core/
result.rs

1//! Error handling with the `Result` type.
2//!
3//! [`Result<T, E>`][`Result`] is the type used for returning and propagating
4//! errors. It is an enum with the variants, [`Ok(T)`], representing
5//! success and containing a value, and [`Err(E)`], representing error
6//! and containing an error value.
7//!
8//! ```
9//! # #[allow(dead_code)]
10//! enum Result<T, E> {
11//!    Ok(T),
12//!    Err(E),
13//! }
14//! ```
15//!
16//! Functions return [`Result`] whenever errors are expected and
17//! recoverable. In the `std` crate, [`Result`] is most prominently used
18//! for [I/O](../../std/io/index.html).
19//!
20//! A simple function returning [`Result`] might be
21//! defined and used like so:
22//!
23//! ```
24//! #[derive(Debug)]
25//! enum Version { Version1, Version2 }
26//!
27//! fn parse_version(header: &[u8]) -> Result<Version, &'static str> {
28//!     match header.get(0) {
29//!         None => Err("invalid header length"),
30//!         Some(&1) => Ok(Version::Version1),
31//!         Some(&2) => Ok(Version::Version2),
32//!         Some(_) => Err("invalid version"),
33//!     }
34//! }
35//!
36//! let version = parse_version(&[1, 2, 3, 4]);
37//! match version {
38//!     Ok(v) => println!("working with version: {v:?}"),
39//!     Err(e) => println!("error parsing header: {e:?}"),
40//! }
41//! ```
42//!
43//! Pattern matching on [`Result`]s is clear and straightforward for
44//! simple cases, but [`Result`] comes with some convenience methods
45//! that make working with it more succinct.
46//!
47//! ```
48//! // The `is_ok` and `is_err` methods do what they say.
49//! let good_result: Result<i32, i32> = Ok(10);
50//! let bad_result: Result<i32, i32> = Err(10);
51//! assert!(good_result.is_ok() && !good_result.is_err());
52//! assert!(bad_result.is_err() && !bad_result.is_ok());
53//!
54//! // `map` and `map_err` consume the `Result` and produce another.
55//! let good_result: Result<i32, i32> = good_result.map(|i| i + 1);
56//! let bad_result: Result<i32, i32> = bad_result.map_err(|i| i - 1);
57//! assert_eq!(good_result, Ok(11));
58//! assert_eq!(bad_result, Err(9));
59//!
60//! // Use `and_then` to continue the computation.
61//! let good_result: Result<bool, i32> = good_result.and_then(|i| Ok(i == 11));
62//! assert_eq!(good_result, Ok(true));
63//!
64//! // Use `or_else` to handle the error.
65//! let bad_result: Result<i32, i32> = bad_result.or_else(|i| Ok(i + 20));
66//! assert_eq!(bad_result, Ok(29));
67//!
68//! // Consume the result and return the contents with `unwrap`.
69//! let final_awesome_result = good_result.unwrap();
70//! assert!(final_awesome_result)
71//! ```
72//!
73//! # Results must be used
74//!
75//! A common problem with using return values to indicate errors is
76//! that it is easy to ignore the return value, thus failing to handle
77//! the error. [`Result`] is annotated with the `#[must_use]` attribute,
78//! which will cause the compiler to issue a warning when a Result
79//! value is ignored. This makes [`Result`] especially useful with
80//! functions that may encounter errors but don't otherwise return a
81//! useful value.
82//!
83//! Consider the [`write_all`] method defined for I/O types
84//! by the [`Write`] trait:
85//!
86//! ```
87//! use std::io;
88//!
89//! trait Write {
90//!     fn write_all(&mut self, bytes: &[u8]) -> Result<(), io::Error>;
91//! }
92//! ```
93//!
94//! *Note: The actual definition of [`Write`] uses [`io::Result`], which
95//! is just a synonym for <code>[Result]<T, [io::Error]></code>.*
96//!
97//! This method doesn't produce a value, but the write may
98//! fail. It's crucial to handle the error case, and *not* write
99//! something like this:
100//!
101//! ```no_run
102//! # #![allow(unused_must_use)] // \o/
103//! use std::fs::File;
104//! use std::io::prelude::*;
105//!
106//! let mut file = File::create("valuable_data.txt").unwrap();
107//! // If `write_all` errors, then we'll never know, because the return
108//! // value is ignored.
109//! file.write_all(b"important message");
110//! ```
111//!
112//! If you *do* write that in Rust, the compiler will give you a
113//! warning (by default, controlled by the `unused_must_use` lint).
114//!
115//! You might instead, if you don't want to handle the error, simply
116//! assert success with [`expect`]. This will panic if the
117//! write fails, providing a marginally useful message indicating why:
118//!
119//! ```no_run
120//! use std::fs::File;
121//! use std::io::prelude::*;
122//!
123//! let mut file = File::create("valuable_data.txt").unwrap();
124//! file.write_all(b"important message").expect("failed to write message");
125//! ```
126//!
127//! You might also simply assert success:
128//!
129//! ```no_run
130//! # use std::fs::File;
131//! # use std::io::prelude::*;
132//! # let mut file = File::create("valuable_data.txt").unwrap();
133//! assert!(file.write_all(b"important message").is_ok());
134//! ```
135//!
136//! Or propagate the error up the call stack with [`?`]:
137//!
138//! ```
139//! # use std::fs::File;
140//! # use std::io::prelude::*;
141//! # use std::io;
142//! # #[allow(dead_code)]
143//! fn write_message() -> io::Result<()> {
144//!     let mut file = File::create("valuable_data.txt")?;
145//!     file.write_all(b"important message")?;
146//!     Ok(())
147//! }
148//! ```
149//!
150//! # The question mark operator, `?`
151//!
152//! When writing code that calls many functions that return the
153//! [`Result`] type, the error handling can be tedious. The question mark
154//! operator, [`?`], hides some of the boilerplate of propagating errors
155//! up the call stack.
156//!
157//! It replaces this:
158//!
159//! ```
160//! # #![allow(dead_code)]
161//! use std::fs::File;
162//! use std::io::prelude::*;
163//! use std::io;
164//!
165//! struct Info {
166//!     name: String,
167//!     age: i32,
168//!     rating: i32,
169//! }
170//!
