core/mem/
maybe_uninit.rs

1#[cfg(not(feature = "ferrocene_certified"))]
2use crate::any::type_name;
3use crate::marker::Destruct;
4use crate::mem::ManuallyDrop;
5#[cfg(not(feature = "ferrocene_certified"))]
6use crate::{fmt, intrinsics, ptr, slice};
7
8// Ferrocene addition: imports for certified subset
9#[cfg(feature = "ferrocene_certified")]
10#[rustfmt::skip]
11use crate::{intrinsics, ptr, slice};
12
13/// A wrapper type to construct uninitialized instances of `T`.
14///
15/// # Initialization invariant
16///
17/// The compiler, in general, assumes that a variable is properly initialized
18/// according to the requirements of the variable's type. For example, a variable of
19/// reference type must be aligned and non-null. This is an invariant that must
20/// *always* be upheld, even in unsafe code. As a consequence, zero-initializing a
21/// variable of reference type causes instantaneous [undefined behavior][ub],
22/// no matter whether that reference ever gets used to access memory:
23///
24/// ```rust,no_run
25/// # #![allow(invalid_value)]
26/// use std::mem::{self, MaybeUninit};
27///
28/// let x: &i32 = unsafe { mem::zeroed() }; // undefined behavior! ⚠️
29/// // The equivalent code with `MaybeUninit<&i32>`:
30/// let x: &i32 = unsafe { MaybeUninit::zeroed().assume_init() }; // undefined behavior! ⚠️
31/// ```
32///
33/// This is exploited by the compiler for various optimizations, such as eliding
34/// run-time checks and optimizing `enum` layout.
35///
36/// Similarly, entirely uninitialized memory may have any content, while a `bool` must
37/// always be `true` or `false`. Hence, creating an uninitialized `bool` is undefined behavior:
38///
39/// ```rust,no_run
40/// # #![allow(invalid_value)]
41/// use std::mem::{self, MaybeUninit};
42///
43/// let b: bool = unsafe { mem::uninitialized() }; // undefined behavior! ⚠️
44/// // The equivalent code with `MaybeUninit<bool>`:
45/// let b: bool = unsafe { MaybeUninit::uninit().assume_init() }; // undefined behavior! ⚠️
46/// ```
47///
48/// Moreover, uninitialized memory is special in that it does not have a fixed value ("fixed"
49/// meaning "it won't change without being written to"). Reading the same uninitialized byte
50/// multiple times can give different results. This makes it undefined behavior to have
51/// uninitialized data in a variable even if that variable has an integer type, which otherwise can
52/// hold any *fixed* bit pattern:
53///
54/// ```rust,no_run
55/// # #![allow(invalid_value)]
56/// use std::mem::{self, MaybeUninit};
57///
58/// let x: i32 = unsafe { mem::uninitialized() }; // undefined behavior! ⚠️
59/// // The equivalent code with `MaybeUninit<i32>`:
60/// let x: i32 = unsafe { MaybeUninit::uninit().assume_init() }; // undefined behavior! ⚠️
61/// ```
62/// On top of that, remember that most types have additional invariants beyond merely
63/// being considered initialized at the type level. For example, a `1`-initialized [`Vec<T>`]
64/// is considered initialized (under the current implementation; this does not constitute
65/// a stable guarantee) because the only requirement the compiler knows about it
66/// is that the data pointer must be non-null. Creating such a `Vec<T>` does not cause
67/// *immediate* undefined behavior, but will cause undefined behavior with most
68/// safe operations (including dropping it).
69///
70/// [`Vec<T>`]: ../../std/vec/struct.Vec.html
71///
72/// # Examples
73///
74/// `MaybeUninit<T>` serves to enable unsafe code to deal with uninitialized data.
75/// It is a signal to the compiler indicating that the data here might *not*
76/// be initialized:
77///
78/// ```rust
79/// use std::mem::MaybeUninit;
80///
81/// // Create an explicitly uninitialized reference. The compiler knows that data inside
82/// // a `MaybeUninit<T>` may be invalid, and hence this is not UB:
83/// let mut x = MaybeUninit::<&i32>::uninit();
84/// // Set it to a valid value.
85/// x.write(&0);
86/// // Extract the initialized data -- this is only allowed *after* properly
87/// // initializing `x`!
88/// let x = unsafe { x.assume_init() };
89/// ```
90///
91/// The compiler then knows to not make any incorrect assumptions or optimizations on this code.
92///
93/// You can think of `MaybeUninit<T>` as being a bit like `Option<T>` but without
94/// any of the run-time tracking and without any of the safety checks.
95///
96/// ## out-pointers
97///
98/// You can use `MaybeUninit<T>` to implement "out-pointers": instead of returning data
99/// from a function, pass it a pointer to some (uninitialized) memory to put the
100/// result into. This can be useful when it is important for the caller to control
101/// how the memory the result is stored in gets allocated, and you want to avoid
102/// unnecessary moves.
103///
104/// ```
105/// use std::mem::MaybeUninit;
106///
107/// unsafe fn make_vec(out: *mut Vec<i32>) {
108///     // `write` does not drop the old contents, which is important.
109///     unsafe { out.write(vec![1, 2, 3]); }
110/// }
111///
112/// let mut v = MaybeUninit::uninit();
113/// unsafe { make_vec(v.as_mut_ptr()); }
114/// // Now we know `v` is initialized! This also makes sure the vector gets
115/// // properly dropped.
116/// let v = unsafe { v.assume_init() };
117/// assert_eq!(&v, &[1, 2, 3]);
118/// ```
119///
120/// ## Initializing an array element-by-element
121///
122/// `MaybeUninit<T>` can be used to initialize a large array element-by-element:
123///
124/// ```
125/// use std::mem::{self, MaybeUninit};
126///
127/// let data = {
128///     // Create an uninitialized array of `MaybeUninit`.
129///     let mut data: [MaybeUninit<Vec<u32>>; 1000] = [const { MaybeUninit::uninit() }; 1000];
130///
131///     // Dropping a `MaybeUninit` does nothing, so if there is a panic during this loop,
132///     // we have a memory leak, but there is no memory safety issue.
133///     for elem in &mut data[..] {
134///         elem.write(vec![42]);
135///     }
136///
137///     // Everything is initialized. Transmute the array to the
138///     // initialized type.
139///     unsafe { mem::transmute::<_, [Vec<u32>; 1000]>(data) }
140/// };
141///
142/// assert_eq!(&data[0], &[42]);
143/// ```
144///
145/// You can also work with partially initialized arrays, which could
146/// be found in low-level datastructures.
147///
148/// ```
149/// use std::mem::MaybeUninit;
150///
151/// // Create an uninitialized array of `MaybeUninit`.
152/// let mut data: [MaybeUninit<String>; 1000] = [const { MaybeUninit::uninit() }; 1000];
153/// // Count the number of elements we have assigned.
154/// let mut data_len: usize = 0;
155///
156/// for elem in &mut data[0..500] {
157///     elem.write(String::from("hello"));
158///     data_len += 1;
159/// }
160///
161/// // For each item in the array, drop if we allocated it.
162/// for elem in &mut data[0..data_len] {
163///     unsafe { elem.assume_init_drop(); }
164/// }
165/// ```
166///
167/// ## Initializing a struct field-by-field
168///
169/// You can use `MaybeUninit<T>`, and the [`std::ptr::addr_of_mut`] macro, to initialize structs field by field:
170///
171/// ```rust
172/// use std::mem::MaybeUninit;
173/// use std::ptr::addr_of_mut;
174///
175/// #[derive(Debug, PartialEq)]
176/// pub struct Foo {
177///     name: String,
178///     list: Vec<u8>,
179/// }
180///
181/// let foo = {
182///     let mut uninit: MaybeUninit<Foo> = MaybeUninit::uninit();
183///     let ptr = uninit.as_mut_ptr();
184///
185///     // Initializing the `name` field
186///     // Using `write` instead of assignment via `=` to not call `drop` on the
187///     // old, uninitialized value.
188///     unsafe { addr_of_mut!((*ptr).name).write("Bob".to_string()); }
189///
190///     // Initializing the `list` field
191///     // If there is a panic here, then the `String` in the `name` field leaks.
192///     unsafe { addr_of_mut!((*ptr).list).write(vec![0, 1, 2]); }
193///
194///     // All the fields are initialized, so we call `assume_init` to get an initialized Foo.
