Skip to main content

core/macros/
mod.rs

1#[doc = include_str!("panic.md")]
2#[macro_export]
3#[rustc_builtin_macro(core_panic)]
4#[allow_internal_unstable(edition_panic)]
5#[stable(feature = "core", since = "1.6.0")]
6#[rustc_diagnostic_item = "core_panic_macro"]
7macro_rules! panic {
8    // Expands to either `$crate::panic::panic_2015` or `$crate::panic::panic_2021`
9    // depending on the edition of the caller.
10    ($($arg:tt)*) => {
11        /* compiler built-in */
12    };
13}
14
15/// Asserts that two expressions are equal to each other (using [`PartialEq`]).
16///
17/// Assertions are always checked in both debug and release builds, and cannot
18/// be disabled. See [`debug_assert_eq!`] for assertions that are disabled in
19/// release builds by default.
20///
21/// [`debug_assert_eq!`]: crate::debug_assert_eq
22///
23/// On panic, this macro will print the values of the expressions with their
24/// debug representations.
25///
26/// Like [`assert!`], this macro has a second form, where a custom
27/// panic message can be provided.
28///
29/// # Examples
30///
31/// ```
32/// let a = 3;
33/// let b = 1 + 2;
34/// assert_eq!(a, b);
35///
36/// assert_eq!(a, b, "we are testing addition with {} and {}", a, b);
37/// ```
38#[macro_export]
39#[stable(feature = "rust1", since = "1.0.0")]
40#[rustc_diagnostic_item = "assert_eq_macro"]
41#[allow_internal_unstable(panic_internals)]
42macro_rules! assert_eq {
43    ($left:expr, $right:expr $(,)?) => {
44        match (&$left, &$right) {
45            (left_val, right_val) => {
46                if !(*left_val == *right_val) {
47                    let kind = $crate::panicking::AssertKind::Eq;
48                    // The reborrows below are intentional. Without them, the stack slot for the
49                    // borrow is initialized even before the values are compared, leading to a
50                    // noticeable slow down.
51                    $crate::panicking::assert_failed(kind, &*left_val, &*right_val, $crate::option::Option::None);
52                }
53            }
54        }
55    };
56    ($left:expr, $right:expr, $($arg:tt)+) => {
57        match (&$left, &$right) {
58            (left_val, right_val) => {
59                if !(*left_val == *right_val) {
60                    let kind = $crate::panicking::AssertKind::Eq;
61                    // The reborrows below are intentional. Without them, the stack slot for the
62                    // borrow is initialized even before the values are compared, leading to a
63                    // noticeable slow down.
64                    $crate::panicking::assert_failed(kind, &*left_val, &*right_val, $crate::option::Option::Some($crate::format_args!($($arg)+)));
65                }
66            }
67        }
68    };
69}
70
71/// Asserts that two expressions are not equal to each other (using [`PartialEq`]).
72///
73/// Assertions are always checked in both debug and release builds, and cannot
74/// be disabled. See [`debug_assert_ne!`] for assertions that are disabled in
75/// release builds by default.
76///
77/// [`debug_assert_ne!`]: crate::debug_assert_ne
78///
79/// On panic, this macro will print the values of the expressions with their
80/// debug representations.
81///
82/// Like [`assert!`], this macro has a second form, where a custom
83/// panic message can be provided.
84///
85/// # Examples
86///
87/// ```
88/// let a = 3;
89/// let b = 2;
90/// assert_ne!(a, b);
91///
92/// assert_ne!(a, b, "we are testing that the values are not equal");
93/// ```
94#[macro_export]
95#[stable(feature = "assert_ne", since = "1.13.0")]
96#[rustc_diagnostic_item = "assert_ne_macro"]
97#[allow_internal_unstable(panic_internals)]
98macro_rules! assert_ne {
99    ($left:expr, $right:expr $(,)?) => {
100        match (&$left, &$right) {
101            (left_val, right_val) => {
102                if *left_val == *right_val {
103                    let kind = $crate::panicking::AssertKind::Ne;
104                    // The reborrows below are intentional. Without them, the stack slot for the
105                    // borrow is initialized even before the values are compared, leading to a
106                    // noticeable slow down.
107                    $crate::panicking::assert_failed(kind, &*left_val, &*right_val, $crate::option::Option::None);
108                }
109            }
110        }
111    };
112    ($left:expr, $right:expr, $($arg:tt)+) => {
113        match (&($left), &($right)) {
114            (left_val, right_val) => {
115                if *left_val == *right_val {
116                    let kind = $crate::panicking::AssertKind::Ne;
117                    // The reborrows below are intentional. Without them, the stack slot for the
118                    // borrow is initialized even before the values are compared, leading to a
119                    // noticeable slow down.
120                    $crate::panicking::assert_failed(kind, &*left_val, &*right_val, $crate::option::Option::Some($crate::format_args!($($arg)+)));
121                }
122            }
123        }
124    };
125}
126
127/// Asserts that an expression matches the provided pattern.
128///
129/// This macro is generally preferable to `assert!(matches!(value, pattern))`, because it can print
130/// the debug representation of the actual value shape that did not meet expectations. In contrast,
131/// using [`assert!`] will only print that expectations were not met, but not why.
132///
133/// The pattern syntax is exactly the same as found in a match arm and the `matches!` macro. The
134/// optional if guard can be used to add additional checks that must be true for the matched value,
135/// otherwise this macro will panic.
136///
137/// Assertions are always checked in both debug and release builds, and cannot
138/// be disabled. See `debug_assert_matches!` for assertions that are disabled in
139/// release builds by default.
140///
141/// On panic, this macro will print the value of the expression with its debug representation.
142///
143/// Like [`assert!`], this macro has a second form, where a custom panic message can be provided.
144///
145/// # Examples
146///
147/// ```
148/// #![feature(assert_matches)]
149///
150/// use std::assert_matches;
151///
152/// let a = Some(345);
153/// let b = Some(56);
154/// assert_matches!(a, Some(_));
155/// assert_matches!(b, Some(_));
156///
157/// assert_matches!(a, Some(345));
158/// assert_matches!(a, Some(345) | None);
159///
160/// // assert_matches!(a, None); // panics
161/// // assert_matches!(b, Some(345)); // panics
162/// // assert_matches!(b, Some(345) | None); // panics
163///
164/// assert_matches!(a, Some(x) if x > 100);
165/// // assert_matches!(a, Some(x) if x < 100); // panics
166/// ```
167#[unstable(feature = "assert_matches", issue = "82775")]
168#[allow_internal_unstable(panic_internals)]
169#[rustc_macro_transparency = "semiopaque"]
170pub macro assert_matches {
171    ($left:expr, $(|)? $( $pattern:pat_param )|+ $( if $guard: expr )? $(,)?) => {
172        match $left {
173            $( $pattern )|+ $( if $guard )? => {}
174            ref left_val => {
175                $crate::panicking::assert_matches_failed(
176                    left_val,
177                    $crate::stringify!($($pattern)|+ $(if $guard)?),
178                    $crate::option::Option::None
179                );
180            }
181        }
182    },
183    ($left:expr, $(|)? $( $pattern:pat_param )|+ $( if $guard: expr )?, $($arg:tt)+) => {
184        match $left {
185            $( $pattern )|+ $( if $guard )? => {}
186            ref left_val => {
187                $crate::panicking::assert_matches_failed(
188                    left_val,
189                    $crate::stringify!($($pattern)|+ $(if $guard)?),
190                    $crate::option::Option::Some($crate::format_args!($($arg)+))
191                );
192            }
193        }
194    },
195}
196
197/// Selects code at compile-time based on `cfg` predicates.
198///
199/// This macro evaluates, at compile-time, a series of `cfg` predicates,
200/// selects the first that is true, and emits the code guarded by that
201/// predicate. The code guarded by other predicates is not emitted.
202///
203/// An optional trailing `_` wildcard can be used to specify a fallback. If
204/// none of the predicates are true, a [`compile_error`] is emitted.
205///
206/// # Example
207///
208/// ```
209/// #![feature(cfg_select)]
210///
211/// cfg_select! {
212///     unix => {
213///         fn foo() { /* unix specific functionality */ }
214///     }
215///     target_pointer_width = "32" => {
216///         fn foo() { /* non-unix, 32-bit functionality */ }
217///     }
218///     _ => {
219///         fn foo() { /* fallback implementation */ }
220///     }
221/// }
222/// ```
223///
224/// The `cfg_select!` macro can also be used in expression position, with or without braces on the
225/// right-hand side:
226///
227/// ```
228/// #![feature(cfg_select)]
229///
230/// let _some_string = cfg_select! {
231///     unix => "With great power comes great electricity bills",
232///     _ => { "Behind every successful diet is an unwatched pizza" }
233/// };
234/// ```
235#[unstable(feature = "cfg_select", issue = "115585")]
236#[rustc_diagnostic_item = "cfg_select"]
237#[rustc_builtin_macro]
238pub macro cfg_select($($tt:tt)*) {
239    /* compiler built-in */
240}
241
242/// Asserts that a boolean expression is `true` at runtime.
243///
244/// This will invoke the [`panic!`] macro if the provided expression cannot be
245/// evaluated to `true` at runtime.
246///
247/// Like [`assert!`], this macro also has a second version, where a custom panic
248/// message can be provided.
249///
250/// # Uses
251///
252/// Unlike [`assert!`], `debug_assert!` statements are only enabled in non
253/// optimized builds by default. An optimized build will not execute
254/// `debug_assert!` statements unless `-C debug-assertions` is passed to the
255/// compiler. This makes `debug_assert!` useful for checks that are too
256/// expensive to be present in a release build but may be helpful during
257/// development. The result of expanding `debug_assert!` is always type checked.
