core/mem/
maybe_uninit.rs

1#[cfg(not(feature = "ferrocene_subset"))]
2use crate::any::type_name;
3use crate::clone::TrivialClone;
4use crate::marker::Destruct;
5use crate::mem::ManuallyDrop;
6#[cfg(not(feature = "ferrocene_subset"))]
7use crate::{fmt, intrinsics, ptr, slice};
8
9// Ferrocene addition: imports for certified subset
10#[cfg(feature = "ferrocene_subset")]
11#[rustfmt::skip]
12use crate::{intrinsics, ptr, slice};
13
14/// A wrapper type to construct uninitialized instances of `T`.
15///
16/// # Initialization invariant
17///
18/// The compiler, in general, assumes that a variable is properly initialized
19/// according to the requirements of the variable's type. For example, a variable of
20/// reference type must be aligned and non-null. This is an invariant that must
21/// *always* be upheld, even in unsafe code. As a consequence, zero-initializing a
22/// variable of reference type causes instantaneous [undefined behavior][ub],
23/// no matter whether that reference ever gets used to access memory:
24///
25/// ```rust,no_run
26/// # #![allow(invalid_value)]
27/// use std::mem::{self, MaybeUninit};
28///
29/// let x: &i32 = unsafe { mem::zeroed() }; // undefined behavior! ⚠️
30/// // The equivalent code with `MaybeUninit<&i32>`:
31/// let x: &i32 = unsafe { MaybeUninit::zeroed().assume_init() }; // undefined behavior! ⚠️
32/// ```
33///
34/// This is exploited by the compiler for various optimizations, such as eliding
35/// run-time checks and optimizing `enum` layout.
36///
37/// Similarly, entirely uninitialized memory may have any content, while a `bool` must
38/// always be `true` or `false`. Hence, creating an uninitialized `bool` is undefined behavior:
39///
40/// ```rust,no_run
41/// # #![allow(invalid_value)]
42/// use std::mem::{self, MaybeUninit};
43///
44/// let b: bool = unsafe { mem::uninitialized() }; // undefined behavior! ⚠️
45/// // The equivalent code with `MaybeUninit<bool>`:
46/// let b: bool = unsafe { MaybeUninit::uninit().assume_init() }; // undefined behavior! ⚠️
47/// ```
48///
49/// Moreover, uninitialized memory is special in that it does not have a fixed value ("fixed"
50/// meaning "it won't change without being written to"). Reading the same uninitialized byte
51/// multiple times can give different results. This makes it undefined behavior to have
52/// uninitialized data in a variable even if that variable has an integer type, which otherwise can
53/// hold any *fixed* bit pattern:
54///
55/// ```rust,no_run
56/// # #![allow(invalid_value)]
57/// use std::mem::{self, MaybeUninit};
58///
59/// let x: i32 = unsafe { mem::uninitialized() }; // undefined behavior! ⚠️
60/// // The equivalent code with `MaybeUninit<i32>`:
61/// let x: i32 = unsafe { MaybeUninit::uninit().assume_init() }; // undefined behavior! ⚠️
62/// ```
63/// On top of that, remember that most types have additional invariants beyond merely
64/// being considered initialized at the type level. For example, a `1`-initialized [`Vec<T>`]
65/// is considered initialized (under the current implementation; this does not constitute
66/// a stable guarantee) because the only requirement the compiler knows about it
67/// is that the data pointer must be non-null. Creating such a `Vec<T>` does not cause
68/// *immediate* undefined behavior, but will cause undefined behavior with most
69/// safe operations (including dropping it).
70///
71/// [`Vec<T>`]: ../../std/vec/struct.Vec.html
72///
73/// # Examples
74///
75/// `MaybeUninit<T>` serves to enable unsafe code to deal with uninitialized data.
76/// It is a signal to the compiler indicating that the data here might *not*
77/// be initialized:
78///
79/// ```rust
80/// use std::mem::MaybeUninit;
81///
82/// // Create an explicitly uninitialized reference. The compiler knows that data inside
83/// // a `MaybeUninit<T>` may be invalid, and hence this is not UB:
84/// let mut x = MaybeUninit::<&i32>::uninit();
85/// // Set it to a valid value.
86/// x.write(&0);
87/// // Extract the initialized data -- this is only allowed *after* properly
88/// // initializing `x`!
89/// let x = unsafe { x.assume_init() };
90/// ```
91///
92/// The compiler then knows to not make any incorrect assumptions or optimizations on this code.
93///
94/// You can think of `MaybeUninit<T>` as being a bit like `Option<T>` but without
95/// any of the run-time tracking and without any of the safety checks.
96///
97/// ## out-pointers
98///
99/// You can use `MaybeUninit<T>` to implement "out-pointers": instead of returning data
100/// from a function, pass it a pointer to some (uninitialized) memory to put the
101/// result into. This can be useful when it is important for the caller to control
102/// how the memory the result is stored in gets allocated, and you want to avoid
103/// unnecessary moves.
104///
105/// ```
106/// use std::mem::MaybeUninit;
107///
108/// unsafe fn make_vec(out: *mut Vec<i32>) {
109///     // `write` does not drop the old contents, which is important.
110///     unsafe { out.write(vec![1, 2, 3]); }
111/// }
112///
113/// let mut v = MaybeUninit::uninit();
114/// unsafe { make_vec(v.as_mut_ptr()); }
115/// // Now we know `v` is initialized! This also makes sure the vector gets
116/// // properly dropped.
117/// let v = unsafe { v.assume_init() };
118/// assert_eq!(&v, &[1, 2, 3]);
119/// ```
120///
121/// ## Initializing an array element-by-element
122///
123/// `MaybeUninit<T>` can be used to initialize a large array element-by-element:
124///
125/// ```
126/// use std::mem::{self, MaybeUninit};
127///
128/// let data = {
129///     // Create an uninitialized array of `MaybeUninit`.
130///     let mut data: [MaybeUninit<Vec<u32>>; 1000] = [const { MaybeUninit::uninit() }; 1000];
131///
132///     // Dropping a `MaybeUninit` does nothing, so if there is a panic during this loop,
133///     // we have a memory leak, but there is no memory safety issue.
134///     for elem in &mut data[..] {
135///         elem.write(vec![42]);
136///     }
137///
138///     // Everything is initialized. Transmute the array to the
139///     // initialized type.
140///     unsafe { mem::transmute::<_, [Vec<u32>; 1000]>(data) }
141/// };
142///
143/// assert_eq!(&data[0], &[42]);
144/// ```
145///
146/// You can also work with partially initialized arrays, which could
147/// be found in low-level datastructures.
148///
149/// ```
150/// use std::mem::MaybeUninit;
151///
152/// // Create an uninitialized array of `MaybeUninit`.
153/// let mut data: [MaybeUninit<String>; 1000] = [const { MaybeUninit::uninit() }; 1000];
154/// // Count the number of elements we have assigned.
155/// let mut data_len: usize = 0;
156///
157/// for elem in &mut data[0..500] {
158///     elem.write(String::from("hello"));
159///     data_len += 1;
160/// }
161///
162/// // For each item in the array, drop if we allocated it.
163/// for elem in &mut data[0..data_len] {
164///     unsafe { elem.assume_init_drop(); }
165/// }
166/// ```
167///
168/// ## Initializing a struct field-by-field
169///
170/// You can use `MaybeUninit<T>` and the [`&raw mut`] syntax to initialize structs field by field:
171///
172/// ```rust
173/// use std::mem::MaybeUninit;
174///
175/// #[derive(Debug, PartialEq)]
176/// pub struct Foo {
177///     name: String,
178///     list: Vec<u8>,
179/// }
180///
181/// let foo = {
182///     let mut uninit: MaybeUninit<Foo> = MaybeUninit::uninit();
183///     let ptr = uninit.as_mut_ptr();
184///
185///     // Initializing the `name` field
186///     // Using `write` instead of assignment via `=` to not call `drop` on the
187///     // old, uninitialized value.
188///     unsafe { (&raw mut (*ptr).name).write("Bob".to_string()); }
189///
190///     // Initializing the `list` field
191///     // If there is a panic here, then the `String` in the `name` field leaks.
192///     unsafe { (&raw mut (*ptr).list).write(vec![0, 1, 2]); }
193///
194///     // All the fields are initialized, so we call `assume_init` to get an initialized Foo.
