core/hash/
mod.rs

1//! Generic hashing support.
2//!
3//! This module provides a generic way to compute the [hash] of a value.
4//! Hashes are most commonly used with [`HashMap`] and [`HashSet`].
5//!
6//! [hash]: https://en.wikipedia.org/wiki/Hash_function
7//! [`HashMap`]: ../../std/collections/struct.HashMap.html
8//! [`HashSet`]: ../../std/collections/struct.HashSet.html
9//!
10//! The simplest way to make a type hashable is to use `#[derive(Hash)]`:
11//!
12//! # Examples
13//!
14//! ```rust
15//! use std::hash::{DefaultHasher, Hash, Hasher};
16//!
17//! #[derive(Hash)]
18//! struct Person {
19//!     id: u32,
20//!     name: String,
21//!     phone: u64,
22//! }
23//!
24//! let person1 = Person {
25//!     id: 5,
26//!     name: "Janet".to_string(),
27//!     phone: 555_666_7777,
28//! };
29//! let person2 = Person {
30//!     id: 5,
31//!     name: "Bob".to_string(),
32//!     phone: 555_666_7777,
33//! };
34//!
35//! assert!(calculate_hash(&person1) != calculate_hash(&person2));
36//!
37//! fn calculate_hash<T: Hash>(t: &T) -> u64 {
38//!     let mut s = DefaultHasher::new();
39//!     t.hash(&mut s);
40//!     s.finish()
41//! }
42//! ```
43//!
44//! If you need more control over how a value is hashed, you need to implement
45//! the [`Hash`] trait:
46//!
47//! ```rust
48//! use std::hash::{DefaultHasher, Hash, Hasher};
49//!
50//! struct Person {
51//!     id: u32,
52//!     # #[allow(dead_code)]
53//!     name: String,
54//!     phone: u64,
55//! }
56//!
57//! impl Hash for Person {
58//!     fn hash<H: Hasher>(&self, state: &mut H) {
59//!         self.id.hash(state);
60//!         self.phone.hash(state);
61//!     }
62//! }
63//!
64//! let person1 = Person {
65//!     id: 5,
66//!     name: "Janet".to_string(),
67//!     phone: 555_666_7777,
68//! };
69//! let person2 = Person {
70//!     id: 5,
71//!     name: "Bob".to_string(),
72//!     phone: 555_666_7777,
73//! };
74//!
75//! assert_eq!(calculate_hash(&person1), calculate_hash(&person2));
76//!
77//! fn calculate_hash<T: Hash>(t: &T) -> u64 {
78//!     let mut s = DefaultHasher::new();
79//!     t.hash(&mut s);
80//!     s.finish()
81//! }
82//! ```
83
84#![stable(feature = "rust1", since = "1.0.0")]
85
86#[cfg(not(feature = "ferrocene_subset"))]
87#[stable(feature = "rust1", since = "1.0.0")]
88#[allow(deprecated)]
89pub use self::sip::SipHasher;
90#[cfg(not(feature = "ferrocene_subset"))]
91#[unstable(feature = "hashmap_internals", issue = "none")]
92#[allow(deprecated)]
93#[doc(hidden)]
94pub use self::sip::SipHasher13;
95#[cfg(not(feature = "ferrocene_subset"))]
96use crate::{fmt, marker};
97
98// Ferrocene addition: imports for certified subset
99#[cfg(feature = "ferrocene_subset")]
100#[rustfmt::skip]
101use crate::marker;
102
103#[cfg(not(feature = "ferrocene_subset"))]
104mod sip;
105
106/// A hashable type.
107///
108/// Types implementing `Hash` are able to be [`hash`]ed with an instance of
109/// [`Hasher`].
110///
111/// ## Implementing `Hash`
112///
113/// You can derive `Hash` with `#[derive(Hash)]` if all fields implement `Hash`.
114/// The resulting hash will be the combination of the values from calling
115/// [`hash`] on each field.
116///
117/// ```
118/// #[derive(Hash)]
119/// struct Rustacean {
120///     name: String,
121///     country: String,
122/// }
123/// ```
124///
125/// If you need more control over how a value is hashed, you can of course
126/// implement the `Hash` trait yourself:
127///
128/// ```
129/// use std::hash::{Hash, Hasher};
130///
131/// struct Person {
132///     id: u32,
133///     name: String,
134///     phone: u64,
135/// }
136///
137/// impl Hash for Person {
138///     fn hash<H: Hasher>(&self, state: &mut H) {
139///         self.id.hash(state);
140///         self.phone.hash(state);
141///     }
142/// }
143/// ```
144///
145/// ## `Hash` and `Eq`
146///
147/// When implementing both `Hash` and [`Eq`], it is important that the following
148/// property holds:
149///
150/// ```text
151/// k1 == k2 -> hash(k1) == hash(k2)
152/// ```
153///
154/// In other words, if two keys are equal, their hashes must also be equal.
