &mut W {
224            #[inline]
225            fn spec_write_fmt(self, args: Arguments<'_>) -> Result {
226                if let Some(s) = args.as_statically_known_str() {
227                    self.write_str(s)
228                } else {
229                    write(self, args)
230                }
231            }
232        }
233
234        self.spec_write_fmt(args)
235    }
236}
237
238#[stable(feature = "fmt_write_blanket_impl", since = "1.4.0")]
239impl<W: Write + ?Sized> Write for &mut W {
240    fn write_str(&mut self, s: &str) -> Result {
241        (**self).write_str(s)
242    }
243
244    fn write_char(&mut self, c: char) -> Result {
245        (**self).write_char(c)
246    }
247
248    fn write_fmt(&mut self, args: Arguments<'_>) -> Result {
249        (**self).write_fmt(args)
250    }
251}
252
253/// The signedness of a [`Formatter`] (or of a [`FormattingOptions`]).
254#[derive(Copy, Clone, Debug, PartialEq, Eq)]
255#[unstable(feature = "formatting_options", issue = "118117")]
256pub enum Sign {
257    /// Represents the `+` flag.
258    Plus,
259    /// Represents the `-` flag.
260    Minus,
261}
262
263/// Specifies whether the [`Debug`] trait should use lower-/upper-case
264/// hexadecimal or normal integers.
265#[derive(Copy, Clone, Debug, PartialEq, Eq)]
266#[unstable(feature = "formatting_options", issue = "118117")]
267pub enum DebugAsHex {
268    /// Use lower-case hexadecimal integers for the `Debug` trait (like [the `x?` type](../../std/fmt/index.html#formatting-traits)).
269    Lower,
270    /// Use upper-case hexadecimal integers for the `Debug` trait (like [the `X?` type](../../std/fmt/index.html#formatting-traits)).
271    Upper,
272}
273
274/// Options for formatting.
275///
276/// `FormattingOptions` is a [`Formatter`] without an attached [`Write`] trait.
277/// It is mainly used to construct `Formatter` instances.
278#[derive(Copy, Clone, Debug, PartialEq, Eq)]
279#[unstable(feature = "formatting_options", issue = "118117")]
280pub struct FormattingOptions {
281    /// Flags, with the following bit fields:
282    ///
283    /// ```text
284    ///   31  30  29  28  27  26  25  24  23  22  21  20                              0
285    /// ┌───┬───────┬───┬───┬───┬───┬───┬───┬───┬───┬──────────────────────────────────┐
286    /// │ 1 │ align │ p │ w │ X?│ x?│'0'│ # │ - │ + │               fill               │
287    /// └───┴───────┴───┴───┴───┴───┴───┴───┴───┴───┴──────────────────────────────────┘
288    ///   │     │     │   │  └─┬───────────────────┘ └─┬──────────────────────────────┘
289    ///   │     │     │   │    │                       └─ The fill character (21 bits char).
290    ///   │     │     │   │    └─ The debug upper/lower hex, zero pad, alternate, and plus/minus flags.
291    ///   │     │     │   └─ Whether a width is set. (The value is stored separately.)
292    ///   │     │     └─ Whether a precision is set. (The value is stored separately.)
293    ///   │     ├─ 0: Align left. (<)
294    ///   │     ├─ 1: Align right. (>)
295    ///   │     ├─ 2: Align center. (^)
296    ///   │     └─ 3: Alignment not set. (default)
297    ///   └─ Always set.
298    ///      This makes it possible to distinguish formatting flags from
299    ///      a &str size when stored in (the upper bits of) the same field.
300    ///      (fmt::Arguments will make use of this property in the future.)
301    /// ```
302    // Note: This could use a special niche type with range 0x8000_0000..=0xfdd0ffff.
303    // It's unclear if that's useful, though.
304    flags: u32,
305    /// Width if width flag (bit 27) above is set. Otherwise, always 0.
306    width: u16,
307    /// Precision if precision flag (bit 28) above is set. Otherwise, always 0.
308    precision: u16,
309}
310
311// This needs to match with compiler/rustc_ast_lowering/src/format.rs.
312mod flags {
313    pub(super) const SIGN_PLUS_FLAG: u32 = 1 << 21;
314    pub(super) const SIGN_MINUS_FLAG: u32 = 1 << 22;
315    pub(super) const ALTERNATE_FLAG: u32 = 1 << 23;
316    pub(super) const SIGN_AWARE_ZERO_PAD_FLAG: u32 = 1 << 24;
317    pub(super) const DEBUG_LOWER_HEX_FLAG: u32 = 1 << 25;
318    pub(super) const DEBUG_UPPER_HEX_FLAG: u32 = 1 << 26;
319    pub(super) const WIDTH_FLAG: u32 = 1 << 27;
320    pub(super) const PRECISION_FLAG: u32 = 1 << 28;
321    pub(super) const ALIGN_BITS: u32 = 0b11 << 29;
322    pub(super) const ALIGN_LEFT: u32 = 0 << 29;
323    pub(super) const ALIGN_RIGHT: u32 = 1 << 29;
324    pub(super) const ALIGN_CENTER: u32 = 2 << 29;
325    pub(super) const ALIGN_UNKNOWN: u32 = 3 << 29;
326    pub(super) const ALWAYS_SET: u32 = 1 << 31;
327}
328
329impl FormattingOptions {
330    /// Construct a new `FormatterBuilder` with the supplied `Write` trait
331    /// object for output that is equivalent to the `{}` formatting
332    /// specifier:
333    ///
334    /// - no flags,
335    /// - filled with spaces,
336    /// - no alignment,
337    /// - no width,
338    /// - no precision, and
339    /// - no [`DebugAsHex`] output mode.
340    #[unstable(feature = "formatting_options", issue = "118117")]
341    pub const fn new() -> Self {
342        Self {
343            flags: ' ' as u32 | flags::ALIGN_UNKNOWN | flags::ALWAYS_SET,
344            width: 0,
345            precision: 0,
346        }
347    }
348
349    /// Sets or removes the sign (the `+` or the `-` flag).
350    ///
351    /// - `+`: This is intended for numeric types and indicates that the sign
352    /// should always be printed. By default only the negative sign of signed
353    /// values is printed, and the sign of positive or unsigned values is
354    /// omitted. This flag indicates that the correct sign (+ or -) should
355    /// always be printed.
356    /// - `-`: Currently not used
357    #[unstable(feature = "formatting_options", issue = "118117")]
358    pub fn sign(&mut self, sign: Option<Sign>) -> &mut Self {
359        let sign = match sign {
360            None => 0,
361            Some(Sign::Plus) => flags::SIGN_PLUS_FLAG,
362            Some(Sign::Minus) => flags::SIGN_MINUS_FLAG,
363        };
364        self.flags = self.flags & !(flags::SIGN_PLUS_FLAG | flags::SIGN_MINUS_FLAG) | sign;
365        self
366    }
367    /// Sets or unsets the `0` flag.
368    ///
369    /// This is used to indicate for integer formats that the padding to width should both be done with a 0 character as well as be sign-aware
370    #[unstable(feature = "formatting_options", issue = "118117")]
371    pub fn sign_aware_zero_pad(&mut self, sign_aware_zero_pad: bool) -> &mut Self {
372        if sign_aware_zero_pad {
373            self.flags |= flags::SIGN_AWARE_ZERO_PAD_FLAG;
374        } else {
375            self.flags &= !flags::SIGN_AWARE_ZERO_PAD_FLAG;
376        }
377        self
378    }
379    /// Sets or unsets the `#` flag.
380    ///
381    /// This flag indicates that the "alternate" form of printing should be
382    /// used. The alternate forms are:
383    /// - [`Debug`] : pretty-print the [`Debug`] formatting (adds linebreaks and indentation)
384    /// - [`LowerHex`] as well as [`UpperHex`] - precedes the argument with a `0x`
385    /// - [`Octal`] - precedes the argument with a `0b`
386    /// - [`Binary`] - precedes the argument with a `0o`
387    #[unstable(feature = "formatting_options", issue = "118117")]
388    pub fn alternate(&mut self, alternate: bool) -> &mut Self {
389        if alternate {
390            self.flags |= flags::ALTERNATE_FLAG;
391        } else {
392            self.flags &= !flags::ALTERNATE_FLAG;
393        }
394        self
395    }
396    /// Sets the fill character.
397    ///
398    /// The optional fill character and alignment is provided normally in
399    /// conjunction with the width parameter. This indicates that if the value
400    /// being formatted is smaller than width some extra characters will be
401    /// printed around it.
402    #[unstable(feature = "formatting_options", issue = "118117")]
403    pub fn fill(&mut self, fill: char) -> &mut Self {
404        self.flags = self.flags & (u32::MAX << 21) | fill as u32;
405        self
406    }
407    /// Sets or removes the alignment.
408    ///
409    /// The alignment specifies how the value being formatted should be
410    /// positioned if it is smaller than the width of the formatter.
411    #[unstable(feature = "formatting_options", issue = "118117")]
412    pub fn align(&mut self, align: Option<Alignment>) -> &mut Self {
413        let align: u32 = match align {
414            Some(Alignment::Left) => flags::ALIGN_LEFT,
415            Some(Alignment::Right) => flags::ALIGN_RIGHT,
416            Some(Alignment::Center) => flags::ALIGN_CENTER,
417            None => flags::ALIGN_UNKNOWN,
418        };
419        self.flags = self.flags & !flags::ALIGN_BITS | align;
420        self
421    }
422    /// Sets or removes the width.
423    ///
424    /// This is a parameter for the “minimum width” that the format should take
425    /// up. If the value’s string does not fill up this many characters, then
426    /// the padding specified by [`FormattingOptions::fill`]/[`FormattingOptions::align`]
427    /// will be used to take up the required space.
428    #[unstable(feature = "formatting_options", issue = "118117")]
429    pub fn width(&mut self, width: Option<u16>) -> &mut Self {
430        if let Some(width) = width {
431            self.flags |= flags::WIDTH_FLAG;
432            self.width = width;
433        } else {
434            self.flags &= !flags::WIDTH_FLAG;
435            self.width = 0;
436        }
437        self
438    }
439    /// Sets or removes the precision.
440    ///
441    /// - For non-numeric types, this can be considered a “maximum width”. If
442    /// the resulting string is longer than this width, then it is truncated
443    /// down to this many characters and that truncated value is emitted with
444    /// proper fill, alignment and width if those parameters are set.
445    /// - For integral types, this is ignored.
446    /// - For floating-point types, this indicates how many digits after the
447    /// decimal point should be printed.
448    #[unstable(feature = "formatting_options", issue = "118117")]
449    pub fn precision(&mut self, precision: Option<u16>) -> &mut Self {
450        if let Some(precision) = precision {
451            self.flags |= flags::PRECISION_FLAG;
452            self.precision = precision;
453        } else {
454            self.flags &= !flags::PRECISION_FLAG;
455            self.precision = 0;
456        }
457        self
458    }
459    /// Specifies whether the [`Debug`] trait should use lower-/upper-case
460    /// hexadecimal or normal integers
461    #[unstable(feature = "formatting_options", issue = "118117")]
462    pub fn debug_as_hex(&mut self, debug_as_hex: Option<DebugAsHex>) -> &mut Self {
463        let debug_as_hex = match debug_as_hex {
464            None => 0,
465            Some(DebugAsHex::Lower) => flags::DEBUG_LOWER_HEX_FLAG,
466            Some(DebugAsHex::Upper) => flags::DEBUG_UPPER_HEX_FLAG,
467        };
468        self.flags = self.flags & !(flags::DEBUG_LOWER_HEX_FLAG | flags::DEBUG_UPPER_HEX_FLAG)
469            | debug_as_hex;
470        self
471    }
472
473    /// Returns the current sign (the `+` or the `-` flag).
474    #[unstable(feature = "formatting_options", issue = "118117")]
475    pub const fn get_sign(&self) -> Option<Sign> {
476        if self.flags & flags::SIGN_PLUS_FLAG != 0 {
477            Some(Sign::Plus)
478        } else if self.flags & flags::SIGN_MINUS_FLAG != 0 {
479            Some(Sign::Minus)
480        } else {
481            None
482        }
483    }
484    /// Returns the current `0` flag.
485    #[unstable(feature = "formatting_options", issue = "118117")]
486    pub const fn get_sign_aware_zero_pad(&self) -> bool {
487        self.flags & flags::SIGN_AWARE_ZERO_PAD_FLAG != 0
488    }
489    /// Returns the current `#` flag.
490    #[unstable(feature = "formatting_options", issue = "118117")]
491    pub const fn get_alternate(&self) -> bool {
492        self.flags & flags::ALTERNATE_FLAG != 0
493    }
494    /// Returns the current fill character.
495    #[unstable(feature = "formatting_options", issue = "118117")]
496    pub const fn get_fill(&self) -> char {
497        // SAFETY: We only ever put a valid `char` in the lower 21 bits of the flags field.
498        unsafe { char::from_u32_unchecked(self.flags & 0x1FFFFF) }
499    }
500    /// Returns the current alignment.
501    #[unstable(feature = "formatting_options", issue = "118117")]
502    pub const fn get_align(&self) -> Option<Alignment> {
503        match self.flags & flags::ALIGN_BITS {
504            flags::ALIGN_LEFT => Some(Alignment::Left),
505            flags::ALIGN_RIGHT => Some(Alignment::Right),
506            flags::ALIGN_CENTER => Some(Alignment::Center),
507            _ => None,
508        }
509    }
510    /// Returns the current width.
