core/num/f64.rs
1//! Constants for the `f64` double-precision floating point type.
2//!
3//! *[See also the `f64` primitive type][f64].*
4//!
5//! Mathematically significant numbers are provided in the `consts` sub-module.
6//!
7//! For the constants defined directly in this module
8//! (as distinct from those defined in the `consts` sub-module),
9//! new code should instead use the associated constants
10//! defined directly on the `f64` type.
11
12#![stable(feature = "rust1", since = "1.0.0")]
13
14#[cfg(not(feature = "ferrocene_certified"))]
15use crate::convert::FloatToInt;
16#[cfg(not(feature = "ferrocene_certified"))]
17use crate::num::FpCategory;
18#[cfg(not(feature = "ferrocene_certified"))]
19use crate::panic::const_assert;
20use crate::{intrinsics, mem};
21
22/// The radix or base of the internal representation of `f64`.
23/// Use [`f64::RADIX`] instead.
24///
25/// # Examples
26///
27/// ```rust
28/// // deprecated way
29/// # #[allow(deprecated, deprecated_in_future)]
30/// let r = std::f64::RADIX;
31///
32/// // intended way
33/// let r = f64::RADIX;
34/// ```
35#[stable(feature = "rust1", since = "1.0.0")]
36#[deprecated(since = "TBD", note = "replaced by the `RADIX` associated constant on `f64`")]
37#[rustc_diagnostic_item = "f64_legacy_const_radix"]
38pub const RADIX: u32 = f64::RADIX;
39
40/// Number of significant digits in base 2.
41/// Use [`f64::MANTISSA_DIGITS`] instead.
42///
43/// # Examples
44///
45/// ```rust
46/// // deprecated way
47/// # #[allow(deprecated, deprecated_in_future)]
48/// let d = std::f64::MANTISSA_DIGITS;
49///
50/// // intended way
51/// let d = f64::MANTISSA_DIGITS;
52/// ```
53#[stable(feature = "rust1", since = "1.0.0")]
54#[deprecated(
55 since = "TBD",
56 note = "replaced by the `MANTISSA_DIGITS` associated constant on `f64`"
57)]
58#[rustc_diagnostic_item = "f64_legacy_const_mantissa_dig"]
59pub const MANTISSA_DIGITS: u32 = f64::MANTISSA_DIGITS;
60
61/// Approximate number of significant digits in base 10.
62/// Use [`f64::DIGITS`] instead.
63///
64/// # Examples
65///
66/// ```rust
67/// // deprecated way
68/// # #[allow(deprecated, deprecated_in_future)]
69/// let d = std::f64::DIGITS;
70///
71/// // intended way
72/// let d = f64::DIGITS;
73/// ```
74#[stable(feature = "rust1", since = "1.0.0")]
75#[deprecated(since = "TBD", note = "replaced by the `DIGITS` associated constant on `f64`")]
76#[rustc_diagnostic_item = "f64_legacy_const_digits"]
77pub const DIGITS: u32 = f64::DIGITS;
78
79/// [Machine epsilon] value for `f64`.
80/// Use [`f64::EPSILON`] instead.
81///
82/// This is the difference between `1.0` and the next larger representable number.
83///
84/// [Machine epsilon]: https://en.wikipedia.org/wiki/Machine_epsilon
85///
86/// # Examples
87///
88/// ```rust
89/// // deprecated way
90/// # #[allow(deprecated, deprecated_in_future)]
91/// let e = std::f64::EPSILON;
92///
93/// // intended way
94/// let e = f64::EPSILON;
95/// ```
96#[stable(feature = "rust1", since = "1.0.0")]
97#[deprecated(since = "TBD", note = "replaced by the `EPSILON` associated constant on `f64`")]
98#[rustc_diagnostic_item = "f64_legacy_const_epsilon"]
99pub const EPSILON: f64 = f64::EPSILON;
100
101/// Smallest finite `f64` value.
102/// Use [`f64::MIN`] instead.
103///
104/// # Examples
105///
106/// ```rust
107/// // deprecated way
108/// # #[allow(deprecated, deprecated_in_future)]
109/// let min = std::f64::MIN;
110///
111/// // intended way
112/// let min = f64::MIN;
113/// ```
114#[stable(feature = "rust1", since = "1.0.0")]
115#[deprecated(since = "TBD", note = "replaced by the `MIN` associated constant on `f64`")]
116#[rustc_diagnostic_item = "f64_legacy_const_min"]
117pub const MIN: f64 = f64::MIN;
118
119/// Smallest positive normal `f64` value.
120/// Use [`f64::MIN_POSITIVE`] instead.
121///
122/// # Examples
123///
124/// ```rust
125/// // deprecated way
126/// # #[allow(deprecated, deprecated_in_future)]
127/// let min = std::f64::MIN_POSITIVE;
128///
129/// // intended way
130/// let min = f64::MIN_POSITIVE;
131/// ```
132#[stable(feature = "rust1", since = "1.0.0")]
133#[deprecated(since = "TBD", note = "replaced by the `MIN_POSITIVE` associated constant on `f64`")]
134#[rustc_diagnostic_item = "f64_legacy_const_min_positive"]
135pub const MIN_POSITIVE: f64 = f64::MIN_POSITIVE;
136
137/// Largest finite `f64` value.
138/// Use [`f64::MAX`] instead.
139///
140/// # Examples
141///
142/// ```rust
143/// // deprecated way
144/// # #[allow(deprecated, deprecated_in_future)]
145/// let max = std::f64::MAX;
146///
147/// // intended way
148/// let max = f64::MAX;
149/// ```
150#[stable(feature = "rust1", since = "1.0.0")]
151#[deprecated(since = "TBD", note = "replaced by the `MAX` associated constant on `f64`")]
152#[rustc_diagnostic_item = "f64_legacy_const_max"]
153pub const MAX: f64 = f64::MAX;
154
155/// One greater than the minimum possible normal power of 2 exponent.
156/// Use [`f64::MIN_EXP`] instead.
157///
158/// # Examples
159///
160/// ```rust
161/// // deprecated way
162/// # #[allow(deprecated, deprecated_in_future)]
163/// let min = std::f64::MIN_EXP;
164///
165/// // intended way
166/// let min = f64::MIN_EXP;
167/// ```
168#[stable(feature = "rust1", since = "1.0.0")]
169#[deprecated(since = "TBD", note = "replaced by the `MIN_EXP` associated constant on `f64`")]
170#[rustc_diagnostic_item = "f64_legacy_const_min_exp"]
171pub const MIN_EXP: i32 = f64::MIN_EXP;
172
173/// Maximum possible power of 2 exponent.
174/// Use [`f64::MAX_EXP`] instead.
175///
176/// # Examples
177///
178/// ```rust
179/// // deprecated way
180/// # #[allow(deprecated, deprecated_in_future)]
181/// let max = std::f64::MAX_EXP;
182///
183/// // intended way
184/// let max = f64::MAX_EXP;
185/// ```
186#[stable(feature = "rust1", since = "1.0.0")]
187#[deprecated(since = "TBD", note = "replaced by the `MAX_EXP` associated constant on `f64`")]
188#[rustc_diagnostic_item = "f64_legacy_const_max_exp"]
189pub const MAX_EXP: i32 = f64::MAX_EXP;
190
191/// Minimum possible normal power of 10 exponent.
192/// Use [`f64::MIN_10_EXP`] instead.
193///
194/// # Examples
195///
196/// ```rust
197/// // deprecated way
198/// # #[allow(deprecated, deprecated_in_future)]
199/// let min = std::f64::MIN_10_EXP;
200///
201/// // intended way
202/// let min = f64::MIN_10_EXP;
203/// ```
204#[stable(feature = "rust1", since = "1.0.0")]
205#[deprecated(since = "TBD", note = "replaced by the `MIN_10_EXP` associated constant on `f64`")]
206#[rustc_diagnostic_item = "f64_legacy_const_min_10_exp"]
207pub const MIN_10_EXP: i32 = f64::MIN_10_EXP;
208
209/// Maximum possible power of 10 exponent.
210/// Use [`f64::MAX_10_EXP`] instead.
211///
212/// # Examples
213///
214/// ```rust
215/// // deprecated way
216/// # #[allow(deprecated, deprecated_in_future)]
217/// let max = std::f64::MAX_10_EXP;
218///
219/// // intended way
220/// let max = f64::MAX_10_EXP;
221/// ```
222#[stable(feature = "rust1", since = "1.0.0")]
223#[deprecated(since = "TBD", note = "replaced by the `MAX_10_EXP` associated constant on `f64`")]
224#[rustc_diagnostic_item = "f64_legacy_const_max_10_exp"]
225pub const MAX_10_EXP: i32 = f64::MAX_10_EXP;
226
227/// Not a Number (NaN).
228/// Use [`f64::NAN`] instead.
229///
230/// # Examples
231///
232/// ```rust
233/// // deprecated way
234/// # #[allow(deprecated, deprecated_in_future)]
235/// let nan = std::f64::NAN;
236///
237/// // intended way
238/// let nan = f64::NAN;
239/// ```
240#[stable(feature = "rust1", since = "1.0.0")]
241#[deprecated(since = "TBD", note = "replaced by the `NAN` associated constant on `f64`")]
242#[rustc_diagnostic_item = "f64_legacy_const_nan"]
243pub const NAN: f64 = f64::NAN;
244
245/// Infinity (∞).
246/// Use [`f64::INFINITY`] instead.
247///
248/// # Examples
249///
250/// ```rust
251/// // deprecated way
252/// # #[allow(deprecated, deprecated_in_future)]
253/// let inf = std::f64::INFINITY;
254///
255/// // intended way
256/// let inf = f64::INFINITY;
257/// ```
258#[stable(feature = "rust1", since = "1.0.0")]
259#[deprecated(since = "TBD", note = "replaced by the `INFINITY` associated constant on `f64`")]
260#[rustc_diagnostic_item = "f64_legacy_const_infinity"]
261pub const INFINITY: f64 = f64::INFINITY;
262
263/// Negative infinity (−∞).
264/// Use [`f64::NEG_INFINITY`] instead.
265///
266/// # Examples
267///
268/// ```rust
269/// // deprecated way
270/// # #[allow(deprecated, deprecated_in_future)]
271/// let ninf = std::f64::NEG_INFINITY;
272///
273/// // intended way
274/// let ninf = f64::NEG_INFINITY;
275/// ```
276#[stable(feature = "rust1", since = "1.0.0")]
277#[deprecated(since = "TBD", note = "replaced by the `NEG_INFINITY` associated constant on `f64`")]
278#[rustc_diagnostic_item = "f64_legacy_const_neg_infinity"]
279pub const NEG_INFINITY: f64 = f64::NEG_INFINITY;
280
281/// Basic mathematical constants.
282#[stable(feature = "rust1", since = "1.0.0")]
283#[rustc_diagnostic_item = "f64_consts_mod"]
284pub mod consts {
285 // FIXME: replace with mathematical constants from cmath.
286
287 /// Archimedes' constant (π)
288 #[stable(feature = "rust1", since = "1.0.0")]
289 pub const PI: f64 = 3.14159265358979323846264338327950288_f64;
290
291 /// The full circle constant (τ)
292 ///
293 /// Equal to 2π.