195///     unsafe { uninit.assume_init() }
196/// };
197///
198/// assert_eq!(
199///     foo,
200///     Foo {
201///         name: "Bob".to_string(),
202///         list: vec![0, 1, 2]
203///     }
204/// );
205/// ```
206/// [`&raw mut`]: https://doc.rust-lang.org/reference/types/pointer.html#r-type.pointer.raw.constructor
207/// [ub]: ../../reference/behavior-considered-undefined.html
208///
209/// # Layout
210///
211/// `MaybeUninit<T>` is guaranteed to have the same size, alignment, and ABI as `T`:
212///
213/// ```rust
214/// use std::mem::MaybeUninit;
215/// assert_eq!(size_of::<MaybeUninit<u64>>(), size_of::<u64>());
216/// assert_eq!(align_of::<MaybeUninit<u64>>(), align_of::<u64>());
217/// ```
218///
219/// However remember that a type *containing* a `MaybeUninit<T>` is not necessarily the same
220/// layout; Rust does not in general guarantee that the fields of a `Foo<T>` have the same order as
221/// a `Foo<U>` even if `T` and `U` have the same size and alignment. Furthermore because any bit
222/// value is valid for a `MaybeUninit<T>` the compiler can't apply non-zero/niche-filling
223/// optimizations, potentially resulting in a larger size:
224///
225/// ```rust
226/// # use std::mem::MaybeUninit;
227/// assert_eq!(size_of::<Option<bool>>(), 1);
228/// assert_eq!(size_of::<Option<MaybeUninit<bool>>>(), 2);
229/// ```
230///
231/// If `T` is FFI-safe, then so is `MaybeUninit<T>`.
232///
233/// While `MaybeUninit` is `#[repr(transparent)]` (indicating it guarantees the same size,
234/// alignment, and ABI as `T`), this does *not* change any of the previous caveats. `Option<T>` and
235/// `Option<MaybeUninit<T>>` may still have different sizes, and types containing a field of type
236/// `T` may be laid out (and sized) differently than if that field were `MaybeUninit<T>`.
237/// `MaybeUninit` is a union type, and `#[repr(transparent)]` on unions is unstable (see [the
238/// tracking issue](https://github.com/rust-lang/rust/issues/60405)). Over time, the exact
239/// guarantees of `#[repr(transparent)]` on unions may evolve, and `MaybeUninit` may or may not
240/// remain `#[repr(transparent)]`. That said, `MaybeUninit<T>` will *always* guarantee that it has
241/// the same size, alignment, and ABI as `T`; it's just that the way `MaybeUninit` implements that
242/// guarantee may evolve.
243///
244/// Note that even though `T` and `MaybeUninit<T>` are ABI compatible it is still unsound to
245/// transmute `&mut T` to `&mut MaybeUninit<T>` and expose that to safe code because it would allow
246/// safe code to access uninitialized memory:
247///
248/// ```rust,no_run
249/// use core::mem::MaybeUninit;
250///
251/// fn unsound_transmute<T>(val: &mut T) -> &mut MaybeUninit<T> {
252///     unsafe { core::mem::transmute(val) }
253/// }
254///
255/// fn main() {
256///     let mut code = 0;
257///     let code = &mut code;
258///     let code2 = unsound_transmute(code);
259///     *code2 = MaybeUninit::uninit();
260///     std::process::exit(*code); // UB! Accessing uninitialized memory.
261/// }
262/// ```
263///
264/// # Validity
265///
266/// `MaybeUninit<T>` has no validity requirements –- any sequence of [bytes] of
267/// the appropriate length, initialized or uninitialized, are a valid
268/// representation.
269///
270/// Moving or copying a value of type `MaybeUninit<T>` (i.e., performing a
271/// "typed copy") will exactly preserve the contents, including the
272/// [provenance], of all non-padding bytes of type `T` in the value's
273/// representation.
274///
275/// Therefore `MaybeUninit` can be used to perform a round trip of a value from
276/// type `T` to type `MaybeUninit<U>` then back to type `T`, while preserving
277/// the original value, if two conditions are met. One, type `U` must have the
278/// same size as type `T`. Two, for all byte offsets where type `U` has padding,
279/// the corresponding bytes in the representation of the value must be
280/// uninitialized.
281///
282/// For example, due to the fact that the type `[u8; size_of::<T>]` has no
283/// padding, the following is sound for any type `T` and will return the
284/// original value:
285///
286/// ```rust,no_run
287/// # use core::mem::{MaybeUninit, transmute};
288/// # struct T;
289/// fn identity(t: T) -> T {
290///     unsafe {
291///         let u: MaybeUninit<[u8; size_of::<T>()]> = transmute(t);
292///         transmute(u) // OK.
293///     }
294/// }
295/// ```
296///
297/// Note: Copying a value that contains references may implicitly reborrow them
298/// causing the provenance of the returned value to differ from that of the
299/// original. This applies equally to the trivial identity function:
300///
301/// ```rust,no_run
302/// fn trivial_identity<T>(t: T) -> T { t }
303/// ```
304///
305/// Note: Moving or copying a value whose representation has initialized bytes
306/// at byte offsets where the type has padding may lose the value of those
307/// bytes, so while the original value will be preserved, the original
308/// *representation* of that value as bytes may not be. Again, this applies
309/// equally to `trivial_identity`.
310///
311/// Note: Performing this round trip when type `U` has padding at byte offsets
312/// where the representation of the original value has initialized bytes may
313/// produce undefined behavior or a different value. For example, the following
314/// is unsound since `T` requires all bytes to be initialized:
315///
316/// ```rust,no_run
317/// # use core::mem::{MaybeUninit, transmute};
318/// #[repr(C)] struct T([u8; 4]);
319/// #[repr(C)] struct U(u8, u16);
320/// fn unsound_identity(t: T) -> T {
321///     unsafe {
322///         let u: MaybeUninit<U> = transmute(t);
323///         transmute(u) // UB.
324///     }
325/// }
326/// ```
327///
328/// Conversely, the following is sound since `T` allows uninitialized bytes in
329/// the representation of a value, but the round trip may alter the value:
330///
331/// ```rust,no_run
332/// # use core::mem::{MaybeUninit, transmute};
333/// #[repr(C)] struct T(MaybeUninit<[u8; 4]>);
334/// #[repr(C)] struct U(u8, u16);
335/// fn non_identity(t: T) -> T {
336///     unsafe {
337///         // May lose an initialized byte.
338///         let u: MaybeUninit<U> = transmute(t);
339///         transmute(u)
340///     }
341/// }
342/// ```
343///
344/// [bytes]: ../../reference/memory-model.html#bytes
345/// [provenance]: crate::ptr#provenance
346#[stable(feature = "maybe_uninit", since = "1.36.0")]
347// Lang item so we can wrap other types in it. This is useful for coroutines.
348#[lang = "maybe_uninit"]
349#[derive(Copy)]
350#[repr(transparent)]
351#[rustc_pub_transparent]
352pub union MaybeUninit<T> {
353    uninit: (),
354    value: ManuallyDrop<T>,
355}
356
357#[stable(feature = "maybe_uninit", since = "1.36.0")]
358impl<T: Copy> Clone for MaybeUninit<T> {
359    #[inline(always)]
360    fn clone(&self) -> Self {
361        // Not calling `T::clone()`, we cannot know if we are initialized enough for that.
362        *self
363    }
364}
365
366// SAFETY: the clone implementation is a copy, see above.
367#[doc(hidden)]
368#[unstable(feature = "trivial_clone", issue = "none")]
369unsafe impl<T> TrivialClone for MaybeUninit<T> where MaybeUninit<T>: Clone {}
370
371#[stable(feature = "maybe_uninit_debug", since = "1.41.0")]
372#[cfg(not(feature = "ferrocene_subset"))]
373impl<T> fmt::Debug for MaybeUninit<T> {
374    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
375        // NB: there is no `.pad_fmt` so we can't use a simpler `format_args!("MaybeUninit<{..}>").
376        let full_name = type_name::<Self>();
377        let prefix_len = full_name.find("MaybeUninit").unwrap();
378        f.pad(&full_name[prefix_len..])
379    }
380}
381
382impl<T> MaybeUninit<T> {
383    /// Creates a new `MaybeUninit<T>` initialized with the given value.
384    /// It is safe to call [`assume_init`] on the return value of this function.
385    ///
386    /// Note that dropping a `MaybeUninit<T>` will never call `T`'s drop code.
387    /// It is your responsibility to make sure `T` gets dropped if it got initialized.
388    ///
389    /// # Example
390    ///
391    /// ```
392    /// use std::mem::MaybeUninit;
393    ///
394    /// let v: MaybeUninit<Vec<u8>> = MaybeUninit::new(vec![42]);
395    /// # // Prevent leaks for Miri
396    /// # unsafe { let _ = MaybeUninit::assume_init(v); }
397    /// ```
398    ///
399    /// [`assume_init`]: MaybeUninit::assume_init
400    #[stable(feature = "maybe_uninit", since = "1.36.0")]
401    #[rustc_const_stable(feature = "const_maybe_uninit", since = "1.36.0")]
402    #[must_use = "use `forget` to avoid running Drop code"]
403    #[inline(always)]
404    pub const fn new(val: T) -> MaybeUninit<T> {
405        MaybeUninit { value: ManuallyDrop::new(val) }
406    }
407
408    /// Creates a new `MaybeUninit<T>` in an uninitialized state.
409    ///
410    /// Note that dropping a `MaybeUninit<T>` will never call `T`'s drop code.
411    /// It is your responsibility to make sure `T` gets dropped if it got initialized.
