core/iter/traits/
iterator.rs

1#[cfg(not(feature = "ferrocene_subset"))]
2use super::super::{
3    ArrayChunks, ByRefSized, Chain, Cloned, Copied, Cycle, Enumerate, Filter, FilterMap, FlatMap,
4    Flatten, Fuse, Inspect, Intersperse, IntersperseWith, Map, MapWhile, MapWindows, Peekable,
5    Product, Rev, Scan, Skip, SkipWhile, StepBy, Sum, Take, TakeWhile, TrustedRandomAccessNoCoerce,
6    Zip, try_process,
7};
8use super::TrustedLen;
9#[cfg(not(feature = "ferrocene_subset"))]
10use crate::array;
11use crate::cmp::{self, Ordering};
12use crate::num::NonZero;
13#[cfg(not(feature = "ferrocene_subset"))]
14use crate::ops::{ChangeOutputType, ControlFlow, FromResidual, Residual, Try};
15
16// Ferrocene addition: imports for certified subset
17#[cfg(feature = "ferrocene_subset")]
18#[rustfmt::skip]
19use {
20    super::super::{
21        Chain, Cloned, Copied, DoubleEndedIterator, Enumerate, Filter, Map, Rev, Skip, StepBy, Sum,
22        Take, Zip,
23    },
24    crate::ops::{ControlFlow, Try},
25};
26
27#[cfg(not(feature = "ferrocene_subset"))]
28fn _assert_is_dyn_compatible(_: &dyn Iterator<Item = ()>) {}
29
30/// A trait for dealing with iterators.
31///
32/// This is the main iterator trait. For more about the concept of iterators
33/// generally, please see the [module-level documentation]. In particular, you
34/// may want to know how to [implement `Iterator`][impl].
35///
36/// [module-level documentation]: crate::iter
37/// [impl]: crate::iter#implementing-iterator
38#[stable(feature = "rust1", since = "1.0.0")]
39#[rustc_on_unimplemented(
40    on(
41        Self = "core::ops::range::RangeTo<Idx>",
42        note = "you might have meant to use a bounded `Range`"
43    ),
44    on(
45        Self = "core::ops::range::RangeToInclusive<Idx>",
46        note = "you might have meant to use a bounded `RangeInclusive`"
47    ),
48    label = "`{Self}` is not an iterator",
49    message = "`{Self}` is not an iterator"
50)]
51#[cfg_attr(not(feature = "ferrocene_subset"), doc(notable_trait))]
52#[lang = "iterator"]
53#[rustc_diagnostic_item = "Iterator"]
54#[must_use = "iterators are lazy and do nothing unless consumed"]
55pub trait Iterator {
56    /// The type of the elements being iterated over.
57    #[rustc_diagnostic_item = "IteratorItem"]
58    #[stable(feature = "rust1", since = "1.0.0")]
59    type Item;
60
61    /// Advances the iterator and returns the next value.
62    ///
63    /// Returns [`None`] when iteration is finished. Individual iterator
64    /// implementations may choose to resume iteration, and so calling `next()`
65    /// again may or may not eventually start returning [`Some(Item)`] again at some
66    /// point.
67    ///
68    /// [`Some(Item)`]: Some
69    ///
70    /// # Examples
71    ///
72    /// ```
73    /// let a = [1, 2, 3];
74    ///
75    /// let mut iter = a.into_iter();
76    ///
77    /// // A call to next() returns the next value...
78    /// assert_eq!(Some(1), iter.next());
79    /// assert_eq!(Some(2), iter.next());
80    /// assert_eq!(Some(3), iter.next());
81    ///
82    /// // ... and then None once it's over.
83    /// assert_eq!(None, iter.next());
84    ///
85    /// // More calls may or may not return `None`. Here, they always will.
86    /// assert_eq!(None, iter.next());
87    /// assert_eq!(None, iter.next());
88    /// ```
89    #[lang = "next"]
90    #[stable(feature = "rust1", since = "1.0.0")]
91    fn next(&mut self) -> Option<Self::Item>;
92
93    /// Advances the iterator and returns an array containing the next `N` values.
94    ///
95    /// If there are not enough elements to fill the array then `Err` is returned
96    /// containing an iterator over the remaining elements.
97    ///
98    /// # Examples
99    ///
100    /// Basic usage:
101    ///
102    /// ```
103    /// #![feature(iter_next_chunk)]
104    ///
105    /// let mut iter = "lorem".chars();
106    ///
107    /// assert_eq!(iter.next_chunk().unwrap(), ['l', 'o']);              // N is inferred as 2
108    /// assert_eq!(iter.next_chunk().unwrap(), ['r', 'e', 'm']);         // N is inferred as 3
109    /// assert_eq!(iter.next_chunk::<4>().unwrap_err().as_slice(), &[]); // N is explicitly 4
110    /// ```
111    ///
112    /// Split a string and get the first three items.
113    ///
114    /// ```
115    /// #![feature(iter_next_chunk)]
116    ///
117    /// let quote = "not all those who wander are lost";
118    /// let [first, second, third] = quote.split_whitespace().next_chunk().unwrap();
119    /// assert_eq!(first, "not");
120    /// assert_eq!(second, "all");
121    /// assert_eq!(third, "those");
122    /// ```
123    #[inline]
124    #[unstable(feature = "iter_next_chunk", reason = "recently added", issue = "98326")]
125    #[cfg(not(feature = "ferrocene_subset"))]
126    fn next_chunk<const N: usize>(
127        &mut self,
128    ) -> Result<[Self::Item; N], array::IntoIter<Self::Item, N>>
129    where
130        Self: Sized,
131    {
132        array::iter_next_chunk(self)
133    }
134
135    /// Returns the bounds on the remaining length of the iterator.
136    ///
137    /// Specifically, `size_hint()` returns a tuple where the first element
138    /// is the lower bound, and the second element is the upper bound.
139    ///
140    /// The second half of the tuple that is returned is an <code>[Option]<[usize]></code>.
141    /// A [`None`] here means that either there is no known upper bound, or the
142    /// upper bound is larger than [`usize`].
143    ///
144    /// # Implementation notes
145    ///
146    /// It is not enforced that an iterator implementation yields the declared
147    /// number of elements. A buggy iterator may yield less than the lower bound
148    /// or more than the upper bound of elements.
149    ///
150    /// `size_hint()` is primarily intended to be used for optimizations such as
151    /// reserving space for the elements of the iterator, but must not be
152    /// trusted to e.g., omit bounds checks in unsafe code. An incorrect
153    /// implementation of `size_hint()` should not lead to memory safety
154    /// violations.
155    ///
156    /// That said, the implementation should provide a correct estimation,
157    /// because otherwise it would be a violation of the trait's protocol.
158    ///
159    /// The default implementation returns <code>(0, [None])</code> which is correct for any
160    /// iterator.
161    ///
162    /// # Examples
163    ///
164    /// Basic usage:
165    ///
166    /// ```
167    /// let a = [1, 2, 3];
168    /// let mut iter = a.iter();
169    ///
170    /// assert_eq!((3, Some(3)), iter.size_hint());
171    /// let _ = iter.next();
172    /// assert_eq!((2, Some(2)), iter.size_hint());
173    /// ```
174    ///
175    /// A more complex example:
176    ///
177    /// ```
178    /// // The even numbers in the range of zero to nine.
179    /// let iter = (0..10).filter(|x| x % 2 == 0);
180    ///
181    /// // We might iterate from zero to ten times. Knowing that it's five
182    /// // exactly wouldn't be possible without executing filter().
183    /// assert_eq!((0, Some(10)), iter.size_hint());
184    ///
185    /// // Let's add five more numbers with chain()
186    /// let iter = (0..10).filter(|x| x % 2 == 0).chain(15..20);
187    ///
188    /// // now both bounds are increased by five
189    /// assert_eq!((5, Some(15)), iter.size_hint());
190    /// ```
191    ///
192    /// Returning `None` for an upper bound:
193    ///
194    /// ```
195    /// // an infinite iterator has no upper bound
196    /// // and the maximum possible lower bound
197    /// let iter = 0..;
198    ///
199    /// assert_eq!((usize::MAX, None), iter.size_hint());
200    /// ```
201    #[inline]
202    #[stable(feature = "rust1", since = "1.0.0")]
203    fn size_hint(&self) -> (usize, Option<usize>) {
204        (0, None)
205    }
206
207    /// Consumes the iterator, counting the number of iterations and returning it.
208    ///
209    /// This method will call [`next`] repeatedly until [`None`] is encountered,
210    /// returning the number of times it saw [`Some`]. Note that [`next`] has to be
211    /// called at least once even if the iterator does not have any elements.
212    ///
213    /// [`next`]: Iterator::next
214    ///
215    /// # Overflow Behavior
216    ///
217    /// The method does no guarding against overflows, so counting elements of
218    /// an iterator with more than [`usize::MAX`] elements either produces the
219    /// wrong result or panics. If overflow checks are enabled, a panic is
220    /// guaranteed.
221    ///
222    /// # Panics
223    ///
224    /// This function might panic if the iterator has more than [`usize::MAX`]
225    /// elements.
226    ///
227    /// # Examples
228    ///
229    /// ```
230    /// let a = [1, 2, 3];
231    /// assert_eq!(a.iter().count(), 3);
232    ///
233    /// let a = [1, 2, 3, 4, 5];
234    /// assert_eq!(a.iter().count(), 5);
235    /// ```
236    #[inline]
237    #[stable(feature = "rust1", since = "1.0.0")]
238    #[cfg(not(feature = "ferrocene_subset"))]
239    fn count(self) -> usize
240    where
241        Self: Sized,
242    {
243        self.fold(
244            0,
245            #[rustc_inherit_overflow_checks]
246            |count, _| count + 1,
247        )
248    }
249
250    /// Consumes the iterator, returning the last element.
251    ///
252    /// This method will evaluate the iterator until it returns [`None`]. While
253    /// doing so, it keeps track of the current element. After [`None`] is
254    /// returned, `last()` will then return the last element it saw.
255    ///
256    /// # Examples
257    ///
258    /// ```
259    /// let a = [1, 2, 3];
260    /// assert_eq!(a.into_iter().last(), Some(3));
261    ///
262    /// let a = [1, 2, 3, 4, 5];
263    /// assert_eq!(a.into_iter().last(), Some(5));
264    /// ```
265    #[inline]
266    #[stable(feature = "rust1", since = "1.0.0")]
267    fn last(self) -> Option<Self::Item>
268    where
269        Self: Sized,
270    {
271        #[inline]
272        fn some<T>(_: Option<T>, x: T) -> Option<T> {
273            Some(x)
274        }
275
276        self.fold(None, some)
277    }
278
279    /// Advances the iterator by `n` elements.
280    ///
281    /// This method will eagerly skip `n` elements by calling [`next`] up to `n`
282    /// times until [`None`] is encountered.
283    ///
284    /// `advance_by(n)` will return `Ok(())` if the iterator successfully advances by
285    /// `n` elements, or a `Err(NonZero<usize>)` with value `k` if [`None`] is encountered,
286    /// where `k` is remaining number of steps that could not be advanced because the iterator ran out.
287    /// If `self` is empty and `n` is non-zero, then this returns `Err(n)`.
288    /// Otherwise, `k` is always less than `n`.
289    ///
290    /// Calling `advance_by(0)` can do meaningful work, for example [`Flatten`]
291    /// can advance its outer iterator until it finds an inner iterator that is not empty, which
292    /// then often allows it to return a more accurate `size_hint()` than in its initial state.
293    ///
294    /// [`Flatten`]: crate::iter::Flatten
295    /// [`next`]: Iterator::next
296    ///
297    /// # Examples
298    ///
299    /// ```
300    /// #![feature(iter_advance_by)]
301    ///
302    /// use std::num::NonZero;
303    ///
304    /// let a = [1, 2, 3, 4];
305    /// let mut iter = a.into_iter();
306    ///
307    /// assert_eq!(iter.advance_by(2), Ok(()));
308    /// assert_eq!(iter.next(), Some(3));
309    /// assert_eq!(iter.advance_by(0), Ok(()));
310    /// assert_eq!(iter.advance_by(100), Err(NonZero::new(99).unwrap())); // only `4` was skipped
311    /// ```
312    #[inline]
313    #[unstable(feature = "iter_advance_by", reason = "recently added", issue = "77404")]
314    fn advance_by(&mut self, n: usize) -> Result<(), NonZero<usize>> {
315        /// Helper trait to specialize `advance_by` via `try_fold` for `Sized` iterators.
316        trait SpecAdvanceBy {
317            fn spec_advance_by(&mut self, n: usize) -> Result<(), NonZero<usize>>;
318        }
319
320        impl<I: Iterator + ?Sized> SpecAdvanceBy for I {
321            default fn spec_advance_by(&mut self, n: usize) -> Result<(), NonZero<usize>> {
322                for i in 0..n {
323                    if self.next().is_none() {
324                        // SAFETY: `i` is always less than `n`.
325                        return Err(unsafe { NonZero::new_unchecked(n - i) });
326                    }
327                }
328                Ok(())
329            }
330        }
331
332        impl<I: Iterator> SpecAdvanceBy for I {
333            fn spec_advance_by(&mut self, n: usize) -> Result<(), NonZero<usize>> {
334                let Some(n) = NonZero::new(n) else {
335                    return Ok(());
336                };
337
338                let res = self.try_fold(n, |n, _| NonZero::new(n.get() - 1));
339
340                match res {
341                    None => Ok(()),
342                    Some(n) => Err(n),
343                }
344            }
345        }
346
347        self.spec_advance_by(n)
348    }
349
350    /// Returns the `n`th element of the iterator.
351    ///
352    /// Like most indexing operations, the count starts from zero, so `nth(0)`
353    /// returns the first value, `nth(1)` the second, and so on.
354    ///
355    /// Note that all preceding elements, as well as the returned element, will be
356    /// consumed from the iterator. That means that the preceding elements will be
357    /// discarded, and also that calling `nth(0)` multiple times on the same iterator
358    /// will return different elements.
359    ///
360    /// `nth()` will return [`None`] if `n` is greater than or equal to the length of the
361    /// iterator.
362    ///
363    /// # Examples
364    ///
365    /// Basic usage:
366    ///
367    /// ```
368    /// let a = [1, 2, 3];
369    /// assert_eq!(a.into_iter().nth(1), Some(2));
370    /// ```
371    ///
372    /// Calling `nth()` multiple times doesn't rewind the iterator:
373    ///
374    /// ```
375    /// let a = [1, 2, 3];
376    ///
377    /// let mut iter = a.into_iter();
378    ///
379    /// assert_eq!(iter.nth(1), Some(2));
380    /// assert_eq!(iter.nth(1), None);
381    /// ```
382    ///
383    /// Returning `None` if there are less than `n + 1` elements:
384    ///
385    /// ```
386    /// let a = [1, 2, 3];
387    /// assert_eq!(a.into_iter().nth(10), None);
388    /// ```
389    #[inline]
390    #[stable(feature = "rust1", since = "1.0.0")]
391    fn nth(&mut self, n: usize) -> Option<Self::Item> {
392        self.advance_by(n).ok()?;
393        self.next()
394    }
395
396    /// Creates an iterator starting at the same point, but stepping by
397    /// the given amount at each iteration.
398    ///
399    /// Note 1: The first element of the iterator will always be returned,
400    /// regardless of the step given.
401    ///
402    /// Note 2: The time at which ignored elements are pulled is not fixed.
403    /// `StepBy` behaves like the sequence `self.next()`, `self.nth(step-1)`,
404    /// `self.nth(step-1)`, …, but is also free to behave like the sequence
405    /// `advance_n_and_return_first(&mut self, step)`,
406    /// `advance_n_and_return_first(&mut self, step)`, …
407    /// Which way is used may change for some iterators for performance reasons.
408    /// The second way will advance the iterator earlier and may consume more items.
409    ///
410    /// `advance_n_and_return_first` is the equivalent of:
411    /// ```
412    /// fn advance_n_and_return_first<I>(iter: &mut I, n: usize) -> Option<I::Item>
413    /// where
414    ///     I: Iterator,
415    /// {
416    ///     let next = iter.next();
417    ///     if n > 1 {
418    ///         iter.nth(n - 2);
419    ///     }
420    ///     next
421    /// }
422    /// ```
423    ///
424    /// # Panics
425    ///
426    /// The method will panic if the given step is `0`.
427    ///
428    /// # Examples
429    ///
430    /// ```
431    /// let a = [0, 1, 2, 3, 4, 5];
432    /// let mut iter = a.into_iter().step_by(2);
433    ///
434    /// assert_eq!(iter.next(), Some(0));
435    /// assert_eq!(iter.next(), Some(2));
436    /// assert_eq!(iter.next(), Some(4));
437    /// assert_eq!(iter.next(), None);
438    /// ```
439    #[inline]
440    #[stable(feature = "iterator_step_by", since = "1.28.0")]
441    fn step_by(self, step: usize) -> StepBy<Self>
442    where
443        Self: Sized,
444    {
445        StepBy::new(self, step)
446    }
447
448    /// Takes two iterators and creates a new iterator over both in sequence.
449    ///
450    /// `chain()` will return a new iterator which will first iterate over
451    /// values from the first iterator and then over values from the second
452    /// iterator.
453    ///
454    /// In other words, it links two iterators together, in a chain. 🔗
455    ///
456    /// [`once`] is commonly used to adapt a single value into a chain of
457    /// other kinds of iteration.
458    ///
459    /// # Examples
460    ///
461    /// Basic usage:
462    ///
463    /// ```
464    /// let s1 = "abc".chars();
465    /// let s2 = "def".chars();
466    ///
467    /// let mut iter = s1.chain(s2);
468    ///
469    /// assert_eq!(iter.next(), Some('a'));
470    /// assert_eq!(iter.next(), Some('b'));
471    /// assert_eq!(iter.next(), Some('c'));
472    /// assert_eq!(iter.next(), Some('d'));
473    /// assert_eq!(iter.next(), Some('e'));
474    /// assert_eq!(iter.next(), Some('f'));
475    /// assert_eq!(iter.next(), None);
476    /// ```
477    ///
478    /// Since the argument to `chain()` uses [`IntoIterator`], we can pass
479    /// anything that can be converted into an [`Iterator`], not just an
480    /// [`Iterator`] itself. For example, arrays (`[T]`) implement
481    /// [`IntoIterator`], and so can be passed to `chain()` directly:
482    ///
483    /// ```
484    /// let a1 = [1, 2, 3];
485    /// let a2 = [4, 5, 6];
486    ///
487    /// let mut iter = a1.into_iter().chain(a2);
488    ///
489    /// assert_eq!(iter.next(), Some(1));
490    /// assert_eq!(iter.next(), Some(2));
491    /// assert_eq!(iter.next(), Some(3));
492    /// assert_eq!(iter.next(), Some(4));
493    /// assert_eq!(iter.next(), Some(5));
494    /// assert_eq!(iter.next(), Some(6));
495    /// assert_eq!(iter.next(), None);
496    /// ```
497    ///
498    /// If you work with Windows API, you may wish to convert [`OsStr`] to `Vec<u16>`:
499    ///
500    /// ```
501    /// #[cfg(windows)]
502    /// fn os_str_to_utf16(s: &std::ffi::OsStr) -> Vec<u16> {
503    ///     use std::os::windows::ffi::OsStrExt;
504    ///     s.encode_wide().chain(std::iter::once(0)).collect()
505    /// }
506    /// ```
507    ///
508    /// [`once`]: crate::iter::once
509    /// [`OsStr`]: ../../std/ffi/struct.OsStr.html
510    #[inline]
511    #[stable(feature = "rust1", since = "1.0.0")]
512    fn chain<U>(self, other: U) -> Chain<Self, U::IntoIter>
513    where
514        Self: Sized,
515        U: IntoIterator<Item = Self::Item>,
516    {
517        Chain::new(self, other.into_iter())
518    }
519
520    /// 'Zips up' two iterators into a single iterator of pairs.
521    ///
522    /// `zip()` returns a new iterator that will iterate over two other
523    /// iterators, returning a tuple where the first element comes from the
524    /// first iterator, and the second element comes from the second iterator.
525    ///
526    /// In other words, it zips two iterators together, into a single one.
527    ///
528    /// If either iterator returns [`None`], [`next`] from the zipped iterator
529    /// will return [`None`].
530    /// If the zipped iterator has no more elements to return then each further attempt to advance
531    /// it will first try to advance the first iterator at most one time and if it still yielded an item
532    /// try to advance the second iterator at most one time.
533    ///
534    /// To 'undo' the result of zipping up two iterators, see [`unzip`].
535    ///
536    /// [`unzip`]: Iterator::unzip
537    ///
538    /// # Examples
539    ///
540    /// Basic usage:
541    ///
542    /// ```
543    /// let s1 = "abc".chars();
544    /// let s2 = "def".chars();
545    ///
546    /// let mut iter = s1.zip(s2);
547    ///
548    /// assert_eq!(iter.next(), Some(('a', 'd')));
549    /// assert_eq!(iter.next(), Some(('b', 'e')));
550    /// assert_eq!(iter.next(), Some(('c', 'f')));
551    /// assert_eq!(iter.next(), None);
552    /// ```
553    ///
554    /// Since the argument to `zip()` uses [`IntoIterator`], we can pass
555    /// anything that can be converted into an [`Iterator`], not just an
556    /// [`Iterator`] itself. For example, arrays (`[T]`) implement
557    /// [`IntoIterator`], and so can be passed to `zip()` directly:
558    ///
559    /// ```
560    /// let a1 = [1, 2, 3];
561    /// let a2 = [4, 5, 6];
562    ///
563    /// let mut iter = a1.into_iter().zip(a2);
564    ///
565    /// assert_eq!(iter.next(), Some((1, 4)));
566    /// assert_eq!(iter.next(), Some((2, 5)));
567    /// assert_eq!(iter.next(), Some((3, 6)));
568    /// assert_eq!(iter.next(), None);
569    /// ```
570    ///
571    /// `zip()` is often used to zip an infinite iterator to a finite one.
