core/ptr/metadata.rs
1#![unstable(feature = "ptr_metadata", issue = "81513")]
2
3#[cfg(not(feature = "ferrocene_certified"))]
4use crate::fmt;
5#[cfg(not(feature = "ferrocene_certified"))]
6use crate::hash::{Hash, Hasher};
7use crate::intrinsics::{aggregate_raw_ptr, ptr_metadata};
8use crate::marker::{Freeze, PointeeSized};
9use crate::ptr::NonNull;
10
11/// Provides the pointer metadata type of any pointed-to type.
12///
13/// # Pointer metadata
14///
15/// Raw pointer types and reference types in Rust can be thought of as made of two parts:
16/// a data pointer that contains the memory address of the value, and some metadata.
17///
18/// For statically-sized types (that implement the `Sized` traits)
19/// as well as for `extern` types,
20/// pointers are said to be “thin”: metadata is zero-sized and its type is `()`.
21///
22/// Pointers to [dynamically-sized types][dst] are said to be “wide” or “fat”,
23/// they have non-zero-sized metadata:
24///
25/// * For structs whose last field is a DST, metadata is the metadata for the last field
26/// * For the `str` type, metadata is the length in bytes as `usize`
27/// * For slice types like `[T]`, metadata is the length in items as `usize`
28/// * For trait objects like `dyn SomeTrait`, metadata is [`DynMetadata<Self>`][DynMetadata]
29///   (e.g. `DynMetadata<dyn SomeTrait>`)
30///
31/// In the future, the Rust language may gain new kinds of types
32/// that have different pointer metadata.
33///
34/// [dst]: https://doc.rust-lang.org/nomicon/exotic-sizes.html#dynamically-sized-types-dsts
35///
36///
37/// # The `Pointee` trait
38///
39/// The point of this trait is its `Metadata` associated type,
40/// which is `()` or `usize` or `DynMetadata<_>` as described above.
41/// It is automatically implemented for every type.
42/// It can be assumed to be implemented in a generic context, even without a corresponding bound.
43///
44///
45/// # Usage
46///
47/// Raw pointers can be decomposed into the data pointer and metadata components
48/// with their [`to_raw_parts`] method.
49///
50/// Alternatively, metadata alone can be extracted with the [`metadata`] function.
51/// A reference can be passed to [`metadata`] and implicitly coerced.
52///
53/// A (possibly-wide) pointer can be put back together from its data pointer and metadata
54/// with [`from_raw_parts`] or [`from_raw_parts_mut`].
55///
56/// [`to_raw_parts`]: *const::to_raw_parts
57#[lang = "pointee_trait"]
58#[rustc_deny_explicit_impl]
59#[rustc_do_not_implement_via_object]
60pub trait Pointee: PointeeSized {
61    /// The type for metadata in pointers and references to `Self`.
62    #[lang = "metadata_type"]
63    // NOTE: Keep trait bounds in `static_assert_expected_bounds_for_metadata`
64    // in `library/core/src/ptr/metadata.rs`
65    // in sync with those here:
66    // NOTE: The metadata of `dyn Trait + 'a` is `DynMetadata<dyn Trait + 'a>`
67    // so a `'static` bound must not be added.
68    #[cfg(not(feature = "ferrocene_certified"))]
69    type Metadata: fmt::Debug + Copy + Send + Sync + Ord + Hash + Unpin + Freeze;
70    /// The type for metadata in pointers and references to `Self`.
71    #[lang = "metadata_type"]
72    #[cfg(feature = "ferrocene_certified")]
73    #[rustfmt::skip]
74    type Metadata: /* fmt::Debug */ Copy + Send + Sync + Ord /* Hash */ + Unpin + Freeze;
75}
76
77/// Pointers to types implementing this trait alias are “thin”.
78///
79/// This includes statically-`Sized` types and `extern` types.
80///
81/// # Example
82///
83/// ```rust
84/// #![feature(ptr_metadata)]
85///
86/// fn this_never_panics<T: std::ptr::Thin>() {
87///     assert_eq!(size_of::<&T>(), size_of::<usize>())
88/// }
89/// ```
90#[unstable(feature = "ptr_metadata", issue = "81513")]
91// NOTE: don’t stabilize this before trait aliases are stable in the language?
92pub trait Thin = Pointee<Metadata = ()> + PointeeSized;
93
94/// Extracts the metadata component of a pointer.
