core/iter/traits/
iterator.rs

1#[cfg(not(feature = "ferrocene_subset"))]
2use super::super::{
3    ArrayChunks, ByRefSized, Chain, Cloned, Copied, Cycle, Enumerate, Filter, FilterMap, FlatMap,
4    Flatten, Fuse, Inspect, Intersperse, IntersperseWith, Map, MapWhile, MapWindows, Peekable,
5    Product, Rev, Scan, Skip, SkipWhile, StepBy, Sum, Take, TakeWhile, TrustedRandomAccessNoCoerce,
6    Zip, try_process,
7};
8use super::TrustedLen;
9#[cfg(not(feature = "ferrocene_subset"))]
10use crate::array;
11use crate::cmp::{self, Ordering};
12use crate::num::NonZero;
13#[cfg(not(feature = "ferrocene_subset"))]
14use crate::ops::{ChangeOutputType, ControlFlow, FromResidual, Residual, Try};
15
16// Ferrocene addition: imports for certified subset
17#[cfg(feature = "ferrocene_subset")]
18#[rustfmt::skip]
19use {
20    super::super::{
21        Chain, Cloned, Copied, DoubleEndedIterator, Enumerate, Filter, Map, Rev, Skip, StepBy, Sum,
22        Take, Zip,
23    },
24    crate::ops::{ControlFlow, Try},
25};
26
27#[cfg(not(feature = "ferrocene_subset"))]
28fn _assert_is_dyn_compatible(_: &dyn Iterator<Item = ()>) {}
29
30/// A trait for dealing with iterators.
31///
32/// This is the main iterator trait. For more about the concept of iterators
33/// generally, please see the [module-level documentation]. In particular, you
34/// may want to know how to [implement `Iterator`][impl].
35///
36/// [module-level documentation]: crate::iter
37/// [impl]: crate::iter#implementing-iterator
38#[stable(feature = "rust1", since = "1.0.0")]
39#[rustc_on_unimplemented(
40    on(
41        Self = "core::ops::range::RangeTo<Idx>",
42        note = "you might have meant to use a bounded `Range`"
43    ),
44    on(
45        Self = "core::ops::range::RangeToInclusive<Idx>",
46        note = "you might have meant to use a bounded `RangeInclusive`"
47    ),
48    label = "`{Self}` is not an iterator",
49    message = "`{Self}` is not an iterator"
50)]
51#[cfg_attr(not(feature = "ferrocene_subset"), doc(notable_trait))]
52#[lang = "iterator"]
53#[rustc_diagnostic_item = "Iterator"]
54#[must_use = "iterators are lazy and do nothing unless consumed"]
55pub trait Iterator {
56    /// The type of the elements being iterated over.
57    #[rustc_diagnostic_item = "IteratorItem"]
58    #[stable(feature = "rust1", since = "1.0.0")]
59    type Item;
60
61    /// Advances the iterator and returns the next value.
62    ///
63    /// Returns [`None`] when iteration is finished. Individual iterator
64    /// implementations may choose to resume iteration, and so calling `next()`
65    /// again may or may not eventually start returning [`Some(Item)`] again at some
66    /// point.
67    ///
68    /// [`Some(Item)`]: Some
69    ///
70    /// # Examples
71    ///
72    /// ```
73    /// let a = [1, 2, 3];
74    ///
75    /// let mut iter = a.into_iter();
76    ///
77    /// // A call to next() returns the next value...
78    /// assert_eq!(Some(1), iter.next());
79    /// assert_eq!(Some(2), iter.next());
80    /// assert_eq!(Some(3), iter.next());
81    ///
82    /// // ... and then None once it's over.
83    /// assert_eq!(None, iter.next());
84    ///
85    /// // More calls may or may not return `None`. Here, they always will.
86    /// assert_eq!(None, iter.next());
87    /// assert_eq!(None, iter.next());
88    /// ```
89    #[lang = "next"]
90    #[stable(feature = "rust1", since = "1.0.0")]
91    fn next(&mut self) -> Option<Self::Item>;
92
93    /// Advances the iterator and returns an array containing the next `N` values.
94    ///
95    /// If there are not enough elements to fill the array then `Err` is returned
96    /// containing an iterator over the remaining elements.
97    ///
98    /// # Examples
99    ///
100    /// Basic usage:
101    ///
102    /// ```
103    /// #![feature(iter_next_chunk)]
104    ///
105    /// let mut iter = "lorem".chars();
106    ///
107    /// assert_eq!(iter.next_chunk().unwrap(), ['l', 'o']);              // N is inferred as 2
108    /// assert_eq!(iter.next_chunk().unwrap(), ['r', 'e', 'm']);         // N is inferred as 3
109    /// assert_eq!(iter.next_chunk::<4>().unwrap_err().as_slice(), &[]); // N is explicitly 4
110    /// ```
111    ///
112    /// Split a string and get the first three items.
113    ///
114    /// ```
115    /// #![feature(iter_next_chunk)]
116    ///
117    /// let quote = "not all those who wander are lost";
118    /// let [first, second, third] = quote.split_whitespace().next_chunk().unwrap();
119    /// assert_eq!(first, "not");
120    /// assert_eq!(second, "all");
121    /// assert_eq!(third, "those");
122    /// ```
123    #[inline]
124    #[unstable(feature = "iter_next_chunk", reason = "recently added", issue = "98326")]
125    #[cfg(not(feature = "ferrocene_subset"))]
126    fn next_chunk<const N: usize>(
127        &mut self,
128    ) -> Result<[Self::Item; N], array::IntoIter<Self::Item, N>>
129    where
130        Self: Sized,
131    {
132        array::iter_next_chunk(self)
133    }
134
135    /// Returns the bounds on the remaining length of the iterator.
136    ///
137    /// Specifically, `size_hint()` returns a tuple where the first element
138    /// is the lower bound, and the second element is the upper bound.
139    ///
140    /// The second half of the tuple that is returned is an <code>[Option]<[usize]></code>.
141    /// A [`None`] here means that either there is no known upper bound, or the
142    /// upper bound is larger than [`usize`].
143    ///
144    /// # Implementation notes
145    ///
146    /// It is not enforced that an iterator implementation yields the declared
147    /// number of elements. A buggy iterator may yield less than the lower bound
148    /// or more than the upper bound of elements.
149    ///
150    /// `size_hint()` is primarily intended to be used for optimizations such as
151    /// reserving space for the elements of the iterator, but must not be
152    /// trusted to e.g., omit bounds checks in unsafe code. An incorrect
153    /// implementation of `size_hint()` should not lead to memory safety
154    /// violations.
155    ///
156    /// That said, the implementation should provide a correct estimation,
157    /// because otherwise it would be a violation of the trait's protocol.
158    ///
159    /// The default implementation returns <code>(0, [None])</code> which is correct for any
160    /// iterator.
161    ///
162    /// # Examples
163    ///
164    /// Basic usage:
165    ///
166    /// ```
167    /// let a = [1, 2, 3];
168    /// let mut iter = a.iter();
169    ///
170    /// assert_eq!((3, Some(3)), iter.size_hint());
171    /// let _ = iter.next();
172    /// assert_eq!((2, Some(2)), iter.size_hint());
173    /// ```
174    ///
175    /// A more complex example:
176    ///
177    /// ```
178    /// // The even numbers in the range of zero to nine.
179    /// let iter = (0..10).filter(|x| x % 2 == 0);
180    ///
181    /// // We might iterate from zero to ten times. Knowing that it's five
182    /// // exactly wouldn't be possible without executing filter().
183    /// assert_eq!((0, Some(10)), iter.size_hint());
184    ///
185    /// // Let's add five more numbers with chain()
186    /// let iter = (0..10).filter(|x| x % 2 == 0).chain(15..20);
187    ///
188    /// // now both bounds are increased by five
189    /// assert_eq!((5, Some(15)), iter.size_hint());
190    /// ```
191    ///
192    /// Returning `None` for an upper bound:
193    ///
194    /// ```
195    /// // an infinite iterator has no upper bound
196    /// // and the maximum possible lower bound
197    /// let iter = 0..;
198    ///
199    /// assert_eq!((usize::MAX, None), iter.size_hint());
200    /// ```
201    #[inline]
202    #[stable(feature = "rust1", since = "1.0.0")]
203    fn size_hint(&self) -> (usize, Option<usize>) {
204        (0, None)
205    }
206
207    /// Consumes the iterator, counting the number of iterations and returning it.
208    ///
209    /// This method will call [`next`] repeatedly until [`None`] is encountered,
210    /// returning the number of times it saw [`Some`]. Note that [`next`] has to be
211    /// called at least once even if the iterator does not have any elements.
212    ///
213    /// [`next`]: Iterator::next
214    ///
215    /// # Overflow Behavior
216    ///
217    /// The method does no guarding against overflows, so counting elements of
218    /// an iterator with more than [`usize::MAX`] elements either produces the
219    /// wrong result or panics. If overflow checks are enabled, a panic is
220    /// guaranteed.
221    ///
222    /// # Panics
223    ///
224    /// This function might panic if the iterator has more than [`usize::MAX`]
225    /// elements.
226    ///
227    /// # Examples
228    ///
229    /// ```
230    /// let a = [1, 2, 3];
231    /// assert_eq!(a.iter().count(), 3);
232    ///
233    /// let a = [1, 2, 3, 4, 5];
234    /// assert_eq!(a.iter().count(), 5);
235    /// ```
236    #[inline]
237    #[stable(feature = "rust1", since = "1.0.0")]
238    fn count(self) -> usize
239    where
240        Self: Sized,
241    {
242        self.fold(
243            0,
244            #[rustc_inherit_overflow_checks]
245            |count, _| count + 1,
246        )
247    }
248
249    /// Consumes the iterator, returning the last element.
250    ///
251    /// This method will evaluate the iterator until it returns [`None`]. While
252    /// doing so, it keeps track of the current element. After [`None`] is
253    /// returned, `last()` will then return the last element it saw.
254    ///
255    /// # Panics
256    ///
257    /// This function might panic if the iterator is infinite.
258    ///
259    /// # Examples
260    ///
261    /// ```
262    /// let a = [1, 2, 3];
263    /// assert_eq!(a.into_iter().last(), Some(3));
264    ///
265    /// let a = [1, 2, 3, 4, 5];
266    /// assert_eq!(a.into_iter().last(), Some(5));
267    /// ```
268    #[inline]
269    #[stable(feature = "rust1", since = "1.0.0")]
270    fn last(self) -> Option<Self::Item>
271    where
272        Self: Sized,
273    {
274        #[inline]
275        fn some<T>(_: Option<T>, x: T) -> Option<T> {
276            Some(x)
277        }
278
279        self.fold(None, some)
280    }
281
282    /// Advances the iterator by `n` elements.
283    ///
284    /// This method will eagerly skip `n` elements by calling [`next`] up to `n`
285    /// times until [`None`] is encountered.
286    ///
287    /// `advance_by(n)` will return `Ok(())` if the iterator successfully advances by
288    /// `n` elements, or a `Err(NonZero<usize>)` with value `k` if [`None`] is encountered,
289    /// where `k` is remaining number of steps that could not be advanced because the iterator ran out.
290    /// If `self` is empty and `n` is non-zero, then this returns `Err(n)`.
291    /// Otherwise, `k` is always less than `n`.
292    ///
293    /// Calling `advance_by(0)` can do meaningful work, for example [`Flatten`]
294    /// can advance its outer iterator until it finds an inner iterator that is not empty, which
295    /// then often allows it to return a more accurate `size_hint()` than in its initial state.
296    ///
297    /// [`Flatten`]: crate::iter::Flatten
298    /// [`next`]: Iterator::next
299    ///
300    /// # Examples
301    ///
302    /// ```
303    /// #![feature(iter_advance_by)]
304    ///
305    /// use std::num::NonZero;
306    ///
307    /// let a = [1, 2, 3, 4];
308    /// let mut iter = a.into_iter();
309    ///
310    /// assert_eq!(iter.advance_by(2), Ok(()));
311    /// assert_eq!(iter.next(), Some(3));
312    /// assert_eq!(iter.advance_by(0), Ok(()));
313    /// assert_eq!(iter.advance_by(100), Err(NonZero::new(99).unwrap())); // only `4` was skipped
314    /// ```
315    #[inline]
316    #[unstable(feature = "iter_advance_by", reason = "recently added", issue = "77404")]
317    fn advance_by(&mut self, n: usize) -> Result<(), NonZero<usize>> {
318        /// Helper trait to specialize `advance_by` via `try_fold` for `Sized` iterators.
319        trait SpecAdvanceBy {
320            fn spec_advance_by(&mut self, n: usize) -> Result<(), NonZero<usize>>;
321        }
322
323        impl<I: Iterator + ?Sized> SpecAdvanceBy for I {
324            default fn spec_advance_by(&mut self, n: usize) -> Result<(), NonZero<usize>> {
325                for i in 0..n {
326                    if self.next().is_none() {
327                        // SAFETY: `i` is always less than `n`.
328                        return Err(unsafe { NonZero::new_unchecked(n - i) });
329                    }
330                }
331                Ok(())
332            }
333        }
334
335        impl<I: Iterator> SpecAdvanceBy for I {
336            fn spec_advance_by(&mut self, n: usize) -> Result<(), NonZero<usize>> {
337                let Some(n) = NonZero::new(n) else {
338                    return Ok(());
339                };
340
341                let res = self.try_fold(n, |n, _| NonZero::new(n.get() - 1));
342
343                match res {
344                    None => Ok(()),
345                    Some(n) => Err(n),
346                }
347            }
348        }
349
350        self.spec_advance_by(n)
351    }
352
353    /// Returns the `n`th element of the iterator.
354    ///
355    /// Like most indexing operations, the count starts from zero, so `nth(0)`
356    /// returns the first value, `nth(1)` the second, and so on.
357    ///
358    /// Note that all preceding elements, as well as the returned element, will be
359    /// consumed from the iterator. That means that the preceding elements will be
360    /// discarded, and also that calling `nth(0)` multiple times on the same iterator
361    /// will return different elements.
362    ///
363    /// `nth()` will return [`None`] if `n` is greater than or equal to the length of the
364    /// iterator.
365    ///
366    /// # Examples
367    ///
368    /// Basic usage:
369    ///
370    /// ```
371    /// let a = [1, 2, 3];
372    /// assert_eq!(a.into_iter().nth(1), Some(2));
373    /// ```
374    ///
375    /// Calling `nth()` multiple times doesn't rewind the iterator:
376    ///
377    /// ```
378    /// let a = [1, 2, 3];
379    ///
380    /// let mut iter = a.into_iter();
381    ///
382    /// assert_eq!(iter.nth(1), Some(2));
383    /// assert_eq!(iter.nth(1), None);
384    /// ```
385    ///
386    /// Returning `None` if there are less than `n + 1` elements:
387    ///
388    /// ```
389    /// let a = [1, 2, 3];
390    /// assert_eq!(a.into_iter().nth(10), None);
391    /// ```
392    #[inline]
393    #[stable(feature = "rust1", since = "1.0.0")]
394    fn nth(&mut self, n: usize) -> Option<Self::Item> {
395        self.advance_by(n).ok()?;
396        self.next()
397    }
398
399    /// Creates an iterator starting at the same point, but stepping by
400    /// the given amount at each iteration.
401    ///
402    /// Note 1: The first element of the iterator will always be returned,
403    /// regardless of the step given.
404    ///
405    /// Note 2: The time at which ignored elements are pulled is not fixed.
406    /// `StepBy` behaves like the sequence `self.next()`, `self.nth(step-1)`,
407    /// `self.nth(step-1)`, …, but is also free to behave like the sequence
408    /// `advance_n_and_return_first(&mut self, step)`,
409    /// `advance_n_and_return_first(&mut self, step)`, …
410    /// Which way is used may change for some iterators for performance reasons.
411    /// The second way will advance the iterator earlier and may consume more items.
412    ///
413    /// `advance_n_and_return_first` is the equivalent of:
414    /// ```
415    /// fn advance_n_and_return_first<I>(iter: &mut I, n: usize) -> Option<I::Item>
416    /// where
417    ///     I: Iterator,
418    /// {
419    ///     let next = iter.next();
420    ///     if n > 1 {
421    ///         iter.nth(n - 2);
422    ///     }
423    ///     next
424    /// }
425    /// ```
426    ///
427    /// # Panics
428    ///
429    /// The method will panic if the given step is `0`.
430    ///
431    /// # Examples
432    ///
433    /// ```
434    /// let a = [0, 1, 2, 3, 4, 5];
435    /// let mut iter = a.into_iter().step_by(2);
436    ///
437    /// assert_eq!(iter.next(), Some(0));
438    /// assert_eq!(iter.next(), Some(2));
439    /// assert_eq!(iter.next(), Some(4));
440    /// assert_eq!(iter.next(), None);
441    /// ```
442    #[inline]
443    #[stable(feature = "iterator_step_by", since = "1.28.0")]
444    fn step_by(self, step: usize) -> StepBy<Self>
445    where
446        Self: Sized,
447    {
448        StepBy::new(self, step)
449    }
450
451    /// Takes two iterators and creates a new iterator over both in sequence.
452    ///
453    /// `chain()` will return a new iterator which will first iterate over
454    /// values from the first iterator and then over values from the second
455    /// iterator.
456    ///
457    /// In other words, it links two iterators together, in a chain. 🔗
458    ///
459    /// [`once`] is commonly used to adapt a single value into a chain of
460    /// other kinds of iteration.
461    ///
462    /// # Examples
463    ///
464    /// Basic usage:
465    ///
466    /// ```
467    /// let s1 = "abc".chars();
468    /// let s2 = "def".chars();
469    ///
470    /// let mut iter = s1.chain(s2);
471    ///
472    /// assert_eq!(iter.next(), Some('a'));
473    /// assert_eq!(iter.next(), Some('b'));
474    /// assert_eq!(iter.next(), Some('c'));
475    /// assert_eq!(iter.next(), Some('d'));
476    /// assert_eq!(iter.next(), Some('e'));
477    /// assert_eq!(iter.next(), Some('f'));
478    /// assert_eq!(iter.next(), None);
479    /// ```
480    ///
481    /// Since the argument to `chain()` uses [`IntoIterator`], we can pass
482    /// anything that can be converted into an [`Iterator`], not just an
483    /// [`Iterator`] itself. For example, arrays (`[T]`) implement
484    /// [`IntoIterator`], and so can be passed to `chain()` directly:
485    ///
486    /// ```
487    /// let a1 = [1, 2, 3];
488    /// let a2 = [4, 5, 6];
489    ///
490    /// let mut iter = a1.into_iter().chain(a2);
491    ///
492    /// assert_eq!(iter.next(), Some(1));
493    /// assert_eq!(iter.next(), Some(2));
494    /// assert_eq!(iter.next(), Some(3));
495    /// assert_eq!(iter.next(), Some(4));
496    /// assert_eq!(iter.next(), Some(5));
497    /// assert_eq!(iter.next(), Some(6));
498    /// assert_eq!(iter.next(), None);
499    /// ```
500    ///
501    /// If you work with Windows API, you may wish to convert [`OsStr`] to `Vec<u16>`:
502    ///
503    /// ```
504    /// #[cfg(windows)]
505    /// fn os_str_to_utf16(s: &std::ffi::OsStr) -> Vec<u16> {
506    ///     use std::os::windows::ffi::OsStrExt;
507    ///     s.encode_wide().chain(std::iter::once(0)).collect()
508    /// }
509    /// ```
510    ///
511    /// [`once`]: crate::iter::once
512    /// [`OsStr`]: ../../std/ffi/struct.OsStr.html
513    #[inline]
514    #[stable(feature = "rust1", since = "1.0.0")]
515    fn chain<U>(self, other: U) -> Chain<Self, U::IntoIter>
516    where
517        Self: Sized,
518        U: IntoIterator<Item = Self::Item>,
519    {
520        Chain::new(self, other.into_iter())
521    }
522
523    /// 'Zips up' two iterators into a single iterator of pairs.
524    ///
525    /// `zip()` returns a new iterator that will iterate over two other
526    /// iterators, returning a tuple where the first element comes from the
527    /// first iterator, and the second element comes from the second iterator.
528    ///
529    /// In other words, it zips two iterators together, into a single one.
530    ///
531    /// If either iterator returns [`None`], [`next`] from the zipped iterator
532    /// will return [`None`].
533    /// If the zipped iterator has no more elements to return then each further attempt to advance
534    /// it will first try to advance the first iterator at most one time and if it still yielded an item
535    /// try to advance the second iterator at most one time.
536    ///
537    /// To 'undo' the result of zipping up two iterators, see [`unzip`].
538    ///
539    /// [`unzip`]: Iterator::unzip
540    ///
541    /// # Examples
542    ///
543    /// Basic usage:
544    ///
545    /// ```
546    /// let s1 = "abc".chars();
547    /// let s2 = "def".chars();
548    ///
549    /// let mut iter = s1.zip(s2);
550    ///
551    /// assert_eq!(iter.next(), Some(('a', 'd')));
552    /// assert_eq!(iter.next(), Some(('b', 'e')));
553    /// assert_eq!(iter.next(), Some(('c', 'f')));
554    /// assert_eq!(iter.next(), None);
555    /// ```
556    ///
557    /// Since the argument to `zip()` uses [`IntoIterator`], we can pass
558    /// anything that can be converted into an [`Iterator`], not just an
559    /// [`Iterator`] itself. For example, arrays (`[T]`) implement
560    /// [`IntoIterator`], and so can be passed to `zip()` directly:
561    ///
562    /// ```
563    /// let a1 = [1, 2, 3];
564    /// let a2 = [4, 5, 6];
565    ///
566    /// let mut iter = a1.into_iter().zip(a2);
567    ///
568    /// assert_eq!(iter.next(), Some((1, 4)));
569    /// assert_eq!(iter.next(), Some((2, 5)));
570    /// assert_eq!(iter.next(), Some((3, 6)));
571    /// assert_eq!(iter.next(), None);
572    /// ```
573    ///
574    /// `zip()` is often used to zip an infinite iterator to a finite one.