294 #[stable(feature = "tau_constant", since = "1.47.0")]
295 pub const TAU: f64 = 6.28318530717958647692528676655900577_f64;
296
297 /// The golden ratio (φ)
298 #[unstable(feature = "more_float_constants", issue = "146939")]
299 pub const PHI: f64 = 1.618033988749894848204586834365638118_f64;
300
301 /// The Euler-Mascheroni constant (γ)
302 #[unstable(feature = "more_float_constants", issue = "146939")]
303 pub const EGAMMA: f64 = 0.577215664901532860606512090082402431_f64;
304
305 /// π/2
306 #[stable(feature = "rust1", since = "1.0.0")]
307 pub const FRAC_PI_2: f64 = 1.57079632679489661923132169163975144_f64;
308
309 /// π/3
310 #[stable(feature = "rust1", since = "1.0.0")]
311 pub const FRAC_PI_3: f64 = 1.04719755119659774615421446109316763_f64;
312
313 /// π/4
314 #[stable(feature = "rust1", since = "1.0.0")]
315 pub const FRAC_PI_4: f64 = 0.785398163397448309615660845819875721_f64;
316
317 /// π/6
318 #[stable(feature = "rust1", since = "1.0.0")]
319 pub const FRAC_PI_6: f64 = 0.52359877559829887307710723054658381_f64;
320
321 /// π/8
322 #[stable(feature = "rust1", since = "1.0.0")]
323 pub const FRAC_PI_8: f64 = 0.39269908169872415480783042290993786_f64;
324
325 /// 1/π
326 #[stable(feature = "rust1", since = "1.0.0")]
327 pub const FRAC_1_PI: f64 = 0.318309886183790671537767526745028724_f64;
328
329 /// 1/sqrt(π)
330 #[unstable(feature = "more_float_constants", issue = "146939")]
331 pub const FRAC_1_SQRT_PI: f64 = 0.564189583547756286948079451560772586_f64;
332
333 /// 1/sqrt(2π)
334 #[doc(alias = "FRAC_1_SQRT_TAU")]
335 #[unstable(feature = "more_float_constants", issue = "146939")]
336 pub const FRAC_1_SQRT_2PI: f64 = 0.398942280401432677939946059934381868_f64;
337
338 /// 2/π
339 #[stable(feature = "rust1", since = "1.0.0")]
340 pub const FRAC_2_PI: f64 = 0.636619772367581343075535053490057448_f64;
341
342 /// 2/sqrt(π)
343 #[stable(feature = "rust1", since = "1.0.0")]
344 pub const FRAC_2_SQRT_PI: f64 = 1.12837916709551257389615890312154517_f64;
345
346 /// sqrt(2)
347 #[stable(feature = "rust1", since = "1.0.0")]
348 pub const SQRT_2: f64 = 1.41421356237309504880168872420969808_f64;
349
350 /// 1/sqrt(2)
351 #[stable(feature = "rust1", since = "1.0.0")]
352 pub const FRAC_1_SQRT_2: f64 = 0.707106781186547524400844362104849039_f64;
353
354 /// sqrt(3)
355 #[unstable(feature = "more_float_constants", issue = "146939")]
356 pub const SQRT_3: f64 = 1.732050807568877293527446341505872367_f64;
357
358 /// 1/sqrt(3)
359 #[unstable(feature = "more_float_constants", issue = "146939")]
360 pub const FRAC_1_SQRT_3: f64 = 0.577350269189625764509148780501957456_f64;
361
362 /// Euler's number (e)
363 #[stable(feature = "rust1", since = "1.0.0")]
364 pub const E: f64 = 2.71828182845904523536028747135266250_f64;
365
366 /// log<sub>2</sub>(10)
367 #[stable(feature = "extra_log_consts", since = "1.43.0")]
368 pub const LOG2_10: f64 = 3.32192809488736234787031942948939018_f64;
369
370 /// log<sub>2</sub>(e)
371 #[stable(feature = "rust1", since = "1.0.0")]
372 pub const LOG2_E: f64 = 1.44269504088896340735992468100189214_f64;
373
374 /// log<sub>10</sub>(2)
375 #[stable(feature = "extra_log_consts", since = "1.43.0")]
376 pub const LOG10_2: f64 = 0.301029995663981195213738894724493027_f64;
377
378 /// log<sub>10</sub>(e)
379 #[stable(feature = "rust1", since = "1.0.0")]
380 pub const LOG10_E: f64 = 0.434294481903251827651128918916605082_f64;
381
382 /// ln(2)
383 #[stable(feature = "rust1", since = "1.0.0")]
384 pub const LN_2: f64 = 0.693147180559945309417232121458176568_f64;
385
386 /// ln(10)
387 #[stable(feature = "rust1", since = "1.0.0")]
388 pub const LN_10: f64 = 2.30258509299404568401799145468436421_f64;
389}
390
391impl f64 {
392 /// The radix or base of the internal representation of `f64`.
393 #[stable(feature = "assoc_int_consts", since = "1.43.0")]
394 pub const RADIX: u32 = 2;
395
396 /// Number of significant digits in base 2.
397 ///
398 /// Note that the size of the mantissa in the bitwise representation is one
399 /// smaller than this since the leading 1 is not stored explicitly.
400 #[stable(feature = "assoc_int_consts", since = "1.43.0")]
401 pub const MANTISSA_DIGITS: u32 = 53;
402 /// Approximate number of significant digits in base 10.
403 ///
404 /// This is the maximum <i>x</i> such that any decimal number with <i>x</i>
405 /// significant digits can be converted to `f64` and back without loss.
406 ///
407 /// Equal to floor(log<sub>10</sub> 2<sup>[`MANTISSA_DIGITS`] − 1</sup>).
408 ///
409 /// [`MANTISSA_DIGITS`]: f64::MANTISSA_DIGITS
410 #[stable(feature = "assoc_int_consts", since = "1.43.0")]
411 pub const DIGITS: u32 = 15;
412
413 /// [Machine epsilon] value for `f64`.
414 ///
415 /// This is the difference between `1.0` and the next larger representable number.
416 ///
417 /// Equal to 2<sup>1 − [`MANTISSA_DIGITS`]</sup>.
418 ///
419 /// [Machine epsilon]: https://en.wikipedia.org/wiki/Machine_epsilon
420 /// [`MANTISSA_DIGITS`]: f64::MANTISSA_DIGITS
421 #[stable(feature = "assoc_int_consts", since = "1.43.0")]
422 #[rustc_diagnostic_item = "f64_epsilon"]
423 pub const EPSILON: f64 = 2.2204460492503131e-16_f64;
424
425 /// Smallest finite `f64` value.
426 ///
427 /// Equal to −[`MAX`].
428 ///
429 /// [`MAX`]: f64::MAX
430 #[stable(feature = "assoc_int_consts", since = "1.43.0")]
431 pub const MIN: f64 = -1.7976931348623157e+308_f64;
432 /// Smallest positive normal `f64` value.
433 ///
434 /// Equal to 2<sup>[`MIN_EXP`] − 1</sup>.
435 ///
436 /// [`MIN_EXP`]: f64::MIN_EXP
437 #[stable(feature = "assoc_int_consts", since = "1.43.0")]
438 pub const MIN_POSITIVE: f64 = 2.2250738585072014e-308_f64;
439 /// Largest finite `f64` value.
440 ///
441 /// Equal to
442 /// (1 − 2<sup>−[`MANTISSA_DIGITS`]</sup>) 2<sup>[`MAX_EXP`]</sup>.
443 ///
444 /// [`MANTISSA_DIGITS`]: f64::MANTISSA_DIGITS
445 /// [`MAX_EXP`]: f64::MAX_EXP
446 #[stable(feature = "assoc_int_consts", since = "1.43.0")]
447 pub const MAX: f64 = 1.7976931348623157e+308_f64;
448
449 /// One greater than the minimum possible *normal* power of 2 exponent
450 /// for a significand bounded by 1 ≤ x < 2 (i.e. the IEEE definition).
451 ///
452 /// This corresponds to the exact minimum possible *normal* power of 2 exponent
453 /// for a significand bounded by 0.5 ≤ x < 1 (i.e. the C definition).
454 /// In other words, all normal numbers representable by this type are
455 /// greater than or equal to 0.5 × 2<sup><i>MIN_EXP</i></sup>.
456 #[stable(feature = "assoc_int_consts", since = "1.43.0")]
457 pub const MIN_EXP: i32 = -1021;
458 /// One greater than the maximum possible power of 2 exponent
459 /// for a significand bounded by 1 ≤ x < 2 (i.e. the IEEE definition).
460 ///
461 /// This corresponds to the exact maximum possible power of 2 exponent
462 /// for a significand bounded by 0.5 ≤ x < 1 (i.e. the C definition).
463 /// In other words, all numbers representable by this type are
464 /// strictly less than 2<sup><i>MAX_EXP</i></sup>.
465 #[stable(feature = "assoc_int_consts", since = "1.43.0")]
466 pub const MAX_EXP: i32 = 1024;
467
468 /// Minimum <i>x</i> for which 10<sup><i>x</i></sup> is normal.
469 ///
470 /// Equal to ceil(log<sub>10</sub> [`MIN_POSITIVE`]).
471 ///
472 /// [`MIN_POSITIVE`]: f64::MIN_POSITIVE
473 #[stable(feature = "assoc_int_consts", since = "1.43.0")]
474 pub const MIN_10_EXP: i32 = -307;
475 /// Maximum <i>x</i> for which 10<sup><i>x</i></sup> is normal.
476 ///
477 /// Equal to floor(log<sub>10</sub> [`MAX`]).
478 ///
479 /// [`MAX`]: f64::MAX
480 #[stable(feature = "assoc_int_consts", since = "1.43.0")]
481 pub const MAX_10_EXP: i32 = 308;
482
483 /// Not a Number (NaN).
484 ///
485 /// Note that IEEE 754 doesn't define just a single NaN value; a plethora of bit patterns are
486 /// considered to be NaN. Furthermore, the standard makes a difference between a "signaling" and
487 /// a "quiet" NaN, and allows inspecting its "payload" (the unspecified bits in the bit pattern)
488 /// and its sign. See the [specification of NaN bit patterns](f32#nan-bit-patterns) for more
489 /// info.
490 ///
491 /// This constant is guaranteed to be a quiet NaN (on targets that follow the Rust assumptions
492 /// that the quiet/signaling bit being set to 1 indicates a quiet NaN). Beyond that, nothing is
493 /// guaranteed about the specific bit pattern chosen here: both payload and sign are arbitrary.
494 /// The concrete bit pattern may change across Rust versions and target platforms.
495 #[rustc_diagnostic_item = "f64_nan"]
496 #[stable(feature = "assoc_int_consts", since = "1.43.0")]
497 #[allow(clippy::eq_op)]
498 pub const NAN: f64 = 0.0_f64 / 0.0_f64;
499 /// Infinity (∞).
500 #[stable(feature = "assoc_int_consts", since = "1.43.0")]
501 pub const INFINITY: f64 = 1.0_f64 / 0.0_f64;
502 /// Negative infinity (−∞).