511    #[unstable(feature = "formatting_options", issue = "118117")]
512    pub const fn get_width(&self) -> Option<u16> {
513        if self.flags & flags::WIDTH_FLAG != 0 { Some(self.width) } else { None }
514    }
515    /// Returns the current precision.
516    #[unstable(feature = "formatting_options", issue = "118117")]
517    pub const fn get_precision(&self) -> Option<u16> {
518        if self.flags & flags::PRECISION_FLAG != 0 { Some(self.precision) } else { None }
519    }
520    /// Returns the current precision.
521    #[unstable(feature = "formatting_options", issue = "118117")]
522    pub const fn get_debug_as_hex(&self) -> Option<DebugAsHex> {
523        if self.flags & flags::DEBUG_LOWER_HEX_FLAG != 0 {
524            Some(DebugAsHex::Lower)
525        } else if self.flags & flags::DEBUG_UPPER_HEX_FLAG != 0 {
526            Some(DebugAsHex::Upper)
527        } else {
528            None
529        }
530    }
531
532    /// Creates a [`Formatter`] that writes its output to the given [`Write`] trait.
533    ///
534    /// You may alternatively use [`Formatter::new()`].
535    #[unstable(feature = "formatting_options", issue = "118117")]
536    pub fn create_formatter<'a>(self, write: &'a mut (dyn Write + 'a)) -> Formatter<'a> {
537        Formatter { options: self, buf: write }
538    }
539}
540
541#[unstable(feature = "formatting_options", issue = "118117")]
542impl Default for FormattingOptions {
543    /// Same as [`FormattingOptions::new()`].
544    fn default() -> Self {
545        // The `#[derive(Default)]` implementation would set `fill` to `\0` instead of space.
546        Self::new()
547    }
548}
549
550/// Configuration for formatting.
551///
552/// A `Formatter` represents various options related to formatting. Users do not
553/// construct `Formatter`s directly; a mutable reference to one is passed to
554/// the `fmt` method of all formatting traits, like [`Debug`] and [`Display`].
555///
556/// To interact with a `Formatter`, you'll call various methods to change the
557/// various options related to formatting. For examples, please see the
558/// documentation of the methods defined on `Formatter` below.
559#[allow(missing_debug_implementations)]
560#[stable(feature = "rust1", since = "1.0.0")]
561#[rustc_diagnostic_item = "Formatter"]
562pub struct Formatter<'a> {
563    options: FormattingOptions,
564
565    buf: &'a mut (dyn Write + 'a),
566}
567
568impl<'a> Formatter<'a> {
569    /// Creates a new formatter with given [`FormattingOptions`].
570    ///
571    /// If `write` is a reference to a formatter, it is recommended to use
572    /// [`Formatter::with_options`] instead as this can borrow the underlying
573    /// `write`, thereby bypassing one layer of indirection.
574    ///
575    /// You may alternatively use [`FormattingOptions::create_formatter()`].
576    #[unstable(feature = "formatting_options", issue = "118117")]
577    pub fn new(write: &'a mut (dyn Write + 'a), options: FormattingOptions) -> Self {
578        Formatter { options, buf: write }
579    }
580
581    /// Creates a new formatter based on this one with given [`FormattingOptions`].
582    #[unstable(feature = "formatting_options", issue = "118117")]
583    pub fn with_options<'b>(&'b mut self, options: FormattingOptions) -> Formatter<'b> {
584        Formatter { options, buf: self.buf }
585    }
586}
587
588/// This structure represents a safely precompiled version of a format string
589/// and its arguments. This cannot be generated at runtime because it cannot
590/// safely be done, so no constructors are given and the fields are private
591/// to prevent modification.
592///
593/// The [`format_args!`] macro will safely create an instance of this structure.
594/// The macro validates the format string at compile-time so usage of the
595/// [`write()`] and [`format()`] functions can be safely performed.
596///
597/// You can use the `Arguments<'a>` that [`format_args!`] returns in `Debug`
598/// and `Display` contexts as seen below. The example also shows that `Debug`
599/// and `Display` format to the same thing: the interpolated format string
600/// in `format_args!`.
601///
602/// ```rust
603/// let debug = format!("{:?}", format_args!("{} foo {:?}", 1, 2));
604/// let display = format!("{}", format_args!("{} foo {:?}", 1, 2));
605/// assert_eq!("1 foo 2", display);
606/// assert_eq!(display, debug);
607/// ```
608///
609/// [`format()`]: ../../std/fmt/fn.format.html
610#[lang = "format_arguments"]
611#[stable(feature = "rust1", since = "1.0.0")]
612#[derive(Copy, Clone)]
613pub struct Arguments<'a> {
614    // Format string pieces to print.
615    pieces: &'a [&'static str],
616
617    // Placeholder specs, or `None` if all specs are default (as in "{}{}").
618    fmt: Option<&'a [rt::Placeholder]>,
619
620    // Dynamic arguments for interpolation, to be interleaved with string
621    // pieces. (Every argument is preceded by a string piece.)
622    args: &'a [rt::Argument<'a>],
623}
624
625#[doc(hidden)]
626#[unstable(feature = "fmt_internals", issue = "none")]
627impl<'a> Arguments<'a> {
628    /// Estimates the length of the formatted text.
629    ///
630    /// This is intended to be used for setting initial `String` capacity
631    /// when using `format!`. Note: this is neither the lower nor upper bound.
632    #[inline]
633    pub fn estimated_capacity(&self) -> usize {
634        let pieces_length: usize = self.pieces.iter().map(|x| x.len()).sum();
635
636        if self.args.is_empty() {
637            pieces_length
638        } else if !self.pieces.is_empty() && self.pieces[0].is_empty() && pieces_length < 16 {
639            // If the format string starts with an argument,
640            // don't preallocate anything, unless length
641            // of pieces is significant.
642            0
643        } else {
644            // There are some arguments, so any additional push
645            // will reallocate the string. To avoid that,
646            // we're "pre-doubling" the capacity here.
647            pieces_length.checked_mul(2).unwrap_or(0)
648        }
649    }
650}
651
652impl<'a> Arguments<'a> {
653    /// Gets the formatted string, if it has no arguments to be formatted at runtime.
654    ///
655    /// This can be used to avoid allocations in some cases.
656    ///
657    /// # Guarantees
658    ///
659    /// For `format_args!("just a literal")`, this function is guaranteed to
660    /// return `Some("just a literal")`.
661    ///
662    /// For most cases with placeholders, this function will return `None`.
663    ///
664    /// However, the compiler may perform optimizations that can cause this
665    /// function to return `Some(_)` even if the format string contains
666    /// placeholders. For example, `format_args!("Hello, {}!", "world")` may be
667    /// optimized to `format_args!("Hello, world!")`, such that `as_str()`
668    /// returns `Some("Hello, world!")`.
669    ///
670    /// The behavior for anything but the trivial case (without placeholders)
671    /// is not guaranteed, and should not be relied upon for anything other
672    /// than optimization.
673    ///
674    /// # Examples
675    ///
676    /// ```rust
677    /// use std::fmt::Arguments;
678    ///
679    /// fn write_str(_: &str) { /* ... */ }
680    ///
681    /// fn write_fmt(args: &Arguments<'_>) {
682    ///     if let Some(s) = args.as_str() {
683    ///         write_str(s)
684    ///     } else {
685    ///         write_str(&args.to_string());
686    ///     }
687    /// }
688    /// ```
689    ///
690    /// ```rust
691    /// assert_eq!(format_args!("hello").as_str(), Some("hello"));
692    /// assert_eq!(format_args!("").as_str(), Some(""));
693    /// assert_eq!(format_args!("{:?}", std::env::current_dir()).as_str(), None);
694    /// ```
695    #[stable(feature = "fmt_as_str", since = "1.52.0")]
696    #[rustc_const_stable(feature = "const_arguments_as_str", since = "1.84.0")]
697    #[must_use]
698    #[inline]
699    pub const fn as_str(&self) -> Option<&'static str> {
700        match (self.pieces, self.args) {
701            ([], []) => Some(""),
702            ([s], []) => Some(s),
703            _ => None,
704        }
705    }
706
707    /// Same as [`Arguments::as_str`], but will only return `Some(s)` if it can be determined at compile time.
708    #[unstable(feature = "fmt_internals", reason = "internal to standard library", issue = "none")]
709    #[must_use]
710    #[inline]
711    #[doc(hidden)]
712    pub fn as_statically_known_str(&self) -> Option<&'static str> {
713        let s = self.as_str();
714        if core::intrinsics::is_val_statically_known(s.is_some()) { s } else { None }
715    }
716}
717
718// Manually implementing these results in better error messages.
719#[stable(feature = "rust1", since = "1.0.0")]
720impl !Send for Arguments<'_> {}
721#[stable(feature = "rust1", since = "1.0.0")]
722impl !Sync for Arguments<'_> {}
723
724#[stable(feature = "rust1", since = "1.0.0")]
725impl Debug for Arguments<'_> {
726    fn fmt(&self, fmt: &mut Formatter<'_>) -> Result {
727        Display::fmt(self, fmt)
728    }
729}
730
731#[stable(feature = "rust1", since = "1.0.0")]
732impl Display for Arguments<'_> {
733    fn fmt(&self, fmt: &mut Formatter<'_>) -> Result {
734        write(fmt.buf, *self)
735    }
736}
737
738/// `?` formatting.
739///
740/// `Debug` should format the output in a programmer-facing, debugging context.
741///
742/// Generally speaking, you should just `derive` a `Debug` implementation.
743///
744/// When used with the alternate format specifier `#?`, the output is pretty-printed.
745///
746/// For more information on formatters, see [the module-level documentation][module].
747///
748/// [module]: ../../std/fmt/index.html
749///
750/// This trait can be used with `#[derive]` if all fields implement `Debug`. When
751/// `derive`d for structs, it will use the name of the `struct`, then `{`, then a
752/// comma-separated list of each field's name and `Debug` value, then `}`. For
753/// `enum`s, it will use the name of the variant and, if applicable, `(`, then the
754/// `Debug` values of the fields, then `)`.
755///
756/// # Stability
757///
758/// Derived `Debug` formats are not stable, and so may change with future Rust
759/// versions. Additionally, `Debug` implementations of types provided by the
760/// standard library (`std`, `core`, `alloc`, etc.) are not stable, and
761/// may also change with future Rust versions.
762///
763/// # Examples
764///
765/// Deriving an implementation:
766///
767/// ```
768/// #[derive(Debug)]
769/// struct Point {
770///     x: i32,
771///     y: i32,
772/// }
773///
774/// let origin = Point { x: 0, y: 0 };
775///
776/// assert_eq!(
777///     format!("The origin is: {origin:?}"),
778///     "The origin is: Point { x: 0, y: 0 }",
779/// );
780/// ```
781///
782/// Manually implementing:
783///
784/// ```
785/// use std::fmt;
786///
787/// struct Point {
788///     x: i32,
789///     y: i32,
790/// }
791///
792/// impl fmt::Debug for Point {
793///     fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
794///         f.debug_struct("Point")
795///          .field("x", &self.x)
796///          .field("y", &self.y)
797///          .finish()
798///     }
799/// }
800///
801/// let origin = Point { x: 0, y: 0 };
802///
803/// assert_eq!(
804///     format!("The origin is: {origin:?}"),
805///     "The origin is: Point { x: 0, y: 0 }",
806/// );
807/// ```
808///
809/// There are a number of helper methods on the [`Formatter`] struct to help you with manual
810/// implementations, such as [`debug_struct`].
811///
812/// [`debug_struct`]: Formatter::debug_struct
813///
814/// Types that do not wish to use the standard suite of debug representations
815/// provided by the `Formatter` trait (`debug_struct`, `debug_tuple`,
816/// `debug_list`, `debug_set`, `debug_map`) can do something totally custom by
817/// manually writing an arbitrary representation to the `Formatter`.
818///
819/// ```
820/// # use std::fmt;
821/// # struct Point {
822/// #     x: i32,
823/// #     y: i32,
824/// # }
825/// #
826/// impl fmt::Debug for Point {
827///     fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
828///         write!(f, "Point [{} {}]", self.x, self.y)
829///     }
830/// }
831/// ```
832///
833/// `Debug` implementations using either `derive` or the debug builder API
834/// on [`Formatter`] support pretty-printing using the alternate flag: `{:#?}`.