575    /// This works because the finite iterator will eventually return [`None`],
576    /// ending the zipper. Zipping with `(0..)` can look a lot like [`enumerate`]:
577    ///
578    /// ```
579    /// let enumerate: Vec<_> = "foo".chars().enumerate().collect();
580    ///
581    /// let zipper: Vec<_> = (0..).zip("foo".chars()).collect();
582    ///
583    /// assert_eq!((0, 'f'), enumerate[0]);
584    /// assert_eq!((0, 'f'), zipper[0]);
585    ///
586    /// assert_eq!((1, 'o'), enumerate[1]);
587    /// assert_eq!((1, 'o'), zipper[1]);
588    ///
589    /// assert_eq!((2, 'o'), enumerate[2]);
590    /// assert_eq!((2, 'o'), zipper[2]);
591    /// ```
592    ///
593    /// If both iterators have roughly equivalent syntax, it may be more readable to use [`zip`]:
594    ///
595    /// ```
596    /// use std::iter::zip;
597    ///
598    /// let a = [1, 2, 3];
599    /// let b = [2, 3, 4];
600    ///
601    /// let mut zipped = zip(
602    ///     a.into_iter().map(|x| x * 2).skip(1),
603    ///     b.into_iter().map(|x| x * 2).skip(1),
604    /// );
605    ///
606    /// assert_eq!(zipped.next(), Some((4, 6)));
607    /// assert_eq!(zipped.next(), Some((6, 8)));
608    /// assert_eq!(zipped.next(), None);
609    /// ```
610    ///
611    /// compared to:
612    ///
613    /// ```
614    /// # let a = [1, 2, 3];
615    /// # let b = [2, 3, 4];
616    /// #
617    /// let mut zipped = a
618    ///     .into_iter()
619    ///     .map(|x| x * 2)
620    ///     .skip(1)
621    ///     .zip(b.into_iter().map(|x| x * 2).skip(1));
622    /// #
623    /// # assert_eq!(zipped.next(), Some((4, 6)));
624    /// # assert_eq!(zipped.next(), Some((6, 8)));
625    /// # assert_eq!(zipped.next(), None);
626    /// ```
627    ///
628    /// [`enumerate`]: Iterator::enumerate
629    /// [`next`]: Iterator::next
630    /// [`zip`]: crate::iter::zip
631    #[inline]
632    #[stable(feature = "rust1", since = "1.0.0")]
633    fn zip<U>(self, other: U) -> Zip<Self, U::IntoIter>
634    where
635        Self: Sized,
636        U: IntoIterator,
637    {
638        Zip::new(self, other.into_iter())
639    }
640
641    /// Creates a new iterator which places a copy of `separator` between adjacent
642    /// items of the original iterator.
643    ///
644    /// In case `separator` does not implement [`Clone`] or needs to be
645    /// computed every time, use [`intersperse_with`].
646    ///
647    /// # Examples
648    ///
649    /// Basic usage:
650    ///
651    /// ```
652    /// #![feature(iter_intersperse)]
653    ///
654    /// let mut a = [0, 1, 2].into_iter().intersperse(100);
655    /// assert_eq!(a.next(), Some(0));   // The first element from `a`.
656    /// assert_eq!(a.next(), Some(100)); // The separator.
657    /// assert_eq!(a.next(), Some(1));   // The next element from `a`.
658    /// assert_eq!(a.next(), Some(100)); // The separator.
659    /// assert_eq!(a.next(), Some(2));   // The last element from `a`.
660    /// assert_eq!(a.next(), None);       // The iterator is finished.
661    /// ```
662    ///
663    /// `intersperse` can be very useful to join an iterator's items using a common element:
664    /// ```
665    /// #![feature(iter_intersperse)]
666    ///
667    /// let words = ["Hello", "World", "!"];
668    /// let hello: String = words.into_iter().intersperse(" ").collect();
669    /// assert_eq!(hello, "Hello World !");
670    /// ```
671    ///
672    /// [`Clone`]: crate::clone::Clone
673    /// [`intersperse_with`]: Iterator::intersperse_with
674    #[inline]
675    #[unstable(feature = "iter_intersperse", reason = "recently added", issue = "79524")]
676    #[cfg(not(feature = "ferrocene_subset"))]
677    fn intersperse(self, separator: Self::Item) -> Intersperse<Self>
678    where
679        Self: Sized,
680        Self::Item: Clone,
681    {
682        Intersperse::new(self, separator)
683    }
684
685    /// Creates a new iterator which places an item generated by `separator`
686    /// between adjacent items of the original iterator.
687    ///
688    /// The closure will be called exactly once each time an item is placed
689    /// between two adjacent items from the underlying iterator; specifically,
690    /// the closure is not called if the underlying iterator yields less than
691    /// two items and after the last item is yielded.
692    ///
693    /// If the iterator's item implements [`Clone`], it may be easier to use
694    /// [`intersperse`].
695    ///
696    /// # Examples
697    ///
698    /// Basic usage:
699    ///
700    /// ```
701    /// #![feature(iter_intersperse)]
702    ///
703    /// #[derive(PartialEq, Debug)]
704    /// struct NotClone(usize);
705    ///
706    /// let v = [NotClone(0), NotClone(1), NotClone(2)];
707    /// let mut it = v.into_iter().intersperse_with(|| NotClone(99));
708    ///
709    /// assert_eq!(it.next(), Some(NotClone(0)));  // The first element from `v`.
710    /// assert_eq!(it.next(), Some(NotClone(99))); // The separator.
711    /// assert_eq!(it.next(), Some(NotClone(1)));  // The next element from `v`.
712    /// assert_eq!(it.next(), Some(NotClone(99))); // The separator.
713    /// assert_eq!(it.next(), Some(NotClone(2)));  // The last element from `v`.
714    /// assert_eq!(it.next(), None);               // The iterator is finished.
715    /// ```
716    ///
717    /// `intersperse_with` can be used in situations where the separator needs
718    /// to be computed:
719    /// ```
720    /// #![feature(iter_intersperse)]
721    ///
722    /// let src = ["Hello", "to", "all", "people", "!!"].iter().copied();
723    ///
724    /// // The closure mutably borrows its context to generate an item.
725    /// let mut happy_emojis = [" ❤️ ", " 😀 "].into_iter();
726    /// let separator = || happy_emojis.next().unwrap_or(" 🦀 ");
727    ///
728    /// let result = src.intersperse_with(separator).collect::<String>();
729    /// assert_eq!(result, "Hello ❤️ to 😀 all 🦀 people 🦀 !!");
730    /// ```
731    /// [`Clone`]: crate::clone::Clone
732    /// [`intersperse`]: Iterator::intersperse
733    #[inline]
734    #[unstable(feature = "iter_intersperse", reason = "recently added", issue = "79524")]
735    #[cfg(not(feature = "ferrocene_subset"))]
736    fn intersperse_with<G>(self, separator: G) -> IntersperseWith<Self, G>
737    where
738        Self: Sized,
739        G: FnMut() -> Self::Item,
740    {
741        IntersperseWith::new(self, separator)
742    }
743
744    /// Takes a closure and creates an iterator which calls that closure on each
745    /// element.
746    ///
747    /// `map()` transforms one iterator into another, by means of its argument:
748    /// something that implements [`FnMut`]. It produces a new iterator which
749    /// calls this closure on each element of the original iterator.
750    ///
751    /// If you are good at thinking in types, you can think of `map()` like this:
752    /// If you have an iterator that gives you elements of some type `A`, and
753    /// you want an iterator of some other type `B`, you can use `map()`,
754    /// passing a closure that takes an `A` and returns a `B`.
755    ///
756    /// `map()` is conceptually similar to a [`for`] loop. However, as `map()` is
757    /// lazy, it is best used when you're already working with other iterators.
758    /// If you're doing some sort of looping for a side effect, it's considered
759    /// more idiomatic to use [`for`] than `map()`.
760    ///
761    /// [`for`]: ../../book/ch03-05-control-flow.html#looping-through-a-collection-with-for
762    ///
763    /// # Examples
764    ///
765    /// Basic usage:
766    ///
767    /// ```
768    /// let a = [1, 2, 3];
769    ///
770    /// let mut iter = a.iter().map(|x| 2 * x);
771    ///
772    /// assert_eq!(iter.next(), Some(2));
773    /// assert_eq!(iter.next(), Some(4));
774    /// assert_eq!(iter.next(), Some(6));
775    /// assert_eq!(iter.next(), None);
776    /// ```
777    ///
778    /// If you're doing some sort of side effect, prefer [`for`] to `map()`:
779    ///
780    /// ```
781    /// # #![allow(unused_must_use)]
782    /// // don't do this:
783    /// (0..5).map(|x| println!("{x}"));
784    ///
785    /// // it won't even execute, as it is lazy. Rust will warn you about this.
786    ///
787    /// // Instead, use a for-loop:
788    /// for x in 0..5 {
789    ///     println!("{x}");
790    /// }
791    /// ```
792    #[rustc_diagnostic_item = "IteratorMap"]
793    #[inline]
794    #[stable(feature = "rust1", since = "1.0.0")]
795    fn map<B, F>(self, f: F) -> Map<Self, F>
796    where
797        Self: Sized,
798        F: FnMut(Self::Item) -> B,
799    {
800        Map::new(self, f)
801    }
802
803    /// Calls a closure on each element of an iterator.
804    ///
805    /// This is equivalent to using a [`for`] loop on the iterator, although
806    /// `break` and `continue` are not possible from a closure. It's generally
807    /// more idiomatic to use a `for` loop, but `for_each` may be more legible
808    /// when processing items at the end of longer iterator chains. In some
809    /// cases `for_each` may also be faster than a loop, because it will use
810    /// internal iteration on adapters like `Chain`.
811    ///
812    /// [`for`]: ../../book/ch03-05-control-flow.html#looping-through-a-collection-with-for
813    ///
814    /// # Examples
815    ///
816    /// Basic usage:
817    ///
818    /// ```
819    /// use std::sync::mpsc::channel;
820    ///
821    /// let (tx, rx) = channel();
822    /// (0..5).map(|x| x * 2 + 1)
823    ///       .for_each(move |x| tx.send(x).unwrap());
824    ///
825    /// let v: Vec<_> = rx.iter().collect();
826    /// assert_eq!(v, vec![1, 3, 5, 7, 9]);
827    /// ```
828    ///
829    /// For such a small example, a `for` loop may be cleaner, but `for_each`
830    /// might be preferable to keep a functional style with longer iterators:
831    ///
832    /// ```
833    /// (0..5).flat_map(|x| (x * 100)..(x * 110))
834    ///       .enumerate()
835    ///       .filter(|&(i, x)| (i + x) % 3 == 0)
836    ///       .for_each(|(i, x)| println!("{i}:{x}"));
837    /// ```
838    #[inline]
839    #[stable(feature = "iterator_for_each", since = "1.21.0")]
840    fn for_each<F>(self, f: F)
841    where
842        Self: Sized,
843        F: FnMut(Self::Item),
844    {
845        #[inline]
846        fn call<T>(mut f: impl FnMut(T)) -> impl FnMut((), T) {
847            move |(), item| f(item)
848        }
849
850        self.fold((), call(f));
851    }
852
853    /// Creates an iterator which uses a closure to determine if an element
854    /// should be yielded.
855    ///
856    /// Given an element the closure must return `true` or `false`. The returned
857    /// iterator will yield only the elements for which the closure returns
858    /// `true`.
859    ///
860    /// # Examples
861    ///
862    /// Basic usage:
863    ///
864    /// ```
865    /// let a = [0i32, 1, 2];
866    ///
867    /// let mut iter = a.into_iter().filter(|x| x.is_positive());
868    ///
869    /// assert_eq!(iter.next(), Some(1));
870    /// assert_eq!(iter.next(), Some(2));
871    /// assert_eq!(iter.next(), None);
872    /// ```
873    ///
874    /// Because the closure passed to `filter()` takes a reference, and many
875    /// iterators iterate over references, this leads to a possibly confusing
876    /// situation, where the type of the closure is a double reference:
877    ///
878    /// ```
879    /// let s = &[0, 1, 2];
880    ///
881    /// let mut iter = s.iter().filter(|x| **x > 1); // needs two *s!
882    ///
883    /// assert_eq!(iter.next(), Some(&2));
884    /// assert_eq!(iter.next(), None);
885    /// ```
886    ///
887    /// It's common to instead use destructuring on the argument to strip away one:
888    ///
889    /// ```
890    /// let s = &[0, 1, 2];
891    ///
892    /// let mut iter = s.iter().filter(|&x| *x > 1); // both & and *
893    ///
894    /// assert_eq!(iter.next(), Some(&2));
895    /// assert_eq!(iter.next(), None);
896    /// ```
897    ///
898    /// or both:
899    ///
900    /// ```
901    /// let s = &[0, 1, 2];
902    ///
903    /// let mut iter = s.iter().filter(|&&x| x > 1); // two &s
904    ///
905    /// assert_eq!(iter.next(), Some(&2));
906    /// assert_eq!(iter.next(), None);
907    /// ```
908    ///
909    /// of these layers.
910    ///
911    /// Note that `iter.filter(f).next()` is equivalent to `iter.find(f)`.
912    #[inline]
913    #[stable(feature = "rust1", since = "1.0.0")]
914    #[rustc_diagnostic_item = "iter_filter"]
915    fn filter<P>(self, predicate: P) -> Filter<Self, P>
916    where
917        Self: Sized,
918        P: FnMut(&Self::Item) -> bool,
919    {
920        Filter::new(self, predicate)
921    }
922
923    /// Creates an iterator that both filters and maps.
924    ///
925    /// The returned iterator yields only the `value`s for which the supplied
926    /// closure returns `Some(value)`.
927    ///
928    /// `filter_map` can be used to make chains of [`filter`] and [`map`] more
929    /// concise. The example below shows how a `map().filter().map()` can be
930    /// shortened to a single call to `filter_map`.
931    ///
932    /// [`filter`]: Iterator::filter
933    /// [`map`]: Iterator::map
934    ///
935    /// # Examples
936    ///
937    /// Basic usage:
938    ///
939    /// ```
940    /// let a = ["1", "two", "NaN", "four", "5"];
941    ///
942    /// let mut iter = a.iter().filter_map(|s| s.parse().ok());
943    ///
944    /// assert_eq!(iter.next(), Some(1));
945    /// assert_eq!(iter.next(), Some(5));
946    /// assert_eq!(iter.next(), None);
947    /// ```
948    ///
949    /// Here's the same example, but with [`filter`] and [`map`]:
950    ///
951    /// ```
952    /// let a = ["1", "two", "NaN", "four", "5"];
953    /// let mut iter = a.iter().map(|s| s.parse()).filter(|s| s.is_ok()).map(|s| s.unwrap());
954    /// assert_eq!(iter.next(), Some(1));
955    /// assert_eq!(iter.next(), Some(5));
956    /// assert_eq!(iter.next(), None);
957    /// ```
958    #[inline]
959    #[stable(feature = "rust1", since = "1.0.0")]
960    #[cfg(not(feature = "ferrocene_subset"))]
961    fn filter_map<B, F>(self, f: F) -> FilterMap<Self, F>
962    where
963        Self: Sized,
964        F: FnMut(Self::Item) -> Option<B>,
965    {
966        FilterMap::new(self, f)
967    }
968
969    /// Creates an iterator which gives the current iteration count as well as
970    /// the next value.
971    ///
972    /// The iterator returned yields pairs `(i, val)`, where `i` is the
973    /// current index of iteration and `val` is the value returned by the
974    /// iterator.
975    ///
976    /// `enumerate()` keeps its count as a [`usize`]. If you want to count by a
977    /// different sized integer, the [`zip`] function provides similar
978    /// functionality.
979    ///
980    /// # Overflow Behavior
981    ///
982    /// The method does no guarding against overflows, so enumerating more than
983    /// [`usize::MAX`] elements either produces the wrong result or panics. If
984    /// overflow checks are enabled, a panic is guaranteed.
985    ///
986    /// # Panics
987    ///
988    /// The returned iterator might panic if the to-be-returned index would
989    /// overflow a [`usize`].
990    ///
991    /// [`zip`]: Iterator::zip
992    ///
993    /// # Examples
994    ///
995    /// ```
996    /// let a = ['a', 'b', 'c'];
997    ///
998    /// let mut iter = a.into_iter().enumerate();
999    ///
1000    /// assert_eq!(iter.next(), Some((0, 'a')));
1001    /// assert_eq!(iter.next(), Some((1, 'b')));
1002    /// assert_eq!(iter.next(), Some((2, 'c')));
1003    /// assert_eq!(iter.next(), None);
1004    /// ```
1005    #[inline]
1006    #[stable(feature = "rust1", since = "1.0.0")]
1007    #[rustc_diagnostic_item = "enumerate_method"]
1008    fn enumerate(self) -> Enumerate<Self>
1009    where
1010        Self: Sized,
1011    {
1012        Enumerate::new(self)
1013    }
1014
1015    /// Creates an iterator which can use the [`peek`] and [`peek_mut`] methods
1016    /// to look at the next element of the iterator without consuming it. See
1017    /// their documentation for more information.
1018    ///
1019    /// Note that the underlying iterator is still advanced when [`peek`] or
1020    /// [`peek_mut`] are called for the first time: In order to retrieve the
1021    /// next element, [`next`] is called on the underlying iterator, hence any
1022    /// side effects (i.e. anything other than fetching the next value) of
1023    /// the [`next`] method will occur.
1024    ///
1025    ///
1026    /// # Examples
1027    ///
1028    /// Basic usage:
1029    ///
1030    /// ```
1031    /// let xs = [1, 2, 3];
1032    ///
1033    /// let mut iter = xs.into_iter().peekable();
1034    ///
1035    /// // peek() lets us see into the future
1036    /// assert_eq!(iter.peek(), Some(&1));
1037    /// assert_eq!(iter.next(), Some(1));
1038    ///
1039    /// assert_eq!(iter.next(), Some(2));
1040    ///
1041    /// // we can peek() multiple times, the iterator won't advance
1042    /// assert_eq!(iter.peek(), Some(&3));
1043    /// assert_eq!(iter.peek(), Some(&3));
1044    ///
1045    /// assert_eq!(iter.next(), Some(3));
1046    ///
1047    /// // after the iterator is finished, so is peek()
1048    /// assert_eq!(iter.peek(), None);
1049    /// assert_eq!(iter.next(), None);
1050    /// ```
1051    ///
1052    /// Using [`peek_mut`] to mutate the next item without advancing the
1053    /// iterator:
1054    ///
1055    /// ```
1056    /// let xs = [1, 2, 3];
1057    ///
1058    /// let mut iter = xs.into_iter().peekable();
1059    ///
1060    /// // `peek_mut()` lets us see into the future
1061    /// assert_eq!(iter.peek_mut(), Some(&mut 1));
1062    /// assert_eq!(iter.peek_mut(), Some(&mut 1));
1063    /// assert_eq!(iter.next(), Some(1));
1064    ///
1065    /// if let Some(p) = iter.peek_mut() {
1066    ///     assert_eq!(*p, 2);
1067    ///     // put a value into the iterator
1068    ///     *p = 1000;
1069    /// }
1070    ///
1071    /// // The value reappears as the iterator continues
1072    /// assert_eq!(iter.collect::<Vec<_>>(), vec![1000, 3]);
1073    /// ```
1074    /// [`peek`]: Peekable::peek
1075    /// [`peek_mut`]: Peekable::peek_mut
1076    /// [`next`]: Iterator::next
1077    #[inline]
1078    #[stable(feature = "rust1", since = "1.0.0")]
1079    #[cfg(not(feature = "ferrocene_subset"))]
1080    fn peekable(self) -> Peekable<Self>
1081    where
1082        Self: Sized,
1083    {
1084        Peekable::new(self)
1085    }
1086
1087    /// Creates an iterator that [`skip`]s elements based on a predicate.
1088    ///
1089    /// [`skip`]: Iterator::skip
1090    ///
1091    /// `skip_while()` takes a closure as an argument. It will call this
1092    /// closure on each element of the iterator, and ignore elements
1093    /// until it returns `false`.
1094    ///
1095    /// After `false` is returned, `skip_while()`'s job is over, and the
1096    /// rest of the elements are yielded.
1097    ///
1098    /// # Examples
1099    ///
1100    /// Basic usage:
1101    ///
1102    /// ```
1103    /// let a = [-1i32, 0, 1];
1104    ///
1105    /// let mut iter = a.into_iter().skip_while(|x| x.is_negative());
1106    ///
1107    /// assert_eq!(iter.next(), Some(0));
1108    /// assert_eq!(iter.next(), Some(1));
1109    /// assert_eq!(iter.next(), None);
1110    /// ```
1111    ///
1112    /// Because the closure passed to `skip_while()` takes a reference, and many
1113    /// iterators iterate over references, this leads to a possibly confusing
1114    /// situation, where the type of the closure argument is a double reference:
1115    ///
1116    /// ```
1117    /// let s = &[-1, 0, 1];
1118    ///
1119    /// let mut iter = s.iter().skip_while(|x| **x < 0); // need two *s!
