core/num/
uint_macros.rs

1macro_rules! uint_impl {
2    (
3        Self = $SelfT:ty,
4        ActualT = $ActualT:ident,
5        SignedT = $SignedT:ident,
6
7        // These are all for use *only* in doc comments.
8        // As such, they're all passed as literals -- passing them as a string
9        // literal is fine if they need to be multiple code tokens.
10        // In non-comments, use the associated constants rather than these.
11        BITS = $BITS:literal,
12        BITS_MINUS_ONE = $BITS_MINUS_ONE:literal,
13        MAX = $MaxV:literal,
14        rot = $rot:literal,
15        rot_op = $rot_op:literal,
16        rot_result = $rot_result:literal,
17        fsh_op = $fsh_op:literal,
18        fshl_result = $fshl_result:literal,
19        fshr_result = $fshr_result:literal,
20        swap_op = $swap_op:literal,
21        swapped = $swapped:literal,
22        reversed = $reversed:literal,
23        le_bytes = $le_bytes:literal,
24        be_bytes = $be_bytes:literal,
25        to_xe_bytes_doc = $to_xe_bytes_doc:expr,
26        from_xe_bytes_doc = $from_xe_bytes_doc:expr,
27        bound_condition = $bound_condition:literal,
28    ) => {
29        /// The smallest value that can be represented by this integer type.
30        ///
31        /// # Examples
32        ///
33        /// ```
34        #[doc = concat!("assert_eq!(", stringify!($SelfT), "::MIN, 0);")]
35        /// ```
36        #[stable(feature = "assoc_int_consts", since = "1.43.0")]
37        pub const MIN: Self = 0;
38
39        /// The largest value that can be represented by this integer type
40        #[doc = concat!("(2<sup>", $BITS, "</sup> &minus; 1", $bound_condition, ").")]
41        ///
42        /// # Examples
43        ///
44        /// ```
45        #[doc = concat!("assert_eq!(", stringify!($SelfT), "::MAX, ", stringify!($MaxV), ");")]
46        /// ```
47        #[stable(feature = "assoc_int_consts", since = "1.43.0")]
48        pub const MAX: Self = !0;
49
50        /// The size of this integer type in bits.
51        ///
52        /// # Examples
53        ///
54        /// ```
55        #[doc = concat!("assert_eq!(", stringify!($SelfT), "::BITS, ", stringify!($BITS), ");")]
56        /// ```
57        #[stable(feature = "int_bits_const", since = "1.53.0")]
58        pub const BITS: u32 = Self::MAX.count_ones();
59
60        /// Returns the number of ones in the binary representation of `self`.
61        ///
62        /// # Examples
63        ///
64        /// ```
65        #[doc = concat!("let n = 0b01001100", stringify!($SelfT), ";")]
66        /// assert_eq!(n.count_ones(), 3);
67        ///
68        #[doc = concat!("let max = ", stringify!($SelfT),"::MAX;")]
69        #[doc = concat!("assert_eq!(max.count_ones(), ", stringify!($BITS), ");")]
70        ///
71        #[doc = concat!("let zero = 0", stringify!($SelfT), ";")]
72        /// assert_eq!(zero.count_ones(), 0);
73        /// ```
74        #[stable(feature = "rust1", since = "1.0.0")]
75        #[rustc_const_stable(feature = "const_math", since = "1.32.0")]
76        #[doc(alias = "popcount")]
77        #[doc(alias = "popcnt")]
78        #[must_use = "this returns the result of the operation, \
79                      without modifying the original"]
80        #[inline(always)]
81        pub const fn count_ones(self) -> u32 {
82            return intrinsics::ctpop(self);
83        }
84
85        /// Returns the number of zeros in the binary representation of `self`.
86        ///
87        /// # Examples
88        ///
89        /// ```
90        #[doc = concat!("let zero = 0", stringify!($SelfT), ";")]
91        #[doc = concat!("assert_eq!(zero.count_zeros(), ", stringify!($BITS), ");")]
92        ///
93        #[doc = concat!("let max = ", stringify!($SelfT),"::MAX;")]
94        /// assert_eq!(max.count_zeros(), 0);
95        /// ```
96        #[stable(feature = "rust1", since = "1.0.0")]
97        #[rustc_const_stable(feature = "const_math", since = "1.32.0")]
98        #[must_use = "this returns the result of the operation, \
99                      without modifying the original"]
100        #[inline(always)]
101        pub const fn count_zeros(self) -> u32 {
102            (!self).count_ones()
103        }
104
105        /// Returns the number of leading zeros in the binary representation of `self`.
106        ///
107        /// Depending on what you're doing with the value, you might also be interested in the
108        /// [`ilog2`] function which returns a consistent number, even if the type widens.
109        ///
110        /// # Examples
111        ///
112        /// ```
113        #[doc = concat!("let n = ", stringify!($SelfT), "::MAX >> 2;")]
114        /// assert_eq!(n.leading_zeros(), 2);
115        ///
116        #[doc = concat!("let zero = 0", stringify!($SelfT), ";")]
117        #[doc = concat!("assert_eq!(zero.leading_zeros(), ", stringify!($BITS), ");")]
118        ///
119        #[doc = concat!("let max = ", stringify!($SelfT),"::MAX;")]
120        /// assert_eq!(max.leading_zeros(), 0);
121        /// ```
122        #[doc = concat!("[`ilog2`]: ", stringify!($SelfT), "::ilog2")]
123        #[stable(feature = "rust1", since = "1.0.0")]
124        #[rustc_const_stable(feature = "const_math", since = "1.32.0")]
125        #[must_use = "this returns the result of the operation, \
126                      without modifying the original"]
127        #[inline(always)]
128        pub const fn leading_zeros(self) -> u32 {
129            return intrinsics::ctlz(self as $ActualT);
130        }
131
132        /// Returns the number of trailing zeros in the binary representation
133        /// of `self`.
134        ///
135        /// # Examples
136        ///
137        /// ```
138        #[doc = concat!("let n = 0b0101000", stringify!($SelfT), ";")]
139        /// assert_eq!(n.trailing_zeros(), 3);
140        ///
141        #[doc = concat!("let zero = 0", stringify!($SelfT), ";")]
142        #[doc = concat!("assert_eq!(zero.trailing_zeros(), ", stringify!($BITS), ");")]
143        ///
144        #[doc = concat!("let max = ", stringify!($SelfT),"::MAX;")]
145        #[doc = concat!("assert_eq!(max.trailing_zeros(), 0);")]
146        /// ```
147        #[stable(feature = "rust1", since = "1.0.0")]
148        #[rustc_const_stable(feature = "const_math", since = "1.32.0")]
149        #[must_use = "this returns the result of the operation, \
150                      without modifying the original"]
151        #[inline(always)]
152        pub const fn trailing_zeros(self) -> u32 {
153            return intrinsics::cttz(self);
154        }
155
156        /// Returns the number of leading ones in the binary representation of `self`.
157        ///
158        /// # Examples
159        ///
160        /// ```
161        #[doc = concat!("let n = !(", stringify!($SelfT), "::MAX >> 2);")]
162        /// assert_eq!(n.leading_ones(), 2);
163        ///
164        #[doc = concat!("let zero = 0", stringify!($SelfT), ";")]
165        /// assert_eq!(zero.leading_ones(), 0);
166        ///
167        #[doc = concat!("let max = ", stringify!($SelfT),"::MAX;")]
168        #[doc = concat!("assert_eq!(max.leading_ones(), ", stringify!($BITS), ");")]
169        /// ```
170        #[stable(feature = "leading_trailing_ones", since = "1.46.0")]
171        #[rustc_const_stable(feature = "leading_trailing_ones", since = "1.46.0")]
172        #[must_use = "this returns the result of the operation, \
173                      without modifying the original"]
174        #[inline(always)]
175        pub const fn leading_ones(self) -> u32 {
176            (!self).leading_zeros()
177        }
178
179        /// Returns the number of trailing ones in the binary representation
180        /// of `self`.
181        ///
182        /// # Examples
183        ///
184        /// ```
185        #[doc = concat!("let n = 0b1010111", stringify!($SelfT), ";")]
186        /// assert_eq!(n.trailing_ones(), 3);
187        ///
188        #[doc = concat!("let zero = 0", stringify!($SelfT), ";")]
189        /// assert_eq!(zero.trailing_ones(), 0);
190        ///
191        #[doc = concat!("let max = ", stringify!($SelfT),"::MAX;")]
192        #[doc = concat!("assert_eq!(max.trailing_ones(), ", stringify!($BITS), ");")]
193        /// ```
194        #[stable(feature = "leading_trailing_ones", since = "1.46.0")]
195        #[rustc_const_stable(feature = "leading_trailing_ones", since = "1.46.0")]
196        #[must_use = "this returns the result of the operation, \
197                      without modifying the original"]
198        #[inline(always)]
199        #[cfg(not(feature = "ferrocene_subset"))]
200        pub const fn trailing_ones(self) -> u32 {
201            (!self).trailing_zeros()
202        }
203
204        /// Returns the minimum number of bits required to represent `self`.
205        ///
206        /// This method returns zero if `self` is zero.
207        ///
208        /// # Examples
209        ///
210        /// ```
211        /// #![feature(uint_bit_width)]
212        ///
213        #[doc = concat!("assert_eq!(0_", stringify!($SelfT), ".bit_width(), 0);")]
214        #[doc = concat!("assert_eq!(0b111_", stringify!($SelfT), ".bit_width(), 3);")]
215        #[doc = concat!("assert_eq!(0b1110_", stringify!($SelfT), ".bit_width(), 4);")]
216        #[doc = concat!("assert_eq!(", stringify!($SelfT), "::MAX.bit_width(), ", stringify!($BITS), ");")]
217        /// ```
218        #[unstable(feature = "uint_bit_width", issue = "142326")]
219        #[must_use = "this returns the result of the operation, \
220                      without modifying the original"]
221        #[inline(always)]
222        #[cfg(not(feature = "ferrocene_subset"))]
223        pub const fn bit_width(self) -> u32 {
224            Self::BITS - self.leading_zeros()
225        }
226
227        /// Returns `self` with only the most significant bit set, or `0` if
228        /// the input is `0`.
229        ///
230        /// # Examples
231        ///
232        /// ```
233        /// #![feature(isolate_most_least_significant_one)]
234        ///
235        #[doc = concat!("let n: ", stringify!($SelfT), " = 0b_01100100;")]
236        ///
237        /// assert_eq!(n.isolate_highest_one(), 0b_01000000);
238        #[doc = concat!("assert_eq!(0_", stringify!($SelfT), ".isolate_highest_one(), 0);")]
239        /// ```
240        #[unstable(feature = "isolate_most_least_significant_one", issue = "136909")]
241        #[must_use = "this returns the result of the operation, \
242                      without modifying the original"]
243        #[inline(always)]
244        #[cfg(not(feature = "ferrocene_subset"))]
245        pub const fn isolate_highest_one(self) -> Self {
246            self & (((1 as $SelfT) << (<$SelfT>::BITS - 1)).wrapping_shr(self.leading_zeros()))
247        }
248
249        /// Returns `self` with only the least significant bit set, or `0` if
250        /// the input is `0`.
251        ///
252        /// # Examples
253        ///
254        /// ```
255        /// #![feature(isolate_most_least_significant_one)]
256        ///
257        #[doc = concat!("let n: ", stringify!($SelfT), " = 0b_01100100;")]
258        ///
259        /// assert_eq!(n.isolate_lowest_one(), 0b_00000100);
260        #[doc = concat!("assert_eq!(0_", stringify!($SelfT), ".isolate_lowest_one(), 0);")]
261        /// ```
262        #[unstable(feature = "isolate_most_least_significant_one", issue = "136909")]
263        #[must_use = "this returns the result of the operation, \
264                      without modifying the original"]
265        #[inline(always)]
266        #[cfg(not(feature = "ferrocene_subset"))]
267        pub const fn isolate_lowest_one(self) -> Self {
268            self & self.wrapping_neg()
269        }
270
271        /// Returns the index of the highest bit set to one in `self`, or `None`
272        /// if `self` is `0`.
273        ///
274        /// # Examples
275        ///
276        /// ```
277        /// #![feature(int_lowest_highest_one)]
278        ///
279        #[doc = concat!("assert_eq!(0b0_", stringify!($SelfT), ".highest_one(), None);")]
280        #[doc = concat!("assert_eq!(0b1_", stringify!($SelfT), ".highest_one(), Some(0));")]
281        #[doc = concat!("assert_eq!(0b1_0000_", stringify!($SelfT), ".highest_one(), Some(4));")]
282        #[doc = concat!("assert_eq!(0b1_1111_", stringify!($SelfT), ".highest_one(), Some(4));")]
283        /// ```
284        #[unstable(feature = "int_lowest_highest_one", issue = "145203")]
285        #[must_use = "this returns the result of the operation, \
286                      without modifying the original"]
287        #[inline(always)]
288        #[cfg(not(feature = "ferrocene_subset"))]
289        pub const fn highest_one(self) -> Option<u32> {
290            match NonZero::new(self) {
291                Some(v) => Some(v.highest_one()),
292                None => None,
293            }
294        }
295
296        /// Returns the index of the lowest bit set to one in `self`, or `None`
297        /// if `self` is `0`.
298        ///
299        /// # Examples
300        ///
301        /// ```
302        /// #![feature(int_lowest_highest_one)]
303        ///
304        #[doc = concat!("assert_eq!(0b0_", stringify!($SelfT), ".lowest_one(), None);")]
305        #[doc = concat!("assert_eq!(0b1_", stringify!($SelfT), ".lowest_one(), Some(0));")]
306        #[doc = concat!("assert_eq!(0b1_0000_", stringify!($SelfT), ".lowest_one(), Some(4));")]
307        #[doc = concat!("assert_eq!(0b1_1111_", stringify!($SelfT), ".lowest_one(), Some(0));")]
308        /// ```
309        #[unstable(feature = "int_lowest_highest_one", issue = "145203")]
310        #[must_use = "this returns the result of the operation, \
311                      without modifying the original"]
312        #[inline(always)]
313        #[cfg(not(feature = "ferrocene_subset"))]
314        pub const fn lowest_one(self) -> Option<u32> {
315            match NonZero::new(self) {
316                Some(v) => Some(v.lowest_one()),
317                None => None,
318            }
319        }
320
321        /// Returns the bit pattern of `self` reinterpreted as a signed integer of the same size.
322        ///
323        /// This produces the same result as an `as` cast, but ensures that the bit-width remains
324        /// the same.
325        ///
326        /// # Examples
327        ///
328        /// ```
329        #[doc = concat!("let n = ", stringify!($SelfT), "::MAX;")]
330        ///
331        #[doc = concat!("assert_eq!(n.cast_signed(), -1", stringify!($SignedT), ");")]
332        /// ```
333        #[stable(feature = "integer_sign_cast", since = "1.87.0")]
334        #[rustc_const_stable(feature = "integer_sign_cast", since = "1.87.0")]
335        #[must_use = "this returns the result of the operation, \
336                      without modifying the original"]
337        #[inline(always)]
338        #[cfg(not(feature = "ferrocene_subset"))]
339        pub const fn cast_signed(self) -> $SignedT {
340            self as $SignedT
341        }
342
343        /// Shifts the bits to the left by a specified amount, `n`,
344        /// wrapping the truncated bits to the end of the resulting integer.
345        ///
346        /// `rotate_left(n)` is equivalent to applying `rotate_left(1)` a total of `n` times. In
347        /// particular, a rotation by the number of bits in `self` returns the input value
348        /// unchanged.
349        ///
350        /// Please note this isn't the same operation as the `<<` shifting operator!
351        ///
352        /// # Examples
353        ///
354        /// ```
355        #[doc = concat!("let n = ", $rot_op, stringify!($SelfT), ";")]
356        #[doc = concat!("let m = ", $rot_result, ";")]
357        ///
358        #[doc = concat!("assert_eq!(n.rotate_left(", $rot, "), m);")]
359        #[doc = concat!("assert_eq!(n.rotate_left(1024), n);")]
360        /// ```
361        #[stable(feature = "rust1", since = "1.0.0")]
362        #[rustc_const_stable(feature = "const_math", since = "1.32.0")]
363        #[must_use = "this returns the result of the operation, \
364                      without modifying the original"]
365        #[inline(always)]
366        #[rustc_allow_const_fn_unstable(const_trait_impl)] // for the intrinsic fallback
367        pub const fn rotate_left(self, n: u32) -> Self {
368            return intrinsics::rotate_left(self, n);
369        }
370
371        /// Shifts the bits to the right by a specified amount, `n`,
372        /// wrapping the truncated bits to the beginning of the resulting
373        /// integer.
374        ///
375        /// `rotate_right(n)` is equivalent to applying `rotate_right(1)` a total of `n` times. In
376        /// particular, a rotation by the number of bits in `self` returns the input value
377        /// unchanged.
378        ///
379        /// Please note this isn't the same operation as the `>>` shifting operator!
380        ///
381        /// # Examples
382        ///
383        /// ```
384        #[doc = concat!("let n = ", $rot_result, stringify!($SelfT), ";")]
385        #[doc = concat!("let m = ", $rot_op, ";")]
386        ///
387        #[doc = concat!("assert_eq!(n.rotate_right(", $rot, "), m);")]
388        #[doc = concat!("assert_eq!(n.rotate_right(1024), n);")]
389        /// ```
390        #[stable(feature = "rust1", since = "1.0.0")]
391        #[rustc_const_stable(feature = "const_math", since = "1.32.0")]
392        #[must_use = "this returns the result of the operation, \
393                      without modifying the original"]
394        #[inline(always)]
395        #[rustc_allow_const_fn_unstable(const_trait_impl)] // for the intrinsic fallback
396        pub const fn rotate_right(self, n: u32) -> Self {
397            return intrinsics::rotate_right(self, n);
398        }
399
400        /// Performs a left funnel shift (concatenates `self` with `rhs`, with `self`
401        /// making up the most significant half, then shifts the combined value left
402        /// by `n`, and most significant half is extracted to produce the result).
403        ///
404        /// Please note this isn't the same operation as the `<<` shifting operator or
405        /// [`rotate_left`](Self::rotate_left), although `a.funnel_shl(a, n)` is *equivalent*
406        /// to `a.rotate_left(n)`.
407        ///
408        /// # Panics
409        ///
410        /// If `n` is greater than or equal to the number of bits in `self`
411        ///
412        /// # Examples
413        ///
414        /// Basic usage:
415        ///
416        /// ```
417        /// #![feature(funnel_shifts)]
418        #[doc = concat!("let a = ", $rot_op, stringify!($SelfT), ";")]
419        #[doc = concat!("let b = ", $fsh_op, stringify!($SelfT), ";")]
420        #[doc = concat!("let m = ", $fshl_result, ";")]
421        ///
422        #[doc = concat!("assert_eq!(a.funnel_shl(b, ", $rot, "), m);")]
423        /// ```
424        #[rustc_const_unstable(feature = "funnel_shifts", issue = "145686")]
425        #[unstable(feature = "funnel_shifts", issue = "145686")]
426        #[must_use = "this returns the result of the operation, \
427                      without modifying the original"]
428        #[inline(always)]
429        #[cfg(not(feature = "ferrocene_subset"))]
430        pub const fn funnel_shl(self, rhs: Self, n: u32) -> Self {
431            assert!(n < Self::BITS, "attempt to funnel shift left with overflow");
432            // SAFETY: just checked that `shift` is in-range
433            unsafe { intrinsics::unchecked_funnel_shl(self, rhs, n) }
434        }
435
436        /// Performs a right funnel shift (concatenates `self` and `rhs`, with `self`
437        /// making up the most significant half, then shifts the combined value right
438        /// by `n`, and least significant half is extracted to produce the result).
439        ///
440        /// Please note this isn't the same operation as the `>>` shifting operator or
441        /// [`rotate_right`](Self::rotate_right), although `a.funnel_shr(a, n)` is *equivalent*
442        /// to `a.rotate_right(n)`.
443        ///
444        /// # Panics
445        ///
446        /// If `n` is greater than or equal to the number of bits in `self`
447        ///
448        /// # Examples
449        ///
450        /// Basic usage:
451        ///
452        /// ```
453        /// #![feature(funnel_shifts)]
454        #[doc = concat!("let a = ", $rot_op, stringify!($SelfT), ";")]
455        #[doc = concat!("let b = ", $fsh_op, stringify!($SelfT), ";")]
456        #[doc = concat!("let m = ", $fshr_result, ";")]
457        ///
458        #[doc = concat!("assert_eq!(a.funnel_shr(b, ", $rot, "), m);")]
459        /// ```
460        #[rustc_const_unstable(feature = "funnel_shifts", issue = "145686")]
461        #[unstable(feature = "funnel_shifts", issue = "145686")]
462        #[must_use = "this returns the result of the operation, \
463                      without modifying the original"]
464        #[inline(always)]
465        #[cfg(not(feature = "ferrocene_subset"))]
466        pub const fn funnel_shr(self, rhs: Self, n: u32) -> Self {
467            assert!(n < Self::BITS, "attempt to funnel shift right with overflow");
468            // SAFETY: just checked that `shift` is in-range
469            unsafe { intrinsics::unchecked_funnel_shr(self, rhs, n) }
470        }
471
472        /// Reverses the byte order of the integer.
473        ///
474        /// # Examples
475        ///
476        /// ```
477        #[doc = concat!("let n = ", $swap_op, stringify!($SelfT), ";")]
478        /// let m = n.swap_bytes();
479        ///
480        #[doc = concat!("assert_eq!(m, ", $swapped, ");")]
481        /// ```
482        #[stable(feature = "rust1", since = "1.0.0")]
483        #[rustc_const_stable(feature = "const_math", since = "1.32.0")]
484        #[must_use = "this returns the result of the operation, \
485                      without modifying the original"]
486        #[inline(always)]
487        pub const fn swap_bytes(self) -> Self {
488            intrinsics::bswap(self as $ActualT) as Self
489        }
490
491        /// Returns an integer with the bit locations specified by `mask` packed
492        /// contiguously into the least significant bits of the result.
493        /// ```
494        /// #![feature(uint_gather_scatter_bits)]
495        #[doc = concat!("let n: ", stringify!($SelfT), " = 0b1011_1100;")]
496        ///
497        /// assert_eq!(n.gather_bits(0b0010_0100), 0b0000_0011);
498        /// assert_eq!(n.gather_bits(0xF0), 0b0000_1011);
499        /// ```
500        #[cfg(not(feature = "ferrocene_subset"))]
501        #[unstable(feature = "uint_gather_scatter_bits", issue = "149069")]
502        #[must_use = "this returns the result of the operation, \
503                      without modifying the original"]
504        #[inline]
505        pub const fn gather_bits(self, mut mask: Self) -> Self {
506            let mut bit_position = 1;
507            let mut result = 0;
508
509            // Iterate through the mask bits, unsetting the lowest bit after
510            // each iteration. We fill the bits in the result starting from the
511            // least significant bit.