155/// [`HashMap`] and [`HashSet`] both rely on this behavior.
156///
157/// Thankfully, you won't need to worry about upholding this property when
158/// deriving both [`Eq`] and `Hash` with `#[derive(PartialEq, Eq, Hash)]`.
159///
160/// Violating this property is a logic error. The behavior resulting from a logic error is not
161/// specified, but users of the trait must ensure that such logic errors do *not* result in
162/// undefined behavior. This means that `unsafe` code **must not** rely on the correctness of these
163/// methods.
164///
165/// ## Prefix collisions
166///
167/// Implementations of `hash` should ensure that the data they
168/// pass to the `Hasher` are prefix-free. That is,
169/// values which are not equal should cause two different sequences of values to be written,
170/// and neither of the two sequences should be a prefix of the other.
171///
172/// For example, the standard implementation of [`Hash` for `&str`][impl] passes an extra
173/// `0xFF` byte to the `Hasher` so that the values `("ab", "c")` and `("a",
174/// "bc")` hash differently.
175///
176/// ## Portability
177///
178/// Due to differences in endianness and type sizes, data fed by `Hash` to a `Hasher`
179/// should not be considered portable across platforms. Additionally the data passed by most
180/// standard library types should not be considered stable between compiler versions.
181///
182/// This means tests shouldn't probe hard-coded hash values or data fed to a `Hasher` and
183/// instead should check consistency with `Eq`.
184///
185/// Serialization formats intended to be portable between platforms or compiler versions should
186/// either avoid encoding hashes or only rely on `Hash` and `Hasher` implementations that
187/// provide additional guarantees.
188///
189/// [`HashMap`]: ../../std/collections/struct.HashMap.html
190/// [`HashSet`]: ../../std/collections/struct.HashSet.html
191/// [`hash`]: Hash::hash
192/// [impl]: ../../std/primitive.str.html#impl-Hash-for-str
193#[stable(feature = "rust1", since = "1.0.0")]
194#[rustc_diagnostic_item = "Hash"]
195pub trait Hash: marker::PointeeSized {
196    /// Feeds this value into the given [`Hasher`].
197    ///
198    /// # Examples
199    ///
200    /// ```
201    /// use std::hash::{DefaultHasher, Hash, Hasher};
202    ///
203    /// let mut hasher = DefaultHasher::new();
204    /// 7920.hash(&mut hasher);
205    /// println!("Hash is {:x}!", hasher.finish());
206    /// ```
207    #[stable(feature = "rust1", since = "1.0.0")]
208    fn hash<H: Hasher>(&self, state: &mut H);
209
210    /// Feeds a slice of this type into the given [`Hasher`].
211    ///
212    /// This method is meant as a convenience, but its implementation is
213    /// also explicitly left unspecified. It isn't guaranteed to be
214    /// equivalent to repeated calls of [`hash`] and implementations of
215    /// [`Hash`] should keep that in mind and call [`hash`] themselves
216    /// if the slice isn't treated as a whole unit in the [`PartialEq`]
217    /// implementation.
218    ///
219    /// For example, a [`VecDeque`] implementation might naïvely call
220    /// [`as_slices`] and then [`hash_slice`] on each slice, but this
221    /// is wrong since the two slices can change with a call to
222    /// [`make_contiguous`] without affecting the [`PartialEq`]
223    /// result. Since these slices aren't treated as singular
224    /// units, and instead part of a larger deque, this method cannot
225    /// be used.
226    ///
227    /// # Examples
228    ///
229    /// ```
230    /// use std::hash::{DefaultHasher, Hash, Hasher};
231    ///
232    /// let mut hasher = DefaultHasher::new();
233    /// let numbers = [6, 28, 496, 8128];
234    /// Hash::hash_slice(&numbers, &mut hasher);
235    /// println!("Hash is {:x}!", hasher.finish());
236    /// ```
237    ///
238    /// [`VecDeque`]: ../../std/collections/struct.VecDeque.html
239    /// [`as_slices`]: ../../std/collections/struct.VecDeque.html#method.as_slices
240    /// [`make_contiguous`]: ../../std/collections/struct.VecDeque.html#method.make_contiguous
241    /// [`hash`]: Hash::hash
242    /// [`hash_slice`]: Hash::hash_slice
243    #[stable(feature = "hash_slice", since = "1.3.0")]
244    fn hash_slice<H: Hasher>(data: &[Self], state: &mut H)
245    where
246        Self: Sized,
247    {
248        for piece in data {
249            piece.hash(state)
250        }
251    }
252}
253
254// Separate module to reexport the macro `Hash` from prelude without the trait `Hash`.
255pub(crate) mod macros {
256    /// Derive macro generating an impl of the trait `Hash`.
