core/num/
f64.rs

1//! Constants for the `f64` double-precision floating point type.
2//!
3//! *[See also the `f64` primitive type][f64].*
4//!
5//! Mathematically significant numbers are provided in the `consts` sub-module.
6//!
7//! For the constants defined directly in this module
8//! (as distinct from those defined in the `consts` sub-module),
9//! new code should instead use the associated constants
10//! defined directly on the `f64` type.
11
12#![stable(feature = "rust1", since = "1.0.0")]
13
14#[cfg(not(feature = "ferrocene_subset"))]
15use crate::convert::FloatToInt;
16#[cfg(not(feature = "ferrocene_subset"))]
17use crate::num::FpCategory;
18#[cfg(not(feature = "ferrocene_subset"))]
19use crate::panic::const_assert;
20use crate::{intrinsics, mem};
21
22/// The radix or base of the internal representation of `f64`.
23/// Use [`f64::RADIX`] instead.
24///
25/// # Examples
26///
27/// ```rust
28/// // deprecated way
29/// # #[allow(deprecated, deprecated_in_future)]
30/// let r = std::f64::RADIX;
31///
32/// // intended way
33/// let r = f64::RADIX;
34/// ```
35#[stable(feature = "rust1", since = "1.0.0")]
36#[deprecated(since = "TBD", note = "replaced by the `RADIX` associated constant on `f64`")]
37#[rustc_diagnostic_item = "f64_legacy_const_radix"]
38pub const RADIX: u32 = f64::RADIX;
39
40/// Number of significant digits in base 2.
41/// Use [`f64::MANTISSA_DIGITS`] instead.
42///
43/// # Examples
44///
45/// ```rust
46/// // deprecated way
47/// # #[allow(deprecated, deprecated_in_future)]
48/// let d = std::f64::MANTISSA_DIGITS;
49///
50/// // intended way
51/// let d = f64::MANTISSA_DIGITS;
52/// ```
53#[stable(feature = "rust1", since = "1.0.0")]
54#[deprecated(
55    since = "TBD",
56    note = "replaced by the `MANTISSA_DIGITS` associated constant on `f64`"
57)]
58#[rustc_diagnostic_item = "f64_legacy_const_mantissa_dig"]
59pub const MANTISSA_DIGITS: u32 = f64::MANTISSA_DIGITS;
60
61/// Approximate number of significant digits in base 10.
62/// Use [`f64::DIGITS`] instead.
63///
64/// # Examples
65///
66/// ```rust
67/// // deprecated way
68/// # #[allow(deprecated, deprecated_in_future)]
69/// let d = std::f64::DIGITS;
70///
71/// // intended way
72/// let d = f64::DIGITS;
73/// ```
74#[stable(feature = "rust1", since = "1.0.0")]
75#[deprecated(since = "TBD", note = "replaced by the `DIGITS` associated constant on `f64`")]
76#[rustc_diagnostic_item = "f64_legacy_const_digits"]
77pub const DIGITS: u32 = f64::DIGITS;
78
79/// [Machine epsilon] value for `f64`.
80/// Use [`f64::EPSILON`] instead.
81///
82/// This is the difference between `1.0` and the next larger representable number.
83///
84/// [Machine epsilon]: https://en.wikipedia.org/wiki/Machine_epsilon
85///
86/// # Examples
87///
88/// ```rust
89/// // deprecated way
90/// # #[allow(deprecated, deprecated_in_future)]
91/// let e = std::f64::EPSILON;
92///
93/// // intended way
94/// let e = f64::EPSILON;
95/// ```
96#[stable(feature = "rust1", since = "1.0.0")]
97#[deprecated(since = "TBD", note = "replaced by the `EPSILON` associated constant on `f64`")]
98#[rustc_diagnostic_item = "f64_legacy_const_epsilon"]
99pub const EPSILON: f64 = f64::EPSILON;
100
101/// Smallest finite `f64` value.
102/// Use [`f64::MIN`] instead.
103///
104/// # Examples
105///
106/// ```rust
107/// // deprecated way
108/// # #[allow(deprecated, deprecated_in_future)]
109/// let min = std::f64::MIN;
110///
111/// // intended way
112/// let min = f64::MIN;
113/// ```
114#[stable(feature = "rust1", since = "1.0.0")]
115#[deprecated(since = "TBD", note = "replaced by the `MIN` associated constant on `f64`")]
116#[rustc_diagnostic_item = "f64_legacy_const_min"]
117pub const MIN: f64 = f64::MIN;
118
119/// Smallest positive normal `f64` value.
120/// Use [`f64::MIN_POSITIVE`] instead.
121///
122/// # Examples
123///
124/// ```rust
125/// // deprecated way
126/// # #[allow(deprecated, deprecated_in_future)]
127/// let min = std::f64::MIN_POSITIVE;
128///
129/// // intended way
130/// let min = f64::MIN_POSITIVE;
131/// ```
132#[stable(feature = "rust1", since = "1.0.0")]
133#[deprecated(since = "TBD", note = "replaced by the `MIN_POSITIVE` associated constant on `f64`")]
134#[rustc_diagnostic_item = "f64_legacy_const_min_positive"]
135pub const MIN_POSITIVE: f64 = f64::MIN_POSITIVE;
136
137/// Largest finite `f64` value.
138/// Use [`f64::MAX`] instead.
139///
140/// # Examples
141///
142/// ```rust
143/// // deprecated way
144/// # #[allow(deprecated, deprecated_in_future)]
145/// let max = std::f64::MAX;
146///
147/// // intended way
148/// let max = f64::MAX;
149/// ```
150#[stable(feature = "rust1", since = "1.0.0")]
151#[deprecated(since = "TBD", note = "replaced by the `MAX` associated constant on `f64`")]
152#[rustc_diagnostic_item = "f64_legacy_const_max"]
153pub const MAX: f64 = f64::MAX;
154
155/// One greater than the minimum possible normal power of 2 exponent.
156/// Use [`f64::MIN_EXP`] instead.
157///
158/// # Examples
159///
160/// ```rust
161/// // deprecated way
162/// # #[allow(deprecated, deprecated_in_future)]
163/// let min = std::f64::MIN_EXP;
164///
165/// // intended way
166/// let min = f64::MIN_EXP;
167/// ```
168#[stable(feature = "rust1", since = "1.0.0")]
169#[deprecated(since = "TBD", note = "replaced by the `MIN_EXP` associated constant on `f64`")]
170#[rustc_diagnostic_item = "f64_legacy_const_min_exp"]
171pub const MIN_EXP: i32 = f64::MIN_EXP;
172
173/// Maximum possible power of 2 exponent.
174/// Use [`f64::MAX_EXP`] instead.
175///
176/// # Examples
177///
178/// ```rust
179/// // deprecated way
180/// # #[allow(deprecated, deprecated_in_future)]
181/// let max = std::f64::MAX_EXP;
182///
183/// // intended way
184/// let max = f64::MAX_EXP;
185/// ```
186#[stable(feature = "rust1", since = "1.0.0")]
187#[deprecated(since = "TBD", note = "replaced by the `MAX_EXP` associated constant on `f64`")]
188#[rustc_diagnostic_item = "f64_legacy_const_max_exp"]
189pub const MAX_EXP: i32 = f64::MAX_EXP;
190
191/// Minimum possible normal power of 10 exponent.
192/// Use [`f64::MIN_10_EXP`] instead.
193///
194/// # Examples
195///
196/// ```rust
197/// // deprecated way
198/// # #[allow(deprecated, deprecated_in_future)]
199/// let min = std::f64::MIN_10_EXP;
200///
201/// // intended way
202/// let min = f64::MIN_10_EXP;
203/// ```
204#[stable(feature = "rust1", since = "1.0.0")]
205#[deprecated(since = "TBD", note = "replaced by the `MIN_10_EXP` associated constant on `f64`")]
206#[rustc_diagnostic_item = "f64_legacy_const_min_10_exp"]
207pub const MIN_10_EXP: i32 = f64::MIN_10_EXP;
208
209/// Maximum possible power of 10 exponent.
210/// Use [`f64::MAX_10_EXP`] instead.
211///
212/// # Examples
213///
214/// ```rust
215/// // deprecated way
216/// # #[allow(deprecated, deprecated_in_future)]
217/// let max = std::f64::MAX_10_EXP;
218///
219/// // intended way
220/// let max = f64::MAX_10_EXP;
221/// ```
222#[stable(feature = "rust1", since = "1.0.0")]
223#[deprecated(since = "TBD", note = "replaced by the `MAX_10_EXP` associated constant on `f64`")]
224#[rustc_diagnostic_item = "f64_legacy_const_max_10_exp"]
225pub const MAX_10_EXP: i32 = f64::MAX_10_EXP;
226
227/// Not a Number (NaN).
228/// Use [`f64::NAN`] instead.
229///
230/// # Examples
231///
232/// ```rust
233/// // deprecated way
234/// # #[allow(deprecated, deprecated_in_future)]
235/// let nan = std::f64::NAN;
236///
237/// // intended way
238/// let nan = f64::NAN;
239/// ```
240#[stable(feature = "rust1", since = "1.0.0")]
241#[deprecated(since = "TBD", note = "replaced by the `NAN` associated constant on `f64`")]
242#[rustc_diagnostic_item = "f64_legacy_const_nan"]
243pub const NAN: f64 = f64::NAN;
244
245/// Infinity (∞).
246/// Use [`f64::INFINITY`] instead.
247///
248/// # Examples
249///
250/// ```rust
251/// // deprecated way
252/// # #[allow(deprecated, deprecated_in_future)]
253/// let inf = std::f64::INFINITY;
254///
255/// // intended way
256/// let inf = f64::INFINITY;
257/// ```
258#[stable(feature = "rust1", since = "1.0.0")]
259#[deprecated(since = "TBD", note = "replaced by the `INFINITY` associated constant on `f64`")]
260#[rustc_diagnostic_item = "f64_legacy_const_infinity"]
261pub const INFINITY: f64 = f64::INFINITY;
262
263/// Negative infinity (−∞).
264/// Use [`f64::NEG_INFINITY`] instead.
265///
266/// # Examples
267///
268/// ```rust
269/// // deprecated way
270/// # #[allow(deprecated, deprecated_in_future)]
271/// let ninf = std::f64::NEG_INFINITY;
272///
273/// // intended way
274/// let ninf = f64::NEG_INFINITY;
275/// ```
276#[stable(feature = "rust1", since = "1.0.0")]
277#[deprecated(since = "TBD", note = "replaced by the `NEG_INFINITY` associated constant on `f64`")]
278#[rustc_diagnostic_item = "f64_legacy_const_neg_infinity"]
279pub const NEG_INFINITY: f64 = f64::NEG_INFINITY;
280
281/// Basic mathematical constants.
282#[stable(feature = "rust1", since = "1.0.0")]
283#[rustc_diagnostic_item = "f64_consts_mod"]
284pub mod consts {
285    // FIXME: replace with mathematical constants from cmath.
286
287    /// Archimedes' constant (π)
288    #[stable(feature = "rust1", since = "1.0.0")]
289    pub const PI: f64 = 3.14159265358979323846264338327950288_f64;
290
291    /// The full circle constant (τ)
292    ///
293    /// Equal to 2π.
