core/num/
f64.rs

1//! Constants for the `f64` double-precision floating point type.
2//!
3//! *[See also the `f64` primitive type][f64].*
4//!
5//! Mathematically significant numbers are provided in the `consts` sub-module.
6//!
7//! For the constants defined directly in this module
8//! (as distinct from those defined in the `consts` sub-module),
9//! new code should instead use the associated constants
10//! defined directly on the `f64` type.
11
12#![stable(feature = "rust1", since = "1.0.0")]
13
14#[cfg(not(feature = "ferrocene_certified"))]
15use crate::convert::FloatToInt;
16#[cfg(not(feature = "ferrocene_certified"))]
17use crate::num::FpCategory;
18#[cfg(not(feature = "ferrocene_certified"))]
19use crate::panic::const_assert;
20#[cfg(not(feature = "ferrocene_certified"))]
21use crate::{intrinsics, mem};
22
23// Ferrocene addition: imports for certified subset
24#[cfg(feature = "ferrocene_certified")]
25#[rustfmt::skip]
26use crate::mem;
27
28/// The radix or base of the internal representation of `f64`.
29/// Use [`f64::RADIX`] instead.
30///
31/// # Examples
32///
33/// ```rust
34/// // deprecated way
35/// # #[allow(deprecated, deprecated_in_future)]
36/// let r = std::f64::RADIX;
37///
38/// // intended way
39/// let r = f64::RADIX;
40/// ```
41#[stable(feature = "rust1", since = "1.0.0")]
42#[deprecated(since = "TBD", note = "replaced by the `RADIX` associated constant on `f64`")]
43#[rustc_diagnostic_item = "f64_legacy_const_radix"]
44pub const RADIX: u32 = f64::RADIX;
45
46/// Number of significant digits in base 2.
47/// Use [`f64::MANTISSA_DIGITS`] instead.
48///
49/// # Examples
50///
51/// ```rust
52/// // deprecated way
53/// # #[allow(deprecated, deprecated_in_future)]
54/// let d = std::f64::MANTISSA_DIGITS;
55///
56/// // intended way
57/// let d = f64::MANTISSA_DIGITS;
58/// ```
59#[stable(feature = "rust1", since = "1.0.0")]
60#[deprecated(
61    since = "TBD",
62    note = "replaced by the `MANTISSA_DIGITS` associated constant on `f64`"
63)]
64#[rustc_diagnostic_item = "f64_legacy_const_mantissa_dig"]
65pub const MANTISSA_DIGITS: u32 = f64::MANTISSA_DIGITS;
66
67/// Approximate number of significant digits in base 10.
68/// Use [`f64::DIGITS`] instead.
69///
70/// # Examples
71///
72/// ```rust
73/// // deprecated way
74/// # #[allow(deprecated, deprecated_in_future)]
75/// let d = std::f64::DIGITS;
76///
77/// // intended way
78/// let d = f64::DIGITS;
79/// ```
80#[stable(feature = "rust1", since = "1.0.0")]
81#[deprecated(since = "TBD", note = "replaced by the `DIGITS` associated constant on `f64`")]
82#[rustc_diagnostic_item = "f64_legacy_const_digits"]
83pub const DIGITS: u32 = f64::DIGITS;
84
85/// [Machine epsilon] value for `f64`.
86/// Use [`f64::EPSILON`] instead.
87///
88/// This is the difference between `1.0` and the next larger representable number.
89///
90/// [Machine epsilon]: https://en.wikipedia.org/wiki/Machine_epsilon
91///
92/// # Examples
93///
94/// ```rust
95/// // deprecated way
96/// # #[allow(deprecated, deprecated_in_future)]
97/// let e = std::f64::EPSILON;
98///
99/// // intended way
100/// let e = f64::EPSILON;
101/// ```
102#[stable(feature = "rust1", since = "1.0.0")]
103#[deprecated(since = "TBD", note = "replaced by the `EPSILON` associated constant on `f64`")]
104#[rustc_diagnostic_item = "f64_legacy_const_epsilon"]
105pub const EPSILON: f64 = f64::EPSILON;
106
107/// Smallest finite `f64` value.
108/// Use [`f64::MIN`] instead.
109///
110/// # Examples
111///
112/// ```rust
113/// // deprecated way
114/// # #[allow(deprecated, deprecated_in_future)]
115/// let min = std::f64::MIN;
116///
117/// // intended way
118/// let min = f64::MIN;
119/// ```
120#[stable(feature = "rust1", since = "1.0.0")]
121#[deprecated(since = "TBD", note = "replaced by the `MIN` associated constant on `f64`")]
122#[rustc_diagnostic_item = "f64_legacy_const_min"]
123pub const MIN: f64 = f64::MIN;
124
125/// Smallest positive normal `f64` value.
126/// Use [`f64::MIN_POSITIVE`] instead.
127///
128/// # Examples
129///
130/// ```rust
131/// // deprecated way
132/// # #[allow(deprecated, deprecated_in_future)]
133/// let min = std::f64::MIN_POSITIVE;
134///
135/// // intended way
136/// let min = f64::MIN_POSITIVE;
137/// ```
138#[stable(feature = "rust1", since = "1.0.0")]
139#[deprecated(since = "TBD", note = "replaced by the `MIN_POSITIVE` associated constant on `f64`")]
140#[rustc_diagnostic_item = "f64_legacy_const_min_positive"]
141pub const MIN_POSITIVE: f64 = f64::MIN_POSITIVE;
142
143/// Largest finite `f64` value.
144/// Use [`f64::MAX`] instead.
145///
146/// # Examples
147///
148/// ```rust
149/// // deprecated way
150/// # #[allow(deprecated, deprecated_in_future)]
151/// let max = std::f64::MAX;
152///
153/// // intended way
154/// let max = f64::MAX;
155/// ```
156#[stable(feature = "rust1", since = "1.0.0")]
157#[deprecated(since = "TBD", note = "replaced by the `MAX` associated constant on `f64`")]
158#[rustc_diagnostic_item = "f64_legacy_const_max"]
159pub const MAX: f64 = f64::MAX;
160
161/// One greater than the minimum possible normal power of 2 exponent.
162/// Use [`f64::MIN_EXP`] instead.
163///
164/// # Examples
165///
166/// ```rust
167/// // deprecated way
168/// # #[allow(deprecated, deprecated_in_future)]
169/// let min = std::f64::MIN_EXP;
170///
171/// // intended way
172/// let min = f64::MIN_EXP;
173/// ```
174#[stable(feature = "rust1", since = "1.0.0")]
175#[deprecated(since = "TBD", note = "replaced by the `MIN_EXP` associated constant on `f64`")]
176#[rustc_diagnostic_item = "f64_legacy_const_min_exp"]
177pub const MIN_EXP: i32 = f64::MIN_EXP;
178
179/// Maximum possible power of 2 exponent.
180/// Use [`f64::MAX_EXP`] instead.
181///
182/// # Examples
183///
184/// ```rust
185/// // deprecated way
186/// # #[allow(deprecated, deprecated_in_future)]
187/// let max = std::f64::MAX_EXP;
188///
189/// // intended way
190/// let max = f64::MAX_EXP;
191/// ```
192#[stable(feature = "rust1", since = "1.0.0")]
193#[deprecated(since = "TBD", note = "replaced by the `MAX_EXP` associated constant on `f64`")]
194#[rustc_diagnostic_item = "f64_legacy_const_max_exp"]
195pub const MAX_EXP: i32 = f64::MAX_EXP;
196
197/// Minimum possible normal power of 10 exponent.
198/// Use [`f64::MIN_10_EXP`] instead.
199///
200/// # Examples
201///
202/// ```rust
203/// // deprecated way
204/// # #[allow(deprecated, deprecated_in_future)]
205/// let min = std::f64::MIN_10_EXP;
206///
207/// // intended way
208/// let min = f64::MIN_10_EXP;
209/// ```
210#[stable(feature = "rust1", since = "1.0.0")]
211#[deprecated(since = "TBD", note = "replaced by the `MIN_10_EXP` associated constant on `f64`")]
212#[rustc_diagnostic_item = "f64_legacy_const_min_10_exp"]
213pub const MIN_10_EXP: i32 = f64::MIN_10_EXP;
214
215/// Maximum possible power of 10 exponent.
216/// Use [`f64::MAX_10_EXP`] instead.
217///
218/// # Examples
219///
220/// ```rust
221/// // deprecated way
222/// # #[allow(deprecated, deprecated_in_future)]
223/// let max = std::f64::MAX_10_EXP;
224///
225/// // intended way
226/// let max = f64::MAX_10_EXP;
227/// ```
228#[stable(feature = "rust1", since = "1.0.0")]
229#[deprecated(since = "TBD", note = "replaced by the `MAX_10_EXP` associated constant on `f64`")]
230#[rustc_diagnostic_item = "f64_legacy_const_max_10_exp"]
231pub const MAX_10_EXP: i32 = f64::MAX_10_EXP;
232
233/// Not a Number (NaN).
234/// Use [`f64::NAN`] instead.
235///
236/// # Examples
237///
238/// ```rust
239/// // deprecated way
240/// # #[allow(deprecated, deprecated_in_future)]
241/// let nan = std::f64::NAN;
242///
243/// // intended way
244/// let nan = f64::NAN;
245/// ```
246#[stable(feature = "rust1", since = "1.0.0")]
247#[deprecated(since = "TBD", note = "replaced by the `NAN` associated constant on `f64`")]
248#[rustc_diagnostic_item = "f64_legacy_const_nan"]
249pub const NAN: f64 = f64::NAN;
250
251/// Infinity (∞).
252/// Use [`f64::INFINITY`] instead.
253///
254/// # Examples
255///
256/// ```rust
257/// // deprecated way
258/// # #[allow(deprecated, deprecated_in_future)]
259/// let inf = std::f64::INFINITY;
260///
261/// // intended way
262/// let inf = f64::INFINITY;
263/// ```
264#[stable(feature = "rust1", since = "1.0.0")]
265#[deprecated(since = "TBD", note = "replaced by the `INFINITY` associated constant on `f64`")]
266#[rustc_diagnostic_item = "f64_legacy_const_infinity"]
267pub const INFINITY: f64 = f64::INFINITY;
268
269/// Negative infinity (−∞).
270/// Use [`f64::NEG_INFINITY`] instead.
271///
272/// # Examples
273///
274/// ```rust
275/// // deprecated way
276/// # #[allow(deprecated, deprecated_in_future)]
277/// let ninf = std::f64::NEG_INFINITY;
278///
279/// // intended way
280/// let ninf = f64::NEG_INFINITY;
281/// ```
282#[stable(feature = "rust1", since = "1.0.0")]
283#[deprecated(since = "TBD", note = "replaced by the `NEG_INFINITY` associated constant on `f64`")]
284#[rustc_diagnostic_item = "f64_legacy_const_neg_infinity"]
285pub const NEG_INFINITY: f64 = f64::NEG_INFINITY;
286
287/// Basic mathematical constants.
288#[stable(feature = "rust1", since = "1.0.0")]
289#[rustc_diagnostic_item = "f64_consts_mod"]
290pub mod consts {
291    // FIXME: replace with mathematical constants from cmath.
292
293    /// Archimedes' constant (π)
294    #[stable(feature = "rust1", since = "1.0.0")]
295    pub const PI: f64 = 3.14159265358979323846264338327950288_f64;
296
297    /// The full circle constant (τ)
298    ///
299    /// Equal to 2π.
