core/
marker.rs

1//! Primitive traits and types representing basic properties of types.
2//!
3//! Rust types can be classified in various useful ways according to
4//! their intrinsic properties. These classifications are represented
5//! as traits.
6
7#![stable(feature = "rust1", since = "1.0.0")]
8
9#[cfg(not(feature = "ferrocene_certified"))]
10mod variance;
11
12#[unstable(feature = "phantom_variance_markers", issue = "135806")]
13#[cfg(not(feature = "ferrocene_certified"))]
14pub use self::variance::{
15    PhantomContravariant, PhantomContravariantLifetime, PhantomCovariant, PhantomCovariantLifetime,
16    PhantomInvariant, PhantomInvariantLifetime, Variance, variance,
17};
18#[cfg(not(feature = "ferrocene_certified"))]
19use crate::cell::UnsafeCell;
20#[cfg(not(feature = "ferrocene_certified"))]
21use crate::cmp;
22#[cfg(not(feature = "ferrocene_certified"))]
23use crate::fmt::Debug;
24#[cfg(not(feature = "ferrocene_certified"))]
25use crate::hash::{Hash, Hasher};
26#[cfg(not(feature = "ferrocene_certified"))]
27use crate::pin::UnsafePinned;
28
29// NOTE: for consistent error messages between `core` and `minicore`, all `diagnostic` attributes
30// should be replicated exactly in `minicore` (if `minicore` defines the item).
31
32/// Implements a given marker trait for multiple types at the same time.
33///
34/// The basic syntax looks like this:
35/// ```ignore private macro
36/// marker_impls! { MarkerTrait for u8, i8 }
37/// ```
38/// You can also implement `unsafe` traits
39/// ```ignore private macro
40/// marker_impls! { unsafe MarkerTrait for u8, i8 }
41/// ```
42/// Add attributes to all impls:
43/// ```ignore private macro
44/// marker_impls! {
45///     #[allow(lint)]
46///     #[unstable(feature = "marker_trait", issue = "none")]
47///     MarkerTrait for u8, i8
48/// }
49/// ```
50/// And use generics:
51/// ```ignore private macro
52/// marker_impls! {
53///     MarkerTrait for
54///         u8, i8,
55///         {T: ?Sized} *const T,
56///         {T: ?Sized} *mut T,
57///         {T: MarkerTrait} PhantomData<T>,
58///         u32,
59/// }
60/// ```
61#[unstable(feature = "internal_impls_macro", issue = "none")]
62// Allow implementations of `UnsizedConstParamTy` even though std cannot use that feature.
63#[allow_internal_unstable(unsized_const_params)]
64macro marker_impls {
65    ( $(#[$($meta:tt)*])* $Trait:ident for $({$($bounds:tt)*})? $T:ty $(, $($rest:tt)*)? ) => {
66        $(#[$($meta)*])* impl< $($($bounds)*)? > $Trait for $T {}
67        marker_impls! { $(#[$($meta)*])* $Trait for $($($rest)*)? }
68    },
69    ( $(#[$($meta:tt)*])* $Trait:ident for ) => {},
70
71    ( $(#[$($meta:tt)*])* unsafe $Trait:ident for $({$($bounds:tt)*})? $T:ty $(, $($rest:tt)*)? ) => {
72        $(#[$($meta)*])* unsafe impl< $($($bounds)*)? > $Trait for $T {}
73        marker_impls! { $(#[$($meta)*])* unsafe $Trait for $($($rest)*)? }
74    },
75    ( $(#[$($meta:tt)*])* unsafe $Trait:ident for ) => {},
76}
77
78/// Types that can be transferred across thread boundaries.
79///
80/// This trait is automatically implemented when the compiler determines it's
81/// appropriate.
82///
83/// An example of a non-`Send` type is the reference-counting pointer
84/// [`rc::Rc`][`Rc`]. If two threads attempt to clone [`Rc`]s that point to the same
85/// reference-counted value, they might try to update the reference count at the
86/// same time, which is [undefined behavior][ub] because [`Rc`] doesn't use atomic
87/// operations. Its cousin [`sync::Arc`][arc] does use atomic operations (incurring
88/// some overhead) and thus is `Send`.
89///
90/// See [the Nomicon](../../nomicon/send-and-sync.html) and the [`Sync`] trait for more details.
91///
92/// [`Rc`]: ../../std/rc/struct.Rc.html
93/// [arc]: ../../std/sync/struct.Arc.html
94/// [ub]: ../../reference/behavior-considered-undefined.html
95#[stable(feature = "rust1", since = "1.0.0")]
96#[rustc_diagnostic_item = "Send"]
97#[diagnostic::on_unimplemented(
98    message = "`{Self}` cannot be sent between threads safely",
99    label = "`{Self}` cannot be sent between threads safely"
100)]
101pub unsafe auto trait Send {
102    // empty.
103}
104
105#[stable(feature = "rust1", since = "1.0.0")]
106impl<T: PointeeSized> !Send for *const T {}
107#[stable(feature = "rust1", since = "1.0.0")]
108impl<T: PointeeSized> !Send for *mut T {}
109
110// Most instances arise automatically, but this instance is needed to link up `T: Sync` with
111// `&T: Send` (and it also removes the unsound default instance `T Send` -> `&T: Send` that would
112// otherwise exist).
113#[stable(feature = "rust1", since = "1.0.0")]
114unsafe impl<T: Sync + PointeeSized> Send for &T {}
115
116/// Types with a constant size known at compile time.
117///
118/// All type parameters have an implicit bound of `Sized`. The special syntax
119/// `?Sized` can be used to remove this bound if it's not appropriate.
120///
121/// ```
122/// # #![allow(dead_code)]
123/// struct Foo<T>(T);
124/// struct Bar<T: ?Sized>(T);
125///
126/// // struct FooUse(Foo<[i32]>); // error: Sized is not implemented for [i32]
127/// struct BarUse(Bar<[i32]>); // OK
128/// ```
129///
130/// The one exception is the implicit `Self` type of a trait. A trait does not
131/// have an implicit `Sized` bound as this is incompatible with [trait object]s
132/// where, by definition, the trait needs to work with all possible implementors,
133/// and thus could be any size.
134///
135/// Although Rust will let you bind `Sized` to a trait, you won't
136/// be able to use it to form a trait object later:
137///
138/// ```
139/// # #![allow(unused_variables)]
140/// trait Foo { }
141/// trait Bar: Sized { }
142///
143/// struct Impl;
144/// impl Foo for Impl { }
145/// impl Bar for Impl { }
146///
147/// let x: &dyn Foo = &Impl;    // OK
148/// // let y: &dyn Bar = &Impl; // error: the trait `Bar` cannot
149///                             // be made into an object
150/// ```
151///
152/// [trait object]: ../../book/ch17-02-trait-objects.html
153#[doc(alias = "?", alias = "?Sized")]
154#[stable(feature = "rust1", since = "1.0.0")]
155#[lang = "sized"]
156#[diagnostic::on_unimplemented(
157    message = "the size for values of type `{Self}` cannot be known at compilation time",
158    label = "doesn't have a size known at compile-time"
159)]
160#[fundamental] // for Default, for example, which requires that `[T]: !Default` be evaluatable
161#[rustc_specialization_trait]
162#[rustc_deny_explicit_impl]
163#[rustc_do_not_implement_via_object]
164// `Sized` being coinductive, despite having supertraits, is okay as there are no user-written impls,
165// and we know that the supertraits are always implemented if the subtrait is just by looking at
166// the builtin impls.
167#[rustc_coinductive]
168pub trait Sized: MetaSized {
169    // Empty.
170}
171
172/// Types with a size that can be determined from pointer metadata.
173#[unstable(feature = "sized_hierarchy", issue = "none")]
174#[lang = "meta_sized"]
175#[diagnostic::on_unimplemented(
176    message = "the size for values of type `{Self}` cannot be known",
177    label = "doesn't have a known size"
178)]
179#[fundamental]
180#[rustc_specialization_trait]
181#[rustc_deny_explicit_impl]
182#[rustc_do_not_implement_via_object]
183// `MetaSized` being coinductive, despite having supertraits, is okay for the same reasons as
184// `Sized` above.