258///
259/// An unchecked assertion allows a program in an inconsistent state to keep
260/// running, which might have unexpected consequences but does not introduce
261/// unsafety as long as this only happens in safe code. The performance cost
262/// of assertions, however, is not measurable in general. Replacing [`assert!`]
263/// with `debug_assert!` is thus only encouraged after thorough profiling, and
264/// more importantly, only in safe code!
265///
266/// # Examples
267///
268/// ```
269/// // the panic message for these assertions is the stringified value of the
270/// // expression given.
271/// debug_assert!(true);
272///
273/// fn some_expensive_computation() -> bool {
274///     // Some expensive computation here
275///     true
276/// }
277/// debug_assert!(some_expensive_computation());
278///
279/// // assert with a custom message
280/// let x = true;
281/// debug_assert!(x, "x wasn't true!");
282///
283/// let a = 3; let b = 27;
284/// debug_assert!(a + b == 30, "a = {}, b = {}", a, b);
285/// ```
286#[macro_export]
287#[stable(feature = "rust1", since = "1.0.0")]
288#[rustc_diagnostic_item = "debug_assert_macro"]
289#[allow_internal_unstable(edition_panic)]
290macro_rules! debug_assert {
291    ($($arg:tt)*) => {
292        if $crate::cfg!(debug_assertions) {
293            $crate::assert!($($arg)*);
294        }
295    };
296}
297
298/// Asserts that two expressions are equal to each other.
299///
300/// On panic, this macro will print the values of the expressions with their
301/// debug representations.
302///
303/// Unlike [`assert_eq!`], `debug_assert_eq!` statements are only enabled in non
304/// optimized builds by default. An optimized build will not execute
305/// `debug_assert_eq!` statements unless `-C debug-assertions` is passed to the
306/// compiler. This makes `debug_assert_eq!` useful for checks that are too
307/// expensive to be present in a release build but may be helpful during
308/// development. The result of expanding `debug_assert_eq!` is always type checked.
309///
310/// # Examples
311///
312/// ```
313/// let a = 3;
314/// let b = 1 + 2;
315/// debug_assert_eq!(a, b);
316/// ```
317#[macro_export]
318#[stable(feature = "rust1", since = "1.0.0")]
319#[rustc_diagnostic_item = "debug_assert_eq_macro"]
320macro_rules! debug_assert_eq {
321    ($($arg:tt)*) => {
322        if $crate::cfg!(debug_assertions) {
323            $crate::assert_eq!($($arg)*);
324        }
325    };
326}
327
328/// Asserts that two expressions are not equal to each other.
329///
330/// On panic, this macro will print the values of the expressions with their
331/// debug representations.
332///
333/// Unlike [`assert_ne!`], `debug_assert_ne!` statements are only enabled in non
334/// optimized builds by default. An optimized build will not execute
335/// `debug_assert_ne!` statements unless `-C debug-assertions` is passed to the
336/// compiler. This makes `debug_assert_ne!` useful for checks that are too
337/// expensive to be present in a release build but may be helpful during
338/// development. The result of expanding `debug_assert_ne!` is always type checked.
339///
340/// # Examples
341///
342/// ```
343/// let a = 3;
344/// let b = 2;
345/// debug_assert_ne!(a, b);
346/// ```
347#[macro_export]
348#[stable(feature = "assert_ne", since = "1.13.0")]
349#[rustc_diagnostic_item = "debug_assert_ne_macro"]
350macro_rules! debug_assert_ne {
351    ($($arg:tt)*) => {
352        if $crate::cfg!(debug_assertions) {
353            $crate::assert_ne!($($arg)*);
354        }
355    };
356}
357
358/// Asserts that an expression matches the provided pattern.
359///
360/// This macro is generally preferable to `debug_assert!(matches!(value, pattern))`, because it can
361/// print the debug representation of the actual value shape that did not meet expectations. In
362/// contrast, using [`debug_assert!`] will only print that expectations were not met, but not why.
363///
364/// The pattern syntax is exactly the same as found in a match arm and the `matches!` macro. The
365/// optional if guard can be used to add additional checks that must be true for the matched value,
366/// otherwise this macro will panic.
367///
368/// On panic, this macro will print the value of the expression with its debug representation.
369///
370/// Like [`assert!`], this macro has a second form, where a custom panic message can be provided.
371///
372/// Unlike [`assert_matches!`], `debug_assert_matches!` statements are only enabled in non optimized
373/// builds by default. An optimized build will not execute `debug_assert_matches!` statements unless
374/// `-C debug-assertions` is passed to the compiler. This makes `debug_assert_matches!` useful for
375/// checks that are too expensive to be present in a release build but may be helpful during
376/// development. The result of expanding `debug_assert_matches!` is always type checked.
377///
378/// # Examples
379///
380/// ```
381/// #![feature(assert_matches)]
382///
383/// use std::debug_assert_matches;
384///
385/// let a = Some(345);
386/// let b = Some(56);
387/// debug_assert_matches!(a, Some(_));
388/// debug_assert_matches!(b, Some(_));
389///
390/// debug_assert_matches!(a, Some(345));
391/// debug_assert_matches!(a, Some(345) | None);
392///
393/// // debug_assert_matches!(a, None); // panics
394/// // debug_assert_matches!(b, Some(345)); // panics
395/// // debug_assert_matches!(b, Some(345) | None); // panics
396///
397/// debug_assert_matches!(a, Some(x) if x > 100);
398/// // debug_assert_matches!(a, Some(x) if x < 100); // panics
399/// ```
400#[unstable(feature = "assert_matches", issue = "82775")]
401#[allow_internal_unstable(assert_matches)]
402#[rustc_macro_transparency = "semiopaque"]
403pub macro debug_assert_matches($($arg:tt)*) {
404    if $crate::cfg!(debug_assertions) {
405        $crate::assert_matches!($($arg)*);
406    }
407}
408
409/// Returns whether the given expression matches the provided pattern.
410///
411/// The pattern syntax is exactly the same as found in a match arm. The optional if guard can be
412/// used to add additional checks that must be true for the matched value, otherwise this macro will
413/// return `false`.
414///
415/// When testing that a value matches a pattern, it's generally preferable to use
416/// [`assert_matches!`] as it will print the debug representation of the value if the assertion
417/// fails.
418///
419/// # Examples
420///
421/// ```
422/// let foo = 'f';
423/// assert!(matches!(foo, 'A'..='Z' | 'a'..='z'));
424///
425/// let bar = Some(4);
426/// assert!(matches!(bar, Some(x) if x > 2));
427/// ```
428#[macro_export]
429#[stable(feature = "matches_macro", since = "1.42.0")]
430#[rustc_diagnostic_item = "matches_macro"]
431#[allow_internal_unstable(non_exhaustive_omitted_patterns_lint, stmt_expr_attributes)]
432macro_rules! matches {
433    ($expression:expr, $pattern:pat $(if $guard:expr)? $(,)?) => {
434        #[allow(non_exhaustive_omitted_patterns)]
435        match $expression {
436            $pattern $(if $guard)? => true,
437            _ => false
438        }
439    };
440}
441
442/// Unwraps a result or propagates its error.
443///
444/// The [`?` operator][propagating-errors] was added to replace `try!`
445/// and should be used instead. Furthermore, `try` is a reserved word
446/// in Rust 2018, so if you must use it, you will need to use the
447/// [raw-identifier syntax][ris]: `r#try`.
448///
449/// [propagating-errors]: https://doc.rust-lang.org/book/ch09-02-recoverable-errors-with-result.html#a-shortcut-for-propagating-errors-the--operator
450/// [ris]: https://doc.rust-lang.org/nightly/rust-by-example/compatibility/raw_identifiers.html
451///
452/// `try!` matches the given [`Result`]. In case of the `Ok` variant, the
453/// expression has the value of the wrapped value.
454///
455/// In case of the `Err` variant, it retrieves the inner error. `try!` then
456/// performs conversion using `From`. This provides automatic conversion
457/// between specialized errors and more general ones. The resulting
458/// error is then immediately returned.
459///
460/// Because of the early return, `try!` can only be used in functions that
461/// return [`Result`].
462///
463/// # Examples
464///
465/// ```
466/// use std::io;
467/// use std::fs::File;
468/// use std::io::prelude::*;
469///
470/// enum MyError {
471///     FileWriteError
472/// }
473///
474/// impl From<io::Error> for MyError {
475///     fn from(e: io::Error) -> MyError {
476///         MyError::FileWriteError
477///     }
478/// }
479///
480/// // The preferred method of quick returning Errors
481/// fn write_to_file_question() -> Result<(), MyError> {
482///     let mut file = File::create("my_best_friends.txt")?;
483///     file.write_all(b"This is a list of my best friends.")?;
484///     Ok(())
485/// }
486///
487/// // The previous method of quick returning Errors
488/// fn write_to_file_using_try() -> Result<(), MyError> {
489///     let mut file = r#try!(File::create("my_best_friends.txt"));
490///     r#try!(file.write_all(b"This is a list of my best friends."));
491///     Ok(())
492/// }
493///
494/// // This is equivalent to:
495/// fn write_to_file_using_match() -> Result<(), MyError> {
496///     let mut file = r#try!(File::create("my_best_friends.txt"));
497///     match file.write_all(b"This is a list of my best friends.") {
498///         Ok(v) => v,
499///         Err(e) => return Err(From::from(e)),
500///     }
501///     Ok(())
502/// }
503/// ```
504#[macro_export]
505#[stable(feature = "rust1", since = "1.0.0")]
506#[deprecated(since = "1.39.0", note = "use the `?` operator instead")]
507#[doc(alias = "?")]