300    #[stable(feature = "tau_constant", since = "1.47.0")]
301    pub const TAU: f64 = 6.28318530717958647692528676655900577_f64;
302
303    /// The golden ratio (φ)
304    #[unstable(feature = "more_float_constants", issue = "146939")]
305    pub const PHI: f64 = 1.618033988749894848204586834365638118_f64;
306
307    /// The Euler-Mascheroni constant (γ)
308    #[unstable(feature = "more_float_constants", issue = "146939")]
309    pub const EGAMMA: f64 = 0.577215664901532860606512090082402431_f64;
310
311    /// π/2
312    #[stable(feature = "rust1", since = "1.0.0")]
313    pub const FRAC_PI_2: f64 = 1.57079632679489661923132169163975144_f64;
314
315    /// π/3
316    #[stable(feature = "rust1", since = "1.0.0")]
317    pub const FRAC_PI_3: f64 = 1.04719755119659774615421446109316763_f64;
318
319    /// π/4
320    #[stable(feature = "rust1", since = "1.0.0")]
321    pub const FRAC_PI_4: f64 = 0.785398163397448309615660845819875721_f64;
322
323    /// π/6
324    #[stable(feature = "rust1", since = "1.0.0")]
325    pub const FRAC_PI_6: f64 = 0.52359877559829887307710723054658381_f64;
326
327    /// π/8
328    #[stable(feature = "rust1", since = "1.0.0")]
329    pub const FRAC_PI_8: f64 = 0.39269908169872415480783042290993786_f64;
330
331    /// 1/π
332    #[stable(feature = "rust1", since = "1.0.0")]
333    pub const FRAC_1_PI: f64 = 0.318309886183790671537767526745028724_f64;
334
335    /// 1/sqrt(π)
336    #[unstable(feature = "more_float_constants", issue = "146939")]
337    pub const FRAC_1_SQRT_PI: f64 = 0.564189583547756286948079451560772586_f64;
338
339    /// 1/sqrt(2π)
340    #[doc(alias = "FRAC_1_SQRT_TAU")]
341    #[unstable(feature = "more_float_constants", issue = "146939")]
342    pub const FRAC_1_SQRT_2PI: f64 = 0.398942280401432677939946059934381868_f64;
343
344    /// 2/π
345    #[stable(feature = "rust1", since = "1.0.0")]
346    pub const FRAC_2_PI: f64 = 0.636619772367581343075535053490057448_f64;
347
348    /// 2/sqrt(π)
349    #[stable(feature = "rust1", since = "1.0.0")]
350    pub const FRAC_2_SQRT_PI: f64 = 1.12837916709551257389615890312154517_f64;
351
352    /// sqrt(2)
353    #[stable(feature = "rust1", since = "1.0.0")]
354    pub const SQRT_2: f64 = 1.41421356237309504880168872420969808_f64;
355
356    /// 1/sqrt(2)
357    #[stable(feature = "rust1", since = "1.0.0")]
358    pub const FRAC_1_SQRT_2: f64 = 0.707106781186547524400844362104849039_f64;
359
360    /// sqrt(3)
361    #[unstable(feature = "more_float_constants", issue = "146939")]
362    pub const SQRT_3: f64 = 1.732050807568877293527446341505872367_f64;
363
364    /// 1/sqrt(3)
365    #[unstable(feature = "more_float_constants", issue = "146939")]
366    pub const FRAC_1_SQRT_3: f64 = 0.577350269189625764509148780501957456_f64;
367
368    /// Euler's number (e)
369    #[stable(feature = "rust1", since = "1.0.0")]
370    pub const E: f64 = 2.71828182845904523536028747135266250_f64;
371
372    /// log<sub>2</sub>(10)
373    #[stable(feature = "extra_log_consts", since = "1.43.0")]
374    pub const LOG2_10: f64 = 3.32192809488736234787031942948939018_f64;
375
376    /// log<sub>2</sub>(e)
377    #[stable(feature = "rust1", since = "1.0.0")]
378    pub const LOG2_E: f64 = 1.44269504088896340735992468100189214_f64;
379
380    /// log<sub>10</sub>(2)
381    #[stable(feature = "extra_log_consts", since = "1.43.0")]
382    pub const LOG10_2: f64 = 0.301029995663981195213738894724493027_f64;
383
384    /// log<sub>10</sub>(e)
385    #[stable(feature = "rust1", since = "1.0.0")]
386    pub const LOG10_E: f64 = 0.434294481903251827651128918916605082_f64;
387
388    /// ln(2)
389    #[stable(feature = "rust1", since = "1.0.0")]
390    pub const LN_2: f64 = 0.693147180559945309417232121458176568_f64;
391
392    /// ln(10)
393    #[stable(feature = "rust1", since = "1.0.0")]
394    pub const LN_10: f64 = 2.30258509299404568401799145468436421_f64;
395}
396
397impl f64 {
398    /// The radix or base of the internal representation of `f64`.
399    #[stable(feature = "assoc_int_consts", since = "1.43.0")]
400    pub const RADIX: u32 = 2;
401
402    /// Number of significant digits in base 2.
403    ///
404    /// Note that the size of the mantissa in the bitwise representation is one
405    /// smaller than this since the leading 1 is not stored explicitly.
406    #[stable(feature = "assoc_int_consts", since = "1.43.0")]
407    pub const MANTISSA_DIGITS: u32 = 53;
408    /// Approximate number of significant digits in base 10.
409    ///
410    /// This is the maximum <i>x</i> such that any decimal number with <i>x</i>
411    /// significant digits can be converted to `f64` and back without loss.
412    ///
413    /// Equal to floor(log<sub>10</sub>&nbsp;2<sup>[`MANTISSA_DIGITS`]&nbsp;&minus;&nbsp;1</sup>).
414    ///
415    /// [`MANTISSA_DIGITS`]: f64::MANTISSA_DIGITS
416    #[stable(feature = "assoc_int_consts", since = "1.43.0")]
417    pub const DIGITS: u32 = 15;
418
419    /// [Machine epsilon] value for `f64`.
420    ///
421    /// This is the difference between `1.0` and the next larger representable number.
422    ///
423    /// Equal to 2<sup>1&nbsp;&minus;&nbsp;[`MANTISSA_DIGITS`]</sup>.
424    ///
425    /// [Machine epsilon]: https://en.wikipedia.org/wiki/Machine_epsilon
426    /// [`MANTISSA_DIGITS`]: f64::MANTISSA_DIGITS
427    #[stable(feature = "assoc_int_consts", since = "1.43.0")]
428    #[rustc_diagnostic_item = "f64_epsilon"]
429    pub const EPSILON: f64 = 2.2204460492503131e-16_f64;
430
431    /// Smallest finite `f64` value.
432    ///
433    /// Equal to &minus;[`MAX`].
434    ///
435    /// [`MAX`]: f64::MAX
436    #[stable(feature = "assoc_int_consts", since = "1.43.0")]
437    pub const MIN: f64 = -1.7976931348623157e+308_f64;
438    /// Smallest positive normal `f64` value.
439    ///
440    /// Equal to 2<sup>[`MIN_EXP`]&nbsp;&minus;&nbsp;1</sup>.
441    ///
442    /// [`MIN_EXP`]: f64::MIN_EXP
443    #[stable(feature = "assoc_int_consts", since = "1.43.0")]
444    pub const MIN_POSITIVE: f64 = 2.2250738585072014e-308_f64;
445    /// Largest finite `f64` value.
446    ///
447    /// Equal to
448    /// (1&nbsp;&minus;&nbsp;2<sup>&minus;[`MANTISSA_DIGITS`]</sup>)&nbsp;2<sup>[`MAX_EXP`]</sup>.
449    ///
450    /// [`MANTISSA_DIGITS`]: f64::MANTISSA_DIGITS
451    /// [`MAX_EXP`]: f64::MAX_EXP
452    #[stable(feature = "assoc_int_consts", since = "1.43.0")]
453    pub const MAX: f64 = 1.7976931348623157e+308_f64;
454
455    /// One greater than the minimum possible *normal* power of 2 exponent
456    /// for a significand bounded by 1 ≤ x < 2 (i.e. the IEEE definition).
457    ///
458    /// This corresponds to the exact minimum possible *normal* power of 2 exponent
459    /// for a significand bounded by 0.5 ≤ x < 1 (i.e. the C definition).
460    /// In other words, all normal numbers representable by this type are
461    /// greater than or equal to 0.5&nbsp;×&nbsp;2<sup><i>MIN_EXP</i></sup>.
462    #[stable(feature = "assoc_int_consts", since = "1.43.0")]
463    pub const MIN_EXP: i32 = -1021;
464    /// One greater than the maximum possible power of 2 exponent
465    /// for a significand bounded by 1 ≤ x < 2 (i.e. the IEEE definition).
466    ///
467    /// This corresponds to the exact maximum possible power of 2 exponent
468    /// for a significand bounded by 0.5 ≤ x < 1 (i.e. the C definition).
469    /// In other words, all numbers representable by this type are
470    /// strictly less than 2<sup><i>MAX_EXP</i></sup>.
471    #[stable(feature = "assoc_int_consts", since = "1.43.0")]
472    pub const MAX_EXP: i32 = 1024;
473
474    /// Minimum <i>x</i> for which 10<sup><i>x</i></sup> is normal.
475    ///
476    /// Equal to ceil(log<sub>10</sub>&nbsp;[`MIN_POSITIVE`]).
477    ///
478    /// [`MIN_POSITIVE`]: f64::MIN_POSITIVE
479    #[stable(feature = "assoc_int_consts", since = "1.43.0")]
480    pub const MIN_10_EXP: i32 = -307;
481    /// Maximum <i>x</i> for which 10<sup><i>x</i></sup> is normal.
482    ///
483    /// Equal to floor(log<sub>10</sub>&nbsp;[`MAX`]).
484    ///
485    /// [`MAX`]: f64::MAX
486    #[stable(feature = "assoc_int_consts", since = "1.43.0")]
487    pub const MAX_10_EXP: i32 = 308;
488
489    /// Not a Number (NaN).
490    ///
491    /// Note that IEEE 754 doesn't define just a single NaN value; a plethora of bit patterns are
492    /// considered to be NaN. Furthermore, the standard makes a difference between a "signaling" and
493    /// a "quiet" NaN, and allows inspecting its "payload" (the unspecified bits in the bit pattern)
494    /// and its sign. See the [specification of NaN bit patterns](f32#nan-bit-patterns) for more
495    /// info.
496    ///
497    /// This constant is guaranteed to be a quiet NaN (on targets that follow the Rust assumptions
498    /// that the quiet/signaling bit being set to 1 indicates a quiet NaN). Beyond that, nothing is
499    /// guaranteed about the specific bit pattern chosen here: both payload and sign are arbitrary.
500    /// The concrete bit pattern may change across Rust versions and target platforms.
501    #[rustc_diagnostic_item = "f64_nan"]
502    #[stable(feature = "assoc_int_consts", since = "1.43.0")]
503    #[allow(clippy::eq_op)]
504    pub const NAN: f64 = 0.0_f64 / 0.0_f64;
505    /// Infinity (∞).
506    #[stable(feature = "assoc_int_consts", since = "1.43.0")]
507    pub const INFINITY: f64 = 1.0_f64 / 0.0_f64;
508    /// Negative infinity (−∞).