294    #[stable(feature = "tau_constant", since = "1.47.0")]
295    pub const TAU: f64 = 6.28318530717958647692528676655900577_f64;
296
297    /// The golden ratio (φ)
298    #[unstable(feature = "more_float_constants", issue = "146939")]
299    pub const PHI: f64 = 1.618033988749894848204586834365638118_f64;
300
301    /// The Euler-Mascheroni constant (γ)
302    #[unstable(feature = "more_float_constants", issue = "146939")]
303    pub const EGAMMA: f64 = 0.577215664901532860606512090082402431_f64;
304
305    /// π/2
306    #[stable(feature = "rust1", since = "1.0.0")]
307    pub const FRAC_PI_2: f64 = 1.57079632679489661923132169163975144_f64;
308
309    /// π/3
310    #[stable(feature = "rust1", since = "1.0.0")]
311    pub const FRAC_PI_3: f64 = 1.04719755119659774615421446109316763_f64;
312
313    /// π/4
314    #[stable(feature = "rust1", since = "1.0.0")]
315    pub const FRAC_PI_4: f64 = 0.785398163397448309615660845819875721_f64;
316
317    /// π/6
318    #[stable(feature = "rust1", since = "1.0.0")]
319    pub const FRAC_PI_6: f64 = 0.52359877559829887307710723054658381_f64;
320
321    /// π/8
322    #[stable(feature = "rust1", since = "1.0.0")]
323    pub const FRAC_PI_8: f64 = 0.39269908169872415480783042290993786_f64;
324
325    /// 1/π
326    #[stable(feature = "rust1", since = "1.0.0")]
327    pub const FRAC_1_PI: f64 = 0.318309886183790671537767526745028724_f64;
328
329    /// 1/sqrt(π)
330    #[unstable(feature = "more_float_constants", issue = "146939")]
331    pub const FRAC_1_SQRT_PI: f64 = 0.564189583547756286948079451560772586_f64;
332
333    /// 1/sqrt(2π)
334    #[doc(alias = "FRAC_1_SQRT_TAU")]
335    #[unstable(feature = "more_float_constants", issue = "146939")]
336    pub const FRAC_1_SQRT_2PI: f64 = 0.398942280401432677939946059934381868_f64;
337
338    /// 2/π
339    #[stable(feature = "rust1", since = "1.0.0")]
340    pub const FRAC_2_PI: f64 = 0.636619772367581343075535053490057448_f64;
341
342    /// 2/sqrt(π)
343    #[stable(feature = "rust1", since = "1.0.0")]
344    pub const FRAC_2_SQRT_PI: f64 = 1.12837916709551257389615890312154517_f64;
345
346    /// sqrt(2)
347    #[stable(feature = "rust1", since = "1.0.0")]
348    pub const SQRT_2: f64 = 1.41421356237309504880168872420969808_f64;
349
350    /// 1/sqrt(2)
351    #[stable(feature = "rust1", since = "1.0.0")]
352    pub const FRAC_1_SQRT_2: f64 = 0.707106781186547524400844362104849039_f64;
353
354    /// sqrt(3)
355    #[unstable(feature = "more_float_constants", issue = "146939")]
356    pub const SQRT_3: f64 = 1.732050807568877293527446341505872367_f64;
357
358    /// 1/sqrt(3)
359    #[unstable(feature = "more_float_constants", issue = "146939")]
360    pub const FRAC_1_SQRT_3: f64 = 0.577350269189625764509148780501957456_f64;
361
362    /// Euler's number (e)
363    #[stable(feature = "rust1", since = "1.0.0")]
364    pub const E: f64 = 2.71828182845904523536028747135266250_f64;
365
366    /// log<sub>2</sub>(10)
367    #[stable(feature = "extra_log_consts", since = "1.43.0")]
368    pub const LOG2_10: f64 = 3.32192809488736234787031942948939018_f64;
369
370    /// log<sub>2</sub>(e)
371    #[stable(feature = "rust1", since = "1.0.0")]
372    pub const LOG2_E: f64 = 1.44269504088896340735992468100189214_f64;
373
374    /// log<sub>10</sub>(2)
375    #[stable(feature = "extra_log_consts", since = "1.43.0")]
376    pub const LOG10_2: f64 = 0.301029995663981195213738894724493027_f64;
377
378    /// log<sub>10</sub>(e)
379    #[stable(feature = "rust1", since = "1.0.0")]
380    pub const LOG10_E: f64 = 0.434294481903251827651128918916605082_f64;
381
382    /// ln(2)
383    #[stable(feature = "rust1", since = "1.0.0")]
384    pub const LN_2: f64 = 0.693147180559945309417232121458176568_f64;
385
386    /// ln(10)
387    #[stable(feature = "rust1", since = "1.0.0")]
388    pub const LN_10: f64 = 2.30258509299404568401799145468436421_f64;
389}
390
391impl f64 {
392    /// The radix or base of the internal representation of `f64`.
393    #[stable(feature = "assoc_int_consts", since = "1.43.0")]
394    pub const RADIX: u32 = 2;
395
396    /// Number of significant digits in base 2.
397    ///
398    /// Note that the size of the mantissa in the bitwise representation is one
399    /// smaller than this since the leading 1 is not stored explicitly.
400    #[stable(feature = "assoc_int_consts", since = "1.43.0")]
401    pub const MANTISSA_DIGITS: u32 = 53;
402    /// Approximate number of significant digits in base 10.
403    ///
404    /// This is the maximum <i>x</i> such that any decimal number with <i>x</i>
405    /// significant digits can be converted to `f64` and back without loss.
406    ///
407    /// Equal to floor(log<sub>10</sub>&nbsp;2<sup>[`MANTISSA_DIGITS`]&nbsp;&minus;&nbsp;1</sup>).
408    ///
409    /// [`MANTISSA_DIGITS`]: f64::MANTISSA_DIGITS
410    #[stable(feature = "assoc_int_consts", since = "1.43.0")]
411    pub const DIGITS: u32 = 15;
412
413    /// [Machine epsilon] value for `f64`.
414    ///
415    /// This is the difference between `1.0` and the next larger representable number.
416    ///
417    /// Equal to 2<sup>1&nbsp;&minus;&nbsp;[`MANTISSA_DIGITS`]</sup>.
418    ///
419    /// [Machine epsilon]: https://en.wikipedia.org/wiki/Machine_epsilon
420    /// [`MANTISSA_DIGITS`]: f64::MANTISSA_DIGITS
421    #[stable(feature = "assoc_int_consts", since = "1.43.0")]
422    #[rustc_diagnostic_item = "f64_epsilon"]
423    pub const EPSILON: f64 = 2.2204460492503131e-16_f64;
424
425    /// Smallest finite `f64` value.
426    ///
427    /// Equal to &minus;[`MAX`].
428    ///
429    /// [`MAX`]: f64::MAX
430    #[stable(feature = "assoc_int_consts", since = "1.43.0")]
431    pub const MIN: f64 = -1.7976931348623157e+308_f64;
432    /// Smallest positive normal `f64` value.
433    ///
434    /// Equal to 2<sup>[`MIN_EXP`]&nbsp;&minus;&nbsp;1</sup>.
435    ///
436    /// [`MIN_EXP`]: f64::MIN_EXP
437    #[stable(feature = "assoc_int_consts", since = "1.43.0")]
438    pub const MIN_POSITIVE: f64 = 2.2250738585072014e-308_f64;
439    /// Largest finite `f64` value.
440    ///
441    /// Equal to
442    /// (1&nbsp;&minus;&nbsp;2<sup>&minus;[`MANTISSA_DIGITS`]</sup>)&nbsp;2<sup>[`MAX_EXP`]</sup>.
443    ///
444    /// [`MANTISSA_DIGITS`]: f64::MANTISSA_DIGITS
445    /// [`MAX_EXP`]: f64::MAX_EXP
446    #[stable(feature = "assoc_int_consts", since = "1.43.0")]
447    pub const MAX: f64 = 1.7976931348623157e+308_f64;
448
449    /// One greater than the minimum possible *normal* power of 2 exponent
450    /// for a significand bounded by 1 ≤ x < 2 (i.e. the IEEE definition).
451    ///
452    /// This corresponds to the exact minimum possible *normal* power of 2 exponent
453    /// for a significand bounded by 0.5 ≤ x < 1 (i.e. the C definition).
454    /// In other words, all normal numbers representable by this type are
455    /// greater than or equal to 0.5&nbsp;×&nbsp;2<sup><i>MIN_EXP</i></sup>.
456    #[stable(feature = "assoc_int_consts", since = "1.43.0")]
457    pub const MIN_EXP: i32 = -1021;
458    /// One greater than the maximum possible power of 2 exponent
459    /// for a significand bounded by 1 ≤ x < 2 (i.e. the IEEE definition).
460    ///
461    /// This corresponds to the exact maximum possible power of 2 exponent
462    /// for a significand bounded by 0.5 ≤ x < 1 (i.e. the C definition).
463    /// In other words, all numbers representable by this type are
464    /// strictly less than 2<sup><i>MAX_EXP</i></sup>.
465    #[stable(feature = "assoc_int_consts", since = "1.43.0")]
466    pub const MAX_EXP: i32 = 1024;
467
468    /// Minimum <i>x</i> for which 10<sup><i>x</i></sup> is normal.
469    ///
470    /// Equal to ceil(log<sub>10</sub>&nbsp;[`MIN_POSITIVE`]).
471    ///
472    /// [`MIN_POSITIVE`]: f64::MIN_POSITIVE
473    #[stable(feature = "assoc_int_consts", since = "1.43.0")]
474    pub const MIN_10_EXP: i32 = -307;
475    /// Maximum <i>x</i> for which 10<sup><i>x</i></sup> is normal.
476    ///
477    /// Equal to floor(log<sub>10</sub>&nbsp;[`MAX`]).
478    ///
479    /// [`MAX`]: f64::MAX
480    #[stable(feature = "assoc_int_consts", since = "1.43.0")]
481    pub const MAX_10_EXP: i32 = 308;
482
483    /// Not a Number (NaN).
484    ///
485    /// Note that IEEE 754 doesn't define just a single NaN value; a plethora of bit patterns are
486    /// considered to be NaN. Furthermore, the standard makes a difference between a "signaling" and
487    /// a "quiet" NaN, and allows inspecting its "payload" (the unspecified bits in the bit pattern)
488    /// and its sign. See the [specification of NaN bit patterns](f32#nan-bit-patterns) for more
489    /// info.
490    ///
491    /// This constant is guaranteed to be a quiet NaN (on targets that follow the Rust assumptions
492    /// that the quiet/signaling bit being set to 1 indicates a quiet NaN). Beyond that, nothing is
493    /// guaranteed about the specific bit pattern chosen here: both payload and sign are arbitrary.
494    /// The concrete bit pattern may change across Rust versions and target platforms.
495    #[rustc_diagnostic_item = "f64_nan"]
496    #[stable(feature = "assoc_int_consts", since = "1.43.0")]
497    #[allow(clippy::eq_op)]
498    pub const NAN: f64 = 0.0_f64 / 0.0_f64;
499    /// Infinity (∞).
500    #[stable(feature = "assoc_int_consts", since = "1.43.0")]
501    pub const INFINITY: f64 = 1.0_f64 / 0.0_f64;
502    /// Negative infinity (−∞).
503    #[stable(feature = "assoc_int_consts", since = "1.43.0")]
504    pub const NEG_INFINITY: f64 = -1.0_f64 / 0.0_f64;
505
506    /// Sign bit
507    pub(crate) const SIGN_MASK: u64 = 0x8000_0000_0000_0000;
508
509    /// Exponent mask
510    #[cfg(not(feature = "ferrocene_subset"))]
511    pub(crate) const EXP_MASK: u64 = 0x7ff0_0000_0000_0000;
512
513    /// Mantissa mask
514    #[cfg(not(feature = "ferrocene_subset"))]
515    pub(crate) const MAN_MASK: u64 = 0x000f_ffff_ffff_ffff;
516
517    /// Minimum representable positive value (min subnormal)
518    #[cfg(not(feature = "ferrocene_subset"))]
519    const TINY_BITS: u64 = 0x1;
520
521    /// Minimum representable negative value (min negative subnormal)
522    #[cfg(not(feature = "ferrocene_subset"))]
523    const NEG_TINY_BITS: u64 = Self::TINY_BITS | Self::SIGN_MASK;
524
525    /// Returns `true` if this value is NaN.