95///
96/// Values of type `*mut T`, `&T`, or `&mut T` can be passed directly to this function
97/// as they implicitly coerce to `*const T`.
98///
99/// # Example
100///
101/// ```
102/// #![feature(ptr_metadata)]
103///
104/// assert_eq!(std::ptr::metadata("foo"), 3_usize);
105/// ```
106#[inline]
107pub const fn metadata<T: PointeeSized>(ptr: *const T) -> <T as Pointee>::Metadata {
108    ptr_metadata(ptr)
109}
110
111/// Forms a (possibly-wide) raw pointer from a data pointer and metadata.
112///
113/// This function is safe but the returned pointer is not necessarily safe to dereference.
114/// For slices, see the documentation of [`slice::from_raw_parts`] for safety requirements.
115/// For trait objects, the metadata must come from a pointer to the same underlying erased type.
116///
117/// If you are attempting to deconstruct a DST in a generic context to be reconstructed later,
118/// a thin pointer can always be obtained by casting `*const T` to `*const ()`.
119///
120/// [`slice::from_raw_parts`]: crate::slice::from_raw_parts
121#[unstable(feature = "ptr_metadata", issue = "81513")]
122#[inline]
123pub const fn from_raw_parts<T: PointeeSized>(
124    data_pointer: *const impl Thin,
125    metadata: <T as Pointee>::Metadata,
126) -> *const T {
127    aggregate_raw_ptr(data_pointer, metadata)
128}
129
130/// Performs the same functionality as [`from_raw_parts`], except that a
131/// raw `*mut` pointer is returned, as opposed to a raw `*const` pointer.
132///
133/// See the documentation of [`from_raw_parts`] for more details.
134#[unstable(feature = "ptr_metadata", issue = "81513")]
135#[inline]
136pub const fn from_raw_parts_mut<T: PointeeSized>(
137    data_pointer: *mut impl Thin,
138    metadata: <T as Pointee>::Metadata,
139) -> *mut T {
140    aggregate_raw_ptr(data_pointer, metadata)
141}
142
143/// The metadata for a `Dyn = dyn SomeTrait` trait object type.
144///
145/// It is a pointer to a vtable (virtual call table)
146/// that represents all the necessary information
147/// to manipulate the concrete type stored inside a trait object.
148/// The vtable notably contains:
149///
150/// * type size
151/// * type alignment
152/// * a pointer to the type’s `drop_in_place` impl (may be a no-op for plain-old-data)
153/// * pointers to all the methods for the type’s implementation of the trait
154///
155/// Note that the first three are special because they’re necessary to allocate, drop,
156/// and deallocate any trait object.
157///
158/// It is possible to name this struct with a type parameter that is not a `dyn` trait object
159/// (for example `DynMetadata<u64>`) but not to obtain a meaningful value of that struct.
160///
161/// Note that while this type implements `PartialEq`, comparing vtable pointers is unreliable:
162/// pointers to vtables of the same type for the same trait can compare inequal (because vtables are
163/// duplicated in multiple codegen units), and pointers to vtables of *different* types/traits can
164/// compare equal (since identical vtables can be deduplicated within a codegen unit).
165#[lang = "dyn_metadata"]
166pub struct DynMetadata<Dyn: PointeeSized> {
167    _vtable_ptr: NonNull<VTable>,
168    _phantom: crate::marker::PhantomData<Dyn>,
169}
170
171unsafe extern "C" {
172    /// Opaque type for accessing vtables.
173    ///
174    /// Private implementation detail of `DynMetadata::size_of` etc.
175    /// There is conceptually not actually any Abstract Machine memory behind this pointer.
176    type VTable;
177}
178
179#[cfg(not(feature = "ferrocene_certified"))]
180impl<Dyn: PointeeSized> DynMetadata<Dyn> {
181    /// When `DynMetadata` appears as the metadata field of a wide pointer, the rustc_middle layout
182    /// computation does magic and the resulting layout is *not* a `FieldsShape::Aggregate`, instead
183    /// it is a `FieldsShape::Primitive`. This means that the same type can have different layout
184    /// depending on whether it appears as the metadata field of a wide pointer or as a stand-alone
185    /// type, which understandably confuses codegen and leads to ICEs when trying to project to a
186    /// field of `DynMetadata`. To work around that issue, we use `transmute` instead of using a
187    /// field projection.