257    #[rustc_builtin_macro]
258    #[stable(feature = "builtin_macro_prelude", since = "1.38.0")]
259    #[allow_internal_unstable(core_intrinsics)]
260    pub macro Hash($item:item) {
261        /* compiler built-in */
262    }
263}
264#[stable(feature = "builtin_macro_prelude", since = "1.38.0")]
265#[doc(inline)]
266pub use macros::Hash;
267
268/// A trait for hashing an arbitrary stream of bytes.
269///
270/// Instances of `Hasher` usually represent state that is changed while hashing
271/// data.
272///
273/// `Hasher` provides a fairly basic interface for retrieving the generated hash
274/// (with [`finish`]), and writing integers as well as slices of bytes into an
275/// instance (with [`write`] and [`write_u8`] etc.). Most of the time, `Hasher`
276/// instances are used in conjunction with the [`Hash`] trait.
277///
278/// This trait provides no guarantees about how the various `write_*` methods are
279/// defined and implementations of [`Hash`] should not assume that they work one
280/// way or another. You cannot assume, for example, that a [`write_u32`] call is
281/// equivalent to four calls of [`write_u8`].  Nor can you assume that adjacent
282/// `write` calls are merged, so it's possible, for example, that
283/// ```
284/// # fn foo(hasher: &mut impl std::hash::Hasher) {
285/// hasher.write(&[1, 2]);
286/// hasher.write(&[3, 4, 5, 6]);
287/// # }
288/// ```
289/// and
290/// ```
291/// # fn foo(hasher: &mut impl std::hash::Hasher) {
292/// hasher.write(&[1, 2, 3, 4]);
293/// hasher.write(&[5, 6]);
294/// # }
295/// ```
296/// end up producing different hashes.
297///
298/// Thus to produce the same hash value, [`Hash`] implementations must ensure
299/// for equivalent items that exactly the same sequence of calls is made -- the
300/// same methods with the same parameters in the same order.
301///
302/// # Examples
303///
304/// ```
305/// use std::hash::{DefaultHasher, Hasher};
306///
307/// let mut hasher = DefaultHasher::new();
308///
309/// hasher.write_u32(1989);
310/// hasher.write_u8(11);
311/// hasher.write_u8(9);
312/// hasher.write(b"Huh?");
313///
314/// println!("Hash is {:x}!", hasher.finish());
315/// ```
316///
317/// [`finish`]: Hasher::finish
318/// [`write`]: Hasher::write
319/// [`write_u8`]: Hasher::write_u8
320/// [`write_u32`]: Hasher::write_u32
321#[stable(feature = "rust1", since = "1.0.0")]
322pub trait Hasher {
323    /// Returns the hash value for the values written so far.
324    ///
325    /// Despite its name, the method does not reset the hasher’s internal
326    /// state. Additional [`write`]s will continue from the current value.
327    /// If you need to start a fresh hash value, you will have to create
328    /// a new hasher.
329    ///
330    /// # Examples
331    ///
332    /// ```
333    /// use std::hash::{DefaultHasher, Hasher};
334    ///
335    /// let mut hasher = DefaultHasher::new();
336    /// hasher.write(b"Cool!");
337    ///
338    /// println!("Hash is {:x}!", hasher.finish());
339    /// ```
340    ///
341    /// [`write`]: Hasher::write
342    #[stable(feature = "rust1", since = "1.0.0")]
343    #[must_use]
344    fn finish(&self) -> u64;
345
346    /// Writes some data into this `Hasher`.
347    ///
348    /// # Examples
349    ///
350    /// ```
351    /// use std::hash::{DefaultHasher, Hasher};
352    ///
353    /// let mut hasher = DefaultHasher::new();
354    /// let data = [0x01, 0x23, 0x45, 0x67, 0x89, 0xab, 0xcd, 0xef];
355    ///
356    /// hasher.write(&data);
357    ///
358    /// println!("Hash is {:x}!", hasher.finish());
359    /// ```
360    ///
361    /// # Note to Implementers
362    ///
363    /// You generally should not do length-prefixing as part of implementing
364    /// this method.  It's up to the [`Hash`] implementation to call
365    /// [`Hasher::write_length_prefix`] before sequences that need it.
366    #[stable(feature = "rust1", since = "1.0.0")]
367    fn write(&mut self, bytes: &[u8]);
368
369    /// Writes a single `u8` into this hasher.
370    #[inline]
371    #[stable(feature = "hasher_write", since = "1.3.0")]
372    fn write_u8(&mut self, i: u8) {
373        self.write(&[i])
374    }
375    /// Writes a single `u16` into this hasher.
376    #[inline]
377    #[stable(feature = "hasher_write", since = "1.3.0")]
378    fn write_u16(&mut self, i: u16) {
379        self.write(&i.to_ne_bytes())
380    }
381    /// Writes a single `u32` into this hasher.