512            while mask != 0 {
513                // Find the next lowest set bit in the mask
514                let next_mask_bit = mask.isolate_lowest_one();
515
516                // Retrieve the masked bit and if present, set it in the result
517                let src_bit = (self & next_mask_bit) != 0;
518                result |= if src_bit { bit_position } else { 0 };
519
520                // Unset lowest set bit in the mask, prepare next position to set
521                mask ^= next_mask_bit;
522                bit_position <<= 1;
523            }
524
525            result
526        }
527
528        /// Returns an integer with the least significant bits of `self`
529        /// distributed to the bit locations specified by `mask`.
530        /// ```
531        /// #![feature(uint_gather_scatter_bits)]
532        #[doc = concat!("let n: ", stringify!($SelfT), " = 0b1010_1101;")]
533        ///
534        /// assert_eq!(n.scatter_bits(0b0101_0101), 0b0101_0001);
535        /// assert_eq!(n.scatter_bits(0xF0), 0b1101_0000);
536        /// ```
537        #[cfg(not(feature = "ferrocene_subset"))]
538        #[unstable(feature = "uint_gather_scatter_bits", issue = "149069")]
539        #[must_use = "this returns the result of the operation, \
540                      without modifying the original"]
541        #[inline]
542        pub const fn scatter_bits(mut self, mut mask: Self) -> Self {
543            let mut result = 0;
544
545            // Iterate through the mask bits, unsetting the lowest bit after
546            // each iteration and right-shifting `self` by one to get the next
547            // bit into the least significant bit position.
548            while mask != 0 {
549                // Find the next bit position to potentially set
550                let next_mask_bit = mask.isolate_lowest_one();
551
552                // If bit is set, deposit it at the masked bit position
553                result |= if (self & 1) != 0 { next_mask_bit } else { 0 };
554
555                // Unset lowest set bit in the mask, shift in next `self` bit
556                mask ^= next_mask_bit;
557                self >>= 1;
558            }
559
560            result
561        }
562
563        /// Reverses the order of bits in the integer. The least significant bit becomes the most significant bit,
564        ///                 second least-significant bit becomes second most-significant bit, etc.
565        ///
566        /// # Examples
567        ///
568        /// ```
569        #[doc = concat!("let n = ", $swap_op, stringify!($SelfT), ";")]
570        /// let m = n.reverse_bits();
571        ///
572        #[doc = concat!("assert_eq!(m, ", $reversed, ");")]
573        #[doc = concat!("assert_eq!(0, 0", stringify!($SelfT), ".reverse_bits());")]
574        /// ```
575        #[stable(feature = "reverse_bits", since = "1.37.0")]
576        #[rustc_const_stable(feature = "reverse_bits", since = "1.37.0")]
577        #[must_use = "this returns the result of the operation, \
578                      without modifying the original"]
579        #[inline(always)]
580        pub const fn reverse_bits(self) -> Self {
581            intrinsics::bitreverse(self as $ActualT) as Self
582        }
583
584        /// Converts an integer from big endian to the target's endianness.
585        ///
586        /// On big endian this is a no-op. On little endian the bytes are
587        /// swapped.
588        ///
589        /// # Examples
590        ///
591        /// ```
592        #[doc = concat!("let n = 0x1A", stringify!($SelfT), ";")]
593        ///
594        /// if cfg!(target_endian = "big") {
595        #[doc = concat!("    assert_eq!(", stringify!($SelfT), "::from_be(n), n)")]
596        /// } else {
597        #[doc = concat!("    assert_eq!(", stringify!($SelfT), "::from_be(n), n.swap_bytes())")]
598        /// }
599        /// ```
600        #[stable(feature = "rust1", since = "1.0.0")]
601        #[rustc_const_stable(feature = "const_math", since = "1.32.0")]
602        #[must_use]
603        #[inline(always)]
604        pub const fn from_be(x: Self) -> Self {
605            #[cfg(target_endian = "big")]
606            {
607                x
608            }
609            #[cfg(not(target_endian = "big"))]
610            {
611                x.swap_bytes()
612            }
613        }
614
615        /// Converts an integer from little endian to the target's endianness.
616        ///
617        /// On little endian this is a no-op. On big endian the bytes are
618        /// swapped.
619        ///
620        /// # Examples
621        ///
622        /// ```
623        #[doc = concat!("let n = 0x1A", stringify!($SelfT), ";")]
624        ///
625        /// if cfg!(target_endian = "little") {
626        #[doc = concat!("    assert_eq!(", stringify!($SelfT), "::from_le(n), n)")]
627        /// } else {
628        #[doc = concat!("    assert_eq!(", stringify!($SelfT), "::from_le(n), n.swap_bytes())")]
629        /// }
630        /// ```
631        #[stable(feature = "rust1", since = "1.0.0")]
632        #[rustc_const_stable(feature = "const_math", since = "1.32.0")]
633        #[must_use]
634        #[inline(always)]
635        pub const fn from_le(x: Self) -> Self {
636            #[cfg(target_endian = "little")]
637            {
638                x
639            }
640            #[cfg(not(target_endian = "little"))]
641            {
642                x.swap_bytes()
643            }
644        }
645
646        /// Converts `self` to big endian from the target's endianness.
647        ///
648        /// On big endian this is a no-op. On little endian the bytes are
649        /// swapped.
650        ///
651        /// # Examples
652        ///
653        /// ```
654        #[doc = concat!("let n = 0x1A", stringify!($SelfT), ";")]
655        ///
656        /// if cfg!(target_endian = "big") {
657        ///     assert_eq!(n.to_be(), n)
658        /// } else {
659        ///     assert_eq!(n.to_be(), n.swap_bytes())
660        /// }
661        /// ```
662        #[stable(feature = "rust1", since = "1.0.0")]
663        #[rustc_const_stable(feature = "const_math", since = "1.32.0")]
664        #[must_use = "this returns the result of the operation, \
665                      without modifying the original"]
666        #[inline(always)]
667        pub const fn to_be(self) -> Self { // or not to be?
668            #[cfg(target_endian = "big")]
669            {
670                self
671            }
672            #[cfg(not(target_endian = "big"))]
673            {
674                self.swap_bytes()
675            }
676        }
677
678        /// Converts `self` to little endian from the target's endianness.
679        ///
680        /// On little endian this is a no-op. On big endian the bytes are
681        /// swapped.
682        ///
683        /// # Examples
684        ///
685        /// ```
686        #[doc = concat!("let n = 0x1A", stringify!($SelfT), ";")]
687        ///
688        /// if cfg!(target_endian = "little") {
689        ///     assert_eq!(n.to_le(), n)
690        /// } else {
691        ///     assert_eq!(n.to_le(), n.swap_bytes())
692        /// }
693        /// ```
694        #[stable(feature = "rust1", since = "1.0.0")]
695        #[rustc_const_stable(feature = "const_math", since = "1.32.0")]
696        #[must_use = "this returns the result of the operation, \
697                      without modifying the original"]
698        #[inline(always)]
699        pub const fn to_le(self) -> Self {
700            #[cfg(target_endian = "little")]
701            {
702                self
703            }
704            #[cfg(not(target_endian = "little"))]
705            {
706                self.swap_bytes()
707            }
708        }
709
710        /// Checked integer addition. Computes `self + rhs`, returning `None`
711        /// if overflow occurred.
712        ///
713        /// # Examples
714        ///
715        /// ```
716        #[doc = concat!(
717            "assert_eq!((", stringify!($SelfT), "::MAX - 2).checked_add(1), ",
718            "Some(", stringify!($SelfT), "::MAX - 1));"
719        )]
720        #[doc = concat!("assert_eq!((", stringify!($SelfT), "::MAX - 2).checked_add(3), None);")]
721        /// ```
722        #[stable(feature = "rust1", since = "1.0.0")]
723        #[rustc_const_stable(feature = "const_checked_int_methods", since = "1.47.0")]
724        #[must_use = "this returns the result of the operation, \
725                      without modifying the original"]
726        #[inline]
727        pub const fn checked_add(self, rhs: Self) -> Option<Self> {
728            // This used to use `overflowing_add`, but that means it ends up being
729            // a `wrapping_add`, losing some optimization opportunities. Notably,
730            // phrasing it this way helps `.checked_add(1)` optimize to a check
731            // against `MAX` and a `add nuw`.
732            // Per <https://github.com/rust-lang/rust/pull/124114#issuecomment-2066173305>,
733            // LLVM is happy to re-form the intrinsic later if useful.
734
735            if intrinsics::unlikely(intrinsics::add_with_overflow(self, rhs).1) {
736                None
737            } else {
738                // SAFETY: Just checked it doesn't overflow
739                Some(unsafe { intrinsics::unchecked_add(self, rhs) })
740            }
741        }
742
743        /// Strict integer addition. Computes `self + rhs`, panicking
744        /// if overflow occurred.
745        ///
746        /// # Panics
747        ///
748        /// ## Overflow behavior
749        ///
750        /// This function will always panic on overflow, regardless of whether overflow checks are enabled.
751        ///
752        /// # Examples
753        ///
754        /// ```
755        #[doc = concat!("assert_eq!((", stringify!($SelfT), "::MAX - 2).strict_add(1), ", stringify!($SelfT), "::MAX - 1);")]
756        /// ```
757        ///
758        /// The following panics because of overflow:
759        ///
760        /// ```should_panic
761        #[doc = concat!("let _ = (", stringify!($SelfT), "::MAX - 2).strict_add(3);")]
762        /// ```
763        #[stable(feature = "strict_overflow_ops", since = "1.91.0")]
764        #[rustc_const_stable(feature = "strict_overflow_ops", since = "1.91.0")]
765        #[must_use = "this returns the result of the operation, \
766                      without modifying the original"]
767        #[inline]
768        #[track_caller]
769        #[cfg(not(feature = "ferrocene_subset"))]
770        pub const fn strict_add(self, rhs: Self) -> Self {
771            let (a, b) = self.overflowing_add(rhs);
772            if b { overflow_panic::add() } else { a }
773        }
774
775        /// Unchecked integer addition. Computes `self + rhs`, assuming overflow
776        /// cannot occur.
777        ///
778        /// Calling `x.unchecked_add(y)` is semantically equivalent to calling
779        /// `x.`[`checked_add`]`(y).`[`unwrap_unchecked`]`()`.
780        ///
781        /// If you're just trying to avoid the panic in debug mode, then **do not**
782        /// use this.  Instead, you're looking for [`wrapping_add`].
783        ///
784        /// # Safety
785        ///
786        /// This results in undefined behavior when
787        #[doc = concat!("`self + rhs > ", stringify!($SelfT), "::MAX` or `self + rhs < ", stringify!($SelfT), "::MIN`,")]
788        /// i.e. when [`checked_add`] would return `None`.
789        ///
790        /// [`unwrap_unchecked`]: option/enum.Option.html#method.unwrap_unchecked
791        #[doc = concat!("[`checked_add`]: ", stringify!($SelfT), "::checked_add")]
792        #[doc = concat!("[`wrapping_add`]: ", stringify!($SelfT), "::wrapping_add")]
793        #[stable(feature = "unchecked_math", since = "1.79.0")]
794        #[rustc_const_stable(feature = "unchecked_math", since = "1.79.0")]
795        #[must_use = "this returns the result of the operation, \
796                      without modifying the original"]
797        #[inline(always)]
798        #[track_caller]
799        pub const unsafe fn unchecked_add(self, rhs: Self) -> Self {
800            assert_unsafe_precondition!(
801                check_language_ub,
802                concat!(stringify!($SelfT), "::unchecked_add cannot overflow"),
803                (
804                    lhs: $SelfT = self,
805                    rhs: $SelfT = rhs,
806                ) => !lhs.overflowing_add(rhs).1,
807            );
808
809            // SAFETY: this is guaranteed to be safe by the caller.
810            unsafe {
811                intrinsics::unchecked_add(self, rhs)
812            }
813        }
814
815        /// Checked addition with a signed integer. Computes `self + rhs`,
816        /// returning `None` if overflow occurred.
817        ///
818        /// # Examples
819        ///
820        /// ```
821        #[doc = concat!("assert_eq!(1", stringify!($SelfT), ".checked_add_signed(2), Some(3));")]
822        #[doc = concat!("assert_eq!(1", stringify!($SelfT), ".checked_add_signed(-2), None);")]
823        #[doc = concat!("assert_eq!((", stringify!($SelfT), "::MAX - 2).checked_add_signed(3), None);")]
824        /// ```
825        #[stable(feature = "mixed_integer_ops", since = "1.66.0")]
826        #[rustc_const_stable(feature = "mixed_integer_ops", since = "1.66.0")]
827        #[must_use = "this returns the result of the operation, \
828                      without modifying the original"]
829        #[inline]
830        #[cfg(not(feature = "ferrocene_subset"))]
831        pub const fn checked_add_signed(self, rhs: $SignedT) -> Option<Self> {
832            let (a, b) = self.overflowing_add_signed(rhs);
833            if intrinsics::unlikely(b) { None } else { Some(a) }
834        }
835
836        /// Strict addition with a signed integer. Computes `self + rhs`,
837        /// panicking if overflow occurred.
838        ///
839        /// # Panics
840        ///
841        /// ## Overflow behavior
842        ///
843        /// This function will always panic on overflow, regardless of whether overflow checks are enabled.
844        ///
845        /// # Examples
846        ///
847        /// ```
848        #[doc = concat!("assert_eq!(1", stringify!($SelfT), ".strict_add_signed(2), 3);")]
849        /// ```
850        ///
851        /// The following panic because of overflow:
852        ///
853        /// ```should_panic
854        #[doc = concat!("let _ = 1", stringify!($SelfT), ".strict_add_signed(-2);")]
855        /// ```
856        ///
857        /// ```should_panic
858        #[doc = concat!("let _ = (", stringify!($SelfT), "::MAX - 2).strict_add_signed(3);")]
859        /// ```
860        #[stable(feature = "strict_overflow_ops", since = "1.91.0")]
861        #[rustc_const_stable(feature = "strict_overflow_ops", since = "1.91.0")]
862        #[must_use = "this returns the result of the operation, \
863                      without modifying the original"]
864        #[inline]
865        #[track_caller]
866        #[cfg(not(feature = "ferrocene_subset"))]
867        pub const fn strict_add_signed(self, rhs: $SignedT) -> Self {
868            let (a, b) = self.overflowing_add_signed(rhs);
869            if b { overflow_panic::add() } else { a }
870        }
871
872        /// Checked integer subtraction. Computes `self - rhs`, returning
873        /// `None` if overflow occurred.
874        ///
875        /// # Examples
876        ///
877        /// ```
878        #[doc = concat!("assert_eq!(1", stringify!($SelfT), ".checked_sub(1), Some(0));")]
879        #[doc = concat!("assert_eq!(0", stringify!($SelfT), ".checked_sub(1), None);")]
880        /// ```
881        #[stable(feature = "rust1", since = "1.0.0")]
882        #[rustc_const_stable(feature = "const_checked_int_methods", since = "1.47.0")]
883        #[must_use = "this returns the result of the operation, \
884                      without modifying the original"]
885        #[inline]
886        pub const fn checked_sub(self, rhs: Self) -> Option<Self> {
887            // Per PR#103299, there's no advantage to the `overflowing` intrinsic
888            // for *unsigned* subtraction and we just emit the manual check anyway.
889            // Thus, rather than using `overflowing_sub` that produces a wrapping
890            // subtraction, check it ourself so we can use an unchecked one.
891
892            if self < rhs {
893                None
894            } else {
895                // SAFETY: just checked this can't overflow
896                Some(unsafe { intrinsics::unchecked_sub(self, rhs) })
897            }
898        }
899
900        /// Strict integer subtraction. Computes `self - rhs`, panicking if
901        /// overflow occurred.
902        ///
903        /// # Panics
904        ///
905        /// ## Overflow behavior
906        ///
907        /// This function will always panic on overflow, regardless of whether overflow checks are enabled.
908        ///
909        /// # Examples
910        ///
911        /// ```
912        #[doc = concat!("assert_eq!(1", stringify!($SelfT), ".strict_sub(1), 0);")]
913        /// ```
914        ///
915        /// The following panics because of overflow:
916        ///
917        /// ```should_panic
918        #[doc = concat!("let _ = 0", stringify!($SelfT), ".strict_sub(1);")]
919        /// ```
920        #[stable(feature = "strict_overflow_ops", since = "1.91.0")]
921        #[rustc_const_stable(feature = "strict_overflow_ops", since = "1.91.0")]
922        #[must_use = "this returns the result of the operation, \
923                      without modifying the original"]
924        #[inline]
925        #[track_caller]
926        #[cfg(not(feature = "ferrocene_subset"))]
927        pub const fn strict_sub(self, rhs: Self) -> Self {
928            let (a, b) = self.overflowing_sub(rhs);
929            if b { overflow_panic::sub() } else { a }
930        }
931
932        /// Unchecked integer subtraction. Computes `self - rhs`, assuming overflow
933        /// cannot occur.
934        ///
935        /// Calling `x.unchecked_sub(y)` is semantically equivalent to calling
936        /// `x.`[`checked_sub`]`(y).`[`unwrap_unchecked`]`()`.
937        ///
938        /// If you're just trying to avoid the panic in debug mode, then **do not**
939        /// use this.  Instead, you're looking for [`wrapping_sub`].
940        ///
941        /// If you find yourself writing code like this:
942        ///
943        /// ```
944        /// # let foo = 30_u32;
945        /// # let bar = 20;
946        /// if foo >= bar {
947        ///     // SAFETY: just checked it will not overflow
948        ///     let diff = unsafe { foo.unchecked_sub(bar) };
949        ///     // ... use diff ...
950        /// }
951        /// ```
952        ///
953        /// Consider changing it to
954        ///
955        /// ```
956        /// # let foo = 30_u32;
957        /// # let bar = 20;
958        /// if let Some(diff) = foo.checked_sub(bar) {
959        ///     // ... use diff ...
960        /// }
961        /// ```
962        ///
963        /// As that does exactly the same thing -- including telling the optimizer
964        /// that the subtraction cannot overflow -- but avoids needing `unsafe`.
965        ///
966        /// # Safety
967        ///
968        /// This results in undefined behavior when
969        #[doc = concat!("`self - rhs > ", stringify!($SelfT), "::MAX` or `self - rhs < ", stringify!($SelfT), "::MIN`,")]
970        /// i.e. when [`checked_sub`] would return `None`.
971        ///
972        /// [`unwrap_unchecked`]: option/enum.Option.html#method.unwrap_unchecked
973        #[doc = concat!("[`checked_sub`]: ", stringify!($SelfT), "::checked_sub")]
974        #[doc = concat!("[`wrapping_sub`]: ", stringify!($SelfT), "::wrapping_sub")]
975        #[stable(feature = "unchecked_math", since = "1.79.0")]
976        #[rustc_const_stable(feature = "unchecked_math", since = "1.79.0")]
977        #[must_use = "this returns the result of the operation, \
978                      without modifying the original"]
979        #[inline(always)]
980        #[track_caller]
981        pub const unsafe fn unchecked_sub(self, rhs: Self) -> Self {
982            assert_unsafe_precondition!(
983                check_language_ub,
984                concat!(stringify!($SelfT), "::unchecked_sub cannot overflow"),
985                (
986                    lhs: $SelfT = self,
987                    rhs: $SelfT = rhs,
988                ) => !lhs.overflowing_sub(rhs).1,
989            );
990
991            // SAFETY: this is guaranteed to be safe by the caller.
992            unsafe {
993                intrinsics::unchecked_sub(self, rhs)
994            }
995        }
996
997        /// Checked subtraction with a signed integer. Computes `self - rhs`,
998        /// returning `None` if overflow occurred.
999        ///
1000        /// # Examples
1001        ///
1002        /// ```
1003        #[doc = concat!("assert_eq!(1", stringify!($SelfT), ".checked_sub_signed(2), None);")]
1004        #[doc = concat!("assert_eq!(1", stringify!($SelfT), ".checked_sub_signed(-2), Some(3));")]
1005        #[doc = concat!("assert_eq!((", stringify!($SelfT), "::MAX - 2).checked_sub_signed(-4), None);")]
1006        /// ```
1007        #[stable(feature = "mixed_integer_ops_unsigned_sub", since = "1.90.0")]
1008        #[rustc_const_stable(feature = "mixed_integer_ops_unsigned_sub", since = "1.90.0")]
1009        #[must_use = "this returns the result of the operation, \
1010                      without modifying the original"]
1011        #[inline]
1012        #[cfg(not(feature = "ferrocene_subset"))]
1013        pub const fn checked_sub_signed(self, rhs: $SignedT) -> Option<Self> {
1014            let (res, overflow) = self.overflowing_sub_signed(rhs);
1015
1016            if !overflow {
1017                Some(res)
1018            } else {
1019                None
1020            }
1021        }
1022
1023        /// Strict subtraction with a signed integer. Computes `self - rhs`,
1024        /// panicking if overflow occurred.
1025        ///
1026        /// # Panics
1027        ///
1028        /// ## Overflow behavior
1029        ///
1030        /// This function will always panic on overflow, regardless of whether overflow checks are enabled.
1031        ///
1032        /// # Examples
1033        ///
1034        /// ```
1035        #[doc = concat!("assert_eq!(3", stringify!($SelfT), ".strict_sub_signed(2), 1);")]
1036        /// ```
1037        ///
1038        /// The following panic because of overflow:
1039        ///
1040        /// ```should_panic
1041        #[doc = concat!("let _ = 1", stringify!($SelfT), ".strict_sub_signed(2);")]
1042        /// ```
1043        ///
1044        /// ```should_panic
1045        #[doc = concat!("let _ = (", stringify!($SelfT), "::MAX).strict_sub_signed(-1);")]
1046        /// ```
1047        #[stable(feature = "strict_overflow_ops", since = "1.91.0")]
1048        #[rustc_const_stable(feature = "strict_overflow_ops", since = "1.91.0")]
1049        #[must_use = "this returns the result of the operation, \
1050                      without modifying the original"]
1051        #[inline]
1052        #[track_caller]
1053        #[cfg(not(feature = "ferrocene_subset"))]
1054        pub const fn strict_sub_signed(self, rhs: $SignedT) -> Self {
1055            let (a, b) = self.overflowing_sub_signed(rhs);
1056            if b { overflow_panic::sub() } else { a }
1057        }
1058
1059        #[doc = concat!(
1060            "Checked integer subtraction. Computes `self - rhs` and checks if the result fits into an [`",
1061            stringify!($SignedT), "`], returning `None` if overflow occurred."
