core/iter/traits/collect.rs
1#[cfg(not(feature = "ferrocene_certified"))]
2use super::TrustedLen;
3
4/// Conversion from an [`Iterator`].
5///
6/// By implementing `FromIterator` for a type, you define how it will be
7/// created from an iterator. This is common for types which describe a
8/// collection of some kind.
9///
10/// If you want to create a collection from the contents of an iterator, the
11/// [`Iterator::collect()`] method is preferred. However, when you need to
12/// specify the container type, [`FromIterator::from_iter()`] can be more
13/// readable than using a turbofish (e.g. `::<Vec<_>>()`). See the
14/// [`Iterator::collect()`] documentation for more examples of its use.
15///
16/// See also: [`IntoIterator`].
17///
18/// # Examples
19///
20/// Basic usage:
21///
22/// ```
23/// let five_fives = std::iter::repeat(5).take(5);
24///
25/// let v = Vec::from_iter(five_fives);
26///
27/// assert_eq!(v, vec![5, 5, 5, 5, 5]);
28/// ```
29///
30/// Using [`Iterator::collect()`] to implicitly use `FromIterator`:
31///
32/// ```
33/// let five_fives = std::iter::repeat(5).take(5);
34///
35/// let v: Vec<i32> = five_fives.collect();
36///
37/// assert_eq!(v, vec![5, 5, 5, 5, 5]);
38/// ```
39///
40/// Using [`FromIterator::from_iter()`] as a more readable alternative to
41/// [`Iterator::collect()`]:
42///
43/// ```
44/// use std::collections::VecDeque;
45/// let first = (0..10).collect::<VecDeque<i32>>();
46/// let second = VecDeque::from_iter(0..10);
47///
48/// assert_eq!(first, second);
49/// ```
50///
51/// Implementing `FromIterator` for your type:
52///
53/// ```
54/// // A sample collection, that's just a wrapper over Vec<T>
55/// #[derive(Debug)]
56/// struct MyCollection(Vec<i32>);
57///
58/// // Let's give it some methods so we can create one and add things
59/// // to it.
60/// impl MyCollection {
61///     fn new() -> MyCollection {
62///         MyCollection(Vec::new())
63///     }
64///
65///     fn add(&mut self, elem: i32) {
66///         self.0.push(elem);
67///     }
68/// }
69///
70/// // and we'll implement FromIterator
71/// impl FromIterator<i32> for MyCollection {
72///     fn from_iter<I: IntoIterator<Item=i32>>(iter: I) -> Self {
73///         let mut c = MyCollection::new();
74///
75///         for i in iter {
76///             c.add(i);
77///         }
78///
79///         c
80///     }
81/// }
82///
83/// // Now we can make a new iterator...
84/// let iter = (0..5).into_iter();
85///
86/// // ... and make a MyCollection out of it
87/// let c = MyCollection::from_iter(iter);
88///
89/// assert_eq!(c.0, vec![0, 1, 2, 3, 4]);
90///
91/// // collect works too!