185#[rustc_coinductive]
186pub trait MetaSized: PointeeSized {
187    // Empty
188}
189
190/// Types that may or may not have a size.
191#[unstable(feature = "sized_hierarchy", issue = "none")]
192#[lang = "pointee_sized"]
193#[diagnostic::on_unimplemented(
194    message = "values of type `{Self}` may or may not have a size",
195    label = "may or may not have a known size"
196)]
197#[fundamental]
198#[rustc_specialization_trait]
199#[rustc_deny_explicit_impl]
200#[rustc_do_not_implement_via_object]
201#[rustc_coinductive]
202pub trait PointeeSized {
203    // Empty
204}
205
206/// Types that can be "unsized" to a dynamically-sized type.
207///
208/// For example, the sized array type `[i8; 2]` implements `Unsize<[i8]>` and
209/// `Unsize<dyn fmt::Debug>`.
210///
211/// All implementations of `Unsize` are provided automatically by the compiler.
212/// Those implementations are:
213///
214/// - Arrays `[T; N]` implement `Unsize<[T]>`.
215/// - A type implements `Unsize<dyn Trait + 'a>` if all of these conditions are met:
216///   - The type implements `Trait`.
217///   - `Trait` is dyn-compatible[^1].
218///   - The type is sized.
219///   - The type outlives `'a`.
220/// - Trait objects `dyn TraitA + AutoA... + 'a` implement `Unsize<dyn TraitB + AutoB... + 'b>`
221///    if all of these conditions are met:
222///   - `TraitB` is a supertrait of `TraitA`.
223///   - `AutoB...` is a subset of `AutoA...`.
224///   - `'a` outlives `'b`.
225/// - Structs `Foo<..., T1, ..., Tn, ...>` implement `Unsize<Foo<..., U1, ..., Un, ...>>`
226///   where any number of (type and const) parameters may be changed if all of these conditions
227///   are met:
228///   - Only the last field of `Foo` has a type involving the parameters `T1`, ..., `Tn`.
229///   - All other parameters of the struct are equal.
230///   - `Field<T1, ..., Tn>: Unsize<Field<U1, ..., Un>>`, where `Field<...>` stands for the actual
231///     type of the struct's last field.
232///
233/// `Unsize` is used along with [`ops::CoerceUnsized`] to allow
234/// "user-defined" containers such as [`Rc`] to contain dynamically-sized
235/// types. See the [DST coercion RFC][RFC982] and [the nomicon entry on coercion][nomicon-coerce]
236/// for more details.
237///
238/// [`ops::CoerceUnsized`]: crate::ops::CoerceUnsized
239/// [`Rc`]: ../../std/rc/struct.Rc.html
240/// [RFC982]: https://github.com/rust-lang/rfcs/blob/master/text/0982-dst-coercion.md
241/// [nomicon-coerce]: ../../nomicon/coercions.html
242/// [^1]: Formerly known as *object safe*.
243#[unstable(feature = "unsize", issue = "18598")]
244#[lang = "unsize"]
245#[rustc_deny_explicit_impl]
246#[rustc_do_not_implement_via_object]
247pub trait Unsize<T: PointeeSized>: PointeeSized {
248    // Empty.
249}
250
251/// Required trait for constants used in pattern matches.
252///
253/// Constants are only allowed as patterns if (a) their type implements
254/// `PartialEq`, and (b) interpreting the value of the constant as a pattern
255/// is equivalent to calling `PartialEq`. This ensures that constants used as
256/// patterns cannot expose implementation details in an unexpected way or
257/// cause semver hazards.
258///
259/// This trait ensures point (b).
260/// Any type that derives `PartialEq` automatically implements this trait.
261///
262/// Implementing this trait (which is unstable) is a way for type authors to explicitly allow
263/// comparing const values of this type; that operation will recursively compare all fields
264/// (including private fields), even if that behavior differs from `PartialEq`. This can make it
265/// semver-breaking to add further private fields to a type.
266#[unstable(feature = "structural_match", issue = "31434")]
267#[diagnostic::on_unimplemented(message = "the type `{Self}` does not `#[derive(PartialEq)]`")]
268#[lang = "structural_peq"]
269pub trait StructuralPartialEq {
270    // Empty.
271}
272
273#[cfg(not(feature = "ferrocene_certified"))]
274marker_impls! {
275    #[unstable(feature = "structural_match", issue = "31434")]
276    StructuralPartialEq for
277        usize, u8, u16, u32, u64, u128,
278        isize, i8, i16, i32, i64, i128,
279        bool,
280        char,
281        str /* Technically requires `[u8]: StructuralPartialEq` */,
282        (),
283        {T, const N: usize} [T; N],
284        {T} [T],
285        {T: PointeeSized} &T,
286}
287
288#[cfg(feature = "ferrocene_certified")]
289marker_impls! {
290    #[unstable(feature = "structural_match", issue = "31434")]
291    StructuralPartialEq for
292        usize
293}
294
295/// Types whose values can be duplicated simply by copying bits.
296///
297/// By default, variable bindings have 'move semantics.' In other
298/// words:
299///
300/// ```
301/// #[derive(Debug)]
302/// struct Foo;
303///
304/// let x = Foo;
305///
306/// let y = x;
307///
308/// // `x` has moved into `y`, and so cannot be used
309///
310/// // println!("{x:?}"); // error: use of moved value
311/// ```
312///
313/// However, if a type implements `Copy`, it instead has 'copy semantics':
314///
315/// ```
316/// // We can derive a `Copy` implementation. `Clone` is also required, as it's
317/// // a supertrait of `Copy`.
318/// #[derive(Debug, Copy, Clone)]
319/// struct Foo;
320///
321/// let x = Foo;
322///
323/// let y = x;
324///
325/// // `y` is a copy of `x`
326///
327/// println!("{x:?}"); // A-OK!
328/// ```
329///
330/// It's important to note that in these two examples, the only difference is whether you
331/// are allowed to access `x` after the assignment. Under the hood, both a copy and a move
332/// can result in bits being copied in memory, although this is sometimes optimized away.
333///
334/// ## How can I implement `Copy`?
335///
336/// There are two ways to implement `Copy` on your type. The simplest is to use `derive`:
337///
338/// ```
339/// #[derive(Copy, Clone)]
340/// struct MyStruct;
341/// ```
342///
343/// You can also implement `Copy` and `Clone` manually:
344///
345/// ```
346/// struct MyStruct;
347///
348/// impl Copy for MyStruct { }
349///
350/// impl Clone for MyStruct {
351///     fn clone(&self) -> MyStruct {
352///         *self
353///     }
354/// }
355/// ```
356///
357/// There is a small difference between the two. The `derive` strategy will also place a `Copy`
358/// bound on type parameters:
359///
360/// ```
361/// #[derive(Clone)]
362/// struct MyStruct<T>(T);
363///
364/// impl<T: Copy> Copy for MyStruct<T> { }
365/// ```
366///
367/// This isn't always desired. For example, shared references (`&T`) can be copied regardless of
368/// whether `T` is `Copy`. Likewise, a generic struct containing markers such as [`PhantomData`]
369/// could potentially be duplicated with a bit-wise copy.
370///
371/// ## What's the difference between `Copy` and `Clone`?
372///
373/// Copies happen implicitly, for example as part of an assignment `y = x`. The behavior of
374/// `Copy` is not overloadable; it is always a simple bit-wise copy.
375///
376/// Cloning is an explicit action, `x.clone()`. The implementation of [`Clone`] can
377/// provide any type-specific behavior necessary to duplicate values safely. For example,
378/// the implementation of [`Clone`] for [`String`] needs to copy the pointed-to string
379/// buffer in the heap. A simple bitwise copy of [`String`] values would merely copy the
380/// pointer, leading to a double free down the line. For this reason, [`String`] is [`Clone`]
381/// but not `Copy`.
382///
383/// [`Clone`] is a supertrait of `Copy`, so everything which is `Copy` must also implement
384/// [`Clone`]. If a type is `Copy` then its [`Clone`] implementation only needs to return `*self`
385/// (see the example above).