382    #[inline]
383    #[stable(feature = "hasher_write", since = "1.3.0")]
384    fn write_u32(&mut self, i: u32) {
385        self.write(&i.to_ne_bytes())
386    }
387    /// Writes a single `u64` into this hasher.
388    #[inline]
389    #[stable(feature = "hasher_write", since = "1.3.0")]
390    fn write_u64(&mut self, i: u64) {
391        self.write(&i.to_ne_bytes())
392    }
393    /// Writes a single `u128` into this hasher.
394    #[inline]
395    #[stable(feature = "i128", since = "1.26.0")]
396    fn write_u128(&mut self, i: u128) {
397        self.write(&i.to_ne_bytes())
398    }
399    /// Writes a single `usize` into this hasher.
400    #[inline]
401    #[stable(feature = "hasher_write", since = "1.3.0")]
402    fn write_usize(&mut self, i: usize) {
403        self.write(&i.to_ne_bytes())
404    }
405
406    /// Writes a single `i8` into this hasher.
407    #[inline]
408    #[stable(feature = "hasher_write", since = "1.3.0")]
409    fn write_i8(&mut self, i: i8) {
410        self.write_u8(i as u8)
411    }
412    /// Writes a single `i16` into this hasher.
413    #[inline]
414    #[stable(feature = "hasher_write", since = "1.3.0")]
415    fn write_i16(&mut self, i: i16) {
416        self.write_u16(i as u16)
417    }
418    /// Writes a single `i32` into this hasher.
419    #[inline]
420    #[stable(feature = "hasher_write", since = "1.3.0")]
421    fn write_i32(&mut self, i: i32) {
422        self.write_u32(i as u32)
423    }
424    /// Writes a single `i64` into this hasher.
425    #[inline]
426    #[stable(feature = "hasher_write", since = "1.3.0")]
427    fn write_i64(&mut self, i: i64) {
428        self.write_u64(i as u64)
429    }
430    /// Writes a single `i128` into this hasher.
431    #[inline]
432    #[stable(feature = "i128", since = "1.26.0")]
433    fn write_i128(&mut self, i: i128) {
434        self.write_u128(i as u128)
435    }
436    /// Writes a single `isize` into this hasher.
437    #[inline]
438    #[stable(feature = "hasher_write", since = "1.3.0")]
439    fn write_isize(&mut self, i: isize) {
440        self.write_usize(i as usize)
441    }
442
443    /// Writes a length prefix into this hasher, as part of being prefix-free.
444    ///
445    /// If you're implementing [`Hash`] for a custom collection, call this before
446    /// writing its contents to this `Hasher`.  That way
447    /// `(collection![1, 2, 3], collection![4, 5])` and
448    /// `(collection![1, 2], collection![3, 4, 5])` will provide different
449    /// sequences of values to the `Hasher`
450    ///
451    /// The `impl<T> Hash for [T]` includes a call to this method, so if you're
452    /// hashing a slice (or array or vector) via its `Hash::hash` method,
453    /// you should **not** call this yourself.
454    ///
455    /// This method is only for providing domain separation.  If you want to
456    /// hash a `usize` that represents part of the *data*, then it's important
457    /// that you pass it to [`Hasher::write_usize`] instead of to this method.
458    ///
459    /// # Examples
460    ///
461    /// ```
462    /// #![feature(hasher_prefixfree_extras)]
463    /// # // Stubs to make the `impl` below pass the compiler
464    /// # #![allow(non_local_definitions)]
465    /// # struct MyCollection<T>(Option<T>);
466    /// # impl<T> MyCollection<T> {
467    /// #     fn len(&self) -> usize { todo!() }
468    /// # }
469    /// # impl<'a, T> IntoIterator for &'a MyCollection<T> {
470    /// #     type Item = T;
471    /// #     type IntoIter = std::iter::Empty<T>;
472    /// #     fn into_iter(self) -> Self::IntoIter { todo!() }
473    /// # }
474    ///
475    /// use std::hash::{Hash, Hasher};
476    /// impl<T: Hash> Hash for MyCollection<T> {
477    ///     fn hash<H: Hasher>(&self, state: &mut H) {
478    ///         state.write_length_prefix(self.len());
479    ///         for elt in self {
480    ///             elt.hash(state);
481    ///         }
482    ///     }
483    /// }
484    /// ```
485    ///
486    /// # Note to Implementers
487    ///
488    /// If you've decided that your `Hasher` is willing to be susceptible to
489    /// Hash-DoS attacks, then you might consider skipping hashing some or all
490    /// of the `len` provided in the name of increased performance.