92///
93/// let iter = (0..5).into_iter();
94/// let c: MyCollection = iter.collect();
95///
96/// assert_eq!(c.0, vec![0, 1, 2, 3, 4]);
97/// ```
98#[stable(feature = "rust1", since = "1.0.0")]
99#[rustc_on_unimplemented(
100    on(
101        Self = "&[{A}]",
102        message = "a slice of type `{Self}` cannot be built since we need to store the elements somewhere",
103        label = "try explicitly collecting into a `Vec<{A}>`",
104    ),
105    on(
106        all(A = "{integer}", any(Self = "&[{integral}]",)),
107        message = "a slice of type `{Self}` cannot be built since we need to store the elements somewhere",
108        label = "try explicitly collecting into a `Vec<{A}>`",
109    ),
110    on(
111        Self = "[{A}]",
112        message = "a slice of type `{Self}` cannot be built since `{Self}` has no definite size",
113        label = "try explicitly collecting into a `Vec<{A}>`",
114    ),
115    on(
116        all(A = "{integer}", any(Self = "[{integral}]",)),
117        message = "a slice of type `{Self}` cannot be built since `{Self}` has no definite size",
118        label = "try explicitly collecting into a `Vec<{A}>`",
119    ),
120    on(
121        Self = "[{A}; _]",
122        message = "an array of type `{Self}` cannot be built directly from an iterator",
123        label = "try collecting into a `Vec<{A}>`, then using `.try_into()`",
124    ),
125    on(
126        all(A = "{integer}", any(Self = "[{integral}; _]",)),
127        message = "an array of type `{Self}` cannot be built directly from an iterator",
128        label = "try collecting into a `Vec<{A}>`, then using `.try_into()`",
129    ),
130    message = "a value of type `{Self}` cannot be built from an iterator \
131               over elements of type `{A}`",
132    label = "value of type `{Self}` cannot be built from `std::iter::Iterator<Item={A}>`"
133)]
134#[rustc_diagnostic_item = "FromIterator"]
135pub trait FromIterator<A>: Sized {
136    /// Creates a value from an iterator.
137    ///
138    /// See the [module-level documentation] for more.
139    ///
140    /// [module-level documentation]: crate::iter
141    ///
142    /// # Examples
143    ///
144    /// ```
145    /// let five_fives = std::iter::repeat(5).take(5);
146    ///
147    /// let v = Vec::from_iter(five_fives);
148    ///
149    /// assert_eq!(v, vec![5, 5, 5, 5, 5]);
150    /// ```
151    #[stable(feature = "rust1", since = "1.0.0")]
152    #[rustc_diagnostic_item = "from_iter_fn"]
153    fn from_iter<T: IntoIterator<Item = A>>(iter: T) -> Self;
154}
155
156/// Conversion into an [`Iterator`].
157///
158/// By implementing `IntoIterator` for a type, you define how it will be
159/// converted to an iterator. This is common for types which describe a
160/// collection of some kind.
161///
162/// One benefit of implementing `IntoIterator` is that your type will [work
163/// with Rust's `for` loop syntax](crate::iter#for-loops-and-intoiterator).
164///
165/// See also: [`FromIterator`].
166///
167/// # Examples
168///
169/// Basic usage:
170///
171/// ```
172/// let v = [1, 2, 3];
173/// let mut iter = v.into_iter();
174///
175/// assert_eq!(Some(1), iter.next());
176/// assert_eq!(Some(2), iter.next());
177/// assert_eq!(Some(3), iter.next());
178/// assert_eq!(None, iter.next());
179/// ```
180/// Implementing `IntoIterator` for your type:
181///
182/// ```
183/// // A sample collection, that's just a wrapper over Vec<T>
184/// #[derive(Debug)]
185/// struct MyCollection(Vec<i32>);
186///
187/// // Let's give it some methods so we can create one and add things
188/// // to it.
189/// impl MyCollection {
190///     fn new() -> MyCollection {
191///         MyCollection(Vec::new())
192///     }
193///
194///     fn add(&mut self, elem: i32) {
195///         self.0.push(elem);
196///     }
197/// }
198///
199/// // and we'll implement IntoIterator
200/// impl IntoIterator for MyCollection {
201///     type Item = i32;
202///     type IntoIter = std::vec::IntoIter<Self::Item>;
203///
204///     fn into_iter(self) -> Self::IntoIter {
205///         self.0.into_iter()
206///     }
207/// }
208///
209/// // Now we can make a new collection...
210/// let mut c = MyCollection::new();
211///
212/// // ... add some stuff to it ...