386///
387/// ## When can my type be `Copy`?
388///
389/// A type can implement `Copy` if all of its components implement `Copy`. For example, this
390/// struct can be `Copy`:
391///
392/// ```
393/// # #[allow(dead_code)]
394/// #[derive(Copy, Clone)]
395/// struct Point {
396///    x: i32,
397///    y: i32,
398/// }
399/// ```
400///
401/// A struct can be `Copy`, and [`i32`] is `Copy`, therefore `Point` is eligible to be `Copy`.
402/// By contrast, consider
403///
404/// ```
405/// # #![allow(dead_code)]
406/// # struct Point;
407/// struct PointList {
408///     points: Vec<Point>,
409/// }
410/// ```
411///
412/// The struct `PointList` cannot implement `Copy`, because [`Vec<T>`] is not `Copy`. If we
413/// attempt to derive a `Copy` implementation, we'll get an error:
414///
415/// ```text
416/// the trait `Copy` cannot be implemented for this type; field `points` does not implement `Copy`
417/// ```
418///
419/// Shared references (`&T`) are also `Copy`, so a type can be `Copy`, even when it holds
420/// shared references of types `T` that are *not* `Copy`. Consider the following struct,
421/// which can implement `Copy`, because it only holds a *shared reference* to our non-`Copy`
422/// type `PointList` from above:
423///
424/// ```
425/// # #![allow(dead_code)]
426/// # struct PointList;
427/// #[derive(Copy, Clone)]
428/// struct PointListWrapper<'a> {
429///     point_list_ref: &'a PointList,
430/// }
431/// ```
432///
433/// ## When *can't* my type be `Copy`?
434///
435/// Some types can't be copied safely. For example, copying `&mut T` would create an aliased
436/// mutable reference. Copying [`String`] would duplicate responsibility for managing the
437/// [`String`]'s buffer, leading to a double free.
438///
439/// Generalizing the latter case, any type implementing [`Drop`] can't be `Copy`, because it's
440/// managing some resource besides its own [`size_of::<T>`] bytes.
441///
442/// If you try to implement `Copy` on a struct or enum containing non-`Copy` data, you will get
443/// the error [E0204].
444///
445/// [E0204]: ../../error_codes/E0204.html
446///
447/// ## When *should* my type be `Copy`?
448///
449/// Generally speaking, if your type _can_ implement `Copy`, it should. Keep in mind, though,
450/// that implementing `Copy` is part of the public API of your type. If the type might become
451/// non-`Copy` in the future, it could be prudent to omit the `Copy` implementation now, to
452/// avoid a breaking API change.
453///
454/// ## Additional implementors
455///
456/// In addition to the [implementors listed below][impls],
457/// the following types also implement `Copy`:
458///
459/// * Function item types (i.e., the distinct types defined for each function)
460/// * Function pointer types (e.g., `fn() -> i32`)
461/// * Closure types, if they capture no value from the environment
462///   or if all such captured values implement `Copy` themselves.
463///   Note that variables captured by shared reference always implement `Copy`
464///   (even if the referent doesn't),
465///   while variables captured by mutable reference never implement `Copy`.
466///
467/// [`Vec<T>`]: ../../std/vec/struct.Vec.html
468/// [`String`]: ../../std/string/struct.String.html
469/// [`size_of::<T>`]: size_of
470/// [impls]: #implementors
471#[stable(feature = "rust1", since = "1.0.0")]
472#[lang = "copy"]
473// FIXME(matthewjasper) This allows copying a type that doesn't implement
474// `Copy` because of unsatisfied lifetime bounds (copying `A<'_>` when only
475// `A<'static>: Copy` and `A<'_>: Clone`).
476// We have this attribute here for now only because there are quite a few
477// existing specializations on `Copy` that already exist in the standard
478// library, and there's no way to safely have this behavior right now.
479#[rustc_unsafe_specialization_marker]
480#[rustc_diagnostic_item = "Copy"]
481pub trait Copy: Clone {
482    // Empty.
483}
484
485/// Derive macro generating an impl of the trait `Copy`.
486#[rustc_builtin_macro]
487#[stable(feature = "builtin_macro_prelude", since = "1.38.0")]
488#[allow_internal_unstable(core_intrinsics, derive_clone_copy)]
489pub macro Copy($item:item) {
490    /* compiler built-in */
491}
492
493// Implementations of `Copy` for primitive types.
494//
495// Implementations that cannot be described in Rust
496// are implemented in `traits::SelectionContext::copy_clone_conditions()`
497// in `rustc_trait_selection`.
498#[cfg(not(feature = "ferrocene_certified"))]
499marker_impls! {
500    #[stable(feature = "rust1", since = "1.0.0")]
501    Copy for
502        usize, u8, u16, u32, u64, u128,
503        isize, i8, i16, i32, i64, i128,
504        f16, f32, f64, f128,
505        bool, char,
506        {T: PointeeSized} *const T,
507        {T: PointeeSized} *mut T,
508
509}
510
511#[cfg(feature = "ferrocene_certified")]
512marker_impls! {
513    #[stable(feature = "rust1", since = "1.0.0")]
514    Copy for
515        usize, u8, u16, u32, u64, u128,
516        isize, i8, i16, i32, i64, i128,
517        f32, f64,
518        bool,
519        {T: ?Sized} *const T,
520        {T: ?Sized} *mut T,
521}
522
523#[unstable(feature = "never_type", issue = "35121")]
524#[cfg(not(feature = "ferrocene_certified"))]
525impl Copy for ! {}
526
527/// Shared references can be copied, but mutable references *cannot*!
528#[stable(feature = "rust1", since = "1.0.0")]
529impl<T: PointeeSized> Copy for &T {}
530
531/// Marker trait for the types that are allowed in union fields and unsafe
532/// binder types.
533///
534/// Implemented for:
535/// * `&T`, `&mut T` for all `T`,
536/// * `ManuallyDrop<T>` for all `T`,
537/// * tuples and arrays whose elements implement `BikeshedGuaranteedNoDrop`,
538/// * or otherwise, all types that are `Copy`.
539///
540/// Notably, this doesn't include all trivially-destructible types for semver
541/// reasons.
542///
543/// Bikeshed name for now. This trait does not do anything other than reflect the
544/// set of types that are allowed within unions for field validity.
545#[unstable(feature = "bikeshed_guaranteed_no_drop", issue = "none")]
546#[lang = "bikeshed_guaranteed_no_drop"]
547#[rustc_deny_explicit_impl]
548#[rustc_do_not_implement_via_object]
549#[doc(hidden)]
550#[cfg(not(feature = "ferrocene_certified"))]
551pub trait BikeshedGuaranteedNoDrop {}
552
553/// Types for which it is safe to share references between threads.
554///
555/// This trait is automatically implemented when the compiler determines
556/// it's appropriate.
557///
558/// The precise definition is: a type `T` is [`Sync`] if and only if `&T` is
559/// [`Send`]. In other words, if there is no possibility of
560/// [undefined behavior][ub] (including data races) when passing
561/// `&T` references between threads.
562///
563/// As one would expect, primitive types like [`u8`] and [`f64`]
564/// are all [`Sync`], and so are simple aggregate types containing them,
565/// like tuples, structs and enums. More examples of basic [`Sync`]
566/// types include "immutable" types like `&T`, and those with simple
567/// inherited mutability, such as [`Box<T>`][box], [`Vec<T>`][vec] and
568/// most other collection types. (Generic parameters need to be [`Sync`]
569/// for their container to be [`Sync`].)
570///
571/// A somewhat surprising consequence of the definition is that `&mut T`
572/// is `Sync` (if `T` is `Sync`) even though it seems like that might
573/// provide unsynchronized mutation. The trick is that a mutable
574/// reference behind a shared reference (that is, `& &mut T`)
575/// becomes read-only, as if it were a `& &T`. Hence there is no risk
576/// of a data race.
