core/num/
f32.rs

1//! Constants for the `f32` single-precision floating point type.
2//!
3//! *[See also the `f32` primitive type][f32].*
4//!
5//! Mathematically significant numbers are provided in the `consts` sub-module.
6//!
7//! For the constants defined directly in this module
8//! (as distinct from those defined in the `consts` sub-module),
9//! new code should instead use the associated constants
10//! defined directly on the `f32` type.
11
12#![stable(feature = "rust1", since = "1.0.0")]
13
14use crate::convert::FloatToInt;
15use crate::num::FpCategory;
16use crate::panic::const_assert;
17use crate::{cfg_select, intrinsics, mem};
18
19/// The radix or base of the internal representation of `f32`.
20/// Use [`f32::RADIX`] instead.
21///
22/// # Examples
23///
24/// ```rust
25/// // deprecated way
26/// # #[allow(deprecated, deprecated_in_future)]
27/// let r = std::f32::RADIX;
28///
29/// // intended way
30/// let r = f32::RADIX;
31/// ```
32#[stable(feature = "rust1", since = "1.0.0")]
33#[deprecated(since = "TBD", note = "replaced by the `RADIX` associated constant on `f32`")]
34#[rustc_diagnostic_item = "f32_legacy_const_radix"]
35pub const RADIX: u32 = f32::RADIX;
36
37/// Number of significant digits in base 2.
38/// Use [`f32::MANTISSA_DIGITS`] instead.
39///
40/// # Examples
41///
42/// ```rust
43/// // deprecated way
44/// # #[allow(deprecated, deprecated_in_future)]
45/// let d = std::f32::MANTISSA_DIGITS;
46///
47/// // intended way
48/// let d = f32::MANTISSA_DIGITS;
49/// ```
50#[stable(feature = "rust1", since = "1.0.0")]
51#[deprecated(
52    since = "TBD",
53    note = "replaced by the `MANTISSA_DIGITS` associated constant on `f32`"
54)]
55#[rustc_diagnostic_item = "f32_legacy_const_mantissa_dig"]
56pub const MANTISSA_DIGITS: u32 = f32::MANTISSA_DIGITS;
57
58/// Approximate number of significant digits in base 10.
59/// Use [`f32::DIGITS`] instead.
60///
61/// # Examples
62///
63/// ```rust
64/// // deprecated way
65/// # #[allow(deprecated, deprecated_in_future)]
66/// let d = std::f32::DIGITS;
67///
68/// // intended way
69/// let d = f32::DIGITS;
70/// ```
71#[stable(feature = "rust1", since = "1.0.0")]
72#[deprecated(since = "TBD", note = "replaced by the `DIGITS` associated constant on `f32`")]
73#[rustc_diagnostic_item = "f32_legacy_const_digits"]
74pub const DIGITS: u32 = f32::DIGITS;
75
76/// [Machine epsilon] value for `f32`.
77/// Use [`f32::EPSILON`] instead.
78///
79/// This is the difference between `1.0` and the next larger representable number.
80///
81/// [Machine epsilon]: https://en.wikipedia.org/wiki/Machine_epsilon
82///
83/// # Examples
84///
85/// ```rust
86/// // deprecated way
87/// # #[allow(deprecated, deprecated_in_future)]
88/// let e = std::f32::EPSILON;
89///
90/// // intended way
91/// let e = f32::EPSILON;
92/// ```
93#[stable(feature = "rust1", since = "1.0.0")]
94#[deprecated(since = "TBD", note = "replaced by the `EPSILON` associated constant on `f32`")]
95#[rustc_diagnostic_item = "f32_legacy_const_epsilon"]
96pub const EPSILON: f32 = f32::EPSILON;
97
98/// Smallest finite `f32` value.
99/// Use [`f32::MIN`] instead.
100///
101/// # Examples
102///
103/// ```rust
104/// // deprecated way
105/// # #[allow(deprecated, deprecated_in_future)]
106/// let min = std::f32::MIN;
107///
108/// // intended way
109/// let min = f32::MIN;
110/// ```
111#[stable(feature = "rust1", since = "1.0.0")]
112#[deprecated(since = "TBD", note = "replaced by the `MIN` associated constant on `f32`")]
113#[rustc_diagnostic_item = "f32_legacy_const_min"]
114pub const MIN: f32 = f32::MIN;
115
116/// Smallest positive normal `f32` value.
117/// Use [`f32::MIN_POSITIVE`] instead.
118///
119/// # Examples
120///
121/// ```rust
122/// // deprecated way
123/// # #[allow(deprecated, deprecated_in_future)]
124/// let min = std::f32::MIN_POSITIVE;
125///
126/// // intended way
127/// let min = f32::MIN_POSITIVE;
128/// ```
129#[stable(feature = "rust1", since = "1.0.0")]
130#[deprecated(since = "TBD", note = "replaced by the `MIN_POSITIVE` associated constant on `f32`")]
131#[rustc_diagnostic_item = "f32_legacy_const_min_positive"]
132pub const MIN_POSITIVE: f32 = f32::MIN_POSITIVE;
133
134/// Largest finite `f32` value.
135/// Use [`f32::MAX`] instead.
136///
137/// # Examples
138///
139/// ```rust
140/// // deprecated way
141/// # #[allow(deprecated, deprecated_in_future)]
142/// let max = std::f32::MAX;
143///
144/// // intended way
145/// let max = f32::MAX;
146/// ```
147#[stable(feature = "rust1", since = "1.0.0")]
148#[deprecated(since = "TBD", note = "replaced by the `MAX` associated constant on `f32`")]
149#[rustc_diagnostic_item = "f32_legacy_const_max"]
150pub const MAX: f32 = f32::MAX;
151
152/// One greater than the minimum possible normal power of 2 exponent.
153/// Use [`f32::MIN_EXP`] instead.
154///
155/// # Examples
156///
157/// ```rust
158/// // deprecated way
159/// # #[allow(deprecated, deprecated_in_future)]
160/// let min = std::f32::MIN_EXP;
161///
162/// // intended way
163/// let min = f32::MIN_EXP;
164/// ```
165#[stable(feature = "rust1", since = "1.0.0")]
166#[deprecated(since = "TBD", note = "replaced by the `MIN_EXP` associated constant on `f32`")]
167#[rustc_diagnostic_item = "f32_legacy_const_min_exp"]
168pub const MIN_EXP: i32 = f32::MIN_EXP;
169
170/// Maximum possible power of 2 exponent.
171/// Use [`f32::MAX_EXP`] instead.
172///
173/// # Examples
174///
175/// ```rust
176/// // deprecated way
177/// # #[allow(deprecated, deprecated_in_future)]
178/// let max = std::f32::MAX_EXP;
179///
180/// // intended way
181/// let max = f32::MAX_EXP;
182/// ```
183#[stable(feature = "rust1", since = "1.0.0")]
184#[deprecated(since = "TBD", note = "replaced by the `MAX_EXP` associated constant on `f32`")]
185#[rustc_diagnostic_item = "f32_legacy_const_max_exp"]
186pub const MAX_EXP: i32 = f32::MAX_EXP;
187
188/// Minimum possible normal power of 10 exponent.
189/// Use [`f32::MIN_10_EXP`] instead.
190///
191/// # Examples
192///
193/// ```rust
194/// // deprecated way
195/// # #[allow(deprecated, deprecated_in_future)]
196/// let min = std::f32::MIN_10_EXP;
197///
198/// // intended way
199/// let min = f32::MIN_10_EXP;
200/// ```
201#[stable(feature = "rust1", since = "1.0.0")]
202#[deprecated(since = "TBD", note = "replaced by the `MIN_10_EXP` associated constant on `f32`")]
203#[rustc_diagnostic_item = "f32_legacy_const_min_10_exp"]
204pub const MIN_10_EXP: i32 = f32::MIN_10_EXP;
205
206/// Maximum possible power of 10 exponent.
207/// Use [`f32::MAX_10_EXP`] instead.
208///
209/// # Examples
210///
211/// ```rust
212/// // deprecated way
213/// # #[allow(deprecated, deprecated_in_future)]
214/// let max = std::f32::MAX_10_EXP;
215///
216/// // intended way
217/// let max = f32::MAX_10_EXP;
218/// ```
219#[stable(feature = "rust1", since = "1.0.0")]
220#[deprecated(since = "TBD", note = "replaced by the `MAX_10_EXP` associated constant on `f32`")]
221#[rustc_diagnostic_item = "f32_legacy_const_max_10_exp"]
222pub const MAX_10_EXP: i32 = f32::MAX_10_EXP;
223
224/// Not a Number (NaN).
225/// Use [`f32::NAN`] instead.
226///
227/// # Examples
228///
229/// ```rust
230/// // deprecated way
231/// # #[allow(deprecated, deprecated_in_future)]
232/// let nan = std::f32::NAN;
233///
234/// // intended way
235/// let nan = f32::NAN;
236/// ```
237#[stable(feature = "rust1", since = "1.0.0")]
238#[deprecated(since = "TBD", note = "replaced by the `NAN` associated constant on `f32`")]
239#[rustc_diagnostic_item = "f32_legacy_const_nan"]
240pub const NAN: f32 = f32::NAN;
241
242/// Infinity (∞).
243/// Use [`f32::INFINITY`] instead.
244///
245/// # Examples
246///
247/// ```rust
248/// // deprecated way
249/// # #[allow(deprecated, deprecated_in_future)]
250/// let inf = std::f32::INFINITY;
251///
252/// // intended way
253/// let inf = f32::INFINITY;
254/// ```
255#[stable(feature = "rust1", since = "1.0.0")]
256#[deprecated(since = "TBD", note = "replaced by the `INFINITY` associated constant on `f32`")]
257#[rustc_diagnostic_item = "f32_legacy_const_infinity"]
258pub const INFINITY: f32 = f32::INFINITY;
259
260/// Negative infinity (−∞).
261/// Use [`f32::NEG_INFINITY`] instead.
262///
263/// # Examples
264///
265/// ```rust
266/// // deprecated way
267/// # #[allow(deprecated, deprecated_in_future)]
268/// let ninf = std::f32::NEG_INFINITY;
269///
270/// // intended way
271/// let ninf = f32::NEG_INFINITY;
272/// ```
273#[stable(feature = "rust1", since = "1.0.0")]
274#[deprecated(since = "TBD", note = "replaced by the `NEG_INFINITY` associated constant on `f32`")]
275#[rustc_diagnostic_item = "f32_legacy_const_neg_infinity"]
276pub const NEG_INFINITY: f32 = f32::NEG_INFINITY;
277
278/// Basic mathematical constants.
279#[stable(feature = "rust1", since = "1.0.0")]
280pub mod consts {
281    // FIXME: replace with mathematical constants from cmath.
282
283    /// Archimedes' constant (π)
284    #[stable(feature = "rust1", since = "1.0.0")]
285    pub const PI: f32 = 3.14159265358979323846264338327950288_f32;
286
287    /// The full circle constant (τ)
288    ///
289    /// Equal to 2π.