171//! fn write_info(info: &Info) -> io::Result<()> {
172//!     // Early return on error
173//!     let mut file = match File::create("my_best_friends.txt") {
174//!            Err(e) => return Err(e),
175//!            Ok(f) => f,
176//!     };
177//!     if let Err(e) = file.write_all(format!("name: {}\n", info.name).as_bytes()) {
178//!         return Err(e)
179//!     }
180//!     if let Err(e) = file.write_all(format!("age: {}\n", info.age).as_bytes()) {
181//!         return Err(e)
182//!     }
183//!     if let Err(e) = file.write_all(format!("rating: {}\n", info.rating).as_bytes()) {
184//!         return Err(e)
185//!     }
186//!     Ok(())
187//! }
188//! ```
189//!
190//! With this:
191//!
192//! ```
193//! # #![allow(dead_code)]
194//! use std::fs::File;
195//! use std::io::prelude::*;
196//! use std::io;
197//!
198//! struct Info {
199//!     name: String,
200//!     age: i32,
201//!     rating: i32,
202//! }
203//!
204//! fn write_info(info: &Info) -> io::Result<()> {
205//!     let mut file = File::create("my_best_friends.txt")?;
206//!     // Early return on error
207//!     file.write_all(format!("name: {}\n", info.name).as_bytes())?;
208//!     file.write_all(format!("age: {}\n", info.age).as_bytes())?;
209//!     file.write_all(format!("rating: {}\n", info.rating).as_bytes())?;
210//!     Ok(())
211//! }
212//! ```
213//!
214//! *It's much nicer!*
215//!
216//! Ending the expression with [`?`] will result in the [`Ok`]'s unwrapped value, unless the result
217//! is [`Err`], in which case [`Err`] is returned early from the enclosing function.
218//!
219//! [`?`] can be used in functions that return [`Result`] because of the
220//! early return of [`Err`] that it provides.
221//!
222//! [`expect`]: Result::expect
223//! [`Write`]: ../../std/io/trait.Write.html "io::Write"
224//! [`write_all`]: ../../std/io/trait.Write.html#method.write_all "io::Write::write_all"
225//! [`io::Result`]: ../../std/io/type.Result.html "io::Result"
226//! [`?`]: crate::ops::Try
227//! [`Ok(T)`]: Ok
228//! [`Err(E)`]: Err
229//! [io::Error]: ../../std/io/struct.Error.html "io::Error"
230//!
231//! # Representation
232//!
233//! In some cases, [`Result<T, E>`] comes with size, alignment, and ABI
234//! guarantees. Specifically, one of either the `T` or `E` type must be a type
235//! that qualifies for the `Option` [representation guarantees][opt-rep] (let's
236//! call that type `I`), and the *other* type is a zero-sized type with
237//! alignment 1 (a "1-ZST").
238//!
239//! If that is the case, then `Result<T, E>` has the same size, alignment, and
240//! [function call ABI] as `I` (and therefore, as `Option<I>`). If `I` is `T`,
241//! it is therefore sound to transmute a value `t` of type `I` to type
242//! `Result<T, E>` (producing the value `Ok(t)`) and to transmute a value
243//! `Ok(t)` of type `Result<T, E>` to type `I` (producing the value `t`). If `I`
244//! is `E`, the same applies with `Ok` replaced by `Err`.
245//!
246//! For example, `NonZeroI32` qualifies for the `Option` representation
247//! guarantees and `()` is a zero-sized type with alignment 1. This means that
248//! both `Result<NonZeroI32, ()>` and `Result<(), NonZeroI32>` have the same
249//! size, alignment, and ABI as `NonZeroI32` (and `Option<NonZeroI32>`). The
250//! only difference between these is in the implied semantics:
251//!
252//! * `Option<NonZeroI32>` is "a non-zero i32 might be present"
253//! * `Result<NonZeroI32, ()>` is "a non-zero i32 success result, if any"
254//! * `Result<(), NonZeroI32>` is "a non-zero i32 error result, if any"
255//!
256//! [opt-rep]: ../option/index.html#representation "Option Representation"
257//! [function call ABI]: ../primitive.fn.html#abi-compatibility
258//!
259//! # Method overview
260//!
261//! In addition to working with pattern matching, [`Result`] provides a
262//! wide variety of different methods.
263//!
264//! ## Querying the variant
265//!
266//! The [`is_ok`] and [`is_err`] methods return [`true`] if the [`Result`]
267//! is [`Ok`] or [`Err`], respectively.
268//!
269//! The [`is_ok_and`] and [`is_err_and`] methods apply the provided function
270//! to the contents of the [`Result`] to produce a boolean value. If the [`Result`] does not have the expected variant
271//! then [`false`] is returned instead without executing the function.
272//!
273//! [`is_err`]: Result::is_err
274//! [`is_ok`]: Result::is_ok
275//! [`is_ok_and`]: Result::is_ok_and
276//! [`is_err_and`]: Result::is_err_and
277//!
278//! ## Adapters for working with references
279//!
280//! * [`as_ref`] converts from `&Result<T, E>` to `Result<&T, &E>`
281//! * [`as_mut`] converts from `&mut Result<T, E>` to `Result<&mut T, &mut E>`
282//! * [`as_deref`] converts from `&Result<T, E>` to `Result<&T::Target, &E>`
283//! * [`as_deref_mut`] converts from `&mut Result<T, E>` to
284//!   `Result<&mut T::Target, &mut E>`
285//!
286//! [`as_deref`]: Result::as_deref
287//! [`as_deref_mut`]: Result::as_deref_mut
288//! [`as_mut`]: Result::as_mut
289//! [`as_ref`]: Result::as_ref
290//!
291//! ## Extracting contained values
292//!
293//! These methods extract the contained value in a [`Result<T, E>`] when it
294//! is the [`Ok`] variant. If the [`Result`] is [`Err`]:
295//!
296//! * [`expect`] panics with a provided custom message
297//! * [`unwrap`] panics with a generic message
298//! * [`unwrap_or`] returns the provided default value
299//! * [`unwrap_or_default`] returns the default value of the type `T`
300//!   (which must implement the [`Default`] trait)
301//! * [`unwrap_or_else`] returns the result of evaluating the provided
302//!   function
303//! * [`unwrap_unchecked`] produces *[undefined behavior]*
304//!
