core/macros/
mod.rs

1#[doc = include_str!("panic.md")]
2#[macro_export]
3#[rustc_builtin_macro(core_panic)]
4#[allow_internal_unstable(edition_panic)]
5#[stable(feature = "core", since = "1.6.0")]
6#[rustc_diagnostic_item = "core_panic_macro"]
7macro_rules! panic {
8    // Expands to either `$crate::panic::panic_2015` or `$crate::panic::panic_2021`
9    // depending on the edition of the caller.
10    ($($arg:tt)*) => {
11        /* compiler built-in */
12    };
13}
14
15/// Asserts that two expressions are equal to each other (using [`PartialEq`]).
16///
17/// Assertions are always checked in both debug and release builds, and cannot
18/// be disabled. See [`debug_assert_eq!`] for assertions that are disabled in
19/// release builds by default.
20///
21/// [`debug_assert_eq!`]: crate::debug_assert_eq
22///
23/// On panic, this macro will print the values of the expressions with their
24/// debug representations.
25///
26/// Like [`assert!`], this macro has a second form, where a custom
27/// panic message can be provided.
28///
29/// # Examples
30///
31/// ```
32/// let a = 3;
33/// let b = 1 + 2;
34/// assert_eq!(a, b);
35///
36/// assert_eq!(a, b, "we are testing addition with {} and {}", a, b);
37/// ```
38#[macro_export]
39#[stable(feature = "rust1", since = "1.0.0")]
40#[rustc_diagnostic_item = "assert_eq_macro"]
41#[allow_internal_unstable(panic_internals)]
42#[cfg(not(feature = "ferrocene_certified"))]
43macro_rules! assert_eq {
44    ($left:expr, $right:expr $(,)?) => {
45        match (&$left, &$right) {
46            (left_val, right_val) => {
47                if !(*left_val == *right_val) {
48                    let kind = $crate::panicking::AssertKind::Eq;
49                    // The reborrows below are intentional. Without them, the stack slot for the
50                    // borrow is initialized even before the values are compared, leading to a
51                    // noticeable slow down.
52                    $crate::panicking::assert_failed(kind, &*left_val, &*right_val, $crate::option::Option::None);
53                }
54            }
55        }
56    };
57    ($left:expr, $right:expr, $($arg:tt)+) => {
58        match (&$left, &$right) {
59            (left_val, right_val) => {
60                if !(*left_val == *right_val) {
61                    let kind = $crate::panicking::AssertKind::Eq;
62                    // The reborrows below are intentional. Without them, the stack slot for the
63                    // borrow is initialized even before the values are compared, leading to a
64                    // noticeable slow down.
65                    $crate::panicking::assert_failed(kind, &*left_val, &*right_val, $crate::option::Option::Some($crate::format_args!($($arg)+)));
66                }
67            }
68        }
69    };
70}
71
72/// Asserts that two expressions are not equal to each other (using [`PartialEq`]).
73///
74/// Assertions are always checked in both debug and release builds, and cannot
75/// be disabled. See [`debug_assert_ne!`] for assertions that are disabled in
76/// release builds by default.
77///
78/// [`debug_assert_ne!`]: crate::debug_assert_ne
79///
80/// On panic, this macro will print the values of the expressions with their
81/// debug representations.
82///
83/// Like [`assert!`], this macro has a second form, where a custom
84/// panic message can be provided.
85///
86/// # Examples
87///
88/// ```
89/// let a = 3;
90/// let b = 2;
91/// assert_ne!(a, b);
92///
93/// assert_ne!(a, b, "we are testing that the values are not equal");
94/// ```
95#[macro_export]
96#[stable(feature = "assert_ne", since = "1.13.0")]
97#[rustc_diagnostic_item = "assert_ne_macro"]
98#[allow_internal_unstable(panic_internals)]
99#[cfg(not(feature = "ferrocene_certified"))]
100macro_rules! assert_ne {
101    ($left:expr, $right:expr $(,)?) => {
102        match (&$left, &$right) {
103            (left_val, right_val) => {
104                if *left_val == *right_val {
105                    let kind = $crate::panicking::AssertKind::Ne;
106                    // The reborrows below are intentional. Without them, the stack slot for the
107                    // borrow is initialized even before the values are compared, leading to a
108                    // noticeable slow down.
109                    $crate::panicking::assert_failed(kind, &*left_val, &*right_val, $crate::option::Option::None);
110                }
111            }
112        }
113    };
114    ($left:expr, $right:expr, $($arg:tt)+) => {
115        match (&($left), &($right)) {
116            (left_val, right_val) => {
117                if *left_val == *right_val {
118                    let kind = $crate::panicking::AssertKind::Ne;
119                    // The reborrows below are intentional. Without them, the stack slot for the
120                    // borrow is initialized even before the values are compared, leading to a
121                    // noticeable slow down.
122                    $crate::panicking::assert_failed(kind, &*left_val, &*right_val, $crate::option::Option::Some($crate::format_args!($($arg)+)));
123                }
124            }
125        }
126    };
127}
128
129/// Asserts that an expression matches the provided pattern.
130///
131/// This macro is generally preferable to `assert!(matches!(value, pattern))`, because it can print
132/// the debug representation of the actual value shape that did not meet expectations. In contrast,
133/// using [`assert!`] will only print that expectations were not met, but not why.
134///
135/// The pattern syntax is exactly the same as found in a match arm and the `matches!` macro. The
136/// optional if guard can be used to add additional checks that must be true for the matched value,
137/// otherwise this macro will panic.
138///
139/// Assertions are always checked in both debug and release builds, and cannot
140/// be disabled. See [`debug_assert_matches!`] for assertions that are disabled in
141/// release builds by default.
142///
143/// [`debug_assert_matches!`]: crate::assert_matches::debug_assert_matches
144///
145/// On panic, this macro will print the value of the expression with its debug representation.
146///
147/// Like [`assert!`], this macro has a second form, where a custom panic message can be provided.
148///
149/// # Examples
150///
151/// ```
152/// #![feature(assert_matches)]
153///
154/// use std::assert_matches::assert_matches;
155///
156/// let a = Some(345);
157/// let b = Some(56);
158/// assert_matches!(a, Some(_));
159/// assert_matches!(b, Some(_));
160///
161/// assert_matches!(a, Some(345));
162/// assert_matches!(a, Some(345) | None);
163///
164/// // assert_matches!(a, None); // panics
165/// // assert_matches!(b, Some(345)); // panics
166/// // assert_matches!(b, Some(345) | None); // panics
167///
168/// assert_matches!(a, Some(x) if x > 100);
169/// // assert_matches!(a, Some(x) if x < 100); // panics
170/// ```
171#[unstable(feature = "assert_matches", issue = "82775")]
172#[allow_internal_unstable(panic_internals)]
173#[rustc_macro_transparency = "semitransparent"]
174#[cfg(not(feature = "ferrocene_certified"))]
175pub macro assert_matches {
176    ($left:expr, $(|)? $( $pattern:pat_param )|+ $( if $guard: expr )? $(,)?) => {
177        match $left {
178            $( $pattern )|+ $( if $guard )? => {}
179            ref left_val => {
180                $crate::panicking::assert_matches_failed(
181                    left_val,
182                    $crate::stringify!($($pattern)|+ $(if $guard)?),
183                    $crate::option::Option::None
184                );
185            }
186        }
187    },
188    ($left:expr, $(|)? $( $pattern:pat_param )|+ $( if $guard: expr )?, $($arg:tt)+) => {
189        match $left {
190            $( $pattern )|+ $( if $guard )? => {}
191            ref left_val => {
192                $crate::panicking::assert_matches_failed(
193                    left_val,
194                    $crate::stringify!($($pattern)|+ $(if $guard)?),
195                    $crate::option::Option::Some($crate::format_args!($($arg)+))
196                );
197            }
198        }
199    },
200}
201
202/// Selects code at compile-time based on `cfg` predicates.
203///
204/// This macro evaluates, at compile-time, a series of `cfg` predicates,
205/// selects the first that is true, and emits the code guarded by that
206/// predicate. The code guarded by other predicates is not emitted.
207///
208/// An optional trailing `_` wildcard can be used to specify a fallback. If
209/// none of the predicates are true, a [`compile_error`] is emitted.
210///
211/// # Example
212///
213/// ```
214/// #![feature(cfg_select)]
215///
216/// cfg_select! {
217///     unix => {
218///         fn foo() { /* unix specific functionality */ }
219///     }
220///     target_pointer_width = "32" => {
221///         fn foo() { /* non-unix, 32-bit functionality */ }
222///     }
223///     _ => {
224///         fn foo() { /* fallback implementation */ }
225///     }
226/// }
227/// ```
228///
229/// The `cfg_select!` macro can also be used in expression position, with or without braces on the
230/// right-hand side:
231///
232/// ```
233/// #![feature(cfg_select)]
234///
235/// let _some_string = cfg_select! {
236///     unix => "With great power comes great electricity bills",
237///     _ => { "Behind every successful diet is an unwatched pizza" }
238/// };
239/// ```
240#[unstable(feature = "cfg_select", issue = "115585")]
241#[rustc_diagnostic_item = "cfg_select"]
242#[rustc_builtin_macro]
243#[cfg(not(feature = "ferrocene_certified"))]
244pub macro cfg_select($($tt:tt)*) {
245    /* compiler built-in */
246}
247
248/// Asserts that a boolean expression is `true` at runtime.