290    #[stable(feature = "tau_constant", since = "1.47.0")]
291    pub const TAU: f32 = 6.28318530717958647692528676655900577_f32;
292
293    /// The golden ratio (φ)
294    #[unstable(feature = "more_float_constants", issue = "103883")]
295    pub const PHI: f32 = 1.618033988749894848204586834365638118_f32;
296
297    /// The Euler-Mascheroni constant (γ)
298    #[unstable(feature = "more_float_constants", issue = "103883")]
299    pub const EGAMMA: f32 = 0.577215664901532860606512090082402431_f32;
300
301    /// π/2
302    #[stable(feature = "rust1", since = "1.0.0")]
303    pub const FRAC_PI_2: f32 = 1.57079632679489661923132169163975144_f32;
304
305    /// π/3
306    #[stable(feature = "rust1", since = "1.0.0")]
307    pub const FRAC_PI_3: f32 = 1.04719755119659774615421446109316763_f32;
308
309    /// π/4
310    #[stable(feature = "rust1", since = "1.0.0")]
311    pub const FRAC_PI_4: f32 = 0.785398163397448309615660845819875721_f32;
312
313    /// π/6
314    #[stable(feature = "rust1", since = "1.0.0")]
315    pub const FRAC_PI_6: f32 = 0.52359877559829887307710723054658381_f32;
316
317    /// π/8
318    #[stable(feature = "rust1", since = "1.0.0")]
319    pub const FRAC_PI_8: f32 = 0.39269908169872415480783042290993786_f32;
320
321    /// 1/π
322    #[stable(feature = "rust1", since = "1.0.0")]
323    pub const FRAC_1_PI: f32 = 0.318309886183790671537767526745028724_f32;
324
325    /// 1/sqrt(π)
326    #[unstable(feature = "more_float_constants", issue = "103883")]
327    pub const FRAC_1_SQRT_PI: f32 = 0.564189583547756286948079451560772586_f32;
328
329    /// 1/sqrt(2π)
330    #[doc(alias = "FRAC_1_SQRT_TAU")]
331    #[unstable(feature = "more_float_constants", issue = "103883")]
332    pub const FRAC_1_SQRT_2PI: f32 = 0.398942280401432677939946059934381868_f32;
333
334    /// 2/π
335    #[stable(feature = "rust1", since = "1.0.0")]
336    pub const FRAC_2_PI: f32 = 0.636619772367581343075535053490057448_f32;
337
338    /// 2/sqrt(π)
339    #[stable(feature = "rust1", since = "1.0.0")]
340    pub const FRAC_2_SQRT_PI: f32 = 1.12837916709551257389615890312154517_f32;
341
342    /// sqrt(2)
343    #[stable(feature = "rust1", since = "1.0.0")]
344    pub const SQRT_2: f32 = 1.41421356237309504880168872420969808_f32;
345
346    /// 1/sqrt(2)
347    #[stable(feature = "rust1", since = "1.0.0")]
348    pub const FRAC_1_SQRT_2: f32 = 0.707106781186547524400844362104849039_f32;
349
350    /// sqrt(3)
351    #[unstable(feature = "more_float_constants", issue = "103883")]
352    pub const SQRT_3: f32 = 1.732050807568877293527446341505872367_f32;
353
354    /// 1/sqrt(3)
355    #[unstable(feature = "more_float_constants", issue = "103883")]
356    pub const FRAC_1_SQRT_3: f32 = 0.577350269189625764509148780501957456_f32;
357
358    /// Euler's number (e)
359    #[stable(feature = "rust1", since = "1.0.0")]
360    pub const E: f32 = 2.71828182845904523536028747135266250_f32;
361
362    /// log<sub>2</sub>(e)
363    #[stable(feature = "rust1", since = "1.0.0")]
364    pub const LOG2_E: f32 = 1.44269504088896340735992468100189214_f32;
365
366    /// log<sub>2</sub>(10)
367    #[stable(feature = "extra_log_consts", since = "1.43.0")]
368    pub const LOG2_10: f32 = 3.32192809488736234787031942948939018_f32;
369
370    /// log<sub>10</sub>(e)
371    #[stable(feature = "rust1", since = "1.0.0")]
372    pub const LOG10_E: f32 = 0.434294481903251827651128918916605082_f32;
373
374    /// log<sub>10</sub>(2)
375    #[stable(feature = "extra_log_consts", since = "1.43.0")]
376    pub const LOG10_2: f32 = 0.301029995663981195213738894724493027_f32;
377
378    /// ln(2)
379    #[stable(feature = "rust1", since = "1.0.0")]
380    pub const LN_2: f32 = 0.693147180559945309417232121458176568_f32;
381
382    /// ln(10)
383    #[stable(feature = "rust1", since = "1.0.0")]
384    pub const LN_10: f32 = 2.30258509299404568401799145468436421_f32;
385}
386
387impl f32 {
388    /// The radix or base of the internal representation of `f32`.
389    #[stable(feature = "assoc_int_consts", since = "1.43.0")]
390    pub const RADIX: u32 = 2;
391
392    /// Number of significant digits in base 2.
393    ///
394    /// Note that the size of the mantissa in the bitwise representation is one
395    /// smaller than this since the leading 1 is not stored explicitly.
396    #[stable(feature = "assoc_int_consts", since = "1.43.0")]
397    pub const MANTISSA_DIGITS: u32 = 24;
398
399    /// Approximate number of significant digits in base 10.
400    ///
401    /// This is the maximum <i>x</i> such that any decimal number with <i>x</i>
402    /// significant digits can be converted to `f32` and back without loss.
403    ///
404    /// Equal to floor(log<sub>10</sub>&nbsp;2<sup>[`MANTISSA_DIGITS`]&nbsp;&minus;&nbsp;1</sup>).
405    ///
406    /// [`MANTISSA_DIGITS`]: f32::MANTISSA_DIGITS
407    #[stable(feature = "assoc_int_consts", since = "1.43.0")]
408    pub const DIGITS: u32 = 6;
409
410    /// [Machine epsilon] value for `f32`.
411    ///
412    /// This is the difference between `1.0` and the next larger representable number.
413    ///
414    /// Equal to 2<sup>1&nbsp;&minus;&nbsp;[`MANTISSA_DIGITS`]</sup>.
415    ///
416    /// [Machine epsilon]: https://en.wikipedia.org/wiki/Machine_epsilon
417    /// [`MANTISSA_DIGITS`]: f32::MANTISSA_DIGITS
418    #[stable(feature = "assoc_int_consts", since = "1.43.0")]
419    #[rustc_diagnostic_item = "f32_epsilon"]
420    pub const EPSILON: f32 = 1.19209290e-07_f32;
421
422    /// Smallest finite `f32` value.
423    ///
424    /// Equal to &minus;[`MAX`].
425    ///
426    /// [`MAX`]: f32::MAX
427    #[stable(feature = "assoc_int_consts", since = "1.43.0")]
428    pub const MIN: f32 = -3.40282347e+38_f32;
429    /// Smallest positive normal `f32` value.
430    ///
431    /// Equal to 2<sup>[`MIN_EXP`]&nbsp;&minus;&nbsp;1</sup>.
432    ///
433    /// [`MIN_EXP`]: f32::MIN_EXP
434    #[stable(feature = "assoc_int_consts", since = "1.43.0")]
435    pub const MIN_POSITIVE: f32 = 1.17549435e-38_f32;
436    /// Largest finite `f32` value.
437    ///
438    /// Equal to
439    /// (1&nbsp;&minus;&nbsp;2<sup>&minus;[`MANTISSA_DIGITS`]</sup>)&nbsp;2<sup>[`MAX_EXP`]</sup>.
440    ///
441    /// [`MANTISSA_DIGITS`]: f32::MANTISSA_DIGITS
442    /// [`MAX_EXP`]: f32::MAX_EXP
443    #[stable(feature = "assoc_int_consts", since = "1.43.0")]
444    pub const MAX: f32 = 3.40282347e+38_f32;
445
446    /// One greater than the minimum possible *normal* power of 2 exponent
447    /// for a significand bounded by 1 ≤ x < 2 (i.e. the IEEE definition).
448    ///
449    /// This corresponds to the exact minimum possible *normal* power of 2 exponent
450    /// for a significand bounded by 0.5 ≤ x < 1 (i.e. the C definition).
451    /// In other words, all normal numbers representable by this type are
452    /// greater than or equal to 0.5&nbsp;×&nbsp;2<sup><i>MIN_EXP</i></sup>.
453    #[stable(feature = "assoc_int_consts", since = "1.43.0")]
454    pub const MIN_EXP: i32 = -125;
455    /// One greater than the maximum possible power of 2 exponent
456    /// for a significand bounded by 1 ≤ x < 2 (i.e. the IEEE definition).
457    ///
458    /// This corresponds to the exact maximum possible power of 2 exponent
459    /// for a significand bounded by 0.5 ≤ x < 1 (i.e. the C definition).
460    /// In other words, all numbers representable by this type are
461    /// strictly less than 2<sup><i>MAX_EXP</i></sup>.
462    #[stable(feature = "assoc_int_consts", since = "1.43.0")]
463    pub const MAX_EXP: i32 = 128;
464
465    /// Minimum <i>x</i> for which 10<sup><i>x</i></sup> is normal.
466    ///
467    /// Equal to ceil(log<sub>10</sub>&nbsp;[`MIN_POSITIVE`]).
468    ///
469    /// [`MIN_POSITIVE`]: f32::MIN_POSITIVE
470    #[stable(feature = "assoc_int_consts", since = "1.43.0")]
471    pub const MIN_10_EXP: i32 = -37;
472    /// Maximum <i>x</i> for which 10<sup><i>x</i></sup> is normal.
473    ///
474    /// Equal to floor(log<sub>10</sub>&nbsp;[`MAX`]).
475    ///
476    /// [`MAX`]: f32::MAX
477    #[stable(feature = "assoc_int_consts", since = "1.43.0")]
478    pub const MAX_10_EXP: i32 = 38;
479
480    /// Not a Number (NaN).
481    ///
482    /// Note that IEEE 754 doesn't define just a single NaN value; a plethora of bit patterns are
483    /// considered to be NaN. Furthermore, the standard makes a difference between a "signaling" and
484    /// a "quiet" NaN, and allows inspecting its "payload" (the unspecified bits in the bit pattern)
485    /// and its sign. See the [specification of NaN bit patterns](f32#nan-bit-patterns) for more
486    /// info.
487    ///
488    /// This constant is guaranteed to be a quiet NaN (on targets that follow the Rust assumptions
489    /// that the quiet/signaling bit being set to 1 indicates a quiet NaN). Beyond that, nothing is
490    /// guaranteed about the specific bit pattern chosen here: both payload and sign are arbitrary.
491    /// The concrete bit pattern may change across Rust versions and target platforms.
492    #[stable(feature = "assoc_int_consts", since = "1.43.0")]
493    #[rustc_diagnostic_item = "f32_nan"]
494    #[allow(clippy::eq_op)]
495    pub const NAN: f32 = 0.0_f32 / 0.0_f32;
496    /// Infinity (∞).
497    #[stable(feature = "assoc_int_consts", since = "1.43.0")]
498    pub const INFINITY: f32 = 1.0_f32 / 0.0_f32;
499    /// Negative infinity (−∞).