1062        )]
1063        ///
1064        /// # Examples
1065        ///
1066        /// ```
1067        #[doc = concat!("assert_eq!(10", stringify!($SelfT), ".checked_signed_diff(2), Some(8));")]
1068        #[doc = concat!("assert_eq!(2", stringify!($SelfT), ".checked_signed_diff(10), Some(-8));")]
1069        #[doc = concat!(
1070            "assert_eq!(",
1071            stringify!($SelfT),
1072            "::MAX.checked_signed_diff(",
1073            stringify!($SignedT),
1074            "::MAX as ",
1075            stringify!($SelfT),
1076            "), None);"
1077        )]
1078        #[doc = concat!(
1079            "assert_eq!((",
1080            stringify!($SignedT),
1081            "::MAX as ",
1082            stringify!($SelfT),
1083            ").checked_signed_diff(",
1084            stringify!($SelfT),
1085            "::MAX), Some(",
1086            stringify!($SignedT),
1087            "::MIN));"
1088        )]
1089        #[doc = concat!(
1090            "assert_eq!((",
1091            stringify!($SignedT),
1092            "::MAX as ",
1093            stringify!($SelfT),
1094            " + 1).checked_signed_diff(0), None);"
1095        )]
1096        #[doc = concat!(
1097            "assert_eq!(",
1098            stringify!($SelfT),
1099            "::MAX.checked_signed_diff(",
1100            stringify!($SelfT),
1101            "::MAX), Some(0));"
1102        )]
1103        /// ```
1104        #[stable(feature = "unsigned_signed_diff", since = "1.91.0")]
1105        #[rustc_const_stable(feature = "unsigned_signed_diff", since = "1.91.0")]
1106        #[inline]
1107        #[cfg(not(feature = "ferrocene_subset"))]
1108        pub const fn checked_signed_diff(self, rhs: Self) -> Option<$SignedT> {
1109            let res = self.wrapping_sub(rhs) as $SignedT;
1110            let overflow = (self >= rhs) == (res < 0);
1111
1112            if !overflow {
1113                Some(res)
1114            } else {
1115                None
1116            }
1117        }
1118
1119        /// Checked integer multiplication. Computes `self * rhs`, returning
1120        /// `None` if overflow occurred.
1121        ///
1122        /// # Examples
1123        ///
1124        /// ```
1125        #[doc = concat!("assert_eq!(5", stringify!($SelfT), ".checked_mul(1), Some(5));")]
1126        #[doc = concat!("assert_eq!(", stringify!($SelfT), "::MAX.checked_mul(2), None);")]
1127        /// ```
1128        #[stable(feature = "rust1", since = "1.0.0")]
1129        #[rustc_const_stable(feature = "const_checked_int_methods", since = "1.47.0")]
1130        #[must_use = "this returns the result of the operation, \
1131                      without modifying the original"]
1132        #[inline]
1133        pub const fn checked_mul(self, rhs: Self) -> Option<Self> {
1134            let (a, b) = self.overflowing_mul(rhs);
1135            if intrinsics::unlikely(b) { None } else { Some(a) }
1136        }
1137
1138        /// Strict integer multiplication. Computes `self * rhs`, panicking if
1139        /// overflow occurred.
1140        ///
1141        /// # Panics
1142        ///
1143        /// ## Overflow behavior
1144        ///
1145        /// This function will always panic on overflow, regardless of whether overflow checks are enabled.
1146        ///
1147        /// # Examples
1148        ///
1149        /// ```
1150        #[doc = concat!("assert_eq!(5", stringify!($SelfT), ".strict_mul(1), 5);")]
1151        /// ```
1152        ///
1153        /// The following panics because of overflow:
1154        ///
1155        /// ``` should_panic
1156        #[doc = concat!("let _ = ", stringify!($SelfT), "::MAX.strict_mul(2);")]
1157        /// ```
1158        #[stable(feature = "strict_overflow_ops", since = "1.91.0")]
1159        #[rustc_const_stable(feature = "strict_overflow_ops", since = "1.91.0")]
1160        #[must_use = "this returns the result of the operation, \
1161                      without modifying the original"]
1162        #[inline]
1163        #[track_caller]
1164        #[cfg(not(feature = "ferrocene_subset"))]
1165        pub const fn strict_mul(self, rhs: Self) -> Self {
1166            let (a, b) = self.overflowing_mul(rhs);
1167            if b { overflow_panic::mul() } else { a }
1168        }
1169
1170        /// Unchecked integer multiplication. Computes `self * rhs`, assuming overflow
1171        /// cannot occur.
1172        ///
1173        /// Calling `x.unchecked_mul(y)` is semantically equivalent to calling
1174        /// `x.`[`checked_mul`]`(y).`[`unwrap_unchecked`]`()`.
1175        ///
1176        /// If you're just trying to avoid the panic in debug mode, then **do not**
1177        /// use this.  Instead, you're looking for [`wrapping_mul`].
1178        ///
1179        /// # Safety
1180        ///
1181        /// This results in undefined behavior when
1182        #[doc = concat!("`self * rhs > ", stringify!($SelfT), "::MAX` or `self * rhs < ", stringify!($SelfT), "::MIN`,")]
1183        /// i.e. when [`checked_mul`] would return `None`.
1184        ///
1185        /// [`unwrap_unchecked`]: option/enum.Option.html#method.unwrap_unchecked
1186        #[doc = concat!("[`checked_mul`]: ", stringify!($SelfT), "::checked_mul")]
1187        #[doc = concat!("[`wrapping_mul`]: ", stringify!($SelfT), "::wrapping_mul")]
1188        #[stable(feature = "unchecked_math", since = "1.79.0")]
1189        #[rustc_const_stable(feature = "unchecked_math", since = "1.79.0")]
1190        #[must_use = "this returns the result of the operation, \
1191                      without modifying the original"]
1192        #[inline(always)]
1193        #[track_caller]
1194        #[cfg(not(feature = "ferrocene_subset"))]
1195        pub const unsafe fn unchecked_mul(self, rhs: Self) -> Self {
1196            assert_unsafe_precondition!(
1197                check_language_ub,
1198                concat!(stringify!($SelfT), "::unchecked_mul cannot overflow"),
1199                (
1200                    lhs: $SelfT = self,
1201                    rhs: $SelfT = rhs,
1202                ) => !lhs.overflowing_mul(rhs).1,
1203            );
1204
1205            // SAFETY: this is guaranteed to be safe by the caller.
1206            unsafe {
1207                intrinsics::unchecked_mul(self, rhs)
1208            }
1209        }
1210
1211        /// Checked integer division. Computes `self / rhs`, returning `None`
1212        /// if `rhs == 0`.
1213        ///
1214        /// # Examples
1215        ///
1216        /// ```
1217        #[doc = concat!("assert_eq!(128", stringify!($SelfT), ".checked_div(2), Some(64));")]
1218        #[doc = concat!("assert_eq!(1", stringify!($SelfT), ".checked_div(0), None);")]
1219        /// ```
1220        #[stable(feature = "rust1", since = "1.0.0")]
1221        #[rustc_const_stable(feature = "const_checked_int_div", since = "1.52.0")]
1222        #[must_use = "this returns the result of the operation, \
1223                      without modifying the original"]
1224        #[inline]
1225        #[cfg(not(feature = "ferrocene_subset"))]
1226        pub const fn checked_div(self, rhs: Self) -> Option<Self> {
1227            if intrinsics::unlikely(rhs == 0) {
1228                None
1229            } else {
1230                // SAFETY: div by zero has been checked above and unsigned types have no other
1231                // failure modes for division
1232                Some(unsafe { intrinsics::unchecked_div(self, rhs) })
1233            }
1234        }
1235
1236        /// Strict integer division. Computes `self / rhs`.
1237        ///
1238        /// Strict division on unsigned types is just normal division. There's no
1239        /// way overflow could ever happen. This function exists so that all
1240        /// operations are accounted for in the strict operations.
1241        ///
1242        /// # Panics
1243        ///
1244        /// This function will panic if `rhs` is zero.
1245        ///
1246        /// # Examples
1247        ///
1248        /// ```
1249        #[doc = concat!("assert_eq!(100", stringify!($SelfT), ".strict_div(10), 10);")]
1250        /// ```
1251        ///
1252        /// The following panics because of division by zero:
1253        ///
1254        /// ```should_panic
1255        #[doc = concat!("let _ = (1", stringify!($SelfT), ").strict_div(0);")]
1256        /// ```
1257        #[stable(feature = "strict_overflow_ops", since = "1.91.0")]
1258        #[rustc_const_stable(feature = "strict_overflow_ops", since = "1.91.0")]
1259        #[must_use = "this returns the result of the operation, \
1260                      without modifying the original"]
1261        #[inline(always)]
1262        #[track_caller]
1263        #[cfg(not(feature = "ferrocene_subset"))]
1264        pub const fn strict_div(self, rhs: Self) -> Self {
1265            self / rhs
1266        }
1267
1268        /// Checked Euclidean division. Computes `self.div_euclid(rhs)`, returning `None`
1269        /// if `rhs == 0`.
1270        ///
1271        /// # Examples
1272        ///
1273        /// ```
1274        #[doc = concat!("assert_eq!(128", stringify!($SelfT), ".checked_div_euclid(2), Some(64));")]
1275        #[doc = concat!("assert_eq!(1", stringify!($SelfT), ".checked_div_euclid(0), None);")]
1276        /// ```
1277        #[stable(feature = "euclidean_division", since = "1.38.0")]
1278        #[rustc_const_stable(feature = "const_euclidean_int_methods", since = "1.52.0")]
1279        #[must_use = "this returns the result of the operation, \
1280                      without modifying the original"]
1281        #[inline]
1282        #[cfg(not(feature = "ferrocene_subset"))]
1283        pub const fn checked_div_euclid(self, rhs: Self) -> Option<Self> {
1284            if intrinsics::unlikely(rhs == 0) {
1285                None
1286            } else {
1287                Some(self.div_euclid(rhs))
1288            }
1289        }
1290
1291        /// Strict Euclidean division. Computes `self.div_euclid(rhs)`.
1292        ///
1293        /// Strict division on unsigned types is just normal division. There's no
1294        /// way overflow could ever happen. This function exists so that all
1295        /// operations are accounted for in the strict operations. Since, for the
1296        /// positive integers, all common definitions of division are equal, this
1297        /// is exactly equal to `self.strict_div(rhs)`.
1298        ///
1299        /// # Panics
1300        ///
1301        /// This function will panic if `rhs` is zero.
1302        ///
1303        /// # Examples
1304        ///
1305        /// ```
1306        #[doc = concat!("assert_eq!(100", stringify!($SelfT), ".strict_div_euclid(10), 10);")]
1307        /// ```
1308        /// The following panics because of division by zero:
1309        ///
1310        /// ```should_panic
1311        #[doc = concat!("let _ = (1", stringify!($SelfT), ").strict_div_euclid(0);")]
1312        /// ```
1313        #[stable(feature = "strict_overflow_ops", since = "1.91.0")]
1314        #[rustc_const_stable(feature = "strict_overflow_ops", since = "1.91.0")]
1315        #[must_use = "this returns the result of the operation, \
1316                      without modifying the original"]
1317        #[inline(always)]
1318        #[track_caller]
1319        #[cfg(not(feature = "ferrocene_subset"))]
1320        pub const fn strict_div_euclid(self, rhs: Self) -> Self {
1321            self / rhs
1322        }
1323
1324        /// Checked integer division without remainder. Computes `self / rhs`,
1325        /// returning `None` if `rhs == 0` or if `self % rhs != 0`.
1326        ///
1327        /// # Examples
1328        ///
1329        /// ```
1330        /// #![feature(exact_div)]
1331        #[doc = concat!("assert_eq!(64", stringify!($SelfT), ".checked_div_exact(2), Some(32));")]
1332        #[doc = concat!("assert_eq!(64", stringify!($SelfT), ".checked_div_exact(32), Some(2));")]
1333        #[doc = concat!("assert_eq!(64", stringify!($SelfT), ".checked_div_exact(0), None);")]
1334        #[doc = concat!("assert_eq!(65", stringify!($SelfT), ".checked_div_exact(2), None);")]
1335        /// ```
1336        #[unstable(
1337            feature = "exact_div",
1338            issue = "139911",
1339        )]
1340        #[must_use = "this returns the result of the operation, \
1341                      without modifying the original"]
1342        #[inline]
1343        #[cfg(not(feature = "ferrocene_subset"))]
1344        pub const fn checked_div_exact(self, rhs: Self) -> Option<Self> {
1345            if intrinsics::unlikely(rhs == 0) {
1346                None
1347            } else {
1348                // SAFETY: division by zero is checked above
1349                unsafe {
1350                    if intrinsics::unlikely(intrinsics::unchecked_rem(self, rhs) != 0) {
1351                        None
1352                    } else {
1353                        Some(intrinsics::exact_div(self, rhs))
1354                    }
1355                }
1356            }
1357        }
1358
1359        /// Integer division without remainder. Computes `self / rhs`, returning `None` if `self % rhs != 0`.
1360        ///
1361        /// # Panics
1362        ///
1363        /// This function will panic  if `rhs == 0`.
1364        ///
1365        /// # Examples
1366        ///
1367        /// ```
1368        /// #![feature(exact_div)]
1369        #[doc = concat!("assert_eq!(64", stringify!($SelfT), ".div_exact(2), Some(32));")]
1370        #[doc = concat!("assert_eq!(64", stringify!($SelfT), ".div_exact(32), Some(2));")]
1371        #[doc = concat!("assert_eq!(65", stringify!($SelfT), ".div_exact(2), None);")]
1372        /// ```
1373        #[unstable(
1374            feature = "exact_div",
1375            issue = "139911",
1376        )]
1377        #[must_use = "this returns the result of the operation, \
1378                      without modifying the original"]
1379        #[inline]
1380        #[rustc_inherit_overflow_checks]
1381        #[cfg(not(feature = "ferrocene_subset"))]
1382        pub const fn div_exact(self, rhs: Self) -> Option<Self> {
1383            if self % rhs != 0 {
1384                None
1385            } else {
1386                Some(self / rhs)
1387            }
1388        }
1389
1390        /// Unchecked integer division without remainder. Computes `self / rhs`.
1391        ///
1392        /// # Safety
1393        ///
1394        /// This results in undefined behavior when `rhs == 0` or `self % rhs != 0`,
1395        /// i.e. when [`checked_div_exact`](Self::checked_div_exact) would return `None`.
1396        #[unstable(
1397            feature = "exact_div",
1398            issue = "139911",
1399        )]
1400        #[must_use = "this returns the result of the operation, \
1401                      without modifying the original"]
1402        #[inline]
1403        #[cfg(not(feature = "ferrocene_subset"))]
1404        pub const unsafe fn unchecked_div_exact(self, rhs: Self) -> Self {
1405            assert_unsafe_precondition!(
1406                check_language_ub,
1407                concat!(stringify!($SelfT), "::unchecked_div_exact divide by zero or leave a remainder"),
1408                (
1409                    lhs: $SelfT = self,
1410                    rhs: $SelfT = rhs,
1411                ) => rhs > 0 && lhs % rhs == 0,
1412            );
1413            // SAFETY: Same precondition
1414            unsafe { intrinsics::exact_div(self, rhs) }
1415        }
1416
1417        /// Checked integer remainder. Computes `self % rhs`, returning `None`
1418        /// if `rhs == 0`.
1419        ///
1420        /// # Examples
1421        ///
1422        /// ```
1423        #[doc = concat!("assert_eq!(5", stringify!($SelfT), ".checked_rem(2), Some(1));")]
1424        #[doc = concat!("assert_eq!(5", stringify!($SelfT), ".checked_rem(0), None);")]
1425        /// ```
1426        #[stable(feature = "wrapping", since = "1.7.0")]
1427        #[rustc_const_stable(feature = "const_checked_int_div", since = "1.52.0")]
1428        #[must_use = "this returns the result of the operation, \
1429                      without modifying the original"]
1430        #[inline]
1431        #[cfg(not(feature = "ferrocene_subset"))]
1432        pub const fn checked_rem(self, rhs: Self) -> Option<Self> {
1433            if intrinsics::unlikely(rhs == 0) {
1434                None
1435            } else {
1436                // SAFETY: div by zero has been checked above and unsigned types have no other
1437                // failure modes for division
1438                Some(unsafe { intrinsics::unchecked_rem(self, rhs) })
1439            }
1440        }
1441
1442        /// Strict integer remainder. Computes `self % rhs`.
1443        ///
1444        /// Strict remainder calculation on unsigned types is just the regular
1445        /// remainder calculation. There's no way overflow could ever happen.
1446        /// This function exists so that all operations are accounted for in the
1447        /// strict operations.
1448        ///
1449        /// # Panics
1450        ///
1451        /// This function will panic if `rhs` is zero.
1452        ///
1453        /// # Examples
1454        ///
1455        /// ```
1456        #[doc = concat!("assert_eq!(100", stringify!($SelfT), ".strict_rem(10), 0);")]
1457        /// ```
1458        ///
1459        /// The following panics because of division by zero:
1460        ///
1461        /// ```should_panic
1462        #[doc = concat!("let _ = 5", stringify!($SelfT), ".strict_rem(0);")]
1463        /// ```
1464        #[stable(feature = "strict_overflow_ops", since = "1.91.0")]
1465        #[rustc_const_stable(feature = "strict_overflow_ops", since = "1.91.0")]
1466        #[must_use = "this returns the result of the operation, \
1467                      without modifying the original"]
1468        #[inline(always)]
1469        #[track_caller]
1470        #[cfg(not(feature = "ferrocene_subset"))]
1471        pub const fn strict_rem(self, rhs: Self) -> Self {
1472            self % rhs
1473        }
1474
1475        /// Checked Euclidean modulo. Computes `self.rem_euclid(rhs)`, returning `None`
1476        /// if `rhs == 0`.
1477        ///
1478        /// # Examples
1479        ///
1480        /// ```
1481        #[doc = concat!("assert_eq!(5", stringify!($SelfT), ".checked_rem_euclid(2), Some(1));")]
1482        #[doc = concat!("assert_eq!(5", stringify!($SelfT), ".checked_rem_euclid(0), None);")]
1483        /// ```
1484        #[stable(feature = "euclidean_division", since = "1.38.0")]
1485        #[rustc_const_stable(feature = "const_euclidean_int_methods", since = "1.52.0")]
1486        #[must_use = "this returns the result of the operation, \
1487                      without modifying the original"]
1488        #[inline]
1489        #[cfg(not(feature = "ferrocene_subset"))]
1490        pub const fn checked_rem_euclid(self, rhs: Self) -> Option<Self> {
1491            if intrinsics::unlikely(rhs == 0) {
1492                None
1493            } else {
1494                Some(self.rem_euclid(rhs))
1495            }
1496        }
1497
1498        /// Strict Euclidean modulo. Computes `self.rem_euclid(rhs)`.
1499        ///
1500        /// Strict modulo calculation on unsigned types is just the regular
1501        /// remainder calculation. There's no way overflow could ever happen.
1502        /// This function exists so that all operations are accounted for in the
1503        /// strict operations. Since, for the positive integers, all common
1504        /// definitions of division are equal, this is exactly equal to
1505        /// `self.strict_rem(rhs)`.
1506        ///
1507        /// # Panics
1508        ///
1509        /// This function will panic if `rhs` is zero.
1510        ///
1511        /// # Examples
1512        ///
1513        /// ```
1514        #[doc = concat!("assert_eq!(100", stringify!($SelfT), ".strict_rem_euclid(10), 0);")]
1515        /// ```
1516        ///
1517        /// The following panics because of division by zero:
1518        ///
1519        /// ```should_panic
1520        #[doc = concat!("let _ = 5", stringify!($SelfT), ".strict_rem_euclid(0);")]
1521        /// ```
1522        #[stable(feature = "strict_overflow_ops", since = "1.91.0")]
1523        #[rustc_const_stable(feature = "strict_overflow_ops", since = "1.91.0")]
1524        #[must_use = "this returns the result of the operation, \
1525                      without modifying the original"]
1526        #[inline(always)]
1527        #[track_caller]
1528        #[cfg(not(feature = "ferrocene_subset"))]
1529        pub const fn strict_rem_euclid(self, rhs: Self) -> Self {
1530            self % rhs
1531        }
1532
1533        /// Same value as `self | other`, but UB if any bit position is set in both inputs.
1534        ///
1535        /// This is a situational micro-optimization for places where you'd rather
1536        /// use addition on some platforms and bitwise or on other platforms, based
1537        /// on exactly which instructions combine better with whatever else you're
1538        /// doing.  Note that there's no reason to bother using this for places
1539        /// where it's clear from the operations involved that they can't overlap.
1540        /// For example, if you're combining `u16`s into a `u32` with
1541        /// `((a as u32) << 16) | (b as u32)`, that's fine, as the backend will
1542        /// know those sides of the `|` are disjoint without needing help.
1543        ///
1544        /// # Examples
1545        ///
1546        /// ```
1547        /// #![feature(disjoint_bitor)]
1548        ///
1549        /// // SAFETY: `1` and `4` have no bits in common.
1550        /// unsafe {
1551        #[doc = concat!("    assert_eq!(1_", stringify!($SelfT), ".unchecked_disjoint_bitor(4), 5);")]
1552        /// }
1553        /// ```
1554        ///
1555        /// # Safety
1556        ///
1557        /// Requires that `(self & other) == 0`, otherwise it's immediate UB.
1558        ///
1559        /// Equivalently, requires that `(self | other) == (self + other)`.
1560        #[unstable(feature = "disjoint_bitor", issue = "135758")]
1561        #[rustc_const_unstable(feature = "disjoint_bitor", issue = "135758")]
1562        #[inline]
1563        #[cfg(not(feature = "ferrocene_subset"))]
1564        pub const unsafe fn unchecked_disjoint_bitor(self, other: Self) -> Self {
1565            assert_unsafe_precondition!(
1566                check_language_ub,
1567                concat!(stringify!($SelfT), "::unchecked_disjoint_bitor cannot have overlapping bits"),
1568                (
1569                    lhs: $SelfT = self,
1570                    rhs: $SelfT = other,
1571                ) => (lhs & rhs) == 0,
1572            );
1573
1574            // SAFETY: Same precondition
1575            unsafe { intrinsics::disjoint_bitor(self, other) }
1576        }
1577
1578        /// Returns the logarithm of the number with respect to an arbitrary base,
1579        /// rounded down.
1580        ///
1581        /// This method might not be optimized owing to implementation details;
1582        /// `ilog2` can produce results more efficiently for base 2, and `ilog10`
1583        /// can produce results more efficiently for base 10.
1584        ///
1585        /// # Panics
1586        ///
1587        /// This function will panic if `self` is zero, or if `base` is less than 2.
1588        ///
1589        /// # Examples
1590        ///
1591        /// ```
1592        #[doc = concat!("assert_eq!(5", stringify!($SelfT), ".ilog(5), 1);")]
1593        /// ```
1594        #[stable(feature = "int_log", since = "1.67.0")]
1595        #[rustc_const_stable(feature = "int_log", since = "1.67.0")]
1596        #[must_use = "this returns the result of the operation, \
1597                      without modifying the original"]
1598        #[inline]
1599        #[track_caller]
1600        #[cfg(not(feature = "ferrocene_subset"))]
1601        pub const fn ilog(self, base: Self) -> u32 {
1602            assert!(base >= 2, "base of integer logarithm must be at least 2");
1603            if let Some(log) = self.checked_ilog(base) {
1604                log
1605            } else {
1606                int_log10::panic_for_nonpositive_argument()
1607            }
1608        }
1609
1610        /// Returns the base 2 logarithm of the number, rounded down.