412    ///
413    /// See the [type-level documentation][MaybeUninit] for some examples.
414    ///
415    /// # Example
416    ///
417    /// ```
418    /// use std::mem::MaybeUninit;
419    ///
420    /// let v: MaybeUninit<String> = MaybeUninit::uninit();
421    /// ```
422    #[stable(feature = "maybe_uninit", since = "1.36.0")]
423    #[rustc_const_stable(feature = "const_maybe_uninit", since = "1.36.0")]
424    #[must_use]
425    #[inline(always)]
426    #[rustc_diagnostic_item = "maybe_uninit_uninit"]
427    pub const fn uninit() -> MaybeUninit<T> {
428        MaybeUninit { uninit: () }
429    }
430
431    /// Creates a new `MaybeUninit<T>` in an uninitialized state, with the memory being
432    /// filled with `0` bytes. It depends on `T` whether that already makes for
433    /// proper initialization. For example, `MaybeUninit<usize>::zeroed()` is initialized,
434    /// but `MaybeUninit<&'static i32>::zeroed()` is not because references must not
435    /// be null.
436    ///
437    /// Note that if `T` has padding bytes, those bytes are *not* preserved when the
438    /// `MaybeUninit<T>` value is returned from this function, so those bytes will *not* be zeroed.
439    ///
440    /// Note that dropping a `MaybeUninit<T>` will never call `T`'s drop code.
441    /// It is your responsibility to make sure `T` gets dropped if it got initialized.
442    ///
443    /// # Example
444    ///
445    /// Correct usage of this function: initializing a struct with zero, where all
446    /// fields of the struct can hold the bit-pattern 0 as a valid value.
447    ///
448    /// ```rust
449    /// use std::mem::MaybeUninit;
450    ///
451    /// let x = MaybeUninit::<(u8, bool)>::zeroed();
452    /// let x = unsafe { x.assume_init() };
453    /// assert_eq!(x, (0, false));
454    /// ```
455    ///
456    /// This can be used in const contexts, such as to indicate the end of static arrays for
457    /// plugin registration.
458    ///
459    /// *Incorrect* usage of this function: calling `x.zeroed().assume_init()`
460    /// when `0` is not a valid bit-pattern for the type:
461    ///
462    /// ```rust,no_run
463    /// use std::mem::MaybeUninit;
464    ///
465    /// enum NotZero { One = 1, Two = 2 }
466    ///
467    /// let x = MaybeUninit::<(u8, NotZero)>::zeroed();
468    /// let x = unsafe { x.assume_init() };
469    /// // Inside a pair, we create a `NotZero` that does not have a valid discriminant.
470    /// // This is undefined behavior. ⚠️
471    /// ```
472    #[inline]
473    #[must_use]
474    #[rustc_diagnostic_item = "maybe_uninit_zeroed"]
475    #[stable(feature = "maybe_uninit", since = "1.36.0")]
476    #[rustc_const_stable(feature = "const_maybe_uninit_zeroed", since = "1.75.0")]
477    pub const fn zeroed() -> MaybeUninit<T> {
478        let mut u = MaybeUninit::<T>::uninit();
479        // SAFETY: `u.as_mut_ptr()` points to allocated memory.
480        unsafe { u.as_mut_ptr().write_bytes(0u8, 1) };
481        u
482    }
483
484    /// Sets the value of the `MaybeUninit<T>`.
485    ///
486    /// This overwrites any previous value without dropping it, so be careful
487    /// not to use this twice unless you want to skip running the destructor.
488    /// For your convenience, this also returns a mutable reference to the
489    /// (now safely initialized) contents of `self`.
490    ///
491    /// As the content is stored inside a `ManuallyDrop`, the destructor is not
492    /// run for the inner data if the MaybeUninit leaves scope without a call to
493    /// [`assume_init`], [`assume_init_drop`], or similar. Code that receives
494    /// the mutable reference returned by this function needs to keep this in
495    /// mind. The safety model of Rust regards leaks as safe, but they are
496    /// usually still undesirable. This being said, the mutable reference
497    /// behaves like any other mutable reference would, so assigning a new value
498    /// to it will drop the old content.
499    ///
500    /// [`assume_init`]: Self::assume_init
501    /// [`assume_init_drop`]: Self::assume_init_drop
502    ///
503    /// # Examples
504    ///
505    /// Correct usage of this method:
506    ///
507    /// ```rust
508    /// use std::mem::MaybeUninit;
509    ///
510    /// let mut x = MaybeUninit::<Vec<u8>>::uninit();
511    ///
512    /// {
513    ///     let hello = x.write((&b"Hello, world!").to_vec());
514    ///     // Setting hello does not leak prior allocations, but drops them
515    ///     *hello = (&b"Hello").to_vec();
516    ///     hello[0] = 'h' as u8;
517    /// }
518    /// // x is initialized now:
519    /// let s = unsafe { x.assume_init() };
520    /// assert_eq!(b"hello", s.as_slice());
521    /// ```
522    ///
523    /// This usage of the method causes a leak:
524    ///
525    /// ```rust
526    /// use std::mem::MaybeUninit;
527    ///
528    /// let mut x = MaybeUninit::<String>::uninit();
529    ///
530    /// x.write("Hello".to_string());
531    /// # // FIXME(https://github.com/rust-lang/miri/issues/3670):
532    /// # // use -Zmiri-disable-leak-check instead of unleaking in tests meant to leak.
533    /// # unsafe { MaybeUninit::assume_init_drop(&mut x); }
534    /// // This leaks the contained string:
535    /// x.write("hello".to_string());
536    /// // x is initialized now:
537    /// let s = unsafe { x.assume_init() };
538    /// ```
539    ///
540    /// This method can be used to avoid unsafe in some cases. The example below
541    /// shows a part of an implementation of a fixed sized arena that lends out
542    /// pinned references.
543    /// With `write`, we can avoid the need to write through a raw pointer:
544    ///
545    /// ```rust
546    /// use core::pin::Pin;
547    /// use core::mem::MaybeUninit;
548    ///
549    /// struct PinArena<T> {
550    ///     memory: Box<[MaybeUninit<T>]>,
551    ///     len: usize,
552    /// }
553    ///
554    /// impl <T> PinArena<T> {
555    ///     pub fn capacity(&self) -> usize {
556    ///         self.memory.len()
557    ///     }
558    ///     pub fn push(&mut self, val: T) -> Pin<&mut T> {
559    ///         if self.len >= self.capacity() {
560    ///             panic!("Attempted to push to a full pin arena!");
561    ///         }
562    ///         let ref_ = self.memory[self.len].write(val);
563    ///         self.len += 1;
564    ///         unsafe { Pin::new_unchecked(ref_) }
565    ///     }
566    /// }
567    /// ```
568    #[inline(always)]
569    #[stable(feature = "maybe_uninit_write", since = "1.55.0")]
570    #[rustc_const_stable(feature = "const_maybe_uninit_write", since = "1.85.0")]
571    pub const fn write(&mut self, val: T) -> &mut T {
572        *self = MaybeUninit::new(val);
573        // SAFETY: We just initialized this value.
574        unsafe { self.assume_init_mut() }
575    }
576
577    /// Gets a pointer to the contained value. Reading from this pointer or turning it
578    /// into a reference is undefined behavior unless the `MaybeUninit<T>` is initialized.
579    /// Writing to memory that this pointer (non-transitively) points to is undefined behavior
580    /// (except inside an `UnsafeCell<T>`).
581    ///
582    /// # Examples
583    ///
584    /// Correct usage of this method:
585    ///
586    /// ```rust
587    /// use std::mem::MaybeUninit;
588    ///
589    /// let mut x = MaybeUninit::<Vec<u32>>::uninit();
590    /// x.write(vec![0, 1, 2]);
591    /// // Create a reference into the `MaybeUninit<T>`. This is okay because we initialized it.
592    /// let x_vec = unsafe { &*x.as_ptr() };
593    /// assert_eq!(x_vec.len(), 3);
594    /// # // Prevent leaks for Miri
595    /// # unsafe { MaybeUninit::assume_init_drop(&mut x); }
596    /// ```
597    ///
598    /// *Incorrect* usage of this method:
599    ///
600    /// ```rust,no_run
601    /// use std::mem::MaybeUninit;
602    ///
603    /// let x = MaybeUninit::<Vec<u32>>::uninit();
604    /// let x_vec = unsafe { &*x.as_ptr() };
605    /// // We have created a reference to an uninitialized vector! This is undefined behavior. ⚠️
606    /// ```
607    ///
608    /// (Notice that the rules around references to uninitialized data are not finalized yet, but
609    /// until they are, it is advisable to avoid them.)
610    #[stable(feature = "maybe_uninit", since = "1.36.0")]
611    #[rustc_const_stable(feature = "const_maybe_uninit_as_ptr", since = "1.59.0")]
612    #[rustc_as_ptr]
613    #[inline(always)]
614    pub const fn as_ptr(&self) -> *const T {
615        // `MaybeUninit` and `ManuallyDrop` are both `repr(transparent)` so we can cast the pointer.