508#[cfg(not(feature = "ferrocene_subset"))]
509macro_rules! r#try {
510    ($expr:expr $(,)?) => {
511        match $expr {
512            $crate::result::Result::Ok(val) => val,
513            $crate::result::Result::Err(err) => {
514                return $crate::result::Result::Err($crate::convert::From::from(err));
515            }
516        }
517    };
518}
519
520/// Writes formatted data into a buffer.
521///
522/// This macro accepts a 'writer', a format string, and a list of arguments. Arguments will be
523/// formatted according to the specified format string and the result will be passed to the writer.
524/// The writer may be any value with a `write_fmt` method; generally this comes from an
525/// implementation of either the [`fmt::Write`] or the [`io::Write`] trait. The macro
526/// returns whatever the `write_fmt` method returns; commonly a [`fmt::Result`], or an
527/// [`io::Result`].
528///
529/// See [`std::fmt`] for more information on the format string syntax.
530///
531/// [`std::fmt`]: ../std/fmt/index.html
532/// [`fmt::Write`]: crate::fmt::Write
533/// [`io::Write`]: ../std/io/trait.Write.html
534/// [`fmt::Result`]: crate::fmt::Result
535/// [`io::Result`]: ../std/io/type.Result.html
536///
537/// # Examples
538///
539/// ```
540/// use std::io::Write;
541///
542/// fn main() -> std::io::Result<()> {
543///     let mut w = Vec::new();
544///     write!(&mut w, "test")?;
545///     write!(&mut w, "formatted {}", "arguments")?;
546///
547///     assert_eq!(w, b"testformatted arguments");
548///     Ok(())
549/// }
550/// ```
551///
552/// A module can import both `std::fmt::Write` and `std::io::Write` and call `write!` on objects
553/// implementing either, as objects do not typically implement both. However, the module must
554/// avoid conflict between the trait names, such as by importing them as `_` or otherwise renaming
555/// them:
556///
557/// ```
558/// use std::fmt::Write as _;
559/// use std::io::Write as _;
560///
561/// fn main() -> Result<(), Box<dyn std::error::Error>> {
562///     let mut s = String::new();
563///     let mut v = Vec::new();
564///
565///     write!(&mut s, "{} {}", "abc", 123)?; // uses fmt::Write::write_fmt
566///     write!(&mut v, "s = {:?}", s)?; // uses io::Write::write_fmt
567///     assert_eq!(v, b"s = \"abc 123\"");
568///     Ok(())
569/// }
570/// ```
571///
572/// If you also need the trait names themselves, such as to implement one or both on your types,
573/// import the containing module and then name them with a prefix:
574///
575/// ```
576/// # #![allow(unused_imports)]
577/// use std::fmt::{self, Write as _};
578/// use std::io::{self, Write as _};
579///
580/// struct Example;
581///
582/// impl fmt::Write for Example {
583///     fn write_str(&mut self, _s: &str) -> core::fmt::Result {
584///          unimplemented!();
585///     }
586/// }
587/// ```
588///
589/// Note: This macro can be used in `no_std` setups as well.
590/// In a `no_std` setup you are responsible for the implementation details of the components.
591///
592/// ```no_run
593/// use core::fmt::Write;
594///
595/// struct Example;
596///
597/// impl Write for Example {
598///     fn write_str(&mut self, _s: &str) -> core::fmt::Result {
599///          unimplemented!();
600///     }
601/// }
602///
603/// let mut m = Example{};
604/// write!(&mut m, "Hello World").expect("Not written");
605/// ```
606#[macro_export]
607#[stable(feature = "rust1", since = "1.0.0")]
608#[rustc_diagnostic_item = "write_macro"]
609macro_rules! write {
610    ($dst:expr, $($arg:tt)*) => {
611        $dst.write_fmt($crate::format_args!($($arg)*))
612    };
613}
614
615/// Writes formatted data into a buffer, with a newline appended.
616///
617/// On all platforms, the newline is the LINE FEED character (`\n`/`U+000A`) alone
618/// (no additional CARRIAGE RETURN (`\r`/`U+000D`).
619///
620/// For more information, see [`write!`]. For information on the format string syntax, see
621/// [`std::fmt`].
622///
623/// [`std::fmt`]: ../std/fmt/index.html
624///
625/// # Examples
626///
627/// ```
628/// use std::io::{Write, Result};
629///
630/// fn main() -> Result<()> {
631///     let mut w = Vec::new();
632///     writeln!(&mut w)?;
633///     writeln!(&mut w, "test")?;
634///     writeln!(&mut w, "formatted {}", "arguments")?;
635///
636///     assert_eq!(&w[..], "\ntest\nformatted arguments\n".as_bytes());
637///     Ok(())
638/// }
639/// ```
640#[macro_export]
641#[stable(feature = "rust1", since = "1.0.0")]
642#[rustc_diagnostic_item = "writeln_macro"]
643#[allow_internal_unstable(format_args_nl)]
644macro_rules! writeln {
645    ($dst:expr $(,)?) => {
646        $crate::write!($dst, "\n")
647    };
648    ($dst:expr, $($arg:tt)*) => {
649        $dst.write_fmt($crate::format_args_nl!($($arg)*))
650    };
651}
652
653/// Indicates unreachable code.
654///
655/// This is useful any time that the compiler can't determine that some code is unreachable. For
656/// example:
657///
658/// * Match arms with guard conditions.
659/// * Loops that dynamically terminate.
660/// * Iterators that dynamically terminate.
661///
662/// If the determination that the code is unreachable proves incorrect, the
663/// program immediately terminates with a [`panic!`].
664///
665/// The unsafe counterpart of this macro is the [`unreachable_unchecked`] function, which
666/// will cause undefined behavior if the code is reached.
667///
668/// [`unreachable_unchecked`]: crate::hint::unreachable_unchecked
669///
670/// # Panics
671///
672/// This will always [`panic!`] because `unreachable!` is just a shorthand for `panic!` with a
673/// fixed, specific message.
674///
675/// Like `panic!`, this macro has a second form for displaying custom values.
676///
677/// # Examples
678///
679/// Match arms:
680///
681/// ```
682/// # #[allow(dead_code)]
683/// fn foo(x: Option<i32>) {
684///     match x {
685///         Some(n) if n >= 0 => println!("Some(Non-negative)"),
686///         Some(n) if n <  0 => println!("Some(Negative)"),
687///         Some(_)           => unreachable!(), // compile error if commented out
688///         None              => println!("None")
689///     }
690/// }
691/// ```
692///
693/// Iterators:
694///
695/// ```
696/// # #[allow(dead_code)]
697/// fn divide_by_three(x: u32) -> u32 { // one of the poorest implementations of x/3
698///     for i in 0.. {
699///         if 3*i < i { panic!("u32 overflow"); }
700///         if x < 3*i { return i-1; }
701///     }
702///     unreachable!("The loop should always return");
703/// }
704/// ```
705#[macro_export]
706#[rustc_builtin_macro(unreachable)]
707#[allow_internal_unstable(edition_panic)]
708#[stable(feature = "rust1", since = "1.0.0")]
709#[rustc_diagnostic_item = "unreachable_macro"]
710macro_rules! unreachable {
711    // Expands to either `$crate::panic::unreachable_2015` or `$crate::panic::unreachable_2021`
712    // depending on the edition of the caller.
713    ($($arg:tt)*) => {
714        /* compiler built-in */
715    };
716}
717
718/// Indicates unimplemented code by panicking with a message of "not implemented".
719///
720/// This allows your code to type-check, which is useful if you are prototyping or
721/// implementing a trait that requires multiple methods which you don't plan to use all of.
722///
723/// The difference between `unimplemented!` and [`todo!`] is that while `todo!`
724/// conveys an intent of implementing the functionality later and the message is "not yet
725/// implemented", `unimplemented!` makes no such claims. Its message is "not implemented".
726///
727/// Also, some IDEs will mark `todo!`s.
728///
729/// # Panics
730///
731/// This will always [`panic!`] because `unimplemented!` is just a shorthand for `panic!` with a
732/// fixed, specific message.
733///
734/// Like `panic!`, this macro has a second form for displaying custom values.
735///
736/// [`todo!`]: crate::todo
737///
738/// # Examples
739///
740/// Say we have a trait `Foo`:
741///
742/// ```
743/// trait Foo {
744///     fn bar(&self) -> u8;
745///     fn baz(&self);
746///     fn qux(&self) -> Result<u64, ()>;
747/// }
748/// ```
749///
750/// We want to implement `Foo` for 'MyStruct', but for some reason it only makes sense
751/// to implement the `bar()` function. `baz()` and `qux()` will still need to be defined
752/// in our implementation of `Foo`, but we can use `unimplemented!` in their definitions
753/// to allow our code to compile.
754///
755/// We still want to have our program stop running if the unimplemented methods are
756/// reached.
757///
758/// ```
759/// # trait Foo {
760/// #     fn bar(&self) -> u8;
761/// #     fn baz(&self);
762/// #     fn qux(&self) -> Result<u64, ()>;
763/// # }
764/// struct MyStruct;
765///
766/// impl Foo for MyStruct {
767///     fn bar(&self) -> u8 {
768///         1 + 1
769///     }
770///
771///     fn baz(&self) {
772///         // It makes no sense to `baz` a `MyStruct`, so we have no logic here
773///         // at all.
774///         // This will display "thread 'main' panicked at 'not implemented'".
775///         unimplemented!();
776///     }
777///
778///     fn qux(&self) -> Result<u64, ()> {
779///         // We have some logic here,
780///         // We can add a message to unimplemented! to display our omission.
781///         // This will display:
782///         // "thread 'main' panicked at 'not implemented: MyStruct isn't quxable'".