1611        ///
1612        /// # Panics
1613        ///
1614        /// This function will panic if `self` is zero.
1615        ///
1616        /// # Examples
1617        ///
1618        /// ```
1619        #[doc = concat!("assert_eq!(2", stringify!($SelfT), ".ilog2(), 1);")]
1620        /// ```
1621        #[stable(feature = "int_log", since = "1.67.0")]
1622        #[rustc_const_stable(feature = "int_log", since = "1.67.0")]
1623        #[must_use = "this returns the result of the operation, \
1624                      without modifying the original"]
1625        #[inline]
1626        #[track_caller]
1627        pub const fn ilog2(self) -> u32 {
1628            if let Some(log) = self.checked_ilog2() {
1629                log
1630            } else {
1631                int_log10::panic_for_nonpositive_argument()
1632            }
1633        }
1634
1635        /// Returns the base 10 logarithm of the number, rounded down.
1636        ///
1637        /// # Panics
1638        ///
1639        /// This function will panic if `self` is zero.
1640        ///
1641        /// # Example
1642        ///
1643        /// ```
1644        #[doc = concat!("assert_eq!(10", stringify!($SelfT), ".ilog10(), 1);")]
1645        /// ```
1646        #[stable(feature = "int_log", since = "1.67.0")]
1647        #[rustc_const_stable(feature = "int_log", since = "1.67.0")]
1648        #[must_use = "this returns the result of the operation, \
1649                      without modifying the original"]
1650        #[inline]
1651        #[track_caller]
1652        #[cfg(not(feature = "ferrocene_subset"))]
1653        pub const fn ilog10(self) -> u32 {
1654            if let Some(log) = self.checked_ilog10() {
1655                log
1656            } else {
1657                int_log10::panic_for_nonpositive_argument()
1658            }
1659        }
1660
1661        /// Returns the logarithm of the number with respect to an arbitrary base,
1662        /// rounded down.
1663        ///
1664        /// Returns `None` if the number is zero, or if the base is not at least 2.
1665        ///
1666        /// This method might not be optimized owing to implementation details;
1667        /// `checked_ilog2` can produce results more efficiently for base 2, and
1668        /// `checked_ilog10` can produce results more efficiently for base 10.
1669        ///
1670        /// # Examples
1671        ///
1672        /// ```
1673        #[doc = concat!("assert_eq!(5", stringify!($SelfT), ".checked_ilog(5), Some(1));")]
1674        /// ```
1675        #[stable(feature = "int_log", since = "1.67.0")]
1676        #[rustc_const_stable(feature = "int_log", since = "1.67.0")]
1677        #[must_use = "this returns the result of the operation, \
1678                      without modifying the original"]
1679        #[inline]
1680        #[cfg(not(feature = "ferrocene_subset"))]
1681        pub const fn checked_ilog(self, base: Self) -> Option<u32> {
1682            // Inform compiler of optimizations when the base is known at
1683            // compile time and there's a cheaper method available.
1684            //
1685            // Note: Like all optimizations, this is not guaranteed to be
1686            // applied by the compiler. If you want those specific bases,
1687            // use `.checked_ilog2()` or `.checked_ilog10()` directly.
1688            if core::intrinsics::is_val_statically_known(base) {
1689                if base == 2 {
1690                    return self.checked_ilog2();
1691                } else if base == 10 {
1692                    return self.checked_ilog10();
1693                }
1694            }
1695
1696            if self <= 0 || base <= 1 {
1697                None
1698            } else if self < base {
1699                Some(0)
1700            } else {
1701                // Since base >= self, n >= 1
1702                let mut n = 1;
1703                let mut r = base;
1704
1705                // Optimization for 128 bit wide integers.
1706                if Self::BITS == 128 {
1707                    // The following is a correct lower bound for ⌊log(base,self)⌋ because
1708                    //
1709                    // log(base,self) = log(2,self) / log(2,base)
1710                    //                ≥ ⌊log(2,self)⌋ / (⌊log(2,base)⌋ + 1)
1711                    //
1712                    // hence
1713                    //
1714                    // ⌊log(base,self)⌋ ≥ ⌊ ⌊log(2,self)⌋ / (⌊log(2,base)⌋ + 1) ⌋ .
1715                    n = self.ilog2() / (base.ilog2() + 1);
1716                    r = base.pow(n);
1717                }
1718
1719                while r <= self / base {
1720                    n += 1;
1721                    r *= base;
1722                }
1723                Some(n)
1724            }
1725        }
1726
1727        /// Returns the base 2 logarithm of the number, rounded down.
1728        ///
1729        /// Returns `None` if the number is zero.
1730        ///
1731        /// # Examples
1732        ///
1733        /// ```
1734        #[doc = concat!("assert_eq!(2", stringify!($SelfT), ".checked_ilog2(), Some(1));")]
1735        /// ```
1736        #[stable(feature = "int_log", since = "1.67.0")]
1737        #[rustc_const_stable(feature = "int_log", since = "1.67.0")]
1738        #[must_use = "this returns the result of the operation, \
1739                      without modifying the original"]
1740        #[inline]
1741        pub const fn checked_ilog2(self) -> Option<u32> {
1742            match NonZero::new(self) {
1743                Some(x) => Some(x.ilog2()),
1744                None => None,
1745            }
1746        }
1747
1748        /// Returns the base 10 logarithm of the number, rounded down.
1749        ///
1750        /// Returns `None` if the number is zero.
1751        ///
1752        /// # Examples
1753        ///
1754        /// ```
1755        #[doc = concat!("assert_eq!(10", stringify!($SelfT), ".checked_ilog10(), Some(1));")]
1756        /// ```
1757        #[stable(feature = "int_log", since = "1.67.0")]
1758        #[rustc_const_stable(feature = "int_log", since = "1.67.0")]
1759        #[must_use = "this returns the result of the operation, \
1760                      without modifying the original"]
1761        #[inline]
1762        #[cfg(not(feature = "ferrocene_subset"))]
1763        pub const fn checked_ilog10(self) -> Option<u32> {
1764            match NonZero::new(self) {
1765                Some(x) => Some(x.ilog10()),
1766                None => None,
1767            }
1768        }
1769
1770        /// Checked negation. Computes `-self`, returning `None` unless `self ==
1771        /// 0`.
1772        ///
1773        /// Note that negating any positive integer will overflow.
1774        ///
1775        /// # Examples
1776        ///
1777        /// ```
1778        #[doc = concat!("assert_eq!(0", stringify!($SelfT), ".checked_neg(), Some(0));")]
1779        #[doc = concat!("assert_eq!(1", stringify!($SelfT), ".checked_neg(), None);")]
1780        /// ```
1781        #[stable(feature = "wrapping", since = "1.7.0")]
1782        #[rustc_const_stable(feature = "const_checked_int_methods", since = "1.47.0")]
1783        #[must_use = "this returns the result of the operation, \
1784                      without modifying the original"]
1785        #[inline]
1786        #[cfg(not(feature = "ferrocene_subset"))]
1787        pub const fn checked_neg(self) -> Option<Self> {
1788            let (a, b) = self.overflowing_neg();
1789            if intrinsics::unlikely(b) { None } else { Some(a) }
1790        }
1791
1792        /// Strict negation. Computes `-self`, panicking unless `self ==
1793        /// 0`.
1794        ///
1795        /// Note that negating any positive integer will overflow.
1796        ///
1797        /// # Panics
1798        ///
1799        /// ## Overflow behavior
1800        ///
1801        /// This function will always panic on overflow, regardless of whether overflow checks are enabled.
1802        ///
1803        /// # Examples
1804        ///
1805        /// ```
1806        #[doc = concat!("assert_eq!(0", stringify!($SelfT), ".strict_neg(), 0);")]
1807        /// ```
1808        ///
1809        /// The following panics because of overflow:
1810        ///
1811        /// ```should_panic
1812        #[doc = concat!("let _ = 1", stringify!($SelfT), ".strict_neg();")]
1813        /// ```
1814        #[stable(feature = "strict_overflow_ops", since = "1.91.0")]
1815        #[rustc_const_stable(feature = "strict_overflow_ops", since = "1.91.0")]
1816        #[must_use = "this returns the result of the operation, \
1817                      without modifying the original"]
1818        #[inline]
1819        #[track_caller]
1820        #[cfg(not(feature = "ferrocene_subset"))]
1821        pub const fn strict_neg(self) -> Self {
1822            let (a, b) = self.overflowing_neg();
1823            if b { overflow_panic::neg() } else { a }
1824        }
1825
1826        /// Checked shift left. Computes `self << rhs`, returning `None`
1827        /// if `rhs` is larger than or equal to the number of bits in `self`.
1828        ///
1829        /// # Examples
1830        ///
1831        /// ```
1832        #[doc = concat!("assert_eq!(0x1", stringify!($SelfT), ".checked_shl(4), Some(0x10));")]
1833        #[doc = concat!("assert_eq!(0x10", stringify!($SelfT), ".checked_shl(129), None);")]
1834        #[doc = concat!("assert_eq!(0x10", stringify!($SelfT), ".checked_shl(", stringify!($BITS_MINUS_ONE), "), Some(0));")]
1835        /// ```
1836        #[stable(feature = "wrapping", since = "1.7.0")]
1837        #[rustc_const_stable(feature = "const_checked_int_methods", since = "1.47.0")]
1838        #[must_use = "this returns the result of the operation, \
1839                      without modifying the original"]
1840        #[inline]
1841        #[cfg(not(feature = "ferrocene_subset"))]
1842        pub const fn checked_shl(self, rhs: u32) -> Option<Self> {
1843            // Not using overflowing_shl as that's a wrapping shift
1844            if rhs < Self::BITS {
1845                // SAFETY: just checked the RHS is in-range
1846                Some(unsafe { self.unchecked_shl(rhs) })
1847            } else {
1848                None
1849            }
1850        }
1851
1852        /// Strict shift left. Computes `self << rhs`, panicking if `rhs` is larger
1853        /// than or equal to the number of bits in `self`.
1854        ///
1855        /// # Panics
1856        ///
1857        /// ## Overflow behavior
1858        ///
1859        /// This function will always panic on overflow, regardless of whether overflow checks are enabled.
1860        ///
1861        /// # Examples
1862        ///
1863        /// ```
1864        #[doc = concat!("assert_eq!(0x1", stringify!($SelfT), ".strict_shl(4), 0x10);")]
1865        /// ```
1866        ///
1867        /// The following panics because of overflow:
1868        ///
1869        /// ```should_panic
1870        #[doc = concat!("let _ = 0x10", stringify!($SelfT), ".strict_shl(129);")]
1871        /// ```
1872        #[stable(feature = "strict_overflow_ops", since = "1.91.0")]
1873        #[rustc_const_stable(feature = "strict_overflow_ops", since = "1.91.0")]
1874        #[must_use = "this returns the result of the operation, \
1875                      without modifying the original"]
1876        #[inline]
1877        #[track_caller]
1878        #[cfg(not(feature = "ferrocene_subset"))]
1879        pub const fn strict_shl(self, rhs: u32) -> Self {
1880            let (a, b) = self.overflowing_shl(rhs);
1881            if b { overflow_panic::shl() } else { a }
1882        }
1883
1884        /// Unchecked shift left. Computes `self << rhs`, assuming that
1885        /// `rhs` is less than the number of bits in `self`.
1886        ///
1887        /// # Safety
1888        ///
1889        /// This results in undefined behavior if `rhs` is larger than
1890        /// or equal to the number of bits in `self`,
1891        /// i.e. when [`checked_shl`] would return `None`.
1892        ///
1893        #[doc = concat!("[`checked_shl`]: ", stringify!($SelfT), "::checked_shl")]
1894        #[stable(feature = "unchecked_shifts", since = "CURRENT_RUSTC_VERSION")]
1895        #[rustc_const_stable(feature = "unchecked_shifts", since = "CURRENT_RUSTC_VERSION")]
1896        #[must_use = "this returns the result of the operation, \
1897                      without modifying the original"]
1898        #[inline(always)]
1899        #[track_caller]
1900        pub const unsafe fn unchecked_shl(self, rhs: u32) -> Self {
1901            assert_unsafe_precondition!(
1902                check_language_ub,
1903                concat!(stringify!($SelfT), "::unchecked_shl cannot overflow"),
1904                (
1905                    rhs: u32 = rhs,
1906                ) => rhs < <$ActualT>::BITS,
1907            );
1908
1909            // SAFETY: this is guaranteed to be safe by the caller.
1910            unsafe {
1911                intrinsics::unchecked_shl(self, rhs)
1912            }
1913        }
1914
1915        /// Unbounded shift left. Computes `self << rhs`, without bounding the value of `rhs`.
1916        ///
1917        /// If `rhs` is larger or equal to the number of bits in `self`,
1918        /// the entire value is shifted out, and `0` is returned.
1919        ///
1920        /// # Examples
1921        ///
1922        /// ```
1923        #[doc = concat!("assert_eq!(0x1", stringify!($SelfT), ".unbounded_shl(4), 0x10);")]
1924        #[doc = concat!("assert_eq!(0x1", stringify!($SelfT), ".unbounded_shl(129), 0);")]
1925        /// ```
1926        #[stable(feature = "unbounded_shifts", since = "1.87.0")]
1927        #[rustc_const_stable(feature = "unbounded_shifts", since = "1.87.0")]
1928        #[must_use = "this returns the result of the operation, \
1929                      without modifying the original"]
1930        #[inline]
1931        #[cfg(not(feature = "ferrocene_subset"))]
1932        pub const fn unbounded_shl(self, rhs: u32) -> $SelfT{
1933            if rhs < Self::BITS {
1934                // SAFETY:
1935                // rhs is just checked to be in-range above
1936                unsafe { self.unchecked_shl(rhs) }
1937            } else {
1938                0
1939            }
1940        }
1941
1942        /// Exact shift left. Computes `self << rhs` as long as it can be reversed losslessly.
1943        ///
1944        /// Returns `None` if any non-zero bits would be shifted out or if `rhs` >=
1945        #[doc = concat!("`", stringify!($SelfT), "::BITS`.")]
1946        /// Otherwise, returns `Some(self << rhs)`.
1947        ///
1948        /// # Examples
1949        ///
1950        /// ```
1951        /// #![feature(exact_bitshifts)]
1952        ///
1953        #[doc = concat!("assert_eq!(0x1", stringify!($SelfT), ".shl_exact(4), Some(0x10));")]
1954        #[doc = concat!("assert_eq!(0x1", stringify!($SelfT), ".shl_exact(129), None);")]
1955        /// ```
1956        #[unstable(feature = "exact_bitshifts", issue = "144336")]
1957        #[must_use = "this returns the result of the operation, \
1958                      without modifying the original"]
1959        #[inline]
1960        #[cfg(not(feature = "ferrocene_subset"))]
1961        pub const fn shl_exact(self, rhs: u32) -> Option<$SelfT> {
1962            if rhs <= self.leading_zeros() && rhs < <$SelfT>::BITS {
1963                // SAFETY: rhs is checked above
1964                Some(unsafe { self.unchecked_shl(rhs) })
1965            } else {
1966                None
1967            }
1968        }
1969
1970        /// Unchecked exact shift left. Computes `self << rhs`, assuming the operation can be
1971        /// losslessly reversed `rhs` cannot be larger than
1972        #[doc = concat!("`", stringify!($SelfT), "::BITS`.")]
1973        ///
1974        /// # Safety
1975        ///
1976        /// This results in undefined behavior when `rhs > self.leading_zeros() || rhs >=
1977        #[doc = concat!(stringify!($SelfT), "::BITS`")]
1978        /// i.e. when
1979        #[doc = concat!("[`", stringify!($SelfT), "::shl_exact`]")]
1980        /// would return `None`.
1981        #[unstable(feature = "exact_bitshifts", issue = "144336")]
1982        #[must_use = "this returns the result of the operation, \
1983                      without modifying the original"]
1984        #[inline]
1985        #[cfg(not(feature = "ferrocene_subset"))]
1986        pub const unsafe fn unchecked_shl_exact(self, rhs: u32) -> $SelfT {
1987            assert_unsafe_precondition!(
1988                check_library_ub,
1989                concat!(stringify!($SelfT), "::unchecked_shl_exact cannot shift out non-zero bits"),
1990                (
1991                    zeros: u32 = self.leading_zeros(),
1992                    bits: u32 =  <$SelfT>::BITS,
1993                    rhs: u32 = rhs,
1994                ) => rhs <= zeros && rhs < bits,
1995            );
1996
1997            // SAFETY: this is guaranteed to be safe by the caller
1998            unsafe { self.unchecked_shl(rhs) }
1999        }
2000
2001        /// Checked shift right. Computes `self >> rhs`, returning `None`
2002        /// if `rhs` is larger than or equal to the number of bits in `self`.
2003        ///
2004        /// # Examples
2005        ///
2006        /// ```
2007        #[doc = concat!("assert_eq!(0x10", stringify!($SelfT), ".checked_shr(4), Some(0x1));")]
2008        #[doc = concat!("assert_eq!(0x10", stringify!($SelfT), ".checked_shr(129), None);")]
2009        /// ```
2010        #[stable(feature = "wrapping", since = "1.7.0")]
2011        #[rustc_const_stable(feature = "const_checked_int_methods", since = "1.47.0")]
2012        #[must_use = "this returns the result of the operation, \
2013                      without modifying the original"]
2014        #[inline]
2015        #[cfg(not(feature = "ferrocene_subset"))]
2016        pub const fn checked_shr(self, rhs: u32) -> Option<Self> {
2017            // Not using overflowing_shr as that's a wrapping shift
2018            if rhs < Self::BITS {
2019                // SAFETY: just checked the RHS is in-range
2020                Some(unsafe { self.unchecked_shr(rhs) })
2021            } else {
2022                None
2023            }
2024        }
2025
2026        /// Strict shift right. Computes `self >> rhs`, panicking if `rhs` is
2027        /// larger than or equal to the number of bits in `self`.
2028        ///
2029        /// # Panics
2030        ///
2031        /// ## Overflow behavior
2032        ///
2033        /// This function will always panic on overflow, regardless of whether overflow checks are enabled.
2034        ///
2035        /// # Examples
2036        ///
2037        /// ```
2038        #[doc = concat!("assert_eq!(0x10", stringify!($SelfT), ".strict_shr(4), 0x1);")]
2039        /// ```
2040        ///
2041        /// The following panics because of overflow:
2042        ///
2043        /// ```should_panic
2044        #[doc = concat!("let _ = 0x10", stringify!($SelfT), ".strict_shr(129);")]
2045        /// ```
2046        #[stable(feature = "strict_overflow_ops", since = "1.91.0")]
2047        #[rustc_const_stable(feature = "strict_overflow_ops", since = "1.91.0")]
2048        #[must_use = "this returns the result of the operation, \
2049                      without modifying the original"]
2050        #[inline]
2051        #[track_caller]
2052        #[cfg(not(feature = "ferrocene_subset"))]
2053        pub const fn strict_shr(self, rhs: u32) -> Self {
2054            let (a, b) = self.overflowing_shr(rhs);
2055            if b { overflow_panic::shr() } else { a }
2056        }
2057
2058        /// Unchecked shift right. Computes `self >> rhs`, assuming that
2059        /// `rhs` is less than the number of bits in `self`.
2060        ///
2061        /// # Safety
2062        ///
2063        /// This results in undefined behavior if `rhs` is larger than
2064        /// or equal to the number of bits in `self`,
2065        /// i.e. when [`checked_shr`] would return `None`.
2066        ///
2067        #[doc = concat!("[`checked_shr`]: ", stringify!($SelfT), "::checked_shr")]
2068        #[stable(feature = "unchecked_shifts", since = "CURRENT_RUSTC_VERSION")]
2069        #[rustc_const_stable(feature = "unchecked_shifts", since = "CURRENT_RUSTC_VERSION")]
2070        #[must_use = "this returns the result of the operation, \
2071                      without modifying the original"]
2072        #[inline(always)]
2073        #[track_caller]
2074        pub const unsafe fn unchecked_shr(self, rhs: u32) -> Self {
2075            assert_unsafe_precondition!(
2076                check_language_ub,
2077                concat!(stringify!($SelfT), "::unchecked_shr cannot overflow"),
2078                (
2079                    rhs: u32 = rhs,
2080                ) => rhs < <$ActualT>::BITS,
2081            );
2082
2083            // SAFETY: this is guaranteed to be safe by the caller.
2084            unsafe {
2085                intrinsics::unchecked_shr(self, rhs)
2086            }
2087        }
2088
2089        /// Unbounded shift right. Computes `self >> rhs`, without bounding the value of `rhs`.
2090        ///
2091        /// If `rhs` is larger or equal to the number of bits in `self`,
2092        /// the entire value is shifted out, and `0` is returned.
2093        ///
2094        /// # Examples
2095        ///
2096        /// ```
2097        #[doc = concat!("assert_eq!(0x10", stringify!($SelfT), ".unbounded_shr(4), 0x1);")]
2098        #[doc = concat!("assert_eq!(0x10", stringify!($SelfT), ".unbounded_shr(129), 0);")]
2099        /// ```
2100        #[stable(feature = "unbounded_shifts", since = "1.87.0")]
2101        #[rustc_const_stable(feature = "unbounded_shifts", since = "1.87.0")]
2102        #[must_use = "this returns the result of the operation, \
2103                      without modifying the original"]
2104        #[inline]
2105        #[cfg(not(feature = "ferrocene_subset"))]
2106        pub const fn unbounded_shr(self, rhs: u32) -> $SelfT{
2107            if rhs < Self::BITS {
2108                // SAFETY:
2109                // rhs is just checked to be in-range above
2110                unsafe { self.unchecked_shr(rhs) }
2111            } else {
2112                0
2113            }
2114        }
2115
2116        /// Exact shift right. Computes `self >> rhs` as long as it can be reversed losslessly.
2117        ///
2118        /// Returns `None` if any non-zero bits would be shifted out or if `rhs` >=
2119        #[doc = concat!("`", stringify!($SelfT), "::BITS`.")]
2120        /// Otherwise, returns `Some(self >> rhs)`.