213/// c.add(0);
214/// c.add(1);
215/// c.add(2);
216///
217/// // ... and then turn it into an Iterator:
218/// for (i, n) in c.into_iter().enumerate() {
219///     assert_eq!(i as i32, n);
220/// }
221/// ```
222///
223/// It is common to use `IntoIterator` as a trait bound. This allows
224/// the input collection type to change, so long as it is still an
225/// iterator. Additional bounds can be specified by restricting on
226/// `Item`:
227///
228/// ```rust
229/// fn collect_as_strings<T>(collection: T) -> Vec<String>
230/// where
231///     T: IntoIterator,
232///     T::Item: std::fmt::Debug,
233/// {
234///     collection
235///         .into_iter()
236///         .map(|item| format!("{item:?}"))
237///         .collect()
238/// }
239/// ```
240#[rustc_diagnostic_item = "IntoIterator"]
241#[rustc_on_unimplemented(
242    on(
243        Self = "core::ops::range::RangeTo<Idx>",
244        label = "if you meant to iterate until a value, add a starting value",
245        note = "`..end` is a `RangeTo`, which cannot be iterated on; you might have meant to have a \
246              bounded `Range`: `0..end`"
247    ),
248    on(
249        Self = "core::ops::range::RangeToInclusive<Idx>",
250        label = "if you meant to iterate until a value (including it), add a starting value",
251        note = "`..=end` is a `RangeToInclusive`, which cannot be iterated on; you might have meant \
252              to have a bounded `RangeInclusive`: `0..=end`"
253    ),
254    on(
255        Self = "[]",
256        label = "`{Self}` is not an iterator; try calling `.into_iter()` or `.iter()`"
257    ),
258    on(Self = "&[]", label = "`{Self}` is not an iterator; try calling `.iter()`"),
259    on(
260        Self = "alloc::vec::Vec<T, A>",
261        label = "`{Self}` is not an iterator; try calling `.into_iter()` or `.iter()`"
262    ),
263    on(Self = "&str", label = "`{Self}` is not an iterator; try calling `.chars()` or `.bytes()`"),
264    on(
265        Self = "alloc::string::String",
266        label = "`{Self}` is not an iterator; try calling `.chars()` or `.bytes()`"
267    ),
268    on(
269        Self = "{integral}",
270        note = "if you want to iterate between `start` until a value `end`, use the exclusive range \
271              syntax `start..end` or the inclusive range syntax `start..=end`"
272    ),
273    on(
274        Self = "{float}",
275        note = "if you want to iterate between `start` until a value `end`, use the exclusive range \
276              syntax `start..end` or the inclusive range syntax `start..=end`"
277    ),
278    label = "`{Self}` is not an iterator",
279    message = "`{Self}` is not an iterator"
280)]
281#[rustc_skip_during_method_dispatch(array, boxed_slice)]
282#[stable(feature = "rust1", since = "1.0.0")]
283pub trait IntoIterator {
284    /// The type of the elements being iterated over.
285    #[stable(feature = "rust1", since = "1.0.0")]
286    type Item;
287
288    /// Which kind of iterator are we turning this into?
289    #[stable(feature = "rust1", since = "1.0.0")]
290    type IntoIter: Iterator<Item = Self::Item>;
291
292    /// Creates an iterator from a value.
293    ///
294    /// See the [module-level documentation] for more.
295    ///
296    /// [module-level documentation]: crate::iter
297    ///
298    /// # Examples
299    ///
300    /// ```
301    /// let v = [1, 2, 3];
302    /// let mut iter = v.into_iter();
303    ///
304    /// assert_eq!(Some(1), iter.next());
305    /// assert_eq!(Some(2), iter.next());
306    /// assert_eq!(Some(3), iter.next());
307    /// assert_eq!(None, iter.next());
308    /// ```
309    #[lang = "into_iter"]
310    #[stable(feature = "rust1", since = "1.0.0")]
311    fn into_iter(self) -> Self::IntoIter;
312}
313
314#[stable(feature = "rust1", since = "1.0.0")]
315impl<I: Iterator> IntoIterator for I {
316    type Item = I::Item;
317    type IntoIter = I;
318
319    #[inline]
320    fn into_iter(self) -> I {
321        self
322    }
323}
324
325/// Extend a collection with the contents of an iterator.