503 #[stable(feature = "assoc_int_consts", since = "1.43.0")]
504 pub const NEG_INFINITY: f64 = -1.0_f64 / 0.0_f64;
505
506 /// Sign bit
507 #[cfg(not(feature = "ferrocene_certified"))]
508 pub(crate) const SIGN_MASK: u64 = 0x8000_0000_0000_0000;
509
510 /// Exponent mask
511 #[cfg(not(feature = "ferrocene_certified"))]
512 pub(crate) const EXP_MASK: u64 = 0x7ff0_0000_0000_0000;
513
514 /// Mantissa mask
515 #[cfg(not(feature = "ferrocene_certified"))]
516 pub(crate) const MAN_MASK: u64 = 0x000f_ffff_ffff_ffff;
517
518 /// Minimum representable positive value (min subnormal)
519 #[cfg(not(feature = "ferrocene_certified"))]
520 const TINY_BITS: u64 = 0x1;
521
522 /// Minimum representable negative value (min negative subnormal)
523 #[cfg(not(feature = "ferrocene_certified"))]
524 const NEG_TINY_BITS: u64 = Self::TINY_BITS | Self::SIGN_MASK;
525
526 /// Returns `true` if this value is NaN.
527 ///
528 /// ```
529 /// let nan = f64::NAN;
530 /// let f = 7.0_f64;
531 ///
532 /// assert!(nan.is_nan());
533 /// assert!(!f.is_nan());
534 /// ```
535 #[must_use]
536 #[stable(feature = "rust1", since = "1.0.0")]
537 #[rustc_const_stable(feature = "const_float_classify", since = "1.83.0")]
538 #[inline]
539 #[allow(clippy::eq_op)] // > if you intended to check if the operand is NaN, use `.is_nan()` instead :)
540 #[cfg(not(feature = "ferrocene_certified"))]
541 pub const fn is_nan(self) -> bool {
542 self != self
543 }
544
545 /// Returns `true` if this value is positive infinity or negative infinity, and
546 /// `false` otherwise.
547 ///
548 /// ```
549 /// let f = 7.0f64;
550 /// let inf = f64::INFINITY;
551 /// let neg_inf = f64::NEG_INFINITY;
552 /// let nan = f64::NAN;
553 ///
554 /// assert!(!f.is_infinite());
555 /// assert!(!nan.is_infinite());
556 ///
557 /// assert!(inf.is_infinite());
558 /// assert!(neg_inf.is_infinite());
559 /// ```
560 #[must_use]
561 #[stable(feature = "rust1", since = "1.0.0")]
562 #[rustc_const_stable(feature = "const_float_classify", since = "1.83.0")]
563 #[inline]
564 #[cfg(not(feature = "ferrocene_certified"))]
565 pub const fn is_infinite(self) -> bool {
566 // Getting clever with transmutation can result in incorrect answers on some FPUs
567 // FIXME: alter the Rust <-> Rust calling convention to prevent this problem.
568 // See https://github.com/rust-lang/rust/issues/72327
569 (self == f64::INFINITY) | (self == f64::NEG_INFINITY)
570 }
571
572 /// Returns `true` if this number is neither infinite nor NaN.
573 ///
574 /// ```
575 /// let f = 7.0f64;
576 /// let inf: f64 = f64::INFINITY;
577 /// let neg_inf: f64 = f64::NEG_INFINITY;
578 /// let nan: f64 = f64::NAN;
579 ///
580 /// assert!(f.is_finite());
581 ///
582 /// assert!(!nan.is_finite());
583 /// assert!(!inf.is_finite());
584 /// assert!(!neg_inf.is_finite());
585 /// ```
586 #[must_use]
587 #[stable(feature = "rust1", since = "1.0.0")]
588 #[rustc_const_stable(feature = "const_float_classify", since = "1.83.0")]
589 #[inline]
590 #[cfg(not(feature = "ferrocene_certified"))]
591 pub const fn is_finite(self) -> bool {
592 // There's no need to handle NaN separately: if self is NaN,
593 // the comparison is not true, exactly as desired.
594 self.abs() < Self::INFINITY
595 }
596
597 /// Returns `true` if the number is [subnormal].
598 ///
599 /// ```
600 /// let min = f64::MIN_POSITIVE; // 2.2250738585072014e-308_f64
601 /// let max = f64::MAX;
602 /// let lower_than_min = 1.0e-308_f64;
603 /// let zero = 0.0_f64;
604 ///
605 /// assert!(!min.is_subnormal());
606 /// assert!(!max.is_subnormal());
607 ///
608 /// assert!(!zero.is_subnormal());
609 /// assert!(!f64::NAN.is_subnormal());
610 /// assert!(!f64::INFINITY.is_subnormal());
611 /// // Values between `0` and `min` are Subnormal.
612 /// assert!(lower_than_min.is_subnormal());
613 /// ```
614 /// [subnormal]: https://en.wikipedia.org/wiki/Denormal_number
615 #[must_use]
616 #[stable(feature = "is_subnormal", since = "1.53.0")]
617 #[rustc_const_stable(feature = "const_float_classify", since = "1.83.0")]
618 #[inline]
619 #[cfg(not(feature = "ferrocene_certified"))]
620 pub const fn is_subnormal(self) -> bool {
621 matches!(self.classify(), FpCategory::Subnormal)
622 }
623
624 /// Returns `true` if the number is neither zero, infinite,
625 /// [subnormal], or NaN.
626 ///
627 /// ```
628 /// let min = f64::MIN_POSITIVE; // 2.2250738585072014e-308f64
629 /// let max = f64::MAX;
630 /// let lower_than_min = 1.0e-308_f64;
631 /// let zero = 0.0f64;
632 ///
633 /// assert!(min.is_normal());
634 /// assert!(max.is_normal());
635 ///
636 /// assert!(!zero.is_normal());
637 /// assert!(!f64::NAN.is_normal());
638 /// assert!(!f64::INFINITY.is_normal());
639 /// // Values between `0` and `min` are Subnormal.
640 /// assert!(!lower_than_min.is_normal());
641 /// ```
642 /// [subnormal]: https://en.wikipedia.org/wiki/Denormal_number
643 #[must_use]
644 #[stable(feature = "rust1", since = "1.0.0")]
645 #[rustc_const_stable(feature = "const_float_classify", since = "1.83.0")]
646 #[inline]
647 #[cfg(not(feature = "ferrocene_certified"))]
648 pub const fn is_normal(self) -> bool {
649 matches!(self.classify(), FpCategory::Normal)
650 }
651
652 /// Returns the floating point category of the number. If only one property
653 /// is going to be tested, it is generally faster to use the specific
654 /// predicate instead.
655 ///
656 /// ```
657 /// use std::num::FpCategory;
658 ///
659 /// let num = 12.4_f64;
660 /// let inf = f64::INFINITY;
661 ///
662 /// assert_eq!(num.classify(), FpCategory::Normal);
663 /// assert_eq!(inf.classify(), FpCategory::Infinite);
664 /// ```
665 #[stable(feature = "rust1", since = "1.0.0")]
666 #[rustc_const_stable(feature = "const_float_classify", since = "1.83.0")]
667 #[cfg(not(feature = "ferrocene_certified"))]
668 pub const fn classify(self) -> FpCategory {
669 // We used to have complicated logic here that avoids the simple bit-based tests to work
670 // around buggy codegen for x87 targets (see
671 // https://github.com/rust-lang/rust/issues/114479). However, some LLVM versions later, none
672 // of our tests is able to find any difference between the complicated and the naive
673 // version, so now we are back to the naive version.
674 let b = self.to_bits();
675 match (b & Self::MAN_MASK, b & Self::EXP_MASK) {
676 (0, Self::EXP_MASK) => FpCategory::Infinite,
677 (_, Self::EXP_MASK) => FpCategory::Nan,
678 (0, 0) => FpCategory::Zero,
679 (_, 0) => FpCategory::Subnormal,
680 _ => FpCategory::Normal,
681 }
682 }
683
684 /// Returns `true` if `self` has a positive sign, including `+0.0`, NaNs with
685 /// positive sign bit and positive infinity.
686 ///
687 /// Note that IEEE 754 doesn't assign any meaning to the sign bit in case of
688 /// a NaN, and as Rust doesn't guarantee that the bit pattern of NaNs are
689 /// conserved over arithmetic operations, the result of `is_sign_positive` on
690 /// a NaN might produce an unexpected or non-portable result. See the [specification
691 /// of NaN bit patterns](f32#nan-bit-patterns) for more info. Use `self.signum() == 1.0`
692 /// if you need fully portable behavior (will return `false` for all NaNs).
693 ///
694 /// ```
695 /// let f = 7.0_f64;
696 /// let g = -7.0_f64;
697 ///
698 /// assert!(f.is_sign_positive());
699 /// assert!(!g.is_sign_positive());
700 /// ```
701 #[must_use]
702 #[stable(feature = "rust1", since = "1.0.0")]
703 #[rustc_const_stable(feature = "const_float_classify", since = "1.83.0")]
704 #[inline]
705 #[cfg(not(feature = "ferrocene_certified"))]
706 pub const fn is_sign_positive(self) -> bool {
707 !self.is_sign_negative()
708 }
709
710 #[must_use]
711 #[stable(feature = "rust1", since = "1.0.0")]
712 #[deprecated(since = "1.0.0", note = "renamed to is_sign_positive")]
713 #[inline]
714 #[doc(hidden)]
715 #[cfg(not(feature = "ferrocene_certified"))]
716 pub fn is_positive(self) -> bool {
717 self.is_sign_positive()
718 }
719
720 /// Returns `true` if `self` has a negative sign, including `-0.0`, NaNs with
721 /// negative sign bit and negative infinity.
722 ///
723 /// Note that IEEE 754 doesn't assign any meaning to the sign bit in case of
724 /// a NaN, and as Rust doesn't guarantee that the bit pattern of NaNs are
725 /// conserved over arithmetic operations, the result of `is_sign_negative` on
726 /// a NaN might produce an unexpected or non-portable result. See the [specification
727 /// of NaN bit patterns](f32#nan-bit-patterns) for more info. Use `self.signum() == -1.0`
728 /// if you need fully portable behavior (will return `false` for all NaNs).
729 ///
730 /// ```
731 /// let f = 7.0_f64;
732 /// let g = -7.0_f64;
733 ///
734 /// assert!(!f.is_sign_negative());
735 /// assert!(g.is_sign_negative());
736 /// ```
737 #[must_use]
738 #[stable(feature = "rust1", since = "1.0.0")]
739 #[rustc_const_stable(feature = "const_float_classify", since = "1.83.0")]
740 #[inline]
741 #[cfg(not(feature = "ferrocene_certified"))]
742 pub const fn is_sign_negative(self) -> bool {
743 // IEEE754 says: isSignMinus(x) is true if and only if x has negative sign. isSignMinus
744 // applies to zeros and NaNs as well.
745 self.to_bits() & Self::SIGN_MASK != 0
746 }
747
748 #[must_use]
749 #[stable(feature = "rust1", since = "1.0.0")]
750 #[deprecated(since = "1.0.0", note = "renamed to is_sign_negative")]
751 #[inline]
752 #[doc(hidden)]
753 #[cfg(not(feature = "ferrocene_certified"))]
754 pub fn is_negative(self) -> bool {
755 self.is_sign_negative()
756 }
757
758 /// Returns the least number greater than `self`.
759 ///
760 /// Let `TINY` be the smallest representable positive `f64`. Then,
761 /// - if `self.is_nan()`, this returns `self`;
762 /// - if `self` is [`NEG_INFINITY`], this returns [`MIN`];
763 /// - if `self` is `-TINY`, this returns -0.0;
764 /// - if `self` is -0.0 or +0.0, this returns `TINY`;
765 /// - if `self` is [`MAX`] or [`INFINITY`], this returns [`INFINITY`];
766 /// - otherwise the unique least value greater than `self` is returned.