500    #[stable(feature = "assoc_int_consts", since = "1.43.0")]
501    pub const NEG_INFINITY: f32 = -1.0_f32 / 0.0_f32;
502
503    /// Sign bit
504    pub(crate) const SIGN_MASK: u32 = 0x8000_0000;
505
506    /// Exponent mask
507    pub(crate) const EXP_MASK: u32 = 0x7f80_0000;
508
509    /// Mantissa mask
510    pub(crate) const MAN_MASK: u32 = 0x007f_ffff;
511
512    /// Minimum representable positive value (min subnormal)
513    const TINY_BITS: u32 = 0x1;
514
515    /// Minimum representable negative value (min negative subnormal)
516    const NEG_TINY_BITS: u32 = Self::TINY_BITS | Self::SIGN_MASK;
517
518    /// Returns `true` if this value is NaN.
519    ///
520    /// ```
521    /// let nan = f32::NAN;
522    /// let f = 7.0_f32;
523    ///
524    /// assert!(nan.is_nan());
525    /// assert!(!f.is_nan());
526    /// ```
527    #[must_use]
528    #[stable(feature = "rust1", since = "1.0.0")]
529    #[rustc_const_stable(feature = "const_float_classify", since = "1.83.0")]
530    #[inline]
531    #[allow(clippy::eq_op)] // > if you intended to check if the operand is NaN, use `.is_nan()` instead :)
532    pub const fn is_nan(self) -> bool {
533        self != self
534    }
535
536    /// Returns `true` if this value is positive infinity or negative infinity, and
537    /// `false` otherwise.
538    ///
539    /// ```
540    /// let f = 7.0f32;
541    /// let inf = f32::INFINITY;
542    /// let neg_inf = f32::NEG_INFINITY;
543    /// let nan = f32::NAN;
544    ///
545    /// assert!(!f.is_infinite());
546    /// assert!(!nan.is_infinite());
547    ///
548    /// assert!(inf.is_infinite());
549    /// assert!(neg_inf.is_infinite());
550    /// ```
551    #[must_use]
552    #[stable(feature = "rust1", since = "1.0.0")]
553    #[rustc_const_stable(feature = "const_float_classify", since = "1.83.0")]
554    #[inline]
555    pub const fn is_infinite(self) -> bool {
556        // Getting clever with transmutation can result in incorrect answers on some FPUs
557        // FIXME: alter the Rust <-> Rust calling convention to prevent this problem.
558        // See https://github.com/rust-lang/rust/issues/72327
559        (self == f32::INFINITY) | (self == f32::NEG_INFINITY)
560    }
561
562    /// Returns `true` if this number is neither infinite nor NaN.
563    ///
564    /// ```
565    /// let f = 7.0f32;
566    /// let inf = f32::INFINITY;
567    /// let neg_inf = f32::NEG_INFINITY;
568    /// let nan = f32::NAN;
569    ///
570    /// assert!(f.is_finite());
571    ///
572    /// assert!(!nan.is_finite());
573    /// assert!(!inf.is_finite());
574    /// assert!(!neg_inf.is_finite());
575    /// ```
576    #[must_use]
577    #[stable(feature = "rust1", since = "1.0.0")]
578    #[rustc_const_stable(feature = "const_float_classify", since = "1.83.0")]
579    #[inline]
580    pub const fn is_finite(self) -> bool {
581        // There's no need to handle NaN separately: if self is NaN,
582        // the comparison is not true, exactly as desired.
583        self.abs() < Self::INFINITY
584    }
585
586    /// Returns `true` if the number is [subnormal].
587    ///
588    /// ```
589    /// let min = f32::MIN_POSITIVE; // 1.17549435e-38f32
590    /// let max = f32::MAX;
591    /// let lower_than_min = 1.0e-40_f32;
592    /// let zero = 0.0_f32;
593    ///
594    /// assert!(!min.is_subnormal());
595    /// assert!(!max.is_subnormal());
596    ///
597    /// assert!(!zero.is_subnormal());
598    /// assert!(!f32::NAN.is_subnormal());
599    /// assert!(!f32::INFINITY.is_subnormal());
600    /// // Values between `0` and `min` are Subnormal.
601    /// assert!(lower_than_min.is_subnormal());
602    /// ```
603    /// [subnormal]: https://en.wikipedia.org/wiki/Denormal_number
604    #[must_use]
605    #[stable(feature = "is_subnormal", since = "1.53.0")]
606    #[rustc_const_stable(feature = "const_float_classify", since = "1.83.0")]
607    #[inline]
608    pub const fn is_subnormal(self) -> bool {
609        matches!(self.classify(), FpCategory::Subnormal)
610    }
611
612    /// Returns `true` if the number is neither zero, infinite,
613    /// [subnormal], or NaN.
614    ///
615    /// ```
616    /// let min = f32::MIN_POSITIVE; // 1.17549435e-38f32
617    /// let max = f32::MAX;
618    /// let lower_than_min = 1.0e-40_f32;
619    /// let zero = 0.0_f32;
620    ///
621    /// assert!(min.is_normal());
622    /// assert!(max.is_normal());
623    ///
624    /// assert!(!zero.is_normal());
625    /// assert!(!f32::NAN.is_normal());
626    /// assert!(!f32::INFINITY.is_normal());
627    /// // Values between `0` and `min` are Subnormal.
628    /// assert!(!lower_than_min.is_normal());
629    /// ```
630    /// [subnormal]: https://en.wikipedia.org/wiki/Denormal_number
631    #[must_use]
632    #[stable(feature = "rust1", since = "1.0.0")]
633    #[rustc_const_stable(feature = "const_float_classify", since = "1.83.0")]
634    #[inline]
635    pub const fn is_normal(self) -> bool {
636        matches!(self.classify(), FpCategory::Normal)
637    }
638
639    /// Returns the floating point category of the number. If only one property
640    /// is going to be tested, it is generally faster to use the specific
641    /// predicate instead.
642    ///
643    /// ```
644    /// use std::num::FpCategory;
645    ///
646    /// let num = 12.4_f32;
647    /// let inf = f32::INFINITY;
648    ///
649    /// assert_eq!(num.classify(), FpCategory::Normal);
650    /// assert_eq!(inf.classify(), FpCategory::Infinite);
651    /// ```
652    #[stable(feature = "rust1", since = "1.0.0")]
653    #[rustc_const_stable(feature = "const_float_classify", since = "1.83.0")]
654    pub const fn classify(self) -> FpCategory {
655        // We used to have complicated logic here that avoids the simple bit-based tests to work
656        // around buggy codegen for x87 targets (see
657        // https://github.com/rust-lang/rust/issues/114479). However, some LLVM versions later, none
658        // of our tests is able to find any difference between the complicated and the naive
659        // version, so now we are back to the naive version.
660        let b = self.to_bits();
661        match (b & Self::MAN_MASK, b & Self::EXP_MASK) {
662            (0, Self::EXP_MASK) => FpCategory::Infinite,
663            (_, Self::EXP_MASK) => FpCategory::Nan,
664            (0, 0) => FpCategory::Zero,
665            (_, 0) => FpCategory::Subnormal,
666            _ => FpCategory::Normal,
667        }
668    }
669
670    /// Returns `true` if `self` has a positive sign, including `+0.0`, NaNs with
671    /// positive sign bit and positive infinity.
672    ///
673    /// Note that IEEE 754 doesn't assign any meaning to the sign bit in case of
674    /// a NaN, and as Rust doesn't guarantee that the bit pattern of NaNs are
675    /// conserved over arithmetic operations, the result of `is_sign_positive` on
676    /// a NaN might produce an unexpected or non-portable result. See the [specification
677    /// of NaN bit patterns](f32#nan-bit-patterns) for more info. Use `self.signum() == 1.0`
678    /// if you need fully portable behavior (will return `false` for all NaNs).
679    ///
680    /// ```
681    /// let f = 7.0_f32;
682    /// let g = -7.0_f32;
683    ///
684    /// assert!(f.is_sign_positive());
685    /// assert!(!g.is_sign_positive());
686    /// ```
687    #[must_use]
688    #[stable(feature = "rust1", since = "1.0.0")]
689    #[rustc_const_stable(feature = "const_float_classify", since = "1.83.0")]
690    #[inline]
691    pub const fn is_sign_positive(self) -> bool {
692        !self.is_sign_negative()
693    }
694
695    /// Returns `true` if `self` has a negative sign, including `-0.0`, NaNs with
696    /// negative sign bit and negative infinity.
697    ///
698    /// Note that IEEE 754 doesn't assign any meaning to the sign bit in case of
699    /// a NaN, and as Rust doesn't guarantee that the bit pattern of NaNs are
700    /// conserved over arithmetic operations, the result of `is_sign_negative` on
701    /// a NaN might produce an unexpected or non-portable result. See the [specification
702    /// of NaN bit patterns](f32#nan-bit-patterns) for more info. Use `self.signum() == -1.0`
703    /// if you need fully portable behavior (will return `false` for all NaNs).
704    ///
705    /// ```
706    /// let f = 7.0f32;
707    /// let g = -7.0f32;
708    ///
709    /// assert!(!f.is_sign_negative());
710    /// assert!(g.is_sign_negative());
711    /// ```
712    #[must_use]
713    #[stable(feature = "rust1", since = "1.0.0")]
714    #[rustc_const_stable(feature = "const_float_classify", since = "1.83.0")]
715    #[inline]
716    pub const fn is_sign_negative(self) -> bool {
717        // IEEE754 says: isSignMinus(x) is true if and only if x has negative sign. isSignMinus
718        // applies to zeros and NaNs as well.
719        self.to_bits() & 0x8000_0000 != 0
720    }
721
722    /// Returns the least number greater than `self`.
723    ///
724    /// Let `TINY` be the smallest representable positive `f32`. Then,
725    ///  - if `self.is_nan()`, this returns `self`;
726    ///  - if `self` is [`NEG_INFINITY`], this returns [`MIN`];
727    ///  - if `self` is `-TINY`, this returns -0.0;
728    ///  - if `self` is -0.0 or +0.0, this returns `TINY`;
729    ///  - if `self` is [`MAX`] or [`INFINITY`], this returns [`INFINITY`];
730    ///  - otherwise the unique least value greater than `self` is returned.
731    ///
732    /// The identity `x.next_up() == -(-x).next_down()` holds for all non-NaN `x`. When `x`
733    /// is finite `x == x.next_up().next_down()` also holds.
734    ///
735    /// ```rust
736    /// // f32::EPSILON is the difference between 1.0 and the next number up.
737    /// assert_eq!(1.0f32.next_up(), 1.0 + f32::EPSILON);
738    /// // But not for most numbers.
739    /// assert!(0.1f32.next_up() < 0.1 + f32::EPSILON);
740    /// assert_eq!(16777216f32.next_up(), 16777218.0);
741    /// ```
742    ///
743    /// This operation corresponds to IEEE-754 `nextUp`.