577///
578/// A shorter overview of how [`Sync`] and [`Send`] relate to referencing:
579/// * `&T` is [`Send`] if and only if `T` is [`Sync`]
580/// * `&mut T` is [`Send`] if and only if `T` is [`Send`]
581/// * `&T` and `&mut T` are [`Sync`] if and only if `T` is [`Sync`]
582///
583/// Types that are not `Sync` are those that have "interior
584/// mutability" in a non-thread-safe form, such as [`Cell`][cell]
585/// and [`RefCell`][refcell]. These types allow for mutation of
586/// their contents even through an immutable, shared reference. For
587/// example the `set` method on [`Cell<T>`][cell] takes `&self`, so it requires
588/// only a shared reference [`&Cell<T>`][cell]. The method performs no
589/// synchronization, thus [`Cell`][cell] cannot be `Sync`.
590///
591/// Another example of a non-`Sync` type is the reference-counting
592/// pointer [`Rc`][rc]. Given any reference [`&Rc<T>`][rc], you can clone
593/// a new [`Rc<T>`][rc], modifying the reference counts in a non-atomic way.
594///
595/// For cases when one does need thread-safe interior mutability,
596/// Rust provides [atomic data types], as well as explicit locking via
597/// [`sync::Mutex`][mutex] and [`sync::RwLock`][rwlock]. These types
598/// ensure that any mutation cannot cause data races, hence the types
599/// are `Sync`. Likewise, [`sync::Arc`][arc] provides a thread-safe
600/// analogue of [`Rc`][rc].
601///
602/// Any types with interior mutability must also use the
603/// [`cell::UnsafeCell`][unsafecell] wrapper around the value(s) which
604/// can be mutated through a shared reference. Failing to doing this is
605/// [undefined behavior][ub]. For example, [`transmute`][transmute]-ing
606/// from `&T` to `&mut T` is invalid.
607///
608/// See [the Nomicon][nomicon-send-and-sync] for more details about `Sync`.
609///
610/// [box]: ../../std/boxed/struct.Box.html
611/// [vec]: ../../std/vec/struct.Vec.html
612/// [cell]: crate::cell::Cell
613/// [refcell]: crate::cell::RefCell
614/// [rc]: ../../std/rc/struct.Rc.html
615/// [arc]: ../../std/sync/struct.Arc.html
616/// [atomic data types]: crate::sync::atomic
617/// [mutex]: ../../std/sync/struct.Mutex.html
618/// [rwlock]: ../../std/sync/struct.RwLock.html
619/// [unsafecell]: crate::cell::UnsafeCell
620/// [ub]: ../../reference/behavior-considered-undefined.html
621/// [transmute]: crate::mem::transmute
622/// [nomicon-send-and-sync]: ../../nomicon/send-and-sync.html
623#[stable(feature = "rust1", since = "1.0.0")]
624#[rustc_diagnostic_item = "Sync"]
625#[lang = "sync"]
626#[rustc_on_unimplemented(
627    on(
628        Self = "core::cell::once::OnceCell<T>",
629        note = "if you want to do aliasing and mutation between multiple threads, use `std::sync::OnceLock` instead"
630    ),
631    on(
632        Self = "core::cell::Cell<u8>",
633        note = "if you want to do aliasing and mutation between multiple threads, use `std::sync::RwLock` or `std::sync::atomic::AtomicU8` instead",
634    ),
635    on(
636        Self = "core::cell::Cell<u16>",
637        note = "if you want to do aliasing and mutation between multiple threads, use `std::sync::RwLock` or `std::sync::atomic::AtomicU16` instead",
638    ),
639    on(
640        Self = "core::cell::Cell<u32>",
641        note = "if you want to do aliasing and mutation between multiple threads, use `std::sync::RwLock` or `std::sync::atomic::AtomicU32` instead",
642    ),
643    on(
644        Self = "core::cell::Cell<u64>",
645        note = "if you want to do aliasing and mutation between multiple threads, use `std::sync::RwLock` or `std::sync::atomic::AtomicU64` instead",
646    ),
647    on(
648        Self = "core::cell::Cell<usize>",
649        note = "if you want to do aliasing and mutation between multiple threads, use `std::sync::RwLock` or `std::sync::atomic::AtomicUsize` instead",
650    ),
651    on(
652        Self = "core::cell::Cell<i8>",
653        note = "if you want to do aliasing and mutation between multiple threads, use `std::sync::RwLock` or `std::sync::atomic::AtomicI8` instead",
654    ),
655    on(
656        Self = "core::cell::Cell<i16>",
657        note = "if you want to do aliasing and mutation between multiple threads, use `std::sync::RwLock` or `std::sync::atomic::AtomicI16` instead",
658    ),
659    on(
660        Self = "core::cell::Cell<i32>",
661        note = "if you want to do aliasing and mutation between multiple threads, use `std::sync::RwLock` or `std::sync::atomic::AtomicI32` instead",
662    ),
663    on(
664        Self = "core::cell::Cell<i64>",
665        note = "if you want to do aliasing and mutation between multiple threads, use `std::sync::RwLock` or `std::sync::atomic::AtomicI64` instead",
666    ),
667    on(
668        Self = "core::cell::Cell<isize>",
669        note = "if you want to do aliasing and mutation between multiple threads, use `std::sync::RwLock` or `std::sync::atomic::AtomicIsize` instead",
670    ),
671    on(
672        Self = "core::cell::Cell<bool>",
673        note = "if you want to do aliasing and mutation between multiple threads, use `std::sync::RwLock` or `std::sync::atomic::AtomicBool` instead",
674    ),
675    on(
676        all(
677            Self = "core::cell::Cell<T>",
678            not(Self = "core::cell::Cell<u8>"),
679            not(Self = "core::cell::Cell<u16>"),
680            not(Self = "core::cell::Cell<u32>"),
681            not(Self = "core::cell::Cell<u64>"),
682            not(Self = "core::cell::Cell<usize>"),
683            not(Self = "core::cell::Cell<i8>"),
684            not(Self = "core::cell::Cell<i16>"),
685            not(Self = "core::cell::Cell<i32>"),
686            not(Self = "core::cell::Cell<i64>"),
687            not(Self = "core::cell::Cell<isize>"),
688            not(Self = "core::cell::Cell<bool>")
689        ),
690        note = "if you want to do aliasing and mutation between multiple threads, use `std::sync::RwLock`",
691    ),
692    on(
693        Self = "core::cell::RefCell<T>",
694        note = "if you want to do aliasing and mutation between multiple threads, use `std::sync::RwLock` instead",
695    ),
696    message = "`{Self}` cannot be shared between threads safely",
697    label = "`{Self}` cannot be shared between threads safely"
698)]
699pub unsafe auto trait Sync {
700    // FIXME(estebank): once support to add notes in `rustc_on_unimplemented`
701    // lands in beta, and it has been extended to check whether a closure is
702    // anywhere in the requirement chain, extend it as such (#48534):
703    // ```
704    // on(
705    //     closure,
706    //     note="`{Self}` cannot be shared safely, consider marking the closure `move`"
707    // ),
708    // ```
709
710    // Empty
711}
712
713#[stable(feature = "rust1", since = "1.0.0")]
714#[cfg(not(feature = "ferrocene_certified"))]
715impl<T: PointeeSized> !Sync for *const T {}
716#[stable(feature = "rust1", since = "1.0.0")]
717#[cfg(not(feature = "ferrocene_certified"))]
718impl<T: PointeeSized> !Sync for *mut T {}
719
720/// Zero-sized type used to mark things that "act like" they own a `T`.
721///
722/// Adding a `PhantomData<T>` field to your type tells the compiler that your
723/// type acts as though it stores a value of type `T`, even though it doesn't
724/// really. This information is used when computing certain safety properties.
725///
726/// For a more in-depth explanation of how to use `PhantomData<T>`, please see
727/// [the Nomicon](../../nomicon/phantom-data.html).
728///
729/// # A ghastly note 👻👻👻
730///
731/// Though they both have scary names, `PhantomData` and 'phantom types' are
732/// related, but not identical. A phantom type parameter is simply a type
733/// parameter which is never used. In Rust, this often causes the compiler to
734/// complain, and the solution is to add a "dummy" use by way of `PhantomData`.