326///
327/// Iterators produce a series of values, and collections can also be thought
328/// of as a series of values. The `Extend` trait bridges this gap, allowing you
329/// to extend a collection by including the contents of that iterator. When
330/// extending a collection with an already existing key, that entry is updated
331/// or, in the case of collections that permit multiple entries with equal
332/// keys, that entry is inserted.
333///
334/// # Examples
335///
336/// Basic usage:
337///
338/// ```
339/// // You can extend a String with some chars:
340/// let mut message = String::from("The first three letters are: ");
341///
342/// message.extend(&['a', 'b', 'c']);
343///
344/// assert_eq!("abc", &message[29..32]);
345/// ```
346///
347/// Implementing `Extend`:
348///
349/// ```
350/// // A sample collection, that's just a wrapper over Vec<T>
351/// #[derive(Debug)]
352/// struct MyCollection(Vec<i32>);
353///
354/// // Let's give it some methods so we can create one and add things
355/// // to it.
356/// impl MyCollection {
357///     fn new() -> MyCollection {
358///         MyCollection(Vec::new())
359///     }
360///
361///     fn add(&mut self, elem: i32) {
362///         self.0.push(elem);
363///     }
364/// }
365///
366/// // since MyCollection has a list of i32s, we implement Extend for i32
367/// impl Extend<i32> for MyCollection {
368///
369///     // This is a bit simpler with the concrete type signature: we can call
370///     // extend on anything which can be turned into an Iterator which gives
371///     // us i32s. Because we need i32s to put into MyCollection.
372///     fn extend<T: IntoIterator<Item=i32>>(&mut self, iter: T) {
373///
374///         // The implementation is very straightforward: loop through the
375///         // iterator, and add() each element to ourselves.
376///         for elem in iter {
377///             self.add(elem);
378///         }
379///     }
380/// }
381///
382/// let mut c = MyCollection::new();
383///
384/// c.add(5);
385/// c.add(6);
386/// c.add(7);
387///
388/// // let's extend our collection with three more numbers
389/// c.extend(vec![1, 2, 3]);
390///
391/// // we've added these elements onto the end
392/// assert_eq!("MyCollection([5, 6, 7, 1, 2, 3])", format!("{c:?}"));
393/// ```
394#[stable(feature = "rust1", since = "1.0.0")]
395pub trait Extend<A> {
396    /// Extends a collection with the contents of an iterator.
397    ///
398    /// As this is the only required method for this trait, the [trait-level] docs
399    /// contain more details.
400    ///
401    /// [trait-level]: Extend
402    ///
403    /// # Examples
404    ///
405    /// ```
406    /// // You can extend a String with some chars:
407    /// let mut message = String::from("abc");
408    ///
409    /// message.extend(['d', 'e', 'f'].iter());
410    ///
411    /// assert_eq!("abcdef", &message);
412    /// ```
413    #[stable(feature = "rust1", since = "1.0.0")]
414    fn extend<T: IntoIterator<Item = A>>(&mut self, iter: T);
415
416    /// Extends a collection with exactly one element.
417    #[unstable(feature = "extend_one", issue = "72631")]
418    fn extend_one(&mut self, item: A) {
419        self.extend(Some(item));
420    }
421
422    /// Reserves capacity in a collection for the given number of additional elements.
423    ///
424    /// The default implementation does nothing.
425    #[unstable(feature = "extend_one", issue = "72631")]
426    fn extend_reserve(&mut self, additional: usize) {
427        let _ = additional;
428    }
429
430    /// Extends a collection with one element, without checking there is enough capacity for it.
431    ///
432    /// # Safety
433    ///
434    /// **For callers:** This must only be called when we know the collection has enough capacity
435    /// to contain the new item, for example because we previously called `extend_reserve`.
436    ///
437    /// **For implementors:** For a collection to unsafely rely on this method's safety precondition (that is,
438    /// invoke UB if they are violated), it must implement `extend_reserve` correctly. In other words,
439    /// callers may assume that if they `extend_reserve`ed enough space they can call this method.
