core/macros/
mod.rs

1#[doc = include_str!("panic.md")]
2#[macro_export]
3#[rustc_builtin_macro(core_panic)]
4#[allow_internal_unstable(edition_panic)]
5#[stable(feature = "core", since = "1.6.0")]
6#[rustc_diagnostic_item = "core_panic_macro"]
7macro_rules! panic {
8    // Expands to either `$crate::panic::panic_2015` or `$crate::panic::panic_2021`
9    // depending on the edition of the caller.
10    ($($arg:tt)*) => {
11        /* compiler built-in */
12    };
13}
14
15/// Asserts that two expressions are equal to each other (using [`PartialEq`]).
16///
17/// Assertions are always checked in both debug and release builds, and cannot
18/// be disabled. See [`debug_assert_eq!`] for assertions that are disabled in
19/// release builds by default.
20///
21/// [`debug_assert_eq!`]: crate::debug_assert_eq
22///
23/// On panic, this macro will print the values of the expressions with their
24/// debug representations.
25///
26/// Like [`assert!`], this macro has a second form, where a custom
27/// panic message can be provided.
28///
29/// # Examples
30///
31/// ```
32/// let a = 3;
33/// let b = 1 + 2;
34/// assert_eq!(a, b);
35///
36/// assert_eq!(a, b, "we are testing addition with {} and {}", a, b);
37/// ```
38#[macro_export]
39#[stable(feature = "rust1", since = "1.0.0")]
40#[rustc_diagnostic_item = "assert_eq_macro"]
41#[allow_internal_unstable(panic_internals)]
42#[cfg(not(feature = "ferrocene_certified_runtime"))]
43macro_rules! assert_eq {
44    ($left:expr, $right:expr $(,)?) => {
45        match (&$left, &$right) {
46            (left_val, right_val) => {
47                if !(*left_val == *right_val) {
48                    let kind = $crate::panicking::AssertKind::Eq;
49                    // The reborrows below are intentional. Without them, the stack slot for the
50                    // borrow is initialized even before the values are compared, leading to a
51                    // noticeable slow down.
52                    $crate::panicking::assert_failed(kind, &*left_val, &*right_val, $crate::option::Option::None);
53                }
54            }
55        }
56    };
57    ($left:expr, $right:expr, $($arg:tt)+) => {
58        match (&$left, &$right) {
59            (left_val, right_val) => {
60                if !(*left_val == *right_val) {
61                    let kind = $crate::panicking::AssertKind::Eq;
62                    // The reborrows below are intentional. Without them, the stack slot for the
63                    // borrow is initialized even before the values are compared, leading to a
64                    // noticeable slow down.
65                    $crate::panicking::assert_failed(kind, &*left_val, &*right_val, $crate::option::Option::Some($crate::format_args!($($arg)+)));
66                }
67            }
68        }
69    };
70}
71
72/// Asserts that two expressions are equal to each other (using [`PartialEq`]).
73///
74/// Assertions are always checked in both debug and release builds, and cannot
75/// be disabled. See [`debug_assert_eq!`] for assertions that are disabled in
76/// release builds by default.
77///
78/// [`debug_assert_eq!`]: crate::debug_assert_eq
79///
80/// On panic, this macro will print the values of the expressions with their
81/// debug representations.
82///
83/// Like [`assert!`], this macro has a second form, where a custom
84/// panic message can be provided.
85///
86/// # Examples
87///
88/// ```
89/// let a = 3;
90/// let b = 1 + 2;
91/// assert_eq!(a, b);
92///
93/// assert_eq!(a, b, "we are testing addition with {} and {}", a, b);
94/// ```
95#[macro_export]
96#[stable(feature = "rust1", since = "1.0.0")]
97#[rustc_diagnostic_item = "assert_eq_macro"]
98#[allow_internal_unstable(panic_internals)]
99#[cfg(feature = "ferrocene_certified_runtime")]
100macro_rules! assert_eq {
101    ($left:expr, $right:expr $(,)?) => {
102        match (&$left, &$right) {
103            (left_val, right_val) => {
104                if !(*left_val == *right_val) {
105                    panic!("assertion `left == right` failed")
106                }
107            }
108        }
109    };
110    ($left:expr, $right:expr, $msg:literal) => {
111        match (&$left, &$right) {
112            (left_val, right_val) => {
113                if !(*left_val == *right_val) {
114                    panic!(concat!("assertion `left == right` failed: ", $msg))
115                }
116            }
117        }
118    };
119    ($left:expr, $right:expr, $($arg:tt)+) => {
120        match (&$left, &$right) {
121            (left_val, right_val) => {
122                if !(*left_val == *right_val) {
123                    panic!("assertion `left == right` failed")
124                }
125            }
126        }
127    };
128}
129
130/// Asserts that two expressions are not equal to each other (using [`PartialEq`]).
131///
132/// Assertions are always checked in both debug and release builds, and cannot
133/// be disabled. See [`debug_assert_ne!`] for assertions that are disabled in
134/// release builds by default.
135///
136/// [`debug_assert_ne!`]: crate::debug_assert_ne
137///
138/// On panic, this macro will print the values of the expressions with their
139/// debug representations.
140///
141/// Like [`assert!`], this macro has a second form, where a custom
142/// panic message can be provided.
143///
144/// # Examples
145///
146/// ```
147/// let a = 3;
148/// let b = 2;
149/// assert_ne!(a, b);
150///
151/// assert_ne!(a, b, "we are testing that the values are not equal");
152/// ```
153#[macro_export]
154#[stable(feature = "assert_ne", since = "1.13.0")]
155#[rustc_diagnostic_item = "assert_ne_macro"]
156#[allow_internal_unstable(panic_internals)]
157#[cfg(not(feature = "ferrocene_certified_runtime"))]
158macro_rules! assert_ne {
159    ($left:expr, $right:expr $(,)?) => {
160        match (&$left, &$right) {
161            (left_val, right_val) => {
162                if *left_val == *right_val {
163                    let kind = $crate::panicking::AssertKind::Ne;
164                    // The reborrows below are intentional. Without them, the stack slot for the
165                    // borrow is initialized even before the values are compared, leading to a
166                    // noticeable slow down.
167                    $crate::panicking::assert_failed(kind, &*left_val, &*right_val, $crate::option::Option::None);
168                }
169            }
170        }
171    };
172    ($left:expr, $right:expr, $($arg:tt)+) => {
173        match (&($left), &($right)) {
174            (left_val, right_val) => {
175                if *left_val == *right_val {
176                    let kind = $crate::panicking::AssertKind::Ne;
177                    // The reborrows below are intentional. Without them, the stack slot for the
178                    // borrow is initialized even before the values are compared, leading to a
179                    // noticeable slow down.
180                    $crate::panicking::assert_failed(kind, &*left_val, &*right_val, $crate::option::Option::Some($crate::format_args!($($arg)+)));
181                }
182            }
183        }
184    };
185}
186
187/// Asserts that two expressions are not equal to each other (using [`PartialEq`]).
188///
189/// Assertions are always checked in both debug and release builds, and cannot
190/// be disabled. See [`debug_assert_ne!`] for assertions that are disabled in
191/// release builds by default.
192///
193/// [`debug_assert_ne!`]: crate::debug_assert_ne
194///
195/// On panic, this macro will print the values of the expressions with their
196/// debug representations.
197///
198/// Like [`assert!`], this macro has a second form, where a custom
199/// panic message can be provided.
200///
201/// # Examples
202///
203/// ```
204/// let a = 3;
205/// let b = 2;
206/// assert_ne!(a, b);
207///
208/// assert_ne!(a, b, "we are testing that the values are not equal");
209/// ```
210#[macro_export]
211#[stable(feature = "assert_ne", since = "1.13.0")]
212#[rustc_diagnostic_item = "assert_ne_macro"]
213#[allow_internal_unstable(panic_internals)]
214#[cfg(feature = "ferrocene_certified_runtime")]
215macro_rules! assert_ne {
216    ($left:expr, $right:expr $(,)?) => {
217        match (&$left, &$right) {
218            (left_val, right_val) => {
219                if *left_val == *right_val {
220                    panic!("assertion `left != right` failed")
221                }
222            }
223        }
224    };
225    ($left:expr, $right:expr, $msg:literal) => {
226        match (&$left, &$right) {
227            (left_val, right_val) => {
228                if *left_val == *right_val {
229                    panic!(concat!("assertion `left != right` failed: ", $msg))
230                }
231            }
232        }
233    };
234    ($left:expr, $right:expr, $($arg:tt)+) => {
235        match (&$left, &$right) {
236            (left_val, right_val) => {
237                if *left_val == *right_val {
238                    panic!("assertion `left != right` failed")
239                }
240            }
241        }
242    };
243}
244
245/// Asserts that an expression matches the provided pattern.
246///
247/// This macro is generally preferable to `assert!(matches!(value, pattern))`, because it can print
248/// the debug representation of the actual value shape that did not meet expectations. In contrast,
249/// using [`assert!`] will only print that expectations were not met, but not why.
250///
251/// The pattern syntax is exactly the same as found in a match arm and the `matches!` macro. The
252/// optional if guard can be used to add additional checks that must be true for the matched value,
253/// otherwise this macro will panic.
254///
255/// Assertions are always checked in both debug and release builds, and cannot
256/// be disabled. See [`debug_assert_matches!`] for assertions that are disabled in
257/// release builds by default.
258///
259/// [`debug_assert_matches!`]: crate::assert_matches::debug_assert_matches
260///
261/// On panic, this macro will print the value of the expression with its debug representation.
262///
263/// Like [`assert!`], this macro has a second form, where a custom panic message can be provided.
264///
265/// # Examples
266///
267/// ```
268/// #![feature(assert_matches)]
269///
270/// use std::assert_matches::assert_matches;
271///
272/// let a = Some(345);
273/// let b = Some(56);
274/// assert_matches!(a, Some(_));
275/// assert_matches!(b, Some(_));
276///
277/// assert_matches!(a, Some(345));
278/// assert_matches!(a, Some(345) | None);
279///
280/// // assert_matches!(a, None); // panics
281/// // assert_matches!(b, Some(345)); // panics
282/// // assert_matches!(b, Some(345) | None); // panics
283///
284/// assert_matches!(a, Some(x) if x > 100);
285/// // assert_matches!(a, Some(x) if x < 100); // panics
286/// ```
287#[unstable(feature = "assert_matches", issue = "82775")]
288#[allow_internal_unstable(panic_internals)]
289#[rustc_macro_transparency = "semitransparent"]
290#[cfg(not(feature = "ferrocene_certified_runtime"))]
291pub macro assert_matches {
292    ($left:expr, $(|)? $( $pattern:pat_param )|+ $( if $guard: expr )? $(,)?) => {
293        match $left {
294            $( $pattern )|+ $( if $guard )? => {}
295            ref left_val => {
296                $crate::panicking::assert_matches_failed(
297                    left_val,
298                    $crate::stringify!($($pattern)|+ $(if $guard)?),
299                    $crate::option::Option::None
300                );
301            }
302        }
303    },
304    ($left:expr, $(|)? $( $pattern:pat_param )|+ $( if $guard: expr )?, $($arg:tt)+) => {
305        match $left {
306            $( $pattern )|+ $( if $guard )? => {}
307            ref left_val => {
308                $crate::panicking::assert_matches_failed(
309                    left_val,
310                    $crate::stringify!($($pattern)|+ $(if $guard)?),
311                    $crate::option::Option::Some($crate::format_args!($($arg)+))
312                );
313            }
314        }
315    },
316}
317
318/// Asserts that an expression matches the provided pattern.