783///         unimplemented!("MyStruct isn't quxable");
784///     }
785/// }
786///
787/// fn main() {
788///     let s = MyStruct;
789///     s.bar();
790/// }
791/// ```
792#[macro_export]
793#[stable(feature = "rust1", since = "1.0.0")]
794#[rustc_diagnostic_item = "unimplemented_macro"]
795#[allow_internal_unstable(panic_internals)]
796#[cfg(not(feature = "ferrocene_subset"))]
797macro_rules! unimplemented {
798    () => {
799        $crate::panicking::panic("not implemented")
800    };
801    ($($arg:tt)+) => {
802        $crate::panic!("not implemented: {}", $crate::format_args!($($arg)+))
803    };
804}
805
806/// Indicates unfinished code.
807///
808/// This can be useful if you are prototyping and just
809/// want a placeholder to let your code pass type analysis.
810///
811/// The difference between [`unimplemented!`] and `todo!` is that while `todo!` conveys
812/// an intent of implementing the functionality later and the message is "not yet
813/// implemented", `unimplemented!` makes no such claims. Its message is "not implemented".
814///
815/// Also, some IDEs will mark `todo!`s.
816///
817/// # Panics
818///
819/// This will always [`panic!`] because `todo!` is just a shorthand for `panic!` with a
820/// fixed, specific message.
821///
822/// Like `panic!`, this macro has a second form for displaying custom values.
823///
824/// # Examples
825///
826/// Here's an example of some in-progress code. We have a trait `Foo`:
827///
828/// ```
829/// trait Foo {
830///     fn bar(&self) -> u8;
831///     fn baz(&self);
832///     fn qux(&self) -> Result<u64, ()>;
833/// }
834/// ```
835///
836/// We want to implement `Foo` on one of our types, but we also want to work on
837/// just `bar()` first. In order for our code to compile, we need to implement
838/// `baz()` and `qux()`, so we can use `todo!`:
839///
840/// ```
841/// # trait Foo {
842/// #     fn bar(&self) -> u8;
843/// #     fn baz(&self);
844/// #     fn qux(&self) -> Result<u64, ()>;
845/// # }
846/// struct MyStruct;
847///
848/// impl Foo for MyStruct {
849///     fn bar(&self) -> u8 {
850///         1 + 1
851///     }
852///
853///     fn baz(&self) {
854///         // Let's not worry about implementing baz() for now
855///         todo!();
856///     }
857///
858///     fn qux(&self) -> Result<u64, ()> {
859///         // We can add a message to todo! to display our omission.
860///         // This will display:
861///         // "thread 'main' panicked at 'not yet implemented: MyStruct is not yet quxable'".
862///         todo!("MyStruct is not yet quxable");
863///     }
864/// }
865///
866/// fn main() {
867///     let s = MyStruct;
868///     s.bar();
869///
870///     // We aren't even using baz() or qux(), so this is fine.
871/// }
872/// ```
873#[macro_export]
874#[stable(feature = "todo_macro", since = "1.40.0")]
875#[rustc_diagnostic_item = "todo_macro"]
876#[allow_internal_unstable(panic_internals)]
877#[cfg(not(feature = "ferrocene_subset"))]
878macro_rules! todo {
879    () => {
880        $crate::panicking::panic("not yet implemented")
881    };
882    ($($arg:tt)+) => {
883        $crate::panic!("not yet implemented: {}", $crate::format_args!($($arg)+))
884    };
885}
886
887/// Definitions of built-in macros.
888///
889/// Most of the macro properties (stability, visibility, etc.) are taken from the source code here,
890/// with exception of expansion functions transforming macro inputs into outputs,
891/// those functions are provided by the compiler.
892pub(crate) mod builtin {
893
894    /// Causes compilation to fail with the given error message when encountered.
895    ///
896    /// This macro should be used when a crate uses a conditional compilation strategy to provide
897    /// better error messages for erroneous conditions. It's the compiler-level form of [`panic!`],
898    /// but emits an error during *compilation* rather than at *runtime*.
899    ///
900    /// # Examples
901    ///
902    /// Two such examples are macros and `#[cfg]` environments.
903    ///
904    /// Emit a better compiler error if a macro is passed invalid values. Without the final branch,
905    /// the compiler would still emit an error, but the error's message would not mention the two
906    /// valid values.
907    ///
908    /// ```compile_fail
909    /// macro_rules! give_me_foo_or_bar {
910    ///     (foo) => {};
911    ///     (bar) => {};
912    ///     ($x:ident) => {
913    ///         compile_error!("This macro only accepts `foo` or `bar`");
914    ///     }
915    /// }
916    ///
917    /// give_me_foo_or_bar!(neither);
918    /// // ^ will fail at compile time with message "This macro only accepts `foo` or `bar`"
919    /// ```
920    ///
921    /// Emit a compiler error if one of a number of features isn't available.
922    ///
923    /// ```compile_fail
924    /// #[cfg(not(any(feature = "foo", feature = "bar")))]
925    /// compile_error!("Either feature \"foo\" or \"bar\" must be enabled for this crate.");
926    /// ```
927    #[stable(feature = "compile_error_macro", since = "1.20.0")]
928    #[rustc_builtin_macro]
929    #[macro_export]
930    macro_rules! compile_error {
931        ($msg:expr $(,)?) => {{ /* compiler built-in */ }};
932    }
933
934    /// Constructs parameters for the other string-formatting macros.
935    ///
936    /// This macro functions by taking a formatting string literal containing
937    /// `{}` for each additional argument passed. `format_args!` prepares the
938    /// additional parameters to ensure the output can be interpreted as a string
939    /// and canonicalizes the arguments into a single type. Any value that implements
940    /// the [`Display`] trait can be passed to `format_args!`, as can any
941    /// [`Debug`] implementation be passed to a `{:?}` within the formatting string.
942    ///
943    /// This macro produces a value of type [`fmt::Arguments`]. This value can be
944    /// passed to the macros within [`std::fmt`] for performing useful redirection.
945    /// All other formatting macros ([`format!`], [`write!`], [`println!`], etc) are
946    /// proxied through this one. `format_args!`, unlike its derived macros, avoids
947    /// heap allocations.
948    ///
949    /// You can use the [`fmt::Arguments`] value that `format_args!` returns
950    /// in `Debug` and `Display` contexts as seen below. The example also shows
951    /// that `Debug` and `Display` format to the same thing: the interpolated
952    /// format string in `format_args!`.
953    ///
954    /// ```rust
955    /// let args = format_args!("{} foo {:?}", 1, 2);
956    /// let debug = format!("{args:?}");
957    /// let display = format!("{args}");
958    /// assert_eq!("1 foo 2", display);
959    /// assert_eq!(display, debug);
960    /// ```
961    ///
962    /// See [the formatting documentation in `std::fmt`](../std/fmt/index.html)
963    /// for details of the macro argument syntax, and further information.
964    ///
965    /// [`Display`]: crate::fmt::Display
966    /// [`Debug`]: crate::fmt::Debug
967    /// [`fmt::Arguments`]: crate::fmt::Arguments
968    /// [`std::fmt`]: ../std/fmt/index.html
969    /// [`format!`]: ../std/macro.format.html
970    /// [`println!`]: ../std/macro.println.html
971    ///
972    /// # Examples
973    ///
974    /// ```
975    /// use std::fmt;
976    ///
977    /// let s = fmt::format(format_args!("hello {}", "world"));
978    /// assert_eq!(s, format!("hello {}", "world"));
979    /// ```
980    ///
981    /// # Argument lifetimes
982    ///
983    /// Except when no formatting arguments are used,
984    /// the produced `fmt::Arguments` value borrows temporary values.
985    /// To allow it to be stored for later use, the arguments' lifetimes, as well as those of
986    /// temporaries they borrow, may be [extended] when `format_args!` appears in the initializer
987    /// expression of a `let` statement. The syntactic rules used to determine when temporaries'
988    /// lifetimes are extended are documented in the [Reference].
989    ///
990    /// [extended]: ../reference/destructors.html#temporary-lifetime-extension
991    /// [Reference]: ../reference/destructors.html#extending-based-on-expressions
992    #[stable(feature = "rust1", since = "1.0.0")]
993    #[rustc_diagnostic_item = "format_args_macro"]
994    #[allow_internal_unsafe]
995    #[allow_internal_unstable(fmt_internals, fmt_arguments_from_str)]
996    #[rustc_builtin_macro]
997    #[macro_export]
998    macro_rules! format_args {
999        ($fmt:expr) => {{ /* compiler built-in */ }};
1000        ($fmt:expr, $($args:tt)*) => {{ /* compiler built-in */ }};
1001    }
1002
1003    /// Same as [`format_args`], but can be used in some const contexts.
1004    ///
1005    /// This macro is used by the panic macros for the `const_panic` feature.
1006    ///
1007    /// This macro will be removed once `format_args` is allowed in const contexts.
1008    #[unstable(feature = "const_format_args", issue = "none")]
1009    #[allow_internal_unstable(fmt_internals, fmt_arguments_from_str)]
1010    #[rustc_builtin_macro]
1011    #[macro_export]
1012    macro_rules! const_format_args {
1013        ($fmt:expr) => {{ /* compiler built-in */ }};
1014        ($fmt:expr, $($args:tt)*) => {{ /* compiler built-in */ }};
1015    }
1016
1017    /// Same as [`format_args`], but adds a newline in the end.
1018    #[unstable(
1019        feature = "format_args_nl",
1020        issue = "none",
1021        reason = "`format_args_nl` is only for internal \
1022                  language use and is subject to change"
1023    )]
1024    #[allow_internal_unstable(fmt_internals, fmt_arguments_from_str)]
1025    #[rustc_builtin_macro]
1026    #[doc(hidden)]
1027    #[macro_export]
1028    macro_rules! format_args_nl {
1029        ($fmt:expr) => {{ /* compiler built-in */ }};
1030        ($fmt:expr, $($args:tt)*) => {{ /* compiler built-in */ }};
1031    }
1032
1033    /// Inspects an environment variable at compile time.