616        self as *const _ as *const T
617    }
618
619    /// Gets a mutable pointer to the contained value. Reading from this pointer or turning it
620    /// into a reference is undefined behavior unless the `MaybeUninit<T>` is initialized.
621    ///
622    /// # Examples
623    ///
624    /// Correct usage of this method:
625    ///
626    /// ```rust
627    /// use std::mem::MaybeUninit;
628    ///
629    /// let mut x = MaybeUninit::<Vec<u32>>::uninit();
630    /// x.write(vec![0, 1, 2]);
631    /// // Create a reference into the `MaybeUninit<Vec<u32>>`.
632    /// // This is okay because we initialized it.
633    /// let x_vec = unsafe { &mut *x.as_mut_ptr() };
634    /// x_vec.push(3);
635    /// assert_eq!(x_vec.len(), 4);
636    /// # // Prevent leaks for Miri
637    /// # unsafe { MaybeUninit::assume_init_drop(&mut x); }
638    /// ```
639    ///
640    /// *Incorrect* usage of this method:
641    ///
642    /// ```rust,no_run
643    /// use std::mem::MaybeUninit;
644    ///
645    /// let mut x = MaybeUninit::<Vec<u32>>::uninit();
646    /// let x_vec = unsafe { &mut *x.as_mut_ptr() };
647    /// // We have created a reference to an uninitialized vector! This is undefined behavior. ⚠️
648    /// ```
649    ///
650    /// (Notice that the rules around references to uninitialized data are not finalized yet, but
651    /// until they are, it is advisable to avoid them.)
652    #[stable(feature = "maybe_uninit", since = "1.36.0")]
653    #[rustc_const_stable(feature = "const_maybe_uninit_as_mut_ptr", since = "1.83.0")]
654    #[rustc_as_ptr]
655    #[inline(always)]
656    pub const fn as_mut_ptr(&mut self) -> *mut T {
657        // `MaybeUninit` and `ManuallyDrop` are both `repr(transparent)` so we can cast the pointer.
658        self as *mut _ as *mut T
659    }
660
661    /// Extracts the value from the `MaybeUninit<T>` container. This is a great way
662    /// to ensure that the data will get dropped, because the resulting `T` is
663    /// subject to the usual drop handling.
664    ///
665    /// # Safety
666    ///
667    /// It is up to the caller to guarantee that the `MaybeUninit<T>` really is in an initialized
668    /// state. Calling this when the content is not yet fully initialized causes immediate undefined
669    /// behavior. The [type-level documentation][inv] contains more information about
670    /// this initialization invariant.
671    ///
672    /// [inv]: #initialization-invariant
673    ///
674    /// On top of that, remember that most types have additional invariants beyond merely
675    /// being considered initialized at the type level. For example, a `1`-initialized [`Vec<T>`]
676    /// is considered initialized (under the current implementation; this does not constitute
677    /// a stable guarantee) because the only requirement the compiler knows about it
678    /// is that the data pointer must be non-null. Creating such a `Vec<T>` does not cause
679    /// *immediate* undefined behavior, but will cause undefined behavior with most
680    /// safe operations (including dropping it).
681    ///
682    /// [`Vec<T>`]: ../../std/vec/struct.Vec.html
683    ///
684    /// # Examples
685    ///
686    /// Correct usage of this method:
687    ///
688    /// ```rust
689    /// use std::mem::MaybeUninit;
690    ///
691    /// let mut x = MaybeUninit::<bool>::uninit();
692    /// x.write(true);
693    /// let x_init = unsafe { x.assume_init() };
694    /// assert_eq!(x_init, true);
695    /// ```
696    ///
697    /// *Incorrect* usage of this method:
698    ///
699    /// ```rust,no_run
700    /// use std::mem::MaybeUninit;
701    ///
702    /// let x = MaybeUninit::<Vec<u32>>::uninit();
703    /// let x_init = unsafe { x.assume_init() };
704    /// // `x` had not been initialized yet, so this last line caused undefined behavior. ⚠️
705    /// ```
706    #[stable(feature = "maybe_uninit", since = "1.36.0")]
707    #[rustc_const_stable(feature = "const_maybe_uninit_assume_init_by_value", since = "1.59.0")]
708    #[inline(always)]
709    #[rustc_diagnostic_item = "assume_init"]
710    #[track_caller]
711    pub const unsafe fn assume_init(self) -> T {
712        // SAFETY: the caller must guarantee that `self` is initialized.
713        // This also means that `self` must be a `value` variant.
714        unsafe {
715            intrinsics::assert_inhabited::<T>();
716            // We do this via a raw ptr read instead of `ManuallyDrop::into_inner` so that there's
717            // no trace of `ManuallyDrop` in Miri's error messages here.
718            (&raw const self.value).cast::<T>().read()
719        }
720    }
721
722    /// Reads the value from the `MaybeUninit<T>` container. The resulting `T` is subject
723    /// to the usual drop handling.
724    ///
725    /// Whenever possible, it is preferable to use [`assume_init`] instead, which
726    /// prevents duplicating the content of the `MaybeUninit<T>`.
727    ///
728    /// # Safety
729    ///
730    /// It is up to the caller to guarantee that the `MaybeUninit<T>` really is in an initialized
731    /// state. Calling this when the content is not yet fully initialized causes undefined
732    /// behavior. The [type-level documentation][inv] contains more information about
733    /// this initialization invariant.
734    ///
735    /// Moreover, similar to the [`ptr::read`] function, this function creates a
736    /// bitwise copy of the contents, regardless whether the contained type
737    /// implements the [`Copy`] trait or not. When using multiple copies of the
738    /// data (by calling `assume_init_read` multiple times, or first calling
739    /// `assume_init_read` and then [`assume_init`]), it is your responsibility
740    /// to ensure that data may indeed be duplicated.
741    ///
742    /// [inv]: #initialization-invariant
743    /// [`assume_init`]: MaybeUninit::assume_init
744    ///
745    /// # Examples
746    ///
747    /// Correct usage of this method:
748    ///
749    /// ```rust
750    /// use std::mem::MaybeUninit;
751    ///
752    /// let mut x = MaybeUninit::<u32>::uninit();
753    /// x.write(13);
754    /// let x1 = unsafe { x.assume_init_read() };
755    /// // `u32` is `Copy`, so we may read multiple times.
756    /// let x2 = unsafe { x.assume_init_read() };
757    /// assert_eq!(x1, x2);
758    ///
759    /// let mut x = MaybeUninit::<Option<Vec<u32>>>::uninit();
760    /// x.write(None);
761    /// let x1 = unsafe { x.assume_init_read() };
762    /// // Duplicating a `None` value is okay, so we may read multiple times.
763    /// let x2 = unsafe { x.assume_init_read() };
764    /// assert_eq!(x1, x2);
765    /// ```
766    ///
767    /// *Incorrect* usage of this method:
768    ///
769    /// ```rust,no_run
770    /// use std::mem::MaybeUninit;
771    ///
772    /// let mut x = MaybeUninit::<Option<Vec<u32>>>::uninit();
773    /// x.write(Some(vec![0, 1, 2]));
774    /// let x1 = unsafe { x.assume_init_read() };
775    /// let x2 = unsafe { x.assume_init_read() };
776    /// // We now created two copies of the same vector, leading to a double-free ⚠️ when
777    /// // they both get dropped!
778    /// ```
779    #[stable(feature = "maybe_uninit_extra", since = "1.60.0")]
780    #[rustc_const_stable(feature = "const_maybe_uninit_assume_init_read", since = "1.75.0")]
781    #[inline(always)]
782    #[track_caller]
783    pub const unsafe fn assume_init_read(&self) -> T {
784        // SAFETY: the caller must guarantee that `self` is initialized.
785        // Reading from `self.as_ptr()` is safe since `self` should be initialized.
786        unsafe {
787            intrinsics::assert_inhabited::<T>();
788            self.as_ptr().read()
789        }
790    }
791
792    /// Drops the contained value in place.
793    ///
794    /// If you have ownership of the `MaybeUninit`, you can also use
795    /// [`assume_init`] as an alternative.
796    ///
797    /// # Safety
798    ///
799    /// It is up to the caller to guarantee that the `MaybeUninit<T>` really is
800    /// in an initialized state. Calling this when the content is not yet fully
801    /// initialized causes undefined behavior.
802    ///
803    /// On top of that, all additional invariants of the type `T` must be
804    /// satisfied, as the `Drop` implementation of `T` (or its members) may
805    /// rely on this. For example, setting a `Vec<T>` to an invalid but
806    /// non-null address makes it initialized (under the current implementation;
807    /// this does not constitute a stable guarantee), because the only
808    /// requirement the compiler knows about it is that the data pointer must be
809    /// non-null. Dropping such a `Vec<T>` however will cause undefined
810    /// behavior.