526    ///
527    /// ```
528    /// let nan = f64::NAN;
529    /// let f = 7.0_f64;
530    ///
531    /// assert!(nan.is_nan());
532    /// assert!(!f.is_nan());
533    /// ```
534    #[must_use]
535    #[stable(feature = "rust1", since = "1.0.0")]
536    #[rustc_const_stable(feature = "const_float_classify", since = "1.83.0")]
537    #[inline]
538    #[allow(clippy::eq_op)] // > if you intended to check if the operand is NaN, use `.is_nan()` instead :)
539    pub const fn is_nan(self) -> bool {
540        self != self
541    }
542
543    /// Returns `true` if this value is positive infinity or negative infinity, and
544    /// `false` otherwise.
545    ///
546    /// ```
547    /// let f = 7.0f64;
548    /// let inf = f64::INFINITY;
549    /// let neg_inf = f64::NEG_INFINITY;
550    /// let nan = f64::NAN;
551    ///
552    /// assert!(!f.is_infinite());
553    /// assert!(!nan.is_infinite());
554    ///
555    /// assert!(inf.is_infinite());
556    /// assert!(neg_inf.is_infinite());
557    /// ```
558    #[must_use]
559    #[stable(feature = "rust1", since = "1.0.0")]
560    #[rustc_const_stable(feature = "const_float_classify", since = "1.83.0")]
561    #[inline]
562    pub const fn is_infinite(self) -> bool {
563        // Getting clever with transmutation can result in incorrect answers on some FPUs
564        // FIXME: alter the Rust <-> Rust calling convention to prevent this problem.
565        // See https://github.com/rust-lang/rust/issues/72327
566        (self == f64::INFINITY) | (self == f64::NEG_INFINITY)
567    }
568
569    /// Returns `true` if this number is neither infinite nor NaN.
570    ///
571    /// ```
572    /// let f = 7.0f64;
573    /// let inf: f64 = f64::INFINITY;
574    /// let neg_inf: f64 = f64::NEG_INFINITY;
575    /// let nan: f64 = f64::NAN;
576    ///
577    /// assert!(f.is_finite());
578    ///
579    /// assert!(!nan.is_finite());
580    /// assert!(!inf.is_finite());
581    /// assert!(!neg_inf.is_finite());
582    /// ```
583    #[must_use]
584    #[stable(feature = "rust1", since = "1.0.0")]
585    #[rustc_const_stable(feature = "const_float_classify", since = "1.83.0")]
586    #[inline]
587    #[cfg(not(feature = "ferrocene_subset"))]
588    pub const fn is_finite(self) -> bool {
589        // There's no need to handle NaN separately: if self is NaN,
590        // the comparison is not true, exactly as desired.
591        self.abs() < Self::INFINITY
592    }
593
594    /// Returns `true` if the number is [subnormal].
595    ///
596    /// ```
597    /// let min = f64::MIN_POSITIVE; // 2.2250738585072014e-308_f64
598    /// let max = f64::MAX;
599    /// let lower_than_min = 1.0e-308_f64;
600    /// let zero = 0.0_f64;
601    ///
602    /// assert!(!min.is_subnormal());
603    /// assert!(!max.is_subnormal());
604    ///
605    /// assert!(!zero.is_subnormal());
606    /// assert!(!f64::NAN.is_subnormal());
607    /// assert!(!f64::INFINITY.is_subnormal());
608    /// // Values between `0` and `min` are Subnormal.
609    /// assert!(lower_than_min.is_subnormal());
610    /// ```
611    /// [subnormal]: https://en.wikipedia.org/wiki/Denormal_number
612    #[must_use]
613    #[stable(feature = "is_subnormal", since = "1.53.0")]
614    #[rustc_const_stable(feature = "const_float_classify", since = "1.83.0")]
615    #[inline]
616    #[cfg(not(feature = "ferrocene_subset"))]
617    pub const fn is_subnormal(self) -> bool {
618        matches!(self.classify(), FpCategory::Subnormal)
619    }
620
621    /// Returns `true` if the number is neither zero, infinite,
622    /// [subnormal], or NaN.
623    ///
624    /// ```
625    /// let min = f64::MIN_POSITIVE; // 2.2250738585072014e-308f64
626    /// let max = f64::MAX;
627    /// let lower_than_min = 1.0e-308_f64;
628    /// let zero = 0.0f64;
629    ///
630    /// assert!(min.is_normal());
631    /// assert!(max.is_normal());
632    ///
633    /// assert!(!zero.is_normal());
634    /// assert!(!f64::NAN.is_normal());
635    /// assert!(!f64::INFINITY.is_normal());
636    /// // Values between `0` and `min` are Subnormal.
637    /// assert!(!lower_than_min.is_normal());
638    /// ```
639    /// [subnormal]: https://en.wikipedia.org/wiki/Denormal_number
640    #[must_use]
641    #[stable(feature = "rust1", since = "1.0.0")]
642    #[rustc_const_stable(feature = "const_float_classify", since = "1.83.0")]
643    #[inline]
644    #[cfg(not(feature = "ferrocene_subset"))]
645    pub const fn is_normal(self) -> bool {
646        matches!(self.classify(), FpCategory::Normal)
647    }
648
649    /// Returns the floating point category of the number. If only one property
650    /// is going to be tested, it is generally faster to use the specific
651    /// predicate instead.
652    ///
653    /// ```
654    /// use std::num::FpCategory;
655    ///
656    /// let num = 12.4_f64;
657    /// let inf = f64::INFINITY;
658    ///
659    /// assert_eq!(num.classify(), FpCategory::Normal);
660    /// assert_eq!(inf.classify(), FpCategory::Infinite);
661    /// ```
662    #[stable(feature = "rust1", since = "1.0.0")]
663    #[rustc_const_stable(feature = "const_float_classify", since = "1.83.0")]
664    #[cfg(not(feature = "ferrocene_subset"))]
665    pub const fn classify(self) -> FpCategory {
666        // We used to have complicated logic here that avoids the simple bit-based tests to work
667        // around buggy codegen for x87 targets (see
668        // https://github.com/rust-lang/rust/issues/114479). However, some LLVM versions later, none
669        // of our tests is able to find any difference between the complicated and the naive
670        // version, so now we are back to the naive version.
671        let b = self.to_bits();
672        match (b & Self::MAN_MASK, b & Self::EXP_MASK) {
673            (0, Self::EXP_MASK) => FpCategory::Infinite,
674            (_, Self::EXP_MASK) => FpCategory::Nan,
675            (0, 0) => FpCategory::Zero,
676            (_, 0) => FpCategory::Subnormal,
677            _ => FpCategory::Normal,
678        }
679    }
680
681    /// Returns `true` if `self` has a positive sign, including `+0.0`, NaNs with
682    /// positive sign bit and positive infinity.
683    ///
684    /// Note that IEEE 754 doesn't assign any meaning to the sign bit in case of
685    /// a NaN, and as Rust doesn't guarantee that the bit pattern of NaNs are
686    /// conserved over arithmetic operations, the result of `is_sign_positive` on
687    /// a NaN might produce an unexpected or non-portable result. See the [specification
688    /// of NaN bit patterns](f32#nan-bit-patterns) for more info. Use `self.signum() == 1.0`
689    /// if you need fully portable behavior (will return `false` for all NaNs).
690    ///
691    /// ```
692    /// let f = 7.0_f64;
693    /// let g = -7.0_f64;
694    ///
695    /// assert!(f.is_sign_positive());
696    /// assert!(!g.is_sign_positive());
697    /// ```
698    #[must_use]
699    #[stable(feature = "rust1", since = "1.0.0")]
700    #[rustc_const_stable(feature = "const_float_classify", since = "1.83.0")]
701    #[inline]
702    pub const fn is_sign_positive(self) -> bool {
703        !self.is_sign_negative()
704    }
705
706    #[must_use]
707    #[stable(feature = "rust1", since = "1.0.0")]
708    #[deprecated(since = "1.0.0", note = "renamed to is_sign_positive")]
709    #[inline]
710    #[doc(hidden)]
711    pub fn is_positive(self) -> bool {
712        self.is_sign_positive()
713    }
714
715    /// Returns `true` if `self` has a negative sign, including `-0.0`, NaNs with
716    /// negative sign bit and negative infinity.
717    ///
718    /// Note that IEEE 754 doesn't assign any meaning to the sign bit in case of
719    /// a NaN, and as Rust doesn't guarantee that the bit pattern of NaNs are
720    /// conserved over arithmetic operations, the result of `is_sign_negative` on
721    /// a NaN might produce an unexpected or non-portable result. See the [specification
722    /// of NaN bit patterns](f32#nan-bit-patterns) for more info. Use `self.signum() == -1.0`
723    /// if you need fully portable behavior (will return `false` for all NaNs).
724    ///
725    /// ```
726    /// let f = 7.0_f64;
727    /// let g = -7.0_f64;
728    ///
729    /// assert!(!f.is_sign_negative());
730    /// assert!(g.is_sign_negative());
731    /// ```
732    #[must_use]
733    #[stable(feature = "rust1", since = "1.0.0")]
734    #[rustc_const_stable(feature = "const_float_classify", since = "1.83.0")]
735    #[inline]
736    pub const fn is_sign_negative(self) -> bool {
737        // IEEE754 says: isSignMinus(x) is true if and only if x has negative sign. isSignMinus
738        // applies to zeros and NaNs as well.
739        self.to_bits() & Self::SIGN_MASK != 0
740    }
741
742    #[must_use]
743    #[stable(feature = "rust1", since = "1.0.0")]
744    #[deprecated(since = "1.0.0", note = "renamed to is_sign_negative")]
745    #[inline]
746    #[doc(hidden)]
747    pub fn is_negative(self) -> bool {
748        self.is_sign_negative()
749    }
750
751    /// Returns the least number greater than `self`.
752    ///
753    /// Let `TINY` be the smallest representable positive `f64`. Then,
754    ///  - if `self.is_nan()`, this returns `self`;
755    ///  - if `self` is [`NEG_INFINITY`], this returns [`MIN`];
756    ///  - if `self` is `-TINY`, this returns -0.0;
757    ///  - if `self` is -0.0 or +0.0, this returns `TINY`;
758    ///  - if `self` is [`MAX`] or [`INFINITY`], this returns [`INFINITY`];
759    ///  - otherwise the unique least value greater than `self` is returned.
760    ///
761    /// The identity `x.next_up() == -(-x).next_down()` holds for all non-NaN `x`. When `x`
762    /// is finite `x == x.next_up().next_down()` also holds.
763    ///
764    /// ```rust
765    /// // f64::EPSILON is the difference between 1.0 and the next number up.
766    /// assert_eq!(1.0f64.next_up(), 1.0 + f64::EPSILON);
767    /// // But not for most numbers.
768    /// assert!(0.1f64.next_up() < 0.1 + f64::EPSILON);
769    /// assert_eq!(9007199254740992f64.next_up(), 9007199254740994.0);
770    /// ```
771    ///
772    /// This operation corresponds to IEEE-754 `nextUp`.