195///     unsafe { uninit.assume_init() }
196/// };
197///
198/// assert_eq!(
199///     foo,
200///     Foo {
201///         name: "Bob".to_string(),
202///         list: vec![0, 1, 2]
203///     }
204/// );
205/// ```
206/// [`std::ptr::addr_of_mut`]: crate::ptr::addr_of_mut
207/// [ub]: ../../reference/behavior-considered-undefined.html
208///
209/// # Layout
210///
211/// `MaybeUninit<T>` is guaranteed to have the same size, alignment, and ABI as `T`:
212///
213/// ```rust
214/// use std::mem::MaybeUninit;
215/// assert_eq!(size_of::<MaybeUninit<u64>>(), size_of::<u64>());
216/// assert_eq!(align_of::<MaybeUninit<u64>>(), align_of::<u64>());
217/// ```
218///
219/// However remember that a type *containing* a `MaybeUninit<T>` is not necessarily the same
220/// layout; Rust does not in general guarantee that the fields of a `Foo<T>` have the same order as
221/// a `Foo<U>` even if `T` and `U` have the same size and alignment. Furthermore because any bit
222/// value is valid for a `MaybeUninit<T>` the compiler can't apply non-zero/niche-filling
223/// optimizations, potentially resulting in a larger size:
224///
225/// ```rust
226/// # use std::mem::MaybeUninit;
227/// assert_eq!(size_of::<Option<bool>>(), 1);
228/// assert_eq!(size_of::<Option<MaybeUninit<bool>>>(), 2);
229/// ```
230///
231/// If `T` is FFI-safe, then so is `MaybeUninit<T>`.
232///
233/// While `MaybeUninit` is `#[repr(transparent)]` (indicating it guarantees the same size,
234/// alignment, and ABI as `T`), this does *not* change any of the previous caveats. `Option<T>` and
235/// `Option<MaybeUninit<T>>` may still have different sizes, and types containing a field of type
236/// `T` may be laid out (and sized) differently than if that field were `MaybeUninit<T>`.
237/// `MaybeUninit` is a union type, and `#[repr(transparent)]` on unions is unstable (see [the
238/// tracking issue](https://github.com/rust-lang/rust/issues/60405)). Over time, the exact
239/// guarantees of `#[repr(transparent)]` on unions may evolve, and `MaybeUninit` may or may not
240/// remain `#[repr(transparent)]`. That said, `MaybeUninit<T>` will *always* guarantee that it has
241/// the same size, alignment, and ABI as `T`; it's just that the way `MaybeUninit` implements that
242/// guarantee may evolve.
243///
244/// Note that even though `T` and `MaybeUninit<T>` are ABI compatible it is still unsound to
245/// transmute `&mut T` to `&mut MaybeUninit<T>` and expose that to safe code because it would allow
246/// safe code to access uninitialized memory:
247///
248/// ```rust,no_run
249/// use core::mem::MaybeUninit;
250///
251/// fn unsound_transmute<T>(val: &mut T) -> &mut MaybeUninit<T> {
252///     unsafe { core::mem::transmute(val) }
253/// }
254///
255/// fn main() {
256///     let mut code = 0;
257///     let code = &mut code;
258///     let code2 = unsound_transmute(code);
259///     *code2 = MaybeUninit::uninit();
260///     std::process::exit(*code); // UB! Accessing uninitialized memory.
261/// }
262/// ```
263///
264/// # Validity
265///
266/// `MaybeUninit<T>` has no validity requirements –- any sequence of [bytes] of
267/// the appropriate length, initialized or uninitialized, are a valid
268/// representation.
269///
270/// Moving or copying a value of type `MaybeUninit<T>` (i.e., performing a
271/// "typed copy") will exactly preserve the contents, including the
272/// [provenance], of all non-padding bytes of type `T` in the value's
273/// representation.
274///
275/// Therefore `MaybeUninit` can be used to perform a round trip of a value from
276/// type `T` to type `MaybeUninit<U>` then back to type `T`, while preserving
277/// the original value, if two conditions are met. One, type `U` must have the
278/// same size as type `T`. Two, for all byte offsets where type `U` has padding,
279/// the corresponding bytes in the representation of the value must be
280/// uninitialized.
281///
282/// For example, due to the fact that the type `[u8; size_of::<T>]` has no
283/// padding, the following is sound for any type `T` and will return the
284/// original value:
285///
286/// ```rust,no_run
287/// # use core::mem::{MaybeUninit, transmute};
288/// # struct T;
289/// fn identity(t: T) -> T {
290///     unsafe {
291///         let u: MaybeUninit<[u8; size_of::<T>()]> = transmute(t);
292///         transmute(u) // OK.
293///     }
294/// }
295/// ```
296///
297/// Note: Copying a value that contains references may implicitly reborrow them
298/// causing the provenance of the returned value to differ from that of the
299/// original. This applies equally to the trivial identity function:
300///
301/// ```rust,no_run
302/// fn trivial_identity<T>(t: T) -> T { t }
303/// ```
304///
305/// Note: Moving or copying a value whose representation has initialized bytes
306/// at byte offsets where the type has padding may lose the value of those
307/// bytes, so while the original value will be preserved, the original
308/// *representation* of that value as bytes may not be. Again, this applies
309/// equally to `trivial_identity`.
310///
311/// Note: Performing this round trip when type `U` has padding at byte offsets
312/// where the representation of the original value has initialized bytes may
313/// produce undefined behavior or a different value. For example, the following
314/// is unsound since `T` requires all bytes to be initialized:
315///
316/// ```rust,no_run
317/// # use core::mem::{MaybeUninit, transmute};
318/// #[repr(C)] struct T([u8; 4]);
319/// #[repr(C)] struct U(u8, u16);
320/// fn unsound_identity(t: T) -> T {
321///     unsafe {
322///         let u: MaybeUninit<U> = transmute(t);
323///         transmute(u) // UB.
324///     }
325/// }
326/// ```
327///
328/// Conversely, the following is sound since `T` allows uninitialized bytes in
329/// the representation of a value, but the round trip may alter the value:
330///
331/// ```rust,no_run
332/// # use core::mem::{MaybeUninit, transmute};
333/// #[repr(C)] struct T(MaybeUninit<[u8; 4]>);
334/// #[repr(C)] struct U(u8, u16);
335/// fn non_identity(t: T) -> T {
336///     unsafe {
337///         // May lose an initialized byte.
338///         let u: MaybeUninit<U> = transmute(t);
339///         transmute(u)
340///     }
341/// }
342/// ```
343///
344/// [bytes]: ../../reference/memory-model.html#bytes
345/// [provenance]: crate::ptr#provenance
346#[stable(feature = "maybe_uninit", since = "1.36.0")]
347// Lang item so we can wrap other types in it. This is useful for coroutines.
348#[lang = "maybe_uninit"]
349#[derive(Copy)]
350#[repr(transparent)]
351#[rustc_pub_transparent]
352pub union MaybeUninit<T> {
353    uninit: (),
354    value: ManuallyDrop<T>,
355}
356
357#[stable(feature = "maybe_uninit", since = "1.36.0")]
358impl<T: Copy> Clone for MaybeUninit<T> {
359    #[inline(always)]
360    fn clone(&self) -> Self {
361        // Not calling `T::clone()`, we cannot know if we are initialized enough for that.
362        *self
363    }
364}
365
366#[stable(feature = "maybe_uninit_debug", since = "1.41.0")]
367#[cfg(not(feature = "ferrocene_certified"))]
368impl<T> fmt::Debug for MaybeUninit<T> {
369    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
370        // NB: there is no `.pad_fmt` so we can't use a simpler `format_args!("MaybeUninit<{..}>").
371        let full_name = type_name::<Self>();
372        let prefix_len = full_name.find("MaybeUninit").unwrap();
373        f.pad(&full_name[prefix_len..])
374    }
375}
376
377impl<T> MaybeUninit<T> {
378    /// Creates a new `MaybeUninit<T>` initialized with the given value.
379    /// It is safe to call [`assume_init`] on the return value of this function.
380    ///
381    /// Note that dropping a `MaybeUninit<T>` will never call `T`'s drop code.
382    /// It is your responsibility to make sure `T` gets dropped if it got initialized.
383    ///
384    /// # Example
385    ///
386    /// ```
387    /// use std::mem::MaybeUninit;
388    ///
389    /// let v: MaybeUninit<Vec<u8>> = MaybeUninit::new(vec![42]);
390    /// # // Prevent leaks for Miri
391    /// # unsafe { let _ = MaybeUninit::assume_init(v); }
392    /// ```
393    ///
394    /// [`assume_init`]: MaybeUninit::assume_init
395    #[stable(feature = "maybe_uninit", since = "1.36.0")]
396    #[rustc_const_stable(feature = "const_maybe_uninit", since = "1.36.0")]
397    #[must_use = "use `forget` to avoid running Drop code"]
398    #[inline(always)]
399    pub const fn new(val: T) -> MaybeUninit<T> {
400        MaybeUninit { value: ManuallyDrop::new(val) }
401    }
402
403    /// Creates a new `MaybeUninit<T>` in an uninitialized state.
404    ///
405    /// Note that dropping a `MaybeUninit<T>` will never call `T`'s drop code.
406    /// It is your responsibility to make sure `T` gets dropped if it got initialized.
407    ///
408    /// See the [type-level documentation][MaybeUninit] for some examples.