835///
836/// Pretty-printing with `#?`:
837///
838/// ```
839/// #[derive(Debug)]
840/// struct Point {
841///     x: i32,
842///     y: i32,
843/// }
844///
845/// let origin = Point { x: 0, y: 0 };
846///
847/// let expected = "The origin is: Point {
848///     x: 0,
849///     y: 0,
850/// }";
851/// assert_eq!(format!("The origin is: {origin:#?}"), expected);
852/// ```
853
854#[stable(feature = "rust1", since = "1.0.0")]
855#[rustc_on_unimplemented(
856    on(
857        crate_local,
858        label = "`{Self}` cannot be formatted using `{{:?}}`",
859        note = "add `#[derive(Debug)]` to `{Self}` or manually `impl {This} for {Self}`"
860    ),
861    message = "`{Self}` doesn't implement `{This}`",
862    label = "`{Self}` cannot be formatted using `{{:?}}` because it doesn't implement `{This}`"
863)]
864#[doc(alias = "{:?}")]
865#[rustc_diagnostic_item = "Debug"]
866#[rustc_trivial_field_reads]
867pub trait Debug {
868    #[doc = include_str!("fmt_trait_method_doc.md")]
869    ///
870    /// # Examples
871    ///
872    /// ```
873    /// use std::fmt;
874    ///
875    /// struct Position {
876    ///     longitude: f32,
877    ///     latitude: f32,
878    /// }
879    ///
880    /// impl fmt::Debug for Position {
881    ///     fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
882    ///         f.debug_tuple("")
883    ///          .field(&self.longitude)
884    ///          .field(&self.latitude)
885    ///          .finish()
886    ///     }
887    /// }
888    ///
889    /// let position = Position { longitude: 1.987, latitude: 2.983 };
890    /// assert_eq!(format!("{position:?}"), "(1.987, 2.983)");
891    ///
892    /// assert_eq!(format!("{position:#?}"), "(
893    ///     1.987,
894    ///     2.983,
895    /// )");
896    /// ```
897    #[stable(feature = "rust1", since = "1.0.0")]
898    fn fmt(&self, f: &mut Formatter<'_>) -> Result;
899}
900
901// Separate module to reexport the macro `Debug` from prelude without the trait `Debug`.
902pub(crate) mod macros {
903    /// Derive macro generating an impl of the trait `Debug`.
904    #[rustc_builtin_macro]
905    #[stable(feature = "builtin_macro_prelude", since = "1.38.0")]
906    #[allow_internal_unstable(core_intrinsics, fmt_helpers_for_derive)]
907    pub macro Debug($item:item) {
908        /* compiler built-in */
909    }
910}
911#[stable(feature = "builtin_macro_prelude", since = "1.38.0")]
912#[doc(inline)]
913pub use macros::Debug;
914
915/// Format trait for an empty format, `{}`.
916///
917/// Implementing this trait for a type will automatically implement the
918/// [`ToString`][tostring] trait for the type, allowing the usage
919/// of the [`.to_string()`][tostring_function] method. Prefer implementing
920/// the `Display` trait for a type, rather than [`ToString`][tostring].
921///
922/// `Display` is similar to [`Debug`], but `Display` is for user-facing
923/// output, and so cannot be derived.
924///
925/// For more information on formatters, see [the module-level documentation][module].
926///
927/// [module]: ../../std/fmt/index.html
928/// [tostring]: ../../std/string/trait.ToString.html
929/// [tostring_function]: ../../std/string/trait.ToString.html#tymethod.to_string
930///
931/// # Completeness and parseability
932///
933/// `Display` for a type might not necessarily be a lossless or complete representation of the type.
934/// It may omit internal state, precision, or other information the type does not consider important
935/// for user-facing output, as determined by the type. As such, the output of `Display` might not be
936/// possible to parse, and even if it is, the result of parsing might not exactly match the original
937/// value.
938///
939/// However, if a type has a lossless `Display` implementation whose output is meant to be
940/// conveniently machine-parseable and not just meant for human consumption, then the type may wish
941/// to accept the same format in `FromStr`, and document that usage. Having both `Display` and
942/// `FromStr` implementations where the result of `Display` cannot be parsed with `FromStr` may
943/// surprise users.
944///
945/// # Internationalization
946///
947/// Because a type can only have one `Display` implementation, it is often preferable
948/// to only implement `Display` when there is a single most "obvious" way that
949/// values can be formatted as text. This could mean formatting according to the
950/// "invariant" culture and "undefined" locale, or it could mean that the type
951/// display is designed for a specific culture/locale, such as developer logs.
952///
953/// If not all values have a justifiably canonical textual format or if you want
954/// to support alternative formats not covered by the standard set of possible
955/// [formatting traits], the most flexible approach is display adapters: methods
956/// like [`str::escape_default`] or [`Path::display`] which create a wrapper
957/// implementing `Display` to output the specific display format.
958///
959/// [formatting traits]: ../../std/fmt/index.html#formatting-traits
960/// [`Path::display`]: ../../std/path/struct.Path.html#method.display
961///
962/// # Examples
963///
964/// Implementing `Display` on a type:
965///
966/// ```
967/// use std::fmt;
968///
969/// struct Point {
970///     x: i32,
971///     y: i32,
972/// }
973///
974/// impl fmt::Display for Point {
975///     fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
976///         write!(f, "({}, {})", self.x, self.y)
977///     }
978/// }
979///
980/// let origin = Point { x: 0, y: 0 };
981///
982/// assert_eq!(format!("The origin is: {origin}"), "The origin is: (0, 0)");
983/// ```
984#[rustc_on_unimplemented(
985    on(
986        any(Self = "std::path::Path", Self = "std::path::PathBuf"),
987        label = "`{Self}` cannot be formatted with the default formatter; call `.display()` on it",
988        note = "call `.display()` or `.to_string_lossy()` to safely print paths, \
989                as they may contain non-Unicode data"
990    ),
991    message = "`{Self}` doesn't implement `{This}`",
992    label = "`{Self}` cannot be formatted with the default formatter",
993    note = "in format strings you may be able to use `{{:?}}` (or {{:#?}} for pretty-print) instead"
994)]
995#[doc(alias = "{}")]
996#[rustc_diagnostic_item = "Display"]
997#[stable(feature = "rust1", since = "1.0.0")]
998pub trait Display {
999    #[doc = include_str!("fmt_trait_method_doc.md")]
1000    ///
1001    /// # Examples
1002    ///
1003    /// ```
1004    /// use std::fmt;
1005    ///
1006    /// struct Position {
1007    ///     longitude: f32,
1008    ///     latitude: f32,
1009    /// }
1010    ///
1011    /// impl fmt::Display for Position {
1012    ///     fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
1013    ///         write!(f, "({}, {})", self.longitude, self.latitude)
1014    ///     }
1015    /// }
1016    ///
1017    /// assert_eq!(
1018    ///     "(1.987, 2.983)",
1019    ///     format!("{}", Position { longitude: 1.987, latitude: 2.983, }),
1020    /// );
1021    /// ```
1022    #[stable(feature = "rust1", since = "1.0.0")]
1023    fn fmt(&self, f: &mut Formatter<'_>) -> Result;
1024}
1025
1026/// `o` formatting.
1027///
1028/// The `Octal` trait should format its output as a number in base-8.
1029///
1030/// For primitive signed integers (`i8` to `i128`, and `isize`),
1031/// negative values are formatted as the two’s complement representation.
1032///
1033/// The alternate flag, `#`, adds a `0o` in front of the output.
1034///
1035/// For more information on formatters, see [the module-level documentation][module].
1036///
1037/// [module]: ../../std/fmt/index.html
1038///
1039/// # Examples
1040///
1041/// Basic usage with `i32`:
1042///
1043/// ```
1044/// let x = 42; // 42 is '52' in octal
1045///
1046/// assert_eq!(format!("{x:o}"), "52");
1047/// assert_eq!(format!("{x:#o}"), "0o52");
1048///
1049/// assert_eq!(format!("{:o}", -16), "37777777760");
1050/// ```
1051///
1052/// Implementing `Octal` on a type:
1053///
1054/// ```
1055/// use std::fmt;
1056///
1057/// struct Length(i32);
1058///
1059/// impl fmt::Octal for Length {
1060///     fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
1061///         let val = self.0;
1062///
1063///         fmt::Octal::fmt(&val, f) // delegate to i32's implementation
1064///     }
1065/// }
1066///
1067/// let l = Length(9);
1068///
1069/// assert_eq!(format!("l as octal is: {l:o}"), "l as octal is: 11");
1070///
1071/// assert_eq!(format!("l as octal is: {l:#06o}"), "l as octal is: 0o0011");
1072/// ```
1073#[stable(feature = "rust1", since = "1.0.0")]
1074pub trait Octal {
1075    #[doc = include_str!("fmt_trait_method_doc.md")]
1076    #[stable(feature = "rust1", since = "1.0.0")]
1077    fn fmt(&self, f: &mut Formatter<'_>) -> Result;
1078}
1079
1080/// `b` formatting.
1081///
1082/// The `Binary` trait should format its output as a number in binary.
1083///
1084/// For primitive signed integers ([`i8`] to [`i128`], and [`isize`]),
1085/// negative values are formatted as the two’s complement representation.
1086///
1087/// The alternate flag, `#`, adds a `0b` in front of the output.
1088///
1089/// For more information on formatters, see [the module-level documentation][module].
1090///
1091/// [module]: ../../std/fmt/index.html
1092///
1093/// # Examples
1094///
1095/// Basic usage with [`i32`]:
1096///
1097/// ```
1098/// let x = 42; // 42 is '101010' in binary
1099///
1100/// assert_eq!(format!("{x:b}"), "101010");
1101/// assert_eq!(format!("{x:#b}"), "0b101010");
1102///
1103/// assert_eq!(format!("{:b}", -16), "11111111111111111111111111110000");
1104/// ```
1105///
1106/// Implementing `Binary` on a type:
1107///
1108/// ```
1109/// use std::fmt;
1110///
1111/// struct Length(i32);
1112///
1113/// impl fmt::Binary for Length {
1114///     fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
1115///         let val = self.0;
1116///
1117///         fmt::Binary::fmt(&val, f) // delegate to i32's implementation
1118///     }
1119/// }
1120///
1121/// let l = Length(107);
1122///
1123/// assert_eq!(format!("l as binary is: {l:b}"), "l as binary is: 1101011");
1124///
1125/// assert_eq!(
1126///     // Note that the `0b` prefix added by `#` is included in the total width, so we
1127///     // need to add two to correctly display all 32 bits.
1128///     format!("l as binary is: {l:#034b}"),
1129///     "l as binary is: 0b00000000000000000000000001101011"
1130/// );
1131/// ```
1132#[stable(feature = "rust1", since = "1.0.0")]
1133pub trait Binary {
1134    #[doc = include_str!("fmt_trait_method_doc.md")]
1135    #[stable(feature = "rust1", since = "1.0.0")]
1136    fn fmt(&self, f: &mut Formatter<'_>) -> Result;
1137}
1138
1139/// `x` formatting.
1140///
1141/// The `LowerHex` trait should format its output as a number in hexadecimal, with `a` through `f`
1142/// in lower case.
1143///
1144/// For primitive signed integers (`i8` to `i128`, and `isize`),
1145/// negative values are formatted as the two’s complement representation.
1146///
1147/// The alternate flag, `#`, adds a `0x` in front of the output.
1148///
1149/// For more information on formatters, see [the module-level documentation][module].
1150///
1151/// [module]: ../../std/fmt/index.html
1152///
1153/// # Examples
1154///
1155/// Basic usage with `i32`:
1156///
1157/// ```
1158/// let y = 42; // 42 is '2a' in hex
1159///
1160/// assert_eq!(format!("{y:x}"), "2a");
1161/// assert_eq!(format!("{y:#x}"), "0x2a");
1162///
1163/// assert_eq!(format!("{:x}", -16), "fffffff0");
1164/// ```
1165///
1166/// Implementing `LowerHex` on a type:
1167///
1168/// ```
1169/// use std::fmt;
1170///
1171/// struct Length(i32);
1172///
1173/// impl fmt::LowerHex for Length {
1174///     fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
1175///         let val = self.0;
1176///
1177///         fmt::LowerHex::fmt(&val, f) // delegate to i32's implementation
1178///     }
1179/// }
1180///
1181/// let l = Length(9);
1182///
1183/// assert_eq!(format!("l as hex is: {l:x}"), "l as hex is: 9");
1184///
1185/// assert_eq!(format!("l as hex is: {l:#010x}"), "l as hex is: 0x00000009");
1186/// ```
1187#[stable(feature = "rust1", since = "1.0.0")]
1188pub trait LowerHex {
1189    #[doc = include_str!("fmt_trait_method_doc.md")]
1190    #[stable(feature = "rust1", since = "1.0.0")]
1191    fn fmt(&self, f: &mut Formatter<'_>) -> Result;
1192}
1193
1194/// `X` formatting.
1195///
1196/// The `UpperHex` trait should format its output as a number in hexadecimal, with `A` through `F`
1197/// in upper case.
1198///
1199/// For primitive signed integers (`i8` to `i128`, and `isize`),
1200/// negative values are formatted as the two’s complement representation.
1201///
1202/// The alternate flag, `#`, adds a `0x` in front of the output.
1203///
1204/// For more information on formatters, see [the module-level documentation][module].
1205///
1206/// [module]: ../../std/fmt/index.html
1207///
1208/// # Examples
1209///
1210/// Basic usage with `i32`:
1211///
1212/// ```
1213/// let y = 42; // 42 is '2A' in hex
1214///
1215/// assert_eq!(format!("{y:X}"), "2A");
1216/// assert_eq!(format!("{y:#X}"), "0x2A");
1217///
1218/// assert_eq!(format!("{:X}", -16), "FFFFFFF0");
1219/// ```
1220///
1221/// Implementing `UpperHex` on a type:
1222///
1223/// ```
1224/// use std::fmt;
1225///
1226/// struct Length(i32);
1227///
1228/// impl fmt::UpperHex for Length {
1229///     fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
1230///         let val = self.0;
1231///
1232///         fmt::UpperHex::fmt(&val, f) // delegate to i32's implementation
1233///     }
1234/// }
1235///
1236/// let l = Length(i32::MAX);
1237///
1238/// assert_eq!(format!("l as hex is: {l:X}"), "l as hex is: 7FFFFFFF");
1239///
1240/// assert_eq!(format!("l as hex is: {l:#010X}"), "l as hex is: 0x7FFFFFFF");
1241/// ```
1242#[stable(feature = "rust1", since = "1.0.0")]
1243pub trait UpperHex {
1244    #[doc = include_str!("fmt_trait_method_doc.md")]
1245    #[stable(feature = "rust1", since = "1.0.0")]
1246    fn fmt(&self, f: &mut Formatter<'_>) -> Result;
1247}
1248
1249/// `p` formatting.