773    ///
774    /// [`NEG_INFINITY`]: Self::NEG_INFINITY
775    /// [`INFINITY`]: Self::INFINITY
776    /// [`MIN`]: Self::MIN
777    /// [`MAX`]: Self::MAX
778    #[inline]
779    #[doc(alias = "nextUp")]
780    #[stable(feature = "float_next_up_down", since = "1.86.0")]
781    #[rustc_const_stable(feature = "float_next_up_down", since = "1.86.0")]
782    #[cfg(not(feature = "ferrocene_subset"))]
783    pub const fn next_up(self) -> Self {
784        // Some targets violate Rust's assumption of IEEE semantics, e.g. by flushing
785        // denormals to zero. This is in general unsound and unsupported, but here
786        // we do our best to still produce the correct result on such targets.
787        let bits = self.to_bits();
788        if self.is_nan() || bits == Self::INFINITY.to_bits() {
789            return self;
790        }
791
792        let abs = bits & !Self::SIGN_MASK;
793        let next_bits = if abs == 0 {
794            Self::TINY_BITS
795        } else if bits == abs {
796            bits + 1
797        } else {
798            bits - 1
799        };
800        Self::from_bits(next_bits)
801    }
802
803    /// Returns the greatest number less than `self`.
804    ///
805    /// Let `TINY` be the smallest representable positive `f64`. Then,
806    ///  - if `self.is_nan()`, this returns `self`;
807    ///  - if `self` is [`INFINITY`], this returns [`MAX`];
808    ///  - if `self` is `TINY`, this returns 0.0;
809    ///  - if `self` is -0.0 or +0.0, this returns `-TINY`;
810    ///  - if `self` is [`MIN`] or [`NEG_INFINITY`], this returns [`NEG_INFINITY`];
811    ///  - otherwise the unique greatest value less than `self` is returned.
812    ///
813    /// The identity `x.next_down() == -(-x).next_up()` holds for all non-NaN `x`. When `x`
814    /// is finite `x == x.next_down().next_up()` also holds.
815    ///
816    /// ```rust
817    /// let x = 1.0f64;
818    /// // Clamp value into range [0, 1).
819    /// let clamped = x.clamp(0.0, 1.0f64.next_down());
820    /// assert!(clamped < 1.0);
821    /// assert_eq!(clamped.next_up(), 1.0);
822    /// ```
823    ///
824    /// This operation corresponds to IEEE-754 `nextDown`.
825    ///
826    /// [`NEG_INFINITY`]: Self::NEG_INFINITY
827    /// [`INFINITY`]: Self::INFINITY
828    /// [`MIN`]: Self::MIN
829    /// [`MAX`]: Self::MAX
830    #[inline]
831    #[doc(alias = "nextDown")]
832    #[stable(feature = "float_next_up_down", since = "1.86.0")]
833    #[rustc_const_stable(feature = "float_next_up_down", since = "1.86.0")]
834    #[cfg(not(feature = "ferrocene_subset"))]
835    pub const fn next_down(self) -> Self {
836        // Some targets violate Rust's assumption of IEEE semantics, e.g. by flushing
837        // denormals to zero. This is in general unsound and unsupported, but here
838        // we do our best to still produce the correct result on such targets.
839        let bits = self.to_bits();
840        if self.is_nan() || bits == Self::NEG_INFINITY.to_bits() {
841            return self;
842        }
843
844        let abs = bits & !Self::SIGN_MASK;
845        let next_bits = if abs == 0 {
846            Self::NEG_TINY_BITS
847        } else if bits == abs {
848            bits - 1
849        } else {
850            bits + 1
851        };
852        Self::from_bits(next_bits)
853    }
854
855    /// Takes the reciprocal (inverse) of a number, `1/x`.
856    ///
857    /// ```
858    /// let x = 2.0_f64;
859    /// let abs_difference = (x.recip() - (1.0 / x)).abs();
860    ///
861    /// assert!(abs_difference < 1e-10);
862    /// ```
863    #[must_use = "this returns the result of the operation, without modifying the original"]
864    #[stable(feature = "rust1", since = "1.0.0")]
865    #[rustc_const_stable(feature = "const_float_methods", since = "1.85.0")]
866    #[inline]
867    #[cfg(not(feature = "ferrocene_subset"))]
868    pub const fn recip(self) -> f64 {
869        1.0 / self
870    }
871
872    /// Converts radians to degrees.
873    ///
874    /// # Unspecified precision
875    ///
876    /// The precision of this function is non-deterministic. This means it varies by platform,
877    /// Rust version, and can even differ within the same execution from one invocation to the next.
878    ///
879    /// # Examples
880    ///
881    /// ```
882    /// let angle = std::f64::consts::PI;
883    ///
884    /// let abs_difference = (angle.to_degrees() - 180.0).abs();
885    ///
886    /// assert!(abs_difference < 1e-10);
887    /// ```
888    #[must_use = "this returns the result of the operation, \
889                  without modifying the original"]
890    #[stable(feature = "rust1", since = "1.0.0")]
891    #[rustc_const_stable(feature = "const_float_methods", since = "1.85.0")]
892    #[inline]
893    #[cfg(not(feature = "ferrocene_subset"))]
894    pub const fn to_degrees(self) -> f64 {
895        // The division here is correctly rounded with respect to the true value of 180/π.
896        // Although π is irrational and already rounded, the double rounding happens
897        // to produce correct result for f64.
898        const PIS_IN_180: f64 = 180.0 / consts::PI;
899        self * PIS_IN_180
900    }
901
902    /// Converts degrees to radians.
903    ///
904    /// # Unspecified precision
905    ///
906    /// The precision of this function is non-deterministic. This means it varies by platform,
907    /// Rust version, and can even differ within the same execution from one invocation to the next.
908    ///
909    /// # Examples
910    ///
911    /// ```
912    /// let angle = 180.0_f64;
913    ///
914    /// let abs_difference = (angle.to_radians() - std::f64::consts::PI).abs();
915    ///
916    /// assert!(abs_difference < 1e-10);
917    /// ```
918    #[must_use = "this returns the result of the operation, \
919                  without modifying the original"]
920    #[stable(feature = "rust1", since = "1.0.0")]
921    #[rustc_const_stable(feature = "const_float_methods", since = "1.85.0")]
922    #[inline]
923    #[cfg(not(feature = "ferrocene_subset"))]
924    pub const fn to_radians(self) -> f64 {
925        // The division here is correctly rounded with respect to the true value of π/180.
926        // Although π is irrational and already rounded, the double rounding happens
927        // to produce correct result for f64.
928        const RADS_PER_DEG: f64 = consts::PI / 180.0;
929        self * RADS_PER_DEG
930    }
931
932    /// Returns the maximum of the two numbers, ignoring NaN.
933    ///
934    /// If exactly one of the arguments is NaN (quiet or signaling), then the other argument is
935    /// returned. If both arguments are NaN, the return value is NaN, with the bit pattern picked
936    /// using the usual [rules for arithmetic operations](f32#nan-bit-patterns). If the inputs
937    /// compare equal (such as for the case of `+0.0` and `-0.0`), either input may be returned
938    /// non-deterministically.
939    ///
940    /// The handling of NaNs follows the IEEE 754-2019 semantics for `maximumNumber`, treating all
941    /// NaNs the same way to ensure the operation is associative. The handling of signed zeros
942    /// follows the IEEE 754-2008 semantics for `maxNum`.
943    ///
944    /// ```
945    /// let x = 1.0_f64;
946    /// let y = 2.0_f64;
947    ///
948    /// assert_eq!(x.max(y), y);
949    /// assert_eq!(x.max(f64::NAN), x);
950    /// ```
951    #[must_use = "this returns the result of the comparison, without modifying either input"]
952    #[stable(feature = "rust1", since = "1.0.0")]
953    #[rustc_const_stable(feature = "const_float_methods", since = "1.85.0")]
954    #[inline]
955    #[cfg(not(feature = "ferrocene_subset"))]
956    pub const fn max(self, other: f64) -> f64 {
957        intrinsics::maxnumf64(self, other)
958    }
959
960    /// Returns the minimum of the two numbers, ignoring NaN.
961    ///
962    /// If exactly one of the arguments is NaN (quiet or signaling), then the other argument is
963    /// returned. If both arguments are NaN, the return value is NaN, with the bit pattern picked
964    /// using the usual [rules for arithmetic operations](f32#nan-bit-patterns). If the inputs
965    /// compare equal (such as for the case of `+0.0` and `-0.0`), either input may be returned
966    /// non-deterministically.
967    ///
968    /// The handling of NaNs follows the IEEE 754-2019 semantics for `minimumNumber`, treating all
969    /// NaNs the same way to ensure the operation is associative. The handling of signed zeros
970    /// follows the IEEE 754-2008 semantics for `minNum`.
971    ///
972    /// ```
973    /// let x = 1.0_f64;
974    /// let y = 2.0_f64;
975    ///
976    /// assert_eq!(x.min(y), x);
977    /// assert_eq!(x.min(f64::NAN), x);
978    /// ```
979    #[must_use = "this returns the result of the comparison, without modifying either input"]
980    #[stable(feature = "rust1", since = "1.0.0")]
981    #[rustc_const_stable(feature = "const_float_methods", since = "1.85.0")]
982    #[inline]
983    #[cfg(not(feature = "ferrocene_subset"))]
984    pub const fn min(self, other: f64) -> f64 {
985        intrinsics::minnumf64(self, other)
986    }
987
988    /// Returns the maximum of the two numbers, propagating NaN.
989    ///
990    /// If at least one of the arguments is NaN, the return value is NaN, with the bit pattern
991    /// picked using the usual [rules for arithmetic operations](f32#nan-bit-patterns). Furthermore,
992    /// `-0.0` is considered to be less than `+0.0`, making this function fully deterministic for
993    /// non-NaN inputs.
994    ///
995    /// This is in contrast to [`f64::max`] which only returns NaN when *both* arguments are NaN,
996    /// and which does not reliably order `-0.0` and `+0.0`.
997    ///
998    /// This follows the IEEE 754-2019 semantics for `maximum`.
999    ///
1000    /// ```
1001    /// #![feature(float_minimum_maximum)]
1002    /// let x = 1.0_f64;
1003    /// let y = 2.0_f64;
1004    ///
1005    /// assert_eq!(x.maximum(y), y);
1006    /// assert!(x.maximum(f64::NAN).is_nan());
1007    /// ```
1008    #[must_use = "this returns the result of the comparison, without modifying either input"]
1009    #[unstable(feature = "float_minimum_maximum", issue = "91079")]
1010    #[inline]
1011    #[cfg(not(feature = "ferrocene_subset"))]
1012    pub const fn maximum(self, other: f64) -> f64 {
1013        intrinsics::maximumf64(self, other)
1014    }
1015
1016    /// Returns the minimum of the two numbers, propagating NaN.
1017    ///
1018    /// If at least one of the arguments is NaN, the return value is NaN, with the bit pattern
1019    /// picked using the usual [rules for arithmetic operations](f32#nan-bit-patterns). Furthermore,
1020    /// `-0.0` is considered to be less than `+0.0`, making this function fully deterministic for
1021    /// non-NaN inputs.
1022    ///
1023    /// This is in contrast to [`f64::min`] which only returns NaN when *both* arguments are NaN,
1024    /// and which does not reliably order `-0.0` and `+0.0`.
1025    ///
1026    /// This follows the IEEE 754-2019 semantics for `minimum`.
