core/iter/traits/
iterator.rs

1#[cfg(not(feature = "ferrocene_certified"))]
2use super::super::{
3    ArrayChunks, ByRefSized, Chain, Cloned, Copied, Cycle, Enumerate, Filter, FilterMap, FlatMap,
4    Flatten, Fuse, Inspect, Intersperse, IntersperseWith, Map, MapWhile, MapWindows, Peekable,
5    Product, Rev, Scan, Skip, SkipWhile, StepBy, Sum, Take, TakeWhile, TrustedRandomAccessNoCoerce,
6    Zip, try_process,
7};
8#[cfg(not(feature = "ferrocene_certified"))]
9use super::TrustedLen;
10#[cfg(not(feature = "ferrocene_certified"))]
11use crate::array;
12use crate::cmp::{self, Ordering};
13use crate::num::NonZero;
14#[cfg(not(feature = "ferrocene_certified"))]
15use crate::ops::{ChangeOutputType, ControlFlow, FromResidual, Residual, Try};
16
17// Ferrocene addition: imports for certified subset
18#[cfg(feature = "ferrocene_certified")]
19#[rustfmt::skip]
20use {
21    super::super::{
22        Cloned, DoubleEndedIterator, Enumerate, Filter, Map, Rev, Skip, StepBy, Sum, Take, Zip,
23    },
24    crate::ops::{ControlFlow, Try},
25};
26
27#[cfg(not(feature = "ferrocene_certified"))]
28fn _assert_is_dyn_compatible(_: &dyn Iterator<Item = ()>) {}
29
30/// A trait for dealing with iterators.
31///
32/// This is the main iterator trait. For more about the concept of iterators
33/// generally, please see the [module-level documentation]. In particular, you
34/// may want to know how to [implement `Iterator`][impl].
35///
36/// [module-level documentation]: crate::iter
37/// [impl]: crate::iter#implementing-iterator
38#[stable(feature = "rust1", since = "1.0.0")]
39#[rustc_on_unimplemented(
40    on(
41        Self = "core::ops::range::RangeTo<Idx>",
42        note = "you might have meant to use a bounded `Range`"
43    ),
44    on(
45        Self = "core::ops::range::RangeToInclusive<Idx>",
46        note = "you might have meant to use a bounded `RangeInclusive`"
47    ),
48    label = "`{Self}` is not an iterator",
49    message = "`{Self}` is not an iterator"
50)]
51#[cfg_attr(not(feature = "ferrocene_certified"), doc(notable_trait))]
52#[lang = "iterator"]
53#[rustc_diagnostic_item = "Iterator"]
54#[must_use = "iterators are lazy and do nothing unless consumed"]
55pub trait Iterator {
56    /// The type of the elements being iterated over.
57    #[rustc_diagnostic_item = "IteratorItem"]
58    #[stable(feature = "rust1", since = "1.0.0")]
59    type Item;
60
61    /// Advances the iterator and returns the next value.
62    ///
63    /// Returns [`None`] when iteration is finished. Individual iterator
64    /// implementations may choose to resume iteration, and so calling `next()`
65    /// again may or may not eventually start returning [`Some(Item)`] again at some
66    /// point.
67    ///
68    /// [`Some(Item)`]: Some
69    ///
70    /// # Examples
71    ///
72    /// ```
73    /// let a = [1, 2, 3];
74    ///
75    /// let mut iter = a.into_iter();
76    ///
77    /// // A call to next() returns the next value...
78    /// assert_eq!(Some(1), iter.next());
79    /// assert_eq!(Some(2), iter.next());
80    /// assert_eq!(Some(3), iter.next());
81    ///
82    /// // ... and then None once it's over.
83    /// assert_eq!(None, iter.next());
84    ///
85    /// // More calls may or may not return `None`. Here, they always will.
86    /// assert_eq!(None, iter.next());
87    /// assert_eq!(None, iter.next());
88    /// ```
89    #[lang = "next"]
90    #[stable(feature = "rust1", since = "1.0.0")]
91    fn next(&mut self) -> Option<Self::Item>;
92
93    /// Advances the iterator and returns an array containing the next `N` values.
94    ///
95    /// If there are not enough elements to fill the array then `Err` is returned
96    /// containing an iterator over the remaining elements.
97    ///
98    /// # Examples
99    ///
100    /// Basic usage:
101    ///
102    /// ```
103    /// #![feature(iter_next_chunk)]
104    ///
105    /// let mut iter = "lorem".chars();
106    ///
107    /// assert_eq!(iter.next_chunk().unwrap(), ['l', 'o']);              // N is inferred as 2
108    /// assert_eq!(iter.next_chunk().unwrap(), ['r', 'e', 'm']);         // N is inferred as 3
109    /// assert_eq!(iter.next_chunk::<4>().unwrap_err().as_slice(), &[]); // N is explicitly 4
110    /// ```
111    ///
112    /// Split a string and get the first three items.
113    ///
114    /// ```
115    /// #![feature(iter_next_chunk)]
116    ///
117    /// let quote = "not all those who wander are lost";
118    /// let [first, second, third] = quote.split_whitespace().next_chunk().unwrap();
119    /// assert_eq!(first, "not");
120    /// assert_eq!(second, "all");
121    /// assert_eq!(third, "those");
122    /// ```
123    #[inline]
124    #[unstable(feature = "iter_next_chunk", reason = "recently added", issue = "98326")]
125    #[cfg(not(feature = "ferrocene_certified"))]
126    fn next_chunk<const N: usize>(
127        &mut self,
128    ) -> Result<[Self::Item; N], array::IntoIter<Self::Item, N>>
129    where
130        Self: Sized,
131    {
132        array::iter_next_chunk(self)
133    }
134
135    /// Returns the bounds on the remaining length of the iterator.
136    ///
137    /// Specifically, `size_hint()` returns a tuple where the first element
138    /// is the lower bound, and the second element is the upper bound.
139    ///
140    /// The second half of the tuple that is returned is an <code>[Option]<[usize]></code>.
141    /// A [`None`] here means that either there is no known upper bound, or the
142    /// upper bound is larger than [`usize`].
143    ///
144    /// # Implementation notes
145    ///
146    /// It is not enforced that an iterator implementation yields the declared
147    /// number of elements. A buggy iterator may yield less than the lower bound
148    /// or more than the upper bound of elements.
149    ///
150    /// `size_hint()` is primarily intended to be used for optimizations such as
151    /// reserving space for the elements of the iterator, but must not be
152    /// trusted to e.g., omit bounds checks in unsafe code. An incorrect
153    /// implementation of `size_hint()` should not lead to memory safety
154    /// violations.
155    ///
156    /// That said, the implementation should provide a correct estimation,
157    /// because otherwise it would be a violation of the trait's protocol.
158    ///
159    /// The default implementation returns <code>(0, [None])</code> which is correct for any
160    /// iterator.
161    ///
162    /// # Examples
163    ///
164    /// Basic usage:
165    ///
166    /// ```
167    /// let a = [1, 2, 3];
168    /// let mut iter = a.iter();
169    ///
170    /// assert_eq!((3, Some(3)), iter.size_hint());
171    /// let _ = iter.next();
172    /// assert_eq!((2, Some(2)), iter.size_hint());
173    /// ```
174    ///
175    /// A more complex example:
176    ///
177    /// ```
178    /// // The even numbers in the range of zero to nine.
179    /// let iter = (0..10).filter(|x| x % 2 == 0);
180    ///
181    /// // We might iterate from zero to ten times. Knowing that it's five
182    /// // exactly wouldn't be possible without executing filter().
183    /// assert_eq!((0, Some(10)), iter.size_hint());
184    ///
185    /// // Let's add five more numbers with chain()
186    /// let iter = (0..10).filter(|x| x % 2 == 0).chain(15..20);
187    ///
188    /// // now both bounds are increased by five
189    /// assert_eq!((5, Some(15)), iter.size_hint());
190    /// ```
191    ///
192    /// Returning `None` for an upper bound:
193    ///
194    /// ```
195    /// // an infinite iterator has no upper bound
196    /// // and the maximum possible lower bound
197    /// let iter = 0..;
198    ///
199    /// assert_eq!((usize::MAX, None), iter.size_hint());
200    /// ```
201    #[inline]
202    #[stable(feature = "rust1", since = "1.0.0")]
203    fn size_hint(&self) -> (usize, Option<usize>) {
204        (0, None)
205    }
206
207    /// Consumes the iterator, counting the number of iterations and returning it.
208    ///
209    /// This method will call [`next`] repeatedly until [`None`] is encountered,
210    /// returning the number of times it saw [`Some`]. Note that [`next`] has to be
211    /// called at least once even if the iterator does not have any elements.
212    ///
213    /// [`next`]: Iterator::next
214    ///
215    /// # Overflow Behavior
216    ///
217    /// The method does no guarding against overflows, so counting elements of
218    /// an iterator with more than [`usize::MAX`] elements either produces the
219    /// wrong result or panics. If overflow checks are enabled, a panic is
220    /// guaranteed.
221    ///
222    /// # Panics
223    ///
224    /// This function might panic if the iterator has more than [`usize::MAX`]
225    /// elements.
226    ///
227    /// # Examples
228    ///
229    /// ```
230    /// let a = [1, 2, 3];
231    /// assert_eq!(a.iter().count(), 3);
232    ///
233    /// let a = [1, 2, 3, 4, 5];
234    /// assert_eq!(a.iter().count(), 5);
235    /// ```
236    #[inline]
237    #[stable(feature = "rust1", since = "1.0.0")]
238    #[cfg(not(feature = "ferrocene_certified"))]
239    fn count(self) -> usize
240    where
241        Self: Sized,
242    {
243        self.fold(
244            0,
245            #[rustc_inherit_overflow_checks]
246            |count, _| count + 1,
247        )
248    }
249
250    /// Consumes the iterator, returning the last element.
251    ///
252    /// This method will evaluate the iterator until it returns [`None`]. While
253    /// doing so, it keeps track of the current element. After [`None`] is
254    /// returned, `last()` will then return the last element it saw.
255    ///
256    /// # Examples
257    ///
258    /// ```
259    /// let a = [1, 2, 3];
260    /// assert_eq!(a.into_iter().last(), Some(3));
261    ///
262    /// let a = [1, 2, 3, 4, 5];
263    /// assert_eq!(a.into_iter().last(), Some(5));
264    /// ```
265    #[inline]
266    #[stable(feature = "rust1", since = "1.0.0")]
267    #[cfg(not(feature = "ferrocene_certified"))]
268    fn last(self) -> Option<Self::Item>
269    where
270        Self: Sized,
271    {
272        #[inline]
273        fn some<T>(_: Option<T>, x: T) -> Option<T> {
274            Some(x)
275        }
276
277        self.fold(None, some)
278    }
279
280    /// Advances the iterator by `n` elements.
281    ///
282    /// This method will eagerly skip `n` elements by calling [`next`] up to `n`
283    /// times until [`None`] is encountered.
284    ///
285    /// `advance_by(n)` will return `Ok(())` if the iterator successfully advances by
286    /// `n` elements, or a `Err(NonZero<usize>)` with value `k` if [`None`] is encountered,
287    /// where `k` is remaining number of steps that could not be advanced because the iterator ran out.
288    /// If `self` is empty and `n` is non-zero, then this returns `Err(n)`.
289    /// Otherwise, `k` is always less than `n`.
290    ///
291    /// Calling `advance_by(0)` can do meaningful work, for example [`Flatten`]
292    /// can advance its outer iterator until it finds an inner iterator that is not empty, which
293    /// then often allows it to return a more accurate `size_hint()` than in its initial state.
294    ///
295    /// [`Flatten`]: crate::iter::Flatten
296    /// [`next`]: Iterator::next
297    ///
298    /// # Examples
299    ///
300    /// ```
301    /// #![feature(iter_advance_by)]
302    ///
303    /// use std::num::NonZero;
304    ///
305    /// let a = [1, 2, 3, 4];
306    /// let mut iter = a.into_iter();
307    ///
308    /// assert_eq!(iter.advance_by(2), Ok(()));
309    /// assert_eq!(iter.next(), Some(3));
310    /// assert_eq!(iter.advance_by(0), Ok(()));
311    /// assert_eq!(iter.advance_by(100), Err(NonZero::new(99).unwrap())); // only `4` was skipped
312    /// ```
313    #[inline]
314    #[unstable(feature = "iter_advance_by", reason = "recently added", issue = "77404")]
315    fn advance_by(&mut self, n: usize) -> Result<(), NonZero<usize>> {
316        /// Helper trait to specialize `advance_by` via `try_fold` for `Sized` iterators.
317        trait SpecAdvanceBy {
318            fn spec_advance_by(&mut self, n: usize) -> Result<(), NonZero<usize>>;
319        }
320
321        impl<I: Iterator + ?Sized> SpecAdvanceBy for I {
322            default fn spec_advance_by(&mut self, n: usize) -> Result<(), NonZero<usize>> {
323                for i in 0..n {
324                    if self.next().is_none() {
325                        // SAFETY: `i` is always less than `n`.
326                        return Err(unsafe { NonZero::new_unchecked(n - i) });
327                    }
328                }
329                Ok(())
330            }
331        }
332
333        impl<I: Iterator> SpecAdvanceBy for I {
334            fn spec_advance_by(&mut self, n: usize) -> Result<(), NonZero<usize>> {
335                let Some(n) = NonZero::new(n) else {
336                    return Ok(());
337                };
338
339                let res = self.try_fold(n, |n, _| NonZero::new(n.get() - 1));
340
341                match res {
342                    None => Ok(()),
343                    Some(n) => Err(n),
344                }
345            }
346        }
347
348        self.spec_advance_by(n)
349    }
350
351    /// Returns the `n`th element of the iterator.
352    ///
353    /// Like most indexing operations, the count starts from zero, so `nth(0)`
354    /// returns the first value, `nth(1)` the second, and so on.
355    ///
356    /// Note that all preceding elements, as well as the returned element, will be
357    /// consumed from the iterator. That means that the preceding elements will be
358    /// discarded, and also that calling `nth(0)` multiple times on the same iterator
359    /// will return different elements.
360    ///
361    /// `nth()` will return [`None`] if `n` is greater than or equal to the length of the
362    /// iterator.
363    ///
364    /// # Examples
365    ///
366    /// Basic usage:
367    ///
368    /// ```
369    /// let a = [1, 2, 3];
370    /// assert_eq!(a.into_iter().nth(1), Some(2));
371    /// ```
372    ///
373    /// Calling `nth()` multiple times doesn't rewind the iterator:
374    ///
375    /// ```
376    /// let a = [1, 2, 3];
377    ///
378    /// let mut iter = a.into_iter();
379    ///
380    /// assert_eq!(iter.nth(1), Some(2));
381    /// assert_eq!(iter.nth(1), None);
382    /// ```
383    ///
384    /// Returning `None` if there are less than `n + 1` elements:
385    ///
386    /// ```
387    /// let a = [1, 2, 3];
388    /// assert_eq!(a.into_iter().nth(10), None);
389    /// ```
390    #[inline]
391    #[stable(feature = "rust1", since = "1.0.0")]
392    fn nth(&mut self, n: usize) -> Option<Self::Item> {
393        self.advance_by(n).ok()?;
394        self.next()
395    }
396
397    /// Creates an iterator starting at the same point, but stepping by
398    /// the given amount at each iteration.
399    ///
400    /// Note 1: The first element of the iterator will always be returned,
401    /// regardless of the step given.
402    ///
403    /// Note 2: The time at which ignored elements are pulled is not fixed.
404    /// `StepBy` behaves like the sequence `self.next()`, `self.nth(step-1)`,
405    /// `self.nth(step-1)`, …, but is also free to behave like the sequence
406    /// `advance_n_and_return_first(&mut self, step)`,
407    /// `advance_n_and_return_first(&mut self, step)`, …
408    /// Which way is used may change for some iterators for performance reasons.
409    /// The second way will advance the iterator earlier and may consume more items.
410    ///
411    /// `advance_n_and_return_first` is the equivalent of:
412    /// ```
413    /// fn advance_n_and_return_first<I>(iter: &mut I, n: usize) -> Option<I::Item>
414    /// where
415    ///     I: Iterator,
416    /// {
417    ///     let next = iter.next();
418    ///     if n > 1 {
419    ///         iter.nth(n - 2);
420    ///     }
421    ///     next
422    /// }
423    /// ```
424    ///
425    /// # Panics
426    ///
427    /// The method will panic if the given step is `0`.
428    ///
429    /// # Examples
430    ///
431    /// ```
432    /// let a = [0, 1, 2, 3, 4, 5];
433    /// let mut iter = a.into_iter().step_by(2);
434    ///
435    /// assert_eq!(iter.next(), Some(0));
436    /// assert_eq!(iter.next(), Some(2));
437    /// assert_eq!(iter.next(), Some(4));
438    /// assert_eq!(iter.next(), None);
439    /// ```
440    #[inline]
441    #[stable(feature = "iterator_step_by", since = "1.28.0")]
442    fn step_by(self, step: usize) -> StepBy<Self>
443    where
444        Self: Sized,
445    {
446        StepBy::new(self, step)
447    }
448
449    /// Takes two iterators and creates a new iterator over both in sequence.
450    ///
451    /// `chain()` will return a new iterator which will first iterate over
452    /// values from the first iterator and then over values from the second
453    /// iterator.
454    ///
455    /// In other words, it links two iterators together, in a chain. 🔗
456    ///
457    /// [`once`] is commonly used to adapt a single value into a chain of
458    /// other kinds of iteration.
459    ///
460    /// # Examples
461    ///
462    /// Basic usage:
463    ///
464    /// ```
465    /// let s1 = "abc".chars();
466    /// let s2 = "def".chars();
467    ///
468    /// let mut iter = s1.chain(s2);
469    ///
470    /// assert_eq!(iter.next(), Some('a'));
471    /// assert_eq!(iter.next(), Some('b'));
472    /// assert_eq!(iter.next(), Some('c'));
473    /// assert_eq!(iter.next(), Some('d'));
474    /// assert_eq!(iter.next(), Some('e'));
475    /// assert_eq!(iter.next(), Some('f'));
476    /// assert_eq!(iter.next(), None);
477    /// ```
478    ///
479    /// Since the argument to `chain()` uses [`IntoIterator`], we can pass
480    /// anything that can be converted into an [`Iterator`], not just an
481    /// [`Iterator`] itself. For example, arrays (`[T]`) implement
482    /// [`IntoIterator`], and so can be passed to `chain()` directly:
483    ///
484    /// ```
485    /// let a1 = [1, 2, 3];
486    /// let a2 = [4, 5, 6];
487    ///
488    /// let mut iter = a1.into_iter().chain(a2);
489    ///
490    /// assert_eq!(iter.next(), Some(1));
491    /// assert_eq!(iter.next(), Some(2));
492    /// assert_eq!(iter.next(), Some(3));
493    /// assert_eq!(iter.next(), Some(4));
494    /// assert_eq!(iter.next(), Some(5));
495    /// assert_eq!(iter.next(), Some(6));
496    /// assert_eq!(iter.next(), None);
497    /// ```
498    ///
499    /// If you work with Windows API, you may wish to convert [`OsStr`] to `Vec<u16>`:
500    ///
501    /// ```
502    /// #[cfg(windows)]
503    /// fn os_str_to_utf16(s: &std::ffi::OsStr) -> Vec<u16> {
504    ///     use std::os::windows::ffi::OsStrExt;
505    ///     s.encode_wide().chain(std::iter::once(0)).collect()
506    /// }
507    /// ```
508    ///
509    /// [`once`]: crate::iter::once
510    /// [`OsStr`]: ../../std/ffi/struct.OsStr.html
511    #[inline]
512    #[stable(feature = "rust1", since = "1.0.0")]
513    #[cfg(not(feature = "ferrocene_certified"))]
514    fn chain<U>(self, other: U) -> Chain<Self, U::IntoIter>
515    where
516        Self: Sized,
517        U: IntoIterator<Item = Self::Item>,
518    {
519        Chain::new(self, other.into_iter())
520    }
521
522    /// 'Zips up' two iterators into a single iterator of pairs.
523    ///
524    /// `zip()` returns a new iterator that will iterate over two other
525    /// iterators, returning a tuple where the first element comes from the
526    /// first iterator, and the second element comes from the second iterator.
527    ///
528    /// In other words, it zips two iterators together, into a single one.
529    ///
530    /// If either iterator returns [`None`], [`next`] from the zipped iterator
531    /// will return [`None`].
532    /// If the zipped iterator has no more elements to return then each further attempt to advance
533    /// it will first try to advance the first iterator at most one time and if it still yielded an item
534    /// try to advance the second iterator at most one time.
535    ///
536    /// To 'undo' the result of zipping up two iterators, see [`unzip`].
537    ///
538    /// [`unzip`]: Iterator::unzip
539    ///
540    /// # Examples
541    ///
542    /// Basic usage:
543    ///
544    /// ```
545    /// let s1 = "abc".chars();
546    /// let s2 = "def".chars();
547    ///
548    /// let mut iter = s1.zip(s2);
549    ///
550    /// assert_eq!(iter.next(), Some(('a', 'd')));
551    /// assert_eq!(iter.next(), Some(('b', 'e')));
552    /// assert_eq!(iter.next(), Some(('c', 'f')));
553    /// assert_eq!(iter.next(), None);
554    /// ```
555    ///
556    /// Since the argument to `zip()` uses [`IntoIterator`], we can pass
557    /// anything that can be converted into an [`Iterator`], not just an
558    /// [`Iterator`] itself. For example, arrays (`[T]`) implement
559    /// [`IntoIterator`], and so can be passed to `zip()` directly:
560    ///
561    /// ```
562    /// let a1 = [1, 2, 3];
563    /// let a2 = [4, 5, 6];
564    ///
565    /// let mut iter = a1.into_iter().zip(a2);
566    ///
567    /// assert_eq!(iter.next(), Some((1, 4)));
568    /// assert_eq!(iter.next(), Some((2, 5)));
569    /// assert_eq!(iter.next(), Some((3, 6)));
570    /// assert_eq!(iter.next(), None);
571    /// ```
572    ///
573    /// `zip()` is often used to zip an infinite iterator to a finite one.