491    #[inline]
492    #[unstable(feature = "hasher_prefixfree_extras", issue = "96762")]
493    fn write_length_prefix(&mut self, len: usize) {
494        self.write_usize(len);
495    }
496
497    /// Writes a single `str` into this hasher.
498    ///
499    /// If you're implementing [`Hash`], you generally do not need to call this,
500    /// as the `impl Hash for str` does, so you should prefer that instead.
501    ///
502    /// This includes the domain separator for prefix-freedom, so you should
503    /// **not** call `Self::write_length_prefix` before calling this.
504    ///
505    /// # Note to Implementers
506    ///
507    /// There are at least two reasonable default ways to implement this.
508    /// Which one will be the default is not yet decided, so for now
509    /// you probably want to override it specifically.
510    ///
511    /// ## The general answer
512    ///
513    /// It's always correct to implement this with a length prefix:
514    ///
515    /// ```
516    /// # #![feature(hasher_prefixfree_extras)]
517    /// # struct Foo;
518    /// # impl std::hash::Hasher for Foo {
519    /// # fn finish(&self) -> u64 { unimplemented!() }
520    /// # fn write(&mut self, _bytes: &[u8]) { unimplemented!() }
521    /// fn write_str(&mut self, s: &str) {
522    ///     self.write_length_prefix(s.len());
523    ///     self.write(s.as_bytes());
524    /// }
525    /// # }
526    /// ```
527    ///
528    /// And, if your `Hasher` works in `usize` chunks, this is likely a very
529    /// efficient way to do it, as anything more complicated may well end up
530    /// slower than just running the round with the length.
531    ///
532    /// ## If your `Hasher` works byte-wise
533    ///
534    /// One nice thing about `str` being UTF-8 is that the `b'\xFF'` byte
535    /// never happens.  That means that you can append that to the byte stream
536    /// being hashed and maintain prefix-freedom:
537    ///
538    /// ```
539    /// # #![feature(hasher_prefixfree_extras)]
540    /// # struct Foo;
541    /// # impl std::hash::Hasher for Foo {
542    /// # fn finish(&self) -> u64 { unimplemented!() }
543    /// # fn write(&mut self, _bytes: &[u8]) { unimplemented!() }
544    /// fn write_str(&mut self, s: &str) {
545    ///     self.write(s.as_bytes());
546    ///     self.write_u8(0xff);
547    /// }
548    /// # }
549    /// ```
550    ///
551    /// This does require that your implementation not add extra padding, and
552    /// thus generally requires that you maintain a buffer, running a round
553    /// only once that buffer is full (or `finish` is called).
554    ///
555    /// That's because if `write` pads data out to a fixed chunk size, it's
556    /// likely that it does it in such a way that `"a"` and `"a\x00"` would
557    /// end up hashing the same sequence of things, introducing conflicts.
558    #[inline]
559    #[unstable(feature = "hasher_prefixfree_extras", issue = "96762")]
560    fn write_str(&mut self, s: &str) {
561        self.write(s.as_bytes());
562        self.write_u8(0xff);
563    }
564}
565
566#[cfg(not(feature = "ferrocene_subset"))]
567#[stable(feature = "indirect_hasher_impl", since = "1.22.0")]
568impl<H: Hasher + ?Sized> Hasher for &mut H {
569    fn finish(&self) -> u64 {
570        (**self).finish()
571    }
572    fn write(&mut self, bytes: &[u8]) {
573        (**self).write(bytes)
574    }
575    fn write_u8(&mut self, i: u8) {
576        (**self).write_u8(i)
577    }
578    fn write_u16(&mut self, i: u16) {
579        (**self).write_u16(i)
580    }
581    fn write_u32(&mut self, i: u32) {
582        (**self).write_u32(i)
583    }
584    fn write_u64(&mut self, i: u64) {
585        (**self).write_u64(i)
586    }
587    fn write_u128(&mut self, i: u128) {
588        (**self).write_u128(i)
589    }
590    fn write_usize(&mut self, i: usize) {
591        (**self).write_usize(i)
592    }
593    fn write_i8(&mut self, i: i8) {
594        (**self).write_i8(i)
595    }
596    fn write_i16(&mut self, i: i16) {
597        (**self).write_i16(i)
598    }
599    fn write_i32(&mut self, i: i32) {
600        (**self).write_i32(i)
601    }
602    fn write_i64(&mut self, i: i64) {
603        (**self).write_i64(i)
604    }
605    fn write_i128(&mut self, i: i128) {
606        (**self).write_i128(i)
607    }
608    fn write_isize(&mut self, i: isize) {
609        (**self).write_isize(i)
610    }
611    fn write_length_prefix(&mut self, len: usize) {
612        (**self).write_length_prefix(len)
613    }
614    fn write_str(&mut self, s: &str) {
615        (**self).write_str(s)
616    }
617}
618
619/// A trait for creating instances of [`Hasher`].