509    #[stable(feature = "assoc_int_consts", since = "1.43.0")]
510    pub const NEG_INFINITY: f64 = -1.0_f64 / 0.0_f64;
511
512    /// Sign bit
513    #[cfg(not(feature = "ferrocene_certified"))]
514    pub(crate) const SIGN_MASK: u64 = 0x8000_0000_0000_0000;
515
516    /// Exponent mask
517    #[cfg(not(feature = "ferrocene_certified"))]
518    pub(crate) const EXP_MASK: u64 = 0x7ff0_0000_0000_0000;
519
520    /// Mantissa mask
521    #[cfg(not(feature = "ferrocene_certified"))]
522    pub(crate) const MAN_MASK: u64 = 0x000f_ffff_ffff_ffff;
523
524    /// Minimum representable positive value (min subnormal)
525    #[cfg(not(feature = "ferrocene_certified"))]
526    const TINY_BITS: u64 = 0x1;
527
528    /// Minimum representable negative value (min negative subnormal)
529    #[cfg(not(feature = "ferrocene_certified"))]
530    const NEG_TINY_BITS: u64 = Self::TINY_BITS | Self::SIGN_MASK;
531
532    /// Returns `true` if this value is NaN.
533    ///
534    /// ```
535    /// let nan = f64::NAN;
536    /// let f = 7.0_f64;
537    ///
538    /// assert!(nan.is_nan());
539    /// assert!(!f.is_nan());
540    /// ```
541    #[must_use]
542    #[stable(feature = "rust1", since = "1.0.0")]
543    #[rustc_const_stable(feature = "const_float_classify", since = "1.83.0")]
544    #[inline]
545    #[allow(clippy::eq_op)] // > if you intended to check if the operand is NaN, use `.is_nan()` instead :)
546    #[cfg(not(feature = "ferrocene_certified"))]
547    pub const fn is_nan(self) -> bool {
548        self != self
549    }
550
551    /// Returns `true` if this value is positive infinity or negative infinity, and
552    /// `false` otherwise.
553    ///
554    /// ```
555    /// let f = 7.0f64;
556    /// let inf = f64::INFINITY;
557    /// let neg_inf = f64::NEG_INFINITY;
558    /// let nan = f64::NAN;
559    ///
560    /// assert!(!f.is_infinite());
561    /// assert!(!nan.is_infinite());
562    ///
563    /// assert!(inf.is_infinite());
564    /// assert!(neg_inf.is_infinite());
565    /// ```
566    #[must_use]
567    #[stable(feature = "rust1", since = "1.0.0")]
568    #[rustc_const_stable(feature = "const_float_classify", since = "1.83.0")]
569    #[inline]
570    #[cfg(not(feature = "ferrocene_certified"))]
571    pub const fn is_infinite(self) -> bool {
572        // Getting clever with transmutation can result in incorrect answers on some FPUs
573        // FIXME: alter the Rust <-> Rust calling convention to prevent this problem.
574        // See https://github.com/rust-lang/rust/issues/72327
575        (self == f64::INFINITY) | (self == f64::NEG_INFINITY)
576    }
577
578    /// Returns `true` if this number is neither infinite nor NaN.
579    ///
580    /// ```
581    /// let f = 7.0f64;
582    /// let inf: f64 = f64::INFINITY;
583    /// let neg_inf: f64 = f64::NEG_INFINITY;
584    /// let nan: f64 = f64::NAN;
585    ///
586    /// assert!(f.is_finite());
587    ///
588    /// assert!(!nan.is_finite());
589    /// assert!(!inf.is_finite());
590    /// assert!(!neg_inf.is_finite());
591    /// ```
592    #[must_use]
593    #[stable(feature = "rust1", since = "1.0.0")]
594    #[rustc_const_stable(feature = "const_float_classify", since = "1.83.0")]
595    #[inline]
596    #[cfg(not(feature = "ferrocene_certified"))]
597    pub const fn is_finite(self) -> bool {
598        // There's no need to handle NaN separately: if self is NaN,
599        // the comparison is not true, exactly as desired.
600        self.abs() < Self::INFINITY
601    }
602
603    /// Returns `true` if the number is [subnormal].
604    ///
605    /// ```
606    /// let min = f64::MIN_POSITIVE; // 2.2250738585072014e-308_f64
607    /// let max = f64::MAX;
608    /// let lower_than_min = 1.0e-308_f64;
609    /// let zero = 0.0_f64;
610    ///
611    /// assert!(!min.is_subnormal());
612    /// assert!(!max.is_subnormal());
613    ///
614    /// assert!(!zero.is_subnormal());
615    /// assert!(!f64::NAN.is_subnormal());
616    /// assert!(!f64::INFINITY.is_subnormal());
617    /// // Values between `0` and `min` are Subnormal.
618    /// assert!(lower_than_min.is_subnormal());
619    /// ```
620    /// [subnormal]: https://en.wikipedia.org/wiki/Denormal_number
621    #[must_use]
622    #[stable(feature = "is_subnormal", since = "1.53.0")]
623    #[rustc_const_stable(feature = "const_float_classify", since = "1.83.0")]
624    #[inline]
625    #[cfg(not(feature = "ferrocene_certified"))]
626    pub const fn is_subnormal(self) -> bool {
627        matches!(self.classify(), FpCategory::Subnormal)
628    }
629
630    /// Returns `true` if the number is neither zero, infinite,
631    /// [subnormal], or NaN.
632    ///
633    /// ```
634    /// let min = f64::MIN_POSITIVE; // 2.2250738585072014e-308f64
635    /// let max = f64::MAX;
636    /// let lower_than_min = 1.0e-308_f64;
637    /// let zero = 0.0f64;
638    ///
639    /// assert!(min.is_normal());
640    /// assert!(max.is_normal());
641    ///
642    /// assert!(!zero.is_normal());
643    /// assert!(!f64::NAN.is_normal());
644    /// assert!(!f64::INFINITY.is_normal());
645    /// // Values between `0` and `min` are Subnormal.
646    /// assert!(!lower_than_min.is_normal());
647    /// ```
648    /// [subnormal]: https://en.wikipedia.org/wiki/Denormal_number
649    #[must_use]
650    #[stable(feature = "rust1", since = "1.0.0")]
651    #[rustc_const_stable(feature = "const_float_classify", since = "1.83.0")]
652    #[inline]
653    #[cfg(not(feature = "ferrocene_certified"))]
654    pub const fn is_normal(self) -> bool {
655        matches!(self.classify(), FpCategory::Normal)
656    }
657
658    /// Returns the floating point category of the number. If only one property
659    /// is going to be tested, it is generally faster to use the specific
660    /// predicate instead.
661    ///
662    /// ```
663    /// use std::num::FpCategory;
664    ///
665    /// let num = 12.4_f64;
666    /// let inf = f64::INFINITY;
667    ///
668    /// assert_eq!(num.classify(), FpCategory::Normal);
669    /// assert_eq!(inf.classify(), FpCategory::Infinite);
670    /// ```
671    #[stable(feature = "rust1", since = "1.0.0")]
672    #[rustc_const_stable(feature = "const_float_classify", since = "1.83.0")]
673    #[cfg(not(feature = "ferrocene_certified"))]
674    pub const fn classify(self) -> FpCategory {
675        // We used to have complicated logic here that avoids the simple bit-based tests to work
676        // around buggy codegen for x87 targets (see
677        // https://github.com/rust-lang/rust/issues/114479). However, some LLVM versions later, none
678        // of our tests is able to find any difference between the complicated and the naive
679        // version, so now we are back to the naive version.
680        let b = self.to_bits();
681        match (b & Self::MAN_MASK, b & Self::EXP_MASK) {
682            (0, Self::EXP_MASK) => FpCategory::Infinite,
683            (_, Self::EXP_MASK) => FpCategory::Nan,
684            (0, 0) => FpCategory::Zero,
685            (_, 0) => FpCategory::Subnormal,
686            _ => FpCategory::Normal,
687        }
688    }
689
690    /// Returns `true` if `self` has a positive sign, including `+0.0`, NaNs with
691    /// positive sign bit and positive infinity.
692    ///
693    /// Note that IEEE 754 doesn't assign any meaning to the sign bit in case of
694    /// a NaN, and as Rust doesn't guarantee that the bit pattern of NaNs are
695    /// conserved over arithmetic operations, the result of `is_sign_positive` on
696    /// a NaN might produce an unexpected or non-portable result. See the [specification
697    /// of NaN bit patterns](f32#nan-bit-patterns) for more info. Use `self.signum() == 1.0`
698    /// if you need fully portable behavior (will return `false` for all NaNs).
699    ///
700    /// ```
701    /// let f = 7.0_f64;
702    /// let g = -7.0_f64;
703    ///
704    /// assert!(f.is_sign_positive());
705    /// assert!(!g.is_sign_positive());
706    /// ```
707    #[must_use]
708    #[stable(feature = "rust1", since = "1.0.0")]
709    #[rustc_const_stable(feature = "const_float_classify", since = "1.83.0")]
710    #[inline]
711    #[cfg(not(feature = "ferrocene_certified"))]
712    pub const fn is_sign_positive(self) -> bool {
713        !self.is_sign_negative()
714    }
715
716    #[must_use]
717    #[stable(feature = "rust1", since = "1.0.0")]
718    #[deprecated(since = "1.0.0", note = "renamed to is_sign_positive")]
719    #[inline]
720    #[doc(hidden)]
721    #[cfg(not(feature = "ferrocene_certified"))]
722    pub fn is_positive(self) -> bool {
723        self.is_sign_positive()
724    }
725
726    /// Returns `true` if `self` has a negative sign, including `-0.0`, NaNs with
727    /// negative sign bit and negative infinity.
728    ///
729    /// Note that IEEE 754 doesn't assign any meaning to the sign bit in case of
730    /// a NaN, and as Rust doesn't guarantee that the bit pattern of NaNs are
731    /// conserved over arithmetic operations, the result of `is_sign_negative` on
732    /// a NaN might produce an unexpected or non-portable result. See the [specification
733    /// of NaN bit patterns](f32#nan-bit-patterns) for more info. Use `self.signum() == -1.0`
734    /// if you need fully portable behavior (will return `false` for all NaNs).
735    ///
736    /// ```
737    /// let f = 7.0_f64;
738    /// let g = -7.0_f64;
739    ///
740    /// assert!(!f.is_sign_negative());
741    /// assert!(g.is_sign_negative());
742    /// ```
743    #[must_use]
744    #[stable(feature = "rust1", since = "1.0.0")]
745    #[rustc_const_stable(feature = "const_float_classify", since = "1.83.0")]
746    #[inline]
747    #[cfg(not(feature = "ferrocene_certified"))]
748    pub const fn is_sign_negative(self) -> bool {
749        // IEEE754 says: isSignMinus(x) is true if and only if x has negative sign. isSignMinus
750        // applies to zeros and NaNs as well.
751        self.to_bits() & Self::SIGN_MASK != 0
752    }
753
754    #[must_use]
755    #[stable(feature = "rust1", since = "1.0.0")]
756    #[deprecated(since = "1.0.0", note = "renamed to is_sign_negative")]
757    #[inline]
758    #[doc(hidden)]
759    #[cfg(not(feature = "ferrocene_certified"))]
760    pub fn is_negative(self) -> bool {
761        self.is_sign_negative()
762    }
763
764    /// Returns the least number greater than `self`.