1120    ///
1121    /// assert_eq!(iter.next(), Some(&0));
1122    /// assert_eq!(iter.next(), Some(&1));
1123    /// assert_eq!(iter.next(), None);
1124    /// ```
1125    ///
1126    /// Stopping after an initial `false`:
1127    ///
1128    /// ```
1129    /// let a = [-1, 0, 1, -2];
1130    ///
1131    /// let mut iter = a.into_iter().skip_while(|&x| x < 0);
1132    ///
1133    /// assert_eq!(iter.next(), Some(0));
1134    /// assert_eq!(iter.next(), Some(1));
1135    ///
1136    /// // while this would have been false, since we already got a false,
1137    /// // skip_while() isn't used any more
1138    /// assert_eq!(iter.next(), Some(-2));
1139    ///
1140    /// assert_eq!(iter.next(), None);
1141    /// ```
1142    #[inline]
1143    #[doc(alias = "drop_while")]
1144    #[stable(feature = "rust1", since = "1.0.0")]
1145    #[cfg(not(feature = "ferrocene_subset"))]
1146    fn skip_while<P>(self, predicate: P) -> SkipWhile<Self, P>
1147    where
1148        Self: Sized,
1149        P: FnMut(&Self::Item) -> bool,
1150    {
1151        SkipWhile::new(self, predicate)
1152    }
1153
1154    /// Creates an iterator that yields elements based on a predicate.
1155    ///
1156    /// `take_while()` takes a closure as an argument. It will call this
1157    /// closure on each element of the iterator, and yield elements
1158    /// while it returns `true`.
1159    ///
1160    /// After `false` is returned, `take_while()`'s job is over, and the
1161    /// rest of the elements are ignored.
1162    ///
1163    /// # Examples
1164    ///
1165    /// Basic usage:
1166    ///
1167    /// ```
1168    /// let a = [-1i32, 0, 1];
1169    ///
1170    /// let mut iter = a.into_iter().take_while(|x| x.is_negative());
1171    ///
1172    /// assert_eq!(iter.next(), Some(-1));
1173    /// assert_eq!(iter.next(), None);
1174    /// ```
1175    ///
1176    /// Because the closure passed to `take_while()` takes a reference, and many
1177    /// iterators iterate over references, this leads to a possibly confusing
1178    /// situation, where the type of the closure is a double reference:
1179    ///
1180    /// ```
1181    /// let s = &[-1, 0, 1];
1182    ///
1183    /// let mut iter = s.iter().take_while(|x| **x < 0); // need two *s!
1184    ///
1185    /// assert_eq!(iter.next(), Some(&-1));
1186    /// assert_eq!(iter.next(), None);
1187    /// ```
1188    ///
1189    /// Stopping after an initial `false`:
1190    ///
1191    /// ```
1192    /// let a = [-1, 0, 1, -2];
1193    ///
1194    /// let mut iter = a.into_iter().take_while(|&x| x < 0);
1195    ///
1196    /// assert_eq!(iter.next(), Some(-1));
1197    ///
1198    /// // We have more elements that are less than zero, but since we already
1199    /// // got a false, take_while() ignores the remaining elements.
1200    /// assert_eq!(iter.next(), None);
1201    /// ```
1202    ///
1203    /// Because `take_while()` needs to look at the value in order to see if it
1204    /// should be included or not, consuming iterators will see that it is
1205    /// removed:
1206    ///
1207    /// ```
1208    /// let a = [1, 2, 3, 4];
1209    /// let mut iter = a.into_iter();
1210    ///
1211    /// let result: Vec<i32> = iter.by_ref().take_while(|&n| n != 3).collect();
1212    ///
1213    /// assert_eq!(result, [1, 2]);
1214    ///
1215    /// let result: Vec<i32> = iter.collect();
1216    ///
1217    /// assert_eq!(result, [4]);
1218    /// ```
1219    ///
1220    /// The `3` is no longer there, because it was consumed in order to see if
1221    /// the iteration should stop, but wasn't placed back into the iterator.
1222    #[inline]
1223    #[stable(feature = "rust1", since = "1.0.0")]
1224    #[cfg(not(feature = "ferrocene_subset"))]
1225    fn take_while<P>(self, predicate: P) -> TakeWhile<Self, P>
1226    where
1227        Self: Sized,
1228        P: FnMut(&Self::Item) -> bool,
1229    {
1230        TakeWhile::new(self, predicate)
1231    }
1232
1233    /// Creates an iterator that both yields elements based on a predicate and maps.
1234    ///
1235    /// `map_while()` takes a closure as an argument. It will call this
1236    /// closure on each element of the iterator, and yield elements
1237    /// while it returns [`Some(_)`][`Some`].
1238    ///
1239    /// # Examples
1240    ///
1241    /// Basic usage:
1242    ///
1243    /// ```
1244    /// let a = [-1i32, 4, 0, 1];
1245    ///
1246    /// let mut iter = a.into_iter().map_while(|x| 16i32.checked_div(x));
1247    ///
1248    /// assert_eq!(iter.next(), Some(-16));
1249    /// assert_eq!(iter.next(), Some(4));
1250    /// assert_eq!(iter.next(), None);
1251    /// ```
1252    ///
1253    /// Here's the same example, but with [`take_while`] and [`map`]:
1254    ///
1255    /// [`take_while`]: Iterator::take_while
1256    /// [`map`]: Iterator::map
1257    ///
1258    /// ```
1259    /// let a = [-1i32, 4, 0, 1];
1260    ///
1261    /// let mut iter = a.into_iter()
1262    ///                 .map(|x| 16i32.checked_div(x))
1263    ///                 .take_while(|x| x.is_some())
1264    ///                 .map(|x| x.unwrap());
1265    ///
1266    /// assert_eq!(iter.next(), Some(-16));
1267    /// assert_eq!(iter.next(), Some(4));
1268    /// assert_eq!(iter.next(), None);
1269    /// ```
1270    ///
1271    /// Stopping after an initial [`None`]:
1272    ///
1273    /// ```
1274    /// let a = [0, 1, 2, -3, 4, 5, -6];
1275    ///
1276    /// let iter = a.into_iter().map_while(|x| u32::try_from(x).ok());
1277    /// let vec: Vec<_> = iter.collect();
1278    ///
1279    /// // We have more elements that could fit in u32 (such as 4, 5), but `map_while` returned `None` for `-3`
1280    /// // (as the `predicate` returned `None`) and `collect` stops at the first `None` encountered.
1281    /// assert_eq!(vec, [0, 1, 2]);
1282    /// ```
1283    ///
1284    /// Because `map_while()` needs to look at the value in order to see if it
1285    /// should be included or not, consuming iterators will see that it is
1286    /// removed:
1287    ///
1288    /// ```
1289    /// let a = [1, 2, -3, 4];
1290    /// let mut iter = a.into_iter();
1291    ///
1292    /// let result: Vec<u32> = iter.by_ref()
1293    ///                            .map_while(|n| u32::try_from(n).ok())
1294    ///                            .collect();
1295    ///
1296    /// assert_eq!(result, [1, 2]);
1297    ///
1298    /// let result: Vec<i32> = iter.collect();
1299    ///
1300    /// assert_eq!(result, [4]);
1301    /// ```
1302    ///
1303    /// The `-3` is no longer there, because it was consumed in order to see if
1304    /// the iteration should stop, but wasn't placed back into the iterator.
1305    ///
1306    /// Note that unlike [`take_while`] this iterator is **not** fused.
1307    /// It is also not specified what this iterator returns after the first [`None`] is returned.
1308    /// If you need a fused iterator, use [`fuse`].
1309    ///
1310    /// [`fuse`]: Iterator::fuse
1311    #[inline]
1312    #[stable(feature = "iter_map_while", since = "1.57.0")]
1313    #[cfg(not(feature = "ferrocene_subset"))]
1314    fn map_while<B, P>(self, predicate: P) -> MapWhile<Self, P>
1315    where
1316        Self: Sized,
1317        P: FnMut(Self::Item) -> Option<B>,
1318    {
1319        MapWhile::new(self, predicate)
1320    }
1321
1322    /// Creates an iterator that skips the first `n` elements.
1323    ///
1324    /// `skip(n)` skips elements until `n` elements are skipped or the end of the
1325    /// iterator is reached (whichever happens first). After that, all the remaining
1326    /// elements are yielded. In particular, if the original iterator is too short,
1327    /// then the returned iterator is empty.
1328    ///
1329    /// Rather than overriding this method directly, instead override the `nth` method.
1330    ///
1331    /// # Examples
1332    ///
1333    /// ```
1334    /// let a = [1, 2, 3];
1335    ///
1336    /// let mut iter = a.into_iter().skip(2);
1337    ///
1338    /// assert_eq!(iter.next(), Some(3));
1339    /// assert_eq!(iter.next(), None);
1340    /// ```
1341    #[inline]
1342    #[stable(feature = "rust1", since = "1.0.0")]
1343    fn skip(self, n: usize) -> Skip<Self>
1344    where
1345        Self: Sized,
1346    {
1347        Skip::new(self, n)
1348    }
1349
1350    /// Creates an iterator that yields the first `n` elements, or fewer
1351    /// if the underlying iterator ends sooner.
1352    ///
1353    /// `take(n)` yields elements until `n` elements are yielded or the end of
1354    /// the iterator is reached (whichever happens first).
1355    /// The returned iterator is a prefix of length `n` if the original iterator
1356    /// contains at least `n` elements, otherwise it contains all of the
1357    /// (fewer than `n`) elements of the original iterator.
1358    ///
1359    /// # Examples
1360    ///
1361    /// Basic usage:
1362    ///
1363    /// ```
1364    /// let a = [1, 2, 3];
1365    ///
1366    /// let mut iter = a.into_iter().take(2);
1367    ///
1368    /// assert_eq!(iter.next(), Some(1));
1369    /// assert_eq!(iter.next(), Some(2));
1370    /// assert_eq!(iter.next(), None);
1371    /// ```
1372    ///
1373    /// `take()` is often used with an infinite iterator, to make it finite:
1374    ///
1375    /// ```
1376    /// let mut iter = (0..).take(3);
1377    ///
1378    /// assert_eq!(iter.next(), Some(0));
1379    /// assert_eq!(iter.next(), Some(1));
1380    /// assert_eq!(iter.next(), Some(2));
1381    /// assert_eq!(iter.next(), None);
1382    /// ```
1383    ///
1384    /// If less than `n` elements are available,
1385    /// `take` will limit itself to the size of the underlying iterator:
1386    ///
1387    /// ```
1388    /// let v = [1, 2];
1389    /// let mut iter = v.into_iter().take(5);
1390    /// assert_eq!(iter.next(), Some(1));
1391    /// assert_eq!(iter.next(), Some(2));
1392    /// assert_eq!(iter.next(), None);
1393    /// ```
1394    ///
1395    /// Use [`by_ref`] to take from the iterator without consuming it, and then
1396    /// continue using the original iterator:
1397    ///
1398    /// ```
1399    /// let mut words = ["hello", "world", "of", "Rust"].into_iter();
1400    ///
1401    /// // Take the first two words.
1402    /// let hello_world: Vec<_> = words.by_ref().take(2).collect();
1403    /// assert_eq!(hello_world, vec!["hello", "world"]);
1404    ///
1405    /// // Collect the rest of the words.
1406    /// // We can only do this because we used `by_ref` earlier.
1407    /// let of_rust: Vec<_> = words.collect();
1408    /// assert_eq!(of_rust, vec!["of", "Rust"]);
1409    /// ```
1410    ///
1411    /// [`by_ref`]: Iterator::by_ref
1412    #[doc(alias = "limit")]
1413    #[inline]
1414    #[stable(feature = "rust1", since = "1.0.0")]
1415    fn take(self, n: usize) -> Take<Self>
1416    where
1417        Self: Sized,
1418    {
1419        Take::new(self, n)
1420    }
1421
1422    /// An iterator adapter which, like [`fold`], holds internal state, but
1423    /// unlike [`fold`], produces a new iterator.
1424    ///
1425    /// [`fold`]: Iterator::fold
1426    ///
1427    /// `scan()` takes two arguments: an initial value which seeds the internal
1428    /// state, and a closure with two arguments, the first being a mutable
1429    /// reference to the internal state and the second an iterator element.
1430    /// The closure can assign to the internal state to share state between
1431    /// iterations.
1432    ///
1433    /// On iteration, the closure will be applied to each element of the
1434    /// iterator and the return value from the closure, an [`Option`], is
1435    /// returned by the `next` method. Thus the closure can return
1436    /// `Some(value)` to yield `value`, or `None` to end the iteration.
1437    ///
1438    /// # Examples
1439    ///
1440    /// ```
1441    /// let a = [1, 2, 3, 4];
1442    ///
1443    /// let mut iter = a.into_iter().scan(1, |state, x| {
1444    ///     // each iteration, we'll multiply the state by the element ...
1445    ///     *state = *state * x;
1446    ///
1447    ///     // ... and terminate if the state exceeds 6
1448    ///     if *state > 6 {
1449    ///         return None;
1450    ///     }
1451    ///     // ... else yield the negation of the state
1452    ///     Some(-*state)
1453    /// });
1454    ///
1455    /// assert_eq!(iter.next(), Some(-1));
1456    /// assert_eq!(iter.next(), Some(-2));
1457    /// assert_eq!(iter.next(), Some(-6));
1458    /// assert_eq!(iter.next(), None);
1459    /// ```
1460    #[inline]
1461    #[stable(feature = "rust1", since = "1.0.0")]
1462    #[cfg(not(feature = "ferrocene_subset"))]
1463    fn scan<St, B, F>(self, initial_state: St, f: F) -> Scan<Self, St, F>
1464    where
1465        Self: Sized,
1466        F: FnMut(&mut St, Self::Item) -> Option<B>,
1467    {
1468        Scan::new(self, initial_state, f)
1469    }
1470
1471    /// Creates an iterator that works like map, but flattens nested structure.
1472    ///
1473    /// The [`map`] adapter is very useful, but only when the closure
1474    /// argument produces values. If it produces an iterator instead, there's
1475    /// an extra layer of indirection. `flat_map()` will remove this extra layer
1476    /// on its own.
1477    ///
1478    /// You can think of `flat_map(f)` as the semantic equivalent
1479    /// of [`map`]ping, and then [`flatten`]ing as in `map(f).flatten()`.
1480    ///
1481    /// Another way of thinking about `flat_map()`: [`map`]'s closure returns
1482    /// one item for each element, and `flat_map()`'s closure returns an
1483    /// iterator for each element.
1484    ///
1485    /// [`map`]: Iterator::map
1486    /// [`flatten`]: Iterator::flatten
1487    ///
1488    /// # Examples
1489    ///
1490    /// ```
1491    /// let words = ["alpha", "beta", "gamma"];
1492    ///
1493    /// // chars() returns an iterator
1494    /// let merged: String = words.iter()
1495    ///                           .flat_map(|s| s.chars())
1496    ///                           .collect();
1497    /// assert_eq!(merged, "alphabetagamma");
1498    /// ```
1499    #[inline]
1500    #[stable(feature = "rust1", since = "1.0.0")]
1501    #[cfg(not(feature = "ferrocene_subset"))]
1502    fn flat_map<U, F>(self, f: F) -> FlatMap<Self, U, F>
1503    where
1504        Self: Sized,
1505        U: IntoIterator,
1506        F: FnMut(Self::Item) -> U,
1507    {
1508        FlatMap::new(self, f)
1509    }
1510
1511    /// Creates an iterator that flattens nested structure.
1512    ///
1513    /// This is useful when you have an iterator of iterators or an iterator of
1514    /// things that can be turned into iterators and you want to remove one
1515    /// level of indirection.
1516    ///
1517    /// # Examples
1518    ///
1519    /// Basic usage:
1520    ///
1521    /// ```
1522    /// let data = vec![vec![1, 2, 3, 4], vec![5, 6]];
1523    /// let flattened: Vec<_> = data.into_iter().flatten().collect();
1524    /// assert_eq!(flattened, [1, 2, 3, 4, 5, 6]);
1525    /// ```
1526    ///
1527    /// Mapping and then flattening:
1528    ///
1529    /// ```
1530    /// let words = ["alpha", "beta", "gamma"];
1531    ///
1532    /// // chars() returns an iterator
1533    /// let merged: String = words.iter()
1534    ///                           .map(|s| s.chars())
1535    ///                           .flatten()
1536    ///                           .collect();
1537    /// assert_eq!(merged, "alphabetagamma");
1538    /// ```
1539    ///
1540    /// You can also rewrite this in terms of [`flat_map()`], which is preferable
1541    /// in this case since it conveys intent more clearly:
1542    ///
1543    /// ```
1544    /// let words = ["alpha", "beta", "gamma"];
1545    ///
1546    /// // chars() returns an iterator
1547    /// let merged: String = words.iter()
1548    ///                           .flat_map(|s| s.chars())
1549    ///                           .collect();
1550    /// assert_eq!(merged, "alphabetagamma");
1551    /// ```
1552    ///
1553    /// Flattening works on any `IntoIterator` type, including `Option` and `Result`:
1554    ///
1555    /// ```
1556    /// let options = vec![Some(123), Some(321), None, Some(231)];
1557    /// let flattened_options: Vec<_> = options.into_iter().flatten().collect();
1558    /// assert_eq!(flattened_options, [123, 321, 231]);
1559    ///
1560    /// let results = vec![Ok(123), Ok(321), Err(456), Ok(231)];
1561    /// let flattened_results: Vec<_> = results.into_iter().flatten().collect();
1562    /// assert_eq!(flattened_results, [123, 321, 231]);
1563    /// ```
1564    ///
1565    /// Flattening only removes one level of nesting at a time:
1566    ///
1567    /// ```
1568    /// let d3 = [[[1, 2], [3, 4]], [[5, 6], [7, 8]]];
1569    ///
1570    /// let d2: Vec<_> = d3.into_iter().flatten().collect();
1571    /// assert_eq!(d2, [[1, 2], [3, 4], [5, 6], [7, 8]]);
1572    ///
1573    /// let d1: Vec<_> = d3.into_iter().flatten().flatten().collect();
1574    /// assert_eq!(d1, [1, 2, 3, 4, 5, 6, 7, 8]);
1575    /// ```
1576    ///
1577    /// Here we see that `flatten()` does not perform a "deep" flatten.
1578    /// Instead, only one level of nesting is removed. That is, if you
1579    /// `flatten()` a three-dimensional array, the result will be
1580    /// two-dimensional and not one-dimensional. To get a one-dimensional
1581    /// structure, you have to `flatten()` again.
1582    ///
1583    /// [`flat_map()`]: Iterator::flat_map
1584    #[inline]
1585    #[stable(feature = "iterator_flatten", since = "1.29.0")]
1586    #[cfg(not(feature = "ferrocene_subset"))]
1587    fn flatten(self) -> Flatten<Self>
1588    where
1589        Self: Sized,
1590        Self::Item: IntoIterator,
1591    {
1592        Flatten::new(self)
1593    }
1594
1595    /// Calls the given function `f` for each contiguous window of size `N` over
1596    /// `self` and returns an iterator over the outputs of `f`. Like [`slice::windows()`],
1597    /// the windows during mapping overlap as well.
1598    ///
1599    /// In the following example, the closure is called three times with the
1600    /// arguments `&['a', 'b']`, `&['b', 'c']` and `&['c', 'd']` respectively.
1601    ///
1602    /// ```
1603    /// #![feature(iter_map_windows)]
1604    ///
1605    /// let strings = "abcd".chars()
1606    ///     .map_windows(|[x, y]| format!("{}+{}", x, y))
1607    ///     .collect::<Vec<String>>();
1608    ///
1609    /// assert_eq!(strings, vec!["a+b", "b+c", "c+d"]);
1610    /// ```
1611    ///
1612    /// Note that the const parameter `N` is usually inferred by the
1613    /// destructured argument in the closure.
1614    ///
1615    /// The returned iterator yields 𝑘 − `N` + 1 items (where 𝑘 is the number of
1616    /// items yielded by `self`). If 𝑘 is less than `N`, this method yields an
1617    /// empty iterator.
1618    ///
1619    /// The returned iterator implements [`FusedIterator`], because once `self`
1620    /// returns `None`, even if it returns a `Some(T)` again in the next iterations,
1621    /// we cannot put it into a contiguous array buffer, and thus the returned iterator
1622    /// should be fused.
1623    ///
1624    /// [`slice::windows()`]: slice::windows
1625    /// [`FusedIterator`]: crate::iter::FusedIterator
1626    ///
1627    /// # Panics
1628    ///
1629    /// Panics if `N` is zero. This check will most probably get changed to a
1630    /// compile time error before this method gets stabilized.
1631    ///
1632    /// ```should_panic
1633    /// #![feature(iter_map_windows)]
1634    ///
1635    /// let iter = std::iter::repeat(0).map_windows(|&[]| ());
1636    /// ```
1637    ///
1638    /// # Examples
1639    ///
1640    /// Building the sums of neighboring numbers.