305//! The panicking methods [`expect`] and [`unwrap`] require `E` to
306//! implement the [`Debug`] trait.
307//!
308//! [`Debug`]: crate::fmt::Debug
309//! [`expect`]: Result::expect
310//! [`unwrap`]: Result::unwrap
311//! [`unwrap_or`]: Result::unwrap_or
312//! [`unwrap_or_default`]: Result::unwrap_or_default
313//! [`unwrap_or_else`]: Result::unwrap_or_else
314//! [`unwrap_unchecked`]: Result::unwrap_unchecked
315//! [undefined behavior]: https://doc.rust-lang.org/reference/behavior-considered-undefined.html
316//!
317//! These methods extract the contained value in a [`Result<T, E>`] when it
318//! is the [`Err`] variant. They require `T` to implement the [`Debug`]
319//! trait. If the [`Result`] is [`Ok`]:
320//!
321//! * [`expect_err`] panics with a provided custom message
322//! * [`unwrap_err`] panics with a generic message
323//! * [`unwrap_err_unchecked`] produces *[undefined behavior]*
324//!
325//! [`Debug`]: crate::fmt::Debug
326//! [`expect_err`]: Result::expect_err
327//! [`unwrap_err`]: Result::unwrap_err
328//! [`unwrap_err_unchecked`]: Result::unwrap_err_unchecked
329//! [undefined behavior]: https://doc.rust-lang.org/reference/behavior-considered-undefined.html
330//!
331//! ## Transforming contained values
332//!
333//! These methods transform [`Result`] to [`Option`]:
334//!
335//! * [`err`][Result::err] transforms [`Result<T, E>`] into [`Option<E>`],
336//!   mapping [`Err(e)`] to [`Some(e)`] and [`Ok(v)`] to [`None`]
337//! * [`ok`][Result::ok] transforms [`Result<T, E>`] into [`Option<T>`],
338//!   mapping [`Ok(v)`] to [`Some(v)`] and [`Err(e)`] to [`None`]
339//! * [`transpose`] transposes a [`Result`] of an [`Option`] into an
340//!   [`Option`] of a [`Result`]
341//!
342// Do NOT add link reference definitions for `err` or `ok`, because they
343// will generate numerous incorrect URLs for `Err` and `Ok` elsewhere, due
344// to case folding.
345//!
346//! [`Err(e)`]: Err
347//! [`Ok(v)`]: Ok
348//! [`Some(e)`]: Option::Some
349//! [`Some(v)`]: Option::Some
350//! [`transpose`]: Result::transpose
351//!
352//! These methods transform the contained value of the [`Ok`] variant:
353//!
354//! * [`map`] transforms [`Result<T, E>`] into [`Result<U, E>`] by applying
355//!   the provided function to the contained value of [`Ok`] and leaving
356//!   [`Err`] values unchanged
357//! * [`inspect`] takes ownership of the [`Result`], applies the
358//!   provided function to the contained value by reference,
359//!   and then returns the [`Result`]
360//!
361//! [`map`]: Result::map
362//! [`inspect`]: Result::inspect
363//!
364//! These methods transform the contained value of the [`Err`] variant:
365//!
366//! * [`map_err`] transforms [`Result<T, E>`] into [`Result<T, F>`] by
367//!   applying the provided function to the contained value of [`Err`] and
368//!   leaving [`Ok`] values unchanged
369//! * [`inspect_err`] takes ownership of the [`Result`], applies the
370//!   provided function to the contained value of [`Err`] by reference,
371//!   and then returns the [`Result`]
372//!
373//! [`map_err`]: Result::map_err
374//! [`inspect_err`]: Result::inspect_err
375//!
376//! These methods transform a [`Result<T, E>`] into a value of a possibly
377//! different type `U`:
378//!
379//! * [`map_or`] applies the provided function to the contained value of
380//!   [`Ok`], or returns the provided default value if the [`Result`] is
381//!   [`Err`]
382//! * [`map_or_else`] applies the provided function to the contained value
383//!   of [`Ok`], or applies the provided default fallback function to the
384//!   contained value of [`Err`]
385//!
386//! [`map_or`]: Result::map_or
387//! [`map_or_else`]: Result::map_or_else
388//!
389//! ## Boolean operators
390//!
391//! These methods treat the [`Result`] as a boolean value, where [`Ok`]
392//! acts like [`true`] and [`Err`] acts like [`false`]. There are two
393//! categories of these methods: ones that take a [`Result`] as input, and
394//! ones that take a function as input (to be lazily evaluated).
395//!
396//! The [`and`] and [`or`] methods take another [`Result`] as input, and
397//! produce a [`Result`] as output. The [`and`] method can produce a
398//! [`Result<U, E>`] value having a different inner type `U` than
399//! [`Result<T, E>`]. The [`or`] method can produce a [`Result<T, F>`]
400//! value having a different error type `F` than [`Result<T, E>`].
401//!
402//! | method  | self     | input     | output   |
403//! |---------|----------|-----------|----------|
404//! | [`and`] | `Err(e)` | (ignored) | `Err(e)` |
405//! | [`and`] | `Ok(x)`  | `Err(d)`  | `Err(d)` |
406//! | [`and`] | `Ok(x)`  | `Ok(y)`   | `Ok(y)`  |
407//! | [`or`]  | `Err(e)` | `Err(d)`  | `Err(d)` |
408//! | [`or`]  | `Err(e)` | `Ok(y)`   | `Ok(y)`  |
409//! | [`or`]  | `Ok(x)`  | (ignored) | `Ok(x)`  |
410//!
411//! [`and`]: Result::and
412//! [`or`]: Result::or
413//!
414//! The [`and_then`] and [`or_else`] methods take a function as input, and
415//! only evaluate the function when they need to produce a new value. The
416//! [`and_then`] method can produce a [`Result<U, E>`] value having a
417//! different inner type `U` than [`Result<T, E>`]. The [`or_else`] method
418//! can produce a [`Result<T, F>`] value having a different error type `F`
419//! than [`Result<T, E>`].
420//!