1027    ///
1028    /// ```
1029    /// #![feature(float_minimum_maximum)]
1030    /// let x = 1.0_f64;
1031    /// let y = 2.0_f64;
1032    ///
1033    /// assert_eq!(x.minimum(y), x);
1034    /// assert!(x.minimum(f64::NAN).is_nan());
1035    /// ```
1036    #[must_use = "this returns the result of the comparison, without modifying either input"]
1037    #[unstable(feature = "float_minimum_maximum", issue = "91079")]
1038    #[inline]
1039    #[cfg(not(feature = "ferrocene_subset"))]
1040    pub const fn minimum(self, other: f64) -> f64 {
1041        intrinsics::minimumf64(self, other)
1042    }
1043
1044    /// Calculates the midpoint (average) between `self` and `rhs`.
1045    ///
1046    /// This returns NaN when *either* argument is NaN or if a combination of
1047    /// +inf and -inf is provided as arguments.
1048    ///
1049    /// # Examples
1050    ///
1051    /// ```
1052    /// assert_eq!(1f64.midpoint(4.0), 2.5);
1053    /// assert_eq!((-5.5f64).midpoint(8.0), 1.25);
1054    /// ```
1055    #[inline]
1056    #[doc(alias = "average")]
1057    #[stable(feature = "num_midpoint", since = "1.85.0")]
1058    #[rustc_const_stable(feature = "num_midpoint", since = "1.85.0")]
1059    #[cfg(not(feature = "ferrocene_subset"))]
1060    pub const fn midpoint(self, other: f64) -> f64 {
1061        const HI: f64 = f64::MAX / 2.;
1062
1063        let (a, b) = (self, other);
1064        let abs_a = a.abs();
1065        let abs_b = b.abs();
1066
1067        if abs_a <= HI && abs_b <= HI {
1068            // Overflow is impossible
1069            (a + b) / 2.
1070        } else {
1071            (a / 2.) + (b / 2.)
1072        }
1073    }
1074
1075    /// Rounds toward zero and converts to any primitive integer type,
1076    /// assuming that the value is finite and fits in that type.
1077    ///
1078    /// ```
1079    /// let value = 4.6_f64;
1080    /// let rounded = unsafe { value.to_int_unchecked::<u16>() };
1081    /// assert_eq!(rounded, 4);
1082    ///
1083    /// let value = -128.9_f64;
1084    /// let rounded = unsafe { value.to_int_unchecked::<i8>() };
1085    /// assert_eq!(rounded, i8::MIN);
1086    /// ```
1087    ///
1088    /// # Safety
1089    ///
1090    /// The value must:
1091    ///
1092    /// * Not be `NaN`
1093    /// * Not be infinite
1094    /// * Be representable in the return type `Int`, after truncating off its fractional part
1095    #[must_use = "this returns the result of the operation, \
1096                  without modifying the original"]
1097    #[stable(feature = "float_approx_unchecked_to", since = "1.44.0")]
1098    #[inline]
1099    #[cfg(not(feature = "ferrocene_subset"))]
1100    pub unsafe fn to_int_unchecked<Int>(self) -> Int
1101    where
1102        Self: FloatToInt<Int>,
1103    {
1104        // SAFETY: the caller must uphold the safety contract for
1105        // `FloatToInt::to_int_unchecked`.
1106        unsafe { FloatToInt::<Int>::to_int_unchecked(self) }
1107    }
1108
1109    /// Raw transmutation to `u64`.
1110    ///
1111    /// This is currently identical to `transmute::<f64, u64>(self)` on all platforms.
1112    ///
1113    /// See [`from_bits`](Self::from_bits) for some discussion of the
1114    /// portability of this operation (there are almost no issues).
1115    ///
1116    /// Note that this function is distinct from `as` casting, which attempts to
1117    /// preserve the *numeric* value, and not the bitwise value.
1118    ///
1119    /// # Examples
1120    ///
1121    /// ```
1122    /// assert!((1f64).to_bits() != 1f64 as u64); // to_bits() is not casting!
1123    /// assert_eq!((12.5f64).to_bits(), 0x4029000000000000);
1124    /// ```
1125    #[must_use = "this returns the result of the operation, \
1126                  without modifying the original"]
1127    #[stable(feature = "float_bits_conv", since = "1.20.0")]
1128    #[rustc_const_stable(feature = "const_float_bits_conv", since = "1.83.0")]
1129    #[allow(unnecessary_transmutes)]
1130    #[inline]
1131    pub const fn to_bits(self) -> u64 {
1132        // SAFETY: `u64` is a plain old datatype so we can always transmute to it.
1133        unsafe { mem::transmute(self) }
1134    }
1135
1136    /// Raw transmutation from `u64`.
1137    ///
1138    /// This is currently identical to `transmute::<u64, f64>(v)` on all platforms.
1139    /// It turns out this is incredibly portable, for two reasons:
1140    ///
1141    /// * Floats and Ints have the same endianness on all supported platforms.
1142    /// * IEEE 754 very precisely specifies the bit layout of floats.
1143    ///
1144    /// However there is one caveat: prior to the 2008 version of IEEE 754, how
1145    /// to interpret the NaN signaling bit wasn't actually specified. Most platforms
1146    /// (notably x86 and ARM) picked the interpretation that was ultimately
1147    /// standardized in 2008, but some didn't (notably MIPS). As a result, all
1148    /// signaling NaNs on MIPS are quiet NaNs on x86, and vice-versa.
1149    ///
1150    /// Rather than trying to preserve signaling-ness cross-platform, this
1151    /// implementation favors preserving the exact bits. This means that
1152    /// any payloads encoded in NaNs will be preserved even if the result of
1153    /// this method is sent over the network from an x86 machine to a MIPS one.
1154    ///
1155    /// If the results of this method are only manipulated by the same
1156    /// architecture that produced them, then there is no portability concern.
1157    ///
1158    /// If the input isn't NaN, then there is no portability concern.
1159    ///
1160    /// If you don't care about signaling-ness (very likely), then there is no
1161    /// portability concern.
1162    ///
1163    /// Note that this function is distinct from `as` casting, which attempts to
1164    /// preserve the *numeric* value, and not the bitwise value.
1165    ///
1166    /// # Examples
1167    ///
1168    /// ```
1169    /// let v = f64::from_bits(0x4029000000000000);
1170    /// assert_eq!(v, 12.5);
1171    /// ```
1172    #[stable(feature = "float_bits_conv", since = "1.20.0")]
1173    #[rustc_const_stable(feature = "const_float_bits_conv", since = "1.83.0")]
1174    #[must_use]
1175    #[inline]
1176    #[allow(unnecessary_transmutes)]
1177    pub const fn from_bits(v: u64) -> Self {
1178        // It turns out the safety issues with sNaN were overblown! Hooray!
1179        // SAFETY: `u64` is a plain old datatype so we can always transmute from it.
1180        unsafe { mem::transmute(v) }
1181    }
1182
1183    /// Returns the memory representation of this floating point number as a byte array in
1184    /// big-endian (network) byte order.
1185    ///
1186    /// See [`from_bits`](Self::from_bits) for some discussion of the
1187    /// portability of this operation (there are almost no issues).
1188    ///
1189    /// # Examples
1190    ///
1191    /// ```
1192    /// let bytes = 12.5f64.to_be_bytes();
1193    /// assert_eq!(bytes, [0x40, 0x29, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00]);
1194    /// ```
1195    #[must_use = "this returns the result of the operation, \
1196                  without modifying the original"]
1197    #[stable(feature = "float_to_from_bytes", since = "1.40.0")]
1198    #[rustc_const_stable(feature = "const_float_bits_conv", since = "1.83.0")]
1199    #[inline]
1200    #[cfg(not(feature = "ferrocene_subset"))]
1201    pub const fn to_be_bytes(self) -> [u8; 8] {
1202        self.to_bits().to_be_bytes()
1203    }
1204
1205    /// Returns the memory representation of this floating point number as a byte array in
1206    /// little-endian byte order.
1207    ///
1208    /// See [`from_bits`](Self::from_bits) for some discussion of the
1209    /// portability of this operation (there are almost no issues).
1210    ///
1211    /// # Examples
1212    ///
1213    /// ```
1214    /// let bytes = 12.5f64.to_le_bytes();
1215    /// assert_eq!(bytes, [0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x29, 0x40]);
1216    /// ```
1217    #[must_use = "this returns the result of the operation, \
1218                  without modifying the original"]
1219    #[stable(feature = "float_to_from_bytes", since = "1.40.0")]
1220    #[rustc_const_stable(feature = "const_float_bits_conv", since = "1.83.0")]
1221    #[inline]
1222    pub const fn to_le_bytes(self) -> [u8; 8] {
1223        self.to_bits().to_le_bytes()
1224    }
1225
1226    /// Returns the memory representation of this floating point number as a byte array in
1227    /// native byte order.
1228    ///
1229    /// As the target platform's native endianness is used, portable code
1230    /// should use [`to_be_bytes`] or [`to_le_bytes`], as appropriate, instead.
1231    ///
1232    /// [`to_be_bytes`]: f64::to_be_bytes
1233    /// [`to_le_bytes`]: f64::to_le_bytes
1234    ///
1235    /// See [`from_bits`](Self::from_bits) for some discussion of the
1236    /// portability of this operation (there are almost no issues).
1237    ///
1238    /// # Examples
1239    ///
1240    /// ```
1241    /// let bytes = 12.5f64.to_ne_bytes();
1242    /// assert_eq!(
1243    ///     bytes,
1244    ///     if cfg!(target_endian = "big") {
1245    ///         [0x40, 0x29, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00]
1246    ///     } else {
1247    ///         [0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x29, 0x40]
1248    ///     }
1249    /// );
1250    /// ```
1251    #[must_use = "this returns the result of the operation, \
1252                  without modifying the original"]
1253    #[stable(feature = "float_to_from_bytes", since = "1.40.0")]
1254    #[rustc_const_stable(feature = "const_float_bits_conv", since = "1.83.0")]
1255    #[inline]
1256    #[cfg(not(feature = "ferrocene_subset"))]
1257    pub const fn to_ne_bytes(self) -> [u8; 8] {
1258        self.to_bits().to_ne_bytes()
1259    }
1260
1261    /// Creates a floating point value from its representation as a byte array in big endian.
1262    ///
1263    /// See [`from_bits`](Self::from_bits) for some discussion of the
1264    /// portability of this operation (there are almost no issues).
1265    ///
1266    /// # Examples
1267    ///
1268    /// ```
1269    /// let value = f64::from_be_bytes([0x40, 0x29, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00]);
1270    /// assert_eq!(value, 12.5);
1271    /// ```
1272    #[stable(feature = "float_to_from_bytes", since = "1.40.0")]
1273    #[rustc_const_stable(feature = "const_float_bits_conv", since = "1.83.0")]
1274    #[must_use]
1275    #[inline]
1276    #[cfg(not(feature = "ferrocene_subset"))]
1277    pub const fn from_be_bytes(bytes: [u8; 8]) -> Self {
1278        Self::from_bits(u64::from_be_bytes(bytes))
1279    }
1280
1281    /// Creates a floating point value from its representation as a byte array in little endian.
1282    ///
1283    /// See [`from_bits`](Self::from_bits) for some discussion of the
1284    /// portability of this operation (there are almost no issues).
1285    ///
1286    /// # Examples
1287    ///
1288    /// ```
1289    /// let value = f64::from_le_bytes([0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x29, 0x40]);
1290    /// assert_eq!(value, 12.5);
1291    /// ```
1292    #[stable(feature = "float_to_from_bytes", since = "1.40.0")]
1293    #[rustc_const_stable(feature = "const_float_bits_conv", since = "1.83.0")]
1294    #[must_use]
1295    #[inline]
1296    pub const fn from_le_bytes(bytes: [u8; 8]) -> Self {
1297        Self::from_bits(u64::from_le_bytes(bytes))
1298    }
1299
1300    /// Creates a floating point value from its representation as a byte array in native endian.