249///
250/// This will invoke the [`panic!`] macro if the provided expression cannot be
251/// evaluated to `true` at runtime.
252///
253/// Like [`assert!`], this macro also has a second version, where a custom panic
254/// message can be provided.
255///
256/// # Uses
257///
258/// Unlike [`assert!`], `debug_assert!` statements are only enabled in non
259/// optimized builds by default. An optimized build will not execute
260/// `debug_assert!` statements unless `-C debug-assertions` is passed to the
261/// compiler. This makes `debug_assert!` useful for checks that are too
262/// expensive to be present in a release build but may be helpful during
263/// development. The result of expanding `debug_assert!` is always type checked.
264///
265/// An unchecked assertion allows a program in an inconsistent state to keep
266/// running, which might have unexpected consequences but does not introduce
267/// unsafety as long as this only happens in safe code. The performance cost
268/// of assertions, however, is not measurable in general. Replacing [`assert!`]
269/// with `debug_assert!` is thus only encouraged after thorough profiling, and
270/// more importantly, only in safe code!
271///
272/// # Examples
273///
274/// ```
275/// // the panic message for these assertions is the stringified value of the
276/// // expression given.
277/// debug_assert!(true);
278///
279/// fn some_expensive_computation() -> bool {
280///     // Some expensive computation here
281///     true
282/// }
283/// debug_assert!(some_expensive_computation());
284///
285/// // assert with a custom message
286/// let x = true;
287/// debug_assert!(x, "x wasn't true!");
288///
289/// let a = 3; let b = 27;
290/// debug_assert!(a + b == 30, "a = {}, b = {}", a, b);
291/// ```
292#[macro_export]
293#[stable(feature = "rust1", since = "1.0.0")]
294#[rustc_diagnostic_item = "debug_assert_macro"]
295#[allow_internal_unstable(edition_panic)]
296macro_rules! debug_assert {
297    ($($arg:tt)*) => {
298        if $crate::cfg!(debug_assertions) {
299            $crate::assert!($($arg)*);
300        }
301    };
302}
303
304/// Asserts that two expressions are equal to each other.
305///
306/// On panic, this macro will print the values of the expressions with their
307/// debug representations.
308///
309/// Unlike [`assert_eq!`], `debug_assert_eq!` statements are only enabled in non
310/// optimized builds by default. An optimized build will not execute
311/// `debug_assert_eq!` statements unless `-C debug-assertions` is passed to the
312/// compiler. This makes `debug_assert_eq!` useful for checks that are too
313/// expensive to be present in a release build but may be helpful during
314/// development. The result of expanding `debug_assert_eq!` is always type checked.
315///
316/// # Examples
317///
318/// ```
319/// let a = 3;
320/// let b = 1 + 2;
321/// debug_assert_eq!(a, b);
322/// ```
323#[macro_export]
324#[stable(feature = "rust1", since = "1.0.0")]
325#[rustc_diagnostic_item = "debug_assert_eq_macro"]
326#[cfg(not(feature = "ferrocene_certified"))]
327macro_rules! debug_assert_eq {
328    ($($arg:tt)*) => {
329        if $crate::cfg!(debug_assertions) {
330            $crate::assert_eq!($($arg)*);
331        }
332    };
333}
334
335/// Asserts that two expressions are not equal to each other.
336///
337/// On panic, this macro will print the values of the expressions with their
338/// debug representations.
339///
340/// Unlike [`assert_ne!`], `debug_assert_ne!` statements are only enabled in non
341/// optimized builds by default. An optimized build will not execute
342/// `debug_assert_ne!` statements unless `-C debug-assertions` is passed to the
343/// compiler. This makes `debug_assert_ne!` useful for checks that are too
344/// expensive to be present in a release build but may be helpful during
345/// development. The result of expanding `debug_assert_ne!` is always type checked.
346///
347/// # Examples
348///
349/// ```
350/// let a = 3;
351/// let b = 2;
352/// debug_assert_ne!(a, b);
353/// ```
354#[macro_export]
355#[stable(feature = "assert_ne", since = "1.13.0")]
356#[rustc_diagnostic_item = "debug_assert_ne_macro"]
357#[cfg(not(feature = "ferrocene_certified"))]
358macro_rules! debug_assert_ne {
359    ($($arg:tt)*) => {
360        if $crate::cfg!(debug_assertions) {
361            $crate::assert_ne!($($arg)*);
362        }
363    };
364}
365
366/// Asserts that an expression matches the provided pattern.
367///
368/// This macro is generally preferable to `debug_assert!(matches!(value, pattern))`, because it can
369/// print the debug representation of the actual value shape that did not meet expectations. In
370/// contrast, using [`debug_assert!`] will only print that expectations were not met, but not why.
371///
372/// The pattern syntax is exactly the same as found in a match arm and the `matches!` macro. The
373/// optional if guard can be used to add additional checks that must be true for the matched value,
374/// otherwise this macro will panic.
375///
376/// On panic, this macro will print the value of the expression with its debug representation.
377///
378/// Like [`assert!`], this macro has a second form, where a custom panic message can be provided.
379///
380/// Unlike [`assert_matches!`], `debug_assert_matches!` statements are only enabled in non optimized
381/// builds by default. An optimized build will not execute `debug_assert_matches!` statements unless
382/// `-C debug-assertions` is passed to the compiler. This makes `debug_assert_matches!` useful for
383/// checks that are too expensive to be present in a release build but may be helpful during
384/// development. The result of expanding `debug_assert_matches!` is always type checked.
385///
386/// # Examples
387///
388/// ```
389/// #![feature(assert_matches)]
390///
391/// use std::assert_matches::debug_assert_matches;
392///
393/// let a = Some(345);
394/// let b = Some(56);
395/// debug_assert_matches!(a, Some(_));
396/// debug_assert_matches!(b, Some(_));
397///
398/// debug_assert_matches!(a, Some(345));
399/// debug_assert_matches!(a, Some(345) | None);
400///
401/// // debug_assert_matches!(a, None); // panics
402/// // debug_assert_matches!(b, Some(345)); // panics
403/// // debug_assert_matches!(b, Some(345) | None); // panics
404///
405/// debug_assert_matches!(a, Some(x) if x > 100);
406/// // debug_assert_matches!(a, Some(x) if x < 100); // panics
407/// ```
408#[unstable(feature = "assert_matches", issue = "82775")]
409#[allow_internal_unstable(assert_matches)]
410#[rustc_macro_transparency = "semitransparent"]
411#[cfg(not(feature = "ferrocene_certified"))]
412pub macro debug_assert_matches($($arg:tt)*) {
413    if $crate::cfg!(debug_assertions) {
414        $crate::assert_matches::assert_matches!($($arg)*);
415    }
416}
417
418/// Returns whether the given expression matches the provided pattern.
419///
420/// The pattern syntax is exactly the same as found in a match arm. The optional if guard can be
421/// used to add additional checks that must be true for the matched value, otherwise this macro will
422/// return `false`.
423///
424/// When testing that a value matches a pattern, it's generally preferable to use
425/// [`assert_matches!`] as it will print the debug representation of the value if the assertion
426/// fails.
427///
428/// # Examples
429///
430/// ```
431/// let foo = 'f';
432/// assert!(matches!(foo, 'A'..='Z' | 'a'..='z'));
433///
434/// let bar = Some(4);
435/// assert!(matches!(bar, Some(x) if x > 2));
436/// ```
437#[macro_export]
438#[stable(feature = "matches_macro", since = "1.42.0")]
439#[rustc_diagnostic_item = "matches_macro"]
440#[allow_internal_unstable(non_exhaustive_omitted_patterns_lint, stmt_expr_attributes)]
441macro_rules! matches {
442    ($expression:expr, $pattern:pat $(if $guard:expr)? $(,)?) => {
443        #[allow(non_exhaustive_omitted_patterns)]
444        match $expression {
445            $pattern $(if $guard)? => true,
446            _ => false
447        }
448    };
449}
450
451/// Unwraps a result or propagates its error.
452///
453/// The [`?` operator][propagating-errors] was added to replace `try!`
454/// and should be used instead. Furthermore, `try` is a reserved word
455/// in Rust 2018, so if you must use it, you will need to use the
456/// [raw-identifier syntax][ris]: `r#try`.