765    ///
766    /// Let `TINY` be the smallest representable positive `f64`. Then,
767    ///  - if `self.is_nan()`, this returns `self`;
768    ///  - if `self` is [`NEG_INFINITY`], this returns [`MIN`];
769    ///  - if `self` is `-TINY`, this returns -0.0;
770    ///  - if `self` is -0.0 or +0.0, this returns `TINY`;
771    ///  - if `self` is [`MAX`] or [`INFINITY`], this returns [`INFINITY`];
772    ///  - otherwise the unique least value greater than `self` is returned.
773    ///
774    /// The identity `x.next_up() == -(-x).next_down()` holds for all non-NaN `x`. When `x`
775    /// is finite `x == x.next_up().next_down()` also holds.
776    ///
777    /// ```rust
778    /// // f64::EPSILON is the difference between 1.0 and the next number up.
779    /// assert_eq!(1.0f64.next_up(), 1.0 + f64::EPSILON);
780    /// // But not for most numbers.
781    /// assert!(0.1f64.next_up() < 0.1 + f64::EPSILON);
782    /// assert_eq!(9007199254740992f64.next_up(), 9007199254740994.0);
783    /// ```
784    ///
785    /// This operation corresponds to IEEE-754 `nextUp`.
786    ///
787    /// [`NEG_INFINITY`]: Self::NEG_INFINITY
788    /// [`INFINITY`]: Self::INFINITY
789    /// [`MIN`]: Self::MIN
790    /// [`MAX`]: Self::MAX
791    #[inline]
792    #[doc(alias = "nextUp")]
793    #[stable(feature = "float_next_up_down", since = "1.86.0")]
794    #[rustc_const_stable(feature = "float_next_up_down", since = "1.86.0")]
795    #[cfg(not(feature = "ferrocene_certified"))]
796    pub const fn next_up(self) -> Self {
797        // Some targets violate Rust's assumption of IEEE semantics, e.g. by flushing
798        // denormals to zero. This is in general unsound and unsupported, but here
799        // we do our best to still produce the correct result on such targets.
800        let bits = self.to_bits();
801        if self.is_nan() || bits == Self::INFINITY.to_bits() {
802            return self;
803        }
804
805        let abs = bits & !Self::SIGN_MASK;
806        let next_bits = if abs == 0 {
807            Self::TINY_BITS
808        } else if bits == abs {
809            bits + 1
810        } else {
811            bits - 1
812        };
813        Self::from_bits(next_bits)
814    }
815
816    /// Returns the greatest number less than `self`.
817    ///
818    /// Let `TINY` be the smallest representable positive `f64`. Then,
819    ///  - if `self.is_nan()`, this returns `self`;
820    ///  - if `self` is [`INFINITY`], this returns [`MAX`];
821    ///  - if `self` is `TINY`, this returns 0.0;
822    ///  - if `self` is -0.0 or +0.0, this returns `-TINY`;
823    ///  - if `self` is [`MIN`] or [`NEG_INFINITY`], this returns [`NEG_INFINITY`];
824    ///  - otherwise the unique greatest value less than `self` is returned.
825    ///
826    /// The identity `x.next_down() == -(-x).next_up()` holds for all non-NaN `x`. When `x`
827    /// is finite `x == x.next_down().next_up()` also holds.
828    ///
829    /// ```rust
830    /// let x = 1.0f64;
831    /// // Clamp value into range [0, 1).
832    /// let clamped = x.clamp(0.0, 1.0f64.next_down());
833    /// assert!(clamped < 1.0);
834    /// assert_eq!(clamped.next_up(), 1.0);
835    /// ```
836    ///
837    /// This operation corresponds to IEEE-754 `nextDown`.
838    ///
839    /// [`NEG_INFINITY`]: Self::NEG_INFINITY
840    /// [`INFINITY`]: Self::INFINITY
841    /// [`MIN`]: Self::MIN
842    /// [`MAX`]: Self::MAX
843    #[inline]
844    #[doc(alias = "nextDown")]
845    #[stable(feature = "float_next_up_down", since = "1.86.0")]
846    #[rustc_const_stable(feature = "float_next_up_down", since = "1.86.0")]
847    #[cfg(not(feature = "ferrocene_certified"))]
848    pub const fn next_down(self) -> Self {
849        // Some targets violate Rust's assumption of IEEE semantics, e.g. by flushing
850        // denormals to zero. This is in general unsound and unsupported, but here
851        // we do our best to still produce the correct result on such targets.
852        let bits = self.to_bits();
853        if self.is_nan() || bits == Self::NEG_INFINITY.to_bits() {
854            return self;
855        }
856
857        let abs = bits & !Self::SIGN_MASK;
858        let next_bits = if abs == 0 {
859            Self::NEG_TINY_BITS
860        } else if bits == abs {
861            bits - 1
862        } else {
863            bits + 1
864        };
865        Self::from_bits(next_bits)
866    }
867
868    /// Takes the reciprocal (inverse) of a number, `1/x`.
869    ///
870    /// ```
871    /// let x = 2.0_f64;
872    /// let abs_difference = (x.recip() - (1.0 / x)).abs();
873    ///
874    /// assert!(abs_difference < 1e-10);
875    /// ```
876    #[must_use = "this returns the result of the operation, without modifying the original"]
877    #[stable(feature = "rust1", since = "1.0.0")]
878    #[rustc_const_stable(feature = "const_float_methods", since = "1.85.0")]
879    #[inline]
880    #[cfg(not(feature = "ferrocene_certified"))]
881    pub const fn recip(self) -> f64 {
882        1.0 / self
883    }
884
885    /// Converts radians to degrees.
886    ///
887    /// # Unspecified precision
888    ///
889    /// The precision of this function is non-deterministic. This means it varies by platform,
890    /// Rust version, and can even differ within the same execution from one invocation to the next.
891    ///
892    /// # Examples
893    ///
894    /// ```
895    /// let angle = std::f64::consts::PI;
896    ///
897    /// let abs_difference = (angle.to_degrees() - 180.0).abs();
898    ///
899    /// assert!(abs_difference < 1e-10);
900    /// ```
901    #[must_use = "this returns the result of the operation, \
902                  without modifying the original"]
903    #[stable(feature = "rust1", since = "1.0.0")]
904    #[rustc_const_stable(feature = "const_float_methods", since = "1.85.0")]
905    #[inline]
906    #[cfg(not(feature = "ferrocene_certified"))]
907    pub const fn to_degrees(self) -> f64 {
908        // The division here is correctly rounded with respect to the true value of 180/π.
909        // Although π is irrational and already rounded, the double rounding happens
910        // to produce correct result for f64.
911        const PIS_IN_180: f64 = 180.0 / consts::PI;
912        self * PIS_IN_180
913    }
914
915    /// Converts degrees to radians.
916    ///
917    /// # Unspecified precision
918    ///
919    /// The precision of this function is non-deterministic. This means it varies by platform,
920    /// Rust version, and can even differ within the same execution from one invocation to the next.
921    ///
922    /// # Examples
923    ///
924    /// ```
925    /// let angle = 180.0_f64;
926    ///
927    /// let abs_difference = (angle.to_radians() - std::f64::consts::PI).abs();
928    ///
929    /// assert!(abs_difference < 1e-10);
930    /// ```
931    #[must_use = "this returns the result of the operation, \
932                  without modifying the original"]
933    #[stable(feature = "rust1", since = "1.0.0")]
934    #[rustc_const_stable(feature = "const_float_methods", since = "1.85.0")]
935    #[inline]
936    #[cfg(not(feature = "ferrocene_certified"))]
937    pub const fn to_radians(self) -> f64 {
938        // The division here is correctly rounded with respect to the true value of π/180.
939        // Although π is irrational and already rounded, the double rounding happens
940        // to produce correct result for f64.
941        const RADS_PER_DEG: f64 = consts::PI / 180.0;
942        self * RADS_PER_DEG
943    }
944
945    /// Returns the maximum of the two numbers, ignoring NaN.
946    ///
947    /// If one of the arguments is NaN, then the other argument is returned.
948    /// This follows the IEEE 754-2008 semantics for maxNum, except for handling of signaling NaNs;
949    /// this function handles all NaNs the same way and avoids maxNum's problems with associativity.
950    /// This also matches the behavior of libm’s fmax. In particular, if the inputs compare equal
951    /// (such as for the case of `+0.0` and `-0.0`), either input may be returned non-deterministically.
952    ///
953    /// ```
954    /// let x = 1.0_f64;
955    /// let y = 2.0_f64;
956    ///
957    /// assert_eq!(x.max(y), y);
958    /// ```
959    #[must_use = "this returns the result of the comparison, without modifying either input"]
960    #[stable(feature = "rust1", since = "1.0.0")]
961    #[rustc_const_stable(feature = "const_float_methods", since = "1.85.0")]
962    #[inline]
963    #[cfg(not(feature = "ferrocene_certified"))]
964    pub const fn max(self, other: f64) -> f64 {
965        intrinsics::maxnumf64(self, other)
966    }
967
968    /// Returns the minimum of the two numbers, ignoring NaN.
969    ///
970    /// If one of the arguments is NaN, then the other argument is returned.
971    /// This follows the IEEE 754-2008 semantics for minNum, except for handling of signaling NaNs;
972    /// this function handles all NaNs the same way and avoids minNum's problems with associativity.
973    /// This also matches the behavior of libm’s fmin. In particular, if the inputs compare equal
974    /// (such as for the case of `+0.0` and `-0.0`), either input may be returned non-deterministically.
975    ///
976    /// ```
977    /// let x = 1.0_f64;
978    /// let y = 2.0_f64;
979    ///
980    /// assert_eq!(x.min(y), x);
981    /// ```
982    #[must_use = "this returns the result of the comparison, without modifying either input"]
983    #[stable(feature = "rust1", since = "1.0.0")]
984    #[rustc_const_stable(feature = "const_float_methods", since = "1.85.0")]
985    #[inline]
986    #[cfg(not(feature = "ferrocene_certified"))]
987    pub const fn min(self, other: f64) -> f64 {
988        intrinsics::minnumf64(self, other)
989    }
990
991    /// Returns the maximum of the two numbers, propagating NaN.
992    ///
993    /// This returns NaN when *either* argument is NaN, as opposed to
994    /// [`f64::max`] which only returns NaN when *both* arguments are NaN.
995    ///
996    /// ```
997    /// #![feature(float_minimum_maximum)]
998    /// let x = 1.0_f64;
999    /// let y = 2.0_f64;
1000    ///
1001    /// assert_eq!(x.maximum(y), y);
1002    /// assert!(x.maximum(f64::NAN).is_nan());
1003    /// ```
1004    ///
1005    /// If one of the arguments is NaN, then NaN is returned. Otherwise this returns the greater
1006    /// of the two numbers. For this operation, -0.0 is considered to be less than +0.0.
1007    /// Note that this follows the semantics specified in IEEE 754-2019.
1008    ///
1009    /// Also note that "propagation" of NaNs here doesn't necessarily mean that the bitpattern of a NaN
1010    /// operand is conserved; see the [specification of NaN bit patterns](f32#nan-bit-patterns) for more info.
1011    #[must_use = "this returns the result of the comparison, without modifying either input"]
1012    #[unstable(feature = "float_minimum_maximum", issue = "91079")]
1013    #[inline]
1014    #[cfg(not(feature = "ferrocene_certified"))]
1015    pub const fn maximum(self, other: f64) -> f64 {
1016        intrinsics::maximumf64(self, other)
1017    }
1018
1019    /// Returns the minimum of the two numbers, propagating NaN.