440    // This method is for internal usage only. It is only on the trait because of specialization's limitations.
441    #[unstable(feature = "extend_one_unchecked", issue = "none")]
442    #[doc(hidden)]
443    unsafe fn extend_one_unchecked(&mut self, item: A)
444    where
445        Self: Sized,
446    {
447        self.extend_one(item);
448    }
449}
450
451#[stable(feature = "extend_for_unit", since = "1.28.0")]
452#[cfg(not(feature = "ferrocene_certified"))]
453impl Extend<()> for () {
454    fn extend<T: IntoIterator<Item = ()>>(&mut self, iter: T) {
455        iter.into_iter().for_each(drop)
456    }
457    fn extend_one(&mut self, _item: ()) {}
458}
459
460/// This trait is implemented for tuples up to twelve items long. The `impl`s for
461/// 1- and 3- through 12-ary tuples were stabilized after 2-tuples, in 1.85.0.
462#[doc(fake_variadic)] // the other implementations are below.
463#[stable(feature = "extend_for_tuple", since = "1.56.0")]
464#[cfg(not(feature = "ferrocene_certified"))]
465impl<T, ExtendT> Extend<(T,)> for (ExtendT,)
466where
467    ExtendT: Extend<T>,
468{
469    /// Allows to `extend` a tuple of collections that also implement `Extend`.
470    ///
471    /// See also: [`Iterator::unzip`]
472    ///
473    /// # Examples
474    /// ```
475    /// // Example given for a 2-tuple, but 1- through 12-tuples are supported
476    /// let mut tuple = (vec![0], vec![1]);
477    /// tuple.extend([(2, 3), (4, 5), (6, 7)]);
478    /// assert_eq!(tuple.0, [0, 2, 4, 6]);
479    /// assert_eq!(tuple.1, [1, 3, 5, 7]);
480    ///
481    /// // also allows for arbitrarily nested tuples as elements
482    /// let mut nested_tuple = (vec![1], (vec![2], vec![3]));
483    /// nested_tuple.extend([(4, (5, 6)), (7, (8, 9))]);
484    ///
485    /// let (a, (b, c)) = nested_tuple;
486    /// assert_eq!(a, [1, 4, 7]);
487    /// assert_eq!(b, [2, 5, 8]);
488    /// assert_eq!(c, [3, 6, 9]);
489    /// ```
490    fn extend<I: IntoIterator<Item = (T,)>>(&mut self, iter: I) {
491        self.0.extend(iter.into_iter().map(|t| t.0));
492    }
493
494    fn extend_one(&mut self, item: (T,)) {
495        self.0.extend_one(item.0)
496    }
497
498    fn extend_reserve(&mut self, additional: usize) {
499        self.0.extend_reserve(additional)
500    }
501
502    unsafe fn extend_one_unchecked(&mut self, item: (T,)) {
503        // SAFETY: the caller guarantees all preconditions.
504        unsafe { self.0.extend_one_unchecked(item.0) }
505    }
506}
507
508/// This implementation turns an iterator of tuples into a tuple of types which implement
509/// [`Default`] and [`Extend`].
510///
511/// This is similar to [`Iterator::unzip`], but is also composable with other [`FromIterator`]
512/// implementations:
513///
514/// ```rust
515/// # fn main() -> Result<(), core::num::ParseIntError> {
516/// let string = "1,2,123,4";
517///
518/// // Example given for a 2-tuple, but 1- through 12-tuples are supported
519/// let (numbers, lengths): (Vec<_>, Vec<_>) = string
520///     .split(',')
521///     .map(|s| s.parse().map(|n: u32| (n, s.len())))
522///     .collect::<Result<_, _>>()?;
523///
524/// assert_eq!(numbers, [1, 2, 123, 4]);
525/// assert_eq!(lengths, [1, 1, 3, 1]);
526/// # Ok(()) }
527/// ```
528#[doc(fake_variadic)] // the other implementations are below.