811    ///
812    /// [`assume_init`]: MaybeUninit::assume_init
813    #[stable(feature = "maybe_uninit_extra", since = "1.60.0")]
814    #[rustc_const_unstable(feature = "const_drop_in_place", issue = "109342")]
815    pub const unsafe fn assume_init_drop(&mut self)
816    where
817        T: [const] Destruct,
818    {
819        // SAFETY: the caller must guarantee that `self` is initialized and
820        // satisfies all invariants of `T`.
821        // Dropping the value in place is safe if that is the case.
822        unsafe { ptr::drop_in_place(self.as_mut_ptr()) }
823    }
824
825    /// Gets a shared reference to the contained value.
826    ///
827    /// This can be useful when we want to access a `MaybeUninit` that has been
828    /// initialized but don't have ownership of the `MaybeUninit` (preventing the use
829    /// of `.assume_init()`).
830    ///
831    /// # Safety
832    ///
833    /// Calling this when the content is not yet fully initialized causes undefined
834    /// behavior: it is up to the caller to guarantee that the `MaybeUninit<T>` really
835    /// is in an initialized state.
836    ///
837    /// # Examples
838    ///
839    /// ### Correct usage of this method:
840    ///
841    /// ```rust
842    /// use std::mem::MaybeUninit;
843    ///
844    /// let mut x = MaybeUninit::<Vec<u32>>::uninit();
845    /// # let mut x_mu = x;
846    /// # let mut x = &mut x_mu;
847    /// // Initialize `x`:
848    /// x.write(vec![1, 2, 3]);
849    /// // Now that our `MaybeUninit<_>` is known to be initialized, it is okay to
850    /// // create a shared reference to it:
851    /// let x: &Vec<u32> = unsafe {
852    ///     // SAFETY: `x` has been initialized.
853    ///     x.assume_init_ref()
854    /// };
855    /// assert_eq!(x, &vec![1, 2, 3]);
856    /// # // Prevent leaks for Miri
857    /// # unsafe { MaybeUninit::assume_init_drop(&mut x_mu); }
858    /// ```
859    ///
860    /// ### *Incorrect* usages of this method:
861    ///
862    /// ```rust,no_run
863    /// use std::mem::MaybeUninit;
864    ///
865    /// let x = MaybeUninit::<Vec<u32>>::uninit();
866    /// let x_vec: &Vec<u32> = unsafe { x.assume_init_ref() };
867    /// // We have created a reference to an uninitialized vector! This is undefined behavior. ⚠️
868    /// ```
869    ///
870    /// ```rust,no_run
871    /// use std::{cell::Cell, mem::MaybeUninit};
872    ///
873    /// let b = MaybeUninit::<Cell<bool>>::uninit();
874    /// // Initialize the `MaybeUninit` using `Cell::set`:
875    /// unsafe {
876    ///     b.assume_init_ref().set(true);
877    ///     //^^^^^^^^^^^^^^^ Reference to an uninitialized `Cell<bool>`: UB!
878    /// }
879    /// ```
880    #[stable(feature = "maybe_uninit_ref", since = "1.55.0")]
881    #[rustc_const_stable(feature = "const_maybe_uninit_assume_init_ref", since = "1.59.0")]
882    #[inline(always)]
883    pub const unsafe fn assume_init_ref(&self) -> &T {
884        // SAFETY: the caller must guarantee that `self` is initialized.
885        // This also means that `self` must be a `value` variant.
886        unsafe {
887            intrinsics::assert_inhabited::<T>();
888            &*self.as_ptr()
889        }
890    }
891
892    /// Gets a mutable (unique) reference to the contained value.
893    ///
894    /// This can be useful when we want to access a `MaybeUninit` that has been
895    /// initialized but don't have ownership of the `MaybeUninit` (preventing the use
896    /// of `.assume_init()`).
897    ///
898    /// # Safety
899    ///
900    /// Calling this when the content is not yet fully initialized causes undefined
901    /// behavior: it is up to the caller to guarantee that the `MaybeUninit<T>` really
902    /// is in an initialized state. For instance, `.assume_init_mut()` cannot be used to
903    /// initialize a `MaybeUninit`.
904    ///
905    /// # Examples
906    ///
907    /// ### Correct usage of this method:
908    ///
909    /// ```rust
910    /// # #![allow(unexpected_cfgs)]
911    /// use std::mem::MaybeUninit;
912    ///
913    /// # unsafe extern "C" fn initialize_buffer(buf: *mut [u8; 1024]) { unsafe { *buf = [0; 1024] } }
914    /// # #[cfg(FALSE)]
915    /// extern "C" {
916    ///     /// Initializes *all* the bytes of the input buffer.
917    ///     fn initialize_buffer(buf: *mut [u8; 1024]);
918    /// }
919    ///
920    /// let mut buf = MaybeUninit::<[u8; 1024]>::uninit();
921    ///
922    /// // Initialize `buf`:
923    /// unsafe { initialize_buffer(buf.as_mut_ptr()); }
924    /// // Now we know that `buf` has been initialized, so we could `.assume_init()` it.
925    /// // However, using `.assume_init()` may trigger a `memcpy` of the 1024 bytes.
926    /// // To assert our buffer has been initialized without copying it, we upgrade
927    /// // the `&mut MaybeUninit<[u8; 1024]>` to a `&mut [u8; 1024]`:
928    /// let buf: &mut [u8; 1024] = unsafe {
929    ///     // SAFETY: `buf` has been initialized.
930    ///     buf.assume_init_mut()
931    /// };
932    ///
933    /// // Now we can use `buf` as a normal slice:
934    /// buf.sort_unstable();
935    /// assert!(
936    ///     buf.windows(2).all(|pair| pair[0] <= pair[1]),
937    ///     "buffer is sorted",
938    /// );
939    /// ```
940    ///
941    /// ### *Incorrect* usages of this method:
942    ///
943    /// You cannot use `.assume_init_mut()` to initialize a value:
944    ///
945    /// ```rust,no_run
946    /// use std::mem::MaybeUninit;
947    ///
948    /// let mut b = MaybeUninit::<bool>::uninit();
949    /// unsafe {
950    ///     *b.assume_init_mut() = true;
951    ///     // We have created a (mutable) reference to an uninitialized `bool`!
952    ///     // This is undefined behavior. ⚠️
953    /// }
954    /// ```
955    ///
956    /// For instance, you cannot [`Read`] into an uninitialized buffer:
957    ///
958    /// [`Read`]: ../../std/io/trait.Read.html
959    ///
960    /// ```rust,no_run
961    /// use std::{io, mem::MaybeUninit};
962    ///
963    /// fn read_chunk (reader: &'_ mut dyn io::Read) -> io::Result<[u8; 64]>
964    /// {
965    ///     let mut buffer = MaybeUninit::<[u8; 64]>::uninit();
966    ///     reader.read_exact(unsafe { buffer.assume_init_mut() })?;
967    ///     //                         ^^^^^^^^^^^^^^^^^^^^^^^^
968    ///     // (mutable) reference to uninitialized memory!
969    ///     // This is undefined behavior.
970    ///     Ok(unsafe { buffer.assume_init() })
971    /// }
972    /// ```
973    ///
974    /// Nor can you use direct field access to do field-by-field gradual initialization:
975    ///
976    /// ```rust,no_run
977    /// use std::{mem::MaybeUninit, ptr};
978    ///
979    /// struct Foo {
980    ///     a: u32,
981    ///     b: u8,
982    /// }
983    ///
984    /// let foo: Foo = unsafe {
985    ///     let mut foo = MaybeUninit::<Foo>::uninit();
986    ///     ptr::write(&mut foo.assume_init_mut().a as *mut u32, 1337);
987    ///     //              ^^^^^^^^^^^^^^^^^^^^^
988    ///     // (mutable) reference to uninitialized memory!
989    ///     // This is undefined behavior.
990    ///     ptr::write(&mut foo.assume_init_mut().b as *mut u8, 42);
991    ///     //              ^^^^^^^^^^^^^^^^^^^^^
992    ///     // (mutable) reference to uninitialized memory!
993    ///     // This is undefined behavior.
994    ///     foo.assume_init()
995    /// };
996    /// ```
997    #[stable(feature = "maybe_uninit_ref", since = "1.55.0")]
998    #[rustc_const_stable(feature = "const_maybe_uninit_assume_init", since = "1.84.0")]
999    #[inline(always)]
1000    pub const unsafe fn assume_init_mut(&mut self) -> &mut T {
1001        // SAFETY: the caller must guarantee that `self` is initialized.
1002        // This also means that `self` must be a `value` variant.
1003        unsafe {
1004            intrinsics::assert_inhabited::<T>();
1005            &mut *self.as_mut_ptr()
1006        }
1007    }
1008
1009    /// Extracts the values from an array of `MaybeUninit` containers.
1010    ///
1011    /// # Safety
1012    ///
1013    /// It is up to the caller to guarantee that all elements of the array are
1014    /// in an initialized state.