421//! | method       | self     | function input | function result | output   |
422//! |--------------|----------|----------------|-----------------|----------|
423//! | [`and_then`] | `Err(e)` | (not provided) | (not evaluated) | `Err(e)` |
424//! | [`and_then`] | `Ok(x)`  | `x`            | `Err(d)`        | `Err(d)` |
425//! | [`and_then`] | `Ok(x)`  | `x`            | `Ok(y)`         | `Ok(y)`  |
426//! | [`or_else`]  | `Err(e)` | `e`            | `Err(d)`        | `Err(d)` |
427//! | [`or_else`]  | `Err(e)` | `e`            | `Ok(y)`         | `Ok(y)`  |
428//! | [`or_else`]  | `Ok(x)`  | (not provided) | (not evaluated) | `Ok(x)`  |
429//!
430//! [`and_then`]: Result::and_then
431//! [`or_else`]: Result::or_else
432//!
433//! ## Comparison operators
434//!
435//! If `T` and `E` both implement [`PartialOrd`] then [`Result<T, E>`] will
436//! derive its [`PartialOrd`] implementation.  With this order, an [`Ok`]
437//! compares as less than any [`Err`], while two [`Ok`] or two [`Err`]
438//! compare as their contained values would in `T` or `E` respectively.  If `T`
439//! and `E` both also implement [`Ord`], then so does [`Result<T, E>`].
440//!
441//! ```
442//! assert!(Ok(1) < Err(0));
443//! let x: Result<i32, ()> = Ok(0);
444//! let y = Ok(1);
445//! assert!(x < y);
446//! let x: Result<(), i32> = Err(0);
447//! let y = Err(1);
448//! assert!(x < y);
449//! ```
450//!
451//! ## Iterating over `Result`
452//!
453//! A [`Result`] can be iterated over. This can be helpful if you need an
454//! iterator that is conditionally empty. The iterator will either produce
455//! a single value (when the [`Result`] is [`Ok`]), or produce no values
456//! (when the [`Result`] is [`Err`]). For example, [`into_iter`] acts like
457//! [`once(v)`] if the [`Result`] is [`Ok(v)`], and like [`empty()`] if the
458//! [`Result`] is [`Err`].
459//!
460//! [`Ok(v)`]: Ok
461//! [`empty()`]: crate::iter::empty
462//! [`once(v)`]: crate::iter::once
463//!
464//! Iterators over [`Result<T, E>`] come in three types:
465//!
466//! * [`into_iter`] consumes the [`Result`] and produces the contained
467//!   value
468//! * [`iter`] produces an immutable reference of type `&T` to the
469//!   contained value
470//! * [`iter_mut`] produces a mutable reference of type `&mut T` to the
471//!   contained value
472//!
473//! See [Iterating over `Option`] for examples of how this can be useful.
474//!
475//! [Iterating over `Option`]: crate::option#iterating-over-option
476//! [`into_iter`]: Result::into_iter
477//! [`iter`]: Result::iter
478//! [`iter_mut`]: Result::iter_mut
479//!
480//! You might want to use an iterator chain to do multiple instances of an
481//! operation that can fail, but would like to ignore failures while
482//! continuing to process the successful results. In this example, we take
483//! advantage of the iterable nature of [`Result`] to select only the
484//! [`Ok`] values using [`flatten`][Iterator::flatten].
485//!
486//! ```
487//! # use std::str::FromStr;
488//! let mut results = vec![];
489//! let mut errs = vec![];
490//! let nums: Vec<_> = ["17", "not a number", "99", "-27", "768"]
491//!    .into_iter()
492//!    .map(u8::from_str)
493//!    // Save clones of the raw `Result` values to inspect
494//!    .inspect(|x| results.push(x.clone()))
495//!    // Challenge: explain how this captures only the `Err` values
496//!    .inspect(|x| errs.extend(x.clone().err()))
497//!    .flatten()
498//!    .collect();
499//! assert_eq!(errs.len(), 3);
500//! assert_eq!(nums, [17, 99]);
501//! println!("results {results:?}");
502//! println!("errs {errs:?}");
503//! println!("nums {nums:?}");
504//! ```
505//!
506//! ## Collecting into `Result`
507//!
508//! [`Result`] implements the [`FromIterator`][impl-FromIterator] trait,
509//! which allows an iterator over [`Result`] values to be collected into a
510//! [`Result`] of a collection of each contained value of the original
511//! [`Result`] values, or [`Err`] if any of the elements was [`Err`].
512//!
513//! [impl-FromIterator]: Result#impl-FromIterator%3CResult%3CA,+E%3E%3E-for-Result%3CV,+E%3E
514//!
515//! ```
516//! let v = [Ok(2), Ok(4), Err("err!"), Ok(8)];
517//! let res: Result<Vec<_>, &str> = v.into_iter().collect();
518//! assert_eq!(res, Err("err!"));
519//! let v = [Ok(2), Ok(4), Ok(8)];
520//! let res: Result<Vec<_>, &str> = v.into_iter().collect();
521//! assert_eq!(res, Ok(vec![2, 4, 8]));
522//! ```
523//!
524//! [`Result`] also implements the [`Product`][impl-Product] and
525//! [`Sum`][impl-Sum] traits, allowing an iterator over [`Result`] values
526//! to provide the [`product`][Iterator::product] and
527//! [`sum`][Iterator::sum] methods.
528//!
529//! [impl-Product]: Result#impl-Product%3CResult%3CU,+E%3E%3E-for-Result%3CT,+E%3E
530//! [impl-Sum]: Result#impl-Sum%3CResult%3CU,+E%3E%3E-for-Result%3CT,+E%3E
531//!
532//! ```
533//! let v = [Err("error!"), Ok(1), Ok(2), Ok(3), Err("foo")];
534//! let res: Result<i32, &str> = v.into_iter().sum();
535//! assert_eq!(res, Err("error!"));
536//! let v = [Ok(1), Ok(2), Ok(21)];
537//! let res: Result<i32, &str> = v.into_iter().product();
538//! assert_eq!(res, Ok(42));
539//! ```
540
541#![stable(feature = "rust1", since = "1.0.0")]
542
543#[cfg(not(feature = "ferrocene_subset"))]
544use crate::iter::{self, FusedIterator, TrustedLen};
545use crate::marker::Destruct;
546use crate::ops::{self, ControlFlow, Deref, DerefMut};
547use crate::{convert, fmt, hint};
548
549/// `Result` is a type that represents either success ([`Ok`]) or failure ([`Err`]).