457///
458/// [propagating-errors]: https://doc.rust-lang.org/book/ch09-02-recoverable-errors-with-result.html#a-shortcut-for-propagating-errors-the--operator
459/// [ris]: https://doc.rust-lang.org/nightly/rust-by-example/compatibility/raw_identifiers.html
460///
461/// `try!` matches the given [`Result`]. In case of the `Ok` variant, the
462/// expression has the value of the wrapped value.
463///
464/// In case of the `Err` variant, it retrieves the inner error. `try!` then
465/// performs conversion using `From`. This provides automatic conversion
466/// between specialized errors and more general ones. The resulting
467/// error is then immediately returned.
468///
469/// Because of the early return, `try!` can only be used in functions that
470/// return [`Result`].
471///
472/// # Examples
473///
474/// ```
475/// use std::io;
476/// use std::fs::File;
477/// use std::io::prelude::*;
478///
479/// enum MyError {
480///     FileWriteError
481/// }
482///
483/// impl From<io::Error> for MyError {
484///     fn from(e: io::Error) -> MyError {
485///         MyError::FileWriteError
486///     }
487/// }
488///
489/// // The preferred method of quick returning Errors
490/// fn write_to_file_question() -> Result<(), MyError> {
491///     let mut file = File::create("my_best_friends.txt")?;
492///     file.write_all(b"This is a list of my best friends.")?;
493///     Ok(())
494/// }
495///
496/// // The previous method of quick returning Errors
497/// fn write_to_file_using_try() -> Result<(), MyError> {
498///     let mut file = r#try!(File::create("my_best_friends.txt"));
499///     r#try!(file.write_all(b"This is a list of my best friends."));
500///     Ok(())
501/// }
502///
503/// // This is equivalent to:
504/// fn write_to_file_using_match() -> Result<(), MyError> {
505///     let mut file = r#try!(File::create("my_best_friends.txt"));
506///     match file.write_all(b"This is a list of my best friends.") {
507///         Ok(v) => v,
508///         Err(e) => return Err(From::from(e)),
509///     }
510///     Ok(())
511/// }
512/// ```
513#[macro_export]
514#[stable(feature = "rust1", since = "1.0.0")]
515#[deprecated(since = "1.39.0", note = "use the `?` operator instead")]
516#[doc(alias = "?")]
517#[cfg(not(feature = "ferrocene_certified"))]
518macro_rules! r#try {
519    ($expr:expr $(,)?) => {
520        match $expr {
521            $crate::result::Result::Ok(val) => val,
522            $crate::result::Result::Err(err) => {
523                return $crate::result::Result::Err($crate::convert::From::from(err));
524            }
525        }
526    };
527}
528
529/// Writes formatted data into a buffer.
530///
531/// This macro accepts a 'writer', a format string, and a list of arguments. Arguments will be
532/// formatted according to the specified format string and the result will be passed to the writer.
533/// The writer may be any value with a `write_fmt` method; generally this comes from an
534/// implementation of either the [`fmt::Write`] or the [`io::Write`] trait. The macro
535/// returns whatever the `write_fmt` method returns; commonly a [`fmt::Result`], or an
536/// [`io::Result`].
537///
538/// See [`std::fmt`] for more information on the format string syntax.
539///
540/// [`std::fmt`]: ../std/fmt/index.html
541/// [`fmt::Write`]: crate::fmt::Write
542/// [`io::Write`]: ../std/io/trait.Write.html
543/// [`fmt::Result`]: crate::fmt::Result
544/// [`io::Result`]: ../std/io/type.Result.html
545///
546/// # Examples
547///
548/// ```
549/// use std::io::Write;
550///
551/// fn main() -> std::io::Result<()> {
552///     let mut w = Vec::new();
553///     write!(&mut w, "test")?;
554///     write!(&mut w, "formatted {}", "arguments")?;
555///
556///     assert_eq!(w, b"testformatted arguments");
557///     Ok(())
558/// }
559/// ```
560///
561/// A module can import both `std::fmt::Write` and `std::io::Write` and call `write!` on objects
562/// implementing either, as objects do not typically implement both. However, the module must
563/// avoid conflict between the trait names, such as by importing them as `_` or otherwise renaming
564/// them:
565///
566/// ```
567/// use std::fmt::Write as _;
568/// use std::io::Write as _;
569///
570/// fn main() -> Result<(), Box<dyn std::error::Error>> {
571///     let mut s = String::new();
572///     let mut v = Vec::new();
573///
574///     write!(&mut s, "{} {}", "abc", 123)?; // uses fmt::Write::write_fmt
575///     write!(&mut v, "s = {:?}", s)?; // uses io::Write::write_fmt
576///     assert_eq!(v, b"s = \"abc 123\"");
577///     Ok(())
578/// }
579/// ```
580///
581/// If you also need the trait names themselves, such as to implement one or both on your types,
582/// import the containing module and then name them with a prefix:
583///
584/// ```
585/// # #![allow(unused_imports)]
586/// use std::fmt::{self, Write as _};
587/// use std::io::{self, Write as _};
588///
589/// struct Example;
590///
591/// impl fmt::Write for Example {
592///     fn write_str(&mut self, _s: &str) -> core::fmt::Result {
593///          unimplemented!();
594///     }
595/// }
596/// ```
597///
598/// Note: This macro can be used in `no_std` setups as well.
599/// In a `no_std` setup you are responsible for the implementation details of the components.
600///
601/// ```no_run
602/// use core::fmt::Write;
603///
604/// struct Example;
605///
606/// impl Write for Example {
607///     fn write_str(&mut self, _s: &str) -> core::fmt::Result {
608///          unimplemented!();
609///     }
610/// }
611///
612/// let mut m = Example{};
613/// write!(&mut m, "Hello World").expect("Not written");
614/// ```
615#[macro_export]
616#[stable(feature = "rust1", since = "1.0.0")]
617#[rustc_diagnostic_item = "write_macro"]
618#[cfg(not(feature = "ferrocene_certified"))]
619macro_rules! write {
620    ($dst:expr, $($arg:tt)*) => {
621        $dst.write_fmt($crate::format_args!($($arg)*))
622    };
623}
624
625/// Writes formatted data into a buffer, with a newline appended.
626///
627/// On all platforms, the newline is the LINE FEED character (`\n`/`U+000A`) alone
628/// (no additional CARRIAGE RETURN (`\r`/`U+000D`).
629///
630/// For more information, see [`write!`]. For information on the format string syntax, see
631/// [`std::fmt`].
632///
633/// [`std::fmt`]: ../std/fmt/index.html
634///
635/// # Examples
636///
637/// ```
638/// use std::io::{Write, Result};
639///
640/// fn main() -> Result<()> {
641///     let mut w = Vec::new();
642///     writeln!(&mut w)?;
643///     writeln!(&mut w, "test")?;
644///     writeln!(&mut w, "formatted {}", "arguments")?;
645///
646///     assert_eq!(&w[..], "\ntest\nformatted arguments\n".as_bytes());
647///     Ok(())
648/// }
649/// ```
650#[macro_export]
651#[stable(feature = "rust1", since = "1.0.0")]
652#[rustc_diagnostic_item = "writeln_macro"]
653#[allow_internal_unstable(format_args_nl)]
654#[cfg(not(feature = "ferrocene_certified"))]
655macro_rules! writeln {
656    ($dst:expr $(,)?) => {
657        $crate::write!($dst, "\n")
658    };
659    ($dst:expr, $($arg:tt)*) => {
660        $dst.write_fmt($crate::format_args_nl!($($arg)*))
661    };
662}
663
664/// Indicates unreachable code.
665///
666/// This is useful any time that the compiler can't determine that some code is unreachable. For
667/// example:
668///
669/// * Match arms with guard conditions.
670/// * Loops that dynamically terminate.
671/// * Iterators that dynamically terminate.
672///
673/// If the determination that the code is unreachable proves incorrect, the
674/// program immediately terminates with a [`panic!`].
675///
676/// The unsafe counterpart of this macro is the [`unreachable_unchecked`] function, which
677/// will cause undefined behavior if the code is reached.
678///
679/// [`unreachable_unchecked`]: crate::hint::unreachable_unchecked
680///
681/// # Panics
682///
683/// This will always [`panic!`] because `unreachable!` is just a shorthand for `panic!` with a
684/// fixed, specific message.
685///
686/// Like `panic!`, this macro has a second form for displaying custom values.