1250///
1251/// The `Pointer` trait should format its output as a memory location. This is commonly presented
1252/// as hexadecimal. For more information on formatters, see [the module-level documentation][module].
1253///
1254/// Printing of pointers is not a reliable way to discover how Rust programs are implemented.
1255/// The act of reading an address changes the program itself, and may change how the data is represented
1256/// in memory, and may affect which optimizations are applied to the code.
1257///
1258/// The printed pointer values are not guaranteed to be stable nor unique identifiers of objects.
1259/// Rust allows moving values to different memory locations, and may reuse the same memory locations
1260/// for different purposes.
1261///
1262/// There is no guarantee that the printed value can be converted back to a pointer.
1263///
1264/// [module]: ../../std/fmt/index.html
1265///
1266/// # Examples
1267///
1268/// Basic usage with `&i32`:
1269///
1270/// ```
1271/// let x = &42;
1272///
1273/// let address = format!("{x:p}"); // this produces something like '0x7f06092ac6d0'
1274/// ```
1275///
1276/// Implementing `Pointer` on a type:
1277///
1278/// ```
1279/// use std::fmt;
1280///
1281/// struct Length(i32);
1282///
1283/// impl fmt::Pointer for Length {
1284///     fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
1285///         // use `as` to convert to a `*const T`, which implements Pointer, which we can use
1286///
1287///         let ptr = self as *const Self;
1288///         fmt::Pointer::fmt(&ptr, f)
1289///     }
1290/// }
1291///
1292/// let l = Length(42);
1293///
1294/// println!("l is in memory here: {l:p}");
1295///
1296/// let l_ptr = format!("{l:018p}");
1297/// assert_eq!(l_ptr.len(), 18);
1298/// assert_eq!(&l_ptr[..2], "0x");
1299/// ```
1300#[stable(feature = "rust1", since = "1.0.0")]
1301#[rustc_diagnostic_item = "Pointer"]
1302pub trait Pointer {
1303    #[doc = include_str!("fmt_trait_method_doc.md")]
1304    #[stable(feature = "rust1", since = "1.0.0")]
1305    fn fmt(&self, f: &mut Formatter<'_>) -> Result;
1306}
1307
1308/// `e` formatting.
1309///
1310/// The `LowerExp` trait should format its output in scientific notation with a lower-case `e`.
1311///
1312/// For more information on formatters, see [the module-level documentation][module].
1313///
1314/// [module]: ../../std/fmt/index.html
1315///
1316/// # Examples
1317///
1318/// Basic usage with `f64`:
1319///
1320/// ```
1321/// let x = 42.0; // 42.0 is '4.2e1' in scientific notation
1322///
1323/// assert_eq!(format!("{x:e}"), "4.2e1");
1324/// ```
1325///
1326/// Implementing `LowerExp` on a type:
1327///
1328/// ```
1329/// use std::fmt;
1330///
1331/// struct Length(i32);
1332///
1333/// impl fmt::LowerExp for Length {
1334///     fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
1335///         let val = f64::from(self.0);
1336///         fmt::LowerExp::fmt(&val, f) // delegate to f64's implementation
1337///     }
1338/// }
1339///
1340/// let l = Length(100);
1341///
1342/// assert_eq!(
1343///     format!("l in scientific notation is: {l:e}"),
1344///     "l in scientific notation is: 1e2"
1345/// );
1346///
1347/// assert_eq!(
1348///     format!("l in scientific notation is: {l:05e}"),
1349///     "l in scientific notation is: 001e2"
1350/// );
1351/// ```
1352#[stable(feature = "rust1", since = "1.0.0")]
1353pub trait LowerExp {
1354    #[doc = include_str!("fmt_trait_method_doc.md")]
1355    #[stable(feature = "rust1", since = "1.0.0")]
1356    fn fmt(&self, f: &mut Formatter<'_>) -> Result;
1357}
1358
1359/// `E` formatting.
1360///
1361/// The `UpperExp` trait should format its output in scientific notation with an upper-case `E`.
1362///
1363/// For more information on formatters, see [the module-level documentation][module].
1364///
1365/// [module]: ../../std/fmt/index.html
1366///
1367/// # Examples
1368///
1369/// Basic usage with `f64`:
1370///
1371/// ```
1372/// let x = 42.0; // 42.0 is '4.2E1' in scientific notation
1373///
1374/// assert_eq!(format!("{x:E}"), "4.2E1");
1375/// ```
1376///
1377/// Implementing `UpperExp` on a type:
1378///
1379/// ```
1380/// use std::fmt;
1381///
1382/// struct Length(i32);
1383///
1384/// impl fmt::UpperExp for Length {
1385///     fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
1386///         let val = f64::from(self.0);
1387///         fmt::UpperExp::fmt(&val, f) // delegate to f64's implementation
1388///     }
1389/// }
1390///
1391/// let l = Length(100);
1392///
1393/// assert_eq!(
1394///     format!("l in scientific notation is: {l:E}"),
1395///     "l in scientific notation is: 1E2"
1396/// );
1397///
1398/// assert_eq!(
1399///     format!("l in scientific notation is: {l:05E}"),
1400///     "l in scientific notation is: 001E2"
1401/// );
1402/// ```
1403#[stable(feature = "rust1", since = "1.0.0")]
1404pub trait UpperExp {
1405    #[doc = include_str!("fmt_trait_method_doc.md")]
1406    #[stable(feature = "rust1", since = "1.0.0")]
1407    fn fmt(&self, f: &mut Formatter<'_>) -> Result;
1408}
1409
1410/// Takes an output stream and an `Arguments` struct that can be precompiled with
1411/// the `format_args!` macro.
1412///
1413/// The arguments will be formatted according to the specified format string
1414/// into the output stream provided.
1415///
1416/// # Examples
1417///
1418/// Basic usage:
1419///
1420/// ```
1421/// use std::fmt;
1422///
1423/// let mut output = String::new();
1424/// fmt::write(&mut output, format_args!("Hello {}!", "world"))
1425///     .expect("Error occurred while trying to write in String");
1426/// assert_eq!(output, "Hello world!");
1427/// ```
1428///
1429/// Please note that using [`write!`] might be preferable. Example:
1430///
1431/// ```
1432/// use std::fmt::Write;
1433///
1434/// let mut output = String::new();
1435/// write!(&mut output, "Hello {}!", "world")
1436///     .expect("Error occurred while trying to write in String");
1437/// assert_eq!(output, "Hello world!");
1438/// ```
1439///
1440/// [`write!`]: crate::write!
1441#[stable(feature = "rust1", since = "1.0.0")]
1442pub fn write(output: &mut dyn Write, args: Arguments<'_>) -> Result {
1443    let mut formatter = Formatter::new(output, FormattingOptions::new());
1444    let mut idx = 0;
1445
1446    match args.fmt {
1447        None => {
1448            // We can use default formatting parameters for all arguments.
1449            for (i, arg) in args.args.iter().enumerate() {
1450                // SAFETY: args.args and args.pieces come from the same Arguments,
1451                // which guarantees the indexes are always within bounds.
1452                let piece = unsafe { args.pieces.get_unchecked(i) };
1453                if !piece.is_empty() {
1454                    formatter.buf.write_str(*piece)?;
1455                }
1456
1457                // SAFETY: There are no formatting parameters and hence no
1458                // count arguments.
1459                unsafe {
1460                    arg.fmt(&mut formatter)?;
1461                }
1462                idx += 1;
1463            }
1464        }
1465        Some(fmt) => {
1466            // Every spec has a corresponding argument that is preceded by
1467            // a string piece.
1468            for (i, arg) in fmt.iter().enumerate() {
1469                // SAFETY: fmt and args.pieces come from the same Arguments,
1470                // which guarantees the indexes are always within bounds.
1471                let piece = unsafe { args.pieces.get_unchecked(i) };
1472                if !piece.is_empty() {
1473                    formatter.buf.write_str(*piece)?;
1474                }
1475                // SAFETY: arg and args.args come from the same Arguments,
1476                // which guarantees the indexes are always within bounds.
1477                unsafe { run(&mut formatter, arg, args.args) }?;
1478                idx += 1;
1479            }
1480        }
1481    }
1482
1483    // There can be only one trailing string piece left.
1484    if let Some(piece) = args.pieces.get(idx) {
1485        formatter.buf.write_str(*piece)?;
1486    }
1487
1488    Ok(())
1489}
1490
1491unsafe fn run(fmt: &mut Formatter<'_>, arg: &rt::Placeholder, args: &[rt::Argument<'_>]) -> Result {
1492    let (width, precision) =
1493        // SAFETY: arg and args come from the same Arguments,
1494        // which guarantees the indexes are always within bounds.
1495        unsafe { (getcount(args, &arg.width), getcount(args, &arg.precision)) };
1496
1497    let options = FormattingOptions { flags: arg.flags, width, precision };
1498
1499    // Extract the correct argument
1500    debug_assert!(arg.position < args.len());
1501    // SAFETY: arg and args come from the same Arguments,
1502    // which guarantees its index is always within bounds.
1503    let value = unsafe { args.get_unchecked(arg.position) };
1504
1505    // Set all the formatting options.
1506    fmt.options = options;
1507
1508    // Then actually do some printing
1509    // SAFETY: this is a placeholder argument.
1510    unsafe { value.fmt(fmt) }
1511}
1512
1513unsafe fn getcount(args: &[rt::Argument<'_>], cnt: &rt::Count) -> u16 {
1514    match *cnt {
1515        rt::Count::Is(n) => n,
1516        rt::Count::Implied => 0,
1517        rt::Count::Param(i) => {
1518            debug_assert!(i < args.len());
1519            // SAFETY: cnt and args come from the same Arguments,
1520            // which guarantees this index is always within bounds.
1521            unsafe { args.get_unchecked(i).as_u16().unwrap_unchecked() }
1522        }
1523    }
1524}
1525
1526/// Padding after the end of something. Returned by `Formatter::padding`.
1527#[must_use = "don't forget to write the post padding"]
1528pub(crate) struct PostPadding {
1529    fill: char,
1530    padding: u16,
1531}
1532
1533impl PostPadding {
1534    fn new(fill: char, padding: u16) -> PostPadding {
1535        PostPadding { fill, padding }
1536    }
1537
1538    /// Writes this post padding.
1539    pub(crate) fn write(self, f: &mut Formatter<'_>) -> Result {
1540        for _ in 0..self.padding {
1541            f.buf.write_char(self.fill)?;
1542        }
1543        Ok(())
1544    }
1545}
1546
1547impl<'a> Formatter<'a> {
1548    fn wrap_buf<'b, 'c, F>(&'b mut self, wrap: F) -> Formatter<'c>
1549    where
1550        'b: 'c,
1551        F: FnOnce(&'b mut (dyn Write + 'b)) -> &'c mut (dyn Write + 'c),
1552    {
1553        Formatter {
1554            // We want to change this
1555            buf: wrap(self.buf),
1556
1557            // And preserve these
1558            options: self.options,
1559        }
1560    }
1561
1562    // Helper methods used for padding and processing formatting arguments that
1563    // all formatting traits can use.
1564
1565    /// Performs the correct padding for an integer which has already been
1566    /// emitted into a str. The str should *not* contain the sign for the
1567    /// integer, that will be added by this method.
1568    ///
1569    /// # Arguments
1570    ///
1571    /// * is_nonnegative - whether the original integer was either positive or zero.
1572    /// * prefix - if the '#' character (Alternate) is provided, this
1573    ///   is the prefix to put in front of the number.
1574    /// * buf - the byte array that the number has been formatted into
1575    ///
1576    /// This function will correctly account for the flags provided as well as
1577    /// the minimum width. It will not take precision into account.
1578    ///
1579    /// # Examples
1580    ///
1581    /// ```
1582    /// use std::fmt;
1583    ///
1584    /// struct Foo { nb: i32 }
1585    ///
1586    /// impl Foo {
1587    ///     fn new(nb: i32) -> Foo {
1588    ///         Foo {
1589    ///             nb,
1590    ///         }
1591    ///     }
1592    /// }
1593    ///
1594    /// impl fmt::Display for Foo {
1595    ///     fn fmt(&self, formatter: &mut fmt::Formatter<'_>) -> fmt::Result {
1596    ///         // We need to remove "-" from the number output.