1034    ///
1035    /// This macro will expand to the value of the named environment variable at
1036    /// compile time, yielding an expression of type `&'static str`. Use
1037    /// [`std::env::var`] instead if you want to read the value at runtime.
1038    ///
1039    /// [`std::env::var`]: ../std/env/fn.var.html
1040    ///
1041    /// If the environment variable is not defined, then a compilation error
1042    /// will be emitted. To not emit a compile error, use the [`option_env!`]
1043    /// macro instead. A compilation error will also be emitted if the
1044    /// environment variable is not a valid Unicode string.
1045    ///
1046    /// # Examples
1047    ///
1048    /// ```
1049    /// let path: &'static str = env!("PATH");
1050    /// println!("the $PATH variable at the time of compiling was: {path}");
1051    /// ```
1052    ///
1053    /// You can customize the error message by passing a string as the second
1054    /// parameter:
1055    ///
1056    /// ```compile_fail
1057    /// let doc: &'static str = env!("documentation", "what's that?!");
1058    /// ```
1059    ///
1060    /// If the `documentation` environment variable is not defined, you'll get
1061    /// the following error:
1062    ///
1063    /// ```text
1064    /// error: what's that?!
1065    /// ```
1066    #[stable(feature = "rust1", since = "1.0.0")]
1067    #[rustc_builtin_macro]
1068    #[macro_export]
1069    #[rustc_diagnostic_item = "env_macro"] // useful for external lints
1070    macro_rules! env {
1071        ($name:expr $(,)?) => {{ /* compiler built-in */ }};
1072        ($name:expr, $error_msg:expr $(,)?) => {{ /* compiler built-in */ }};
1073    }
1074
1075    /// Optionally inspects an environment variable at compile time.
1076    ///
1077    /// If the named environment variable is present at compile time, this will
1078    /// expand into an expression of type `Option<&'static str>` whose value is
1079    /// `Some` of the value of the environment variable (a compilation error
1080    /// will be emitted if the environment variable is not a valid Unicode
1081    /// string). If the environment variable is not present, then this will
1082    /// expand to `None`. See [`Option<T>`][Option] for more information on this
1083    /// type.  Use [`std::env::var`] instead if you want to read the value at
1084    /// runtime.
1085    ///
1086    /// [`std::env::var`]: ../std/env/fn.var.html
1087    ///
1088    /// A compile time error is only emitted when using this macro if the
1089    /// environment variable exists and is not a valid Unicode string. To also
1090    /// emit a compile error if the environment variable is not present, use the
1091    /// [`env!`] macro instead.
1092    ///
1093    /// # Examples
1094    ///
1095    /// ```
1096    /// let key: Option<&'static str> = option_env!("SECRET_KEY");
1097    /// println!("the secret key might be: {key:?}");
1098    /// ```
1099    #[stable(feature = "rust1", since = "1.0.0")]
1100    #[rustc_builtin_macro]
1101    #[macro_export]
1102    #[rustc_diagnostic_item = "option_env_macro"] // useful for external lints
1103    macro_rules! option_env {
1104        ($name:expr $(,)?) => {{ /* compiler built-in */ }};
1105    }
1106
1107    /// Concatenates literals into a byte slice.
1108    ///
1109    /// This macro takes any number of comma-separated literals, and concatenates them all into
1110    /// one, yielding an expression of type `&[u8; _]`, which represents all of the literals
1111    /// concatenated left-to-right. The literals passed can be any combination of:
1112    ///
1113    /// - byte literals (`b'r'`)
1114    /// - byte strings (`b"Rust"`)
1115    /// - arrays of bytes/numbers (`[b'A', 66, b'C']`)
1116    ///
1117    /// # Examples
1118    ///
1119    /// ```
1120    /// #![feature(concat_bytes)]
1121    ///
1122    /// # fn main() {
1123    /// let s: &[u8; 6] = concat_bytes!(b'A', b"BC", [68, b'E', 70]);
1124    /// assert_eq!(s, b"ABCDEF");
1125    /// # }
1126    /// ```
1127    #[unstable(feature = "concat_bytes", issue = "87555")]
1128    #[rustc_builtin_macro]
1129    #[macro_export]
1130    macro_rules! concat_bytes {
1131        ($($e:literal),+ $(,)?) => {{ /* compiler built-in */ }};
1132    }
1133
1134    /// Concatenates literals into a static string slice.
1135    ///
1136    /// This macro takes any number of comma-separated literals, yielding an
1137    /// expression of type `&'static str` which represents all of the literals
1138    /// concatenated left-to-right.
1139    ///
1140    /// Integer and floating point literals are [stringified](core::stringify) in order to be
1141    /// concatenated.
1142    ///
1143    /// # Examples
1144    ///
1145    /// ```
1146    /// let s = concat!("test", 10, 'b', true);
1147    /// assert_eq!(s, "test10btrue");
1148    /// ```
1149    #[stable(feature = "rust1", since = "1.0.0")]
1150    #[rustc_builtin_macro]
1151    #[rustc_diagnostic_item = "macro_concat"]
1152    #[macro_export]
1153    macro_rules! concat {
1154        ($($e:expr),* $(,)?) => {{ /* compiler built-in */ }};
1155    }
1156
1157    /// Expands to the line number on which it was invoked.
1158    ///
1159    /// With [`column!`] and [`file!`], these macros provide debugging information for
1160    /// developers about the location within the source.
1161    ///
1162    /// The expanded expression has type `u32` and is 1-based, so the first line
1163    /// in each file evaluates to 1, the second to 2, etc. This is consistent
1164    /// with error messages by common compilers or popular editors.
1165    /// The returned line is *not necessarily* the line of the `line!` invocation itself,
1166    /// but rather the first macro invocation leading up to the invocation
1167    /// of the `line!` macro.
1168    ///
1169    /// # Examples
1170    ///
1171    /// ```
1172    /// let current_line = line!();
1173    /// println!("defined on line: {current_line}");
1174    /// ```
1175    #[stable(feature = "rust1", since = "1.0.0")]
1176    #[rustc_builtin_macro]
1177    #[macro_export]
1178    macro_rules! line {
1179        () => {
1180            /* compiler built-in */
1181        };
1182    }
1183
1184    /// Expands to the column number at which it was invoked.
1185    ///
1186    /// With [`line!`] and [`file!`], these macros provide debugging information for
1187    /// developers about the location within the source.
1188    ///
1189    /// The expanded expression has type `u32` and is 1-based, so the first column
1190    /// in each line evaluates to 1, the second to 2, etc. This is consistent
1191    /// with error messages by common compilers or popular editors.
1192    /// The returned column is *not necessarily* the line of the `column!` invocation itself,
1193    /// but rather the first macro invocation leading up to the invocation
1194    /// of the `column!` macro.
1195    ///
1196    /// # Examples
1197    ///
1198    /// ```
1199    /// let current_col = column!();
1200    /// println!("defined on column: {current_col}");
1201    /// ```
1202    ///
1203    /// `column!` counts Unicode code points, not bytes or graphemes. As a result, the first two
1204    /// invocations return the same value, but the third does not.
1205    ///
1206    /// ```
1207    /// let a = ("foobar", column!()).1;
1208    /// let b = ("人之初性本善", column!()).1;
1209    /// let c = ("f̅o̅o̅b̅a̅r̅", column!()).1; // Uses combining overline (U+0305)
1210    ///
1211    /// assert_eq!(a, b);
1212    /// assert_ne!(b, c);
1213    /// ```
1214    #[stable(feature = "rust1", since = "1.0.0")]
1215    #[rustc_builtin_macro]
1216    #[macro_export]
1217    macro_rules! column {
1218        () => {
1219            /* compiler built-in */
1220        };
1221    }
1222
1223    /// Expands to the file name in which it was invoked.
1224    ///
1225    /// With [`line!`] and [`column!`], these macros provide debugging information for
1226    /// developers about the location within the source.
1227    ///
1228    /// The expanded expression has type `&'static str`, and the returned file
1229    /// is not the invocation of the `file!` macro itself, but rather the
1230    /// first macro invocation leading up to the invocation of the `file!`
1231    /// macro.
1232    ///
1233    /// The file name is derived from the crate root's source path passed to the Rust compiler
1234    /// and the sequence the compiler takes to get from the crate root to the
1235    /// module containing `file!`, modified by any flags passed to the Rust compiler (e.g.
1236    /// `--remap-path-prefix`).  If the crate's source path is relative, the initial base
1237    /// directory will be the working directory of the Rust compiler.  For example, if the source
1238    /// path passed to the compiler is `./src/lib.rs` which has a `mod foo;` with a source path of
1239    /// `src/foo/mod.rs`, then calling `file!` inside `mod foo;` will return `./src/foo/mod.rs`.
1240    ///
1241    /// Future compiler options might make further changes to the behavior of `file!`,
1242    /// including potentially making it entirely empty. Code (e.g. test libraries)
1243    /// relying on `file!` producing an openable file path would be incompatible
1244    /// with such options, and might wish to recommend not using those options.
1245    ///
1246    /// # Examples
1247    ///
1248    /// ```
1249    /// let this_file = file!();
1250    /// println!("defined in file: {this_file}");
1251    /// ```
1252    #[stable(feature = "rust1", since = "1.0.0")]
1253    #[rustc_builtin_macro]
1254    #[macro_export]
1255    macro_rules! file {
1256        () => {
1257            /* compiler built-in */
1258        };
1259    }
1260
1261    /// Stringifies its arguments.