687///
688/// # Examples
689///
690/// Match arms:
691///
692/// ```
693/// # #[allow(dead_code)]
694/// fn foo(x: Option<i32>) {
695///     match x {
696///         Some(n) if n >= 0 => println!("Some(Non-negative)"),
697///         Some(n) if n <  0 => println!("Some(Negative)"),
698///         Some(_)           => unreachable!(), // compile error if commented out
699///         None              => println!("None")
700///     }
701/// }
702/// ```
703///
704/// Iterators:
705///
706/// ```
707/// # #[allow(dead_code)]
708/// fn divide_by_three(x: u32) -> u32 { // one of the poorest implementations of x/3
709///     for i in 0.. {
710///         if 3*i < i { panic!("u32 overflow"); }
711///         if x < 3*i { return i-1; }
712///     }
713///     unreachable!("The loop should always return");
714/// }
715/// ```
716#[macro_export]
717#[rustc_builtin_macro(unreachable)]
718#[allow_internal_unstable(edition_panic)]
719#[stable(feature = "rust1", since = "1.0.0")]
720#[rustc_diagnostic_item = "unreachable_macro"]
721macro_rules! unreachable {
722    // Expands to either `$crate::panic::unreachable_2015` or `$crate::panic::unreachable_2021`
723    // depending on the edition of the caller.
724    ($($arg:tt)*) => {
725        /* compiler built-in */
726    };
727}
728
729/// Indicates unimplemented code by panicking with a message of "not implemented".
730///
731/// This allows your code to type-check, which is useful if you are prototyping or
732/// implementing a trait that requires multiple methods which you don't plan to use all of.
733///
734/// The difference between `unimplemented!` and [`todo!`] is that while `todo!`
735/// conveys an intent of implementing the functionality later and the message is "not yet
736/// implemented", `unimplemented!` makes no such claims. Its message is "not implemented".
737///
738/// Also, some IDEs will mark `todo!`s.
739///
740/// # Panics
741///
742/// This will always [`panic!`] because `unimplemented!` is just a shorthand for `panic!` with a
743/// fixed, specific message.
744///
745/// Like `panic!`, this macro has a second form for displaying custom values.
746///
747/// [`todo!`]: crate::todo
748///
749/// # Examples
750///
751/// Say we have a trait `Foo`:
752///
753/// ```
754/// trait Foo {
755///     fn bar(&self) -> u8;
756///     fn baz(&self);
757///     fn qux(&self) -> Result<u64, ()>;
758/// }
759/// ```
760///
761/// We want to implement `Foo` for 'MyStruct', but for some reason it only makes sense
762/// to implement the `bar()` function. `baz()` and `qux()` will still need to be defined
763/// in our implementation of `Foo`, but we can use `unimplemented!` in their definitions
764/// to allow our code to compile.
765///
766/// We still want to have our program stop running if the unimplemented methods are
767/// reached.
768///
769/// ```
770/// # trait Foo {
771/// #     fn bar(&self) -> u8;
772/// #     fn baz(&self);
773/// #     fn qux(&self) -> Result<u64, ()>;
774/// # }
775/// struct MyStruct;
776///
777/// impl Foo for MyStruct {
778///     fn bar(&self) -> u8 {
779///         1 + 1
780///     }
781///
782///     fn baz(&self) {
783///         // It makes no sense to `baz` a `MyStruct`, so we have no logic here
784///         // at all.
785///         // This will display "thread 'main' panicked at 'not implemented'".
786///         unimplemented!();
787///     }
788///
789///     fn qux(&self) -> Result<u64, ()> {
790///         // We have some logic here,
791///         // We can add a message to unimplemented! to display our omission.
792///         // This will display:
793///         // "thread 'main' panicked at 'not implemented: MyStruct isn't quxable'".
794///         unimplemented!("MyStruct isn't quxable");
795///     }
796/// }
797///
798/// fn main() {
799///     let s = MyStruct;
800///     s.bar();
801/// }
802/// ```
803#[macro_export]
804#[stable(feature = "rust1", since = "1.0.0")]
805#[rustc_diagnostic_item = "unimplemented_macro"]
806#[allow_internal_unstable(panic_internals)]
807#[cfg(not(feature = "ferrocene_certified"))]
808macro_rules! unimplemented {
809    () => {
810        $crate::panicking::panic("not implemented")
811    };
812    ($($arg:tt)+) => {
813        $crate::panic!("not implemented: {}", $crate::format_args!($($arg)+))
814    };
815}
816
817/// Indicates unfinished code.
818///
819/// This can be useful if you are prototyping and just
820/// want a placeholder to let your code pass type analysis.
821///
822/// The difference between [`unimplemented!`] and `todo!` is that while `todo!` conveys
823/// an intent of implementing the functionality later and the message is "not yet
824/// implemented", `unimplemented!` makes no such claims. Its message is "not implemented".
825///
826/// Also, some IDEs will mark `todo!`s.
827///
828/// # Panics
829///
830/// This will always [`panic!`] because `todo!` is just a shorthand for `panic!` with a
831/// fixed, specific message.
832///
833/// Like `panic!`, this macro has a second form for displaying custom values.
834///
835/// # Examples
836///
837/// Here's an example of some in-progress code. We have a trait `Foo`:
838///
839/// ```
840/// trait Foo {
841///     fn bar(&self) -> u8;
842///     fn baz(&self);
843///     fn qux(&self) -> Result<u64, ()>;
844/// }
845/// ```
846///
847/// We want to implement `Foo` on one of our types, but we also want to work on
848/// just `bar()` first. In order for our code to compile, we need to implement
849/// `baz()` and `qux()`, so we can use `todo!`:
850///
851/// ```
852/// # trait Foo {
853/// #     fn bar(&self) -> u8;
854/// #     fn baz(&self);
855/// #     fn qux(&self) -> Result<u64, ()>;
856/// # }
857/// struct MyStruct;
858///
859/// impl Foo for MyStruct {
860///     fn bar(&self) -> u8 {
861///         1 + 1
862///     }
863///
864///     fn baz(&self) {
865///         // Let's not worry about implementing baz() for now
866///         todo!();
867///     }
868///
869///     fn qux(&self) -> Result<u64, ()> {
870///         // We can add a message to todo! to display our omission.
871///         // This will display:
872///         // "thread 'main' panicked at 'not yet implemented: MyStruct is not yet quxable'".
873///         todo!("MyStruct is not yet quxable");
874///     }
875/// }
876///
877/// fn main() {
878///     let s = MyStruct;
879///     s.bar();
880///
881///     // We aren't even using baz() or qux(), so this is fine.
882/// }
883/// ```
884#[macro_export]
885#[stable(feature = "todo_macro", since = "1.40.0")]
886#[rustc_diagnostic_item = "todo_macro"]
887#[allow_internal_unstable(panic_internals)]
888#[cfg(not(feature = "ferrocene_certified"))]
889macro_rules! todo {
890    () => {
891        $crate::panicking::panic("not yet implemented")
892    };
893    ($($arg:tt)+) => {
894        $crate::panic!("not yet implemented: {}", $crate::format_args!($($arg)+))
895    };
896}
897
898/// Definitions of built-in macros.
899///
900/// Most of the macro properties (stability, visibility, etc.) are taken from the source code here,
901/// with exception of expansion functions transforming macro inputs into outputs,
902/// those functions are provided by the compiler.
903pub(crate) mod builtin {
904
905    /// Causes compilation to fail with the given error message when encountered.
906    ///
907    /// This macro should be used when a crate uses a conditional compilation strategy to provide
908    /// better error messages for erroneous conditions. It's the compiler-level form of [`panic!`],
909    /// but emits an error during *compilation* rather than at *runtime*.
910    ///
911    /// # Examples
912    ///
913    /// Two such examples are macros and `#[cfg]` environments.
914    ///
915    /// Emit a better compiler error if a macro is passed invalid values. Without the final branch,
916    /// the compiler would still emit an error, but the error's message would not mention the two
917    /// valid values.
918    ///
919    /// ```compile_fail
920    /// macro_rules! give_me_foo_or_bar {
921    ///     (foo) => {};
922    ///     (bar) => {};
923    ///     ($x:ident) => {
924    ///         compile_error!("This macro only accepts `foo` or `bar`");
925    ///     }
926    /// }
927    ///
928    /// give_me_foo_or_bar!(neither);
929    /// // ^ will fail at compile time with message "This macro only accepts `foo` or `bar`"
930    /// ```
931    ///
932    /// Emit a compiler error if one of a number of features isn't available.
933    ///
934    /// ```compile_fail
935    /// #[cfg(not(any(feature = "foo", feature = "bar")))]
936    /// compile_error!("Either feature \"foo\" or \"bar\" must be enabled for this crate.");
937    /// ```
938    #[stable(feature = "compile_error_macro", since = "1.20.0")]
939    #[rustc_builtin_macro]
940    #[macro_export]
941    macro_rules! compile_error {
942        ($msg:expr $(,)?) => {{ /* compiler built-in */ }};
943    }
944
945    /// Constructs parameters for the other string-formatting macros.
946    ///
947    /// This macro functions by taking a formatting string literal containing
948    /// `{}` for each additional argument passed. `format_args!` prepares the
949    /// additional parameters to ensure the output can be interpreted as a string
950    /// and canonicalizes the arguments into a single type. Any value that implements
951    /// the [`Display`] trait can be passed to `format_args!`, as can any
952    /// [`Debug`] implementation be passed to a `{:?}` within the formatting string.