319///
320/// This macro is generally preferable to `assert!(matches!(value, pattern))`, because it can print
321/// the debug representation of the actual value shape that did not meet expectations. In contrast,
322/// using [`assert!`] will only print that expectations were not met, but not why.
323///
324/// The pattern syntax is exactly the same as found in a match arm and the `matches!` macro. The
325/// optional if guard can be used to add additional checks that must be true for the matched value,
326/// otherwise this macro will panic.
327///
328/// Assertions are always checked in both debug and release builds, and cannot
329/// be disabled. See [`debug_assert_matches!`] for assertions that are disabled in
330/// release builds by default.
331///
332/// [`debug_assert_matches!`]: crate::assert_matches::debug_assert_matches
333///
334/// On panic, this macro will print the value of the expression with its debug representation.
335///
336/// Like [`assert!`], this macro has a second form, where a custom panic message can be provided.
337///
338/// # Examples
339///
340/// ```
341/// #![feature(assert_matches)]
342///
343/// use std::assert_matches::assert_matches;
344///
345/// let a = Some(345);
346/// let b = Some(56);
347/// assert_matches!(a, Some(_));
348/// assert_matches!(b, Some(_));
349///
350/// assert_matches!(a, Some(345));
351/// assert_matches!(a, Some(345) | None);
352///
353/// // assert_matches!(a, None); // panics
354/// // assert_matches!(b, Some(345)); // panics
355/// // assert_matches!(b, Some(345) | None); // panics
356///
357/// assert_matches!(a, Some(x) if x > 100);
358/// // assert_matches!(a, Some(x) if x < 100); // panics
359/// ```
360#[unstable(feature = "assert_matches", issue = "82775")]
361#[allow_internal_unstable(panic_internals)]
362#[rustc_macro_transparency = "semitransparent"]
363#[cfg(feature = "ferrocene_certified_runtime")]
364pub macro assert_matches {
365    ($left:expr, $(|)? $( $pattern:pat_param )|+ $( if $guard: expr )? $(,)?) =>{
366        match $left {
367            $( $pattern )|+ $( if $guard )? => {}
368            ref left_val => {
369                panic!("assertion `left matches right` failed");
370            }
371        }
372    },
373    ($left:expr, $(|)? $( $pattern:pat_param )|+ $( if $guard: expr )?, $msg:literal) => {
374        match $left {
375            $( $pattern )|+ $( if $guard )? => {}
376            ref left_val => {
377                panic!(concat!("assertion `left matches right` failed: ", $msg));
378            }
379        }
380    },
381    ($left:expr, $(|)? $( $pattern:pat_param )|+ $( if $guard: expr )?, $($arg:tt)+) => {
382        match $left {
383            $( $pattern )|+ $( if $guard )? => {}
384            ref left_val => {
385                panic!("assertion `left matches right` failed");
386            }
387        }
388    },
389}
390/// Selects code at compile-time based on `cfg` predicates.
391///
392/// This macro evaluates, at compile-time, a series of `cfg` predicates,
393/// selects the first that is true, and emits the code guarded by that
394/// predicate. The code guarded by other predicates is not emitted.
395///
396/// An optional trailing `_` wildcard can be used to specify a fallback. If
397/// none of the predicates are true, a [`compile_error`] is emitted.
398///
399/// # Example
400///
401/// ```
402/// #![feature(cfg_select)]
403///
404/// cfg_select! {
405///     unix => {
406///         fn foo() { /* unix specific functionality */ }
407///     }
408///     target_pointer_width = "32" => {
409///         fn foo() { /* non-unix, 32-bit functionality */ }
410///     }
411///     _ => {
412///         fn foo() { /* fallback implementation */ }
413///     }
414/// }
415/// ```
416///
417/// The `cfg_select!` macro can also be used in expression position, with or without braces on the
418/// right-hand side:
419///
420/// ```
421/// #![feature(cfg_select)]
422///
423/// let _some_string = cfg_select! {
424///     unix => "With great power comes great electricity bills",
425///     _ => { "Behind every successful diet is an unwatched pizza" }
426/// };
427/// ```
428#[unstable(feature = "cfg_select", issue = "115585")]
429#[rustc_diagnostic_item = "cfg_select"]
430#[rustc_builtin_macro]
431pub macro cfg_select($($tt:tt)*) {
432    /* compiler built-in */
433}
434
435/// Asserts that a boolean expression is `true` at runtime.
436///
437/// This will invoke the [`panic!`] macro if the provided expression cannot be
438/// evaluated to `true` at runtime.
439///
440/// Like [`assert!`], this macro also has a second version, where a custom panic
441/// message can be provided.
442///
443/// # Uses
444///
445/// Unlike [`assert!`], `debug_assert!` statements are only enabled in non
446/// optimized builds by default. An optimized build will not execute
447/// `debug_assert!` statements unless `-C debug-assertions` is passed to the
448/// compiler. This makes `debug_assert!` useful for checks that are too
449/// expensive to be present in a release build but may be helpful during
450/// development. The result of expanding `debug_assert!` is always type checked.
451///
452/// An unchecked assertion allows a program in an inconsistent state to keep
453/// running, which might have unexpected consequences but does not introduce
454/// unsafety as long as this only happens in safe code. The performance cost
455/// of assertions, however, is not measurable in general. Replacing [`assert!`]
456/// with `debug_assert!` is thus only encouraged after thorough profiling, and
457/// more importantly, only in safe code!
458///
459/// # Examples
460///
461/// ```
462/// // the panic message for these assertions is the stringified value of the
463/// // expression given.
464/// debug_assert!(true);
465///
466/// fn some_expensive_computation() -> bool {
467///     // Some expensive computation here
468///     true
469/// }
470/// debug_assert!(some_expensive_computation());
471///
472/// // assert with a custom message
473/// let x = true;
474/// debug_assert!(x, "x wasn't true!");
475///
476/// let a = 3; let b = 27;
477/// debug_assert!(a + b == 30, "a = {}, b = {}", a, b);
478/// ```
479#[macro_export]
480#[stable(feature = "rust1", since = "1.0.0")]
481#[rustc_diagnostic_item = "debug_assert_macro"]
482#[allow_internal_unstable(edition_panic)]
483macro_rules! debug_assert {
484    ($($arg:tt)*) => {
485        if $crate::cfg!(debug_assertions) {
486            $crate::assert!($($arg)*);
487        }
488    };
489}
490
491/// Asserts that two expressions are equal to each other.
492///
493/// On panic, this macro will print the values of the expressions with their
494/// debug representations.
495///
496/// Unlike [`assert_eq!`], `debug_assert_eq!` statements are only enabled in non
497/// optimized builds by default. An optimized build will not execute
498/// `debug_assert_eq!` statements unless `-C debug-assertions` is passed to the
499/// compiler. This makes `debug_assert_eq!` useful for checks that are too
500/// expensive to be present in a release build but may be helpful during
501/// development. The result of expanding `debug_assert_eq!` is always type checked.
502///
503/// # Examples
504///
505/// ```
506/// let a = 3;
507/// let b = 1 + 2;
508/// debug_assert_eq!(a, b);
509/// ```
510#[macro_export]
511#[stable(feature = "rust1", since = "1.0.0")]
512#[rustc_diagnostic_item = "debug_assert_eq_macro"]
513#[cfg(not(feature = "ferrocene_subset"))]
514macro_rules! debug_assert_eq {
515    ($($arg:tt)*) => {
516        if $crate::cfg!(debug_assertions) {
517            $crate::assert_eq!($($arg)*);
518        }
519    };
520}
521
522/// Asserts that two expressions are not equal to each other.
523///
524/// On panic, this macro will print the values of the expressions with their
525/// debug representations.
526///
527/// Unlike [`assert_ne!`], `debug_assert_ne!` statements are only enabled in non
528/// optimized builds by default. An optimized build will not execute
529/// `debug_assert_ne!` statements unless `-C debug-assertions` is passed to the
530/// compiler. This makes `debug_assert_ne!` useful for checks that are too
531/// expensive to be present in a release build but may be helpful during
532/// development. The result of expanding `debug_assert_ne!` is always type checked.
533///
534/// # Examples
535///
536/// ```
537/// let a = 3;
538/// let b = 2;
539/// debug_assert_ne!(a, b);
540/// ```
541#[macro_export]
542#[stable(feature = "assert_ne", since = "1.13.0")]
543#[rustc_diagnostic_item = "debug_assert_ne_macro"]
544#[cfg(not(feature = "ferrocene_subset"))]
545macro_rules! debug_assert_ne {
546    ($($arg:tt)*) => {
547        if $crate::cfg!(debug_assertions) {
548            $crate::assert_ne!($($arg)*);
549        }
550    };
551}
552
553/// Asserts that an expression matches the provided pattern.
554///
555/// This macro is generally preferable to `debug_assert!(matches!(value, pattern))`, because it can
556/// print the debug representation of the actual value shape that did not meet expectations. In
557/// contrast, using [`debug_assert!`] will only print that expectations were not met, but not why.
558///
559/// The pattern syntax is exactly the same as found in a match arm and the `matches!` macro. The
560/// optional if guard can be used to add additional checks that must be true for the matched value,
561/// otherwise this macro will panic.
562///
563/// On panic, this macro will print the value of the expression with its debug representation.
564///
565/// Like [`assert!`], this macro has a second form, where a custom panic message can be provided.
566///
567/// Unlike [`assert_matches!`], `debug_assert_matches!` statements are only enabled in non optimized
568/// builds by default. An optimized build will not execute `debug_assert_matches!` statements unless
569/// `-C debug-assertions` is passed to the compiler. This makes `debug_assert_matches!` useful for
570/// checks that are too expensive to be present in a release build but may be helpful during
571/// development. The result of expanding `debug_assert_matches!` is always type checked.