1301    ///
1302    /// As the target platform's native endianness is used, portable code
1303    /// likely wants to use [`from_be_bytes`] or [`from_le_bytes`], as
1304    /// appropriate instead.
1305    ///
1306    /// [`from_be_bytes`]: f64::from_be_bytes
1307    /// [`from_le_bytes`]: f64::from_le_bytes
1308    ///
1309    /// See [`from_bits`](Self::from_bits) for some discussion of the
1310    /// portability of this operation (there are almost no issues).
1311    ///
1312    /// # Examples
1313    ///
1314    /// ```
1315    /// let value = f64::from_ne_bytes(if cfg!(target_endian = "big") {
1316    ///     [0x40, 0x29, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00]
1317    /// } else {
1318    ///     [0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x29, 0x40]
1319    /// });
1320    /// assert_eq!(value, 12.5);
1321    /// ```
1322    #[stable(feature = "float_to_from_bytes", since = "1.40.0")]
1323    #[rustc_const_stable(feature = "const_float_bits_conv", since = "1.83.0")]
1324    #[must_use]
1325    #[inline]
1326    #[cfg(not(feature = "ferrocene_subset"))]
1327    pub const fn from_ne_bytes(bytes: [u8; 8]) -> Self {
1328        Self::from_bits(u64::from_ne_bytes(bytes))
1329    }
1330
1331    /// Returns the ordering between `self` and `other`.
1332    ///
1333    /// Unlike the standard partial comparison between floating point numbers,
1334    /// this comparison always produces an ordering in accordance to
1335    /// the `totalOrder` predicate as defined in the IEEE 754 (2008 revision)
1336    /// floating point standard. The values are ordered in the following sequence:
1337    ///
1338    /// - negative quiet NaN
1339    /// - negative signaling NaN
1340    /// - negative infinity
1341    /// - negative numbers
1342    /// - negative subnormal numbers
1343    /// - negative zero
1344    /// - positive zero
1345    /// - positive subnormal numbers
1346    /// - positive numbers
1347    /// - positive infinity
1348    /// - positive signaling NaN
1349    /// - positive quiet NaN.
1350    ///
1351    /// The ordering established by this function does not always agree with the
1352    /// [`PartialOrd`] and [`PartialEq`] implementations of `f64`. For example,
1353    /// they consider negative and positive zero equal, while `total_cmp`
1354    /// doesn't.
1355    ///
1356    /// The interpretation of the signaling NaN bit follows the definition in
1357    /// the IEEE 754 standard, which may not match the interpretation by some of
1358    /// the older, non-conformant (e.g. MIPS) hardware implementations.
1359    ///
1360    /// # Example
1361    ///
1362    /// ```
1363    /// struct GoodBoy {
1364    ///     name: String,
1365    ///     weight: f64,
1366    /// }
1367    ///
1368    /// let mut bois = vec![
1369    ///     GoodBoy { name: "Pucci".to_owned(), weight: 0.1 },
1370    ///     GoodBoy { name: "Woofer".to_owned(), weight: 99.0 },
1371    ///     GoodBoy { name: "Yapper".to_owned(), weight: 10.0 },
1372    ///     GoodBoy { name: "Chonk".to_owned(), weight: f64::INFINITY },
1373    ///     GoodBoy { name: "Abs. Unit".to_owned(), weight: f64::NAN },
1374    ///     GoodBoy { name: "Floaty".to_owned(), weight: -5.0 },
1375    /// ];
1376    ///
1377    /// bois.sort_by(|a, b| a.weight.total_cmp(&b.weight));
1378    ///
1379    /// // `f64::NAN` could be positive or negative, which will affect the sort order.
1380    /// if f64::NAN.is_sign_negative() {
1381    ///     assert!(bois.into_iter().map(|b| b.weight)
1382    ///         .zip([f64::NAN, -5.0, 0.1, 10.0, 99.0, f64::INFINITY].iter())
1383    ///         .all(|(a, b)| a.to_bits() == b.to_bits()))
1384    /// } else {
1385    ///     assert!(bois.into_iter().map(|b| b.weight)
1386    ///         .zip([-5.0, 0.1, 10.0, 99.0, f64::INFINITY, f64::NAN].iter())
1387    ///         .all(|(a, b)| a.to_bits() == b.to_bits()))
1388    /// }
1389    /// ```
1390    #[stable(feature = "total_cmp", since = "1.62.0")]
1391    #[rustc_const_unstable(feature = "const_cmp", issue = "143800")]
1392    #[must_use]
1393    #[inline]
1394    #[cfg(not(feature = "ferrocene_subset"))]
1395    pub const fn total_cmp(&self, other: &Self) -> crate::cmp::Ordering {
1396        let mut left = self.to_bits() as i64;
1397        let mut right = other.to_bits() as i64;
1398
1399        // In case of negatives, flip all the bits except the sign
1400        // to achieve a similar layout as two's complement integers
1401        //
1402        // Why does this work? IEEE 754 floats consist of three fields:
1403        // Sign bit, exponent and mantissa. The set of exponent and mantissa
1404        // fields as a whole have the property that their bitwise order is
1405        // equal to the numeric magnitude where the magnitude is defined.
1406        // The magnitude is not normally defined on NaN values, but
1407        // IEEE 754 totalOrder defines the NaN values also to follow the
1408        // bitwise order. This leads to order explained in the doc comment.
1409        // However, the representation of magnitude is the same for negative
1410        // and positive numbers – only the sign bit is different.
1411        // To easily compare the floats as signed integers, we need to
1412        // flip the exponent and mantissa bits in case of negative numbers.
1413        // We effectively convert the numbers to "two's complement" form.
1414        //
1415        // To do the flipping, we construct a mask and XOR against it.
1416        // We branchlessly calculate an "all-ones except for the sign bit"
1417        // mask from negative-signed values: right shifting sign-extends
1418        // the integer, so we "fill" the mask with sign bits, and then
1419        // convert to unsigned to push one more zero bit.
1420        // On positive values, the mask is all zeros, so it's a no-op.
1421        left ^= (((left >> 63) as u64) >> 1) as i64;
1422        right ^= (((right >> 63) as u64) >> 1) as i64;
1423
1424        left.cmp(&right)
1425    }
1426
1427    /// Restrict a value to a certain interval unless it is NaN.
1428    ///
1429    /// Returns `max` if `self` is greater than `max`, and `min` if `self` is
1430    /// less than `min`. Otherwise this returns `self`.
1431    ///
1432    /// Note that this function returns NaN if the initial value was NaN as
1433    /// well. If the result is zero and among the three inputs `self`, `min`, and `max` there are
1434    /// zeros with different sign, either `0.0` or `-0.0` is returned non-deterministically.
1435    ///
1436    /// # Panics
1437    ///
1438    /// Panics if `min > max`, `min` is NaN, or `max` is NaN.
1439    ///
1440    /// # Examples
1441    ///
1442    /// ```
1443    /// assert!((-3.0f64).clamp(-2.0, 1.0) == -2.0);
1444    /// assert!((0.0f64).clamp(-2.0, 1.0) == 0.0);
1445    /// assert!((2.0f64).clamp(-2.0, 1.0) == 1.0);
1446    /// assert!((f64::NAN).clamp(-2.0, 1.0).is_nan());
1447    ///
1448    /// // These always returns zero, but the sign (which is ignored by `==`) is non-deterministic.
1449    /// assert!((0.0f64).clamp(-0.0, -0.0) == 0.0);
1450    /// assert!((1.0f64).clamp(-0.0, 0.0) == 0.0);
1451    /// // This is definitely a negative zero.
1452    /// assert!((-1.0f64).clamp(-0.0, 1.0).is_sign_negative());
1453    /// ```
1454    #[must_use = "method returns a new number and does not mutate the original value"]
1455    #[stable(feature = "clamp", since = "1.50.0")]
1456    #[rustc_const_stable(feature = "const_float_methods", since = "1.85.0")]
1457    #[inline]
1458    #[cfg(not(feature = "ferrocene_subset"))]
1459    pub const fn clamp(mut self, min: f64, max: f64) -> f64 {
1460        const_assert!(
1461            min <= max,
1462            "min > max, or either was NaN",
1463            "min > max, or either was NaN. min = {min:?}, max = {max:?}",
1464            min: f64,
1465            max: f64,
1466        );
1467
1468        if self < min {
1469            self = min;
1470        }
1471        if self > max {
1472            self = max;
1473        }
1474        self
1475    }
1476
1477    /// Clamps this number to a symmetric range centered around zero.
1478    ///
1479    /// The method clamps the number's magnitude (absolute value) to be at most `limit`.
1480    ///
1481    /// This is functionally equivalent to `self.clamp(-limit, limit)`, but is more
1482    /// explicit about the intent.
1483    ///
1484    /// # Panics
1485    ///
1486    /// Panics if `limit` is negative or NaN, as this indicates a logic error.
1487    ///
1488    /// # Examples
1489    ///
1490    /// ```
1491    /// #![feature(clamp_magnitude)]
1492    /// assert_eq!(5.0f64.clamp_magnitude(3.0), 3.0);
1493    /// assert_eq!((-5.0f64).clamp_magnitude(3.0), -3.0);
1494    /// assert_eq!(2.0f64.clamp_magnitude(3.0), 2.0);
1495    /// assert_eq!((-2.0f64).clamp_magnitude(3.0), -2.0);
1496    /// ```
1497    #[cfg(not(feature = "ferrocene_subset"))]
1498    #[must_use = "this returns the clamped value and does not modify the original"]
1499    #[unstable(feature = "clamp_magnitude", issue = "148519")]
1500    #[inline]
1501    pub fn clamp_magnitude(self, limit: f64) -> f64 {
1502        assert!(limit >= 0.0, "limit must be non-negative");
1503        let limit = limit.abs(); // Canonicalises -0.0 to 0.0
1504        self.clamp(-limit, limit)
1505    }
1506
1507    /// Computes the absolute value of `self`.
1508    ///
1509    /// This function always returns the precise result.
1510    ///
1511    /// # Examples
1512    ///
1513    /// ```
1514    /// let x = 3.5_f64;
1515    /// let y = -3.5_f64;
1516    ///
1517    /// assert_eq!(x.abs(), x);
1518    /// assert_eq!(y.abs(), -y);
1519    ///
1520    /// assert!(f64::NAN.abs().is_nan());
1521    /// ```
1522    #[must_use = "method returns a new number and does not mutate the original value"]
1523    #[stable(feature = "rust1", since = "1.0.0")]
1524    #[rustc_const_stable(feature = "const_float_methods", since = "1.85.0")]
1525    #[inline]
1526    pub const fn abs(self) -> f64 {
1527        intrinsics::fabsf64(self)
1528    }
1529
1530    /// Returns a number that represents the sign of `self`.
1531    ///
1532    /// - `1.0` if the number is positive, `+0.0` or `INFINITY`
1533    /// - `-1.0` if the number is negative, `-0.0` or `NEG_INFINITY`
1534    /// - NaN if the number is NaN
1535    ///
1536    /// # Examples
1537    ///
1538    /// ```
1539    /// let f = 3.5_f64;
1540    ///
1541    /// assert_eq!(f.signum(), 1.0);
1542    /// assert_eq!(f64::NEG_INFINITY.signum(), -1.0);
1543    ///
1544    /// assert!(f64::NAN.signum().is_nan());
1545    /// ```
1546    #[must_use = "method returns a new number and does not mutate the original value"]
1547    #[stable(feature = "rust1", since = "1.0.0")]
1548    #[rustc_const_stable(feature = "const_float_methods", since = "1.85.0")]
1549    #[inline]
1550    #[cfg(not(feature = "ferrocene_subset"))]
1551    pub const fn signum(self) -> f64 {
1552        if self.is_nan() { Self::NAN } else { 1.0_f64.copysign(self) }
1553    }
1554
1555    /// Returns a number composed of the magnitude of `self` and the sign of
1556    /// `sign`.