744    ///
745    /// [`NEG_INFINITY`]: Self::NEG_INFINITY
746    /// [`INFINITY`]: Self::INFINITY
747    /// [`MIN`]: Self::MIN
748    /// [`MAX`]: Self::MAX
749    #[inline]
750    #[doc(alias = "nextUp")]
751    #[stable(feature = "float_next_up_down", since = "1.86.0")]
752    #[rustc_const_stable(feature = "float_next_up_down", since = "1.86.0")]
753    pub const fn next_up(self) -> Self {
754        // Some targets violate Rust's assumption of IEEE semantics, e.g. by flushing
755        // denormals to zero. This is in general unsound and unsupported, but here
756        // we do our best to still produce the correct result on such targets.
757        let bits = self.to_bits();
758        if self.is_nan() || bits == Self::INFINITY.to_bits() {
759            return self;
760        }
761
762        let abs = bits & !Self::SIGN_MASK;
763        let next_bits = if abs == 0 {
764            Self::TINY_BITS
765        } else if bits == abs {
766            bits + 1
767        } else {
768            bits - 1
769        };
770        Self::from_bits(next_bits)
771    }
772
773    /// Returns the greatest number less than `self`.
774    ///
775    /// Let `TINY` be the smallest representable positive `f32`. Then,
776    ///  - if `self.is_nan()`, this returns `self`;
777    ///  - if `self` is [`INFINITY`], this returns [`MAX`];
778    ///  - if `self` is `TINY`, this returns 0.0;
779    ///  - if `self` is -0.0 or +0.0, this returns `-TINY`;
780    ///  - if `self` is [`MIN`] or [`NEG_INFINITY`], this returns [`NEG_INFINITY`];
781    ///  - otherwise the unique greatest value less than `self` is returned.
782    ///
783    /// The identity `x.next_down() == -(-x).next_up()` holds for all non-NaN `x`. When `x`
784    /// is finite `x == x.next_down().next_up()` also holds.
785    ///
786    /// ```rust
787    /// let x = 1.0f32;
788    /// // Clamp value into range [0, 1).
789    /// let clamped = x.clamp(0.0, 1.0f32.next_down());
790    /// assert!(clamped < 1.0);
791    /// assert_eq!(clamped.next_up(), 1.0);
792    /// ```
793    ///
794    /// This operation corresponds to IEEE-754 `nextDown`.
795    ///
796    /// [`NEG_INFINITY`]: Self::NEG_INFINITY
797    /// [`INFINITY`]: Self::INFINITY
798    /// [`MIN`]: Self::MIN
799    /// [`MAX`]: Self::MAX
800    #[inline]
801    #[doc(alias = "nextDown")]
802    #[stable(feature = "float_next_up_down", since = "1.86.0")]
803    #[rustc_const_stable(feature = "float_next_up_down", since = "1.86.0")]
804    pub const fn next_down(self) -> Self {
805        // Some targets violate Rust's assumption of IEEE semantics, e.g. by flushing
806        // denormals to zero. This is in general unsound and unsupported, but here
807        // we do our best to still produce the correct result on such targets.
808        let bits = self.to_bits();
809        if self.is_nan() || bits == Self::NEG_INFINITY.to_bits() {
810            return self;
811        }
812
813        let abs = bits & !Self::SIGN_MASK;
814        let next_bits = if abs == 0 {
815            Self::NEG_TINY_BITS
816        } else if bits == abs {
817            bits - 1
818        } else {
819            bits + 1
820        };
821        Self::from_bits(next_bits)
822    }
823
824    /// Takes the reciprocal (inverse) of a number, `1/x`.
825    ///
826    /// ```
827    /// let x = 2.0_f32;
828    /// let abs_difference = (x.recip() - (1.0 / x)).abs();
829    ///
830    /// assert!(abs_difference <= f32::EPSILON);
831    /// ```
832    #[must_use = "this returns the result of the operation, without modifying the original"]
833    #[stable(feature = "rust1", since = "1.0.0")]
834    #[rustc_const_stable(feature = "const_float_methods", since = "1.85.0")]
835    #[inline]
836    pub const fn recip(self) -> f32 {
837        1.0 / self
838    }
839
840    /// Converts radians to degrees.
841    ///
842    /// # Unspecified precision
843    ///
844    /// The precision of this function is non-deterministic. This means it varies by platform,
845    /// Rust version, and can even differ within the same execution from one invocation to the next.
846    ///
847    /// # Examples
848    ///
849    /// ```
850    /// let angle = std::f32::consts::PI;
851    ///
852    /// let abs_difference = (angle.to_degrees() - 180.0).abs();
853    /// # #[cfg(any(not(target_arch = "x86"), target_feature = "sse2"))]
854    /// assert!(abs_difference <= f32::EPSILON);
855    /// ```
856    #[must_use = "this returns the result of the operation, \
857                  without modifying the original"]
858    #[stable(feature = "f32_deg_rad_conversions", since = "1.7.0")]
859    #[rustc_const_stable(feature = "const_float_methods", since = "1.85.0")]
860    #[inline]
861    pub const fn to_degrees(self) -> f32 {
862        // Use a literal to avoid double rounding, consts::PI is already rounded,
863        // and dividing would round again.
864        const PIS_IN_180: f32 = 57.2957795130823208767981548141051703_f32;
865        self * PIS_IN_180
866    }
867
868    /// Converts degrees to radians.
869    ///
870    /// # Unspecified precision
871    ///
872    /// The precision of this function is non-deterministic. This means it varies by platform,
873    /// Rust version, and can even differ within the same execution from one invocation to the next.
874    ///
875    /// # Examples
876    ///
877    /// ```
878    /// let angle = 180.0f32;
879    ///
880    /// let abs_difference = (angle.to_radians() - std::f32::consts::PI).abs();
881    ///
882    /// assert!(abs_difference <= f32::EPSILON);
883    /// ```
884    #[must_use = "this returns the result of the operation, \
885                  without modifying the original"]
886    #[stable(feature = "f32_deg_rad_conversions", since = "1.7.0")]
887    #[rustc_const_stable(feature = "const_float_methods", since = "1.85.0")]
888    #[inline]
889    pub const fn to_radians(self) -> f32 {
890        // The division here is correctly rounded with respect to the true value of π/180.
891        // Although π is irrational and already rounded, the double rounding happens
892        // to produce correct result for f32.
893        const RADS_PER_DEG: f32 = consts::PI / 180.0;
894        self * RADS_PER_DEG
895    }
896
897    /// Returns the maximum of the two numbers, ignoring NaN.
898    ///
899    /// If one of the arguments is NaN, then the other argument is returned.
900    /// This follows the IEEE 754-2008 semantics for maxNum, except for handling of signaling NaNs;
901    /// this function handles all NaNs the same way and avoids maxNum's problems with associativity.
902    /// This also matches the behavior of libm’s fmax. In particular, if the inputs compare equal
903    /// (such as for the case of `+0.0` and `-0.0`), either input may be returned non-deterministically.
904    ///
905    /// ```
906    /// let x = 1.0f32;
907    /// let y = 2.0f32;
908    ///
909    /// assert_eq!(x.max(y), y);
910    /// ```
911    #[must_use = "this returns the result of the comparison, without modifying either input"]
912    #[stable(feature = "rust1", since = "1.0.0")]
913    #[rustc_const_stable(feature = "const_float_methods", since = "1.85.0")]
914    #[inline]
915    pub const fn max(self, other: f32) -> f32 {
916        intrinsics::maxnumf32(self, other)
917    }
918
919    /// Returns the minimum of the two numbers, ignoring NaN.
920    ///
921    /// If one of the arguments is NaN, then the other argument is returned.
922    /// This follows the IEEE 754-2008 semantics for minNum, except for handling of signaling NaNs;
923    /// this function handles all NaNs the same way and avoids minNum's problems with associativity.
924    /// This also matches the behavior of libm’s fmin. In particular, if the inputs compare equal
925    /// (such as for the case of `+0.0` and `-0.0`), either input may be returned non-deterministically.
926    ///
927    /// ```
928    /// let x = 1.0f32;
929    /// let y = 2.0f32;
930    ///
931    /// assert_eq!(x.min(y), x);
932    /// ```
933    #[must_use = "this returns the result of the comparison, without modifying either input"]
934    #[stable(feature = "rust1", since = "1.0.0")]
935    #[rustc_const_stable(feature = "const_float_methods", since = "1.85.0")]
936    #[inline]
937    pub const fn min(self, other: f32) -> f32 {
938        intrinsics::minnumf32(self, other)
939    }
940
941    /// Returns the maximum of the two numbers, propagating NaN.
942    ///
943    /// This returns NaN when *either* argument is NaN, as opposed to
944    /// [`f32::max`] which only returns NaN when *both* arguments are NaN.
945    ///
946    /// ```
947    /// #![feature(float_minimum_maximum)]
948    /// let x = 1.0f32;
949    /// let y = 2.0f32;
950    ///
951    /// assert_eq!(x.maximum(y), y);
952    /// assert!(x.maximum(f32::NAN).is_nan());
953    /// ```
954    ///
955    /// If one of the arguments is NaN, then NaN is returned. Otherwise this returns the greater
956    /// of the two numbers. For this operation, -0.0 is considered to be less than +0.0.
957    /// Note that this follows the semantics specified in IEEE 754-2019.
958    ///
959    /// Also note that "propagation" of NaNs here doesn't necessarily mean that the bitpattern of a NaN
960    /// operand is conserved; see the [specification of NaN bit patterns](f32#nan-bit-patterns) for more info.
961    #[must_use = "this returns the result of the comparison, without modifying either input"]
962    #[unstable(feature = "float_minimum_maximum", issue = "91079")]
963    #[inline]
964    pub const fn maximum(self, other: f32) -> f32 {
965        intrinsics::maximumf32(self, other)
966    }
967
968    /// Returns the minimum of the two numbers, propagating NaN.
969    ///
970    /// This returns NaN when *either* argument is NaN, as opposed to
971    /// [`f32::min`] which only returns NaN when *both* arguments are NaN.
972    ///
973    /// ```
974    /// #![feature(float_minimum_maximum)]
975    /// let x = 1.0f32;
976    /// let y = 2.0f32;
977    ///
978    /// assert_eq!(x.minimum(y), x);
979    /// assert!(x.minimum(f32::NAN).is_nan());
980    /// ```
981    ///
982    /// If one of the arguments is NaN, then NaN is returned. Otherwise this returns the lesser
983    /// of the two numbers. For this operation, -0.0 is considered to be less than +0.0.
984    /// Note that this follows the semantics specified in IEEE 754-2019.
985    ///
986    /// Also note that "propagation" of NaNs here doesn't necessarily mean that the bitpattern of a NaN
987    /// operand is conserved; see the [specification of NaN bit patterns](f32#nan-bit-patterns) for more info.
988    #[must_use = "this returns the result of the comparison, without modifying either input"]
989    #[unstable(feature = "float_minimum_maximum", issue = "91079")]
990    #[inline]
991    pub const fn minimum(self, other: f32) -> f32 {
992        intrinsics::minimumf32(self, other)
993    }
994
995    /// Calculates the midpoint (average) between `self` and `rhs`.
996    ///
997    /// This returns NaN when *either* argument is NaN or if a combination of
998    /// +inf and -inf is provided as arguments.