572///
573/// # Examples
574///
575/// ```
576/// #![feature(assert_matches)]
577///
578/// use std::assert_matches::debug_assert_matches;
579///
580/// let a = Some(345);
581/// let b = Some(56);
582/// debug_assert_matches!(a, Some(_));
583/// debug_assert_matches!(b, Some(_));
584///
585/// debug_assert_matches!(a, Some(345));
586/// debug_assert_matches!(a, Some(345) | None);
587///
588/// // debug_assert_matches!(a, None); // panics
589/// // debug_assert_matches!(b, Some(345)); // panics
590/// // debug_assert_matches!(b, Some(345) | None); // panics
591///
592/// debug_assert_matches!(a, Some(x) if x > 100);
593/// // debug_assert_matches!(a, Some(x) if x < 100); // panics
594/// ```
595#[unstable(feature = "assert_matches", issue = "82775")]
596#[allow_internal_unstable(assert_matches)]
597#[rustc_macro_transparency = "semitransparent"]
598#[cfg(not(feature = "ferrocene_subset"))]
599pub macro debug_assert_matches($($arg:tt)*) {
600    if $crate::cfg!(debug_assertions) {
601        $crate::assert_matches::assert_matches!($($arg)*);
602    }
603}
604
605/// Returns whether the given expression matches the provided pattern.
606///
607/// The pattern syntax is exactly the same as found in a match arm. The optional if guard can be
608/// used to add additional checks that must be true for the matched value, otherwise this macro will
609/// return `false`.
610///
611/// When testing that a value matches a pattern, it's generally preferable to use
612/// [`assert_matches!`] as it will print the debug representation of the value if the assertion
613/// fails.
614///
615/// # Examples
616///
617/// ```
618/// let foo = 'f';
619/// assert!(matches!(foo, 'A'..='Z' | 'a'..='z'));
620///
621/// let bar = Some(4);
622/// assert!(matches!(bar, Some(x) if x > 2));
623/// ```
624#[macro_export]
625#[stable(feature = "matches_macro", since = "1.42.0")]
626#[rustc_diagnostic_item = "matches_macro"]
627#[allow_internal_unstable(non_exhaustive_omitted_patterns_lint, stmt_expr_attributes)]
628macro_rules! matches {
629    ($expression:expr, $pattern:pat $(if $guard:expr)? $(,)?) => {
630        #[allow(non_exhaustive_omitted_patterns)]
631        match $expression {
632            $pattern $(if $guard)? => true,
633            _ => false
634        }
635    };
636}
637
638/// Unwraps a result or propagates its error.
639///
640/// The [`?` operator][propagating-errors] was added to replace `try!`
641/// and should be used instead. Furthermore, `try` is a reserved word
642/// in Rust 2018, so if you must use it, you will need to use the
643/// [raw-identifier syntax][ris]: `r#try`.
644///
645/// [propagating-errors]: https://doc.rust-lang.org/book/ch09-02-recoverable-errors-with-result.html#a-shortcut-for-propagating-errors-the--operator
646/// [ris]: https://doc.rust-lang.org/nightly/rust-by-example/compatibility/raw_identifiers.html
647///
648/// `try!` matches the given [`Result`]. In case of the `Ok` variant, the
649/// expression has the value of the wrapped value.
650///
651/// In case of the `Err` variant, it retrieves the inner error. `try!` then
652/// performs conversion using `From`. This provides automatic conversion
653/// between specialized errors and more general ones. The resulting
654/// error is then immediately returned.
655///
656/// Because of the early return, `try!` can only be used in functions that
657/// return [`Result`].
658///
659/// # Examples
660///
661/// ```
662/// use std::io;
663/// use std::fs::File;
664/// use std::io::prelude::*;
665///
666/// enum MyError {
667///     FileWriteError
668/// }
669///
670/// impl From<io::Error> for MyError {
671///     fn from(e: io::Error) -> MyError {
672///         MyError::FileWriteError
673///     }
674/// }
675///
676/// // The preferred method of quick returning Errors
677/// fn write_to_file_question() -> Result<(), MyError> {
678///     let mut file = File::create("my_best_friends.txt")?;
679///     file.write_all(b"This is a list of my best friends.")?;
680///     Ok(())
681/// }
682///
683/// // The previous method of quick returning Errors
684/// fn write_to_file_using_try() -> Result<(), MyError> {
685///     let mut file = r#try!(File::create("my_best_friends.txt"));
686///     r#try!(file.write_all(b"This is a list of my best friends."));
687///     Ok(())
688/// }
689///
690/// // This is equivalent to:
691/// fn write_to_file_using_match() -> Result<(), MyError> {
692///     let mut file = r#try!(File::create("my_best_friends.txt"));
693///     match file.write_all(b"This is a list of my best friends.") {
694///         Ok(v) => v,
695///         Err(e) => return Err(From::from(e)),
696///     }
697///     Ok(())
698/// }
699/// ```
700#[macro_export]
701#[stable(feature = "rust1", since = "1.0.0")]
702#[deprecated(since = "1.39.0", note = "use the `?` operator instead")]
703#[doc(alias = "?")]
704#[cfg(not(feature = "ferrocene_subset"))]
705macro_rules! r#try {
706    ($expr:expr $(,)?) => {
707        match $expr {
708            $crate::result::Result::Ok(val) => val,
709            $crate::result::Result::Err(err) => {
710                return $crate::result::Result::Err($crate::convert::From::from(err));
711            }
712        }
713    };
714}
715
716/// Writes formatted data into a buffer.
717///
718/// This macro accepts a 'writer', a format string, and a list of arguments. Arguments will be
719/// formatted according to the specified format string and the result will be passed to the writer.
720/// The writer may be any value with a `write_fmt` method; generally this comes from an
721/// implementation of either the [`fmt::Write`] or the [`io::Write`] trait. The macro
722/// returns whatever the `write_fmt` method returns; commonly a [`fmt::Result`], or an
723/// [`io::Result`].
724///
725/// See [`std::fmt`] for more information on the format string syntax.
726///
727/// [`std::fmt`]: ../std/fmt/index.html
728/// [`fmt::Write`]: crate::fmt::Write
729/// [`io::Write`]: ../std/io/trait.Write.html
730/// [`fmt::Result`]: crate::fmt::Result
731/// [`io::Result`]: ../std/io/type.Result.html
732///
733/// # Examples
734///
735/// ```
736/// use std::io::Write;
737///
738/// fn main() -> std::io::Result<()> {
739///     let mut w = Vec::new();
740///     write!(&mut w, "test")?;
741///     write!(&mut w, "formatted {}", "arguments")?;
742///
743///     assert_eq!(w, b"testformatted arguments");
744///     Ok(())
745/// }
746/// ```
747///
748/// A module can import both `std::fmt::Write` and `std::io::Write` and call `write!` on objects
749/// implementing either, as objects do not typically implement both. However, the module must
750/// avoid conflict between the trait names, such as by importing them as `_` or otherwise renaming
751/// them:
752///
753/// ```
754/// use std::fmt::Write as _;
755/// use std::io::Write as _;
756///
757/// fn main() -> Result<(), Box<dyn std::error::Error>> {
758///     let mut s = String::new();
759///     let mut v = Vec::new();
760///
761///     write!(&mut s, "{} {}", "abc", 123)?; // uses fmt::Write::write_fmt
762///     write!(&mut v, "s = {:?}", s)?; // uses io::Write::write_fmt
763///     assert_eq!(v, b"s = \"abc 123\"");
764///     Ok(())
765/// }
766/// ```
767///
768/// If you also need the trait names themselves, such as to implement one or both on your types,
769/// import the containing module and then name them with a prefix:
770///
771/// ```
772/// # #![allow(unused_imports)]
773/// use std::fmt::{self, Write as _};
774/// use std::io::{self, Write as _};
775///
776/// struct Example;
777///
778/// impl fmt::Write for Example {
779///     fn write_str(&mut self, _s: &str) -> core::fmt::Result {
780///          unimplemented!();
781///     }
782/// }
783/// ```
784///
785/// Note: This macro can be used in `no_std` setups as well.
786/// In a `no_std` setup you are responsible for the implementation details of the components.
787///
788/// ```no_run
789/// use core::fmt::Write;
790///
791/// struct Example;
792///
793/// impl Write for Example {
794///     fn write_str(&mut self, _s: &str) -> core::fmt::Result {
795///          unimplemented!();
796///     }
797/// }
798///
799/// let mut m = Example{};
800/// write!(&mut m, "Hello World").expect("Not written");
801/// ```
802#[macro_export]
803#[stable(feature = "rust1", since = "1.0.0")]
804#[rustc_diagnostic_item = "write_macro"]
805macro_rules! write {
806    ($dst:expr, $($arg:tt)*) => {
807        $dst.write_fmt($crate::format_args!($($arg)*))
808    };
809}
810
811/// Writes formatted data into a buffer, with a newline appended.
812///
813/// On all platforms, the newline is the LINE FEED character (`\n`/`U+000A`) alone
814/// (no additional CARRIAGE RETURN (`\r`/`U+000D`).
815///
816/// For more information, see [`write!`]. For information on the format string syntax, see
817/// [`std::fmt`].
818///
819/// [`std::fmt`]: ../std/fmt/index.html
820///
821/// # Examples
822///
823/// ```
824/// use std::io::{Write, Result};
825///
826/// fn main() -> Result<()> {
827///     let mut w = Vec::new();
828///     writeln!(&mut w)?;
829///     writeln!(&mut w, "test")?;
830///     writeln!(&mut w, "formatted {}", "arguments")?;
831///
832///     assert_eq!(&w[..], "\ntest\nformatted arguments\n".as_bytes());
833///     Ok(())
834/// }
835/// ```
836#[macro_export]
837#[stable(feature = "rust1", since = "1.0.0")]
838#[rustc_diagnostic_item = "writeln_macro"]
839#[allow_internal_unstable(format_args_nl)]
840macro_rules! writeln {
841    ($dst:expr $(,)?) => {
842        $crate::write!($dst, "\n")
843    };
844    ($dst:expr, $($arg:tt)*) => {
845        $dst.write_fmt($crate::format_args_nl!($($arg)*))
846    };
847}
848
849/// Indicates unreachable code.
850///
851/// This is useful any time that the compiler can't determine that some code is unreachable. For
852/// example:
853///
854/// * Match arms with guard conditions.
855/// * Loops that dynamically terminate.
856/// * Iterators that dynamically terminate.
857///
858/// If the determination that the code is unreachable proves incorrect, the
859/// program immediately terminates with a [`panic!`].