1020    ///
1021    /// This returns NaN when *either* argument is NaN, as opposed to
1022    /// [`f64::min`] which only returns NaN when *both* arguments are NaN.
1023    ///
1024    /// ```
1025    /// #![feature(float_minimum_maximum)]
1026    /// let x = 1.0_f64;
1027    /// let y = 2.0_f64;
1028    ///
1029    /// assert_eq!(x.minimum(y), x);
1030    /// assert!(x.minimum(f64::NAN).is_nan());
1031    /// ```
1032    ///
1033    /// If one of the arguments is NaN, then NaN is returned. Otherwise this returns the lesser
1034    /// of the two numbers. For this operation, -0.0 is considered to be less than +0.0.
1035    /// Note that this follows the semantics specified in IEEE 754-2019.
1036    ///
1037    /// Also note that "propagation" of NaNs here doesn't necessarily mean that the bitpattern of a NaN
1038    /// operand is conserved; see the [specification of NaN bit patterns](f32#nan-bit-patterns) for more info.
1039    #[must_use = "this returns the result of the comparison, without modifying either input"]
1040    #[unstable(feature = "float_minimum_maximum", issue = "91079")]
1041    #[inline]
1042    #[cfg(not(feature = "ferrocene_certified"))]
1043    pub const fn minimum(self, other: f64) -> f64 {
1044        intrinsics::minimumf64(self, other)
1045    }
1046
1047    /// Calculates the midpoint (average) between `self` and `rhs`.
1048    ///
1049    /// This returns NaN when *either* argument is NaN or if a combination of
1050    /// +inf and -inf is provided as arguments.
1051    ///
1052    /// # Examples
1053    ///
1054    /// ```
1055    /// assert_eq!(1f64.midpoint(4.0), 2.5);
1056    /// assert_eq!((-5.5f64).midpoint(8.0), 1.25);
1057    /// ```
1058    #[inline]
1059    #[doc(alias = "average")]
1060    #[stable(feature = "num_midpoint", since = "1.85.0")]
1061    #[rustc_const_stable(feature = "num_midpoint", since = "1.85.0")]
1062    #[cfg(not(feature = "ferrocene_certified"))]
1063    pub const fn midpoint(self, other: f64) -> f64 {
1064        const HI: f64 = f64::MAX / 2.;
1065
1066        let (a, b) = (self, other);
1067        let abs_a = a.abs();
1068        let abs_b = b.abs();
1069
1070        if abs_a <= HI && abs_b <= HI {
1071            // Overflow is impossible
1072            (a + b) / 2.
1073        } else {
1074            (a / 2.) + (b / 2.)
1075        }
1076    }
1077
1078    /// Rounds toward zero and converts to any primitive integer type,
1079    /// assuming that the value is finite and fits in that type.
1080    ///
1081    /// ```
1082    /// let value = 4.6_f64;
1083    /// let rounded = unsafe { value.to_int_unchecked::<u16>() };
1084    /// assert_eq!(rounded, 4);
1085    ///
1086    /// let value = -128.9_f64;
1087    /// let rounded = unsafe { value.to_int_unchecked::<i8>() };
1088    /// assert_eq!(rounded, i8::MIN);
1089    /// ```
1090    ///
1091    /// # Safety
1092    ///
1093    /// The value must:
1094    ///
1095    /// * Not be `NaN`
1096    /// * Not be infinite
1097    /// * Be representable in the return type `Int`, after truncating off its fractional part
1098    #[must_use = "this returns the result of the operation, \
1099                  without modifying the original"]
1100    #[stable(feature = "float_approx_unchecked_to", since = "1.44.0")]
1101    #[inline]
1102    #[cfg(not(feature = "ferrocene_certified"))]
1103    pub unsafe fn to_int_unchecked<Int>(self) -> Int
1104    where
1105        Self: FloatToInt<Int>,
1106    {
1107        // SAFETY: the caller must uphold the safety contract for
1108        // `FloatToInt::to_int_unchecked`.
1109        unsafe { FloatToInt::<Int>::to_int_unchecked(self) }
1110    }
1111
1112    /// Raw transmutation to `u64`.
1113    ///
1114    /// This is currently identical to `transmute::<f64, u64>(self)` on all platforms.
1115    ///
1116    /// See [`from_bits`](Self::from_bits) for some discussion of the
1117    /// portability of this operation (there are almost no issues).
1118    ///
1119    /// Note that this function is distinct from `as` casting, which attempts to
1120    /// preserve the *numeric* value, and not the bitwise value.
1121    ///
1122    /// # Examples
1123    ///
1124    /// ```
1125    /// assert!((1f64).to_bits() != 1f64 as u64); // to_bits() is not casting!
1126    /// assert_eq!((12.5f64).to_bits(), 0x4029000000000000);
1127    /// ```
1128    #[must_use = "this returns the result of the operation, \
1129                  without modifying the original"]
1130    #[stable(feature = "float_bits_conv", since = "1.20.0")]
1131    #[rustc_const_stable(feature = "const_float_bits_conv", since = "1.83.0")]
1132    #[allow(unnecessary_transmutes)]
1133    #[inline]
1134    pub const fn to_bits(self) -> u64 {
1135        // SAFETY: `u64` is a plain old datatype so we can always transmute to it.
1136        unsafe { mem::transmute(self) }
1137    }
1138
1139    /// Raw transmutation from `u64`.
1140    ///
1141    /// This is currently identical to `transmute::<u64, f64>(v)` on all platforms.
1142    /// It turns out this is incredibly portable, for two reasons:
1143    ///
1144    /// * Floats and Ints have the same endianness on all supported platforms.
1145    /// * IEEE 754 very precisely specifies the bit layout of floats.
1146    ///
1147    /// However there is one caveat: prior to the 2008 version of IEEE 754, how
1148    /// to interpret the NaN signaling bit wasn't actually specified. Most platforms
1149    /// (notably x86 and ARM) picked the interpretation that was ultimately
1150    /// standardized in 2008, but some didn't (notably MIPS). As a result, all
1151    /// signaling NaNs on MIPS are quiet NaNs on x86, and vice-versa.
1152    ///
1153    /// Rather than trying to preserve signaling-ness cross-platform, this
1154    /// implementation favors preserving the exact bits. This means that
1155    /// any payloads encoded in NaNs will be preserved even if the result of
1156    /// this method is sent over the network from an x86 machine to a MIPS one.
1157    ///
1158    /// If the results of this method are only manipulated by the same
1159    /// architecture that produced them, then there is no portability concern.
1160    ///
1161    /// If the input isn't NaN, then there is no portability concern.
1162    ///
1163    /// If you don't care about signaling-ness (very likely), then there is no
1164    /// portability concern.
1165    ///
1166    /// Note that this function is distinct from `as` casting, which attempts to
1167    /// preserve the *numeric* value, and not the bitwise value.
1168    ///
1169    /// # Examples
1170    ///
1171    /// ```
1172    /// let v = f64::from_bits(0x4029000000000000);
1173    /// assert_eq!(v, 12.5);
1174    /// ```
1175    #[stable(feature = "float_bits_conv", since = "1.20.0")]
1176    #[rustc_const_stable(feature = "const_float_bits_conv", since = "1.83.0")]
1177    #[must_use]
1178    #[inline]
1179    #[allow(unnecessary_transmutes)]
1180    pub const fn from_bits(v: u64) -> Self {
1181        // It turns out the safety issues with sNaN were overblown! Hooray!
1182        // SAFETY: `u64` is a plain old datatype so we can always transmute from it.
1183        unsafe { mem::transmute(v) }
1184    }
1185
1186    /// Returns the memory representation of this floating point number as a byte array in
1187    /// big-endian (network) byte order.
1188    ///
1189    /// See [`from_bits`](Self::from_bits) for some discussion of the
1190    /// portability of this operation (there are almost no issues).
1191    ///
1192    /// # Examples
1193    ///
1194    /// ```
1195    /// let bytes = 12.5f64.to_be_bytes();
1196    /// assert_eq!(bytes, [0x40, 0x29, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00]);
1197    /// ```
1198    #[must_use = "this returns the result of the operation, \
1199                  without modifying the original"]
1200    #[stable(feature = "float_to_from_bytes", since = "1.40.0")]
1201    #[rustc_const_stable(feature = "const_float_bits_conv", since = "1.83.0")]
1202    #[inline]
1203    #[cfg(not(feature = "ferrocene_certified"))]
1204    pub const fn to_be_bytes(self) -> [u8; 8] {
1205        self.to_bits().to_be_bytes()
1206    }
1207
1208    /// Returns the memory representation of this floating point number as a byte array in
1209    /// little-endian byte order.
1210    ///
1211    /// See [`from_bits`](Self::from_bits) for some discussion of the
1212    /// portability of this operation (there are almost no issues).
1213    ///
1214    /// # Examples
1215    ///
1216    /// ```
1217    /// let bytes = 12.5f64.to_le_bytes();
1218    /// assert_eq!(bytes, [0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x29, 0x40]);
1219    /// ```
1220    #[must_use = "this returns the result of the operation, \
1221                  without modifying the original"]
1222    #[stable(feature = "float_to_from_bytes", since = "1.40.0")]
1223    #[rustc_const_stable(feature = "const_float_bits_conv", since = "1.83.0")]
1224    #[inline]
1225    pub const fn to_le_bytes(self) -> [u8; 8] {
1226        self.to_bits().to_le_bytes()
1227    }
1228
1229    /// Returns the memory representation of this floating point number as a byte array in
1230    /// native byte order.
1231    ///
1232    /// As the target platform's native endianness is used, portable code
1233    /// should use [`to_be_bytes`] or [`to_le_bytes`], as appropriate, instead.
1234    ///
1235    /// [`to_be_bytes`]: f64::to_be_bytes
1236    /// [`to_le_bytes`]: f64::to_le_bytes
1237    ///
1238    /// See [`from_bits`](Self::from_bits) for some discussion of the
1239    /// portability of this operation (there are almost no issues).
1240    ///
1241    /// # Examples
1242    ///
1243    /// ```
1244    /// let bytes = 12.5f64.to_ne_bytes();
1245    /// assert_eq!(
1246    ///     bytes,
1247    ///     if cfg!(target_endian = "big") {
1248    ///         [0x40, 0x29, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00]
1249    ///     } else {
1250    ///         [0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x29, 0x40]
1251    ///     }
1252    /// );
1253    /// ```
1254    #[must_use = "this returns the result of the operation, \
1255                  without modifying the original"]
1256    #[stable(feature = "float_to_from_bytes", since = "1.40.0")]
1257    #[rustc_const_stable(feature = "const_float_bits_conv", since = "1.83.0")]
1258    #[inline]
1259    #[cfg(not(feature = "ferrocene_certified"))]
1260    pub const fn to_ne_bytes(self) -> [u8; 8] {
1261        self.to_bits().to_ne_bytes()
1262    }
1263
1264    /// Creates a floating point value from its representation as a byte array in big endian.
1265    ///
1266    /// See [`from_bits`](Self::from_bits) for some discussion of the
1267    /// portability of this operation (there are almost no issues).