620///
621/// A `BuildHasher` is typically used (e.g., by [`HashMap`]) to create
622/// [`Hasher`]s for each key such that they are hashed independently of one
623/// another, since [`Hasher`]s contain state.
624///
625/// For each instance of `BuildHasher`, the [`Hasher`]s created by
626/// [`build_hasher`] should be identical. That is, if the same stream of bytes
627/// is fed into each hasher, the same output will also be generated.
628///
629/// # Examples
630///
631/// ```
632/// use std::hash::{BuildHasher, Hasher, RandomState};
633///
634/// let s = RandomState::new();
635/// let mut hasher_1 = s.build_hasher();
636/// let mut hasher_2 = s.build_hasher();
637///
638/// hasher_1.write_u32(8128);
639/// hasher_2.write_u32(8128);
640///
641/// assert_eq!(hasher_1.finish(), hasher_2.finish());
642/// ```
643///
644/// [`build_hasher`]: BuildHasher::build_hasher
645/// [`HashMap`]: ../../std/collections/struct.HashMap.html
646#[cfg(not(feature = "ferrocene_subset"))]
647#[cfg_attr(not(test), rustc_diagnostic_item = "BuildHasher")]
648#[stable(since = "1.7.0", feature = "build_hasher")]
649pub trait BuildHasher {
650    /// Type of the hasher that will be created.
651    #[stable(since = "1.7.0", feature = "build_hasher")]
652    type Hasher: Hasher;
653
654    /// Creates a new hasher.
655    ///
656    /// Each call to `build_hasher` on the same instance should produce identical
657    /// [`Hasher`]s.
658    ///
659    /// # Examples
660    ///
661    /// ```
662    /// use std::hash::{BuildHasher, RandomState};
663    ///
664    /// let s = RandomState::new();
665    /// let new_s = s.build_hasher();
666    /// ```
667    #[stable(since = "1.7.0", feature = "build_hasher")]
668    fn build_hasher(&self) -> Self::Hasher;
669
670    /// Calculates the hash of a single value.
671    ///
672    /// This is intended as a convenience for code which *consumes* hashes, such
673    /// as the implementation of a hash table or in unit tests that check
674    /// whether a custom [`Hash`] implementation behaves as expected.
675    ///
676    /// This must not be used in any code which *creates* hashes, such as in an
677    /// implementation of [`Hash`].  The way to create a combined hash of
678    /// multiple values is to call [`Hash::hash`] multiple times using the same
679    /// [`Hasher`], not to call this method repeatedly and combine the results.
680    ///
681    /// # Example
682    ///
683    /// ```
684    /// use std::cmp::{max, min};
685    /// use std::hash::{BuildHasher, Hash, Hasher};
686    /// struct OrderAmbivalentPair<T: Ord>(T, T);
687    /// impl<T: Ord + Hash> Hash for OrderAmbivalentPair<T> {
688    ///     fn hash<H: Hasher>(&self, hasher: &mut H) {
689    ///         min(&self.0, &self.1).hash(hasher);
690    ///         max(&self.0, &self.1).hash(hasher);
691    ///     }
692    /// }
693    ///
694    /// // Then later, in a `#[test]` for the type...
695    /// let bh = std::hash::RandomState::new();
696    /// assert_eq!(
697    ///     bh.hash_one(OrderAmbivalentPair(1, 2)),
698    ///     bh.hash_one(OrderAmbivalentPair(2, 1))
699    /// );
700    /// assert_eq!(
701    ///     bh.hash_one(OrderAmbivalentPair(10, 2)),
702    ///     bh.hash_one(&OrderAmbivalentPair(2, 10))
703    /// );
704    /// ```
705    #[stable(feature = "build_hasher_simple_hash_one", since = "1.71.0")]
706    fn hash_one<T: Hash>(&self, x: T) -> u64
707    where
708        Self: Sized,
709        Self::Hasher: Hasher,
710    {
711        let mut hasher = self.build_hasher();
712        x.hash(&mut hasher);
713        hasher.finish()
714    }
715}
716
717/// Used to create a default [`BuildHasher`] instance for types that implement
718/// [`Hasher`] and [`Default`].
719///
720/// `BuildHasherDefault<H>` can be used when a type `H` implements [`Hasher`] and
721/// [`Default`], and you need a corresponding [`BuildHasher`] instance, but none is
722/// defined.
723///
724/// Any `BuildHasherDefault` is [zero-sized]. It can be created with
725/// [`default`][method.default]. When using `BuildHasherDefault` with [`HashMap`] or
726/// [`HashSet`], this doesn't need to be done, since they implement appropriate
727/// [`Default`] instances themselves.