767 ///
768 /// The identity `x.next_up() == -(-x).next_down()` holds for all non-NaN `x`. When `x`
769 /// is finite `x == x.next_up().next_down()` also holds.
770 ///
771 /// ```rust
772 /// // f64::EPSILON is the difference between 1.0 and the next number up.
773 /// assert_eq!(1.0f64.next_up(), 1.0 + f64::EPSILON);
774 /// // But not for most numbers.
775 /// assert!(0.1f64.next_up() < 0.1 + f64::EPSILON);
776 /// assert_eq!(9007199254740992f64.next_up(), 9007199254740994.0);
777 /// ```
778 ///
779 /// This operation corresponds to IEEE-754 `nextUp`.
780 ///
781 /// [`NEG_INFINITY`]: Self::NEG_INFINITY
782 /// [`INFINITY`]: Self::INFINITY
783 /// [`MIN`]: Self::MIN
784 /// [`MAX`]: Self::MAX
785 #[inline]
786 #[doc(alias = "nextUp")]
787 #[stable(feature = "float_next_up_down", since = "1.86.0")]
788 #[rustc_const_stable(feature = "float_next_up_down", since = "1.86.0")]
789 #[cfg(not(feature = "ferrocene_certified"))]
790 pub const fn next_up(self) -> Self {
791 // Some targets violate Rust's assumption of IEEE semantics, e.g. by flushing
792 // denormals to zero. This is in general unsound and unsupported, but here
793 // we do our best to still produce the correct result on such targets.
794 let bits = self.to_bits();
795 if self.is_nan() || bits == Self::INFINITY.to_bits() {
796 return self;
797 }
798
799 let abs = bits & !Self::SIGN_MASK;
800 let next_bits = if abs == 0 {
801 Self::TINY_BITS
802 } else if bits == abs {
803 bits + 1
804 } else {
805 bits - 1
806 };
807 Self::from_bits(next_bits)
808 }
809
810 /// Returns the greatest number less than `self`.
811 ///
812 /// Let `TINY` be the smallest representable positive `f64`. Then,
813 /// - if `self.is_nan()`, this returns `self`;
814 /// - if `self` is [`INFINITY`], this returns [`MAX`];
815 /// - if `self` is `TINY`, this returns 0.0;
816 /// - if `self` is -0.0 or +0.0, this returns `-TINY`;
817 /// - if `self` is [`MIN`] or [`NEG_INFINITY`], this returns [`NEG_INFINITY`];
818 /// - otherwise the unique greatest value less than `self` is returned.
819 ///
820 /// The identity `x.next_down() == -(-x).next_up()` holds for all non-NaN `x`. When `x`
821 /// is finite `x == x.next_down().next_up()` also holds.
822 ///
823 /// ```rust
824 /// let x = 1.0f64;
825 /// // Clamp value into range [0, 1).
826 /// let clamped = x.clamp(0.0, 1.0f64.next_down());
827 /// assert!(clamped < 1.0);
828 /// assert_eq!(clamped.next_up(), 1.0);
829 /// ```
830 ///
831 /// This operation corresponds to IEEE-754 `nextDown`.
832 ///
833 /// [`NEG_INFINITY`]: Self::NEG_INFINITY
834 /// [`INFINITY`]: Self::INFINITY
835 /// [`MIN`]: Self::MIN
836 /// [`MAX`]: Self::MAX
837 #[inline]
838 #[doc(alias = "nextDown")]
839 #[stable(feature = "float_next_up_down", since = "1.86.0")]
840 #[rustc_const_stable(feature = "float_next_up_down", since = "1.86.0")]
841 #[cfg(not(feature = "ferrocene_certified"))]
842 pub const fn next_down(self) -> Self {
843 // Some targets violate Rust's assumption of IEEE semantics, e.g. by flushing
844 // denormals to zero. This is in general unsound and unsupported, but here
845 // we do our best to still produce the correct result on such targets.
846 let bits = self.to_bits();
847 if self.is_nan() || bits == Self::NEG_INFINITY.to_bits() {
848 return self;
849 }
850
851 let abs = bits & !Self::SIGN_MASK;
852 let next_bits = if abs == 0 {
853 Self::NEG_TINY_BITS
854 } else if bits == abs {
855 bits - 1
856 } else {
857 bits + 1
858 };
859 Self::from_bits(next_bits)
860 }
861
862 /// Takes the reciprocal (inverse) of a number, `1/x`.
863 ///
864 /// ```
865 /// let x = 2.0_f64;
866 /// let abs_difference = (x.recip() - (1.0 / x)).abs();
867 ///
868 /// assert!(abs_difference < 1e-10);
869 /// ```
870 #[must_use = "this returns the result of the operation, without modifying the original"]
871 #[stable(feature = "rust1", since = "1.0.0")]
872 #[rustc_const_stable(feature = "const_float_methods", since = "1.85.0")]
873 #[inline]
874 #[cfg(not(feature = "ferrocene_certified"))]
875 pub const fn recip(self) -> f64 {
876 1.0 / self
877 }
878
879 /// Converts radians to degrees.
880 ///
881 /// # Unspecified precision
882 ///
883 /// The precision of this function is non-deterministic. This means it varies by platform,
884 /// Rust version, and can even differ within the same execution from one invocation to the next.
885 ///
886 /// # Examples
887 ///
888 /// ```
889 /// let angle = std::f64::consts::PI;
890 ///
891 /// let abs_difference = (angle.to_degrees() - 180.0).abs();
892 ///
893 /// assert!(abs_difference < 1e-10);
894 /// ```
895 #[must_use = "this returns the result of the operation, \
896 without modifying the original"]
897 #[stable(feature = "rust1", since = "1.0.0")]
898 #[rustc_const_stable(feature = "const_float_methods", since = "1.85.0")]
899 #[inline]
900 #[cfg(not(feature = "ferrocene_certified"))]
901 pub const fn to_degrees(self) -> f64 {
902 // The division here is correctly rounded with respect to the true value of 180/π.
903 // Although π is irrational and already rounded, the double rounding happens
904 // to produce correct result for f64.
905 const PIS_IN_180: f64 = 180.0 / consts::PI;
906 self * PIS_IN_180
907 }
908
909 /// Converts degrees to radians.
910 ///
911 /// # Unspecified precision
912 ///
913 /// The precision of this function is non-deterministic. This means it varies by platform,
914 /// Rust version, and can even differ within the same execution from one invocation to the next.
915 ///
916 /// # Examples
917 ///
918 /// ```
919 /// let angle = 180.0_f64;
920 ///
921 /// let abs_difference = (angle.to_radians() - std::f64::consts::PI).abs();
922 ///
923 /// assert!(abs_difference < 1e-10);
924 /// ```
925 #[must_use = "this returns the result of the operation, \
926 without modifying the original"]
927 #[stable(feature = "rust1", since = "1.0.0")]
928 #[rustc_const_stable(feature = "const_float_methods", since = "1.85.0")]
929 #[inline]
930 #[cfg(not(feature = "ferrocene_certified"))]
931 pub const fn to_radians(self) -> f64 {
932 // The division here is correctly rounded with respect to the true value of π/180.
933 // Although π is irrational and already rounded, the double rounding happens
934 // to produce correct result for f64.
935 const RADS_PER_DEG: f64 = consts::PI / 180.0;
936 self * RADS_PER_DEG
937 }
938
939 /// Returns the maximum of the two numbers, ignoring NaN.
940 ///
941 /// If one of the arguments is NaN, then the other argument is returned.
942 /// This follows the IEEE 754-2008 semantics for maxNum, except for handling of signaling NaNs;
943 /// this function handles all NaNs the same way and avoids maxNum's problems with associativity.
944 /// This also matches the behavior of libm’s fmax. In particular, if the inputs compare equal
945 /// (such as for the case of `+0.0` and `-0.0`), either input may be returned non-deterministically.
946 ///
947 /// ```
948 /// let x = 1.0_f64;
949 /// let y = 2.0_f64;
950 ///
951 /// assert_eq!(x.max(y), y);
952 /// ```
953 #[must_use = "this returns the result of the comparison, without modifying either input"]
954 #[stable(feature = "rust1", since = "1.0.0")]
955 #[rustc_const_stable(feature = "const_float_methods", since = "1.85.0")]
956 #[inline]
957 #[cfg(not(feature = "ferrocene_certified"))]
958 pub const fn max(self, other: f64) -> f64 {
959 intrinsics::maxnumf64(self, other)
960 }
961
962 /// Returns the minimum of the two numbers, ignoring NaN.
963 ///
964 /// If one of the arguments is NaN, then the other argument is returned.
965 /// This follows the IEEE 754-2008 semantics for minNum, except for handling of signaling NaNs;
966 /// this function handles all NaNs the same way and avoids minNum's problems with associativity.
967 /// This also matches the behavior of libm’s fmin. In particular, if the inputs compare equal
968 /// (such as for the case of `+0.0` and `-0.0`), either input may be returned non-deterministically.
969 ///
970 /// ```
971 /// let x = 1.0_f64;
972 /// let y = 2.0_f64;
973 ///
974 /// assert_eq!(x.min(y), x);
975 /// ```
976 #[must_use = "this returns the result of the comparison, without modifying either input"]
977 #[stable(feature = "rust1", since = "1.0.0")]
978 #[rustc_const_stable(feature = "const_float_methods", since = "1.85.0")]
979 #[inline]
980 #[cfg(not(feature = "ferrocene_certified"))]
981 pub const fn min(self, other: f64) -> f64 {
982 intrinsics::minnumf64(self, other)
983 }
984
985 /// Returns the maximum of the two numbers, propagating NaN.
986 ///
987 /// This returns NaN when *either* argument is NaN, as opposed to
988 /// [`f64::max`] which only returns NaN when *both* arguments are NaN.
989 ///
990 /// ```
991 /// #![feature(float_minimum_maximum)]
992 /// let x = 1.0_f64;
993 /// let y = 2.0_f64;
994 ///
995 /// assert_eq!(x.maximum(y), y);
996 /// assert!(x.maximum(f64::NAN).is_nan());
997 /// ```
998 ///
999 /// If one of the arguments is NaN, then NaN is returned. Otherwise this returns the greater
1000 /// of the two numbers. For this operation, -0.0 is considered to be less than +0.0.
1001 /// Note that this follows the semantics specified in IEEE 754-2019.
1002 ///
1003 /// Also note that "propagation" of NaNs here doesn't necessarily mean that the bitpattern of a NaN
1004 /// operand is conserved; see the [specification of NaN bit patterns](f32#nan-bit-patterns) for more info.
1005 #[must_use = "this returns the result of the comparison, without modifying either input"]
1006 #[unstable(feature = "float_minimum_maximum", issue = "91079")]
1007 #[inline]
1008 #[cfg(not(feature = "ferrocene_certified"))]
1009 pub const fn maximum(self, other: f64) -> f64 {
1010 intrinsics::maximumf64(self, other)
1011 }
1012
1013 /// Returns the minimum of the two numbers, propagating NaN.
1014 ///
1015 /// This returns NaN when *either* argument is NaN, as opposed to
1016 /// [`f64::min`] which only returns NaN when *both* arguments are NaN.