574    /// This works because the finite iterator will eventually return [`None`],
575    /// ending the zipper. Zipping with `(0..)` can look a lot like [`enumerate`]:
576    ///
577    /// ```
578    /// let enumerate: Vec<_> = "foo".chars().enumerate().collect();
579    ///
580    /// let zipper: Vec<_> = (0..).zip("foo".chars()).collect();
581    ///
582    /// assert_eq!((0, 'f'), enumerate[0]);
583    /// assert_eq!((0, 'f'), zipper[0]);
584    ///
585    /// assert_eq!((1, 'o'), enumerate[1]);
586    /// assert_eq!((1, 'o'), zipper[1]);
587    ///
588    /// assert_eq!((2, 'o'), enumerate[2]);
589    /// assert_eq!((2, 'o'), zipper[2]);
590    /// ```
591    ///
592    /// If both iterators have roughly equivalent syntax, it may be more readable to use [`zip`]:
593    ///
594    /// ```
595    /// use std::iter::zip;
596    ///
597    /// let a = [1, 2, 3];
598    /// let b = [2, 3, 4];
599    ///
600    /// let mut zipped = zip(
601    ///     a.into_iter().map(|x| x * 2).skip(1),
602    ///     b.into_iter().map(|x| x * 2).skip(1),
603    /// );
604    ///
605    /// assert_eq!(zipped.next(), Some((4, 6)));
606    /// assert_eq!(zipped.next(), Some((6, 8)));
607    /// assert_eq!(zipped.next(), None);
608    /// ```
609    ///
610    /// compared to:
611    ///
612    /// ```
613    /// # let a = [1, 2, 3];
614    /// # let b = [2, 3, 4];
615    /// #
616    /// let mut zipped = a
617    ///     .into_iter()
618    ///     .map(|x| x * 2)
619    ///     .skip(1)
620    ///     .zip(b.into_iter().map(|x| x * 2).skip(1));
621    /// #
622    /// # assert_eq!(zipped.next(), Some((4, 6)));
623    /// # assert_eq!(zipped.next(), Some((6, 8)));
624    /// # assert_eq!(zipped.next(), None);
625    /// ```
626    ///
627    /// [`enumerate`]: Iterator::enumerate
628    /// [`next`]: Iterator::next
629    /// [`zip`]: crate::iter::zip
630    #[inline]
631    #[stable(feature = "rust1", since = "1.0.0")]
632    fn zip<U>(self, other: U) -> Zip<Self, U::IntoIter>
633    where
634        Self: Sized,
635        U: IntoIterator,
636    {
637        Zip::new(self, other.into_iter())
638    }
639
640    /// Creates a new iterator which places a copy of `separator` between adjacent
641    /// items of the original iterator.
642    ///
643    /// In case `separator` does not implement [`Clone`] or needs to be
644    /// computed every time, use [`intersperse_with`].
645    ///
646    /// # Examples
647    ///
648    /// Basic usage:
649    ///
650    /// ```
651    /// #![feature(iter_intersperse)]
652    ///
653    /// let mut a = [0, 1, 2].into_iter().intersperse(100);
654    /// assert_eq!(a.next(), Some(0));   // The first element from `a`.
655    /// assert_eq!(a.next(), Some(100)); // The separator.
656    /// assert_eq!(a.next(), Some(1));   // The next element from `a`.
657    /// assert_eq!(a.next(), Some(100)); // The separator.
658    /// assert_eq!(a.next(), Some(2));   // The last element from `a`.
659    /// assert_eq!(a.next(), None);       // The iterator is finished.
660    /// ```
661    ///
662    /// `intersperse` can be very useful to join an iterator's items using a common element:
663    /// ```
664    /// #![feature(iter_intersperse)]
665    ///
666    /// let words = ["Hello", "World", "!"];
667    /// let hello: String = words.into_iter().intersperse(" ").collect();
668    /// assert_eq!(hello, "Hello World !");
669    /// ```
670    ///
671    /// [`Clone`]: crate::clone::Clone
672    /// [`intersperse_with`]: Iterator::intersperse_with
673    #[inline]
674    #[unstable(feature = "iter_intersperse", reason = "recently added", issue = "79524")]
675    #[cfg(not(feature = "ferrocene_certified"))]
676    fn intersperse(self, separator: Self::Item) -> Intersperse<Self>
677    where
678        Self: Sized,
679        Self::Item: Clone,
680    {
681        Intersperse::new(self, separator)
682    }
683
684    /// Creates a new iterator which places an item generated by `separator`
685    /// between adjacent items of the original iterator.
686    ///
687    /// The closure will be called exactly once each time an item is placed
688    /// between two adjacent items from the underlying iterator; specifically,
689    /// the closure is not called if the underlying iterator yields less than
690    /// two items and after the last item is yielded.
691    ///
692    /// If the iterator's item implements [`Clone`], it may be easier to use
693    /// [`intersperse`].
694    ///
695    /// # Examples
696    ///
697    /// Basic usage:
698    ///
699    /// ```
700    /// #![feature(iter_intersperse)]
701    ///
702    /// #[derive(PartialEq, Debug)]
703    /// struct NotClone(usize);
704    ///
705    /// let v = [NotClone(0), NotClone(1), NotClone(2)];
706    /// let mut it = v.into_iter().intersperse_with(|| NotClone(99));
707    ///
708    /// assert_eq!(it.next(), Some(NotClone(0)));  // The first element from `v`.
709    /// assert_eq!(it.next(), Some(NotClone(99))); // The separator.
710    /// assert_eq!(it.next(), Some(NotClone(1)));  // The next element from `v`.
711    /// assert_eq!(it.next(), Some(NotClone(99))); // The separator.
712    /// assert_eq!(it.next(), Some(NotClone(2)));  // The last element from `v`.
713    /// assert_eq!(it.next(), None);               // The iterator is finished.
714    /// ```
715    ///
716    /// `intersperse_with` can be used in situations where the separator needs
717    /// to be computed:
718    /// ```
719    /// #![feature(iter_intersperse)]
720    ///
721    /// let src = ["Hello", "to", "all", "people", "!!"].iter().copied();
722    ///
723    /// // The closure mutably borrows its context to generate an item.
724    /// let mut happy_emojis = [" ❤️ ", " 😀 "].into_iter();
725    /// let separator = || happy_emojis.next().unwrap_or(" 🦀 ");
726    ///
727    /// let result = src.intersperse_with(separator).collect::<String>();
728    /// assert_eq!(result, "Hello ❤️ to 😀 all 🦀 people 🦀 !!");
729    /// ```
730    /// [`Clone`]: crate::clone::Clone
731    /// [`intersperse`]: Iterator::intersperse
732    #[inline]
733    #[unstable(feature = "iter_intersperse", reason = "recently added", issue = "79524")]
734    #[cfg(not(feature = "ferrocene_certified"))]
735    fn intersperse_with<G>(self, separator: G) -> IntersperseWith<Self, G>
736    where
737        Self: Sized,
738        G: FnMut() -> Self::Item,
739    {
740        IntersperseWith::new(self, separator)
741    }
742
743    /// Takes a closure and creates an iterator which calls that closure on each
744    /// element.
745    ///
746    /// `map()` transforms one iterator into another, by means of its argument:
747    /// something that implements [`FnMut`]. It produces a new iterator which
748    /// calls this closure on each element of the original iterator.
749    ///
750    /// If you are good at thinking in types, you can think of `map()` like this:
751    /// If you have an iterator that gives you elements of some type `A`, and
752    /// you want an iterator of some other type `B`, you can use `map()`,
753    /// passing a closure that takes an `A` and returns a `B`.
754    ///
755    /// `map()` is conceptually similar to a [`for`] loop. However, as `map()` is
756    /// lazy, it is best used when you're already working with other iterators.
757    /// If you're doing some sort of looping for a side effect, it's considered
758    /// more idiomatic to use [`for`] than `map()`.
759    ///
760    /// [`for`]: ../../book/ch03-05-control-flow.html#looping-through-a-collection-with-for
761    ///
762    /// # Examples
763    ///
764    /// Basic usage:
765    ///
766    /// ```
767    /// let a = [1, 2, 3];
768    ///
769    /// let mut iter = a.iter().map(|x| 2 * x);
770    ///
771    /// assert_eq!(iter.next(), Some(2));
772    /// assert_eq!(iter.next(), Some(4));
773    /// assert_eq!(iter.next(), Some(6));
774    /// assert_eq!(iter.next(), None);
775    /// ```
776    ///
777    /// If you're doing some sort of side effect, prefer [`for`] to `map()`:
778    ///
779    /// ```
780    /// # #![allow(unused_must_use)]
781    /// // don't do this:
782    /// (0..5).map(|x| println!("{x}"));
783    ///
784    /// // it won't even execute, as it is lazy. Rust will warn you about this.
785    ///
786    /// // Instead, use a for-loop:
787    /// for x in 0..5 {
788    ///     println!("{x}");
789    /// }
790    /// ```
791    #[rustc_diagnostic_item = "IteratorMap"]
792    #[inline]
793    #[stable(feature = "rust1", since = "1.0.0")]
794    fn map<B, F>(self, f: F) -> Map<Self, F>
795    where
796        Self: Sized,
797        F: FnMut(Self::Item) -> B,
798    {
799        Map::new(self, f)
800    }
801
802    /// Calls a closure on each element of an iterator.
803    ///
804    /// This is equivalent to using a [`for`] loop on the iterator, although
805    /// `break` and `continue` are not possible from a closure. It's generally
806    /// more idiomatic to use a `for` loop, but `for_each` may be more legible
807    /// when processing items at the end of longer iterator chains. In some
808    /// cases `for_each` may also be faster than a loop, because it will use
809    /// internal iteration on adapters like `Chain`.
810    ///
811    /// [`for`]: ../../book/ch03-05-control-flow.html#looping-through-a-collection-with-for
812    ///
813    /// # Examples
814    ///
815    /// Basic usage:
816    ///
817    /// ```
818    /// use std::sync::mpsc::channel;
819    ///
820    /// let (tx, rx) = channel();
821    /// (0..5).map(|x| x * 2 + 1)
822    ///       .for_each(move |x| tx.send(x).unwrap());
823    ///
824    /// let v: Vec<_> = rx.iter().collect();
825    /// assert_eq!(v, vec![1, 3, 5, 7, 9]);
826    /// ```
827    ///
828    /// For such a small example, a `for` loop may be cleaner, but `for_each`
829    /// might be preferable to keep a functional style with longer iterators:
830    ///
831    /// ```
832    /// (0..5).flat_map(|x| (x * 100)..(x * 110))
833    ///       .enumerate()
834    ///       .filter(|&(i, x)| (i + x) % 3 == 0)
835    ///       .for_each(|(i, x)| println!("{i}:{x}"));
836    /// ```
837    #[inline]
838    #[stable(feature = "iterator_for_each", since = "1.21.0")]
839    fn for_each<F>(self, f: F)
840    where
841        Self: Sized,
842        F: FnMut(Self::Item),
843    {
844        #[inline]
845        fn call<T>(mut f: impl FnMut(T)) -> impl FnMut((), T) {
846            move |(), item| f(item)
847        }
848
849        self.fold((), call(f));
850    }
851
852    /// Creates an iterator which uses a closure to determine if an element
853    /// should be yielded.
854    ///
855    /// Given an element the closure must return `true` or `false`. The returned
856    /// iterator will yield only the elements for which the closure returns
857    /// `true`.
858    ///
859    /// # Examples
860    ///
861    /// Basic usage:
862    ///
863    /// ```
864    /// let a = [0i32, 1, 2];
865    ///
866    /// let mut iter = a.into_iter().filter(|x| x.is_positive());
867    ///
868    /// assert_eq!(iter.next(), Some(1));
869    /// assert_eq!(iter.next(), Some(2));
870    /// assert_eq!(iter.next(), None);
871    /// ```
872    ///
873    /// Because the closure passed to `filter()` takes a reference, and many
874    /// iterators iterate over references, this leads to a possibly confusing
875    /// situation, where the type of the closure is a double reference:
876    ///
877    /// ```
878    /// let s = &[0, 1, 2];
879    ///
880    /// let mut iter = s.iter().filter(|x| **x > 1); // needs two *s!
881    ///
882    /// assert_eq!(iter.next(), Some(&2));
883    /// assert_eq!(iter.next(), None);
884    /// ```
885    ///
886    /// It's common to instead use destructuring on the argument to strip away one:
887    ///
888    /// ```
889    /// let s = &[0, 1, 2];
890    ///
891    /// let mut iter = s.iter().filter(|&x| *x > 1); // both & and *
892    ///
893    /// assert_eq!(iter.next(), Some(&2));
894    /// assert_eq!(iter.next(), None);
895    /// ```
896    ///
897    /// or both:
898    ///
899    /// ```
900    /// let s = &[0, 1, 2];
901    ///
902    /// let mut iter = s.iter().filter(|&&x| x > 1); // two &s
903    ///
904    /// assert_eq!(iter.next(), Some(&2));
905    /// assert_eq!(iter.next(), None);
906    /// ```
907    ///
908    /// of these layers.
909    ///
910    /// Note that `iter.filter(f).next()` is equivalent to `iter.find(f)`.
911    #[inline]
912    #[stable(feature = "rust1", since = "1.0.0")]
913    #[rustc_diagnostic_item = "iter_filter"]
914    fn filter<P>(self, predicate: P) -> Filter<Self, P>
915    where
916        Self: Sized,
917        P: FnMut(&Self::Item) -> bool,
918    {
919        Filter::new(self, predicate)
920    }
921
922    /// Creates an iterator that both filters and maps.
923    ///
924    /// The returned iterator yields only the `value`s for which the supplied
925    /// closure returns `Some(value)`.
926    ///
927    /// `filter_map` can be used to make chains of [`filter`] and [`map`] more
928    /// concise. The example below shows how a `map().filter().map()` can be
929    /// shortened to a single call to `filter_map`.
930    ///
931    /// [`filter`]: Iterator::filter
932    /// [`map`]: Iterator::map
933    ///
934    /// # Examples
935    ///
936    /// Basic usage:
937    ///
938    /// ```
939    /// let a = ["1", "two", "NaN", "four", "5"];
940    ///
941    /// let mut iter = a.iter().filter_map(|s| s.parse().ok());
942    ///
943    /// assert_eq!(iter.next(), Some(1));
944    /// assert_eq!(iter.next(), Some(5));
945    /// assert_eq!(iter.next(), None);
946    /// ```
947    ///
948    /// Here's the same example, but with [`filter`] and [`map`]:
949    ///
950    /// ```
951    /// let a = ["1", "two", "NaN", "four", "5"];
952    /// let mut iter = a.iter().map(|s| s.parse()).filter(|s| s.is_ok()).map(|s| s.unwrap());
953    /// assert_eq!(iter.next(), Some(1));
954    /// assert_eq!(iter.next(), Some(5));
955    /// assert_eq!(iter.next(), None);
956    /// ```
957    #[inline]
958    #[stable(feature = "rust1", since = "1.0.0")]
959    #[cfg(not(feature = "ferrocene_certified"))]
960    fn filter_map<B, F>(self, f: F) -> FilterMap<Self, F>
961    where
962        Self: Sized,
963        F: FnMut(Self::Item) -> Option<B>,
964    {
965        FilterMap::new(self, f)
966    }
967
968    /// Creates an iterator which gives the current iteration count as well as
969    /// the next value.
970    ///
971    /// The iterator returned yields pairs `(i, val)`, where `i` is the
972    /// current index of iteration and `val` is the value returned by the
973    /// iterator.
974    ///
975    /// `enumerate()` keeps its count as a [`usize`]. If you want to count by a
976    /// different sized integer, the [`zip`] function provides similar
977    /// functionality.
978    ///
979    /// # Overflow Behavior
980    ///
981    /// The method does no guarding against overflows, so enumerating more than
982    /// [`usize::MAX`] elements either produces the wrong result or panics. If
983    /// overflow checks are enabled, a panic is guaranteed.
984    ///
985    /// # Panics
986    ///
987    /// The returned iterator might panic if the to-be-returned index would
988    /// overflow a [`usize`].
989    ///
990    /// [`zip`]: Iterator::zip
991    ///
992    /// # Examples
993    ///
994    /// ```
995    /// let a = ['a', 'b', 'c'];
996    ///
997    /// let mut iter = a.into_iter().enumerate();
998    ///
999    /// assert_eq!(iter.next(), Some((0, 'a')));
1000    /// assert_eq!(iter.next(), Some((1, 'b')));
1001    /// assert_eq!(iter.next(), Some((2, 'c')));
1002    /// assert_eq!(iter.next(), None);
1003    /// ```
1004    #[inline]
1005    #[stable(feature = "rust1", since = "1.0.0")]
1006    #[rustc_diagnostic_item = "enumerate_method"]
1007    fn enumerate(self) -> Enumerate<Self>
1008    where
1009        Self: Sized,
1010    {
1011        Enumerate::new(self)
1012    }
1013
1014    /// Creates an iterator which can use the [`peek`] and [`peek_mut`] methods
1015    /// to look at the next element of the iterator without consuming it. See
1016    /// their documentation for more information.
1017    ///
1018    /// Note that the underlying iterator is still advanced when [`peek`] or
1019    /// [`peek_mut`] are called for the first time: In order to retrieve the
1020    /// next element, [`next`] is called on the underlying iterator, hence any
1021    /// side effects (i.e. anything other than fetching the next value) of
1022    /// the [`next`] method will occur.
1023    ///
1024    ///
1025    /// # Examples
1026    ///
1027    /// Basic usage:
1028    ///
1029    /// ```
1030    /// let xs = [1, 2, 3];
1031    ///
1032    /// let mut iter = xs.into_iter().peekable();
1033    ///
1034    /// // peek() lets us see into the future
1035    /// assert_eq!(iter.peek(), Some(&1));
1036    /// assert_eq!(iter.next(), Some(1));
1037    ///
1038    /// assert_eq!(iter.next(), Some(2));
1039    ///
1040    /// // we can peek() multiple times, the iterator won't advance
1041    /// assert_eq!(iter.peek(), Some(&3));
1042    /// assert_eq!(iter.peek(), Some(&3));
1043    ///
1044    /// assert_eq!(iter.next(), Some(3));
1045    ///
1046    /// // after the iterator is finished, so is peek()
1047    /// assert_eq!(iter.peek(), None);
1048    /// assert_eq!(iter.next(), None);
1049    /// ```
1050    ///
1051    /// Using [`peek_mut`] to mutate the next item without advancing the
1052    /// iterator:
1053    ///
1054    /// ```
1055    /// let xs = [1, 2, 3];
1056    ///
1057    /// let mut iter = xs.into_iter().peekable();
1058    ///
1059    /// // `peek_mut()` lets us see into the future
1060    /// assert_eq!(iter.peek_mut(), Some(&mut 1));
1061    /// assert_eq!(iter.peek_mut(), Some(&mut 1));
1062    /// assert_eq!(iter.next(), Some(1));
1063    ///
1064    /// if let Some(p) = iter.peek_mut() {
1065    ///     assert_eq!(*p, 2);
1066    ///     // put a value into the iterator
1067    ///     *p = 1000;
1068    /// }
1069    ///
1070    /// // The value reappears as the iterator continues
1071    /// assert_eq!(iter.collect::<Vec<_>>(), vec![1000, 3]);
1072    /// ```
1073    /// [`peek`]: Peekable::peek
1074    /// [`peek_mut`]: Peekable::peek_mut
1075    /// [`next`]: Iterator::next
1076    #[inline]
1077    #[stable(feature = "rust1", since = "1.0.0")]
1078    #[cfg(not(feature = "ferrocene_certified"))]
1079    fn peekable(self) -> Peekable<Self>
1080    where
1081        Self: Sized,
1082    {
1083        Peekable::new(self)
1084    }
1085
1086    /// Creates an iterator that [`skip`]s elements based on a predicate.
1087    ///
1088    /// [`skip`]: Iterator::skip
1089    ///
1090    /// `skip_while()` takes a closure as an argument. It will call this
1091    /// closure on each element of the iterator, and ignore elements
1092    /// until it returns `false`.
1093    ///
1094    /// After `false` is returned, `skip_while()`'s job is over, and the
1095    /// rest of the elements are yielded.
1096    ///
1097    /// # Examples
1098    ///
1099    /// Basic usage:
1100    ///
1101    /// ```
1102    /// let a = [-1i32, 0, 1];
1103    ///
1104    /// let mut iter = a.into_iter().skip_while(|x| x.is_negative());
1105    ///
1106    /// assert_eq!(iter.next(), Some(0));
1107    /// assert_eq!(iter.next(), Some(1));
1108    /// assert_eq!(iter.next(), None);
1109    /// ```
1110    ///
1111    /// Because the closure passed to `skip_while()` takes a reference, and many
1112    /// iterators iterate over references, this leads to a possibly confusing
1113    /// situation, where the type of the closure argument is a double reference:
1114    ///
1115    /// ```
1116    /// let s = &[-1, 0, 1];
1117    ///
1118    /// let mut iter = s.iter().skip_while(|x| **x < 0); // need two *s!