550///
551/// See the [module documentation](self) for details.
552#[doc(search_unbox)]
553#[cfg_attr(not(feature = "ferrocene_subset"), derive(Copy, Debug, Hash))]
554#[cfg_attr(feature = "ferrocene_subset", derive(Copy, Hash))]
555#[derive_const(PartialEq, PartialOrd, Eq, Ord)]
556#[must_use = "this `Result` may be an `Err` variant, which should be handled"]
557#[rustc_diagnostic_item = "Result"]
558#[stable(feature = "rust1", since = "1.0.0")]
559pub enum Result<T, E> {
560    /// Contains the success value
561    #[lang = "Ok"]
562    #[stable(feature = "rust1", since = "1.0.0")]
563    Ok(#[stable(feature = "rust1", since = "1.0.0")] T),
564
565    /// Contains the error value
566    #[lang = "Err"]
567    #[stable(feature = "rust1", since = "1.0.0")]
568    Err(#[stable(feature = "rust1", since = "1.0.0")] E),
569}
570
571/////////////////////////////////////////////////////////////////////////////
572// Type implementation
573/////////////////////////////////////////////////////////////////////////////
574
575impl<T, E> Result<T, E> {
576    /////////////////////////////////////////////////////////////////////////
577    // Querying the contained values
578    /////////////////////////////////////////////////////////////////////////
579
580    /// Returns `true` if the result is [`Ok`].
581    ///
582    /// # Examples
583    ///
584    /// ```
585    /// let x: Result<i32, &str> = Ok(-3);
586    /// assert_eq!(x.is_ok(), true);
587    ///
588    /// let x: Result<i32, &str> = Err("Some error message");
589    /// assert_eq!(x.is_ok(), false);
590    /// ```
591    #[must_use = "if you intended to assert that this is ok, consider `.unwrap()` instead"]
592    #[rustc_const_stable(feature = "const_result_basics", since = "1.48.0")]
593    #[inline]
594    #[stable(feature = "rust1", since = "1.0.0")]
595    pub const fn is_ok(&self) -> bool {
596        matches!(*self, Ok(_))
597    }
598
599    /// Returns `true` if the result is [`Ok`] and the value inside of it matches a predicate.
600    ///
601    /// # Examples
602    ///
603    /// ```
604    /// let x: Result<u32, &str> = Ok(2);
605    /// assert_eq!(x.is_ok_and(|x| x > 1), true);
606    ///
607    /// let x: Result<u32, &str> = Ok(0);
608    /// assert_eq!(x.is_ok_and(|x| x > 1), false);
609    ///
610    /// let x: Result<u32, &str> = Err("hey");
611    /// assert_eq!(x.is_ok_and(|x| x > 1), false);
612    ///
613    /// let x: Result<String, &str> = Ok("ownership".to_string());
614    /// assert_eq!(x.as_ref().is_ok_and(|x| x.len() > 1), true);
615    /// println!("still alive {:?}", x);
616    /// ```
617    #[must_use]
618    #[inline]
619    #[stable(feature = "is_some_and", since = "1.70.0")]
620    #[rustc_const_unstable(feature = "const_result_trait_fn", issue = "144211")]
621    pub const fn is_ok_and<F>(self, f: F) -> bool
622    where
623        F: [const] FnOnce(T) -> bool + [const] Destruct,
624        T: [const] Destruct,
625        E: [const] Destruct,
626    {
627        match self {
628            Err(_) => false,
629            Ok(x) => f(x),
630        }
631    }
632
633    /// Returns `true` if the result is [`Err`].
634    ///
635    /// # Examples
636    ///
637    /// ```
638    /// let x: Result<i32, &str> = Ok(-3);
639    /// assert_eq!(x.is_err(), false);
640    ///
641    /// let x: Result<i32, &str> = Err("Some error message");
642    /// assert_eq!(x.is_err(), true);
643    /// ```
644    #[must_use = "if you intended to assert that this is err, consider `.unwrap_err()` instead"]
645    #[rustc_const_stable(feature = "const_result_basics", since = "1.48.0")]
646    #[inline]
647    #[stable(feature = "rust1", since = "1.0.0")]
648    pub const fn is_err(&self) -> bool {
649        !self.is_ok()
650    }
651
652    /// Returns `true` if the result is [`Err`] and the value inside of it matches a predicate.
653    ///
654    /// # Examples
655    ///
656    /// ```
657    /// use std::io::{Error, ErrorKind};
658    ///
659    /// let x: Result<u32, Error> = Err(Error::new(ErrorKind::NotFound, "!"));
660    /// assert_eq!(x.is_err_and(|x| x.kind() == ErrorKind::NotFound), true);
661    ///
662    /// let x: Result<u32, Error> = Err(Error::new(ErrorKind::PermissionDenied, "!"));
663    /// assert_eq!(x.is_err_and(|x| x.kind() == ErrorKind::NotFound), false);
664    ///
665    /// let x: Result<u32, Error> = Ok(123);
666    /// assert_eq!(x.is_err_and(|x| x.kind() == ErrorKind::NotFound), false);
667    ///
668    /// let x: Result<u32, String> = Err("ownership".to_string());
669    /// assert_eq!(x.as_ref().is_err_and(|x| x.len() > 1), true);
670    /// println!("still alive {:?}", x);
671    /// ```
672    #[must_use]
673    #[inline]
674    #[stable(feature = "is_some_and", since = "1.70.0")]
675    #[rustc_const_unstable(feature = "const_result_trait_fn", issue = "144211")]
676    pub const fn is_err_and<F>(self, f: F) -> bool
677    where
678        F: [const] FnOnce(E) -> bool + [const] Destruct,
679        E: [const] Destruct,
680        T: [const] Destruct,
681    {
682        match self {
683            Ok(_) => false,
684            Err(e) => f(e),
685        }
686    }
687
688    /////////////////////////////////////////////////////////////////////////
689    // Adapter for each variant
690    /////////////////////////////////////////////////////////////////////////
691
692    /// Converts from `Result<T, E>` to [`Option<T>`].