999    ///
1000    /// # Examples
1001    ///
1002    /// ```
1003    /// assert_eq!(1f32.midpoint(4.0), 2.5);
1004    /// assert_eq!((-5.5f32).midpoint(8.0), 1.25);
1005    /// ```
1006    #[inline]
1007    #[doc(alias = "average")]
1008    #[stable(feature = "num_midpoint", since = "1.85.0")]
1009    #[rustc_const_stable(feature = "num_midpoint", since = "1.85.0")]
1010    pub const fn midpoint(self, other: f32) -> f32 {
1011        cfg_select! {
1012            // Allow faster implementation that have known good 64-bit float
1013            // implementations. Falling back to the branchy code on targets that don't
1014            // have 64-bit hardware floats or buggy implementations.
1015            // https://github.com/rust-lang/rust/pull/121062#issuecomment-2123408114
1016            any(
1017                target_arch = "x86_64",
1018                target_arch = "aarch64",
1019                all(any(target_arch = "riscv32", target_arch = "riscv64"), target_feature = "d"),
1020                all(target_arch = "loongarch64", target_feature = "d"),
1021                all(target_arch = "arm", target_feature = "vfp2"),
1022                target_arch = "wasm32",
1023                target_arch = "wasm64",
1024            ) => {
1025                ((self as f64 + other as f64) / 2.0) as f32
1026            }
1027            _ => {
1028                const HI: f32 = f32::MAX / 2.;
1029
1030                let (a, b) = (self, other);
1031                let abs_a = a.abs();
1032                let abs_b = b.abs();
1033
1034                if abs_a <= HI && abs_b <= HI {
1035                    // Overflow is impossible
1036                    (a + b) / 2.
1037                } else {
1038                    (a / 2.) + (b / 2.)
1039                }
1040            }
1041        }
1042    }
1043
1044    /// Rounds toward zero and converts to any primitive integer type,
1045    /// assuming that the value is finite and fits in that type.
1046    ///
1047    /// ```
1048    /// let value = 4.6_f32;
1049    /// let rounded = unsafe { value.to_int_unchecked::<u16>() };
1050    /// assert_eq!(rounded, 4);
1051    ///
1052    /// let value = -128.9_f32;
1053    /// let rounded = unsafe { value.to_int_unchecked::<i8>() };
1054    /// assert_eq!(rounded, i8::MIN);
1055    /// ```
1056    ///
1057    /// # Safety
1058    ///
1059    /// The value must:
1060    ///
1061    /// * Not be `NaN`
1062    /// * Not be infinite
1063    /// * Be representable in the return type `Int`, after truncating off its fractional part
1064    #[must_use = "this returns the result of the operation, \
1065                  without modifying the original"]
1066    #[stable(feature = "float_approx_unchecked_to", since = "1.44.0")]
1067    #[inline]
1068    pub unsafe fn to_int_unchecked<Int>(self) -> Int
1069    where
1070        Self: FloatToInt<Int>,
1071    {
1072        // SAFETY: the caller must uphold the safety contract for
1073        // `FloatToInt::to_int_unchecked`.
1074        unsafe { FloatToInt::<Int>::to_int_unchecked(self) }
1075    }
1076
1077    /// Raw transmutation to `u32`.
1078    ///
1079    /// This is currently identical to `transmute::<f32, u32>(self)` on all platforms.
1080    ///
1081    /// See [`from_bits`](Self::from_bits) for some discussion of the
1082    /// portability of this operation (there are almost no issues).
1083    ///
1084    /// Note that this function is distinct from `as` casting, which attempts to
1085    /// preserve the *numeric* value, and not the bitwise value.
1086    ///
1087    /// # Examples
1088    ///
1089    /// ```
1090    /// assert_ne!((1f32).to_bits(), 1f32 as u32); // to_bits() is not casting!
1091    /// assert_eq!((12.5f32).to_bits(), 0x41480000);
1092    ///
1093    /// ```
1094    #[must_use = "this returns the result of the operation, \
1095                  without modifying the original"]
1096    #[stable(feature = "float_bits_conv", since = "1.20.0")]
1097    #[rustc_const_stable(feature = "const_float_bits_conv", since = "1.83.0")]
1098    #[inline]
1099    #[allow(unnecessary_transmutes)]
1100    pub const fn to_bits(self) -> u32 {
1101        // SAFETY: `u32` is a plain old datatype so we can always transmute to it.
1102        unsafe { mem::transmute(self) }
1103    }
1104
1105    /// Raw transmutation from `u32`.
1106    ///
1107    /// This is currently identical to `transmute::<u32, f32>(v)` on all platforms.
1108    /// It turns out this is incredibly portable, for two reasons:
1109    ///
1110    /// * Floats and Ints have the same endianness on all supported platforms.
1111    /// * IEEE 754 very precisely specifies the bit layout of floats.
1112    ///
1113    /// However there is one caveat: prior to the 2008 version of IEEE 754, how
1114    /// to interpret the NaN signaling bit wasn't actually specified. Most platforms
1115    /// (notably x86 and ARM) picked the interpretation that was ultimately
1116    /// standardized in 2008, but some didn't (notably MIPS). As a result, all
1117    /// signaling NaNs on MIPS are quiet NaNs on x86, and vice-versa.
1118    ///
1119    /// Rather than trying to preserve signaling-ness cross-platform, this
1120    /// implementation favors preserving the exact bits. This means that
1121    /// any payloads encoded in NaNs will be preserved even if the result of
1122    /// this method is sent over the network from an x86 machine to a MIPS one.
1123    ///
1124    /// If the results of this method are only manipulated by the same
1125    /// architecture that produced them, then there is no portability concern.
1126    ///
1127    /// If the input isn't NaN, then there is no portability concern.
1128    ///
1129    /// If you don't care about signalingness (very likely), then there is no
1130    /// portability concern.
1131    ///
1132    /// Note that this function is distinct from `as` casting, which attempts to
1133    /// preserve the *numeric* value, and not the bitwise value.
1134    ///
1135    /// # Examples
1136    ///
1137    /// ```
1138    /// let v = f32::from_bits(0x41480000);
1139    /// assert_eq!(v, 12.5);
1140    /// ```
1141    #[stable(feature = "float_bits_conv", since = "1.20.0")]
1142    #[rustc_const_stable(feature = "const_float_bits_conv", since = "1.83.0")]
1143    #[must_use]
1144    #[inline]
1145    #[allow(unnecessary_transmutes)]
1146    pub const fn from_bits(v: u32) -> Self {
1147        // It turns out the safety issues with sNaN were overblown! Hooray!
1148        // SAFETY: `u32` is a plain old datatype so we can always transmute from it.
1149        unsafe { mem::transmute(v) }
1150    }
1151
1152    /// Returns the memory representation of this floating point number as a byte array in
1153    /// big-endian (network) byte order.
1154    ///
1155    /// See [`from_bits`](Self::from_bits) for some discussion of the
1156    /// portability of this operation (there are almost no issues).
1157    ///
1158    /// # Examples
1159    ///
1160    /// ```
1161    /// let bytes = 12.5f32.to_be_bytes();
1162    /// assert_eq!(bytes, [0x41, 0x48, 0x00, 0x00]);
1163    /// ```
1164    #[must_use = "this returns the result of the operation, \
1165                  without modifying the original"]
1166    #[stable(feature = "float_to_from_bytes", since = "1.40.0")]
1167    #[rustc_const_stable(feature = "const_float_bits_conv", since = "1.83.0")]
1168    #[inline]
1169    pub const fn to_be_bytes(self) -> [u8; 4] {
1170        self.to_bits().to_be_bytes()
1171    }
1172
1173    /// Returns the memory representation of this floating point number as a byte array in
1174    /// little-endian byte order.
1175    ///
1176    /// See [`from_bits`](Self::from_bits) for some discussion of the
1177    /// portability of this operation (there are almost no issues).
1178    ///
1179    /// # Examples
1180    ///
1181    /// ```
1182    /// let bytes = 12.5f32.to_le_bytes();
1183    /// assert_eq!(bytes, [0x00, 0x00, 0x48, 0x41]);
1184    /// ```
1185    #[must_use = "this returns the result of the operation, \
1186                  without modifying the original"]
1187    #[stable(feature = "float_to_from_bytes", since = "1.40.0")]
1188    #[rustc_const_stable(feature = "const_float_bits_conv", since = "1.83.0")]
1189    #[inline]
1190    pub const fn to_le_bytes(self) -> [u8; 4] {
1191        self.to_bits().to_le_bytes()
1192    }
1193
1194    /// Returns the memory representation of this floating point number as a byte array in
1195    /// native byte order.
1196    ///
1197    /// As the target platform's native endianness is used, portable code
1198    /// should use [`to_be_bytes`] or [`to_le_bytes`], as appropriate, instead.
1199    ///
1200    /// [`to_be_bytes`]: f32::to_be_bytes
1201    /// [`to_le_bytes`]: f32::to_le_bytes
1202    ///
1203    /// See [`from_bits`](Self::from_bits) for some discussion of the
1204    /// portability of this operation (there are almost no issues).
1205    ///
1206    /// # Examples
1207    ///
1208    /// ```
1209    /// let bytes = 12.5f32.to_ne_bytes();
1210    /// assert_eq!(
1211    ///     bytes,
1212    ///     if cfg!(target_endian = "big") {
1213    ///         [0x41, 0x48, 0x00, 0x00]
1214    ///     } else {
1215    ///         [0x00, 0x00, 0x48, 0x41]
1216    ///     }
1217    /// );
1218    /// ```
1219    #[must_use = "this returns the result of the operation, \
1220                  without modifying the original"]
1221    #[stable(feature = "float_to_from_bytes", since = "1.40.0")]
1222    #[rustc_const_stable(feature = "const_float_bits_conv", since = "1.83.0")]
1223    #[inline]
1224    pub const fn to_ne_bytes(self) -> [u8; 4] {
1225        self.to_bits().to_ne_bytes()
1226    }
1227
1228    /// Creates a floating point value from its representation as a byte array in big endian.
1229    ///
1230    /// See [`from_bits`](Self::from_bits) for some discussion of the
1231    /// portability of this operation (there are almost no issues).
1232    ///
1233    /// # Examples
1234    ///
1235    /// ```
1236    /// let value = f32::from_be_bytes([0x41, 0x48, 0x00, 0x00]);
1237    /// assert_eq!(value, 12.5);
1238    /// ```
1239    #[stable(feature = "float_to_from_bytes", since = "1.40.0")]
1240    #[rustc_const_stable(feature = "const_float_bits_conv", since = "1.83.0")]
1241    #[must_use]
1242    #[inline]
1243    pub const fn from_be_bytes(bytes: [u8; 4]) -> Self {
1244        Self::from_bits(u32::from_be_bytes(bytes))
1245    }
1246
1247    /// Creates a floating point value from its representation as a byte array in little endian.
1248    ///
1249    /// See [`from_bits`](Self::from_bits) for some discussion of the
1250    /// portability of this operation (there are almost no issues).