1017 ///
1018 /// ```
1019 /// #![feature(float_minimum_maximum)]
1020 /// let x = 1.0_f64;
1021 /// let y = 2.0_f64;
1022 ///
1023 /// assert_eq!(x.minimum(y), x);
1024 /// assert!(x.minimum(f64::NAN).is_nan());
1025 /// ```
1026 ///
1027 /// If one of the arguments is NaN, then NaN is returned. Otherwise this returns the lesser
1028 /// of the two numbers. For this operation, -0.0 is considered to be less than +0.0.
1029 /// Note that this follows the semantics specified in IEEE 754-2019.
1030 ///
1031 /// Also note that "propagation" of NaNs here doesn't necessarily mean that the bitpattern of a NaN
1032 /// operand is conserved; see the [specification of NaN bit patterns](f32#nan-bit-patterns) for more info.
1033 #[must_use = "this returns the result of the comparison, without modifying either input"]
1034 #[unstable(feature = "float_minimum_maximum", issue = "91079")]
1035 #[inline]
1036 #[cfg(not(feature = "ferrocene_certified"))]
1037 pub const fn minimum(self, other: f64) -> f64 {
1038 intrinsics::minimumf64(self, other)
1039 }
1040
1041 /// Calculates the midpoint (average) between `self` and `rhs`.
1042 ///
1043 /// This returns NaN when *either* argument is NaN or if a combination of
1044 /// +inf and -inf is provided as arguments.
1045 ///
1046 /// # Examples
1047 ///
1048 /// ```
1049 /// assert_eq!(1f64.midpoint(4.0), 2.5);
1050 /// assert_eq!((-5.5f64).midpoint(8.0), 1.25);
1051 /// ```
1052 #[inline]
1053 #[doc(alias = "average")]
1054 #[stable(feature = "num_midpoint", since = "1.85.0")]
1055 #[rustc_const_stable(feature = "num_midpoint", since = "1.85.0")]
1056 #[cfg(not(feature = "ferrocene_certified"))]
1057 pub const fn midpoint(self, other: f64) -> f64 {
1058 const HI: f64 = f64::MAX / 2.;
1059
1060 let (a, b) = (self, other);
1061 let abs_a = a.abs();
1062 let abs_b = b.abs();
1063
1064 if abs_a <= HI && abs_b <= HI {
1065 // Overflow is impossible
1066 (a + b) / 2.
1067 } else {
1068 (a / 2.) + (b / 2.)
1069 }
1070 }
1071
1072 /// Rounds toward zero and converts to any primitive integer type,
1073 /// assuming that the value is finite and fits in that type.
1074 ///
1075 /// ```
1076 /// let value = 4.6_f64;
1077 /// let rounded = unsafe { value.to_int_unchecked::<u16>() };
1078 /// assert_eq!(rounded, 4);
1079 ///
1080 /// let value = -128.9_f64;
1081 /// let rounded = unsafe { value.to_int_unchecked::<i8>() };
1082 /// assert_eq!(rounded, i8::MIN);
1083 /// ```
1084 ///
1085 /// # Safety
1086 ///
1087 /// The value must:
1088 ///
1089 /// * Not be `NaN`
1090 /// * Not be infinite
1091 /// * Be representable in the return type `Int`, after truncating off its fractional part
1092 #[must_use = "this returns the result of the operation, \
1093 without modifying the original"]
1094 #[stable(feature = "float_approx_unchecked_to", since = "1.44.0")]
1095 #[inline]
1096 #[cfg(not(feature = "ferrocene_certified"))]
1097 pub unsafe fn to_int_unchecked<Int>(self) -> Int
1098 where
1099 Self: FloatToInt<Int>,
1100 {
1101 // SAFETY: the caller must uphold the safety contract for
1102 // `FloatToInt::to_int_unchecked`.
1103 unsafe { FloatToInt::<Int>::to_int_unchecked(self) }
1104 }
1105
1106 /// Raw transmutation to `u64`.
1107 ///
1108 /// This is currently identical to `transmute::<f64, u64>(self)` on all platforms.
1109 ///
1110 /// See [`from_bits`](Self::from_bits) for some discussion of the
1111 /// portability of this operation (there are almost no issues).
1112 ///
1113 /// Note that this function is distinct from `as` casting, which attempts to
1114 /// preserve the *numeric* value, and not the bitwise value.
1115 ///
1116 /// # Examples
1117 ///
1118 /// ```
1119 /// assert!((1f64).to_bits() != 1f64 as u64); // to_bits() is not casting!
1120 /// assert_eq!((12.5f64).to_bits(), 0x4029000000000000);
1121 /// ```
1122 #[must_use = "this returns the result of the operation, \
1123 without modifying the original"]
1124 #[stable(feature = "float_bits_conv", since = "1.20.0")]
1125 #[rustc_const_stable(feature = "const_float_bits_conv", since = "1.83.0")]
1126 #[allow(unnecessary_transmutes)]
1127 #[inline]
1128 pub const fn to_bits(self) -> u64 {
1129 // SAFETY: `u64` is a plain old datatype so we can always transmute to it.
1130 unsafe { mem::transmute(self) }
1131 }
1132
1133 /// Raw transmutation from `u64`.
1134 ///
1135 /// This is currently identical to `transmute::<u64, f64>(v)` on all platforms.
1136 /// It turns out this is incredibly portable, for two reasons:
1137 ///
1138 /// * Floats and Ints have the same endianness on all supported platforms.
1139 /// * IEEE 754 very precisely specifies the bit layout of floats.
1140 ///
1141 /// However there is one caveat: prior to the 2008 version of IEEE 754, how
1142 /// to interpret the NaN signaling bit wasn't actually specified. Most platforms
1143 /// (notably x86 and ARM) picked the interpretation that was ultimately
1144 /// standardized in 2008, but some didn't (notably MIPS). As a result, all
1145 /// signaling NaNs on MIPS are quiet NaNs on x86, and vice-versa.
1146 ///
1147 /// Rather than trying to preserve signaling-ness cross-platform, this
1148 /// implementation favors preserving the exact bits. This means that
1149 /// any payloads encoded in NaNs will be preserved even if the result of
1150 /// this method is sent over the network from an x86 machine to a MIPS one.
1151 ///
1152 /// If the results of this method are only manipulated by the same
1153 /// architecture that produced them, then there is no portability concern.
1154 ///
1155 /// If the input isn't NaN, then there is no portability concern.
1156 ///
1157 /// If you don't care about signaling-ness (very likely), then there is no
1158 /// portability concern.
1159 ///
1160 /// Note that this function is distinct from `as` casting, which attempts to
1161 /// preserve the *numeric* value, and not the bitwise value.
1162 ///
1163 /// # Examples
1164 ///
1165 /// ```
1166 /// let v = f64::from_bits(0x4029000000000000);
1167 /// assert_eq!(v, 12.5);
1168 /// ```
1169 #[stable(feature = "float_bits_conv", since = "1.20.0")]
1170 #[rustc_const_stable(feature = "const_float_bits_conv", since = "1.83.0")]
1171 #[must_use]
1172 #[inline]
1173 #[allow(unnecessary_transmutes)]
1174 pub const fn from_bits(v: u64) -> Self {
1175 // It turns out the safety issues with sNaN were overblown! Hooray!
1176 // SAFETY: `u64` is a plain old datatype so we can always transmute from it.
1177 unsafe { mem::transmute(v) }
1178 }
1179
1180 /// Returns the memory representation of this floating point number as a byte array in
1181 /// big-endian (network) byte order.
1182 ///
1183 /// See [`from_bits`](Self::from_bits) for some discussion of the
1184 /// portability of this operation (there are almost no issues).
1185 ///
1186 /// # Examples
1187 ///
1188 /// ```
1189 /// let bytes = 12.5f64.to_be_bytes();
1190 /// assert_eq!(bytes, [0x40, 0x29, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00]);
1191 /// ```
1192 #[must_use = "this returns the result of the operation, \
1193 without modifying the original"]
1194 #[stable(feature = "float_to_from_bytes", since = "1.40.0")]
1195 #[rustc_const_stable(feature = "const_float_bits_conv", since = "1.83.0")]
1196 #[inline]
1197 #[cfg(not(feature = "ferrocene_certified"))]
1198 pub const fn to_be_bytes(self) -> [u8; 8] {
1199 self.to_bits().to_be_bytes()
1200 }
1201
1202 /// Returns the memory representation of this floating point number as a byte array in
1203 /// little-endian byte order.
1204 ///
1205 /// See [`from_bits`](Self::from_bits) for some discussion of the
1206 /// portability of this operation (there are almost no issues).
1207 ///
1208 /// # Examples
1209 ///
1210 /// ```
1211 /// let bytes = 12.5f64.to_le_bytes();
1212 /// assert_eq!(bytes, [0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x29, 0x40]);
1213 /// ```
1214 #[must_use = "this returns the result of the operation, \
1215 without modifying the original"]
1216 #[stable(feature = "float_to_from_bytes", since = "1.40.0")]
1217 #[rustc_const_stable(feature = "const_float_bits_conv", since = "1.83.0")]
1218 #[inline]
1219 pub const fn to_le_bytes(self) -> [u8; 8] {
1220 self.to_bits().to_le_bytes()
1221 }
1222
1223 /// Returns the memory representation of this floating point number as a byte array in
1224 /// native byte order.
1225 ///
1226 /// As the target platform's native endianness is used, portable code
1227 /// should use [`to_be_bytes`] or [`to_le_bytes`], as appropriate, instead.
1228 ///
1229 /// [`to_be_bytes`]: f64::to_be_bytes
1230 /// [`to_le_bytes`]: f64::to_le_bytes
1231 ///
1232 /// See [`from_bits`](Self::from_bits) for some discussion of the
1233 /// portability of this operation (there are almost no issues).
1234 ///
1235 /// # Examples
1236 ///
1237 /// ```
1238 /// let bytes = 12.5f64.to_ne_bytes();
1239 /// assert_eq!(
1240 /// bytes,
1241 /// if cfg!(target_endian = "big") {
1242 /// [0x40, 0x29, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00]
1243 /// } else {
1244 /// [0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x29, 0x40]
1245 /// }
1246 /// );
1247 /// ```
1248 #[must_use = "this returns the result of the operation, \
1249 without modifying the original"]
1250 #[stable(feature = "float_to_from_bytes", since = "1.40.0")]
1251 #[rustc_const_stable(feature = "const_float_bits_conv", since = "1.83.0")]
1252 #[inline]
1253 #[cfg(not(feature = "ferrocene_certified"))]
1254 pub const fn to_ne_bytes(self) -> [u8; 8] {
1255 self.to_bits().to_ne_bytes()
1256 }
1257
1258 /// Creates a floating point value from its representation as a byte array in big endian.
1259 ///
1260 /// See [`from_bits`](Self::from_bits) for some discussion of the
1261 /// portability of this operation (there are almost no issues).
1262 ///
1263 /// # Examples
1264 ///
1265 /// ```
1266 /// let value = f64::from_be_bytes([0x40, 0x29, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00]);
1267 /// assert_eq!(value, 12.5);
1268 /// ```
1269 #[stable(feature = "float_to_from_bytes", since = "1.40.0")]
1270 #[rustc_const_stable(feature = "const_float_bits_conv", since = "1.83.0")]
1271 #[must_use]
1272 #[inline]
1273 #[cfg(not(feature = "ferrocene_certified"))]
1274 pub const fn from_be_bytes(bytes: [u8; 8]) -> Self {
1275 Self::from_bits(u64::from_be_bytes(bytes))
1276 }
1277
1278 /// Creates a floating point value from its representation as a byte array in little endian.