735///
736/// # Examples
737///
738/// ## Unused lifetime parameters
739///
740/// Perhaps the most common use case for `PhantomData` is a struct that has an
741/// unused lifetime parameter, typically as part of some unsafe code. For
742/// example, here is a struct `Slice` that has two pointers of type `*const T`,
743/// presumably pointing into an array somewhere:
744///
745/// ```compile_fail,E0392
746/// struct Slice<'a, T> {
747///     start: *const T,
748///     end: *const T,
749/// }
750/// ```
751///
752/// The intention is that the underlying data is only valid for the
753/// lifetime `'a`, so `Slice` should not outlive `'a`. However, this
754/// intent is not expressed in the code, since there are no uses of
755/// the lifetime `'a` and hence it is not clear what data it applies
756/// to. We can correct this by telling the compiler to act *as if* the
757/// `Slice` struct contained a reference `&'a T`:
758///
759/// ```
760/// use std::marker::PhantomData;
761///
762/// # #[allow(dead_code)]
763/// struct Slice<'a, T> {
764///     start: *const T,
765///     end: *const T,
766///     phantom: PhantomData<&'a T>,
767/// }
768/// ```
769///
770/// This also in turn infers the lifetime bound `T: 'a`, indicating
771/// that any references in `T` are valid over the lifetime `'a`.
772///
773/// When initializing a `Slice` you simply provide the value
774/// `PhantomData` for the field `phantom`:
775///
776/// ```
777/// # #![allow(dead_code)]
778/// # use std::marker::PhantomData;
779/// # struct Slice<'a, T> {
780/// #     start: *const T,
781/// #     end: *const T,
782/// #     phantom: PhantomData<&'a T>,
783/// # }
784/// fn borrow_vec<T>(vec: &Vec<T>) -> Slice<'_, T> {
785///     let ptr = vec.as_ptr();
786///     Slice {
787///         start: ptr,
788///         end: unsafe { ptr.add(vec.len()) },
789///         phantom: PhantomData,
790///     }
791/// }
792/// ```
793///
794/// ## Unused type parameters
795///
796/// It sometimes happens that you have unused type parameters which
797/// indicate what type of data a struct is "tied" to, even though that
798/// data is not actually found in the struct itself. Here is an
799/// example where this arises with [FFI]. The foreign interface uses
800/// handles of type `*mut ()` to refer to Rust values of different
801/// types. We track the Rust type using a phantom type parameter on
802/// the struct `ExternalResource` which wraps a handle.
803///
804/// [FFI]: ../../book/ch19-01-unsafe-rust.html#using-extern-functions-to-call-external-code
805///
806/// ```
807/// # #![allow(dead_code)]
808/// # trait ResType { }
809/// # struct ParamType;
810/// # mod foreign_lib {
811/// #     pub fn new(_: usize) -> *mut () { 42 as *mut () }
812/// #     pub fn do_stuff(_: *mut (), _: usize) {}
813/// # }
814/// # fn convert_params(_: ParamType) -> usize { 42 }
815/// use std::marker::PhantomData;
816///
817/// struct ExternalResource<R> {
818///    resource_handle: *mut (),
819///    resource_type: PhantomData<R>,
820/// }
821///
822/// impl<R: ResType> ExternalResource<R> {
823///     fn new() -> Self {
824///         let size_of_res = size_of::<R>();
825///         Self {
826///             resource_handle: foreign_lib::new(size_of_res),
827///             resource_type: PhantomData,
828///         }
829///     }
830///
831///     fn do_stuff(&self, param: ParamType) {
832///         let foreign_params = convert_params(param);
833///         foreign_lib::do_stuff(self.resource_handle, foreign_params);
834///     }
835/// }
836/// ```
837///
838/// ## Ownership and the drop check
839///
840/// The exact interaction of `PhantomData` with drop check **may change in the future**.
841///
842/// Currently, adding a field of type `PhantomData<T>` indicates that your type *owns* data of type
843/// `T` in very rare circumstances. This in turn has effects on the Rust compiler's [drop check]
844/// analysis. For the exact rules, see the [drop check] documentation.
845///
846/// ## Layout
847///
848/// For all `T`, the following are guaranteed:
849/// * `size_of::<PhantomData<T>>() == 0`
850/// * `align_of::<PhantomData<T>>() == 1`
851///
852/// [drop check]: Drop#drop-check
853#[lang = "phantom_data"]
854#[stable(feature = "rust1", since = "1.0.0")]
855pub struct PhantomData<T: PointeeSized>;
856
857#[stable(feature = "rust1", since = "1.0.0")]
858#[cfg(not(feature = "ferrocene_certified"))]
859impl<T: PointeeSized> Hash for PhantomData<T> {
860    #[inline]
861    fn hash<H: Hasher>(&self, _: &mut H) {}
862}
863
864#[stable(feature = "rust1", since = "1.0.0")]
865#[cfg(not(feature = "ferrocene_certified"))]
866impl<T: PointeeSized> cmp::PartialEq for PhantomData<T> {
867    fn eq(&self, _other: &PhantomData<T>) -> bool {
868        true
869    }
870}
871
872#[stable(feature = "rust1", since = "1.0.0")]
873#[cfg(not(feature = "ferrocene_certified"))]
874impl<T: PointeeSized> cmp::Eq for PhantomData<T> {}
875
876#[stable(feature = "rust1", since = "1.0.0")]
877#[cfg(not(feature = "ferrocene_certified"))]
878impl<T: PointeeSized> cmp::PartialOrd for PhantomData<T> {
879    fn partial_cmp(&self, _other: &PhantomData<T>) -> Option<cmp::Ordering> {
880        Option::Some(cmp::Ordering::Equal)
881    }
882}
883
884#[stable(feature = "rust1", since = "1.0.0")]
885#[cfg(not(feature = "ferrocene_certified"))]
886impl<T: PointeeSized> cmp::Ord for PhantomData<T> {
887    fn cmp(&self, _other: &PhantomData<T>) -> cmp::Ordering {
888        cmp::Ordering::Equal
889    }
890}
891
892#[stable(feature = "rust1", since = "1.0.0")]
893#[cfg(not(feature = "ferrocene_certified"))]
894impl<T: PointeeSized> Copy for PhantomData<T> {}
895
896#[stable(feature = "rust1", since = "1.0.0")]
897#[cfg(not(feature = "ferrocene_certified"))]
898impl<T: PointeeSized> Clone for PhantomData<T> {
899    fn clone(&self) -> Self {
900        Self
901    }
902}
903
904#[stable(feature = "rust1", since = "1.0.0")]
905#[rustc_const_unstable(feature = "const_default", issue = "143894")]
906#[cfg(not(feature = "ferrocene_certified"))]
907impl<T: PointeeSized> const Default for PhantomData<T> {
908    fn default() -> Self {
909        Self
910    }
911}
912
913#[unstable(feature = "structural_match", issue = "31434")]
914#[cfg(not(feature = "ferrocene_certified"))]
915impl<T: PointeeSized> StructuralPartialEq for PhantomData<T> {}
916
917/// Compiler-internal trait used to indicate the type of enum discriminants.
918///
919/// This trait is automatically implemented for every type and does not add any
920/// guarantees to [`mem::Discriminant`]. It is **undefined behavior** to transmute
921/// between `DiscriminantKind::Discriminant` and `mem::Discriminant`.
922///
923/// [`mem::Discriminant`]: crate::mem::Discriminant
924#[unstable(
925    feature = "discriminant_kind",
926    issue = "none",
927    reason = "this trait is unlikely to ever be stabilized, use `mem::discriminant` instead"
928)]
929#[lang = "discriminant_kind"]
930#[rustc_deny_explicit_impl]
931#[rustc_do_not_implement_via_object]
932pub trait DiscriminantKind {
933    /// The type of the discriminant, which must satisfy the trait
934    /// bounds required by `mem::Discriminant`.
935    #[lang = "discriminant_type"]
936    #[cfg(not(feature = "ferrocene_certified"))]
937    type Discriminant: Clone + Copy + Debug + Eq + PartialEq + Hash + Send + Sync + Unpin;
938    /// The type of the discriminant, which must satisfy the trait
939    /// bounds required by `mem::Discriminant`.