1597    ///         let tmp = self.nb.abs().to_string();
1598    ///
1599    ///         formatter.pad_integral(self.nb >= 0, "Foo ", &tmp)
1600    ///     }
1601    /// }
1602    ///
1603    /// assert_eq!(format!("{}", Foo::new(2)), "2");
1604    /// assert_eq!(format!("{}", Foo::new(-1)), "-1");
1605    /// assert_eq!(format!("{}", Foo::new(0)), "0");
1606    /// assert_eq!(format!("{:#}", Foo::new(-1)), "-Foo 1");
1607    /// assert_eq!(format!("{:0>#8}", Foo::new(-1)), "00-Foo 1");
1608    /// ```
1609    #[stable(feature = "rust1", since = "1.0.0")]
1610    pub fn pad_integral(&mut self, is_nonnegative: bool, prefix: &str, buf: &str) -> Result {
1611        let mut width = buf.len();
1612
1613        let mut sign = None;
1614        if !is_nonnegative {
1615            sign = Some('-');
1616            width += 1;
1617        } else if self.sign_plus() {
1618            sign = Some('+');
1619            width += 1;
1620        }
1621
1622        let prefix = if self.alternate() {
1623            width += prefix.chars().count();
1624            Some(prefix)
1625        } else {
1626            None
1627        };
1628
1629        // Writes the sign if it exists, and then the prefix if it was requested
1630        #[inline(never)]
1631        fn write_prefix(f: &mut Formatter<'_>, sign: Option<char>, prefix: Option<&str>) -> Result {
1632            if let Some(c) = sign {
1633                f.buf.write_char(c)?;
1634            }
1635            if let Some(prefix) = prefix { f.buf.write_str(prefix) } else { Ok(()) }
1636        }
1637
1638        // The `width` field is more of a `min-width` parameter at this point.
1639        let min = self.options.width;
1640        if width >= usize::from(min) {
1641            // We're over the minimum width, so then we can just write the bytes.
1642            write_prefix(self, sign, prefix)?;
1643            self.buf.write_str(buf)
1644        } else if self.sign_aware_zero_pad() {
1645            // The sign and prefix goes before the padding if the fill character
1646            // is zero
1647            let old_options = self.options;
1648            self.options.fill('0').align(Some(Alignment::Right));
1649            write_prefix(self, sign, prefix)?;
1650            let post_padding = self.padding(min - width as u16, Alignment::Right)?;
1651            self.buf.write_str(buf)?;
1652            post_padding.write(self)?;
1653            self.options = old_options;
1654            Ok(())
1655        } else {
1656            // Otherwise, the sign and prefix goes after the padding
1657            let post_padding = self.padding(min - width as u16, Alignment::Right)?;
1658            write_prefix(self, sign, prefix)?;
1659            self.buf.write_str(buf)?;
1660            post_padding.write(self)
1661        }
1662    }
1663
1664    /// Takes a string slice and emits it to the internal buffer after applying
1665    /// the relevant formatting flags specified.
1666    ///
1667    /// The flags recognized for generic strings are:
1668    ///
1669    /// * width - the minimum width of what to emit
1670    /// * fill/align - what to emit and where to emit it if the string
1671    ///                provided needs to be padded
1672    /// * precision - the maximum length to emit, the string is truncated if it
1673    ///               is longer than this length
1674    ///
1675    /// Notably this function ignores the `flag` parameters.
1676    ///
1677    /// # Examples
1678    ///
1679    /// ```
1680    /// use std::fmt;
1681    ///
1682    /// struct Foo;
1683    ///
1684    /// impl fmt::Display for Foo {
1685    ///     fn fmt(&self, formatter: &mut fmt::Formatter<'_>) -> fmt::Result {
1686    ///         formatter.pad("Foo")
1687    ///     }
1688    /// }
1689    ///
1690    /// assert_eq!(format!("{Foo:<4}"), "Foo ");
1691    /// assert_eq!(format!("{Foo:0>4}"), "0Foo");
1692    /// ```
1693    #[stable(feature = "rust1", since = "1.0.0")]
1694    pub fn pad(&mut self, s: &str) -> Result {
1695        // Make sure there's a fast path up front.
1696        if self.options.flags & (flags::WIDTH_FLAG | flags::PRECISION_FLAG) == 0 {
1697            return self.buf.write_str(s);
1698        }
1699
1700        // The `precision` field can be interpreted as a maximum width for the
1701        // string being formatted.
1702        let (s, char_count) = if let Some(max_char_count) = self.options.get_precision() {
1703            let mut iter = s.char_indices();
1704            let remaining = match iter.advance_by(usize::from(max_char_count)) {
1705                Ok(()) => 0,
1706                Err(remaining) => remaining.get(),
1707            };
1708            // SAFETY: The offset of `.char_indices()` is guaranteed to be
1709            // in-bounds and between character boundaries.
1710            let truncated = unsafe { s.get_unchecked(..iter.offset()) };
1711            (truncated, usize::from(max_char_count) - remaining)
1712        } else {
1713            // Use the optimized char counting algorithm for the full string.
1714            (s, s.chars().count())
1715        };
1716
1717        // The `width` field is more of a minimum width parameter at this point.
1718        if char_count < usize::from(self.options.width) {
1719            // If we're under the minimum width, then fill up the minimum width
1720            // with the specified string + some alignment.
1721            let post_padding =
1722                self.padding(self.options.width - char_count as u16, Alignment::Left)?;
1723            self.buf.write_str(s)?;
1724            post_padding.write(self)
1725        } else {
1726            // If we're over the minimum width or there is no minimum width, we
1727            // can just emit the string.
1728            self.buf.write_str(s)
1729        }
1730    }
1731
1732    /// Writes the pre-padding and returns the unwritten post-padding.
1733    ///
1734    /// Callers are responsible for ensuring post-padding is written after the
1735    /// thing that is being padded.
1736    pub(crate) fn padding(
1737        &mut self,
1738        padding: u16,
1739        default: Alignment,
1740    ) -> result::Result<PostPadding, Error> {
1741        let align = self.options.get_align().unwrap_or(default);
1742        let fill = self.options.get_fill();
1743
1744        let padding_left = match align {
1745            Alignment::Left => 0,
1746            Alignment::Right => padding,
1747            Alignment::Center => padding / 2,
1748        };
1749
1750        for _ in 0..padding_left {
1751            self.buf.write_char(fill)?;
1752        }
1753
1754        Ok(PostPadding::new(fill, padding - padding_left))
1755    }
1756
1757    /// Takes the formatted parts and applies the padding.
1758    ///
1759    /// Assumes that the caller already has rendered the parts with required precision,
1760    /// so that `self.precision` can be ignored.
1761    ///
1762    /// # Safety
1763    ///
1764    /// Any `numfmt::Part::Copy` parts in `formatted` must contain valid UTF-8.
1765    unsafe fn pad_formatted_parts(&mut self, formatted: &numfmt::Formatted<'_>) -> Result {
1766        if self.options.width == 0 {
1767            // this is the common case and we take a shortcut
1768            // SAFETY: Per the precondition.
1769            unsafe { self.write_formatted_parts(formatted) }
1770        } else {
1771            // for the sign-aware zero padding, we render the sign first and
1772            // behave as if we had no sign from the beginning.
1773            let mut formatted = formatted.clone();
1774            let mut width = self.options.width;
1775            let old_options = self.options;
1776            if self.sign_aware_zero_pad() {
1777                // a sign always goes first
1778                let sign = formatted.sign;
1779                self.buf.write_str(sign)?;
1780
1781                // remove the sign from the formatted parts
1782                formatted.sign = "";
1783                width = width.saturating_sub(sign.len() as u16);
1784                self.options.fill('0').align(Some(Alignment::Right));
1785            }
1786
1787            // remaining parts go through the ordinary padding process.
1788            let len = formatted.len();
1789            let ret = if usize::from(width) <= len {
1790                // no padding
1791                // SAFETY: Per the precondition.
1792                unsafe { self.write_formatted_parts(&formatted) }
1793            } else {
1794                let post_padding = self.padding(width - len as u16, Alignment::Right)?;
1795                // SAFETY: Per the precondition.
1796                unsafe {
1797                    self.write_formatted_parts(&formatted)?;
1798                }
1799                post_padding.write(self)
1800            };
1801            self.options = old_options;
1802            ret
1803        }
1804    }
1805
1806    /// # Safety
1807    ///
1808    /// Any `numfmt::Part::Copy` parts in `formatted` must contain valid UTF-8.
1809    unsafe fn write_formatted_parts(&mut self, formatted: &numfmt::Formatted<'_>) -> Result {
1810        unsafe fn write_bytes(buf: &mut dyn Write, s: &[u8]) -> Result {
1811            // SAFETY: This is used for `numfmt::Part::Num` and `numfmt::Part::Copy`.
1812            // It's safe to use for `numfmt::Part::Num` since every char `c` is between
1813            // `b'0'` and `b'9'`, which means `s` is valid UTF-8. It's safe to use for
1814            // `numfmt::Part::Copy` due to this function's precondition.
1815            buf.write_str(unsafe { str::from_utf8_unchecked(s) })
1816        }
1817
1818        if !formatted.sign.is_empty() {
1819            self.buf.write_str(formatted.sign)?;
1820        }
1821        for part in formatted.parts {
1822            match *part {
1823                numfmt::Part::Zero(mut nzeroes) => {
1824                    const ZEROES: &str = // 64 zeroes
1825                        "0000000000000000000000000000000000000000000000000000000000000000";
1826                    while nzeroes > ZEROES.len() {
1827                        self.buf.write_str(ZEROES)?;
1828                        nzeroes -= ZEROES.len();
1829                    }
1830                    if nzeroes > 0 {
1831                        self.buf.write_str(&ZEROES[..nzeroes])?;
1832                    }
1833                }
1834                numfmt::Part::Num(mut v) => {
1835                    let mut s = [0; 5];
1836                    let len = part.len();
1837                    for c in s[..len].iter_mut().rev() {
1838                        *c = b'0' + (v % 10) as u8;
1839                        v /= 10;
1840                    }
1841                    // SAFETY: Per the precondition.
1842                    unsafe {
1843                        write_bytes(self.buf, &s[..len])?;
1844                    }
1845                }
1846                // SAFETY: Per the precondition.
1847                numfmt::Part::Copy(buf) => unsafe {
1848                    write_bytes(self.buf, buf)?;
1849                },
1850            }
1851        }
1852        Ok(())
1853    }
1854
1855    /// Writes some data to the underlying buffer contained within this
1856    /// formatter.
1857    ///
1858    /// # Examples
1859    ///
1860    /// ```
1861    /// use std::fmt;
1862    ///
1863    /// struct Foo;
1864    ///
1865    /// impl fmt::Display for Foo {
1866    ///     fn fmt(&self, formatter: &mut fmt::Formatter<'_>) -> fmt::Result {
1867    ///         formatter.write_str("Foo")
1868    ///         // This is equivalent to:
1869    ///         // write!(formatter, "Foo")
1870    ///     }
1871    /// }
1872    ///
1873    /// assert_eq!(format!("{Foo}"), "Foo");
1874    /// assert_eq!(format!("{Foo:0>8}"), "Foo");
1875    /// ```
1876    #[stable(feature = "rust1", since = "1.0.0")]
1877    pub fn write_str(&mut self, data: &str) -> Result {
1878        self.buf.write_str(data)
1879    }
1880
1881    /// Glue for usage of the [`write!`] macro with implementors of this trait.
1882    ///
1883    /// This method should generally not be invoked manually, but rather through
1884    /// the [`write!`] macro itself.
1885    ///
1886    /// Writes some formatted information into this instance.
1887    ///
1888    /// # Examples
1889    ///
1890    /// ```
1891    /// use std::fmt;
1892    ///
1893    /// struct Foo(i32);
1894    ///
1895    /// impl fmt::Display for Foo {
1896    ///     fn fmt(&self, formatter: &mut fmt::Formatter<'_>) -> fmt::Result {
1897    ///         formatter.write_fmt(format_args!("Foo {}", self.0))
1898    ///     }
1899    /// }
1900    ///
1901    /// assert_eq!(format!("{}", Foo(-1)), "Foo -1");
1902    /// assert_eq!(format!("{:0>8}", Foo(2)), "Foo 2");
1903    /// ```
1904    #[stable(feature = "rust1", since = "1.0.0")]
1905    #[inline]
1906    pub fn write_fmt(&mut self, fmt: Arguments<'_>) -> Result {
1907        if let Some(s) = fmt.as_statically_known_str() {
1908            self.buf.write_str(s)
1909        } else {
1910            write(self.buf, fmt)
1911        }
1912    }
1913
1914    /// Returns flags for formatting.
1915    #[must_use]
1916    #[stable(feature = "rust1", since = "1.0.0")]
1917    #[deprecated(
1918        since = "1.24.0",
1919        note = "use the `sign_plus`, `sign_minus`, `alternate`, \
1920                or `sign_aware_zero_pad` methods instead"
1921    )]
1922    pub fn flags(&self) -> u32 {
1923        // Extract the debug upper/lower hex, zero pad, alternate, and plus/minus flags
1924        // to stay compatible with older versions of Rust.
1925        self.options.flags >> 21 & 0x3F
1926    }
1927
1928    /// Returns the character used as 'fill' whenever there is alignment.
1929    ///
1930    /// # Examples
1931    ///
1932    /// ```
1933    /// use std::fmt;
1934    ///
1935    /// struct Foo;
1936    ///
1937    /// impl fmt::Display for Foo {
1938    ///     fn fmt(&self, formatter: &mut fmt::Formatter<'_>) -> fmt::Result {
1939    ///         let c = formatter.fill();
1940    ///         if let Some(width) = formatter.width() {
1941    ///             for _ in 0..width {
1942    ///                 write!(formatter, "{c}")?;
1943    ///             }
1944    ///             Ok(())
1945    ///         } else {
1946    ///             write!(formatter, "{c}")
1947    ///         }
1948    ///     }
1949    /// }
1950    ///
1951    /// // We set alignment to the right with ">".