953    ///
954    /// This macro produces a value of type [`fmt::Arguments`]. This value can be
955    /// passed to the macros within [`std::fmt`] for performing useful redirection.
956    /// All other formatting macros ([`format!`], [`write!`], [`println!`], etc) are
957    /// proxied through this one. `format_args!`, unlike its derived macros, avoids
958    /// heap allocations.
959    ///
960    /// You can use the [`fmt::Arguments`] value that `format_args!` returns
961    /// in `Debug` and `Display` contexts as seen below. The example also shows
962    /// that `Debug` and `Display` format to the same thing: the interpolated
963    /// format string in `format_args!`.
964    ///
965    /// ```rust
966    /// let args = format_args!("{} foo {:?}", 1, 2);
967    /// let debug = format!("{args:?}");
968    /// let display = format!("{args}");
969    /// assert_eq!("1 foo 2", display);
970    /// assert_eq!(display, debug);
971    /// ```
972    ///
973    /// See [the formatting documentation in `std::fmt`](../std/fmt/index.html)
974    /// for details of the macro argument syntax, and further information.
975    ///
976    /// [`Display`]: crate::fmt::Display
977    /// [`Debug`]: crate::fmt::Debug
978    /// [`fmt::Arguments`]: crate::fmt::Arguments
979    /// [`std::fmt`]: ../std/fmt/index.html
980    /// [`format!`]: ../std/macro.format.html
981    /// [`println!`]: ../std/macro.println.html
982    ///
983    /// # Examples
984    ///
985    /// ```
986    /// use std::fmt;
987    ///
988    /// let s = fmt::format(format_args!("hello {}", "world"));
989    /// assert_eq!(s, format!("hello {}", "world"));
990    /// ```
991    ///
992    /// # Argument lifetimes
993    ///
994    /// Except when no formatting arguments are used,
995    /// the produced `fmt::Arguments` value borrows temporary values.
996    /// To allow it to be stored for later use, the arguments' lifetimes, as well as those of
997    /// temporaries they borrow, may be [extended] when `format_args!` appears in the initializer
998    /// expression of a `let` statement. The syntactic rules used to determine when temporaries'
999    /// lifetimes are extended are documented in the [Reference].
1000    ///
1001    /// [extended]: ../reference/destructors.html#temporary-lifetime-extension
1002    /// [Reference]: ../reference/destructors.html#extending-based-on-expressions
1003    #[stable(feature = "rust1", since = "1.0.0")]
1004    #[rustc_diagnostic_item = "format_args_macro"]
1005    #[allow_internal_unsafe]
1006    #[allow_internal_unstable(fmt_internals)]
1007    #[rustc_builtin_macro]
1008    #[macro_export]
1009    macro_rules! format_args {
1010        ($fmt:expr) => {{ /* compiler built-in */ }};
1011        ($fmt:expr, $($args:tt)*) => {{ /* compiler built-in */ }};
1012    }
1013
1014    /// Same as [`format_args`], but can be used in some const contexts.
1015    ///
1016    /// This macro is used by the panic macros for the `const_panic` feature.
1017    ///
1018    /// This macro will be removed once `format_args` is allowed in const contexts.
1019    #[unstable(feature = "const_format_args", issue = "none")]
1020    #[allow_internal_unstable(fmt_internals, const_fmt_arguments_new)]
1021    #[rustc_builtin_macro]
1022    #[macro_export]
1023    macro_rules! const_format_args {
1024        ($fmt:expr) => {{ /* compiler built-in */ }};
1025        ($fmt:expr, $($args:tt)*) => {{ /* compiler built-in */ }};
1026    }
1027
1028    /// Same as [`format_args`], but adds a newline in the end.
1029    #[unstable(
1030        feature = "format_args_nl",
1031        issue = "none",
1032        reason = "`format_args_nl` is only for internal \
1033                  language use and is subject to change"
1034    )]
1035    #[allow_internal_unstable(fmt_internals)]
1036    #[rustc_builtin_macro]
1037    #[doc(hidden)]
1038    #[macro_export]
1039    macro_rules! format_args_nl {
1040        ($fmt:expr) => {{ /* compiler built-in */ }};
1041        ($fmt:expr, $($args:tt)*) => {{ /* compiler built-in */ }};
1042    }
1043
1044    /// Inspects an environment variable at compile time.
1045    ///
1046    /// This macro will expand to the value of the named environment variable at
1047    /// compile time, yielding an expression of type `&'static str`. Use
1048    /// [`std::env::var`] instead if you want to read the value at runtime.
1049    ///
1050    /// [`std::env::var`]: ../std/env/fn.var.html
1051    ///
1052    /// If the environment variable is not defined, then a compilation error
1053    /// will be emitted. To not emit a compile error, use the [`option_env!`]
1054    /// macro instead. A compilation error will also be emitted if the
1055    /// environment variable is not a valid Unicode string.
1056    ///
1057    /// # Examples
1058    ///
1059    /// ```
1060    /// let path: &'static str = env!("PATH");
1061    /// println!("the $PATH variable at the time of compiling was: {path}");
1062    /// ```
1063    ///
1064    /// You can customize the error message by passing a string as the second
1065    /// parameter:
1066    ///
1067    /// ```compile_fail
1068    /// let doc: &'static str = env!("documentation", "what's that?!");
1069    /// ```
1070    ///
1071    /// If the `documentation` environment variable is not defined, you'll get
1072    /// the following error:
1073    ///
1074    /// ```text
1075    /// error: what's that?!
1076    /// ```
1077    #[stable(feature = "rust1", since = "1.0.0")]
1078    #[rustc_builtin_macro]
1079    #[macro_export]
1080    #[rustc_diagnostic_item = "env_macro"] // useful for external lints
1081    macro_rules! env {
1082        ($name:expr $(,)?) => {{ /* compiler built-in */ }};
1083        ($name:expr, $error_msg:expr $(,)?) => {{ /* compiler built-in */ }};
1084    }
1085
1086    /// Optionally inspects an environment variable at compile time.
1087    ///
1088    /// If the named environment variable is present at compile time, this will
1089    /// expand into an expression of type `Option<&'static str>` whose value is
1090    /// `Some` of the value of the environment variable (a compilation error
1091    /// will be emitted if the environment variable is not a valid Unicode
1092    /// string). If the environment variable is not present, then this will
1093    /// expand to `None`. See [`Option<T>`][Option] for more information on this
1094    /// type.  Use [`std::env::var`] instead if you want to read the value at
1095    /// runtime.
1096    ///
1097    /// [`std::env::var`]: ../std/env/fn.var.html
1098    ///
1099    /// A compile time error is only emitted when using this macro if the
1100    /// environment variable exists and is not a valid Unicode string. To also
1101    /// emit a compile error if the environment variable is not present, use the
1102    /// [`env!`] macro instead.
1103    ///
1104    /// # Examples
1105    ///
1106    /// ```
1107    /// let key: Option<&'static str> = option_env!("SECRET_KEY");
1108    /// println!("the secret key might be: {key:?}");
1109    /// ```
1110    #[stable(feature = "rust1", since = "1.0.0")]
1111    #[rustc_builtin_macro]
1112    #[macro_export]
1113    #[rustc_diagnostic_item = "option_env_macro"] // useful for external lints
1114    macro_rules! option_env {
1115        ($name:expr $(,)?) => {{ /* compiler built-in */ }};
1116    }
1117
1118    /// Concatenates literals into a byte slice.
1119    ///
1120    /// This macro takes any number of comma-separated literals, and concatenates them all into
1121    /// one, yielding an expression of type `&[u8; _]`, which represents all of the literals
1122    /// concatenated left-to-right. The literals passed can be any combination of:
1123    ///
1124    /// - byte literals (`b'r'`)
1125    /// - byte strings (`b"Rust"`)
1126    /// - arrays of bytes/numbers (`[b'A', 66, b'C']`)
1127    ///
1128    /// # Examples
1129    ///
1130    /// ```
1131    /// #![feature(concat_bytes)]
1132    ///
1133    /// # fn main() {
1134    /// let s: &[u8; 6] = concat_bytes!(b'A', b"BC", [68, b'E', 70]);
1135    /// assert_eq!(s, b"ABCDEF");
1136    /// # }
1137    /// ```
1138    #[unstable(feature = "concat_bytes", issue = "87555")]
1139    #[rustc_builtin_macro]
1140    #[macro_export]
1141    macro_rules! concat_bytes {
1142        ($($e:literal),+ $(,)?) => {{ /* compiler built-in */ }};
1143    }
1144
1145    /// Concatenates literals into a static string slice.
1146    ///
1147    /// This macro takes any number of comma-separated literals, yielding an
1148    /// expression of type `&'static str` which represents all of the literals
1149    /// concatenated left-to-right.