1279 ///
1280 /// See [`from_bits`](Self::from_bits) for some discussion of the
1281 /// portability of this operation (there are almost no issues).
1282 ///
1283 /// # Examples
1284 ///
1285 /// ```
1286 /// let value = f64::from_le_bytes([0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x29, 0x40]);
1287 /// assert_eq!(value, 12.5);
1288 /// ```
1289 #[stable(feature = "float_to_from_bytes", since = "1.40.0")]
1290 #[rustc_const_stable(feature = "const_float_bits_conv", since = "1.83.0")]
1291 #[must_use]
1292 #[inline]
1293 pub const fn from_le_bytes(bytes: [u8; 8]) -> Self {
1294 Self::from_bits(u64::from_le_bytes(bytes))
1295 }
1296
1297 /// Creates a floating point value from its representation as a byte array in native endian.
1298 ///
1299 /// As the target platform's native endianness is used, portable code
1300 /// likely wants to use [`from_be_bytes`] or [`from_le_bytes`], as
1301 /// appropriate instead.
1302 ///
1303 /// [`from_be_bytes`]: f64::from_be_bytes
1304 /// [`from_le_bytes`]: f64::from_le_bytes
1305 ///
1306 /// See [`from_bits`](Self::from_bits) for some discussion of the
1307 /// portability of this operation (there are almost no issues).
1308 ///
1309 /// # Examples
1310 ///
1311 /// ```
1312 /// let value = f64::from_ne_bytes(if cfg!(target_endian = "big") {
1313 /// [0x40, 0x29, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00]
1314 /// } else {
1315 /// [0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x29, 0x40]
1316 /// });
1317 /// assert_eq!(value, 12.5);
1318 /// ```
1319 #[stable(feature = "float_to_from_bytes", since = "1.40.0")]
1320 #[rustc_const_stable(feature = "const_float_bits_conv", since = "1.83.0")]
1321 #[must_use]
1322 #[inline]
1323 #[cfg(not(feature = "ferrocene_certified"))]
1324 pub const fn from_ne_bytes(bytes: [u8; 8]) -> Self {
1325 Self::from_bits(u64::from_ne_bytes(bytes))
1326 }
1327
1328 /// Returns the ordering between `self` and `other`.
1329 ///
1330 /// Unlike the standard partial comparison between floating point numbers,
1331 /// this comparison always produces an ordering in accordance to
1332 /// the `totalOrder` predicate as defined in the IEEE 754 (2008 revision)
1333 /// floating point standard. The values are ordered in the following sequence:
1334 ///
1335 /// - negative quiet NaN
1336 /// - negative signaling NaN
1337 /// - negative infinity
1338 /// - negative numbers
1339 /// - negative subnormal numbers
1340 /// - negative zero
1341 /// - positive zero
1342 /// - positive subnormal numbers
1343 /// - positive numbers
1344 /// - positive infinity
1345 /// - positive signaling NaN
1346 /// - positive quiet NaN.
1347 ///
1348 /// The ordering established by this function does not always agree with the
1349 /// [`PartialOrd`] and [`PartialEq`] implementations of `f64`. For example,
1350 /// they consider negative and positive zero equal, while `total_cmp`
1351 /// doesn't.
1352 ///
1353 /// The interpretation of the signaling NaN bit follows the definition in
1354 /// the IEEE 754 standard, which may not match the interpretation by some of
1355 /// the older, non-conformant (e.g. MIPS) hardware implementations.
1356 ///
1357 /// # Example
1358 ///
1359 /// ```
1360 /// struct GoodBoy {
1361 /// name: String,
1362 /// weight: f64,
1363 /// }
1364 ///
1365 /// let mut bois = vec![
1366 /// GoodBoy { name: "Pucci".to_owned(), weight: 0.1 },
1367 /// GoodBoy { name: "Woofer".to_owned(), weight: 99.0 },
1368 /// GoodBoy { name: "Yapper".to_owned(), weight: 10.0 },
1369 /// GoodBoy { name: "Chonk".to_owned(), weight: f64::INFINITY },
1370 /// GoodBoy { name: "Abs. Unit".to_owned(), weight: f64::NAN },
1371 /// GoodBoy { name: "Floaty".to_owned(), weight: -5.0 },
1372 /// ];
1373 ///
1374 /// bois.sort_by(|a, b| a.weight.total_cmp(&b.weight));
1375 ///
1376 /// // `f64::NAN` could be positive or negative, which will affect the sort order.
1377 /// if f64::NAN.is_sign_negative() {
1378 /// assert!(bois.into_iter().map(|b| b.weight)
1379 /// .zip([f64::NAN, -5.0, 0.1, 10.0, 99.0, f64::INFINITY].iter())
1380 /// .all(|(a, b)| a.to_bits() == b.to_bits()))
1381 /// } else {
1382 /// assert!(bois.into_iter().map(|b| b.weight)
1383 /// .zip([-5.0, 0.1, 10.0, 99.0, f64::INFINITY, f64::NAN].iter())
1384 /// .all(|(a, b)| a.to_bits() == b.to_bits()))
1385 /// }
1386 /// ```
1387 #[stable(feature = "total_cmp", since = "1.62.0")]
1388 #[rustc_const_unstable(feature = "const_cmp", issue = "143800")]
1389 #[must_use]
1390 #[inline]
1391 #[cfg(not(feature = "ferrocene_certified"))]
1392 pub const fn total_cmp(&self, other: &Self) -> crate::cmp::Ordering {
1393 let mut left = self.to_bits() as i64;
1394 let mut right = other.to_bits() as i64;
1395
1396 // In case of negatives, flip all the bits except the sign
1397 // to achieve a similar layout as two's complement integers
1398 //
1399 // Why does this work? IEEE 754 floats consist of three fields:
1400 // Sign bit, exponent and mantissa. The set of exponent and mantissa
1401 // fields as a whole have the property that their bitwise order is
1402 // equal to the numeric magnitude where the magnitude is defined.
1403 // The magnitude is not normally defined on NaN values, but
1404 // IEEE 754 totalOrder defines the NaN values also to follow the
1405 // bitwise order. This leads to order explained in the doc comment.
1406 // However, the representation of magnitude is the same for negative
1407 // and positive numbers – only the sign bit is different.
1408 // To easily compare the floats as signed integers, we need to
1409 // flip the exponent and mantissa bits in case of negative numbers.
1410 // We effectively convert the numbers to "two's complement" form.
1411 //
1412 // To do the flipping, we construct a mask and XOR against it.
1413 // We branchlessly calculate an "all-ones except for the sign bit"
1414 // mask from negative-signed values: right shifting sign-extends
1415 // the integer, so we "fill" the mask with sign bits, and then
1416 // convert to unsigned to push one more zero bit.
1417 // On positive values, the mask is all zeros, so it's a no-op.
1418 left ^= (((left >> 63) as u64) >> 1) as i64;
1419 right ^= (((right >> 63) as u64) >> 1) as i64;
1420
1421 left.cmp(&right)
1422 }
1423
1424 /// Restrict a value to a certain interval unless it is NaN.
1425 ///
1426 /// Returns `max` if `self` is greater than `max`, and `min` if `self` is
1427 /// less than `min`. Otherwise this returns `self`.
1428 ///
1429 /// Note that this function returns NaN if the initial value was NaN as
1430 /// well.
1431 ///
1432 /// # Panics
1433 ///
1434 /// Panics if `min > max`, `min` is NaN, or `max` is NaN.
1435 ///
1436 /// # Examples
1437 ///
1438 /// ```
1439 /// assert!((-3.0f64).clamp(-2.0, 1.0) == -2.0);
1440 /// assert!((0.0f64).clamp(-2.0, 1.0) == 0.0);
1441 /// assert!((2.0f64).clamp(-2.0, 1.0) == 1.0);
1442 /// assert!((f64::NAN).clamp(-2.0, 1.0).is_nan());
1443 /// ```
1444 #[must_use = "method returns a new number and does not mutate the original value"]
1445 #[stable(feature = "clamp", since = "1.50.0")]
1446 #[rustc_const_stable(feature = "const_float_methods", since = "1.85.0")]
1447 #[inline]
1448 #[cfg(not(feature = "ferrocene_certified"))]
1449 pub const fn clamp(mut self, min: f64, max: f64) -> f64 {
1450 const_assert!(
1451 min <= max,
1452 "min > max, or either was NaN",
1453 "min > max, or either was NaN. min = {min:?}, max = {max:?}",
1454 min: f64,
1455 max: f64,
1456 );
1457
1458 if self < min {
1459 self = min;
1460 }
1461 if self > max {
1462 self = max;
1463 }
1464 self
1465 }
1466
1467 /// Computes the absolute value of `self`.
1468 ///
1469 /// This function always returns the precise result.
1470 ///
1471 /// # Examples
1472 ///
1473 /// ```
1474 /// let x = 3.5_f64;
1475 /// let y = -3.5_f64;
1476 ///
1477 /// assert_eq!(x.abs(), x);
1478 /// assert_eq!(y.abs(), -y);
1479 ///
1480 /// assert!(f64::NAN.abs().is_nan());
1481 /// ```
1482 #[must_use = "method returns a new number and does not mutate the original value"]
1483 #[stable(feature = "rust1", since = "1.0.0")]
1484 #[rustc_const_stable(feature = "const_float_methods", since = "1.85.0")]
1485 #[inline]
1486 pub const fn abs(self) -> f64 {
1487 intrinsics::fabsf64(self)
1488 }
1489
1490 /// Returns a number that represents the sign of `self`.
1491 ///
1492 /// - `1.0` if the number is positive, `+0.0` or `INFINITY`
1493 /// - `-1.0` if the number is negative, `-0.0` or `NEG_INFINITY`
1494 /// - NaN if the number is NaN
1495 ///
1496 /// # Examples
1497 ///
1498 /// ```
1499 /// let f = 3.5_f64;
1500 ///
1501 /// assert_eq!(f.signum(), 1.0);
1502 /// assert_eq!(f64::NEG_INFINITY.signum(), -1.0);
1503 ///
1504 /// assert!(f64::NAN.signum().is_nan());
1505 /// ```
1506 #[must_use = "method returns a new number and does not mutate the original value"]
1507 #[stable(feature = "rust1", since = "1.0.0")]
1508 #[rustc_const_stable(feature = "const_float_methods", since = "1.85.0")]
1509 #[inline]
1510 #[cfg(not(feature = "ferrocene_certified"))]
1511 pub const fn signum(self) -> f64 {
1512 if self.is_nan() { Self::NAN } else { 1.0_f64.copysign(self) }
1513 }
1514
1515 /// Returns a number composed of the magnitude of `self` and the sign of
1516 /// `sign`.
1517 ///
1518 /// Equal to `self` if the sign of `self` and `sign` are the same, otherwise equal to `-self`.
1519 /// If `self` is a NaN, then a NaN with the same payload as `self` and the sign bit of `sign` is
1520 /// returned.