188    #[inline]
189    fn vtable_ptr(self) -> *const VTable {
190        // SAFETY: this layout assumption is hard-coded into the compiler.
191        // If it's somehow not a size match, the transmute will error.
192        unsafe { crate::mem::transmute::<Self, *const VTable>(self) }
193    }
194
195    /// Returns the size of the type associated with this vtable.
196    #[inline]
197    pub fn size_of(self) -> usize {
198        // Note that "size stored in vtable" is *not* the same as "result of size_of_val_raw".
199        // Consider a reference like `&(i32, dyn Send)`: the vtable will only store the size of the
200        // `Send` part!
201        // SAFETY: DynMetadata always contains a valid vtable pointer
202        unsafe { crate::intrinsics::vtable_size(self.vtable_ptr() as *const ()) }
203    }
204
205    /// Returns the alignment of the type associated with this vtable.
206    #[inline]
207    pub fn align_of(self) -> usize {
208        // SAFETY: DynMetadata always contains a valid vtable pointer
209        unsafe { crate::intrinsics::vtable_align(self.vtable_ptr() as *const ()) }
210    }
211
212    /// Returns the size and alignment together as a `Layout`
213    #[inline]
214    pub fn layout(self) -> crate::alloc::Layout {
215        // SAFETY: the compiler emitted this vtable for a concrete Rust type which
216        // is known to have a valid layout. Same rationale as in `Layout::for_value`.
217        unsafe { crate::alloc::Layout::from_size_align_unchecked(self.size_of(), self.align_of()) }
218    }
219}
220
221#[cfg(not(feature = "ferrocene_certified"))]
222unsafe impl<Dyn: PointeeSized> Send for DynMetadata<Dyn> {}
223#[cfg(not(feature = "ferrocene_certified"))]
224unsafe impl<Dyn: PointeeSized> Sync for DynMetadata<Dyn> {}
225
226#[cfg(not(feature = "ferrocene_certified"))]
227impl<Dyn: PointeeSized> fmt::Debug for DynMetadata<Dyn> {
228    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
229        f.debug_tuple("DynMetadata").field(&self.vtable_ptr()).finish()
230    }
231}
232
233// Manual impls needed to avoid `Dyn: $Trait` bounds.
234
235#[cfg(not(feature = "ferrocene_certified"))]
236impl<Dyn: PointeeSized> Unpin for DynMetadata<Dyn> {}
237
238#[cfg(not(feature = "ferrocene_certified"))]
239impl<Dyn: PointeeSized> Copy for DynMetadata<Dyn> {}
240
241#[cfg(not(feature = "ferrocene_certified"))]
242impl<Dyn: PointeeSized> Clone for DynMetadata<Dyn> {
243    #[inline]
244    fn clone(&self) -> Self {
245        *self
246    }
247}
248
249#[cfg(not(feature = "ferrocene_certified"))]
250impl<Dyn: PointeeSized> Eq for DynMetadata<Dyn> {}
251
252#[cfg(not(feature = "ferrocene_certified"))]
253impl<Dyn: PointeeSized> PartialEq for DynMetadata<Dyn> {
254    #[inline]
255    fn eq(&self, other: &Self) -> bool {
256        crate::ptr::eq::<VTable>(self.vtable_ptr(), other.vtable_ptr())
257    }
258}
259
260#[cfg(not(feature = "ferrocene_certified"))]
261impl<Dyn: PointeeSized> Ord for DynMetadata<Dyn> {
262    #[inline]
263    #[allow(ambiguous_wide_pointer_comparisons)]
264    fn cmp(&self, other: &Self) -> crate::cmp::Ordering {
265        <*const VTable>::cmp(&self.vtable_ptr(), &other.vtable_ptr())
266    }
267}
268
269#[cfg(not(feature = "ferrocene_certified"))]
270impl<Dyn: PointeeSized> PartialOrd for DynMetadata<Dyn> {
271    #[inline]
272    fn partial_cmp(&self, other: &Self) -> Option<crate::cmp::Ordering> {
273        Some(self.cmp(other))
274    }
275}
276
277#[cfg(not(feature = "ferrocene_certified"))]
278impl<Dyn: PointeeSized> Hash for DynMetadata<Dyn> {
279    #[inline]
280    fn hash<H: Hasher>(&self, hasher: &mut H) {
281        crate::ptr::hash::<VTable, _>(self.vtable_ptr(), hasher)
282    }
283}