2121        ///
2122        /// # Examples
2123        ///
2124        /// ```
2125        /// #![feature(exact_bitshifts)]
2126        ///
2127        #[doc = concat!("assert_eq!(0x10", stringify!($SelfT), ".shr_exact(4), Some(0x1));")]
2128        #[doc = concat!("assert_eq!(0x10", stringify!($SelfT), ".shr_exact(5), None);")]
2129        /// ```
2130        #[unstable(feature = "exact_bitshifts", issue = "144336")]
2131        #[must_use = "this returns the result of the operation, \
2132                      without modifying the original"]
2133        #[inline]
2134        #[cfg(not(feature = "ferrocene_subset"))]
2135        pub const fn shr_exact(self, rhs: u32) -> Option<$SelfT> {
2136            if rhs <= self.trailing_zeros() && rhs < <$SelfT>::BITS {
2137                // SAFETY: rhs is checked above
2138                Some(unsafe { self.unchecked_shr(rhs) })
2139            } else {
2140                None
2141            }
2142        }
2143
2144        /// Unchecked exact shift right. Computes `self >> rhs`, assuming the operation can be
2145        /// losslessly reversed and `rhs` cannot be larger than
2146        #[doc = concat!("`", stringify!($SelfT), "::BITS`.")]
2147        ///
2148        /// # Safety
2149        ///
2150        /// This results in undefined behavior when `rhs > self.trailing_zeros() || rhs >=
2151        #[doc = concat!(stringify!($SelfT), "::BITS`")]
2152        /// i.e. when
2153        #[doc = concat!("[`", stringify!($SelfT), "::shr_exact`]")]
2154        /// would return `None`.
2155        #[unstable(feature = "exact_bitshifts", issue = "144336")]
2156        #[must_use = "this returns the result of the operation, \
2157                      without modifying the original"]
2158        #[inline]
2159        #[cfg(not(feature = "ferrocene_subset"))]
2160        pub const unsafe fn unchecked_shr_exact(self, rhs: u32) -> $SelfT {
2161            assert_unsafe_precondition!(
2162                check_library_ub,
2163                concat!(stringify!($SelfT), "::unchecked_shr_exact cannot shift out non-zero bits"),
2164                (
2165                    zeros: u32 = self.trailing_zeros(),
2166                    bits: u32 =  <$SelfT>::BITS,
2167                    rhs: u32 = rhs,
2168                ) => rhs <= zeros && rhs < bits,
2169            );
2170
2171            // SAFETY: this is guaranteed to be safe by the caller
2172            unsafe { self.unchecked_shr(rhs) }
2173        }
2174
2175        /// Checked exponentiation. Computes `self.pow(exp)`, returning `None` if
2176        /// overflow occurred.
2177        ///
2178        /// # Examples
2179        ///
2180        /// ```
2181        #[doc = concat!("assert_eq!(2", stringify!($SelfT), ".checked_pow(5), Some(32));")]
2182        #[doc = concat!("assert_eq!(0_", stringify!($SelfT), ".checked_pow(0), Some(1));")]
2183        #[doc = concat!("assert_eq!(", stringify!($SelfT), "::MAX.checked_pow(2), None);")]
2184        /// ```
2185        #[stable(feature = "no_panic_pow", since = "1.34.0")]
2186        #[rustc_const_stable(feature = "const_int_pow", since = "1.50.0")]
2187        #[must_use = "this returns the result of the operation, \
2188                      without modifying the original"]
2189        #[inline]
2190        #[cfg(not(feature = "ferrocene_subset"))]
2191        pub const fn checked_pow(self, mut exp: u32) -> Option<Self> {
2192            if exp == 0 {
2193                return Some(1);
2194            }
2195            let mut base = self;
2196            let mut acc: Self = 1;
2197
2198            loop {
2199                if (exp & 1) == 1 {
2200                    acc = try_opt!(acc.checked_mul(base));
2201                    // since exp!=0, finally the exp must be 1.
2202                    if exp == 1 {
2203                        return Some(acc);
2204                    }
2205                }
2206                exp /= 2;
2207                base = try_opt!(base.checked_mul(base));
2208            }
2209        }
2210
2211        /// Strict exponentiation. Computes `self.pow(exp)`, panicking if
2212        /// overflow occurred.
2213        ///
2214        /// # Panics
2215        ///
2216        /// ## Overflow behavior
2217        ///
2218        /// This function will always panic on overflow, regardless of whether overflow checks are enabled.
2219        ///
2220        /// # Examples
2221        ///
2222        /// ```
2223        #[doc = concat!("assert_eq!(2", stringify!($SelfT), ".strict_pow(5), 32);")]
2224        #[doc = concat!("assert_eq!(0_", stringify!($SelfT), ".strict_pow(0), 1);")]
2225        /// ```
2226        ///
2227        /// The following panics because of overflow:
2228        ///
2229        /// ```should_panic
2230        #[doc = concat!("let _ = ", stringify!($SelfT), "::MAX.strict_pow(2);")]
2231        /// ```
2232        #[stable(feature = "strict_overflow_ops", since = "1.91.0")]
2233        #[rustc_const_stable(feature = "strict_overflow_ops", since = "1.91.0")]
2234        #[must_use = "this returns the result of the operation, \
2235                      without modifying the original"]
2236        #[inline]
2237        #[track_caller]
2238        #[cfg(not(feature = "ferrocene_subset"))]
2239        pub const fn strict_pow(self, mut exp: u32) -> Self {
2240            if exp == 0 {
2241                return 1;
2242            }
2243            let mut base = self;
2244            let mut acc: Self = 1;
2245
2246            loop {
2247                if (exp & 1) == 1 {
2248                    acc = acc.strict_mul(base);
2249                    // since exp!=0, finally the exp must be 1.
2250                    if exp == 1 {
2251                        return acc;
2252                    }
2253                }
2254                exp /= 2;
2255                base = base.strict_mul(base);
2256            }
2257        }
2258
2259        /// Saturating integer addition. Computes `self + rhs`, saturating at
2260        /// the numeric bounds instead of overflowing.
2261        ///
2262        /// # Examples
2263        ///
2264        /// ```
2265        #[doc = concat!("assert_eq!(100", stringify!($SelfT), ".saturating_add(1), 101);")]
2266        #[doc = concat!("assert_eq!(", stringify!($SelfT), "::MAX.saturating_add(127), ", stringify!($SelfT), "::MAX);")]
2267        /// ```
2268        #[stable(feature = "rust1", since = "1.0.0")]
2269        #[must_use = "this returns the result of the operation, \
2270                      without modifying the original"]
2271        #[rustc_const_stable(feature = "const_saturating_int_methods", since = "1.47.0")]
2272        #[inline(always)]
2273        pub const fn saturating_add(self, rhs: Self) -> Self {
2274            intrinsics::saturating_add(self, rhs)
2275        }
2276
2277        /// Saturating addition with a signed integer. Computes `self + rhs`,
2278        /// saturating at the numeric bounds instead of overflowing.
2279        ///
2280        /// # Examples
2281        ///
2282        /// ```
2283        #[doc = concat!("assert_eq!(1", stringify!($SelfT), ".saturating_add_signed(2), 3);")]
2284        #[doc = concat!("assert_eq!(1", stringify!($SelfT), ".saturating_add_signed(-2), 0);")]
2285        #[doc = concat!("assert_eq!((", stringify!($SelfT), "::MAX - 2).saturating_add_signed(4), ", stringify!($SelfT), "::MAX);")]
2286        /// ```
2287        #[stable(feature = "mixed_integer_ops", since = "1.66.0")]
2288        #[rustc_const_stable(feature = "mixed_integer_ops", since = "1.66.0")]
2289        #[must_use = "this returns the result of the operation, \
2290                      without modifying the original"]
2291        #[inline]
2292        #[cfg(not(feature = "ferrocene_subset"))]
2293        pub const fn saturating_add_signed(self, rhs: $SignedT) -> Self {
2294            let (res, overflow) = self.overflowing_add(rhs as Self);
2295            if overflow == (rhs < 0) {
2296                res
2297            } else if overflow {
2298                Self::MAX
2299            } else {
2300                0
2301            }
2302        }
2303
2304        /// Saturating integer subtraction. Computes `self - rhs`, saturating
2305        /// at the numeric bounds instead of overflowing.
2306        ///
2307        /// # Examples
2308        ///
2309        /// ```
2310        #[doc = concat!("assert_eq!(100", stringify!($SelfT), ".saturating_sub(27), 73);")]
2311        #[doc = concat!("assert_eq!(13", stringify!($SelfT), ".saturating_sub(127), 0);")]
2312        /// ```
2313        #[stable(feature = "rust1", since = "1.0.0")]
2314        #[must_use = "this returns the result of the operation, \
2315                      without modifying the original"]
2316        #[rustc_const_stable(feature = "const_saturating_int_methods", since = "1.47.0")]
2317        #[inline(always)]
2318        pub const fn saturating_sub(self, rhs: Self) -> Self {
2319            intrinsics::saturating_sub(self, rhs)
2320        }
2321
2322        /// Saturating integer subtraction. Computes `self` - `rhs`, saturating at
2323        /// the numeric bounds instead of overflowing.
2324        ///
2325        /// # Examples
2326        ///
2327        /// ```
2328        #[doc = concat!("assert_eq!(1", stringify!($SelfT), ".saturating_sub_signed(2), 0);")]
2329        #[doc = concat!("assert_eq!(1", stringify!($SelfT), ".saturating_sub_signed(-2), 3);")]
2330        #[doc = concat!("assert_eq!((", stringify!($SelfT), "::MAX - 2).saturating_sub_signed(-4), ", stringify!($SelfT), "::MAX);")]
2331        /// ```
2332        #[stable(feature = "mixed_integer_ops_unsigned_sub", since = "1.90.0")]
2333        #[rustc_const_stable(feature = "mixed_integer_ops_unsigned_sub", since = "1.90.0")]
2334        #[must_use = "this returns the result of the operation, \
2335                      without modifying the original"]
2336        #[inline]
2337        #[cfg(not(feature = "ferrocene_subset"))]
2338        pub const fn saturating_sub_signed(self, rhs: $SignedT) -> Self {
2339            let (res, overflow) = self.overflowing_sub_signed(rhs);
2340
2341            if !overflow {
2342                res
2343            } else if rhs < 0 {
2344                Self::MAX
2345            } else {
2346                0
2347            }
2348        }
2349
2350        /// Saturating integer multiplication. Computes `self * rhs`,
2351        /// saturating at the numeric bounds instead of overflowing.
2352        ///
2353        /// # Examples
2354        ///
2355        /// ```
2356        #[doc = concat!("assert_eq!(2", stringify!($SelfT), ".saturating_mul(10), 20);")]
2357        #[doc = concat!("assert_eq!((", stringify!($SelfT), "::MAX).saturating_mul(10), ", stringify!($SelfT),"::MAX);")]
2358        /// ```
2359        #[stable(feature = "wrapping", since = "1.7.0")]
2360        #[rustc_const_stable(feature = "const_saturating_int_methods", since = "1.47.0")]
2361        #[must_use = "this returns the result of the operation, \
2362                      without modifying the original"]
2363        #[inline]
2364        pub const fn saturating_mul(self, rhs: Self) -> Self {
2365            match self.checked_mul(rhs) {
2366                Some(x) => x,
2367                None => Self::MAX,
2368            }
2369        }
2370
2371        /// Saturating integer division. Computes `self / rhs`, saturating at the
2372        /// numeric bounds instead of overflowing.
2373        ///
2374        /// # Panics
2375        ///
2376        /// This function will panic if `rhs` is zero.
2377        ///
2378        /// # Examples
2379        ///
2380        /// ```
2381        #[doc = concat!("assert_eq!(5", stringify!($SelfT), ".saturating_div(2), 2);")]
2382        ///
2383        /// ```
2384        #[stable(feature = "saturating_div", since = "1.58.0")]
2385        #[rustc_const_stable(feature = "saturating_div", since = "1.58.0")]
2386        #[must_use = "this returns the result of the operation, \
2387                      without modifying the original"]
2388        #[inline]
2389        #[track_caller]
2390        #[cfg(not(feature = "ferrocene_subset"))]
2391        pub const fn saturating_div(self, rhs: Self) -> Self {
2392            // on unsigned types, there is no overflow in integer division
2393            self.wrapping_div(rhs)
2394        }
2395
2396        /// Saturating integer exponentiation. Computes `self.pow(exp)`,
2397        /// saturating at the numeric bounds instead of overflowing.
2398        ///
2399        /// # Examples
2400        ///
2401        /// ```
2402        #[doc = concat!("assert_eq!(4", stringify!($SelfT), ".saturating_pow(3), 64);")]
2403        #[doc = concat!("assert_eq!(0_", stringify!($SelfT), ".saturating_pow(0), 1);")]
2404        #[doc = concat!("assert_eq!(", stringify!($SelfT), "::MAX.saturating_pow(2), ", stringify!($SelfT), "::MAX);")]
2405        /// ```
2406        #[stable(feature = "no_panic_pow", since = "1.34.0")]
2407        #[rustc_const_stable(feature = "const_int_pow", since = "1.50.0")]
2408        #[must_use = "this returns the result of the operation, \
2409                      without modifying the original"]
2410        #[inline]
2411        #[cfg(not(feature = "ferrocene_subset"))]
2412        pub const fn saturating_pow(self, exp: u32) -> Self {
2413            match self.checked_pow(exp) {
2414                Some(x) => x,
2415                None => Self::MAX,
2416            }
2417        }
2418
2419        /// Wrapping (modular) addition. Computes `self + rhs`,
2420        /// wrapping around at the boundary of the type.
2421        ///
2422        /// # Examples
2423        ///
2424        /// ```
2425        #[doc = concat!("assert_eq!(200", stringify!($SelfT), ".wrapping_add(55), 255);")]
2426        #[doc = concat!("assert_eq!(200", stringify!($SelfT), ".wrapping_add(", stringify!($SelfT), "::MAX), 199);")]
2427        /// ```
2428        #[stable(feature = "rust1", since = "1.0.0")]
2429        #[rustc_const_stable(feature = "const_wrapping_math", since = "1.32.0")]
2430        #[must_use = "this returns the result of the operation, \
2431                      without modifying the original"]
2432        #[inline(always)]
2433        pub const fn wrapping_add(self, rhs: Self) -> Self {
2434            intrinsics::wrapping_add(self, rhs)
2435        }
2436
2437        /// Wrapping (modular) addition with a signed integer. Computes
2438        /// `self + rhs`, wrapping around at the boundary of the type.
2439        ///
2440        /// # Examples
2441        ///
2442        /// ```
2443        #[doc = concat!("assert_eq!(1", stringify!($SelfT), ".wrapping_add_signed(2), 3);")]
2444        #[doc = concat!("assert_eq!(1", stringify!($SelfT), ".wrapping_add_signed(-2), ", stringify!($SelfT), "::MAX);")]
2445        #[doc = concat!("assert_eq!((", stringify!($SelfT), "::MAX - 2).wrapping_add_signed(4), 1);")]
2446        /// ```
2447        #[stable(feature = "mixed_integer_ops", since = "1.66.0")]
2448        #[rustc_const_stable(feature = "mixed_integer_ops", since = "1.66.0")]
2449        #[must_use = "this returns the result of the operation, \
2450                      without modifying the original"]
2451        #[inline]
2452        pub const fn wrapping_add_signed(self, rhs: $SignedT) -> Self {
2453            self.wrapping_add(rhs as Self)
2454        }
2455
2456        /// Wrapping (modular) subtraction. Computes `self - rhs`,
2457        /// wrapping around at the boundary of the type.
2458        ///
2459        /// # Examples
2460        ///
2461        /// ```
2462        #[doc = concat!("assert_eq!(100", stringify!($SelfT), ".wrapping_sub(100), 0);")]
2463        #[doc = concat!("assert_eq!(100", stringify!($SelfT), ".wrapping_sub(", stringify!($SelfT), "::MAX), 101);")]
2464        /// ```
2465        #[stable(feature = "rust1", since = "1.0.0")]
2466        #[rustc_const_stable(feature = "const_wrapping_math", since = "1.32.0")]
2467        #[must_use = "this returns the result of the operation, \
2468                      without modifying the original"]
2469        #[inline(always)]
2470        pub const fn wrapping_sub(self, rhs: Self) -> Self {
2471            intrinsics::wrapping_sub(self, rhs)
2472        }
2473
2474        /// Wrapping (modular) subtraction with a signed integer. Computes
2475        /// `self - rhs`, wrapping around at the boundary of the type.
2476        ///
2477        /// # Examples
2478        ///
2479        /// ```
2480        #[doc = concat!("assert_eq!(1", stringify!($SelfT), ".wrapping_sub_signed(2), ", stringify!($SelfT), "::MAX);")]
2481        #[doc = concat!("assert_eq!(1", stringify!($SelfT), ".wrapping_sub_signed(-2), 3);")]
2482        #[doc = concat!("assert_eq!((", stringify!($SelfT), "::MAX - 2).wrapping_sub_signed(-4), 1);")]
2483        /// ```
2484        #[stable(feature = "mixed_integer_ops_unsigned_sub", since = "1.90.0")]
2485        #[rustc_const_stable(feature = "mixed_integer_ops_unsigned_sub", since = "1.90.0")]
2486        #[must_use = "this returns the result of the operation, \
2487                      without modifying the original"]
2488        #[inline]
2489        #[cfg(not(feature = "ferrocene_subset"))]
2490        pub const fn wrapping_sub_signed(self, rhs: $SignedT) -> Self {
2491            self.wrapping_sub(rhs as Self)
2492        }
2493
2494        /// Wrapping (modular) multiplication. Computes `self *
2495        /// rhs`, wrapping around at the boundary of the type.
2496        ///
2497        /// # Examples
2498        ///
2499        /// Please note that this example is shared among integer types, which is why `u8` is used.
2500        ///
2501        /// ```
2502        /// assert_eq!(10u8.wrapping_mul(12), 120);
2503        /// assert_eq!(25u8.wrapping_mul(12), 44);
2504        /// ```
2505        #[stable(feature = "rust1", since = "1.0.0")]
2506        #[rustc_const_stable(feature = "const_wrapping_math", since = "1.32.0")]
2507        #[must_use = "this returns the result of the operation, \
2508                      without modifying the original"]
2509        #[inline(always)]
2510        pub const fn wrapping_mul(self, rhs: Self) -> Self {
2511            intrinsics::wrapping_mul(self, rhs)
2512        }
2513
2514        /// Wrapping (modular) division. Computes `self / rhs`.
2515        ///
2516        /// Wrapped division on unsigned types is just normal division. There's
2517        /// no way wrapping could ever happen. This function exists so that all
2518        /// operations are accounted for in the wrapping operations.
2519        ///
2520        /// # Panics
2521        ///
2522        /// This function will panic if `rhs` is zero.
2523        ///
2524        /// # Examples
2525        ///
2526        /// ```
2527        #[doc = concat!("assert_eq!(100", stringify!($SelfT), ".wrapping_div(10), 10);")]
2528        /// ```
2529        #[stable(feature = "num_wrapping", since = "1.2.0")]
2530        #[rustc_const_stable(feature = "const_wrapping_int_methods", since = "1.52.0")]
2531        #[must_use = "this returns the result of the operation, \
2532                      without modifying the original"]
2533        #[inline(always)]
2534        #[track_caller]
2535        #[cfg(not(feature = "ferrocene_subset"))]
2536        pub const fn wrapping_div(self, rhs: Self) -> Self {
2537            self / rhs
2538        }
2539
2540        /// Wrapping Euclidean division. Computes `self.div_euclid(rhs)`.
2541        ///
2542        /// Wrapped division on unsigned types is just normal division. There's
2543        /// no way wrapping could ever happen. This function exists so that all
2544        /// operations are accounted for in the wrapping operations. Since, for
2545        /// the positive integers, all common definitions of division are equal,
2546        /// this is exactly equal to `self.wrapping_div(rhs)`.
2547        ///
2548        /// # Panics
2549        ///
2550        /// This function will panic if `rhs` is zero.
2551        ///
2552        /// # Examples
2553        ///
2554        /// ```
2555        #[doc = concat!("assert_eq!(100", stringify!($SelfT), ".wrapping_div_euclid(10), 10);")]
2556        /// ```
2557        #[stable(feature = "euclidean_division", since = "1.38.0")]
2558        #[rustc_const_stable(feature = "const_euclidean_int_methods", since = "1.52.0")]
2559        #[must_use = "this returns the result of the operation, \
2560                      without modifying the original"]
2561        #[inline(always)]
2562        #[track_caller]
2563        #[cfg(not(feature = "ferrocene_subset"))]
2564        pub const fn wrapping_div_euclid(self, rhs: Self) -> Self {
2565            self / rhs
2566        }
2567
2568        /// Wrapping (modular) remainder. Computes `self % rhs`.
2569        ///
2570        /// Wrapped remainder calculation on unsigned types is just the regular
2571        /// remainder calculation. There's no way wrapping could ever happen.
2572        /// This function exists so that all operations are accounted for in the
2573        /// wrapping operations.
2574        ///
2575        /// # Panics
2576        ///
2577        /// This function will panic if `rhs` is zero.
2578        ///
2579        /// # Examples
2580        ///
2581        /// ```
2582        #[doc = concat!("assert_eq!(100", stringify!($SelfT), ".wrapping_rem(10), 0);")]
2583        /// ```
2584        #[stable(feature = "num_wrapping", since = "1.2.0")]
2585        #[rustc_const_stable(feature = "const_wrapping_int_methods", since = "1.52.0")]
2586        #[must_use = "this returns the result of the operation, \
2587                      without modifying the original"]
2588        #[inline(always)]
2589        #[track_caller]
2590        #[cfg(not(feature = "ferrocene_subset"))]
2591        pub const fn wrapping_rem(self, rhs: Self) -> Self {
2592            self % rhs
2593        }
2594
2595        /// Wrapping Euclidean modulo. Computes `self.rem_euclid(rhs)`.
2596        ///
2597        /// Wrapped modulo calculation on unsigned types is just the regular
2598        /// remainder calculation. There's no way wrapping could ever happen.
2599        /// This function exists so that all operations are accounted for in the
2600        /// wrapping operations. Since, for the positive integers, all common
2601        /// definitions of division are equal, this is exactly equal to
2602        /// `self.wrapping_rem(rhs)`.
2603        ///
2604        /// # Panics
2605        ///
2606        /// This function will panic if `rhs` is zero.
2607        ///
2608        /// # Examples
2609        ///
2610        /// ```
2611        #[doc = concat!("assert_eq!(100", stringify!($SelfT), ".wrapping_rem_euclid(10), 0);")]
2612        /// ```
2613        #[stable(feature = "euclidean_division", since = "1.38.0")]
2614        #[rustc_const_stable(feature = "const_euclidean_int_methods", since = "1.52.0")]
2615        #[must_use = "this returns the result of the operation, \
2616                      without modifying the original"]
2617        #[inline(always)]
2618        #[track_caller]
2619        #[cfg(not(feature = "ferrocene_subset"))]
2620        pub const fn wrapping_rem_euclid(self, rhs: Self) -> Self {
2621            self % rhs
2622        }
2623
2624        /// Wrapping (modular) negation. Computes `-self`,
2625        /// wrapping around at the boundary of the type.
2626        ///
2627        /// Since unsigned types do not have negative equivalents
2628        /// all applications of this function will wrap (except for `-0`).