1521 ///
1522 /// If `sign` is a NaN, then this operation will still carry over its sign into the result. Note
1523 /// that IEEE 754 doesn't assign any meaning to the sign bit in case of a NaN, and as Rust
1524 /// doesn't guarantee that the bit pattern of NaNs are conserved over arithmetic operations, the
1525 /// result of `copysign` with `sign` being a NaN might produce an unexpected or non-portable
1526 /// result. See the [specification of NaN bit patterns](primitive@f32#nan-bit-patterns) for more
1527 /// info.
1528 ///
1529 /// # Examples
1530 ///
1531 /// ```
1532 /// let f = 3.5_f64;
1533 ///
1534 /// assert_eq!(f.copysign(0.42), 3.5_f64);
1535 /// assert_eq!(f.copysign(-0.42), -3.5_f64);
1536 /// assert_eq!((-f).copysign(0.42), 3.5_f64);
1537 /// assert_eq!((-f).copysign(-0.42), -3.5_f64);
1538 ///
1539 /// assert!(f64::NAN.copysign(1.0).is_nan());
1540 /// ```
1541 #[must_use = "method returns a new number and does not mutate the original value"]
1542 #[stable(feature = "copysign", since = "1.35.0")]
1543 #[rustc_const_stable(feature = "const_float_methods", since = "1.85.0")]
1544 #[inline]
1545 #[cfg(not(feature = "ferrocene_certified"))]
1546 pub const fn copysign(self, sign: f64) -> f64 {
1547 intrinsics::copysignf64(self, sign)
1548 }
1549
1550 /// Float addition that allows optimizations based on algebraic rules.
1551 ///
1552 /// See [algebraic operators](primitive@f32#algebraic-operators) for more info.
1553 #[must_use = "method returns a new number and does not mutate the original value"]
1554 #[unstable(feature = "float_algebraic", issue = "136469")]
1555 #[rustc_const_unstable(feature = "float_algebraic", issue = "136469")]
1556 #[inline]
1557 #[cfg(not(feature = "ferrocene_certified"))]
1558 pub const fn algebraic_add(self, rhs: f64) -> f64 {
1559 intrinsics::fadd_algebraic(self, rhs)
1560 }
1561
1562 /// Float subtraction that allows optimizations based on algebraic rules.
1563 ///
1564 /// See [algebraic operators](primitive@f32#algebraic-operators) for more info.
1565 #[must_use = "method returns a new number and does not mutate the original value"]
1566 #[unstable(feature = "float_algebraic", issue = "136469")]
1567 #[rustc_const_unstable(feature = "float_algebraic", issue = "136469")]
1568 #[inline]
1569 #[cfg(not(feature = "ferrocene_certified"))]
1570 pub const fn algebraic_sub(self, rhs: f64) -> f64 {
1571 intrinsics::fsub_algebraic(self, rhs)
1572 }
1573
1574 /// Float multiplication that allows optimizations based on algebraic rules.
1575 ///
1576 /// See [algebraic operators](primitive@f32#algebraic-operators) for more info.
1577 #[must_use = "method returns a new number and does not mutate the original value"]
1578 #[unstable(feature = "float_algebraic", issue = "136469")]
1579 #[rustc_const_unstable(feature = "float_algebraic", issue = "136469")]
1580 #[inline]
1581 #[cfg(not(feature = "ferrocene_certified"))]
1582 pub const fn algebraic_mul(self, rhs: f64) -> f64 {
1583 intrinsics::fmul_algebraic(self, rhs)
1584 }
1585
1586 /// Float division that allows optimizations based on algebraic rules.
1587 ///
1588 /// See [algebraic operators](primitive@f32#algebraic-operators) for more info.
1589 #[must_use = "method returns a new number and does not mutate the original value"]
1590 #[unstable(feature = "float_algebraic", issue = "136469")]
1591 #[rustc_const_unstable(feature = "float_algebraic", issue = "136469")]
1592 #[inline]
1593 #[cfg(not(feature = "ferrocene_certified"))]
1594 pub const fn algebraic_div(self, rhs: f64) -> f64 {
1595 intrinsics::fdiv_algebraic(self, rhs)
1596 }
1597
1598 /// Float remainder that allows optimizations based on algebraic rules.
1599 ///
1600 /// See [algebraic operators](primitive@f32#algebraic-operators) for more info.
1601 #[must_use = "method returns a new number and does not mutate the original value"]
1602 #[unstable(feature = "float_algebraic", issue = "136469")]
1603 #[rustc_const_unstable(feature = "float_algebraic", issue = "136469")]
1604 #[inline]
1605 #[cfg(not(feature = "ferrocene_certified"))]
1606 pub const fn algebraic_rem(self, rhs: f64) -> f64 {
1607 intrinsics::frem_algebraic(self, rhs)
1608 }
1609}
1610
1611#[unstable(feature = "core_float_math", issue = "137578")]
1612/// Experimental implementations of floating point functions in `core`.
1613///
1614/// _The standalone functions in this module are for testing only.
1615/// They will be stabilized as inherent methods._
1616#[cfg(not(feature = "ferrocene_certified"))]
1617pub mod math {
1618 use crate::intrinsics;
1619 use crate::num::libm;
1620
1621 /// Experimental version of `floor` in `core`. See [`f64::floor`] for details.
1622 ///
1623 /// # Examples
1624 ///
1625 /// ```
1626 /// #![feature(core_float_math)]
1627 ///
1628 /// use core::f64;
1629 ///
1630 /// let f = 3.7_f64;
1631 /// let g = 3.0_f64;
1632 /// let h = -3.7_f64;
1633 ///
1634 /// assert_eq!(f64::math::floor(f), 3.0);
1635 /// assert_eq!(f64::math::floor(g), 3.0);
1636 /// assert_eq!(f64::math::floor(h), -4.0);
1637 /// ```
1638 ///
1639 /// _This standalone function is for testing only.
1640 /// It will be stabilized as an inherent method._
1641 ///
1642 /// [`f64::floor`]: ../../../std/primitive.f64.html#method.floor
1643 #[inline]
1644 #[unstable(feature = "core_float_math", issue = "137578")]
1645 #[must_use = "method returns a new number and does not mutate the original value"]
1646 pub const fn floor(x: f64) -> f64 {
1647 intrinsics::floorf64(x)
1648 }
1649
1650 /// Experimental version of `ceil` in `core`. See [`f64::ceil`] for details.
1651 ///
1652 /// # Examples
1653 ///
1654 /// ```
1655 /// #![feature(core_float_math)]
1656 ///
1657 /// use core::f64;
1658 ///
1659 /// let f = 3.01_f64;
1660 /// let g = 4.0_f64;
1661 ///
1662 /// assert_eq!(f64::math::ceil(f), 4.0);
1663 /// assert_eq!(f64::math::ceil(g), 4.0);
1664 /// ```
1665 ///
1666 /// _This standalone function is for testing only.
1667 /// It will be stabilized as an inherent method._
1668 ///
1669 /// [`f64::ceil`]: ../../../std/primitive.f64.html#method.ceil
1670 #[inline]
1671 #[doc(alias = "ceiling")]
1672 #[unstable(feature = "core_float_math", issue = "137578")]
1673 #[must_use = "method returns a new number and does not mutate the original value"]
1674 pub const fn ceil(x: f64) -> f64 {
1675 intrinsics::ceilf64(x)
1676 }
1677
1678 /// Experimental version of `round` in `core`. See [`f64::round`] for details.
1679 ///
1680 /// # Examples
1681 ///
1682 /// ```
1683 /// #![feature(core_float_math)]
1684 ///
1685 /// use core::f64;
1686 ///
1687 /// let f = 3.3_f64;
1688 /// let g = -3.3_f64;
1689 /// let h = -3.7_f64;
1690 /// let i = 3.5_f64;
1691 /// let j = 4.5_f64;
1692 ///
1693 /// assert_eq!(f64::math::round(f), 3.0);
1694 /// assert_eq!(f64::math::round(g), -3.0);
1695 /// assert_eq!(f64::math::round(h), -4.0);
1696 /// assert_eq!(f64::math::round(i), 4.0);
1697 /// assert_eq!(f64::math::round(j), 5.0);
1698 /// ```
1699 ///
1700 /// _This standalone function is for testing only.
1701 /// It will be stabilized as an inherent method._
1702 ///
1703 /// [`f64::round`]: ../../../std/primitive.f64.html#method.round
1704 #[inline]
1705 #[unstable(feature = "core_float_math", issue = "137578")]
1706 #[must_use = "method returns a new number and does not mutate the original value"]
1707 pub const fn round(x: f64) -> f64 {
1708 intrinsics::roundf64(x)
1709 }
1710
1711 /// Experimental version of `round_ties_even` in `core`. See [`f64::round_ties_even`] for
1712 /// details.
1713 ///
1714 /// # Examples
1715 ///
1716 /// ```
1717 /// #![feature(core_float_math)]
1718 ///
1719 /// use core::f64;
1720 ///
1721 /// let f = 3.3_f64;
1722 /// let g = -3.3_f64;
1723 /// let h = 3.5_f64;
1724 /// let i = 4.5_f64;
1725 ///
1726 /// assert_eq!(f64::math::round_ties_even(f), 3.0);
1727 /// assert_eq!(f64::math::round_ties_even(g), -3.0);
1728 /// assert_eq!(f64::math::round_ties_even(h), 4.0);
1729 /// assert_eq!(f64::math::round_ties_even(i), 4.0);
1730 /// ```
1731 ///
1732 /// _This standalone function is for testing only.
1733 /// It will be stabilized as an inherent method._
1734 ///
1735 /// [`f64::round_ties_even`]: ../../../std/primitive.f64.html#method.round_ties_even
1736 #[inline]
1737 #[unstable(feature = "core_float_math", issue = "137578")]
1738 #[must_use = "method returns a new number and does not mutate the original value"]
1739 pub const fn round_ties_even(x: f64) -> f64 {
1740 intrinsics::round_ties_even_f64(x)
1741 }
1742
1743 /// Experimental version of `trunc` in `core`. See [`f64::trunc`] for details.
1744 ///
1745 /// # Examples
1746 ///
1747 /// ```
1748 /// #![feature(core_float_math)]
1749 ///
1750 /// use core::f64;
1751 ///
1752 /// let f = 3.7_f64;
1753 /// let g = 3.0_f64;
1754 /// let h = -3.7_f64;
1755 ///
1756 /// assert_eq!(f64::math::trunc(f), 3.0);
1757 /// assert_eq!(f64::math::trunc(g), 3.0);
1758 /// assert_eq!(f64::math::trunc(h), -3.0);
1759 /// ```
1760 ///
1761 /// _This standalone function is for testing only.
1762 /// It will be stabilized as an inherent method._
1763 ///
1764 /// [`f64::trunc`]: ../../../std/primitive.f64.html#method.trunc
1765 #[inline]
1766 #[doc(alias = "truncate")]
1767 #[unstable(feature = "core_float_math", issue = "137578")]
1768 #[must_use = "method returns a new number and does not mutate the original value"]
1769 pub const fn trunc(x: f64) -> f64 {
1770 intrinsics::truncf64(x)
1771 }
1772
1773 /// Experimental version of `fract` in `core`. See [`f64::fract`] for details.