1251    ///
1252    /// # Examples
1253    ///
1254    /// ```
1255    /// let value = f32::from_le_bytes([0x00, 0x00, 0x48, 0x41]);
1256    /// assert_eq!(value, 12.5);
1257    /// ```
1258    #[stable(feature = "float_to_from_bytes", since = "1.40.0")]
1259    #[rustc_const_stable(feature = "const_float_bits_conv", since = "1.83.0")]
1260    #[must_use]
1261    #[inline]
1262    pub const fn from_le_bytes(bytes: [u8; 4]) -> Self {
1263        Self::from_bits(u32::from_le_bytes(bytes))
1264    }
1265
1266    /// Creates a floating point value from its representation as a byte array in native endian.
1267    ///
1268    /// As the target platform's native endianness is used, portable code
1269    /// likely wants to use [`from_be_bytes`] or [`from_le_bytes`], as
1270    /// appropriate instead.
1271    ///
1272    /// [`from_be_bytes`]: f32::from_be_bytes
1273    /// [`from_le_bytes`]: f32::from_le_bytes
1274    ///
1275    /// See [`from_bits`](Self::from_bits) for some discussion of the
1276    /// portability of this operation (there are almost no issues).
1277    ///
1278    /// # Examples
1279    ///
1280    /// ```
1281    /// let value = f32::from_ne_bytes(if cfg!(target_endian = "big") {
1282    ///     [0x41, 0x48, 0x00, 0x00]
1283    /// } else {
1284    ///     [0x00, 0x00, 0x48, 0x41]
1285    /// });
1286    /// assert_eq!(value, 12.5);
1287    /// ```
1288    #[stable(feature = "float_to_from_bytes", since = "1.40.0")]
1289    #[rustc_const_stable(feature = "const_float_bits_conv", since = "1.83.0")]
1290    #[must_use]
1291    #[inline]
1292    pub const fn from_ne_bytes(bytes: [u8; 4]) -> Self {
1293        Self::from_bits(u32::from_ne_bytes(bytes))
1294    }
1295
1296    /// Returns the ordering between `self` and `other`.
1297    ///
1298    /// Unlike the standard partial comparison between floating point numbers,
1299    /// this comparison always produces an ordering in accordance to
1300    /// the `totalOrder` predicate as defined in the IEEE 754 (2008 revision)
1301    /// floating point standard. The values are ordered in the following sequence:
1302    ///
1303    /// - negative quiet NaN
1304    /// - negative signaling NaN
1305    /// - negative infinity
1306    /// - negative numbers
1307    /// - negative subnormal numbers
1308    /// - negative zero
1309    /// - positive zero
1310    /// - positive subnormal numbers
1311    /// - positive numbers
1312    /// - positive infinity
1313    /// - positive signaling NaN
1314    /// - positive quiet NaN.
1315    ///
1316    /// The ordering established by this function does not always agree with the
1317    /// [`PartialOrd`] and [`PartialEq`] implementations of `f32`. For example,
1318    /// they consider negative and positive zero equal, while `total_cmp`
1319    /// doesn't.
1320    ///
1321    /// The interpretation of the signaling NaN bit follows the definition in
1322    /// the IEEE 754 standard, which may not match the interpretation by some of
1323    /// the older, non-conformant (e.g. MIPS) hardware implementations.
1324    ///
1325    /// # Example
1326    ///
1327    /// ```
1328    /// struct GoodBoy {
1329    ///     name: String,
1330    ///     weight: f32,
1331    /// }
1332    ///
1333    /// let mut bois = vec![
1334    ///     GoodBoy { name: "Pucci".to_owned(), weight: 0.1 },
1335    ///     GoodBoy { name: "Woofer".to_owned(), weight: 99.0 },
1336    ///     GoodBoy { name: "Yapper".to_owned(), weight: 10.0 },
1337    ///     GoodBoy { name: "Chonk".to_owned(), weight: f32::INFINITY },
1338    ///     GoodBoy { name: "Abs. Unit".to_owned(), weight: f32::NAN },
1339    ///     GoodBoy { name: "Floaty".to_owned(), weight: -5.0 },
1340    /// ];
1341    ///
1342    /// bois.sort_by(|a, b| a.weight.total_cmp(&b.weight));
1343    ///
1344    /// // `f32::NAN` could be positive or negative, which will affect the sort order.
1345    /// if f32::NAN.is_sign_negative() {
1346    ///     assert!(bois.into_iter().map(|b| b.weight)
1347    ///         .zip([f32::NAN, -5.0, 0.1, 10.0, 99.0, f32::INFINITY].iter())
1348    ///         .all(|(a, b)| a.to_bits() == b.to_bits()))
1349    /// } else {
1350    ///     assert!(bois.into_iter().map(|b| b.weight)
1351    ///         .zip([-5.0, 0.1, 10.0, 99.0, f32::INFINITY, f32::NAN].iter())
1352    ///         .all(|(a, b)| a.to_bits() == b.to_bits()))
1353    /// }
1354    /// ```
1355    #[stable(feature = "total_cmp", since = "1.62.0")]
1356    #[must_use]
1357    #[inline]
1358    pub fn total_cmp(&self, other: &Self) -> crate::cmp::Ordering {
1359        let mut left = self.to_bits() as i32;
1360        let mut right = other.to_bits() as i32;
1361
1362        // In case of negatives, flip all the bits except the sign
1363        // to achieve a similar layout as two's complement integers
1364        //
1365        // Why does this work? IEEE 754 floats consist of three fields:
1366        // Sign bit, exponent and mantissa. The set of exponent and mantissa
1367        // fields as a whole have the property that their bitwise order is
1368        // equal to the numeric magnitude where the magnitude is defined.
1369        // The magnitude is not normally defined on NaN values, but
1370        // IEEE 754 totalOrder defines the NaN values also to follow the
1371        // bitwise order. This leads to order explained in the doc comment.
1372        // However, the representation of magnitude is the same for negative
1373        // and positive numbers – only the sign bit is different.
1374        // To easily compare the floats as signed integers, we need to
1375        // flip the exponent and mantissa bits in case of negative numbers.
1376        // We effectively convert the numbers to "two's complement" form.
1377        //
1378        // To do the flipping, we construct a mask and XOR against it.
1379        // We branchlessly calculate an "all-ones except for the sign bit"
1380        // mask from negative-signed values: right shifting sign-extends
1381        // the integer, so we "fill" the mask with sign bits, and then
1382        // convert to unsigned to push one more zero bit.
1383        // On positive values, the mask is all zeros, so it's a no-op.
1384        left ^= (((left >> 31) as u32) >> 1) as i32;
1385        right ^= (((right >> 31) as u32) >> 1) as i32;
1386
1387        left.cmp(&right)
1388    }
1389
1390    /// Restrict a value to a certain interval unless it is NaN.
1391    ///
1392    /// Returns `max` if `self` is greater than `max`, and `min` if `self` is
1393    /// less than `min`. Otherwise this returns `self`.
1394    ///
1395    /// Note that this function returns NaN if the initial value was NaN as
1396    /// well.
1397    ///
1398    /// # Panics
1399    ///
1400    /// Panics if `min > max`, `min` is NaN, or `max` is NaN.
1401    ///
1402    /// # Examples
1403    ///
1404    /// ```
1405    /// assert!((-3.0f32).clamp(-2.0, 1.0) == -2.0);
1406    /// assert!((0.0f32).clamp(-2.0, 1.0) == 0.0);
1407    /// assert!((2.0f32).clamp(-2.0, 1.0) == 1.0);
1408    /// assert!((f32::NAN).clamp(-2.0, 1.0).is_nan());
1409    /// ```
1410    #[must_use = "method returns a new number and does not mutate the original value"]
1411    #[stable(feature = "clamp", since = "1.50.0")]
1412    #[rustc_const_stable(feature = "const_float_methods", since = "1.85.0")]
1413    #[inline]
1414    pub const fn clamp(mut self, min: f32, max: f32) -> f32 {
1415        const_assert!(
1416            min <= max,
1417            "min > max, or either was NaN",
1418            "min > max, or either was NaN. min = {min:?}, max = {max:?}",
1419            min: f32,
1420            max: f32,
1421        );
1422
1423        if self < min {
1424            self = min;
1425        }
1426        if self > max {
1427            self = max;
1428        }
1429        self
1430    }
1431
1432    /// Computes the absolute value of `self`.
1433    ///
1434    /// This function always returns the precise result.
1435    ///
1436    /// # Examples
1437    ///
1438    /// ```
1439    /// let x = 3.5_f32;
1440    /// let y = -3.5_f32;
1441    ///
1442    /// assert_eq!(x.abs(), x);
1443    /// assert_eq!(y.abs(), -y);
1444    ///
1445    /// assert!(f32::NAN.abs().is_nan());
1446    /// ```
1447    #[must_use = "method returns a new number and does not mutate the original value"]
1448    #[stable(feature = "rust1", since = "1.0.0")]
1449    #[rustc_const_stable(feature = "const_float_methods", since = "1.85.0")]
1450    #[inline]
1451    pub const fn abs(self) -> f32 {
1452        // SAFETY: this is actually a safe intrinsic
1453        unsafe { intrinsics::fabsf32(self) }
1454    }
1455
1456    /// Returns a number that represents the sign of `self`.
1457    ///
1458    /// - `1.0` if the number is positive, `+0.0` or `INFINITY`
1459    /// - `-1.0` if the number is negative, `-0.0` or `NEG_INFINITY`
1460    /// - NaN if the number is NaN
1461    ///
1462    /// # Examples
1463    ///
1464    /// ```
1465    /// let f = 3.5_f32;
1466    ///
1467    /// assert_eq!(f.signum(), 1.0);
1468    /// assert_eq!(f32::NEG_INFINITY.signum(), -1.0);
1469    ///
1470    /// assert!(f32::NAN.signum().is_nan());
1471    /// ```
1472    #[must_use = "method returns a new number and does not mutate the original value"]
1473    #[stable(feature = "rust1", since = "1.0.0")]
1474    #[rustc_const_stable(feature = "const_float_methods", since = "1.85.0")]
1475    #[inline]
1476    pub const fn signum(self) -> f32 {
1477        if self.is_nan() { Self::NAN } else { 1.0_f32.copysign(self) }
1478    }
1479
1480    /// Returns a number composed of the magnitude of `self` and the sign of
1481    /// `sign`.
1482    ///
1483    /// Equal to `self` if the sign of `self` and `sign` are the same, otherwise equal to `-self`.
1484    /// If `self` is a NaN, then a NaN with the same payload as `self` and the sign bit of `sign` is
1485    /// returned.
1486    ///
1487    /// If `sign` is a NaN, then this operation will still carry over its sign into the result. Note
1488    /// that IEEE 754 doesn't assign any meaning to the sign bit in case of a NaN, and as Rust
1489    /// doesn't guarantee that the bit pattern of NaNs are conserved over arithmetic operations, the
1490    /// result of `copysign` with `sign` being a NaN might produce an unexpected or non-portable
1491    /// result. See the [specification of NaN bit patterns](primitive@f32#nan-bit-patterns) for more
1492    /// info.