1557    ///
1558    /// Equal to `self` if the sign of `self` and `sign` are the same, otherwise equal to `-self`.
1559    /// If `self` is a NaN, then a NaN with the same payload as `self` and the sign bit of `sign` is
1560    /// returned.
1561    ///
1562    /// If `sign` is a NaN, then this operation will still carry over its sign into the result. Note
1563    /// that IEEE 754 doesn't assign any meaning to the sign bit in case of a NaN, and as Rust
1564    /// doesn't guarantee that the bit pattern of NaNs are conserved over arithmetic operations, the
1565    /// result of `copysign` with `sign` being a NaN might produce an unexpected or non-portable
1566    /// result. See the [specification of NaN bit patterns](primitive@f32#nan-bit-patterns) for more
1567    /// info.
1568    ///
1569    /// # Examples
1570    ///
1571    /// ```
1572    /// let f = 3.5_f64;
1573    ///
1574    /// assert_eq!(f.copysign(0.42), 3.5_f64);
1575    /// assert_eq!(f.copysign(-0.42), -3.5_f64);
1576    /// assert_eq!((-f).copysign(0.42), 3.5_f64);
1577    /// assert_eq!((-f).copysign(-0.42), -3.5_f64);
1578    ///
1579    /// assert!(f64::NAN.copysign(1.0).is_nan());
1580    /// ```
1581    #[must_use = "method returns a new number and does not mutate the original value"]
1582    #[stable(feature = "copysign", since = "1.35.0")]
1583    #[rustc_const_stable(feature = "const_float_methods", since = "1.85.0")]
1584    #[inline]
1585    pub const fn copysign(self, sign: f64) -> f64 {
1586        intrinsics::copysignf64(self, sign)
1587    }
1588
1589    /// Float addition that allows optimizations based on algebraic rules.
1590    ///
1591    /// See [algebraic operators](primitive@f32#algebraic-operators) for more info.
1592    #[must_use = "method returns a new number and does not mutate the original value"]
1593    #[unstable(feature = "float_algebraic", issue = "136469")]
1594    #[rustc_const_unstable(feature = "float_algebraic", issue = "136469")]
1595    #[inline]
1596    #[cfg(not(feature = "ferrocene_subset"))]
1597    pub const fn algebraic_add(self, rhs: f64) -> f64 {
1598        intrinsics::fadd_algebraic(self, rhs)
1599    }
1600
1601    /// Float subtraction that allows optimizations based on algebraic rules.
1602    ///
1603    /// See [algebraic operators](primitive@f32#algebraic-operators) for more info.
1604    #[must_use = "method returns a new number and does not mutate the original value"]
1605    #[unstable(feature = "float_algebraic", issue = "136469")]
1606    #[rustc_const_unstable(feature = "float_algebraic", issue = "136469")]
1607    #[inline]
1608    #[cfg(not(feature = "ferrocene_subset"))]
1609    pub const fn algebraic_sub(self, rhs: f64) -> f64 {
1610        intrinsics::fsub_algebraic(self, rhs)
1611    }
1612
1613    /// Float multiplication that allows optimizations based on algebraic rules.
1614    ///
1615    /// See [algebraic operators](primitive@f32#algebraic-operators) for more info.
1616    #[must_use = "method returns a new number and does not mutate the original value"]
1617    #[unstable(feature = "float_algebraic", issue = "136469")]
1618    #[rustc_const_unstable(feature = "float_algebraic", issue = "136469")]
1619    #[inline]
1620    #[cfg(not(feature = "ferrocene_subset"))]
1621    pub const fn algebraic_mul(self, rhs: f64) -> f64 {
1622        intrinsics::fmul_algebraic(self, rhs)
1623    }
1624
1625    /// Float division that allows optimizations based on algebraic rules.
1626    ///
1627    /// See [algebraic operators](primitive@f32#algebraic-operators) for more info.
1628    #[must_use = "method returns a new number and does not mutate the original value"]
1629    #[unstable(feature = "float_algebraic", issue = "136469")]
1630    #[rustc_const_unstable(feature = "float_algebraic", issue = "136469")]
1631    #[inline]
1632    #[cfg(not(feature = "ferrocene_subset"))]
1633    pub const fn algebraic_div(self, rhs: f64) -> f64 {
1634        intrinsics::fdiv_algebraic(self, rhs)
1635    }
1636
1637    /// Float remainder that allows optimizations based on algebraic rules.
1638    ///
1639    /// See [algebraic operators](primitive@f32#algebraic-operators) for more info.
1640    #[must_use = "method returns a new number and does not mutate the original value"]
1641    #[unstable(feature = "float_algebraic", issue = "136469")]
1642    #[rustc_const_unstable(feature = "float_algebraic", issue = "136469")]
1643    #[inline]
1644    #[cfg(not(feature = "ferrocene_subset"))]
1645    pub const fn algebraic_rem(self, rhs: f64) -> f64 {
1646        intrinsics::frem_algebraic(self, rhs)
1647    }
1648}
1649
1650#[unstable(feature = "core_float_math", issue = "137578")]
1651/// Experimental implementations of floating point functions in `core`.
1652///
1653/// _The standalone functions in this module are for testing only.
1654/// They will be stabilized as inherent methods._
1655#[cfg(not(feature = "ferrocene_subset"))]
1656pub mod math {
1657    use crate::intrinsics;
1658    use crate::num::libm;
1659
1660    /// Experimental version of `floor` in `core`. See [`f64::floor`] for details.
1661    ///
1662    /// # Examples
1663    ///
1664    /// ```
1665    /// #![feature(core_float_math)]
1666    ///
1667    /// use core::f64;
1668    ///
1669    /// let f = 3.7_f64;
1670    /// let g = 3.0_f64;
1671    /// let h = -3.7_f64;
1672    ///
1673    /// assert_eq!(f64::math::floor(f), 3.0);
1674    /// assert_eq!(f64::math::floor(g), 3.0);
1675    /// assert_eq!(f64::math::floor(h), -4.0);
1676    /// ```
1677    ///
1678    /// _This standalone function is for testing only.
1679    /// It will be stabilized as an inherent method._
1680    ///
1681    /// [`f64::floor`]: ../../../std/primitive.f64.html#method.floor
1682    #[inline]
1683    #[unstable(feature = "core_float_math", issue = "137578")]
1684    #[must_use = "method returns a new number and does not mutate the original value"]
1685    pub const fn floor(x: f64) -> f64 {
1686        intrinsics::floorf64(x)
1687    }
1688
1689    /// Experimental version of `ceil` in `core`. See [`f64::ceil`] for details.
1690    ///
1691    /// # Examples
1692    ///
1693    /// ```
1694    /// #![feature(core_float_math)]
1695    ///
1696    /// use core::f64;
1697    ///
1698    /// let f = 3.01_f64;
1699    /// let g = 4.0_f64;
1700    ///
1701    /// assert_eq!(f64::math::ceil(f), 4.0);
1702    /// assert_eq!(f64::math::ceil(g), 4.0);
1703    /// ```
1704    ///
1705    /// _This standalone function is for testing only.
1706    /// It will be stabilized as an inherent method._
1707    ///
1708    /// [`f64::ceil`]: ../../../std/primitive.f64.html#method.ceil
1709    #[inline]
1710    #[doc(alias = "ceiling")]
1711    #[unstable(feature = "core_float_math", issue = "137578")]
1712    #[must_use = "method returns a new number and does not mutate the original value"]
1713    pub const fn ceil(x: f64) -> f64 {
1714        intrinsics::ceilf64(x)
1715    }
1716
1717    /// Experimental version of `round` in `core`. See [`f64::round`] for details.
1718    ///
1719    /// # Examples
1720    ///
1721    /// ```
1722    /// #![feature(core_float_math)]
1723    ///
1724    /// use core::f64;
1725    ///
1726    /// let f = 3.3_f64;
1727    /// let g = -3.3_f64;
1728    /// let h = -3.7_f64;
1729    /// let i = 3.5_f64;
1730    /// let j = 4.5_f64;
1731    ///
1732    /// assert_eq!(f64::math::round(f), 3.0);
1733    /// assert_eq!(f64::math::round(g), -3.0);
1734    /// assert_eq!(f64::math::round(h), -4.0);
1735    /// assert_eq!(f64::math::round(i), 4.0);
1736    /// assert_eq!(f64::math::round(j), 5.0);
1737    /// ```
1738    ///
1739    /// _This standalone function is for testing only.
1740    /// It will be stabilized as an inherent method._
1741    ///
1742    /// [`f64::round`]: ../../../std/primitive.f64.html#method.round
1743    #[inline]
1744    #[unstable(feature = "core_float_math", issue = "137578")]
1745    #[must_use = "method returns a new number and does not mutate the original value"]
1746    pub const fn round(x: f64) -> f64 {
1747        intrinsics::roundf64(x)
1748    }
1749
1750    /// Experimental version of `round_ties_even` in `core`. See [`f64::round_ties_even`] for
1751    /// details.
1752    ///
1753    /// # Examples
1754    ///
1755    /// ```
1756    /// #![feature(core_float_math)]
1757    ///
1758    /// use core::f64;
1759    ///
1760    /// let f = 3.3_f64;
1761    /// let g = -3.3_f64;
1762    /// let h = 3.5_f64;
1763    /// let i = 4.5_f64;
1764    ///
1765    /// assert_eq!(f64::math::round_ties_even(f), 3.0);
1766    /// assert_eq!(f64::math::round_ties_even(g), -3.0);
1767    /// assert_eq!(f64::math::round_ties_even(h), 4.0);
1768    /// assert_eq!(f64::math::round_ties_even(i), 4.0);
1769    /// ```
1770    ///
1771    /// _This standalone function is for testing only.
1772    /// It will be stabilized as an inherent method._
1773    ///
1774    /// [`f64::round_ties_even`]: ../../../std/primitive.f64.html#method.round_ties_even
1775    #[inline]
1776    #[unstable(feature = "core_float_math", issue = "137578")]
1777    #[must_use = "method returns a new number and does not mutate the original value"]
1778    pub const fn round_ties_even(x: f64) -> f64 {
1779        intrinsics::round_ties_even_f64(x)
1780    }
1781
1782    /// Experimental version of `trunc` in `core`. See [`f64::trunc`] for details.
1783    ///
1784    /// # Examples
1785    ///
1786    /// ```
1787    /// #![feature(core_float_math)]
1788    ///
1789    /// use core::f64;
1790    ///
1791    /// let f = 3.7_f64;
1792    /// let g = 3.0_f64;
1793    /// let h = -3.7_f64;
1794    ///
1795    /// assert_eq!(f64::math::trunc(f), 3.0);
1796    /// assert_eq!(f64::math::trunc(g), 3.0);
1797    /// assert_eq!(f64::math::trunc(h), -3.0);
1798    /// ```
1799    ///
1800    /// _This standalone function is for testing only.
1801    /// It will be stabilized as an inherent method._
1802    ///
1803    /// [`f64::trunc`]: ../../../std/primitive.f64.html#method.trunc
1804    #[inline]
1805    #[doc(alias = "truncate")]
1806    #[unstable(feature = "core_float_math", issue = "137578")]
1807    #[must_use = "method returns a new number and does not mutate the original value"]
1808    pub const fn trunc(x: f64) -> f64 {
1809        intrinsics::truncf64(x)
1810    }
1811
1812    /// Experimental version of `fract` in `core`. See [`f64::fract`] for details.