572    /// This works because the finite iterator will eventually return [`None`],
573    /// ending the zipper. Zipping with `(0..)` can look a lot like [`enumerate`]:
574    ///
575    /// ```
576    /// let enumerate: Vec<_> = "foo".chars().enumerate().collect();
577    ///
578    /// let zipper: Vec<_> = (0..).zip("foo".chars()).collect();
579    ///
580    /// assert_eq!((0, 'f'), enumerate[0]);
581    /// assert_eq!((0, 'f'), zipper[0]);
582    ///
583    /// assert_eq!((1, 'o'), enumerate[1]);
584    /// assert_eq!((1, 'o'), zipper[1]);
585    ///
586    /// assert_eq!((2, 'o'), enumerate[2]);
587    /// assert_eq!((2, 'o'), zipper[2]);
588    /// ```
589    ///
590    /// If both iterators have roughly equivalent syntax, it may be more readable to use [`zip`]:
591    ///
592    /// ```
593    /// use std::iter::zip;
594    ///
595    /// let a = [1, 2, 3];
596    /// let b = [2, 3, 4];
597    ///
598    /// let mut zipped = zip(
599    ///     a.into_iter().map(|x| x * 2).skip(1),
600    ///     b.into_iter().map(|x| x * 2).skip(1),
601    /// );
602    ///
603    /// assert_eq!(zipped.next(), Some((4, 6)));
604    /// assert_eq!(zipped.next(), Some((6, 8)));
605    /// assert_eq!(zipped.next(), None);
606    /// ```
607    ///
608    /// compared to:
609    ///
610    /// ```
611    /// # let a = [1, 2, 3];
612    /// # let b = [2, 3, 4];
613    /// #
614    /// let mut zipped = a
615    ///     .into_iter()
616    ///     .map(|x| x * 2)
617    ///     .skip(1)
618    ///     .zip(b.into_iter().map(|x| x * 2).skip(1));
619    /// #
620    /// # assert_eq!(zipped.next(), Some((4, 6)));
621    /// # assert_eq!(zipped.next(), Some((6, 8)));
622    /// # assert_eq!(zipped.next(), None);
623    /// ```
624    ///
625    /// [`enumerate`]: Iterator::enumerate
626    /// [`next`]: Iterator::next
627    /// [`zip`]: crate::iter::zip
628    #[inline]
629    #[stable(feature = "rust1", since = "1.0.0")]
630    fn zip<U>(self, other: U) -> Zip<Self, U::IntoIter>
631    where
632        Self: Sized,
633        U: IntoIterator,
634    {
635        Zip::new(self, other.into_iter())
636    }
637
638    /// Creates a new iterator which places a copy of `separator` between adjacent
639    /// items of the original iterator.
640    ///
641    /// In case `separator` does not implement [`Clone`] or needs to be
642    /// computed every time, use [`intersperse_with`].
643    ///
644    /// # Examples
645    ///
646    /// Basic usage:
647    ///
648    /// ```
649    /// #![feature(iter_intersperse)]
650    ///
651    /// let mut a = [0, 1, 2].into_iter().intersperse(100);
652    /// assert_eq!(a.next(), Some(0));   // The first element from `a`.
653    /// assert_eq!(a.next(), Some(100)); // The separator.
654    /// assert_eq!(a.next(), Some(1));   // The next element from `a`.
655    /// assert_eq!(a.next(), Some(100)); // The separator.
656    /// assert_eq!(a.next(), Some(2));   // The last element from `a`.
657    /// assert_eq!(a.next(), None);       // The iterator is finished.
658    /// ```
659    ///
660    /// `intersperse` can be very useful to join an iterator's items using a common element:
661    /// ```
662    /// #![feature(iter_intersperse)]
663    ///
664    /// let words = ["Hello", "World", "!"];
665    /// let hello: String = words.into_iter().intersperse(" ").collect();
666    /// assert_eq!(hello, "Hello World !");
667    /// ```
668    ///
669    /// [`Clone`]: crate::clone::Clone
670    /// [`intersperse_with`]: Iterator::intersperse_with
671    #[inline]
672    #[unstable(feature = "iter_intersperse", reason = "recently added", issue = "79524")]
673    #[cfg(not(feature = "ferrocene_subset"))]
674    fn intersperse(self, separator: Self::Item) -> Intersperse<Self>
675    where
676        Self: Sized,
677        Self::Item: Clone,
678    {
679        Intersperse::new(self, separator)
680    }
681
682    /// Creates a new iterator which places an item generated by `separator`
683    /// between adjacent items of the original iterator.
684    ///
685    /// The closure will be called exactly once each time an item is placed
686    /// between two adjacent items from the underlying iterator; specifically,
687    /// the closure is not called if the underlying iterator yields less than
688    /// two items and after the last item is yielded.
689    ///
690    /// If the iterator's item implements [`Clone`], it may be easier to use
691    /// [`intersperse`].
692    ///
693    /// # Examples
694    ///
695    /// Basic usage:
696    ///
697    /// ```
698    /// #![feature(iter_intersperse)]
699    ///
700    /// #[derive(PartialEq, Debug)]
701    /// struct NotClone(usize);
702    ///
703    /// let v = [NotClone(0), NotClone(1), NotClone(2)];
704    /// let mut it = v.into_iter().intersperse_with(|| NotClone(99));
705    ///
706    /// assert_eq!(it.next(), Some(NotClone(0)));  // The first element from `v`.
707    /// assert_eq!(it.next(), Some(NotClone(99))); // The separator.
708    /// assert_eq!(it.next(), Some(NotClone(1)));  // The next element from `v`.
709    /// assert_eq!(it.next(), Some(NotClone(99))); // The separator.
710    /// assert_eq!(it.next(), Some(NotClone(2)));  // The last element from `v`.
711    /// assert_eq!(it.next(), None);               // The iterator is finished.
712    /// ```
713    ///
714    /// `intersperse_with` can be used in situations where the separator needs
715    /// to be computed:
716    /// ```
717    /// #![feature(iter_intersperse)]
718    ///
719    /// let src = ["Hello", "to", "all", "people", "!!"].iter().copied();
720    ///
721    /// // The closure mutably borrows its context to generate an item.
722    /// let mut happy_emojis = [" ❤️ ", " 😀 "].into_iter();
723    /// let separator = || happy_emojis.next().unwrap_or(" 🦀 ");
724    ///
725    /// let result = src.intersperse_with(separator).collect::<String>();
726    /// assert_eq!(result, "Hello ❤️ to 😀 all 🦀 people 🦀 !!");
727    /// ```
728    /// [`Clone`]: crate::clone::Clone
729    /// [`intersperse`]: Iterator::intersperse
730    #[inline]
731    #[unstable(feature = "iter_intersperse", reason = "recently added", issue = "79524")]
732    #[cfg(not(feature = "ferrocene_subset"))]
733    fn intersperse_with<G>(self, separator: G) -> IntersperseWith<Self, G>
734    where
735        Self: Sized,
736        G: FnMut() -> Self::Item,
737    {
738        IntersperseWith::new(self, separator)
739    }
740
741    /// Takes a closure and creates an iterator which calls that closure on each
742    /// element.
743    ///
744    /// `map()` transforms one iterator into another, by means of its argument:
745    /// something that implements [`FnMut`]. It produces a new iterator which
746    /// calls this closure on each element of the original iterator.
747    ///
748    /// If you are good at thinking in types, you can think of `map()` like this:
749    /// If you have an iterator that gives you elements of some type `A`, and
750    /// you want an iterator of some other type `B`, you can use `map()`,
751    /// passing a closure that takes an `A` and returns a `B`.
752    ///
753    /// `map()` is conceptually similar to a [`for`] loop. However, as `map()` is
754    /// lazy, it is best used when you're already working with other iterators.
755    /// If you're doing some sort of looping for a side effect, it's considered
756    /// more idiomatic to use [`for`] than `map()`.
757    ///
758    /// [`for`]: ../../book/ch03-05-control-flow.html#looping-through-a-collection-with-for
759    ///
760    /// # Examples
761    ///
762    /// Basic usage:
763    ///
764    /// ```
765    /// let a = [1, 2, 3];
766    ///
767    /// let mut iter = a.iter().map(|x| 2 * x);
768    ///
769    /// assert_eq!(iter.next(), Some(2));
770    /// assert_eq!(iter.next(), Some(4));
771    /// assert_eq!(iter.next(), Some(6));
772    /// assert_eq!(iter.next(), None);
773    /// ```
774    ///
775    /// If you're doing some sort of side effect, prefer [`for`] to `map()`:
776    ///
777    /// ```
778    /// # #![allow(unused_must_use)]
779    /// // don't do this:
780    /// (0..5).map(|x| println!("{x}"));
781    ///
782    /// // it won't even execute, as it is lazy. Rust will warn you about this.
783    ///
784    /// // Instead, use a for-loop:
785    /// for x in 0..5 {
786    ///     println!("{x}");
787    /// }
788    /// ```
789    #[rustc_diagnostic_item = "IteratorMap"]
790    #[inline]
791    #[stable(feature = "rust1", since = "1.0.0")]
792    fn map<B, F>(self, f: F) -> Map<Self, F>
793    where
794        Self: Sized,
795        F: FnMut(Self::Item) -> B,
796    {
797        Map::new(self, f)
798    }
799
800    /// Calls a closure on each element of an iterator.
801    ///
802    /// This is equivalent to using a [`for`] loop on the iterator, although
803    /// `break` and `continue` are not possible from a closure. It's generally
804    /// more idiomatic to use a `for` loop, but `for_each` may be more legible
805    /// when processing items at the end of longer iterator chains. In some
806    /// cases `for_each` may also be faster than a loop, because it will use
807    /// internal iteration on adapters like `Chain`.
808    ///
809    /// [`for`]: ../../book/ch03-05-control-flow.html#looping-through-a-collection-with-for
810    ///
811    /// # Examples
812    ///
813    /// Basic usage:
814    ///
815    /// ```
816    /// use std::sync::mpsc::channel;
817    ///
818    /// let (tx, rx) = channel();
819    /// (0..5).map(|x| x * 2 + 1)
820    ///       .for_each(move |x| tx.send(x).unwrap());
821    ///
822    /// let v: Vec<_> = rx.iter().collect();
823    /// assert_eq!(v, vec![1, 3, 5, 7, 9]);
824    /// ```
825    ///
826    /// For such a small example, a `for` loop may be cleaner, but `for_each`
827    /// might be preferable to keep a functional style with longer iterators:
828    ///
829    /// ```
830    /// (0..5).flat_map(|x| (x * 100)..(x * 110))
831    ///       .enumerate()
832    ///       .filter(|&(i, x)| (i + x) % 3 == 0)
833    ///       .for_each(|(i, x)| println!("{i}:{x}"));
834    /// ```
835    #[inline]
836    #[stable(feature = "iterator_for_each", since = "1.21.0")]
837    fn for_each<F>(self, f: F)
838    where
839        Self: Sized,
840        F: FnMut(Self::Item),
841    {
842        #[inline]
843        fn call<T>(mut f: impl FnMut(T)) -> impl FnMut((), T) {
844            move |(), item| f(item)
845        }
846
847        self.fold((), call(f));
848    }
849
850    /// Creates an iterator which uses a closure to determine if an element
851    /// should be yielded.
852    ///
853    /// Given an element the closure must return `true` or `false`. The returned
854    /// iterator will yield only the elements for which the closure returns
855    /// `true`.
856    ///
857    /// # Examples
858    ///
859    /// Basic usage:
860    ///
861    /// ```
862    /// let a = [0i32, 1, 2];
863    ///
864    /// let mut iter = a.into_iter().filter(|x| x.is_positive());
865    ///
866    /// assert_eq!(iter.next(), Some(1));
867    /// assert_eq!(iter.next(), Some(2));
868    /// assert_eq!(iter.next(), None);
869    /// ```
870    ///
871    /// Because the closure passed to `filter()` takes a reference, and many
872    /// iterators iterate over references, this leads to a possibly confusing
873    /// situation, where the type of the closure is a double reference:
874    ///
875    /// ```
876    /// let s = &[0, 1, 2];
877    ///
878    /// let mut iter = s.iter().filter(|x| **x > 1); // needs two *s!
879    ///
880    /// assert_eq!(iter.next(), Some(&2));
881    /// assert_eq!(iter.next(), None);
882    /// ```
883    ///
884    /// It's common to instead use destructuring on the argument to strip away one:
885    ///
886    /// ```
887    /// let s = &[0, 1, 2];
888    ///
889    /// let mut iter = s.iter().filter(|&x| *x > 1); // both & and *
890    ///
891    /// assert_eq!(iter.next(), Some(&2));
892    /// assert_eq!(iter.next(), None);
893    /// ```
894    ///
895    /// or both:
896    ///
897    /// ```
898    /// let s = &[0, 1, 2];
899    ///
900    /// let mut iter = s.iter().filter(|&&x| x > 1); // two &s
901    ///
902    /// assert_eq!(iter.next(), Some(&2));
903    /// assert_eq!(iter.next(), None);
904    /// ```
905    ///
906    /// of these layers.
907    ///
908    /// Note that `iter.filter(f).next()` is equivalent to `iter.find(f)`.
909    #[inline]
910    #[stable(feature = "rust1", since = "1.0.0")]
911    #[rustc_diagnostic_item = "iter_filter"]
912    fn filter<P>(self, predicate: P) -> Filter<Self, P>
913    where
914        Self: Sized,
915        P: FnMut(&Self::Item) -> bool,
916    {
917        Filter::new(self, predicate)
918    }
919
920    /// Creates an iterator that both filters and maps.
921    ///
922    /// The returned iterator yields only the `value`s for which the supplied
923    /// closure returns `Some(value)`.
924    ///
925    /// `filter_map` can be used to make chains of [`filter`] and [`map`] more
926    /// concise. The example below shows how a `map().filter().map()` can be
927    /// shortened to a single call to `filter_map`.
928    ///
929    /// [`filter`]: Iterator::filter
930    /// [`map`]: Iterator::map
931    ///
932    /// # Examples
933    ///
934    /// Basic usage:
935    ///
936    /// ```
937    /// let a = ["1", "two", "NaN", "four", "5"];
938    ///
939    /// let mut iter = a.iter().filter_map(|s| s.parse().ok());
940    ///
941    /// assert_eq!(iter.next(), Some(1));
942    /// assert_eq!(iter.next(), Some(5));
943    /// assert_eq!(iter.next(), None);
944    /// ```
945    ///
946    /// Here's the same example, but with [`filter`] and [`map`]:
947    ///
948    /// ```
949    /// let a = ["1", "two", "NaN", "four", "5"];
950    /// let mut iter = a.iter().map(|s| s.parse()).filter(|s| s.is_ok()).map(|s| s.unwrap());
951    /// assert_eq!(iter.next(), Some(1));
952    /// assert_eq!(iter.next(), Some(5));
953    /// assert_eq!(iter.next(), None);
954    /// ```
955    #[inline]
956    #[stable(feature = "rust1", since = "1.0.0")]
957    #[cfg(not(feature = "ferrocene_subset"))]
958    fn filter_map<B, F>(self, f: F) -> FilterMap<Self, F>
959    where
960        Self: Sized,
961        F: FnMut(Self::Item) -> Option<B>,
962    {
963        FilterMap::new(self, f)
964    }
965
966    /// Creates an iterator which gives the current iteration count as well as
967    /// the next value.
968    ///
969    /// The iterator returned yields pairs `(i, val)`, where `i` is the
970    /// current index of iteration and `val` is the value returned by the
971    /// iterator.
972    ///
973    /// `enumerate()` keeps its count as a [`usize`]. If you want to count by a
974    /// different sized integer, the [`zip`] function provides similar
975    /// functionality.
976    ///
977    /// # Overflow Behavior
978    ///
979    /// The method does no guarding against overflows, so enumerating more than
980    /// [`usize::MAX`] elements either produces the wrong result or panics. If
981    /// overflow checks are enabled, a panic is guaranteed.
982    ///
983    /// # Panics
984    ///
985    /// The returned iterator might panic if the to-be-returned index would
986    /// overflow a [`usize`].
987    ///
988    /// [`zip`]: Iterator::zip
989    ///
990    /// # Examples
991    ///
992    /// ```
993    /// let a = ['a', 'b', 'c'];
994    ///
995    /// let mut iter = a.into_iter().enumerate();
996    ///
997    /// assert_eq!(iter.next(), Some((0, 'a')));
998    /// assert_eq!(iter.next(), Some((1, 'b')));
999    /// assert_eq!(iter.next(), Some((2, 'c')));
1000    /// assert_eq!(iter.next(), None);
1001    /// ```
1002    #[inline]
1003    #[stable(feature = "rust1", since = "1.0.0")]
1004    #[rustc_diagnostic_item = "enumerate_method"]
1005    fn enumerate(self) -> Enumerate<Self>
1006    where
1007        Self: Sized,
1008    {
1009        Enumerate::new(self)
1010    }
1011
1012    /// Creates an iterator which can use the [`peek`] and [`peek_mut`] methods
1013    /// to look at the next element of the iterator without consuming it. See
1014    /// their documentation for more information.
1015    ///
1016    /// Note that the underlying iterator is still advanced when [`peek`] or
1017    /// [`peek_mut`] are called for the first time: In order to retrieve the
1018    /// next element, [`next`] is called on the underlying iterator, hence any
1019    /// side effects (i.e. anything other than fetching the next value) of
1020    /// the [`next`] method will occur.
1021    ///
1022    ///
1023    /// # Examples
1024    ///
1025    /// Basic usage:
1026    ///
1027    /// ```
1028    /// let xs = [1, 2, 3];
1029    ///
1030    /// let mut iter = xs.into_iter().peekable();
1031    ///
1032    /// // peek() lets us see into the future
1033    /// assert_eq!(iter.peek(), Some(&1));
1034    /// assert_eq!(iter.next(), Some(1));
1035    ///
1036    /// assert_eq!(iter.next(), Some(2));
1037    ///
1038    /// // we can peek() multiple times, the iterator won't advance
1039    /// assert_eq!(iter.peek(), Some(&3));
1040    /// assert_eq!(iter.peek(), Some(&3));
1041    ///
1042    /// assert_eq!(iter.next(), Some(3));
1043    ///
1044    /// // after the iterator is finished, so is peek()
1045    /// assert_eq!(iter.peek(), None);
1046    /// assert_eq!(iter.next(), None);
1047    /// ```
1048    ///
1049    /// Using [`peek_mut`] to mutate the next item without advancing the
1050    /// iterator:
1051    ///
1052    /// ```
1053    /// let xs = [1, 2, 3];
1054    ///
1055    /// let mut iter = xs.into_iter().peekable();
1056    ///
1057    /// // `peek_mut()` lets us see into the future
1058    /// assert_eq!(iter.peek_mut(), Some(&mut 1));
1059    /// assert_eq!(iter.peek_mut(), Some(&mut 1));
1060    /// assert_eq!(iter.next(), Some(1));
1061    ///
1062    /// if let Some(p) = iter.peek_mut() {
1063    ///     assert_eq!(*p, 2);
1064    ///     // put a value into the iterator
1065    ///     *p = 1000;
1066    /// }
1067    ///
1068    /// // The value reappears as the iterator continues
1069    /// assert_eq!(iter.collect::<Vec<_>>(), vec![1000, 3]);
1070    /// ```
1071    /// [`peek`]: Peekable::peek
1072    /// [`peek_mut`]: Peekable::peek_mut
1073    /// [`next`]: Iterator::next
1074    #[inline]
1075    #[stable(feature = "rust1", since = "1.0.0")]
1076    #[cfg(not(feature = "ferrocene_subset"))]
1077    fn peekable(self) -> Peekable<Self>
1078    where
1079        Self: Sized,
1080    {
1081        Peekable::new(self)
1082    }
1083
1084    /// Creates an iterator that [`skip`]s elements based on a predicate.
1085    ///
1086    /// [`skip`]: Iterator::skip
1087    ///
1088    /// `skip_while()` takes a closure as an argument. It will call this
1089    /// closure on each element of the iterator, and ignore elements
1090    /// until it returns `false`.
1091    ///
1092    /// After `false` is returned, `skip_while()`'s job is over, and the
1093    /// rest of the elements are yielded.
1094    ///
1095    /// # Examples
1096    ///
1097    /// Basic usage:
1098    ///
1099    /// ```
1100    /// let a = [-1i32, 0, 1];
1101    ///
1102    /// let mut iter = a.into_iter().skip_while(|x| x.is_negative());
1103    ///
1104    /// assert_eq!(iter.next(), Some(0));
1105    /// assert_eq!(iter.next(), Some(1));
1106    /// assert_eq!(iter.next(), None);
1107    /// ```
1108    ///
1109    /// Because the closure passed to `skip_while()` takes a reference, and many
1110    /// iterators iterate over references, this leads to a possibly confusing
1111    /// situation, where the type of the closure argument is a double reference:
1112    ///
1113    /// ```
1114    /// let s = &[-1, 0, 1];
1115    ///
1116    /// let mut iter = s.iter().skip_while(|x| **x < 0); // need two *s!