409    ///
410    /// # Example
411    ///
412    /// ```
413    /// use std::mem::MaybeUninit;
414    ///
415    /// let v: MaybeUninit<String> = MaybeUninit::uninit();
416    /// ```
417    #[stable(feature = "maybe_uninit", since = "1.36.0")]
418    #[rustc_const_stable(feature = "const_maybe_uninit", since = "1.36.0")]
419    #[must_use]
420    #[inline(always)]
421    #[rustc_diagnostic_item = "maybe_uninit_uninit"]
422    pub const fn uninit() -> MaybeUninit<T> {
423        MaybeUninit { uninit: () }
424    }
425
426    /// Creates a new `MaybeUninit<T>` in an uninitialized state, with the memory being
427    /// filled with `0` bytes. It depends on `T` whether that already makes for
428    /// proper initialization. For example, `MaybeUninit<usize>::zeroed()` is initialized,
429    /// but `MaybeUninit<&'static i32>::zeroed()` is not because references must not
430    /// be null.
431    ///
432    /// Note that if `T` has padding bytes, those bytes are *not* preserved when the
433    /// `MaybeUninit<T>` value is returned from this function, so those bytes will *not* be zeroed.
434    ///
435    /// Note that dropping a `MaybeUninit<T>` will never call `T`'s drop code.
436    /// It is your responsibility to make sure `T` gets dropped if it got initialized.
437    ///
438    /// # Example
439    ///
440    /// Correct usage of this function: initializing a struct with zero, where all
441    /// fields of the struct can hold the bit-pattern 0 as a valid value.
442    ///
443    /// ```rust
444    /// use std::mem::MaybeUninit;
445    ///
446    /// let x = MaybeUninit::<(u8, bool)>::zeroed();
447    /// let x = unsafe { x.assume_init() };
448    /// assert_eq!(x, (0, false));
449    /// ```
450    ///
451    /// This can be used in const contexts, such as to indicate the end of static arrays for
452    /// plugin registration.
453    ///
454    /// *Incorrect* usage of this function: calling `x.zeroed().assume_init()`
455    /// when `0` is not a valid bit-pattern for the type:
456    ///
457    /// ```rust,no_run
458    /// use std::mem::MaybeUninit;
459    ///
460    /// enum NotZero { One = 1, Two = 2 }
461    ///
462    /// let x = MaybeUninit::<(u8, NotZero)>::zeroed();
463    /// let x = unsafe { x.assume_init() };
464    /// // Inside a pair, we create a `NotZero` that does not have a valid discriminant.
465    /// // This is undefined behavior. ⚠️
466    /// ```
467    #[inline]
468    #[must_use]
469    #[rustc_diagnostic_item = "maybe_uninit_zeroed"]
470    #[stable(feature = "maybe_uninit", since = "1.36.0")]
471    #[rustc_const_stable(feature = "const_maybe_uninit_zeroed", since = "1.75.0")]
472    pub const fn zeroed() -> MaybeUninit<T> {
473        let mut u = MaybeUninit::<T>::uninit();
474        // SAFETY: `u.as_mut_ptr()` points to allocated memory.
475        unsafe { u.as_mut_ptr().write_bytes(0u8, 1) };
476        u
477    }
478
479    /// Sets the value of the `MaybeUninit<T>`.
480    ///
481    /// This overwrites any previous value without dropping it, so be careful
482    /// not to use this twice unless you want to skip running the destructor.
483    /// For your convenience, this also returns a mutable reference to the
484    /// (now safely initialized) contents of `self`.
485    ///
486    /// As the content is stored inside a `ManuallyDrop`, the destructor is not
487    /// run for the inner data if the MaybeUninit leaves scope without a call to
488    /// [`assume_init`], [`assume_init_drop`], or similar. Code that receives
489    /// the mutable reference returned by this function needs to keep this in
490    /// mind. The safety model of Rust regards leaks as safe, but they are
491    /// usually still undesirable. This being said, the mutable reference
492    /// behaves like any other mutable reference would, so assigning a new value
493    /// to it will drop the old content.
494    ///
495    /// [`assume_init`]: Self::assume_init
496    /// [`assume_init_drop`]: Self::assume_init_drop
497    ///
498    /// # Examples
499    ///
500    /// Correct usage of this method:
501    ///
502    /// ```rust
503    /// use std::mem::MaybeUninit;
504    ///
505    /// let mut x = MaybeUninit::<Vec<u8>>::uninit();
506    ///
507    /// {
508    ///     let hello = x.write((&b"Hello, world!").to_vec());
509    ///     // Setting hello does not leak prior allocations, but drops them
510    ///     *hello = (&b"Hello").to_vec();
511    ///     hello[0] = 'h' as u8;
512    /// }
513    /// // x is initialized now:
514    /// let s = unsafe { x.assume_init() };
515    /// assert_eq!(b"hello", s.as_slice());
516    /// ```
517    ///
518    /// This usage of the method causes a leak:
519    ///
520    /// ```rust
521    /// use std::mem::MaybeUninit;
522    ///
523    /// let mut x = MaybeUninit::<String>::uninit();
524    ///
525    /// x.write("Hello".to_string());
526    /// # // FIXME(https://github.com/rust-lang/miri/issues/3670):
527    /// # // use -Zmiri-disable-leak-check instead of unleaking in tests meant to leak.
528    /// # unsafe { MaybeUninit::assume_init_drop(&mut x); }
529    /// // This leaks the contained string:
530    /// x.write("hello".to_string());
531    /// // x is initialized now:
532    /// let s = unsafe { x.assume_init() };
533    /// ```
534    ///
535    /// This method can be used to avoid unsafe in some cases. The example below
536    /// shows a part of an implementation of a fixed sized arena that lends out
537    /// pinned references.
538    /// With `write`, we can avoid the need to write through a raw pointer:
539    ///
540    /// ```rust
541    /// use core::pin::Pin;
542    /// use core::mem::MaybeUninit;
543    ///
544    /// struct PinArena<T> {
545    ///     memory: Box<[MaybeUninit<T>]>,
546    ///     len: usize,
547    /// }
548    ///
549    /// impl <T> PinArena<T> {
550    ///     pub fn capacity(&self) -> usize {
551    ///         self.memory.len()
552    ///     }
553    ///     pub fn push(&mut self, val: T) -> Pin<&mut T> {
554    ///         if self.len >= self.capacity() {
555    ///             panic!("Attempted to push to a full pin arena!");
556    ///         }
557    ///         let ref_ = self.memory[self.len].write(val);
558    ///         self.len += 1;
559    ///         unsafe { Pin::new_unchecked(ref_) }
560    ///     }
561    /// }
562    /// ```
563    #[inline(always)]
564    #[stable(feature = "maybe_uninit_write", since = "1.55.0")]
565    #[rustc_const_stable(feature = "const_maybe_uninit_write", since = "1.85.0")]
566    pub const fn write(&mut self, val: T) -> &mut T {
567        *self = MaybeUninit::new(val);
568        // SAFETY: We just initialized this value.
569        unsafe { self.assume_init_mut() }
570    }
571
572    /// Gets a pointer to the contained value. Reading from this pointer or turning it
573    /// into a reference is undefined behavior unless the `MaybeUninit<T>` is initialized.
574    /// Writing to memory that this pointer (non-transitively) points to is undefined behavior
575    /// (except inside an `UnsafeCell<T>`).
576    ///
577    /// # Examples
578    ///
579    /// Correct usage of this method:
580    ///
581    /// ```rust
582    /// use std::mem::MaybeUninit;
583    ///
584    /// let mut x = MaybeUninit::<Vec<u32>>::uninit();
585    /// x.write(vec![0, 1, 2]);
586    /// // Create a reference into the `MaybeUninit<T>`. This is okay because we initialized it.
587    /// let x_vec = unsafe { &*x.as_ptr() };
588    /// assert_eq!(x_vec.len(), 3);
589    /// # // Prevent leaks for Miri
590    /// # unsafe { MaybeUninit::assume_init_drop(&mut x); }
591    /// ```
592    ///
593    /// *Incorrect* usage of this method:
594    ///
595    /// ```rust,no_run
596    /// use std::mem::MaybeUninit;
597    ///
598    /// let x = MaybeUninit::<Vec<u32>>::uninit();
599    /// let x_vec = unsafe { &*x.as_ptr() };
600    /// // We have created a reference to an uninitialized vector! This is undefined behavior. ⚠️
601    /// ```
602    ///
603    /// (Notice that the rules around references to uninitialized data are not finalized yet, but
604    /// until they are, it is advisable to avoid them.)
605    #[stable(feature = "maybe_uninit", since = "1.36.0")]
606    #[rustc_const_stable(feature = "const_maybe_uninit_as_ptr", since = "1.59.0")]
607    #[rustc_as_ptr]
608    #[inline(always)]
609    pub const fn as_ptr(&self) -> *const T {
610        // `MaybeUninit` and `ManuallyDrop` are both `repr(transparent)` so we can cast the pointer.
611        self as *const _ as *const T
612    }
613
614    /// Gets a mutable pointer to the contained value. Reading from this pointer or turning it
615    /// into a reference is undefined behavior unless the `MaybeUninit<T>` is initialized.