1262    ///
1263    /// This macro will yield an expression of type `&'static str` which is the
1264    /// stringification of all the tokens passed to the macro. No restrictions
1265    /// are placed on the syntax of the macro invocation itself.
1266    ///
1267    /// Note that the expanded results of the input tokens may change in the
1268    /// future. You should be careful if you rely on the output.
1269    ///
1270    /// # Examples
1271    ///
1272    /// ```
1273    /// let one_plus_one = stringify!(1 + 1);
1274    /// assert_eq!(one_plus_one, "1 + 1");
1275    /// ```
1276    #[stable(feature = "rust1", since = "1.0.0")]
1277    #[rustc_builtin_macro]
1278    #[macro_export]
1279    macro_rules! stringify {
1280        ($($t:tt)*) => {
1281            /* compiler built-in */
1282        };
1283    }
1284
1285    /// Includes a UTF-8 encoded file as a string.
1286    ///
1287    /// The file is located relative to the current file (similarly to how
1288    /// modules are found). The provided path is interpreted in a platform-specific
1289    /// way at compile time. So, for instance, an invocation with a Windows path
1290    /// containing backslashes `\` would not compile correctly on Unix.
1291    ///
1292    /// This macro will yield an expression of type `&'static str` which is the
1293    /// contents of the file.
1294    ///
1295    /// # Examples
1296    ///
1297    /// Assume there are two files in the same directory with the following
1298    /// contents:
1299    ///
1300    /// File 'spanish.in':
1301    ///
1302    /// ```text
1303    /// adiós
1304    /// ```
1305    ///
1306    /// File 'main.rs':
1307    ///
1308    /// ```ignore (cannot-doctest-external-file-dependency)
1309    /// fn main() {
1310    ///     let my_str = include_str!("spanish.in");
1311    ///     assert_eq!(my_str, "adiós\n");
1312    ///     print!("{my_str}");
1313    /// }
1314    /// ```
1315    ///
1316    /// Compiling 'main.rs' and running the resulting binary will print "adiós".
1317    #[stable(feature = "rust1", since = "1.0.0")]
1318    #[rustc_builtin_macro]
1319    #[macro_export]
1320    #[rustc_diagnostic_item = "include_str_macro"]
1321    macro_rules! include_str {
1322        ($file:expr $(,)?) => {{ /* compiler built-in */ }};
1323    }
1324
1325    /// Includes a file as a reference to a byte array.
1326    ///
1327    /// The file is located relative to the current file (similarly to how
1328    /// modules are found). The provided path is interpreted in a platform-specific
1329    /// way at compile time. So, for instance, an invocation with a Windows path
1330    /// containing backslashes `\` would not compile correctly on Unix.
1331    ///
1332    /// This macro will yield an expression of type `&'static [u8; N]` which is
1333    /// the contents of the file.
1334    ///
1335    /// # Examples
1336    ///
1337    /// Assume there are two files in the same directory with the following
1338    /// contents:
1339    ///
1340    /// File 'spanish.in':
1341    ///
1342    /// ```text
1343    /// adiós
1344    /// ```
1345    ///
1346    /// File 'main.rs':
1347    ///
1348    /// ```ignore (cannot-doctest-external-file-dependency)
1349    /// fn main() {
1350    ///     let bytes = include_bytes!("spanish.in");
1351    ///     assert_eq!(bytes, b"adi\xc3\xb3s\n");
1352    ///     print!("{}", String::from_utf8_lossy(bytes));
1353    /// }
1354    /// ```
1355    ///
1356    /// Compiling 'main.rs' and running the resulting binary will print "adiós".
1357    #[stable(feature = "rust1", since = "1.0.0")]
1358    #[rustc_builtin_macro]
1359    #[macro_export]
1360    #[rustc_diagnostic_item = "include_bytes_macro"]
1361    macro_rules! include_bytes {
1362        ($file:expr $(,)?) => {{ /* compiler built-in */ }};
1363    }
1364
1365    /// Expands to a string that represents the current module path.
1366    ///
1367    /// The current module path can be thought of as the hierarchy of modules
1368    /// leading back up to the crate root. The first component of the path
1369    /// returned is the name of the crate currently being compiled.
1370    ///
1371    /// # Examples
1372    ///
1373    /// ```
1374    /// mod test {
1375    ///     pub fn foo() {
1376    ///         assert!(module_path!().ends_with("test"));
1377    ///     }
1378    /// }
1379    ///
1380    /// test::foo();
1381    /// ```
1382    #[stable(feature = "rust1", since = "1.0.0")]
1383    #[rustc_builtin_macro]
1384    #[macro_export]
1385    macro_rules! module_path {
1386        () => {
1387            /* compiler built-in */
1388        };
1389    }
1390
1391    /// Evaluates boolean combinations of configuration flags at compile-time.
1392    ///
1393    /// In addition to the `#[cfg]` attribute, this macro is provided to allow
1394    /// boolean expression evaluation of configuration flags. This frequently
1395    /// leads to less duplicated code.
1396    ///
1397    /// The syntax given to this macro is the same syntax as the [`cfg`]
1398    /// attribute.
1399    ///
1400    /// `cfg!`, unlike `#[cfg]`, does not remove any code and only evaluates to true or false. For
1401    /// example, all blocks in an if/else expression need to be valid when `cfg!` is used for
1402    /// the condition, regardless of what `cfg!` is evaluating.
1403    ///
1404    /// [`cfg`]: ../reference/conditional-compilation.html#the-cfg-attribute
1405    ///
1406    /// # Examples
1407    ///
1408    /// ```
1409    /// let my_directory = if cfg!(windows) {
1410    ///     "windows-specific-directory"
1411    /// } else {
1412    ///     "unix-directory"
1413    /// };
1414    /// ```
1415    #[stable(feature = "rust1", since = "1.0.0")]
1416    #[rustc_builtin_macro]
1417    #[macro_export]
1418    macro_rules! cfg {
1419        ($($cfg:tt)*) => {
1420            /* compiler built-in */
1421        };
1422    }
1423
1424    /// Parses a file as an expression or an item according to the context.
1425    ///
1426    /// **Warning**: For multi-file Rust projects, the `include!` macro is probably not what you
1427    /// are looking for. Usually, multi-file Rust projects use
1428    /// [modules](https://doc.rust-lang.org/reference/items/modules.html). Multi-file projects and
1429    /// modules are explained in the Rust-by-Example book
1430    /// [here](https://doc.rust-lang.org/rust-by-example/mod/split.html) and the module system is
1431    /// explained in the Rust Book
1432    /// [here](https://doc.rust-lang.org/book/ch07-02-defining-modules-to-control-scope-and-privacy.html).
1433    ///
1434    /// The included file is placed in the surrounding code
1435    /// [unhygienically](https://doc.rust-lang.org/reference/macros-by-example.html#hygiene). If
1436    /// the included file is parsed as an expression and variables or functions share names across
1437    /// both files, it could result in variables or functions being different from what the
1438    /// included file expected.
1439    ///
1440    /// The included file is located relative to the current file (similarly to how modules are
1441    /// found). The provided path is interpreted in a platform-specific way at compile time. So,
1442    /// for instance, an invocation with a Windows path containing backslashes `\` would not
1443    /// compile correctly on Unix.
1444    ///
1445    /// # Uses
1446    ///
1447    /// The `include!` macro is primarily used for two purposes. It is used to include
1448    /// documentation that is written in a separate file and it is used to include [build artifacts
1449    /// usually as a result from the `build.rs`
1450    /// script](https://doc.rust-lang.org/cargo/reference/build-scripts.html#outputs-of-the-build-script).
1451    ///
1452    /// When using the `include` macro to include stretches of documentation, remember that the
1453    /// included file still needs to be a valid Rust syntax. It is also possible to
1454    /// use the [`include_str`] macro as `#![doc = include_str!("...")]` (at the module level) or
1455    /// `#[doc = include_str!("...")]` (at the item level) to include documentation from a plain
1456    /// text or markdown file.
1457    ///
1458    /// # Examples
1459    ///
1460    /// Assume there are two files in the same directory with the following contents:
1461    ///
1462    /// File 'monkeys.in':
1463    ///
1464    /// ```ignore (only-for-syntax-highlight)
1465    /// ['🙈', '🙊', '🙉']
1466    ///     .iter()
1467    ///     .cycle()
1468    ///     .take(6)
1469    ///     .collect::<String>()
1470    /// ```
1471    ///
1472    /// File 'main.rs':
1473    ///
1474    /// ```ignore (cannot-doctest-external-file-dependency)
1475    /// fn main() {
1476    ///     let my_string = include!("monkeys.in");
1477    ///     assert_eq!("🙈🙊🙉🙈🙊🙉", my_string);
1478    ///     println!("{my_string}");
1479    /// }
1480    /// ```
1481    ///
1482    /// Compiling 'main.rs' and running the resulting binary will print
1483    /// "🙈🙊🙉🙈🙊🙉".
1484    #[stable(feature = "rust1", since = "1.0.0")]
1485    #[rustc_builtin_macro]
1486    #[macro_export]
1487    #[rustc_diagnostic_item = "include_macro"] // useful for external lints
1488    macro_rules! include {
1489        ($file:expr $(,)?) => {{ /* compiler built-in */ }};
1490    }
1491
1492    /// This macro uses forward-mode automatic differentiation to generate a new function.
1493    /// It may only be applied to a function. The new function will compute the derivative
1494    /// of the function to which the macro was applied.
1495    ///
1496    /// The expected usage syntax is:
1497    /// `#[autodiff_forward(NAME, INPUT_ACTIVITIES, OUTPUT_ACTIVITY)]`
1498    ///
1499    /// - `NAME`: A string that represents a valid function name.