1268    ///
1269    /// # Examples
1270    ///
1271    /// ```
1272    /// let value = f64::from_be_bytes([0x40, 0x29, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00]);
1273    /// assert_eq!(value, 12.5);
1274    /// ```
1275    #[stable(feature = "float_to_from_bytes", since = "1.40.0")]
1276    #[rustc_const_stable(feature = "const_float_bits_conv", since = "1.83.0")]
1277    #[must_use]
1278    #[inline]
1279    #[cfg(not(feature = "ferrocene_certified"))]
1280    pub const fn from_be_bytes(bytes: [u8; 8]) -> Self {
1281        Self::from_bits(u64::from_be_bytes(bytes))
1282    }
1283
1284    /// Creates a floating point value from its representation as a byte array in little endian.
1285    ///
1286    /// See [`from_bits`](Self::from_bits) for some discussion of the
1287    /// portability of this operation (there are almost no issues).
1288    ///
1289    /// # Examples
1290    ///
1291    /// ```
1292    /// let value = f64::from_le_bytes([0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x29, 0x40]);
1293    /// assert_eq!(value, 12.5);
1294    /// ```
1295    #[stable(feature = "float_to_from_bytes", since = "1.40.0")]
1296    #[rustc_const_stable(feature = "const_float_bits_conv", since = "1.83.0")]
1297    #[must_use]
1298    #[inline]
1299    pub const fn from_le_bytes(bytes: [u8; 8]) -> Self {
1300        Self::from_bits(u64::from_le_bytes(bytes))
1301    }
1302
1303    /// Creates a floating point value from its representation as a byte array in native endian.
1304    ///
1305    /// As the target platform's native endianness is used, portable code
1306    /// likely wants to use [`from_be_bytes`] or [`from_le_bytes`], as
1307    /// appropriate instead.
1308    ///
1309    /// [`from_be_bytes`]: f64::from_be_bytes
1310    /// [`from_le_bytes`]: f64::from_le_bytes
1311    ///
1312    /// See [`from_bits`](Self::from_bits) for some discussion of the
1313    /// portability of this operation (there are almost no issues).
1314    ///
1315    /// # Examples
1316    ///
1317    /// ```
1318    /// let value = f64::from_ne_bytes(if cfg!(target_endian = "big") {
1319    ///     [0x40, 0x29, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00]
1320    /// } else {
1321    ///     [0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x29, 0x40]
1322    /// });
1323    /// assert_eq!(value, 12.5);
1324    /// ```
1325    #[stable(feature = "float_to_from_bytes", since = "1.40.0")]
1326    #[rustc_const_stable(feature = "const_float_bits_conv", since = "1.83.0")]
1327    #[must_use]
1328    #[inline]
1329    #[cfg(not(feature = "ferrocene_certified"))]
1330    pub const fn from_ne_bytes(bytes: [u8; 8]) -> Self {
1331        Self::from_bits(u64::from_ne_bytes(bytes))
1332    }
1333
1334    /// Returns the ordering between `self` and `other`.
1335    ///
1336    /// Unlike the standard partial comparison between floating point numbers,
1337    /// this comparison always produces an ordering in accordance to
1338    /// the `totalOrder` predicate as defined in the IEEE 754 (2008 revision)
1339    /// floating point standard. The values are ordered in the following sequence:
1340    ///
1341    /// - negative quiet NaN
1342    /// - negative signaling NaN
1343    /// - negative infinity
1344    /// - negative numbers
1345    /// - negative subnormal numbers
1346    /// - negative zero
1347    /// - positive zero
1348    /// - positive subnormal numbers
1349    /// - positive numbers
1350    /// - positive infinity
1351    /// - positive signaling NaN
1352    /// - positive quiet NaN.
1353    ///
1354    /// The ordering established by this function does not always agree with the
1355    /// [`PartialOrd`] and [`PartialEq`] implementations of `f64`. For example,
1356    /// they consider negative and positive zero equal, while `total_cmp`
1357    /// doesn't.
1358    ///
1359    /// The interpretation of the signaling NaN bit follows the definition in
1360    /// the IEEE 754 standard, which may not match the interpretation by some of
1361    /// the older, non-conformant (e.g. MIPS) hardware implementations.
1362    ///
1363    /// # Example
1364    ///
1365    /// ```
1366    /// struct GoodBoy {
1367    ///     name: String,
1368    ///     weight: f64,
1369    /// }
1370    ///
1371    /// let mut bois = vec![
1372    ///     GoodBoy { name: "Pucci".to_owned(), weight: 0.1 },
1373    ///     GoodBoy { name: "Woofer".to_owned(), weight: 99.0 },
1374    ///     GoodBoy { name: "Yapper".to_owned(), weight: 10.0 },
1375    ///     GoodBoy { name: "Chonk".to_owned(), weight: f64::INFINITY },
1376    ///     GoodBoy { name: "Abs. Unit".to_owned(), weight: f64::NAN },
1377    ///     GoodBoy { name: "Floaty".to_owned(), weight: -5.0 },
1378    /// ];
1379    ///
1380    /// bois.sort_by(|a, b| a.weight.total_cmp(&b.weight));
1381    ///
1382    /// // `f64::NAN` could be positive or negative, which will affect the sort order.
1383    /// if f64::NAN.is_sign_negative() {
1384    ///     assert!(bois.into_iter().map(|b| b.weight)
1385    ///         .zip([f64::NAN, -5.0, 0.1, 10.0, 99.0, f64::INFINITY].iter())
1386    ///         .all(|(a, b)| a.to_bits() == b.to_bits()))
1387    /// } else {
1388    ///     assert!(bois.into_iter().map(|b| b.weight)
1389    ///         .zip([-5.0, 0.1, 10.0, 99.0, f64::INFINITY, f64::NAN].iter())
1390    ///         .all(|(a, b)| a.to_bits() == b.to_bits()))
1391    /// }
1392    /// ```
1393    #[stable(feature = "total_cmp", since = "1.62.0")]
1394    #[rustc_const_unstable(feature = "const_cmp", issue = "143800")]
1395    #[must_use]
1396    #[inline]
1397    #[cfg(not(feature = "ferrocene_certified"))]
1398    pub const fn total_cmp(&self, other: &Self) -> crate::cmp::Ordering {
1399        let mut left = self.to_bits() as i64;
1400        let mut right = other.to_bits() as i64;
1401
1402        // In case of negatives, flip all the bits except the sign
1403        // to achieve a similar layout as two's complement integers
1404        //
1405        // Why does this work? IEEE 754 floats consist of three fields:
1406        // Sign bit, exponent and mantissa. The set of exponent and mantissa
1407        // fields as a whole have the property that their bitwise order is
1408        // equal to the numeric magnitude where the magnitude is defined.
1409        // The magnitude is not normally defined on NaN values, but
1410        // IEEE 754 totalOrder defines the NaN values also to follow the
1411        // bitwise order. This leads to order explained in the doc comment.
1412        // However, the representation of magnitude is the same for negative
1413        // and positive numbers – only the sign bit is different.
1414        // To easily compare the floats as signed integers, we need to
1415        // flip the exponent and mantissa bits in case of negative numbers.
1416        // We effectively convert the numbers to "two's complement" form.
1417        //
1418        // To do the flipping, we construct a mask and XOR against it.
1419        // We branchlessly calculate an "all-ones except for the sign bit"
1420        // mask from negative-signed values: right shifting sign-extends
1421        // the integer, so we "fill" the mask with sign bits, and then
1422        // convert to unsigned to push one more zero bit.
1423        // On positive values, the mask is all zeros, so it's a no-op.
1424        left ^= (((left >> 63) as u64) >> 1) as i64;
1425        right ^= (((right >> 63) as u64) >> 1) as i64;
1426
1427        left.cmp(&right)
1428    }
1429
1430    /// Restrict a value to a certain interval unless it is NaN.
1431    ///
1432    /// Returns `max` if `self` is greater than `max`, and `min` if `self` is
1433    /// less than `min`. Otherwise this returns `self`.
1434    ///
1435    /// Note that this function returns NaN if the initial value was NaN as
1436    /// well.
1437    ///
1438    /// # Panics
1439    ///
1440    /// Panics if `min > max`, `min` is NaN, or `max` is NaN.
1441    ///
1442    /// # Examples
1443    ///
1444    /// ```
1445    /// assert!((-3.0f64).clamp(-2.0, 1.0) == -2.0);
1446    /// assert!((0.0f64).clamp(-2.0, 1.0) == 0.0);
1447    /// assert!((2.0f64).clamp(-2.0, 1.0) == 1.0);
1448    /// assert!((f64::NAN).clamp(-2.0, 1.0).is_nan());
1449    /// ```
1450    #[must_use = "method returns a new number and does not mutate the original value"]
1451    #[stable(feature = "clamp", since = "1.50.0")]
1452    #[rustc_const_stable(feature = "const_float_methods", since = "1.85.0")]
1453    #[inline]
1454    #[cfg(not(feature = "ferrocene_certified"))]
1455    pub const fn clamp(mut self, min: f64, max: f64) -> f64 {
1456        const_assert!(
1457            min <= max,
1458            "min > max, or either was NaN",
1459            "min > max, or either was NaN. min = {min:?}, max = {max:?}",
1460            min: f64,
1461            max: f64,
1462        );
1463
1464        if self < min {
1465            self = min;
1466        }
1467        if self > max {
1468            self = max;
1469        }
1470        self
1471    }
1472
1473    /// Computes the absolute value of `self`.
1474    ///
1475    /// This function always returns the precise result.
1476    ///
1477    /// # Examples
1478    ///
1479    /// ```
1480    /// let x = 3.5_f64;
1481    /// let y = -3.5_f64;
1482    ///
1483    /// assert_eq!(x.abs(), x);
1484    /// assert_eq!(y.abs(), -y);
1485    ///
1486    /// assert!(f64::NAN.abs().is_nan());
1487    /// ```
1488    #[must_use = "method returns a new number and does not mutate the original value"]
1489    #[stable(feature = "rust1", since = "1.0.0")]
1490    #[rustc_const_stable(feature = "const_float_methods", since = "1.85.0")]
1491    #[inline]
1492    #[cfg(not(feature = "ferrocene_certified"))]
1493    pub const fn abs(self) -> f64 {
1494        intrinsics::fabsf64(self)
1495    }
1496
1497    /// Returns a number that represents the sign of `self`.
1498    ///
1499    /// - `1.0` if the number is positive, `+0.0` or `INFINITY`
1500    /// - `-1.0` if the number is negative, `-0.0` or `NEG_INFINITY`
1501    /// - NaN if the number is NaN
1502    ///
1503    /// # Examples
1504    ///
1505    /// ```
1506    /// let f = 3.5_f64;
1507    ///
1508    /// assert_eq!(f.signum(), 1.0);
1509    /// assert_eq!(f64::NEG_INFINITY.signum(), -1.0);
1510    ///
1511    /// assert!(f64::NAN.signum().is_nan());
1512    /// ```
1513    #[must_use = "method returns a new number and does not mutate the original value"]
1514    #[stable(feature = "rust1", since = "1.0.0")]
1515    #[rustc_const_stable(feature = "const_float_methods", since = "1.85.0")]
1516    #[inline]
1517    #[cfg(not(feature = "ferrocene_certified"))]
1518    pub const fn signum(self) -> f64 {
1519        if self.is_nan() { Self::NAN } else { 1.0_f64.copysign(self) }
1520    }
1521
1522    /// Returns a number composed of the magnitude of `self` and the sign of
1523    /// `sign`.
1524    ///
1525    /// Equal to `self` if the sign of `self` and `sign` are the same, otherwise equal to `-self`.