1150    ///
1151    /// Integer and floating point literals are [stringified](core::stringify) in order to be
1152    /// concatenated.
1153    ///
1154    /// # Examples
1155    ///
1156    /// ```
1157    /// let s = concat!("test", 10, 'b', true);
1158    /// assert_eq!(s, "test10btrue");
1159    /// ```
1160    #[stable(feature = "rust1", since = "1.0.0")]
1161    #[rustc_builtin_macro]
1162    #[rustc_diagnostic_item = "macro_concat"]
1163    #[macro_export]
1164    macro_rules! concat {
1165        ($($e:expr),* $(,)?) => {{ /* compiler built-in */ }};
1166    }
1167
1168    /// Expands to the line number on which it was invoked.
1169    ///
1170    /// With [`column!`] and [`file!`], these macros provide debugging information for
1171    /// developers about the location within the source.
1172    ///
1173    /// The expanded expression has type `u32` and is 1-based, so the first line
1174    /// in each file evaluates to 1, the second to 2, etc. This is consistent
1175    /// with error messages by common compilers or popular editors.
1176    /// The returned line is *not necessarily* the line of the `line!` invocation itself,
1177    /// but rather the first macro invocation leading up to the invocation
1178    /// of the `line!` macro.
1179    ///
1180    /// # Examples
1181    ///
1182    /// ```
1183    /// let current_line = line!();
1184    /// println!("defined on line: {current_line}");
1185    /// ```
1186    #[stable(feature = "rust1", since = "1.0.0")]
1187    #[rustc_builtin_macro]
1188    #[macro_export]
1189    macro_rules! line {
1190        () => {
1191            /* compiler built-in */
1192        };
1193    }
1194
1195    /// Expands to the column number at which it was invoked.
1196    ///
1197    /// With [`line!`] and [`file!`], these macros provide debugging information for
1198    /// developers about the location within the source.
1199    ///
1200    /// The expanded expression has type `u32` and is 1-based, so the first column
1201    /// in each line evaluates to 1, the second to 2, etc. This is consistent
1202    /// with error messages by common compilers or popular editors.
1203    /// The returned column is *not necessarily* the line of the `column!` invocation itself,
1204    /// but rather the first macro invocation leading up to the invocation
1205    /// of the `column!` macro.
1206    ///
1207    /// # Examples
1208    ///
1209    /// ```
1210    /// let current_col = column!();
1211    /// println!("defined on column: {current_col}");
1212    /// ```
1213    ///
1214    /// `column!` counts Unicode code points, not bytes or graphemes. As a result, the first two
1215    /// invocations return the same value, but the third does not.
1216    ///
1217    /// ```
1218    /// let a = ("foobar", column!()).1;
1219    /// let b = ("人之初性本善", column!()).1;
1220    /// let c = ("f̅o̅o̅b̅a̅r̅", column!()).1; // Uses combining overline (U+0305)
1221    ///
1222    /// assert_eq!(a, b);
1223    /// assert_ne!(b, c);
1224    /// ```
1225    #[stable(feature = "rust1", since = "1.0.0")]
1226    #[rustc_builtin_macro]
1227    #[macro_export]
1228    macro_rules! column {
1229        () => {
1230            /* compiler built-in */
1231        };
1232    }
1233
1234    /// Expands to the file name in which it was invoked.
1235    ///
1236    /// With [`line!`] and [`column!`], these macros provide debugging information for
1237    /// developers about the location within the source.
1238    ///
1239    /// The expanded expression has type `&'static str`, and the returned file
1240    /// is not the invocation of the `file!` macro itself, but rather the
1241    /// first macro invocation leading up to the invocation of the `file!`
1242    /// macro.
1243    ///
1244    /// The file name is derived from the crate root's source path passed to the Rust compiler
1245    /// and the sequence the compiler takes to get from the crate root to the
1246    /// module containing `file!`, modified by any flags passed to the Rust compiler (e.g.
1247    /// `--remap-path-prefix`).  If the crate's source path is relative, the initial base
1248    /// directory will be the working directory of the Rust compiler.  For example, if the source
1249    /// path passed to the compiler is `./src/lib.rs` which has a `mod foo;` with a source path of
1250    /// `src/foo/mod.rs`, then calling `file!` inside `mod foo;` will return `./src/foo/mod.rs`.
1251    ///
1252    /// Future compiler options might make further changes to the behavior of `file!`,
1253    /// including potentially making it entirely empty. Code (e.g. test libraries)
1254    /// relying on `file!` producing an openable file path would be incompatible
1255    /// with such options, and might wish to recommend not using those options.
1256    ///
1257    /// # Examples
1258    ///
1259    /// ```
1260    /// let this_file = file!();
1261    /// println!("defined in file: {this_file}");
1262    /// ```
1263    #[stable(feature = "rust1", since = "1.0.0")]
1264    #[rustc_builtin_macro]
1265    #[macro_export]
1266    macro_rules! file {
1267        () => {
1268            /* compiler built-in */
1269        };
1270    }
1271
1272    /// Stringifies its arguments.
1273    ///
1274    /// This macro will yield an expression of type `&'static str` which is the
1275    /// stringification of all the tokens passed to the macro. No restrictions
1276    /// are placed on the syntax of the macro invocation itself.
1277    ///
1278    /// Note that the expanded results of the input tokens may change in the
1279    /// future. You should be careful if you rely on the output.
1280    ///
1281    /// # Examples
1282    ///
1283    /// ```
1284    /// let one_plus_one = stringify!(1 + 1);
1285    /// assert_eq!(one_plus_one, "1 + 1");
1286    /// ```
1287    #[stable(feature = "rust1", since = "1.0.0")]
1288    #[rustc_builtin_macro]
1289    #[macro_export]
1290    macro_rules! stringify {
1291        ($($t:tt)*) => {
1292            /* compiler built-in */
1293        };
1294    }
1295
1296    /// Includes a UTF-8 encoded file as a string.
1297    ///
1298    /// The file is located relative to the current file (similarly to how
1299    /// modules are found). The provided path is interpreted in a platform-specific
1300    /// way at compile time. So, for instance, an invocation with a Windows path
1301    /// containing backslashes `\` would not compile correctly on Unix.
1302    ///
1303    /// This macro will yield an expression of type `&'static str` which is the
1304    /// contents of the file.
1305    ///
1306    /// # Examples
1307    ///
1308    /// Assume there are two files in the same directory with the following
1309    /// contents:
1310    ///
1311    /// File 'spanish.in':
1312    ///
1313    /// ```text
1314    /// adiós
1315    /// ```
1316    ///
1317    /// File 'main.rs':
1318    ///
1319    /// ```ignore (cannot-doctest-external-file-dependency)
1320    /// fn main() {
1321    ///     let my_str = include_str!("spanish.in");
1322    ///     assert_eq!(my_str, "adiós\n");
1323    ///     print!("{my_str}");
1324    /// }
1325    /// ```
1326    ///
1327    /// Compiling 'main.rs' and running the resulting binary will print "adiós".
1328    #[stable(feature = "rust1", since = "1.0.0")]
1329    #[rustc_builtin_macro]
1330    #[macro_export]
1331    #[rustc_diagnostic_item = "include_str_macro"]
1332    macro_rules! include_str {
1333        ($file:expr $(,)?) => {{ /* compiler built-in */ }};
1334    }
1335
1336    /// Includes a file as a reference to a byte array.
1337    ///
1338    /// The file is located relative to the current file (similarly to how
1339    /// modules are found). The provided path is interpreted in a platform-specific
1340    /// way at compile time. So, for instance, an invocation with a Windows path
1341    /// containing backslashes `\` would not compile correctly on Unix.
1342    ///
1343    /// This macro will yield an expression of type `&'static [u8; N]` which is
1344    /// the contents of the file.
1345    ///
1346    /// # Examples
1347    ///
1348    /// Assume there are two files in the same directory with the following
1349    /// contents:
1350    ///
1351    /// File 'spanish.in':
1352    ///
1353    /// ```text
1354    /// adiós
1355    /// ```
1356    ///
1357    /// File 'main.rs':
1358    ///
1359    /// ```ignore (cannot-doctest-external-file-dependency)
1360    /// fn main() {
1361    ///     let bytes = include_bytes!("spanish.in");
1362    ///     assert_eq!(bytes, b"adi\xc3\xb3s\n");
1363    ///     print!("{}", String::from_utf8_lossy(bytes));
1364    /// }
1365    /// ```
1366    ///
1367    /// Compiling 'main.rs' and running the resulting binary will print "adiós".
1368    #[stable(feature = "rust1", since = "1.0.0")]
1369    #[rustc_builtin_macro]
1370    #[macro_export]
1371    #[rustc_diagnostic_item = "include_bytes_macro"]
1372    macro_rules! include_bytes {
1373        ($file:expr $(,)?) => {{ /* compiler built-in */ }};
1374    }
1375
1376    /// Expands to a string that represents the current module path.