1500    /// - `INPUT_ACTIVITIES`: Specifies one valid activity for each input parameter.
1501    /// - `OUTPUT_ACTIVITY`: Must not be set if the function implicitly returns nothing
1502    ///   (or explicitly returns `-> ()`). Otherwise, it must be set to one of the allowed activities.
1503    ///
1504    /// ACTIVITIES might either be `Dual` or `Const`, more options will be exposed later.
1505    ///
1506    /// `Const` should be used on non-float arguments, or float-based arguments as an optimization
1507    /// if we are not interested in computing the derivatives with respect to this argument.
1508    ///
1509    /// `Dual` can be used for float scalar values or for references, raw pointers, or other
1510    /// indirect input arguments. It can also be used on a scalar float return value.
1511    /// If used on a return value, the generated function will return a tuple of two float scalars.
1512    /// If used on an input argument, a new shadow argument of the same type will be created,
1513    /// directly following the original argument.
1514    ///
1515    /// ### Usage examples:
1516    ///
1517    /// ```rust,ignore (autodiff requires a -Z flag as well as fat-lto for testing)
1518    /// #![feature(autodiff)]
1519    /// use std::autodiff::*;
1520    /// #[autodiff_forward(rb_fwd1, Dual, Const, Dual)]
1521    /// #[autodiff_forward(rb_fwd2, Const, Dual, Dual)]
1522    /// #[autodiff_forward(rb_fwd3, Dual, Dual, Dual)]
1523    /// fn rosenbrock(x: f64, y: f64) -> f64 {
1524    ///     (1.0 - x).powi(2) + 100.0 * (y - x.powi(2)).powi(2)
1525    /// }
1526    /// #[autodiff_forward(rb_inp_fwd, Dual, Dual, Dual)]
1527    /// fn rosenbrock_inp(x: f64, y: f64, out: &mut f64) {
1528    ///     *out = (1.0 - x).powi(2) + 100.0 * (y - x.powi(2)).powi(2);
1529    /// }
1530    ///
1531    /// fn main() {
1532    ///   let x0 = rosenbrock(1.0, 3.0); // 400.0
1533    ///   let (x1, dx1) = rb_fwd1(1.0, 1.0, 3.0); // (400.0, -800.0)
1534    ///   let (x2, dy1) = rb_fwd2(1.0, 3.0, 1.0); // (400.0, 400.0)
1535    ///   // When seeding both arguments at once the tangent return is the sum of both.
1536    ///   let (x3, dxy) = rb_fwd3(1.0, 1.0, 3.0, 1.0); // (400.0, -400.0)
1537    ///
1538    ///   let mut out = 0.0;
1539    ///   let mut dout = 0.0;
1540    ///   rb_inp_fwd(1.0, 1.0, 3.0, 1.0, &mut out, &mut dout);
1541    ///   // (out, dout) == (400.0, -400.0)
1542    /// }
1543    /// ```
1544    ///
1545    /// We might want to track how one input float affects one or more output floats. In this case,
1546    /// the shadow of one input should be initialized to `1.0`, while the shadows of the other
1547    /// inputs should be initialized to `0.0`. The shadow of the output(s) should be initialized to
1548    /// `0.0`. After calling the generated function, the shadow of the input will be zeroed,
1549    /// while the shadow(s) of the output(s) will contain the derivatives. Forward mode is generally
1550    /// more efficient if we have more output floats marked as `Dual` than input floats.
1551    /// Related information can also be found under the term "Vector-Jacobian product" (VJP).
1552    #[unstable(feature = "autodiff", issue = "124509")]
1553    #[allow_internal_unstable(rustc_attrs)]
1554    #[allow_internal_unstable(core_intrinsics)]
1555    #[rustc_builtin_macro]
1556    pub macro autodiff_forward($item:item) {
1557        /* compiler built-in */
1558    }
1559
1560    /// This macro uses reverse-mode automatic differentiation to generate a new function.
1561    /// It may only be applied to a function. The new function will compute the derivative
1562    /// of the function to which the macro was applied.
1563    ///
1564    /// The expected usage syntax is:
1565    /// `#[autodiff_reverse(NAME, INPUT_ACTIVITIES, OUTPUT_ACTIVITY)]`
1566    ///
1567    /// - `NAME`: A string that represents a valid function name.
1568    /// - `INPUT_ACTIVITIES`: Specifies one valid activity for each input parameter.
1569    /// - `OUTPUT_ACTIVITY`: Must not be set if the function implicitly returns nothing
1570    ///   (or explicitly returns `-> ()`). Otherwise, it must be set to one of the allowed activities.
1571    ///
1572    /// ACTIVITIES might either be `Active`, `Duplicated` or `Const`, more options will be exposed later.
1573    ///
1574    /// `Active` can be used for float scalar values.
1575    /// If used on an input, a new float will be appended to the return tuple of the generated
1576    /// function. If the function returns a float scalar, `Active` can be used for the return as
1577    /// well. In this case a float scalar will be appended to the argument list, it works as seed.
1578    ///
1579    /// `Duplicated` can be used on references, raw pointers, or other indirect input
1580    /// arguments. It creates a new shadow argument of the same type, following the original argument.
1581    /// A const reference or pointer argument will receive a mutable reference or pointer as shadow.
1582    ///
1583    /// `Const` should be used on non-float arguments, or float-based arguments as an optimization
1584    /// if we are not interested in computing the derivatives with respect to this argument.
1585    ///
1586    /// ### Usage examples:
1587    ///
1588    /// ```rust,ignore (autodiff requires a -Z flag as well as fat-lto for testing)
1589    /// #![feature(autodiff)]
1590    /// use std::autodiff::*;
1591    /// #[autodiff_reverse(rb_rev, Active, Active, Active)]
1592    /// fn rosenbrock(x: f64, y: f64) -> f64 {
1593    ///     (1.0 - x).powi(2) + 100.0 * (y - x.powi(2)).powi(2)
1594    /// }
1595    /// #[autodiff_reverse(rb_inp_rev, Active, Active, Duplicated)]
1596    /// fn rosenbrock_inp(x: f64, y: f64, out: &mut f64) {
1597    ///     *out = (1.0 - x).powi(2) + 100.0 * (y - x.powi(2)).powi(2);
1598    /// }
1599    ///
1600    /// fn main() {
1601    ///     let (output1, dx1, dy1) = rb_rev(1.0, 3.0, 1.0);
1602    ///     dbg!(output1, dx1, dy1); // (400.0, -800.0, 400.0)
1603    ///     let mut output2 = 0.0;
1604    ///     let mut seed = 1.0;
1605    ///     let (dx2, dy2) = rb_inp_rev(1.0, 3.0, &mut output2, &mut seed);
1606    ///     // (dx2, dy2, output2, seed) == (-800.0, 400.0, 400.0, 0.0)
1607    /// }
1608    /// ```
1609    ///
1610    ///
1611    /// We often want to track how one or more input floats affect one output float. This output can
1612    /// be a scalar return value, or a mutable reference or pointer argument. In the latter case, the
1613    /// mutable input should be marked as duplicated and its shadow initialized to `0.0`. The shadow of
1614    /// the output should be marked as active or duplicated and initialized to `1.0`. After calling
1615    /// the generated function, the shadow(s) of the input(s) will contain the derivatives. The
1616    /// shadow of the outputs ("seed") will be reset to zero.
1617    /// If the function has more than one output float marked as active or duplicated, users might want to
1618    /// set one of them to `1.0` and the others to `0.0` to compute partial derivatives.
1619    /// Unlike forward-mode, a call to the generated function does not reset the shadow of the
1620    /// inputs.
1621    /// Reverse mode is generally more efficient if we have more active/duplicated input than
1622    /// output floats.
1623    ///
1624    /// Related information can also be found under the term "Jacobian-Vector Product" (JVP).
1625    #[unstable(feature = "autodiff", issue = "124509")]
1626    #[allow_internal_unstable(rustc_attrs)]
1627    #[allow_internal_unstable(core_intrinsics)]
1628    #[rustc_builtin_macro]
1629    pub macro autodiff_reverse($item:item) {
1630        /* compiler built-in */
1631    }
1632
1633    /// Asserts that a boolean expression is `true` at runtime.
1634    ///
1635    /// This will invoke the [`panic!`] macro if the provided expression cannot be
1636    /// evaluated to `true` at runtime.
1637    ///
1638    /// # Uses
1639    ///
1640    /// Assertions are always checked in both debug and release builds, and cannot
1641    /// be disabled. See [`debug_assert!`] for assertions that are not enabled in
1642    /// release builds by default.
1643    ///
1644    /// Unsafe code may rely on `assert!` to enforce run-time invariants that, if
1645    /// violated could lead to unsafety.
1646    ///
1647    /// Other use-cases of `assert!` include testing and enforcing run-time
1648    /// invariants in safe code (whose violation cannot result in unsafety).
1649    ///
1650    /// # Custom Messages
1651    ///
1652    /// This macro has a second form, where a custom panic message can
1653    /// be provided with or without arguments for formatting. See [`std::fmt`]
1654    /// for syntax for this form. Expressions used as format arguments will only
1655    /// be evaluated if the assertion fails.
1656    ///
1657    /// [`std::fmt`]: ../std/fmt/index.html
1658    ///
1659    /// # Examples
1660    ///
1661    /// ```
1662    /// // the panic message for these assertions is the stringified value of the
1663    /// // expression given.