1015    ///
1016    /// # Examples
1017    ///
1018    /// ```
1019    /// #![feature(maybe_uninit_array_assume_init)]
1020    /// use std::mem::MaybeUninit;
1021    ///
1022    /// let mut array: [MaybeUninit<i32>; 3] = [MaybeUninit::uninit(); 3];
1023    /// array[0].write(0);
1024    /// array[1].write(1);
1025    /// array[2].write(2);
1026    ///
1027    /// // SAFETY: Now safe as we initialised all elements
1028    /// let array = unsafe {
1029    ///     MaybeUninit::array_assume_init(array)
1030    /// };
1031    ///
1032    /// assert_eq!(array, [0, 1, 2]);
1033    /// ```
1034    #[unstable(feature = "maybe_uninit_array_assume_init", issue = "96097")]
1035    #[inline(always)]
1036    #[track_caller]
1037    pub const unsafe fn array_assume_init<const N: usize>(array: [Self; N]) -> [T; N] {
1038        // SAFETY:
1039        // * The caller guarantees that all elements of the array are initialized
1040        // * `MaybeUninit<T>` and T are guaranteed to have the same layout
1041        // * `MaybeUninit` does not drop, so there are no double-frees
1042        // And thus the conversion is safe
1043        unsafe {
1044            intrinsics::assert_inhabited::<[T; N]>();
1045            intrinsics::transmute_unchecked(array)
1046        }
1047    }
1048
1049    /// Returns the contents of this `MaybeUninit` as a slice of potentially uninitialized bytes.
1050    ///
1051    /// Note that even if the contents of a `MaybeUninit` have been initialized, the value may still
1052    /// contain padding bytes which are left uninitialized.
1053    ///
1054    /// # Examples
1055    ///
1056    /// ```
1057    /// #![feature(maybe_uninit_as_bytes)]
1058    /// use std::mem::MaybeUninit;
1059    ///
1060    /// let val = 0x12345678_i32;
1061    /// let uninit = MaybeUninit::new(val);
1062    /// let uninit_bytes = uninit.as_bytes();
1063    /// let bytes = unsafe { uninit_bytes.assume_init_ref() };
1064    /// assert_eq!(bytes, val.to_ne_bytes());
1065    /// ```
1066    #[unstable(feature = "maybe_uninit_as_bytes", issue = "93092")]
1067    pub const fn as_bytes(&self) -> &[MaybeUninit<u8>] {
1068        // SAFETY: MaybeUninit<u8> is always valid, even for padding bytes
1069        unsafe {
1070            slice::from_raw_parts(self.as_ptr().cast::<MaybeUninit<u8>>(), super::size_of::<T>())
1071        }
1072    }
1073
1074    /// Returns the contents of this `MaybeUninit` as a mutable slice of potentially uninitialized
1075    /// bytes.
1076    ///
1077    /// Note that even if the contents of a `MaybeUninit` have been initialized, the value may still
1078    /// contain padding bytes which are left uninitialized.
1079    ///
1080    /// # Examples
1081    ///
1082    /// ```
1083    /// #![feature(maybe_uninit_as_bytes)]
1084    /// use std::mem::MaybeUninit;
1085    ///
1086    /// let val = 0x12345678_i32;
1087    /// let mut uninit = MaybeUninit::new(val);
1088    /// let uninit_bytes = uninit.as_bytes_mut();
1089    /// if cfg!(target_endian = "little") {
1090    ///     uninit_bytes[0].write(0xcd);
1091    /// } else {
1092    ///     uninit_bytes[3].write(0xcd);
1093    /// }
1094    /// let val2 = unsafe { uninit.assume_init() };
1095    /// assert_eq!(val2, 0x123456cd);
1096    /// ```
1097    #[unstable(feature = "maybe_uninit_as_bytes", issue = "93092")]
1098    pub const fn as_bytes_mut(&mut self) -> &mut [MaybeUninit<u8>] {
1099        // SAFETY: MaybeUninit<u8> is always valid, even for padding bytes
1100        unsafe {
1101            slice::from_raw_parts_mut(
1102                self.as_mut_ptr().cast::<MaybeUninit<u8>>(),
1103                super::size_of::<T>(),
1104            )
1105        }
1106    }
1107}
1108
1109impl<T> [MaybeUninit<T>] {
1110    /// Copies the elements from `src` to `self`,
1111    /// returning a mutable reference to the now initialized contents of `self`.
1112    ///
1113    /// If `T` does not implement `Copy`, use [`write_clone_of_slice`] instead.
1114    ///
1115    /// This is similar to [`slice::copy_from_slice`].
1116    ///
1117    /// # Panics
1118    ///
1119    /// This function will panic if the two slices have different lengths.
1120    ///
1121    /// # Examples
1122    ///
1123    /// ```
1124    /// use std::mem::MaybeUninit;
1125    ///
1126    /// let mut dst = [MaybeUninit::uninit(); 32];
1127    /// let src = [0; 32];
1128    ///
1129    /// let init = dst.write_copy_of_slice(&src);
1130    ///
1131    /// assert_eq!(init, src);
1132    /// ```
1133    ///
1134    /// ```
1135    /// let mut vec = Vec::with_capacity(32);
1136    /// let src = [0; 16];
1137    ///
1138    /// vec.spare_capacity_mut()[..src.len()].write_copy_of_slice(&src);
1139    ///
1140    /// // SAFETY: we have just copied all the elements of len into the spare capacity
1141    /// // the first src.len() elements of the vec are valid now.
1142    /// unsafe {
1143    ///     vec.set_len(src.len());
1144    /// }
1145    ///
1146    /// assert_eq!(vec, src);
1147    /// ```
1148    ///
1149    /// [`write_clone_of_slice`]: slice::write_clone_of_slice
1150    #[cfg(not(feature = "ferrocene_subset"))]
1151    #[stable(feature = "maybe_uninit_write_slice", since = "CURRENT_RUSTC_VERSION")]
1152    #[rustc_const_stable(feature = "maybe_uninit_write_slice", since = "CURRENT_RUSTC_VERSION")]
1153    pub const fn write_copy_of_slice(&mut self, src: &[T]) -> &mut [T]
1154    where
1155        T: Copy,
1156    {
1157        // SAFETY: &[T] and &[MaybeUninit<T>] have the same layout
1158        let uninit_src: &[MaybeUninit<T>] = unsafe { super::transmute(src) };
1159
1160        self.copy_from_slice(uninit_src);
1161
1162        // SAFETY: Valid elements have just been copied into `self` so it is initialized
1163        unsafe { self.assume_init_mut() }
1164    }
1165
1166    /// Clones the elements from `src` to `self`,
1167    /// returning a mutable reference to the now initialized contents of `self`.
1168    /// Any already initialized elements will not be dropped.
1169    ///
1170    /// If `T` implements `Copy`, use [`write_copy_of_slice`] instead.
1171    ///
1172    /// This is similar to [`slice::clone_from_slice`] but does not drop existing elements.
1173    ///
1174    /// # Panics
1175    ///
1176    /// This function will panic if the two slices have different lengths, or if the implementation of `Clone` panics.
1177    ///
1178    /// If there is a panic, the already cloned elements will be dropped.
1179    ///
1180    /// # Examples
1181    ///
1182    /// ```
1183    /// use std::mem::MaybeUninit;
1184    ///
1185    /// let mut dst = [const { MaybeUninit::uninit() }; 5];
1186    /// let src = ["wibbly", "wobbly", "timey", "wimey", "stuff"].map(|s| s.to_string());
1187    ///
1188    /// let init = dst.write_clone_of_slice(&src);
1189    ///
1190    /// assert_eq!(init, src);
1191    ///
1192    /// # // Prevent leaks for Miri
1193    /// # unsafe { std::ptr::drop_in_place(init); }
1194    /// ```
1195    ///
1196    /// ```
1197    /// let mut vec = Vec::with_capacity(32);
1198    /// let src = ["rust", "is", "a", "pretty", "cool", "language"].map(|s| s.to_string());
1199    ///
1200    /// vec.spare_capacity_mut()[..src.len()].write_clone_of_slice(&src);
1201    ///
1202    /// // SAFETY: we have just cloned all the elements of len into the spare capacity
1203    /// // the first src.len() elements of the vec are valid now.
1204    /// unsafe {
1205    ///     vec.set_len(src.len());
1206    /// }
1207    ///
1208    /// assert_eq!(vec, src);
1209    /// ```
1210    ///
1211    /// [`write_copy_of_slice`]: slice::write_copy_of_slice
1212    #[cfg(not(feature = "ferrocene_subset"))]
1213    #[stable(feature = "maybe_uninit_write_slice", since = "CURRENT_RUSTC_VERSION")]
1214    pub fn write_clone_of_slice(&mut self, src: &[T]) -> &mut [T]
1215    where
1216        T: Clone,
1217    {
1218        // unlike copy_from_slice this does not call clone_from_slice on the slice
1219        // this is because `MaybeUninit<T: Clone>` does not implement Clone.