693    ///
694    /// Converts `self` into an [`Option<T>`], consuming `self`,
695    /// and discarding the error, if any.
696    ///
697    /// # Examples
698    ///
699    /// ```
700    /// let x: Result<u32, &str> = Ok(2);
701    /// assert_eq!(x.ok(), Some(2));
702    ///
703    /// let x: Result<u32, &str> = Err("Nothing here");
704    /// assert_eq!(x.ok(), None);
705    /// ```
706    #[inline]
707    #[stable(feature = "rust1", since = "1.0.0")]
708    #[rustc_const_unstable(feature = "const_result_trait_fn", issue = "144211")]
709    #[rustc_diagnostic_item = "result_ok_method"]
710    pub const fn ok(self) -> Option<T>
711    where
712        T: [const] Destruct,
713        E: [const] Destruct,
714    {
715        match self {
716            Ok(x) => Some(x),
717            Err(_) => None,
718        }
719    }
720
721    /// Converts from `Result<T, E>` to [`Option<E>`].
722    ///
723    /// Converts `self` into an [`Option<E>`], consuming `self`,
724    /// and discarding the success value, if any.
725    ///
726    /// # Examples
727    ///
728    /// ```
729    /// let x: Result<u32, &str> = Ok(2);
730    /// assert_eq!(x.err(), None);
731    ///
732    /// let x: Result<u32, &str> = Err("Nothing here");
733    /// assert_eq!(x.err(), Some("Nothing here"));
734    /// ```
735    #[inline]
736    #[stable(feature = "rust1", since = "1.0.0")]
737    #[rustc_const_unstable(feature = "const_result_trait_fn", issue = "144211")]
738    pub const fn err(self) -> Option<E>
739    where
740        T: [const] Destruct,
741        E: [const] Destruct,
742    {
743        match self {
744            Ok(_) => None,
745            Err(x) => Some(x),
746        }
747    }
748
749    /////////////////////////////////////////////////////////////////////////
750    // Adapter for working with references
751    /////////////////////////////////////////////////////////////////////////
752
753    /// Converts from `&Result<T, E>` to `Result<&T, &E>`.
754    ///
755    /// Produces a new `Result`, containing a reference
756    /// into the original, leaving the original in place.
757    ///
758    /// # Examples
759    ///
760    /// ```
761    /// let x: Result<u32, &str> = Ok(2);
762    /// assert_eq!(x.as_ref(), Ok(&2));
763    ///
764    /// let x: Result<u32, &str> = Err("Error");
765    /// assert_eq!(x.as_ref(), Err(&"Error"));
766    /// ```
767    #[inline]
768    #[rustc_const_stable(feature = "const_result_basics", since = "1.48.0")]
769    #[stable(feature = "rust1", since = "1.0.0")]
770    pub const fn as_ref(&self) -> Result<&T, &E> {
771        match *self {
772            Ok(ref x) => Ok(x),
773            Err(ref x) => Err(x),
774        }
775    }
776
777    /// Converts from `&mut Result<T, E>` to `Result<&mut T, &mut E>`.
778    ///
779    /// # Examples
780    ///
781    /// ```
782    /// fn mutate(r: &mut Result<i32, i32>) {
783    ///     match r.as_mut() {
784    ///         Ok(v) => *v = 42,
785    ///         Err(e) => *e = 0,
786    ///     }
787    /// }
788    ///
789    /// let mut x: Result<i32, i32> = Ok(2);
790    /// mutate(&mut x);
791    /// assert_eq!(x.unwrap(), 42);
792    ///
793    /// let mut x: Result<i32, i32> = Err(13);
794    /// mutate(&mut x);
795    /// assert_eq!(x.unwrap_err(), 0);
796    /// ```
797    #[inline]
798    #[stable(feature = "rust1", since = "1.0.0")]
799    #[rustc_const_stable(feature = "const_result", since = "1.83.0")]
800    pub const fn as_mut(&mut self) -> Result<&mut T, &mut E> {
801        match *self {
802            Ok(ref mut x) => Ok(x),
803            Err(ref mut x) => Err(x),
804        }
805    }
806
807    /////////////////////////////////////////////////////////////////////////
808    // Transforming contained values
809    /////////////////////////////////////////////////////////////////////////
810
811    /// Maps a `Result<T, E>` to `Result<U, E>` by applying a function to a
812    /// contained [`Ok`] value, leaving an [`Err`] value untouched.
813    ///
814    /// This function can be used to compose the results of two functions.
815    ///
816    /// # Examples
817    ///
818    /// Print the numbers on each line of a string multiplied by two.
819    ///
820    /// ```
821    /// let line = "1\n2\n3\n4\n";
822    ///
823    /// for num in line.lines() {
824    ///     match num.parse::<i32>().map(|i| i * 2) {
825    ///         Ok(n) => println!("{n}"),
826    ///         Err(..) => {}
827    ///     }
828    /// }
829    /// ```
830    #[inline]
831    #[stable(feature = "rust1", since = "1.0.0")]
832    #[rustc_const_unstable(feature = "const_result_trait_fn", issue = "144211")]
833    pub const fn map<U, F>(self, op: F) -> Result<U, E>
834    where
835        F: [const] FnOnce(T) -> U + [const] Destruct,
836    {
837        match self {
838            Ok(t) => Ok(op(t)),
839            Err(e) => Err(e),
840        }
841    }
842
843    /// Returns the provided default (if [`Err`]), or
844    /// applies a function to the contained value (if [`Ok`]).
845    ///
846    /// Arguments passed to `map_or` are eagerly evaluated; if you are passing
847    /// the result of a function call, it is recommended to use [`map_or_else`],
848    /// which is lazily evaluated.