1774 ///
1775 /// # Examples
1776 ///
1777 /// ```
1778 /// #![feature(core_float_math)]
1779 ///
1780 /// use core::f64;
1781 ///
1782 /// let x = 3.6_f64;
1783 /// let y = -3.6_f64;
1784 /// let abs_difference_x = (f64::math::fract(x) - 0.6).abs();
1785 /// let abs_difference_y = (f64::math::fract(y) - (-0.6)).abs();
1786 ///
1787 /// assert!(abs_difference_x < 1e-10);
1788 /// assert!(abs_difference_y < 1e-10);
1789 /// ```
1790 ///
1791 /// _This standalone function is for testing only.
1792 /// It will be stabilized as an inherent method._
1793 ///
1794 /// [`f64::fract`]: ../../../std/primitive.f64.html#method.fract
1795 #[inline]
1796 #[unstable(feature = "core_float_math", issue = "137578")]
1797 #[must_use = "method returns a new number and does not mutate the original value"]
1798 pub const fn fract(x: f64) -> f64 {
1799 x - trunc(x)
1800 }
1801
1802 /// Experimental version of `mul_add` in `core`. See [`f64::mul_add`] for details.
1803 ///
1804 /// # Examples
1805 ///
1806 /// ```
1807 /// #![feature(core_float_math)]
1808 ///
1809 /// # // FIXME(#140515): mingw has an incorrect fma
1810 /// # // https://sourceforge.net/p/mingw-w64/bugs/848/
1811 /// # #[cfg(all(target_os = "windows", target_env = "gnu", not(target_abi = "llvm")))] {
1812 /// use core::f64;
1813 ///
1814 /// let m = 10.0_f64;
1815 /// let x = 4.0_f64;
1816 /// let b = 60.0_f64;
1817 ///
1818 /// assert_eq!(f64::math::mul_add(m, x, b), 100.0);
1819 /// assert_eq!(m * x + b, 100.0);
1820 ///
1821 /// let one_plus_eps = 1.0_f64 + f64::EPSILON;
1822 /// let one_minus_eps = 1.0_f64 - f64::EPSILON;
1823 /// let minus_one = -1.0_f64;
1824 ///
1825 /// // The exact result (1 + eps) * (1 - eps) = 1 - eps * eps.
1826 /// assert_eq!(
1827 /// f64::math::mul_add(one_plus_eps, one_minus_eps, minus_one),
1828 /// -f64::EPSILON * f64::EPSILON
1829 /// );
1830 /// // Different rounding with the non-fused multiply and add.
1831 /// assert_eq!(one_plus_eps * one_minus_eps + minus_one, 0.0);
1832 /// # }
1833 /// ```
1834 ///
1835 /// _This standalone function is for testing only.
1836 /// It will be stabilized as an inherent method._
1837 ///
1838 /// [`f64::mul_add`]: ../../../std/primitive.f64.html#method.mul_add
1839 #[inline]
1840 #[doc(alias = "fma", alias = "fusedMultiplyAdd")]
1841 #[unstable(feature = "core_float_math", issue = "137578")]
1842 #[must_use = "method returns a new number and does not mutate the original value"]
1843 #[rustc_const_unstable(feature = "const_mul_add", issue = "146724")]
1844 pub const fn mul_add(x: f64, a: f64, b: f64) -> f64 {
1845 intrinsics::fmaf64(x, a, b)
1846 }
1847
1848 /// Experimental version of `div_euclid` in `core`. See [`f64::div_euclid`] for details.
1849 ///
1850 /// # Examples
1851 ///
1852 /// ```
1853 /// #![feature(core_float_math)]
1854 ///
1855 /// use core::f64;
1856 ///
1857 /// let a: f64 = 7.0;
1858 /// let b = 4.0;
1859 /// assert_eq!(f64::math::div_euclid(a, b), 1.0); // 7.0 > 4.0 * 1.0
1860 /// assert_eq!(f64::math::div_euclid(-a, b), -2.0); // -7.0 >= 4.0 * -2.0
1861 /// assert_eq!(f64::math::div_euclid(a, -b), -1.0); // 7.0 >= -4.0 * -1.0
1862 /// assert_eq!(f64::math::div_euclid(-a, -b), 2.0); // -7.0 >= -4.0 * 2.0
1863 /// ```
1864 ///
1865 /// _This standalone function is for testing only.
1866 /// It will be stabilized as an inherent method._
1867 ///
1868 /// [`f64::div_euclid`]: ../../../std/primitive.f64.html#method.div_euclid
1869 #[inline]
1870 #[unstable(feature = "core_float_math", issue = "137578")]
1871 #[must_use = "method returns a new number and does not mutate the original value"]
1872 pub fn div_euclid(x: f64, rhs: f64) -> f64 {
1873 let q = trunc(x / rhs);
1874 if x % rhs < 0.0 {
1875 return if rhs > 0.0 { q - 1.0 } else { q + 1.0 };
1876 }
1877 q
1878 }
1879
1880 /// Experimental version of `rem_euclid` in `core`. See [`f64::rem_euclid`] for details.
1881 ///
1882 /// # Examples
1883 ///
1884 /// ```
1885 /// #![feature(core_float_math)]
1886 ///
1887 /// use core::f64;
1888 ///
1889 /// let a: f64 = 7.0;
1890 /// let b = 4.0;
1891 /// assert_eq!(f64::math::rem_euclid(a, b), 3.0);
1892 /// assert_eq!(f64::math::rem_euclid(-a, b), 1.0);
1893 /// assert_eq!(f64::math::rem_euclid(a, -b), 3.0);
1894 /// assert_eq!(f64::math::rem_euclid(-a, -b), 1.0);
1895 /// // limitation due to round-off error
1896 /// assert!(f64::math::rem_euclid(-f64::EPSILON, 3.0) != 0.0);
1897 /// ```
1898 ///
1899 /// _This standalone function is for testing only.
1900 /// It will be stabilized as an inherent method._
1901 ///
1902 /// [`f64::rem_euclid`]: ../../../std/primitive.f64.html#method.rem_euclid
1903 #[inline]
1904 #[doc(alias = "modulo", alias = "mod")]
1905 #[unstable(feature = "core_float_math", issue = "137578")]
1906 #[must_use = "method returns a new number and does not mutate the original value"]
1907 pub fn rem_euclid(x: f64, rhs: f64) -> f64 {
1908 let r = x % rhs;
1909 if r < 0.0 { r + rhs.abs() } else { r }
1910 }
1911
1912 /// Experimental version of `powi` in `core`. See [`f64::powi`] for details.
1913 ///
1914 /// # Examples
1915 ///
1916 /// ```
1917 /// #![feature(core_float_math)]
1918 ///
1919 /// use core::f64;
1920 ///
1921 /// let x = 2.0_f64;
1922 /// let abs_difference = (f64::math::powi(x, 2) - (x * x)).abs();
1923 /// assert!(abs_difference <= 1e-6);
1924 ///
1925 /// assert_eq!(f64::math::powi(f64::NAN, 0), 1.0);
1926 /// ```
1927 ///
1928 /// _This standalone function is for testing only.
1929 /// It will be stabilized as an inherent method._
1930 ///
1931 /// [`f64::powi`]: ../../../std/primitive.f64.html#method.powi
1932 #[inline]
1933 #[unstable(feature = "core_float_math", issue = "137578")]
1934 #[must_use = "method returns a new number and does not mutate the original value"]
1935 pub fn powi(x: f64, n: i32) -> f64 {
1936 intrinsics::powif64(x, n)
1937 }
1938
1939 /// Experimental version of `sqrt` in `core`. See [`f64::sqrt`] for details.
1940 ///
1941 /// # Examples
1942 ///
1943 /// ```
1944 /// #![feature(core_float_math)]
1945 ///
1946 /// use core::f64;
1947 ///
1948 /// let positive = 4.0_f64;
1949 /// let negative = -4.0_f64;
1950 /// let negative_zero = -0.0_f64;
1951 ///
1952 /// assert_eq!(f64::math::sqrt(positive), 2.0);
1953 /// assert!(f64::math::sqrt(negative).is_nan());
1954 /// assert_eq!(f64::math::sqrt(negative_zero), negative_zero);
1955 /// ```
1956 ///
1957 /// _This standalone function is for testing only.
1958 /// It will be stabilized as an inherent method._
1959 ///
1960 /// [`f64::sqrt`]: ../../../std/primitive.f64.html#method.sqrt
1961 #[inline]
1962 #[doc(alias = "squareRoot")]
1963 #[unstable(feature = "core_float_math", issue = "137578")]
1964 #[must_use = "method returns a new number and does not mutate the original value"]
1965 pub fn sqrt(x: f64) -> f64 {
1966 intrinsics::sqrtf64(x)
1967 }
1968
1969 /// Experimental version of `abs_sub` in `core`. See [`f64::abs_sub`] for details.
1970 ///
1971 /// # Examples
1972 ///
1973 /// ```
1974 /// #![feature(core_float_math)]
1975 ///
1976 /// use core::f64;
1977 ///
1978 /// let x = 3.0_f64;
1979 /// let y = -3.0_f64;
1980 ///
1981 /// let abs_difference_x = (f64::math::abs_sub(x, 1.0) - 2.0).abs();
1982 /// let abs_difference_y = (f64::math::abs_sub(y, 1.0) - 0.0).abs();
1983 ///
1984 /// assert!(abs_difference_x < 1e-10);
1985 /// assert!(abs_difference_y < 1e-10);
1986 /// ```
1987 ///
1988 /// _This standalone function is for testing only.
1989 /// It will be stabilized as an inherent method._
1990 ///
1991 /// [`f64::abs_sub`]: ../../../std/primitive.f64.html#method.abs_sub
1992 #[inline]
1993 #[unstable(feature = "core_float_math", issue = "137578")]
1994 #[deprecated(
1995 since = "1.10.0",
1996 note = "you probably meant `(self - other).abs()`: \
1997 this operation is `(self - other).max(0.0)` \
1998 except that `abs_sub` also propagates NaNs (also \
1999 known as `fdim` in C). If you truly need the positive \
2000 difference, consider using that expression or the C function \
2001 `fdim`, depending on how you wish to handle NaN (please consider \
2002 filing an issue describing your use-case too)."
2003 )]
2004 #[must_use = "method returns a new number and does not mutate the original value"]
2005 pub fn abs_sub(x: f64, other: f64) -> f64 {
2006 libm::fdim(x, other)
2007 }
2008
2009 /// Experimental version of `cbrt` in `core`. See [`f64::cbrt`] for details.
2010 ///
2011 /// # Examples
2012 ///
2013 /// ```
2014 /// #![feature(core_float_math)]
2015 ///
2016 /// use core::f64;
2017 ///
2018 /// let x = 8.0_f64;
2019 ///
2020 /// // x^(1/3) - 2 == 0
2021 /// let abs_difference = (f64::math::cbrt(x) - 2.0).abs();
2022 ///
2023 /// assert!(abs_difference < 1e-10);
2024 /// ```
2025 ///
2026 /// _This standalone function is for testing only.
2027 /// It will be stabilized as an inherent method._
2028 ///
2029 /// [`f64::cbrt`]: ../../../std/primitive.f64.html#method.cbrt
2030 #[inline]
2031 #[unstable(feature = "core_float_math", issue = "137578")]
2032 #[must_use = "method returns a new number and does not mutate the original value"]
2033 pub fn cbrt(x: f64) -> f64 {
2034 libm::cbrt(x)
2035 }
2036}