1493    ///
1494    /// # Examples
1495    ///
1496    /// ```
1497    /// let f = 3.5_f32;
1498    ///
1499    /// assert_eq!(f.copysign(0.42), 3.5_f32);
1500    /// assert_eq!(f.copysign(-0.42), -3.5_f32);
1501    /// assert_eq!((-f).copysign(0.42), 3.5_f32);
1502    /// assert_eq!((-f).copysign(-0.42), -3.5_f32);
1503    ///
1504    /// assert!(f32::NAN.copysign(1.0).is_nan());
1505    /// ```
1506    #[must_use = "method returns a new number and does not mutate the original value"]
1507    #[inline]
1508    #[stable(feature = "copysign", since = "1.35.0")]
1509    #[rustc_const_stable(feature = "const_float_methods", since = "1.85.0")]
1510    pub const fn copysign(self, sign: f32) -> f32 {
1511        // SAFETY: this is actually a safe intrinsic
1512        unsafe { intrinsics::copysignf32(self, sign) }
1513    }
1514
1515    /// Float addition that allows optimizations based on algebraic rules.
1516    ///
1517    /// See [algebraic operators](primitive@f32#algebraic-operators) for more info.
1518    #[must_use = "method returns a new number and does not mutate the original value"]
1519    #[unstable(feature = "float_algebraic", issue = "136469")]
1520    #[rustc_const_unstable(feature = "float_algebraic", issue = "136469")]
1521    #[inline]
1522    pub const fn algebraic_add(self, rhs: f32) -> f32 {
1523        intrinsics::fadd_algebraic(self, rhs)
1524    }
1525
1526    /// Float subtraction that allows optimizations based on algebraic rules.
1527    ///
1528    /// See [algebraic operators](primitive@f32#algebraic-operators) for more info.
1529    #[must_use = "method returns a new number and does not mutate the original value"]
1530    #[unstable(feature = "float_algebraic", issue = "136469")]
1531    #[rustc_const_unstable(feature = "float_algebraic", issue = "136469")]
1532    #[inline]
1533    pub const fn algebraic_sub(self, rhs: f32) -> f32 {
1534        intrinsics::fsub_algebraic(self, rhs)
1535    }
1536
1537    /// Float multiplication that allows optimizations based on algebraic rules.
1538    ///
1539    /// See [algebraic operators](primitive@f32#algebraic-operators) for more info.
1540    #[must_use = "method returns a new number and does not mutate the original value"]
1541    #[unstable(feature = "float_algebraic", issue = "136469")]
1542    #[rustc_const_unstable(feature = "float_algebraic", issue = "136469")]
1543    #[inline]
1544    pub const fn algebraic_mul(self, rhs: f32) -> f32 {
1545        intrinsics::fmul_algebraic(self, rhs)
1546    }
1547
1548    /// Float division that allows optimizations based on algebraic rules.
1549    ///
1550    /// See [algebraic operators](primitive@f32#algebraic-operators) for more info.
1551    #[must_use = "method returns a new number and does not mutate the original value"]
1552    #[unstable(feature = "float_algebraic", issue = "136469")]
1553    #[rustc_const_unstable(feature = "float_algebraic", issue = "136469")]
1554    #[inline]
1555    pub const fn algebraic_div(self, rhs: f32) -> f32 {
1556        intrinsics::fdiv_algebraic(self, rhs)
1557    }
1558
1559    /// Float remainder that allows optimizations based on algebraic rules.
1560    ///
1561    /// See [algebraic operators](primitive@f32#algebraic-operators) for more info.
1562    #[must_use = "method returns a new number and does not mutate the original value"]
1563    #[unstable(feature = "float_algebraic", issue = "136469")]
1564    #[rustc_const_unstable(feature = "float_algebraic", issue = "136469")]
1565    #[inline]
1566    pub const fn algebraic_rem(self, rhs: f32) -> f32 {
1567        intrinsics::frem_algebraic(self, rhs)
1568    }
1569}
1570
1571/// Experimental implementations of floating point functions in `core`.
1572///
1573/// _The standalone functions in this module are for testing only.
1574/// They will be stabilized as inherent methods._
1575#[unstable(feature = "core_float_math", issue = "137578")]
1576pub mod math {
1577    use crate::intrinsics;
1578    use crate::num::libm;
1579
1580    /// Experimental version of `floor` in `core`. See [`f32::floor`] for details.
1581    ///
1582    /// # Examples
1583    ///
1584    /// ```
1585    /// #![feature(core_float_math)]
1586    ///
1587    /// use core::f32;
1588    ///
1589    /// let f = 3.7_f32;
1590    /// let g = 3.0_f32;
1591    /// let h = -3.7_f32;
1592    ///
1593    /// assert_eq!(f32::math::floor(f), 3.0);
1594    /// assert_eq!(f32::math::floor(g), 3.0);
1595    /// assert_eq!(f32::math::floor(h), -4.0);
1596    /// ```
1597    ///
1598    /// _This standalone function is for testing only.
1599    /// It will be stabilized as an inherent method._
1600    ///
1601    /// [`f32::floor`]: ../../../std/primitive.f32.html#method.floor
1602    #[inline]
1603    #[unstable(feature = "core_float_math", issue = "137578")]
1604    #[must_use = "method returns a new number and does not mutate the original value"]
1605    pub const fn floor(x: f32) -> f32 {
1606        // SAFETY: intrinsic with no preconditions
1607        unsafe { intrinsics::floorf32(x) }
1608    }
1609
1610    /// Experimental version of `ceil` in `core`. See [`f32::ceil`] for details.
1611    ///
1612    /// # Examples
1613    ///
1614    /// ```
1615    /// #![feature(core_float_math)]
1616    ///
1617    /// use core::f32;
1618    ///
1619    /// let f = 3.01_f32;
1620    /// let g = 4.0_f32;
1621    ///
1622    /// assert_eq!(f32::math::ceil(f), 4.0);
1623    /// assert_eq!(f32::math::ceil(g), 4.0);
1624    /// ```
1625    ///
1626    /// _This standalone function is for testing only.
1627    /// It will be stabilized as an inherent method._
1628    ///
1629    /// [`f32::ceil`]: ../../../std/primitive.f32.html#method.ceil
1630    #[inline]
1631    #[doc(alias = "ceiling")]
1632    #[must_use = "method returns a new number and does not mutate the original value"]
1633    #[unstable(feature = "core_float_math", issue = "137578")]
1634    pub const fn ceil(x: f32) -> f32 {
1635        // SAFETY: intrinsic with no preconditions
1636        unsafe { intrinsics::ceilf32(x) }
1637    }
1638
1639    /// Experimental version of `round` in `core`. See [`f32::round`] for details.
1640    ///
1641    /// # Examples
1642    ///
1643    /// ```
1644    /// #![feature(core_float_math)]
1645    ///
1646    /// use core::f32;
1647    ///
1648    /// let f = 3.3_f32;
1649    /// let g = -3.3_f32;
1650    /// let h = -3.7_f32;
1651    /// let i = 3.5_f32;
1652    /// let j = 4.5_f32;
1653    ///
1654    /// assert_eq!(f32::math::round(f), 3.0);
1655    /// assert_eq!(f32::math::round(g), -3.0);
1656    /// assert_eq!(f32::math::round(h), -4.0);
1657    /// assert_eq!(f32::math::round(i), 4.0);
1658    /// assert_eq!(f32::math::round(j), 5.0);
1659    /// ```
1660    ///
1661    /// _This standalone function is for testing only.
1662    /// It will be stabilized as an inherent method._
1663    ///
1664    /// [`f32::round`]: ../../../std/primitive.f32.html#method.round
1665    #[inline]
1666    #[unstable(feature = "core_float_math", issue = "137578")]
1667    #[must_use = "method returns a new number and does not mutate the original value"]
1668    pub const fn round(x: f32) -> f32 {
1669        // SAFETY: intrinsic with no preconditions
1670        unsafe { intrinsics::roundf32(x) }
1671    }
1672
1673    /// Experimental version of `round_ties_even` in `core`. See [`f32::round_ties_even`] for
1674    /// details.
1675    ///
1676    /// # Examples
1677    ///
1678    /// ```
1679    /// #![feature(core_float_math)]
1680    ///
1681    /// use core::f32;
1682    ///
1683    /// let f = 3.3_f32;
1684    /// let g = -3.3_f32;
1685    /// let h = 3.5_f32;
1686    /// let i = 4.5_f32;
1687    ///
1688    /// assert_eq!(f32::math::round_ties_even(f), 3.0);
1689    /// assert_eq!(f32::math::round_ties_even(g), -3.0);
1690    /// assert_eq!(f32::math::round_ties_even(h), 4.0);
1691    /// assert_eq!(f32::math::round_ties_even(i), 4.0);
1692    /// ```
1693    ///
1694    /// _This standalone function is for testing only.
1695    /// It will be stabilized as an inherent method._
1696    ///
1697    /// [`f32::round_ties_even`]: ../../../std/primitive.f32.html#method.round_ties_even
1698    #[inline]
1699    #[unstable(feature = "core_float_math", issue = "137578")]
1700    #[must_use = "method returns a new number and does not mutate the original value"]
1701    pub const fn round_ties_even(x: f32) -> f32 {
1702        intrinsics::round_ties_even_f32(x)
1703    }
1704
1705    /// Experimental version of `trunc` in `core`. See [`f32::trunc`] for details.
1706    ///
1707    /// # Examples
1708    ///
1709    /// ```
1710    /// #![feature(core_float_math)]
1711    ///
1712    /// use core::f32;
1713    ///
1714    /// let f = 3.7_f32;
1715    /// let g = 3.0_f32;
1716    /// let h = -3.7_f32;
1717    ///
1718    /// assert_eq!(f32::math::trunc(f), 3.0);
1719    /// assert_eq!(f32::math::trunc(g), 3.0);
1720    /// assert_eq!(f32::math::trunc(h), -3.0);
1721    /// ```
1722    ///
1723    /// _This standalone function is for testing only.
1724    /// It will be stabilized as an inherent method._
1725    ///
1726    /// [`f32::trunc`]: ../../../std/primitive.f32.html#method.trunc
1727    #[inline]
1728    #[doc(alias = "truncate")]
1729    #[must_use = "method returns a new number and does not mutate the original value"]
1730    #[unstable(feature = "core_float_math", issue = "137578")]
1731    pub const fn trunc(x: f32) -> f32 {
1732        // SAFETY: intrinsic with no preconditions
1733        unsafe { intrinsics::truncf32(x) }
1734    }
1735
1736    /// Experimental version of `fract` in `core`. See [`f32::fract`] for details.
1737    ///
1738    /// # Examples
1739    ///
1740    /// ```
1741    /// #![feature(core_float_math)]
1742    ///
1743    /// use core::f32;
1744    ///
1745    /// let x = 3.6_f32;
1746    /// let y = -3.6_f32;
1747    /// let abs_difference_x = (f32::math::fract(x) - 0.6).abs();
1748    /// let abs_difference_y = (f32::math::fract(y) - (-0.6)).abs();
1749    ///
1750    /// assert!(abs_difference_x <= f32::EPSILON);
1751    /// assert!(abs_difference_y <= f32::EPSILON);
1752    /// ```
1753    ///
1754    /// _This standalone function is for testing only.