1119    ///
1120    /// assert_eq!(iter.next(), Some(&0));
1121    /// assert_eq!(iter.next(), Some(&1));
1122    /// assert_eq!(iter.next(), None);
1123    /// ```
1124    ///
1125    /// Stopping after an initial `false`:
1126    ///
1127    /// ```
1128    /// let a = [-1, 0, 1, -2];
1129    ///
1130    /// let mut iter = a.into_iter().skip_while(|&x| x < 0);
1131    ///
1132    /// assert_eq!(iter.next(), Some(0));
1133    /// assert_eq!(iter.next(), Some(1));
1134    ///
1135    /// // while this would have been false, since we already got a false,
1136    /// // skip_while() isn't used any more
1137    /// assert_eq!(iter.next(), Some(-2));
1138    ///
1139    /// assert_eq!(iter.next(), None);
1140    /// ```
1141    #[inline]
1142    #[doc(alias = "drop_while")]
1143    #[stable(feature = "rust1", since = "1.0.0")]
1144    #[cfg(not(feature = "ferrocene_certified"))]
1145    fn skip_while<P>(self, predicate: P) -> SkipWhile<Self, P>
1146    where
1147        Self: Sized,
1148        P: FnMut(&Self::Item) -> bool,
1149    {
1150        SkipWhile::new(self, predicate)
1151    }
1152
1153    /// Creates an iterator that yields elements based on a predicate.
1154    ///
1155    /// `take_while()` takes a closure as an argument. It will call this
1156    /// closure on each element of the iterator, and yield elements
1157    /// while it returns `true`.
1158    ///
1159    /// After `false` is returned, `take_while()`'s job is over, and the
1160    /// rest of the elements are ignored.
1161    ///
1162    /// # Examples
1163    ///
1164    /// Basic usage:
1165    ///
1166    /// ```
1167    /// let a = [-1i32, 0, 1];
1168    ///
1169    /// let mut iter = a.into_iter().take_while(|x| x.is_negative());
1170    ///
1171    /// assert_eq!(iter.next(), Some(-1));
1172    /// assert_eq!(iter.next(), None);
1173    /// ```
1174    ///
1175    /// Because the closure passed to `take_while()` takes a reference, and many
1176    /// iterators iterate over references, this leads to a possibly confusing
1177    /// situation, where the type of the closure is a double reference:
1178    ///
1179    /// ```
1180    /// let s = &[-1, 0, 1];
1181    ///
1182    /// let mut iter = s.iter().take_while(|x| **x < 0); // need two *s!
1183    ///
1184    /// assert_eq!(iter.next(), Some(&-1));
1185    /// assert_eq!(iter.next(), None);
1186    /// ```
1187    ///
1188    /// Stopping after an initial `false`:
1189    ///
1190    /// ```
1191    /// let a = [-1, 0, 1, -2];
1192    ///
1193    /// let mut iter = a.into_iter().take_while(|&x| x < 0);
1194    ///
1195    /// assert_eq!(iter.next(), Some(-1));
1196    ///
1197    /// // We have more elements that are less than zero, but since we already
1198    /// // got a false, take_while() ignores the remaining elements.
1199    /// assert_eq!(iter.next(), None);
1200    /// ```
1201    ///
1202    /// Because `take_while()` needs to look at the value in order to see if it
1203    /// should be included or not, consuming iterators will see that it is
1204    /// removed:
1205    ///
1206    /// ```
1207    /// let a = [1, 2, 3, 4];
1208    /// let mut iter = a.into_iter();
1209    ///
1210    /// let result: Vec<i32> = iter.by_ref().take_while(|&n| n != 3).collect();
1211    ///
1212    /// assert_eq!(result, [1, 2]);
1213    ///
1214    /// let result: Vec<i32> = iter.collect();
1215    ///
1216    /// assert_eq!(result, [4]);
1217    /// ```
1218    ///
1219    /// The `3` is no longer there, because it was consumed in order to see if
1220    /// the iteration should stop, but wasn't placed back into the iterator.
1221    #[inline]
1222    #[stable(feature = "rust1", since = "1.0.0")]
1223    #[cfg(not(feature = "ferrocene_certified"))]
1224    fn take_while<P>(self, predicate: P) -> TakeWhile<Self, P>
1225    where
1226        Self: Sized,
1227        P: FnMut(&Self::Item) -> bool,
1228    {
1229        TakeWhile::new(self, predicate)
1230    }
1231
1232    /// Creates an iterator that both yields elements based on a predicate and maps.
1233    ///
1234    /// `map_while()` takes a closure as an argument. It will call this
1235    /// closure on each element of the iterator, and yield elements
1236    /// while it returns [`Some(_)`][`Some`].
1237    ///
1238    /// # Examples
1239    ///
1240    /// Basic usage:
1241    ///
1242    /// ```
1243    /// let a = [-1i32, 4, 0, 1];
1244    ///
1245    /// let mut iter = a.into_iter().map_while(|x| 16i32.checked_div(x));
1246    ///
1247    /// assert_eq!(iter.next(), Some(-16));
1248    /// assert_eq!(iter.next(), Some(4));
1249    /// assert_eq!(iter.next(), None);
1250    /// ```
1251    ///
1252    /// Here's the same example, but with [`take_while`] and [`map`]:
1253    ///
1254    /// [`take_while`]: Iterator::take_while
1255    /// [`map`]: Iterator::map
1256    ///
1257    /// ```
1258    /// let a = [-1i32, 4, 0, 1];
1259    ///
1260    /// let mut iter = a.into_iter()
1261    ///                 .map(|x| 16i32.checked_div(x))
1262    ///                 .take_while(|x| x.is_some())
1263    ///                 .map(|x| x.unwrap());
1264    ///
1265    /// assert_eq!(iter.next(), Some(-16));
1266    /// assert_eq!(iter.next(), Some(4));
1267    /// assert_eq!(iter.next(), None);
1268    /// ```
1269    ///
1270    /// Stopping after an initial [`None`]:
1271    ///
1272    /// ```
1273    /// let a = [0, 1, 2, -3, 4, 5, -6];
1274    ///
1275    /// let iter = a.into_iter().map_while(|x| u32::try_from(x).ok());
1276    /// let vec: Vec<_> = iter.collect();
1277    ///
1278    /// // We have more elements that could fit in u32 (such as 4, 5), but `map_while` returned `None` for `-3`
1279    /// // (as the `predicate` returned `None`) and `collect` stops at the first `None` encountered.
1280    /// assert_eq!(vec, [0, 1, 2]);
1281    /// ```
1282    ///
1283    /// Because `map_while()` needs to look at the value in order to see if it
1284    /// should be included or not, consuming iterators will see that it is
1285    /// removed:
1286    ///
1287    /// ```
1288    /// let a = [1, 2, -3, 4];
1289    /// let mut iter = a.into_iter();
1290    ///
1291    /// let result: Vec<u32> = iter.by_ref()
1292    ///                            .map_while(|n| u32::try_from(n).ok())
1293    ///                            .collect();
1294    ///
1295    /// assert_eq!(result, [1, 2]);
1296    ///
1297    /// let result: Vec<i32> = iter.collect();
1298    ///
1299    /// assert_eq!(result, [4]);
1300    /// ```
1301    ///
1302    /// The `-3` is no longer there, because it was consumed in order to see if
1303    /// the iteration should stop, but wasn't placed back into the iterator.
1304    ///
1305    /// Note that unlike [`take_while`] this iterator is **not** fused.
1306    /// It is also not specified what this iterator returns after the first [`None`] is returned.
1307    /// If you need a fused iterator, use [`fuse`].
1308    ///
1309    /// [`fuse`]: Iterator::fuse
1310    #[inline]
1311    #[stable(feature = "iter_map_while", since = "1.57.0")]
1312    #[cfg(not(feature = "ferrocene_certified"))]
1313    fn map_while<B, P>(self, predicate: P) -> MapWhile<Self, P>
1314    where
1315        Self: Sized,
1316        P: FnMut(Self::Item) -> Option<B>,
1317    {
1318        MapWhile::new(self, predicate)
1319    }
1320
1321    /// Creates an iterator that skips the first `n` elements.
1322    ///
1323    /// `skip(n)` skips elements until `n` elements are skipped or the end of the
1324    /// iterator is reached (whichever happens first). After that, all the remaining
1325    /// elements are yielded. In particular, if the original iterator is too short,
1326    /// then the returned iterator is empty.
1327    ///
1328    /// Rather than overriding this method directly, instead override the `nth` method.
1329    ///
1330    /// # Examples
1331    ///
1332    /// ```
1333    /// let a = [1, 2, 3];
1334    ///
1335    /// let mut iter = a.into_iter().skip(2);
1336    ///
1337    /// assert_eq!(iter.next(), Some(3));
1338    /// assert_eq!(iter.next(), None);
1339    /// ```
1340    #[inline]
1341    #[stable(feature = "rust1", since = "1.0.0")]
1342    fn skip(self, n: usize) -> Skip<Self>
1343    where
1344        Self: Sized,
1345    {
1346        Skip::new(self, n)
1347    }
1348
1349    /// Creates an iterator that yields the first `n` elements, or fewer
1350    /// if the underlying iterator ends sooner.
1351    ///
1352    /// `take(n)` yields elements until `n` elements are yielded or the end of
1353    /// the iterator is reached (whichever happens first).
1354    /// The returned iterator is a prefix of length `n` if the original iterator
1355    /// contains at least `n` elements, otherwise it contains all of the
1356    /// (fewer than `n`) elements of the original iterator.
1357    ///
1358    /// # Examples
1359    ///
1360    /// Basic usage:
1361    ///
1362    /// ```
1363    /// let a = [1, 2, 3];
1364    ///
1365    /// let mut iter = a.into_iter().take(2);
1366    ///
1367    /// assert_eq!(iter.next(), Some(1));
1368    /// assert_eq!(iter.next(), Some(2));
1369    /// assert_eq!(iter.next(), None);
1370    /// ```
1371    ///
1372    /// `take()` is often used with an infinite iterator, to make it finite:
1373    ///
1374    /// ```
1375    /// let mut iter = (0..).take(3);
1376    ///
1377    /// assert_eq!(iter.next(), Some(0));
1378    /// assert_eq!(iter.next(), Some(1));
1379    /// assert_eq!(iter.next(), Some(2));
1380    /// assert_eq!(iter.next(), None);
1381    /// ```
1382    ///
1383    /// If less than `n` elements are available,
1384    /// `take` will limit itself to the size of the underlying iterator:
1385    ///
1386    /// ```
1387    /// let v = [1, 2];
1388    /// let mut iter = v.into_iter().take(5);
1389    /// assert_eq!(iter.next(), Some(1));
1390    /// assert_eq!(iter.next(), Some(2));
1391    /// assert_eq!(iter.next(), None);
1392    /// ```
1393    ///
1394    /// Use [`by_ref`] to take from the iterator without consuming it, and then
1395    /// continue using the original iterator:
1396    ///
1397    /// ```
1398    /// let mut words = ["hello", "world", "of", "Rust"].into_iter();
1399    ///
1400    /// // Take the first two words.
1401    /// let hello_world: Vec<_> = words.by_ref().take(2).collect();
1402    /// assert_eq!(hello_world, vec!["hello", "world"]);
1403    ///
1404    /// // Collect the rest of the words.
1405    /// // We can only do this because we used `by_ref` earlier.
1406    /// let of_rust: Vec<_> = words.collect();
1407    /// assert_eq!(of_rust, vec!["of", "Rust"]);
1408    /// ```
1409    ///
1410    /// [`by_ref`]: Iterator::by_ref
1411    #[doc(alias = "limit")]
1412    #[inline]
1413    #[stable(feature = "rust1", since = "1.0.0")]
1414    fn take(self, n: usize) -> Take<Self>
1415    where
1416        Self: Sized,
1417    {
1418        Take::new(self, n)
1419    }
1420
1421    /// An iterator adapter which, like [`fold`], holds internal state, but
1422    /// unlike [`fold`], produces a new iterator.
1423    ///
1424    /// [`fold`]: Iterator::fold
1425    ///
1426    /// `scan()` takes two arguments: an initial value which seeds the internal
1427    /// state, and a closure with two arguments, the first being a mutable
1428    /// reference to the internal state and the second an iterator element.
1429    /// The closure can assign to the internal state to share state between
1430    /// iterations.
1431    ///
1432    /// On iteration, the closure will be applied to each element of the
1433    /// iterator and the return value from the closure, an [`Option`], is
1434    /// returned by the `next` method. Thus the closure can return
1435    /// `Some(value)` to yield `value`, or `None` to end the iteration.
1436    ///
1437    /// # Examples
1438    ///
1439    /// ```
1440    /// let a = [1, 2, 3, 4];
1441    ///
1442    /// let mut iter = a.into_iter().scan(1, |state, x| {
1443    ///     // each iteration, we'll multiply the state by the element ...
1444    ///     *state = *state * x;
1445    ///
1446    ///     // ... and terminate if the state exceeds 6
1447    ///     if *state > 6 {
1448    ///         return None;
1449    ///     }
1450    ///     // ... else yield the negation of the state
1451    ///     Some(-*state)
1452    /// });
1453    ///
1454    /// assert_eq!(iter.next(), Some(-1));
1455    /// assert_eq!(iter.next(), Some(-2));
1456    /// assert_eq!(iter.next(), Some(-6));
1457    /// assert_eq!(iter.next(), None);
1458    /// ```
1459    #[inline]
1460    #[stable(feature = "rust1", since = "1.0.0")]
1461    #[cfg(not(feature = "ferrocene_certified"))]
1462    fn scan<St, B, F>(self, initial_state: St, f: F) -> Scan<Self, St, F>
1463    where
1464        Self: Sized,
1465        F: FnMut(&mut St, Self::Item) -> Option<B>,
1466    {
1467        Scan::new(self, initial_state, f)
1468    }
1469
1470    /// Creates an iterator that works like map, but flattens nested structure.
1471    ///
1472    /// The [`map`] adapter is very useful, but only when the closure
1473    /// argument produces values. If it produces an iterator instead, there's
1474    /// an extra layer of indirection. `flat_map()` will remove this extra layer
1475    /// on its own.
1476    ///
1477    /// You can think of `flat_map(f)` as the semantic equivalent
1478    /// of [`map`]ping, and then [`flatten`]ing as in `map(f).flatten()`.
1479    ///
1480    /// Another way of thinking about `flat_map()`: [`map`]'s closure returns
1481    /// one item for each element, and `flat_map()`'s closure returns an
1482    /// iterator for each element.
1483    ///
1484    /// [`map`]: Iterator::map
1485    /// [`flatten`]: Iterator::flatten
1486    ///
1487    /// # Examples
1488    ///
1489    /// ```
1490    /// let words = ["alpha", "beta", "gamma"];
1491    ///
1492    /// // chars() returns an iterator
1493    /// let merged: String = words.iter()
1494    ///                           .flat_map(|s| s.chars())
1495    ///                           .collect();
1496    /// assert_eq!(merged, "alphabetagamma");
1497    /// ```
1498    #[inline]
1499    #[stable(feature = "rust1", since = "1.0.0")]
1500    #[cfg(not(feature = "ferrocene_certified"))]
1501    fn flat_map<U, F>(self, f: F) -> FlatMap<Self, U, F>
1502    where
1503        Self: Sized,
1504        U: IntoIterator,
1505        F: FnMut(Self::Item) -> U,
1506    {
1507        FlatMap::new(self, f)
1508    }
1509
1510    /// Creates an iterator that flattens nested structure.
1511    ///
1512    /// This is useful when you have an iterator of iterators or an iterator of
1513    /// things that can be turned into iterators and you want to remove one
1514    /// level of indirection.
1515    ///
1516    /// # Examples
1517    ///
1518    /// Basic usage:
1519    ///
1520    /// ```
1521    /// let data = vec![vec![1, 2, 3, 4], vec![5, 6]];
1522    /// let flattened: Vec<_> = data.into_iter().flatten().collect();
1523    /// assert_eq!(flattened, [1, 2, 3, 4, 5, 6]);
1524    /// ```
1525    ///
1526    /// Mapping and then flattening:
1527    ///
1528    /// ```
1529    /// let words = ["alpha", "beta", "gamma"];
1530    ///
1531    /// // chars() returns an iterator
1532    /// let merged: String = words.iter()
1533    ///                           .map(|s| s.chars())
1534    ///                           .flatten()
1535    ///                           .collect();
1536    /// assert_eq!(merged, "alphabetagamma");
1537    /// ```
1538    ///
1539    /// You can also rewrite this in terms of [`flat_map()`], which is preferable
1540    /// in this case since it conveys intent more clearly:
1541    ///
1542    /// ```
1543    /// let words = ["alpha", "beta", "gamma"];
1544    ///
1545    /// // chars() returns an iterator
1546    /// let merged: String = words.iter()
1547    ///                           .flat_map(|s| s.chars())
1548    ///                           .collect();
1549    /// assert_eq!(merged, "alphabetagamma");
1550    /// ```
1551    ///
1552    /// Flattening works on any `IntoIterator` type, including `Option` and `Result`:
1553    ///
1554    /// ```
1555    /// let options = vec![Some(123), Some(321), None, Some(231)];
1556    /// let flattened_options: Vec<_> = options.into_iter().flatten().collect();
1557    /// assert_eq!(flattened_options, [123, 321, 231]);
1558    ///
1559    /// let results = vec![Ok(123), Ok(321), Err(456), Ok(231)];
1560    /// let flattened_results: Vec<_> = results.into_iter().flatten().collect();
1561    /// assert_eq!(flattened_results, [123, 321, 231]);
1562    /// ```
1563    ///
1564    /// Flattening only removes one level of nesting at a time:
1565    ///
1566    /// ```
1567    /// let d3 = [[[1, 2], [3, 4]], [[5, 6], [7, 8]]];
1568    ///
1569    /// let d2: Vec<_> = d3.into_iter().flatten().collect();
1570    /// assert_eq!(d2, [[1, 2], [3, 4], [5, 6], [7, 8]]);
1571    ///
1572    /// let d1: Vec<_> = d3.into_iter().flatten().flatten().collect();
1573    /// assert_eq!(d1, [1, 2, 3, 4, 5, 6, 7, 8]);
1574    /// ```
1575    ///
1576    /// Here we see that `flatten()` does not perform a "deep" flatten.
1577    /// Instead, only one level of nesting is removed. That is, if you
1578    /// `flatten()` a three-dimensional array, the result will be
1579    /// two-dimensional and not one-dimensional. To get a one-dimensional
1580    /// structure, you have to `flatten()` again.
1581    ///
1582    /// [`flat_map()`]: Iterator::flat_map
1583    #[inline]
1584    #[stable(feature = "iterator_flatten", since = "1.29.0")]
1585    #[cfg(not(feature = "ferrocene_certified"))]
1586    fn flatten(self) -> Flatten<Self>
1587    where
1588        Self: Sized,
1589        Self::Item: IntoIterator,
1590    {
1591        Flatten::new(self)
1592    }
1593
1594    /// Calls the given function `f` for each contiguous window of size `N` over
1595    /// `self` and returns an iterator over the outputs of `f`. Like [`slice::windows()`],
1596    /// the windows during mapping overlap as well.
1597    ///
1598    /// In the following example, the closure is called three times with the
1599    /// arguments `&['a', 'b']`, `&['b', 'c']` and `&['c', 'd']` respectively.
1600    ///
1601    /// ```
1602    /// #![feature(iter_map_windows)]
1603    ///
1604    /// let strings = "abcd".chars()
1605    ///     .map_windows(|[x, y]| format!("{}+{}", x, y))
1606    ///     .collect::<Vec<String>>();
1607    ///
1608    /// assert_eq!(strings, vec!["a+b", "b+c", "c+d"]);
1609    /// ```
1610    ///
1611    /// Note that the const parameter `N` is usually inferred by the
1612    /// destructured argument in the closure.
1613    ///
1614    /// The returned iterator yields 𝑘 − `N` + 1 items (where 𝑘 is the number of
1615    /// items yielded by `self`). If 𝑘 is less than `N`, this method yields an
1616    /// empty iterator.
1617    ///
1618    /// The returned iterator implements [`FusedIterator`], because once `self`
1619    /// returns `None`, even if it returns a `Some(T)` again in the next iterations,
1620    /// we cannot put it into a contiguous array buffer, and thus the returned iterator
1621    /// should be fused.
1622    ///
1623    /// [`slice::windows()`]: slice::windows
1624    /// [`FusedIterator`]: crate::iter::FusedIterator
1625    ///
1626    /// # Panics
1627    ///
1628    /// Panics if `N` is zero. This check will most probably get changed to a
1629    /// compile time error before this method gets stabilized.
1630    ///
1631    /// ```should_panic
1632    /// #![feature(iter_map_windows)]
1633    ///
1634    /// let iter = std::iter::repeat(0).map_windows(|&[]| ());
1635    /// ```
1636    ///
1637    /// # Examples
1638    ///
1639    /// Building the sums of neighboring numbers.