1641    ///
1642    /// ```
1643    /// #![feature(iter_map_windows)]
1644    ///
1645    /// let mut it = [1, 3, 8, 1].iter().map_windows(|&[a, b]| a + b);
1646    /// assert_eq!(it.next(), Some(4));  // 1 + 3
1647    /// assert_eq!(it.next(), Some(11)); // 3 + 8
1648    /// assert_eq!(it.next(), Some(9));  // 8 + 1
1649    /// assert_eq!(it.next(), None);
1650    /// ```
1651    ///
1652    /// Since the elements in the following example implement `Copy`, we can
1653    /// just copy the array and get an iterator over the windows.
1654    ///
1655    /// ```
1656    /// #![feature(iter_map_windows)]
1657    ///
1658    /// let mut it = "ferris".chars().map_windows(|w: &[_; 3]| *w);
1659    /// assert_eq!(it.next(), Some(['f', 'e', 'r']));
1660    /// assert_eq!(it.next(), Some(['e', 'r', 'r']));
1661    /// assert_eq!(it.next(), Some(['r', 'r', 'i']));
1662    /// assert_eq!(it.next(), Some(['r', 'i', 's']));
1663    /// assert_eq!(it.next(), None);
1664    /// ```
1665    ///
1666    /// You can also use this function to check the sortedness of an iterator.
1667    /// For the simple case, rather use [`Iterator::is_sorted`].
1668    ///
1669    /// ```
1670    /// #![feature(iter_map_windows)]
1671    ///
1672    /// let mut it = [0.5, 1.0, 3.5, 3.0, 8.5, 8.5, f32::NAN].iter()
1673    ///     .map_windows(|[a, b]| a <= b);
1674    ///
1675    /// assert_eq!(it.next(), Some(true));  // 0.5 <= 1.0
1676    /// assert_eq!(it.next(), Some(true));  // 1.0 <= 3.5
1677    /// assert_eq!(it.next(), Some(false)); // 3.5 <= 3.0
1678    /// assert_eq!(it.next(), Some(true));  // 3.0 <= 8.5
1679    /// assert_eq!(it.next(), Some(true));  // 8.5 <= 8.5
1680    /// assert_eq!(it.next(), Some(false)); // 8.5 <= NAN
1681    /// assert_eq!(it.next(), None);
1682    /// ```
1683    ///
1684    /// For non-fused iterators, they are fused after `map_windows`.
1685    ///
1686    /// ```
1687    /// #![feature(iter_map_windows)]
1688    ///
1689    /// #[derive(Default)]
1690    /// struct NonFusedIterator {
1691    ///     state: i32,
1692    /// }
1693    ///
1694    /// impl Iterator for NonFusedIterator {
1695    ///     type Item = i32;
1696    ///
1697    ///     fn next(&mut self) -> Option<i32> {
1698    ///         let val = self.state;
1699    ///         self.state = self.state + 1;
1700    ///
1701    ///         // yields `0..5` first, then only even numbers since `6..`.
1702    ///         if val < 5 || val % 2 == 0 {
1703    ///             Some(val)
1704    ///         } else {
1705    ///             None
1706    ///         }
1707    ///     }
1708    /// }
1709    ///
1710    ///
1711    /// let mut iter = NonFusedIterator::default();
1712    ///
1713    /// // yields 0..5 first.
1714    /// assert_eq!(iter.next(), Some(0));
1715    /// assert_eq!(iter.next(), Some(1));
1716    /// assert_eq!(iter.next(), Some(2));
1717    /// assert_eq!(iter.next(), Some(3));
1718    /// assert_eq!(iter.next(), Some(4));
1719    /// // then we can see our iterator going back and forth
1720    /// assert_eq!(iter.next(), None);
1721    /// assert_eq!(iter.next(), Some(6));
1722    /// assert_eq!(iter.next(), None);
1723    /// assert_eq!(iter.next(), Some(8));
1724    /// assert_eq!(iter.next(), None);
1725    ///
1726    /// // however, with `.map_windows()`, it is fused.
1727    /// let mut iter = NonFusedIterator::default()
1728    ///     .map_windows(|arr: &[_; 2]| *arr);
1729    ///
1730    /// assert_eq!(iter.next(), Some([0, 1]));
1731    /// assert_eq!(iter.next(), Some([1, 2]));
1732    /// assert_eq!(iter.next(), Some([2, 3]));
1733    /// assert_eq!(iter.next(), Some([3, 4]));
1734    /// assert_eq!(iter.next(), None);
1735    ///
1736    /// // it will always return `None` after the first time.
1737    /// assert_eq!(iter.next(), None);
1738    /// assert_eq!(iter.next(), None);
1739    /// assert_eq!(iter.next(), None);
1740    /// ```
1741    #[inline]
1742    #[unstable(feature = "iter_map_windows", reason = "recently added", issue = "87155")]
1743    #[cfg(not(feature = "ferrocene_subset"))]
1744    fn map_windows<F, R, const N: usize>(self, f: F) -> MapWindows<Self, F, N>
1745    where
1746        Self: Sized,
1747        F: FnMut(&[Self::Item; N]) -> R,
1748    {
1749        MapWindows::new(self, f)
1750    }
1751
1752    /// Creates an iterator which ends after the first [`None`].
1753    ///
1754    /// After an iterator returns [`None`], future calls may or may not yield
1755    /// [`Some(T)`] again. `fuse()` adapts an iterator, ensuring that after a
1756    /// [`None`] is given, it will always return [`None`] forever.
1757    ///
1758    /// Note that the [`Fuse`] wrapper is a no-op on iterators that implement
1759    /// the [`FusedIterator`] trait. `fuse()` may therefore behave incorrectly
1760    /// if the [`FusedIterator`] trait is improperly implemented.
1761    ///
1762    /// [`Some(T)`]: Some
1763    /// [`FusedIterator`]: crate::iter::FusedIterator
1764    ///
1765    /// # Examples
1766    ///
1767    /// ```
1768    /// // an iterator which alternates between Some and None
1769    /// struct Alternate {
1770    ///     state: i32,
1771    /// }
1772    ///
1773    /// impl Iterator for Alternate {
1774    ///     type Item = i32;
1775    ///
1776    ///     fn next(&mut self) -> Option<i32> {
1777    ///         let val = self.state;
1778    ///         self.state = self.state + 1;
1779    ///
1780    ///         // if it's even, Some(i32), else None
1781    ///         (val % 2 == 0).then_some(val)
1782    ///     }
1783    /// }
1784    ///
1785    /// let mut iter = Alternate { state: 0 };
1786    ///
1787    /// // we can see our iterator going back and forth
1788    /// assert_eq!(iter.next(), Some(0));
1789    /// assert_eq!(iter.next(), None);
1790    /// assert_eq!(iter.next(), Some(2));
1791    /// assert_eq!(iter.next(), None);
1792    ///
1793    /// // however, once we fuse it...
1794    /// let mut iter = iter.fuse();
1795    ///
1796    /// assert_eq!(iter.next(), Some(4));
1797    /// assert_eq!(iter.next(), None);
1798    ///
1799    /// // it will always return `None` after the first time.
1800    /// assert_eq!(iter.next(), None);
1801    /// assert_eq!(iter.next(), None);
1802    /// assert_eq!(iter.next(), None);
1803    /// ```
1804    #[inline]
1805    #[stable(feature = "rust1", since = "1.0.0")]
1806    #[cfg(not(feature = "ferrocene_subset"))]
1807    fn fuse(self) -> Fuse<Self>
1808    where
1809        Self: Sized,
1810    {
1811        Fuse::new(self)
1812    }
1813
1814    /// Does something with each element of an iterator, passing the value on.
1815    ///
1816    /// When using iterators, you'll often chain several of them together.
1817    /// While working on such code, you might want to check out what's
1818    /// happening at various parts in the pipeline. To do that, insert
1819    /// a call to `inspect()`.
1820    ///
1821    /// It's more common for `inspect()` to be used as a debugging tool than to
1822    /// exist in your final code, but applications may find it useful in certain
1823    /// situations when errors need to be logged before being discarded.
1824    ///
1825    /// # Examples
1826    ///
1827    /// Basic usage:
1828    ///
1829    /// ```
1830    /// let a = [1, 4, 2, 3];
1831    ///
1832    /// // this iterator sequence is complex.
1833    /// let sum = a.iter()
1834    ///     .cloned()
1835    ///     .filter(|x| x % 2 == 0)
1836    ///     .fold(0, |sum, i| sum + i);
1837    ///
1838    /// println!("{sum}");
1839    ///
1840    /// // let's add some inspect() calls to investigate what's happening
1841    /// let sum = a.iter()
1842    ///     .cloned()
1843    ///     .inspect(|x| println!("about to filter: {x}"))
1844    ///     .filter(|x| x % 2 == 0)
1845    ///     .inspect(|x| println!("made it through filter: {x}"))
1846    ///     .fold(0, |sum, i| sum + i);
1847    ///
1848    /// println!("{sum}");
1849    /// ```
1850    ///
1851    /// This will print:
1852    ///
1853    /// ```text
1854    /// 6
1855    /// about to filter: 1
1856    /// about to filter: 4
1857    /// made it through filter: 4
1858    /// about to filter: 2
1859    /// made it through filter: 2
1860    /// about to filter: 3
1861    /// 6
1862    /// ```
1863    ///
1864    /// Logging errors before discarding them:
1865    ///
1866    /// ```
1867    /// let lines = ["1", "2", "a"];
1868    ///
1869    /// let sum: i32 = lines
1870    ///     .iter()
1871    ///     .map(|line| line.parse::<i32>())
1872    ///     .inspect(|num| {
1873    ///         if let Err(ref e) = *num {
1874    ///             println!("Parsing error: {e}");
1875    ///         }
1876    ///     })
1877    ///     .filter_map(Result::ok)
1878    ///     .sum();
1879    ///
1880    /// println!("Sum: {sum}");
1881    /// ```
1882    ///
1883    /// This will print:
1884    ///
1885    /// ```text
1886    /// Parsing error: invalid digit found in string
1887    /// Sum: 3
1888    /// ```
1889    #[inline]
1890    #[stable(feature = "rust1", since = "1.0.0")]
1891    #[cfg(not(feature = "ferrocene_subset"))]
1892    fn inspect<F>(self, f: F) -> Inspect<Self, F>
1893    where
1894        Self: Sized,
1895        F: FnMut(&Self::Item),
1896    {
1897        Inspect::new(self, f)
1898    }
1899
1900    /// Creates a "by reference" adapter for this instance of `Iterator`.
1901    ///
1902    /// Consuming method calls (direct or indirect calls to `next`)
1903    /// on the "by reference" adapter will consume the original iterator,
1904    /// but ownership-taking methods (those with a `self` parameter)
1905    /// only take ownership of the "by reference" iterator.
1906    ///
1907    /// This is useful for applying ownership-taking methods
1908    /// (such as `take` in the example below)
1909    /// without giving up ownership of the original iterator,
1910    /// so you can use the original iterator afterwards.
1911    ///
1912    /// Uses [`impl<I: Iterator + ?Sized> Iterator for &mut I { type Item = I::Item; ...}`](https://doc.rust-lang.org/nightly/std/iter/trait.Iterator.html#impl-Iterator-for-%26mut+I).
1913    ///
1914    /// # Examples
1915    ///
1916    /// ```
1917    /// let mut words = ["hello", "world", "of", "Rust"].into_iter();
1918    ///
1919    /// // Take the first two words.
1920    /// let hello_world: Vec<_> = words.by_ref().take(2).collect();
1921    /// assert_eq!(hello_world, vec!["hello", "world"]);
1922    ///
1923    /// // Collect the rest of the words.
1924    /// // We can only do this because we used `by_ref` earlier.
1925    /// let of_rust: Vec<_> = words.collect();
1926    /// assert_eq!(of_rust, vec!["of", "Rust"]);
1927    /// ```
1928    #[stable(feature = "rust1", since = "1.0.0")]
1929    fn by_ref(&mut self) -> &mut Self
1930    where
1931        Self: Sized,
1932    {
1933        self
1934    }
1935
1936    /// Transforms an iterator into a collection.
1937    ///
1938    /// `collect()` can take anything iterable, and turn it into a relevant
1939    /// collection. This is one of the more powerful methods in the standard
1940    /// library, used in a variety of contexts.
1941    ///
1942    /// The most basic pattern in which `collect()` is used is to turn one
1943    /// collection into another. You take a collection, call [`iter`] on it,
1944    /// do a bunch of transformations, and then `collect()` at the end.
1945    ///
1946    /// `collect()` can also create instances of types that are not typical
1947    /// collections. For example, a [`String`] can be built from [`char`]s,
1948    /// and an iterator of [`Result<T, E>`][`Result`] items can be collected
1949    /// into `Result<Collection<T>, E>`. See the examples below for more.
1950    ///
1951    /// Because `collect()` is so general, it can cause problems with type
1952    /// inference. As such, `collect()` is one of the few times you'll see
1953    /// the syntax affectionately known as the 'turbofish': `::<>`. This
1954    /// helps the inference algorithm understand specifically which collection
1955    /// you're trying to collect into.
1956    ///
1957    /// # Examples
1958    ///
1959    /// Basic usage:
1960    ///
1961    /// ```
1962    /// let a = [1, 2, 3];
1963    ///
1964    /// let doubled: Vec<i32> = a.iter()
1965    ///                          .map(|x| x * 2)
1966    ///                          .collect();
1967    ///
1968    /// assert_eq!(vec![2, 4, 6], doubled);
1969    /// ```
1970    ///
1971    /// Note that we needed the `: Vec<i32>` on the left-hand side. This is because
1972    /// we could collect into, for example, a [`VecDeque<T>`] instead:
1973    ///
1974    /// [`VecDeque<T>`]: ../../std/collections/struct.VecDeque.html
1975    ///
1976    /// ```
1977    /// use std::collections::VecDeque;
1978    ///
1979    /// let a = [1, 2, 3];
1980    ///
1981    /// let doubled: VecDeque<i32> = a.iter().map(|x| x * 2).collect();
1982    ///
1983    /// assert_eq!(2, doubled[0]);
1984    /// assert_eq!(4, doubled[1]);
1985    /// assert_eq!(6, doubled[2]);
1986    /// ```
1987    ///
1988    /// Using the 'turbofish' instead of annotating `doubled`:
1989    ///
1990    /// ```
1991    /// let a = [1, 2, 3];
1992    ///
1993    /// let doubled = a.iter().map(|x| x * 2).collect::<Vec<i32>>();
1994    ///
1995    /// assert_eq!(vec![2, 4, 6], doubled);
1996    /// ```
1997    ///
1998    /// Because `collect()` only cares about what you're collecting into, you can
1999    /// still use a partial type hint, `_`, with the turbofish:
2000    ///
2001    /// ```
2002    /// let a = [1, 2, 3];
2003    ///
2004    /// let doubled = a.iter().map(|x| x * 2).collect::<Vec<_>>();
2005    ///
2006    /// assert_eq!(vec![2, 4, 6], doubled);
2007    /// ```
2008    ///
2009    /// Using `collect()` to make a [`String`]:
2010    ///
2011    /// ```
2012    /// let chars = ['g', 'd', 'k', 'k', 'n'];
2013    ///
2014    /// let hello: String = chars.into_iter()
2015    ///     .map(|x| x as u8)
2016    ///     .map(|x| (x + 1) as char)
2017    ///     .collect();
2018    ///
2019    /// assert_eq!("hello", hello);
2020    /// ```
2021    ///
2022    /// If you have a list of [`Result<T, E>`][`Result`]s, you can use `collect()` to
2023    /// see if any of them failed:
2024    ///
2025    /// ```
2026    /// let results = [Ok(1), Err("nope"), Ok(3), Err("bad")];
2027    ///
2028    /// let result: Result<Vec<_>, &str> = results.into_iter().collect();
2029    ///
2030    /// // gives us the first error
2031    /// assert_eq!(Err("nope"), result);
2032    ///
2033    /// let results = [Ok(1), Ok(3)];
2034    ///
2035    /// let result: Result<Vec<_>, &str> = results.into_iter().collect();
2036    ///
2037    /// // gives us the list of answers
2038    /// assert_eq!(Ok(vec![1, 3]), result);
2039    /// ```
2040    ///
2041    /// [`iter`]: Iterator::next
2042    /// [`String`]: ../../std/string/struct.String.html
2043    /// [`char`]: type@char
2044    #[inline]
2045    #[stable(feature = "rust1", since = "1.0.0")]
2046    #[must_use = "if you really need to exhaust the iterator, consider `.for_each(drop)` instead"]
2047    #[rustc_diagnostic_item = "iterator_collect_fn"]
2048    fn collect<B: FromIterator<Self::Item>>(self) -> B
2049    where
2050        Self: Sized,
2051    {
2052        // This is too aggressive to turn on for everything all the time, but PR#137908
2053        // accidentally noticed that some rustc iterators had malformed `size_hint`s,
2054        // so this will help catch such things in debug-assertions-std runners,
2055        // even if users won't actually ever see it.
2056        #[ferrocene::annotation("We ship `core` with debug assertions enabled")]
2057        if cfg!(debug_assertions) {
2058            let hint = self.size_hint();
2059            assert!(hint.1.is_none_or(|high| high >= hint.0), "Malformed size_hint {hint:?}");
2060        }
2061
2062        FromIterator::from_iter(self)
2063    }
2064
2065    /// Fallibly transforms an iterator into a collection, short circuiting if
2066    /// a failure is encountered.
2067    ///
2068    /// `try_collect()` is a variation of [`collect()`][`collect`] that allows fallible
2069    /// conversions during collection. Its main use case is simplifying conversions from
2070    /// iterators yielding [`Option<T>`][`Option`] into `Option<Collection<T>>`, or similarly for other [`Try`]
2071    /// types (e.g. [`Result`]).
2072    ///
2073    /// Importantly, `try_collect()` doesn't require that the outer [`Try`] type also implements [`FromIterator`];
2074    /// only the inner type produced on `Try::Output` must implement it. Concretely,
2075    /// this means that collecting into `ControlFlow<_, Vec<i32>>` is valid because `Vec<i32>` implements
2076    /// [`FromIterator`], even though [`ControlFlow`] doesn't.
2077    ///
2078    /// Also, if a failure is encountered during `try_collect()`, the iterator is still valid and
2079    /// may continue to be used, in which case it will continue iterating starting after the element that
2080    /// triggered the failure. See the last example below for an example of how this works.
2081    ///
2082    /// # Examples
2083    /// Successfully collecting an iterator of `Option<i32>` into `Option<Vec<i32>>`:
2084    /// ```
2085    /// #![feature(iterator_try_collect)]
2086    ///
2087    /// let u = vec![Some(1), Some(2), Some(3)];
2088    /// let v = u.into_iter().try_collect::<Vec<i32>>();
2089    /// assert_eq!(v, Some(vec![1, 2, 3]));
2090    /// ```
2091    ///
2092    /// Failing to collect in the same way:
2093    /// ```
2094    /// #![feature(iterator_try_collect)]
2095    ///
2096    /// let u = vec![Some(1), Some(2), None, Some(3)];
2097    /// let v = u.into_iter().try_collect::<Vec<i32>>();
2098    /// assert_eq!(v, None);
2099    /// ```
2100    ///
2101    /// A similar example, but with `Result`:
2102    /// ```
2103    /// #![feature(iterator_try_collect)]
2104    ///
2105    /// let u: Vec<Result<i32, ()>> = vec![Ok(1), Ok(2), Ok(3)];
2106    /// let v = u.into_iter().try_collect::<Vec<i32>>();
2107    /// assert_eq!(v, Ok(vec![1, 2, 3]));
2108    ///
2109    /// let u = vec![Ok(1), Ok(2), Err(()), Ok(3)];
2110    /// let v = u.into_iter().try_collect::<Vec<i32>>();
2111    /// assert_eq!(v, Err(()));
2112    /// ```
2113    ///
2114    /// Finally, even [`ControlFlow`] works, despite the fact that it
2115    /// doesn't implement [`FromIterator`]. Note also that the iterator can
2116    /// continue to be used, even if a failure is encountered:
2117    ///
2118    /// ```
2119    /// #![feature(iterator_try_collect)]
2120    ///
2121    /// use core::ops::ControlFlow::{Break, Continue};
2122    ///
2123    /// let u = [Continue(1), Continue(2), Break(3), Continue(4), Continue(5)];
2124    /// let mut it = u.into_iter();
2125    ///
2126    /// let v = it.try_collect::<Vec<_>>();
2127    /// assert_eq!(v, Break(3));
2128    ///
2129    /// let v = it.try_collect::<Vec<_>>();
2130    /// assert_eq!(v, Continue(vec![4, 5]));
2131    /// ```
2132    ///
2133    /// [`collect`]: Iterator::collect
2134    #[inline]
2135    #[unstable(feature = "iterator_try_collect", issue = "94047")]
2136    #[cfg(not(feature = "ferrocene_subset"))]
2137    fn try_collect<B>(&mut self) -> ChangeOutputType<Self::Item, B>
2138    where
2139        Self: Sized,
2140        Self::Item: Try<Residual: Residual<B>>,
2141        B: FromIterator<<Self::Item as Try>::Output>,
2142    {
2143        try_process(ByRefSized(self), |i| i.collect())
2144    }
2145
2146    /// Collects all the items from an iterator into a collection.
2147    ///
2148    /// This method consumes the iterator and adds all its items to the
2149    /// passed collection. The collection is then returned, so the call chain
2150    /// can be continued.