1117    ///
1118    /// assert_eq!(iter.next(), Some(&0));
1119    /// assert_eq!(iter.next(), Some(&1));
1120    /// assert_eq!(iter.next(), None);
1121    /// ```
1122    ///
1123    /// Stopping after an initial `false`:
1124    ///
1125    /// ```
1126    /// let a = [-1, 0, 1, -2];
1127    ///
1128    /// let mut iter = a.into_iter().skip_while(|&x| x < 0);
1129    ///
1130    /// assert_eq!(iter.next(), Some(0));
1131    /// assert_eq!(iter.next(), Some(1));
1132    ///
1133    /// // while this would have been false, since we already got a false,
1134    /// // skip_while() isn't used any more
1135    /// assert_eq!(iter.next(), Some(-2));
1136    ///
1137    /// assert_eq!(iter.next(), None);
1138    /// ```
1139    #[inline]
1140    #[doc(alias = "drop_while")]
1141    #[stable(feature = "rust1", since = "1.0.0")]
1142    #[cfg(not(feature = "ferrocene_subset"))]
1143    fn skip_while<P>(self, predicate: P) -> SkipWhile<Self, P>
1144    where
1145        Self: Sized,
1146        P: FnMut(&Self::Item) -> bool,
1147    {
1148        SkipWhile::new(self, predicate)
1149    }
1150
1151    /// Creates an iterator that yields elements based on a predicate.
1152    ///
1153    /// `take_while()` takes a closure as an argument. It will call this
1154    /// closure on each element of the iterator, and yield elements
1155    /// while it returns `true`.
1156    ///
1157    /// After `false` is returned, `take_while()`'s job is over, and the
1158    /// rest of the elements are ignored.
1159    ///
1160    /// # Examples
1161    ///
1162    /// Basic usage:
1163    ///
1164    /// ```
1165    /// let a = [-1i32, 0, 1];
1166    ///
1167    /// let mut iter = a.into_iter().take_while(|x| x.is_negative());
1168    ///
1169    /// assert_eq!(iter.next(), Some(-1));
1170    /// assert_eq!(iter.next(), None);
1171    /// ```
1172    ///
1173    /// Because the closure passed to `take_while()` takes a reference, and many
1174    /// iterators iterate over references, this leads to a possibly confusing
1175    /// situation, where the type of the closure is a double reference:
1176    ///
1177    /// ```
1178    /// let s = &[-1, 0, 1];
1179    ///
1180    /// let mut iter = s.iter().take_while(|x| **x < 0); // need two *s!
1181    ///
1182    /// assert_eq!(iter.next(), Some(&-1));
1183    /// assert_eq!(iter.next(), None);
1184    /// ```
1185    ///
1186    /// Stopping after an initial `false`:
1187    ///
1188    /// ```
1189    /// let a = [-1, 0, 1, -2];
1190    ///
1191    /// let mut iter = a.into_iter().take_while(|&x| x < 0);
1192    ///
1193    /// assert_eq!(iter.next(), Some(-1));
1194    ///
1195    /// // We have more elements that are less than zero, but since we already
1196    /// // got a false, take_while() ignores the remaining elements.
1197    /// assert_eq!(iter.next(), None);
1198    /// ```
1199    ///
1200    /// Because `take_while()` needs to look at the value in order to see if it
1201    /// should be included or not, consuming iterators will see that it is
1202    /// removed:
1203    ///
1204    /// ```
1205    /// let a = [1, 2, 3, 4];
1206    /// let mut iter = a.into_iter();
1207    ///
1208    /// let result: Vec<i32> = iter.by_ref().take_while(|&n| n != 3).collect();
1209    ///
1210    /// assert_eq!(result, [1, 2]);
1211    ///
1212    /// let result: Vec<i32> = iter.collect();
1213    ///
1214    /// assert_eq!(result, [4]);
1215    /// ```
1216    ///
1217    /// The `3` is no longer there, because it was consumed in order to see if
1218    /// the iteration should stop, but wasn't placed back into the iterator.
1219    #[inline]
1220    #[stable(feature = "rust1", since = "1.0.0")]
1221    #[cfg(not(feature = "ferrocene_subset"))]
1222    fn take_while<P>(self, predicate: P) -> TakeWhile<Self, P>
1223    where
1224        Self: Sized,
1225        P: FnMut(&Self::Item) -> bool,
1226    {
1227        TakeWhile::new(self, predicate)
1228    }
1229
1230    /// Creates an iterator that both yields elements based on a predicate and maps.
1231    ///
1232    /// `map_while()` takes a closure as an argument. It will call this
1233    /// closure on each element of the iterator, and yield elements
1234    /// while it returns [`Some(_)`][`Some`].
1235    ///
1236    /// # Examples
1237    ///
1238    /// Basic usage:
1239    ///
1240    /// ```
1241    /// let a = [-1i32, 4, 0, 1];
1242    ///
1243    /// let mut iter = a.into_iter().map_while(|x| 16i32.checked_div(x));
1244    ///
1245    /// assert_eq!(iter.next(), Some(-16));
1246    /// assert_eq!(iter.next(), Some(4));
1247    /// assert_eq!(iter.next(), None);
1248    /// ```
1249    ///
1250    /// Here's the same example, but with [`take_while`] and [`map`]:
1251    ///
1252    /// [`take_while`]: Iterator::take_while
1253    /// [`map`]: Iterator::map
1254    ///
1255    /// ```
1256    /// let a = [-1i32, 4, 0, 1];
1257    ///
1258    /// let mut iter = a.into_iter()
1259    ///                 .map(|x| 16i32.checked_div(x))
1260    ///                 .take_while(|x| x.is_some())
1261    ///                 .map(|x| x.unwrap());
1262    ///
1263    /// assert_eq!(iter.next(), Some(-16));
1264    /// assert_eq!(iter.next(), Some(4));
1265    /// assert_eq!(iter.next(), None);
1266    /// ```
1267    ///
1268    /// Stopping after an initial [`None`]:
1269    ///
1270    /// ```
1271    /// let a = [0, 1, 2, -3, 4, 5, -6];
1272    ///
1273    /// let iter = a.into_iter().map_while(|x| u32::try_from(x).ok());
1274    /// let vec: Vec<_> = iter.collect();
1275    ///
1276    /// // We have more elements that could fit in u32 (such as 4, 5), but `map_while` returned `None` for `-3`
1277    /// // (as the `predicate` returned `None`) and `collect` stops at the first `None` encountered.
1278    /// assert_eq!(vec, [0, 1, 2]);
1279    /// ```
1280    ///
1281    /// Because `map_while()` needs to look at the value in order to see if it
1282    /// should be included or not, consuming iterators will see that it is
1283    /// removed:
1284    ///
1285    /// ```
1286    /// let a = [1, 2, -3, 4];
1287    /// let mut iter = a.into_iter();
1288    ///
1289    /// let result: Vec<u32> = iter.by_ref()
1290    ///                            .map_while(|n| u32::try_from(n).ok())
1291    ///                            .collect();
1292    ///
1293    /// assert_eq!(result, [1, 2]);
1294    ///
1295    /// let result: Vec<i32> = iter.collect();
1296    ///
1297    /// assert_eq!(result, [4]);
1298    /// ```
1299    ///
1300    /// The `-3` is no longer there, because it was consumed in order to see if
1301    /// the iteration should stop, but wasn't placed back into the iterator.
1302    ///
1303    /// Note that unlike [`take_while`] this iterator is **not** fused.
1304    /// It is also not specified what this iterator returns after the first [`None`] is returned.
1305    /// If you need a fused iterator, use [`fuse`].
1306    ///
1307    /// [`fuse`]: Iterator::fuse
1308    #[inline]
1309    #[stable(feature = "iter_map_while", since = "1.57.0")]
1310    #[cfg(not(feature = "ferrocene_subset"))]
1311    fn map_while<B, P>(self, predicate: P) -> MapWhile<Self, P>
1312    where
1313        Self: Sized,
1314        P: FnMut(Self::Item) -> Option<B>,
1315    {
1316        MapWhile::new(self, predicate)
1317    }
1318
1319    /// Creates an iterator that skips the first `n` elements.
1320    ///
1321    /// `skip(n)` skips elements until `n` elements are skipped or the end of the
1322    /// iterator is reached (whichever happens first). After that, all the remaining
1323    /// elements are yielded. In particular, if the original iterator is too short,
1324    /// then the returned iterator is empty.
1325    ///
1326    /// Rather than overriding this method directly, instead override the `nth` method.
1327    ///
1328    /// # Examples
1329    ///
1330    /// ```
1331    /// let a = [1, 2, 3];
1332    ///
1333    /// let mut iter = a.into_iter().skip(2);
1334    ///
1335    /// assert_eq!(iter.next(), Some(3));
1336    /// assert_eq!(iter.next(), None);
1337    /// ```
1338    #[inline]
1339    #[stable(feature = "rust1", since = "1.0.0")]
1340    fn skip(self, n: usize) -> Skip<Self>
1341    where
1342        Self: Sized,
1343    {
1344        Skip::new(self, n)
1345    }
1346
1347    /// Creates an iterator that yields the first `n` elements, or fewer
1348    /// if the underlying iterator ends sooner.
1349    ///
1350    /// `take(n)` yields elements until `n` elements are yielded or the end of
1351    /// the iterator is reached (whichever happens first).
1352    /// The returned iterator is a prefix of length `n` if the original iterator
1353    /// contains at least `n` elements, otherwise it contains all of the
1354    /// (fewer than `n`) elements of the original iterator.
1355    ///
1356    /// # Examples
1357    ///
1358    /// Basic usage:
1359    ///
1360    /// ```
1361    /// let a = [1, 2, 3];
1362    ///
1363    /// let mut iter = a.into_iter().take(2);
1364    ///
1365    /// assert_eq!(iter.next(), Some(1));
1366    /// assert_eq!(iter.next(), Some(2));
1367    /// assert_eq!(iter.next(), None);
1368    /// ```
1369    ///
1370    /// `take()` is often used with an infinite iterator, to make it finite:
1371    ///
1372    /// ```
1373    /// let mut iter = (0..).take(3);
1374    ///
1375    /// assert_eq!(iter.next(), Some(0));
1376    /// assert_eq!(iter.next(), Some(1));
1377    /// assert_eq!(iter.next(), Some(2));
1378    /// assert_eq!(iter.next(), None);
1379    /// ```
1380    ///
1381    /// If less than `n` elements are available,
1382    /// `take` will limit itself to the size of the underlying iterator:
1383    ///
1384    /// ```
1385    /// let v = [1, 2];
1386    /// let mut iter = v.into_iter().take(5);
1387    /// assert_eq!(iter.next(), Some(1));
1388    /// assert_eq!(iter.next(), Some(2));
1389    /// assert_eq!(iter.next(), None);
1390    /// ```
1391    ///
1392    /// Use [`by_ref`] to take from the iterator without consuming it, and then
1393    /// continue using the original iterator:
1394    ///
1395    /// ```
1396    /// let mut words = ["hello", "world", "of", "Rust"].into_iter();
1397    ///
1398    /// // Take the first two words.
1399    /// let hello_world: Vec<_> = words.by_ref().take(2).collect();
1400    /// assert_eq!(hello_world, vec!["hello", "world"]);
1401    ///
1402    /// // Collect the rest of the words.
1403    /// // We can only do this because we used `by_ref` earlier.
1404    /// let of_rust: Vec<_> = words.collect();
1405    /// assert_eq!(of_rust, vec!["of", "Rust"]);
1406    /// ```
1407    ///
1408    /// [`by_ref`]: Iterator::by_ref
1409    #[doc(alias = "limit")]
1410    #[inline]
1411    #[stable(feature = "rust1", since = "1.0.0")]
1412    fn take(self, n: usize) -> Take<Self>
1413    where
1414        Self: Sized,
1415    {
1416        Take::new(self, n)
1417    }
1418
1419    /// An iterator adapter which, like [`fold`], holds internal state, but
1420    /// unlike [`fold`], produces a new iterator.
1421    ///
1422    /// [`fold`]: Iterator::fold
1423    ///
1424    /// `scan()` takes two arguments: an initial value which seeds the internal
1425    /// state, and a closure with two arguments, the first being a mutable
1426    /// reference to the internal state and the second an iterator element.
1427    /// The closure can assign to the internal state to share state between
1428    /// iterations.
1429    ///
1430    /// On iteration, the closure will be applied to each element of the
1431    /// iterator and the return value from the closure, an [`Option`], is
1432    /// returned by the `next` method. Thus the closure can return
1433    /// `Some(value)` to yield `value`, or `None` to end the iteration.
1434    ///
1435    /// # Examples
1436    ///
1437    /// ```
1438    /// let a = [1, 2, 3, 4];
1439    ///
1440    /// let mut iter = a.into_iter().scan(1, |state, x| {
1441    ///     // each iteration, we'll multiply the state by the element ...
1442    ///     *state = *state * x;
1443    ///
1444    ///     // ... and terminate if the state exceeds 6
1445    ///     if *state > 6 {
1446    ///         return None;
1447    ///     }
1448    ///     // ... else yield the negation of the state
1449    ///     Some(-*state)
1450    /// });
1451    ///
1452    /// assert_eq!(iter.next(), Some(-1));
1453    /// assert_eq!(iter.next(), Some(-2));
1454    /// assert_eq!(iter.next(), Some(-6));
1455    /// assert_eq!(iter.next(), None);
1456    /// ```
1457    #[inline]
1458    #[stable(feature = "rust1", since = "1.0.0")]
1459    #[cfg(not(feature = "ferrocene_subset"))]
1460    fn scan<St, B, F>(self, initial_state: St, f: F) -> Scan<Self, St, F>
1461    where
1462        Self: Sized,
1463        F: FnMut(&mut St, Self::Item) -> Option<B>,
1464    {
1465        Scan::new(self, initial_state, f)
1466    }
1467
1468    /// Creates an iterator that works like map, but flattens nested structure.
1469    ///
1470    /// The [`map`] adapter is very useful, but only when the closure
1471    /// argument produces values. If it produces an iterator instead, there's
1472    /// an extra layer of indirection. `flat_map()` will remove this extra layer
1473    /// on its own.
1474    ///
1475    /// You can think of `flat_map(f)` as the semantic equivalent
1476    /// of [`map`]ping, and then [`flatten`]ing as in `map(f).flatten()`.
1477    ///
1478    /// Another way of thinking about `flat_map()`: [`map`]'s closure returns
1479    /// one item for each element, and `flat_map()`'s closure returns an
1480    /// iterator for each element.
1481    ///
1482    /// [`map`]: Iterator::map
1483    /// [`flatten`]: Iterator::flatten
1484    ///
1485    /// # Examples
1486    ///
1487    /// ```
1488    /// let words = ["alpha", "beta", "gamma"];
1489    ///
1490    /// // chars() returns an iterator
1491    /// let merged: String = words.iter()
1492    ///                           .flat_map(|s| s.chars())
1493    ///                           .collect();
1494    /// assert_eq!(merged, "alphabetagamma");
1495    /// ```
1496    #[inline]
1497    #[stable(feature = "rust1", since = "1.0.0")]
1498    #[cfg(not(feature = "ferrocene_subset"))]
1499    fn flat_map<U, F>(self, f: F) -> FlatMap<Self, U, F>
1500    where
1501        Self: Sized,
1502        U: IntoIterator,
1503        F: FnMut(Self::Item) -> U,
1504    {
1505        FlatMap::new(self, f)
1506    }
1507
1508    /// Creates an iterator that flattens nested structure.
1509    ///
1510    /// This is useful when you have an iterator of iterators or an iterator of
1511    /// things that can be turned into iterators and you want to remove one
1512    /// level of indirection.
1513    ///
1514    /// # Examples
1515    ///
1516    /// Basic usage:
1517    ///
1518    /// ```
1519    /// let data = vec![vec![1, 2, 3, 4], vec![5, 6]];
1520    /// let flattened: Vec<_> = data.into_iter().flatten().collect();
1521    /// assert_eq!(flattened, [1, 2, 3, 4, 5, 6]);
1522    /// ```
1523    ///
1524    /// Mapping and then flattening:
1525    ///
1526    /// ```
1527    /// let words = ["alpha", "beta", "gamma"];
1528    ///
1529    /// // chars() returns an iterator
1530    /// let merged: String = words.iter()
1531    ///                           .map(|s| s.chars())
1532    ///                           .flatten()
1533    ///                           .collect();
1534    /// assert_eq!(merged, "alphabetagamma");
1535    /// ```
1536    ///
1537    /// You can also rewrite this in terms of [`flat_map()`], which is preferable
1538    /// in this case since it conveys intent more clearly:
1539    ///
1540    /// ```
1541    /// let words = ["alpha", "beta", "gamma"];
1542    ///
1543    /// // chars() returns an iterator
1544    /// let merged: String = words.iter()
1545    ///                           .flat_map(|s| s.chars())
1546    ///                           .collect();
1547    /// assert_eq!(merged, "alphabetagamma");
1548    /// ```
1549    ///
1550    /// Flattening works on any `IntoIterator` type, including `Option` and `Result`:
1551    ///
1552    /// ```
1553    /// let options = vec![Some(123), Some(321), None, Some(231)];
1554    /// let flattened_options: Vec<_> = options.into_iter().flatten().collect();
1555    /// assert_eq!(flattened_options, [123, 321, 231]);
1556    ///
1557    /// let results = vec![Ok(123), Ok(321), Err(456), Ok(231)];
1558    /// let flattened_results: Vec<_> = results.into_iter().flatten().collect();
1559    /// assert_eq!(flattened_results, [123, 321, 231]);
1560    /// ```
1561    ///
1562    /// Flattening only removes one level of nesting at a time:
1563    ///
1564    /// ```
1565    /// let d3 = [[[1, 2], [3, 4]], [[5, 6], [7, 8]]];
1566    ///
1567    /// let d2: Vec<_> = d3.into_iter().flatten().collect();
1568    /// assert_eq!(d2, [[1, 2], [3, 4], [5, 6], [7, 8]]);
1569    ///
1570    /// let d1: Vec<_> = d3.into_iter().flatten().flatten().collect();
1571    /// assert_eq!(d1, [1, 2, 3, 4, 5, 6, 7, 8]);
1572    /// ```
1573    ///
1574    /// Here we see that `flatten()` does not perform a "deep" flatten.
1575    /// Instead, only one level of nesting is removed. That is, if you
1576    /// `flatten()` a three-dimensional array, the result will be
1577    /// two-dimensional and not one-dimensional. To get a one-dimensional
1578    /// structure, you have to `flatten()` again.
1579    ///
1580    /// [`flat_map()`]: Iterator::flat_map
1581    #[inline]
1582    #[stable(feature = "iterator_flatten", since = "1.29.0")]
1583    #[cfg(not(feature = "ferrocene_subset"))]
1584    fn flatten(self) -> Flatten<Self>
1585    where
1586        Self: Sized,
1587        Self::Item: IntoIterator,
1588    {
1589        Flatten::new(self)
1590    }
1591
1592    /// Calls the given function `f` for each contiguous window of size `N` over
1593    /// `self` and returns an iterator over the outputs of `f`. Like [`slice::windows()`],
1594    /// the windows during mapping overlap as well.
1595    ///
1596    /// In the following example, the closure is called three times with the
1597    /// arguments `&['a', 'b']`, `&['b', 'c']` and `&['c', 'd']` respectively.
1598    ///
1599    /// ```
1600    /// #![feature(iter_map_windows)]
1601    ///
1602    /// let strings = "abcd".chars()
1603    ///     .map_windows(|[x, y]| format!("{}+{}", x, y))
1604    ///     .collect::<Vec<String>>();
1605    ///
1606    /// assert_eq!(strings, vec!["a+b", "b+c", "c+d"]);
1607    /// ```
1608    ///
1609    /// Note that the const parameter `N` is usually inferred by the
1610    /// destructured argument in the closure.
1611    ///
1612    /// The returned iterator yields 𝑘 − `N` + 1 items (where 𝑘 is the number of
1613    /// items yielded by `self`). If 𝑘 is less than `N`, this method yields an
1614    /// empty iterator.
1615    ///
1616    /// The returned iterator implements [`FusedIterator`], because once `self`
1617    /// returns `None`, even if it returns a `Some(T)` again in the next iterations,
1618    /// we cannot put it into a contiguous array buffer, and thus the returned iterator
1619    /// should be fused.
1620    ///
1621    /// [`slice::windows()`]: slice::windows
1622    /// [`FusedIterator`]: crate::iter::FusedIterator
1623    ///
1624    /// # Panics
1625    ///
1626    /// Panics if `N` is zero. This check will most probably get changed to a
1627    /// compile time error before this method gets stabilized.
1628    ///
1629    /// ```should_panic
1630    /// #![feature(iter_map_windows)]
1631    ///
1632    /// let iter = std::iter::repeat(0).map_windows(|&[]| ());
1633    /// ```
1634    ///
1635    /// # Examples
1636    ///
1637    /// Building the sums of neighboring numbers.