1640    ///
1641    /// ```
1642    /// #![feature(iter_map_windows)]
1643    ///
1644    /// let mut it = [1, 3, 8, 1].iter().map_windows(|&[a, b]| a + b);
1645    /// assert_eq!(it.next(), Some(4));  // 1 + 3
1646    /// assert_eq!(it.next(), Some(11)); // 3 + 8
1647    /// assert_eq!(it.next(), Some(9));  // 8 + 1
1648    /// assert_eq!(it.next(), None);
1649    /// ```
1650    ///
1651    /// Since the elements in the following example implement `Copy`, we can
1652    /// just copy the array and get an iterator over the windows.
1653    ///
1654    /// ```
1655    /// #![feature(iter_map_windows)]
1656    ///
1657    /// let mut it = "ferris".chars().map_windows(|w: &[_; 3]| *w);
1658    /// assert_eq!(it.next(), Some(['f', 'e', 'r']));
1659    /// assert_eq!(it.next(), Some(['e', 'r', 'r']));
1660    /// assert_eq!(it.next(), Some(['r', 'r', 'i']));
1661    /// assert_eq!(it.next(), Some(['r', 'i', 's']));
1662    /// assert_eq!(it.next(), None);
1663    /// ```
1664    ///
1665    /// You can also use this function to check the sortedness of an iterator.
1666    /// For the simple case, rather use [`Iterator::is_sorted`].
1667    ///
1668    /// ```
1669    /// #![feature(iter_map_windows)]
1670    ///
1671    /// let mut it = [0.5, 1.0, 3.5, 3.0, 8.5, 8.5, f32::NAN].iter()
1672    ///     .map_windows(|[a, b]| a <= b);
1673    ///
1674    /// assert_eq!(it.next(), Some(true));  // 0.5 <= 1.0
1675    /// assert_eq!(it.next(), Some(true));  // 1.0 <= 3.5
1676    /// assert_eq!(it.next(), Some(false)); // 3.5 <= 3.0
1677    /// assert_eq!(it.next(), Some(true));  // 3.0 <= 8.5
1678    /// assert_eq!(it.next(), Some(true));  // 8.5 <= 8.5
1679    /// assert_eq!(it.next(), Some(false)); // 8.5 <= NAN
1680    /// assert_eq!(it.next(), None);
1681    /// ```
1682    ///
1683    /// For non-fused iterators, they are fused after `map_windows`.
1684    ///
1685    /// ```
1686    /// #![feature(iter_map_windows)]
1687    ///
1688    /// #[derive(Default)]
1689    /// struct NonFusedIterator {
1690    ///     state: i32,
1691    /// }
1692    ///
1693    /// impl Iterator for NonFusedIterator {
1694    ///     type Item = i32;
1695    ///
1696    ///     fn next(&mut self) -> Option<i32> {
1697    ///         let val = self.state;
1698    ///         self.state = self.state + 1;
1699    ///
1700    ///         // yields `0..5` first, then only even numbers since `6..`.
1701    ///         if val < 5 || val % 2 == 0 {
1702    ///             Some(val)
1703    ///         } else {
1704    ///             None
1705    ///         }
1706    ///     }
1707    /// }
1708    ///
1709    ///
1710    /// let mut iter = NonFusedIterator::default();
1711    ///
1712    /// // yields 0..5 first.
1713    /// assert_eq!(iter.next(), Some(0));
1714    /// assert_eq!(iter.next(), Some(1));
1715    /// assert_eq!(iter.next(), Some(2));
1716    /// assert_eq!(iter.next(), Some(3));
1717    /// assert_eq!(iter.next(), Some(4));
1718    /// // then we can see our iterator going back and forth
1719    /// assert_eq!(iter.next(), None);
1720    /// assert_eq!(iter.next(), Some(6));
1721    /// assert_eq!(iter.next(), None);
1722    /// assert_eq!(iter.next(), Some(8));
1723    /// assert_eq!(iter.next(), None);
1724    ///
1725    /// // however, with `.map_windows()`, it is fused.
1726    /// let mut iter = NonFusedIterator::default()
1727    ///     .map_windows(|arr: &[_; 2]| *arr);
1728    ///
1729    /// assert_eq!(iter.next(), Some([0, 1]));
1730    /// assert_eq!(iter.next(), Some([1, 2]));
1731    /// assert_eq!(iter.next(), Some([2, 3]));
1732    /// assert_eq!(iter.next(), Some([3, 4]));
1733    /// assert_eq!(iter.next(), None);
1734    ///
1735    /// // it will always return `None` after the first time.
1736    /// assert_eq!(iter.next(), None);
1737    /// assert_eq!(iter.next(), None);
1738    /// assert_eq!(iter.next(), None);
1739    /// ```
1740    #[inline]
1741    #[unstable(feature = "iter_map_windows", reason = "recently added", issue = "87155")]
1742    #[cfg(not(feature = "ferrocene_certified"))]
1743    fn map_windows<F, R, const N: usize>(self, f: F) -> MapWindows<Self, F, N>
1744    where
1745        Self: Sized,
1746        F: FnMut(&[Self::Item; N]) -> R,
1747    {
1748        MapWindows::new(self, f)
1749    }
1750
1751    /// Creates an iterator which ends after the first [`None`].
1752    ///
1753    /// After an iterator returns [`None`], future calls may or may not yield
1754    /// [`Some(T)`] again. `fuse()` adapts an iterator, ensuring that after a
1755    /// [`None`] is given, it will always return [`None`] forever.
1756    ///
1757    /// Note that the [`Fuse`] wrapper is a no-op on iterators that implement
1758    /// the [`FusedIterator`] trait. `fuse()` may therefore behave incorrectly
1759    /// if the [`FusedIterator`] trait is improperly implemented.
1760    ///
1761    /// [`Some(T)`]: Some
1762    /// [`FusedIterator`]: crate::iter::FusedIterator
1763    ///
1764    /// # Examples
1765    ///
1766    /// ```
1767    /// // an iterator which alternates between Some and None
1768    /// struct Alternate {
1769    ///     state: i32,
1770    /// }
1771    ///
1772    /// impl Iterator for Alternate {
1773    ///     type Item = i32;
1774    ///
1775    ///     fn next(&mut self) -> Option<i32> {
1776    ///         let val = self.state;
1777    ///         self.state = self.state + 1;
1778    ///
1779    ///         // if it's even, Some(i32), else None
1780    ///         (val % 2 == 0).then_some(val)
1781    ///     }
1782    /// }
1783    ///
1784    /// let mut iter = Alternate { state: 0 };
1785    ///
1786    /// // we can see our iterator going back and forth
1787    /// assert_eq!(iter.next(), Some(0));
1788    /// assert_eq!(iter.next(), None);
1789    /// assert_eq!(iter.next(), Some(2));
1790    /// assert_eq!(iter.next(), None);
1791    ///
1792    /// // however, once we fuse it...
1793    /// let mut iter = iter.fuse();
1794    ///
1795    /// assert_eq!(iter.next(), Some(4));
1796    /// assert_eq!(iter.next(), None);
1797    ///
1798    /// // it will always return `None` after the first time.
1799    /// assert_eq!(iter.next(), None);
1800    /// assert_eq!(iter.next(), None);
1801    /// assert_eq!(iter.next(), None);
1802    /// ```
1803    #[inline]
1804    #[stable(feature = "rust1", since = "1.0.0")]
1805    #[cfg(not(feature = "ferrocene_certified"))]
1806    fn fuse(self) -> Fuse<Self>
1807    where
1808        Self: Sized,
1809    {
1810        Fuse::new(self)
1811    }
1812
1813    /// Does something with each element of an iterator, passing the value on.
1814    ///
1815    /// When using iterators, you'll often chain several of them together.
1816    /// While working on such code, you might want to check out what's
1817    /// happening at various parts in the pipeline. To do that, insert
1818    /// a call to `inspect()`.
1819    ///
1820    /// It's more common for `inspect()` to be used as a debugging tool than to
1821    /// exist in your final code, but applications may find it useful in certain
1822    /// situations when errors need to be logged before being discarded.
1823    ///
1824    /// # Examples
1825    ///
1826    /// Basic usage:
1827    ///
1828    /// ```
1829    /// let a = [1, 4, 2, 3];
1830    ///
1831    /// // this iterator sequence is complex.
1832    /// let sum = a.iter()
1833    ///     .cloned()
1834    ///     .filter(|x| x % 2 == 0)
1835    ///     .fold(0, |sum, i| sum + i);
1836    ///
1837    /// println!("{sum}");
1838    ///
1839    /// // let's add some inspect() calls to investigate what's happening
1840    /// let sum = a.iter()
1841    ///     .cloned()
1842    ///     .inspect(|x| println!("about to filter: {x}"))
1843    ///     .filter(|x| x % 2 == 0)
1844    ///     .inspect(|x| println!("made it through filter: {x}"))
1845    ///     .fold(0, |sum, i| sum + i);
1846    ///
1847    /// println!("{sum}");
1848    /// ```
1849    ///
1850    /// This will print:
1851    ///
1852    /// ```text
1853    /// 6
1854    /// about to filter: 1
1855    /// about to filter: 4
1856    /// made it through filter: 4
1857    /// about to filter: 2
1858    /// made it through filter: 2
1859    /// about to filter: 3
1860    /// 6
1861    /// ```
1862    ///
1863    /// Logging errors before discarding them:
1864    ///
1865    /// ```
1866    /// let lines = ["1", "2", "a"];
1867    ///
1868    /// let sum: i32 = lines
1869    ///     .iter()
1870    ///     .map(|line| line.parse::<i32>())
1871    ///     .inspect(|num| {
1872    ///         if let Err(ref e) = *num {
1873    ///             println!("Parsing error: {e}");
1874    ///         }
1875    ///     })
1876    ///     .filter_map(Result::ok)
1877    ///     .sum();
1878    ///
1879    /// println!("Sum: {sum}");
1880    /// ```
1881    ///
1882    /// This will print:
1883    ///
1884    /// ```text
1885    /// Parsing error: invalid digit found in string
1886    /// Sum: 3
1887    /// ```
1888    #[inline]
1889    #[stable(feature = "rust1", since = "1.0.0")]
1890    #[cfg(not(feature = "ferrocene_certified"))]
1891    fn inspect<F>(self, f: F) -> Inspect<Self, F>
1892    where
1893        Self: Sized,
1894        F: FnMut(&Self::Item),
1895    {
1896        Inspect::new(self, f)
1897    }
1898
1899    /// Creates a "by reference" adapter for this instance of `Iterator`.
1900    ///
1901    /// Consuming method calls (direct or indirect calls to `next`)
1902    /// on the "by reference" adapter will consume the original iterator,
1903    /// but ownership-taking methods (those with a `self` parameter)
1904    /// only take ownership of the "by reference" iterator.
1905    ///
1906    /// This is useful for applying ownership-taking methods
1907    /// (such as `take` in the example below)
1908    /// without giving up ownership of the original iterator,
1909    /// so you can use the original iterator afterwards.
1910    ///
1911    /// Uses [`impl<I: Iterator + ?Sized> Iterator for &mut I { type Item = I::Item; ...}`](https://doc.rust-lang.org/nightly/std/iter/trait.Iterator.html#impl-Iterator-for-%26mut+I).
1912    ///
1913    /// # Examples
1914    ///
1915    /// ```
1916    /// let mut words = ["hello", "world", "of", "Rust"].into_iter();
1917    ///
1918    /// // Take the first two words.
1919    /// let hello_world: Vec<_> = words.by_ref().take(2).collect();
1920    /// assert_eq!(hello_world, vec!["hello", "world"]);
1921    ///
1922    /// // Collect the rest of the words.
1923    /// // We can only do this because we used `by_ref` earlier.
1924    /// let of_rust: Vec<_> = words.collect();
1925    /// assert_eq!(of_rust, vec!["of", "Rust"]);
1926    /// ```
1927    #[stable(feature = "rust1", since = "1.0.0")]
1928    #[cfg(not(feature = "ferrocene_certified"))]
1929    fn by_ref(&mut self) -> &mut Self
1930    where
1931        Self: Sized,
1932    {
1933        self
1934    }
1935
1936    /// Transforms an iterator into a collection.
1937    ///
1938    /// `collect()` can take anything iterable, and turn it into a relevant
1939    /// collection. This is one of the more powerful methods in the standard
1940    /// library, used in a variety of contexts.
1941    ///
1942    /// The most basic pattern in which `collect()` is used is to turn one
1943    /// collection into another. You take a collection, call [`iter`] on it,
1944    /// do a bunch of transformations, and then `collect()` at the end.
1945    ///
1946    /// `collect()` can also create instances of types that are not typical
1947    /// collections. For example, a [`String`] can be built from [`char`]s,
1948    /// and an iterator of [`Result<T, E>`][`Result`] items can be collected
1949    /// into `Result<Collection<T>, E>`. See the examples below for more.
1950    ///
1951    /// Because `collect()` is so general, it can cause problems with type
1952    /// inference. As such, `collect()` is one of the few times you'll see
1953    /// the syntax affectionately known as the 'turbofish': `::<>`. This
1954    /// helps the inference algorithm understand specifically which collection
1955    /// you're trying to collect into.
1956    ///
1957    /// # Examples
1958    ///
1959    /// Basic usage:
1960    ///
1961    /// ```
1962    /// let a = [1, 2, 3];
1963    ///
1964    /// let doubled: Vec<i32> = a.iter()
1965    ///                          .map(|x| x * 2)
1966    ///                          .collect();
1967    ///
1968    /// assert_eq!(vec![2, 4, 6], doubled);
1969    /// ```
1970    ///
1971    /// Note that we needed the `: Vec<i32>` on the left-hand side. This is because
1972    /// we could collect into, for example, a [`VecDeque<T>`] instead:
1973    ///
1974    /// [`VecDeque<T>`]: ../../std/collections/struct.VecDeque.html
1975    ///
1976    /// ```
1977    /// use std::collections::VecDeque;
1978    ///
1979    /// let a = [1, 2, 3];
1980    ///
1981    /// let doubled: VecDeque<i32> = a.iter().map(|x| x * 2).collect();
1982    ///
1983    /// assert_eq!(2, doubled[0]);
1984    /// assert_eq!(4, doubled[1]);
1985    /// assert_eq!(6, doubled[2]);
1986    /// ```
1987    ///
1988    /// Using the 'turbofish' instead of annotating `doubled`:
1989    ///
1990    /// ```
1991    /// let a = [1, 2, 3];
1992    ///
1993    /// let doubled = a.iter().map(|x| x * 2).collect::<Vec<i32>>();
1994    ///
1995    /// assert_eq!(vec![2, 4, 6], doubled);
1996    /// ```
1997    ///
1998    /// Because `collect()` only cares about what you're collecting into, you can
1999    /// still use a partial type hint, `_`, with the turbofish:
2000    ///
2001    /// ```
2002    /// let a = [1, 2, 3];
2003    ///
2004    /// let doubled = a.iter().map(|x| x * 2).collect::<Vec<_>>();
2005    ///
2006    /// assert_eq!(vec![2, 4, 6], doubled);
2007    /// ```
2008    ///
2009    /// Using `collect()` to make a [`String`]:
2010    ///
2011    /// ```
2012    /// let chars = ['g', 'd', 'k', 'k', 'n'];
2013    ///
2014    /// let hello: String = chars.into_iter()
2015    ///     .map(|x| x as u8)
2016    ///     .map(|x| (x + 1) as char)
2017    ///     .collect();
2018    ///
2019    /// assert_eq!("hello", hello);
2020    /// ```
2021    ///
2022    /// If you have a list of [`Result<T, E>`][`Result`]s, you can use `collect()` to
2023    /// see if any of them failed:
2024    ///
2025    /// ```
2026    /// let results = [Ok(1), Err("nope"), Ok(3), Err("bad")];
2027    ///
2028    /// let result: Result<Vec<_>, &str> = results.into_iter().collect();
2029    ///
2030    /// // gives us the first error
2031    /// assert_eq!(Err("nope"), result);
2032    ///
2033    /// let results = [Ok(1), Ok(3)];
2034    ///
2035    /// let result: Result<Vec<_>, &str> = results.into_iter().collect();
2036    ///
2037    /// // gives us the list of answers
2038    /// assert_eq!(Ok(vec![1, 3]), result);
2039    /// ```
2040    ///
2041    /// [`iter`]: Iterator::next
2042    /// [`String`]: ../../std/string/struct.String.html
2043    /// [`char`]: type@char
2044    #[inline]
2045    #[stable(feature = "rust1", since = "1.0.0")]
2046    #[must_use = "if you really need to exhaust the iterator, consider `.for_each(drop)` instead"]
2047    #[rustc_diagnostic_item = "iterator_collect_fn"]
2048    fn collect<B: FromIterator<Self::Item>>(self) -> B
2049    where
2050        Self: Sized,
2051    {
2052        // This is too aggressive to turn on for everything all the time, but PR#137908
2053        // accidentally noticed that some rustc iterators had malformed `size_hint`s,
2054        // so this will help catch such things in debug-assertions-std runners,
2055        // even if users won't actually ever see it.
2056        if cfg!(debug_assertions) {
2057            let hint = self.size_hint();
2058            assert!(hint.1.is_none_or(|high| high >= hint.0), "Malformed size_hint {hint:?}");
2059        }
2060
2061        FromIterator::from_iter(self)
2062    }
2063
2064    /// Fallibly transforms an iterator into a collection, short circuiting if
2065    /// a failure is encountered.
2066    ///
2067    /// `try_collect()` is a variation of [`collect()`][`collect`] that allows fallible
2068    /// conversions during collection. Its main use case is simplifying conversions from
2069    /// iterators yielding [`Option<T>`][`Option`] into `Option<Collection<T>>`, or similarly for other [`Try`]
2070    /// types (e.g. [`Result`]).
2071    ///
2072    /// Importantly, `try_collect()` doesn't require that the outer [`Try`] type also implements [`FromIterator`];
2073    /// only the inner type produced on `Try::Output` must implement it. Concretely,
2074    /// this means that collecting into `ControlFlow<_, Vec<i32>>` is valid because `Vec<i32>` implements
2075    /// [`FromIterator`], even though [`ControlFlow`] doesn't.
2076    ///
2077    /// Also, if a failure is encountered during `try_collect()`, the iterator is still valid and
2078    /// may continue to be used, in which case it will continue iterating starting after the element that
2079    /// triggered the failure. See the last example below for an example of how this works.
2080    ///
2081    /// # Examples
2082    /// Successfully collecting an iterator of `Option<i32>` into `Option<Vec<i32>>`:
2083    /// ```
2084    /// #![feature(iterator_try_collect)]
2085    ///
2086    /// let u = vec![Some(1), Some(2), Some(3)];
2087    /// let v = u.into_iter().try_collect::<Vec<i32>>();
2088    /// assert_eq!(v, Some(vec![1, 2, 3]));
2089    /// ```
2090    ///
2091    /// Failing to collect in the same way:
2092    /// ```
2093    /// #![feature(iterator_try_collect)]
2094    ///
2095    /// let u = vec![Some(1), Some(2), None, Some(3)];
2096    /// let v = u.into_iter().try_collect::<Vec<i32>>();
2097    /// assert_eq!(v, None);
2098    /// ```
2099    ///
2100    /// A similar example, but with `Result`:
2101    /// ```
2102    /// #![feature(iterator_try_collect)]
2103    ///
2104    /// let u: Vec<Result<i32, ()>> = vec![Ok(1), Ok(2), Ok(3)];
2105    /// let v = u.into_iter().try_collect::<Vec<i32>>();
2106    /// assert_eq!(v, Ok(vec![1, 2, 3]));
2107    ///
2108    /// let u = vec![Ok(1), Ok(2), Err(()), Ok(3)];
2109    /// let v = u.into_iter().try_collect::<Vec<i32>>();
2110    /// assert_eq!(v, Err(()));
2111    /// ```
2112    ///
2113    /// Finally, even [`ControlFlow`] works, despite the fact that it
2114    /// doesn't implement [`FromIterator`]. Note also that the iterator can
2115    /// continue to be used, even if a failure is encountered:
2116    ///
2117    /// ```
2118    /// #![feature(iterator_try_collect)]
2119    ///
2120    /// use core::ops::ControlFlow::{Break, Continue};
2121    ///
2122    /// let u = [Continue(1), Continue(2), Break(3), Continue(4), Continue(5)];
2123    /// let mut it = u.into_iter();
2124    ///
2125    /// let v = it.try_collect::<Vec<_>>();
2126    /// assert_eq!(v, Break(3));
2127    ///
2128    /// let v = it.try_collect::<Vec<_>>();
2129    /// assert_eq!(v, Continue(vec![4, 5]));
2130    /// ```
2131    ///
2132    /// [`collect`]: Iterator::collect
2133    #[inline]
2134    #[unstable(feature = "iterator_try_collect", issue = "94047")]
2135    #[cfg(not(feature = "ferrocene_certified"))]
2136    fn try_collect<B>(&mut self) -> ChangeOutputType<Self::Item, B>
2137    where
2138        Self: Sized,
2139        Self::Item: Try<Residual: Residual<B>>,
2140        B: FromIterator<<Self::Item as Try>::Output>,
2141    {
2142        try_process(ByRefSized(self), |i| i.collect())
2143    }
2144
2145    /// Collects all the items from an iterator into a collection.
2146    ///
2147    /// This method consumes the iterator and adds all its items to the
2148    /// passed collection. The collection is then returned, so the call chain
2149    /// can be continued.
2150    ///
2151    /// This is useful when you already have a collection and want to add
2152    /// the iterator items to it.
2153    ///
2154    /// This method is a convenience method to call [Extend::extend](trait.Extend.html),
2155    /// but instead of being called on a collection, it's called on an iterator.