2151    ///
2152    /// This is useful when you already have a collection and want to add
2153    /// the iterator items to it.
2154    ///
2155    /// This method is a convenience method to call [Extend::extend](trait.Extend.html),
2156    /// but instead of being called on a collection, it's called on an iterator.
2157    ///
2158    /// # Examples
2159    ///
2160    /// Basic usage:
2161    ///
2162    /// ```
2163    /// #![feature(iter_collect_into)]
2164    ///
2165    /// let a = [1, 2, 3];
2166    /// let mut vec: Vec::<i32> = vec![0, 1];
2167    ///
2168    /// a.iter().map(|x| x * 2).collect_into(&mut vec);
2169    /// a.iter().map(|x| x * 10).collect_into(&mut vec);
2170    ///
2171    /// assert_eq!(vec, vec![0, 1, 2, 4, 6, 10, 20, 30]);
2172    /// ```
2173    ///
2174    /// `Vec` can have a manual set capacity to avoid reallocating it:
2175    ///
2176    /// ```
2177    /// #![feature(iter_collect_into)]
2178    ///
2179    /// let a = [1, 2, 3];
2180    /// let mut vec: Vec::<i32> = Vec::with_capacity(6);
2181    ///
2182    /// a.iter().map(|x| x * 2).collect_into(&mut vec);
2183    /// a.iter().map(|x| x * 10).collect_into(&mut vec);
2184    ///
2185    /// assert_eq!(6, vec.capacity());
2186    /// assert_eq!(vec, vec![2, 4, 6, 10, 20, 30]);
2187    /// ```
2188    ///
2189    /// The returned mutable reference can be used to continue the call chain:
2190    ///
2191    /// ```
2192    /// #![feature(iter_collect_into)]
2193    ///
2194    /// let a = [1, 2, 3];
2195    /// let mut vec: Vec::<i32> = Vec::with_capacity(6);
2196    ///
2197    /// let count = a.iter().collect_into(&mut vec).iter().count();
2198    ///
2199    /// assert_eq!(count, vec.len());
2200    /// assert_eq!(vec, vec![1, 2, 3]);
2201    ///
2202    /// let count = a.iter().collect_into(&mut vec).iter().count();
2203    ///
2204    /// assert_eq!(count, vec.len());
2205    /// assert_eq!(vec, vec![1, 2, 3, 1, 2, 3]);
2206    /// ```
2207    #[inline]
2208    #[unstable(feature = "iter_collect_into", reason = "new API", issue = "94780")]
2209    #[cfg(not(feature = "ferrocene_subset"))]
2210    fn collect_into<E: Extend<Self::Item>>(self, collection: &mut E) -> &mut E
2211    where
2212        Self: Sized,
2213    {
2214        collection.extend(self);
2215        collection
2216    }
2217
2218    /// Consumes an iterator, creating two collections from it.
2219    ///
2220    /// The predicate passed to `partition()` can return `true`, or `false`.
2221    /// `partition()` returns a pair, all of the elements for which it returned
2222    /// `true`, and all of the elements for which it returned `false`.
2223    ///
2224    /// See also [`is_partitioned()`] and [`partition_in_place()`].
2225    ///
2226    /// [`is_partitioned()`]: Iterator::is_partitioned
2227    /// [`partition_in_place()`]: Iterator::partition_in_place
2228    ///
2229    /// # Examples
2230    ///
2231    /// ```
2232    /// let a = [1, 2, 3];
2233    ///
2234    /// let (even, odd): (Vec<_>, Vec<_>) = a
2235    ///     .into_iter()
2236    ///     .partition(|n| n % 2 == 0);
2237    ///
2238    /// assert_eq!(even, [2]);
2239    /// assert_eq!(odd, [1, 3]);
2240    /// ```
2241    #[stable(feature = "rust1", since = "1.0.0")]
2242    #[cfg(not(feature = "ferrocene_subset"))]
2243    fn partition<B, F>(self, f: F) -> (B, B)
2244    where
2245        Self: Sized,
2246        B: Default + Extend<Self::Item>,
2247        F: FnMut(&Self::Item) -> bool,
2248    {
2249        #[inline]
2250        fn extend<'a, T, B: Extend<T>>(
2251            mut f: impl FnMut(&T) -> bool + 'a,
2252            left: &'a mut B,
2253            right: &'a mut B,
2254        ) -> impl FnMut((), T) + 'a {
2255            move |(), x| {
2256                if f(&x) {
2257                    left.extend_one(x);
2258                } else {
2259                    right.extend_one(x);
2260                }
2261            }
2262        }
2263
2264        let mut left: B = Default::default();
2265        let mut right: B = Default::default();
2266
2267        self.fold((), extend(f, &mut left, &mut right));
2268
2269        (left, right)
2270    }
2271
2272    /// Reorders the elements of this iterator *in-place* according to the given predicate,
2273    /// such that all those that return `true` precede all those that return `false`.
2274    /// Returns the number of `true` elements found.
2275    ///
2276    /// The relative order of partitioned items is not maintained.
2277    ///
2278    /// # Current implementation
2279    ///
2280    /// The current algorithm tries to find the first element for which the predicate evaluates
2281    /// to false and the last element for which it evaluates to true, and repeatedly swaps them.
2282    ///
2283    /// Time complexity: *O*(*n*)
2284    ///
2285    /// See also [`is_partitioned()`] and [`partition()`].
2286    ///
2287    /// [`is_partitioned()`]: Iterator::is_partitioned
2288    /// [`partition()`]: Iterator::partition
2289    ///
2290    /// # Examples
2291    ///
2292    /// ```
2293    /// #![feature(iter_partition_in_place)]
2294    ///
2295    /// let mut a = [1, 2, 3, 4, 5, 6, 7];
2296    ///
2297    /// // Partition in-place between evens and odds
2298    /// let i = a.iter_mut().partition_in_place(|n| n % 2 == 0);
2299    ///
2300    /// assert_eq!(i, 3);
2301    /// assert!(a[..i].iter().all(|n| n % 2 == 0)); // evens
2302    /// assert!(a[i..].iter().all(|n| n % 2 == 1)); // odds
2303    /// ```
2304    #[unstable(feature = "iter_partition_in_place", reason = "new API", issue = "62543")]
2305    #[cfg(not(feature = "ferrocene_subset"))]
2306    fn partition_in_place<'a, T: 'a, P>(mut self, ref mut predicate: P) -> usize
2307    where
2308        Self: Sized + DoubleEndedIterator<Item = &'a mut T>,
2309        P: FnMut(&T) -> bool,
2310    {
2311        // FIXME: should we worry about the count overflowing? The only way to have more than
2312        // `usize::MAX` mutable references is with ZSTs, which aren't useful to partition...
2313
2314        // These closure "factory" functions exist to avoid genericity in `Self`.
2315
2316        #[inline]
2317        fn is_false<'a, T>(
2318            predicate: &'a mut impl FnMut(&T) -> bool,
2319            true_count: &'a mut usize,
2320        ) -> impl FnMut(&&mut T) -> bool + 'a {
2321            move |x| {
2322                let p = predicate(&**x);
2323                *true_count += p as usize;
2324                !p
2325            }
2326        }
2327
2328        #[inline]
2329        fn is_true<T>(predicate: &mut impl FnMut(&T) -> bool) -> impl FnMut(&&mut T) -> bool + '_ {
2330            move |x| predicate(&**x)
2331        }
2332
2333        // Repeatedly find the first `false` and swap it with the last `true`.
2334        let mut true_count = 0;
2335        while let Some(head) = self.find(is_false(predicate, &mut true_count)) {
2336            if let Some(tail) = self.rfind(is_true(predicate)) {
2337                crate::mem::swap(head, tail);
2338                true_count += 1;
2339            } else {
2340                break;
2341            }
2342        }
2343        true_count
2344    }
2345
2346    /// Checks if the elements of this iterator are partitioned according to the given predicate,
2347    /// such that all those that return `true` precede all those that return `false`.
2348    ///
2349    /// See also [`partition()`] and [`partition_in_place()`].
2350    ///
2351    /// [`partition()`]: Iterator::partition
2352    /// [`partition_in_place()`]: Iterator::partition_in_place
2353    ///
2354    /// # Examples
2355    ///
2356    /// ```
2357    /// #![feature(iter_is_partitioned)]
2358    ///
2359    /// assert!("Iterator".chars().is_partitioned(char::is_uppercase));
2360    /// assert!(!"IntoIterator".chars().is_partitioned(char::is_uppercase));
2361    /// ```
2362    #[unstable(feature = "iter_is_partitioned", reason = "new API", issue = "62544")]
2363    #[cfg(not(feature = "ferrocene_subset"))]
2364    fn is_partitioned<P>(mut self, mut predicate: P) -> bool
2365    where
2366        Self: Sized,
2367        P: FnMut(Self::Item) -> bool,
2368    {
2369        // Either all items test `true`, or the first clause stops at `false`
2370        // and we check that there are no more `true` items after that.
2371        self.all(&mut predicate) || !self.any(predicate)
2372    }
2373
2374    /// An iterator method that applies a function as long as it returns
2375    /// successfully, producing a single, final value.
2376    ///
2377    /// `try_fold()` takes two arguments: an initial value, and a closure with
2378    /// two arguments: an 'accumulator', and an element. The closure either
2379    /// returns successfully, with the value that the accumulator should have
2380    /// for the next iteration, or it returns failure, with an error value that
2381    /// is propagated back to the caller immediately (short-circuiting).
2382    ///
2383    /// The initial value is the value the accumulator will have on the first
2384    /// call. If applying the closure succeeded against every element of the
2385    /// iterator, `try_fold()` returns the final accumulator as success.
2386    ///
2387    /// Folding is useful whenever you have a collection of something, and want
2388    /// to produce a single value from it.
2389    ///
2390    /// # Note to Implementors
2391    ///
2392    /// Several of the other (forward) methods have default implementations in
2393    /// terms of this one, so try to implement this explicitly if it can
2394    /// do something better than the default `for` loop implementation.
2395    ///
2396    /// In particular, try to have this call `try_fold()` on the internal parts
2397    /// from which this iterator is composed. If multiple calls are needed,
2398    /// the `?` operator may be convenient for chaining the accumulator value
2399    /// along, but beware any invariants that need to be upheld before those
2400    /// early returns. This is a `&mut self` method, so iteration needs to be
2401    /// resumable after hitting an error here.
2402    ///
2403    /// # Examples
2404    ///
2405    /// Basic usage:
2406    ///
2407    /// ```
2408    /// let a = [1, 2, 3];
2409    ///
2410    /// // the checked sum of all of the elements of the array
2411    /// let sum = a.into_iter().try_fold(0i8, |acc, x| acc.checked_add(x));
2412    ///
2413    /// assert_eq!(sum, Some(6));
2414    /// ```
2415    ///
2416    /// Short-circuiting:
2417    ///
2418    /// ```
2419    /// let a = [10, 20, 30, 100, 40, 50];
2420    /// let mut iter = a.into_iter();
2421    ///
2422    /// // This sum overflows when adding the 100 element
2423    /// let sum = iter.try_fold(0i8, |acc, x| acc.checked_add(x));
2424    /// assert_eq!(sum, None);
2425    ///
2426    /// // Because it short-circuited, the remaining elements are still
2427    /// // available through the iterator.
2428    /// assert_eq!(iter.len(), 2);
2429    /// assert_eq!(iter.next(), Some(40));
2430    /// ```
2431    ///
2432    /// While you cannot `break` from a closure, the [`ControlFlow`] type allows
2433    /// a similar idea:
2434    ///
2435    /// ```
2436    /// use std::ops::ControlFlow;
2437    ///
2438    /// let triangular = (1..30).try_fold(0_i8, |prev, x| {
2439    ///     if let Some(next) = prev.checked_add(x) {
2440    ///         ControlFlow::Continue(next)
2441    ///     } else {
2442    ///         ControlFlow::Break(prev)
2443    ///     }
2444    /// });
2445    /// assert_eq!(triangular, ControlFlow::Break(120));
2446    ///
2447    /// let triangular = (1..30).try_fold(0_u64, |prev, x| {
2448    ///     if let Some(next) = prev.checked_add(x) {
2449    ///         ControlFlow::Continue(next)
2450    ///     } else {
2451    ///         ControlFlow::Break(prev)
2452    ///     }
2453    /// });
2454    /// assert_eq!(triangular, ControlFlow::Continue(435));
2455    /// ```
2456    #[inline]
2457    #[stable(feature = "iterator_try_fold", since = "1.27.0")]
2458    fn try_fold<B, F, R>(&mut self, init: B, mut f: F) -> R
2459    where
2460        Self: Sized,
2461        F: FnMut(B, Self::Item) -> R,
2462        R: Try<Output = B>,
2463    {
2464        let mut accum = init;
2465        while let Some(x) = self.next() {
2466            accum = f(accum, x)?;
2467        }
2468        try { accum }
2469    }
2470
2471    /// An iterator method that applies a fallible function to each item in the
2472    /// iterator, stopping at the first error and returning that error.
2473    ///
2474    /// This can also be thought of as the fallible form of [`for_each()`]
2475    /// or as the stateless version of [`try_fold()`].
2476    ///
2477    /// [`for_each()`]: Iterator::for_each
2478    /// [`try_fold()`]: Iterator::try_fold
2479    ///
2480    /// # Examples
2481    ///
2482    /// ```
2483    /// use std::fs::rename;
2484    /// use std::io::{stdout, Write};
2485    /// use std::path::Path;
2486    ///
2487    /// let data = ["no_tea.txt", "stale_bread.json", "torrential_rain.png"];
2488    ///
2489    /// let res = data.iter().try_for_each(|x| writeln!(stdout(), "{x}"));
2490    /// assert!(res.is_ok());
2491    ///
2492    /// let mut it = data.iter().cloned();
2493    /// let res = it.try_for_each(|x| rename(x, Path::new(x).with_extension("old")));
2494    /// assert!(res.is_err());
2495    /// // It short-circuited, so the remaining items are still in the iterator:
2496    /// assert_eq!(it.next(), Some("stale_bread.json"));
2497    /// ```
2498    ///
2499    /// The [`ControlFlow`] type can be used with this method for the situations
2500    /// in which you'd use `break` and `continue` in a normal loop:
2501    ///
2502    /// ```
2503    /// use std::ops::ControlFlow;
2504    ///
2505    /// let r = (2..100).try_for_each(|x| {
2506    ///     if 323 % x == 0 {
2507    ///         return ControlFlow::Break(x)
2508    ///     }
2509    ///
2510    ///     ControlFlow::Continue(())
2511    /// });
2512    /// assert_eq!(r, ControlFlow::Break(17));
2513    /// ```
2514    #[inline]
2515    #[stable(feature = "iterator_try_fold", since = "1.27.0")]
2516    fn try_for_each<F, R>(&mut self, f: F) -> R
2517    where
2518        Self: Sized,
2519        F: FnMut(Self::Item) -> R,
2520        R: Try<Output = ()>,
2521    {
2522        #[inline]
2523        fn call<T, R>(mut f: impl FnMut(T) -> R) -> impl FnMut((), T) -> R {
2524            move |(), x| f(x)
2525        }
2526
2527        self.try_fold((), call(f))
2528    }
2529
2530    /// Folds every element into an accumulator by applying an operation,
2531    /// returning the final result.
2532    ///
2533    /// `fold()` takes two arguments: an initial value, and a closure with two
2534    /// arguments: an 'accumulator', and an element. The closure returns the value that
2535    /// the accumulator should have for the next iteration.
2536    ///
2537    /// The initial value is the value the accumulator will have on the first
2538    /// call.
2539    ///
2540    /// After applying this closure to every element of the iterator, `fold()`
2541    /// returns the accumulator.
2542    ///
2543    /// This operation is sometimes called 'reduce' or 'inject'.
2544    ///
2545    /// Folding is useful whenever you have a collection of something, and want
2546    /// to produce a single value from it.
2547    ///
2548    /// Note: `fold()`, and similar methods that traverse the entire iterator,
2549    /// might not terminate for infinite iterators, even on traits for which a
2550    /// result is determinable in finite time.
2551    ///
2552    /// Note: [`reduce()`] can be used to use the first element as the initial
2553    /// value, if the accumulator type and item type is the same.
2554    ///
2555    /// Note: `fold()` combines elements in a *left-associative* fashion. For associative
2556    /// operators like `+`, the order the elements are combined in is not important, but for non-associative
2557    /// operators like `-` the order will affect the final result.
2558    /// For a *right-associative* version of `fold()`, see [`DoubleEndedIterator::rfold()`].
2559    ///
2560    /// # Note to Implementors
2561    ///
2562    /// Several of the other (forward) methods have default implementations in
2563    /// terms of this one, so try to implement this explicitly if it can
2564    /// do something better than the default `for` loop implementation.
2565    ///
2566    /// In particular, try to have this call `fold()` on the internal parts
2567    /// from which this iterator is composed.
2568    ///
2569    /// # Examples
2570    ///
2571    /// Basic usage:
2572    ///
2573    /// ```
2574    /// let a = [1, 2, 3];
2575    ///
2576    /// // the sum of all of the elements of the array
2577    /// let sum = a.iter().fold(0, |acc, x| acc + x);
2578    ///
2579    /// assert_eq!(sum, 6);
2580    /// ```
2581    ///
2582    /// Let's walk through each step of the iteration here:
2583    ///
2584    /// | element | acc | x | result |
2585    /// |---------|-----|---|--------|
2586    /// |         | 0   |   |        |
2587    /// | 1       | 0   | 1 | 1      |
2588    /// | 2       | 1   | 2 | 3      |
2589    /// | 3       | 3   | 3 | 6      |
2590    ///
2591    /// And so, our final result, `6`.
2592    ///
2593    /// This example demonstrates the left-associative nature of `fold()`:
2594    /// it builds a string, starting with an initial value
2595    /// and continuing with each element from the front until the back:
2596    ///
2597    /// ```
2598    /// let numbers = [1, 2, 3, 4, 5];
2599    ///
2600    /// let zero = "0".to_string();
2601    ///
2602    /// let result = numbers.iter().fold(zero, |acc, &x| {
2603    ///     format!("({acc} + {x})")
2604    /// });
2605    ///
2606    /// assert_eq!(result, "(((((0 + 1) + 2) + 3) + 4) + 5)");
2607    /// ```
2608    /// It's common for people who haven't used iterators a lot to
2609    /// use a `for` loop with a list of things to build up a result. Those
2610    /// can be turned into `fold()`s:
2611    ///
2612    /// [`for`]: ../../book/ch03-05-control-flow.html#looping-through-a-collection-with-for
2613    ///
2614    /// ```
2615    /// let numbers = [1, 2, 3, 4, 5];
2616    ///
2617    /// let mut result = 0;
2618    ///
2619    /// // for loop:
2620    /// for i in &numbers {
2621    ///     result = result + i;
2622    /// }
2623    ///
2624    /// // fold:
2625    /// let result2 = numbers.iter().fold(0, |acc, &x| acc + x);
2626    ///
2627    /// // they're the same
2628    /// assert_eq!(result, result2);
2629    /// ```
2630    ///
2631    /// [`reduce()`]: Iterator::reduce
2632    #[doc(alias = "inject", alias = "foldl")]
2633    #[inline]
2634    #[stable(feature = "rust1", since = "1.0.0")]
2635    fn fold<B, F>(mut self, init: B, mut f: F) -> B
2636    where
2637        Self: Sized,
2638        F: FnMut(B, Self::Item) -> B,
2639    {
2640        let mut accum = init;
2641        while let Some(x) = self.next() {
2642            accum = f(accum, x);
2643        }
2644        accum
2645    }
2646
2647    /// Reduces the elements to a single one, by repeatedly applying a reducing
2648    /// operation.
2649    ///
2650    /// If the iterator is empty, returns [`None`]; otherwise, returns the
2651    /// result of the reduction.
2652    ///
2653    /// The reducing function is a closure with two arguments: an 'accumulator', and an element.
2654    /// For iterators with at least one element, this is the same as [`fold()`]
2655    /// with the first element of the iterator as the initial accumulator value, folding
2656    /// every subsequent element into it.
2657    ///
2658    /// [`fold()`]: Iterator::fold
2659    ///
2660    /// # Example
2661    ///
2662    /// ```
2663    /// let reduced: i32 = (1..10).reduce(|acc, e| acc + e).unwrap_or(0);
2664    /// assert_eq!(reduced, 45);
2665    ///
2666    /// // Which is equivalent to doing it with `fold`:
2667    /// let folded: i32 = (1..10).fold(0, |acc, e| acc + e);
2668    /// assert_eq!(reduced, folded);
2669    /// ```
2670    #[inline]
2671    #[stable(feature = "iterator_fold_self", since = "1.51.0")]
2672    fn reduce<F>(mut self, f: F) -> Option<Self::Item>
2673    where
2674        Self: Sized,
2675        F: FnMut(Self::Item, Self::Item) -> Self::Item,
2676    {
2677        let first = self.next()?;
2678        Some(self.fold(first, f))
2679    }
2680
2681    /// Reduces the elements to a single one by repeatedly applying a reducing operation. If the
2682    /// closure returns a failure, the failure is propagated back to the caller immediately.
2683    ///
2684    /// The return type of this method depends on the return type of the closure. If the closure
2685    /// returns `Result<Self::Item, E>`, then this function will return `Result<Option<Self::Item>,
2686    /// E>`. If the closure returns `Option<Self::Item>`, then this function will return
2687    /// `Option<Option<Self::Item>>`.