1638    ///
1639    /// ```
1640    /// #![feature(iter_map_windows)]
1641    ///
1642    /// let mut it = [1, 3, 8, 1].iter().map_windows(|&[a, b]| a + b);
1643    /// assert_eq!(it.next(), Some(4));  // 1 + 3
1644    /// assert_eq!(it.next(), Some(11)); // 3 + 8
1645    /// assert_eq!(it.next(), Some(9));  // 8 + 1
1646    /// assert_eq!(it.next(), None);
1647    /// ```
1648    ///
1649    /// Since the elements in the following example implement `Copy`, we can
1650    /// just copy the array and get an iterator over the windows.
1651    ///
1652    /// ```
1653    /// #![feature(iter_map_windows)]
1654    ///
1655    /// let mut it = "ferris".chars().map_windows(|w: &[_; 3]| *w);
1656    /// assert_eq!(it.next(), Some(['f', 'e', 'r']));
1657    /// assert_eq!(it.next(), Some(['e', 'r', 'r']));
1658    /// assert_eq!(it.next(), Some(['r', 'r', 'i']));
1659    /// assert_eq!(it.next(), Some(['r', 'i', 's']));
1660    /// assert_eq!(it.next(), None);
1661    /// ```
1662    ///
1663    /// You can also use this function to check the sortedness of an iterator.
1664    /// For the simple case, rather use [`Iterator::is_sorted`].
1665    ///
1666    /// ```
1667    /// #![feature(iter_map_windows)]
1668    ///
1669    /// let mut it = [0.5, 1.0, 3.5, 3.0, 8.5, 8.5, f32::NAN].iter()
1670    ///     .map_windows(|[a, b]| a <= b);
1671    ///
1672    /// assert_eq!(it.next(), Some(true));  // 0.5 <= 1.0
1673    /// assert_eq!(it.next(), Some(true));  // 1.0 <= 3.5
1674    /// assert_eq!(it.next(), Some(false)); // 3.5 <= 3.0
1675    /// assert_eq!(it.next(), Some(true));  // 3.0 <= 8.5
1676    /// assert_eq!(it.next(), Some(true));  // 8.5 <= 8.5
1677    /// assert_eq!(it.next(), Some(false)); // 8.5 <= NAN
1678    /// assert_eq!(it.next(), None);
1679    /// ```
1680    ///
1681    /// For non-fused iterators, they are fused after `map_windows`.
1682    ///
1683    /// ```
1684    /// #![feature(iter_map_windows)]
1685    ///
1686    /// #[derive(Default)]
1687    /// struct NonFusedIterator {
1688    ///     state: i32,
1689    /// }
1690    ///
1691    /// impl Iterator for NonFusedIterator {
1692    ///     type Item = i32;
1693    ///
1694    ///     fn next(&mut self) -> Option<i32> {
1695    ///         let val = self.state;
1696    ///         self.state = self.state + 1;
1697    ///
1698    ///         // yields `0..5` first, then only even numbers since `6..`.
1699    ///         if val < 5 || val % 2 == 0 {
1700    ///             Some(val)
1701    ///         } else {
1702    ///             None
1703    ///         }
1704    ///     }
1705    /// }
1706    ///
1707    ///
1708    /// let mut iter = NonFusedIterator::default();
1709    ///
1710    /// // yields 0..5 first.
1711    /// assert_eq!(iter.next(), Some(0));
1712    /// assert_eq!(iter.next(), Some(1));
1713    /// assert_eq!(iter.next(), Some(2));
1714    /// assert_eq!(iter.next(), Some(3));
1715    /// assert_eq!(iter.next(), Some(4));
1716    /// // then we can see our iterator going back and forth
1717    /// assert_eq!(iter.next(), None);
1718    /// assert_eq!(iter.next(), Some(6));
1719    /// assert_eq!(iter.next(), None);
1720    /// assert_eq!(iter.next(), Some(8));
1721    /// assert_eq!(iter.next(), None);
1722    ///
1723    /// // however, with `.map_windows()`, it is fused.
1724    /// let mut iter = NonFusedIterator::default()
1725    ///     .map_windows(|arr: &[_; 2]| *arr);
1726    ///
1727    /// assert_eq!(iter.next(), Some([0, 1]));
1728    /// assert_eq!(iter.next(), Some([1, 2]));
1729    /// assert_eq!(iter.next(), Some([2, 3]));
1730    /// assert_eq!(iter.next(), Some([3, 4]));
1731    /// assert_eq!(iter.next(), None);
1732    ///
1733    /// // it will always return `None` after the first time.
1734    /// assert_eq!(iter.next(), None);
1735    /// assert_eq!(iter.next(), None);
1736    /// assert_eq!(iter.next(), None);
1737    /// ```
1738    #[inline]
1739    #[unstable(feature = "iter_map_windows", reason = "recently added", issue = "87155")]
1740    #[cfg(not(feature = "ferrocene_subset"))]
1741    fn map_windows<F, R, const N: usize>(self, f: F) -> MapWindows<Self, F, N>
1742    where
1743        Self: Sized,
1744        F: FnMut(&[Self::Item; N]) -> R,
1745    {
1746        MapWindows::new(self, f)
1747    }
1748
1749    /// Creates an iterator which ends after the first [`None`].
1750    ///
1751    /// After an iterator returns [`None`], future calls may or may not yield
1752    /// [`Some(T)`] again. `fuse()` adapts an iterator, ensuring that after a
1753    /// [`None`] is given, it will always return [`None`] forever.
1754    ///
1755    /// Note that the [`Fuse`] wrapper is a no-op on iterators that implement
1756    /// the [`FusedIterator`] trait. `fuse()` may therefore behave incorrectly
1757    /// if the [`FusedIterator`] trait is improperly implemented.
1758    ///
1759    /// [`Some(T)`]: Some
1760    /// [`FusedIterator`]: crate::iter::FusedIterator
1761    ///
1762    /// # Examples
1763    ///
1764    /// ```
1765    /// // an iterator which alternates between Some and None
1766    /// struct Alternate {
1767    ///     state: i32,
1768    /// }
1769    ///
1770    /// impl Iterator for Alternate {
1771    ///     type Item = i32;
1772    ///
1773    ///     fn next(&mut self) -> Option<i32> {
1774    ///         let val = self.state;
1775    ///         self.state = self.state + 1;
1776    ///
1777    ///         // if it's even, Some(i32), else None
1778    ///         (val % 2 == 0).then_some(val)
1779    ///     }
1780    /// }
1781    ///
1782    /// let mut iter = Alternate { state: 0 };
1783    ///
1784    /// // we can see our iterator going back and forth
1785    /// assert_eq!(iter.next(), Some(0));
1786    /// assert_eq!(iter.next(), None);
1787    /// assert_eq!(iter.next(), Some(2));
1788    /// assert_eq!(iter.next(), None);
1789    ///
1790    /// // however, once we fuse it...
1791    /// let mut iter = iter.fuse();
1792    ///
1793    /// assert_eq!(iter.next(), Some(4));
1794    /// assert_eq!(iter.next(), None);
1795    ///
1796    /// // it will always return `None` after the first time.
1797    /// assert_eq!(iter.next(), None);
1798    /// assert_eq!(iter.next(), None);
1799    /// assert_eq!(iter.next(), None);
1800    /// ```
1801    #[inline]
1802    #[stable(feature = "rust1", since = "1.0.0")]
1803    #[cfg(not(feature = "ferrocene_subset"))]
1804    fn fuse(self) -> Fuse<Self>
1805    where
1806        Self: Sized,
1807    {
1808        Fuse::new(self)
1809    }
1810
1811    /// Does something with each element of an iterator, passing the value on.
1812    ///
1813    /// When using iterators, you'll often chain several of them together.
1814    /// While working on such code, you might want to check out what's
1815    /// happening at various parts in the pipeline. To do that, insert
1816    /// a call to `inspect()`.
1817    ///
1818    /// It's more common for `inspect()` to be used as a debugging tool than to
1819    /// exist in your final code, but applications may find it useful in certain
1820    /// situations when errors need to be logged before being discarded.
1821    ///
1822    /// # Examples
1823    ///
1824    /// Basic usage:
1825    ///
1826    /// ```
1827    /// let a = [1, 4, 2, 3];
1828    ///
1829    /// // this iterator sequence is complex.
1830    /// let sum = a.iter()
1831    ///     .cloned()
1832    ///     .filter(|x| x % 2 == 0)
1833    ///     .fold(0, |sum, i| sum + i);
1834    ///
1835    /// println!("{sum}");
1836    ///
1837    /// // let's add some inspect() calls to investigate what's happening
1838    /// let sum = a.iter()
1839    ///     .cloned()
1840    ///     .inspect(|x| println!("about to filter: {x}"))
1841    ///     .filter(|x| x % 2 == 0)
1842    ///     .inspect(|x| println!("made it through filter: {x}"))
1843    ///     .fold(0, |sum, i| sum + i);
1844    ///
1845    /// println!("{sum}");
1846    /// ```
1847    ///
1848    /// This will print:
1849    ///
1850    /// ```text
1851    /// 6
1852    /// about to filter: 1
1853    /// about to filter: 4
1854    /// made it through filter: 4
1855    /// about to filter: 2
1856    /// made it through filter: 2
1857    /// about to filter: 3
1858    /// 6
1859    /// ```
1860    ///
1861    /// Logging errors before discarding them:
1862    ///
1863    /// ```
1864    /// let lines = ["1", "2", "a"];
1865    ///
1866    /// let sum: i32 = lines
1867    ///     .iter()
1868    ///     .map(|line| line.parse::<i32>())
1869    ///     .inspect(|num| {
1870    ///         if let Err(ref e) = *num {
1871    ///             println!("Parsing error: {e}");
1872    ///         }
1873    ///     })
1874    ///     .filter_map(Result::ok)
1875    ///     .sum();
1876    ///
1877    /// println!("Sum: {sum}");
1878    /// ```
1879    ///
1880    /// This will print:
1881    ///
1882    /// ```text
1883    /// Parsing error: invalid digit found in string
1884    /// Sum: 3
1885    /// ```
1886    #[inline]
1887    #[stable(feature = "rust1", since = "1.0.0")]
1888    #[cfg(not(feature = "ferrocene_subset"))]
1889    fn inspect<F>(self, f: F) -> Inspect<Self, F>
1890    where
1891        Self: Sized,
1892        F: FnMut(&Self::Item),
1893    {
1894        Inspect::new(self, f)
1895    }
1896
1897    /// Creates a "by reference" adapter for this instance of `Iterator`.
1898    ///
1899    /// Consuming method calls (direct or indirect calls to `next`)
1900    /// on the "by reference" adapter will consume the original iterator,
1901    /// but ownership-taking methods (those with a `self` parameter)
1902    /// only take ownership of the "by reference" iterator.
1903    ///
1904    /// This is useful for applying ownership-taking methods
1905    /// (such as `take` in the example below)
1906    /// without giving up ownership of the original iterator,
1907    /// so you can use the original iterator afterwards.
1908    ///
1909    /// Uses [`impl<I: Iterator + ?Sized> Iterator for &mut I { type Item = I::Item; ...}`](https://doc.rust-lang.org/nightly/std/iter/trait.Iterator.html#impl-Iterator-for-%26mut+I).
1910    ///
1911    /// # Examples
1912    ///
1913    /// ```
1914    /// let mut words = ["hello", "world", "of", "Rust"].into_iter();
1915    ///
1916    /// // Take the first two words.
1917    /// let hello_world: Vec<_> = words.by_ref().take(2).collect();
1918    /// assert_eq!(hello_world, vec!["hello", "world"]);
1919    ///
1920    /// // Collect the rest of the words.
1921    /// // We can only do this because we used `by_ref` earlier.
1922    /// let of_rust: Vec<_> = words.collect();
1923    /// assert_eq!(of_rust, vec!["of", "Rust"]);
1924    /// ```
1925    #[stable(feature = "rust1", since = "1.0.0")]
1926    fn by_ref(&mut self) -> &mut Self
1927    where
1928        Self: Sized,
1929    {
1930        self
1931    }
1932
1933    /// Transforms an iterator into a collection.
1934    ///
1935    /// `collect()` can take anything iterable, and turn it into a relevant
1936    /// collection. This is one of the more powerful methods in the standard
1937    /// library, used in a variety of contexts.
1938    ///
1939    /// The most basic pattern in which `collect()` is used is to turn one
1940    /// collection into another. You take a collection, call [`iter`] on it,
1941    /// do a bunch of transformations, and then `collect()` at the end.
1942    ///
1943    /// `collect()` can also create instances of types that are not typical
1944    /// collections. For example, a [`String`] can be built from [`char`]s,
1945    /// and an iterator of [`Result<T, E>`][`Result`] items can be collected
1946    /// into `Result<Collection<T>, E>`. See the examples below for more.
1947    ///
1948    /// Because `collect()` is so general, it can cause problems with type
1949    /// inference. As such, `collect()` is one of the few times you'll see
1950    /// the syntax affectionately known as the 'turbofish': `::<>`. This
1951    /// helps the inference algorithm understand specifically which collection
1952    /// you're trying to collect into.
1953    ///
1954    /// # Examples
1955    ///
1956    /// Basic usage:
1957    ///
1958    /// ```
1959    /// let a = [1, 2, 3];
1960    ///
1961    /// let doubled: Vec<i32> = a.iter()
1962    ///                          .map(|x| x * 2)
1963    ///                          .collect();
1964    ///
1965    /// assert_eq!(vec![2, 4, 6], doubled);
1966    /// ```
1967    ///
1968    /// Note that we needed the `: Vec<i32>` on the left-hand side. This is because
1969    /// we could collect into, for example, a [`VecDeque<T>`] instead:
1970    ///
1971    /// [`VecDeque<T>`]: ../../std/collections/struct.VecDeque.html
1972    ///
1973    /// ```
1974    /// use std::collections::VecDeque;
1975    ///
1976    /// let a = [1, 2, 3];
1977    ///
1978    /// let doubled: VecDeque<i32> = a.iter().map(|x| x * 2).collect();
1979    ///
1980    /// assert_eq!(2, doubled[0]);
1981    /// assert_eq!(4, doubled[1]);
1982    /// assert_eq!(6, doubled[2]);
1983    /// ```
1984    ///
1985    /// Using the 'turbofish' instead of annotating `doubled`:
1986    ///
1987    /// ```
1988    /// let a = [1, 2, 3];
1989    ///
1990    /// let doubled = a.iter().map(|x| x * 2).collect::<Vec<i32>>();
1991    ///
1992    /// assert_eq!(vec![2, 4, 6], doubled);
1993    /// ```
1994    ///
1995    /// Because `collect()` only cares about what you're collecting into, you can
1996    /// still use a partial type hint, `_`, with the turbofish:
1997    ///
1998    /// ```
1999    /// let a = [1, 2, 3];
2000    ///
2001    /// let doubled = a.iter().map(|x| x * 2).collect::<Vec<_>>();
2002    ///
2003    /// assert_eq!(vec![2, 4, 6], doubled);
2004    /// ```
2005    ///
2006    /// Using `collect()` to make a [`String`]:
2007    ///
2008    /// ```
2009    /// let chars = ['g', 'd', 'k', 'k', 'n'];
2010    ///
2011    /// let hello: String = chars.into_iter()
2012    ///     .map(|x| x as u8)
2013    ///     .map(|x| (x + 1) as char)
2014    ///     .collect();
2015    ///
2016    /// assert_eq!("hello", hello);
2017    /// ```
2018    ///
2019    /// If you have a list of [`Result<T, E>`][`Result`]s, you can use `collect()` to
2020    /// see if any of them failed:
2021    ///
2022    /// ```
2023    /// let results = [Ok(1), Err("nope"), Ok(3), Err("bad")];
2024    ///
2025    /// let result: Result<Vec<_>, &str> = results.into_iter().collect();
2026    ///
2027    /// // gives us the first error
2028    /// assert_eq!(Err("nope"), result);
2029    ///
2030    /// let results = [Ok(1), Ok(3)];
2031    ///
2032    /// let result: Result<Vec<_>, &str> = results.into_iter().collect();
2033    ///
2034    /// // gives us the list of answers
2035    /// assert_eq!(Ok(vec![1, 3]), result);
2036    /// ```
2037    ///
2038    /// [`iter`]: Iterator::next
2039    /// [`String`]: ../../std/string/struct.String.html
2040    /// [`char`]: type@char
2041    #[inline]
2042    #[stable(feature = "rust1", since = "1.0.0")]
2043    #[must_use = "if you really need to exhaust the iterator, consider `.for_each(drop)` instead"]
2044    #[rustc_diagnostic_item = "iterator_collect_fn"]
2045    fn collect<B: FromIterator<Self::Item>>(self) -> B
2046    where
2047        Self: Sized,
2048    {
2049        // This is too aggressive to turn on for everything all the time, but PR#137908
2050        // accidentally noticed that some rustc iterators had malformed `size_hint`s,
2051        // so this will help catch such things in debug-assertions-std runners,
2052        // even if users won't actually ever see it.
2053        if cfg!(debug_assertions) {
2054            let hint = self.size_hint();
2055            assert!(hint.1.is_none_or(|high| high >= hint.0), "Malformed size_hint {hint:?}");
2056        }
2057
2058        FromIterator::from_iter(self)
2059    }
2060
2061    /// Fallibly transforms an iterator into a collection, short circuiting if
2062    /// a failure is encountered.
2063    ///
2064    /// `try_collect()` is a variation of [`collect()`][`collect`] that allows fallible
2065    /// conversions during collection. Its main use case is simplifying conversions from
2066    /// iterators yielding [`Option<T>`][`Option`] into `Option<Collection<T>>`, or similarly for other [`Try`]
2067    /// types (e.g. [`Result`]).
2068    ///
2069    /// Importantly, `try_collect()` doesn't require that the outer [`Try`] type also implements [`FromIterator`];
2070    /// only the inner type produced on `Try::Output` must implement it. Concretely,
2071    /// this means that collecting into `ControlFlow<_, Vec<i32>>` is valid because `Vec<i32>` implements
2072    /// [`FromIterator`], even though [`ControlFlow`] doesn't.
2073    ///
2074    /// Also, if a failure is encountered during `try_collect()`, the iterator is still valid and
2075    /// may continue to be used, in which case it will continue iterating starting after the element that
2076    /// triggered the failure. See the last example below for an example of how this works.
2077    ///
2078    /// # Examples
2079    /// Successfully collecting an iterator of `Option<i32>` into `Option<Vec<i32>>`:
2080    /// ```
2081    /// #![feature(iterator_try_collect)]
2082    ///
2083    /// let u = vec![Some(1), Some(2), Some(3)];
2084    /// let v = u.into_iter().try_collect::<Vec<i32>>();
2085    /// assert_eq!(v, Some(vec![1, 2, 3]));
2086    /// ```
2087    ///
2088    /// Failing to collect in the same way:
2089    /// ```
2090    /// #![feature(iterator_try_collect)]
2091    ///
2092    /// let u = vec![Some(1), Some(2), None, Some(3)];
2093    /// let v = u.into_iter().try_collect::<Vec<i32>>();
2094    /// assert_eq!(v, None);
2095    /// ```
2096    ///
2097    /// A similar example, but with `Result`:
2098    /// ```
2099    /// #![feature(iterator_try_collect)]
2100    ///
2101    /// let u: Vec<Result<i32, ()>> = vec![Ok(1), Ok(2), Ok(3)];
2102    /// let v = u.into_iter().try_collect::<Vec<i32>>();
2103    /// assert_eq!(v, Ok(vec![1, 2, 3]));
2104    ///
2105    /// let u = vec![Ok(1), Ok(2), Err(()), Ok(3)];
2106    /// let v = u.into_iter().try_collect::<Vec<i32>>();
2107    /// assert_eq!(v, Err(()));
2108    /// ```
2109    ///
2110    /// Finally, even [`ControlFlow`] works, despite the fact that it
2111    /// doesn't implement [`FromIterator`]. Note also that the iterator can
2112    /// continue to be used, even if a failure is encountered:
2113    ///
2114    /// ```
2115    /// #![feature(iterator_try_collect)]
2116    ///
2117    /// use core::ops::ControlFlow::{Break, Continue};
2118    ///
2119    /// let u = [Continue(1), Continue(2), Break(3), Continue(4), Continue(5)];
2120    /// let mut it = u.into_iter();
2121    ///
2122    /// let v = it.try_collect::<Vec<_>>();
2123    /// assert_eq!(v, Break(3));
2124    ///
2125    /// let v = it.try_collect::<Vec<_>>();
2126    /// assert_eq!(v, Continue(vec![4, 5]));
2127    /// ```
2128    ///
2129    /// [`collect`]: Iterator::collect
2130    #[inline]
2131    #[unstable(feature = "iterator_try_collect", issue = "94047")]
2132    #[cfg(not(feature = "ferrocene_subset"))]
2133    fn try_collect<B>(&mut self) -> ChangeOutputType<Self::Item, B>
2134    where
2135        Self: Sized,
2136        Self::Item: Try<Residual: Residual<B>>,
2137        B: FromIterator<<Self::Item as Try>::Output>,
2138    {
2139        try_process(ByRefSized(self), |i| i.collect())
2140    }
2141
2142    /// Collects all the items from an iterator into a collection.
2143    ///
2144    /// This method consumes the iterator and adds all its items to the
2145    /// passed collection. The collection is then returned, so the call chain
2146    /// can be continued.