940    #[lang = "discriminant_type"]
941    #[cfg(feature = "ferrocene_certified")]
942    type Discriminant: Clone + Copy + Eq + PartialEq + Send + Sync;
943}
944
945/// Used to determine whether a type contains
946/// any `UnsafeCell` internally, but not through an indirection.
947/// This affects, for example, whether a `static` of that type is
948/// placed in read-only static memory or writable static memory.
949/// This can be used to declare that a constant with a generic type
950/// will not contain interior mutability, and subsequently allow
951/// placing the constant behind references.
952///
953/// # Safety
954///
955/// This trait is a core part of the language, it is just expressed as a trait in libcore for
956/// convenience. Do *not* implement it for other types.
957// FIXME: Eventually this trait should become `#[rustc_deny_explicit_impl]`.
958// That requires porting the impls below to native internal impls.
959#[lang = "freeze"]
960#[unstable(feature = "freeze", issue = "121675")]
961pub unsafe auto trait Freeze {}
962
963#[unstable(feature = "freeze", issue = "121675")]
964#[cfg(not(feature = "ferrocene_certified"))]
965impl<T: PointeeSized> !Freeze for UnsafeCell<T> {}
966marker_impls! {
967    #[unstable(feature = "freeze", issue = "121675")]
968    unsafe Freeze for
969        {T: PointeeSized} PhantomData<T>,
970        {T: PointeeSized} *const T,
971        {T: PointeeSized} *mut T,
972        {T: PointeeSized} &T,
973        {T: PointeeSized} &mut T,
974}
975
976/// Used to determine whether a type contains any `UnsafePinned` (or `PhantomPinned`) internally,
977/// but not through an indirection. This affects, for example, whether we emit `noalias` metadata
978/// for `&mut T` or not.
979///
980/// This is part of [RFC 3467](https://rust-lang.github.io/rfcs/3467-unsafe-pinned.html), and is
981/// tracked by [#125735](https://github.com/rust-lang/rust/issues/125735).
982#[lang = "unsafe_unpin"]
983#[cfg(not(feature = "ferrocene_certified"))]
984pub(crate) unsafe auto trait UnsafeUnpin {}
985
986#[cfg(not(feature = "ferrocene_certified"))]
987impl<T: ?Sized> !UnsafeUnpin for UnsafePinned<T> {}
988#[cfg(not(feature = "ferrocene_certified"))]
989unsafe impl<T: ?Sized> UnsafeUnpin for PhantomData<T> {}
990#[cfg(not(feature = "ferrocene_certified"))]
991unsafe impl<T: ?Sized> UnsafeUnpin for *const T {}
992#[cfg(not(feature = "ferrocene_certified"))]
993unsafe impl<T: ?Sized> UnsafeUnpin for *mut T {}
994#[cfg(not(feature = "ferrocene_certified"))]
995unsafe impl<T: ?Sized> UnsafeUnpin for &T {}
996#[cfg(not(feature = "ferrocene_certified"))]
997unsafe impl<T: ?Sized> UnsafeUnpin for &mut T {}
998
999/// Types that do not require any pinning guarantees.
1000///
1001/// For information on what "pinning" is, see the [`pin` module] documentation.
1002///
1003/// Implementing the `Unpin` trait for `T` expresses the fact that `T` is pinning-agnostic:
1004/// it shall not expose nor rely on any pinning guarantees. This, in turn, means that a
1005/// `Pin`-wrapped pointer to such a type can feature a *fully unrestricted* API.
1006/// In other words, if `T: Unpin`, a value of type `T` will *not* be bound by the invariants
1007/// which pinning otherwise offers, even when "pinned" by a [`Pin<Ptr>`] pointing at it.
1008/// When a value of type `T` is pointed at by a [`Pin<Ptr>`], [`Pin`] will not restrict access
1009/// to the pointee value like it normally would, thus allowing the user to do anything that they
1010/// normally could with a non-[`Pin`]-wrapped `Ptr` to that value.
1011///
1012/// The idea of this trait is to alleviate the reduced ergonomics of APIs that require the use
1013/// of [`Pin`] for soundness for some types, but which also want to be used by other types that
1014/// don't care about pinning. The prime example of such an API is [`Future::poll`]. There are many
1015/// [`Future`] types that don't care about pinning. These futures can implement `Unpin` and
1016/// therefore get around the pinning related restrictions in the API, while still allowing the
1017/// subset of [`Future`]s which *do* require pinning to be implemented soundly.
1018///
1019/// For more discussion on the consequences of [`Unpin`] within the wider scope of the pinning
1020/// system, see the [section about `Unpin`] in the [`pin` module].
1021///
1022/// `Unpin` has no consequence at all for non-pinned data. In particular, [`mem::replace`] happily
1023/// moves `!Unpin` data, which would be immovable when pinned ([`mem::replace`] works for any
1024/// `&mut T`, not just when `T: Unpin`).
1025///
1026/// *However*, you cannot use [`mem::replace`] on `!Unpin` data which is *pinned* by being wrapped
1027/// inside a [`Pin<Ptr>`] pointing at it. This is because you cannot (safely) use a
1028/// [`Pin<Ptr>`] to get a `&mut T` to its pointee value, which you would need to call
1029/// [`mem::replace`], and *that* is what makes this system work.
1030///
1031/// So this, for example, can only be done on types implementing `Unpin`:
1032///
1033/// ```rust
1034/// # #![allow(unused_must_use)]
1035/// use std::mem;
1036/// use std::pin::Pin;
1037///
1038/// let mut string = "this".to_string();
1039/// let mut pinned_string = Pin::new(&mut string);
1040///
1041/// // We need a mutable reference to call `mem::replace`.
1042/// // We can obtain such a reference by (implicitly) invoking `Pin::deref_mut`,
1043/// // but that is only possible because `String` implements `Unpin`.
1044/// mem::replace(&mut *pinned_string, "other".to_string());
1045/// ```
1046///
1047/// This trait is automatically implemented for almost every type. The compiler is free
1048/// to take the conservative stance of marking types as [`Unpin`] so long as all of the types that
1049/// compose its fields are also [`Unpin`]. This is because if a type implements [`Unpin`], then it
1050/// is unsound for that type's implementation to rely on pinning-related guarantees for soundness,
1051/// *even* when viewed through a "pinning" pointer! It is the responsibility of the implementor of
1052/// a type that relies upon pinning for soundness to ensure that type is *not* marked as [`Unpin`]
1053/// by adding [`PhantomPinned`] field. For more details, see the [`pin` module] docs.
1054///
1055/// [`mem::replace`]: crate::mem::replace "mem replace"
1056/// [`Future`]: crate::future::Future "Future"
1057/// [`Future::poll`]: crate::future::Future::poll "Future poll"
1058/// [`Pin`]: crate::pin::Pin "Pin"
1059/// [`Pin<Ptr>`]: crate::pin::Pin "Pin"
1060/// [`pin` module]: crate::pin "pin module"
1061/// [section about `Unpin`]: crate::pin#unpin "pin module docs about unpin"
1062/// [`unsafe`]: ../../std/keyword.unsafe.html "keyword unsafe"
1063#[stable(feature = "pin", since = "1.33.0")]
1064#[diagnostic::on_unimplemented(
1065    note = "consider using the `pin!` macro\nconsider using `Box::pin` if you need to access the pinned value outside of the current scope",
1066    message = "`{Self}` cannot be unpinned"
1067)]
1068#[lang = "unpin"]
1069#[cfg(not(feature = "ferrocene_certified"))]
1070pub auto trait Unpin {}
1071
1072/// A marker type which does not implement `Unpin`.
1073///
1074/// If a type contains a `PhantomPinned`, it will not implement `Unpin` by default.
1075//
1076// FIXME(unsafe_pinned): This is *not* a stable guarantee we want to make, at least not yet.
1077// Note that for backwards compatibility with the new [`UnsafePinned`] wrapper type, placing this
1078// marker in your struct acts as if you wrapped the entire struct in an `UnsafePinned`. This type
1079// will likely eventually be deprecated, and all new code should be using `UnsafePinned` instead.