1220
1221        assert_eq!(self.len(), src.len(), "destination and source slices have different lengths");
1222
1223        // NOTE: We need to explicitly slice them to the same length
1224        // for bounds checking to be elided, and the optimizer will
1225        // generate memcpy for simple cases (for example T = u8).
1226        let len = self.len();
1227        let src = &src[..len];
1228
1229        // guard is needed b/c panic might happen during a clone
1230        let mut guard = Guard { slice: self, initialized: 0 };
1231
1232        for i in 0..len {
1233            guard.slice[i].write(src[i].clone());
1234            guard.initialized += 1;
1235        }
1236
1237        super::forget(guard);
1238
1239        // SAFETY: Valid elements have just been written into `self` so it is initialized
1240        unsafe { self.assume_init_mut() }
1241    }
1242
1243    /// Fills a slice with elements by cloning `value`, returning a mutable reference to the now
1244    /// initialized contents of the slice.
1245    /// Any previously initialized elements will not be dropped.
1246    ///
1247    /// This is similar to [`slice::fill`].
1248    ///
1249    /// # Panics
1250    ///
1251    /// This function will panic if any call to `Clone` panics.
1252    ///
1253    /// If such a panic occurs, any elements previously initialized during this operation will be
1254    /// dropped.
1255    ///
1256    /// # Examples
1257    ///
1258    /// ```
1259    /// #![feature(maybe_uninit_fill)]
1260    /// use std::mem::MaybeUninit;
1261    ///
1262    /// let mut buf = [const { MaybeUninit::uninit() }; 10];
1263    /// let initialized = buf.write_filled(1);
1264    /// assert_eq!(initialized, &mut [1; 10]);
1265    /// ```
1266    #[doc(alias = "memset")]
1267    #[unstable(feature = "maybe_uninit_fill", issue = "117428")]
1268    #[cfg(not(feature = "ferrocene_subset"))]
1269    pub fn write_filled(&mut self, value: T) -> &mut [T]
1270    where
1271        T: Clone,
1272    {
1273        SpecFill::spec_fill(self, value);
1274        // SAFETY: Valid elements have just been filled into `self` so it is initialized
1275        unsafe { self.assume_init_mut() }
1276    }
1277
1278    /// Fills a slice with elements returned by calling a closure for each index.
1279    ///
1280    /// This method uses a closure to create new values. If you'd rather `Clone` a given value, use
1281    /// [slice::write_filled]. If you want to use the `Default` trait to generate values, you can
1282    /// pass [`|_| Default::default()`][Default::default] as the argument.
1283    ///
1284    /// # Panics
1285    ///
1286    /// This function will panic if any call to the provided closure panics.
1287    ///
1288    /// If such a panic occurs, any elements previously initialized during this operation will be
1289    /// dropped.
1290    ///
1291    /// # Examples
1292    ///
1293    /// ```
1294    /// #![feature(maybe_uninit_fill)]
1295    /// use std::mem::MaybeUninit;
1296    ///
1297    /// let mut buf = [const { MaybeUninit::<usize>::uninit() }; 5];
1298    /// let initialized = buf.write_with(|idx| idx + 1);
1299    /// assert_eq!(initialized, &mut [1, 2, 3, 4, 5]);
1300    /// ```
1301    #[unstable(feature = "maybe_uninit_fill", issue = "117428")]
1302    #[cfg(not(feature = "ferrocene_subset"))]
1303    pub fn write_with<F>(&mut self, mut f: F) -> &mut [T]
1304    where
1305        F: FnMut(usize) -> T,
1306    {
1307        let mut guard = Guard { slice: self, initialized: 0 };
1308
1309        for (idx, element) in guard.slice.iter_mut().enumerate() {
1310            element.write(f(idx));
1311            guard.initialized += 1;
1312        }
1313
1314        super::forget(guard);
1315
1316        // SAFETY: Valid elements have just been written into `this` so it is initialized
1317        unsafe { self.assume_init_mut() }
1318    }
1319
1320    /// Fills a slice with elements yielded by an iterator until either all elements have been
1321    /// initialized or the iterator is empty.
1322    ///
1323    /// Returns two slices. The first slice contains the initialized portion of the original slice.
1324    /// The second slice is the still-uninitialized remainder of the original slice.
1325    ///
1326    /// # Panics
1327    ///
1328    /// This function panics if the iterator's `next` function panics.
1329    ///
1330    /// If such a panic occurs, any elements previously initialized during this operation will be
1331    /// dropped.
1332    ///
1333    /// # Examples
1334    ///
1335    /// Completely filling the slice:
1336    ///
1337    /// ```
1338    /// #![feature(maybe_uninit_fill)]
1339    /// use std::mem::MaybeUninit;
1340    ///
1341    /// let mut buf = [const { MaybeUninit::uninit() }; 5];
1342    ///
1343    /// let iter = [1, 2, 3].into_iter().cycle();
1344    /// let (initialized, remainder) = buf.write_iter(iter);
1345    ///
1346    /// assert_eq!(initialized, &mut [1, 2, 3, 1, 2]);
1347    /// assert_eq!(remainder.len(), 0);
1348    /// ```
1349    ///
1350    /// Partially filling the slice:
1351    ///
1352    /// ```
1353    /// #![feature(maybe_uninit_fill)]
1354    /// use std::mem::MaybeUninit;
1355    ///
1356    /// let mut buf = [const { MaybeUninit::uninit() }; 5];
1357    /// let iter = [1, 2];
1358    /// let (initialized, remainder) = buf.write_iter(iter);
1359    ///
1360    /// assert_eq!(initialized, &mut [1, 2]);
1361    /// assert_eq!(remainder.len(), 3);
1362    /// ```
1363    ///
1364    /// Checking an iterator after filling a slice:
1365    ///
1366    /// ```
1367    /// #![feature(maybe_uninit_fill)]
1368    /// use std::mem::MaybeUninit;
1369    ///
1370    /// let mut buf = [const { MaybeUninit::uninit() }; 3];
1371    /// let mut iter = [1, 2, 3, 4, 5].into_iter();
1372    /// let (initialized, remainder) = buf.write_iter(iter.by_ref());
1373    ///
1374    /// assert_eq!(initialized, &mut [1, 2, 3]);
1375    /// assert_eq!(remainder.len(), 0);
1376    /// assert_eq!(iter.as_slice(), &[4, 5]);
1377    /// ```
1378    #[unstable(feature = "maybe_uninit_fill", issue = "117428")]
1379    #[cfg(not(feature = "ferrocene_subset"))]
1380    pub fn write_iter<I>(&mut self, it: I) -> (&mut [T], &mut [MaybeUninit<T>])
1381    where
1382        I: IntoIterator<Item = T>,
1383    {
1384        let iter = it.into_iter();
1385        let mut guard = Guard { slice: self, initialized: 0 };
1386
1387        for (element, val) in guard.slice.iter_mut().zip(iter) {
1388            element.write(val);
1389            guard.initialized += 1;
1390        }
1391
1392        let initialized_len = guard.initialized;
1393        super::forget(guard);
1394
1395        // SAFETY: guard.initialized <= self.len()
1396        let (initted, remainder) = unsafe { self.split_at_mut_unchecked(initialized_len) };
1397
1398        // SAFETY: Valid elements have just been written into `init`, so that portion
1399        // of `this` is initialized.
1400        (unsafe { initted.assume_init_mut() }, remainder)
1401    }
1402
1403    /// Returns the contents of this `MaybeUninit` as a slice of potentially uninitialized bytes.
1404    ///
1405    /// Note that even if the contents of a `MaybeUninit` have been initialized, the value may still
1406    /// contain padding bytes which are left uninitialized.
1407    ///
1408    /// # Examples
1409    ///
1410    /// ```
1411    /// #![feature(maybe_uninit_as_bytes)]
1412    /// use std::mem::MaybeUninit;
1413    ///
1414    /// let uninit = [MaybeUninit::new(0x1234u16), MaybeUninit::new(0x5678u16)];
1415    /// let uninit_bytes = uninit.as_bytes();
1416    /// let bytes = unsafe { uninit_bytes.assume_init_ref() };
1417    /// let val1 = u16::from_ne_bytes(bytes[0..2].try_into().unwrap());
1418    /// let val2 = u16::from_ne_bytes(bytes[2..4].try_into().unwrap());
1419    /// assert_eq!(&[val1, val2], &[0x1234u16, 0x5678u16]);
1420    /// ```
1421    #[unstable(feature = "maybe_uninit_as_bytes", issue = "93092")]
1422    #[cfg(not(feature = "ferrocene_subset"))]
1423    pub const fn as_bytes(&self) -> &[MaybeUninit<u8>] {
1424        // SAFETY: MaybeUninit<u8> is always valid, even for padding bytes
1425        unsafe {
1426            slice::from_raw_parts(self.as_ptr().cast::<MaybeUninit<u8>>(), super::size_of_val(self))
1427        }
1428    }
1429
1430    /// Returns the contents of this `MaybeUninit` slice as a mutable slice of potentially
1431    /// uninitialized bytes.