2147    ///
2148    /// This is useful when you already have a collection and want to add
2149    /// the iterator items to it.
2150    ///
2151    /// This method is a convenience method to call [Extend::extend](trait.Extend.html),
2152    /// but instead of being called on a collection, it's called on an iterator.
2153    ///
2154    /// # Examples
2155    ///
2156    /// Basic usage:
2157    ///
2158    /// ```
2159    /// #![feature(iter_collect_into)]
2160    ///
2161    /// let a = [1, 2, 3];
2162    /// let mut vec: Vec::<i32> = vec![0, 1];
2163    ///
2164    /// a.iter().map(|x| x * 2).collect_into(&mut vec);
2165    /// a.iter().map(|x| x * 10).collect_into(&mut vec);
2166    ///
2167    /// assert_eq!(vec, vec![0, 1, 2, 4, 6, 10, 20, 30]);
2168    /// ```
2169    ///
2170    /// `Vec` can have a manual set capacity to avoid reallocating it:
2171    ///
2172    /// ```
2173    /// #![feature(iter_collect_into)]
2174    ///
2175    /// let a = [1, 2, 3];
2176    /// let mut vec: Vec::<i32> = Vec::with_capacity(6);
2177    ///
2178    /// a.iter().map(|x| x * 2).collect_into(&mut vec);
2179    /// a.iter().map(|x| x * 10).collect_into(&mut vec);
2180    ///
2181    /// assert_eq!(6, vec.capacity());
2182    /// assert_eq!(vec, vec![2, 4, 6, 10, 20, 30]);
2183    /// ```
2184    ///
2185    /// The returned mutable reference can be used to continue the call chain:
2186    ///
2187    /// ```
2188    /// #![feature(iter_collect_into)]
2189    ///
2190    /// let a = [1, 2, 3];
2191    /// let mut vec: Vec::<i32> = Vec::with_capacity(6);
2192    ///
2193    /// let count = a.iter().collect_into(&mut vec).iter().count();
2194    ///
2195    /// assert_eq!(count, vec.len());
2196    /// assert_eq!(vec, vec![1, 2, 3]);
2197    ///
2198    /// let count = a.iter().collect_into(&mut vec).iter().count();
2199    ///
2200    /// assert_eq!(count, vec.len());
2201    /// assert_eq!(vec, vec![1, 2, 3, 1, 2, 3]);
2202    /// ```
2203    #[inline]
2204    #[unstable(feature = "iter_collect_into", reason = "new API", issue = "94780")]
2205    #[cfg(not(feature = "ferrocene_subset"))]
2206    fn collect_into<E: Extend<Self::Item>>(self, collection: &mut E) -> &mut E
2207    where
2208        Self: Sized,
2209    {
2210        collection.extend(self);
2211        collection
2212    }
2213
2214    /// Consumes an iterator, creating two collections from it.
2215    ///
2216    /// The predicate passed to `partition()` can return `true`, or `false`.
2217    /// `partition()` returns a pair, all of the elements for which it returned
2218    /// `true`, and all of the elements for which it returned `false`.
2219    ///
2220    /// See also [`is_partitioned()`] and [`partition_in_place()`].
2221    ///
2222    /// [`is_partitioned()`]: Iterator::is_partitioned
2223    /// [`partition_in_place()`]: Iterator::partition_in_place
2224    ///
2225    /// # Examples
2226    ///
2227    /// ```
2228    /// let a = [1, 2, 3];
2229    ///
2230    /// let (even, odd): (Vec<_>, Vec<_>) = a
2231    ///     .into_iter()
2232    ///     .partition(|n| n % 2 == 0);
2233    ///
2234    /// assert_eq!(even, [2]);
2235    /// assert_eq!(odd, [1, 3]);
2236    /// ```
2237    #[stable(feature = "rust1", since = "1.0.0")]
2238    #[cfg(not(feature = "ferrocene_subset"))]
2239    fn partition<B, F>(self, f: F) -> (B, B)
2240    where
2241        Self: Sized,
2242        B: Default + Extend<Self::Item>,
2243        F: FnMut(&Self::Item) -> bool,
2244    {
2245        #[inline]
2246        fn extend<'a, T, B: Extend<T>>(
2247            mut f: impl FnMut(&T) -> bool + 'a,
2248            left: &'a mut B,
2249            right: &'a mut B,
2250        ) -> impl FnMut((), T) + 'a {
2251            move |(), x| {
2252                if f(&x) {
2253                    left.extend_one(x);
2254                } else {
2255                    right.extend_one(x);
2256                }
2257            }
2258        }
2259
2260        let mut left: B = Default::default();
2261        let mut right: B = Default::default();
2262
2263        self.fold((), extend(f, &mut left, &mut right));
2264
2265        (left, right)
2266    }
2267
2268    /// Reorders the elements of this iterator *in-place* according to the given predicate,
2269    /// such that all those that return `true` precede all those that return `false`.
2270    /// Returns the number of `true` elements found.
2271    ///
2272    /// The relative order of partitioned items is not maintained.
2273    ///
2274    /// # Current implementation
2275    ///
2276    /// The current algorithm tries to find the first element for which the predicate evaluates
2277    /// to false and the last element for which it evaluates to true, and repeatedly swaps them.
2278    ///
2279    /// Time complexity: *O*(*n*)
2280    ///
2281    /// See also [`is_partitioned()`] and [`partition()`].
2282    ///
2283    /// [`is_partitioned()`]: Iterator::is_partitioned
2284    /// [`partition()`]: Iterator::partition
2285    ///
2286    /// # Examples
2287    ///
2288    /// ```
2289    /// #![feature(iter_partition_in_place)]
2290    ///
2291    /// let mut a = [1, 2, 3, 4, 5, 6, 7];
2292    ///
2293    /// // Partition in-place between evens and odds
2294    /// let i = a.iter_mut().partition_in_place(|n| n % 2 == 0);
2295    ///
2296    /// assert_eq!(i, 3);
2297    /// assert!(a[..i].iter().all(|n| n % 2 == 0)); // evens
2298    /// assert!(a[i..].iter().all(|n| n % 2 == 1)); // odds
2299    /// ```
2300    #[unstable(feature = "iter_partition_in_place", reason = "new API", issue = "62543")]
2301    #[cfg(not(feature = "ferrocene_subset"))]
2302    fn partition_in_place<'a, T: 'a, P>(mut self, ref mut predicate: P) -> usize
2303    where
2304        Self: Sized + DoubleEndedIterator<Item = &'a mut T>,
2305        P: FnMut(&T) -> bool,
2306    {
2307        // FIXME: should we worry about the count overflowing? The only way to have more than
2308        // `usize::MAX` mutable references is with ZSTs, which aren't useful to partition...
2309
2310        // These closure "factory" functions exist to avoid genericity in `Self`.
2311
2312        #[inline]
2313        fn is_false<'a, T>(
2314            predicate: &'a mut impl FnMut(&T) -> bool,
2315            true_count: &'a mut usize,
2316        ) -> impl FnMut(&&mut T) -> bool + 'a {
2317            move |x| {
2318                let p = predicate(&**x);
2319                *true_count += p as usize;
2320                !p
2321            }
2322        }
2323
2324        #[inline]
2325        fn is_true<T>(predicate: &mut impl FnMut(&T) -> bool) -> impl FnMut(&&mut T) -> bool + '_ {
2326            move |x| predicate(&**x)
2327        }
2328
2329        // Repeatedly find the first `false` and swap it with the last `true`.
2330        let mut true_count = 0;
2331        while let Some(head) = self.find(is_false(predicate, &mut true_count)) {
2332            if let Some(tail) = self.rfind(is_true(predicate)) {
2333                crate::mem::swap(head, tail);
2334                true_count += 1;
2335            } else {
2336                break;
2337            }
2338        }
2339        true_count
2340    }
2341
2342    /// Checks if the elements of this iterator are partitioned according to the given predicate,
2343    /// such that all those that return `true` precede all those that return `false`.
2344    ///
2345    /// See also [`partition()`] and [`partition_in_place()`].
2346    ///
2347    /// [`partition()`]: Iterator::partition
2348    /// [`partition_in_place()`]: Iterator::partition_in_place
2349    ///
2350    /// # Examples
2351    ///
2352    /// ```
2353    /// #![feature(iter_is_partitioned)]
2354    ///
2355    /// assert!("Iterator".chars().is_partitioned(char::is_uppercase));
2356    /// assert!(!"IntoIterator".chars().is_partitioned(char::is_uppercase));
2357    /// ```
2358    #[unstable(feature = "iter_is_partitioned", reason = "new API", issue = "62544")]
2359    #[cfg(not(feature = "ferrocene_subset"))]
2360    fn is_partitioned<P>(mut self, mut predicate: P) -> bool
2361    where
2362        Self: Sized,
2363        P: FnMut(Self::Item) -> bool,
2364    {
2365        // Either all items test `true`, or the first clause stops at `false`
2366        // and we check that there are no more `true` items after that.
2367        self.all(&mut predicate) || !self.any(predicate)
2368    }
2369
2370    /// An iterator method that applies a function as long as it returns
2371    /// successfully, producing a single, final value.
2372    ///
2373    /// `try_fold()` takes two arguments: an initial value, and a closure with
2374    /// two arguments: an 'accumulator', and an element. The closure either
2375    /// returns successfully, with the value that the accumulator should have
2376    /// for the next iteration, or it returns failure, with an error value that
2377    /// is propagated back to the caller immediately (short-circuiting).
2378    ///
2379    /// The initial value is the value the accumulator will have on the first
2380    /// call. If applying the closure succeeded against every element of the
2381    /// iterator, `try_fold()` returns the final accumulator as success.
2382    ///
2383    /// Folding is useful whenever you have a collection of something, and want
2384    /// to produce a single value from it.
2385    ///
2386    /// # Note to Implementors
2387    ///
2388    /// Several of the other (forward) methods have default implementations in
2389    /// terms of this one, so try to implement this explicitly if it can
2390    /// do something better than the default `for` loop implementation.
2391    ///
2392    /// In particular, try to have this call `try_fold()` on the internal parts
2393    /// from which this iterator is composed. If multiple calls are needed,
2394    /// the `?` operator may be convenient for chaining the accumulator value
2395    /// along, but beware any invariants that need to be upheld before those
2396    /// early returns. This is a `&mut self` method, so iteration needs to be
2397    /// resumable after hitting an error here.
2398    ///
2399    /// # Examples
2400    ///
2401    /// Basic usage:
2402    ///
2403    /// ```
2404    /// let a = [1, 2, 3];
2405    ///
2406    /// // the checked sum of all of the elements of the array
2407    /// let sum = a.into_iter().try_fold(0i8, |acc, x| acc.checked_add(x));
2408    ///
2409    /// assert_eq!(sum, Some(6));
2410    /// ```
2411    ///
2412    /// Short-circuiting:
2413    ///
2414    /// ```
2415    /// let a = [10, 20, 30, 100, 40, 50];
2416    /// let mut iter = a.into_iter();
2417    ///
2418    /// // This sum overflows when adding the 100 element
2419    /// let sum = iter.try_fold(0i8, |acc, x| acc.checked_add(x));
2420    /// assert_eq!(sum, None);
2421    ///
2422    /// // Because it short-circuited, the remaining elements are still
2423    /// // available through the iterator.
2424    /// assert_eq!(iter.len(), 2);
2425    /// assert_eq!(iter.next(), Some(40));
2426    /// ```
2427    ///
2428    /// While you cannot `break` from a closure, the [`ControlFlow`] type allows
2429    /// a similar idea:
2430    ///
2431    /// ```
2432    /// use std::ops::ControlFlow;
2433    ///
2434    /// let triangular = (1..30).try_fold(0_i8, |prev, x| {
2435    ///     if let Some(next) = prev.checked_add(x) {
2436    ///         ControlFlow::Continue(next)
2437    ///     } else {
2438    ///         ControlFlow::Break(prev)
2439    ///     }
2440    /// });
2441    /// assert_eq!(triangular, ControlFlow::Break(120));
2442    ///
2443    /// let triangular = (1..30).try_fold(0_u64, |prev, x| {
2444    ///     if let Some(next) = prev.checked_add(x) {
2445    ///         ControlFlow::Continue(next)
2446    ///     } else {
2447    ///         ControlFlow::Break(prev)
2448    ///     }
2449    /// });
2450    /// assert_eq!(triangular, ControlFlow::Continue(435));
2451    /// ```
2452    #[inline]
2453    #[stable(feature = "iterator_try_fold", since = "1.27.0")]
2454    fn try_fold<B, F, R>(&mut self, init: B, mut f: F) -> R
2455    where
2456        Self: Sized,
2457        F: FnMut(B, Self::Item) -> R,
2458        R: Try<Output = B>,
2459    {
2460        let mut accum = init;
2461        while let Some(x) = self.next() {
2462            accum = f(accum, x)?;
2463        }
2464        try { accum }
2465    }
2466
2467    /// An iterator method that applies a fallible function to each item in the
2468    /// iterator, stopping at the first error and returning that error.
2469    ///
2470    /// This can also be thought of as the fallible form of [`for_each()`]
2471    /// or as the stateless version of [`try_fold()`].
2472    ///
2473    /// [`for_each()`]: Iterator::for_each
2474    /// [`try_fold()`]: Iterator::try_fold
2475    ///
2476    /// # Examples
2477    ///
2478    /// ```
2479    /// use std::fs::rename;
2480    /// use std::io::{stdout, Write};
2481    /// use std::path::Path;
2482    ///
2483    /// let data = ["no_tea.txt", "stale_bread.json", "torrential_rain.png"];
2484    ///
2485    /// let res = data.iter().try_for_each(|x| writeln!(stdout(), "{x}"));
2486    /// assert!(res.is_ok());
2487    ///
2488    /// let mut it = data.iter().cloned();
2489    /// let res = it.try_for_each(|x| rename(x, Path::new(x).with_extension("old")));
2490    /// assert!(res.is_err());
2491    /// // It short-circuited, so the remaining items are still in the iterator:
2492    /// assert_eq!(it.next(), Some("stale_bread.json"));
2493    /// ```
2494    ///
2495    /// The [`ControlFlow`] type can be used with this method for the situations
2496    /// in which you'd use `break` and `continue` in a normal loop:
2497    ///
2498    /// ```
2499    /// use std::ops::ControlFlow;
2500    ///
2501    /// let r = (2..100).try_for_each(|x| {
2502    ///     if 323 % x == 0 {
2503    ///         return ControlFlow::Break(x)
2504    ///     }
2505    ///
2506    ///     ControlFlow::Continue(())
2507    /// });
2508    /// assert_eq!(r, ControlFlow::Break(17));
2509    /// ```
2510    #[inline]
2511    #[stable(feature = "iterator_try_fold", since = "1.27.0")]
2512    fn try_for_each<F, R>(&mut self, f: F) -> R
2513    where
2514        Self: Sized,
2515        F: FnMut(Self::Item) -> R,
2516        R: Try<Output = ()>,
2517    {
2518        #[inline]
2519        fn call<T, R>(mut f: impl FnMut(T) -> R) -> impl FnMut((), T) -> R {
2520            move |(), x| f(x)
2521        }
2522
2523        self.try_fold((), call(f))
2524    }
2525
2526    /// Folds every element into an accumulator by applying an operation,
2527    /// returning the final result.
2528    ///
2529    /// `fold()` takes two arguments: an initial value, and a closure with two
2530    /// arguments: an 'accumulator', and an element. The closure returns the value that
2531    /// the accumulator should have for the next iteration.
2532    ///
2533    /// The initial value is the value the accumulator will have on the first
2534    /// call.
2535    ///
2536    /// After applying this closure to every element of the iterator, `fold()`
2537    /// returns the accumulator.
2538    ///
2539    /// This operation is sometimes called 'reduce' or 'inject'.
2540    ///
2541    /// Folding is useful whenever you have a collection of something, and want
2542    /// to produce a single value from it.
2543    ///
2544    /// Note: `fold()`, and similar methods that traverse the entire iterator,
2545    /// might not terminate for infinite iterators, even on traits for which a
2546    /// result is determinable in finite time.
2547    ///
2548    /// Note: [`reduce()`] can be used to use the first element as the initial
2549    /// value, if the accumulator type and item type is the same.
2550    ///
2551    /// Note: `fold()` combines elements in a *left-associative* fashion. For associative
2552    /// operators like `+`, the order the elements are combined in is not important, but for non-associative
2553    /// operators like `-` the order will affect the final result.
2554    /// For a *right-associative* version of `fold()`, see [`DoubleEndedIterator::rfold()`].
2555    ///
2556    /// # Note to Implementors
2557    ///
2558    /// Several of the other (forward) methods have default implementations in
2559    /// terms of this one, so try to implement this explicitly if it can
2560    /// do something better than the default `for` loop implementation.
2561    ///
2562    /// In particular, try to have this call `fold()` on the internal parts
2563    /// from which this iterator is composed.
2564    ///
2565    /// # Examples
2566    ///
2567    /// Basic usage:
2568    ///
2569    /// ```
2570    /// let a = [1, 2, 3];
2571    ///
2572    /// // the sum of all of the elements of the array
2573    /// let sum = a.iter().fold(0, |acc, x| acc + x);
2574    ///
2575    /// assert_eq!(sum, 6);
2576    /// ```
2577    ///
2578    /// Let's walk through each step of the iteration here:
2579    ///
2580    /// | element | acc | x | result |
2581    /// |---------|-----|---|--------|
2582    /// |         | 0   |   |        |
2583    /// | 1       | 0   | 1 | 1      |
2584    /// | 2       | 1   | 2 | 3      |
2585    /// | 3       | 3   | 3 | 6      |
2586    ///
2587    /// And so, our final result, `6`.
2588    ///
2589    /// This example demonstrates the left-associative nature of `fold()`:
2590    /// it builds a string, starting with an initial value
2591    /// and continuing with each element from the front until the back:
2592    ///
2593    /// ```
2594    /// let numbers = [1, 2, 3, 4, 5];
2595    ///
2596    /// let zero = "0".to_string();
2597    ///
2598    /// let result = numbers.iter().fold(zero, |acc, &x| {
2599    ///     format!("({acc} + {x})")
2600    /// });
2601    ///
2602    /// assert_eq!(result, "(((((0 + 1) + 2) + 3) + 4) + 5)");
2603    /// ```
2604    /// It's common for people who haven't used iterators a lot to
2605    /// use a `for` loop with a list of things to build up a result. Those
2606    /// can be turned into `fold()`s:
2607    ///
2608    /// [`for`]: ../../book/ch03-05-control-flow.html#looping-through-a-collection-with-for
2609    ///
2610    /// ```
2611    /// let numbers = [1, 2, 3, 4, 5];
2612    ///
2613    /// let mut result = 0;
2614    ///
2615    /// // for loop:
2616    /// for i in &numbers {
2617    ///     result = result + i;
2618    /// }
2619    ///
2620    /// // fold:
2621    /// let result2 = numbers.iter().fold(0, |acc, &x| acc + x);
2622    ///
2623    /// // they're the same
2624    /// assert_eq!(result, result2);
2625    /// ```
2626    ///
2627    /// [`reduce()`]: Iterator::reduce
2628    #[doc(alias = "inject", alias = "foldl")]
2629    #[inline]
2630    #[stable(feature = "rust1", since = "1.0.0")]
2631    fn fold<B, F>(mut self, init: B, mut f: F) -> B
2632    where
2633        Self: Sized,
2634        F: FnMut(B, Self::Item) -> B,
2635    {
2636        let mut accum = init;
2637        while let Some(x) = self.next() {
2638            accum = f(accum, x);
2639        }
2640        accum
2641    }
2642
2643    /// Reduces the elements to a single one, by repeatedly applying a reducing
2644    /// operation.
2645    ///
2646    /// If the iterator is empty, returns [`None`]; otherwise, returns the
2647    /// result of the reduction.
2648    ///
2649    /// The reducing function is a closure with two arguments: an 'accumulator', and an element.
2650    /// For iterators with at least one element, this is the same as [`fold()`]
2651    /// with the first element of the iterator as the initial accumulator value, folding
2652    /// every subsequent element into it.
2653    ///
2654    /// [`fold()`]: Iterator::fold
2655    ///
2656    /// # Example
2657    ///
2658    /// ```
2659    /// let reduced: i32 = (1..10).reduce(|acc, e| acc + e).unwrap_or(0);
2660    /// assert_eq!(reduced, 45);
2661    ///
2662    /// // Which is equivalent to doing it with `fold`:
2663    /// let folded: i32 = (1..10).fold(0, |acc, e| acc + e);
2664    /// assert_eq!(reduced, folded);
2665    /// ```
2666    #[inline]
2667    #[stable(feature = "iterator_fold_self", since = "1.51.0")]
2668    fn reduce<F>(mut self, f: F) -> Option<Self::Item>
2669    where
2670        Self: Sized,
2671        F: FnMut(Self::Item, Self::Item) -> Self::Item,
2672    {
2673        let first = self.next()?;
2674        Some(self.fold(first, f))
2675    }
2676
2677    /// Reduces the elements to a single one by repeatedly applying a reducing operation. If the
2678    /// closure returns a failure, the failure is propagated back to the caller immediately.
2679    ///
2680    /// The return type of this method depends on the return type of the closure. If the closure
2681    /// returns `Result<Self::Item, E>`, then this function will return `Result<Option<Self::Item>,
2682    /// E>`. If the closure returns `Option<Self::Item>`, then this function will return
2683    /// `Option<Option<Self::Item>>`.