2156    ///
2157    /// # Examples
2158    ///
2159    /// Basic usage:
2160    ///
2161    /// ```
2162    /// #![feature(iter_collect_into)]
2163    ///
2164    /// let a = [1, 2, 3];
2165    /// let mut vec: Vec::<i32> = vec![0, 1];
2166    ///
2167    /// a.iter().map(|x| x * 2).collect_into(&mut vec);
2168    /// a.iter().map(|x| x * 10).collect_into(&mut vec);
2169    ///
2170    /// assert_eq!(vec, vec![0, 1, 2, 4, 6, 10, 20, 30]);
2171    /// ```
2172    ///
2173    /// `Vec` can have a manual set capacity to avoid reallocating it:
2174    ///
2175    /// ```
2176    /// #![feature(iter_collect_into)]
2177    ///
2178    /// let a = [1, 2, 3];
2179    /// let mut vec: Vec::<i32> = Vec::with_capacity(6);
2180    ///
2181    /// a.iter().map(|x| x * 2).collect_into(&mut vec);
2182    /// a.iter().map(|x| x * 10).collect_into(&mut vec);
2183    ///
2184    /// assert_eq!(6, vec.capacity());
2185    /// assert_eq!(vec, vec![2, 4, 6, 10, 20, 30]);
2186    /// ```
2187    ///
2188    /// The returned mutable reference can be used to continue the call chain:
2189    ///
2190    /// ```
2191    /// #![feature(iter_collect_into)]
2192    ///
2193    /// let a = [1, 2, 3];
2194    /// let mut vec: Vec::<i32> = Vec::with_capacity(6);
2195    ///
2196    /// let count = a.iter().collect_into(&mut vec).iter().count();
2197    ///
2198    /// assert_eq!(count, vec.len());
2199    /// assert_eq!(vec, vec![1, 2, 3]);
2200    ///
2201    /// let count = a.iter().collect_into(&mut vec).iter().count();
2202    ///
2203    /// assert_eq!(count, vec.len());
2204    /// assert_eq!(vec, vec![1, 2, 3, 1, 2, 3]);
2205    /// ```
2206    #[inline]
2207    #[unstable(feature = "iter_collect_into", reason = "new API", issue = "94780")]
2208    #[cfg(not(feature = "ferrocene_certified"))]
2209    fn collect_into<E: Extend<Self::Item>>(self, collection: &mut E) -> &mut E
2210    where
2211        Self: Sized,
2212    {
2213        collection.extend(self);
2214        collection
2215    }
2216
2217    /// Consumes an iterator, creating two collections from it.
2218    ///
2219    /// The predicate passed to `partition()` can return `true`, or `false`.
2220    /// `partition()` returns a pair, all of the elements for which it returned
2221    /// `true`, and all of the elements for which it returned `false`.
2222    ///
2223    /// See also [`is_partitioned()`] and [`partition_in_place()`].
2224    ///
2225    /// [`is_partitioned()`]: Iterator::is_partitioned
2226    /// [`partition_in_place()`]: Iterator::partition_in_place
2227    ///
2228    /// # Examples
2229    ///
2230    /// ```
2231    /// let a = [1, 2, 3];
2232    ///
2233    /// let (even, odd): (Vec<_>, Vec<_>) = a
2234    ///     .into_iter()
2235    ///     .partition(|n| n % 2 == 0);
2236    ///
2237    /// assert_eq!(even, [2]);
2238    /// assert_eq!(odd, [1, 3]);
2239    /// ```
2240    #[stable(feature = "rust1", since = "1.0.0")]
2241    #[cfg(not(feature = "ferrocene_certified"))]
2242    fn partition<B, F>(self, f: F) -> (B, B)
2243    where
2244        Self: Sized,
2245        B: Default + Extend<Self::Item>,
2246        F: FnMut(&Self::Item) -> bool,
2247    {
2248        #[inline]
2249        fn extend<'a, T, B: Extend<T>>(
2250            mut f: impl FnMut(&T) -> bool + 'a,
2251            left: &'a mut B,
2252            right: &'a mut B,
2253        ) -> impl FnMut((), T) + 'a {
2254            move |(), x| {
2255                if f(&x) {
2256                    left.extend_one(x);
2257                } else {
2258                    right.extend_one(x);
2259                }
2260            }
2261        }
2262
2263        let mut left: B = Default::default();
2264        let mut right: B = Default::default();
2265
2266        self.fold((), extend(f, &mut left, &mut right));
2267
2268        (left, right)
2269    }
2270
2271    /// Reorders the elements of this iterator *in-place* according to the given predicate,
2272    /// such that all those that return `true` precede all those that return `false`.
2273    /// Returns the number of `true` elements found.
2274    ///
2275    /// The relative order of partitioned items is not maintained.
2276    ///
2277    /// # Current implementation
2278    ///
2279    /// The current algorithm tries to find the first element for which the predicate evaluates
2280    /// to false and the last element for which it evaluates to true, and repeatedly swaps them.
2281    ///
2282    /// Time complexity: *O*(*n*)
2283    ///
2284    /// See also [`is_partitioned()`] and [`partition()`].
2285    ///
2286    /// [`is_partitioned()`]: Iterator::is_partitioned
2287    /// [`partition()`]: Iterator::partition
2288    ///
2289    /// # Examples
2290    ///
2291    /// ```
2292    /// #![feature(iter_partition_in_place)]
2293    ///
2294    /// let mut a = [1, 2, 3, 4, 5, 6, 7];
2295    ///
2296    /// // Partition in-place between evens and odds
2297    /// let i = a.iter_mut().partition_in_place(|n| n % 2 == 0);
2298    ///
2299    /// assert_eq!(i, 3);
2300    /// assert!(a[..i].iter().all(|n| n % 2 == 0)); // evens
2301    /// assert!(a[i..].iter().all(|n| n % 2 == 1)); // odds
2302    /// ```
2303    #[unstable(feature = "iter_partition_in_place", reason = "new API", issue = "62543")]
2304    #[cfg(not(feature = "ferrocene_certified"))]
2305    fn partition_in_place<'a, T: 'a, P>(mut self, ref mut predicate: P) -> usize
2306    where
2307        Self: Sized + DoubleEndedIterator<Item = &'a mut T>,
2308        P: FnMut(&T) -> bool,
2309    {
2310        // FIXME: should we worry about the count overflowing? The only way to have more than
2311        // `usize::MAX` mutable references is with ZSTs, which aren't useful to partition...
2312
2313        // These closure "factory" functions exist to avoid genericity in `Self`.
2314
2315        #[inline]
2316        fn is_false<'a, T>(
2317            predicate: &'a mut impl FnMut(&T) -> bool,
2318            true_count: &'a mut usize,
2319        ) -> impl FnMut(&&mut T) -> bool + 'a {
2320            move |x| {
2321                let p = predicate(&**x);
2322                *true_count += p as usize;
2323                !p
2324            }
2325        }
2326
2327        #[inline]
2328        fn is_true<T>(predicate: &mut impl FnMut(&T) -> bool) -> impl FnMut(&&mut T) -> bool + '_ {
2329            move |x| predicate(&**x)
2330        }
2331
2332        // Repeatedly find the first `false` and swap it with the last `true`.
2333        let mut true_count = 0;
2334        while let Some(head) = self.find(is_false(predicate, &mut true_count)) {
2335            if let Some(tail) = self.rfind(is_true(predicate)) {
2336                crate::mem::swap(head, tail);
2337                true_count += 1;
2338            } else {
2339                break;
2340            }
2341        }
2342        true_count
2343    }
2344
2345    /// Checks if the elements of this iterator are partitioned according to the given predicate,
2346    /// such that all those that return `true` precede all those that return `false`.
2347    ///
2348    /// See also [`partition()`] and [`partition_in_place()`].
2349    ///
2350    /// [`partition()`]: Iterator::partition
2351    /// [`partition_in_place()`]: Iterator::partition_in_place
2352    ///
2353    /// # Examples
2354    ///
2355    /// ```
2356    /// #![feature(iter_is_partitioned)]
2357    ///
2358    /// assert!("Iterator".chars().is_partitioned(char::is_uppercase));
2359    /// assert!(!"IntoIterator".chars().is_partitioned(char::is_uppercase));
2360    /// ```
2361    #[unstable(feature = "iter_is_partitioned", reason = "new API", issue = "62544")]
2362    #[cfg(not(feature = "ferrocene_certified"))]
2363    fn is_partitioned<P>(mut self, mut predicate: P) -> bool
2364    where
2365        Self: Sized,
2366        P: FnMut(Self::Item) -> bool,
2367    {
2368        // Either all items test `true`, or the first clause stops at `false`
2369        // and we check that there are no more `true` items after that.
2370        self.all(&mut predicate) || !self.any(predicate)
2371    }
2372
2373    /// An iterator method that applies a function as long as it returns
2374    /// successfully, producing a single, final value.
2375    ///
2376    /// `try_fold()` takes two arguments: an initial value, and a closure with
2377    /// two arguments: an 'accumulator', and an element. The closure either
2378    /// returns successfully, with the value that the accumulator should have
2379    /// for the next iteration, or it returns failure, with an error value that
2380    /// is propagated back to the caller immediately (short-circuiting).
2381    ///
2382    /// The initial value is the value the accumulator will have on the first
2383    /// call. If applying the closure succeeded against every element of the
2384    /// iterator, `try_fold()` returns the final accumulator as success.
2385    ///
2386    /// Folding is useful whenever you have a collection of something, and want
2387    /// to produce a single value from it.
2388    ///
2389    /// # Note to Implementors
2390    ///
2391    /// Several of the other (forward) methods have default implementations in
2392    /// terms of this one, so try to implement this explicitly if it can
2393    /// do something better than the default `for` loop implementation.
2394    ///
2395    /// In particular, try to have this call `try_fold()` on the internal parts
2396    /// from which this iterator is composed. If multiple calls are needed,
2397    /// the `?` operator may be convenient for chaining the accumulator value
2398    /// along, but beware any invariants that need to be upheld before those
2399    /// early returns. This is a `&mut self` method, so iteration needs to be
2400    /// resumable after hitting an error here.
2401    ///
2402    /// # Examples
2403    ///
2404    /// Basic usage:
2405    ///
2406    /// ```
2407    /// let a = [1, 2, 3];
2408    ///
2409    /// // the checked sum of all of the elements of the array
2410    /// let sum = a.into_iter().try_fold(0i8, |acc, x| acc.checked_add(x));
2411    ///
2412    /// assert_eq!(sum, Some(6));
2413    /// ```
2414    ///
2415    /// Short-circuiting:
2416    ///
2417    /// ```
2418    /// let a = [10, 20, 30, 100, 40, 50];
2419    /// let mut iter = a.into_iter();
2420    ///
2421    /// // This sum overflows when adding the 100 element
2422    /// let sum = iter.try_fold(0i8, |acc, x| acc.checked_add(x));
2423    /// assert_eq!(sum, None);
2424    ///
2425    /// // Because it short-circuited, the remaining elements are still
2426    /// // available through the iterator.
2427    /// assert_eq!(iter.len(), 2);
2428    /// assert_eq!(iter.next(), Some(40));
2429    /// ```
2430    ///
2431    /// While you cannot `break` from a closure, the [`ControlFlow`] type allows
2432    /// a similar idea:
2433    ///
2434    /// ```
2435    /// use std::ops::ControlFlow;
2436    ///
2437    /// let triangular = (1..30).try_fold(0_i8, |prev, x| {
2438    ///     if let Some(next) = prev.checked_add(x) {
2439    ///         ControlFlow::Continue(next)
2440    ///     } else {
2441    ///         ControlFlow::Break(prev)
2442    ///     }
2443    /// });
2444    /// assert_eq!(triangular, ControlFlow::Break(120));
2445    ///
2446    /// let triangular = (1..30).try_fold(0_u64, |prev, x| {
2447    ///     if let Some(next) = prev.checked_add(x) {
2448    ///         ControlFlow::Continue(next)
2449    ///     } else {
2450    ///         ControlFlow::Break(prev)
2451    ///     }
2452    /// });
2453    /// assert_eq!(triangular, ControlFlow::Continue(435));
2454    /// ```
2455    #[inline]
2456    #[stable(feature = "iterator_try_fold", since = "1.27.0")]
2457    fn try_fold<B, F, R>(&mut self, init: B, mut f: F) -> R
2458    where
2459        Self: Sized,
2460        F: FnMut(B, Self::Item) -> R,
2461        R: Try<Output = B>,
2462    {
2463        let mut accum = init;
2464        while let Some(x) = self.next() {
2465            accum = f(accum, x)?;
2466        }
2467        try { accum }
2468    }
2469
2470    /// An iterator method that applies a fallible function to each item in the
2471    /// iterator, stopping at the first error and returning that error.
2472    ///
2473    /// This can also be thought of as the fallible form of [`for_each()`]
2474    /// or as the stateless version of [`try_fold()`].
2475    ///
2476    /// [`for_each()`]: Iterator::for_each
2477    /// [`try_fold()`]: Iterator::try_fold
2478    ///
2479    /// # Examples
2480    ///
2481    /// ```
2482    /// use std::fs::rename;
2483    /// use std::io::{stdout, Write};
2484    /// use std::path::Path;
2485    ///
2486    /// let data = ["no_tea.txt", "stale_bread.json", "torrential_rain.png"];
2487    ///
2488    /// let res = data.iter().try_for_each(|x| writeln!(stdout(), "{x}"));
2489    /// assert!(res.is_ok());
2490    ///
2491    /// let mut it = data.iter().cloned();
2492    /// let res = it.try_for_each(|x| rename(x, Path::new(x).with_extension("old")));
2493    /// assert!(res.is_err());
2494    /// // It short-circuited, so the remaining items are still in the iterator:
2495    /// assert_eq!(it.next(), Some("stale_bread.json"));
2496    /// ```
2497    ///
2498    /// The [`ControlFlow`] type can be used with this method for the situations
2499    /// in which you'd use `break` and `continue` in a normal loop:
2500    ///
2501    /// ```
2502    /// use std::ops::ControlFlow;
2503    ///
2504    /// let r = (2..100).try_for_each(|x| {
2505    ///     if 323 % x == 0 {
2506    ///         return ControlFlow::Break(x)
2507    ///     }
2508    ///
2509    ///     ControlFlow::Continue(())
2510    /// });
2511    /// assert_eq!(r, ControlFlow::Break(17));
2512    /// ```
2513    #[inline]
2514    #[stable(feature = "iterator_try_fold", since = "1.27.0")]
2515    #[cfg(not(feature = "ferrocene_certified"))]
2516    fn try_for_each<F, R>(&mut self, f: F) -> R
2517    where
2518        Self: Sized,
2519        F: FnMut(Self::Item) -> R,
2520        R: Try<Output = ()>,
2521    {
2522        #[inline]
2523        fn call<T, R>(mut f: impl FnMut(T) -> R) -> impl FnMut((), T) -> R {
2524            move |(), x| f(x)
2525        }
2526
2527        self.try_fold((), call(f))
2528    }
2529
2530    /// Folds every element into an accumulator by applying an operation,
2531    /// returning the final result.
2532    ///
2533    /// `fold()` takes two arguments: an initial value, and a closure with two
2534    /// arguments: an 'accumulator', and an element. The closure returns the value that
2535    /// the accumulator should have for the next iteration.
2536    ///
2537    /// The initial value is the value the accumulator will have on the first
2538    /// call.
2539    ///
2540    /// After applying this closure to every element of the iterator, `fold()`
2541    /// returns the accumulator.
2542    ///
2543    /// This operation is sometimes called 'reduce' or 'inject'.
2544    ///
2545    /// Folding is useful whenever you have a collection of something, and want
2546    /// to produce a single value from it.
2547    ///
2548    /// Note: `fold()`, and similar methods that traverse the entire iterator,
2549    /// might not terminate for infinite iterators, even on traits for which a
2550    /// result is determinable in finite time.
2551    ///
2552    /// Note: [`reduce()`] can be used to use the first element as the initial
2553    /// value, if the accumulator type and item type is the same.
2554    ///
2555    /// Note: `fold()` combines elements in a *left-associative* fashion. For associative
2556    /// operators like `+`, the order the elements are combined in is not important, but for non-associative
2557    /// operators like `-` the order will affect the final result.
2558    /// For a *right-associative* version of `fold()`, see [`DoubleEndedIterator::rfold()`].
2559    ///
2560    /// # Note to Implementors
2561    ///
2562    /// Several of the other (forward) methods have default implementations in
2563    /// terms of this one, so try to implement this explicitly if it can
2564    /// do something better than the default `for` loop implementation.
2565    ///
2566    /// In particular, try to have this call `fold()` on the internal parts
2567    /// from which this iterator is composed.
2568    ///
2569    /// # Examples
2570    ///
2571    /// Basic usage:
2572    ///
2573    /// ```
2574    /// let a = [1, 2, 3];
2575    ///
2576    /// // the sum of all of the elements of the array
2577    /// let sum = a.iter().fold(0, |acc, x| acc + x);
2578    ///
2579    /// assert_eq!(sum, 6);
2580    /// ```
2581    ///
2582    /// Let's walk through each step of the iteration here:
2583    ///
2584    /// | element | acc | x | result |
2585    /// |---------|-----|---|--------|
2586    /// |         | 0   |   |        |
2587    /// | 1       | 0   | 1 | 1      |
2588    /// | 2       | 1   | 2 | 3      |
2589    /// | 3       | 3   | 3 | 6      |
2590    ///
2591    /// And so, our final result, `6`.
2592    ///
2593    /// This example demonstrates the left-associative nature of `fold()`:
2594    /// it builds a string, starting with an initial value
2595    /// and continuing with each element from the front until the back:
2596    ///
2597    /// ```
2598    /// let numbers = [1, 2, 3, 4, 5];
2599    ///
2600    /// let zero = "0".to_string();
2601    ///
2602    /// let result = numbers.iter().fold(zero, |acc, &x| {
2603    ///     format!("({acc} + {x})")
2604    /// });
2605    ///
2606    /// assert_eq!(result, "(((((0 + 1) + 2) + 3) + 4) + 5)");
2607    /// ```
2608    /// It's common for people who haven't used iterators a lot to
2609    /// use a `for` loop with a list of things to build up a result. Those
2610    /// can be turned into `fold()`s:
2611    ///
2612    /// [`for`]: ../../book/ch03-05-control-flow.html#looping-through-a-collection-with-for
2613    ///
2614    /// ```
2615    /// let numbers = [1, 2, 3, 4, 5];
2616    ///
2617    /// let mut result = 0;
2618    ///
2619    /// // for loop:
2620    /// for i in &numbers {
2621    ///     result = result + i;
2622    /// }
2623    ///
2624    /// // fold:
2625    /// let result2 = numbers.iter().fold(0, |acc, &x| acc + x);
2626    ///
2627    /// // they're the same
2628    /// assert_eq!(result, result2);
2629    /// ```
2630    ///
2631    /// [`reduce()`]: Iterator::reduce
2632    #[doc(alias = "inject", alias = "foldl")]
2633    #[inline]
2634    #[stable(feature = "rust1", since = "1.0.0")]
2635    fn fold<B, F>(mut self, init: B, mut f: F) -> B
2636    where
2637        Self: Sized,
2638        F: FnMut(B, Self::Item) -> B,
2639    {
2640        let mut accum = init;
2641        while let Some(x) = self.next() {
2642            accum = f(accum, x);
2643        }
2644        accum
2645    }
2646
2647    /// Reduces the elements to a single one, by repeatedly applying a reducing
2648    /// operation.
2649    ///
2650    /// If the iterator is empty, returns [`None`]; otherwise, returns the
2651    /// result of the reduction.
2652    ///
2653    /// The reducing function is a closure with two arguments: an 'accumulator', and an element.
2654    /// For iterators with at least one element, this is the same as [`fold()`]
2655    /// with the first element of the iterator as the initial accumulator value, folding
2656    /// every subsequent element into it.
2657    ///
2658    /// [`fold()`]: Iterator::fold
2659    ///
2660    /// # Example
2661    ///
2662    /// ```
2663    /// let reduced: i32 = (1..10).reduce(|acc, e| acc + e).unwrap_or(0);
2664    /// assert_eq!(reduced, 45);
2665    ///
2666    /// // Which is equivalent to doing it with `fold`:
2667    /// let folded: i32 = (1..10).fold(0, |acc, e| acc + e);
2668    /// assert_eq!(reduced, folded);
2669    /// ```
2670    #[inline]
2671    #[stable(feature = "iterator_fold_self", since = "1.51.0")]
2672    fn reduce<F>(mut self, f: F) -> Option<Self::Item>
2673    where
2674        Self: Sized,
2675        F: FnMut(Self::Item, Self::Item) -> Self::Item,
2676    {
2677        let first = self.next()?;
2678        Some(self.fold(first, f))
2679    }
2680
2681    /// Reduces the elements to a single one by repeatedly applying a reducing operation. If the
2682    /// closure returns a failure, the failure is propagated back to the caller immediately.
2683    ///
2684    /// The return type of this method depends on the return type of the closure. If the closure
2685    /// returns `Result<Self::Item, E>`, then this function will return `Result<Option<Self::Item>,
2686    /// E>`. If the closure returns `Option<Self::Item>`, then this function will return
2687    /// `Option<Option<Self::Item>>`.
2688    ///
2689    /// When called on an empty iterator, this function will return either `Some(None)` or
2690    /// `Ok(None)` depending on the type of the provided closure.