1952    /// assert_eq!(format!("{Foo:G>3}"), "GGG");
1953    /// assert_eq!(format!("{Foo:t>6}"), "tttttt");
1954    /// ```
1955    #[must_use]
1956    #[stable(feature = "fmt_flags", since = "1.5.0")]
1957    pub fn fill(&self) -> char {
1958        self.options.get_fill()
1959    }
1960
1961    /// Returns a flag indicating what form of alignment was requested.
1962    ///
1963    /// # Examples
1964    ///
1965    /// ```
1966    /// use std::fmt::{self, Alignment};
1967    ///
1968    /// struct Foo;
1969    ///
1970    /// impl fmt::Display for Foo {
1971    ///     fn fmt(&self, formatter: &mut fmt::Formatter<'_>) -> fmt::Result {
1972    ///         let s = if let Some(s) = formatter.align() {
1973    ///             match s {
1974    ///                 Alignment::Left    => "left",
1975    ///                 Alignment::Right   => "right",
1976    ///                 Alignment::Center  => "center",
1977    ///             }
1978    ///         } else {
1979    ///             "into the void"
1980    ///         };
1981    ///         write!(formatter, "{s}")
1982    ///     }
1983    /// }
1984    ///
1985    /// assert_eq!(format!("{Foo:<}"), "left");
1986    /// assert_eq!(format!("{Foo:>}"), "right");
1987    /// assert_eq!(format!("{Foo:^}"), "center");
1988    /// assert_eq!(format!("{Foo}"), "into the void");
1989    /// ```
1990    #[must_use]
1991    #[stable(feature = "fmt_flags_align", since = "1.28.0")]
1992    pub fn align(&self) -> Option<Alignment> {
1993        self.options.get_align()
1994    }
1995
1996    /// Returns the optionally specified integer width that the output should be.
1997    ///
1998    /// # Examples
1999    ///
2000    /// ```
2001    /// use std::fmt;
2002    ///
2003    /// struct Foo(i32);
2004    ///
2005    /// impl fmt::Display for Foo {
2006    ///     fn fmt(&self, formatter: &mut fmt::Formatter<'_>) -> fmt::Result {
2007    ///         if let Some(width) = formatter.width() {
2008    ///             // If we received a width, we use it
2009    ///             write!(formatter, "{:width$}", format!("Foo({})", self.0), width = width)
2010    ///         } else {
2011    ///             // Otherwise we do nothing special
2012    ///             write!(formatter, "Foo({})", self.0)
2013    ///         }
2014    ///     }
2015    /// }
2016    ///
2017    /// assert_eq!(format!("{:10}", Foo(23)), "Foo(23)   ");
2018    /// assert_eq!(format!("{}", Foo(23)), "Foo(23)");
2019    /// ```
2020    #[must_use]
2021    #[stable(feature = "fmt_flags", since = "1.5.0")]
2022    pub fn width(&self) -> Option<usize> {
2023        if self.options.flags & flags::WIDTH_FLAG == 0 {
2024            None
2025        } else {
2026            Some(self.options.width as usize)
2027        }
2028    }
2029
2030    /// Returns the optionally specified precision for numeric types.
2031    /// Alternatively, the maximum width for string types.
2032    ///
2033    /// # Examples
2034    ///
2035    /// ```
2036    /// use std::fmt;
2037    ///
2038    /// struct Foo(f32);
2039    ///
2040    /// impl fmt::Display for Foo {
2041    ///     fn fmt(&self, formatter: &mut fmt::Formatter<'_>) -> fmt::Result {
2042    ///         if let Some(precision) = formatter.precision() {
2043    ///             // If we received a precision, we use it.
2044    ///             write!(formatter, "Foo({1:.*})", precision, self.0)
2045    ///         } else {
2046    ///             // Otherwise we default to 2.
2047    ///             write!(formatter, "Foo({:.2})", self.0)
2048    ///         }
2049    ///     }
2050    /// }
2051    ///
2052    /// assert_eq!(format!("{:.4}", Foo(23.2)), "Foo(23.2000)");
2053    /// assert_eq!(format!("{}", Foo(23.2)), "Foo(23.20)");
2054    /// ```
2055    #[must_use]
2056    #[stable(feature = "fmt_flags", since = "1.5.0")]
2057    pub fn precision(&self) -> Option<usize> {
2058        if self.options.flags & flags::PRECISION_FLAG == 0 {
2059            None
2060        } else {
2061            Some(self.options.precision as usize)
2062        }
2063    }
2064
2065    /// Determines if the `+` flag was specified.
2066    ///
2067    /// # Examples
2068    ///
2069    /// ```
2070    /// use std::fmt;
2071    ///
2072    /// struct Foo(i32);
2073    ///
2074    /// impl fmt::Display for Foo {
2075    ///     fn fmt(&self, formatter: &mut fmt::Formatter<'_>) -> fmt::Result {
2076    ///         if formatter.sign_plus() {
2077    ///             write!(formatter,
2078    ///                    "Foo({}{})",
2079    ///                    if self.0 < 0 { '-' } else { '+' },
2080    ///                    self.0.abs())
2081    ///         } else {
2082    ///             write!(formatter, "Foo({})", self.0)
2083    ///         }
2084    ///     }
2085    /// }
2086    ///
2087    /// assert_eq!(format!("{:+}", Foo(23)), "Foo(+23)");
2088    /// assert_eq!(format!("{:+}", Foo(-23)), "Foo(-23)");
2089    /// assert_eq!(format!("{}", Foo(23)), "Foo(23)");
2090    /// ```
2091    #[must_use]
2092    #[stable(feature = "fmt_flags", since = "1.5.0")]
2093    pub fn sign_plus(&self) -> bool {
2094        self.options.flags & flags::SIGN_PLUS_FLAG != 0
2095    }
2096
2097    /// Determines if the `-` flag was specified.
2098    ///
2099    /// # Examples
2100    ///
2101    /// ```
2102    /// use std::fmt;
2103    ///
2104    /// struct Foo(i32);
2105    ///
2106    /// impl fmt::Display for Foo {
2107    ///     fn fmt(&self, formatter: &mut fmt::Formatter<'_>) -> fmt::Result {
2108    ///         if formatter.sign_minus() {
2109    ///             // You want a minus sign? Have one!
2110    ///             write!(formatter, "-Foo({})", self.0)
2111    ///         } else {
2112    ///             write!(formatter, "Foo({})", self.0)
2113    ///         }
2114    ///     }
2115    /// }
2116    ///
2117    /// assert_eq!(format!("{:-}", Foo(23)), "-Foo(23)");
2118    /// assert_eq!(format!("{}", Foo(23)), "Foo(23)");
2119    /// ```
2120    #[must_use]
2121    #[stable(feature = "fmt_flags", since = "1.5.0")]
2122    pub fn sign_minus(&self) -> bool {
2123        self.options.flags & flags::SIGN_MINUS_FLAG != 0
2124    }
2125
2126    /// Determines if the `#` flag was specified.
2127    ///
2128    /// # Examples
2129    ///
2130    /// ```
2131    /// use std::fmt;
2132    ///
2133    /// struct Foo(i32);
2134    ///
2135    /// impl fmt::Display for Foo {
2136    ///     fn fmt(&self, formatter: &mut fmt::Formatter<'_>) -> fmt::Result {
2137    ///         if formatter.alternate() {
2138    ///             write!(formatter, "Foo({})", self.0)
2139    ///         } else {
2140    ///             write!(formatter, "{}", self.0)
2141    ///         }
2142    ///     }
2143    /// }
2144    ///
2145    /// assert_eq!(format!("{:#}", Foo(23)), "Foo(23)");
2146    /// assert_eq!(format!("{}", Foo(23)), "23");
2147    /// ```
2148    #[must_use]
2149    #[stable(feature = "fmt_flags", since = "1.5.0")]
2150    pub fn alternate(&self) -> bool {
2151        self.options.flags & flags::ALTERNATE_FLAG != 0
2152    }
2153
2154    /// Determines if the `0` flag was specified.
2155    ///
2156    /// # Examples
2157    ///
2158    /// ```
2159    /// use std::fmt;
2160    ///
2161    /// struct Foo(i32);
2162    ///
2163    /// impl fmt::Display for Foo {
2164    ///     fn fmt(&self, formatter: &mut fmt::Formatter<'_>) -> fmt::Result {
2165    ///         assert!(formatter.sign_aware_zero_pad());
2166    ///         assert_eq!(formatter.width(), Some(4));
2167    ///         // We ignore the formatter's options.
2168    ///         write!(formatter, "{}", self.0)
2169    ///     }
2170    /// }
2171    ///
2172    /// assert_eq!(format!("{:04}", Foo(23)), "23");
2173    /// ```
2174    #[must_use]
2175    #[stable(feature = "fmt_flags", since = "1.5.0")]
2176    pub fn sign_aware_zero_pad(&self) -> bool {
2177        self.options.flags & flags::SIGN_AWARE_ZERO_PAD_FLAG != 0
2178    }
2179
2180    // FIXME: Decide what public API we want for these two flags.
2181    // https://github.com/rust-lang/rust/issues/48584
2182    fn debug_lower_hex(&self) -> bool {
2183        self.options.flags & flags::DEBUG_LOWER_HEX_FLAG != 0
2184    }
2185    fn debug_upper_hex(&self) -> bool {
2186        self.options.flags & flags::DEBUG_UPPER_HEX_FLAG != 0
2187    }
2188
2189    /// Creates a [`DebugStruct`] builder designed to assist with creation of
2190    /// [`fmt::Debug`] implementations for structs.
2191    ///
2192    /// [`fmt::Debug`]: self::Debug
2193    ///
2194    /// # Examples
2195    ///
2196    /// ```rust
2197    /// use std::fmt;
2198    /// use std::net::Ipv4Addr;
2199    ///
2200    /// struct Foo {
2201    ///     bar: i32,
2202    ///     baz: String,
2203    ///     addr: Ipv4Addr,
2204    /// }
2205    ///
2206    /// impl fmt::Debug for Foo {
2207    ///     fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
2208    ///         fmt.debug_struct("Foo")
2209    ///             .field("bar", &self.bar)
2210    ///             .field("baz", &self.baz)
2211    ///             .field("addr", &format_args!("{}", self.addr))
2212    ///             .finish()
2213    ///     }
2214    /// }
2215    ///
2216    /// assert_eq!(
2217    ///     "Foo { bar: 10, baz: \"Hello World\", addr: 127.0.0.1 }",
2218    ///     format!("{:?}", Foo {
2219    ///         bar: 10,
2220    ///         baz: "Hello World".to_string(),
2221    ///         addr: Ipv4Addr::new(127, 0, 0, 1),
2222    ///     })
2223    /// );
2224    /// ```
2225    #[stable(feature = "debug_builders", since = "1.2.0")]
2226    pub fn debug_struct<'b>(&'b mut self, name: &str) -> DebugStruct<'b, 'a> {
2227        builders::debug_struct_new(self, name)
2228    }
2229
2230    /// Shrinks `derive(Debug)` code, for faster compilation and smaller
2231    /// binaries. `debug_struct_fields_finish` is more general, but this is
2232    /// faster for 1 field.
2233    #[doc(hidden)]
2234    #[unstable(feature = "fmt_helpers_for_derive", issue = "none")]
2235    pub fn debug_struct_field1_finish<'b>(
2236        &'b mut self,
2237        name: &str,
2238        name1: &str,
2239        value1: &dyn Debug,
2240    ) -> Result {
2241        let mut builder = builders::debug_struct_new(self, name);
2242        builder.field(name1, value1);
2243        builder.finish()
2244    }
2245
2246    /// Shrinks `derive(Debug)` code, for faster compilation and smaller
2247    /// binaries. `debug_struct_fields_finish` is more general, but this is
2248    /// faster for 2 fields.
2249    #[doc(hidden)]
2250    #[unstable(feature = "fmt_helpers_for_derive", issue = "none")]
2251    pub fn debug_struct_field2_finish<'b>(
2252        &'b mut self,
2253        name: &str,
2254        name1: &str,
2255        value1: &dyn Debug,
2256        name2: &str,
2257        value2: &dyn Debug,
2258    ) -> Result {
2259        let mut builder = builders::debug_struct_new(self, name);
2260        builder.field(name1, value1);
2261        builder.field(name2, value2);
2262        builder.finish()
2263    }
2264
2265    /// Shrinks `derive(Debug)` code, for faster compilation and smaller
2266    /// binaries. `debug_struct_fields_finish` is more general, but this is
2267    /// faster for 3 fields.
2268    #[doc(hidden)]
2269    #[unstable(feature = "fmt_helpers_for_derive", issue = "none")]
2270    pub fn debug_struct_field3_finish<'b>(
2271        &'b mut self,
2272        name: &str,
2273        name1: &str,
2274        value1: &dyn Debug,
2275        name2: &str,
2276        value2: &dyn Debug,
2277        name3: &str,
2278        value3: &dyn Debug,
2279    ) -> Result {
2280        let mut builder = builders::debug_struct_new(self, name);
2281        builder.field(name1, value1);
2282        builder.field(name2, value2);
2283        builder.field(name3, value3);
2284        builder.finish()
2285    }
2286
2287    /// Shrinks `derive(Debug)` code, for faster compilation and smaller
2288    /// binaries. `debug_struct_fields_finish` is more general, but this is
2289    /// faster for 4 fields.