860///
861/// The unsafe counterpart of this macro is the [`unreachable_unchecked`] function, which
862/// will cause undefined behavior if the code is reached.
863///
864/// [`unreachable_unchecked`]: crate::hint::unreachable_unchecked
865///
866/// # Panics
867///
868/// This will always [`panic!`] because `unreachable!` is just a shorthand for `panic!` with a
869/// fixed, specific message.
870///
871/// Like `panic!`, this macro has a second form for displaying custom values.
872///
873/// # Examples
874///
875/// Match arms:
876///
877/// ```
878/// # #[allow(dead_code)]
879/// fn foo(x: Option<i32>) {
880///     match x {
881///         Some(n) if n >= 0 => println!("Some(Non-negative)"),
882///         Some(n) if n <  0 => println!("Some(Negative)"),
883///         Some(_)           => unreachable!(), // compile error if commented out
884///         None              => println!("None")
885///     }
886/// }
887/// ```
888///
889/// Iterators:
890///
891/// ```
892/// # #[allow(dead_code)]
893/// fn divide_by_three(x: u32) -> u32 { // one of the poorest implementations of x/3
894///     for i in 0.. {
895///         if 3*i < i { panic!("u32 overflow"); }
896///         if x < 3*i { return i-1; }
897///     }
898///     unreachable!("The loop should always return");
899/// }
900/// ```
901#[macro_export]
902#[rustc_builtin_macro(unreachable)]
903#[allow_internal_unstable(edition_panic)]
904#[stable(feature = "rust1", since = "1.0.0")]
905#[rustc_diagnostic_item = "unreachable_macro"]
906macro_rules! unreachable {
907    // Expands to either `$crate::panic::unreachable_2015` or `$crate::panic::unreachable_2021`
908    // depending on the edition of the caller.
909    ($($arg:tt)*) => {
910        /* compiler built-in */
911    };
912}
913
914/// Indicates unimplemented code by panicking with a message of "not implemented".
915///
916/// This allows your code to type-check, which is useful if you are prototyping or
917/// implementing a trait that requires multiple methods which you don't plan to use all of.
918///
919/// The difference between `unimplemented!` and [`todo!`] is that while `todo!`
920/// conveys an intent of implementing the functionality later and the message is "not yet
921/// implemented", `unimplemented!` makes no such claims. Its message is "not implemented".
922///
923/// Also, some IDEs will mark `todo!`s.
924///
925/// # Panics
926///
927/// This will always [`panic!`] because `unimplemented!` is just a shorthand for `panic!` with a
928/// fixed, specific message.
929///
930/// Like `panic!`, this macro has a second form for displaying custom values.
931///
932/// [`todo!`]: crate::todo
933///
934/// # Examples
935///
936/// Say we have a trait `Foo`:
937///
938/// ```
939/// trait Foo {
940///     fn bar(&self) -> u8;
941///     fn baz(&self);
942///     fn qux(&self) -> Result<u64, ()>;
943/// }
944/// ```
945///
946/// We want to implement `Foo` for 'MyStruct', but for some reason it only makes sense
947/// to implement the `bar()` function. `baz()` and `qux()` will still need to be defined
948/// in our implementation of `Foo`, but we can use `unimplemented!` in their definitions
949/// to allow our code to compile.
950///
951/// We still want to have our program stop running if the unimplemented methods are
952/// reached.
953///
954/// ```
955/// # trait Foo {
956/// #     fn bar(&self) -> u8;
957/// #     fn baz(&self);
958/// #     fn qux(&self) -> Result<u64, ()>;
959/// # }
960/// struct MyStruct;
961///
962/// impl Foo for MyStruct {
963///     fn bar(&self) -> u8 {
964///         1 + 1
965///     }
966///
967///     fn baz(&self) {
968///         // It makes no sense to `baz` a `MyStruct`, so we have no logic here
969///         // at all.
970///         // This will display "thread 'main' panicked at 'not implemented'".
971///         unimplemented!();
972///     }
973///
974///     fn qux(&self) -> Result<u64, ()> {
975///         // We have some logic here,
976///         // We can add a message to unimplemented! to display our omission.
977///         // This will display:
978///         // "thread 'main' panicked at 'not implemented: MyStruct isn't quxable'".
979///         unimplemented!("MyStruct isn't quxable");
980///     }
981/// }
982///
983/// fn main() {
984///     let s = MyStruct;
985///     s.bar();
986/// }
987/// ```
988#[macro_export]
989#[stable(feature = "rust1", since = "1.0.0")]
990#[rustc_diagnostic_item = "unimplemented_macro"]
991#[allow_internal_unstable(panic_internals)]
992#[cfg(not(feature = "ferrocene_subset"))]
993macro_rules! unimplemented {
994    () => {
995        $crate::panicking::panic("not implemented")
996    };
997    ($($arg:tt)+) => {
998        $crate::panic!("not implemented: {}", $crate::format_args!($($arg)+))
999    };
1000}
1001
1002/// Indicates unfinished code.
1003///
1004/// This can be useful if you are prototyping and just
1005/// want a placeholder to let your code pass type analysis.
1006///
1007/// The difference between [`unimplemented!`] and `todo!` is that while `todo!` conveys
1008/// an intent of implementing the functionality later and the message is "not yet
1009/// implemented", `unimplemented!` makes no such claims. Its message is "not implemented".
1010///
1011/// Also, some IDEs will mark `todo!`s.
1012///
1013/// # Panics
1014///
1015/// This will always [`panic!`] because `todo!` is just a shorthand for `panic!` with a
1016/// fixed, specific message.
1017///
1018/// Like `panic!`, this macro has a second form for displaying custom values.
1019///
1020/// # Examples
1021///
1022/// Here's an example of some in-progress code. We have a trait `Foo`:
1023///
1024/// ```
1025/// trait Foo {
1026///     fn bar(&self) -> u8;
1027///     fn baz(&self);
1028///     fn qux(&self) -> Result<u64, ()>;
1029/// }
1030/// ```
1031///
1032/// We want to implement `Foo` on one of our types, but we also want to work on
1033/// just `bar()` first. In order for our code to compile, we need to implement
1034/// `baz()` and `qux()`, so we can use `todo!`:
1035///
1036/// ```
1037/// # trait Foo {
1038/// #     fn bar(&self) -> u8;
1039/// #     fn baz(&self);
1040/// #     fn qux(&self) -> Result<u64, ()>;
1041/// # }
1042/// struct MyStruct;
1043///
1044/// impl Foo for MyStruct {
1045///     fn bar(&self) -> u8 {
1046///         1 + 1
1047///     }
1048///
1049///     fn baz(&self) {
1050///         // Let's not worry about implementing baz() for now
1051///         todo!();
1052///     }
1053///
1054///     fn qux(&self) -> Result<u64, ()> {
1055///         // We can add a message to todo! to display our omission.
1056///         // This will display:
1057///         // "thread 'main' panicked at 'not yet implemented: MyStruct is not yet quxable'".
1058///         todo!("MyStruct is not yet quxable");
1059///     }
1060/// }
1061///
1062/// fn main() {
1063///     let s = MyStruct;
1064///     s.bar();
1065///
1066///     // We aren't even using baz() or qux(), so this is fine.
1067/// }
1068/// ```
1069#[macro_export]
1070#[stable(feature = "todo_macro", since = "1.40.0")]
1071#[rustc_diagnostic_item = "todo_macro"]
1072#[allow_internal_unstable(panic_internals)]
1073#[cfg(not(feature = "ferrocene_subset"))]
1074macro_rules! todo {
1075    () => {
1076        $crate::panicking::panic("not yet implemented")
1077    };
1078    ($($arg:tt)+) => {
1079        $crate::panic!("not yet implemented: {}", $crate::format_args!($($arg)+))
1080    };
1081}
1082
1083/// Definitions of built-in macros.
1084///
1085/// Most of the macro properties (stability, visibility, etc.) are taken from the source code here,
1086/// with exception of expansion functions transforming macro inputs into outputs,
1087/// those functions are provided by the compiler.
1088pub(crate) mod builtin {
1089
1090    /// Causes compilation to fail with the given error message when encountered.
1091    ///
1092    /// This macro should be used when a crate uses a conditional compilation strategy to provide
1093    /// better error messages for erroneous conditions. It's the compiler-level form of [`panic!`],
1094    /// but emits an error during *compilation* rather than at *runtime*.
1095    ///
1096    /// # Examples
1097    ///
1098    /// Two such examples are macros and `#[cfg]` environments.
1099    ///
1100    /// Emit a better compiler error if a macro is passed invalid values. Without the final branch,
1101    /// the compiler would still emit an error, but the error's message would not mention the two
1102    /// valid values.
1103    ///
1104    /// ```compile_fail
1105    /// macro_rules! give_me_foo_or_bar {
1106    ///     (foo) => {};
1107    ///     (bar) => {};
1108    ///     ($x:ident) => {
1109    ///         compile_error!("This macro only accepts `foo` or `bar`");
1110    ///     }
1111    /// }
1112    ///
1113    /// give_me_foo_or_bar!(neither);
1114    /// // ^ will fail at compile time with message "This macro only accepts `foo` or `bar`"
1115    /// ```
1116    ///
1117    /// Emit a compiler error if one of a number of features isn't available.
1118    ///
1119    /// ```compile_fail
1120    /// #[cfg(not(any(feature = "foo", feature = "bar")))]
1121    /// compile_error!("Either feature \"foo\" or \"bar\" must be enabled for this crate.");
1122    /// ```
1123    #[stable(feature = "compile_error_macro", since = "1.20.0")]
1124    #[rustc_builtin_macro]
1125    #[macro_export]
1126    macro_rules! compile_error {
1127        ($msg:expr $(,)?) => {{ /* compiler built-in */ }};
1128    }
1129
1130    /// Constructs parameters for the other string-formatting macros.
1131    ///
1132    /// This macro functions by taking a formatting string literal containing
1133    /// `{}` for each additional argument passed. `format_args!` prepares the
1134    /// additional parameters to ensure the output can be interpreted as a string
1135    /// and canonicalizes the arguments into a single type. Any value that implements
1136    /// the [`Display`] trait can be passed to `format_args!`, as can any
1137    /// [`Debug`] implementation be passed to a `{:?}` within the formatting string.
1138    ///
1139    /// This macro produces a value of type [`fmt::Arguments`]. This value can be
1140    /// passed to the macros within [`std::fmt`] for performing useful redirection.
1141    /// All other formatting macros ([`format!`], [`write!`], [`println!`], etc) are
1142    /// proxied through this one. `format_args!`, unlike its derived macros, avoids
1143    /// heap allocations.