1664    /// assert!(true);
1665    ///
1666    /// fn some_computation() -> bool {
1667    ///     // Some expensive computation here
1668    ///     true
1669    /// }
1670    ///
1671    /// assert!(some_computation());
1672    ///
1673    /// // assert with a custom message
1674    /// let x = true;
1675    /// assert!(x, "x wasn't true!");
1676    ///
1677    /// let a = 3; let b = 27;
1678    /// assert!(a + b == 30, "a = {}, b = {}", a, b);
1679    /// ```
1680    #[stable(feature = "rust1", since = "1.0.0")]
1681    #[rustc_builtin_macro]
1682    #[macro_export]
1683    #[rustc_diagnostic_item = "assert_macro"]
1684    #[allow_internal_unstable(
1685        core_intrinsics,
1686        panic_internals,
1687        edition_panic,
1688        generic_assert_internals
1689    )]
1690    macro_rules! assert {
1691        ($cond:expr $(,)?) => {{ /* compiler built-in */ }};
1692        ($cond:expr, $($arg:tt)+) => {{ /* compiler built-in */ }};
1693    }
1694
1695    /// Prints passed tokens into the standard output.
1696    #[unstable(
1697        feature = "log_syntax",
1698        issue = "29598",
1699        reason = "`log_syntax!` is not stable enough for use and is subject to change"
1700    )]
1701    #[rustc_builtin_macro]
1702    #[macro_export]
1703    macro_rules! log_syntax {
1704        ($($arg:tt)*) => {
1705            /* compiler built-in */
1706        };
1707    }
1708
1709    /// Enables or disables tracing functionality used for debugging other macros.
1710    #[unstable(
1711        feature = "trace_macros",
1712        issue = "29598",
1713        reason = "`trace_macros` is not stable enough for use and is subject to change"
1714    )]
1715    #[rustc_builtin_macro]
1716    #[macro_export]
1717    macro_rules! trace_macros {
1718        (true) => {{ /* compiler built-in */ }};
1719        (false) => {{ /* compiler built-in */ }};
1720    }
1721
1722    /// Attribute macro used to apply derive macros.
1723    ///
1724    /// See [the reference] for more info.
1725    ///
1726    /// [the reference]: ../../../reference/attributes/derive.html
1727    #[stable(feature = "rust1", since = "1.0.0")]
1728    #[rustc_builtin_macro]
1729    pub macro derive($item:item) {
1730        /* compiler built-in */
1731    }
1732
1733    /// Attribute macro used to apply derive macros for implementing traits
1734    /// in a const context.
1735    ///
1736    /// See [the reference] for more info.
1737    ///
1738    /// [the reference]: ../../../reference/attributes/derive.html
1739    #[unstable(feature = "derive_const", issue = "118304")]
1740    #[rustc_builtin_macro]
1741    pub macro derive_const($item:item) {
1742        /* compiler built-in */
1743    }
1744
1745    /// Attribute macro applied to a function to turn it into a unit test.
1746    ///
1747    /// See [the reference] for more info.
1748    ///
1749    /// [the reference]: ../../../reference/attributes/testing.html#the-test-attribute
1750    #[stable(feature = "rust1", since = "1.0.0")]
1751    #[allow_internal_unstable(test, rustc_attrs, coverage_attribute)]
1752    #[rustc_builtin_macro]
1753    pub macro test($item:item) {
1754        /* compiler built-in */
1755    }
1756
1757    /// Attribute macro applied to a function to turn it into a benchmark test.
1758    #[unstable(
1759        feature = "test",
1760        issue = "50297",
1761        reason = "`bench` is a part of custom test frameworks which are unstable"
1762    )]
1763    #[allow_internal_unstable(test, rustc_attrs, coverage_attribute)]
1764    #[rustc_builtin_macro]
1765    pub macro bench($item:item) {
1766        /* compiler built-in */
1767    }
1768
1769    /// An implementation detail of the `#[test]` and `#[bench]` macros.
1770    #[unstable(
1771        feature = "custom_test_frameworks",
1772        issue = "50297",
1773        reason = "custom test frameworks are an unstable feature"
1774    )]
1775    #[allow_internal_unstable(test, rustc_attrs)]
1776    #[rustc_builtin_macro]
1777    pub macro test_case($item:item) {
1778        /* compiler built-in */
1779    }
1780
1781    /// Attribute macro applied to a static to register it as a global allocator.
1782    ///
1783    /// See also [`std::alloc::GlobalAlloc`](../../../std/alloc/trait.GlobalAlloc.html).
1784    #[stable(feature = "global_allocator", since = "1.28.0")]
1785    #[allow_internal_unstable(rustc_attrs)]
1786    #[rustc_builtin_macro]
1787    pub macro global_allocator($item:item) {
1788        /* compiler built-in */
1789    }
1790
1791    /// Attribute macro applied to a function to give it a post-condition.
1792    ///
1793    /// The attribute carries an argument token-tree which is
1794    /// eventually parsed as a unary closure expression that is
1795    /// invoked on a reference to the return value.
1796    #[unstable(feature = "contracts", issue = "128044")]
1797    #[allow_internal_unstable(contracts_internals)]
1798    #[rustc_builtin_macro]
1799    pub macro contracts_ensures($item:item) {
1800        /* compiler built-in */
1801    }
1802
1803    /// Attribute macro applied to a function to give it a precondition.
1804    ///
1805    /// The attribute carries an argument token-tree which is
1806    /// eventually parsed as an boolean expression with access to the
1807    /// function's formal parameters
1808    #[unstable(feature = "contracts", issue = "128044")]
1809    #[allow_internal_unstable(contracts_internals)]
1810    #[rustc_builtin_macro]
1811    pub macro contracts_requires($item:item) {
1812        /* compiler built-in */
1813    }
1814
1815    /// Attribute macro applied to a function to register it as a handler for allocation failure.
1816    ///
1817    /// See also [`std::alloc::handle_alloc_error`](../../../std/alloc/fn.handle_alloc_error.html).
1818    #[unstable(feature = "alloc_error_handler", issue = "51540")]
1819    #[allow_internal_unstable(rustc_attrs)]
1820    #[rustc_builtin_macro]
1821    pub macro alloc_error_handler($item:item) {
1822        /* compiler built-in */
1823    }
1824
1825    /// Keeps the item it's applied to if the passed path is accessible, and removes it otherwise.
1826    #[unstable(
1827        feature = "cfg_accessible",
1828        issue = "64797",
1829        reason = "`cfg_accessible` is not fully implemented"
1830    )]
1831    #[rustc_builtin_macro]
1832    pub macro cfg_accessible($item:item) {
1833        /* compiler built-in */
1834    }
1835
1836    /// Expands all `#[cfg]` and `#[cfg_attr]` attributes in the code fragment it's applied to.
1837    #[unstable(
1838        feature = "cfg_eval",
1839        issue = "82679",
1840        reason = "`cfg_eval` is a recently implemented feature"
1841    )]
1842    #[rustc_builtin_macro]
1843    pub macro cfg_eval($($tt:tt)*) {
1844        /* compiler built-in */
1845    }
1846
1847    /// Provide a list of type aliases and other opaque-type-containing type definitions
1848    /// to an item with a body. This list will be used in that body to define opaque
1849    /// types' hidden types.
1850    /// Can only be applied to things that have bodies.
1851    #[unstable(
1852        feature = "type_alias_impl_trait",
1853        issue = "63063",
1854        reason = "`type_alias_impl_trait` has open design concerns"
1855    )]
1856    #[rustc_builtin_macro]
1857    pub macro define_opaque($($tt:tt)*) {
1858        /* compiler built-in */
1859    }
1860
1861    /// Unstable placeholder for type ascription.
1862    #[allow_internal_unstable(builtin_syntax)]
1863    #[unstable(
1864        feature = "type_ascription",
1865        issue = "23416",
1866        reason = "placeholder syntax for type ascription"
1867    )]
1868    #[rustfmt::skip]
1869    pub macro type_ascribe($expr:expr, $ty:ty) {
1870        builtin # type_ascribe($expr, $ty)
1871    }
1872
1873    /// Unstable placeholder for deref patterns.
1874    #[allow_internal_unstable(builtin_syntax)]
1875    #[unstable(
1876        feature = "deref_patterns",
1877        issue = "87121",
1878        reason = "placeholder syntax for deref patterns"
1879    )]
1880    pub macro deref($pat:pat) {
1881        builtin # deref($pat)
1882    }
1883
1884    /// Derive macro generating an impl of the trait `From`.
1885    /// Currently, it can only be used on single-field structs.
1886    // Note that the macro is in a different module than the `From` trait,
1887    // to avoid triggering an unstable feature being used if someone imports
1888    // `std::convert::From`.
1889    #[rustc_builtin_macro]
1890    #[unstable(feature = "derive_from", issue = "144889")]
1891    pub macro From($item: item) {
1892        /* compiler built-in */
1893    }
1894
1895    /// Externally Implementable Item: Defines an attribute macro that can override the item
1896    /// this is applied to.
1897    #[unstable(feature = "extern_item_impls", issue = "125418")]
1898    #[rustc_builtin_macro]
1899    #[allow_internal_unstable(eii_internals, decl_macro, rustc_attrs)]
1900    pub macro eii($item:item) {
1901        /* compiler built-in */
1902    }
1903
1904    /// Unsafely Externally Implementable Item: Defines an unsafe attribute macro that can override
1905    /// the item this is applied to.
1906    #[unstable(feature = "extern_item_impls", issue = "125418")]
1907    #[rustc_builtin_macro]
1908    #[allow_internal_unstable(eii_internals, decl_macro, rustc_attrs)]
1909    pub macro unsafe_eii($item:item) {
1910        /* compiler built-in */
1911    }
1912
1913    /// Impl detail of EII
1914    #[unstable(feature = "eii_internals", issue = "none")]
1915    #[rustc_builtin_macro]
1916    pub macro eii_declaration($item:item) {
1917        /* compiler built-in */
1918    }
1919}