616    ///
617    /// # Examples
618    ///
619    /// Correct usage of this method:
620    ///
621    /// ```rust
622    /// use std::mem::MaybeUninit;
623    ///
624    /// let mut x = MaybeUninit::<Vec<u32>>::uninit();
625    /// x.write(vec![0, 1, 2]);
626    /// // Create a reference into the `MaybeUninit<Vec<u32>>`.
627    /// // This is okay because we initialized it.
628    /// let x_vec = unsafe { &mut *x.as_mut_ptr() };
629    /// x_vec.push(3);
630    /// assert_eq!(x_vec.len(), 4);
631    /// # // Prevent leaks for Miri
632    /// # unsafe { MaybeUninit::assume_init_drop(&mut x); }
633    /// ```
634    ///
635    /// *Incorrect* usage of this method:
636    ///
637    /// ```rust,no_run
638    /// use std::mem::MaybeUninit;
639    ///
640    /// let mut x = MaybeUninit::<Vec<u32>>::uninit();
641    /// let x_vec = unsafe { &mut *x.as_mut_ptr() };
642    /// // We have created a reference to an uninitialized vector! This is undefined behavior. ⚠️
643    /// ```
644    ///
645    /// (Notice that the rules around references to uninitialized data are not finalized yet, but
646    /// until they are, it is advisable to avoid them.)
647    #[stable(feature = "maybe_uninit", since = "1.36.0")]
648    #[rustc_const_stable(feature = "const_maybe_uninit_as_mut_ptr", since = "1.83.0")]
649    #[rustc_as_ptr]
650    #[inline(always)]
651    pub const fn as_mut_ptr(&mut self) -> *mut T {
652        // `MaybeUninit` and `ManuallyDrop` are both `repr(transparent)` so we can cast the pointer.
653        self as *mut _ as *mut T
654    }
655
656    /// Extracts the value from the `MaybeUninit<T>` container. This is a great way
657    /// to ensure that the data will get dropped, because the resulting `T` is
658    /// subject to the usual drop handling.
659    ///
660    /// # Safety
661    ///
662    /// It is up to the caller to guarantee that the `MaybeUninit<T>` really is in an initialized
663    /// state. Calling this when the content is not yet fully initialized causes immediate undefined
664    /// behavior. The [type-level documentation][inv] contains more information about
665    /// this initialization invariant.
666    ///
667    /// [inv]: #initialization-invariant
668    ///
669    /// On top of that, remember that most types have additional invariants beyond merely
670    /// being considered initialized at the type level. For example, a `1`-initialized [`Vec<T>`]
671    /// is considered initialized (under the current implementation; this does not constitute
672    /// a stable guarantee) because the only requirement the compiler knows about it
673    /// is that the data pointer must be non-null. Creating such a `Vec<T>` does not cause
674    /// *immediate* undefined behavior, but will cause undefined behavior with most
675    /// safe operations (including dropping it).
676    ///
677    /// [`Vec<T>`]: ../../std/vec/struct.Vec.html
678    ///
679    /// # Examples
680    ///
681    /// Correct usage of this method:
682    ///
683    /// ```rust
684    /// use std::mem::MaybeUninit;
685    ///
686    /// let mut x = MaybeUninit::<bool>::uninit();
687    /// x.write(true);
688    /// let x_init = unsafe { x.assume_init() };
689    /// assert_eq!(x_init, true);
690    /// ```
691    ///
692    /// *Incorrect* usage of this method:
693    ///
694    /// ```rust,no_run
695    /// use std::mem::MaybeUninit;
696    ///
697    /// let x = MaybeUninit::<Vec<u32>>::uninit();
698    /// let x_init = unsafe { x.assume_init() };
699    /// // `x` had not been initialized yet, so this last line caused undefined behavior. ⚠️
700    /// ```
701    #[stable(feature = "maybe_uninit", since = "1.36.0")]
702    #[rustc_const_stable(feature = "const_maybe_uninit_assume_init_by_value", since = "1.59.0")]
703    #[inline(always)]
704    #[rustc_diagnostic_item = "assume_init"]
705    #[track_caller]
706    pub const unsafe fn assume_init(self) -> T {
707        // SAFETY: the caller must guarantee that `self` is initialized.
708        // This also means that `self` must be a `value` variant.
709        unsafe {
710            intrinsics::assert_inhabited::<T>();
711            // We do this via a raw ptr read instead of `ManuallyDrop::into_inner` so that there's
712            // no trace of `ManuallyDrop` in Miri's error messages here.
713            (&raw const self.value).cast::<T>().read()
714        }
715    }
716
717    /// Reads the value from the `MaybeUninit<T>` container. The resulting `T` is subject
718    /// to the usual drop handling.
719    ///
720    /// Whenever possible, it is preferable to use [`assume_init`] instead, which
721    /// prevents duplicating the content of the `MaybeUninit<T>`.
722    ///
723    /// # Safety
724    ///
725    /// It is up to the caller to guarantee that the `MaybeUninit<T>` really is in an initialized
726    /// state. Calling this when the content is not yet fully initialized causes undefined
727    /// behavior. The [type-level documentation][inv] contains more information about
728    /// this initialization invariant.
729    ///
730    /// Moreover, similar to the [`ptr::read`] function, this function creates a
731    /// bitwise copy of the contents, regardless whether the contained type
732    /// implements the [`Copy`] trait or not. When using multiple copies of the
733    /// data (by calling `assume_init_read` multiple times, or first calling
734    /// `assume_init_read` and then [`assume_init`]), it is your responsibility
735    /// to ensure that data may indeed be duplicated.
736    ///
737    /// [inv]: #initialization-invariant
738    /// [`assume_init`]: MaybeUninit::assume_init
739    ///
740    /// # Examples
741    ///
742    /// Correct usage of this method:
743    ///
744    /// ```rust
745    /// use std::mem::MaybeUninit;
746    ///
747    /// let mut x = MaybeUninit::<u32>::uninit();
748    /// x.write(13);
749    /// let x1 = unsafe { x.assume_init_read() };
750    /// // `u32` is `Copy`, so we may read multiple times.
751    /// let x2 = unsafe { x.assume_init_read() };
752    /// assert_eq!(x1, x2);
753    ///
754    /// let mut x = MaybeUninit::<Option<Vec<u32>>>::uninit();
755    /// x.write(None);
756    /// let x1 = unsafe { x.assume_init_read() };
757    /// // Duplicating a `None` value is okay, so we may read multiple times.
758    /// let x2 = unsafe { x.assume_init_read() };
759    /// assert_eq!(x1, x2);
760    /// ```
761    ///
762    /// *Incorrect* usage of this method:
763    ///
764    /// ```rust,no_run
765    /// use std::mem::MaybeUninit;
766    ///
767    /// let mut x = MaybeUninit::<Option<Vec<u32>>>::uninit();
768    /// x.write(Some(vec![0, 1, 2]));
769    /// let x1 = unsafe { x.assume_init_read() };
770    /// let x2 = unsafe { x.assume_init_read() };
771    /// // We now created two copies of the same vector, leading to a double-free ⚠️ when
772    /// // they both get dropped!
773    /// ```
774    #[stable(feature = "maybe_uninit_extra", since = "1.60.0")]
775    #[rustc_const_stable(feature = "const_maybe_uninit_assume_init_read", since = "1.75.0")]
776    #[inline(always)]
777    #[track_caller]
778    pub const unsafe fn assume_init_read(&self) -> T {
779        // SAFETY: the caller must guarantee that `self` is initialized.
780        // Reading from `self.as_ptr()` is safe since `self` should be initialized.
781        unsafe {
782            intrinsics::assert_inhabited::<T>();
783            self.as_ptr().read()
784        }
785    }
786
787    /// Drops the contained value in place.
788    ///
789    /// If you have ownership of the `MaybeUninit`, you can also use
790    /// [`assume_init`] as an alternative.
791    ///
792    /// # Safety
793    ///
794    /// It is up to the caller to guarantee that the `MaybeUninit<T>` really is
795    /// in an initialized state. Calling this when the content is not yet fully
796    /// initialized causes undefined behavior.
797    ///
798    /// On top of that, all additional invariants of the type `T` must be
799    /// satisfied, as the `Drop` implementation of `T` (or its members) may
800    /// rely on this. For example, setting a `Vec<T>` to an invalid but
801    /// non-null address makes it initialized (under the current implementation;
802    /// this does not constitute a stable guarantee), because the only
803    /// requirement the compiler knows about it is that the data pointer must be
804    /// non-null. Dropping such a `Vec<T>` however will cause undefined
805    /// behavior.
806    ///
807    /// [`assume_init`]: MaybeUninit::assume_init
808    #[stable(feature = "maybe_uninit_extra", since = "1.60.0")]
809    #[rustc_const_unstable(feature = "const_drop_in_place", issue = "109342")]
810    pub const unsafe fn assume_init_drop(&mut self)
811    where
812        T: [const] Destruct,
813    {
814        // SAFETY: the caller must guarantee that `self` is initialized and
815        // satisfies all invariants of `T`.