2688    ///
2689    /// When called on an empty iterator, this function will return either `Some(None)` or
2690    /// `Ok(None)` depending on the type of the provided closure.
2691    ///
2692    /// For iterators with at least one element, this is essentially the same as calling
2693    /// [`try_fold()`] with the first element of the iterator as the initial accumulator value.
2694    ///
2695    /// [`try_fold()`]: Iterator::try_fold
2696    ///
2697    /// # Examples
2698    ///
2699    /// Safely calculate the sum of a series of numbers:
2700    ///
2701    /// ```
2702    /// #![feature(iterator_try_reduce)]
2703    ///
2704    /// let numbers: Vec<usize> = vec![10, 20, 5, 23, 0];
2705    /// let sum = numbers.into_iter().try_reduce(|x, y| x.checked_add(y));
2706    /// assert_eq!(sum, Some(Some(58)));
2707    /// ```
2708    ///
2709    /// Determine when a reduction short circuited:
2710    ///
2711    /// ```
2712    /// #![feature(iterator_try_reduce)]
2713    ///
2714    /// let numbers = vec![1, 2, 3, usize::MAX, 4, 5];
2715    /// let sum = numbers.into_iter().try_reduce(|x, y| x.checked_add(y));
2716    /// assert_eq!(sum, None);
2717    /// ```
2718    ///
2719    /// Determine when a reduction was not performed because there are no elements:
2720    ///
2721    /// ```
2722    /// #![feature(iterator_try_reduce)]
2723    ///
2724    /// let numbers: Vec<usize> = Vec::new();
2725    /// let sum = numbers.into_iter().try_reduce(|x, y| x.checked_add(y));
2726    /// assert_eq!(sum, Some(None));
2727    /// ```
2728    ///
2729    /// Use a [`Result`] instead of an [`Option`]:
2730    ///
2731    /// ```
2732    /// #![feature(iterator_try_reduce)]
2733    ///
2734    /// let numbers = vec!["1", "2", "3", "4", "5"];
2735    /// let max: Result<Option<_>, <usize as std::str::FromStr>::Err> =
2736    ///     numbers.into_iter().try_reduce(|x, y| {
2737    ///         if x.parse::<usize>()? > y.parse::<usize>()? { Ok(x) } else { Ok(y) }
2738    ///     });
2739    /// assert_eq!(max, Ok(Some("5")));
2740    /// ```
2741    #[inline]
2742    #[unstable(feature = "iterator_try_reduce", reason = "new API", issue = "87053")]
2743    #[cfg(not(feature = "ferrocene_subset"))]
2744    fn try_reduce<R>(
2745        &mut self,
2746        f: impl FnMut(Self::Item, Self::Item) -> R,
2747    ) -> ChangeOutputType<R, Option<R::Output>>
2748    where
2749        Self: Sized,
2750        R: Try<Output = Self::Item, Residual: Residual<Option<Self::Item>>>,
2751    {
2752        let first = match self.next() {
2753            Some(i) => i,
2754            None => return Try::from_output(None),
2755        };
2756
2757        match self.try_fold(first, f).branch() {
2758            ControlFlow::Break(r) => FromResidual::from_residual(r),
2759            ControlFlow::Continue(i) => Try::from_output(Some(i)),
2760        }
2761    }
2762
2763    /// Tests if every element of the iterator matches a predicate.
2764    ///
2765    /// `all()` takes a closure that returns `true` or `false`. It applies
2766    /// this closure to each element of the iterator, and if they all return
2767    /// `true`, then so does `all()`. If any of them return `false`, it
2768    /// returns `false`.
2769    ///
2770    /// `all()` is short-circuiting; in other words, it will stop processing
2771    /// as soon as it finds a `false`, given that no matter what else happens,
2772    /// the result will also be `false`.
2773    ///
2774    /// An empty iterator returns `true`.
2775    ///
2776    /// # Examples
2777    ///
2778    /// Basic usage:
2779    ///
2780    /// ```
2781    /// let a = [1, 2, 3];
2782    ///
2783    /// assert!(a.into_iter().all(|x| x > 0));
2784    ///
2785    /// assert!(!a.into_iter().all(|x| x > 2));
2786    /// ```
2787    ///
2788    /// Stopping at the first `false`:
2789    ///
2790    /// ```
2791    /// let a = [1, 2, 3];
2792    ///
2793    /// let mut iter = a.into_iter();
2794    ///
2795    /// assert!(!iter.all(|x| x != 2));
2796    ///
2797    /// // we can still use `iter`, as there are more elements.
2798    /// assert_eq!(iter.next(), Some(3));
2799    /// ```
2800    #[inline]
2801    #[stable(feature = "rust1", since = "1.0.0")]
2802    fn all<F>(&mut self, f: F) -> bool
2803    where
2804        Self: Sized,
2805        F: FnMut(Self::Item) -> bool,
2806    {
2807        #[inline]
2808        fn check<T>(mut f: impl FnMut(T) -> bool) -> impl FnMut((), T) -> ControlFlow<()> {
2809            move |(), x| {
2810                if f(x) { ControlFlow::Continue(()) } else { ControlFlow::Break(()) }
2811            }
2812        }
2813        self.try_fold((), check(f)) == ControlFlow::Continue(())
2814    }
2815
2816    /// Tests if any element of the iterator matches a predicate.
2817    ///
2818    /// `any()` takes a closure that returns `true` or `false`. It applies
2819    /// this closure to each element of the iterator, and if any of them return
2820    /// `true`, then so does `any()`. If they all return `false`, it
2821    /// returns `false`.
2822    ///
2823    /// `any()` is short-circuiting; in other words, it will stop processing
2824    /// as soon as it finds a `true`, given that no matter what else happens,
2825    /// the result will also be `true`.
2826    ///
2827    /// An empty iterator returns `false`.
2828    ///
2829    /// # Examples
2830    ///
2831    /// Basic usage:
2832    ///
2833    /// ```
2834    /// let a = [1, 2, 3];
2835    ///
2836    /// assert!(a.into_iter().any(|x| x > 0));
2837    ///
2838    /// assert!(!a.into_iter().any(|x| x > 5));
2839    /// ```
2840    ///
2841    /// Stopping at the first `true`:
2842    ///
2843    /// ```
2844    /// let a = [1, 2, 3];
2845    ///
2846    /// let mut iter = a.into_iter();
2847    ///
2848    /// assert!(iter.any(|x| x != 2));
2849    ///
2850    /// // we can still use `iter`, as there are more elements.
2851    /// assert_eq!(iter.next(), Some(2));
2852    /// ```
2853    #[inline]
2854    #[stable(feature = "rust1", since = "1.0.0")]
2855    fn any<F>(&mut self, f: F) -> bool
2856    where
2857        Self: Sized,
2858        F: FnMut(Self::Item) -> bool,
2859    {
2860        #[inline]
2861        fn check<T>(mut f: impl FnMut(T) -> bool) -> impl FnMut((), T) -> ControlFlow<()> {
2862            move |(), x| {
2863                if f(x) { ControlFlow::Break(()) } else { ControlFlow::Continue(()) }
2864            }
2865        }
2866
2867        self.try_fold((), check(f)) == ControlFlow::Break(())
2868    }
2869
2870    /// Searches for an element of an iterator that satisfies a predicate.
2871    ///
2872    /// `find()` takes a closure that returns `true` or `false`. It applies
2873    /// this closure to each element of the iterator, and if any of them return
2874    /// `true`, then `find()` returns [`Some(element)`]. If they all return
2875    /// `false`, it returns [`None`].
2876    ///
2877    /// `find()` is short-circuiting; in other words, it will stop processing
2878    /// as soon as the closure returns `true`.
2879    ///
2880    /// Because `find()` takes a reference, and many iterators iterate over
2881    /// references, this leads to a possibly confusing situation where the
2882    /// argument is a double reference. You can see this effect in the
2883    /// examples below, with `&&x`.
2884    ///
2885    /// If you need the index of the element, see [`position()`].
2886    ///
2887    /// [`Some(element)`]: Some
2888    /// [`position()`]: Iterator::position
2889    ///
2890    /// # Examples
2891    ///
2892    /// Basic usage:
2893    ///
2894    /// ```
2895    /// let a = [1, 2, 3];
2896    ///
2897    /// assert_eq!(a.into_iter().find(|&x| x == 2), Some(2));
2898    /// assert_eq!(a.into_iter().find(|&x| x == 5), None);
2899    /// ```
2900    ///
2901    /// Stopping at the first `true`:
2902    ///
2903    /// ```
2904    /// let a = [1, 2, 3];
2905    ///
2906    /// let mut iter = a.into_iter();
2907    ///
2908    /// assert_eq!(iter.find(|&x| x == 2), Some(2));
2909    ///
2910    /// // we can still use `iter`, as there are more elements.
2911    /// assert_eq!(iter.next(), Some(3));
2912    /// ```
2913    ///
2914    /// Note that `iter.find(f)` is equivalent to `iter.filter(f).next()`.
2915    #[inline]
2916    #[stable(feature = "rust1", since = "1.0.0")]
2917    fn find<P>(&mut self, predicate: P) -> Option<Self::Item>
2918    where
2919        Self: Sized,
2920        P: FnMut(&Self::Item) -> bool,
2921    {
2922        #[inline]
2923        fn check<T>(mut predicate: impl FnMut(&T) -> bool) -> impl FnMut((), T) -> ControlFlow<T> {
2924            move |(), x| {
2925                if predicate(&x) { ControlFlow::Break(x) } else { ControlFlow::Continue(()) }
2926            }
2927        }
2928
2929        self.try_fold((), check(predicate)).break_value()
2930    }
2931
2932    /// Applies function to the elements of iterator and returns
2933    /// the first non-none result.
2934    ///
2935    /// `iter.find_map(f)` is equivalent to `iter.filter_map(f).next()`.
2936    ///
2937    /// # Examples
2938    ///
2939    /// ```
2940    /// let a = ["lol", "NaN", "2", "5"];
2941    ///
2942    /// let first_number = a.iter().find_map(|s| s.parse().ok());
2943    ///
2944    /// assert_eq!(first_number, Some(2));
2945    /// ```
2946    #[inline]
2947    #[stable(feature = "iterator_find_map", since = "1.30.0")]
2948    #[cfg(not(feature = "ferrocene_subset"))]
2949    fn find_map<B, F>(&mut self, f: F) -> Option<B>
2950    where
2951        Self: Sized,
2952        F: FnMut(Self::Item) -> Option<B>,
2953    {
2954        #[inline]
2955        fn check<T, B>(mut f: impl FnMut(T) -> Option<B>) -> impl FnMut((), T) -> ControlFlow<B> {
2956            move |(), x| match f(x) {
2957                Some(x) => ControlFlow::Break(x),
2958                None => ControlFlow::Continue(()),
2959            }
2960        }
2961
2962        self.try_fold((), check(f)).break_value()
2963    }
2964
2965    /// Applies function to the elements of iterator and returns
2966    /// the first true result or the first error.
2967    ///
2968    /// The return type of this method depends on the return type of the closure.
2969    /// If you return `Result<bool, E>` from the closure, you'll get a `Result<Option<Self::Item>, E>`.
2970    /// If you return `Option<bool>` from the closure, you'll get an `Option<Option<Self::Item>>`.
2971    ///
2972    /// # Examples
2973    ///
2974    /// ```
2975    /// #![feature(try_find)]
2976    ///
2977    /// let a = ["1", "2", "lol", "NaN", "5"];
2978    ///
2979    /// let is_my_num = |s: &str, search: i32| -> Result<bool, std::num::ParseIntError> {
2980    ///     Ok(s.parse::<i32>()? == search)
2981    /// };
2982    ///
2983    /// let result = a.into_iter().try_find(|&s| is_my_num(s, 2));
2984    /// assert_eq!(result, Ok(Some("2")));
2985    ///
2986    /// let result = a.into_iter().try_find(|&s| is_my_num(s, 5));
2987    /// assert!(result.is_err());
2988    /// ```
2989    ///
2990    /// This also supports other types which implement [`Try`], not just [`Result`].
2991    ///
2992    /// ```
2993    /// #![feature(try_find)]
2994    ///
2995    /// use std::num::NonZero;
2996    ///
2997    /// let a = [3, 5, 7, 4, 9, 0, 11u32];
2998    /// let result = a.into_iter().try_find(|&x| NonZero::new(x).map(|y| y.is_power_of_two()));
2999    /// assert_eq!(result, Some(Some(4)));
3000    /// let result = a.into_iter().take(3).try_find(|&x| NonZero::new(x).map(|y| y.is_power_of_two()));
3001    /// assert_eq!(result, Some(None));
3002    /// let result = a.into_iter().rev().try_find(|&x| NonZero::new(x).map(|y| y.is_power_of_two()));
3003    /// assert_eq!(result, None);
3004    /// ```
3005    #[inline]
3006    #[unstable(feature = "try_find", reason = "new API", issue = "63178")]
3007    #[cfg(not(feature = "ferrocene_subset"))]
3008    fn try_find<R>(
3009        &mut self,
3010        f: impl FnMut(&Self::Item) -> R,
3011    ) -> ChangeOutputType<R, Option<Self::Item>>
3012    where
3013        Self: Sized,
3014        R: Try<Output = bool, Residual: Residual<Option<Self::Item>>>,
3015    {
3016        #[inline]
3017        fn check<I, V, R>(
3018            mut f: impl FnMut(&I) -> V,
3019        ) -> impl FnMut((), I) -> ControlFlow<R::TryType>
3020        where
3021            V: Try<Output = bool, Residual = R>,
3022            R: Residual<Option<I>>,
3023        {
3024            move |(), x| match f(&x).branch() {
3025                ControlFlow::Continue(false) => ControlFlow::Continue(()),
3026                ControlFlow::Continue(true) => ControlFlow::Break(Try::from_output(Some(x))),
3027                ControlFlow::Break(r) => ControlFlow::Break(FromResidual::from_residual(r)),
3028            }
3029        }
3030
3031        match self.try_fold((), check(f)) {
3032            ControlFlow::Break(x) => x,
3033            ControlFlow::Continue(()) => Try::from_output(None),
3034        }
3035    }
3036
3037    /// Searches for an element in an iterator, returning its index.
3038    ///
3039    /// `position()` takes a closure that returns `true` or `false`. It applies
3040    /// this closure to each element of the iterator, and if one of them
3041    /// returns `true`, then `position()` returns [`Some(index)`]. If all of
3042    /// them return `false`, it returns [`None`].
3043    ///
3044    /// `position()` is short-circuiting; in other words, it will stop
3045    /// processing as soon as it finds a `true`.
3046    ///
3047    /// # Overflow Behavior
3048    ///
3049    /// The method does no guarding against overflows, so if there are more
3050    /// than [`usize::MAX`] non-matching elements, it either produces the wrong
3051    /// result or panics. If overflow checks are enabled, a panic is
3052    /// guaranteed.
3053    ///
3054    /// # Panics
3055    ///
3056    /// This function might panic if the iterator has more than `usize::MAX`
3057    /// non-matching elements.
3058    ///
3059    /// [`Some(index)`]: Some
3060    ///
3061    /// # Examples
3062    ///
3063    /// Basic usage:
3064    ///
3065    /// ```
3066    /// let a = [1, 2, 3];
3067    ///
3068    /// assert_eq!(a.into_iter().position(|x| x == 2), Some(1));
3069    ///
3070    /// assert_eq!(a.into_iter().position(|x| x == 5), None);
3071    /// ```
3072    ///
3073    /// Stopping at the first `true`:
3074    ///
3075    /// ```
3076    /// let a = [1, 2, 3, 4];
3077    ///
3078    /// let mut iter = a.into_iter();
3079    ///
3080    /// assert_eq!(iter.position(|x| x >= 2), Some(1));
3081    ///
3082    /// // we can still use `iter`, as there are more elements.
3083    /// assert_eq!(iter.next(), Some(3));
3084    ///
3085    /// // The returned index depends on iterator state
3086    /// assert_eq!(iter.position(|x| x == 4), Some(0));
3087    ///
3088    /// ```
3089    #[inline]
3090    #[stable(feature = "rust1", since = "1.0.0")]
3091    fn position<P>(&mut self, predicate: P) -> Option<usize>
3092    where
3093        Self: Sized,
3094        P: FnMut(Self::Item) -> bool,
3095    {
3096        #[inline]
3097        fn check<'a, T>(
3098            mut predicate: impl FnMut(T) -> bool + 'a,
3099            acc: &'a mut usize,
3100        ) -> impl FnMut((), T) -> ControlFlow<usize, ()> + 'a {
3101            #[rustc_inherit_overflow_checks]
3102            move |_, x| {
3103                if predicate(x) {
3104                    ControlFlow::Break(*acc)
3105                } else {
3106                    *acc += 1;
3107                    ControlFlow::Continue(())
3108                }
3109            }
3110        }
3111
3112        let mut acc = 0;
3113        self.try_fold((), check(predicate, &mut acc)).break_value()
3114    }
3115
3116    /// Searches for an element in an iterator from the right, returning its
3117    /// index.
3118    ///
3119    /// `rposition()` takes a closure that returns `true` or `false`. It applies
3120    /// this closure to each element of the iterator, starting from the end,
3121    /// and if one of them returns `true`, then `rposition()` returns
3122    /// [`Some(index)`]. If all of them return `false`, it returns [`None`].
3123    ///
3124    /// `rposition()` is short-circuiting; in other words, it will stop
3125    /// processing as soon as it finds a `true`.
3126    ///
3127    /// [`Some(index)`]: Some
3128    ///
3129    /// # Examples
3130    ///
3131    /// Basic usage:
3132    ///
3133    /// ```
3134    /// let a = [1, 2, 3];
3135    ///
3136    /// assert_eq!(a.into_iter().rposition(|x| x == 3), Some(2));
3137    ///
3138    /// assert_eq!(a.into_iter().rposition(|x| x == 5), None);
3139    /// ```
3140    ///
3141    /// Stopping at the first `true`:
3142    ///
3143    /// ```
3144    /// let a = [-1, 2, 3, 4];
3145    ///
3146    /// let mut iter = a.into_iter();
3147    ///
3148    /// assert_eq!(iter.rposition(|x| x >= 2), Some(3));
3149    ///
3150    /// // we can still use `iter`, as there are more elements.
3151    /// assert_eq!(iter.next(), Some(-1));
3152    /// assert_eq!(iter.next_back(), Some(3));
3153    /// ```
3154    #[inline]
3155    #[stable(feature = "rust1", since = "1.0.0")]
3156    #[cfg(not(feature = "ferrocene_subset"))]
3157    fn rposition<P>(&mut self, predicate: P) -> Option<usize>
3158    where
3159        P: FnMut(Self::Item) -> bool,
3160        Self: Sized + ExactSizeIterator + DoubleEndedIterator,
3161    {
3162        // No need for an overflow check here, because `ExactSizeIterator`
3163        // implies that the number of elements fits into a `usize`.
3164        #[inline]
3165        fn check<T>(
3166            mut predicate: impl FnMut(T) -> bool,
3167        ) -> impl FnMut(usize, T) -> ControlFlow<usize, usize> {
3168            move |i, x| {
3169                let i = i - 1;
3170                if predicate(x) { ControlFlow::Break(i) } else { ControlFlow::Continue(i) }
3171            }
3172        }
3173
3174        let n = self.len();
3175        self.try_rfold(n, check(predicate)).break_value()
3176    }
3177
3178    /// Returns the maximum element of an iterator.
3179    ///
3180    /// If several elements are equally maximum, the last element is
3181    /// returned. If the iterator is empty, [`None`] is returned.
3182    ///
3183    /// Note that [`f32`]/[`f64`] doesn't implement [`Ord`] due to NaN being
3184    /// incomparable. You can work around this by using [`Iterator::reduce`]:
3185    /// ```
3186    /// assert_eq!(
3187    ///     [2.4, f32::NAN, 1.3]
3188    ///         .into_iter()
3189    ///         .reduce(f32::max)
3190    ///         .unwrap_or(0.),
3191    ///     2.4
3192    /// );
3193    /// ```
3194    ///
3195    /// # Examples
3196    ///
3197    /// ```
3198    /// let a = [1, 2, 3];
3199    /// let b: [u32; 0] = [];
3200    ///
3201    /// assert_eq!(a.into_iter().max(), Some(3));
3202    /// assert_eq!(b.into_iter().max(), None);
3203    /// ```
3204    #[inline]
3205    #[stable(feature = "rust1", since = "1.0.0")]
3206    #[cfg(not(feature = "ferrocene_subset"))]
3207    fn max(self) -> Option<Self::Item>
3208    where
3209        Self: Sized,
3210        Self::Item: Ord,
3211    {
3212        self.max_by(Ord::cmp)
3213    }
3214
3215    /// Returns the minimum element of an iterator.
3216    ///
3217    /// If several elements are equally minimum, the first element is returned.
3218    /// If the iterator is empty, [`None`] is returned.