1526    /// If `self` is a NaN, then a NaN with the same payload as `self` and the sign bit of `sign` is
1527    /// returned.
1528    ///
1529    /// If `sign` is a NaN, then this operation will still carry over its sign into the result. Note
1530    /// that IEEE 754 doesn't assign any meaning to the sign bit in case of a NaN, and as Rust
1531    /// doesn't guarantee that the bit pattern of NaNs are conserved over arithmetic operations, the
1532    /// result of `copysign` with `sign` being a NaN might produce an unexpected or non-portable
1533    /// result. See the [specification of NaN bit patterns](primitive@f32#nan-bit-patterns) for more
1534    /// info.
1535    ///
1536    /// # Examples
1537    ///
1538    /// ```
1539    /// let f = 3.5_f64;
1540    ///
1541    /// assert_eq!(f.copysign(0.42), 3.5_f64);
1542    /// assert_eq!(f.copysign(-0.42), -3.5_f64);
1543    /// assert_eq!((-f).copysign(0.42), 3.5_f64);
1544    /// assert_eq!((-f).copysign(-0.42), -3.5_f64);
1545    ///
1546    /// assert!(f64::NAN.copysign(1.0).is_nan());
1547    /// ```
1548    #[must_use = "method returns a new number and does not mutate the original value"]
1549    #[stable(feature = "copysign", since = "1.35.0")]
1550    #[rustc_const_stable(feature = "const_float_methods", since = "1.85.0")]
1551    #[inline]
1552    #[cfg(not(feature = "ferrocene_certified"))]
1553    pub const fn copysign(self, sign: f64) -> f64 {
1554        intrinsics::copysignf64(self, sign)
1555    }
1556
1557    /// Float addition that allows optimizations based on algebraic rules.
1558    ///
1559    /// See [algebraic operators](primitive@f32#algebraic-operators) for more info.
1560    #[must_use = "method returns a new number and does not mutate the original value"]
1561    #[unstable(feature = "float_algebraic", issue = "136469")]
1562    #[rustc_const_unstable(feature = "float_algebraic", issue = "136469")]
1563    #[inline]
1564    #[cfg(not(feature = "ferrocene_certified"))]
1565    pub const fn algebraic_add(self, rhs: f64) -> f64 {
1566        intrinsics::fadd_algebraic(self, rhs)
1567    }
1568
1569    /// Float subtraction that allows optimizations based on algebraic rules.
1570    ///
1571    /// See [algebraic operators](primitive@f32#algebraic-operators) for more info.
1572    #[must_use = "method returns a new number and does not mutate the original value"]
1573    #[unstable(feature = "float_algebraic", issue = "136469")]
1574    #[rustc_const_unstable(feature = "float_algebraic", issue = "136469")]
1575    #[inline]
1576    #[cfg(not(feature = "ferrocene_certified"))]
1577    pub const fn algebraic_sub(self, rhs: f64) -> f64 {
1578        intrinsics::fsub_algebraic(self, rhs)
1579    }
1580
1581    /// Float multiplication that allows optimizations based on algebraic rules.
1582    ///
1583    /// See [algebraic operators](primitive@f32#algebraic-operators) for more info.
1584    #[must_use = "method returns a new number and does not mutate the original value"]
1585    #[unstable(feature = "float_algebraic", issue = "136469")]
1586    #[rustc_const_unstable(feature = "float_algebraic", issue = "136469")]
1587    #[inline]
1588    #[cfg(not(feature = "ferrocene_certified"))]
1589    pub const fn algebraic_mul(self, rhs: f64) -> f64 {
1590        intrinsics::fmul_algebraic(self, rhs)
1591    }
1592
1593    /// Float division that allows optimizations based on algebraic rules.
1594    ///
1595    /// See [algebraic operators](primitive@f32#algebraic-operators) for more info.
1596    #[must_use = "method returns a new number and does not mutate the original value"]
1597    #[unstable(feature = "float_algebraic", issue = "136469")]
1598    #[rustc_const_unstable(feature = "float_algebraic", issue = "136469")]
1599    #[inline]
1600    #[cfg(not(feature = "ferrocene_certified"))]
1601    pub const fn algebraic_div(self, rhs: f64) -> f64 {
1602        intrinsics::fdiv_algebraic(self, rhs)
1603    }
1604
1605    /// Float remainder that allows optimizations based on algebraic rules.
1606    ///
1607    /// See [algebraic operators](primitive@f32#algebraic-operators) for more info.
1608    #[must_use = "method returns a new number and does not mutate the original value"]
1609    #[unstable(feature = "float_algebraic", issue = "136469")]
1610    #[rustc_const_unstable(feature = "float_algebraic", issue = "136469")]
1611    #[inline]
1612    #[cfg(not(feature = "ferrocene_certified"))]
1613    pub const fn algebraic_rem(self, rhs: f64) -> f64 {
1614        intrinsics::frem_algebraic(self, rhs)
1615    }
1616}
1617
1618#[unstable(feature = "core_float_math", issue = "137578")]
1619/// Experimental implementations of floating point functions in `core`.
1620///
1621/// _The standalone functions in this module are for testing only.
1622/// They will be stabilized as inherent methods._
1623#[cfg(not(feature = "ferrocene_certified"))]
1624pub mod math {
1625    use crate::intrinsics;
1626    use crate::num::libm;
1627
1628    /// Experimental version of `floor` in `core`. See [`f64::floor`] for details.
1629    ///
1630    /// # Examples
1631    ///
1632    /// ```
1633    /// #![feature(core_float_math)]
1634    ///
1635    /// use core::f64;
1636    ///
1637    /// let f = 3.7_f64;
1638    /// let g = 3.0_f64;
1639    /// let h = -3.7_f64;
1640    ///
1641    /// assert_eq!(f64::math::floor(f), 3.0);
1642    /// assert_eq!(f64::math::floor(g), 3.0);
1643    /// assert_eq!(f64::math::floor(h), -4.0);
1644    /// ```
1645    ///
1646    /// _This standalone function is for testing only.
1647    /// It will be stabilized as an inherent method._
1648    ///
1649    /// [`f64::floor`]: ../../../std/primitive.f64.html#method.floor
1650    #[inline]
1651    #[unstable(feature = "core_float_math", issue = "137578")]
1652    #[must_use = "method returns a new number and does not mutate the original value"]
1653    pub const fn floor(x: f64) -> f64 {
1654        intrinsics::floorf64(x)
1655    }
1656
1657    /// Experimental version of `ceil` in `core`. See [`f64::ceil`] for details.
1658    ///
1659    /// # Examples
1660    ///
1661    /// ```
1662    /// #![feature(core_float_math)]
1663    ///
1664    /// use core::f64;
1665    ///
1666    /// let f = 3.01_f64;
1667    /// let g = 4.0_f64;
1668    ///
1669    /// assert_eq!(f64::math::ceil(f), 4.0);
1670    /// assert_eq!(f64::math::ceil(g), 4.0);
1671    /// ```
1672    ///
1673    /// _This standalone function is for testing only.
1674    /// It will be stabilized as an inherent method._
1675    ///
1676    /// [`f64::ceil`]: ../../../std/primitive.f64.html#method.ceil
1677    #[inline]
1678    #[doc(alias = "ceiling")]
1679    #[unstable(feature = "core_float_math", issue = "137578")]
1680    #[must_use = "method returns a new number and does not mutate the original value"]
1681    pub const fn ceil(x: f64) -> f64 {
1682        intrinsics::ceilf64(x)
1683    }
1684
1685    /// Experimental version of `round` in `core`. See [`f64::round`] for details.
1686    ///
1687    /// # Examples
1688    ///
1689    /// ```
1690    /// #![feature(core_float_math)]
1691    ///
1692    /// use core::f64;
1693    ///
1694    /// let f = 3.3_f64;
1695    /// let g = -3.3_f64;
1696    /// let h = -3.7_f64;
1697    /// let i = 3.5_f64;
1698    /// let j = 4.5_f64;
1699    ///
1700    /// assert_eq!(f64::math::round(f), 3.0);
1701    /// assert_eq!(f64::math::round(g), -3.0);
1702    /// assert_eq!(f64::math::round(h), -4.0);
1703    /// assert_eq!(f64::math::round(i), 4.0);
1704    /// assert_eq!(f64::math::round(j), 5.0);
1705    /// ```
1706    ///
1707    /// _This standalone function is for testing only.
1708    /// It will be stabilized as an inherent method._
1709    ///
1710    /// [`f64::round`]: ../../../std/primitive.f64.html#method.round
1711    #[inline]
1712    #[unstable(feature = "core_float_math", issue = "137578")]
1713    #[must_use = "method returns a new number and does not mutate the original value"]
1714    pub const fn round(x: f64) -> f64 {
1715        intrinsics::roundf64(x)
1716    }
1717
1718    /// Experimental version of `round_ties_even` in `core`. See [`f64::round_ties_even`] for
1719    /// details.
1720    ///
1721    /// # Examples
1722    ///
1723    /// ```
1724    /// #![feature(core_float_math)]
1725    ///
1726    /// use core::f64;
1727    ///
1728    /// let f = 3.3_f64;
1729    /// let g = -3.3_f64;
1730    /// let h = 3.5_f64;
1731    /// let i = 4.5_f64;
1732    ///
1733    /// assert_eq!(f64::math::round_ties_even(f), 3.0);
1734    /// assert_eq!(f64::math::round_ties_even(g), -3.0);
1735    /// assert_eq!(f64::math::round_ties_even(h), 4.0);
1736    /// assert_eq!(f64::math::round_ties_even(i), 4.0);
1737    /// ```
1738    ///
1739    /// _This standalone function is for testing only.
1740    /// It will be stabilized as an inherent method._
1741    ///
1742    /// [`f64::round_ties_even`]: ../../../std/primitive.f64.html#method.round_ties_even
1743    #[inline]
1744    #[unstable(feature = "core_float_math", issue = "137578")]
1745    #[must_use = "method returns a new number and does not mutate the original value"]
1746    pub const fn round_ties_even(x: f64) -> f64 {
1747        intrinsics::round_ties_even_f64(x)
1748    }
1749
1750    /// Experimental version of `trunc` in `core`. See [`f64::trunc`] for details.
1751    ///
1752    /// # Examples
1753    ///
1754    /// ```
1755    /// #![feature(core_float_math)]
1756    ///
1757    /// use core::f64;
1758    ///
1759    /// let f = 3.7_f64;
1760    /// let g = 3.0_f64;
1761    /// let h = -3.7_f64;
1762    ///
1763    /// assert_eq!(f64::math::trunc(f), 3.0);
1764    /// assert_eq!(f64::math::trunc(g), 3.0);
1765    /// assert_eq!(f64::math::trunc(h), -3.0);
1766    /// ```
1767    ///
1768    /// _This standalone function is for testing only.
1769    /// It will be stabilized as an inherent method._
1770    ///
1771    /// [`f64::trunc`]: ../../../std/primitive.f64.html#method.trunc
1772    #[inline]
1773    #[doc(alias = "truncate")]
1774    #[unstable(feature = "core_float_math", issue = "137578")]
1775    #[must_use = "method returns a new number and does not mutate the original value"]
1776    pub const fn trunc(x: f64) -> f64 {
1777        intrinsics::truncf64(x)
1778    }
1779
1780    /// Experimental version of `fract` in `core`. See [`f64::fract`] for details.