1144    ///
1145    /// You can use the [`fmt::Arguments`] value that `format_args!` returns
1146    /// in `Debug` and `Display` contexts as seen below. The example also shows
1147    /// that `Debug` and `Display` format to the same thing: the interpolated
1148    /// format string in `format_args!`.
1149    ///
1150    /// ```rust
1151    /// let args = format_args!("{} foo {:?}", 1, 2);
1152    /// let debug = format!("{args:?}");
1153    /// let display = format!("{args}");
1154    /// assert_eq!("1 foo 2", display);
1155    /// assert_eq!(display, debug);
1156    /// ```
1157    ///
1158    /// See [the formatting documentation in `std::fmt`](../std/fmt/index.html)
1159    /// for details of the macro argument syntax, and further information.
1160    ///
1161    /// [`Display`]: crate::fmt::Display
1162    /// [`Debug`]: crate::fmt::Debug
1163    /// [`fmt::Arguments`]: crate::fmt::Arguments
1164    /// [`std::fmt`]: ../std/fmt/index.html
1165    /// [`format!`]: ../std/macro.format.html
1166    /// [`println!`]: ../std/macro.println.html
1167    ///
1168    /// # Examples
1169    ///
1170    /// ```
1171    /// use std::fmt;
1172    ///
1173    /// let s = fmt::format(format_args!("hello {}", "world"));
1174    /// assert_eq!(s, format!("hello {}", "world"));
1175    /// ```
1176    ///
1177    /// # Argument lifetimes
1178    ///
1179    /// Except when no formatting arguments are used,
1180    /// the produced `fmt::Arguments` value borrows temporary values.
1181    /// To allow it to be stored for later use, the arguments' lifetimes, as well as those of
1182    /// temporaries they borrow, may be [extended] when `format_args!` appears in the initializer
1183    /// expression of a `let` statement. The syntactic rules used to determine when temporaries'
1184    /// lifetimes are extended are documented in the [Reference].
1185    ///
1186    /// [extended]: ../reference/destructors.html#temporary-lifetime-extension
1187    /// [Reference]: ../reference/destructors.html#extending-based-on-expressions
1188    #[stable(feature = "rust1", since = "1.0.0")]
1189    #[rustc_diagnostic_item = "format_args_macro"]
1190    #[allow_internal_unsafe]
1191    #[allow_internal_unstable(fmt_internals, fmt_arguments_from_str)]
1192    #[rustc_builtin_macro]
1193    #[macro_export]
1194    macro_rules! format_args {
1195        ($fmt:expr) => {{ /* compiler built-in */ }};
1196        ($fmt:expr, $($args:tt)*) => {{ /* compiler built-in */ }};
1197    }
1198
1199    /// Same as [`format_args`], but can be used in some const contexts.
1200    ///
1201    /// This macro is used by the panic macros for the `const_panic` feature.
1202    ///
1203    /// This macro will be removed once `format_args` is allowed in const contexts.
1204    #[unstable(feature = "const_format_args", issue = "none")]
1205    #[allow_internal_unstable(fmt_internals, fmt_arguments_from_str)]
1206    #[rustc_builtin_macro]
1207    #[macro_export]
1208    macro_rules! const_format_args {
1209        ($fmt:expr) => {{ /* compiler built-in */ }};
1210        ($fmt:expr, $($args:tt)*) => {{ /* compiler built-in */ }};
1211    }
1212
1213    /// Same as [`format_args`], but adds a newline in the end.
1214    #[unstable(
1215        feature = "format_args_nl",
1216        issue = "none",
1217        reason = "`format_args_nl` is only for internal \
1218                  language use and is subject to change"
1219    )]
1220    #[allow_internal_unstable(fmt_internals, fmt_arguments_from_str)]
1221    #[rustc_builtin_macro]
1222    #[doc(hidden)]
1223    #[macro_export]
1224    macro_rules! format_args_nl {
1225        ($fmt:expr) => {{ /* compiler built-in */ }};
1226        ($fmt:expr, $($args:tt)*) => {{ /* compiler built-in */ }};
1227    }
1228
1229    /// Inspects an environment variable at compile time.
1230    ///
1231    /// This macro will expand to the value of the named environment variable at
1232    /// compile time, yielding an expression of type `&'static str`. Use
1233    /// [`std::env::var`] instead if you want to read the value at runtime.
1234    ///
1235    /// [`std::env::var`]: ../std/env/fn.var.html
1236    ///
1237    /// If the environment variable is not defined, then a compilation error
1238    /// will be emitted. To not emit a compile error, use the [`option_env!`]
1239    /// macro instead. A compilation error will also be emitted if the
1240    /// environment variable is not a valid Unicode string.
1241    ///
1242    /// # Examples
1243    ///
1244    /// ```
1245    /// let path: &'static str = env!("PATH");
1246    /// println!("the $PATH variable at the time of compiling was: {path}");
1247    /// ```
1248    ///
1249    /// You can customize the error message by passing a string as the second
1250    /// parameter:
1251    ///
1252    /// ```compile_fail
1253    /// let doc: &'static str = env!("documentation", "what's that?!");
1254    /// ```
1255    ///
1256    /// If the `documentation` environment variable is not defined, you'll get
1257    /// the following error:
1258    ///
1259    /// ```text
1260    /// error: what's that?!
1261    /// ```
1262    #[stable(feature = "rust1", since = "1.0.0")]
1263    #[rustc_builtin_macro]
1264    #[macro_export]
1265    #[rustc_diagnostic_item = "env_macro"] // useful for external lints
1266    macro_rules! env {
1267        ($name:expr $(,)?) => {{ /* compiler built-in */ }};
1268        ($name:expr, $error_msg:expr $(,)?) => {{ /* compiler built-in */ }};
1269    }
1270
1271    /// Optionally inspects an environment variable at compile time.
1272    ///
1273    /// If the named environment variable is present at compile time, this will
1274    /// expand into an expression of type `Option<&'static str>` whose value is
1275    /// `Some` of the value of the environment variable (a compilation error
1276    /// will be emitted if the environment variable is not a valid Unicode
1277    /// string). If the environment variable is not present, then this will
1278    /// expand to `None`. See [`Option<T>`][Option] for more information on this
1279    /// type.  Use [`std::env::var`] instead if you want to read the value at
1280    /// runtime.
1281    ///
1282    /// [`std::env::var`]: ../std/env/fn.var.html
1283    ///
1284    /// A compile time error is only emitted when using this macro if the
1285    /// environment variable exists and is not a valid Unicode string. To also
1286    /// emit a compile error if the environment variable is not present, use the
1287    /// [`env!`] macro instead.
1288    ///
1289    /// # Examples
1290    ///
1291    /// ```
1292    /// let key: Option<&'static str> = option_env!("SECRET_KEY");
1293    /// println!("the secret key might be: {key:?}");
1294    /// ```
1295    #[stable(feature = "rust1", since = "1.0.0")]
1296    #[rustc_builtin_macro]
1297    #[macro_export]
1298    #[rustc_diagnostic_item = "option_env_macro"] // useful for external lints
1299    macro_rules! option_env {
1300        ($name:expr $(,)?) => {{ /* compiler built-in */ }};
1301    }
1302
1303    /// Concatenates literals into a byte slice.
1304    ///
1305    /// This macro takes any number of comma-separated literals, and concatenates them all into
1306    /// one, yielding an expression of type `&[u8; _]`, which represents all of the literals
1307    /// concatenated left-to-right. The literals passed can be any combination of:
1308    ///
1309    /// - byte literals (`b'r'`)
1310    /// - byte strings (`b"Rust"`)
1311    /// - arrays of bytes/numbers (`[b'A', 66, b'C']`)
1312    ///
1313    /// # Examples
1314    ///
1315    /// ```
1316    /// #![feature(concat_bytes)]
1317    ///
1318    /// # fn main() {
1319    /// let s: &[u8; 6] = concat_bytes!(b'A', b"BC", [68, b'E', 70]);
1320    /// assert_eq!(s, b"ABCDEF");
1321    /// # }
1322    /// ```
1323    #[unstable(feature = "concat_bytes", issue = "87555")]
1324    #[rustc_builtin_macro]
1325    #[macro_export]
1326    macro_rules! concat_bytes {
1327        ($($e:literal),+ $(,)?) => {{ /* compiler built-in */ }};
1328    }
1329
1330    /// Concatenates literals into a static string slice.
1331    ///
1332    /// This macro takes any number of comma-separated literals, yielding an
1333    /// expression of type `&'static str` which represents all of the literals
1334    /// concatenated left-to-right.
1335    ///
1336    /// Integer and floating point literals are [stringified](core::stringify) in order to be
1337    /// concatenated.
1338    ///
1339    /// # Examples
1340    ///
1341    /// ```
1342    /// let s = concat!("test", 10, 'b', true);
1343    /// assert_eq!(s, "test10btrue");
1344    /// ```
1345    #[stable(feature = "rust1", since = "1.0.0")]
1346    #[rustc_builtin_macro]
1347    #[rustc_diagnostic_item = "macro_concat"]
1348    #[macro_export]
1349    macro_rules! concat {
1350        ($($e:expr),* $(,)?) => {{ /* compiler built-in */ }};
1351    }
1352
1353    /// Expands to the line number on which it was invoked.
1354    ///
1355    /// With [`column!`] and [`file!`], these macros provide debugging information for
1356    /// developers about the location within the source.
1357    ///
1358    /// The expanded expression has type `u32` and is 1-based, so the first line
1359    /// in each file evaluates to 1, the second to 2, etc. This is consistent
1360    /// with error messages by common compilers or popular editors.
1361    /// The returned line is *not necessarily* the line of the `line!` invocation itself,
1362    /// but rather the first macro invocation leading up to the invocation
1363    /// of the `line!` macro.
1364    ///
1365    /// # Examples
1366    ///
1367    /// ```
1368    /// let current_line = line!();
1369    /// println!("defined on line: {current_line}");
1370    /// ```
1371    #[stable(feature = "rust1", since = "1.0.0")]
1372    #[rustc_builtin_macro]
1373    #[macro_export]
1374    macro_rules! line {
1375        () => {
1376            /* compiler built-in */
1377        };
1378    }
1379
1380    /// Expands to the column number at which it was invoked.
1381    ///
1382    /// With [`line!`] and [`file!`], these macros provide debugging information for
1383    /// developers about the location within the source.
1384    ///
1385    /// The expanded expression has type `u32` and is 1-based, so the first column
1386    /// in each line evaluates to 1, the second to 2, etc. This is consistent
1387    /// with error messages by common compilers or popular editors.