816        // Dropping the value in place is safe if that is the case.
817        unsafe { ptr::drop_in_place(self.as_mut_ptr()) }
818    }
819
820    /// Gets a shared reference to the contained value.
821    ///
822    /// This can be useful when we want to access a `MaybeUninit` that has been
823    /// initialized but don't have ownership of the `MaybeUninit` (preventing the use
824    /// of `.assume_init()`).
825    ///
826    /// # Safety
827    ///
828    /// Calling this when the content is not yet fully initialized causes undefined
829    /// behavior: it is up to the caller to guarantee that the `MaybeUninit<T>` really
830    /// is in an initialized state.
831    ///
832    /// # Examples
833    ///
834    /// ### Correct usage of this method:
835    ///
836    /// ```rust
837    /// use std::mem::MaybeUninit;
838    ///
839    /// let mut x = MaybeUninit::<Vec<u32>>::uninit();
840    /// # let mut x_mu = x;
841    /// # let mut x = &mut x_mu;
842    /// // Initialize `x`:
843    /// x.write(vec![1, 2, 3]);
844    /// // Now that our `MaybeUninit<_>` is known to be initialized, it is okay to
845    /// // create a shared reference to it:
846    /// let x: &Vec<u32> = unsafe {
847    ///     // SAFETY: `x` has been initialized.
848    ///     x.assume_init_ref()
849    /// };
850    /// assert_eq!(x, &vec![1, 2, 3]);
851    /// # // Prevent leaks for Miri
852    /// # unsafe { MaybeUninit::assume_init_drop(&mut x_mu); }
853    /// ```
854    ///
855    /// ### *Incorrect* usages of this method:
856    ///
857    /// ```rust,no_run
858    /// use std::mem::MaybeUninit;
859    ///
860    /// let x = MaybeUninit::<Vec<u32>>::uninit();
861    /// let x_vec: &Vec<u32> = unsafe { x.assume_init_ref() };
862    /// // We have created a reference to an uninitialized vector! This is undefined behavior. ⚠️
863    /// ```
864    ///
865    /// ```rust,no_run
866    /// use std::{cell::Cell, mem::MaybeUninit};
867    ///
868    /// let b = MaybeUninit::<Cell<bool>>::uninit();
869    /// // Initialize the `MaybeUninit` using `Cell::set`:
870    /// unsafe {
871    ///     b.assume_init_ref().set(true);
872    ///     //^^^^^^^^^^^^^^^ Reference to an uninitialized `Cell<bool>`: UB!
873    /// }
874    /// ```
875    #[stable(feature = "maybe_uninit_ref", since = "1.55.0")]
876    #[rustc_const_stable(feature = "const_maybe_uninit_assume_init_ref", since = "1.59.0")]
877    #[inline(always)]
878    pub const unsafe fn assume_init_ref(&self) -> &T {
879        // SAFETY: the caller must guarantee that `self` is initialized.
880        // This also means that `self` must be a `value` variant.
881        unsafe {
882            intrinsics::assert_inhabited::<T>();
883            &*self.as_ptr()
884        }
885    }
886
887    /// Gets a mutable (unique) reference to the contained value.
888    ///
889    /// This can be useful when we want to access a `MaybeUninit` that has been
890    /// initialized but don't have ownership of the `MaybeUninit` (preventing the use
891    /// of `.assume_init()`).
892    ///
893    /// # Safety
894    ///
895    /// Calling this when the content is not yet fully initialized causes undefined
896    /// behavior: it is up to the caller to guarantee that the `MaybeUninit<T>` really
897    /// is in an initialized state. For instance, `.assume_init_mut()` cannot be used to
898    /// initialize a `MaybeUninit`.
899    ///
900    /// # Examples
901    ///
902    /// ### Correct usage of this method:
903    ///
904    /// ```rust
905    /// # #![allow(unexpected_cfgs)]
906    /// use std::mem::MaybeUninit;
907    ///
908    /// # unsafe extern "C" fn initialize_buffer(buf: *mut [u8; 1024]) { unsafe { *buf = [0; 1024] } }
909    /// # #[cfg(FALSE)]
910    /// extern "C" {
911    ///     /// Initializes *all* the bytes of the input buffer.
912    ///     fn initialize_buffer(buf: *mut [u8; 1024]);
913    /// }
914    ///
915    /// let mut buf = MaybeUninit::<[u8; 1024]>::uninit();
916    ///
917    /// // Initialize `buf`:
918    /// unsafe { initialize_buffer(buf.as_mut_ptr()); }
919    /// // Now we know that `buf` has been initialized, so we could `.assume_init()` it.
920    /// // However, using `.assume_init()` may trigger a `memcpy` of the 1024 bytes.
921    /// // To assert our buffer has been initialized without copying it, we upgrade
922    /// // the `&mut MaybeUninit<[u8; 1024]>` to a `&mut [u8; 1024]`:
923    /// let buf: &mut [u8; 1024] = unsafe {
924    ///     // SAFETY: `buf` has been initialized.
925    ///     buf.assume_init_mut()
926    /// };
927    ///
928    /// // Now we can use `buf` as a normal slice:
929    /// buf.sort_unstable();
930    /// assert!(
931    ///     buf.windows(2).all(|pair| pair[0] <= pair[1]),
932    ///     "buffer is sorted",
933    /// );
934    /// ```
935    ///
936    /// ### *Incorrect* usages of this method:
937    ///
938    /// You cannot use `.assume_init_mut()` to initialize a value:
939    ///
940    /// ```rust,no_run
941    /// use std::mem::MaybeUninit;
942    ///
943    /// let mut b = MaybeUninit::<bool>::uninit();
944    /// unsafe {
945    ///     *b.assume_init_mut() = true;
946    ///     // We have created a (mutable) reference to an uninitialized `bool`!
947    ///     // This is undefined behavior. ⚠️
948    /// }
949    /// ```
950    ///
951    /// For instance, you cannot [`Read`] into an uninitialized buffer:
952    ///
953    /// [`Read`]: ../../std/io/trait.Read.html
954    ///
955    /// ```rust,no_run
956    /// use std::{io, mem::MaybeUninit};
957    ///
958    /// fn read_chunk (reader: &'_ mut dyn io::Read) -> io::Result<[u8; 64]>
959    /// {
960    ///     let mut buffer = MaybeUninit::<[u8; 64]>::uninit();
961    ///     reader.read_exact(unsafe { buffer.assume_init_mut() })?;
962    ///     //                         ^^^^^^^^^^^^^^^^^^^^^^^^
963    ///     // (mutable) reference to uninitialized memory!
964    ///     // This is undefined behavior.
965    ///     Ok(unsafe { buffer.assume_init() })
966    /// }
967    /// ```
968    ///
969    /// Nor can you use direct field access to do field-by-field gradual initialization:
970    ///
971    /// ```rust,no_run
972    /// use std::{mem::MaybeUninit, ptr};
973    ///
974    /// struct Foo {
975    ///     a: u32,
976    ///     b: u8,
977    /// }
978    ///
979    /// let foo: Foo = unsafe {
980    ///     let mut foo = MaybeUninit::<Foo>::uninit();
981    ///     ptr::write(&mut foo.assume_init_mut().a as *mut u32, 1337);
982    ///     //              ^^^^^^^^^^^^^^^^^^^^^
983    ///     // (mutable) reference to uninitialized memory!
984    ///     // This is undefined behavior.
985    ///     ptr::write(&mut foo.assume_init_mut().b as *mut u8, 42);
986    ///     //              ^^^^^^^^^^^^^^^^^^^^^
987    ///     // (mutable) reference to uninitialized memory!
988    ///     // This is undefined behavior.
989    ///     foo.assume_init()
990    /// };
991    /// ```
992    #[stable(feature = "maybe_uninit_ref", since = "1.55.0")]
993    #[rustc_const_stable(feature = "const_maybe_uninit_assume_init", since = "1.84.0")]
994    #[inline(always)]
995    pub const unsafe fn assume_init_mut(&mut self) -> &mut T {
996        // SAFETY: the caller must guarantee that `self` is initialized.
997        // This also means that `self` must be a `value` variant.
998        unsafe {
999            intrinsics::assert_inhabited::<T>();
1000            &mut *self.as_mut_ptr()
1001        }
1002    }
1003
1004    /// Extracts the values from an array of `MaybeUninit` containers.
1005    ///
1006    /// # Safety
1007    ///
1008    /// It is up to the caller to guarantee that all elements of the array are
1009    /// in an initialized state.