2691    ///
2692    /// For iterators with at least one element, this is essentially the same as calling
2693    /// [`try_fold()`] with the first element of the iterator as the initial accumulator value.
2694    ///
2695    /// [`try_fold()`]: Iterator::try_fold
2696    ///
2697    /// # Examples
2698    ///
2699    /// Safely calculate the sum of a series of numbers:
2700    ///
2701    /// ```
2702    /// #![feature(iterator_try_reduce)]
2703    ///
2704    /// let numbers: Vec<usize> = vec![10, 20, 5, 23, 0];
2705    /// let sum = numbers.into_iter().try_reduce(|x, y| x.checked_add(y));
2706    /// assert_eq!(sum, Some(Some(58)));
2707    /// ```
2708    ///
2709    /// Determine when a reduction short circuited:
2710    ///
2711    /// ```
2712    /// #![feature(iterator_try_reduce)]
2713    ///
2714    /// let numbers = vec![1, 2, 3, usize::MAX, 4, 5];
2715    /// let sum = numbers.into_iter().try_reduce(|x, y| x.checked_add(y));
2716    /// assert_eq!(sum, None);
2717    /// ```
2718    ///
2719    /// Determine when a reduction was not performed because there are no elements:
2720    ///
2721    /// ```
2722    /// #![feature(iterator_try_reduce)]
2723    ///
2724    /// let numbers: Vec<usize> = Vec::new();
2725    /// let sum = numbers.into_iter().try_reduce(|x, y| x.checked_add(y));
2726    /// assert_eq!(sum, Some(None));
2727    /// ```
2728    ///
2729    /// Use a [`Result`] instead of an [`Option`]:
2730    ///
2731    /// ```
2732    /// #![feature(iterator_try_reduce)]
2733    ///
2734    /// let numbers = vec!["1", "2", "3", "4", "5"];
2735    /// let max: Result<Option<_>, <usize as std::str::FromStr>::Err> =
2736    ///     numbers.into_iter().try_reduce(|x, y| {
2737    ///         if x.parse::<usize>()? > y.parse::<usize>()? { Ok(x) } else { Ok(y) }
2738    ///     });
2739    /// assert_eq!(max, Ok(Some("5")));
2740    /// ```
2741    #[inline]
2742    #[unstable(feature = "iterator_try_reduce", reason = "new API", issue = "87053")]
2743    #[cfg(not(feature = "ferrocene_certified"))]
2744    fn try_reduce<R>(
2745        &mut self,
2746        f: impl FnMut(Self::Item, Self::Item) -> R,
2747    ) -> ChangeOutputType<R, Option<R::Output>>
2748    where
2749        Self: Sized,
2750        R: Try<Output = Self::Item, Residual: Residual<Option<Self::Item>>>,
2751    {
2752        let first = match self.next() {
2753            Some(i) => i,
2754            None => return Try::from_output(None),
2755        };
2756
2757        match self.try_fold(first, f).branch() {
2758            ControlFlow::Break(r) => FromResidual::from_residual(r),
2759            ControlFlow::Continue(i) => Try::from_output(Some(i)),
2760        }
2761    }
2762
2763    /// Tests if every element of the iterator matches a predicate.
2764    ///
2765    /// `all()` takes a closure that returns `true` or `false`. It applies
2766    /// this closure to each element of the iterator, and if they all return
2767    /// `true`, then so does `all()`. If any of them return `false`, it
2768    /// returns `false`.
2769    ///
2770    /// `all()` is short-circuiting; in other words, it will stop processing
2771    /// as soon as it finds a `false`, given that no matter what else happens,
2772    /// the result will also be `false`.
2773    ///
2774    /// An empty iterator returns `true`.
2775    ///
2776    /// # Examples
2777    ///
2778    /// Basic usage:
2779    ///
2780    /// ```
2781    /// let a = [1, 2, 3];
2782    ///
2783    /// assert!(a.into_iter().all(|x| x > 0));
2784    ///
2785    /// assert!(!a.into_iter().all(|x| x > 2));
2786    /// ```
2787    ///
2788    /// Stopping at the first `false`:
2789    ///
2790    /// ```
2791    /// let a = [1, 2, 3];
2792    ///
2793    /// let mut iter = a.into_iter();
2794    ///
2795    /// assert!(!iter.all(|x| x != 2));
2796    ///
2797    /// // we can still use `iter`, as there are more elements.
2798    /// assert_eq!(iter.next(), Some(3));
2799    /// ```
2800    #[inline]
2801    #[stable(feature = "rust1", since = "1.0.0")]
2802    fn all<F>(&mut self, f: F) -> bool
2803    where
2804        Self: Sized,
2805        F: FnMut(Self::Item) -> bool,
2806    {
2807        #[inline]
2808        fn check<T>(mut f: impl FnMut(T) -> bool) -> impl FnMut((), T) -> ControlFlow<()> {
2809            move |(), x| {
2810                if f(x) { ControlFlow::Continue(()) } else { ControlFlow::Break(()) }
2811            }
2812        }
2813        self.try_fold((), check(f)) == ControlFlow::Continue(())
2814    }
2815
2816    /// Tests if any element of the iterator matches a predicate.
2817    ///
2818    /// `any()` takes a closure that returns `true` or `false`. It applies
2819    /// this closure to each element of the iterator, and if any of them return
2820    /// `true`, then so does `any()`. If they all return `false`, it
2821    /// returns `false`.
2822    ///
2823    /// `any()` is short-circuiting; in other words, it will stop processing
2824    /// as soon as it finds a `true`, given that no matter what else happens,
2825    /// the result will also be `true`.
2826    ///
2827    /// An empty iterator returns `false`.
2828    ///
2829    /// # Examples
2830    ///
2831    /// Basic usage:
2832    ///
2833    /// ```
2834    /// let a = [1, 2, 3];
2835    ///
2836    /// assert!(a.into_iter().any(|x| x > 0));
2837    ///
2838    /// assert!(!a.into_iter().any(|x| x > 5));
2839    /// ```
2840    ///
2841    /// Stopping at the first `true`:
2842    ///
2843    /// ```
2844    /// let a = [1, 2, 3];
2845    ///
2846    /// let mut iter = a.into_iter();
2847    ///
2848    /// assert!(iter.any(|x| x != 2));
2849    ///
2850    /// // we can still use `iter`, as there are more elements.
2851    /// assert_eq!(iter.next(), Some(2));
2852    /// ```
2853    #[inline]
2854    #[stable(feature = "rust1", since = "1.0.0")]
2855    fn any<F>(&mut self, f: F) -> bool
2856    where
2857        Self: Sized,
2858        F: FnMut(Self::Item) -> bool,
2859    {
2860        #[inline]
2861        fn check<T>(mut f: impl FnMut(T) -> bool) -> impl FnMut((), T) -> ControlFlow<()> {
2862            move |(), x| {
2863                if f(x) { ControlFlow::Break(()) } else { ControlFlow::Continue(()) }
2864            }
2865        }
2866
2867        self.try_fold((), check(f)) == ControlFlow::Break(())
2868    }
2869
2870    /// Searches for an element of an iterator that satisfies a predicate.
2871    ///
2872    /// `find()` takes a closure that returns `true` or `false`. It applies
2873    /// this closure to each element of the iterator, and if any of them return
2874    /// `true`, then `find()` returns [`Some(element)`]. If they all return
2875    /// `false`, it returns [`None`].
2876    ///
2877    /// `find()` is short-circuiting; in other words, it will stop processing
2878    /// as soon as the closure returns `true`.
2879    ///
2880    /// Because `find()` takes a reference, and many iterators iterate over
2881    /// references, this leads to a possibly confusing situation where the
2882    /// argument is a double reference. You can see this effect in the
2883    /// examples below, with `&&x`.
2884    ///
2885    /// If you need the index of the element, see [`position()`].
2886    ///
2887    /// [`Some(element)`]: Some
2888    /// [`position()`]: Iterator::position
2889    ///
2890    /// # Examples
2891    ///
2892    /// Basic usage:
2893    ///
2894    /// ```
2895    /// let a = [1, 2, 3];
2896    ///
2897    /// assert_eq!(a.into_iter().find(|&x| x == 2), Some(2));
2898    /// assert_eq!(a.into_iter().find(|&x| x == 5), None);
2899    /// ```
2900    ///
2901    /// Stopping at the first `true`:
2902    ///
2903    /// ```
2904    /// let a = [1, 2, 3];
2905    ///
2906    /// let mut iter = a.into_iter();
2907    ///
2908    /// assert_eq!(iter.find(|&x| x == 2), Some(2));
2909    ///
2910    /// // we can still use `iter`, as there are more elements.
2911    /// assert_eq!(iter.next(), Some(3));
2912    /// ```
2913    ///
2914    /// Note that `iter.find(f)` is equivalent to `iter.filter(f).next()`.
2915    #[inline]
2916    #[stable(feature = "rust1", since = "1.0.0")]
2917    fn find<P>(&mut self, predicate: P) -> Option<Self::Item>
2918    where
2919        Self: Sized,
2920        P: FnMut(&Self::Item) -> bool,
2921    {
2922        #[inline]
2923        fn check<T>(mut predicate: impl FnMut(&T) -> bool) -> impl FnMut((), T) -> ControlFlow<T> {
2924            move |(), x| {
2925                if predicate(&x) { ControlFlow::Break(x) } else { ControlFlow::Continue(()) }
2926            }
2927        }
2928
2929        self.try_fold((), check(predicate)).break_value()
2930    }
2931
2932    /// Applies function to the elements of iterator and returns
2933    /// the first non-none result.
2934    ///
2935    /// `iter.find_map(f)` is equivalent to `iter.filter_map(f).next()`.
2936    ///
2937    /// # Examples
2938    ///
2939    /// ```
2940    /// let a = ["lol", "NaN", "2", "5"];
2941    ///
2942    /// let first_number = a.iter().find_map(|s| s.parse().ok());
2943    ///
2944    /// assert_eq!(first_number, Some(2));
2945    /// ```
2946    #[inline]
2947    #[stable(feature = "iterator_find_map", since = "1.30.0")]
2948    #[cfg(not(feature = "ferrocene_certified"))]
2949    fn find_map<B, F>(&mut self, f: F) -> Option<B>
2950    where
2951        Self: Sized,
2952        F: FnMut(Self::Item) -> Option<B>,
2953    {
2954        #[inline]
2955        fn check<T, B>(mut f: impl FnMut(T) -> Option<B>) -> impl FnMut((), T) -> ControlFlow<B> {
2956            move |(), x| match f(x) {
2957                Some(x) => ControlFlow::Break(x),
2958                None => ControlFlow::Continue(()),
2959            }
2960        }
2961
2962        self.try_fold((), check(f)).break_value()
2963    }
2964
2965    /// Applies function to the elements of iterator and returns
2966    /// the first true result or the first error.
2967    ///
2968    /// The return type of this method depends on the return type of the closure.
2969    /// If you return `Result<bool, E>` from the closure, you'll get a `Result<Option<Self::Item>, E>`.
2970    /// If you return `Option<bool>` from the closure, you'll get an `Option<Option<Self::Item>>`.
2971    ///
2972    /// # Examples
2973    ///
2974    /// ```
2975    /// #![feature(try_find)]
2976    ///
2977    /// let a = ["1", "2", "lol", "NaN", "5"];
2978    ///
2979    /// let is_my_num = |s: &str, search: i32| -> Result<bool, std::num::ParseIntError> {
2980    ///     Ok(s.parse::<i32>()? == search)
2981    /// };
2982    ///
2983    /// let result = a.into_iter().try_find(|&s| is_my_num(s, 2));
2984    /// assert_eq!(result, Ok(Some("2")));
2985    ///
2986    /// let result = a.into_iter().try_find(|&s| is_my_num(s, 5));
2987    /// assert!(result.is_err());
2988    /// ```
2989    ///
2990    /// This also supports other types which implement [`Try`], not just [`Result`].
2991    ///
2992    /// ```
2993    /// #![feature(try_find)]
2994    ///
2995    /// use std::num::NonZero;
2996    ///
2997    /// let a = [3, 5, 7, 4, 9, 0, 11u32];
2998    /// let result = a.into_iter().try_find(|&x| NonZero::new(x).map(|y| y.is_power_of_two()));
2999    /// assert_eq!(result, Some(Some(4)));
3000    /// let result = a.into_iter().take(3).try_find(|&x| NonZero::new(x).map(|y| y.is_power_of_two()));
3001    /// assert_eq!(result, Some(None));
3002    /// let result = a.into_iter().rev().try_find(|&x| NonZero::new(x).map(|y| y.is_power_of_two()));
3003    /// assert_eq!(result, None);
3004    /// ```
3005    #[inline]
3006    #[unstable(feature = "try_find", reason = "new API", issue = "63178")]
3007    #[cfg(not(feature = "ferrocene_certified"))]
3008    fn try_find<R>(
3009        &mut self,
3010        f: impl FnMut(&Self::Item) -> R,
3011    ) -> ChangeOutputType<R, Option<Self::Item>>
3012    where
3013        Self: Sized,
3014        R: Try<Output = bool, Residual: Residual<Option<Self::Item>>>,
3015    {
3016        #[inline]
3017        fn check<I, V, R>(
3018            mut f: impl FnMut(&I) -> V,
3019        ) -> impl FnMut((), I) -> ControlFlow<R::TryType>
3020        where
3021            V: Try<Output = bool, Residual = R>,
3022            R: Residual<Option<I>>,
3023        {
3024            move |(), x| match f(&x).branch() {
3025                ControlFlow::Continue(false) => ControlFlow::Continue(()),
3026                ControlFlow::Continue(true) => ControlFlow::Break(Try::from_output(Some(x))),
3027                ControlFlow::Break(r) => ControlFlow::Break(FromResidual::from_residual(r)),
3028            }
3029        }
3030
3031        match self.try_fold((), check(f)) {
3032            ControlFlow::Break(x) => x,
3033            ControlFlow::Continue(()) => Try::from_output(None),
3034        }
3035    }
3036
3037    /// Searches for an element in an iterator, returning its index.
3038    ///
3039    /// `position()` takes a closure that returns `true` or `false`. It applies
3040    /// this closure to each element of the iterator, and if one of them
3041    /// returns `true`, then `position()` returns [`Some(index)`]. If all of
3042    /// them return `false`, it returns [`None`].
3043    ///
3044    /// `position()` is short-circuiting; in other words, it will stop
3045    /// processing as soon as it finds a `true`.
3046    ///
3047    /// # Overflow Behavior
3048    ///
3049    /// The method does no guarding against overflows, so if there are more
3050    /// than [`usize::MAX`] non-matching elements, it either produces the wrong
3051    /// result or panics. If overflow checks are enabled, a panic is
3052    /// guaranteed.
3053    ///
3054    /// # Panics
3055    ///
3056    /// This function might panic if the iterator has more than `usize::MAX`
3057    /// non-matching elements.
3058    ///
3059    /// [`Some(index)`]: Some
3060    ///
3061    /// # Examples
3062    ///
3063    /// Basic usage:
3064    ///
3065    /// ```
3066    /// let a = [1, 2, 3];
3067    ///
3068    /// assert_eq!(a.into_iter().position(|x| x == 2), Some(1));
3069    ///
3070    /// assert_eq!(a.into_iter().position(|x| x == 5), None);
3071    /// ```
3072    ///
3073    /// Stopping at the first `true`:
3074    ///
3075    /// ```
3076    /// let a = [1, 2, 3, 4];
3077    ///
3078    /// let mut iter = a.into_iter();
3079    ///
3080    /// assert_eq!(iter.position(|x| x >= 2), Some(1));
3081    ///
3082    /// // we can still use `iter`, as there are more elements.
3083    /// assert_eq!(iter.next(), Some(3));
3084    ///
3085    /// // The returned index depends on iterator state
3086    /// assert_eq!(iter.position(|x| x == 4), Some(0));
3087    ///
3088    /// ```
3089    #[inline]
3090    #[stable(feature = "rust1", since = "1.0.0")]
3091    fn position<P>(&mut self, predicate: P) -> Option<usize>
3092    where
3093        Self: Sized,
3094        P: FnMut(Self::Item) -> bool,
3095    {
3096        #[inline]
3097        fn check<'a, T>(
3098            mut predicate: impl FnMut(T) -> bool + 'a,
3099            acc: &'a mut usize,
3100        ) -> impl FnMut((), T) -> ControlFlow<usize, ()> + 'a {
3101            #[rustc_inherit_overflow_checks]
3102            move |_, x| {
3103                if predicate(x) {
3104                    ControlFlow::Break(*acc)
3105                } else {
3106                    *acc += 1;
3107                    ControlFlow::Continue(())
3108                }
3109            }
3110        }
3111
3112        let mut acc = 0;
3113        self.try_fold((), check(predicate, &mut acc)).break_value()
3114    }
3115
3116    /// Searches for an element in an iterator from the right, returning its
3117    /// index.
3118    ///
3119    /// `rposition()` takes a closure that returns `true` or `false`. It applies
3120    /// this closure to each element of the iterator, starting from the end,
3121    /// and if one of them returns `true`, then `rposition()` returns
3122    /// [`Some(index)`]. If all of them return `false`, it returns [`None`].
3123    ///
3124    /// `rposition()` is short-circuiting; in other words, it will stop
3125    /// processing as soon as it finds a `true`.
3126    ///
3127    /// [`Some(index)`]: Some
3128    ///
3129    /// # Examples
3130    ///
3131    /// Basic usage:
3132    ///
3133    /// ```
3134    /// let a = [1, 2, 3];
3135    ///
3136    /// assert_eq!(a.into_iter().rposition(|x| x == 3), Some(2));
3137    ///
3138    /// assert_eq!(a.into_iter().rposition(|x| x == 5), None);
3139    /// ```
3140    ///
3141    /// Stopping at the first `true`:
3142    ///
3143    /// ```
3144    /// let a = [-1, 2, 3, 4];
3145    ///
3146    /// let mut iter = a.into_iter();
3147    ///
3148    /// assert_eq!(iter.rposition(|x| x >= 2), Some(3));
3149    ///
3150    /// // we can still use `iter`, as there are more elements.
3151    /// assert_eq!(iter.next(), Some(-1));
3152    /// assert_eq!(iter.next_back(), Some(3));
3153    /// ```
3154    #[inline]
3155    #[stable(feature = "rust1", since = "1.0.0")]
3156    #[cfg(not(feature = "ferrocene_certified"))]
3157    fn rposition<P>(&mut self, predicate: P) -> Option<usize>
3158    where
3159        P: FnMut(Self::Item) -> bool,
3160        Self: Sized + ExactSizeIterator + DoubleEndedIterator,
3161    {
3162        // No need for an overflow check here, because `ExactSizeIterator`
3163        // implies that the number of elements fits into a `usize`.
3164        #[inline]
3165        fn check<T>(
3166            mut predicate: impl FnMut(T) -> bool,
3167        ) -> impl FnMut(usize, T) -> ControlFlow<usize, usize> {
3168            move |i, x| {
3169                let i = i - 1;
3170                if predicate(x) { ControlFlow::Break(i) } else { ControlFlow::Continue(i) }
3171            }
3172        }
3173
3174        let n = self.len();
3175        self.try_rfold(n, check(predicate)).break_value()
3176    }
3177
3178    /// Returns the maximum element of an iterator.
3179    ///
3180    /// If several elements are equally maximum, the last element is
3181    /// returned. If the iterator is empty, [`None`] is returned.
3182    ///
3183    /// Note that [`f32`]/[`f64`] doesn't implement [`Ord`] due to NaN being
3184    /// incomparable. You can work around this by using [`Iterator::reduce`]:
3185    /// ```
3186    /// assert_eq!(
3187    ///     [2.4, f32::NAN, 1.3]
3188    ///         .into_iter()
3189    ///         .reduce(f32::max)
3190    ///         .unwrap_or(0.),
3191    ///     2.4
3192    /// );
3193    /// ```
3194    ///
3195    /// # Examples
3196    ///
3197    /// ```
3198    /// let a = [1, 2, 3];
3199    /// let b: [u32; 0] = [];
3200    ///
3201    /// assert_eq!(a.into_iter().max(), Some(3));
3202    /// assert_eq!(b.into_iter().max(), None);
3203    /// ```
3204    #[inline]
3205    #[stable(feature = "rust1", since = "1.0.0")]
3206    #[cfg(not(feature = "ferrocene_certified"))]
3207    fn max(self) -> Option<Self::Item>
3208    where
3209        Self: Sized,
3210        Self::Item: Ord,
3211    {
3212        self.max_by(Ord::cmp)
3213    }
3214
3215    /// Returns the minimum element of an iterator.
3216    ///
3217    /// If several elements are equally minimum, the first element is returned.
3218    /// If the iterator is empty, [`None`] is returned.
3219    ///
3220    /// Note that [`f32`]/[`f64`] doesn't implement [`Ord`] due to NaN being
3221    /// incomparable. You can work around this by using [`Iterator::reduce`]:
3222    /// ```
3223    /// assert_eq!(
3224    ///     [2.4, f32::NAN, 1.3]
3225    ///         .into_iter()
3226    ///         .reduce(f32::min)
3227    ///         .unwrap_or(0.),
3228    ///     1.3
3229    /// );
3230    /// ```
3231    ///
3232    /// # Examples
3233    ///
3234    /// ```
3235    /// let a = [1, 2, 3];
3236    /// let b: [u32; 0] = [];
3237    ///
3238    /// assert_eq!(a.into_iter().min(), Some(1));
3239    /// assert_eq!(b.into_iter().min(), None);
3240    /// ```
3241    #[inline]
3242    #[stable(feature = "rust1", since = "1.0.0")]
3243    #[cfg(not(feature = "ferrocene_certified"))]
3244    fn min(self) -> Option<Self::Item>
3245    where
3246        Self: Sized,
3247        Self::Item: Ord,
3248    {
3249        self.min_by(Ord::cmp)
3250    }
3251
3252    /// Returns the element that gives the maximum value from the
3253    /// specified function.