2629        /// For values smaller than the corresponding signed type's maximum
2630        /// the result is the same as casting the corresponding signed value.
2631        /// Any larger values are equivalent to `MAX + 1 - (val - MAX - 1)` where
2632        /// `MAX` is the corresponding signed type's maximum.
2633        ///
2634        /// # Examples
2635        ///
2636        /// ```
2637        #[doc = concat!("assert_eq!(0_", stringify!($SelfT), ".wrapping_neg(), 0);")]
2638        #[doc = concat!("assert_eq!(", stringify!($SelfT), "::MAX.wrapping_neg(), 1);")]
2639        #[doc = concat!("assert_eq!(13_", stringify!($SelfT), ".wrapping_neg(), (!13) + 1);")]
2640        #[doc = concat!("assert_eq!(42_", stringify!($SelfT), ".wrapping_neg(), !(42 - 1));")]
2641        /// ```
2642        #[stable(feature = "num_wrapping", since = "1.2.0")]
2643        #[rustc_const_stable(feature = "const_wrapping_math", since = "1.32.0")]
2644        #[must_use = "this returns the result of the operation, \
2645                      without modifying the original"]
2646        #[inline(always)]
2647        pub const fn wrapping_neg(self) -> Self {
2648            (0 as $SelfT).wrapping_sub(self)
2649        }
2650
2651        /// Panic-free bitwise shift-left; yields `self << mask(rhs)`,
2652        /// where `mask` removes any high-order bits of `rhs` that
2653        /// would cause the shift to exceed the bitwidth of the type.
2654        ///
2655        /// Note that this is *not* the same as a rotate-left; the
2656        /// RHS of a wrapping shift-left is restricted to the range
2657        /// of the type, rather than the bits shifted out of the LHS
2658        /// being returned to the other end. The primitive integer
2659        /// types all implement a [`rotate_left`](Self::rotate_left) function,
2660        /// which may be what you want instead.
2661        ///
2662        /// # Examples
2663        ///
2664        /// ```
2665        #[doc = concat!("assert_eq!(1", stringify!($SelfT), ".wrapping_shl(7), 128);")]
2666        #[doc = concat!("assert_eq!(1", stringify!($SelfT), ".wrapping_shl(128), 1);")]
2667        /// ```
2668        #[stable(feature = "num_wrapping", since = "1.2.0")]
2669        #[rustc_const_stable(feature = "const_wrapping_math", since = "1.32.0")]
2670        #[must_use = "this returns the result of the operation, \
2671                      without modifying the original"]
2672        #[inline(always)]
2673        pub const fn wrapping_shl(self, rhs: u32) -> Self {
2674            // SAFETY: the masking by the bitsize of the type ensures that we do not shift
2675            // out of bounds
2676            unsafe {
2677                self.unchecked_shl(rhs & (Self::BITS - 1))
2678            }
2679        }
2680
2681        /// Panic-free bitwise shift-right; yields `self >> mask(rhs)`,
2682        /// where `mask` removes any high-order bits of `rhs` that
2683        /// would cause the shift to exceed the bitwidth of the type.
2684        ///
2685        /// Note that this is *not* the same as a rotate-right; the
2686        /// RHS of a wrapping shift-right is restricted to the range
2687        /// of the type, rather than the bits shifted out of the LHS
2688        /// being returned to the other end. The primitive integer
2689        /// types all implement a [`rotate_right`](Self::rotate_right) function,
2690        /// which may be what you want instead.
2691        ///
2692        /// # Examples
2693        ///
2694        /// ```
2695        #[doc = concat!("assert_eq!(128", stringify!($SelfT), ".wrapping_shr(7), 1);")]
2696        #[doc = concat!("assert_eq!(128", stringify!($SelfT), ".wrapping_shr(128), 128);")]
2697        /// ```
2698        #[stable(feature = "num_wrapping", since = "1.2.0")]
2699        #[rustc_const_stable(feature = "const_wrapping_math", since = "1.32.0")]
2700        #[must_use = "this returns the result of the operation, \
2701                      without modifying the original"]
2702        #[inline(always)]
2703        pub const fn wrapping_shr(self, rhs: u32) -> Self {
2704            // SAFETY: the masking by the bitsize of the type ensures that we do not shift
2705            // out of bounds
2706            unsafe {
2707                self.unchecked_shr(rhs & (Self::BITS - 1))
2708            }
2709        }
2710
2711        /// Wrapping (modular) exponentiation. Computes `self.pow(exp)`,
2712        /// wrapping around at the boundary of the type.
2713        ///
2714        /// # Examples
2715        ///
2716        /// ```
2717        #[doc = concat!("assert_eq!(3", stringify!($SelfT), ".wrapping_pow(5), 243);")]
2718        /// assert_eq!(3u8.wrapping_pow(6), 217);
2719        #[doc = concat!("assert_eq!(0_", stringify!($SelfT), ".wrapping_pow(0), 1);")]
2720        /// ```
2721        #[stable(feature = "no_panic_pow", since = "1.34.0")]
2722        #[rustc_const_stable(feature = "const_int_pow", since = "1.50.0")]
2723        #[must_use = "this returns the result of the operation, \
2724                      without modifying the original"]
2725        #[inline]
2726        #[cfg(not(feature = "ferrocene_subset"))]
2727        pub const fn wrapping_pow(self, mut exp: u32) -> Self {
2728            if exp == 0 {
2729                return 1;
2730            }
2731            let mut base = self;
2732            let mut acc: Self = 1;
2733
2734            if intrinsics::is_val_statically_known(exp) {
2735                while exp > 1 {
2736                    if (exp & 1) == 1 {
2737                        acc = acc.wrapping_mul(base);
2738                    }
2739                    exp /= 2;
2740                    base = base.wrapping_mul(base);
2741                }
2742
2743                // since exp!=0, finally the exp must be 1.
2744                // Deal with the final bit of the exponent separately, since
2745                // squaring the base afterwards is not necessary.
2746                acc.wrapping_mul(base)
2747            } else {
2748                // This is faster than the above when the exponent is not known
2749                // at compile time. We can't use the same code for the constant
2750                // exponent case because LLVM is currently unable to unroll
2751                // this loop.
2752                loop {
2753                    if (exp & 1) == 1 {
2754                        acc = acc.wrapping_mul(base);
2755                        // since exp!=0, finally the exp must be 1.
2756                        if exp == 1 {
2757                            return acc;
2758                        }
2759                    }
2760                    exp /= 2;
2761                    base = base.wrapping_mul(base);
2762                }
2763            }
2764        }
2765
2766        /// Calculates `self` + `rhs`.
2767        ///
2768        /// Returns a tuple of the addition along with a boolean indicating
2769        /// whether an arithmetic overflow would occur. If an overflow would
2770        /// have occurred then the wrapped value is returned.
2771        ///
2772        /// # Examples
2773        ///
2774        /// ```
2775        #[doc = concat!("assert_eq!(5", stringify!($SelfT), ".overflowing_add(2), (7, false));")]
2776        #[doc = concat!("assert_eq!(", stringify!($SelfT), "::MAX.overflowing_add(1), (0, true));")]
2777        /// ```
2778        #[stable(feature = "wrapping", since = "1.7.0")]
2779        #[rustc_const_stable(feature = "const_wrapping_math", since = "1.32.0")]
2780        #[must_use = "this returns the result of the operation, \
2781                      without modifying the original"]
2782        #[inline(always)]
2783        pub const fn overflowing_add(self, rhs: Self) -> (Self, bool) {
2784            let (a, b) = intrinsics::add_with_overflow(self as $ActualT, rhs as $ActualT);
2785            (a as Self, b)
2786        }
2787
2788        /// Calculates `self` + `rhs` + `carry` and returns a tuple containing
2789        /// the sum and the output carry (in that order).
2790        ///
2791        /// Performs "ternary addition" of two integer operands and a carry-in
2792        /// bit, and returns an output integer and a carry-out bit. This allows
2793        /// chaining together multiple additions to create a wider addition, and
2794        /// can be useful for bignum addition.
2795        ///
2796        #[doc = concat!("This can be thought of as a ", stringify!($BITS), "-bit \"full adder\", in the electronics sense.")]
2797        ///
2798        /// If the input carry is false, this method is equivalent to
2799        /// [`overflowing_add`](Self::overflowing_add), and the output carry is
2800        /// equal to the overflow flag. Note that although carry and overflow
2801        /// flags are similar for unsigned integers, they are different for
2802        /// signed integers.
2803        ///
2804        /// # Examples
2805        ///
2806        /// ```
2807        #[doc = concat!("//    3  MAX    (a = 3 × 2^", stringify!($BITS), " + 2^", stringify!($BITS), " - 1)")]
2808        #[doc = concat!("// +  5    7    (b = 5 × 2^", stringify!($BITS), " + 7)")]
2809        /// // ---------
2810        #[doc = concat!("//    9    6    (sum = 9 × 2^", stringify!($BITS), " + 6)")]
2811        ///
2812        #[doc = concat!("let (a1, a0): (", stringify!($SelfT), ", ", stringify!($SelfT), ") = (3, ", stringify!($SelfT), "::MAX);")]
2813        #[doc = concat!("let (b1, b0): (", stringify!($SelfT), ", ", stringify!($SelfT), ") = (5, 7);")]
2814        /// let carry0 = false;
2815        ///
2816        /// let (sum0, carry1) = a0.carrying_add(b0, carry0);
2817        /// assert_eq!(carry1, true);
2818        /// let (sum1, carry2) = a1.carrying_add(b1, carry1);
2819        /// assert_eq!(carry2, false);
2820        ///
2821        /// assert_eq!((sum1, sum0), (9, 6));
2822        /// ```
2823        #[stable(feature = "unsigned_bigint_helpers", since = "1.91.0")]
2824        #[rustc_const_unstable(feature = "bigint_helper_methods", issue = "85532")]
2825        #[must_use = "this returns the result of the operation, \
2826                      without modifying the original"]
2827        #[inline]
2828        #[cfg(not(feature = "ferrocene_subset"))]
2829        pub const fn carrying_add(self, rhs: Self, carry: bool) -> (Self, bool) {
2830            // note: longer-term this should be done via an intrinsic, but this has been shown
2831            //   to generate optimal code for now, and LLVM doesn't have an equivalent intrinsic
2832            let (a, c1) = self.overflowing_add(rhs);
2833            let (b, c2) = a.overflowing_add(carry as $SelfT);
2834            // Ideally LLVM would know this is disjoint without us telling them,
2835            // but it doesn't <https://github.com/llvm/llvm-project/issues/118162>
2836            // SAFETY: Only one of `c1` and `c2` can be set.
2837            // For c1 to be set we need to have overflowed, but if we did then
2838            // `a` is at most `MAX-1`, which means that `c2` cannot possibly
2839            // overflow because it's adding at most `1` (since it came from `bool`)
2840            (b, unsafe { intrinsics::disjoint_bitor(c1, c2) })
2841        }
2842
2843        /// Calculates `self` + `rhs` with a signed `rhs`.
2844        ///
2845        /// Returns a tuple of the addition along with a boolean indicating
2846        /// whether an arithmetic overflow would occur. If an overflow would
2847        /// have occurred then the wrapped value is returned.
2848        ///
2849        /// # Examples
2850        ///
2851        /// ```
2852        #[doc = concat!("assert_eq!(1", stringify!($SelfT), ".overflowing_add_signed(2), (3, false));")]
2853        #[doc = concat!("assert_eq!(1", stringify!($SelfT), ".overflowing_add_signed(-2), (", stringify!($SelfT), "::MAX, true));")]
2854        #[doc = concat!("assert_eq!((", stringify!($SelfT), "::MAX - 2).overflowing_add_signed(4), (1, true));")]
2855        /// ```
2856        #[stable(feature = "mixed_integer_ops", since = "1.66.0")]
2857        #[rustc_const_stable(feature = "mixed_integer_ops", since = "1.66.0")]
2858        #[must_use = "this returns the result of the operation, \
2859                      without modifying the original"]
2860        #[inline]
2861        pub const fn overflowing_add_signed(self, rhs: $SignedT) -> (Self, bool) {
2862            let (res, overflowed) = self.overflowing_add(rhs as Self);
2863            (res, overflowed ^ (rhs < 0))
2864        }
2865
2866        /// Calculates `self` - `rhs`.
2867        ///
2868        /// Returns a tuple of the subtraction along with a boolean indicating
2869        /// whether an arithmetic overflow would occur. If an overflow would
2870        /// have occurred then the wrapped value is returned.
2871        ///
2872        /// # Examples
2873        ///
2874        /// ```
2875        #[doc = concat!("assert_eq!(5", stringify!($SelfT), ".overflowing_sub(2), (3, false));")]
2876        #[doc = concat!("assert_eq!(0", stringify!($SelfT), ".overflowing_sub(1), (", stringify!($SelfT), "::MAX, true));")]
2877        /// ```
2878        #[stable(feature = "wrapping", since = "1.7.0")]
2879        #[rustc_const_stable(feature = "const_wrapping_math", since = "1.32.0")]
2880        #[must_use = "this returns the result of the operation, \
2881                      without modifying the original"]
2882        #[inline(always)]
2883        pub const fn overflowing_sub(self, rhs: Self) -> (Self, bool) {
2884            let (a, b) = intrinsics::sub_with_overflow(self as $ActualT, rhs as $ActualT);
2885            (a as Self, b)
2886        }
2887
2888        /// Calculates `self` &minus; `rhs` &minus; `borrow` and returns a tuple
2889        /// containing the difference and the output borrow.
2890        ///
2891        /// Performs "ternary subtraction" by subtracting both an integer
2892        /// operand and a borrow-in bit from `self`, and returns an output
2893        /// integer and a borrow-out bit. This allows chaining together multiple
2894        /// subtractions to create a wider subtraction, and can be useful for
2895        /// bignum subtraction.
2896        ///
2897        /// # Examples
2898        ///
2899        /// ```
2900        #[doc = concat!("//    9    6    (a = 9 × 2^", stringify!($BITS), " + 6)")]
2901        #[doc = concat!("// -  5    7    (b = 5 × 2^", stringify!($BITS), " + 7)")]
2902        /// // ---------
2903        #[doc = concat!("//    3  MAX    (diff = 3 × 2^", stringify!($BITS), " + 2^", stringify!($BITS), " - 1)")]
2904        ///
2905        #[doc = concat!("let (a1, a0): (", stringify!($SelfT), ", ", stringify!($SelfT), ") = (9, 6);")]
2906        #[doc = concat!("let (b1, b0): (", stringify!($SelfT), ", ", stringify!($SelfT), ") = (5, 7);")]
2907        /// let borrow0 = false;
2908        ///
2909        /// let (diff0, borrow1) = a0.borrowing_sub(b0, borrow0);
2910        /// assert_eq!(borrow1, true);
2911        /// let (diff1, borrow2) = a1.borrowing_sub(b1, borrow1);
2912        /// assert_eq!(borrow2, false);
2913        ///
2914        #[doc = concat!("assert_eq!((diff1, diff0), (3, ", stringify!($SelfT), "::MAX));")]
2915        /// ```
2916        #[stable(feature = "unsigned_bigint_helpers", since = "1.91.0")]
2917        #[rustc_const_unstable(feature = "bigint_helper_methods", issue = "85532")]
2918        #[must_use = "this returns the result of the operation, \
2919                      without modifying the original"]
2920        #[inline]
2921        #[cfg(not(feature = "ferrocene_subset"))]
2922        pub const fn borrowing_sub(self, rhs: Self, borrow: bool) -> (Self, bool) {
2923            // note: longer-term this should be done via an intrinsic, but this has been shown
2924            //   to generate optimal code for now, and LLVM doesn't have an equivalent intrinsic
2925            let (a, c1) = self.overflowing_sub(rhs);
2926            let (b, c2) = a.overflowing_sub(borrow as $SelfT);
2927            // SAFETY: Only one of `c1` and `c2` can be set.
2928            // For c1 to be set we need to have underflowed, but if we did then
2929            // `a` is nonzero, which means that `c2` cannot possibly
2930            // underflow because it's subtracting at most `1` (since it came from `bool`)
2931            (b, unsafe { intrinsics::disjoint_bitor(c1, c2) })
2932        }
2933
2934        /// Calculates `self` - `rhs` with a signed `rhs`
2935        ///
2936        /// Returns a tuple of the subtraction along with a boolean indicating
2937        /// whether an arithmetic overflow would occur. If an overflow would
2938        /// have occurred then the wrapped value is returned.
2939        ///
2940        /// # Examples
2941        ///
2942        /// ```
2943        #[doc = concat!("assert_eq!(1", stringify!($SelfT), ".overflowing_sub_signed(2), (", stringify!($SelfT), "::MAX, true));")]
2944        #[doc = concat!("assert_eq!(1", stringify!($SelfT), ".overflowing_sub_signed(-2), (3, false));")]
2945        #[doc = concat!("assert_eq!((", stringify!($SelfT), "::MAX - 2).overflowing_sub_signed(-4), (1, true));")]
2946        /// ```
2947        #[stable(feature = "mixed_integer_ops_unsigned_sub", since = "1.90.0")]
2948        #[rustc_const_stable(feature = "mixed_integer_ops_unsigned_sub", since = "1.90.0")]
2949        #[must_use = "this returns the result of the operation, \
2950                      without modifying the original"]
2951        #[inline]
2952        #[cfg(not(feature = "ferrocene_subset"))]
2953        pub const fn overflowing_sub_signed(self, rhs: $SignedT) -> (Self, bool) {
2954            let (res, overflow) = self.overflowing_sub(rhs as Self);
2955
2956            (res, overflow ^ (rhs < 0))
2957        }
2958
2959        /// Computes the absolute difference between `self` and `other`.
2960        ///
2961        /// # Examples
2962        ///
2963        /// ```
2964        #[doc = concat!("assert_eq!(100", stringify!($SelfT), ".abs_diff(80), 20", stringify!($SelfT), ");")]
2965        #[doc = concat!("assert_eq!(100", stringify!($SelfT), ".abs_diff(110), 10", stringify!($SelfT), ");")]
2966        /// ```
2967        #[stable(feature = "int_abs_diff", since = "1.60.0")]
2968        #[rustc_const_stable(feature = "int_abs_diff", since = "1.60.0")]
2969        #[must_use = "this returns the result of the operation, \
2970                      without modifying the original"]
2971        #[inline]
2972        pub const fn abs_diff(self, other: Self) -> Self {
2973            if size_of::<Self>() == 1 {
2974                // Trick LLVM into generating the psadbw instruction when SSE2
2975                // is available and this function is autovectorized for u8's.
2976                (self as i32).wrapping_sub(other as i32).unsigned_abs() as Self
2977            } else {
2978                if self < other {
2979                    other - self
2980                } else {
2981                    self - other
2982                }
2983            }
2984        }
2985
2986        /// Calculates the multiplication of `self` and `rhs`.
2987        ///
2988        /// Returns a tuple of the multiplication along with a boolean
2989        /// indicating whether an arithmetic overflow would occur. If an
2990        /// overflow would have occurred then the wrapped value is returned.
2991        ///
2992        /// If you want the *value* of the overflow, rather than just *whether*
2993        /// an overflow occurred, see [`Self::carrying_mul`].
2994        ///
2995        /// # Examples
2996        ///
2997        /// Please note that this example is shared among integer types, which is why `u32` is used.
2998        ///
2999        /// ```
3000        /// assert_eq!(5u32.overflowing_mul(2), (10, false));
3001        /// assert_eq!(1_000_000_000u32.overflowing_mul(10), (1410065408, true));
3002        /// ```
3003        #[stable(feature = "wrapping", since = "1.7.0")]
3004        #[rustc_const_stable(feature = "const_wrapping_math", since = "1.32.0")]
3005        #[must_use = "this returns the result of the operation, \
3006                          without modifying the original"]
3007        #[inline(always)]
3008        pub const fn overflowing_mul(self, rhs: Self) -> (Self, bool) {
3009            let (a, b) = intrinsics::mul_with_overflow(self as $ActualT, rhs as $ActualT);
3010            (a as Self, b)
3011        }
3012
3013        /// Calculates the complete double-width product `self * rhs`.
3014        ///
3015        /// This returns the low-order (wrapping) bits and the high-order (overflow) bits
3016        /// of the result as two separate values, in that order. As such,
3017        /// `a.widening_mul(b).0` produces the same result as `a.wrapping_mul(b)`.
3018        ///
3019        /// If you also need to add a value and carry to the wide result, then you want
3020        /// [`Self::carrying_mul_add`] instead.
3021        ///
3022        /// If you also need to add a carry to the wide result, then you want
3023        /// [`Self::carrying_mul`] instead.
3024        ///
3025        /// If you just want to know *whether* the multiplication overflowed, then you
3026        /// want [`Self::overflowing_mul`] instead.
3027        ///
3028        /// # Examples
3029        ///
3030        /// ```
3031        /// #![feature(bigint_helper_methods)]
3032        #[doc = concat!("assert_eq!(5_", stringify!($SelfT), ".widening_mul(7), (35, 0));")]
3033        #[doc = concat!("assert_eq!(", stringify!($SelfT), "::MAX.widening_mul(", stringify!($SelfT), "::MAX), (1, ", stringify!($SelfT), "::MAX - 1));")]
3034        /// ```
3035        ///
3036        /// Compared to other `*_mul` methods:
3037        /// ```
3038        /// #![feature(bigint_helper_methods)]
3039        #[doc = concat!("assert_eq!(", stringify!($SelfT), "::widening_mul(1 << ", stringify!($BITS_MINUS_ONE), ", 6), (0, 3));")]
3040        #[doc = concat!("assert_eq!(", stringify!($SelfT), "::overflowing_mul(1 << ", stringify!($BITS_MINUS_ONE), ", 6), (0, true));")]
3041        #[doc = concat!("assert_eq!(", stringify!($SelfT), "::wrapping_mul(1 << ", stringify!($BITS_MINUS_ONE), ", 6), 0);")]
3042        #[doc = concat!("assert_eq!(", stringify!($SelfT), "::checked_mul(1 << ", stringify!($BITS_MINUS_ONE), ", 6), None);")]
3043        /// ```
3044        ///
3045        /// Please note that this example is shared among integer types, which is why `u32` is used.
3046        ///
3047        /// ```
3048        /// #![feature(bigint_helper_methods)]
3049        /// assert_eq!(5u32.widening_mul(2), (10, 0));
3050        /// assert_eq!(1_000_000_000u32.widening_mul(10), (1410065408, 2));
3051        /// ```
3052        #[unstable(feature = "bigint_helper_methods", issue = "85532")]
3053        #[rustc_const_unstable(feature = "bigint_helper_methods", issue = "85532")]
3054        #[must_use = "this returns the result of the operation, \
3055                      without modifying the original"]
3056        #[inline]
3057        #[cfg(not(feature = "ferrocene_subset"))]
3058        pub const fn widening_mul(self, rhs: Self) -> (Self, Self) {
3059            Self::carrying_mul_add(self, rhs, 0, 0)
3060        }
3061
3062        /// Calculates the "full multiplication" `self * rhs + carry`
3063        /// without the possibility to overflow.