2684    ///
2685    /// When called on an empty iterator, this function will return either `Some(None)` or
2686    /// `Ok(None)` depending on the type of the provided closure.
2687    ///
2688    /// For iterators with at least one element, this is essentially the same as calling
2689    /// [`try_fold()`] with the first element of the iterator as the initial accumulator value.
2690    ///
2691    /// [`try_fold()`]: Iterator::try_fold
2692    ///
2693    /// # Examples
2694    ///
2695    /// Safely calculate the sum of a series of numbers:
2696    ///
2697    /// ```
2698    /// #![feature(iterator_try_reduce)]
2699    ///
2700    /// let numbers: Vec<usize> = vec![10, 20, 5, 23, 0];
2701    /// let sum = numbers.into_iter().try_reduce(|x, y| x.checked_add(y));
2702    /// assert_eq!(sum, Some(Some(58)));
2703    /// ```
2704    ///
2705    /// Determine when a reduction short circuited:
2706    ///
2707    /// ```
2708    /// #![feature(iterator_try_reduce)]
2709    ///
2710    /// let numbers = vec![1, 2, 3, usize::MAX, 4, 5];
2711    /// let sum = numbers.into_iter().try_reduce(|x, y| x.checked_add(y));
2712    /// assert_eq!(sum, None);
2713    /// ```
2714    ///
2715    /// Determine when a reduction was not performed because there are no elements:
2716    ///
2717    /// ```
2718    /// #![feature(iterator_try_reduce)]
2719    ///
2720    /// let numbers: Vec<usize> = Vec::new();
2721    /// let sum = numbers.into_iter().try_reduce(|x, y| x.checked_add(y));
2722    /// assert_eq!(sum, Some(None));
2723    /// ```
2724    ///
2725    /// Use a [`Result`] instead of an [`Option`]:
2726    ///
2727    /// ```
2728    /// #![feature(iterator_try_reduce)]
2729    ///
2730    /// let numbers = vec!["1", "2", "3", "4", "5"];
2731    /// let max: Result<Option<_>, <usize as std::str::FromStr>::Err> =
2732    ///     numbers.into_iter().try_reduce(|x, y| {
2733    ///         if x.parse::<usize>()? > y.parse::<usize>()? { Ok(x) } else { Ok(y) }
2734    ///     });
2735    /// assert_eq!(max, Ok(Some("5")));
2736    /// ```
2737    #[inline]
2738    #[unstable(feature = "iterator_try_reduce", reason = "new API", issue = "87053")]
2739    #[cfg(not(feature = "ferrocene_subset"))]
2740    fn try_reduce<R>(
2741        &mut self,
2742        f: impl FnMut(Self::Item, Self::Item) -> R,
2743    ) -> ChangeOutputType<R, Option<R::Output>>
2744    where
2745        Self: Sized,
2746        R: Try<Output = Self::Item, Residual: Residual<Option<Self::Item>>>,
2747    {
2748        let first = match self.next() {
2749            Some(i) => i,
2750            None => return Try::from_output(None),
2751        };
2752
2753        match self.try_fold(first, f).branch() {
2754            ControlFlow::Break(r) => FromResidual::from_residual(r),
2755            ControlFlow::Continue(i) => Try::from_output(Some(i)),
2756        }
2757    }
2758
2759    /// Tests if every element of the iterator matches a predicate.
2760    ///
2761    /// `all()` takes a closure that returns `true` or `false`. It applies
2762    /// this closure to each element of the iterator, and if they all return
2763    /// `true`, then so does `all()`. If any of them return `false`, it
2764    /// returns `false`.
2765    ///
2766    /// `all()` is short-circuiting; in other words, it will stop processing
2767    /// as soon as it finds a `false`, given that no matter what else happens,
2768    /// the result will also be `false`.
2769    ///
2770    /// An empty iterator returns `true`.
2771    ///
2772    /// # Examples
2773    ///
2774    /// Basic usage:
2775    ///
2776    /// ```
2777    /// let a = [1, 2, 3];
2778    ///
2779    /// assert!(a.into_iter().all(|x| x > 0));
2780    ///
2781    /// assert!(!a.into_iter().all(|x| x > 2));
2782    /// ```
2783    ///
2784    /// Stopping at the first `false`:
2785    ///
2786    /// ```
2787    /// let a = [1, 2, 3];
2788    ///
2789    /// let mut iter = a.into_iter();
2790    ///
2791    /// assert!(!iter.all(|x| x != 2));
2792    ///
2793    /// // we can still use `iter`, as there are more elements.
2794    /// assert_eq!(iter.next(), Some(3));
2795    /// ```
2796    #[inline]
2797    #[stable(feature = "rust1", since = "1.0.0")]
2798    fn all<F>(&mut self, f: F) -> bool
2799    where
2800        Self: Sized,
2801        F: FnMut(Self::Item) -> bool,
2802    {
2803        #[inline]
2804        fn check<T>(mut f: impl FnMut(T) -> bool) -> impl FnMut((), T) -> ControlFlow<()> {
2805            move |(), x| {
2806                if f(x) { ControlFlow::Continue(()) } else { ControlFlow::Break(()) }
2807            }
2808        }
2809        self.try_fold((), check(f)) == ControlFlow::Continue(())
2810    }
2811
2812    /// Tests if any element of the iterator matches a predicate.
2813    ///
2814    /// `any()` takes a closure that returns `true` or `false`. It applies
2815    /// this closure to each element of the iterator, and if any of them return
2816    /// `true`, then so does `any()`. If they all return `false`, it
2817    /// returns `false`.
2818    ///
2819    /// `any()` is short-circuiting; in other words, it will stop processing
2820    /// as soon as it finds a `true`, given that no matter what else happens,
2821    /// the result will also be `true`.
2822    ///
2823    /// An empty iterator returns `false`.
2824    ///
2825    /// # Examples
2826    ///
2827    /// Basic usage:
2828    ///
2829    /// ```
2830    /// let a = [1, 2, 3];
2831    ///
2832    /// assert!(a.into_iter().any(|x| x > 0));
2833    ///
2834    /// assert!(!a.into_iter().any(|x| x > 5));
2835    /// ```
2836    ///
2837    /// Stopping at the first `true`:
2838    ///
2839    /// ```
2840    /// let a = [1, 2, 3];
2841    ///
2842    /// let mut iter = a.into_iter();
2843    ///
2844    /// assert!(iter.any(|x| x != 2));
2845    ///
2846    /// // we can still use `iter`, as there are more elements.
2847    /// assert_eq!(iter.next(), Some(2));
2848    /// ```
2849    #[inline]
2850    #[stable(feature = "rust1", since = "1.0.0")]
2851    fn any<F>(&mut self, f: F) -> bool
2852    where
2853        Self: Sized,
2854        F: FnMut(Self::Item) -> bool,
2855    {
2856        #[inline]
2857        fn check<T>(mut f: impl FnMut(T) -> bool) -> impl FnMut((), T) -> ControlFlow<()> {
2858            move |(), x| {
2859                if f(x) { ControlFlow::Break(()) } else { ControlFlow::Continue(()) }
2860            }
2861        }
2862
2863        self.try_fold((), check(f)) == ControlFlow::Break(())
2864    }
2865
2866    /// Searches for an element of an iterator that satisfies a predicate.
2867    ///
2868    /// `find()` takes a closure that returns `true` or `false`. It applies
2869    /// this closure to each element of the iterator, and if any of them return
2870    /// `true`, then `find()` returns [`Some(element)`]. If they all return
2871    /// `false`, it returns [`None`].
2872    ///
2873    /// `find()` is short-circuiting; in other words, it will stop processing
2874    /// as soon as the closure returns `true`.
2875    ///
2876    /// Because `find()` takes a reference, and many iterators iterate over
2877    /// references, this leads to a possibly confusing situation where the
2878    /// argument is a double reference. You can see this effect in the
2879    /// examples below, with `&&x`.
2880    ///
2881    /// If you need the index of the element, see [`position()`].
2882    ///
2883    /// [`Some(element)`]: Some
2884    /// [`position()`]: Iterator::position
2885    ///
2886    /// # Examples
2887    ///
2888    /// Basic usage:
2889    ///
2890    /// ```
2891    /// let a = [1, 2, 3];
2892    ///
2893    /// assert_eq!(a.into_iter().find(|&x| x == 2), Some(2));
2894    /// assert_eq!(a.into_iter().find(|&x| x == 5), None);
2895    /// ```
2896    ///
2897    /// Stopping at the first `true`:
2898    ///
2899    /// ```
2900    /// let a = [1, 2, 3];
2901    ///
2902    /// let mut iter = a.into_iter();
2903    ///
2904    /// assert_eq!(iter.find(|&x| x == 2), Some(2));
2905    ///
2906    /// // we can still use `iter`, as there are more elements.
2907    /// assert_eq!(iter.next(), Some(3));
2908    /// ```
2909    ///
2910    /// Note that `iter.find(f)` is equivalent to `iter.filter(f).next()`.
2911    #[inline]
2912    #[stable(feature = "rust1", since = "1.0.0")]
2913    fn find<P>(&mut self, predicate: P) -> Option<Self::Item>
2914    where
2915        Self: Sized,
2916        P: FnMut(&Self::Item) -> bool,
2917    {
2918        #[inline]
2919        fn check<T>(mut predicate: impl FnMut(&T) -> bool) -> impl FnMut((), T) -> ControlFlow<T> {
2920            move |(), x| {
2921                if predicate(&x) { ControlFlow::Break(x) } else { ControlFlow::Continue(()) }
2922            }
2923        }
2924
2925        self.try_fold((), check(predicate)).break_value()
2926    }
2927
2928    /// Applies function to the elements of iterator and returns
2929    /// the first non-none result.
2930    ///
2931    /// `iter.find_map(f)` is equivalent to `iter.filter_map(f).next()`.
2932    ///
2933    /// # Examples
2934    ///
2935    /// ```
2936    /// let a = ["lol", "NaN", "2", "5"];
2937    ///
2938    /// let first_number = a.iter().find_map(|s| s.parse().ok());
2939    ///
2940    /// assert_eq!(first_number, Some(2));
2941    /// ```
2942    #[inline]
2943    #[stable(feature = "iterator_find_map", since = "1.30.0")]
2944    #[cfg(not(feature = "ferrocene_subset"))]
2945    fn find_map<B, F>(&mut self, f: F) -> Option<B>
2946    where
2947        Self: Sized,
2948        F: FnMut(Self::Item) -> Option<B>,
2949    {
2950        #[inline]
2951        fn check<T, B>(mut f: impl FnMut(T) -> Option<B>) -> impl FnMut((), T) -> ControlFlow<B> {
2952            move |(), x| match f(x) {
2953                Some(x) => ControlFlow::Break(x),
2954                None => ControlFlow::Continue(()),
2955            }
2956        }
2957
2958        self.try_fold((), check(f)).break_value()
2959    }
2960
2961    /// Applies function to the elements of iterator and returns
2962    /// the first true result or the first error.
2963    ///
2964    /// The return type of this method depends on the return type of the closure.
2965    /// If you return `Result<bool, E>` from the closure, you'll get a `Result<Option<Self::Item>, E>`.
2966    /// If you return `Option<bool>` from the closure, you'll get an `Option<Option<Self::Item>>`.
2967    ///
2968    /// # Examples
2969    ///
2970    /// ```
2971    /// #![feature(try_find)]
2972    ///
2973    /// let a = ["1", "2", "lol", "NaN", "5"];
2974    ///
2975    /// let is_my_num = |s: &str, search: i32| -> Result<bool, std::num::ParseIntError> {
2976    ///     Ok(s.parse::<i32>()? == search)
2977    /// };
2978    ///
2979    /// let result = a.into_iter().try_find(|&s| is_my_num(s, 2));
2980    /// assert_eq!(result, Ok(Some("2")));
2981    ///
2982    /// let result = a.into_iter().try_find(|&s| is_my_num(s, 5));
2983    /// assert!(result.is_err());
2984    /// ```
2985    ///
2986    /// This also supports other types which implement [`Try`], not just [`Result`].
2987    ///
2988    /// ```
2989    /// #![feature(try_find)]
2990    ///
2991    /// use std::num::NonZero;
2992    ///
2993    /// let a = [3, 5, 7, 4, 9, 0, 11u32];
2994    /// let result = a.into_iter().try_find(|&x| NonZero::new(x).map(|y| y.is_power_of_two()));
2995    /// assert_eq!(result, Some(Some(4)));
2996    /// let result = a.into_iter().take(3).try_find(|&x| NonZero::new(x).map(|y| y.is_power_of_two()));
2997    /// assert_eq!(result, Some(None));
2998    /// let result = a.into_iter().rev().try_find(|&x| NonZero::new(x).map(|y| y.is_power_of_two()));
2999    /// assert_eq!(result, None);
3000    /// ```
3001    #[inline]
3002    #[unstable(feature = "try_find", reason = "new API", issue = "63178")]
3003    #[cfg(not(feature = "ferrocene_subset"))]
3004    fn try_find<R>(
3005        &mut self,
3006        f: impl FnMut(&Self::Item) -> R,
3007    ) -> ChangeOutputType<R, Option<Self::Item>>
3008    where
3009        Self: Sized,
3010        R: Try<Output = bool, Residual: Residual<Option<Self::Item>>>,
3011    {
3012        #[inline]
3013        fn check<I, V, R>(
3014            mut f: impl FnMut(&I) -> V,
3015        ) -> impl FnMut((), I) -> ControlFlow<R::TryType>
3016        where
3017            V: Try<Output = bool, Residual = R>,
3018            R: Residual<Option<I>>,
3019        {
3020            move |(), x| match f(&x).branch() {
3021                ControlFlow::Continue(false) => ControlFlow::Continue(()),
3022                ControlFlow::Continue(true) => ControlFlow::Break(Try::from_output(Some(x))),
3023                ControlFlow::Break(r) => ControlFlow::Break(FromResidual::from_residual(r)),
3024            }
3025        }
3026
3027        match self.try_fold((), check(f)) {
3028            ControlFlow::Break(x) => x,
3029            ControlFlow::Continue(()) => Try::from_output(None),
3030        }
3031    }
3032
3033    /// Searches for an element in an iterator, returning its index.
3034    ///
3035    /// `position()` takes a closure that returns `true` or `false`. It applies
3036    /// this closure to each element of the iterator, and if one of them
3037    /// returns `true`, then `position()` returns [`Some(index)`]. If all of
3038    /// them return `false`, it returns [`None`].
3039    ///
3040    /// `position()` is short-circuiting; in other words, it will stop
3041    /// processing as soon as it finds a `true`.
3042    ///
3043    /// # Overflow Behavior
3044    ///
3045    /// The method does no guarding against overflows, so if there are more
3046    /// than [`usize::MAX`] non-matching elements, it either produces the wrong
3047    /// result or panics. If overflow checks are enabled, a panic is
3048    /// guaranteed.
3049    ///
3050    /// # Panics
3051    ///
3052    /// This function might panic if the iterator has more than `usize::MAX`
3053    /// non-matching elements.
3054    ///
3055    /// [`Some(index)`]: Some
3056    ///
3057    /// # Examples
3058    ///
3059    /// Basic usage:
3060    ///
3061    /// ```
3062    /// let a = [1, 2, 3];
3063    ///
3064    /// assert_eq!(a.into_iter().position(|x| x == 2), Some(1));
3065    ///
3066    /// assert_eq!(a.into_iter().position(|x| x == 5), None);
3067    /// ```
3068    ///
3069    /// Stopping at the first `true`:
3070    ///
3071    /// ```
3072    /// let a = [1, 2, 3, 4];
3073    ///
3074    /// let mut iter = a.into_iter();
3075    ///
3076    /// assert_eq!(iter.position(|x| x >= 2), Some(1));
3077    ///
3078    /// // we can still use `iter`, as there are more elements.
3079    /// assert_eq!(iter.next(), Some(3));
3080    ///
3081    /// // The returned index depends on iterator state
3082    /// assert_eq!(iter.position(|x| x == 4), Some(0));
3083    ///
3084    /// ```
3085    #[inline]
3086    #[stable(feature = "rust1", since = "1.0.0")]
3087    fn position<P>(&mut self, predicate: P) -> Option<usize>
3088    where
3089        Self: Sized,
3090        P: FnMut(Self::Item) -> bool,
3091    {
3092        #[inline]
3093        fn check<'a, T>(
3094            mut predicate: impl FnMut(T) -> bool + 'a,
3095            acc: &'a mut usize,
3096        ) -> impl FnMut((), T) -> ControlFlow<usize, ()> + 'a {
3097            #[rustc_inherit_overflow_checks]
3098            move |_, x| {
3099                if predicate(x) {
3100                    ControlFlow::Break(*acc)
3101                } else {
3102                    *acc += 1;
3103                    ControlFlow::Continue(())
3104                }
3105            }
3106        }
3107
3108        let mut acc = 0;
3109        self.try_fold((), check(predicate, &mut acc)).break_value()
3110    }
3111
3112    /// Searches for an element in an iterator from the right, returning its
3113    /// index.
3114    ///
3115    /// `rposition()` takes a closure that returns `true` or `false`. It applies
3116    /// this closure to each element of the iterator, starting from the end,
3117    /// and if one of them returns `true`, then `rposition()` returns
3118    /// [`Some(index)`]. If all of them return `false`, it returns [`None`].
3119    ///
3120    /// `rposition()` is short-circuiting; in other words, it will stop
3121    /// processing as soon as it finds a `true`.
3122    ///
3123    /// [`Some(index)`]: Some
3124    ///
3125    /// # Examples
3126    ///
3127    /// Basic usage:
3128    ///
3129    /// ```
3130    /// let a = [1, 2, 3];
3131    ///
3132    /// assert_eq!(a.into_iter().rposition(|x| x == 3), Some(2));
3133    ///
3134    /// assert_eq!(a.into_iter().rposition(|x| x == 5), None);
3135    /// ```
3136    ///
3137    /// Stopping at the first `true`:
3138    ///
3139    /// ```
3140    /// let a = [-1, 2, 3, 4];
3141    ///
3142    /// let mut iter = a.into_iter();
3143    ///
3144    /// assert_eq!(iter.rposition(|x| x >= 2), Some(3));
3145    ///
3146    /// // we can still use `iter`, as there are more elements.
3147    /// assert_eq!(iter.next(), Some(-1));
3148    /// assert_eq!(iter.next_back(), Some(3));
3149    /// ```
3150    #[inline]
3151    #[stable(feature = "rust1", since = "1.0.0")]
3152    #[cfg(not(feature = "ferrocene_subset"))]
3153    fn rposition<P>(&mut self, predicate: P) -> Option<usize>
3154    where
3155        P: FnMut(Self::Item) -> bool,
3156        Self: Sized + ExactSizeIterator + DoubleEndedIterator,
3157    {
3158        // No need for an overflow check here, because `ExactSizeIterator`
3159        // implies that the number of elements fits into a `usize`.
3160        #[inline]
3161        fn check<T>(
3162            mut predicate: impl FnMut(T) -> bool,
3163        ) -> impl FnMut(usize, T) -> ControlFlow<usize, usize> {
3164            move |i, x| {
3165                let i = i - 1;
3166                if predicate(x) { ControlFlow::Break(i) } else { ControlFlow::Continue(i) }
3167            }
3168        }
3169
3170        let n = self.len();
3171        self.try_rfold(n, check(predicate)).break_value()
3172    }
3173
3174    /// Returns the maximum element of an iterator.
3175    ///
3176    /// If several elements are equally maximum, the last element is
3177    /// returned. If the iterator is empty, [`None`] is returned.
3178    ///
3179    /// Note that [`f32`]/[`f64`] doesn't implement [`Ord`] due to NaN being
3180    /// incomparable. You can work around this by using [`Iterator::reduce`]:
3181    /// ```
3182    /// assert_eq!(
3183    ///     [2.4, f32::NAN, 1.3]
3184    ///         .into_iter()
3185    ///         .reduce(f32::max)
3186    ///         .unwrap_or(0.),
3187    ///     2.4
3188    /// );
3189    /// ```
3190    ///
3191    /// # Examples
3192    ///
3193    /// ```
3194    /// let a = [1, 2, 3];
3195    /// let b: [u32; 0] = [];
3196    ///
3197    /// assert_eq!(a.into_iter().max(), Some(3));
3198    /// assert_eq!(b.into_iter().max(), None);
3199    /// ```
3200    #[inline]
3201    #[stable(feature = "rust1", since = "1.0.0")]
3202    #[cfg(not(feature = "ferrocene_subset"))]
3203    fn max(self) -> Option<Self::Item>
3204    where
3205        Self: Sized,
3206        Self::Item: Ord,
3207    {
3208        self.max_by(Ord::cmp)
3209    }
3210
3211    /// Returns the minimum element of an iterator.
3212    ///
3213    /// If several elements are equally minimum, the first element is returned.
3214    /// If the iterator is empty, [`None`] is returned.