529#[stable(feature = "from_iterator_for_tuple", since = "1.79.0")]
530#[cfg(not(feature = "ferrocene_certified"))]
531impl<T, ExtendT> FromIterator<(T,)> for (ExtendT,)
532where
533    ExtendT: Default + Extend<T>,
534{
535    fn from_iter<Iter: IntoIterator<Item = (T,)>>(iter: Iter) -> Self {
536        let mut res = ExtendT::default();
537        res.extend(iter.into_iter().map(|t| t.0));
538        (res,)
539    }
540}
541
542/// An implementation of [`extend`](Extend::extend) that calls `extend_one` or
543/// `extend_one_unchecked` for each element of the iterator.
544#[cfg(not(feature = "ferrocene_certified"))]
545fn default_extend<ExtendT, I, T>(collection: &mut ExtendT, iter: I)
546where
547    ExtendT: Extend<T>,
548    I: IntoIterator<Item = T>,
549{
550    // Specialize on `TrustedLen` and call `extend_one_unchecked` where
551    // applicable.
552    trait SpecExtend<I> {
553        fn extend(&mut self, iter: I);
554    }
555
556    // Extracting these to separate functions avoid monomorphising the closures
557    // for every iterator type.
558    fn extender<ExtendT, T>(collection: &mut ExtendT) -> impl FnMut(T) + use<'_, ExtendT, T>
559    where
560        ExtendT: Extend<T>,
561    {
562        move |item| collection.extend_one(item)
563    }
564
565    unsafe fn unchecked_extender<ExtendT, T>(
566        collection: &mut ExtendT,
567    ) -> impl FnMut(T) + use<'_, ExtendT, T>
568    where
569        ExtendT: Extend<T>,
570    {
571        // SAFETY: we make sure that there is enough space at the callsite of
572        // this function.
573        move |item| unsafe { collection.extend_one_unchecked(item) }
574    }
575
576    impl<ExtendT, I, T> SpecExtend<I> for ExtendT
577    where
578        ExtendT: Extend<T>,
579        I: Iterator<Item = T>,
580    {
581        default fn extend(&mut self, iter: I) {
582            let (lower_bound, _) = iter.size_hint();
583            if lower_bound > 0 {
584                self.extend_reserve(lower_bound);
585            }
586
587            iter.for_each(extender(self))
588        }
589    }
590
591    impl<ExtendT, I, T> SpecExtend<I> for ExtendT
592    where
593        ExtendT: Extend<T>,
594        I: TrustedLen<Item = T>,
595    {
596        fn extend(&mut self, iter: I) {
597            let (lower_bound, upper_bound) = iter.size_hint();
598            if lower_bound > 0 {
599                self.extend_reserve(lower_bound);
600            }
601
602            if upper_bound.is_none() {
603                // We cannot reserve more than `usize::MAX` items, and this is likely to go out of memory anyway.
604                iter.for_each(extender(self))
605            } else {
606                // SAFETY: We reserve enough space for the `size_hint`, and the iterator is
607                // `TrustedLen` so its `size_hint` is exact.
608                iter.for_each(unsafe { unchecked_extender(self) })
609            }
610        }
611    }
612
613    SpecExtend::extend(collection, iter.into_iter());
614}
615
616// Implements `Extend` and `FromIterator` for tuples with length larger than one.
617macro_rules! impl_extend_tuple {
618    ($(($ty:tt, $extend_ty:tt, $index:tt)),+) => {
619        #[doc(hidden)]
620        #[stable(feature = "extend_for_tuple", since = "1.56.0")]
621        #[cfg(not(feature = "ferrocene_certified"))]
622        impl<$($ty,)+ $($extend_ty,)+> Extend<($($ty,)+)> for ($($extend_ty,)+)
623        where
624            $($extend_ty: Extend<$ty>,)+
625        {
626            fn extend<T: IntoIterator<Item = ($($ty,)+)>>(&mut self, iter: T) {
627                default_extend(self, iter)
628            }
629
630            fn extend_one(&mut self, item: ($($ty,)+)) {
631                $(self.$index.extend_one(item.$index);)+
632            }
633
634            fn extend_reserve(&mut self, additional: usize) {
635                $(self.$index.extend_reserve(additional);)+
636            }
637
638            unsafe fn extend_one_unchecked(&mut self, item: ($($ty,)+)) {
639                // SAFETY: Those are our safety preconditions, and we correctly forward `extend_reserve`.