3219    ///
3220    /// Note that [`f32`]/[`f64`] doesn't implement [`Ord`] due to NaN being
3221    /// incomparable. You can work around this by using [`Iterator::reduce`]:
3222    /// ```
3223    /// assert_eq!(
3224    ///     [2.4, f32::NAN, 1.3]
3225    ///         .into_iter()
3226    ///         .reduce(f32::min)
3227    ///         .unwrap_or(0.),
3228    ///     1.3
3229    /// );
3230    /// ```
3231    ///
3232    /// # Examples
3233    ///
3234    /// ```
3235    /// let a = [1, 2, 3];
3236    /// let b: [u32; 0] = [];
3237    ///
3238    /// assert_eq!(a.into_iter().min(), Some(1));
3239    /// assert_eq!(b.into_iter().min(), None);
3240    /// ```
3241    #[inline]
3242    #[stable(feature = "rust1", since = "1.0.0")]
3243    #[cfg(not(feature = "ferrocene_subset"))]
3244    fn min(self) -> Option<Self::Item>
3245    where
3246        Self: Sized,
3247        Self::Item: Ord,
3248    {
3249        self.min_by(Ord::cmp)
3250    }
3251
3252    /// Returns the element that gives the maximum value from the
3253    /// specified function.
3254    ///
3255    /// If several elements are equally maximum, the last element is
3256    /// returned. If the iterator is empty, [`None`] is returned.
3257    ///
3258    /// # Examples
3259    ///
3260    /// ```
3261    /// let a = [-3_i32, 0, 1, 5, -10];
3262    /// assert_eq!(a.into_iter().max_by_key(|x| x.abs()).unwrap(), -10);
3263    /// ```
3264    #[inline]
3265    #[stable(feature = "iter_cmp_by_key", since = "1.6.0")]
3266    #[cfg(not(feature = "ferrocene_subset"))]
3267    fn max_by_key<B: Ord, F>(self, f: F) -> Option<Self::Item>
3268    where
3269        Self: Sized,
3270        F: FnMut(&Self::Item) -> B,
3271    {
3272        #[inline]
3273        fn key<T, B>(mut f: impl FnMut(&T) -> B) -> impl FnMut(T) -> (B, T) {
3274            move |x| (f(&x), x)
3275        }
3276
3277        #[inline]
3278        fn compare<T, B: Ord>((x_p, _): &(B, T), (y_p, _): &(B, T)) -> Ordering {
3279            x_p.cmp(y_p)
3280        }
3281
3282        let (_, x) = self.map(key(f)).max_by(compare)?;
3283        Some(x)
3284    }
3285
3286    /// Returns the element that gives the maximum value with respect to the
3287    /// specified comparison function.
3288    ///
3289    /// If several elements are equally maximum, the last element is
3290    /// returned. If the iterator is empty, [`None`] is returned.
3291    ///
3292    /// # Examples
3293    ///
3294    /// ```
3295    /// let a = [-3_i32, 0, 1, 5, -10];
3296    /// assert_eq!(a.into_iter().max_by(|x, y| x.cmp(y)).unwrap(), 5);
3297    /// ```
3298    #[inline]
3299    #[stable(feature = "iter_max_by", since = "1.15.0")]
3300    fn max_by<F>(self, compare: F) -> Option<Self::Item>
3301    where
3302        Self: Sized,
3303        F: FnMut(&Self::Item, &Self::Item) -> Ordering,
3304    {
3305        #[inline]
3306        fn fold<T>(mut compare: impl FnMut(&T, &T) -> Ordering) -> impl FnMut(T, T) -> T {
3307            move |x, y| cmp::max_by(x, y, &mut compare)
3308        }
3309
3310        self.reduce(fold(compare))
3311    }
3312
3313    /// Returns the element that gives the minimum value from the
3314    /// specified function.
3315    ///
3316    /// If several elements are equally minimum, the first element is
3317    /// returned. If the iterator is empty, [`None`] is returned.
3318    ///
3319    /// # Examples
3320    ///
3321    /// ```
3322    /// let a = [-3_i32, 0, 1, 5, -10];
3323    /// assert_eq!(a.into_iter().min_by_key(|x| x.abs()).unwrap(), 0);
3324    /// ```
3325    #[inline]
3326    #[stable(feature = "iter_cmp_by_key", since = "1.6.0")]
3327    #[cfg(not(feature = "ferrocene_subset"))]
3328    fn min_by_key<B: Ord, F>(self, f: F) -> Option<Self::Item>
3329    where
3330        Self: Sized,
3331        F: FnMut(&Self::Item) -> B,
3332    {
3333        #[inline]
3334        fn key<T, B>(mut f: impl FnMut(&T) -> B) -> impl FnMut(T) -> (B, T) {
3335            move |x| (f(&x), x)
3336        }
3337
3338        #[inline]
3339        fn compare<T, B: Ord>((x_p, _): &(B, T), (y_p, _): &(B, T)) -> Ordering {
3340            x_p.cmp(y_p)
3341        }
3342
3343        let (_, x) = self.map(key(f)).min_by(compare)?;
3344        Some(x)
3345    }
3346
3347    /// Returns the element that gives the minimum value with respect to the
3348    /// specified comparison function.
3349    ///
3350    /// If several elements are equally minimum, the first element is
3351    /// returned. If the iterator is empty, [`None`] is returned.
3352    ///
3353    /// # Examples
3354    ///
3355    /// ```
3356    /// let a = [-3_i32, 0, 1, 5, -10];
3357    /// assert_eq!(a.into_iter().min_by(|x, y| x.cmp(y)).unwrap(), -10);
3358    /// ```
3359    #[inline]
3360    #[stable(feature = "iter_min_by", since = "1.15.0")]
3361    #[cfg(not(feature = "ferrocene_subset"))]
3362    fn min_by<F>(self, compare: F) -> Option<Self::Item>
3363    where
3364        Self: Sized,
3365        F: FnMut(&Self::Item, &Self::Item) -> Ordering,
3366    {
3367        #[inline]
3368        fn fold<T>(mut compare: impl FnMut(&T, &T) -> Ordering) -> impl FnMut(T, T) -> T {
3369            move |x, y| cmp::min_by(x, y, &mut compare)
3370        }
3371
3372        self.reduce(fold(compare))
3373    }
3374
3375    /// Reverses an iterator's direction.
3376    ///
3377    /// Usually, iterators iterate from left to right. After using `rev()`,
3378    /// an iterator will instead iterate from right to left.
3379    ///
3380    /// This is only possible if the iterator has an end, so `rev()` only
3381    /// works on [`DoubleEndedIterator`]s.
3382    ///
3383    /// # Examples
3384    ///
3385    /// ```
3386    /// let a = [1, 2, 3];
3387    ///
3388    /// let mut iter = a.into_iter().rev();
3389    ///
3390    /// assert_eq!(iter.next(), Some(3));
3391    /// assert_eq!(iter.next(), Some(2));
3392    /// assert_eq!(iter.next(), Some(1));
3393    ///
3394    /// assert_eq!(iter.next(), None);
3395    /// ```
3396    #[inline]
3397    #[doc(alias = "reverse")]
3398    #[stable(feature = "rust1", since = "1.0.0")]
3399    fn rev(self) -> Rev<Self>
3400    where
3401        Self: Sized + DoubleEndedIterator,
3402    {
3403        Rev::new(self)
3404    }
3405
3406    /// Converts an iterator of pairs into a pair of containers.
3407    ///
3408    /// `unzip()` consumes an entire iterator of pairs, producing two
3409    /// collections: one from the left elements of the pairs, and one
3410    /// from the right elements.
3411    ///
3412    /// This function is, in some sense, the opposite of [`zip`].
3413    ///
3414    /// [`zip`]: Iterator::zip
3415    ///
3416    /// # Examples
3417    ///
3418    /// ```
3419    /// let a = [(1, 2), (3, 4), (5, 6)];
3420    ///
3421    /// let (left, right): (Vec<_>, Vec<_>) = a.into_iter().unzip();
3422    ///
3423    /// assert_eq!(left, [1, 3, 5]);
3424    /// assert_eq!(right, [2, 4, 6]);
3425    ///
3426    /// // you can also unzip multiple nested tuples at once
3427    /// let a = [(1, (2, 3)), (4, (5, 6))];
3428    ///
3429    /// let (x, (y, z)): (Vec<_>, (Vec<_>, Vec<_>)) = a.into_iter().unzip();
3430    /// assert_eq!(x, [1, 4]);
3431    /// assert_eq!(y, [2, 5]);
3432    /// assert_eq!(z, [3, 6]);
3433    /// ```
3434    #[stable(feature = "rust1", since = "1.0.0")]
3435    #[cfg(not(feature = "ferrocene_subset"))]
3436    fn unzip<A, B, FromA, FromB>(self) -> (FromA, FromB)
3437    where
3438        FromA: Default + Extend<A>,
3439        FromB: Default + Extend<B>,
3440        Self: Sized + Iterator<Item = (A, B)>,
3441    {
3442        let mut unzipped: (FromA, FromB) = Default::default();
3443        unzipped.extend(self);
3444        unzipped
3445    }
3446
3447    /// Creates an iterator which copies all of its elements.
3448    ///
3449    /// This is useful when you have an iterator over `&T`, but you need an
3450    /// iterator over `T`.
3451    ///
3452    /// # Examples
3453    ///
3454    /// ```
3455    /// let a = [1, 2, 3];
3456    ///
3457    /// let v_copied: Vec<_> = a.iter().copied().collect();
3458    ///
3459    /// // copied is the same as .map(|&x| x)
3460    /// let v_map: Vec<_> = a.iter().map(|&x| x).collect();
3461    ///
3462    /// assert_eq!(v_copied, [1, 2, 3]);
3463    /// assert_eq!(v_map, [1, 2, 3]);
3464    /// ```
3465    #[stable(feature = "iter_copied", since = "1.36.0")]
3466    #[rustc_diagnostic_item = "iter_copied"]
3467    fn copied<'a, T>(self) -> Copied<Self>
3468    where
3469        T: Copy + 'a,
3470        Self: Sized + Iterator<Item = &'a T>,
3471    {
3472        Copied::new(self)
3473    }
3474
3475    /// Creates an iterator which [`clone`]s all of its elements.
3476    ///
3477    /// This is useful when you have an iterator over `&T`, but you need an
3478    /// iterator over `T`.
3479    ///
3480    /// There is no guarantee whatsoever about the `clone` method actually
3481    /// being called *or* optimized away. So code should not depend on
3482    /// either.
3483    ///
3484    /// [`clone`]: Clone::clone
3485    ///
3486    /// # Examples
3487    ///
3488    /// Basic usage:
3489    ///
3490    /// ```
3491    /// let a = [1, 2, 3];
3492    ///
3493    /// let v_cloned: Vec<_> = a.iter().cloned().collect();
3494    ///
3495    /// // cloned is the same as .map(|&x| x), for integers
3496    /// let v_map: Vec<_> = a.iter().map(|&x| x).collect();
3497    ///
3498    /// assert_eq!(v_cloned, [1, 2, 3]);
3499    /// assert_eq!(v_map, [1, 2, 3]);
3500    /// ```
3501    ///
3502    /// To get the best performance, try to clone late:
3503    ///
3504    /// ```
3505    /// let a = [vec![0_u8, 1, 2], vec![3, 4], vec![23]];
3506    /// // don't do this:
3507    /// let slower: Vec<_> = a.iter().cloned().filter(|s| s.len() == 1).collect();
3508    /// assert_eq!(&[vec![23]], &slower[..]);
3509    /// // instead call `cloned` late
3510    /// let faster: Vec<_> = a.iter().filter(|s| s.len() == 1).cloned().collect();
3511    /// assert_eq!(&[vec![23]], &faster[..]);
3512    /// ```
3513    #[stable(feature = "rust1", since = "1.0.0")]
3514    #[rustc_diagnostic_item = "iter_cloned"]
3515    fn cloned<'a, T>(self) -> Cloned<Self>
3516    where
3517        T: Clone + 'a,
3518        Self: Sized + Iterator<Item = &'a T>,
3519    {
3520        Cloned::new(self)
3521    }
3522
3523    /// Repeats an iterator endlessly.
3524    ///
3525    /// Instead of stopping at [`None`], the iterator will instead start again,
3526    /// from the beginning. After iterating again, it will start at the
3527    /// beginning again. And again. And again. Forever. Note that in case the
3528    /// original iterator is empty, the resulting iterator will also be empty.
3529    ///
3530    /// # Examples
3531    ///
3532    /// ```
3533    /// let a = [1, 2, 3];
3534    ///
3535    /// let mut iter = a.into_iter().cycle();
3536    ///
3537    /// loop {
3538    ///     assert_eq!(iter.next(), Some(1));
3539    ///     assert_eq!(iter.next(), Some(2));
3540    ///     assert_eq!(iter.next(), Some(3));
3541    /// #   break;
3542    /// }
3543    /// ```
3544    #[stable(feature = "rust1", since = "1.0.0")]
3545    #[inline]
3546    #[cfg(not(feature = "ferrocene_subset"))]
3547    fn cycle(self) -> Cycle<Self>
3548    where
3549        Self: Sized + Clone,
3550    {
3551        Cycle::new(self)
3552    }
3553
3554    /// Returns an iterator over `N` elements of the iterator at a time.
3555    ///
3556    /// The chunks do not overlap. If `N` does not divide the length of the
3557    /// iterator, then the last up to `N-1` elements will be omitted and can be
3558    /// retrieved from the [`.into_remainder()`][ArrayChunks::into_remainder]
3559    /// function of the iterator.
3560    ///
3561    /// # Panics
3562    ///
3563    /// Panics if `N` is zero.
3564    ///
3565    /// # Examples
3566    ///
3567    /// Basic usage:
3568    ///
3569    /// ```
3570    /// #![feature(iter_array_chunks)]
3571    ///
3572    /// let mut iter = "lorem".chars().array_chunks();
3573    /// assert_eq!(iter.next(), Some(['l', 'o']));
3574    /// assert_eq!(iter.next(), Some(['r', 'e']));
3575    /// assert_eq!(iter.next(), None);
3576    /// assert_eq!(iter.into_remainder().as_slice(), &['m']);
3577    /// ```
3578    ///
3579    /// ```
3580    /// #![feature(iter_array_chunks)]
3581    ///
3582    /// let data = [1, 1, 2, -2, 6, 0, 3, 1];
3583    /// //          ^-----^  ^------^
3584    /// for [x, y, z] in data.iter().array_chunks() {
3585    ///     assert_eq!(x + y + z, 4);
3586    /// }
3587    /// ```
3588    #[track_caller]
3589    #[unstable(feature = "iter_array_chunks", reason = "recently added", issue = "100450")]
3590    #[cfg(not(feature = "ferrocene_subset"))]
3591    fn array_chunks<const N: usize>(self) -> ArrayChunks<Self, N>
3592    where
3593        Self: Sized,
3594    {
3595        ArrayChunks::new(self)
3596    }
3597
3598    /// Sums the elements of an iterator.
3599    ///
3600    /// Takes each element, adds them together, and returns the result.
3601    ///
3602    /// An empty iterator returns the *additive identity* ("zero") of the type,
3603    /// which is `0` for integers and `-0.0` for floats.
3604    ///
3605    /// `sum()` can be used to sum any type implementing [`Sum`][`core::iter::Sum`],
3606    /// including [`Option`][`Option::sum`] and [`Result`][`Result::sum`].
3607    ///
3608    /// # Panics
3609    ///
3610    /// When calling `sum()` and a primitive integer type is being returned, this
3611    /// method will panic if the computation overflows and overflow checks are
3612    /// enabled.
3613    ///
3614    /// # Examples
3615    ///
3616    /// ```
3617    /// let a = [1, 2, 3];
3618    /// let sum: i32 = a.iter().sum();
3619    ///
3620    /// assert_eq!(sum, 6);
3621    ///
3622    /// let b: Vec<f32> = vec![];
3623    /// let sum: f32 = b.iter().sum();
3624    /// assert_eq!(sum, -0.0_f32);
3625    /// ```
3626    #[stable(feature = "iter_arith", since = "1.11.0")]
3627    fn sum<S>(self) -> S
3628    where
3629        Self: Sized,
3630        S: Sum<Self::Item>,
3631    {
3632        Sum::sum(self)
3633    }
3634
3635    /// Iterates over the entire iterator, multiplying all the elements
3636    ///
3637    /// An empty iterator returns the one value of the type.
3638    ///
3639    /// `product()` can be used to multiply any type implementing [`Product`][`core::iter::Product`],
3640    /// including [`Option`][`Option::product`] and [`Result`][`Result::product`].
3641    ///
3642    /// # Panics
3643    ///
3644    /// When calling `product()` and a primitive integer type is being returned,
3645    /// method will panic if the computation overflows and overflow checks are
3646    /// enabled.
3647    ///
3648    /// # Examples
3649    ///
3650    /// ```
3651    /// fn factorial(n: u32) -> u32 {
3652    ///     (1..=n).product()
3653    /// }
3654    /// assert_eq!(factorial(0), 1);
3655    /// assert_eq!(factorial(1), 1);
3656    /// assert_eq!(factorial(5), 120);
3657    /// ```
3658    #[stable(feature = "iter_arith", since = "1.11.0")]
3659    #[cfg(not(feature = "ferrocene_subset"))]
3660    fn product<P>(self) -> P
3661    where
3662        Self: Sized,
3663        P: Product<Self::Item>,
3664    {
3665        Product::product(self)
3666    }
3667
3668    /// [Lexicographically](Ord#lexicographical-comparison) compares the elements of this [`Iterator`] with those
3669    /// of another.
3670    ///
3671    /// # Examples
3672    ///
3673    /// ```
3674    /// use std::cmp::Ordering;
3675    ///
3676    /// assert_eq!([1].iter().cmp([1].iter()), Ordering::Equal);
3677    /// assert_eq!([1].iter().cmp([1, 2].iter()), Ordering::Less);
3678    /// assert_eq!([1, 2].iter().cmp([1].iter()), Ordering::Greater);
3679    /// ```
3680    #[stable(feature = "iter_order", since = "1.5.0")]
3681    #[cfg(not(feature = "ferrocene_subset"))]
3682    fn cmp<I>(self, other: I) -> Ordering
3683    where
3684        I: IntoIterator<Item = Self::Item>,
3685        Self::Item: Ord,
3686        Self: Sized,
3687    {
3688        self.cmp_by(other, |x, y| x.cmp(&y))
3689    }
3690
3691    /// [Lexicographically](Ord#lexicographical-comparison) compares the elements of this [`Iterator`] with those
3692    /// of another with respect to the specified comparison function.
3693    ///
3694    /// # Examples
3695    ///
3696    /// ```
3697    /// #![feature(iter_order_by)]
3698    ///
3699    /// use std::cmp::Ordering;
3700    ///
3701    /// let xs = [1, 2, 3, 4];
3702    /// let ys = [1, 4, 9, 16];
3703    ///
3704    /// assert_eq!(xs.into_iter().cmp_by(ys, |x, y| x.cmp(&y)), Ordering::Less);
3705    /// assert_eq!(xs.into_iter().cmp_by(ys, |x, y| (x * x).cmp(&y)), Ordering::Equal);
3706    /// assert_eq!(xs.into_iter().cmp_by(ys, |x, y| (2 * x).cmp(&y)), Ordering::Greater);
3707    /// ```
3708    #[unstable(feature = "iter_order_by", issue = "64295")]
3709    #[cfg(not(feature = "ferrocene_subset"))]
3710    fn cmp_by<I, F>(self, other: I, cmp: F) -> Ordering
3711    where
3712        Self: Sized,
3713        I: IntoIterator,
3714        F: FnMut(Self::Item, I::Item) -> Ordering,
3715    {
3716        #[inline]
3717        fn compare<X, Y, F>(mut cmp: F) -> impl FnMut(X, Y) -> ControlFlow<Ordering>
3718        where
3719            F: FnMut(X, Y) -> Ordering,
3720        {
3721            move |x, y| match cmp(x, y) {
3722                Ordering::Equal => ControlFlow::Continue(()),
3723                non_eq => ControlFlow::Break(non_eq),
3724            }
3725        }
3726
3727        match iter_compare(self, other.into_iter(), compare(cmp)) {
3728            ControlFlow::Continue(ord) => ord,
3729            ControlFlow::Break(ord) => ord,
3730        }
3731    }
3732
3733    /// [Lexicographically](Ord#lexicographical-comparison) compares the [`PartialOrd`] elements of
3734    /// this [`Iterator`] with those of another. The comparison works like short-circuit
3735    /// evaluation, returning a result without comparing the remaining elements.
3736    /// As soon as an order can be determined, the evaluation stops and a result is returned.
3737    ///
3738    /// # Examples
3739    ///
3740    /// ```
3741    /// use std::cmp::Ordering;
3742    ///
3743    /// assert_eq!([1.].iter().partial_cmp([1.].iter()), Some(Ordering::Equal));
3744    /// assert_eq!([1.].iter().partial_cmp([1., 2.].iter()), Some(Ordering::Less));
3745    /// assert_eq!([1., 2.].iter().partial_cmp([1.].iter()), Some(Ordering::Greater));
3746    /// ```
3747    ///
3748    /// For floating-point numbers, NaN does not have a total order and will result
3749    /// in `None` when compared:
3750    ///
3751    /// ```
3752    /// assert_eq!([f64::NAN].iter().partial_cmp([1.].iter()), None);
3753    /// ```
3754    ///
3755    /// The results are determined by the order of evaluation.