728///
729/// # Examples
730///
731/// Using `BuildHasherDefault` to specify a custom [`BuildHasher`] for
732/// [`HashMap`]:
733///
734/// ```
735/// use std::collections::HashMap;
736/// use std::hash::{BuildHasherDefault, Hasher};
737///
738/// #[derive(Default)]
739/// struct MyHasher;
740///
741/// impl Hasher for MyHasher {
742///     fn write(&mut self, bytes: &[u8]) {
743///         // Your hashing algorithm goes here!
744///        unimplemented!()
745///     }
746///
747///     fn finish(&self) -> u64 {
748///         // Your hashing algorithm goes here!
749///         unimplemented!()
750///     }
751/// }
752///
753/// type MyBuildHasher = BuildHasherDefault<MyHasher>;
754///
755/// let hash_map = HashMap::<u32, u32, MyBuildHasher>::default();
756/// ```
757///
758/// [method.default]: BuildHasherDefault::default
759/// [`HashMap`]: ../../std/collections/struct.HashMap.html
760/// [`HashSet`]: ../../std/collections/struct.HashSet.html
761/// [zero-sized]: https://doc.rust-lang.org/nomicon/exotic-sizes.html#zero-sized-types-zsts
762#[cfg(not(feature = "ferrocene_subset"))]
763#[stable(since = "1.7.0", feature = "build_hasher")]
764pub struct BuildHasherDefault<H>(marker::PhantomData<fn() -> H>);
765
766#[cfg(not(feature = "ferrocene_subset"))]
767impl<H> BuildHasherDefault<H> {
768    /// Creates a new BuildHasherDefault for Hasher `H`.
769    #[stable(feature = "build_hasher_default_const_new", since = "1.85.0")]
770    #[rustc_const_stable(feature = "build_hasher_default_const_new", since = "1.85.0")]
771    pub const fn new() -> Self {
772        BuildHasherDefault(marker::PhantomData)
773    }
774}
775
776#[cfg(not(feature = "ferrocene_subset"))]
777#[stable(since = "1.9.0", feature = "core_impl_debug")]
778impl<H> fmt::Debug for BuildHasherDefault<H> {
779    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
780        f.debug_struct("BuildHasherDefault").finish()
781    }
782}
783
784#[cfg(not(feature = "ferrocene_subset"))]
785#[stable(since = "1.7.0", feature = "build_hasher")]
786impl<H: Default + Hasher> BuildHasher for BuildHasherDefault<H> {
787    type Hasher = H;
788
789    fn build_hasher(&self) -> H {
790        H::default()
791    }
792}
793
794#[cfg(not(feature = "ferrocene_subset"))]
795#[stable(since = "1.7.0", feature = "build_hasher")]
796impl<H> Clone for BuildHasherDefault<H> {
797    fn clone(&self) -> BuildHasherDefault<H> {
798        BuildHasherDefault(marker::PhantomData)
799    }
800}
801
802#[cfg(not(feature = "ferrocene_subset"))]
803#[stable(since = "1.7.0", feature = "build_hasher")]
804impl<H> Default for BuildHasherDefault<H> {
805    fn default() -> BuildHasherDefault<H> {
806        Self::new()
807    }
808}
809
810#[cfg(not(feature = "ferrocene_subset"))]
811#[stable(since = "1.29.0", feature = "build_hasher_eq")]
812impl<H> PartialEq for BuildHasherDefault<H> {
813    fn eq(&self, _other: &BuildHasherDefault<H>) -> bool {
814        true
815    }
816}
817
818#[cfg(not(feature = "ferrocene_subset"))]
819#[stable(since = "1.29.0", feature = "build_hasher_eq")]
820impl<H> Eq for BuildHasherDefault<H> {}
821
822mod impls {
823    use super::*;
824    use crate::slice;
825
826    macro_rules! impl_write {
827        ($(($ty:ident, $meth:ident),)*) => {$(
828            #[stable(feature = "rust1", since = "1.0.0")]
829            impl Hash for $ty {
830                #[inline]
831                fn hash<H: Hasher>(&self, state: &mut H) {
832                    state.$meth(*self)
833                }
834
835                #[inline]
836                fn hash_slice<H: Hasher>(data: &[$ty], state: &mut H) {
837                    let newlen = size_of_val(data);
838                    let ptr = data.as_ptr() as *const u8;
839                    // SAFETY: `ptr` is valid and aligned, as this macro is only used
840                    // for numeric primitives which have no padding. The new slice only
841                    // spans across `data` and is never mutated, and its total size is the
842                    // same as the original `data` so it can't be over `isize::MAX`.