3254    ///
3255    /// If several elements are equally maximum, the last element is
3256    /// returned. If the iterator is empty, [`None`] is returned.
3257    ///
3258    /// # Examples
3259    ///
3260    /// ```
3261    /// let a = [-3_i32, 0, 1, 5, -10];
3262    /// assert_eq!(a.into_iter().max_by_key(|x| x.abs()).unwrap(), -10);
3263    /// ```
3264    #[inline]
3265    #[stable(feature = "iter_cmp_by_key", since = "1.6.0")]
3266    #[cfg(not(feature = "ferrocene_certified"))]
3267    fn max_by_key<B: Ord, F>(self, f: F) -> Option<Self::Item>
3268    where
3269        Self: Sized,
3270        F: FnMut(&Self::Item) -> B,
3271    {
3272        #[inline]
3273        fn key<T, B>(mut f: impl FnMut(&T) -> B) -> impl FnMut(T) -> (B, T) {
3274            move |x| (f(&x), x)
3275        }
3276
3277        #[inline]
3278        fn compare<T, B: Ord>((x_p, _): &(B, T), (y_p, _): &(B, T)) -> Ordering {
3279            x_p.cmp(y_p)
3280        }
3281
3282        let (_, x) = self.map(key(f)).max_by(compare)?;
3283        Some(x)
3284    }
3285
3286    /// Returns the element that gives the maximum value with respect to the
3287    /// specified comparison function.
3288    ///
3289    /// If several elements are equally maximum, the last element is
3290    /// returned. If the iterator is empty, [`None`] is returned.
3291    ///
3292    /// # Examples
3293    ///
3294    /// ```
3295    /// let a = [-3_i32, 0, 1, 5, -10];
3296    /// assert_eq!(a.into_iter().max_by(|x, y| x.cmp(y)).unwrap(), 5);
3297    /// ```
3298    #[inline]
3299    #[stable(feature = "iter_max_by", since = "1.15.0")]
3300    fn max_by<F>(self, compare: F) -> Option<Self::Item>
3301    where
3302        Self: Sized,
3303        F: FnMut(&Self::Item, &Self::Item) -> Ordering,
3304    {
3305        #[inline]
3306        fn fold<T>(mut compare: impl FnMut(&T, &T) -> Ordering) -> impl FnMut(T, T) -> T {
3307            move |x, y| cmp::max_by(x, y, &mut compare)
3308        }
3309
3310        self.reduce(fold(compare))
3311    }
3312
3313    /// Returns the element that gives the minimum value from the
3314    /// specified function.
3315    ///
3316    /// If several elements are equally minimum, the first element is
3317    /// returned. If the iterator is empty, [`None`] is returned.
3318    ///
3319    /// # Examples
3320    ///
3321    /// ```
3322    /// let a = [-3_i32, 0, 1, 5, -10];
3323    /// assert_eq!(a.into_iter().min_by_key(|x| x.abs()).unwrap(), 0);
3324    /// ```
3325    #[inline]
3326    #[stable(feature = "iter_cmp_by_key", since = "1.6.0")]
3327    #[cfg(not(feature = "ferrocene_certified"))]
3328    fn min_by_key<B: Ord, F>(self, f: F) -> Option<Self::Item>
3329    where
3330        Self: Sized,
3331        F: FnMut(&Self::Item) -> B,
3332    {
3333        #[inline]
3334        fn key<T, B>(mut f: impl FnMut(&T) -> B) -> impl FnMut(T) -> (B, T) {
3335            move |x| (f(&x), x)
3336        }
3337
3338        #[inline]
3339        fn compare<T, B: Ord>((x_p, _): &(B, T), (y_p, _): &(B, T)) -> Ordering {
3340            x_p.cmp(y_p)
3341        }
3342
3343        let (_, x) = self.map(key(f)).min_by(compare)?;
3344        Some(x)
3345    }
3346
3347    /// Returns the element that gives the minimum value with respect to the
3348    /// specified comparison function.
3349    ///
3350    /// If several elements are equally minimum, the first element is
3351    /// returned. If the iterator is empty, [`None`] is returned.
3352    ///
3353    /// # Examples
3354    ///
3355    /// ```
3356    /// let a = [-3_i32, 0, 1, 5, -10];
3357    /// assert_eq!(a.into_iter().min_by(|x, y| x.cmp(y)).unwrap(), -10);
3358    /// ```
3359    #[inline]
3360    #[stable(feature = "iter_min_by", since = "1.15.0")]
3361    #[cfg(not(feature = "ferrocene_certified"))]
3362    fn min_by<F>(self, compare: F) -> Option<Self::Item>
3363    where
3364        Self: Sized,
3365        F: FnMut(&Self::Item, &Self::Item) -> Ordering,
3366    {
3367        #[inline]
3368        fn fold<T>(mut compare: impl FnMut(&T, &T) -> Ordering) -> impl FnMut(T, T) -> T {
3369            move |x, y| cmp::min_by(x, y, &mut compare)
3370        }
3371
3372        self.reduce(fold(compare))
3373    }
3374
3375    /// Reverses an iterator's direction.
3376    ///
3377    /// Usually, iterators iterate from left to right. After using `rev()`,
3378    /// an iterator will instead iterate from right to left.
3379    ///
3380    /// This is only possible if the iterator has an end, so `rev()` only
3381    /// works on [`DoubleEndedIterator`]s.
3382    ///
3383    /// # Examples
3384    ///
3385    /// ```
3386    /// let a = [1, 2, 3];
3387    ///
3388    /// let mut iter = a.into_iter().rev();
3389    ///
3390    /// assert_eq!(iter.next(), Some(3));
3391    /// assert_eq!(iter.next(), Some(2));
3392    /// assert_eq!(iter.next(), Some(1));
3393    ///
3394    /// assert_eq!(iter.next(), None);
3395    /// ```
3396    #[inline]
3397    #[doc(alias = "reverse")]
3398    #[stable(feature = "rust1", since = "1.0.0")]
3399    fn rev(self) -> Rev<Self>
3400    where
3401        Self: Sized + DoubleEndedIterator,
3402    {
3403        Rev::new(self)
3404    }
3405
3406    /// Converts an iterator of pairs into a pair of containers.
3407    ///
3408    /// `unzip()` consumes an entire iterator of pairs, producing two
3409    /// collections: one from the left elements of the pairs, and one
3410    /// from the right elements.
3411    ///
3412    /// This function is, in some sense, the opposite of [`zip`].
3413    ///
3414    /// [`zip`]: Iterator::zip
3415    ///
3416    /// # Examples
3417    ///
3418    /// ```
3419    /// let a = [(1, 2), (3, 4), (5, 6)];
3420    ///
3421    /// let (left, right): (Vec<_>, Vec<_>) = a.into_iter().unzip();
3422    ///
3423    /// assert_eq!(left, [1, 3, 5]);
3424    /// assert_eq!(right, [2, 4, 6]);
3425    ///
3426    /// // you can also unzip multiple nested tuples at once
3427    /// let a = [(1, (2, 3)), (4, (5, 6))];
3428    ///
3429    /// let (x, (y, z)): (Vec<_>, (Vec<_>, Vec<_>)) = a.into_iter().unzip();
3430    /// assert_eq!(x, [1, 4]);
3431    /// assert_eq!(y, [2, 5]);
3432    /// assert_eq!(z, [3, 6]);
3433    /// ```
3434    #[stable(feature = "rust1", since = "1.0.0")]
3435    #[cfg(not(feature = "ferrocene_certified"))]
3436    fn unzip<A, B, FromA, FromB>(self) -> (FromA, FromB)
3437    where
3438        FromA: Default + Extend<A>,
3439        FromB: Default + Extend<B>,
3440        Self: Sized + Iterator<Item = (A, B)>,
3441    {
3442        let mut unzipped: (FromA, FromB) = Default::default();
3443        unzipped.extend(self);
3444        unzipped
3445    }
3446
3447    /// Creates an iterator which copies all of its elements.
3448    ///
3449    /// This is useful when you have an iterator over `&T`, but you need an
3450    /// iterator over `T`.
3451    ///
3452    /// # Examples
3453    ///
3454    /// ```
3455    /// let a = [1, 2, 3];
3456    ///
3457    /// let v_copied: Vec<_> = a.iter().copied().collect();
3458    ///
3459    /// // copied is the same as .map(|&x| x)
3460    /// let v_map: Vec<_> = a.iter().map(|&x| x).collect();
3461    ///
3462    /// assert_eq!(v_copied, [1, 2, 3]);
3463    /// assert_eq!(v_map, [1, 2, 3]);
3464    /// ```
3465    #[stable(feature = "iter_copied", since = "1.36.0")]
3466    #[rustc_diagnostic_item = "iter_copied"]
3467    #[cfg(not(feature = "ferrocene_certified"))]
3468    fn copied<'a, T>(self) -> Copied<Self>
3469    where
3470        T: Copy + 'a,
3471        Self: Sized + Iterator<Item = &'a T>,
3472    {
3473        Copied::new(self)
3474    }
3475
3476    /// Creates an iterator which [`clone`]s all of its elements.
3477    ///
3478    /// This is useful when you have an iterator over `&T`, but you need an
3479    /// iterator over `T`.
3480    ///
3481    /// There is no guarantee whatsoever about the `clone` method actually
3482    /// being called *or* optimized away. So code should not depend on
3483    /// either.
3484    ///
3485    /// [`clone`]: Clone::clone
3486    ///
3487    /// # Examples
3488    ///
3489    /// Basic usage:
3490    ///
3491    /// ```
3492    /// let a = [1, 2, 3];
3493    ///
3494    /// let v_cloned: Vec<_> = a.iter().cloned().collect();
3495    ///
3496    /// // cloned is the same as .map(|&x| x), for integers
3497    /// let v_map: Vec<_> = a.iter().map(|&x| x).collect();
3498    ///
3499    /// assert_eq!(v_cloned, [1, 2, 3]);
3500    /// assert_eq!(v_map, [1, 2, 3]);
3501    /// ```
3502    ///
3503    /// To get the best performance, try to clone late:
3504    ///
3505    /// ```
3506    /// let a = [vec![0_u8, 1, 2], vec![3, 4], vec![23]];
3507    /// // don't do this:
3508    /// let slower: Vec<_> = a.iter().cloned().filter(|s| s.len() == 1).collect();
3509    /// assert_eq!(&[vec![23]], &slower[..]);
3510    /// // instead call `cloned` late
3511    /// let faster: Vec<_> = a.iter().filter(|s| s.len() == 1).cloned().collect();
3512    /// assert_eq!(&[vec![23]], &faster[..]);
3513    /// ```
3514    #[stable(feature = "rust1", since = "1.0.0")]
3515    #[rustc_diagnostic_item = "iter_cloned"]
3516    fn cloned<'a, T>(self) -> Cloned<Self>
3517    where
3518        T: Clone + 'a,
3519        Self: Sized + Iterator<Item = &'a T>,
3520    {
3521        Cloned::new(self)
3522    }
3523
3524    /// Repeats an iterator endlessly.
3525    ///
3526    /// Instead of stopping at [`None`], the iterator will instead start again,
3527    /// from the beginning. After iterating again, it will start at the
3528    /// beginning again. And again. And again. Forever. Note that in case the
3529    /// original iterator is empty, the resulting iterator will also be empty.
3530    ///
3531    /// # Examples
3532    ///
3533    /// ```
3534    /// let a = [1, 2, 3];
3535    ///
3536    /// let mut iter = a.into_iter().cycle();
3537    ///
3538    /// loop {
3539    ///     assert_eq!(iter.next(), Some(1));
3540    ///     assert_eq!(iter.next(), Some(2));
3541    ///     assert_eq!(iter.next(), Some(3));
3542    /// #   break;
3543    /// }
3544    /// ```
3545    #[stable(feature = "rust1", since = "1.0.0")]
3546    #[inline]
3547    #[cfg(not(feature = "ferrocene_certified"))]
3548    fn cycle(self) -> Cycle<Self>
3549    where
3550        Self: Sized + Clone,
3551    {
3552        Cycle::new(self)
3553    }
3554
3555    /// Returns an iterator over `N` elements of the iterator at a time.
3556    ///
3557    /// The chunks do not overlap. If `N` does not divide the length of the
3558    /// iterator, then the last up to `N-1` elements will be omitted and can be
3559    /// retrieved from the [`.into_remainder()`][ArrayChunks::into_remainder]
3560    /// function of the iterator.
3561    ///
3562    /// # Panics
3563    ///
3564    /// Panics if `N` is zero.
3565    ///
3566    /// # Examples
3567    ///
3568    /// Basic usage:
3569    ///
3570    /// ```
3571    /// #![feature(iter_array_chunks)]
3572    ///
3573    /// let mut iter = "lorem".chars().array_chunks();
3574    /// assert_eq!(iter.next(), Some(['l', 'o']));
3575    /// assert_eq!(iter.next(), Some(['r', 'e']));
3576    /// assert_eq!(iter.next(), None);
3577    /// assert_eq!(iter.into_remainder().unwrap().as_slice(), &['m']);
3578    /// ```
3579    ///
3580    /// ```
3581    /// #![feature(iter_array_chunks)]
3582    ///
3583    /// let data = [1, 1, 2, -2, 6, 0, 3, 1];
3584    /// //          ^-----^  ^------^
3585    /// for [x, y, z] in data.iter().array_chunks() {
3586    ///     assert_eq!(x + y + z, 4);
3587    /// }
3588    /// ```
3589    #[track_caller]
3590    #[unstable(feature = "iter_array_chunks", reason = "recently added", issue = "100450")]
3591    #[cfg(not(feature = "ferrocene_certified"))]
3592    fn array_chunks<const N: usize>(self) -> ArrayChunks<Self, N>
3593    where
3594        Self: Sized,
3595    {
3596        ArrayChunks::new(self)
3597    }
3598
3599    /// Sums the elements of an iterator.
3600    ///
3601    /// Takes each element, adds them together, and returns the result.
3602    ///
3603    /// An empty iterator returns the *additive identity* ("zero") of the type,
3604    /// which is `0` for integers and `-0.0` for floats.
3605    ///
3606    /// `sum()` can be used to sum any type implementing [`Sum`][`core::iter::Sum`],
3607    /// including [`Option`][`Option::sum`] and [`Result`][`Result::sum`].
3608    ///
3609    /// # Panics
3610    ///
3611    /// When calling `sum()` and a primitive integer type is being returned, this
3612    /// method will panic if the computation overflows and overflow checks are
3613    /// enabled.
3614    ///
3615    /// # Examples
3616    ///
3617    /// ```
3618    /// let a = [1, 2, 3];
3619    /// let sum: i32 = a.iter().sum();
3620    ///
3621    /// assert_eq!(sum, 6);
3622    ///
3623    /// let b: Vec<f32> = vec![];
3624    /// let sum: f32 = b.iter().sum();
3625    /// assert_eq!(sum, -0.0_f32);
3626    /// ```
3627    #[stable(feature = "iter_arith", since = "1.11.0")]
3628    fn sum<S>(self) -> S
3629    where
3630        Self: Sized,
3631        S: Sum<Self::Item>,
3632    {
3633        Sum::sum(self)
3634    }
3635
3636    /// Iterates over the entire iterator, multiplying all the elements
3637    ///
3638    /// An empty iterator returns the one value of the type.
3639    ///
3640    /// `product()` can be used to multiply any type implementing [`Product`][`core::iter::Product`],
3641    /// including [`Option`][`Option::product`] and [`Result`][`Result::product`].
3642    ///
3643    /// # Panics
3644    ///
3645    /// When calling `product()` and a primitive integer type is being returned,
3646    /// method will panic if the computation overflows and overflow checks are
3647    /// enabled.
3648    ///
3649    /// # Examples
3650    ///
3651    /// ```
3652    /// fn factorial(n: u32) -> u32 {
3653    ///     (1..=n).product()
3654    /// }
3655    /// assert_eq!(factorial(0), 1);
3656    /// assert_eq!(factorial(1), 1);
3657    /// assert_eq!(factorial(5), 120);
3658    /// ```
3659    #[stable(feature = "iter_arith", since = "1.11.0")]
3660    #[cfg(not(feature = "ferrocene_certified"))]
3661    fn product<P>(self) -> P
3662    where
3663        Self: Sized,
3664        P: Product<Self::Item>,
3665    {
3666        Product::product(self)
3667    }
3668
3669    /// [Lexicographically](Ord#lexicographical-comparison) compares the elements of this [`Iterator`] with those
3670    /// of another.
3671    ///
3672    /// # Examples
3673    ///
3674    /// ```
3675    /// use std::cmp::Ordering;
3676    ///
3677    /// assert_eq!([1].iter().cmp([1].iter()), Ordering::Equal);
3678    /// assert_eq!([1].iter().cmp([1, 2].iter()), Ordering::Less);
3679    /// assert_eq!([1, 2].iter().cmp([1].iter()), Ordering::Greater);
3680    /// ```
3681    #[stable(feature = "iter_order", since = "1.5.0")]
3682    #[cfg(not(feature = "ferrocene_certified"))]
3683    fn cmp<I>(self, other: I) -> Ordering
3684    where
3685        I: IntoIterator<Item = Self::Item>,
3686        Self::Item: Ord,
3687        Self: Sized,
3688    {
3689        self.cmp_by(other, |x, y| x.cmp(&y))
3690    }
3691
3692    /// [Lexicographically](Ord#lexicographical-comparison) compares the elements of this [`Iterator`] with those
3693    /// of another with respect to the specified comparison function.
3694    ///
3695    /// # Examples
3696    ///
3697    /// ```
3698    /// #![feature(iter_order_by)]
3699    ///
3700    /// use std::cmp::Ordering;
3701    ///
3702    /// let xs = [1, 2, 3, 4];
3703    /// let ys = [1, 4, 9, 16];
3704    ///
3705    /// assert_eq!(xs.into_iter().cmp_by(ys, |x, y| x.cmp(&y)), Ordering::Less);
3706    /// assert_eq!(xs.into_iter().cmp_by(ys, |x, y| (x * x).cmp(&y)), Ordering::Equal);
3707    /// assert_eq!(xs.into_iter().cmp_by(ys, |x, y| (2 * x).cmp(&y)), Ordering::Greater);
3708    /// ```
3709    #[unstable(feature = "iter_order_by", issue = "64295")]
3710    #[cfg(not(feature = "ferrocene_certified"))]
3711    fn cmp_by<I, F>(self, other: I, cmp: F) -> Ordering
3712    where
3713        Self: Sized,
3714        I: IntoIterator,
3715        F: FnMut(Self::Item, I::Item) -> Ordering,
3716    {
3717        #[inline]
3718        fn compare<X, Y, F>(mut cmp: F) -> impl FnMut(X, Y) -> ControlFlow<Ordering>
3719        where
3720            F: FnMut(X, Y) -> Ordering,
3721        {
3722            move |x, y| match cmp(x, y) {
3723                Ordering::Equal => ControlFlow::Continue(()),
3724                non_eq => ControlFlow::Break(non_eq),
3725            }
3726        }
3727
3728        match iter_compare(self, other.into_iter(), compare(cmp)) {
3729            ControlFlow::Continue(ord) => ord,
3730            ControlFlow::Break(ord) => ord,
3731        }
3732    }
3733
3734    /// [Lexicographically](Ord#lexicographical-comparison) compares the [`PartialOrd`] elements of
3735    /// this [`Iterator`] with those of another. The comparison works like short-circuit
3736    /// evaluation, returning a result without comparing the remaining elements.
3737    /// As soon as an order can be determined, the evaluation stops and a result is returned.
3738    ///
3739    /// # Examples
3740    ///
3741    /// ```
3742    /// use std::cmp::Ordering;
3743    ///
3744    /// assert_eq!([1.].iter().partial_cmp([1.].iter()), Some(Ordering::Equal));
3745    /// assert_eq!([1.].iter().partial_cmp([1., 2.].iter()), Some(Ordering::Less));
3746    /// assert_eq!([1., 2.].iter().partial_cmp([1.].iter()), Some(Ordering::Greater));
3747    /// ```
3748    ///
3749    /// For floating-point numbers, NaN does not have a total order and will result
3750    /// in `None` when compared:
3751    ///
3752    /// ```
3753    /// assert_eq!([f64::NAN].iter().partial_cmp([1.].iter()), None);
3754    /// ```
3755    ///
3756    /// The results are determined by the order of evaluation.
3757    ///
3758    /// ```
3759    /// use std::cmp::Ordering;
3760    ///
3761    /// assert_eq!([1.0, f64::NAN].iter().partial_cmp([2.0, f64::NAN].iter()), Some(Ordering::Less));
3762    /// assert_eq!([2.0, f64::NAN].iter().partial_cmp([1.0, f64::NAN].iter()), Some(Ordering::Greater));
3763    /// assert_eq!([f64::NAN, 1.0].iter().partial_cmp([f64::NAN, 2.0].iter()), None);
3764    /// ```
3765    ///
3766    #[stable(feature = "iter_order", since = "1.5.0")]
3767    #[cfg(not(feature = "ferrocene_certified"))]
3768    fn partial_cmp<I>(self, other: I) -> Option<Ordering>
3769    where
3770        I: IntoIterator,
3771        Self::Item: PartialOrd<I::Item>,
3772        Self: Sized,
3773    {
3774        self.partial_cmp_by(other, |x, y| x.partial_cmp(&y))
3775    }
3776
3777    /// [Lexicographically](Ord#lexicographical-comparison) compares the elements of this [`Iterator`] with those
3778    /// of another with respect to the specified comparison function.