3756    ///
3757    /// ```
3758    /// use std::cmp::Ordering;
3759    ///
3760    /// assert_eq!([1.0, f64::NAN].iter().partial_cmp([2.0, f64::NAN].iter()), Some(Ordering::Less));
3761    /// assert_eq!([2.0, f64::NAN].iter().partial_cmp([1.0, f64::NAN].iter()), Some(Ordering::Greater));
3762    /// assert_eq!([f64::NAN, 1.0].iter().partial_cmp([f64::NAN, 2.0].iter()), None);
3763    /// ```
3764    ///
3765    #[stable(feature = "iter_order", since = "1.5.0")]
3766    #[cfg(not(feature = "ferrocene_subset"))]
3767    fn partial_cmp<I>(self, other: I) -> Option<Ordering>
3768    where
3769        I: IntoIterator,
3770        Self::Item: PartialOrd<I::Item>,
3771        Self: Sized,
3772    {
3773        self.partial_cmp_by(other, |x, y| x.partial_cmp(&y))
3774    }
3775
3776    /// [Lexicographically](Ord#lexicographical-comparison) compares the elements of this [`Iterator`] with those
3777    /// of another with respect to the specified comparison function.
3778    ///
3779    /// # Examples
3780    ///
3781    /// ```
3782    /// #![feature(iter_order_by)]
3783    ///
3784    /// use std::cmp::Ordering;
3785    ///
3786    /// let xs = [1.0, 2.0, 3.0, 4.0];
3787    /// let ys = [1.0, 4.0, 9.0, 16.0];
3788    ///
3789    /// assert_eq!(
3790    ///     xs.iter().partial_cmp_by(ys, |x, y| x.partial_cmp(&y)),
3791    ///     Some(Ordering::Less)
3792    /// );
3793    /// assert_eq!(
3794    ///     xs.iter().partial_cmp_by(ys, |x, y| (x * x).partial_cmp(&y)),
3795    ///     Some(Ordering::Equal)
3796    /// );
3797    /// assert_eq!(
3798    ///     xs.iter().partial_cmp_by(ys, |x, y| (2.0 * x).partial_cmp(&y)),
3799    ///     Some(Ordering::Greater)
3800    /// );
3801    /// ```
3802    #[unstable(feature = "iter_order_by", issue = "64295")]
3803    #[cfg(not(feature = "ferrocene_subset"))]
3804    fn partial_cmp_by<I, F>(self, other: I, partial_cmp: F) -> Option<Ordering>
3805    where
3806        Self: Sized,
3807        I: IntoIterator,
3808        F: FnMut(Self::Item, I::Item) -> Option<Ordering>,
3809    {
3810        #[inline]
3811        fn compare<X, Y, F>(mut partial_cmp: F) -> impl FnMut(X, Y) -> ControlFlow<Option<Ordering>>
3812        where
3813            F: FnMut(X, Y) -> Option<Ordering>,
3814        {
3815            move |x, y| match partial_cmp(x, y) {
3816                Some(Ordering::Equal) => ControlFlow::Continue(()),
3817                non_eq => ControlFlow::Break(non_eq),
3818            }
3819        }
3820
3821        match iter_compare(self, other.into_iter(), compare(partial_cmp)) {
3822            ControlFlow::Continue(ord) => Some(ord),
3823            ControlFlow::Break(ord) => ord,
3824        }
3825    }
3826
3827    /// Determines if the elements of this [`Iterator`] are equal to those of
3828    /// another.
3829    ///
3830    /// # Examples
3831    ///
3832    /// ```
3833    /// assert_eq!([1].iter().eq([1].iter()), true);
3834    /// assert_eq!([1].iter().eq([1, 2].iter()), false);
3835    /// ```
3836    #[stable(feature = "iter_order", since = "1.5.0")]
3837    fn eq<I>(self, other: I) -> bool
3838    where
3839        I: IntoIterator,
3840        Self::Item: PartialEq<I::Item>,
3841        Self: Sized,
3842    {
3843        self.eq_by(other, |x, y| x == y)
3844    }
3845
3846    /// Determines if the elements of this [`Iterator`] are equal to those of
3847    /// another with respect to the specified equality function.
3848    ///
3849    /// # Examples
3850    ///
3851    /// ```
3852    /// #![feature(iter_order_by)]
3853    ///
3854    /// let xs = [1, 2, 3, 4];
3855    /// let ys = [1, 4, 9, 16];
3856    ///
3857    /// assert!(xs.iter().eq_by(ys, |x, y| x * x == y));
3858    /// ```
3859    #[unstable(feature = "iter_order_by", issue = "64295")]
3860    fn eq_by<I, F>(self, other: I, eq: F) -> bool
3861    where
3862        Self: Sized,
3863        I: IntoIterator,
3864        F: FnMut(Self::Item, I::Item) -> bool,
3865    {
3866        #[inline]
3867        fn compare<X, Y, F>(mut eq: F) -> impl FnMut(X, Y) -> ControlFlow<()>
3868        where
3869            F: FnMut(X, Y) -> bool,
3870        {
3871            move |x, y| {
3872                if eq(x, y) { ControlFlow::Continue(()) } else { ControlFlow::Break(()) }
3873            }
3874        }
3875
3876        SpecIterEq::spec_iter_eq(self, other.into_iter(), compare(eq))
3877    }
3878
3879    /// Determines if the elements of this [`Iterator`] are not equal to those of
3880    /// another.
3881    ///
3882    /// # Examples
3883    ///
3884    /// ```
3885    /// assert_eq!([1].iter().ne([1].iter()), false);
3886    /// assert_eq!([1].iter().ne([1, 2].iter()), true);
3887    /// ```
3888    #[stable(feature = "iter_order", since = "1.5.0")]
3889    #[cfg(not(feature = "ferrocene_subset"))]
3890    fn ne<I>(self, other: I) -> bool
3891    where
3892        I: IntoIterator,
3893        Self::Item: PartialEq<I::Item>,
3894        Self: Sized,
3895    {
3896        !self.eq(other)
3897    }
3898
3899    /// Determines if the elements of this [`Iterator`] are [lexicographically](Ord#lexicographical-comparison)
3900    /// less than those of another.
3901    ///
3902    /// # Examples
3903    ///
3904    /// ```
3905    /// assert_eq!([1].iter().lt([1].iter()), false);
3906    /// assert_eq!([1].iter().lt([1, 2].iter()), true);
3907    /// assert_eq!([1, 2].iter().lt([1].iter()), false);
3908    /// assert_eq!([1, 2].iter().lt([1, 2].iter()), false);
3909    /// ```
3910    #[stable(feature = "iter_order", since = "1.5.0")]
3911    #[cfg(not(feature = "ferrocene_subset"))]
3912    fn lt<I>(self, other: I) -> bool
3913    where
3914        I: IntoIterator,
3915        Self::Item: PartialOrd<I::Item>,
3916        Self: Sized,
3917    {
3918        self.partial_cmp(other) == Some(Ordering::Less)
3919    }
3920
3921    /// Determines if the elements of this [`Iterator`] are [lexicographically](Ord#lexicographical-comparison)
3922    /// less or equal to those of another.
3923    ///
3924    /// # Examples
3925    ///
3926    /// ```
3927    /// assert_eq!([1].iter().le([1].iter()), true);
3928    /// assert_eq!([1].iter().le([1, 2].iter()), true);
3929    /// assert_eq!([1, 2].iter().le([1].iter()), false);
3930    /// assert_eq!([1, 2].iter().le([1, 2].iter()), true);
3931    /// ```
3932    #[stable(feature = "iter_order", since = "1.5.0")]
3933    #[cfg(not(feature = "ferrocene_subset"))]
3934    fn le<I>(self, other: I) -> bool
3935    where
3936        I: IntoIterator,
3937        Self::Item: PartialOrd<I::Item>,
3938        Self: Sized,
3939    {
3940        matches!(self.partial_cmp(other), Some(Ordering::Less | Ordering::Equal))
3941    }
3942
3943    /// Determines if the elements of this [`Iterator`] are [lexicographically](Ord#lexicographical-comparison)
3944    /// greater than those of another.
3945    ///
3946    /// # Examples
3947    ///
3948    /// ```
3949    /// assert_eq!([1].iter().gt([1].iter()), false);
3950    /// assert_eq!([1].iter().gt([1, 2].iter()), false);
3951    /// assert_eq!([1, 2].iter().gt([1].iter()), true);
3952    /// assert_eq!([1, 2].iter().gt([1, 2].iter()), false);
3953    /// ```
3954    #[stable(feature = "iter_order", since = "1.5.0")]
3955    #[cfg(not(feature = "ferrocene_subset"))]
3956    fn gt<I>(self, other: I) -> bool
3957    where
3958        I: IntoIterator,
3959        Self::Item: PartialOrd<I::Item>,
3960        Self: Sized,
3961    {
3962        self.partial_cmp(other) == Some(Ordering::Greater)
3963    }
3964
3965    /// Determines if the elements of this [`Iterator`] are [lexicographically](Ord#lexicographical-comparison)
3966    /// greater than or equal to those of another.
3967    ///
3968    /// # Examples
3969    ///
3970    /// ```
3971    /// assert_eq!([1].iter().ge([1].iter()), true);
3972    /// assert_eq!([1].iter().ge([1, 2].iter()), false);
3973    /// assert_eq!([1, 2].iter().ge([1].iter()), true);
3974    /// assert_eq!([1, 2].iter().ge([1, 2].iter()), true);
3975    /// ```
3976    #[stable(feature = "iter_order", since = "1.5.0")]
3977    #[cfg(not(feature = "ferrocene_subset"))]
3978    fn ge<I>(self, other: I) -> bool
3979    where
3980        I: IntoIterator,
3981        Self::Item: PartialOrd<I::Item>,
3982        Self: Sized,
3983    {
3984        matches!(self.partial_cmp(other), Some(Ordering::Greater | Ordering::Equal))
3985    }
3986
3987    /// Checks if the elements of this iterator are sorted.
3988    ///
3989    /// That is, for each element `a` and its following element `b`, `a <= b` must hold. If the
3990    /// iterator yields exactly zero or one element, `true` is returned.
3991    ///
3992    /// Note that if `Self::Item` is only `PartialOrd`, but not `Ord`, the above definition
3993    /// implies that this function returns `false` if any two consecutive items are not
3994    /// comparable.
3995    ///
3996    /// # Examples
3997    ///
3998    /// ```
3999    /// assert!([1, 2, 2, 9].iter().is_sorted());
4000    /// assert!(![1, 3, 2, 4].iter().is_sorted());
4001    /// assert!([0].iter().is_sorted());
4002    /// assert!(std::iter::empty::<i32>().is_sorted());
4003    /// assert!(![0.0, 1.0, f32::NAN].iter().is_sorted());
4004    /// ```
4005    #[inline]
4006    #[stable(feature = "is_sorted", since = "1.82.0")]
4007    #[cfg(not(feature = "ferrocene_subset"))]
4008    fn is_sorted(self) -> bool
4009    where
4010        Self: Sized,
4011        Self::Item: PartialOrd,
4012    {
4013        self.is_sorted_by(|a, b| a <= b)
4014    }
4015
4016    /// Checks if the elements of this iterator are sorted using the given comparator function.
4017    ///
4018    /// Instead of using `PartialOrd::partial_cmp`, this function uses the given `compare`
4019    /// function to determine whether two elements are to be considered in sorted order.
4020    ///
4021    /// # Examples
4022    ///
4023    /// ```
4024    /// assert!([1, 2, 2, 9].iter().is_sorted_by(|a, b| a <= b));
4025    /// assert!(![1, 2, 2, 9].iter().is_sorted_by(|a, b| a < b));
4026    ///
4027    /// assert!([0].iter().is_sorted_by(|a, b| true));
4028    /// assert!([0].iter().is_sorted_by(|a, b| false));
4029    ///
4030    /// assert!(std::iter::empty::<i32>().is_sorted_by(|a, b| false));
4031    /// assert!(std::iter::empty::<i32>().is_sorted_by(|a, b| true));
4032    /// ```
4033    #[stable(feature = "is_sorted", since = "1.82.0")]
4034    #[cfg(not(feature = "ferrocene_subset"))]
4035    fn is_sorted_by<F>(mut self, compare: F) -> bool
4036    where
4037        Self: Sized,
4038        F: FnMut(&Self::Item, &Self::Item) -> bool,
4039    {
4040        #[inline]
4041        fn check<'a, T>(
4042            last: &'a mut T,
4043            mut compare: impl FnMut(&T, &T) -> bool + 'a,
4044        ) -> impl FnMut(T) -> bool + 'a {
4045            move |curr| {
4046                if !compare(&last, &curr) {
4047                    return false;
4048                }
4049                *last = curr;
4050                true
4051            }
4052        }
4053
4054        let mut last = match self.next() {
4055            Some(e) => e,
4056            None => return true,
4057        };
4058
4059        self.all(check(&mut last, compare))
4060    }
4061
4062    /// Checks if the elements of this iterator are sorted using the given key extraction
4063    /// function.
4064    ///
4065    /// Instead of comparing the iterator's elements directly, this function compares the keys of
4066    /// the elements, as determined by `f`. Apart from that, it's equivalent to [`is_sorted`]; see
4067    /// its documentation for more information.
4068    ///
4069    /// [`is_sorted`]: Iterator::is_sorted
4070    ///
4071    /// # Examples
4072    ///
4073    /// ```
4074    /// assert!(["c", "bb", "aaa"].iter().is_sorted_by_key(|s| s.len()));
4075    /// assert!(![-2i32, -1, 0, 3].iter().is_sorted_by_key(|n| n.abs()));
4076    /// ```
4077    #[inline]
4078    #[stable(feature = "is_sorted", since = "1.82.0")]
4079    #[cfg(not(feature = "ferrocene_subset"))]
4080    fn is_sorted_by_key<F, K>(self, f: F) -> bool
4081    where
4082        Self: Sized,
4083        F: FnMut(Self::Item) -> K,
4084        K: PartialOrd,
4085    {
4086        self.map(f).is_sorted()
4087    }
4088
4089    /// See [TrustedRandomAccess][super::super::TrustedRandomAccess]
4090    // The unusual name is to avoid name collisions in method resolution
4091    // see #76479.
4092    #[inline]
4093    #[doc(hidden)]
4094    #[unstable(feature = "trusted_random_access", issue = "none")]
4095    #[cfg(not(feature = "ferrocene_subset"))]
4096    unsafe fn __iterator_get_unchecked(&mut self, _idx: usize) -> Self::Item
4097    where
4098        Self: TrustedRandomAccessNoCoerce,
4099    {
4100        unreachable!("Always specialized");
4101    }
4102}
4103
4104trait SpecIterEq<B: Iterator>: Iterator {
4105    fn spec_iter_eq<F>(self, b: B, f: F) -> bool
4106    where
4107        F: FnMut(Self::Item, <B as Iterator>::Item) -> ControlFlow<()>;
4108}
4109
4110impl<A: Iterator, B: Iterator> SpecIterEq<B> for A {
4111    #[inline]
4112    default fn spec_iter_eq<F>(self, b: B, f: F) -> bool
4113    where
4114        F: FnMut(Self::Item, <B as Iterator>::Item) -> ControlFlow<()>,
4115    {
4116        iter_eq(self, b, f)
4117    }
4118}
4119
4120impl<A: Iterator + TrustedLen, B: Iterator + TrustedLen> SpecIterEq<B> for A {
4121    #[inline]
4122    fn spec_iter_eq<F>(self, b: B, f: F) -> bool
4123    where
4124        F: FnMut(Self::Item, <B as Iterator>::Item) -> ControlFlow<()>,
4125    {
4126        // we *can't* short-circuit if:
4127        match (self.size_hint(), b.size_hint()) {
4128            // ... both iterators have the same length
4129            ((_, Some(a)), (_, Some(b))) if a == b => {}
4130            // ... or both of them are longer than `usize::MAX` (i.e. have an unknown length).
4131            ((_, None), (_, None)) => {}
4132            // otherwise, we can ascertain that they are unequal without actually comparing items
4133            _ => return false,
4134        }
4135
4136        iter_eq(self, b, f)
4137    }
4138}
4139
4140/// Compares two iterators element-wise using the given function.
4141///
4142/// If `ControlFlow::Continue(())` is returned from the function, the comparison moves on to the next
4143/// elements of both iterators. Returning `ControlFlow::Break(x)` short-circuits the iteration and
4144/// returns `ControlFlow::Break(x)`. If one of the iterators runs out of elements,
4145/// `ControlFlow::Continue(ord)` is returned where `ord` is the result of comparing the lengths of
4146/// the iterators.
4147///
4148/// Isolates the logic shared by ['cmp_by'](Iterator::cmp_by),
4149/// ['partial_cmp_by'](Iterator::partial_cmp_by), and ['eq_by'](Iterator::eq_by).
4150#[inline]
4151fn iter_compare<A, B, F, T>(mut a: A, mut b: B, f: F) -> ControlFlow<T, Ordering>
4152where
4153    A: Iterator,
4154    B: Iterator,
4155    F: FnMut(A::Item, B::Item) -> ControlFlow<T>,
4156{
4157    #[inline]
4158    fn compare<'a, B, X, T>(
4159        b: &'a mut B,
4160        mut f: impl FnMut(X, B::Item) -> ControlFlow<T> + 'a,
4161    ) -> impl FnMut(X) -> ControlFlow<ControlFlow<T, Ordering>> + 'a
4162    where
4163        B: Iterator,
4164    {
4165        move |x| match b.next() {
4166            None => ControlFlow::Break(ControlFlow::Continue(Ordering::Greater)),
4167            Some(y) => f(x, y).map_break(ControlFlow::Break),
4168        }
4169    }
4170
4171    match a.try_for_each(compare(&mut b, f)) {
4172        ControlFlow::Continue(()) => ControlFlow::Continue(match b.next() {
4173            None => Ordering::Equal,
4174            Some(_) => Ordering::Less,
4175        }),
4176        ControlFlow::Break(x) => x,
4177    }
4178}
4179
4180#[inline]
4181fn iter_eq<A, B, F>(a: A, b: B, f: F) -> bool
4182where
4183    A: Iterator,
4184    B: Iterator,
4185    F: FnMut(A::Item, B::Item) -> ControlFlow<()>,
4186{
4187    iter_compare(a, b, f).continue_value().is_some_and(|ord| ord == Ordering::Equal)
4188}
4189
4190/// Implements `Iterator` for mutable references to iterators, such as those produced by [`Iterator::by_ref`].
4191///
4192/// This implementation passes all method calls on to the original iterator.
4193#[stable(feature = "rust1", since = "1.0.0")]
4194impl<I: Iterator + ?Sized> Iterator for &mut I {
4195    type Item = I::Item;
4196    #[inline]
4197    fn next(&mut self) -> Option<I::Item> {
4198        (**self).next()
4199    }
4200    fn size_hint(&self) -> (usize, Option<usize>) {
4201        (**self).size_hint()
4202    }
4203    fn advance_by(&mut self, n: usize) -> Result<(), NonZero<usize>> {
4204        (**self).advance_by(n)
4205    }
4206    fn nth(&mut self, n: usize) -> Option<Self::Item> {
4207        (**self).nth(n)
4208    }
4209    #[cfg(not(feature = "ferrocene_subset"))]
4210    fn fold<B, F>(self, init: B, f: F) -> B
4211    where
4212        F: FnMut(B, Self::Item) -> B,
4213    {
4214        self.spec_fold(init, f)
4215    }
4216    fn try_fold<B, F, R>(&mut self, init: B, f: F) -> R
4217    where
4218        F: FnMut(B, Self::Item) -> R,
4219        R: Try<Output = B>,
4220    {
4221        self.spec_try_fold(init, f)
4222    }
4223}
4224
4225/// Helper trait to specialize `fold` and `try_fold` for `&mut I where I: Sized`
4226trait IteratorRefSpec: Iterator {
4227    #[cfg(not(feature = "ferrocene_subset"))]
4228    fn spec_fold<B, F>(self, init: B, f: F) -> B
4229    where
4230        F: FnMut(B, Self::Item) -> B;
4231
4232    fn spec_try_fold<B, F, R>(&mut self, init: B, f: F) -> R
4233    where
4234        F: FnMut(B, Self::Item) -> R,
4235        R: Try<Output = B>;
4236}
4237
4238impl<I: Iterator + ?Sized> IteratorRefSpec for &mut I {
4239    #[cfg(not(feature = "ferrocene_subset"))]
4240    default fn spec_fold<B, F>(self, init: B, mut f: F) -> B
4241    where
4242        F: FnMut(B, Self::Item) -> B,
4243    {
4244        let mut accum = init;
4245        while let Some(x) = self.next() {
4246            accum = f(accum, x);
4247        }
4248        accum
4249    }
4250
4251    default fn spec_try_fold<B, F, R>(&mut self, init: B, mut f: F) -> R
4252    where
4253        F: FnMut(B, Self::Item) -> R,
4254        R: Try<Output = B>,
4255    {
4256        let mut accum = init;
4257        while let Some(x) = self.next() {
4258            accum = f(accum, x)?;
4259        }
4260        try { accum }
4261    }
4262}
4263
4264#[cfg(not(feature = "ferrocene_subset"))]
4265impl<I: Iterator> IteratorRefSpec for &mut I {
4266    impl_fold_via_try_fold! { spec_fold -> spec_try_fold }
4267
4268    fn spec_try_fold<B, F, R>(&mut self, init: B, f: F) -> R
4269    where
4270        F: FnMut(B, Self::Item) -> R,
4271        R: Try<Output = B>,
4272    {
4273        (**self).try_fold(init, f)
4274    }
4275}