1010    ///
1011    /// # Examples
1012    ///
1013    /// ```
1014    /// #![feature(maybe_uninit_array_assume_init)]
1015    /// use std::mem::MaybeUninit;
1016    ///
1017    /// let mut array: [MaybeUninit<i32>; 3] = [MaybeUninit::uninit(); 3];
1018    /// array[0].write(0);
1019    /// array[1].write(1);
1020    /// array[2].write(2);
1021    ///
1022    /// // SAFETY: Now safe as we initialised all elements
1023    /// let array = unsafe {
1024    ///     MaybeUninit::array_assume_init(array)
1025    /// };
1026    ///
1027    /// assert_eq!(array, [0, 1, 2]);
1028    /// ```
1029    #[unstable(feature = "maybe_uninit_array_assume_init", issue = "96097")]
1030    #[inline(always)]
1031    #[track_caller]
1032    pub const unsafe fn array_assume_init<const N: usize>(array: [Self; N]) -> [T; N] {
1033        // SAFETY:
1034        // * The caller guarantees that all elements of the array are initialized
1035        // * `MaybeUninit<T>` and T are guaranteed to have the same layout
1036        // * `MaybeUninit` does not drop, so there are no double-frees
1037        // And thus the conversion is safe
1038        unsafe {
1039            intrinsics::assert_inhabited::<[T; N]>();
1040            intrinsics::transmute_unchecked(array)
1041        }
1042    }
1043
1044    /// Returns the contents of this `MaybeUninit` as a slice of potentially uninitialized bytes.
1045    ///
1046    /// Note that even if the contents of a `MaybeUninit` have been initialized, the value may still
1047    /// contain padding bytes which are left uninitialized.
1048    ///
1049    /// # Examples
1050    ///
1051    /// ```
1052    /// #![feature(maybe_uninit_as_bytes, maybe_uninit_slice)]
1053    /// use std::mem::MaybeUninit;
1054    ///
1055    /// let val = 0x12345678_i32;
1056    /// let uninit = MaybeUninit::new(val);
1057    /// let uninit_bytes = uninit.as_bytes();
1058    /// let bytes = unsafe { uninit_bytes.assume_init_ref() };
1059    /// assert_eq!(bytes, val.to_ne_bytes());
1060    /// ```
1061    #[unstable(feature = "maybe_uninit_as_bytes", issue = "93092")]
1062    pub const fn as_bytes(&self) -> &[MaybeUninit<u8>] {
1063        // SAFETY: MaybeUninit<u8> is always valid, even for padding bytes
1064        unsafe {
1065            slice::from_raw_parts(self.as_ptr().cast::<MaybeUninit<u8>>(), super::size_of::<T>())
1066        }
1067    }
1068
1069    /// Returns the contents of this `MaybeUninit` as a mutable slice of potentially uninitialized
1070    /// bytes.
1071    ///
1072    /// Note that even if the contents of a `MaybeUninit` have been initialized, the value may still
1073    /// contain padding bytes which are left uninitialized.
1074    ///
1075    /// # Examples
1076    ///
1077    /// ```
1078    /// #![feature(maybe_uninit_as_bytes)]
1079    /// use std::mem::MaybeUninit;
1080    ///
1081    /// let val = 0x12345678_i32;
1082    /// let mut uninit = MaybeUninit::new(val);
1083    /// let uninit_bytes = uninit.as_bytes_mut();
1084    /// if cfg!(target_endian = "little") {
1085    ///     uninit_bytes[0].write(0xcd);
1086    /// } else {
1087    ///     uninit_bytes[3].write(0xcd);
1088    /// }
1089    /// let val2 = unsafe { uninit.assume_init() };
1090    /// assert_eq!(val2, 0x123456cd);
1091    /// ```
1092    #[unstable(feature = "maybe_uninit_as_bytes", issue = "93092")]
1093    pub const fn as_bytes_mut(&mut self) -> &mut [MaybeUninit<u8>] {
1094        // SAFETY: MaybeUninit<u8> is always valid, even for padding bytes
1095        unsafe {
1096            slice::from_raw_parts_mut(
1097                self.as_mut_ptr().cast::<MaybeUninit<u8>>(),
1098                super::size_of::<T>(),
1099            )
1100        }
1101    }
1102
1103    /// Gets a pointer to the first element of the array.
1104    #[unstable(feature = "maybe_uninit_slice", issue = "63569")]
1105    #[inline(always)]
1106    pub const fn slice_as_ptr(this: &[MaybeUninit<T>]) -> *const T {
1107        this.as_ptr() as *const T
1108    }
1109
1110    /// Gets a mutable pointer to the first element of the array.
1111    #[unstable(feature = "maybe_uninit_slice", issue = "63569")]
1112    #[inline(always)]
1113    pub const fn slice_as_mut_ptr(this: &mut [MaybeUninit<T>]) -> *mut T {
1114        this.as_mut_ptr() as *mut T
1115    }
1116}
1117
1118impl<T> [MaybeUninit<T>] {
1119    /// Copies the elements from `src` to `self`,
1120    /// returning a mutable reference to the now initialized contents of `self`.
1121    ///
1122    /// If `T` does not implement `Copy`, use [`write_clone_of_slice`] instead.
1123    ///
1124    /// This is similar to [`slice::copy_from_slice`].
1125    ///
1126    /// # Panics
1127    ///
1128    /// This function will panic if the two slices have different lengths.
1129    ///
1130    /// # Examples
1131    ///
1132    /// ```
1133    /// #![feature(maybe_uninit_write_slice)]
1134    /// use std::mem::MaybeUninit;
1135    ///
1136    /// let mut dst = [MaybeUninit::uninit(); 32];
1137    /// let src = [0; 32];
1138    ///
1139    /// let init = dst.write_copy_of_slice(&src);
1140    ///
1141    /// assert_eq!(init, src);
1142    /// ```
1143    ///
1144    /// ```
1145    /// #![feature(maybe_uninit_write_slice)]
1146    ///
1147    /// let mut vec = Vec::with_capacity(32);
1148    /// let src = [0; 16];
1149    ///
1150    /// vec.spare_capacity_mut()[..src.len()].write_copy_of_slice(&src);
1151    ///
1152    /// // SAFETY: we have just copied all the elements of len into the spare capacity
1153    /// // the first src.len() elements of the vec are valid now.
1154    /// unsafe {
1155    ///     vec.set_len(src.len());
1156    /// }
1157    ///
1158    /// assert_eq!(vec, src);
1159    /// ```
1160    ///
1161    /// [`write_clone_of_slice`]: slice::write_clone_of_slice
1162    #[unstable(feature = "maybe_uninit_write_slice", issue = "79995")]
1163    #[cfg(not(feature = "ferrocene_certified"))]
1164    pub const fn write_copy_of_slice(&mut self, src: &[T]) -> &mut [T]
1165    where
1166        T: Copy,
1167    {
1168        // SAFETY: &[T] and &[MaybeUninit<T>] have the same layout
1169        let uninit_src: &[MaybeUninit<T>] = unsafe { super::transmute(src) };
1170
1171        self.copy_from_slice(uninit_src);
1172
1173        // SAFETY: Valid elements have just been copied into `self` so it is initialized
1174        unsafe { self.assume_init_mut() }
1175    }
1176
1177    /// Clones the elements from `src` to `self`,
1178    /// returning a mutable reference to the now initialized contents of `self`.
1179    /// Any already initialized elements will not be dropped.
1180    ///
1181    /// If `T` implements `Copy`, use [`write_copy_of_slice`] instead.
1182    ///
1183    /// This is similar to [`slice::clone_from_slice`] but does not drop existing elements.
1184    ///
1185    /// # Panics
1186    ///
1187    /// This function will panic if the two slices have different lengths, or if the implementation of `Clone` panics.
1188    ///
1189    /// If there is a panic, the already cloned elements will be dropped.
1190    ///
1191    /// # Examples
1192    ///
1193    /// ```
1194    /// #![feature(maybe_uninit_write_slice)]
1195    /// use std::mem::MaybeUninit;
1196    ///
1197    /// let mut dst = [const { MaybeUninit::uninit() }; 5];
1198    /// let src = ["wibbly", "wobbly", "timey", "wimey", "stuff"].map(|s| s.to_string());
1199    ///
1200    /// let init = dst.write_clone_of_slice(&src);
1201    ///
1202    /// assert_eq!(init, src);
1203    ///
1204    /// # // Prevent leaks for Miri
1205    /// # unsafe { std::ptr::drop_in_place(init); }
1206    /// ```
1207    ///
1208    /// ```
1209    /// #![feature(maybe_uninit_write_slice)]
1210    ///
1211    /// let mut vec = Vec::with_capacity(32);
1212    /// let src = ["rust", "is", "a", "pretty", "cool", "language"].map(|s| s.to_string());
1213    ///
1214    /// vec.spare_capacity_mut()[..src.len()].write_clone_of_slice(&src);
1215    ///
1216    /// // SAFETY: we have just cloned all the elements of len into the spare capacity
1217    /// // the first src.len() elements of the vec are valid now.