849    ///
850    /// [`map_or_else`]: Result::map_or_else
851    ///
852    /// # Examples
853    ///
854    /// ```
855    /// let x: Result<_, &str> = Ok("foo");
856    /// assert_eq!(x.map_or(42, |v| v.len()), 3);
857    ///
858    /// let x: Result<&str, _> = Err("bar");
859    /// assert_eq!(x.map_or(42, |v| v.len()), 42);
860    /// ```
861    #[inline]
862    #[stable(feature = "result_map_or", since = "1.41.0")]
863    #[rustc_const_unstable(feature = "const_result_trait_fn", issue = "144211")]
864    #[must_use = "if you don't need the returned value, use `if let` instead"]
865    pub const fn map_or<U, F>(self, default: U, f: F) -> U
866    where
867        F: [const] FnOnce(T) -> U + [const] Destruct,
868        T: [const] Destruct,
869        E: [const] Destruct,
870        U: [const] Destruct,
871    {
872        match self {
873            Ok(t) => f(t),
874            Err(_) => default,
875        }
876    }
877
878    /// Maps a `Result<T, E>` to `U` by applying fallback function `default` to
879    /// a contained [`Err`] value, or function `f` to a contained [`Ok`] value.
880    ///
881    /// This function can be used to unpack a successful result
882    /// while handling an error.
883    ///
884    ///
885    /// # Examples
886    ///
887    /// ```
888    /// let k = 21;
889    ///
890    /// let x : Result<_, &str> = Ok("foo");
891    /// assert_eq!(x.map_or_else(|e| k * 2, |v| v.len()), 3);
892    ///
893    /// let x : Result<&str, _> = Err("bar");
894    /// assert_eq!(x.map_or_else(|e| k * 2, |v| v.len()), 42);
895    /// ```
896    #[inline]
897    #[stable(feature = "result_map_or_else", since = "1.41.0")]
898    #[rustc_const_unstable(feature = "const_result_trait_fn", issue = "144211")]
899    pub const fn map_or_else<U, D, F>(self, default: D, f: F) -> U
900    where
901        D: [const] FnOnce(E) -> U + [const] Destruct,
902        F: [const] FnOnce(T) -> U + [const] Destruct,
903    {
904        match self {
905            Ok(t) => f(t),
906            Err(e) => default(e),
907        }
908    }
909
910    /// Maps a `Result<T, E>` to a `U` by applying function `f` to the contained
911    /// value if the result is [`Ok`], otherwise if [`Err`], returns the
912    /// [default value] for the type `U`.
913    ///
914    /// # Examples
915    ///
916    /// ```
917    /// #![feature(result_option_map_or_default)]
918    ///
919    /// let x: Result<_, &str> = Ok("foo");
920    /// let y: Result<&str, _> = Err("bar");
921    ///
922    /// assert_eq!(x.map_or_default(|x| x.len()), 3);
923    /// assert_eq!(y.map_or_default(|y| y.len()), 0);
924    /// ```
925    ///
926    /// [default value]: Default::default
927    #[inline]
928    #[unstable(feature = "result_option_map_or_default", issue = "138099")]
929    #[rustc_const_unstable(feature = "const_result_trait_fn", issue = "144211")]
930    pub const fn map_or_default<U, F>(self, f: F) -> U
931    where
932        F: [const] FnOnce(T) -> U + [const] Destruct,
933        U: [const] Default,
934        T: [const] Destruct,
935        E: [const] Destruct,
936    {
937        match self {
938            Ok(t) => f(t),
939            Err(_) => U::default(),
940        }
941    }
942
943    /// Maps a `Result<T, E>` to `Result<T, F>` by applying a function to a
944    /// contained [`Err`] value, leaving an [`Ok`] value untouched.
945    ///
946    /// This function can be used to pass through a successful result while handling
947    /// an error.
948    ///
949    ///
950    /// # Examples
951    ///
952    /// ```
953    /// fn stringify(x: u32) -> String { format!("error code: {x}") }
954    ///
955    /// let x: Result<u32, u32> = Ok(2);
956    /// assert_eq!(x.map_err(stringify), Ok(2));
957    ///
958    /// let x: Result<u32, u32> = Err(13);
959    /// assert_eq!(x.map_err(stringify), Err("error code: 13".to_string()));
960    /// ```
961    #[inline]
962    #[stable(feature = "rust1", since = "1.0.0")]
963    #[rustc_const_unstable(feature = "const_result_trait_fn", issue = "144211")]
964    pub const fn map_err<F, O>(self, op: O) -> Result<T, F>
965    where
966        O: [const] FnOnce(E) -> F + [const] Destruct,
967    {
968        match self {
969            Ok(t) => Ok(t),
970            Err(e) => Err(op(e)),
971        }
972    }
973
974    /// Calls a function with a reference to the contained value if [`Ok`].
975    ///
976    /// Returns the original result.
977    ///
978    /// # Examples
979    ///
980    /// ```
981    /// let x: u8 = "4"
982    ///     .parse::<u8>()
983    ///     .inspect(|x| println!("original: {x}"))
984    ///     .map(|x| x.pow(3))
985    ///     .expect("failed to parse number");
986    /// ```
987    #[inline]
988    #[stable(feature = "result_option_inspect", since = "1.76.0")]
989    #[rustc_const_unstable(feature = "const_result_trait_fn", issue = "144211")]
990    pub const fn inspect<F>(self, f: F) -> Self
991    where
992        F: [const] FnOnce(&T) + [const] Destruct,
993    {
994        if let Ok(ref t) = self {
995            f(t);
996        }
997
998        self
999    }
1000
1001    /// Calls a function with a reference to the contained value if [`Err`].
1002    ///
1003    /// Returns the original result.
1004    ///
1005    /// # Examples
1006    ///
1007    /// ```
1008    /// use std::{fs, io};
1009    ///
1010    /// fn read() -> io::Result<String> {
1011    ///     fs::read_to_string("address.txt")
1012    ///         .inspect_err(|e| eprintln!("failed to read file: {e}"))
1013    /// }
1014    /// ```
1015    #[inline]
1016    #[stable(feature = "result_option_inspect", since = "1.76.0")]
1017    #[rustc_const_unstable(feature = "const_result_trait_fn", issue = "144211")]
1018    pub const fn inspect_err<F>(self, f: F) -> Self
1019    where
1020        F: [const] FnOnce(&E) + [const] Destruct,
1021    {
1022        if let Err(ref e) = self {
1023            f(e);
1024        }
1025
1026        self
1027    }
1028
1029    /// Converts from `Result<T, E>` (or `&Result<T, E>`) to `Result<&<T as Deref>::Target, &E>`.