1080#[stable(feature = "pin", since = "1.33.0")]
1081#[derive(Debug, Default, Copy, Clone, Eq, PartialEq, Ord, PartialOrd, Hash)]
1082#[cfg(not(feature = "ferrocene_certified"))]
1083pub struct PhantomPinned;
1084
1085#[stable(feature = "pin", since = "1.33.0")]
1086#[cfg(not(feature = "ferrocene_certified"))]
1087impl !Unpin for PhantomPinned {}
1088
1089// This is a small hack to allow existing code which uses PhantomPinned to opt-out of noalias to
1090// continue working. Ideally PhantomPinned could just wrap an `UnsafePinned<()>` to get the same
1091// effect, but we can't add a new field to an already stable unit struct -- that would be a breaking
1092// change.
1093#[cfg(not(feature = "ferrocene_certified"))]
1094impl !UnsafeUnpin for PhantomPinned {}
1095
1096#[cfg(not(feature = "ferrocene_certified"))]
1097marker_impls! {
1098    #[stable(feature = "pin", since = "1.33.0")]
1099    Unpin for
1100        {T: PointeeSized} &T,
1101        {T: PointeeSized} &mut T,
1102}
1103
1104#[cfg(not(feature = "ferrocene_certified"))]
1105marker_impls! {
1106    #[stable(feature = "pin_raw", since = "1.38.0")]
1107    Unpin for
1108        {T: PointeeSized} *const T,
1109        {T: PointeeSized} *mut T,
1110}
1111
1112/// A marker for types that can be dropped.
1113///
1114/// This should be used for `~const` bounds,
1115/// as non-const bounds will always hold for every type.
1116#[unstable(feature = "const_destruct", issue = "133214")]
1117#[rustc_const_unstable(feature = "const_destruct", issue = "133214")]
1118#[lang = "destruct"]
1119#[rustc_on_unimplemented(message = "can't drop `{Self}`", append_const_msg)]
1120#[rustc_deny_explicit_impl]
1121#[rustc_do_not_implement_via_object]
1122#[const_trait]
1123pub trait Destruct {}
1124
1125/// A marker for tuple types.
1126///
1127/// The implementation of this trait is built-in and cannot be implemented
1128/// for any user type.
1129#[unstable(feature = "tuple_trait", issue = "none")]
1130#[lang = "tuple_trait"]
1131#[diagnostic::on_unimplemented(message = "`{Self}` is not a tuple")]
1132#[rustc_deny_explicit_impl]
1133#[rustc_do_not_implement_via_object]
1134pub trait Tuple {}
1135
1136/// A marker for types which can be used as types of `const` generic parameters.
1137///
1138/// These types must have a proper equivalence relation (`Eq`) and it must be automatically
1139/// derived (`StructuralPartialEq`). There's a hard-coded check in the compiler ensuring
1140/// that all fields are also `ConstParamTy`, which implies that recursively, all fields
1141/// are `StructuralPartialEq`.
1142#[lang = "const_param_ty"]
1143#[unstable(feature = "unsized_const_params", issue = "95174")]
1144#[diagnostic::on_unimplemented(message = "`{Self}` can't be used as a const parameter type")]
1145#[allow(multiple_supertrait_upcastable)]
1146// We name this differently than the derive macro so that the `adt_const_params` can
1147// be used independently of `unsized_const_params` without requiring a full path
1148// to the derive macro every time it is used. This should be renamed on stabilization.
1149pub trait ConstParamTy_: UnsizedConstParamTy + StructuralPartialEq + Eq {}
1150
1151/// Derive macro generating an impl of the trait `ConstParamTy`.
1152#[rustc_builtin_macro]
1153#[allow_internal_unstable(unsized_const_params)]
1154#[unstable(feature = "adt_const_params", issue = "95174")]
1155pub macro ConstParamTy($item:item) {
1156    /* compiler built-in */
1157}
1158
1159#[lang = "unsized_const_param_ty"]
1160#[unstable(feature = "unsized_const_params", issue = "95174")]
1161#[diagnostic::on_unimplemented(message = "`{Self}` can't be used as a const parameter type")]
1162/// A marker for types which can be used as types of `const` generic parameters.
1163///
1164/// Equivalent to [`ConstParamTy_`] except that this is used by
1165/// the `unsized_const_params` to allow for fake unstable impls.
1166pub trait UnsizedConstParamTy: StructuralPartialEq + Eq {}
1167
1168/// Derive macro generating an impl of the trait `ConstParamTy`.
1169#[rustc_builtin_macro]
1170#[allow_internal_unstable(unsized_const_params)]
1171#[unstable(feature = "unsized_const_params", issue = "95174")]
1172#[cfg(not(feature = "ferrocene_certified"))]
1173pub macro UnsizedConstParamTy($item:item) {
1174    /* compiler built-in */
1175}
1176
1177// FIXME(adt_const_params): handle `ty::FnDef`/`ty::Closure`
1178#[cfg(not(feature = "ferrocene_certified"))]
1179marker_impls! {
1180    #[unstable(feature = "adt_const_params", issue = "95174")]
1181    ConstParamTy_ for
1182        usize, u8, u16, u32, u64, u128,
1183        isize, i8, i16, i32, i64, i128,
1184        bool,
1185        char,
1186        (),
1187        {T: ConstParamTy_, const N: usize} [T; N],
1188}
1189
1190#[cfg(feature = "ferrocene_certified")]
1191marker_impls! {
1192    #[unstable(feature = "adt_const_params", issue = "95174")]
1193    ConstParamTy_ for
1194        usize
1195}
1196
1197#[cfg(not(feature = "ferrocene_certified"))]
1198marker_impls! {
1199    #[unstable(feature = "unsized_const_params", issue = "95174")]
1200    UnsizedConstParamTy for
1201        usize, u8, u16, u32, u64, u128,
1202        isize, i8, i16, i32, i64, i128,
1203        bool,
1204        char,
1205        (),
1206        {T: UnsizedConstParamTy, const N: usize} [T; N],
1207
1208        str,
1209        {T: UnsizedConstParamTy} [T],
1210        {T: UnsizedConstParamTy + ?Sized} &T,
1211}
1212
1213#[cfg(feature = "ferrocene_certified")]
1214marker_impls! {
1215    #[unstable(feature = "adt_const_params", issue = "95174")]
1216    UnsizedConstParamTy for
1217        usize
1218}
1219
1220/// A common trait implemented by all function pointers.
1221//
1222// Note that while the trait is internal and unstable it is nevertheless
1223// exposed as a public bound of the stable `core::ptr::fn_addr_eq` function.
1224#[unstable(
1225    feature = "fn_ptr_trait",
1226    issue = "none",
1227    reason = "internal trait for implementing various traits for all function pointers"
1228)]
1229#[lang = "fn_ptr_trait"]
1230#[rustc_deny_explicit_impl]
1231#[rustc_do_not_implement_via_object]
1232#[cfg(not(feature = "ferrocene_certified"))]
1233pub trait FnPtr: Copy + Clone {
1234    /// Returns the address of the function pointer.
1235    #[lang = "fn_ptr_addr"]
1236    fn addr(self) -> *const ();
1237}
1238
1239/// Derive macro that makes a smart pointer usable with trait objects.
1240///
1241/// # What this macro does
1242///
1243/// This macro is intended to be used with user-defined pointer types, and makes it possible to
1244/// perform coercions on the pointee of the user-defined pointer. There are two aspects to this:
1245///
1246/// ## Unsizing coercions of the pointee
1247///
1248/// By using the macro, the following example will compile:
1249/// ```
1250/// #![feature(derive_coerce_pointee)]
1251/// use std::marker::CoercePointee;
1252/// use std::ops::Deref;
1253///
1254/// #[derive(CoercePointee)]
1255/// #[repr(transparent)]
1256/// struct MySmartPointer<T: ?Sized>(Box<T>);
1257///
1258/// impl<T: ?Sized> Deref for MySmartPointer<T> {
1259///     type Target = T;
1260///     fn deref(&self) -> &T {
1261///         &self.0
1262///     }
1263/// }
1264///
1265/// trait MyTrait {}
1266///
1267/// impl MyTrait for i32 {}
1268///
1269/// fn main() {
1270///     let ptr: MySmartPointer<i32> = MySmartPointer(Box::new(4));
1271///
1272///     // This coercion would be an error without the derive.