1781    ///
1782    /// # Examples
1783    ///
1784    /// ```
1785    /// #![feature(core_float_math)]
1786    ///
1787    /// use core::f64;
1788    ///
1789    /// let x = 3.6_f64;
1790    /// let y = -3.6_f64;
1791    /// let abs_difference_x = (f64::math::fract(x) - 0.6).abs();
1792    /// let abs_difference_y = (f64::math::fract(y) - (-0.6)).abs();
1793    ///
1794    /// assert!(abs_difference_x < 1e-10);
1795    /// assert!(abs_difference_y < 1e-10);
1796    /// ```
1797    ///
1798    /// _This standalone function is for testing only.
1799    /// It will be stabilized as an inherent method._
1800    ///
1801    /// [`f64::fract`]: ../../../std/primitive.f64.html#method.fract
1802    #[inline]
1803    #[unstable(feature = "core_float_math", issue = "137578")]
1804    #[must_use = "method returns a new number and does not mutate the original value"]
1805    pub const fn fract(x: f64) -> f64 {
1806        x - trunc(x)
1807    }
1808
1809    /// Experimental version of `mul_add` in `core`. See [`f64::mul_add`] for details.
1810    ///
1811    /// # Examples
1812    ///
1813    /// ```
1814    /// #![feature(core_float_math)]
1815    ///
1816    /// # // FIXME(#140515): mingw has an incorrect fma
1817    /// # // https://sourceforge.net/p/mingw-w64/bugs/848/
1818    /// # #[cfg(all(target_os = "windows", target_env = "gnu", not(target_abi = "llvm")))] {
1819    /// use core::f64;
1820    ///
1821    /// let m = 10.0_f64;
1822    /// let x = 4.0_f64;
1823    /// let b = 60.0_f64;
1824    ///
1825    /// assert_eq!(f64::math::mul_add(m, x, b), 100.0);
1826    /// assert_eq!(m * x + b, 100.0);
1827    ///
1828    /// let one_plus_eps = 1.0_f64 + f64::EPSILON;
1829    /// let one_minus_eps = 1.0_f64 - f64::EPSILON;
1830    /// let minus_one = -1.0_f64;
1831    ///
1832    /// // The exact result (1 + eps) * (1 - eps) = 1 - eps * eps.
1833    /// assert_eq!(
1834    ///     f64::math::mul_add(one_plus_eps, one_minus_eps, minus_one),
1835    ///     -f64::EPSILON * f64::EPSILON
1836    /// );
1837    /// // Different rounding with the non-fused multiply and add.
1838    /// assert_eq!(one_plus_eps * one_minus_eps + minus_one, 0.0);
1839    /// # }
1840    /// ```
1841    ///
1842    /// _This standalone function is for testing only.
1843    /// It will be stabilized as an inherent method._
1844    ///
1845    /// [`f64::mul_add`]: ../../../std/primitive.f64.html#method.mul_add
1846    #[inline]
1847    #[doc(alias = "fma", alias = "fusedMultiplyAdd")]
1848    #[unstable(feature = "core_float_math", issue = "137578")]
1849    #[must_use = "method returns a new number and does not mutate the original value"]
1850    #[rustc_const_unstable(feature = "const_mul_add", issue = "146724")]
1851    pub const fn mul_add(x: f64, a: f64, b: f64) -> f64 {
1852        intrinsics::fmaf64(x, a, b)
1853    }
1854
1855    /// Experimental version of `div_euclid` in `core`. See [`f64::div_euclid`] for details.
1856    ///
1857    /// # Examples
1858    ///
1859    /// ```
1860    /// #![feature(core_float_math)]
1861    ///
1862    /// use core::f64;
1863    ///
1864    /// let a: f64 = 7.0;
1865    /// let b = 4.0;
1866    /// assert_eq!(f64::math::div_euclid(a, b), 1.0); // 7.0 > 4.0 * 1.0
1867    /// assert_eq!(f64::math::div_euclid(-a, b), -2.0); // -7.0 >= 4.0 * -2.0
1868    /// assert_eq!(f64::math::div_euclid(a, -b), -1.0); // 7.0 >= -4.0 * -1.0
1869    /// assert_eq!(f64::math::div_euclid(-a, -b), 2.0); // -7.0 >= -4.0 * 2.0
1870    /// ```
1871    ///
1872    /// _This standalone function is for testing only.
1873    /// It will be stabilized as an inherent method._
1874    ///
1875    /// [`f64::div_euclid`]: ../../../std/primitive.f64.html#method.div_euclid
1876    #[inline]
1877    #[unstable(feature = "core_float_math", issue = "137578")]
1878    #[must_use = "method returns a new number and does not mutate the original value"]
1879    pub fn div_euclid(x: f64, rhs: f64) -> f64 {
1880        let q = trunc(x / rhs);
1881        if x % rhs < 0.0 {
1882            return if rhs > 0.0 { q - 1.0 } else { q + 1.0 };
1883        }
1884        q
1885    }
1886
1887    /// Experimental version of `rem_euclid` in `core`. See [`f64::rem_euclid`] for details.
1888    ///
1889    /// # Examples
1890    ///
1891    /// ```
1892    /// #![feature(core_float_math)]
1893    ///
1894    /// use core::f64;
1895    ///
1896    /// let a: f64 = 7.0;
1897    /// let b = 4.0;
1898    /// assert_eq!(f64::math::rem_euclid(a, b), 3.0);
1899    /// assert_eq!(f64::math::rem_euclid(-a, b), 1.0);
1900    /// assert_eq!(f64::math::rem_euclid(a, -b), 3.0);
1901    /// assert_eq!(f64::math::rem_euclid(-a, -b), 1.0);
1902    /// // limitation due to round-off error
1903    /// assert!(f64::math::rem_euclid(-f64::EPSILON, 3.0) != 0.0);
1904    /// ```
1905    ///
1906    /// _This standalone function is for testing only.
1907    /// It will be stabilized as an inherent method._
1908    ///
1909    /// [`f64::rem_euclid`]: ../../../std/primitive.f64.html#method.rem_euclid
1910    #[inline]
1911    #[doc(alias = "modulo", alias = "mod")]
1912    #[unstable(feature = "core_float_math", issue = "137578")]
1913    #[must_use = "method returns a new number and does not mutate the original value"]
1914    pub fn rem_euclid(x: f64, rhs: f64) -> f64 {
1915        let r = x % rhs;
1916        if r < 0.0 { r + rhs.abs() } else { r }
1917    }
1918
1919    /// Experimental version of `powi` in `core`. See [`f64::powi`] for details.
1920    ///
1921    /// # Examples
1922    ///
1923    /// ```
1924    /// #![feature(core_float_math)]
1925    ///
1926    /// use core::f64;
1927    ///
1928    /// let x = 2.0_f64;
1929    /// let abs_difference = (f64::math::powi(x, 2) - (x * x)).abs();
1930    /// assert!(abs_difference <= 1e-6);
1931    ///
1932    /// assert_eq!(f64::math::powi(f64::NAN, 0), 1.0);
1933    /// ```
1934    ///
1935    /// _This standalone function is for testing only.
1936    /// It will be stabilized as an inherent method._
1937    ///
1938    /// [`f64::powi`]: ../../../std/primitive.f64.html#method.powi
1939    #[inline]
1940    #[unstable(feature = "core_float_math", issue = "137578")]
1941    #[must_use = "method returns a new number and does not mutate the original value"]
1942    pub fn powi(x: f64, n: i32) -> f64 {
1943        intrinsics::powif64(x, n)
1944    }
1945
1946    /// Experimental version of `sqrt` in `core`. See [`f64::sqrt`] for details.
1947    ///
1948    /// # Examples
1949    ///
1950    /// ```
1951    /// #![feature(core_float_math)]
1952    ///
1953    /// use core::f64;
1954    ///
1955    /// let positive = 4.0_f64;
1956    /// let negative = -4.0_f64;
1957    /// let negative_zero = -0.0_f64;
1958    ///
1959    /// assert_eq!(f64::math::sqrt(positive), 2.0);
1960    /// assert!(f64::math::sqrt(negative).is_nan());
1961    /// assert_eq!(f64::math::sqrt(negative_zero), negative_zero);
1962    /// ```
1963    ///
1964    /// _This standalone function is for testing only.
1965    /// It will be stabilized as an inherent method._
1966    ///
1967    /// [`f64::sqrt`]: ../../../std/primitive.f64.html#method.sqrt
1968    #[inline]
1969    #[doc(alias = "squareRoot")]
1970    #[unstable(feature = "core_float_math", issue = "137578")]
1971    #[must_use = "method returns a new number and does not mutate the original value"]
1972    pub fn sqrt(x: f64) -> f64 {
1973        intrinsics::sqrtf64(x)
1974    }
1975
1976    /// Experimental version of `abs_sub` in `core`. See [`f64::abs_sub`] for details.
1977    ///
1978    /// # Examples
1979    ///
1980    /// ```
1981    /// #![feature(core_float_math)]
1982    ///
1983    /// use core::f64;
1984    ///
1985    /// let x = 3.0_f64;
1986    /// let y = -3.0_f64;
1987    ///
1988    /// let abs_difference_x = (f64::math::abs_sub(x, 1.0) - 2.0).abs();
1989    /// let abs_difference_y = (f64::math::abs_sub(y, 1.0) - 0.0).abs();
1990    ///
1991    /// assert!(abs_difference_x < 1e-10);
1992    /// assert!(abs_difference_y < 1e-10);
1993    /// ```
1994    ///
1995    /// _This standalone function is for testing only.
1996    /// It will be stabilized as an inherent method._
1997    ///
1998    /// [`f64::abs_sub`]: ../../../std/primitive.f64.html#method.abs_sub
1999    #[inline]
2000    #[unstable(feature = "core_float_math", issue = "137578")]
2001    #[deprecated(
2002        since = "1.10.0",
2003        note = "you probably meant `(self - other).abs()`: \
2004                this operation is `(self - other).max(0.0)` \
2005                except that `abs_sub` also propagates NaNs (also \
2006                known as `fdim` in C). If you truly need the positive \
2007                difference, consider using that expression or the C function \
2008                `fdim`, depending on how you wish to handle NaN (please consider \
2009                filing an issue describing your use-case too)."
2010    )]
2011    #[must_use = "method returns a new number and does not mutate the original value"]
2012    pub fn abs_sub(x: f64, other: f64) -> f64 {
2013        libm::fdim(x, other)
2014    }
2015
2016    /// Experimental version of `cbrt` in `core`. See [`f64::cbrt`] for details.
2017    ///
2018    /// # Examples
2019    ///
2020    /// ```
2021    /// #![feature(core_float_math)]
2022    ///
2023    /// use core::f64;
2024    ///
2025    /// let x = 8.0_f64;
2026    ///
2027    /// // x^(1/3) - 2 == 0
2028    /// let abs_difference = (f64::math::cbrt(x) - 2.0).abs();
2029    ///
2030    /// assert!(abs_difference < 1e-10);
2031    /// ```
2032    ///
2033    /// _This standalone function is for testing only.
2034    /// It will be stabilized as an inherent method._
2035    ///
2036    /// [`f64::cbrt`]: ../../../std/primitive.f64.html#method.cbrt
2037    #[inline]
2038    #[unstable(feature = "core_float_math", issue = "137578")]
2039    #[must_use = "method returns a new number and does not mutate the original value"]
2040    pub fn cbrt(x: f64) -> f64 {
2041        libm::cbrt(x)
2042    }
2043}