3064        ///
3065        /// This returns the low-order (wrapping) bits and the high-order (overflow) bits
3066        /// of the result as two separate values, in that order.
3067        ///
3068        /// Performs "long multiplication" which takes in an extra amount to add, and may return an
3069        /// additional amount of overflow. This allows for chaining together multiple
3070        /// multiplications to create "big integers" which represent larger values.
3071        ///
3072        /// If you also need to add a value, then use [`Self::carrying_mul_add`].
3073        ///
3074        /// # Examples
3075        ///
3076        /// Please note that this example is shared among integer types, which is why `u32` is used.
3077        ///
3078        /// ```
3079        /// assert_eq!(5u32.carrying_mul(2, 0), (10, 0));
3080        /// assert_eq!(5u32.carrying_mul(2, 10), (20, 0));
3081        /// assert_eq!(1_000_000_000u32.carrying_mul(10, 0), (1410065408, 2));
3082        /// assert_eq!(1_000_000_000u32.carrying_mul(10, 10), (1410065418, 2));
3083        #[doc = concat!("assert_eq!(",
3084            stringify!($SelfT), "::MAX.carrying_mul(", stringify!($SelfT), "::MAX, ", stringify!($SelfT), "::MAX), ",
3085            "(0, ", stringify!($SelfT), "::MAX));"
3086        )]
3087        /// ```
3088        ///
3089        /// This is the core operation needed for scalar multiplication when
3090        /// implementing it for wider-than-native types.
3091        ///
3092        /// ```
3093        /// #![feature(bigint_helper_methods)]
3094        /// fn scalar_mul_eq(little_endian_digits: &mut Vec<u16>, multiplicand: u16) {
3095        ///     let mut carry = 0;
3096        ///     for d in little_endian_digits.iter_mut() {
3097        ///         (*d, carry) = d.carrying_mul(multiplicand, carry);
3098        ///     }
3099        ///     if carry != 0 {
3100        ///         little_endian_digits.push(carry);
3101        ///     }
3102        /// }
3103        ///
3104        /// let mut v = vec![10, 20];
3105        /// scalar_mul_eq(&mut v, 3);
3106        /// assert_eq!(v, [30, 60]);
3107        ///
3108        /// assert_eq!(0x87654321_u64 * 0xFEED, 0x86D3D159E38D);
3109        /// let mut v = vec![0x4321, 0x8765];
3110        /// scalar_mul_eq(&mut v, 0xFEED);
3111        /// assert_eq!(v, [0xE38D, 0xD159, 0x86D3]);
3112        /// ```
3113        ///
3114        /// If `carry` is zero, this is similar to [`overflowing_mul`](Self::overflowing_mul),
3115        /// except that it gives the value of the overflow instead of just whether one happened:
3116        ///
3117        /// ```
3118        /// #![feature(bigint_helper_methods)]
3119        /// let r = u8::carrying_mul(7, 13, 0);
3120        /// assert_eq!((r.0, r.1 != 0), u8::overflowing_mul(7, 13));
3121        /// let r = u8::carrying_mul(13, 42, 0);
3122        /// assert_eq!((r.0, r.1 != 0), u8::overflowing_mul(13, 42));
3123        /// ```
3124        ///
3125        /// The value of the first field in the returned tuple matches what you'd get
3126        /// by combining the [`wrapping_mul`](Self::wrapping_mul) and
3127        /// [`wrapping_add`](Self::wrapping_add) methods:
3128        ///
3129        /// ```
3130        /// #![feature(bigint_helper_methods)]
3131        /// assert_eq!(
3132        ///     789_u16.carrying_mul(456, 123).0,
3133        ///     789_u16.wrapping_mul(456).wrapping_add(123),
3134        /// );
3135        /// ```
3136        #[stable(feature = "unsigned_bigint_helpers", since = "1.91.0")]
3137        #[rustc_const_unstable(feature = "bigint_helper_methods", issue = "85532")]
3138        #[must_use = "this returns the result of the operation, \
3139                      without modifying the original"]
3140        #[inline]
3141        #[cfg(not(feature = "ferrocene_subset"))]
3142        pub const fn carrying_mul(self, rhs: Self, carry: Self) -> (Self, Self) {
3143            Self::carrying_mul_add(self, rhs, carry, 0)
3144        }
3145
3146        /// Calculates the "full multiplication" `self * rhs + carry + add`.
3147        ///
3148        /// This returns the low-order (wrapping) bits and the high-order (overflow) bits
3149        /// of the result as two separate values, in that order.
3150        ///
3151        /// This cannot overflow, as the double-width result has exactly enough
3152        /// space for the largest possible result. This is equivalent to how, in
3153        /// decimal, 9 × 9 + 9 + 9 = 81 + 18 = 99 = 9×10⁰ + 9×10¹ = 10² - 1.
3154        ///
3155        /// Performs "long multiplication" which takes in an extra amount to add, and may return an
3156        /// additional amount of overflow. This allows for chaining together multiple
3157        /// multiplications to create "big integers" which represent larger values.
3158        ///
3159        /// If you don't need the `add` part, then you can use [`Self::carrying_mul`] instead.
3160        ///
3161        /// # Examples
3162        ///
3163        /// Please note that this example is shared between integer types,
3164        /// which explains why `u32` is used here.
3165        ///
3166        /// ```
3167        /// assert_eq!(5u32.carrying_mul_add(2, 0, 0), (10, 0));
3168        /// assert_eq!(5u32.carrying_mul_add(2, 10, 10), (30, 0));
3169        /// assert_eq!(1_000_000_000u32.carrying_mul_add(10, 0, 0), (1410065408, 2));
3170        /// assert_eq!(1_000_000_000u32.carrying_mul_add(10, 10, 10), (1410065428, 2));
3171        #[doc = concat!("assert_eq!(",
3172            stringify!($SelfT), "::MAX.carrying_mul_add(", stringify!($SelfT), "::MAX, ", stringify!($SelfT), "::MAX, ", stringify!($SelfT), "::MAX), ",
3173            "(", stringify!($SelfT), "::MAX, ", stringify!($SelfT), "::MAX));"
3174        )]
3175        /// ```
3176        ///
3177        /// This is the core per-digit operation for "grade school" O(n²) multiplication.
3178        ///
3179        /// Please note that this example is shared between integer types,
3180        /// using `u8` for simplicity of the demonstration.
3181        ///
3182        /// ```
3183        /// fn quadratic_mul<const N: usize>(a: [u8; N], b: [u8; N]) -> [u8; N] {
3184        ///     let mut out = [0; N];
3185        ///     for j in 0..N {
3186        ///         let mut carry = 0;
3187        ///         for i in 0..(N - j) {
3188        ///             (out[j + i], carry) = u8::carrying_mul_add(a[i], b[j], out[j + i], carry);
3189        ///         }
3190        ///     }
3191        ///     out
3192        /// }
3193        ///
3194        /// // -1 * -1 == 1
3195        /// assert_eq!(quadratic_mul([0xFF; 3], [0xFF; 3]), [1, 0, 0]);
3196        ///
3197        /// assert_eq!(u32::wrapping_mul(0x9e3779b9, 0x7f4a7c15), 0xcffc982d);
3198        /// assert_eq!(
3199        ///     quadratic_mul(u32::to_le_bytes(0x9e3779b9), u32::to_le_bytes(0x7f4a7c15)),
3200        ///     u32::to_le_bytes(0xcffc982d)
3201        /// );
3202        /// ```
3203        #[stable(feature = "unsigned_bigint_helpers", since = "1.91.0")]
3204        #[rustc_const_unstable(feature = "bigint_helper_methods", issue = "85532")]
3205        #[must_use = "this returns the result of the operation, \
3206                      without modifying the original"]
3207        #[inline]
3208        #[cfg(not(feature = "ferrocene_subset"))]
3209        pub const fn carrying_mul_add(self, rhs: Self, carry: Self, add: Self) -> (Self, Self) {
3210            intrinsics::carrying_mul_add(self, rhs, carry, add)
3211        }
3212
3213        /// Calculates the divisor when `self` is divided by `rhs`.
3214        ///
3215        /// Returns a tuple of the divisor along with a boolean indicating
3216        /// whether an arithmetic overflow would occur. Note that for unsigned
3217        /// integers overflow never occurs, so the second value is always
3218        /// `false`.
3219        ///
3220        /// # Panics
3221        ///
3222        /// This function will panic if `rhs` is zero.
3223        ///
3224        /// # Examples
3225        ///
3226        /// ```
3227        #[doc = concat!("assert_eq!(5", stringify!($SelfT), ".overflowing_div(2), (2, false));")]
3228        /// ```
3229        #[inline(always)]
3230        #[stable(feature = "wrapping", since = "1.7.0")]
3231        #[rustc_const_stable(feature = "const_overflowing_int_methods", since = "1.52.0")]
3232        #[must_use = "this returns the result of the operation, \
3233                      without modifying the original"]
3234        #[track_caller]
3235        #[cfg(not(feature = "ferrocene_subset"))]
3236        pub const fn overflowing_div(self, rhs: Self) -> (Self, bool) {
3237            (self / rhs, false)
3238        }
3239
3240        /// Calculates the quotient of Euclidean division `self.div_euclid(rhs)`.
3241        ///
3242        /// Returns a tuple of the divisor along with a boolean indicating
3243        /// whether an arithmetic overflow would occur. Note that for unsigned
3244        /// integers overflow never occurs, so the second value is always
3245        /// `false`.
3246        /// Since, for the positive integers, all common
3247        /// definitions of division are equal, this
3248        /// is exactly equal to `self.overflowing_div(rhs)`.
3249        ///
3250        /// # Panics
3251        ///
3252        /// This function will panic if `rhs` is zero.
3253        ///
3254        /// # Examples
3255        ///
3256        /// ```
3257        #[doc = concat!("assert_eq!(5", stringify!($SelfT), ".overflowing_div_euclid(2), (2, false));")]
3258        /// ```
3259        #[inline(always)]
3260        #[stable(feature = "euclidean_division", since = "1.38.0")]
3261        #[rustc_const_stable(feature = "const_euclidean_int_methods", since = "1.52.0")]
3262        #[must_use = "this returns the result of the operation, \
3263                      without modifying the original"]
3264        #[track_caller]
3265        #[cfg(not(feature = "ferrocene_subset"))]
3266        pub const fn overflowing_div_euclid(self, rhs: Self) -> (Self, bool) {
3267            (self / rhs, false)
3268        }
3269
3270        /// Calculates the remainder when `self` is divided by `rhs`.
3271        ///
3272        /// Returns a tuple of the remainder after dividing along with a boolean
3273        /// indicating whether an arithmetic overflow would occur. Note that for
3274        /// unsigned integers overflow never occurs, so the second value is
3275        /// always `false`.
3276        ///
3277        /// # Panics
3278        ///
3279        /// This function will panic if `rhs` is zero.
3280        ///
3281        /// # Examples
3282        ///
3283        /// ```
3284        #[doc = concat!("assert_eq!(5", stringify!($SelfT), ".overflowing_rem(2), (1, false));")]
3285        /// ```
3286        #[inline(always)]
3287        #[stable(feature = "wrapping", since = "1.7.0")]
3288        #[rustc_const_stable(feature = "const_overflowing_int_methods", since = "1.52.0")]
3289        #[must_use = "this returns the result of the operation, \
3290                      without modifying the original"]
3291        #[track_caller]
3292        #[cfg(not(feature = "ferrocene_subset"))]
3293        pub const fn overflowing_rem(self, rhs: Self) -> (Self, bool) {
3294            (self % rhs, false)
3295        }
3296
3297        /// Calculates the remainder `self.rem_euclid(rhs)` as if by Euclidean division.
3298        ///
3299        /// Returns a tuple of the modulo after dividing along with a boolean
3300        /// indicating whether an arithmetic overflow would occur. Note that for
3301        /// unsigned integers overflow never occurs, so the second value is
3302        /// always `false`.
3303        /// Since, for the positive integers, all common
3304        /// definitions of division are equal, this operation
3305        /// is exactly equal to `self.overflowing_rem(rhs)`.
3306        ///
3307        /// # Panics
3308        ///
3309        /// This function will panic if `rhs` is zero.
3310        ///
3311        /// # Examples
3312        ///
3313        /// ```
3314        #[doc = concat!("assert_eq!(5", stringify!($SelfT), ".overflowing_rem_euclid(2), (1, false));")]
3315        /// ```
3316        #[inline(always)]
3317        #[stable(feature = "euclidean_division", since = "1.38.0")]
3318        #[rustc_const_stable(feature = "const_euclidean_int_methods", since = "1.52.0")]
3319        #[must_use = "this returns the result of the operation, \
3320                      without modifying the original"]
3321        #[track_caller]
3322        #[cfg(not(feature = "ferrocene_subset"))]
3323        pub const fn overflowing_rem_euclid(self, rhs: Self) -> (Self, bool) {
3324            (self % rhs, false)
3325        }
3326
3327        /// Negates self in an overflowing fashion.
3328        ///
3329        /// Returns `!self + 1` using wrapping operations to return the value
3330        /// that represents the negation of this unsigned value. Note that for
3331        /// positive unsigned values overflow always occurs, but negating 0 does
3332        /// not overflow.
3333        ///
3334        /// # Examples
3335        ///
3336        /// ```
3337        #[doc = concat!("assert_eq!(0", stringify!($SelfT), ".overflowing_neg(), (0, false));")]
3338        #[doc = concat!("assert_eq!(2", stringify!($SelfT), ".overflowing_neg(), (-2i32 as ", stringify!($SelfT), ", true));")]
3339        /// ```
3340        #[inline(always)]
3341        #[stable(feature = "wrapping", since = "1.7.0")]
3342        #[rustc_const_stable(feature = "const_wrapping_math", since = "1.32.0")]
3343        #[must_use = "this returns the result of the operation, \
3344                      without modifying the original"]
3345        #[cfg(not(feature = "ferrocene_subset"))]
3346        pub const fn overflowing_neg(self) -> (Self, bool) {
3347            ((!self).wrapping_add(1), self != 0)
3348        }
3349
3350        /// Shifts self left by `rhs` bits.
3351        ///
3352        /// Returns a tuple of the shifted version of self along with a boolean
3353        /// indicating whether the shift value was larger than or equal to the
3354        /// number of bits. If the shift value is too large, then value is
3355        /// masked (N-1) where N is the number of bits, and this value is then
3356        /// used to perform the shift.
3357        ///
3358        /// # Examples
3359        ///
3360        /// ```
3361        #[doc = concat!("assert_eq!(0x1", stringify!($SelfT), ".overflowing_shl(4), (0x10, false));")]
3362        #[doc = concat!("assert_eq!(0x1", stringify!($SelfT), ".overflowing_shl(132), (0x10, true));")]
3363        #[doc = concat!("assert_eq!(0x10", stringify!($SelfT), ".overflowing_shl(", stringify!($BITS_MINUS_ONE), "), (0, false));")]
3364        /// ```
3365        #[stable(feature = "wrapping", since = "1.7.0")]
3366        #[rustc_const_stable(feature = "const_wrapping_math", since = "1.32.0")]
3367        #[must_use = "this returns the result of the operation, \
3368                      without modifying the original"]
3369        #[inline(always)]
3370        #[cfg(not(feature = "ferrocene_subset"))]
3371        pub const fn overflowing_shl(self, rhs: u32) -> (Self, bool) {
3372            (self.wrapping_shl(rhs), rhs >= Self::BITS)
3373        }
3374
3375        /// Shifts self right by `rhs` bits.
3376        ///
3377        /// Returns a tuple of the shifted version of self along with a boolean
3378        /// indicating whether the shift value was larger than or equal to the
3379        /// number of bits. If the shift value is too large, then value is
3380        /// masked (N-1) where N is the number of bits, and this value is then
3381        /// used to perform the shift.
3382        ///
3383        /// # Examples
3384        ///
3385        /// ```
3386        #[doc = concat!("assert_eq!(0x10", stringify!($SelfT), ".overflowing_shr(4), (0x1, false));")]
3387        #[doc = concat!("assert_eq!(0x10", stringify!($SelfT), ".overflowing_shr(132), (0x1, true));")]
3388        /// ```
3389        #[stable(feature = "wrapping", since = "1.7.0")]
3390        #[rustc_const_stable(feature = "const_wrapping_math", since = "1.32.0")]
3391        #[must_use = "this returns the result of the operation, \
3392                      without modifying the original"]
3393        #[inline(always)]
3394        #[cfg(not(feature = "ferrocene_subset"))]
3395        pub const fn overflowing_shr(self, rhs: u32) -> (Self, bool) {
3396            (self.wrapping_shr(rhs), rhs >= Self::BITS)
3397        }
3398
3399        /// Raises self to the power of `exp`, using exponentiation by squaring.
3400        ///
3401        /// Returns a tuple of the exponentiation along with a bool indicating
3402        /// whether an overflow happened.
3403        ///
3404        /// # Examples
3405        ///
3406        /// ```
3407        #[doc = concat!("assert_eq!(3", stringify!($SelfT), ".overflowing_pow(5), (243, false));")]
3408        #[doc = concat!("assert_eq!(0_", stringify!($SelfT), ".overflowing_pow(0), (1, false));")]
3409        /// assert_eq!(3u8.overflowing_pow(6), (217, true));
3410        /// ```
3411        #[stable(feature = "no_panic_pow", since = "1.34.0")]
3412        #[rustc_const_stable(feature = "const_int_pow", since = "1.50.0")]
3413        #[must_use = "this returns the result of the operation, \
3414                      without modifying the original"]
3415        #[inline]
3416        #[cfg(not(feature = "ferrocene_subset"))]
3417        pub const fn overflowing_pow(self, mut exp: u32) -> (Self, bool) {
3418            if exp == 0{
3419                return (1,false);
3420            }
3421            let mut base = self;
3422            let mut acc: Self = 1;
3423            let mut overflown = false;
3424            // Scratch space for storing results of overflowing_mul.
3425            let mut r;
3426
3427            loop {
3428                if (exp & 1) == 1 {
3429                    r = acc.overflowing_mul(base);
3430                    // since exp!=0, finally the exp must be 1.
3431                    if exp == 1 {
3432                        r.1 |= overflown;
3433                        return r;
3434                    }
3435                    acc = r.0;
3436                    overflown |= r.1;
3437                }
3438                exp /= 2;
3439                r = base.overflowing_mul(base);
3440                base = r.0;
3441                overflown |= r.1;
3442            }
3443        }
3444
3445        /// Raises self to the power of `exp`, using exponentiation by squaring.
3446        ///
3447        /// # Examples
3448        ///
3449        /// ```
3450        #[doc = concat!("assert_eq!(2", stringify!($SelfT), ".pow(5), 32);")]
3451        #[doc = concat!("assert_eq!(0_", stringify!($SelfT), ".pow(0), 1);")]
3452        /// ```
3453        #[stable(feature = "rust1", since = "1.0.0")]
3454        #[rustc_const_stable(feature = "const_int_pow", since = "1.50.0")]
3455        #[must_use = "this returns the result of the operation, \
3456                      without modifying the original"]
3457        #[inline]
3458        #[rustc_inherit_overflow_checks]
3459        #[cfg(not(feature = "ferrocene_subset"))]
3460        pub const fn pow(self, mut exp: u32) -> Self {
3461            if exp == 0 {
3462                return 1;
3463            }
3464            let mut base = self;
3465            let mut acc = 1;
3466
3467            if intrinsics::is_val_statically_known(exp) {
3468                while exp > 1 {
3469                    if (exp & 1) == 1 {
3470                        acc = acc * base;
3471                    }
3472                    exp /= 2;
3473                    base = base * base;
3474                }
3475
3476                // since exp!=0, finally the exp must be 1.
3477                // Deal with the final bit of the exponent separately, since
3478                // squaring the base afterwards is not necessary and may cause a
3479                // needless overflow.
3480                acc * base
3481            } else {
3482                // This is faster than the above when the exponent is not known
3483                // at compile time. We can't use the same code for the constant
3484                // exponent case because LLVM is currently unable to unroll
3485                // this loop.
3486                loop {
3487                    if (exp & 1) == 1 {
3488                        acc = acc * base;
3489                        // since exp!=0, finally the exp must be 1.
3490                        if exp == 1 {
3491                            return acc;
3492                        }
3493                    }
3494                    exp /= 2;
3495                    base = base * base;
3496                }
3497            }
3498        }
3499
3500        /// Returns the square root of the number, rounded down.
3501        ///
3502        /// # Examples
3503        ///
3504        /// ```
3505        #[doc = concat!("assert_eq!(10", stringify!($SelfT), ".isqrt(), 3);")]
3506        /// ```
3507        #[stable(feature = "isqrt", since = "1.84.0")]
3508        #[rustc_const_stable(feature = "isqrt", since = "1.84.0")]
3509        #[must_use = "this returns the result of the operation, \
3510                      without modifying the original"]
3511        #[inline]
3512        #[cfg(not(feature = "ferrocene_subset"))]
3513        pub const fn isqrt(self) -> Self {
3514            let result = crate::num::int_sqrt::$ActualT(self as $ActualT) as $SelfT;
3515
3516            // Inform the optimizer what the range of outputs is. If testing
3517            // `core` crashes with no panic message and a `num::int_sqrt::u*`
3518            // test failed, it's because your edits caused these assertions or
3519            // the assertions in `fn isqrt` of `nonzero.rs` to become false.
3520            //
3521            // SAFETY: Integer square root is a monotonically nondecreasing
3522            // function, which means that increasing the input will never
3523            // cause the output to decrease. Thus, since the input for unsigned
3524            // integers is bounded by `[0, <$ActualT>::MAX]`, sqrt(n) will be
3525            // bounded by `[sqrt(0), sqrt(<$ActualT>::MAX)]`.
3526            unsafe {
3527                const MAX_RESULT: $SelfT = crate::num::int_sqrt::$ActualT(<$ActualT>::MAX) as $SelfT;
3528                crate::hint::assert_unchecked(result <= MAX_RESULT);
3529            }
3530
3531            result
3532        }
3533
3534        /// Performs Euclidean division.
3535        ///
3536        /// Since, for the positive integers, all common
3537        /// definitions of division are equal, this
3538        /// is exactly equal to `self / rhs`.
3539        ///
3540        /// # Panics
3541        ///
3542        /// This function will panic if `rhs` is zero.
3543        ///
3544        /// # Examples
3545        ///
3546        /// ```
3547        #[doc = concat!("assert_eq!(7", stringify!($SelfT), ".div_euclid(4), 1); // or any other integer type")]
3548        /// ```
3549        #[stable(feature = "euclidean_division", since = "1.38.0")]
3550        #[rustc_const_stable(feature = "const_euclidean_int_methods", since = "1.52.0")]
3551        #[must_use = "this returns the result of the operation, \
3552                      without modifying the original"]
3553        #[inline(always)]
3554        #[track_caller]
3555        #[cfg(not(feature = "ferrocene_subset"))]
3556        pub const fn div_euclid(self, rhs: Self) -> Self {
3557            self / rhs
3558        }
3559
3560
3561        /// Calculates the least remainder of `self` when divided by
3562        /// `rhs`.