1273///     let ptr: MySmartPointer<dyn MyTrait> = ptr;
1274/// }
1275/// ```
1276/// Without the `#[derive(CoercePointee)]` macro, this example would fail with the following error:
1277/// ```text
1278/// error[E0308]: mismatched types
1279///   --> src/main.rs:11:44
1280///    |
1281/// 11 |     let ptr: MySmartPointer<dyn MyTrait> = ptr;
1282///    |              ---------------------------   ^^^ expected `MySmartPointer<dyn MyTrait>`, found `MySmartPointer<i32>`
1283///    |              |
1284///    |              expected due to this
1285///    |
1286///    = note: expected struct `MySmartPointer<dyn MyTrait>`
1287///               found struct `MySmartPointer<i32>`
1288///    = help: `i32` implements `MyTrait` so you could box the found value and coerce it to the trait object `Box<dyn MyTrait>`, you will have to change the expected type as well
1289/// ```
1290///
1291/// ## Dyn compatibility
1292///
1293/// This macro allows you to dispatch on the user-defined pointer type. That is, traits using the
1294/// type as a receiver are dyn-compatible. For example, this compiles:
1295///
1296/// ```
1297/// #![feature(arbitrary_self_types, derive_coerce_pointee)]
1298/// use std::marker::CoercePointee;
1299/// use std::ops::Deref;
1300///
1301/// #[derive(CoercePointee)]
1302/// #[repr(transparent)]
1303/// struct MySmartPointer<T: ?Sized>(Box<T>);
1304///
1305/// impl<T: ?Sized> Deref for MySmartPointer<T> {
1306///     type Target = T;
1307///     fn deref(&self) -> &T {
1308///         &self.0
1309///     }
1310/// }
1311///
1312/// // You can always define this trait. (as long as you have #![feature(arbitrary_self_types)])
1313/// trait MyTrait {
1314///     fn func(self: MySmartPointer<Self>);
1315/// }
1316///
1317/// // But using `dyn MyTrait` requires #[derive(CoercePointee)].
1318/// fn call_func(value: MySmartPointer<dyn MyTrait>) {
1319///     value.func();
1320/// }
1321/// ```
1322/// If you remove the `#[derive(CoercePointee)]` annotation from the struct, then the above example
1323/// will fail with this error message:
1324/// ```text
1325/// error[E0038]: the trait `MyTrait` is not dyn compatible
1326///   --> src/lib.rs:21:36
1327///    |
1328/// 17 |     fn func(self: MySmartPointer<Self>);
1329///    |                   -------------------- help: consider changing method `func`'s `self` parameter to be `&self`: `&Self`
1330/// ...
1331/// 21 | fn call_func(value: MySmartPointer<dyn MyTrait>) {
1332///    |                                    ^^^^^^^^^^^ `MyTrait` is not dyn compatible
1333///    |
1334/// note: for a trait to be dyn compatible it needs to allow building a vtable
1335///       for more information, visit <https://doc.rust-lang.org/reference/items/traits.html#object-safety>
1336///   --> src/lib.rs:17:19
1337///    |
1338/// 16 | trait MyTrait {
1339///    |       ------- this trait is not dyn compatible...
1340/// 17 |     fn func(self: MySmartPointer<Self>);
1341///    |                   ^^^^^^^^^^^^^^^^^^^^ ...because method `func`'s `self` parameter cannot be dispatched on
1342/// ```
1343///
1344/// # Requirements for using the macro
1345///
1346/// This macro can only be used if:
1347/// * The type is a `#[repr(transparent)]` struct.
1348/// * The type of its non-zero-sized field must either be a standard library pointer type
1349///   (reference, raw pointer, `NonNull`, `Box`, `Rc`, `Arc`, etc.) or another user-defined type
1350///   also using the `#[derive(CoercePointee)]` macro.
1351/// * Zero-sized fields must not mention any generic parameters unless the zero-sized field has
1352///   type [`PhantomData`].
1353///
1354/// ## Multiple type parameters
1355///
1356/// If the type has multiple type parameters, then you must explicitly specify which one should be
1357/// used for dynamic dispatch. For example:
1358/// ```
1359/// # #![feature(derive_coerce_pointee)]
1360/// # use std::marker::{CoercePointee, PhantomData};
1361/// #[derive(CoercePointee)]
1362/// #[repr(transparent)]
1363/// struct MySmartPointer<#[pointee] T: ?Sized, U> {
1364///     ptr: Box<T>,
1365///     _phantom: PhantomData<U>,
1366/// }
1367/// ```
1368/// Specifying `#[pointee]` when the struct has only one type parameter is allowed, but not required.
1369///
1370/// # Examples
1371///
1372/// A custom implementation of the `Rc` type:
1373/// ```
1374/// #![feature(derive_coerce_pointee)]
1375/// use std::marker::CoercePointee;
1376/// use std::ops::Deref;
1377/// use std::ptr::NonNull;
1378///
1379/// #[derive(CoercePointee)]
1380/// #[repr(transparent)]
1381/// pub struct Rc<T: ?Sized> {
1382///     inner: NonNull<RcInner<T>>,
1383/// }
1384///
1385/// struct RcInner<T: ?Sized> {
1386///     refcount: usize,
1387///     value: T,
1388/// }
1389///
1390/// impl<T: ?Sized> Deref for Rc<T> {
1391///     type Target = T;
1392///     fn deref(&self) -> &T {
1393///         let ptr = self.inner.as_ptr();
1394///         unsafe { &(*ptr).value }
1395///     }
1396/// }
1397///
1398/// impl<T> Rc<T> {
1399///     pub fn new(value: T) -> Self {
1400///         let inner = Box::new(RcInner {
1401///             refcount: 1,
1402///             value,
1403///         });
1404///         Self {
1405///             inner: NonNull::from(Box::leak(inner)),
1406///         }
1407///     }
1408/// }
1409///
1410/// impl<T: ?Sized> Clone for Rc<T> {
1411///     fn clone(&self) -> Self {
1412///         // A real implementation would handle overflow here.
1413///         unsafe { (*self.inner.as_ptr()).refcount += 1 };
1414///         Self { inner: self.inner }
1415///     }
1416/// }
1417///
1418/// impl<T: ?Sized> Drop for Rc<T> {
1419///     fn drop(&mut self) {
1420///         let ptr = self.inner.as_ptr();
1421///         unsafe { (*ptr).refcount -= 1 };
1422///         if unsafe { (*ptr).refcount } == 0 {
1423///             drop(unsafe { Box::from_raw(ptr) });
1424///         }
1425///     }
1426/// }
1427/// ```
1428#[rustc_builtin_macro(CoercePointee, attributes(pointee))]
1429#[allow_internal_unstable(dispatch_from_dyn, coerce_unsized, unsize, coerce_pointee_validated)]
1430#[rustc_diagnostic_item = "CoercePointee"]
1431#[unstable(feature = "derive_coerce_pointee", issue = "123430")]
1432#[cfg(not(feature = "ferrocene_certified"))]
1433pub macro CoercePointee($item:item) {
1434    /* compiler built-in */
1435}
1436
1437/// A trait that is implemented for ADTs with `derive(CoercePointee)` so that
1438/// the compiler can enforce the derive impls are valid post-expansion, since
1439/// the derive has stricter requirements than if the impls were written by hand.
1440///
1441/// This trait is not intended to be implemented by users or used other than
1442/// validation, so it should never be stabilized.
1443#[lang = "coerce_pointee_validated"]
1444#[unstable(feature = "coerce_pointee_validated", issue = "none")]
1445#[doc(hidden)]
1446#[cfg(not(feature = "ferrocene_certified"))]
1447pub trait CoercePointeeValidated {
1448    /* compiler built-in */
1449}