843                    state.write(unsafe { slice::from_raw_parts(ptr, newlen) })
844                }
845            }
846        )*}
847    }
848
849    impl_write! {
850        (u8, write_u8),
851        (u16, write_u16),
852        (u32, write_u32),
853        (u64, write_u64),
854        (usize, write_usize),
855        (i8, write_i8),
856        (i16, write_i16),
857        (i32, write_i32),
858        (i64, write_i64),
859        (isize, write_isize),
860        (u128, write_u128),
861        (i128, write_i128),
862    }
863
864    #[stable(feature = "rust1", since = "1.0.0")]
865    impl Hash for bool {
866        #[inline]
867        fn hash<H: Hasher>(&self, state: &mut H) {
868            state.write_u8(*self as u8)
869        }
870    }
871
872    #[stable(feature = "rust1", since = "1.0.0")]
873    impl Hash for char {
874        #[inline]
875        fn hash<H: Hasher>(&self, state: &mut H) {
876            state.write_u32(*self as u32)
877        }
878    }
879
880    #[stable(feature = "rust1", since = "1.0.0")]
881    impl Hash for str {
882        #[inline]
883        fn hash<H: Hasher>(&self, state: &mut H) {
884            state.write_str(self);
885        }
886    }
887
888    #[stable(feature = "never_hash", since = "1.29.0")]
889    impl Hash for ! {
890        #[inline]
891        fn hash<H: Hasher>(&self, _: &mut H) {
892            *self
893        }
894    }
895
896    macro_rules! impl_hash_tuple {
897        () => (
898            #[stable(feature = "rust1", since = "1.0.0")]
899            impl Hash for () {
900                #[inline]
901                fn hash<H: Hasher>(&self, _state: &mut H) {}
902            }
903        );
904
905        ( $($name:ident)+) => (
906            maybe_tuple_doc! {
907                $($name)+ @
908                #[stable(feature = "rust1", since = "1.0.0")]
909                impl<$($name: Hash),+> Hash for ($($name,)+) {
910                    #[allow(non_snake_case)]
911                    #[inline]
912                    fn hash<S: Hasher>(&self, state: &mut S) {
913                        let ($(ref $name,)+) = *self;
914                        $($name.hash(state);)+
915                    }
916                }
917            }
918        );
919    }
920
921    macro_rules! maybe_tuple_doc {
922        ($a:ident @ #[$meta:meta] $item:item) => {
923            #[doc(fake_variadic)]
924            #[doc = "This trait is implemented for tuples up to twelve items long."]
925            #[$meta]
926            $item
927        };
928        ($a:ident $($rest_a:ident)+ @ #[$meta:meta] $item:item) => {
929            #[doc(hidden)]
930            #[$meta]
931            $item
932        };
933    }
934
935    impl_hash_tuple! {}
936    impl_hash_tuple! { T }
937    impl_hash_tuple! { T B }
938    impl_hash_tuple! { T B C }
939    impl_hash_tuple! { T B C D }
940    impl_hash_tuple! { T B C D E }
941    impl_hash_tuple! { T B C D E F }
942    impl_hash_tuple! { T B C D E F G }
943    impl_hash_tuple! { T B C D E F G H }
944    impl_hash_tuple! { T B C D E F G H I }
945    impl_hash_tuple! { T B C D E F G H I J }
946    impl_hash_tuple! { T B C D E F G H I J K }
947    impl_hash_tuple! { T B C D E F G H I J K L }
948
949    #[stable(feature = "rust1", since = "1.0.0")]
950    impl<T: Hash> Hash for [T] {
951        #[inline]
952        fn hash<H: Hasher>(&self, state: &mut H) {
953            state.write_length_prefix(self.len());
954            Hash::hash_slice(self, state)
955        }
956    }
957
958    #[stable(feature = "rust1", since = "1.0.0")]
959    impl<T: ?Sized + marker::PointeeSized + Hash> Hash for &T {
960        #[inline]
961        fn hash<H: Hasher>(&self, state: &mut H) {
962            (**self).hash(state);
963        }
964    }
965
966    #[stable(feature = "rust1", since = "1.0.0")]
967    impl<T: ?Sized + marker::PointeeSized + Hash> Hash for &mut T {
968        #[inline]
969        fn hash<H: Hasher>(&self, state: &mut H) {
970            (**self).hash(state);
971        }
972    }
973
974    #[stable(feature = "rust1", since = "1.0.0")]
975    impl<T: ?Sized + marker::PointeeSized> Hash for *const T {
976        #[inline]
977        fn hash<H: Hasher>(&self, state: &mut H) {
978            let (address, metadata) = self.to_raw_parts();
979            state.write_usize(address.addr());
980            metadata.hash(state);
981        }
982    }
983
984    #[stable(feature = "rust1", since = "1.0.0")]
985    impl<T: ?Sized + marker::PointeeSized> Hash for *mut T {
986        #[inline]
987        fn hash<H: Hasher>(&self, state: &mut H) {
988            let (address, metadata) = self.to_raw_parts();
989            state.write_usize(address.addr());
990            metadata.hash(state);
991        }
992    }
993}