1388    /// The returned column is *not necessarily* the line of the `column!` invocation itself,
1389    /// but rather the first macro invocation leading up to the invocation
1390    /// of the `column!` macro.
1391    ///
1392    /// # Examples
1393    ///
1394    /// ```
1395    /// let current_col = column!();
1396    /// println!("defined on column: {current_col}");
1397    /// ```
1398    ///
1399    /// `column!` counts Unicode code points, not bytes or graphemes. As a result, the first two
1400    /// invocations return the same value, but the third does not.
1401    ///
1402    /// ```
1403    /// let a = ("foobar", column!()).1;
1404    /// let b = ("人之初性本善", column!()).1;
1405    /// let c = ("f̅o̅o̅b̅a̅r̅", column!()).1; // Uses combining overline (U+0305)
1406    ///
1407    /// assert_eq!(a, b);
1408    /// assert_ne!(b, c);
1409    /// ```
1410    #[stable(feature = "rust1", since = "1.0.0")]
1411    #[rustc_builtin_macro]
1412    #[macro_export]
1413    macro_rules! column {
1414        () => {
1415            /* compiler built-in */
1416        };
1417    }
1418
1419    /// Expands to the file name in which it was invoked.
1420    ///
1421    /// With [`line!`] and [`column!`], these macros provide debugging information for
1422    /// developers about the location within the source.
1423    ///
1424    /// The expanded expression has type `&'static str`, and the returned file
1425    /// is not the invocation of the `file!` macro itself, but rather the
1426    /// first macro invocation leading up to the invocation of the `file!`
1427    /// macro.
1428    ///
1429    /// The file name is derived from the crate root's source path passed to the Rust compiler
1430    /// and the sequence the compiler takes to get from the crate root to the
1431    /// module containing `file!`, modified by any flags passed to the Rust compiler (e.g.
1432    /// `--remap-path-prefix`).  If the crate's source path is relative, the initial base
1433    /// directory will be the working directory of the Rust compiler.  For example, if the source
1434    /// path passed to the compiler is `./src/lib.rs` which has a `mod foo;` with a source path of
1435    /// `src/foo/mod.rs`, then calling `file!` inside `mod foo;` will return `./src/foo/mod.rs`.
1436    ///
1437    /// Future compiler options might make further changes to the behavior of `file!`,
1438    /// including potentially making it entirely empty. Code (e.g. test libraries)
1439    /// relying on `file!` producing an openable file path would be incompatible
1440    /// with such options, and might wish to recommend not using those options.
1441    ///
1442    /// # Examples
1443    ///
1444    /// ```
1445    /// let this_file = file!();
1446    /// println!("defined in file: {this_file}");
1447    /// ```
1448    #[stable(feature = "rust1", since = "1.0.0")]
1449    #[rustc_builtin_macro]
1450    #[macro_export]
1451    macro_rules! file {
1452        () => {
1453            /* compiler built-in */
1454        };
1455    }
1456
1457    /// Stringifies its arguments.
1458    ///
1459    /// This macro will yield an expression of type `&'static str` which is the
1460    /// stringification of all the tokens passed to the macro. No restrictions
1461    /// are placed on the syntax of the macro invocation itself.
1462    ///
1463    /// Note that the expanded results of the input tokens may change in the
1464    /// future. You should be careful if you rely on the output.
1465    ///
1466    /// # Examples
1467    ///
1468    /// ```
1469    /// let one_plus_one = stringify!(1 + 1);
1470    /// assert_eq!(one_plus_one, "1 + 1");
1471    /// ```
1472    #[stable(feature = "rust1", since = "1.0.0")]
1473    #[rustc_builtin_macro]
1474    #[macro_export]
1475    macro_rules! stringify {
1476        ($($t:tt)*) => {
1477            /* compiler built-in */
1478        };
1479    }
1480
1481    /// Includes a UTF-8 encoded file as a string.
1482    ///
1483    /// The file is located relative to the current file (similarly to how
1484    /// modules are found). The provided path is interpreted in a platform-specific
1485    /// way at compile time. So, for instance, an invocation with a Windows path
1486    /// containing backslashes `\` would not compile correctly on Unix.
1487    ///
1488    /// This macro will yield an expression of type `&'static str` which is the
1489    /// contents of the file.
1490    ///
1491    /// # Examples
1492    ///
1493    /// Assume there are two files in the same directory with the following
1494    /// contents:
1495    ///
1496    /// File 'spanish.in':
1497    ///
1498    /// ```text
1499    /// adiós
1500    /// ```
1501    ///
1502    /// File 'main.rs':
1503    ///
1504    /// ```ignore (cannot-doctest-external-file-dependency)
1505    /// fn main() {
1506    ///     let my_str = include_str!("spanish.in");
1507    ///     assert_eq!(my_str, "adiós\n");
1508    ///     print!("{my_str}");
1509    /// }
1510    /// ```
1511    ///
1512    /// Compiling 'main.rs' and running the resulting binary will print "adiós".
1513    #[stable(feature = "rust1", since = "1.0.0")]
1514    #[rustc_builtin_macro]
1515    #[macro_export]
1516    #[rustc_diagnostic_item = "include_str_macro"]
1517    macro_rules! include_str {
1518        ($file:expr $(,)?) => {{ /* compiler built-in */ }};
1519    }
1520
1521    /// Includes a file as a reference to a byte array.
1522    ///
1523    /// The file is located relative to the current file (similarly to how
1524    /// modules are found). The provided path is interpreted in a platform-specific
1525    /// way at compile time. So, for instance, an invocation with a Windows path
1526    /// containing backslashes `\` would not compile correctly on Unix.
1527    ///
1528    /// This macro will yield an expression of type `&'static [u8; N]` which is
1529    /// the contents of the file.
1530    ///
1531    /// # Examples
1532    ///
1533    /// Assume there are two files in the same directory with the following
1534    /// contents:
1535    ///
1536    /// File 'spanish.in':
1537    ///
1538    /// ```text
1539    /// adiós
1540    /// ```
1541    ///
1542    /// File 'main.rs':
1543    ///
1544    /// ```ignore (cannot-doctest-external-file-dependency)
1545    /// fn main() {
1546    ///     let bytes = include_bytes!("spanish.in");
1547    ///     assert_eq!(bytes, b"adi\xc3\xb3s\n");
1548    ///     print!("{}", String::from_utf8_lossy(bytes));
1549    /// }
1550    /// ```
1551    ///
1552    /// Compiling 'main.rs' and running the resulting binary will print "adiós".
1553    #[stable(feature = "rust1", since = "1.0.0")]
1554    #[rustc_builtin_macro]
1555    #[macro_export]
1556    #[rustc_diagnostic_item = "include_bytes_macro"]
1557    macro_rules! include_bytes {
1558        ($file:expr $(,)?) => {{ /* compiler built-in */ }};
1559    }
1560
1561    /// Expands to a string that represents the current module path.
1562    ///
1563    /// The current module path can be thought of as the hierarchy of modules
1564    /// leading back up to the crate root. The first component of the path
1565    /// returned is the name of the crate currently being compiled.
1566    ///
1567    /// # Examples
1568    ///
1569    /// ```
1570    /// mod test {
1571    ///     pub fn foo() {
1572    ///         assert!(module_path!().ends_with("test"));
1573    ///     }
1574    /// }
1575    ///
1576    /// test::foo();
1577    /// ```
1578    #[stable(feature = "rust1", since = "1.0.0")]
1579    #[rustc_builtin_macro]
1580    #[macro_export]
1581    macro_rules! module_path {
1582        () => {
1583            /* compiler built-in */
1584        };
1585    }
1586
1587    /// Evaluates boolean combinations of configuration flags at compile-time.
1588    ///
1589    /// In addition to the `#[cfg]` attribute, this macro is provided to allow
1590    /// boolean expression evaluation of configuration flags. This frequently
1591    /// leads to less duplicated code.
1592    ///
1593    /// The syntax given to this macro is the same syntax as the [`cfg`]
1594    /// attribute.
1595    ///
1596    /// `cfg!`, unlike `#[cfg]`, does not remove any code and only evaluates to true or false. For
1597    /// example, all blocks in an if/else expression need to be valid when `cfg!` is used for
1598    /// the condition, regardless of what `cfg!` is evaluating.
1599    ///
1600    /// [`cfg`]: ../reference/conditional-compilation.html#the-cfg-attribute
1601    ///
1602    /// # Examples
1603    ///
1604    /// ```
1605    /// let my_directory = if cfg!(windows) {
1606    ///     "windows-specific-directory"
1607    /// } else {
1608    ///     "unix-directory"
1609    /// };
1610    /// ```
1611    #[stable(feature = "rust1", since = "1.0.0")]
1612    #[rustc_builtin_macro]
1613    #[macro_export]
1614    macro_rules! cfg {
1615        ($($cfg:tt)*) => {
1616            /* compiler built-in */
1617        };
1618    }
1619
1620    /// Parses a file as an expression or an item according to the context.
1621    ///
1622    /// **Warning**: For multi-file Rust projects, the `include!` macro is probably not what you
1623    /// are looking for. Usually, multi-file Rust projects use
1624    /// [modules](https://doc.rust-lang.org/reference/items/modules.html). Multi-file projects and
1625    /// modules are explained in the Rust-by-Example book
1626    /// [here](https://doc.rust-lang.org/rust-by-example/mod/split.html) and the module system is
1627    /// explained in the Rust Book
1628    /// [here](https://doc.rust-lang.org/book/ch07-02-defining-modules-to-control-scope-and-privacy.html).
1629    ///
1630    /// The included file is placed in the surrounding code
1631    /// [unhygienically](https://doc.rust-lang.org/reference/macros-by-example.html#hygiene). If
1632    /// the included file is parsed as an expression and variables or functions share names across
1633    /// both files, it could result in variables or functions being different from what the
1634    /// included file expected.
1635    ///
1636    /// The included file is located relative to the current file (similarly to how modules are
1637    /// found). The provided path is interpreted in a platform-specific way at compile time. So,
1638    /// for instance, an invocation with a Windows path containing backslashes `\` would not
1639    /// compile correctly on Unix.
1640    ///
1641    /// # Uses
1642    ///
1643    /// The `include!` macro is primarily used for two purposes. It is used to include
1644    /// documentation that is written in a separate file and it is used to include [build artifacts
1645    /// usually as a result from the `build.rs`
1646    /// script](https://doc.rust-lang.org/cargo/reference/build-scripts.html#outputs-of-the-build-script).
1647    ///
1648    /// When using the `include` macro to include stretches of documentation, remember that the
1649    /// included file still needs to be a valid Rust syntax. It is also possible to
1650    /// use the [`include_str`] macro as `#![doc = include_str!("...")]` (at the module level) or
1651    /// `#[doc = include_str!("...")]` (at the item level) to include documentation from a plain
1652    /// text or markdown file.