1813    ///
1814    /// # Examples
1815    ///
1816    /// ```
1817    /// #![feature(core_float_math)]
1818    ///
1819    /// use core::f64;
1820    ///
1821    /// let x = 3.6_f64;
1822    /// let y = -3.6_f64;
1823    /// let abs_difference_x = (f64::math::fract(x) - 0.6).abs();
1824    /// let abs_difference_y = (f64::math::fract(y) - (-0.6)).abs();
1825    ///
1826    /// assert!(abs_difference_x < 1e-10);
1827    /// assert!(abs_difference_y < 1e-10);
1828    /// ```
1829    ///
1830    /// _This standalone function is for testing only.
1831    /// It will be stabilized as an inherent method._
1832    ///
1833    /// [`f64::fract`]: ../../../std/primitive.f64.html#method.fract
1834    #[inline]
1835    #[unstable(feature = "core_float_math", issue = "137578")]
1836    #[must_use = "method returns a new number and does not mutate the original value"]
1837    pub const fn fract(x: f64) -> f64 {
1838        x - trunc(x)
1839    }
1840
1841    /// Experimental version of `mul_add` in `core`. See [`f64::mul_add`] for details.
1842    ///
1843    /// # Examples
1844    ///
1845    /// ```
1846    /// #![feature(core_float_math)]
1847    ///
1848    /// # // FIXME(#140515): mingw has an incorrect fma
1849    /// # // https://sourceforge.net/p/mingw-w64/bugs/848/
1850    /// # #[cfg(all(target_os = "windows", target_env = "gnu", not(target_abi = "llvm")))] {
1851    /// use core::f64;
1852    ///
1853    /// let m = 10.0_f64;
1854    /// let x = 4.0_f64;
1855    /// let b = 60.0_f64;
1856    ///
1857    /// assert_eq!(f64::math::mul_add(m, x, b), 100.0);
1858    /// assert_eq!(m * x + b, 100.0);
1859    ///
1860    /// let one_plus_eps = 1.0_f64 + f64::EPSILON;
1861    /// let one_minus_eps = 1.0_f64 - f64::EPSILON;
1862    /// let minus_one = -1.0_f64;
1863    ///
1864    /// // The exact result (1 + eps) * (1 - eps) = 1 - eps * eps.
1865    /// assert_eq!(
1866    ///     f64::math::mul_add(one_plus_eps, one_minus_eps, minus_one),
1867    ///     -f64::EPSILON * f64::EPSILON
1868    /// );
1869    /// // Different rounding with the non-fused multiply and add.
1870    /// assert_eq!(one_plus_eps * one_minus_eps + minus_one, 0.0);
1871    /// # }
1872    /// ```
1873    ///
1874    /// _This standalone function is for testing only.
1875    /// It will be stabilized as an inherent method._
1876    ///
1877    /// [`f64::mul_add`]: ../../../std/primitive.f64.html#method.mul_add
1878    #[inline]
1879    #[doc(alias = "fma", alias = "fusedMultiplyAdd")]
1880    #[unstable(feature = "core_float_math", issue = "137578")]
1881    #[must_use = "method returns a new number and does not mutate the original value"]
1882    pub const fn mul_add(x: f64, a: f64, b: f64) -> f64 {
1883        intrinsics::fmaf64(x, a, b)
1884    }
1885
1886    /// Experimental version of `div_euclid` in `core`. See [`f64::div_euclid`] for details.
1887    ///
1888    /// # Examples
1889    ///
1890    /// ```
1891    /// #![feature(core_float_math)]
1892    ///
1893    /// use core::f64;
1894    ///
1895    /// let a: f64 = 7.0;
1896    /// let b = 4.0;
1897    /// assert_eq!(f64::math::div_euclid(a, b), 1.0); // 7.0 > 4.0 * 1.0
1898    /// assert_eq!(f64::math::div_euclid(-a, b), -2.0); // -7.0 >= 4.0 * -2.0
1899    /// assert_eq!(f64::math::div_euclid(a, -b), -1.0); // 7.0 >= -4.0 * -1.0
1900    /// assert_eq!(f64::math::div_euclid(-a, -b), 2.0); // -7.0 >= -4.0 * 2.0
1901    /// ```
1902    ///
1903    /// _This standalone function is for testing only.
1904    /// It will be stabilized as an inherent method._
1905    ///
1906    /// [`f64::div_euclid`]: ../../../std/primitive.f64.html#method.div_euclid
1907    #[inline]
1908    #[unstable(feature = "core_float_math", issue = "137578")]
1909    #[must_use = "method returns a new number and does not mutate the original value"]
1910    pub fn div_euclid(x: f64, rhs: f64) -> f64 {
1911        let q = trunc(x / rhs);
1912        if x % rhs < 0.0 {
1913            return if rhs > 0.0 { q - 1.0 } else { q + 1.0 };
1914        }
1915        q
1916    }
1917
1918    /// Experimental version of `rem_euclid` in `core`. See [`f64::rem_euclid`] for details.
1919    ///
1920    /// # Examples
1921    ///
1922    /// ```
1923    /// #![feature(core_float_math)]
1924    ///
1925    /// use core::f64;
1926    ///
1927    /// let a: f64 = 7.0;
1928    /// let b = 4.0;
1929    /// assert_eq!(f64::math::rem_euclid(a, b), 3.0);
1930    /// assert_eq!(f64::math::rem_euclid(-a, b), 1.0);
1931    /// assert_eq!(f64::math::rem_euclid(a, -b), 3.0);
1932    /// assert_eq!(f64::math::rem_euclid(-a, -b), 1.0);
1933    /// // limitation due to round-off error
1934    /// assert!(f64::math::rem_euclid(-f64::EPSILON, 3.0) != 0.0);
1935    /// ```
1936    ///
1937    /// _This standalone function is for testing only.
1938    /// It will be stabilized as an inherent method._
1939    ///
1940    /// [`f64::rem_euclid`]: ../../../std/primitive.f64.html#method.rem_euclid
1941    #[inline]
1942    #[doc(alias = "modulo", alias = "mod")]
1943    #[unstable(feature = "core_float_math", issue = "137578")]
1944    #[must_use = "method returns a new number and does not mutate the original value"]
1945    pub fn rem_euclid(x: f64, rhs: f64) -> f64 {
1946        let r = x % rhs;
1947        if r < 0.0 { r + rhs.abs() } else { r }
1948    }
1949
1950    /// Experimental version of `powi` in `core`. See [`f64::powi`] for details.
1951    ///
1952    /// # Examples
1953    ///
1954    /// ```
1955    /// #![feature(core_float_math)]
1956    ///
1957    /// use core::f64;
1958    ///
1959    /// let x = 2.0_f64;
1960    /// let abs_difference = (f64::math::powi(x, 2) - (x * x)).abs();
1961    /// assert!(abs_difference <= 1e-6);
1962    ///
1963    /// assert_eq!(f64::math::powi(f64::NAN, 0), 1.0);
1964    /// ```
1965    ///
1966    /// _This standalone function is for testing only.
1967    /// It will be stabilized as an inherent method._
1968    ///
1969    /// [`f64::powi`]: ../../../std/primitive.f64.html#method.powi
1970    #[inline]
1971    #[unstable(feature = "core_float_math", issue = "137578")]
1972    #[must_use = "method returns a new number and does not mutate the original value"]
1973    pub fn powi(x: f64, n: i32) -> f64 {
1974        intrinsics::powif64(x, n)
1975    }
1976
1977    /// Experimental version of `sqrt` in `core`. See [`f64::sqrt`] for details.
1978    ///
1979    /// # Examples
1980    ///
1981    /// ```
1982    /// #![feature(core_float_math)]
1983    ///
1984    /// use core::f64;
1985    ///
1986    /// let positive = 4.0_f64;
1987    /// let negative = -4.0_f64;
1988    /// let negative_zero = -0.0_f64;
1989    ///
1990    /// assert_eq!(f64::math::sqrt(positive), 2.0);
1991    /// assert!(f64::math::sqrt(negative).is_nan());
1992    /// assert_eq!(f64::math::sqrt(negative_zero), negative_zero);
1993    /// ```
1994    ///
1995    /// _This standalone function is for testing only.
1996    /// It will be stabilized as an inherent method._
1997    ///
1998    /// [`f64::sqrt`]: ../../../std/primitive.f64.html#method.sqrt
1999    #[inline]
2000    #[doc(alias = "squareRoot")]
2001    #[unstable(feature = "core_float_math", issue = "137578")]
2002    #[must_use = "method returns a new number and does not mutate the original value"]
2003    pub fn sqrt(x: f64) -> f64 {
2004        intrinsics::sqrtf64(x)
2005    }
2006
2007    /// Experimental version of `abs_sub` in `core`. See [`f64::abs_sub`] for details.
2008    ///
2009    /// # Examples
2010    ///
2011    /// ```
2012    /// #![feature(core_float_math)]
2013    ///
2014    /// use core::f64;
2015    ///
2016    /// let x = 3.0_f64;
2017    /// let y = -3.0_f64;
2018    ///
2019    /// let abs_difference_x = (f64::math::abs_sub(x, 1.0) - 2.0).abs();
2020    /// let abs_difference_y = (f64::math::abs_sub(y, 1.0) - 0.0).abs();
2021    ///
2022    /// assert!(abs_difference_x < 1e-10);
2023    /// assert!(abs_difference_y < 1e-10);
2024    /// ```
2025    ///
2026    /// _This standalone function is for testing only.
2027    /// It will be stabilized as an inherent method._
2028    ///
2029    /// [`f64::abs_sub`]: ../../../std/primitive.f64.html#method.abs_sub
2030    #[inline]
2031    #[unstable(feature = "core_float_math", issue = "137578")]
2032    #[deprecated(
2033        since = "1.10.0",
2034        note = "you probably meant `(self - other).abs()`: \
2035                this operation is `(self - other).max(0.0)` \
2036                except that `abs_sub` also propagates NaNs (also \
2037                known as `fdim` in C). If you truly need the positive \
2038                difference, consider using that expression or the C function \
2039                `fdim`, depending on how you wish to handle NaN (please consider \
2040                filing an issue describing your use-case too)."
2041    )]
2042    #[must_use = "method returns a new number and does not mutate the original value"]
2043    pub fn abs_sub(x: f64, other: f64) -> f64 {
2044        libm::fdim(x, other)
2045    }
2046
2047    /// Experimental version of `cbrt` in `core`. See [`f64::cbrt`] for details.
2048    ///
2049    /// # Examples
2050    ///
2051    /// ```
2052    /// #![feature(core_float_math)]
2053    ///
2054    /// use core::f64;
2055    ///
2056    /// let x = 8.0_f64;
2057    ///
2058    /// // x^(1/3) - 2 == 0
2059    /// let abs_difference = (f64::math::cbrt(x) - 2.0).abs();
2060    ///
2061    /// assert!(abs_difference < 1e-10);
2062    /// ```
2063    ///
2064    /// _This standalone function is for testing only.
2065    /// It will be stabilized as an inherent method._
2066    ///
2067    /// [`f64::cbrt`]: ../../../std/primitive.f64.html#method.cbrt
2068    #[inline]
2069    #[unstable(feature = "core_float_math", issue = "137578")]
2070    #[must_use = "method returns a new number and does not mutate the original value"]
2071    pub fn cbrt(x: f64) -> f64 {
2072        libm::cbrt(x)
2073    }
2074}