3563        ///
3564        /// Since, for the positive integers, all common
3565        /// definitions of division are equal, this
3566        /// is exactly equal to `self % rhs`.
3567        ///
3568        /// # Panics
3569        ///
3570        /// This function will panic if `rhs` is zero.
3571        ///
3572        /// # Examples
3573        ///
3574        /// ```
3575        #[doc = concat!("assert_eq!(7", stringify!($SelfT), ".rem_euclid(4), 3); // or any other integer type")]
3576        /// ```
3577        #[doc(alias = "modulo", alias = "mod")]
3578        #[stable(feature = "euclidean_division", since = "1.38.0")]
3579        #[rustc_const_stable(feature = "const_euclidean_int_methods", since = "1.52.0")]
3580        #[must_use = "this returns the result of the operation, \
3581                      without modifying the original"]
3582        #[inline(always)]
3583        #[track_caller]
3584        #[cfg(not(feature = "ferrocene_subset"))]
3585        pub const fn rem_euclid(self, rhs: Self) -> Self {
3586            self % rhs
3587        }
3588
3589        /// Calculates the quotient of `self` and `rhs`, rounding the result towards negative infinity.
3590        ///
3591        /// This is the same as performing `self / rhs` for all unsigned integers.
3592        ///
3593        /// # Panics
3594        ///
3595        /// This function will panic if `rhs` is zero.
3596        ///
3597        /// # Examples
3598        ///
3599        /// ```
3600        /// #![feature(int_roundings)]
3601        #[doc = concat!("assert_eq!(7_", stringify!($SelfT), ".div_floor(4), 1);")]
3602        /// ```
3603        #[unstable(feature = "int_roundings", issue = "88581")]
3604        #[must_use = "this returns the result of the operation, \
3605                      without modifying the original"]
3606        #[inline(always)]
3607        #[track_caller]
3608        #[cfg(not(feature = "ferrocene_subset"))]
3609        pub const fn div_floor(self, rhs: Self) -> Self {
3610            self / rhs
3611        }
3612
3613        /// Calculates the quotient of `self` and `rhs`, rounding the result towards positive infinity.
3614        ///
3615        /// # Panics
3616        ///
3617        /// This function will panic if `rhs` is zero.
3618        ///
3619        /// # Examples
3620        ///
3621        /// ```
3622        #[doc = concat!("assert_eq!(7_", stringify!($SelfT), ".div_ceil(4), 2);")]
3623        /// ```
3624        #[stable(feature = "int_roundings1", since = "1.73.0")]
3625        #[rustc_const_stable(feature = "int_roundings1", since = "1.73.0")]
3626        #[must_use = "this returns the result of the operation, \
3627                      without modifying the original"]
3628        #[inline]
3629        #[track_caller]
3630        pub const fn div_ceil(self, rhs: Self) -> Self {
3631            let d = self / rhs;
3632            let r = self % rhs;
3633            if r > 0 {
3634                d + 1
3635            } else {
3636                d
3637            }
3638        }
3639
3640        /// Calculates the smallest value greater than or equal to `self` that
3641        /// is a multiple of `rhs`.
3642        ///
3643        /// # Panics
3644        ///
3645        /// This function will panic if `rhs` is zero.
3646        ///
3647        /// ## Overflow behavior
3648        ///
3649        /// On overflow, this function will panic if overflow checks are enabled (default in debug
3650        /// mode) and wrap if overflow checks are disabled (default in release mode).
3651        ///
3652        /// # Examples
3653        ///
3654        /// ```
3655        #[doc = concat!("assert_eq!(16_", stringify!($SelfT), ".next_multiple_of(8), 16);")]
3656        #[doc = concat!("assert_eq!(23_", stringify!($SelfT), ".next_multiple_of(8), 24);")]
3657        /// ```
3658        #[stable(feature = "int_roundings1", since = "1.73.0")]
3659        #[rustc_const_stable(feature = "int_roundings1", since = "1.73.0")]
3660        #[must_use = "this returns the result of the operation, \
3661                      without modifying the original"]
3662        #[inline]
3663        #[rustc_inherit_overflow_checks]
3664        #[cfg(not(feature = "ferrocene_subset"))]
3665        pub const fn next_multiple_of(self, rhs: Self) -> Self {
3666            match self % rhs {
3667                0 => self,
3668                r => self + (rhs - r)
3669            }
3670        }
3671
3672        /// Calculates the smallest value greater than or equal to `self` that
3673        /// is a multiple of `rhs`. Returns `None` if `rhs` is zero or the
3674        /// operation would result in overflow.
3675        ///
3676        /// # Examples
3677        ///
3678        /// ```
3679        #[doc = concat!("assert_eq!(16_", stringify!($SelfT), ".checked_next_multiple_of(8), Some(16));")]
3680        #[doc = concat!("assert_eq!(23_", stringify!($SelfT), ".checked_next_multiple_of(8), Some(24));")]
3681        #[doc = concat!("assert_eq!(1_", stringify!($SelfT), ".checked_next_multiple_of(0), None);")]
3682        #[doc = concat!("assert_eq!(", stringify!($SelfT), "::MAX.checked_next_multiple_of(2), None);")]
3683        /// ```
3684        #[stable(feature = "int_roundings1", since = "1.73.0")]
3685        #[rustc_const_stable(feature = "int_roundings1", since = "1.73.0")]
3686        #[must_use = "this returns the result of the operation, \
3687                      without modifying the original"]
3688        #[inline]
3689        #[cfg(not(feature = "ferrocene_subset"))]
3690        pub const fn checked_next_multiple_of(self, rhs: Self) -> Option<Self> {
3691            match try_opt!(self.checked_rem(rhs)) {
3692                0 => Some(self),
3693                // rhs - r cannot overflow because r is smaller than rhs
3694                r => self.checked_add(rhs - r)
3695            }
3696        }
3697
3698        /// Returns `true` if `self` is an integer multiple of `rhs`, and false otherwise.
3699        ///
3700        /// This function is equivalent to `self % rhs == 0`, except that it will not panic
3701        /// for `rhs == 0`. Instead, `0.is_multiple_of(0) == true`, and for any non-zero `n`,
3702        /// `n.is_multiple_of(0) == false`.
3703        ///
3704        /// # Examples
3705        ///
3706        /// ```
3707        #[doc = concat!("assert!(6_", stringify!($SelfT), ".is_multiple_of(2));")]
3708        #[doc = concat!("assert!(!5_", stringify!($SelfT), ".is_multiple_of(2));")]
3709        ///
3710        #[doc = concat!("assert!(0_", stringify!($SelfT), ".is_multiple_of(0));")]
3711        #[doc = concat!("assert!(!6_", stringify!($SelfT), ".is_multiple_of(0));")]
3712        /// ```
3713        #[stable(feature = "unsigned_is_multiple_of", since = "1.87.0")]
3714        #[rustc_const_stable(feature = "unsigned_is_multiple_of", since = "1.87.0")]
3715        #[must_use]
3716        #[inline]
3717        pub const fn is_multiple_of(self, rhs: Self) -> bool {
3718            match rhs {
3719                0 => self == 0,
3720                _ => self % rhs == 0,
3721            }
3722        }
3723
3724        /// Returns `true` if and only if `self == 2^k` for some unsigned integer `k`.
3725        ///
3726        /// # Examples
3727        ///
3728        /// ```
3729        #[doc = concat!("assert!(16", stringify!($SelfT), ".is_power_of_two());")]
3730        #[doc = concat!("assert!(!10", stringify!($SelfT), ".is_power_of_two());")]
3731        /// ```
3732        #[must_use]
3733        #[stable(feature = "rust1", since = "1.0.0")]
3734        #[rustc_const_stable(feature = "const_is_power_of_two", since = "1.32.0")]
3735        #[inline(always)]
3736        pub const fn is_power_of_two(self) -> bool {
3737            self.count_ones() == 1
3738        }
3739
3740        // Returns one less than next power of two.
3741        // (For 8u8 next power of two is 8u8 and for 6u8 it is 8u8)
3742        //
3743        // 8u8.one_less_than_next_power_of_two() == 7
3744        // 6u8.one_less_than_next_power_of_two() == 7
3745        //
3746        // This method cannot overflow, as in the `next_power_of_two`
3747        // overflow cases it instead ends up returning the maximum value
3748        // of the type, and can return 0 for 0.
3749        #[inline]
3750        #[cfg(not(feature = "ferrocene_subset"))]
3751        const fn one_less_than_next_power_of_two(self) -> Self {
3752            if self <= 1 { return 0; }
3753
3754            let p = self - 1;
3755            // SAFETY: Because `p > 0`, it cannot consist entirely of leading zeros.
3756            // That means the shift is always in-bounds, and some processors
3757            // (such as intel pre-haswell) have more efficient ctlz
3758            // intrinsics when the argument is non-zero.
3759            let z = unsafe { intrinsics::ctlz_nonzero(p) };
3760            <$SelfT>::MAX >> z
3761        }
3762
3763        /// Returns the smallest power of two greater than or equal to `self`.
3764        ///
3765        /// When return value overflows (i.e., `self > (1 << (N-1))` for type
3766        /// `uN`), it panics in debug mode and the return value is wrapped to 0 in
3767        /// release mode (the only situation in which this method can return 0).
3768        ///
3769        /// # Examples
3770        ///
3771        /// ```
3772        #[doc = concat!("assert_eq!(2", stringify!($SelfT), ".next_power_of_two(), 2);")]
3773        #[doc = concat!("assert_eq!(3", stringify!($SelfT), ".next_power_of_two(), 4);")]
3774        #[doc = concat!("assert_eq!(0", stringify!($SelfT), ".next_power_of_two(), 1);")]
3775        /// ```
3776        #[stable(feature = "rust1", since = "1.0.0")]
3777        #[rustc_const_stable(feature = "const_int_pow", since = "1.50.0")]
3778        #[must_use = "this returns the result of the operation, \
3779                      without modifying the original"]
3780        #[inline]
3781        #[rustc_inherit_overflow_checks]
3782        #[cfg(not(feature = "ferrocene_subset"))]
3783        pub const fn next_power_of_two(self) -> Self {
3784            self.one_less_than_next_power_of_two() + 1
3785        }
3786
3787        /// Returns the smallest power of two greater than or equal to `self`. If
3788        /// the next power of two is greater than the type's maximum value,
3789        /// `None` is returned, otherwise the power of two is wrapped in `Some`.
3790        ///
3791        /// # Examples
3792        ///
3793        /// ```
3794        #[doc = concat!("assert_eq!(2", stringify!($SelfT), ".checked_next_power_of_two(), Some(2));")]
3795        #[doc = concat!("assert_eq!(3", stringify!($SelfT), ".checked_next_power_of_two(), Some(4));")]
3796        #[doc = concat!("assert_eq!(", stringify!($SelfT), "::MAX.checked_next_power_of_two(), None);")]
3797        /// ```
3798        #[inline]
3799        #[stable(feature = "rust1", since = "1.0.0")]
3800        #[rustc_const_stable(feature = "const_int_pow", since = "1.50.0")]
3801        #[must_use = "this returns the result of the operation, \
3802                      without modifying the original"]
3803        #[cfg(not(feature = "ferrocene_subset"))]
3804        pub const fn checked_next_power_of_two(self) -> Option<Self> {
3805            self.one_less_than_next_power_of_two().checked_add(1)
3806        }
3807
3808        /// Returns the smallest power of two greater than or equal to `n`. If
3809        /// the next power of two is greater than the type's maximum value,
3810        /// the return value is wrapped to `0`.
3811        ///
3812        /// # Examples
3813        ///
3814        /// ```
3815        /// #![feature(wrapping_next_power_of_two)]
3816        ///
3817        #[doc = concat!("assert_eq!(2", stringify!($SelfT), ".wrapping_next_power_of_two(), 2);")]
3818        #[doc = concat!("assert_eq!(3", stringify!($SelfT), ".wrapping_next_power_of_two(), 4);")]
3819        #[doc = concat!("assert_eq!(", stringify!($SelfT), "::MAX.wrapping_next_power_of_two(), 0);")]
3820        /// ```
3821        #[inline]
3822        #[unstable(feature = "wrapping_next_power_of_two", issue = "32463",
3823                   reason = "needs decision on wrapping behavior")]
3824        #[must_use = "this returns the result of the operation, \
3825                      without modifying the original"]
3826        #[cfg(not(feature = "ferrocene_subset"))]
3827        pub const fn wrapping_next_power_of_two(self) -> Self {
3828            self.one_less_than_next_power_of_two().wrapping_add(1)
3829        }
3830
3831        /// Returns the memory representation of this integer as a byte array in
3832        /// big-endian (network) byte order.
3833        ///
3834        #[doc = $to_xe_bytes_doc]
3835        ///
3836        /// # Examples
3837        ///
3838        /// ```
3839        #[doc = concat!("let bytes = ", $swap_op, stringify!($SelfT), ".to_be_bytes();")]
3840        #[doc = concat!("assert_eq!(bytes, ", $be_bytes, ");")]
3841        /// ```
3842        #[stable(feature = "int_to_from_bytes", since = "1.32.0")]
3843        #[rustc_const_stable(feature = "const_int_conversion", since = "1.44.0")]
3844        #[must_use = "this returns the result of the operation, \
3845                      without modifying the original"]
3846        #[inline]
3847        pub const fn to_be_bytes(self) -> [u8; size_of::<Self>()] {
3848            self.to_be().to_ne_bytes()
3849        }
3850
3851        /// Returns the memory representation of this integer as a byte array in
3852        /// little-endian byte order.
3853        ///
3854        #[doc = $to_xe_bytes_doc]
3855        ///
3856        /// # Examples
3857        ///
3858        /// ```
3859        #[doc = concat!("let bytes = ", $swap_op, stringify!($SelfT), ".to_le_bytes();")]
3860        #[doc = concat!("assert_eq!(bytes, ", $le_bytes, ");")]
3861        /// ```
3862        #[stable(feature = "int_to_from_bytes", since = "1.32.0")]
3863        #[rustc_const_stable(feature = "const_int_conversion", since = "1.44.0")]
3864        #[must_use = "this returns the result of the operation, \
3865                      without modifying the original"]
3866        #[inline]
3867        pub const fn to_le_bytes(self) -> [u8; size_of::<Self>()] {
3868            self.to_le().to_ne_bytes()
3869        }
3870
3871        /// Returns the memory representation of this integer as a byte array in
3872        /// native byte order.
3873        ///
3874        /// As the target platform's native endianness is used, portable code
3875        /// should use [`to_be_bytes`] or [`to_le_bytes`], as appropriate,
3876        /// instead.
3877        ///
3878        #[doc = $to_xe_bytes_doc]
3879        ///
3880        /// [`to_be_bytes`]: Self::to_be_bytes
3881        /// [`to_le_bytes`]: Self::to_le_bytes
3882        ///
3883        /// # Examples
3884        ///
3885        /// ```
3886        #[doc = concat!("let bytes = ", $swap_op, stringify!($SelfT), ".to_ne_bytes();")]
3887        /// assert_eq!(
3888        ///     bytes,
3889        ///     if cfg!(target_endian = "big") {
3890        #[doc = concat!("        ", $be_bytes)]
3891        ///     } else {
3892        #[doc = concat!("        ", $le_bytes)]
3893        ///     }
3894        /// );
3895        /// ```
3896        #[stable(feature = "int_to_from_bytes", since = "1.32.0")]
3897        #[rustc_const_stable(feature = "const_int_conversion", since = "1.44.0")]
3898        #[must_use = "this returns the result of the operation, \
3899                      without modifying the original"]
3900        #[allow(unnecessary_transmutes)]
3901        // SAFETY: const sound because integers are plain old datatypes so we can always
3902        // transmute them to arrays of bytes
3903        #[inline]
3904        pub const fn to_ne_bytes(self) -> [u8; size_of::<Self>()] {
3905            // SAFETY: integers are plain old datatypes so we can always transmute them to
3906            // arrays of bytes
3907            unsafe { mem::transmute(self) }
3908        }
3909
3910        /// Creates a native endian integer value from its representation
3911        /// as a byte array in big endian.
3912        ///
3913        #[doc = $from_xe_bytes_doc]
3914        ///
3915        /// # Examples
3916        ///
3917        /// ```
3918        #[doc = concat!("let value = ", stringify!($SelfT), "::from_be_bytes(", $be_bytes, ");")]
3919        #[doc = concat!("assert_eq!(value, ", $swap_op, ");")]
3920        /// ```
3921        ///
3922        /// When starting from a slice rather than an array, fallible conversion APIs can be used:
3923        ///
3924        /// ```
3925        #[doc = concat!("fn read_be_", stringify!($SelfT), "(input: &mut &[u8]) -> ", stringify!($SelfT), " {")]
3926        #[doc = concat!("    let (int_bytes, rest) = input.split_at(size_of::<", stringify!($SelfT), ">());")]
3927        ///     *input = rest;
3928        #[doc = concat!("    ", stringify!($SelfT), "::from_be_bytes(int_bytes.try_into().unwrap())")]
3929        /// }
3930        /// ```
3931        #[stable(feature = "int_to_from_bytes", since = "1.32.0")]
3932        #[rustc_const_stable(feature = "const_int_conversion", since = "1.44.0")]
3933        #[must_use]
3934        #[inline]
3935        pub const fn from_be_bytes(bytes: [u8; size_of::<Self>()]) -> Self {
3936            Self::from_be(Self::from_ne_bytes(bytes))
3937        }
3938
3939        /// Creates a native endian integer value from its representation
3940        /// as a byte array in little endian.
3941        ///
3942        #[doc = $from_xe_bytes_doc]
3943        ///
3944        /// # Examples
3945        ///
3946        /// ```
3947        #[doc = concat!("let value = ", stringify!($SelfT), "::from_le_bytes(", $le_bytes, ");")]
3948        #[doc = concat!("assert_eq!(value, ", $swap_op, ");")]
3949        /// ```
3950        ///
3951        /// When starting from a slice rather than an array, fallible conversion APIs can be used:
3952        ///
3953        /// ```
3954        #[doc = concat!("fn read_le_", stringify!($SelfT), "(input: &mut &[u8]) -> ", stringify!($SelfT), " {")]
3955        #[doc = concat!("    let (int_bytes, rest) = input.split_at(size_of::<", stringify!($SelfT), ">());")]
3956        ///     *input = rest;
3957        #[doc = concat!("    ", stringify!($SelfT), "::from_le_bytes(int_bytes.try_into().unwrap())")]
3958        /// }
3959        /// ```
3960        #[stable(feature = "int_to_from_bytes", since = "1.32.0")]
3961        #[rustc_const_stable(feature = "const_int_conversion", since = "1.44.0")]
3962        #[must_use]
3963        #[inline]
3964        pub const fn from_le_bytes(bytes: [u8; size_of::<Self>()]) -> Self {
3965            Self::from_le(Self::from_ne_bytes(bytes))
3966        }
3967
3968        /// Creates a native endian integer value from its memory representation
3969        /// as a byte array in native endianness.
3970        ///
3971        /// As the target platform's native endianness is used, portable code
3972        /// likely wants to use [`from_be_bytes`] or [`from_le_bytes`], as
3973        /// appropriate instead.
3974        ///
3975        /// [`from_be_bytes`]: Self::from_be_bytes
3976        /// [`from_le_bytes`]: Self::from_le_bytes
3977        ///
3978        #[doc = $from_xe_bytes_doc]
3979        ///
3980        /// # Examples
3981        ///
3982        /// ```
3983        #[doc = concat!("let value = ", stringify!($SelfT), "::from_ne_bytes(if cfg!(target_endian = \"big\") {")]
3984        #[doc = concat!("    ", $be_bytes, "")]
3985        /// } else {
3986        #[doc = concat!("    ", $le_bytes, "")]
3987        /// });
3988        #[doc = concat!("assert_eq!(value, ", $swap_op, ");")]
3989        /// ```
3990        ///
3991        /// When starting from a slice rather than an array, fallible conversion APIs can be used:
3992        ///
3993        /// ```
3994        #[doc = concat!("fn read_ne_", stringify!($SelfT), "(input: &mut &[u8]) -> ", stringify!($SelfT), " {")]
3995        #[doc = concat!("    let (int_bytes, rest) = input.split_at(size_of::<", stringify!($SelfT), ">());")]
3996        ///     *input = rest;
3997        #[doc = concat!("    ", stringify!($SelfT), "::from_ne_bytes(int_bytes.try_into().unwrap())")]
3998        /// }
3999        /// ```
4000        #[stable(feature = "int_to_from_bytes", since = "1.32.0")]
4001        #[rustc_const_stable(feature = "const_int_conversion", since = "1.44.0")]
4002        #[allow(unnecessary_transmutes)]
4003        #[must_use]
4004        // SAFETY: const sound because integers are plain old datatypes so we can always
4005        // transmute to them
4006        #[inline]
4007        pub const fn from_ne_bytes(bytes: [u8; size_of::<Self>()]) -> Self {
4008            // SAFETY: integers are plain old datatypes so we can always transmute to them
4009            unsafe { mem::transmute(bytes) }
4010        }
4011
4012        /// New code should prefer to use
4013        #[doc = concat!("[`", stringify!($SelfT), "::MIN", "`] instead.")]
4014        ///
4015        /// Returns the smallest value that can be represented by this integer type.
4016        #[stable(feature = "rust1", since = "1.0.0")]
4017        #[rustc_promotable]
4018        #[inline(always)]
4019        #[rustc_const_stable(feature = "const_max_value", since = "1.32.0")]
4020        #[deprecated(since = "TBD", note = "replaced by the `MIN` associated constant on this type")]
4021        #[rustc_diagnostic_item = concat!(stringify!($SelfT), "_legacy_fn_min_value")]
4022        #[cfg(not(feature = "ferrocene_subset"))]
4023        pub const fn min_value() -> Self { Self::MIN }
4024
4025        /// New code should prefer to use
4026        #[doc = concat!("[`", stringify!($SelfT), "::MAX", "`] instead.")]
4027        ///
4028        /// Returns the largest value that can be represented by this integer type.
4029        #[stable(feature = "rust1", since = "1.0.0")]
4030        #[rustc_promotable]
4031        #[inline(always)]
4032        #[rustc_const_stable(feature = "const_max_value", since = "1.32.0")]
4033        #[deprecated(since = "TBD", note = "replaced by the `MAX` associated constant on this type")]
4034        #[rustc_diagnostic_item = concat!(stringify!($SelfT), "_legacy_fn_max_value")]
4035        #[cfg(not(feature = "ferrocene_subset"))]
4036        pub const fn max_value() -> Self { Self::MAX }
4037    }
4038}