1653    ///
1654    /// # Examples
1655    ///
1656    /// Assume there are two files in the same directory with the following contents:
1657    ///
1658    /// File 'monkeys.in':
1659    ///
1660    /// ```ignore (only-for-syntax-highlight)
1661    /// ['🙈', '🙊', '🙉']
1662    ///     .iter()
1663    ///     .cycle()
1664    ///     .take(6)
1665    ///     .collect::<String>()
1666    /// ```
1667    ///
1668    /// File 'main.rs':
1669    ///
1670    /// ```ignore (cannot-doctest-external-file-dependency)
1671    /// fn main() {
1672    ///     let my_string = include!("monkeys.in");
1673    ///     assert_eq!("🙈🙊🙉🙈🙊🙉", my_string);
1674    ///     println!("{my_string}");
1675    /// }
1676    /// ```
1677    ///
1678    /// Compiling 'main.rs' and running the resulting binary will print
1679    /// "🙈🙊🙉🙈🙊🙉".
1680    #[stable(feature = "rust1", since = "1.0.0")]
1681    #[rustc_builtin_macro]
1682    #[macro_export]
1683    #[rustc_diagnostic_item = "include_macro"] // useful for external lints
1684    macro_rules! include {
1685        ($file:expr $(,)?) => {{ /* compiler built-in */ }};
1686    }
1687
1688    /// This macro uses forward-mode automatic differentiation to generate a new function.
1689    /// It may only be applied to a function. The new function will compute the derivative
1690    /// of the function to which the macro was applied.
1691    ///
1692    /// The expected usage syntax is:
1693    /// `#[autodiff_forward(NAME, INPUT_ACTIVITIES, OUTPUT_ACTIVITY)]`
1694    ///
1695    /// - `NAME`: A string that represents a valid function name.
1696    /// - `INPUT_ACTIVITIES`: Specifies one valid activity for each input parameter.
1697    /// - `OUTPUT_ACTIVITY`: Must not be set if the function implicitly returns nothing
1698    ///   (or explicitly returns `-> ()`). Otherwise, it must be set to one of the allowed activities.
1699    ///
1700    /// ACTIVITIES might either be `Dual` or `Const`, more options will be exposed later.
1701    ///
1702    /// `Const` should be used on non-float arguments, or float-based arguments as an optimization
1703    /// if we are not interested in computing the derivatives with respect to this argument.
1704    ///
1705    /// `Dual` can be used for float scalar values or for references, raw pointers, or other
1706    /// indirect input arguments. It can also be used on a scalar float return value.
1707    /// If used on a return value, the generated function will return a tuple of two float scalars.
1708    /// If used on an input argument, a new shadow argument of the same type will be created,
1709    /// directly following the original argument.
1710    ///
1711    /// ### Usage examples:
1712    ///
1713    /// ```rust,ignore (autodiff requires a -Z flag as well as fat-lto for testing)
1714    /// #![feature(autodiff)]
1715    /// use std::autodiff::*;
1716    /// #[autodiff_forward(rb_fwd1, Dual, Const, Dual)]
1717    /// #[autodiff_forward(rb_fwd2, Const, Dual, Dual)]
1718    /// #[autodiff_forward(rb_fwd3, Dual, Dual, Dual)]
1719    /// fn rosenbrock(x: f64, y: f64) -> f64 {
1720    ///     (1.0 - x).powi(2) + 100.0 * (y - x.powi(2)).powi(2)
1721    /// }
1722    /// #[autodiff_forward(rb_inp_fwd, Dual, Dual, Dual)]
1723    /// fn rosenbrock_inp(x: f64, y: f64, out: &mut f64) {
1724    ///     *out = (1.0 - x).powi(2) + 100.0 * (y - x.powi(2)).powi(2);
1725    /// }
1726    ///
1727    /// fn main() {
1728    ///   let x0 = rosenbrock(1.0, 3.0); // 400.0
1729    ///   let (x1, dx1) = rb_fwd1(1.0, 1.0, 3.0); // (400.0, -800.0)
1730    ///   let (x2, dy1) = rb_fwd2(1.0, 3.0, 1.0); // (400.0, 400.0)
1731    ///   // When seeding both arguments at once the tangent return is the sum of both.
1732    ///   let (x3, dxy) = rb_fwd3(1.0, 1.0, 3.0, 1.0); // (400.0, -400.0)
1733    ///
1734    ///   let mut out = 0.0;
1735    ///   let mut dout = 0.0;
1736    ///   rb_inp_fwd(1.0, 1.0, 3.0, 1.0, &mut out, &mut dout);
1737    ///   // (out, dout) == (400.0, -400.0)
1738    /// }
1739    /// ```
1740    ///
1741    /// We might want to track how one input float affects one or more output floats. In this case,
1742    /// the shadow of one input should be initialized to `1.0`, while the shadows of the other
1743    /// inputs should be initialized to `0.0`. The shadow of the output(s) should be initialized to
1744    /// `0.0`. After calling the generated function, the shadow of the input will be zeroed,
1745    /// while the shadow(s) of the output(s) will contain the derivatives. Forward mode is generally
1746    /// more efficient if we have more output floats marked as `Dual` than input floats.
1747    /// Related information can also be found under the term "Vector-Jacobian product" (VJP).
1748    #[unstable(feature = "autodiff", issue = "124509")]
1749    #[allow_internal_unstable(rustc_attrs)]
1750    #[allow_internal_unstable(core_intrinsics)]
1751    #[rustc_builtin_macro]
1752    pub macro autodiff_forward($item:item) {
1753        /* compiler built-in */
1754    }
1755
1756    /// This macro uses reverse-mode automatic differentiation to generate a new function.
1757    /// It may only be applied to a function. The new function will compute the derivative
1758    /// of the function to which the macro was applied.
1759    ///
1760    /// The expected usage syntax is:
1761    /// `#[autodiff_reverse(NAME, INPUT_ACTIVITIES, OUTPUT_ACTIVITY)]`
1762    ///
1763    /// - `NAME`: A string that represents a valid function name.
1764    /// - `INPUT_ACTIVITIES`: Specifies one valid activity for each input parameter.
1765    /// - `OUTPUT_ACTIVITY`: Must not be set if the function implicitly returns nothing
1766    ///   (or explicitly returns `-> ()`). Otherwise, it must be set to one of the allowed activities.
1767    ///
1768    /// ACTIVITIES might either be `Active`, `Duplicated` or `Const`, more options will be exposed later.
1769    ///
1770    /// `Active` can be used for float scalar values.
1771    /// If used on an input, a new float will be appended to the return tuple of the generated
1772    /// function. If the function returns a float scalar, `Active` can be used for the return as
1773    /// well. In this case a float scalar will be appended to the argument list, it works as seed.
1774    ///
1775    /// `Duplicated` can be used on references, raw pointers, or other indirect input
1776    /// arguments. It creates a new shadow argument of the same type, following the original argument.
1777    /// A const reference or pointer argument will receive a mutable reference or pointer as shadow.
1778    ///
1779    /// `Const` should be used on non-float arguments, or float-based arguments as an optimization
1780    /// if we are not interested in computing the derivatives with respect to this argument.
1781    ///
1782    /// ### Usage examples:
1783    ///
1784    /// ```rust,ignore (autodiff requires a -Z flag as well as fat-lto for testing)
1785    /// #![feature(autodiff)]
1786    /// use std::autodiff::*;
1787    /// #[autodiff_reverse(rb_rev, Active, Active, Active)]
1788    /// fn rosenbrock(x: f64, y: f64) -> f64 {
1789    ///     (1.0 - x).powi(2) + 100.0 * (y - x.powi(2)).powi(2)
1790    /// }
1791    /// #[autodiff_reverse(rb_inp_rev, Active, Active, Duplicated)]
1792    /// fn rosenbrock_inp(x: f64, y: f64, out: &mut f64) {
1793    ///     *out = (1.0 - x).powi(2) + 100.0 * (y - x.powi(2)).powi(2);
1794    /// }
1795    ///
1796    /// fn main() {
1797    ///     let (output1, dx1, dy1) = rb_rev(1.0, 3.0, 1.0);
1798    ///     dbg!(output1, dx1, dy1); // (400.0, -800.0, 400.0)
1799    ///     let mut output2 = 0.0;
1800    ///     let mut seed = 1.0;
1801    ///     let (dx2, dy2) = rb_inp_rev(1.0, 3.0, &mut output2, &mut seed);
1802    ///     // (dx2, dy2, output2, seed) == (-800.0, 400.0, 400.0, 0.0)
1803    /// }
1804    /// ```
1805    ///
1806    ///
1807    /// We often want to track how one or more input floats affect one output float. This output can
1808    /// be a scalar return value, or a mutable reference or pointer argument. In the latter case, the
1809    /// mutable input should be marked as duplicated and its shadow initialized to `0.0`. The shadow of
1810    /// the output should be marked as active or duplicated and initialized to `1.0`. After calling
1811    /// the generated function, the shadow(s) of the input(s) will contain the derivatives. The
1812    /// shadow of the outputs ("seed") will be reset to zero.
1813    /// If the function has more than one output float marked as active or duplicated, users might want to
1814    /// set one of them to `1.0` and the others to `0.0` to compute partial derivatives.
1815    /// Unlike forward-mode, a call to the generated function does not reset the shadow of the
1816    /// inputs.
1817    /// Reverse mode is generally more efficient if we have more active/duplicated input than
1818    /// output floats.
1819    ///
1820    /// Related information can also be found under the term "Jacobian-Vector Product" (JVP).
1821    #[unstable(feature = "autodiff", issue = "124509")]
1822    #[allow_internal_unstable(rustc_attrs)]
1823    #[allow_internal_unstable(core_intrinsics)]
1824    #[rustc_builtin_macro]
1825    pub macro autodiff_reverse($item:item) {
1826        /* compiler built-in */
1827    }
1828
1829    /// Asserts that a boolean expression is `true` at runtime.
1830    ///
1831    /// This will invoke the [`panic!`] macro if the provided expression cannot be
1832    /// evaluated to `true` at runtime.
1833    ///
1834    /// # Uses
1835    ///
1836    /// Assertions are always checked in both debug and release builds, and cannot
1837    /// be disabled. See [`debug_assert!`] for assertions that are not enabled in
1838    /// release builds by default.
1839    ///
1840    /// Unsafe code may rely on `assert!` to enforce run-time invariants that, if
1841    /// violated could lead to unsafety.