1218    /// unsafe {
1219    ///     vec.set_len(src.len());
1220    /// }
1221    ///
1222    /// assert_eq!(vec, src);
1223    /// ```
1224    ///
1225    /// [`write_copy_of_slice`]: slice::write_copy_of_slice
1226    #[unstable(feature = "maybe_uninit_write_slice", issue = "79995")]
1227    #[cfg(not(feature = "ferrocene_certified"))]
1228    pub fn write_clone_of_slice(&mut self, src: &[T]) -> &mut [T]
1229    where
1230        T: Clone,
1231    {
1232        // unlike copy_from_slice this does not call clone_from_slice on the slice
1233        // this is because `MaybeUninit<T: Clone>` does not implement Clone.
1234
1235        assert_eq!(self.len(), src.len(), "destination and source slices have different lengths");
1236
1237        // NOTE: We need to explicitly slice them to the same length
1238        // for bounds checking to be elided, and the optimizer will
1239        // generate memcpy for simple cases (for example T = u8).
1240        let len = self.len();
1241        let src = &src[..len];
1242
1243        // guard is needed b/c panic might happen during a clone
1244        let mut guard = Guard { slice: self, initialized: 0 };
1245
1246        for i in 0..len {
1247            guard.slice[i].write(src[i].clone());
1248            guard.initialized += 1;
1249        }
1250
1251        super::forget(guard);
1252
1253        // SAFETY: Valid elements have just been written into `self` so it is initialized
1254        unsafe { self.assume_init_mut() }
1255    }
1256
1257    /// Fills a slice with elements by cloning `value`, returning a mutable reference to the now
1258    /// initialized contents of the slice.
1259    /// Any previously initialized elements will not be dropped.
1260    ///
1261    /// This is similar to [`slice::fill`].
1262    ///
1263    /// # Panics
1264    ///
1265    /// This function will panic if any call to `Clone` panics.
1266    ///
1267    /// If such a panic occurs, any elements previously initialized during this operation will be
1268    /// dropped.
1269    ///
1270    /// # Examples
1271    ///
1272    /// ```
1273    /// #![feature(maybe_uninit_fill)]
1274    /// use std::mem::MaybeUninit;
1275    ///
1276    /// let mut buf = [const { MaybeUninit::uninit() }; 10];
1277    /// let initialized = buf.write_filled(1);
1278    /// assert_eq!(initialized, &mut [1; 10]);
1279    /// ```
1280    #[doc(alias = "memset")]
1281    #[unstable(feature = "maybe_uninit_fill", issue = "117428")]
1282    #[cfg(not(feature = "ferrocene_certified"))]
1283    pub fn write_filled(&mut self, value: T) -> &mut [T]
1284    where
1285        T: Clone,
1286    {
1287        SpecFill::spec_fill(self, value);
1288        // SAFETY: Valid elements have just been filled into `self` so it is initialized
1289        unsafe { self.assume_init_mut() }
1290    }
1291
1292    /// Fills a slice with elements returned by calling a closure for each index.
1293    ///
1294    /// This method uses a closure to create new values. If you'd rather `Clone` a given value, use
1295    /// [slice::write_filled]. If you want to use the `Default` trait to generate values, you can
1296    /// pass [`|_| Default::default()`][Default::default] as the argument.
1297    ///
1298    /// # Panics
1299    ///
1300    /// This function will panic if any call to the provided closure panics.
1301    ///
1302    /// If such a panic occurs, any elements previously initialized during this operation will be
1303    /// dropped.
1304    ///
1305    /// # Examples
1306    ///
1307    /// ```
1308    /// #![feature(maybe_uninit_fill)]
1309    /// use std::mem::MaybeUninit;
1310    ///
1311    /// let mut buf = [const { MaybeUninit::<usize>::uninit() }; 5];
1312    /// let initialized = buf.write_with(|idx| idx + 1);
1313    /// assert_eq!(initialized, &mut [1, 2, 3, 4, 5]);
1314    /// ```
1315    #[unstable(feature = "maybe_uninit_fill", issue = "117428")]
1316    #[cfg(not(feature = "ferrocene_certified"))]
1317    pub fn write_with<F>(&mut self, mut f: F) -> &mut [T]
1318    where
1319        F: FnMut(usize) -> T,
1320    {
1321        let mut guard = Guard { slice: self, initialized: 0 };
1322
1323        for (idx, element) in guard.slice.iter_mut().enumerate() {
1324            element.write(f(idx));
1325            guard.initialized += 1;
1326        }
1327
1328        super::forget(guard);
1329
1330        // SAFETY: Valid elements have just been written into `this` so it is initialized
1331        unsafe { self.assume_init_mut() }
1332    }
1333
1334    /// Fills a slice with elements yielded by an iterator until either all elements have been
1335    /// initialized or the iterator is empty.
1336    ///
1337    /// Returns two slices. The first slice contains the initialized portion of the original slice.
1338    /// The second slice is the still-uninitialized remainder of the original slice.
1339    ///
1340    /// # Panics
1341    ///
1342    /// This function panics if the iterator's `next` function panics.
1343    ///
1344    /// If such a panic occurs, any elements previously initialized during this operation will be
1345    /// dropped.
1346    ///
1347    /// # Examples
1348    ///
1349    /// Completely filling the slice:
1350    ///
1351    /// ```
1352    /// #![feature(maybe_uninit_fill)]
1353    /// use std::mem::MaybeUninit;
1354    ///
1355    /// let mut buf = [const { MaybeUninit::uninit() }; 5];
1356    ///
1357    /// let iter = [1, 2, 3].into_iter().cycle();
1358    /// let (initialized, remainder) = buf.write_iter(iter);
1359    ///
1360    /// assert_eq!(initialized, &mut [1, 2, 3, 1, 2]);
1361    /// assert_eq!(remainder.len(), 0);
1362    /// ```
1363    ///
1364    /// Partially filling the slice:
1365    ///
1366    /// ```
1367    /// #![feature(maybe_uninit_fill)]
1368    /// use std::mem::MaybeUninit;
1369    ///
1370    /// let mut buf = [const { MaybeUninit::uninit() }; 5];
1371    /// let iter = [1, 2];
1372    /// let (initialized, remainder) = buf.write_iter(iter);
1373    ///
1374    /// assert_eq!(initialized, &mut [1, 2]);
1375    /// assert_eq!(remainder.len(), 3);
1376    /// ```
1377    ///
1378    /// Checking an iterator after filling a slice:
1379    ///
1380    /// ```
1381    /// #![feature(maybe_uninit_fill)]
1382    /// use std::mem::MaybeUninit;
1383    ///
1384    /// let mut buf = [const { MaybeUninit::uninit() }; 3];
1385    /// let mut iter = [1, 2, 3, 4, 5].into_iter();
1386    /// let (initialized, remainder) = buf.write_iter(iter.by_ref());
1387    ///
1388    /// assert_eq!(initialized, &mut [1, 2, 3]);
1389    /// assert_eq!(remainder.len(), 0);
1390    /// assert_eq!(iter.as_slice(), &[4, 5]);
1391    /// ```
1392    #[unstable(feature = "maybe_uninit_fill", issue = "117428")]
1393    #[cfg(not(feature = "ferrocene_certified"))]
1394    pub fn write_iter<I>(&mut self, it: I) -> (&mut [T], &mut [MaybeUninit<T>])
1395    where
1396        I: IntoIterator<Item = T>,
1397    {
1398        let iter = it.into_iter();
1399        let mut guard = Guard { slice: self, initialized: 0 };
1400
1401        for (element, val) in guard.slice.iter_mut().zip(iter) {
1402            element.write(val);
1403            guard.initialized += 1;
1404        }
1405
1406        let initialized_len = guard.initialized;
1407        super::forget(guard);
1408
1409        // SAFETY: guard.initialized <= self.len()
1410        let (initted, remainder) = unsafe { self.split_at_mut_unchecked(initialized_len) };
1411
1412        // SAFETY: Valid elements have just been written into `init`, so that portion
1413        // of `this` is initialized.
1414        (unsafe { initted.assume_init_mut() }, remainder)
1415    }
1416
1417    /// Returns the contents of this `MaybeUninit` as a slice of potentially uninitialized bytes.
1418    ///
1419    /// Note that even if the contents of a `MaybeUninit` have been initialized, the value may still
1420    /// contain padding bytes which are left uninitialized.
1421    ///
1422    /// # Examples
1423    ///
1424    /// ```
1425    /// #![feature(maybe_uninit_as_bytes, maybe_uninit_write_slice, maybe_uninit_slice)]
1426    /// use std::mem::MaybeUninit;
1427    ///
1428    /// let uninit = [MaybeUninit::new(0x1234u16), MaybeUninit::new(0x5678u16)];
1429    /// let uninit_bytes = uninit.as_bytes();
1430    /// let bytes = unsafe { uninit_bytes.assume_init_ref() };
1431    /// let val1 = u16::from_ne_bytes(bytes[0..2].try_into().unwrap());
1432    /// let val2 = u16::from_ne_bytes(bytes[2..4].try_into().unwrap());
1433    /// assert_eq!(&[val1, val2], &[0x1234u16, 0x5678u16]);
1434    /// ```
1435    #[unstable(feature = "maybe_uninit_as_bytes", issue = "93092")]
1436    #[cfg(not(feature = "ferrocene_certified"))]
1437    pub const fn as_bytes(&self) -> &[MaybeUninit<u8>] {
1438        // SAFETY: MaybeUninit<u8> is always valid, even for padding bytes
1439        unsafe {
1440            slice::from_raw_parts(self.as_ptr().cast::<MaybeUninit<u8>>(), super::size_of_val(self))
1441        }
1442    }
1443
1444    /// Returns the contents of this `MaybeUninit` slice as a mutable slice of potentially
1445    /// uninitialized bytes.