3215    ///
3216    /// Note that [`f32`]/[`f64`] doesn't implement [`Ord`] due to NaN being
3217    /// incomparable. You can work around this by using [`Iterator::reduce`]:
3218    /// ```
3219    /// assert_eq!(
3220    ///     [2.4, f32::NAN, 1.3]
3221    ///         .into_iter()
3222    ///         .reduce(f32::min)
3223    ///         .unwrap_or(0.),
3224    ///     1.3
3225    /// );
3226    /// ```
3227    ///
3228    /// # Examples
3229    ///
3230    /// ```
3231    /// let a = [1, 2, 3];
3232    /// let b: [u32; 0] = [];
3233    ///
3234    /// assert_eq!(a.into_iter().min(), Some(1));
3235    /// assert_eq!(b.into_iter().min(), None);
3236    /// ```
3237    #[inline]
3238    #[stable(feature = "rust1", since = "1.0.0")]
3239    #[cfg(not(feature = "ferrocene_subset"))]
3240    fn min(self) -> Option<Self::Item>
3241    where
3242        Self: Sized,
3243        Self::Item: Ord,
3244    {
3245        self.min_by(Ord::cmp)
3246    }
3247
3248    /// Returns the element that gives the maximum value from the
3249    /// specified function.
3250    ///
3251    /// If several elements are equally maximum, the last element is
3252    /// returned. If the iterator is empty, [`None`] is returned.
3253    ///
3254    /// # Examples
3255    ///
3256    /// ```
3257    /// let a = [-3_i32, 0, 1, 5, -10];
3258    /// assert_eq!(a.into_iter().max_by_key(|x| x.abs()).unwrap(), -10);
3259    /// ```
3260    #[inline]
3261    #[stable(feature = "iter_cmp_by_key", since = "1.6.0")]
3262    #[cfg(not(feature = "ferrocene_subset"))]
3263    fn max_by_key<B: Ord, F>(self, f: F) -> Option<Self::Item>
3264    where
3265        Self: Sized,
3266        F: FnMut(&Self::Item) -> B,
3267    {
3268        #[inline]
3269        fn key<T, B>(mut f: impl FnMut(&T) -> B) -> impl FnMut(T) -> (B, T) {
3270            move |x| (f(&x), x)
3271        }
3272
3273        #[inline]
3274        fn compare<T, B: Ord>((x_p, _): &(B, T), (y_p, _): &(B, T)) -> Ordering {
3275            x_p.cmp(y_p)
3276        }
3277
3278        let (_, x) = self.map(key(f)).max_by(compare)?;
3279        Some(x)
3280    }
3281
3282    /// Returns the element that gives the maximum value with respect to the
3283    /// specified comparison function.
3284    ///
3285    /// If several elements are equally maximum, the last element is
3286    /// returned. If the iterator is empty, [`None`] is returned.
3287    ///
3288    /// # Examples
3289    ///
3290    /// ```
3291    /// let a = [-3_i32, 0, 1, 5, -10];
3292    /// assert_eq!(a.into_iter().max_by(|x, y| x.cmp(y)).unwrap(), 5);
3293    /// ```
3294    #[inline]
3295    #[stable(feature = "iter_max_by", since = "1.15.0")]
3296    fn max_by<F>(self, compare: F) -> Option<Self::Item>
3297    where
3298        Self: Sized,
3299        F: FnMut(&Self::Item, &Self::Item) -> Ordering,
3300    {
3301        #[inline]
3302        fn fold<T>(mut compare: impl FnMut(&T, &T) -> Ordering) -> impl FnMut(T, T) -> T {
3303            move |x, y| cmp::max_by(x, y, &mut compare)
3304        }
3305
3306        self.reduce(fold(compare))
3307    }
3308
3309    /// Returns the element that gives the minimum value from the
3310    /// specified function.
3311    ///
3312    /// If several elements are equally minimum, the first element is
3313    /// returned. If the iterator is empty, [`None`] is returned.
3314    ///
3315    /// # Examples
3316    ///
3317    /// ```
3318    /// let a = [-3_i32, 0, 1, 5, -10];
3319    /// assert_eq!(a.into_iter().min_by_key(|x| x.abs()).unwrap(), 0);
3320    /// ```
3321    #[inline]
3322    #[stable(feature = "iter_cmp_by_key", since = "1.6.0")]
3323    #[cfg(not(feature = "ferrocene_subset"))]
3324    fn min_by_key<B: Ord, F>(self, f: F) -> Option<Self::Item>
3325    where
3326        Self: Sized,
3327        F: FnMut(&Self::Item) -> B,
3328    {
3329        #[inline]
3330        fn key<T, B>(mut f: impl FnMut(&T) -> B) -> impl FnMut(T) -> (B, T) {
3331            move |x| (f(&x), x)
3332        }
3333
3334        #[inline]
3335        fn compare<T, B: Ord>((x_p, _): &(B, T), (y_p, _): &(B, T)) -> Ordering {
3336            x_p.cmp(y_p)
3337        }
3338
3339        let (_, x) = self.map(key(f)).min_by(compare)?;
3340        Some(x)
3341    }
3342
3343    /// Returns the element that gives the minimum value with respect to the
3344    /// specified comparison function.
3345    ///
3346    /// If several elements are equally minimum, the first element is
3347    /// returned. If the iterator is empty, [`None`] is returned.
3348    ///
3349    /// # Examples
3350    ///
3351    /// ```
3352    /// let a = [-3_i32, 0, 1, 5, -10];
3353    /// assert_eq!(a.into_iter().min_by(|x, y| x.cmp(y)).unwrap(), -10);
3354    /// ```
3355    #[inline]
3356    #[stable(feature = "iter_min_by", since = "1.15.0")]
3357    #[cfg(not(feature = "ferrocene_subset"))]
3358    fn min_by<F>(self, compare: F) -> Option<Self::Item>
3359    where
3360        Self: Sized,
3361        F: FnMut(&Self::Item, &Self::Item) -> Ordering,
3362    {
3363        #[inline]
3364        fn fold<T>(mut compare: impl FnMut(&T, &T) -> Ordering) -> impl FnMut(T, T) -> T {
3365            move |x, y| cmp::min_by(x, y, &mut compare)
3366        }
3367
3368        self.reduce(fold(compare))
3369    }
3370
3371    /// Reverses an iterator's direction.
3372    ///
3373    /// Usually, iterators iterate from left to right. After using `rev()`,
3374    /// an iterator will instead iterate from right to left.
3375    ///
3376    /// This is only possible if the iterator has an end, so `rev()` only
3377    /// works on [`DoubleEndedIterator`]s.
3378    ///
3379    /// # Examples
3380    ///
3381    /// ```
3382    /// let a = [1, 2, 3];
3383    ///
3384    /// let mut iter = a.into_iter().rev();
3385    ///
3386    /// assert_eq!(iter.next(), Some(3));
3387    /// assert_eq!(iter.next(), Some(2));
3388    /// assert_eq!(iter.next(), Some(1));
3389    ///
3390    /// assert_eq!(iter.next(), None);
3391    /// ```
3392    #[inline]
3393    #[doc(alias = "reverse")]
3394    #[stable(feature = "rust1", since = "1.0.0")]
3395    fn rev(self) -> Rev<Self>
3396    where
3397        Self: Sized + DoubleEndedIterator,
3398    {
3399        Rev::new(self)
3400    }
3401
3402    /// Converts an iterator of pairs into a pair of containers.
3403    ///
3404    /// `unzip()` consumes an entire iterator of pairs, producing two
3405    /// collections: one from the left elements of the pairs, and one
3406    /// from the right elements.
3407    ///
3408    /// This function is, in some sense, the opposite of [`zip`].
3409    ///
3410    /// [`zip`]: Iterator::zip
3411    ///
3412    /// # Examples
3413    ///
3414    /// ```
3415    /// let a = [(1, 2), (3, 4), (5, 6)];
3416    ///
3417    /// let (left, right): (Vec<_>, Vec<_>) = a.into_iter().unzip();
3418    ///
3419    /// assert_eq!(left, [1, 3, 5]);
3420    /// assert_eq!(right, [2, 4, 6]);
3421    ///
3422    /// // you can also unzip multiple nested tuples at once
3423    /// let a = [(1, (2, 3)), (4, (5, 6))];
3424    ///
3425    /// let (x, (y, z)): (Vec<_>, (Vec<_>, Vec<_>)) = a.into_iter().unzip();
3426    /// assert_eq!(x, [1, 4]);
3427    /// assert_eq!(y, [2, 5]);
3428    /// assert_eq!(z, [3, 6]);
3429    /// ```
3430    #[stable(feature = "rust1", since = "1.0.0")]
3431    #[cfg(not(feature = "ferrocene_subset"))]
3432    fn unzip<A, B, FromA, FromB>(self) -> (FromA, FromB)
3433    where
3434        FromA: Default + Extend<A>,
3435        FromB: Default + Extend<B>,
3436        Self: Sized + Iterator<Item = (A, B)>,
3437    {
3438        let mut unzipped: (FromA, FromB) = Default::default();
3439        unzipped.extend(self);
3440        unzipped
3441    }
3442
3443    /// Creates an iterator which copies all of its elements.
3444    ///
3445    /// This is useful when you have an iterator over `&T`, but you need an
3446    /// iterator over `T`.
3447    ///
3448    /// # Examples
3449    ///
3450    /// ```
3451    /// let a = [1, 2, 3];
3452    ///
3453    /// let v_copied: Vec<_> = a.iter().copied().collect();
3454    ///
3455    /// // copied is the same as .map(|&x| x)
3456    /// let v_map: Vec<_> = a.iter().map(|&x| x).collect();
3457    ///
3458    /// assert_eq!(v_copied, [1, 2, 3]);
3459    /// assert_eq!(v_map, [1, 2, 3]);
3460    /// ```
3461    #[stable(feature = "iter_copied", since = "1.36.0")]
3462    #[rustc_diagnostic_item = "iter_copied"]
3463    fn copied<'a, T>(self) -> Copied<Self>
3464    where
3465        T: Copy + 'a,
3466        Self: Sized + Iterator<Item = &'a T>,
3467    {
3468        Copied::new(self)
3469    }
3470
3471    /// Creates an iterator which [`clone`]s all of its elements.
3472    ///
3473    /// This is useful when you have an iterator over `&T`, but you need an
3474    /// iterator over `T`.
3475    ///
3476    /// There is no guarantee whatsoever about the `clone` method actually
3477    /// being called *or* optimized away. So code should not depend on
3478    /// either.
3479    ///
3480    /// [`clone`]: Clone::clone
3481    ///
3482    /// # Examples
3483    ///
3484    /// Basic usage:
3485    ///
3486    /// ```
3487    /// let a = [1, 2, 3];
3488    ///
3489    /// let v_cloned: Vec<_> = a.iter().cloned().collect();
3490    ///
3491    /// // cloned is the same as .map(|&x| x), for integers
3492    /// let v_map: Vec<_> = a.iter().map(|&x| x).collect();
3493    ///
3494    /// assert_eq!(v_cloned, [1, 2, 3]);
3495    /// assert_eq!(v_map, [1, 2, 3]);
3496    /// ```
3497    ///
3498    /// To get the best performance, try to clone late:
3499    ///
3500    /// ```
3501    /// let a = [vec![0_u8, 1, 2], vec![3, 4], vec![23]];
3502    /// // don't do this:
3503    /// let slower: Vec<_> = a.iter().cloned().filter(|s| s.len() == 1).collect();
3504    /// assert_eq!(&[vec![23]], &slower[..]);
3505    /// // instead call `cloned` late
3506    /// let faster: Vec<_> = a.iter().filter(|s| s.len() == 1).cloned().collect();
3507    /// assert_eq!(&[vec![23]], &faster[..]);
3508    /// ```
3509    #[stable(feature = "rust1", since = "1.0.0")]
3510    #[rustc_diagnostic_item = "iter_cloned"]
3511    fn cloned<'a, T>(self) -> Cloned<Self>
3512    where
3513        T: Clone + 'a,
3514        Self: Sized + Iterator<Item = &'a T>,
3515    {
3516        Cloned::new(self)
3517    }
3518
3519    /// Repeats an iterator endlessly.
3520    ///
3521    /// Instead of stopping at [`None`], the iterator will instead start again,
3522    /// from the beginning. After iterating again, it will start at the
3523    /// beginning again. And again. And again. Forever. Note that in case the
3524    /// original iterator is empty, the resulting iterator will also be empty.
3525    ///
3526    /// # Examples
3527    ///
3528    /// ```
3529    /// let a = [1, 2, 3];
3530    ///
3531    /// let mut iter = a.into_iter().cycle();
3532    ///
3533    /// loop {
3534    ///     assert_eq!(iter.next(), Some(1));
3535    ///     assert_eq!(iter.next(), Some(2));
3536    ///     assert_eq!(iter.next(), Some(3));
3537    /// #   break;
3538    /// }
3539    /// ```
3540    #[stable(feature = "rust1", since = "1.0.0")]
3541    #[inline]
3542    #[cfg(not(feature = "ferrocene_subset"))]
3543    fn cycle(self) -> Cycle<Self>
3544    where
3545        Self: Sized + Clone,
3546    {
3547        Cycle::new(self)
3548    }
3549
3550    /// Returns an iterator over `N` elements of the iterator at a time.
3551    ///
3552    /// The chunks do not overlap. If `N` does not divide the length of the
3553    /// iterator, then the last up to `N-1` elements will be omitted and can be
3554    /// retrieved from the [`.into_remainder()`][ArrayChunks::into_remainder]
3555    /// function of the iterator.
3556    ///
3557    /// # Panics
3558    ///
3559    /// Panics if `N` is zero.
3560    ///
3561    /// # Examples
3562    ///
3563    /// Basic usage:
3564    ///
3565    /// ```
3566    /// #![feature(iter_array_chunks)]
3567    ///
3568    /// let mut iter = "lorem".chars().array_chunks();
3569    /// assert_eq!(iter.next(), Some(['l', 'o']));
3570    /// assert_eq!(iter.next(), Some(['r', 'e']));
3571    /// assert_eq!(iter.next(), None);
3572    /// assert_eq!(iter.into_remainder().as_slice(), &['m']);
3573    /// ```
3574    ///
3575    /// ```
3576    /// #![feature(iter_array_chunks)]
3577    ///
3578    /// let data = [1, 1, 2, -2, 6, 0, 3, 1];
3579    /// //          ^-----^  ^------^
3580    /// for [x, y, z] in data.iter().array_chunks() {
3581    ///     assert_eq!(x + y + z, 4);
3582    /// }
3583    /// ```
3584    #[track_caller]
3585    #[unstable(feature = "iter_array_chunks", reason = "recently added", issue = "100450")]
3586    #[cfg(not(feature = "ferrocene_subset"))]
3587    fn array_chunks<const N: usize>(self) -> ArrayChunks<Self, N>
3588    where
3589        Self: Sized,
3590    {
3591        ArrayChunks::new(self)
3592    }
3593
3594    /// Sums the elements of an iterator.
3595    ///
3596    /// Takes each element, adds them together, and returns the result.
3597    ///
3598    /// An empty iterator returns the *additive identity* ("zero") of the type,
3599    /// which is `0` for integers and `-0.0` for floats.
3600    ///
3601    /// `sum()` can be used to sum any type implementing [`Sum`][`core::iter::Sum`],
3602    /// including [`Option`][`Option::sum`] and [`Result`][`Result::sum`].
3603    ///
3604    /// # Panics
3605    ///
3606    /// When calling `sum()` and a primitive integer type is being returned, this
3607    /// method will panic if the computation overflows and overflow checks are
3608    /// enabled.
3609    ///
3610    /// # Examples
3611    ///
3612    /// ```
3613    /// let a = [1, 2, 3];
3614    /// let sum: i32 = a.iter().sum();
3615    ///
3616    /// assert_eq!(sum, 6);
3617    ///
3618    /// let b: Vec<f32> = vec![];
3619    /// let sum: f32 = b.iter().sum();
3620    /// assert_eq!(sum, -0.0_f32);
3621    /// ```
3622    #[stable(feature = "iter_arith", since = "1.11.0")]
3623    fn sum<S>(self) -> S
3624    where
3625        Self: Sized,
3626        S: Sum<Self::Item>,
3627    {
3628        Sum::sum(self)
3629    }
3630
3631    /// Iterates over the entire iterator, multiplying all the elements
3632    ///
3633    /// An empty iterator returns the one value of the type.
3634    ///
3635    /// `product()` can be used to multiply any type implementing [`Product`][`core::iter::Product`],
3636    /// including [`Option`][`Option::product`] and [`Result`][`Result::product`].
3637    ///
3638    /// # Panics
3639    ///
3640    /// When calling `product()` and a primitive integer type is being returned,
3641    /// method will panic if the computation overflows and overflow checks are
3642    /// enabled.
3643    ///
3644    /// # Examples
3645    ///
3646    /// ```
3647    /// fn factorial(n: u32) -> u32 {
3648    ///     (1..=n).product()
3649    /// }
3650    /// assert_eq!(factorial(0), 1);
3651    /// assert_eq!(factorial(1), 1);
3652    /// assert_eq!(factorial(5), 120);
3653    /// ```
3654    #[stable(feature = "iter_arith", since = "1.11.0")]
3655    #[cfg(not(feature = "ferrocene_subset"))]
3656    fn product<P>(self) -> P
3657    where
3658        Self: Sized,
3659        P: Product<Self::Item>,
3660    {
3661        Product::product(self)
3662    }
3663
3664    /// [Lexicographically](Ord#lexicographical-comparison) compares the elements of this [`Iterator`] with those
3665    /// of another.
3666    ///
3667    /// # Examples
3668    ///
3669    /// ```
3670    /// use std::cmp::Ordering;
3671    ///
3672    /// assert_eq!([1].iter().cmp([1].iter()), Ordering::Equal);
3673    /// assert_eq!([1].iter().cmp([1, 2].iter()), Ordering::Less);
3674    /// assert_eq!([1, 2].iter().cmp([1].iter()), Ordering::Greater);
3675    /// ```
3676    #[stable(feature = "iter_order", since = "1.5.0")]
3677    #[cfg(not(feature = "ferrocene_subset"))]
3678    fn cmp<I>(self, other: I) -> Ordering
3679    where
3680        I: IntoIterator<Item = Self::Item>,
3681        Self::Item: Ord,
3682        Self: Sized,
3683    {
3684        self.cmp_by(other, |x, y| x.cmp(&y))
3685    }
3686
3687    /// [Lexicographically](Ord#lexicographical-comparison) compares the elements of this [`Iterator`] with those
3688    /// of another with respect to the specified comparison function.
3689    ///
3690    /// # Examples
3691    ///
3692    /// ```
3693    /// #![feature(iter_order_by)]
3694    ///
3695    /// use std::cmp::Ordering;
3696    ///
3697    /// let xs = [1, 2, 3, 4];
3698    /// let ys = [1, 4, 9, 16];
3699    ///
3700    /// assert_eq!(xs.into_iter().cmp_by(ys, |x, y| x.cmp(&y)), Ordering::Less);
3701    /// assert_eq!(xs.into_iter().cmp_by(ys, |x, y| (x * x).cmp(&y)), Ordering::Equal);
3702    /// assert_eq!(xs.into_iter().cmp_by(ys, |x, y| (2 * x).cmp(&y)), Ordering::Greater);
3703    /// ```
3704    #[unstable(feature = "iter_order_by", issue = "64295")]
3705    #[cfg(not(feature = "ferrocene_subset"))]
3706    fn cmp_by<I, F>(self, other: I, cmp: F) -> Ordering
3707    where
3708        Self: Sized,
3709        I: IntoIterator,
3710        F: FnMut(Self::Item, I::Item) -> Ordering,
3711    {
3712        #[inline]
3713        fn compare<X, Y, F>(mut cmp: F) -> impl FnMut(X, Y) -> ControlFlow<Ordering>
3714        where
3715            F: FnMut(X, Y) -> Ordering,
3716        {
3717            move |x, y| match cmp(x, y) {
3718                Ordering::Equal => ControlFlow::Continue(()),
3719                non_eq => ControlFlow::Break(non_eq),
3720            }
3721        }
3722
3723        match iter_compare(self, other.into_iter(), compare(cmp)) {
3724            ControlFlow::Continue(ord) => ord,
3725            ControlFlow::Break(ord) => ord,
3726        }
3727    }
3728
3729    /// [Lexicographically](Ord#lexicographical-comparison) compares the [`PartialOrd`] elements of
3730    /// this [`Iterator`] with those of another. The comparison works like short-circuit
3731    /// evaluation, returning a result without comparing the remaining elements.
3732    /// As soon as an order can be determined, the evaluation stops and a result is returned.
3733    ///
3734    /// # Examples
3735    ///
3736    /// ```
3737    /// use std::cmp::Ordering;
3738    ///
3739    /// assert_eq!([1.].iter().partial_cmp([1.].iter()), Some(Ordering::Equal));
3740    /// assert_eq!([1.].iter().partial_cmp([1., 2.].iter()), Some(Ordering::Less));
3741    /// assert_eq!([1., 2.].iter().partial_cmp([1.].iter()), Some(Ordering::Greater));
3742    /// ```
3743    ///
3744    /// For floating-point numbers, NaN does not have a total order and will result
3745    /// in `None` when compared:
3746    ///
3747    /// ```
3748    /// assert_eq!([f64::NAN].iter().partial_cmp([1.].iter()), None);
3749    /// ```
3750    ///
3751    /// The results are determined by the order of evaluation.