1842    ///
1843    /// Other use-cases of `assert!` include testing and enforcing run-time
1844    /// invariants in safe code (whose violation cannot result in unsafety).
1845    ///
1846    /// # Custom Messages
1847    ///
1848    /// This macro has a second form, where a custom panic message can
1849    /// be provided with or without arguments for formatting. See [`std::fmt`]
1850    /// for syntax for this form. Expressions used as format arguments will only
1851    /// be evaluated if the assertion fails.
1852    ///
1853    /// [`std::fmt`]: ../std/fmt/index.html
1854    ///
1855    /// # Examples
1856    ///
1857    /// ```
1858    /// // the panic message for these assertions is the stringified value of the
1859    /// // expression given.
1860    /// assert!(true);
1861    ///
1862    /// fn some_computation() -> bool {
1863    ///     // Some expensive computation here
1864    ///     true
1865    /// }
1866    ///
1867    /// assert!(some_computation());
1868    ///
1869    /// // assert with a custom message
1870    /// let x = true;
1871    /// assert!(x, "x wasn't true!");
1872    ///
1873    /// let a = 3; let b = 27;
1874    /// assert!(a + b == 30, "a = {}, b = {}", a, b);
1875    /// ```
1876    #[stable(feature = "rust1", since = "1.0.0")]
1877    #[rustc_builtin_macro]
1878    #[macro_export]
1879    #[rustc_diagnostic_item = "assert_macro"]
1880    #[allow_internal_unstable(
1881        core_intrinsics,
1882        panic_internals,
1883        edition_panic,
1884        generic_assert_internals
1885    )]
1886    macro_rules! assert {
1887        ($cond:expr $(,)?) => {{ /* compiler built-in */ }};
1888        ($cond:expr, $($arg:tt)+) => {{ /* compiler built-in */ }};
1889    }
1890
1891    /// Prints passed tokens into the standard output.
1892    #[unstable(
1893        feature = "log_syntax",
1894        issue = "29598",
1895        reason = "`log_syntax!` is not stable enough for use and is subject to change"
1896    )]
1897    #[rustc_builtin_macro]
1898    #[macro_export]
1899    macro_rules! log_syntax {
1900        ($($arg:tt)*) => {
1901            /* compiler built-in */
1902        };
1903    }
1904
1905    /// Enables or disables tracing functionality used for debugging other macros.
1906    #[unstable(
1907        feature = "trace_macros",
1908        issue = "29598",
1909        reason = "`trace_macros` is not stable enough for use and is subject to change"
1910    )]
1911    #[rustc_builtin_macro]
1912    #[macro_export]
1913    macro_rules! trace_macros {
1914        (true) => {{ /* compiler built-in */ }};
1915        (false) => {{ /* compiler built-in */ }};
1916    }
1917
1918    /// Attribute macro used to apply derive macros.
1919    ///
1920    /// See [the reference] for more info.
1921    ///
1922    /// [the reference]: ../../../reference/attributes/derive.html
1923    #[stable(feature = "rust1", since = "1.0.0")]
1924    #[rustc_builtin_macro]
1925    pub macro derive($item:item) {
1926        /* compiler built-in */
1927    }
1928
1929    /// Attribute macro used to apply derive macros for implementing traits
1930    /// in a const context.
1931    ///
1932    /// See [the reference] for more info.
1933    ///
1934    /// [the reference]: ../../../reference/attributes/derive.html
1935    #[unstable(feature = "derive_const", issue = "118304")]
1936    #[rustc_builtin_macro]
1937    pub macro derive_const($item:item) {
1938        /* compiler built-in */
1939    }
1940
1941    /// Attribute macro applied to a function to turn it into a unit test.
1942    ///
1943    /// See [the reference] for more info.
1944    ///
1945    /// [the reference]: ../../../reference/attributes/testing.html#the-test-attribute
1946    #[stable(feature = "rust1", since = "1.0.0")]
1947    #[allow_internal_unstable(test, rustc_attrs, coverage_attribute)]
1948    #[rustc_builtin_macro]
1949    pub macro test($item:item) {
1950        /* compiler built-in */
1951    }
1952
1953    /// Attribute macro applied to a function to turn it into a benchmark test.
1954    #[unstable(
1955        feature = "test",
1956        issue = "50297",
1957        reason = "`bench` is a part of custom test frameworks which are unstable"
1958    )]
1959    #[allow_internal_unstable(test, rustc_attrs, coverage_attribute)]
1960    #[rustc_builtin_macro]
1961    pub macro bench($item:item) {
1962        /* compiler built-in */
1963    }
1964
1965    /// An implementation detail of the `#[test]` and `#[bench]` macros.
1966    #[unstable(
1967        feature = "custom_test_frameworks",
1968        issue = "50297",
1969        reason = "custom test frameworks are an unstable feature"
1970    )]
1971    #[allow_internal_unstable(test, rustc_attrs)]
1972    #[rustc_builtin_macro]
1973    pub macro test_case($item:item) {
1974        /* compiler built-in */
1975    }
1976
1977    /// Attribute macro applied to a static to register it as a global allocator.
1978    ///
1979    /// See also [`std::alloc::GlobalAlloc`](../../../std/alloc/trait.GlobalAlloc.html).
1980    #[stable(feature = "global_allocator", since = "1.28.0")]
1981    #[allow_internal_unstable(rustc_attrs)]
1982    #[rustc_builtin_macro]
1983    pub macro global_allocator($item:item) {
1984        /* compiler built-in */
1985    }
1986
1987    /// Attribute macro applied to a function to give it a post-condition.
1988    ///
1989    /// The attribute carries an argument token-tree which is
1990    /// eventually parsed as a unary closure expression that is
1991    /// invoked on a reference to the return value.
1992    #[unstable(feature = "contracts", issue = "128044")]
1993    #[allow_internal_unstable(contracts_internals)]
1994    #[rustc_builtin_macro]
1995    pub macro contracts_ensures($item:item) {
1996        /* compiler built-in */
1997    }
1998
1999    /// Attribute macro applied to a function to give it a precondition.
2000    ///
2001    /// The attribute carries an argument token-tree which is
2002    /// eventually parsed as an boolean expression with access to the
2003    /// function's formal parameters
2004    #[unstable(feature = "contracts", issue = "128044")]
2005    #[allow_internal_unstable(contracts_internals)]
2006    #[rustc_builtin_macro]
2007    pub macro contracts_requires($item:item) {
2008        /* compiler built-in */
2009    }
2010
2011    /// Attribute macro applied to a function to register it as a handler for allocation failure.
2012    ///
2013    /// See also [`std::alloc::handle_alloc_error`](../../../std/alloc/fn.handle_alloc_error.html).
2014    #[unstable(feature = "alloc_error_handler", issue = "51540")]
2015    #[allow_internal_unstable(rustc_attrs)]
2016    #[rustc_builtin_macro]
2017    pub macro alloc_error_handler($item:item) {
2018        /* compiler built-in */
2019    }
2020
2021    /// Keeps the item it's applied to if the passed path is accessible, and removes it otherwise.
2022    #[unstable(
2023        feature = "cfg_accessible",
2024        issue = "64797",
2025        reason = "`cfg_accessible` is not fully implemented"
2026    )]
2027    #[rustc_builtin_macro]
2028    pub macro cfg_accessible($item:item) {
2029        /* compiler built-in */
2030    }
2031
2032    /// Expands all `#[cfg]` and `#[cfg_attr]` attributes in the code fragment it's applied to.
2033    #[unstable(
2034        feature = "cfg_eval",
2035        issue = "82679",
2036        reason = "`cfg_eval` is a recently implemented feature"
2037    )]
2038    #[rustc_builtin_macro]
2039    pub macro cfg_eval($($tt:tt)*) {
2040        /* compiler built-in */
2041    }
2042
2043    /// Provide a list of type aliases and other opaque-type-containing type definitions
2044    /// to an item with a body. This list will be used in that body to define opaque
2045    /// types' hidden types.
2046    /// Can only be applied to things that have bodies.
2047    #[unstable(
2048        feature = "type_alias_impl_trait",
2049        issue = "63063",
2050        reason = "`type_alias_impl_trait` has open design concerns"
2051    )]
2052    #[rustc_builtin_macro]
2053    pub macro define_opaque($($tt:tt)*) {
2054        /* compiler built-in */
2055    }
2056
2057    /// Unstable placeholder for type ascription.
2058    #[allow_internal_unstable(builtin_syntax)]
2059    #[unstable(
2060        feature = "type_ascription",
2061        issue = "23416",
2062        reason = "placeholder syntax for type ascription"
2063    )]
2064    #[rustfmt::skip]
2065    pub macro type_ascribe($expr:expr, $ty:ty) {
2066        builtin # type_ascribe($expr, $ty)
2067    }
2068
2069    /// Unstable placeholder for deref patterns.
2070    #[allow_internal_unstable(builtin_syntax)]
2071    #[unstable(
2072        feature = "deref_patterns",
2073        issue = "87121",
2074        reason = "placeholder syntax for deref patterns"
2075    )]
2076    pub macro deref($pat:pat) {
2077        builtin # deref($pat)
2078    }
2079
2080    /// Derive macro generating an impl of the trait `From`.
2081    /// Currently, it can only be used on single-field structs.
2082    // Note that the macro is in a different module than the `From` trait,
2083    // to avoid triggering an unstable feature being used if someone imports
2084    // `std::convert::From`.
2085    #[rustc_builtin_macro]
2086    #[unstable(feature = "derive_from", issue = "144889")]
2087    pub macro From($item: item) {
2088        /* compiler built-in */
2089    }
2090
2091    /// Externally Implementable Item: Defines an attribute macro that can override the item
2092    /// this is applied to.
2093    #[unstable(feature = "extern_item_impls", issue = "125418")]
2094    #[rustc_builtin_macro]
2095    #[allow_internal_unstable(eii_internals, decl_macro, rustc_attrs)]
2096    pub macro eii($item:item) {
2097        /* compiler built-in */
2098    }
2099
2100    /// Unsafely Externally Implementable Item: Defines an unsafe attribute macro that can override
2101    /// the item this is applied to.
2102    #[unstable(feature = "extern_item_impls", issue = "125418")]
2103    #[rustc_builtin_macro]
2104    #[allow_internal_unstable(eii_internals, decl_macro, rustc_attrs)]
2105    pub macro unsafe_eii($item:item) {
2106        /* compiler built-in */
2107    }
2108
2109    /// Impl detail of EII
2110    #[unstable(feature = "eii_internals", issue = "none")]
2111    #[rustc_builtin_macro]
2112    pub macro eii_extern_target($item:item) {
2113        /* compiler built-in */
2114    }
2115}