2290    #[doc(hidden)]
2291    #[unstable(feature = "fmt_helpers_for_derive", issue = "none")]
2292    pub fn debug_struct_field4_finish<'b>(
2293        &'b mut self,
2294        name: &str,
2295        name1: &str,
2296        value1: &dyn Debug,
2297        name2: &str,
2298        value2: &dyn Debug,
2299        name3: &str,
2300        value3: &dyn Debug,
2301        name4: &str,
2302        value4: &dyn Debug,
2303    ) -> Result {
2304        let mut builder = builders::debug_struct_new(self, name);
2305        builder.field(name1, value1);
2306        builder.field(name2, value2);
2307        builder.field(name3, value3);
2308        builder.field(name4, value4);
2309        builder.finish()
2310    }
2311
2312    /// Shrinks `derive(Debug)` code, for faster compilation and smaller
2313    /// binaries. `debug_struct_fields_finish` is more general, but this is
2314    /// faster for 5 fields.
2315    #[doc(hidden)]
2316    #[unstable(feature = "fmt_helpers_for_derive", issue = "none")]
2317    pub fn debug_struct_field5_finish<'b>(
2318        &'b mut self,
2319        name: &str,
2320        name1: &str,
2321        value1: &dyn Debug,
2322        name2: &str,
2323        value2: &dyn Debug,
2324        name3: &str,
2325        value3: &dyn Debug,
2326        name4: &str,
2327        value4: &dyn Debug,
2328        name5: &str,
2329        value5: &dyn Debug,
2330    ) -> Result {
2331        let mut builder = builders::debug_struct_new(self, name);
2332        builder.field(name1, value1);
2333        builder.field(name2, value2);
2334        builder.field(name3, value3);
2335        builder.field(name4, value4);
2336        builder.field(name5, value5);
2337        builder.finish()
2338    }
2339
2340    /// Shrinks `derive(Debug)` code, for faster compilation and smaller binaries.
2341    /// For the cases not covered by `debug_struct_field[12345]_finish`.
2342    #[doc(hidden)]
2343    #[unstable(feature = "fmt_helpers_for_derive", issue = "none")]
2344    pub fn debug_struct_fields_finish<'b>(
2345        &'b mut self,
2346        name: &str,
2347        names: &[&str],
2348        values: &[&dyn Debug],
2349    ) -> Result {
2350        assert_eq!(names.len(), values.len());
2351        let mut builder = builders::debug_struct_new(self, name);
2352        for (name, value) in iter::zip(names, values) {
2353            builder.field(name, value);
2354        }
2355        builder.finish()
2356    }
2357
2358    /// Creates a `DebugTuple` builder designed to assist with creation of
2359    /// `fmt::Debug` implementations for tuple structs.
2360    ///
2361    /// # Examples
2362    ///
2363    /// ```rust
2364    /// use std::fmt;
2365    /// use std::marker::PhantomData;
2366    ///
2367    /// struct Foo<T>(i32, String, PhantomData<T>);
2368    ///
2369    /// impl<T> fmt::Debug for Foo<T> {
2370    ///     fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
2371    ///         fmt.debug_tuple("Foo")
2372    ///             .field(&self.0)
2373    ///             .field(&self.1)
2374    ///             .field(&format_args!("_"))
2375    ///             .finish()
2376    ///     }
2377    /// }
2378    ///
2379    /// assert_eq!(
2380    ///     "Foo(10, \"Hello\", _)",
2381    ///     format!("{:?}", Foo(10, "Hello".to_string(), PhantomData::<u8>))
2382    /// );
2383    /// ```
2384    #[stable(feature = "debug_builders", since = "1.2.0")]
2385    pub fn debug_tuple<'b>(&'b mut self, name: &str) -> DebugTuple<'b, 'a> {
2386        builders::debug_tuple_new(self, name)
2387    }
2388
2389    /// Shrinks `derive(Debug)` code, for faster compilation and smaller
2390    /// binaries. `debug_tuple_fields_finish` is more general, but this is faster
2391    /// for 1 field.
2392    #[doc(hidden)]
2393    #[unstable(feature = "fmt_helpers_for_derive", issue = "none")]
2394    pub fn debug_tuple_field1_finish<'b>(&'b mut self, name: &str, value1: &dyn Debug) -> Result {
2395        let mut builder = builders::debug_tuple_new(self, name);
2396        builder.field(value1);
2397        builder.finish()
2398    }
2399
2400    /// Shrinks `derive(Debug)` code, for faster compilation and smaller
2401    /// binaries. `debug_tuple_fields_finish` is more general, but this is faster
2402    /// for 2 fields.
2403    #[doc(hidden)]
2404    #[unstable(feature = "fmt_helpers_for_derive", issue = "none")]
2405    pub fn debug_tuple_field2_finish<'b>(
2406        &'b mut self,
2407        name: &str,
2408        value1: &dyn Debug,
2409        value2: &dyn Debug,
2410    ) -> Result {
2411        let mut builder = builders::debug_tuple_new(self, name);
2412        builder.field(value1);
2413        builder.field(value2);
2414        builder.finish()
2415    }
2416
2417    /// Shrinks `derive(Debug)` code, for faster compilation and smaller
2418    /// binaries. `debug_tuple_fields_finish` is more general, but this is faster
2419    /// for 3 fields.
2420    #[doc(hidden)]
2421    #[unstable(feature = "fmt_helpers_for_derive", issue = "none")]
2422    pub fn debug_tuple_field3_finish<'b>(
2423        &'b mut self,
2424        name: &str,
2425        value1: &dyn Debug,
2426        value2: &dyn Debug,
2427        value3: &dyn Debug,
2428    ) -> Result {
2429        let mut builder = builders::debug_tuple_new(self, name);
2430        builder.field(value1);
2431        builder.field(value2);
2432        builder.field(value3);
2433        builder.finish()
2434    }
2435
2436    /// Shrinks `derive(Debug)` code, for faster compilation and smaller
2437    /// binaries. `debug_tuple_fields_finish` is more general, but this is faster
2438    /// for 4 fields.
2439    #[doc(hidden)]
2440    #[unstable(feature = "fmt_helpers_for_derive", issue = "none")]
2441    pub fn debug_tuple_field4_finish<'b>(
2442        &'b mut self,
2443        name: &str,
2444        value1: &dyn Debug,
2445        value2: &dyn Debug,
2446        value3: &dyn Debug,
2447        value4: &dyn Debug,
2448    ) -> Result {
2449        let mut builder = builders::debug_tuple_new(self, name);
2450        builder.field(value1);
2451        builder.field(value2);
2452        builder.field(value3);
2453        builder.field(value4);
2454        builder.finish()
2455    }
2456
2457    /// Shrinks `derive(Debug)` code, for faster compilation and smaller
2458    /// binaries. `debug_tuple_fields_finish` is more general, but this is faster
2459    /// for 5 fields.
2460    #[doc(hidden)]
2461    #[unstable(feature = "fmt_helpers_for_derive", issue = "none")]
2462    pub fn debug_tuple_field5_finish<'b>(
2463        &'b mut self,
2464        name: &str,
2465        value1: &dyn Debug,
2466        value2: &dyn Debug,
2467        value3: &dyn Debug,
2468        value4: &dyn Debug,
2469        value5: &dyn Debug,
2470    ) -> Result {
2471        let mut builder = builders::debug_tuple_new(self, name);
2472        builder.field(value1);
2473        builder.field(value2);
2474        builder.field(value3);
2475        builder.field(value4);
2476        builder.field(value5);
2477        builder.finish()
2478    }
2479
2480    /// Shrinks `derive(Debug)` code, for faster compilation and smaller
2481    /// binaries. For the cases not covered by `debug_tuple_field[12345]_finish`.
2482    #[doc(hidden)]
2483    #[unstable(feature = "fmt_helpers_for_derive", issue = "none")]
2484    pub fn debug_tuple_fields_finish<'b>(
2485        &'b mut self,
2486        name: &str,
2487        values: &[&dyn Debug],
2488    ) -> Result {
2489        let mut builder = builders::debug_tuple_new(self, name);
2490        for value in values {
2491            builder.field(value);
2492        }
2493        builder.finish()
2494    }
2495
2496    /// Creates a `DebugList` builder designed to assist with creation of
2497    /// `fmt::Debug` implementations for list-like structures.
2498    ///
2499    /// # Examples
2500    ///
2501    /// ```rust
2502    /// use std::fmt;
2503    ///
2504    /// struct Foo(Vec<i32>);
2505    ///
2506    /// impl fmt::Debug for Foo {
2507    ///     fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
2508    ///         fmt.debug_list().entries(self.0.iter()).finish()
2509    ///     }
2510    /// }
2511    ///
2512    /// assert_eq!(format!("{:?}", Foo(vec![10, 11])), "[10, 11]");
2513    /// ```
2514    #[stable(feature = "debug_builders", since = "1.2.0")]
2515    pub fn debug_list<'b>(&'b mut self) -> DebugList<'b, 'a> {
2516        builders::debug_list_new(self)
2517    }
2518
2519    /// Creates a `DebugSet` builder designed to assist with creation of
2520    /// `fmt::Debug` implementations for set-like structures.
2521    ///
2522    /// # Examples
2523    ///
2524    /// ```rust
2525    /// use std::fmt;
2526    ///
2527    /// struct Foo(Vec<i32>);
2528    ///
2529    /// impl fmt::Debug for Foo {
2530    ///     fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
2531    ///         fmt.debug_set().entries(self.0.iter()).finish()
2532    ///     }
2533    /// }
2534    ///
2535    /// assert_eq!(format!("{:?}", Foo(vec![10, 11])), "{10, 11}");
2536    /// ```
2537    ///
2538    /// [`format_args!`]: crate::format_args
2539    ///
2540    /// In this more complex example, we use [`format_args!`] and `.debug_set()`
2541    /// to build a list of match arms:
2542    ///
2543    /// ```rust
2544    /// use std::fmt;
2545    ///
2546    /// struct Arm<'a, L, R>(&'a (L, R));
2547    /// struct Table<'a, K, V>(&'a [(K, V)], V);
2548    ///
2549    /// impl<'a, L, R> fmt::Debug for Arm<'a, L, R>
2550    /// where
2551    ///     L: 'a + fmt::Debug, R: 'a + fmt::Debug
2552    /// {
2553    ///     fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
2554    ///         L::fmt(&(self.0).0, fmt)?;
2555    ///         fmt.write_str(" => ")?;
2556    ///         R::fmt(&(self.0).1, fmt)
2557    ///     }
2558    /// }
2559    ///
2560    /// impl<'a, K, V> fmt::Debug for Table<'a, K, V>
2561    /// where
2562    ///     K: 'a + fmt::Debug, V: 'a + fmt::Debug
2563    /// {
2564    ///     fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
2565    ///         fmt.debug_set()
2566    ///         .entries(self.0.iter().map(Arm))
2567    ///         .entry(&Arm(&(format_args!("_"), &self.1)))
2568    ///         .finish()
2569    ///     }
2570    /// }
2571    /// ```
2572    #[stable(feature = "debug_builders", since = "1.2.0")]
2573    pub fn debug_set<'b>(&'b mut self) -> DebugSet<'b, 'a> {
2574        builders::debug_set_new(self)
2575    }
2576
2577    /// Creates a `DebugMap` builder designed to assist with creation of
2578    /// `fmt::Debug` implementations for map-like structures.
2579    ///
2580    /// # Examples
2581    ///
2582    /// ```rust
2583    /// use std::fmt;
2584    ///
2585    /// struct Foo(Vec<(String, i32)>);
2586    ///
2587    /// impl fmt::Debug for Foo {
2588    ///     fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
2589    ///         fmt.debug_map().entries(self.0.iter().map(|&(ref k, ref v)| (k, v))).finish()
2590    ///     }
2591    /// }
2592    ///
2593    /// assert_eq!(
2594    ///     format!("{:?}",  Foo(vec![("A".to_string(), 10), ("B".to_string(), 11)])),
2595    ///     r#"{"A": 10, "B": 11}"#
2596    ///  );
2597    /// ```
2598    #[stable(feature = "debug_builders", since = "1.2.0")]
2599    pub fn debug_map<'b>(&'b mut self) -> DebugMap<'b, 'a> {
2600        builders::debug_map_new(self)
2601    }
2602
2603    /// Returns the sign of this formatter (`+` or `-`).
2604    #[unstable(feature = "formatting_options", issue = "118117")]
2605    pub const fn sign(&self) -> Option<Sign> {
2606        self.options.get_sign()
2607    }
2608
2609    /// Returns the formatting options this formatter corresponds to.