1377    ///
1378    /// The current module path can be thought of as the hierarchy of modules
1379    /// leading back up to the crate root. The first component of the path
1380    /// returned is the name of the crate currently being compiled.
1381    ///
1382    /// # Examples
1383    ///
1384    /// ```
1385    /// mod test {
1386    ///     pub fn foo() {
1387    ///         assert!(module_path!().ends_with("test"));
1388    ///     }
1389    /// }
1390    ///
1391    /// test::foo();
1392    /// ```
1393    #[stable(feature = "rust1", since = "1.0.0")]
1394    #[rustc_builtin_macro]
1395    #[macro_export]
1396    macro_rules! module_path {
1397        () => {
1398            /* compiler built-in */
1399        };
1400    }
1401
1402    /// Evaluates boolean combinations of configuration flags at compile-time.
1403    ///
1404    /// In addition to the `#[cfg]` attribute, this macro is provided to allow
1405    /// boolean expression evaluation of configuration flags. This frequently
1406    /// leads to less duplicated code.
1407    ///
1408    /// The syntax given to this macro is the same syntax as the [`cfg`]
1409    /// attribute.
1410    ///
1411    /// `cfg!`, unlike `#[cfg]`, does not remove any code and only evaluates to true or false. For
1412    /// example, all blocks in an if/else expression need to be valid when `cfg!` is used for
1413    /// the condition, regardless of what `cfg!` is evaluating.
1414    ///
1415    /// [`cfg`]: ../reference/conditional-compilation.html#the-cfg-attribute
1416    ///
1417    /// # Examples
1418    ///
1419    /// ```
1420    /// let my_directory = if cfg!(windows) {
1421    ///     "windows-specific-directory"
1422    /// } else {
1423    ///     "unix-directory"
1424    /// };
1425    /// ```
1426    #[stable(feature = "rust1", since = "1.0.0")]
1427    #[rustc_builtin_macro]
1428    #[macro_export]
1429    macro_rules! cfg {
1430        ($($cfg:tt)*) => {
1431            /* compiler built-in */
1432        };
1433    }
1434
1435    /// Parses a file as an expression or an item according to the context.
1436    ///
1437    /// **Warning**: For multi-file Rust projects, the `include!` macro is probably not what you
1438    /// are looking for. Usually, multi-file Rust projects use
1439    /// [modules](https://doc.rust-lang.org/reference/items/modules.html). Multi-file projects and
1440    /// modules are explained in the Rust-by-Example book
1441    /// [here](https://doc.rust-lang.org/rust-by-example/mod/split.html) and the module system is
1442    /// explained in the Rust Book
1443    /// [here](https://doc.rust-lang.org/book/ch07-02-defining-modules-to-control-scope-and-privacy.html).
1444    ///
1445    /// The included file is placed in the surrounding code
1446    /// [unhygienically](https://doc.rust-lang.org/reference/macros-by-example.html#hygiene). If
1447    /// the included file is parsed as an expression and variables or functions share names across
1448    /// both files, it could result in variables or functions being different from what the
1449    /// included file expected.
1450    ///
1451    /// The included file is located relative to the current file (similarly to how modules are
1452    /// found). The provided path is interpreted in a platform-specific way at compile time. So,
1453    /// for instance, an invocation with a Windows path containing backslashes `\` would not
1454    /// compile correctly on Unix.
1455    ///
1456    /// # Uses
1457    ///
1458    /// The `include!` macro is primarily used for two purposes. It is used to include
1459    /// documentation that is written in a separate file and it is used to include [build artifacts
1460    /// usually as a result from the `build.rs`
1461    /// script](https://doc.rust-lang.org/cargo/reference/build-scripts.html#outputs-of-the-build-script).
1462    ///
1463    /// When using the `include` macro to include stretches of documentation, remember that the
1464    /// included file still needs to be a valid Rust syntax. It is also possible to
1465    /// use the [`include_str`] macro as `#![doc = include_str!("...")]` (at the module level) or
1466    /// `#[doc = include_str!("...")]` (at the item level) to include documentation from a plain
1467    /// text or markdown file.
1468    ///
1469    /// # Examples
1470    ///
1471    /// Assume there are two files in the same directory with the following contents:
1472    ///
1473    /// File 'monkeys.in':
1474    ///
1475    /// ```ignore (only-for-syntax-highlight)
1476    /// ['🙈', '🙊', '🙉']
1477    ///     .iter()
1478    ///     .cycle()
1479    ///     .take(6)
1480    ///     .collect::<String>()
1481    /// ```
1482    ///
1483    /// File 'main.rs':
1484    ///
1485    /// ```ignore (cannot-doctest-external-file-dependency)
1486    /// fn main() {
1487    ///     let my_string = include!("monkeys.in");
1488    ///     assert_eq!("🙈🙊🙉🙈🙊🙉", my_string);
1489    ///     println!("{my_string}");
1490    /// }
1491    /// ```
1492    ///
1493    /// Compiling 'main.rs' and running the resulting binary will print
1494    /// "🙈🙊🙉🙈🙊🙉".
1495    #[stable(feature = "rust1", since = "1.0.0")]
1496    #[rustc_builtin_macro]
1497    #[macro_export]
1498    #[rustc_diagnostic_item = "include_macro"] // useful for external lints
1499    macro_rules! include {
1500        ($file:expr $(,)?) => {{ /* compiler built-in */ }};
1501    }
1502
1503    /// This macro uses forward-mode automatic differentiation to generate a new function.
1504    /// It may only be applied to a function. The new function will compute the derivative
1505    /// of the function to which the macro was applied.
1506    ///
1507    /// The expected usage syntax is:
1508    /// `#[autodiff_forward(NAME, INPUT_ACTIVITIES, OUTPUT_ACTIVITY)]`
1509    ///
1510    /// - `NAME`: A string that represents a valid function name.
1511    /// - `INPUT_ACTIVITIES`: Specifies one valid activity for each input parameter.
1512    /// - `OUTPUT_ACTIVITY`: Must not be set if the function implicitly returns nothing
1513    ///   (or explicitly returns `-> ()`). Otherwise, it must be set to one of the allowed activities.
1514    #[unstable(feature = "autodiff", issue = "124509")]
1515    #[allow_internal_unstable(rustc_attrs)]
1516    #[allow_internal_unstable(core_intrinsics)]
1517    #[rustc_builtin_macro]
1518    pub macro autodiff_forward($item:item) {
1519        /* compiler built-in */
1520    }
1521
1522    /// This macro uses reverse-mode automatic differentiation to generate a new function.
1523    /// It may only be applied to a function. The new function will compute the derivative
1524    /// of the function to which the macro was applied.
1525    ///
1526    /// The expected usage syntax is:
1527    /// `#[autodiff_reverse(NAME, INPUT_ACTIVITIES, OUTPUT_ACTIVITY)]`
1528    ///
1529    /// - `NAME`: A string that represents a valid function name.
1530    /// - `INPUT_ACTIVITIES`: Specifies one valid activity for each input parameter.
1531    /// - `OUTPUT_ACTIVITY`: Must not be set if the function implicitly returns nothing
1532    ///   (or explicitly returns `-> ()`). Otherwise, it must be set to one of the allowed activities.
1533    #[unstable(feature = "autodiff", issue = "124509")]
1534    #[allow_internal_unstable(rustc_attrs)]
1535    #[allow_internal_unstable(core_intrinsics)]
1536    #[rustc_builtin_macro]
1537    pub macro autodiff_reverse($item:item) {
1538        /* compiler built-in */
1539    }
1540
1541    /// Asserts that a boolean expression is `true` at runtime.
1542    ///
1543    /// This will invoke the [`panic!`] macro if the provided expression cannot be
1544    /// evaluated to `true` at runtime.
1545    ///
1546    /// # Uses
1547    ///
1548    /// Assertions are always checked in both debug and release builds, and cannot
1549    /// be disabled. See [`debug_assert!`] for assertions that are not enabled in
1550    /// release builds by default.
1551    ///
1552    /// Unsafe code may rely on `assert!` to enforce run-time invariants that, if
1553    /// violated could lead to unsafety.
1554    ///
1555    /// Other use-cases of `assert!` include testing and enforcing run-time
1556    /// invariants in safe code (whose violation cannot result in unsafety).
1557    ///
1558    /// # Custom Messages
1559    ///
1560    /// This macro has a second form, where a custom panic message can
1561    /// be provided with or without arguments for formatting. See [`std::fmt`]
1562    /// for syntax for this form. Expressions used as format arguments will only
1563    /// be evaluated if the assertion fails.
1564    ///
1565    /// [`std::fmt`]: ../std/fmt/index.html
1566    ///
1567    /// # Examples
1568    ///
1569    /// ```
1570    /// // the panic message for these assertions is the stringified value of the
1571    /// // expression given.