3752    ///
3753    /// ```
3754    /// use std::cmp::Ordering;
3755    ///
3756    /// assert_eq!([1.0, f64::NAN].iter().partial_cmp([2.0, f64::NAN].iter()), Some(Ordering::Less));
3757    /// assert_eq!([2.0, f64::NAN].iter().partial_cmp([1.0, f64::NAN].iter()), Some(Ordering::Greater));
3758    /// assert_eq!([f64::NAN, 1.0].iter().partial_cmp([f64::NAN, 2.0].iter()), None);
3759    /// ```
3760    ///
3761    #[stable(feature = "iter_order", since = "1.5.0")]
3762    #[cfg(not(feature = "ferrocene_subset"))]
3763    fn partial_cmp<I>(self, other: I) -> Option<Ordering>
3764    where
3765        I: IntoIterator,
3766        Self::Item: PartialOrd<I::Item>,
3767        Self: Sized,
3768    {
3769        self.partial_cmp_by(other, |x, y| x.partial_cmp(&y))
3770    }
3771
3772    /// [Lexicographically](Ord#lexicographical-comparison) compares the elements of this [`Iterator`] with those
3773    /// of another with respect to the specified comparison function.
3774    ///
3775    /// # Examples
3776    ///
3777    /// ```
3778    /// #![feature(iter_order_by)]
3779    ///
3780    /// use std::cmp::Ordering;
3781    ///
3782    /// let xs = [1.0, 2.0, 3.0, 4.0];
3783    /// let ys = [1.0, 4.0, 9.0, 16.0];
3784    ///
3785    /// assert_eq!(
3786    ///     xs.iter().partial_cmp_by(ys, |x, y| x.partial_cmp(&y)),
3787    ///     Some(Ordering::Less)
3788    /// );
3789    /// assert_eq!(
3790    ///     xs.iter().partial_cmp_by(ys, |x, y| (x * x).partial_cmp(&y)),
3791    ///     Some(Ordering::Equal)
3792    /// );
3793    /// assert_eq!(
3794    ///     xs.iter().partial_cmp_by(ys, |x, y| (2.0 * x).partial_cmp(&y)),
3795    ///     Some(Ordering::Greater)
3796    /// );
3797    /// ```
3798    #[unstable(feature = "iter_order_by", issue = "64295")]
3799    #[cfg(not(feature = "ferrocene_subset"))]
3800    fn partial_cmp_by<I, F>(self, other: I, partial_cmp: F) -> Option<Ordering>
3801    where
3802        Self: Sized,
3803        I: IntoIterator,
3804        F: FnMut(Self::Item, I::Item) -> Option<Ordering>,
3805    {
3806        #[inline]
3807        fn compare<X, Y, F>(mut partial_cmp: F) -> impl FnMut(X, Y) -> ControlFlow<Option<Ordering>>
3808        where
3809            F: FnMut(X, Y) -> Option<Ordering>,
3810        {
3811            move |x, y| match partial_cmp(x, y) {
3812                Some(Ordering::Equal) => ControlFlow::Continue(()),
3813                non_eq => ControlFlow::Break(non_eq),
3814            }
3815        }
3816
3817        match iter_compare(self, other.into_iter(), compare(partial_cmp)) {
3818            ControlFlow::Continue(ord) => Some(ord),
3819            ControlFlow::Break(ord) => ord,
3820        }
3821    }
3822
3823    /// Determines if the elements of this [`Iterator`] are equal to those of
3824    /// another.
3825    ///
3826    /// # Examples
3827    ///
3828    /// ```
3829    /// assert_eq!([1].iter().eq([1].iter()), true);
3830    /// assert_eq!([1].iter().eq([1, 2].iter()), false);
3831    /// ```
3832    #[stable(feature = "iter_order", since = "1.5.0")]
3833    fn eq<I>(self, other: I) -> bool
3834    where
3835        I: IntoIterator,
3836        Self::Item: PartialEq<I::Item>,
3837        Self: Sized,
3838    {
3839        self.eq_by(other, |x, y| x == y)
3840    }
3841
3842    /// Determines if the elements of this [`Iterator`] are equal to those of
3843    /// another with respect to the specified equality function.
3844    ///
3845    /// # Examples
3846    ///
3847    /// ```
3848    /// #![feature(iter_order_by)]
3849    ///
3850    /// let xs = [1, 2, 3, 4];
3851    /// let ys = [1, 4, 9, 16];
3852    ///
3853    /// assert!(xs.iter().eq_by(ys, |x, y| x * x == y));
3854    /// ```
3855    #[unstable(feature = "iter_order_by", issue = "64295")]
3856    fn eq_by<I, F>(self, other: I, eq: F) -> bool
3857    where
3858        Self: Sized,
3859        I: IntoIterator,
3860        F: FnMut(Self::Item, I::Item) -> bool,
3861    {
3862        #[inline]
3863        fn compare<X, Y, F>(mut eq: F) -> impl FnMut(X, Y) -> ControlFlow<()>
3864        where
3865            F: FnMut(X, Y) -> bool,
3866        {
3867            move |x, y| {
3868                if eq(x, y) { ControlFlow::Continue(()) } else { ControlFlow::Break(()) }
3869            }
3870        }
3871
3872        SpecIterEq::spec_iter_eq(self, other.into_iter(), compare(eq))
3873    }
3874
3875    /// Determines if the elements of this [`Iterator`] are not equal to those of
3876    /// another.
3877    ///
3878    /// # Examples
3879    ///
3880    /// ```
3881    /// assert_eq!([1].iter().ne([1].iter()), false);
3882    /// assert_eq!([1].iter().ne([1, 2].iter()), true);
3883    /// ```
3884    #[stable(feature = "iter_order", since = "1.5.0")]
3885    #[cfg(not(feature = "ferrocene_subset"))]
3886    fn ne<I>(self, other: I) -> bool
3887    where
3888        I: IntoIterator,
3889        Self::Item: PartialEq<I::Item>,
3890        Self: Sized,
3891    {
3892        !self.eq(other)
3893    }
3894
3895    /// Determines if the elements of this [`Iterator`] are [lexicographically](Ord#lexicographical-comparison)
3896    /// less than those of another.
3897    ///
3898    /// # Examples
3899    ///
3900    /// ```
3901    /// assert_eq!([1].iter().lt([1].iter()), false);
3902    /// assert_eq!([1].iter().lt([1, 2].iter()), true);
3903    /// assert_eq!([1, 2].iter().lt([1].iter()), false);
3904    /// assert_eq!([1, 2].iter().lt([1, 2].iter()), false);
3905    /// ```
3906    #[stable(feature = "iter_order", since = "1.5.0")]
3907    #[cfg(not(feature = "ferrocene_subset"))]
3908    fn lt<I>(self, other: I) -> bool
3909    where
3910        I: IntoIterator,
3911        Self::Item: PartialOrd<I::Item>,
3912        Self: Sized,
3913    {
3914        self.partial_cmp(other) == Some(Ordering::Less)
3915    }
3916
3917    /// Determines if the elements of this [`Iterator`] are [lexicographically](Ord#lexicographical-comparison)
3918    /// less or equal to those of another.
3919    ///
3920    /// # Examples
3921    ///
3922    /// ```
3923    /// assert_eq!([1].iter().le([1].iter()), true);
3924    /// assert_eq!([1].iter().le([1, 2].iter()), true);
3925    /// assert_eq!([1, 2].iter().le([1].iter()), false);
3926    /// assert_eq!([1, 2].iter().le([1, 2].iter()), true);
3927    /// ```
3928    #[stable(feature = "iter_order", since = "1.5.0")]
3929    #[cfg(not(feature = "ferrocene_subset"))]
3930    fn le<I>(self, other: I) -> bool
3931    where
3932        I: IntoIterator,
3933        Self::Item: PartialOrd<I::Item>,
3934        Self: Sized,
3935    {
3936        matches!(self.partial_cmp(other), Some(Ordering::Less | Ordering::Equal))
3937    }
3938
3939    /// Determines if the elements of this [`Iterator`] are [lexicographically](Ord#lexicographical-comparison)
3940    /// greater than those of another.
3941    ///
3942    /// # Examples
3943    ///
3944    /// ```
3945    /// assert_eq!([1].iter().gt([1].iter()), false);
3946    /// assert_eq!([1].iter().gt([1, 2].iter()), false);
3947    /// assert_eq!([1, 2].iter().gt([1].iter()), true);
3948    /// assert_eq!([1, 2].iter().gt([1, 2].iter()), false);
3949    /// ```
3950    #[stable(feature = "iter_order", since = "1.5.0")]
3951    #[cfg(not(feature = "ferrocene_subset"))]
3952    fn gt<I>(self, other: I) -> bool
3953    where
3954        I: IntoIterator,
3955        Self::Item: PartialOrd<I::Item>,
3956        Self: Sized,
3957    {
3958        self.partial_cmp(other) == Some(Ordering::Greater)
3959    }
3960
3961    /// Determines if the elements of this [`Iterator`] are [lexicographically](Ord#lexicographical-comparison)
3962    /// greater than or equal to those of another.
3963    ///
3964    /// # Examples
3965    ///
3966    /// ```
3967    /// assert_eq!([1].iter().ge([1].iter()), true);
3968    /// assert_eq!([1].iter().ge([1, 2].iter()), false);
3969    /// assert_eq!([1, 2].iter().ge([1].iter()), true);
3970    /// assert_eq!([1, 2].iter().ge([1, 2].iter()), true);
3971    /// ```
3972    #[stable(feature = "iter_order", since = "1.5.0")]
3973    #[cfg(not(feature = "ferrocene_subset"))]
3974    fn ge<I>(self, other: I) -> bool
3975    where
3976        I: IntoIterator,
3977        Self::Item: PartialOrd<I::Item>,
3978        Self: Sized,
3979    {
3980        matches!(self.partial_cmp(other), Some(Ordering::Greater | Ordering::Equal))
3981    }
3982
3983    /// Checks if the elements of this iterator are sorted.
3984    ///
3985    /// That is, for each element `a` and its following element `b`, `a <= b` must hold. If the
3986    /// iterator yields exactly zero or one element, `true` is returned.
3987    ///
3988    /// Note that if `Self::Item` is only `PartialOrd`, but not `Ord`, the above definition
3989    /// implies that this function returns `false` if any two consecutive items are not
3990    /// comparable.
3991    ///
3992    /// # Examples
3993    ///
3994    /// ```
3995    /// assert!([1, 2, 2, 9].iter().is_sorted());
3996    /// assert!(![1, 3, 2, 4].iter().is_sorted());
3997    /// assert!([0].iter().is_sorted());
3998    /// assert!(std::iter::empty::<i32>().is_sorted());
3999    /// assert!(![0.0, 1.0, f32::NAN].iter().is_sorted());
4000    /// ```
4001    #[inline]
4002    #[stable(feature = "is_sorted", since = "1.82.0")]
4003    #[cfg(not(feature = "ferrocene_subset"))]
4004    fn is_sorted(self) -> bool
4005    where
4006        Self: Sized,
4007        Self::Item: PartialOrd,
4008    {
4009        self.is_sorted_by(|a, b| a <= b)
4010    }
4011
4012    /// Checks if the elements of this iterator are sorted using the given comparator function.
4013    ///
4014    /// Instead of using `PartialOrd::partial_cmp`, this function uses the given `compare`
4015    /// function to determine whether two elements are to be considered in sorted order.
4016    ///
4017    /// # Examples
4018    ///
4019    /// ```
4020    /// assert!([1, 2, 2, 9].iter().is_sorted_by(|a, b| a <= b));
4021    /// assert!(![1, 2, 2, 9].iter().is_sorted_by(|a, b| a < b));
4022    ///
4023    /// assert!([0].iter().is_sorted_by(|a, b| true));
4024    /// assert!([0].iter().is_sorted_by(|a, b| false));
4025    ///
4026    /// assert!(std::iter::empty::<i32>().is_sorted_by(|a, b| false));
4027    /// assert!(std::iter::empty::<i32>().is_sorted_by(|a, b| true));
4028    /// ```
4029    #[stable(feature = "is_sorted", since = "1.82.0")]
4030    #[cfg(not(feature = "ferrocene_subset"))]
4031    fn is_sorted_by<F>(mut self, compare: F) -> bool
4032    where
4033        Self: Sized,
4034        F: FnMut(&Self::Item, &Self::Item) -> bool,
4035    {
4036        #[inline]
4037        fn check<'a, T>(
4038            last: &'a mut T,
4039            mut compare: impl FnMut(&T, &T) -> bool + 'a,
4040        ) -> impl FnMut(T) -> bool + 'a {
4041            move |curr| {
4042                if !compare(&last, &curr) {
4043                    return false;
4044                }
4045                *last = curr;
4046                true
4047            }
4048        }
4049
4050        let mut last = match self.next() {
4051            Some(e) => e,
4052            None => return true,
4053        };
4054
4055        self.all(check(&mut last, compare))
4056    }
4057
4058    /// Checks if the elements of this iterator are sorted using the given key extraction
4059    /// function.
4060    ///
4061    /// Instead of comparing the iterator's elements directly, this function compares the keys of
4062    /// the elements, as determined by `f`. Apart from that, it's equivalent to [`is_sorted`]; see
4063    /// its documentation for more information.
4064    ///
4065    /// [`is_sorted`]: Iterator::is_sorted
4066    ///
4067    /// # Examples
4068    ///
4069    /// ```
4070    /// assert!(["c", "bb", "aaa"].iter().is_sorted_by_key(|s| s.len()));
4071    /// assert!(![-2i32, -1, 0, 3].iter().is_sorted_by_key(|n| n.abs()));
4072    /// ```
4073    #[inline]
4074    #[stable(feature = "is_sorted", since = "1.82.0")]
4075    #[cfg(not(feature = "ferrocene_subset"))]
4076    fn is_sorted_by_key<F, K>(self, f: F) -> bool
4077    where
4078        Self: Sized,
4079        F: FnMut(Self::Item) -> K,
4080        K: PartialOrd,
4081    {
4082        self.map(f).is_sorted()
4083    }
4084
4085    /// See [TrustedRandomAccess][super::super::TrustedRandomAccess]
4086    // The unusual name is to avoid name collisions in method resolution
4087    // see #76479.
4088    #[inline]
4089    #[doc(hidden)]
4090    #[unstable(feature = "trusted_random_access", issue = "none")]
4091    #[cfg(not(feature = "ferrocene_subset"))]
4092    unsafe fn __iterator_get_unchecked(&mut self, _idx: usize) -> Self::Item
4093    where
4094        Self: TrustedRandomAccessNoCoerce,
4095    {
4096        unreachable!("Always specialized");
4097    }
4098}
4099
4100trait SpecIterEq<B: Iterator>: Iterator {
4101    fn spec_iter_eq<F>(self, b: B, f: F) -> bool
4102    where
4103        F: FnMut(Self::Item, <B as Iterator>::Item) -> ControlFlow<()>;
4104}
4105
4106impl<A: Iterator, B: Iterator> SpecIterEq<B> for A {
4107    #[inline]
4108    default fn spec_iter_eq<F>(self, b: B, f: F) -> bool
4109    where
4110        F: FnMut(Self::Item, <B as Iterator>::Item) -> ControlFlow<()>,
4111    {
4112        iter_eq(self, b, f)
4113    }
4114}
4115
4116impl<A: Iterator + TrustedLen, B: Iterator + TrustedLen> SpecIterEq<B> for A {
4117    #[inline]
4118    fn spec_iter_eq<F>(self, b: B, f: F) -> bool
4119    where
4120        F: FnMut(Self::Item, <B as Iterator>::Item) -> ControlFlow<()>,
4121    {
4122        // we *can't* short-circuit if:
4123        match (self.size_hint(), b.size_hint()) {
4124            // ... both iterators have the same length
4125            ((_, Some(a)), (_, Some(b))) if a == b => {}
4126            // ... or both of them are longer than `usize::MAX` (i.e. have an unknown length).
4127            ((_, None), (_, None)) => {}
4128            // otherwise, we can ascertain that they are unequal without actually comparing items
4129            _ => return false,
4130        }
4131
4132        iter_eq(self, b, f)
4133    }
4134}
4135
4136/// Compares two iterators element-wise using the given function.
4137///
4138/// If `ControlFlow::Continue(())` is returned from the function, the comparison moves on to the next
4139/// elements of both iterators. Returning `ControlFlow::Break(x)` short-circuits the iteration and
4140/// returns `ControlFlow::Break(x)`. If one of the iterators runs out of elements,
4141/// `ControlFlow::Continue(ord)` is returned where `ord` is the result of comparing the lengths of
4142/// the iterators.
4143///
4144/// Isolates the logic shared by ['cmp_by'](Iterator::cmp_by),
4145/// ['partial_cmp_by'](Iterator::partial_cmp_by), and ['eq_by'](Iterator::eq_by).
4146#[inline]
4147fn iter_compare<A, B, F, T>(mut a: A, mut b: B, f: F) -> ControlFlow<T, Ordering>
4148where
4149    A: Iterator,
4150    B: Iterator,
4151    F: FnMut(A::Item, B::Item) -> ControlFlow<T>,
4152{
4153    #[inline]
4154    fn compare<'a, B, X, T>(
4155        b: &'a mut B,
4156        mut f: impl FnMut(X, B::Item) -> ControlFlow<T> + 'a,
4157    ) -> impl FnMut(X) -> ControlFlow<ControlFlow<T, Ordering>> + 'a
4158    where
4159        B: Iterator,
4160    {
4161        move |x| match b.next() {
4162            None => ControlFlow::Break(ControlFlow::Continue(Ordering::Greater)),
4163            Some(y) => f(x, y).map_break(ControlFlow::Break),
4164        }
4165    }
4166
4167    match a.try_for_each(compare(&mut b, f)) {
4168        ControlFlow::Continue(()) => ControlFlow::Continue(match b.next() {
4169            None => Ordering::Equal,
4170            Some(_) => Ordering::Less,
4171        }),
4172        ControlFlow::Break(x) => x,
4173    }
4174}
4175
4176#[inline]
4177fn iter_eq<A, B, F>(a: A, b: B, f: F) -> bool
4178where
4179    A: Iterator,
4180    B: Iterator,
4181    F: FnMut(A::Item, B::Item) -> ControlFlow<()>,
4182{
4183    iter_compare(a, b, f).continue_value().is_some_and(|ord| ord == Ordering::Equal)
4184}
4185
4186/// Implements `Iterator` for mutable references to iterators, such as those produced by [`Iterator::by_ref`].
4187///
4188/// This implementation passes all method calls on to the original iterator.
4189#[stable(feature = "rust1", since = "1.0.0")]
4190impl<I: Iterator + ?Sized> Iterator for &mut I {
4191    type Item = I::Item;
4192    #[inline]
4193    fn next(&mut self) -> Option<I::Item> {
4194        (**self).next()
4195    }
4196    fn size_hint(&self) -> (usize, Option<usize>) {
4197        (**self).size_hint()
4198    }
4199    fn advance_by(&mut self, n: usize) -> Result<(), NonZero<usize>> {
4200        (**self).advance_by(n)
4201    }
4202    fn nth(&mut self, n: usize) -> Option<Self::Item> {
4203        (**self).nth(n)
4204    }
4205    #[cfg(not(feature = "ferrocene_subset"))]
4206    fn fold<B, F>(self, init: B, f: F) -> B
4207    where
4208        F: FnMut(B, Self::Item) -> B,
4209    {
4210        self.spec_fold(init, f)
4211    }
4212    fn try_fold<B, F, R>(&mut self, init: B, f: F) -> R
4213    where
4214        F: FnMut(B, Self::Item) -> R,
4215        R: Try<Output = B>,
4216    {
4217        self.spec_try_fold(init, f)
4218    }
4219}
4220
4221/// Helper trait to specialize `fold` and `try_fold` for `&mut I where I: Sized`
4222trait IteratorRefSpec: Iterator {
4223    #[cfg(not(feature = "ferrocene_subset"))]
4224    fn spec_fold<B, F>(self, init: B, f: F) -> B
4225    where
4226        F: FnMut(B, Self::Item) -> B;
4227
4228    fn spec_try_fold<B, F, R>(&mut self, init: B, f: F) -> R
4229    where
4230        F: FnMut(B, Self::Item) -> R,
4231        R: Try<Output = B>;
4232}
4233
4234impl<I: Iterator + ?Sized> IteratorRefSpec for &mut I {
4235    #[cfg(not(feature = "ferrocene_subset"))]
4236    default fn spec_fold<B, F>(self, init: B, mut f: F) -> B
4237    where
4238        F: FnMut(B, Self::Item) -> B,
4239    {
4240        let mut accum = init;
4241        while let Some(x) = self.next() {
4242            accum = f(accum, x);
4243        }
4244        accum
4245    }
4246
4247    default fn spec_try_fold<B, F, R>(&mut self, init: B, mut f: F) -> R
4248    where
4249        F: FnMut(B, Self::Item) -> R,
4250        R: Try<Output = B>,
4251    {
4252        let mut accum = init;
4253        while let Some(x) = self.next() {
4254            accum = f(accum, x)?;
4255        }
4256        try { accum }
4257    }
4258}
4259
4260#[cfg(not(feature = "ferrocene_subset"))]
4261impl<I: Iterator> IteratorRefSpec for &mut I {
4262    impl_fold_via_try_fold! { spec_fold -> spec_try_fold }
4263
4264    fn spec_try_fold<B, F, R>(&mut self, init: B, f: F) -> R
4265    where
4266        F: FnMut(B, Self::Item) -> R,
4267        R: Try<Output = B>,
4268    {
4269        (**self).try_fold(init, f)
4270    }
4271}