1432    ///
1433    /// Note that even if the contents of a `MaybeUninit` have been initialized, the value may still
1434    /// contain padding bytes which are left uninitialized.
1435    ///
1436    /// # Examples
1437    ///
1438    /// ```
1439    /// #![feature(maybe_uninit_as_bytes)]
1440    /// use std::mem::MaybeUninit;
1441    ///
1442    /// let mut uninit = [MaybeUninit::<u16>::uninit(), MaybeUninit::<u16>::uninit()];
1443    /// let uninit_bytes = uninit.as_bytes_mut();
1444    /// uninit_bytes.write_copy_of_slice(&[0x12, 0x34, 0x56, 0x78]);
1445    /// let vals = unsafe { uninit.assume_init_ref() };
1446    /// if cfg!(target_endian = "little") {
1447    ///     assert_eq!(vals, &[0x3412u16, 0x7856u16]);
1448    /// } else {
1449    ///     assert_eq!(vals, &[0x1234u16, 0x5678u16]);
1450    /// }
1451    /// ```
1452    #[unstable(feature = "maybe_uninit_as_bytes", issue = "93092")]
1453    #[cfg(not(feature = "ferrocene_subset"))]
1454    pub const fn as_bytes_mut(&mut self) -> &mut [MaybeUninit<u8>] {
1455        // SAFETY: MaybeUninit<u8> is always valid, even for padding bytes
1456        unsafe {
1457            slice::from_raw_parts_mut(
1458                self.as_mut_ptr() as *mut MaybeUninit<u8>,
1459                super::size_of_val(self),
1460            )
1461        }
1462    }
1463
1464    /// Drops the contained values in place.
1465    ///
1466    /// # Safety
1467    ///
1468    /// It is up to the caller to guarantee that every `MaybeUninit<T>` in the slice
1469    /// really is in an initialized state. Calling this when the content is not yet
1470    /// fully initialized causes undefined behavior.
1471    ///
1472    /// On top of that, all additional invariants of the type `T` must be
1473    /// satisfied, as the `Drop` implementation of `T` (or its members) may
1474    /// rely on this. For example, setting a `Vec<T>` to an invalid but
1475    /// non-null address makes it initialized (under the current implementation;
1476    /// this does not constitute a stable guarantee), because the only
1477    /// requirement the compiler knows about it is that the data pointer must be
1478    /// non-null. Dropping such a `Vec<T>` however will cause undefined
1479    /// behaviour.
1480    #[stable(feature = "maybe_uninit_slice", since = "CURRENT_RUSTC_VERSION")]
1481    #[inline(always)]
1482    #[rustc_const_unstable(feature = "const_drop_in_place", issue = "109342")]
1483    pub const unsafe fn assume_init_drop(&mut self)
1484    where
1485        T: [const] Destruct,
1486    {
1487        if !self.is_empty() {
1488            // SAFETY: the caller must guarantee that every element of `self`
1489            // is initialized and satisfies all invariants of `T`.
1490            // Dropping the value in place is safe if that is the case.
1491            unsafe { ptr::drop_in_place(self as *mut [MaybeUninit<T>] as *mut [T]) }
1492        }
1493    }
1494
1495    /// Gets a shared reference to the contained value.
1496    ///
1497    /// # Safety
1498    ///
1499    /// Calling this when the content is not yet fully initialized causes undefined
1500    /// behavior: it is up to the caller to guarantee that every `MaybeUninit<T>` in
1501    /// the slice really is in an initialized state.
1502    #[stable(feature = "maybe_uninit_slice", since = "CURRENT_RUSTC_VERSION")]
1503    #[rustc_const_stable(feature = "maybe_uninit_slice", since = "CURRENT_RUSTC_VERSION")]
1504    #[inline(always)]
1505    pub const unsafe fn assume_init_ref(&self) -> &[T] {
1506        // SAFETY: casting `slice` to a `*const [T]` is safe since the caller guarantees that
1507        // `slice` is initialized, and `MaybeUninit` is guaranteed to have the same layout as `T`.
1508        // The pointer obtained is valid since it refers to memory owned by `slice` which is a
1509        // reference and thus guaranteed to be valid for reads.
1510        unsafe { &*(self as *const Self as *const [T]) }
1511    }
1512
1513    /// Gets a mutable (unique) reference to the contained value.
1514    ///
1515    /// # Safety
1516    ///
1517    /// Calling this when the content is not yet fully initialized causes undefined
1518    /// behavior: it is up to the caller to guarantee that every `MaybeUninit<T>` in the
1519    /// slice really is in an initialized state. For instance, `.assume_init_mut()` cannot
1520    /// be used to initialize a `MaybeUninit` slice.
1521    #[stable(feature = "maybe_uninit_slice", since = "CURRENT_RUSTC_VERSION")]
1522    #[rustc_const_stable(feature = "maybe_uninit_slice", since = "CURRENT_RUSTC_VERSION")]
1523    #[inline(always)]
1524    pub const unsafe fn assume_init_mut(&mut self) -> &mut [T] {
1525        // SAFETY: similar to safety notes for `slice_get_ref`, but we have a
1526        // mutable reference which is also guaranteed to be valid for writes.
1527        unsafe { &mut *(self as *mut Self as *mut [T]) }
1528    }
1529}
1530
1531impl<T, const N: usize> MaybeUninit<[T; N]> {
1532    /// Transposes a `MaybeUninit<[T; N]>` into a `[MaybeUninit<T>; N]`.
1533    ///
1534    /// # Examples
1535    ///
1536    /// ```
1537    /// #![feature(maybe_uninit_uninit_array_transpose)]
1538    /// # use std::mem::MaybeUninit;
1539    ///
1540    /// let data: [MaybeUninit<u8>; 1000] = MaybeUninit::uninit().transpose();
1541    /// ```
1542    #[unstable(feature = "maybe_uninit_uninit_array_transpose", issue = "96097")]
1543    #[inline]
1544    pub const fn transpose(self) -> [MaybeUninit<T>; N] {
1545        // SAFETY: T and MaybeUninit<T> have the same layout
1546        unsafe { intrinsics::transmute_unchecked(self) }
1547    }
1548}
1549
1550impl<T, const N: usize> [MaybeUninit<T>; N] {
1551    /// Transposes a `[MaybeUninit<T>; N]` into a `MaybeUninit<[T; N]>`.
1552    ///
1553    /// # Examples
1554    ///
1555    /// ```
1556    /// #![feature(maybe_uninit_uninit_array_transpose)]
1557    /// # use std::mem::MaybeUninit;
1558    ///
1559    /// let data = [MaybeUninit::<u8>::uninit(); 1000];
1560    /// let data: MaybeUninit<[u8; 1000]> = data.transpose();
1561    /// ```
1562    #[unstable(feature = "maybe_uninit_uninit_array_transpose", issue = "96097")]
1563    #[inline]
1564    pub const fn transpose(self) -> MaybeUninit<[T; N]> {
1565        // SAFETY: T and MaybeUninit<T> have the same layout
1566        unsafe { intrinsics::transmute_unchecked(self) }
1567    }
1568}
1569
1570#[cfg(not(feature = "ferrocene_subset"))]
1571struct Guard<'a, T> {
1572    slice: &'a mut [MaybeUninit<T>],
1573    initialized: usize,
1574}
1575
1576#[cfg(not(feature = "ferrocene_subset"))]
1577impl<'a, T> Drop for Guard<'a, T> {
1578    fn drop(&mut self) {
1579        let initialized_part = &mut self.slice[..self.initialized];
1580        // SAFETY: this raw sub-slice will contain only initialized objects.
1581        unsafe {
1582            initialized_part.assume_init_drop();
1583        }
1584    }
1585}
1586
1587#[cfg(not(feature = "ferrocene_subset"))]
1588trait SpecFill<T> {
1589    fn spec_fill(&mut self, value: T);
1590}
1591
1592#[cfg(not(feature = "ferrocene_subset"))]
1593impl<T: Clone> SpecFill<T> for [MaybeUninit<T>] {
1594    default fn spec_fill(&mut self, value: T) {
1595        let mut guard = Guard { slice: self, initialized: 0 };
1596
1597        if let Some((last, elems)) = guard.slice.split_last_mut() {
1598            for el in elems {
1599                el.write(value.clone());
1600                guard.initialized += 1;
1601            }
1602
1603            last.write(value);
1604        }
1605        super::forget(guard);
1606    }
1607}
1608
1609#[cfg(not(feature = "ferrocene_subset"))]
1610impl<T: TrivialClone> SpecFill<T> for [MaybeUninit<T>] {
1611    fn spec_fill(&mut self, value: T) {
1612        // SAFETY: because `T` is `TrivialClone`, this is equivalent to calling
1613        // `T::clone` for every element. Notably, `TrivialClone` also implies
1614        // that the `clone` implementation will not panic, so we can avoid
1615        // initialization guards and such.
1616        self.fill_with(|| MaybeUninit::new(unsafe { ptr::read(&value) }));
1617    }
1618}