1755    /// It will be stabilized as an inherent method._
1756    ///
1757    /// [`f32::fract`]: ../../../std/primitive.f32.html#method.fract
1758    #[inline]
1759    #[unstable(feature = "core_float_math", issue = "137578")]
1760    #[must_use = "method returns a new number and does not mutate the original value"]
1761    pub const fn fract(x: f32) -> f32 {
1762        x - trunc(x)
1763    }
1764
1765    /// Experimental version of `mul_add` in `core`. See [`f32::mul_add`] for details.
1766    ///
1767    /// # Examples
1768    ///
1769    /// ```
1770    /// #![feature(core_float_math)]
1771    ///
1772    /// # // FIXME(#140515): mingw has an incorrect fma
1773    /// # // https://sourceforge.net/p/mingw-w64/bugs/848/
1774    /// # #[cfg(all(target_os = "windows", target_env = "gnu", not(target_abi = "llvm")))] {
1775    /// use core::f32;
1776    ///
1777    /// let m = 10.0_f32;
1778    /// let x = 4.0_f32;
1779    /// let b = 60.0_f32;
1780    ///
1781    /// assert_eq!(f32::math::mul_add(m, x, b), 100.0);
1782    /// assert_eq!(m * x + b, 100.0);
1783    ///
1784    /// let one_plus_eps = 1.0_f32 + f32::EPSILON;
1785    /// let one_minus_eps = 1.0_f32 - f32::EPSILON;
1786    /// let minus_one = -1.0_f32;
1787    ///
1788    /// // The exact result (1 + eps) * (1 - eps) = 1 - eps * eps.
1789    /// assert_eq!(
1790    ///     f32::math::mul_add(one_plus_eps, one_minus_eps, minus_one),
1791    ///     -f32::EPSILON * f32::EPSILON
1792    /// );
1793    /// // Different rounding with the non-fused multiply and add.
1794    /// assert_eq!(one_plus_eps * one_minus_eps + minus_one, 0.0);
1795    /// # }
1796    /// ```
1797    ///
1798    /// _This standalone function is for testing only.
1799    /// It will be stabilized as an inherent method._
1800    ///
1801    /// [`f32::mul_add`]: ../../../std/primitive.f32.html#method.mul_add
1802    #[inline]
1803    #[doc(alias = "fmaf", alias = "fusedMultiplyAdd")]
1804    #[must_use = "method returns a new number and does not mutate the original value"]
1805    #[unstable(feature = "core_float_math", issue = "137578")]
1806    pub fn mul_add(x: f32, y: f32, z: f32) -> f32 {
1807        // SAFETY: intrinsic with no preconditions
1808        unsafe { intrinsics::fmaf32(x, y, z) }
1809    }
1810
1811    /// Experimental version of `div_euclid` in `core`. See [`f32::div_euclid`] for details.
1812    ///
1813    /// # Examples
1814    ///
1815    /// ```
1816    /// #![feature(core_float_math)]
1817    ///
1818    /// use core::f32;
1819    ///
1820    /// let a: f32 = 7.0;
1821    /// let b = 4.0;
1822    /// assert_eq!(f32::math::div_euclid(a, b), 1.0); // 7.0 > 4.0 * 1.0
1823    /// assert_eq!(f32::math::div_euclid(-a, b), -2.0); // -7.0 >= 4.0 * -2.0
1824    /// assert_eq!(f32::math::div_euclid(a, -b), -1.0); // 7.0 >= -4.0 * -1.0
1825    /// assert_eq!(f32::math::div_euclid(-a, -b), 2.0); // -7.0 >= -4.0 * 2.0
1826    /// ```
1827    ///
1828    /// _This standalone function is for testing only.
1829    /// It will be stabilized as an inherent method._
1830    ///
1831    /// [`f32::div_euclid`]: ../../../std/primitive.f32.html#method.div_euclid
1832    #[inline]
1833    #[unstable(feature = "core_float_math", issue = "137578")]
1834    #[must_use = "method returns a new number and does not mutate the original value"]
1835    pub fn div_euclid(x: f32, rhs: f32) -> f32 {
1836        let q = trunc(x / rhs);
1837        if x % rhs < 0.0 {
1838            return if rhs > 0.0 { q - 1.0 } else { q + 1.0 };
1839        }
1840        q
1841    }
1842
1843    /// Experimental version of `rem_euclid` in `core`. See [`f32::rem_euclid`] for details.
1844    ///
1845    /// # Examples
1846    ///
1847    /// ```
1848    /// #![feature(core_float_math)]
1849    ///
1850    /// use core::f32;
1851    ///
1852    /// let a: f32 = 7.0;
1853    /// let b = 4.0;
1854    /// assert_eq!(f32::math::rem_euclid(a, b), 3.0);
1855    /// assert_eq!(f32::math::rem_euclid(-a, b), 1.0);
1856    /// assert_eq!(f32::math::rem_euclid(a, -b), 3.0);
1857    /// assert_eq!(f32::math::rem_euclid(-a, -b), 1.0);
1858    /// // limitation due to round-off error
1859    /// assert!(f32::math::rem_euclid(-f32::EPSILON, 3.0) != 0.0);
1860    /// ```
1861    ///
1862    /// _This standalone function is for testing only.
1863    /// It will be stabilized as an inherent method._
1864    ///
1865    /// [`f32::rem_euclid`]: ../../../std/primitive.f32.html#method.rem_euclid
1866    #[inline]
1867    #[doc(alias = "modulo", alias = "mod")]
1868    #[unstable(feature = "core_float_math", issue = "137578")]
1869    #[must_use = "method returns a new number and does not mutate the original value"]
1870    pub fn rem_euclid(x: f32, rhs: f32) -> f32 {
1871        let r = x % rhs;
1872        if r < 0.0 { r + rhs.abs() } else { r }
1873    }
1874
1875    /// Experimental version of `powi` in `core`. See [`f32::powi`] for details.
1876    ///
1877    /// # Examples
1878    ///
1879    /// ```
1880    /// #![feature(core_float_math)]
1881    ///
1882    /// use core::f32;
1883    ///
1884    /// let x = 2.0_f32;
1885    /// let abs_difference = (f32::math::powi(x, 2) - (x * x)).abs();
1886    /// assert!(abs_difference <= 1e-5);
1887    ///
1888    /// assert_eq!(f32::math::powi(f32::NAN, 0), 1.0);
1889    /// ```
1890    ///
1891    /// _This standalone function is for testing only.
1892    /// It will be stabilized as an inherent method._
1893    ///
1894    /// [`f32::powi`]: ../../../std/primitive.f32.html#method.powi
1895    #[inline]
1896    #[must_use = "method returns a new number and does not mutate the original value"]
1897    #[unstable(feature = "core_float_math", issue = "137578")]
1898    pub fn powi(x: f32, n: i32) -> f32 {
1899        // SAFETY: intrinsic with no preconditions
1900        unsafe { intrinsics::powif32(x, n) }
1901    }
1902
1903    /// Experimental version of `sqrt` in `core`. See [`f32::sqrt`] for details.
1904    ///
1905    /// # Examples
1906    ///
1907    /// ```
1908    /// #![feature(core_float_math)]
1909    ///
1910    /// use core::f32;
1911    ///
1912    /// let positive = 4.0_f32;
1913    /// let negative = -4.0_f32;
1914    /// let negative_zero = -0.0_f32;
1915    ///
1916    /// assert_eq!(f32::math::sqrt(positive), 2.0);
1917    /// assert!(f32::math::sqrt(negative).is_nan());
1918    /// assert_eq!(f32::math::sqrt(negative_zero), negative_zero);
1919    /// ```
1920    ///
1921    /// _This standalone function is for testing only.
1922    /// It will be stabilized as an inherent method._
1923    ///
1924    /// [`f32::sqrt`]: ../../../std/primitive.f32.html#method.sqrt
1925    #[inline]
1926    #[doc(alias = "squareRoot")]
1927    #[unstable(feature = "core_float_math", issue = "137578")]
1928    #[must_use = "method returns a new number and does not mutate the original value"]
1929    pub fn sqrt(x: f32) -> f32 {
1930        // SAFETY: intrinsic with no preconditions
1931        unsafe { intrinsics::sqrtf32(x) }
1932    }
1933
1934    /// Experimental version of `abs_sub` in `core`. See [`f32::abs_sub`] for details.
1935    ///
1936    /// # Examples
1937    ///
1938    /// ```
1939    /// #![feature(core_float_math)]
1940    ///
1941    /// use core::f32;
1942    ///
1943    /// let x = 3.0f32;
1944    /// let y = -3.0f32;
1945    ///
1946    /// let abs_difference_x = (f32::math::abs_sub(x, 1.0) - 2.0).abs();
1947    /// let abs_difference_y = (f32::math::abs_sub(y, 1.0) - 0.0).abs();
1948    ///
1949    /// assert!(abs_difference_x <= 1e-6);
1950    /// assert!(abs_difference_y <= 1e-6);
1951    /// ```
1952    ///
1953    /// _This standalone function is for testing only.
1954    /// It will be stabilized as an inherent method._
1955    ///
1956    /// [`f32::abs_sub`]: ../../../std/primitive.f32.html#method.abs_sub
1957    #[inline]
1958    #[stable(feature = "rust1", since = "1.0.0")]
1959    #[deprecated(
1960        since = "1.10.0",
1961        note = "you probably meant `(self - other).abs()`: \
1962            this operation is `(self - other).max(0.0)` \
1963            except that `abs_sub` also propagates NaNs (also \
1964            known as `fdimf` in C). If you truly need the positive \
1965            difference, consider using that expression or the C function \
1966            `fdimf`, depending on how you wish to handle NaN (please consider \
1967            filing an issue describing your use-case too)."
1968    )]
1969    #[must_use = "method returns a new number and does not mutate the original value"]
1970    pub fn abs_sub(x: f32, other: f32) -> f32 {
1971        libm::fdimf(x, other)
1972    }
1973
1974    /// Experimental version of `cbrt` in `core`. See [`f32::cbrt`] for details.
1975    ///
1976    /// # Unspecified precision
1977    ///
1978    /// The precision of this function is non-deterministic. This means it varies by platform, Rust version, and
1979    /// can even differ within the same execution from one invocation to the next.
1980    /// This function currently corresponds to the `cbrtf` from libc on Unix
1981    /// and Windows. Note that this might change in the future.
1982    ///
1983    /// # Examples
1984    ///
1985    /// ```
1986    /// #![feature(core_float_math)]
1987    ///
1988    /// use core::f32;
1989    ///
1990    /// let x = 8.0f32;
1991    ///
1992    /// // x^(1/3) - 2 == 0
1993    /// let abs_difference = (f32::math::cbrt(x) - 2.0).abs();
1994    ///
1995    /// assert!(abs_difference <= 1e-6);
1996    /// ```
1997    ///
1998    /// _This standalone function is for testing only.
1999    /// It will be stabilized as an inherent method._
2000    ///
2001    /// [`f32::cbrt`]: ../../../std/primitive.f32.html#method.cbrt
2002    #[inline]
2003    #[must_use = "method returns a new number and does not mutate the original value"]
2004    #[unstable(feature = "core_float_math", issue = "137578")]
2005    pub fn cbrt(x: f32) -> f32 {
2006        libm::cbrtf(x)
2007    }
2008}