2610    #[unstable(feature = "formatting_options", issue = "118117")]
2611    pub const fn options(&self) -> FormattingOptions {
2612        self.options
2613    }
2614}
2615
2616#[stable(since = "1.2.0", feature = "formatter_write")]
2617impl Write for Formatter<'_> {
2618    fn write_str(&mut self, s: &str) -> Result {
2619        self.buf.write_str(s)
2620    }
2621
2622    fn write_char(&mut self, c: char) -> Result {
2623        self.buf.write_char(c)
2624    }
2625
2626    #[inline]
2627    fn write_fmt(&mut self, args: Arguments<'_>) -> Result {
2628        if let Some(s) = args.as_statically_known_str() {
2629            self.buf.write_str(s)
2630        } else {
2631            write(self.buf, args)
2632        }
2633    }
2634}
2635
2636#[stable(feature = "rust1", since = "1.0.0")]
2637impl Display for Error {
2638    fn fmt(&self, f: &mut Formatter<'_>) -> Result {
2639        Display::fmt("an error occurred when formatting an argument", f)
2640    }
2641}
2642
2643// Implementations of the core formatting traits
2644
2645macro_rules! fmt_refs {
2646    ($($tr:ident),*) => {
2647        $(
2648        #[stable(feature = "rust1", since = "1.0.0")]
2649        impl<T: ?Sized + $tr> $tr for &T {
2650            fn fmt(&self, f: &mut Formatter<'_>) -> Result { $tr::fmt(&**self, f) }
2651        }
2652        #[stable(feature = "rust1", since = "1.0.0")]
2653        impl<T: ?Sized + $tr> $tr for &mut T {
2654            fn fmt(&self, f: &mut Formatter<'_>) -> Result { $tr::fmt(&**self, f) }
2655        }
2656        )*
2657    }
2658}
2659
2660fmt_refs! { Debug, Display, Octal, Binary, LowerHex, UpperHex, LowerExp, UpperExp }
2661
2662#[unstable(feature = "never_type", issue = "35121")]
2663impl Debug for ! {
2664    #[inline]
2665    fn fmt(&self, _: &mut Formatter<'_>) -> Result {
2666        *self
2667    }
2668}
2669
2670#[unstable(feature = "never_type", issue = "35121")]
2671impl Display for ! {
2672    #[inline]
2673    fn fmt(&self, _: &mut Formatter<'_>) -> Result {
2674        *self
2675    }
2676}
2677
2678#[stable(feature = "rust1", since = "1.0.0")]
2679impl Debug for bool {
2680    #[inline]
2681    fn fmt(&self, f: &mut Formatter<'_>) -> Result {
2682        Display::fmt(self, f)
2683    }
2684}
2685
2686#[stable(feature = "rust1", since = "1.0.0")]
2687impl Display for bool {
2688    fn fmt(&self, f: &mut Formatter<'_>) -> Result {
2689        Display::fmt(if *self { "true" } else { "false" }, f)
2690    }
2691}
2692
2693#[stable(feature = "rust1", since = "1.0.0")]
2694impl Debug for str {
2695    fn fmt(&self, f: &mut Formatter<'_>) -> Result {
2696        f.write_char('"')?;
2697
2698        // substring we know is printable
2699        let mut printable_range = 0..0;
2700
2701        fn needs_escape(b: u8) -> bool {
2702            b > 0x7E || b < 0x20 || b == b'\\' || b == b'"'
2703        }
2704
2705        // the loop here first skips over runs of printable ASCII as a fast path.
2706        // other chars (unicode, or ASCII that needs escaping) are then handled per-`char`.
2707        let mut rest = self;
2708        while rest.len() > 0 {
2709            let Some(non_printable_start) = rest.as_bytes().iter().position(|&b| needs_escape(b))
2710            else {
2711                printable_range.end += rest.len();
2712                break;
2713            };
2714
2715            printable_range.end += non_printable_start;
2716            // SAFETY: the position was derived from an iterator, so is known to be within bounds, and at a char boundary
2717            rest = unsafe { rest.get_unchecked(non_printable_start..) };
2718
2719            let mut chars = rest.chars();
2720            if let Some(c) = chars.next() {
2721                let esc = c.escape_debug_ext(EscapeDebugExtArgs {
2722                    escape_grapheme_extended: true,
2723                    escape_single_quote: false,
2724                    escape_double_quote: true,
2725                });
2726                if esc.len() != 1 {
2727                    f.write_str(&self[printable_range.clone()])?;
2728                    Display::fmt(&esc, f)?;
2729                    printable_range.start = printable_range.end + c.len_utf8();
2730                }
2731                printable_range.end += c.len_utf8();
2732            }
2733            rest = chars.as_str();
2734        }
2735
2736        f.write_str(&self[printable_range])?;
2737
2738        f.write_char('"')
2739    }
2740}
2741
2742#[stable(feature = "rust1", since = "1.0.0")]
2743impl Display for str {
2744    fn fmt(&self, f: &mut Formatter<'_>) -> Result {
2745        f.pad(self)
2746    }
2747}
2748
2749#[stable(feature = "rust1", since = "1.0.0")]
2750impl Debug for char {
2751    fn fmt(&self, f: &mut Formatter<'_>) -> Result {
2752        f.write_char('\'')?;
2753        let esc = self.escape_debug_ext(EscapeDebugExtArgs {
2754            escape_grapheme_extended: true,
2755            escape_single_quote: true,
2756            escape_double_quote: false,
2757        });
2758        Display::fmt(&esc, f)?;
2759        f.write_char('\'')
2760    }
2761}
2762
2763#[stable(feature = "rust1", since = "1.0.0")]
2764impl Display for char {
2765    fn fmt(&self, f: &mut Formatter<'_>) -> Result {
2766        if f.options.flags & (flags::WIDTH_FLAG | flags::PRECISION_FLAG) == 0 {
2767            f.write_char(*self)
2768        } else {
2769            f.pad(self.encode_utf8(&mut [0; MAX_LEN_UTF8]))
2770        }
2771    }
2772}
2773
2774#[stable(feature = "rust1", since = "1.0.0")]
2775impl<T: ?Sized> Pointer for *const T {
2776    fn fmt(&self, f: &mut Formatter<'_>) -> Result {
2777        if <<T as core::ptr::Pointee>::Metadata as core::unit::IsUnit>::is_unit() {
2778            pointer_fmt_inner(self.expose_provenance(), f)
2779        } else {
2780            f.debug_struct("Pointer")
2781                .field_with("addr", |f| pointer_fmt_inner(self.expose_provenance(), f))
2782                .field("metadata", &core::ptr::metadata(*self))
2783                .finish()
2784        }
2785    }
2786}
2787
2788/// Since the formatting will be identical for all pointer types, uses a
2789/// non-monomorphized implementation for the actual formatting to reduce the
2790/// amount of codegen work needed.
2791///
2792/// This uses `ptr_addr: usize` and not `ptr: *const ()` to be able to use this for
2793/// `fn(...) -> ...` without using [problematic] "Oxford Casts".
2794///
2795/// [problematic]: https://github.com/rust-lang/rust/issues/95489
2796pub(crate) fn pointer_fmt_inner(ptr_addr: usize, f: &mut Formatter<'_>) -> Result {
2797    let old_options = f.options;
2798
2799    // The alternate flag is already treated by LowerHex as being special-
2800    // it denotes whether to prefix with 0x. We use it to work out whether
2801    // or not to zero extend, and then unconditionally set it to get the
2802    // prefix.
2803    if f.options.get_alternate() {
2804        f.options.sign_aware_zero_pad(true);
2805
2806        if f.options.get_width().is_none() {
2807            f.options.width(Some((usize::BITS / 4) as u16 + 2));
2808        }
2809    }
2810    f.options.alternate(true);
2811
2812    let ret = LowerHex::fmt(&ptr_addr, f);
2813
2814    f.options = old_options;
2815
2816    ret
2817}
2818
2819#[stable(feature = "rust1", since = "1.0.0")]
2820impl<T: ?Sized> Pointer for *mut T {
2821    fn fmt(&self, f: &mut Formatter<'_>) -> Result {
2822        Pointer::fmt(&(*self as *const T), f)
2823    }
2824}
2825
2826#[stable(feature = "rust1", since = "1.0.0")]
2827impl<T: ?Sized> Pointer for &T {
2828    fn fmt(&self, f: &mut Formatter<'_>) -> Result {
2829        Pointer::fmt(&(*self as *const T), f)
2830    }
2831}
2832
2833#[stable(feature = "rust1", since = "1.0.0")]
2834impl<T: ?Sized> Pointer for &mut T {
2835    fn fmt(&self, f: &mut Formatter<'_>) -> Result {
2836        Pointer::fmt(&(&**self as *const T), f)
2837    }
2838}
2839
2840// Implementation of Display/Debug for various core types
2841
2842#[stable(feature = "rust1", since = "1.0.0")]
2843impl<T: ?Sized> Debug for *const T {
2844    fn fmt(&self, f: &mut Formatter<'_>) -> Result {
2845        Pointer::fmt(self, f)
2846    }
2847}
2848#[stable(feature = "rust1", since = "1.0.0")]
2849impl<T: ?Sized> Debug for *mut T {
2850    fn fmt(&self, f: &mut Formatter<'_>) -> Result {
2851        Pointer::fmt(self, f)
2852    }
2853}
2854
2855macro_rules! peel {
2856    ($name:ident, $($other:ident,)*) => (tuple! { $($other,)* })
2857}
2858
2859macro_rules! tuple {
2860    () => ();
2861    ( $($name:ident,)+ ) => (
2862        maybe_tuple_doc! {
2863            $($name)+ @
2864            #[stable(feature = "rust1", since = "1.0.0")]
2865            impl<$($name:Debug),+> Debug for ($($name,)+) where last_type!($($name,)+): ?Sized {
2866                #[allow(non_snake_case, unused_assignments)]
2867                fn fmt(&self, f: &mut Formatter<'_>) -> Result {
2868                    let mut builder = f.debug_tuple("");
2869                    let ($(ref $name,)+) = *self;
2870                    $(
2871                        builder.field(&$name);
2872                    )+
2873
2874                    builder.finish()
2875                }
2876            }
2877        }
2878        peel! { $($name,)+ }
2879    )
2880}
2881
2882macro_rules! maybe_tuple_doc {
2883    ($a:ident @ #[$meta:meta] $item:item) => {
2884        #[doc(fake_variadic)]
2885        #[doc = "This trait is implemented for tuples up to twelve items long."]
2886        #[$meta]
2887        $item
2888    };
2889    ($a:ident $($rest_a:ident)+ @ #[$meta:meta] $item:item) => {
2890        #[doc(hidden)]
2891        #[$meta]
2892        $item
2893    };
2894}
2895
2896macro_rules! last_type {
2897    ($a:ident,) => { $a };
2898    ($a:ident, $($rest_a:ident,)+) => { last_type!($($rest_a,)+) };
2899}
2900
2901tuple! { E, D, C, B, A, Z, Y, X, W, V, U, T, }
2902
2903#[stable(feature = "rust1", since = "1.0.0")]
2904impl<T: Debug> Debug for [T] {
2905    fn fmt(&self, f: &mut Formatter<'_>) -> Result {
2906        f.debug_list().entries(self.iter()).finish()
2907    }
2908}
2909
2910#[stable(feature = "rust1", since = "1.0.0")]
2911impl Debug for () {
2912    #[inline]
2913    fn fmt(&self, f: &mut Formatter<'_>) -> Result {
2914        f.pad("()")
2915    }
2916}
2917#[stable(feature = "rust1", since = "1.0.0")]
2918impl<T: ?Sized> Debug for PhantomData<T> {
2919    fn fmt(&self, f: &mut Formatter<'_>) -> Result {
2920        write!(f, "PhantomData<{}>", crate::any::type_name::<T>())
2921    }
2922}
2923
2924#[stable(feature = "rust1", since = "1.0.0")]
2925impl<T: Copy + Debug> Debug for Cell<T> {
2926    fn fmt(&self, f: &mut Formatter<'_>) -> Result {
2927        f.debug_struct("Cell").field("value", &self.get()).finish()
2928    }
2929}
2930
2931#[stable(feature = "rust1", since = "1.0.0")]
2932impl<T: ?Sized + Debug> Debug for RefCell<T> {
2933    fn fmt(&self, f: &mut Formatter<'_>) -> Result {
2934        let mut d = f.debug_struct("RefCell");
2935        match self.try_borrow() {
2936            Ok(borrow) => d.field("value", &borrow),
2937            Err(_) => d.field("value", &format_args!("<borrowed>")),
2938        };
2939        d.finish()
2940    }
2941}
2942
2943#[stable(feature = "rust1", since = "1.0.0")]
2944impl<T: ?Sized + Debug> Debug for Ref<'_, T> {
2945    fn fmt(&self, f: &mut Formatter<'_>) -> Result {
2946        Debug::fmt(&**self, f)
2947    }
2948}
2949
2950#[stable(feature = "rust1", since = "1.0.0")]
2951impl<T: ?Sized + Debug> Debug for RefMut<'_, T> {
2952    fn fmt(&self, f: &mut Formatter<'_>) -> Result {
2953        Debug::fmt(&*(self.deref()), f)
2954    }
2955}
2956
2957#[stable(feature = "core_impl_debug", since = "1.9.0")]
2958impl<T: ?Sized> Debug for UnsafeCell<T> {
2959    fn fmt(&self, f: &mut Formatter<'_>) -> Result {
2960        f.debug_struct("UnsafeCell").finish_non_exhaustive()
2961    }
2962}
2963
2964#[unstable(feature = "sync_unsafe_cell", issue = "95439")]
2965impl<T: ?Sized> Debug for SyncUnsafeCell<T> {
2966    fn fmt(&self, f: &mut Formatter<'_>) -> Result {
2967        f.debug_struct("SyncUnsafeCell").finish_non_exhaustive()
2968    }
2969}
2970
2971// If you expected tests to be here, look instead at coretests/tests/fmt/;
2972// it's a lot easier than creating all of the rt::Piece structures here.
2973// There are also tests in alloctests/tests/fmt.rs, for those that need allocations.