640                unsafe {
641                    $(self.$index.extend_one_unchecked(item.$index);)+
642                }
643            }
644        }
645
646        #[doc(hidden)]
647        #[stable(feature = "from_iterator_for_tuple", since = "1.79.0")]
648        #[cfg(not(feature = "ferrocene_certified"))]
649        impl<$($ty,)+ $($extend_ty,)+> FromIterator<($($ty,)+)> for ($($extend_ty,)+)
650        where
651            $($extend_ty: Default + Extend<$ty>,)+
652        {
653            fn from_iter<Iter: IntoIterator<Item = ($($ty,)+)>>(iter: Iter) -> Self {
654                let mut res = Self::default();
655                res.extend(iter);
656                res
657            }
658        }
659    };
660}
661
662impl_extend_tuple!((A, ExA, 0), (B, ExB, 1));
663impl_extend_tuple!((A, ExA, 0), (B, ExB, 1), (C, ExC, 2));
664impl_extend_tuple!((A, ExA, 0), (B, ExB, 1), (C, ExC, 2), (D, ExD, 3));
665impl_extend_tuple!((A, ExA, 0), (B, ExB, 1), (C, ExC, 2), (D, ExD, 3), (E, ExE, 4));
666impl_extend_tuple!((A, ExA, 0), (B, ExB, 1), (C, ExC, 2), (D, ExD, 3), (E, ExE, 4), (F, ExF, 5));
667impl_extend_tuple!(
668    (A, ExA, 0),
669    (B, ExB, 1),
670    (C, ExC, 2),
671    (D, ExD, 3),
672    (E, ExE, 4),
673    (F, ExF, 5),
674    (G, ExG, 6)
675);
676impl_extend_tuple!(
677    (A, ExA, 0),
678    (B, ExB, 1),
679    (C, ExC, 2),
680    (D, ExD, 3),
681    (E, ExE, 4),
682    (F, ExF, 5),
683    (G, ExG, 6),
684    (H, ExH, 7)
685);
686impl_extend_tuple!(
687    (A, ExA, 0),
688    (B, ExB, 1),
689    (C, ExC, 2),
690    (D, ExD, 3),
691    (E, ExE, 4),
692    (F, ExF, 5),
693    (G, ExG, 6),
694    (H, ExH, 7),
695    (I, ExI, 8)
696);
697impl_extend_tuple!(
698    (A, ExA, 0),
699    (B, ExB, 1),
700    (C, ExC, 2),
701    (D, ExD, 3),
702    (E, ExE, 4),
703    (F, ExF, 5),
704    (G, ExG, 6),
705    (H, ExH, 7),
706    (I, ExI, 8),
707    (J, ExJ, 9)
708);
709impl_extend_tuple!(
710    (A, ExA, 0),
711    (B, ExB, 1),
712    (C, ExC, 2),
713    (D, ExD, 3),
714    (E, ExE, 4),
715    (F, ExF, 5),
716    (G, ExG, 6),
717    (H, ExH, 7),
718    (I, ExI, 8),
719    (J, ExJ, 9),
720    (K, ExK, 10)
721);
722impl_extend_tuple!(
723    (A, ExA, 0),
724    (B, ExB, 1),
725    (C, ExC, 2),
726    (D, ExD, 3),
727    (E, ExE, 4),
728    (F, ExF, 5),
729    (G, ExG, 6),
730    (H, ExH, 7),
731    (I, ExI, 8),
732    (J, ExJ, 9),
733    (K, ExK, 10),
734    (L, ExL, 11)
735);