3779    ///
3780    /// # Examples
3781    ///
3782    /// ```
3783    /// #![feature(iter_order_by)]
3784    ///
3785    /// use std::cmp::Ordering;
3786    ///
3787    /// let xs = [1.0, 2.0, 3.0, 4.0];
3788    /// let ys = [1.0, 4.0, 9.0, 16.0];
3789    ///
3790    /// assert_eq!(
3791    ///     xs.iter().partial_cmp_by(ys, |x, y| x.partial_cmp(&y)),
3792    ///     Some(Ordering::Less)
3793    /// );
3794    /// assert_eq!(
3795    ///     xs.iter().partial_cmp_by(ys, |x, y| (x * x).partial_cmp(&y)),
3796    ///     Some(Ordering::Equal)
3797    /// );
3798    /// assert_eq!(
3799    ///     xs.iter().partial_cmp_by(ys, |x, y| (2.0 * x).partial_cmp(&y)),
3800    ///     Some(Ordering::Greater)
3801    /// );
3802    /// ```
3803    #[unstable(feature = "iter_order_by", issue = "64295")]
3804    #[cfg(not(feature = "ferrocene_certified"))]
3805    fn partial_cmp_by<I, F>(self, other: I, partial_cmp: F) -> Option<Ordering>
3806    where
3807        Self: Sized,
3808        I: IntoIterator,
3809        F: FnMut(Self::Item, I::Item) -> Option<Ordering>,
3810    {
3811        #[inline]
3812        fn compare<X, Y, F>(mut partial_cmp: F) -> impl FnMut(X, Y) -> ControlFlow<Option<Ordering>>
3813        where
3814            F: FnMut(X, Y) -> Option<Ordering>,
3815        {
3816            move |x, y| match partial_cmp(x, y) {
3817                Some(Ordering::Equal) => ControlFlow::Continue(()),
3818                non_eq => ControlFlow::Break(non_eq),
3819            }
3820        }
3821
3822        match iter_compare(self, other.into_iter(), compare(partial_cmp)) {
3823            ControlFlow::Continue(ord) => Some(ord),
3824            ControlFlow::Break(ord) => ord,
3825        }
3826    }
3827
3828    /// Determines if the elements of this [`Iterator`] are equal to those of
3829    /// another.
3830    ///
3831    /// # Examples
3832    ///
3833    /// ```
3834    /// assert_eq!([1].iter().eq([1].iter()), true);
3835    /// assert_eq!([1].iter().eq([1, 2].iter()), false);
3836    /// ```
3837    #[stable(feature = "iter_order", since = "1.5.0")]
3838    #[cfg(not(feature = "ferrocene_certified"))]
3839    fn eq<I>(self, other: I) -> bool
3840    where
3841        I: IntoIterator,
3842        Self::Item: PartialEq<I::Item>,
3843        Self: Sized,
3844    {
3845        self.eq_by(other, |x, y| x == y)
3846    }
3847
3848    /// Determines if the elements of this [`Iterator`] are equal to those of
3849    /// another with respect to the specified equality function.
3850    ///
3851    /// # Examples
3852    ///
3853    /// ```
3854    /// #![feature(iter_order_by)]
3855    ///
3856    /// let xs = [1, 2, 3, 4];
3857    /// let ys = [1, 4, 9, 16];
3858    ///
3859    /// assert!(xs.iter().eq_by(ys, |x, y| x * x == y));
3860    /// ```
3861    #[unstable(feature = "iter_order_by", issue = "64295")]
3862    #[cfg(not(feature = "ferrocene_certified"))]
3863    fn eq_by<I, F>(self, other: I, eq: F) -> bool
3864    where
3865        Self: Sized,
3866        I: IntoIterator,
3867        F: FnMut(Self::Item, I::Item) -> bool,
3868    {
3869        #[inline]
3870        fn compare<X, Y, F>(mut eq: F) -> impl FnMut(X, Y) -> ControlFlow<()>
3871        where
3872            F: FnMut(X, Y) -> bool,
3873        {
3874            move |x, y| {
3875                if eq(x, y) { ControlFlow::Continue(()) } else { ControlFlow::Break(()) }
3876            }
3877        }
3878
3879        SpecIterEq::spec_iter_eq(self, other.into_iter(), compare(eq))
3880    }
3881
3882    /// Determines if the elements of this [`Iterator`] are not equal to those of
3883    /// another.
3884    ///
3885    /// # Examples
3886    ///
3887    /// ```
3888    /// assert_eq!([1].iter().ne([1].iter()), false);
3889    /// assert_eq!([1].iter().ne([1, 2].iter()), true);
3890    /// ```
3891    #[stable(feature = "iter_order", since = "1.5.0")]
3892    #[cfg(not(feature = "ferrocene_certified"))]
3893    fn ne<I>(self, other: I) -> bool
3894    where
3895        I: IntoIterator,
3896        Self::Item: PartialEq<I::Item>,
3897        Self: Sized,
3898    {
3899        !self.eq(other)
3900    }
3901
3902    /// Determines if the elements of this [`Iterator`] are [lexicographically](Ord#lexicographical-comparison)
3903    /// less than those of another.
3904    ///
3905    /// # Examples
3906    ///
3907    /// ```
3908    /// assert_eq!([1].iter().lt([1].iter()), false);
3909    /// assert_eq!([1].iter().lt([1, 2].iter()), true);
3910    /// assert_eq!([1, 2].iter().lt([1].iter()), false);
3911    /// assert_eq!([1, 2].iter().lt([1, 2].iter()), false);
3912    /// ```
3913    #[stable(feature = "iter_order", since = "1.5.0")]
3914    #[cfg(not(feature = "ferrocene_certified"))]
3915    fn lt<I>(self, other: I) -> bool
3916    where
3917        I: IntoIterator,
3918        Self::Item: PartialOrd<I::Item>,
3919        Self: Sized,
3920    {
3921        self.partial_cmp(other) == Some(Ordering::Less)
3922    }
3923
3924    /// Determines if the elements of this [`Iterator`] are [lexicographically](Ord#lexicographical-comparison)
3925    /// less or equal to those of another.
3926    ///
3927    /// # Examples
3928    ///
3929    /// ```
3930    /// assert_eq!([1].iter().le([1].iter()), true);
3931    /// assert_eq!([1].iter().le([1, 2].iter()), true);
3932    /// assert_eq!([1, 2].iter().le([1].iter()), false);
3933    /// assert_eq!([1, 2].iter().le([1, 2].iter()), true);
3934    /// ```
3935    #[stable(feature = "iter_order", since = "1.5.0")]
3936    #[cfg(not(feature = "ferrocene_certified"))]
3937    fn le<I>(self, other: I) -> bool
3938    where
3939        I: IntoIterator,
3940        Self::Item: PartialOrd<I::Item>,
3941        Self: Sized,
3942    {
3943        matches!(self.partial_cmp(other), Some(Ordering::Less | Ordering::Equal))
3944    }
3945
3946    /// Determines if the elements of this [`Iterator`] are [lexicographically](Ord#lexicographical-comparison)
3947    /// greater than those of another.
3948    ///
3949    /// # Examples
3950    ///
3951    /// ```
3952    /// assert_eq!([1].iter().gt([1].iter()), false);
3953    /// assert_eq!([1].iter().gt([1, 2].iter()), false);
3954    /// assert_eq!([1, 2].iter().gt([1].iter()), true);
3955    /// assert_eq!([1, 2].iter().gt([1, 2].iter()), false);
3956    /// ```
3957    #[stable(feature = "iter_order", since = "1.5.0")]
3958    #[cfg(not(feature = "ferrocene_certified"))]
3959    fn gt<I>(self, other: I) -> bool
3960    where
3961        I: IntoIterator,
3962        Self::Item: PartialOrd<I::Item>,
3963        Self: Sized,
3964    {
3965        self.partial_cmp(other) == Some(Ordering::Greater)
3966    }
3967
3968    /// Determines if the elements of this [`Iterator`] are [lexicographically](Ord#lexicographical-comparison)
3969    /// greater than or equal to those of another.
3970    ///
3971    /// # Examples
3972    ///
3973    /// ```
3974    /// assert_eq!([1].iter().ge([1].iter()), true);
3975    /// assert_eq!([1].iter().ge([1, 2].iter()), false);
3976    /// assert_eq!([1, 2].iter().ge([1].iter()), true);
3977    /// assert_eq!([1, 2].iter().ge([1, 2].iter()), true);
3978    /// ```
3979    #[stable(feature = "iter_order", since = "1.5.0")]
3980    #[cfg(not(feature = "ferrocene_certified"))]
3981    fn ge<I>(self, other: I) -> bool
3982    where
3983        I: IntoIterator,
3984        Self::Item: PartialOrd<I::Item>,
3985        Self: Sized,
3986    {
3987        matches!(self.partial_cmp(other), Some(Ordering::Greater | Ordering::Equal))
3988    }
3989
3990    /// Checks if the elements of this iterator are sorted.
3991    ///
3992    /// That is, for each element `a` and its following element `b`, `a <= b` must hold. If the
3993    /// iterator yields exactly zero or one element, `true` is returned.
3994    ///
3995    /// Note that if `Self::Item` is only `PartialOrd`, but not `Ord`, the above definition
3996    /// implies that this function returns `false` if any two consecutive items are not
3997    /// comparable.
3998    ///
3999    /// # Examples
4000    ///
4001    /// ```
4002    /// assert!([1, 2, 2, 9].iter().is_sorted());
4003    /// assert!(![1, 3, 2, 4].iter().is_sorted());
4004    /// assert!([0].iter().is_sorted());
4005    /// assert!(std::iter::empty::<i32>().is_sorted());
4006    /// assert!(![0.0, 1.0, f32::NAN].iter().is_sorted());
4007    /// ```
4008    #[inline]
4009    #[stable(feature = "is_sorted", since = "1.82.0")]
4010    #[cfg(not(feature = "ferrocene_certified"))]
4011    fn is_sorted(self) -> bool
4012    where
4013        Self: Sized,
4014        Self::Item: PartialOrd,
4015    {
4016        self.is_sorted_by(|a, b| a <= b)
4017    }
4018
4019    /// Checks if the elements of this iterator are sorted using the given comparator function.
4020    ///
4021    /// Instead of using `PartialOrd::partial_cmp`, this function uses the given `compare`
4022    /// function to determine whether two elements are to be considered in sorted order.
4023    ///
4024    /// # Examples
4025    ///
4026    /// ```
4027    /// assert!([1, 2, 2, 9].iter().is_sorted_by(|a, b| a <= b));
4028    /// assert!(![1, 2, 2, 9].iter().is_sorted_by(|a, b| a < b));
4029    ///
4030    /// assert!([0].iter().is_sorted_by(|a, b| true));
4031    /// assert!([0].iter().is_sorted_by(|a, b| false));
4032    ///
4033    /// assert!(std::iter::empty::<i32>().is_sorted_by(|a, b| false));
4034    /// assert!(std::iter::empty::<i32>().is_sorted_by(|a, b| true));
4035    /// ```
4036    #[stable(feature = "is_sorted", since = "1.82.0")]
4037    #[cfg(not(feature = "ferrocene_certified"))]
4038    fn is_sorted_by<F>(mut self, compare: F) -> bool
4039    where
4040        Self: Sized,
4041        F: FnMut(&Self::Item, &Self::Item) -> bool,
4042    {
4043        #[inline]
4044        fn check<'a, T>(
4045            last: &'a mut T,
4046            mut compare: impl FnMut(&T, &T) -> bool + 'a,
4047        ) -> impl FnMut(T) -> bool + 'a {
4048            move |curr| {
4049                if !compare(&last, &curr) {
4050                    return false;
4051                }
4052                *last = curr;
4053                true
4054            }
4055        }
4056
4057        let mut last = match self.next() {
4058            Some(e) => e,
4059            None => return true,
4060        };
4061
4062        self.all(check(&mut last, compare))
4063    }
4064
4065    /// Checks if the elements of this iterator are sorted using the given key extraction
4066    /// function.
4067    ///
4068    /// Instead of comparing the iterator's elements directly, this function compares the keys of
4069    /// the elements, as determined by `f`. Apart from that, it's equivalent to [`is_sorted`]; see
4070    /// its documentation for more information.
4071    ///
4072    /// [`is_sorted`]: Iterator::is_sorted
4073    ///
4074    /// # Examples
4075    ///
4076    /// ```
4077    /// assert!(["c", "bb", "aaa"].iter().is_sorted_by_key(|s| s.len()));
4078    /// assert!(![-2i32, -1, 0, 3].iter().is_sorted_by_key(|n| n.abs()));
4079    /// ```
4080    #[inline]
4081    #[stable(feature = "is_sorted", since = "1.82.0")]
4082    #[cfg(not(feature = "ferrocene_certified"))]
4083    fn is_sorted_by_key<F, K>(self, f: F) -> bool
4084    where
4085        Self: Sized,
4086        F: FnMut(Self::Item) -> K,
4087        K: PartialOrd,
4088    {
4089        self.map(f).is_sorted()
4090    }
4091
4092    /// See [TrustedRandomAccess][super::super::TrustedRandomAccess]
4093    // The unusual name is to avoid name collisions in method resolution
4094    // see #76479.
4095    #[inline]
4096    #[doc(hidden)]
4097    #[unstable(feature = "trusted_random_access", issue = "none")]
4098    #[cfg(not(feature = "ferrocene_certified"))]
4099    unsafe fn __iterator_get_unchecked(&mut self, _idx: usize) -> Self::Item
4100    where
4101        Self: TrustedRandomAccessNoCoerce,
4102    {
4103        unreachable!("Always specialized");
4104    }
4105}
4106
4107#[cfg(not(feature = "ferrocene_certified"))]
4108trait SpecIterEq<B: Iterator>: Iterator {
4109    fn spec_iter_eq<F>(self, b: B, f: F) -> bool
4110    where
4111        F: FnMut(Self::Item, <B as Iterator>::Item) -> ControlFlow<()>;
4112}
4113
4114#[cfg(not(feature = "ferrocene_certified"))]
4115impl<A: Iterator, B: Iterator> SpecIterEq<B> for A {
4116    #[inline]
4117    default fn spec_iter_eq<F>(self, b: B, f: F) -> bool
4118    where
4119        F: FnMut(Self::Item, <B as Iterator>::Item) -> ControlFlow<()>,
4120    {
4121        iter_eq(self, b, f)
4122    }
4123}
4124
4125#[cfg(not(feature = "ferrocene_certified"))]
4126impl<A: Iterator + TrustedLen, B: Iterator + TrustedLen> SpecIterEq<B> for A {
4127    #[inline]
4128    fn spec_iter_eq<F>(self, b: B, f: F) -> bool
4129    where
4130        F: FnMut(Self::Item, <B as Iterator>::Item) -> ControlFlow<()>,
4131    {
4132        // we *can't* short-circuit if:
4133        match (self.size_hint(), b.size_hint()) {
4134            // ... both iterators have the same length
4135            ((_, Some(a)), (_, Some(b))) if a == b => {}
4136            // ... or both of them are longer than `usize::MAX` (i.e. have an unknown length).
4137            ((_, None), (_, None)) => {}
4138            // otherwise, we can ascertain that they are unequal without actually comparing items
4139            _ => return false,
4140        }
4141
4142        iter_eq(self, b, f)
4143    }
4144}
4145
4146/// Compares two iterators element-wise using the given function.
4147///
4148/// If `ControlFlow::Continue(())` is returned from the function, the comparison moves on to the next
4149/// elements of both iterators. Returning `ControlFlow::Break(x)` short-circuits the iteration and
4150/// returns `ControlFlow::Break(x)`. If one of the iterators runs out of elements,
4151/// `ControlFlow::Continue(ord)` is returned where `ord` is the result of comparing the lengths of
4152/// the iterators.
4153///
4154/// Isolates the logic shared by ['cmp_by'](Iterator::cmp_by),
4155/// ['partial_cmp_by'](Iterator::partial_cmp_by), and ['eq_by'](Iterator::eq_by).
4156#[inline]
4157#[cfg(not(feature = "ferrocene_certified"))]
4158fn iter_compare<A, B, F, T>(mut a: A, mut b: B, f: F) -> ControlFlow<T, Ordering>
4159where
4160    A: Iterator,
4161    B: Iterator,
4162    F: FnMut(A::Item, B::Item) -> ControlFlow<T>,
4163{
4164    #[inline]
4165    fn compare<'a, B, X, T>(
4166        b: &'a mut B,
4167        mut f: impl FnMut(X, B::Item) -> ControlFlow<T> + 'a,
4168    ) -> impl FnMut(X) -> ControlFlow<ControlFlow<T, Ordering>> + 'a
4169    where
4170        B: Iterator,
4171    {
4172        move |x| match b.next() {
4173            None => ControlFlow::Break(ControlFlow::Continue(Ordering::Greater)),
4174            Some(y) => f(x, y).map_break(ControlFlow::Break),
4175        }
4176    }
4177
4178    match a.try_for_each(compare(&mut b, f)) {
4179        ControlFlow::Continue(()) => ControlFlow::Continue(match b.next() {
4180            None => Ordering::Equal,
4181            Some(_) => Ordering::Less,
4182        }),
4183        ControlFlow::Break(x) => x,
4184    }
4185}
4186
4187#[inline]
4188#[cfg(not(feature = "ferrocene_certified"))]
4189fn iter_eq<A, B, F>(a: A, b: B, f: F) -> bool
4190where
4191    A: Iterator,
4192    B: Iterator,
4193    F: FnMut(A::Item, B::Item) -> ControlFlow<()>,
4194{
4195    iter_compare(a, b, f).continue_value().is_some_and(|ord| ord == Ordering::Equal)
4196}
4197
4198/// Implements `Iterator` for mutable references to iterators, such as those produced by [`Iterator::by_ref`].
4199///
4200/// This implementation passes all method calls on to the original iterator.
4201#[stable(feature = "rust1", since = "1.0.0")]
4202impl<I: Iterator + ?Sized> Iterator for &mut I {
4203    type Item = I::Item;
4204    #[inline]
4205    fn next(&mut self) -> Option<I::Item> {
4206        (**self).next()
4207    }
4208    fn size_hint(&self) -> (usize, Option<usize>) {
4209        (**self).size_hint()
4210    }
4211    fn advance_by(&mut self, n: usize) -> Result<(), NonZero<usize>> {
4212        (**self).advance_by(n)
4213    }
4214    fn nth(&mut self, n: usize) -> Option<Self::Item> {
4215        (**self).nth(n)
4216    }
4217    #[cfg(not(feature = "ferrocene_certified"))]
4218    fn fold<B, F>(self, init: B, f: F) -> B
4219    where
4220        F: FnMut(B, Self::Item) -> B,
4221    {
4222        self.spec_fold(init, f)
4223    }
4224    fn try_fold<B, F, R>(&mut self, init: B, f: F) -> R
4225    where
4226        F: FnMut(B, Self::Item) -> R,
4227        R: Try<Output = B>,
4228    {
4229        self.spec_try_fold(init, f)
4230    }
4231}
4232
4233/// Helper trait to specialize `fold` and `try_fold` for `&mut I where I: Sized`
4234trait IteratorRefSpec: Iterator {
4235    #[cfg(not(feature = "ferrocene_certified"))]
4236    fn spec_fold<B, F>(self, init: B, f: F) -> B
4237    where
4238        F: FnMut(B, Self::Item) -> B;
4239
4240    fn spec_try_fold<B, F, R>(&mut self, init: B, f: F) -> R
4241    where
4242        F: FnMut(B, Self::Item) -> R,
4243        R: Try<Output = B>;
4244}
4245
4246impl<I: Iterator + ?Sized> IteratorRefSpec for &mut I {
4247    #[cfg(not(feature = "ferrocene_certified"))]
4248    default fn spec_fold<B, F>(self, init: B, mut f: F) -> B
4249    where
4250        F: FnMut(B, Self::Item) -> B,
4251    {
4252        let mut accum = init;
4253        while let Some(x) = self.next() {
4254            accum = f(accum, x);
4255        }
4256        accum
4257    }
4258
4259    default fn spec_try_fold<B, F, R>(&mut self, init: B, mut f: F) -> R
4260    where
4261        F: FnMut(B, Self::Item) -> R,
4262        R: Try<Output = B>,
4263    {
4264        let mut accum = init;
4265        while let Some(x) = self.next() {
4266            accum = f(accum, x)?;
4267        }
4268        try { accum }
4269    }
4270}
4271
4272#[cfg(not(feature = "ferrocene_certified"))]
4273impl<I: Iterator> IteratorRefSpec for &mut I {
4274    impl_fold_via_try_fold! { spec_fold -> spec_try_fold }
4275
4276    fn spec_try_fold<B, F, R>(&mut self, init: B, f: F) -> R
4277    where
4278        F: FnMut(B, Self::Item) -> R,
4279        R: Try<Output = B>,
4280    {
4281        (**self).try_fold(init, f)
4282    }
4283}