1446    ///
1447    /// Note that even if the contents of a `MaybeUninit` have been initialized, the value may still
1448    /// contain padding bytes which are left uninitialized.
1449    ///
1450    /// # Examples
1451    ///
1452    /// ```
1453    /// #![feature(maybe_uninit_as_bytes, maybe_uninit_write_slice, maybe_uninit_slice)]
1454    /// use std::mem::MaybeUninit;
1455    ///
1456    /// let mut uninit = [MaybeUninit::<u16>::uninit(), MaybeUninit::<u16>::uninit()];
1457    /// let uninit_bytes = uninit.as_bytes_mut();
1458    /// uninit_bytes.write_copy_of_slice(&[0x12, 0x34, 0x56, 0x78]);
1459    /// let vals = unsafe { uninit.assume_init_ref() };
1460    /// if cfg!(target_endian = "little") {
1461    ///     assert_eq!(vals, &[0x3412u16, 0x7856u16]);
1462    /// } else {
1463    ///     assert_eq!(vals, &[0x1234u16, 0x5678u16]);
1464    /// }
1465    /// ```
1466    #[unstable(feature = "maybe_uninit_as_bytes", issue = "93092")]
1467    #[cfg(not(feature = "ferrocene_certified"))]
1468    pub const fn as_bytes_mut(&mut self) -> &mut [MaybeUninit<u8>] {
1469        // SAFETY: MaybeUninit<u8> is always valid, even for padding bytes
1470        unsafe {
1471            slice::from_raw_parts_mut(
1472                self.as_mut_ptr() as *mut MaybeUninit<u8>,
1473                super::size_of_val(self),
1474            )
1475        }
1476    }
1477
1478    /// Drops the contained values in place.
1479    ///
1480    /// # Safety
1481    ///
1482    /// It is up to the caller to guarantee that every `MaybeUninit<T>` in the slice
1483    /// really is in an initialized state. Calling this when the content is not yet
1484    /// fully initialized causes undefined behavior.
1485    ///
1486    /// On top of that, all additional invariants of the type `T` must be
1487    /// satisfied, as the `Drop` implementation of `T` (or its members) may
1488    /// rely on this. For example, setting a `Vec<T>` to an invalid but
1489    /// non-null address makes it initialized (under the current implementation;
1490    /// this does not constitute a stable guarantee), because the only
1491    /// requirement the compiler knows about it is that the data pointer must be
1492    /// non-null. Dropping such a `Vec<T>` however will cause undefined
1493    /// behaviour.
1494    #[unstable(feature = "maybe_uninit_slice", issue = "63569")]
1495    #[inline(always)]
1496    #[rustc_const_unstable(feature = "const_drop_in_place", issue = "109342")]
1497    pub const unsafe fn assume_init_drop(&mut self)
1498    where
1499        T: [const] Destruct,
1500    {
1501        if !self.is_empty() {
1502            // SAFETY: the caller must guarantee that every element of `self`
1503            // is initialized and satisfies all invariants of `T`.
1504            // Dropping the value in place is safe if that is the case.
1505            unsafe { ptr::drop_in_place(self as *mut [MaybeUninit<T>] as *mut [T]) }
1506        }
1507    }
1508
1509    /// Gets a shared reference to the contained value.
1510    ///
1511    /// # Safety
1512    ///
1513    /// Calling this when the content is not yet fully initialized causes undefined
1514    /// behavior: it is up to the caller to guarantee that every `MaybeUninit<T>` in
1515    /// the slice really is in an initialized state.
1516    #[unstable(feature = "maybe_uninit_slice", issue = "63569")]
1517    #[inline(always)]
1518    pub const unsafe fn assume_init_ref(&self) -> &[T] {
1519        // SAFETY: casting `slice` to a `*const [T]` is safe since the caller guarantees that
1520        // `slice` is initialized, and `MaybeUninit` is guaranteed to have the same layout as `T`.
1521        // The pointer obtained is valid since it refers to memory owned by `slice` which is a
1522        // reference and thus guaranteed to be valid for reads.
1523        unsafe { &*(self as *const Self as *const [T]) }
1524    }
1525
1526    /// Gets a mutable (unique) reference to the contained value.
1527    ///
1528    /// # Safety
1529    ///
1530    /// Calling this when the content is not yet fully initialized causes undefined
1531    /// behavior: it is up to the caller to guarantee that every `MaybeUninit<T>` in the
1532    /// slice really is in an initialized state. For instance, `.assume_init_mut()` cannot
1533    /// be used to initialize a `MaybeUninit` slice.
1534    #[unstable(feature = "maybe_uninit_slice", issue = "63569")]
1535    #[inline(always)]
1536    #[cfg(not(feature = "ferrocene_certified"))]
1537    pub const unsafe fn assume_init_mut(&mut self) -> &mut [T] {
1538        // SAFETY: similar to safety notes for `slice_get_ref`, but we have a
1539        // mutable reference which is also guaranteed to be valid for writes.
1540        unsafe { &mut *(self as *mut Self as *mut [T]) }
1541    }
1542}
1543
1544impl<T, const N: usize> MaybeUninit<[T; N]> {
1545    /// Transposes a `MaybeUninit<[T; N]>` into a `[MaybeUninit<T>; N]`.
1546    ///
1547    /// # Examples
1548    ///
1549    /// ```
1550    /// #![feature(maybe_uninit_uninit_array_transpose)]
1551    /// # use std::mem::MaybeUninit;
1552    ///
1553    /// let data: [MaybeUninit<u8>; 1000] = MaybeUninit::uninit().transpose();
1554    /// ```
1555    #[unstable(feature = "maybe_uninit_uninit_array_transpose", issue = "96097")]
1556    #[inline]
1557    pub const fn transpose(self) -> [MaybeUninit<T>; N] {
1558        // SAFETY: T and MaybeUninit<T> have the same layout
1559        unsafe { intrinsics::transmute_unchecked(self) }
1560    }
1561}
1562
1563impl<T, const N: usize> [MaybeUninit<T>; N] {
1564    /// Transposes a `[MaybeUninit<T>; N]` into a `MaybeUninit<[T; N]>`.
1565    ///
1566    /// # Examples
1567    ///
1568    /// ```
1569    /// #![feature(maybe_uninit_uninit_array_transpose)]
1570    /// # use std::mem::MaybeUninit;
1571    ///
1572    /// let data = [MaybeUninit::<u8>::uninit(); 1000];
1573    /// let data: MaybeUninit<[u8; 1000]> = data.transpose();
1574    /// ```
1575    #[unstable(feature = "maybe_uninit_uninit_array_transpose", issue = "96097")]
1576    #[inline]
1577    pub const fn transpose(self) -> MaybeUninit<[T; N]> {
1578        // SAFETY: T and MaybeUninit<T> have the same layout
1579        unsafe { intrinsics::transmute_unchecked(self) }
1580    }
1581}
1582
1583#[cfg(not(feature = "ferrocene_certified"))]
1584struct Guard<'a, T> {
1585    slice: &'a mut [MaybeUninit<T>],
1586    initialized: usize,
1587}
1588
1589#[cfg(not(feature = "ferrocene_certified"))]
1590impl<'a, T> Drop for Guard<'a, T> {
1591    fn drop(&mut self) {
1592        let initialized_part = &mut self.slice[..self.initialized];
1593        // SAFETY: this raw sub-slice will contain only initialized objects.
1594        unsafe {
1595            initialized_part.assume_init_drop();
1596        }
1597    }
1598}
1599
1600#[cfg(not(feature = "ferrocene_certified"))]
1601trait SpecFill<T> {
1602    fn spec_fill(&mut self, value: T);
1603}
1604
1605#[cfg(not(feature = "ferrocene_certified"))]
1606impl<T: Clone> SpecFill<T> for [MaybeUninit<T>] {
1607    default fn spec_fill(&mut self, value: T) {
1608        let mut guard = Guard { slice: self, initialized: 0 };
1609
1610        if let Some((last, elems)) = guard.slice.split_last_mut() {
1611            for el in elems {
1612                el.write(value.clone());
1613                guard.initialized += 1;
1614            }
1615
1616            last.write(value);
1617        }
1618        super::forget(guard);
1619    }
1620}
1621
1622#[cfg(not(feature = "ferrocene_certified"))]
1623impl<T: Copy> SpecFill<T> for [MaybeUninit<T>] {
1624    fn spec_fill(&mut self, value: T) {
1625        self.fill(MaybeUninit::new(value));
1626    }
1627}