1572    /// assert!(true);
1573    ///
1574    /// fn some_computation() -> bool {
1575    ///     // Some expensive computation here
1576    ///     true
1577    /// }
1578    ///
1579    /// assert!(some_computation());
1580    ///
1581    /// // assert with a custom message
1582    /// let x = true;
1583    /// assert!(x, "x wasn't true!");
1584    ///
1585    /// let a = 3; let b = 27;
1586    /// assert!(a + b == 30, "a = {}, b = {}", a, b);
1587    /// ```
1588    #[stable(feature = "rust1", since = "1.0.0")]
1589    #[rustc_builtin_macro]
1590    #[macro_export]
1591    #[rustc_diagnostic_item = "assert_macro"]
1592    #[allow_internal_unstable(
1593        core_intrinsics,
1594        panic_internals,
1595        edition_panic,
1596        generic_assert_internals
1597    )]
1598    macro_rules! assert {
1599        ($cond:expr $(,)?) => {{ /* compiler built-in */ }};
1600        ($cond:expr, $($arg:tt)+) => {{ /* compiler built-in */ }};
1601    }
1602
1603    /// Prints passed tokens into the standard output.
1604    #[unstable(
1605        feature = "log_syntax",
1606        issue = "29598",
1607        reason = "`log_syntax!` is not stable enough for use and is subject to change"
1608    )]
1609    #[rustc_builtin_macro]
1610    #[macro_export]
1611    macro_rules! log_syntax {
1612        ($($arg:tt)*) => {
1613            /* compiler built-in */
1614        };
1615    }
1616
1617    /// Enables or disables tracing functionality used for debugging other macros.
1618    #[unstable(
1619        feature = "trace_macros",
1620        issue = "29598",
1621        reason = "`trace_macros` is not stable enough for use and is subject to change"
1622    )]
1623    #[rustc_builtin_macro]
1624    #[macro_export]
1625    macro_rules! trace_macros {
1626        (true) => {{ /* compiler built-in */ }};
1627        (false) => {{ /* compiler built-in */ }};
1628    }
1629
1630    /// Attribute macro used to apply derive macros.
1631    ///
1632    /// See [the reference] for more info.
1633    ///
1634    /// [the reference]: ../../../reference/attributes/derive.html
1635    #[stable(feature = "rust1", since = "1.0.0")]
1636    #[rustc_builtin_macro]
1637    pub macro derive($item:item) {
1638        /* compiler built-in */
1639    }
1640
1641    /// Attribute macro used to apply derive macros for implementing traits
1642    /// in a const context.
1643    ///
1644    /// See [the reference] for more info.
1645    ///
1646    /// [the reference]: ../../../reference/attributes/derive.html
1647    #[unstable(feature = "derive_const", issue = "118304")]
1648    #[rustc_builtin_macro]
1649    pub macro derive_const($item:item) {
1650        /* compiler built-in */
1651    }
1652
1653    /// Attribute macro applied to a function to turn it into a unit test.
1654    ///
1655    /// See [the reference] for more info.
1656    ///
1657    /// [the reference]: ../../../reference/attributes/testing.html#the-test-attribute
1658    #[stable(feature = "rust1", since = "1.0.0")]
1659    #[allow_internal_unstable(test, rustc_attrs, coverage_attribute)]
1660    #[rustc_builtin_macro]
1661    pub macro test($item:item) {
1662        /* compiler built-in */
1663    }
1664
1665    /// Attribute macro applied to a function to turn it into a benchmark test.
1666    #[unstable(
1667        feature = "test",
1668        issue = "50297",
1669        reason = "`bench` is a part of custom test frameworks which are unstable"
1670    )]
1671    #[allow_internal_unstable(test, rustc_attrs, coverage_attribute)]
1672    #[rustc_builtin_macro]
1673    pub macro bench($item:item) {
1674        /* compiler built-in */
1675    }
1676
1677    /// An implementation detail of the `#[test]` and `#[bench]` macros.
1678    #[unstable(
1679        feature = "custom_test_frameworks",
1680        issue = "50297",
1681        reason = "custom test frameworks are an unstable feature"
1682    )]
1683    #[allow_internal_unstable(test, rustc_attrs)]
1684    #[rustc_builtin_macro]
1685    pub macro test_case($item:item) {
1686        /* compiler built-in */
1687    }
1688
1689    /// Attribute macro applied to a static to register it as a global allocator.
1690    ///
1691    /// See also [`std::alloc::GlobalAlloc`](../../../std/alloc/trait.GlobalAlloc.html).
1692    #[stable(feature = "global_allocator", since = "1.28.0")]
1693    #[allow_internal_unstable(rustc_attrs)]
1694    #[rustc_builtin_macro]
1695    pub macro global_allocator($item:item) {
1696        /* compiler built-in */
1697    }
1698
1699    /// Attribute macro applied to a function to give it a post-condition.
1700    ///
1701    /// The attribute carries an argument token-tree which is
1702    /// eventually parsed as a unary closure expression that is
1703    /// invoked on a reference to the return value.
1704    #[unstable(feature = "contracts", issue = "128044")]
1705    #[allow_internal_unstable(contracts_internals)]
1706    #[rustc_builtin_macro]
1707    pub macro contracts_ensures($item:item) {
1708        /* compiler built-in */
1709    }
1710
1711    /// Attribute macro applied to a function to give it a precondition.
1712    ///
1713    /// The attribute carries an argument token-tree which is
1714    /// eventually parsed as an boolean expression with access to the
1715    /// function's formal parameters
1716    #[unstable(feature = "contracts", issue = "128044")]
1717    #[allow_internal_unstable(contracts_internals)]
1718    #[rustc_builtin_macro]
1719    pub macro contracts_requires($item:item) {
1720        /* compiler built-in */
1721    }
1722
1723    /// Attribute macro applied to a function to register it as a handler for allocation failure.
1724    ///
1725    /// See also [`std::alloc::handle_alloc_error`](../../../std/alloc/fn.handle_alloc_error.html).
1726    #[unstable(feature = "alloc_error_handler", issue = "51540")]
1727    #[allow_internal_unstable(rustc_attrs)]
1728    #[rustc_builtin_macro]
1729    pub macro alloc_error_handler($item:item) {
1730        /* compiler built-in */
1731    }
1732
1733    /// Keeps the item it's applied to if the passed path is accessible, and removes it otherwise.
1734    #[unstable(
1735        feature = "cfg_accessible",
1736        issue = "64797",
1737        reason = "`cfg_accessible` is not fully implemented"
1738    )]
1739    #[rustc_builtin_macro]
1740    pub macro cfg_accessible($item:item) {
1741        /* compiler built-in */
1742    }
1743
1744    /// Expands all `#[cfg]` and `#[cfg_attr]` attributes in the code fragment it's applied to.
1745    #[unstable(
1746        feature = "cfg_eval",
1747        issue = "82679",
1748        reason = "`cfg_eval` is a recently implemented feature"
1749    )]
1750    #[rustc_builtin_macro]
1751    pub macro cfg_eval($($tt:tt)*) {
1752        /* compiler built-in */
1753    }
1754
1755    /// Provide a list of type aliases and other opaque-type-containing type definitions
1756    /// to an item with a body. This list will be used in that body to define opaque
1757    /// types' hidden types.
1758    /// Can only be applied to things that have bodies.
1759    #[unstable(
1760        feature = "type_alias_impl_trait",
1761        issue = "63063",
1762        reason = "`type_alias_impl_trait` has open design concerns"
1763    )]
1764    #[rustc_builtin_macro]
1765    pub macro define_opaque($($tt:tt)*) {
1766        /* compiler built-in */
1767    }
1768
1769    /// Unstable placeholder for type ascription.
1770    #[allow_internal_unstable(builtin_syntax)]
1771    #[unstable(
1772        feature = "type_ascription",
1773        issue = "23416",
1774        reason = "placeholder syntax for type ascription"
1775    )]
1776    #[rustfmt::skip]
1777    pub macro type_ascribe($expr:expr, $ty:ty) {
1778        builtin # type_ascribe($expr, $ty)
1779    }
1780
1781    /// Unstable placeholder for deref patterns.
1782    #[allow_internal_unstable(builtin_syntax)]
1783    #[unstable(
1784        feature = "deref_patterns",
1785        issue = "87121",
1786        reason = "placeholder syntax for deref patterns"
1787    )]
1788    pub macro deref($pat:pat) {
1789        builtin # deref($pat)
1790    }
1791
1792    /// Derive macro generating an impl of the trait `From`.
1793    /// Currently, it can only be used on single-field structs.
1794    // Note that the macro is in a different module than the `From` trait,
1795    // to avoid triggering an unstable feature being used if someone imports
1796    // `std::convert::From`.
1797    #[rustc_builtin_macro]
1798    #[unstable(feature = "derive_from", issue = "144889")]
1799    pub macro From($item: item) {
1800        /* compiler built-in */
1801    }
1802}