1030    ///
1031    /// Coerces the [`Ok`] variant of the original [`Result`] via [`Deref`](crate::ops::Deref)
1032    /// and returns the new [`Result`].
1033    ///
1034    /// # Examples
1035    ///
1036    /// ```
1037    /// let x: Result<String, u32> = Ok("hello".to_string());
1038    /// let y: Result<&str, &u32> = Ok("hello");
1039    /// assert_eq!(x.as_deref(), y);
1040    ///
1041    /// let x: Result<String, u32> = Err(42);
1042    /// let y: Result<&str, &u32> = Err(&42);
1043    /// assert_eq!(x.as_deref(), y);
1044    /// ```
1045    #[inline]
1046    #[stable(feature = "inner_deref", since = "1.47.0")]
1047    #[rustc_const_unstable(feature = "const_convert", issue = "143773")]
1048    pub const fn as_deref(&self) -> Result<&T::Target, &E>
1049    where
1050        T: [const] Deref,
1051    {
1052        self.as_ref().map(Deref::deref)
1053    }
1054
1055    /// Converts from `Result<T, E>` (or `&mut Result<T, E>`) to `Result<&mut <T as DerefMut>::Target, &mut E>`.
1056    ///
1057    /// Coerces the [`Ok`] variant of the original [`Result`] via [`DerefMut`](crate::ops::DerefMut)
1058    /// and returns the new [`Result`].
1059    ///
1060    /// # Examples
1061    ///
1062    /// ```
1063    /// let mut s = "HELLO".to_string();
1064    /// let mut x: Result<String, u32> = Ok("hello".to_string());
1065    /// let y: Result<&mut str, &mut u32> = Ok(&mut s);
1066    /// assert_eq!(x.as_deref_mut().map(|x| { x.make_ascii_uppercase(); x }), y);
1067    ///
1068    /// let mut i = 42;
1069    /// let mut x: Result<String, u32> = Err(42);
1070    /// let y: Result<&mut str, &mut u32> = Err(&mut i);
1071    /// assert_eq!(x.as_deref_mut().map(|x| { x.make_ascii_uppercase(); x }), y);
1072    /// ```
1073    #[inline]
1074    #[stable(feature = "inner_deref", since = "1.47.0")]
1075    #[rustc_const_unstable(feature = "const_convert", issue = "143773")]
1076    pub const fn as_deref_mut(&mut self) -> Result<&mut T::Target, &mut E>
1077    where
1078        T: [const] DerefMut,
1079    {
1080        self.as_mut().map(DerefMut::deref_mut)
1081    }
1082
1083    /////////////////////////////////////////////////////////////////////////
1084    // Iterator constructors
1085    /////////////////////////////////////////////////////////////////////////
1086
1087    /// Returns an iterator over the possibly contained value.
1088    ///
1089    /// The iterator yields one value if the result is [`Result::Ok`], otherwise none.
1090    ///
1091    /// # Examples
1092    ///
1093    /// ```
1094    /// let x: Result<u32, &str> = Ok(7);
1095    /// assert_eq!(x.iter().next(), Some(&7));
1096    ///
1097    /// let x: Result<u32, &str> = Err("nothing!");
1098    /// assert_eq!(x.iter().next(), None);
1099    /// ```
1100    #[inline]
1101    #[stable(feature = "rust1", since = "1.0.0")]
1102    #[rustc_const_unstable(feature = "const_result_trait_fn", issue = "144211")]
1103    // Ferrocene: blocked on Iterator
1104    #[cfg(not(feature = "ferrocene_subset"))]
1105    pub const fn iter(&self) -> Iter<'_, T> {
1106        Iter { inner: self.as_ref().ok() }
1107    }
1108
1109    /// Returns a mutable iterator over the possibly contained value.
1110    ///
1111    /// The iterator yields one value if the result is [`Result::Ok`], otherwise none.
1112    ///
1113    /// # Examples
1114    ///
1115    /// ```
1116    /// let mut x: Result<u32, &str> = Ok(7);
1117    /// match x.iter_mut().next() {
1118    ///     Some(v) => *v = 40,
1119    ///     None => {},
1120    /// }
1121    /// assert_eq!(x, Ok(40));
1122    ///
1123    /// let mut x: Result<u32, &str> = Err("nothing!");
1124    /// assert_eq!(x.iter_mut().next(), None);
1125    /// ```
1126    #[inline]
1127    #[stable(feature = "rust1", since = "1.0.0")]
1128    #[rustc_const_unstable(feature = "const_result_trait_fn", issue = "144211")]
1129    // Ferrocene: blocked on Iterator
1130    #[cfg(not(feature = "ferrocene_subset"))]
1131    pub const fn iter_mut(&mut self) -> IterMut<'_, T> {
1132        IterMut { inner: self.as_mut().ok() }
1133    }
1134
1135    /////////////////////////////////////////////////////////////////////////
1136    // Extract a value
1137    /////////////////////////////////////////////////////////////////////////
1138
1139    /// Returns the contained [`Ok`] value, consuming the `self` value.
1140    ///
1141    /// Because this function may panic, its use is generally discouraged.
1142    /// Instead, prefer to use pattern matching and handle the [`Err`]
1143    /// case explicitly, or call [`unwrap_or`], [`unwrap_or_else`], or
1144    /// [`unwrap_or_default`].
1145    ///
1146    /// [`unwrap_or`]: Result::unwrap_or
1147    /// [`unwrap_or_else`]: Result::unwrap_or_else
1148    /// [`unwrap_or_default`]: Result::unwrap_or_default
1149    ///
1150    /// # Panics
1151    ///
1152    /// Panics if the value is an [`Err`], with a panic message including the
1153    /// passed message, and the content of the [`Err`].
1154    ///
1155    ///
1156    /// # Examples
1157    ///
1158    /// ```should_panic
1159    /// let x: Result<u32, &str> = Err("emergency failure");
1160    /// x.expect("Testing expect"); // panics with `Testing expect: emergency failure`
1161    /// ```
1162    ///
1163    /// # Recommended Message Style
1164    ///
1165    /// We recommend that `expect` messages are used to describe the reason you
1166    /// _expect_ the `Result` should be `Ok`.
1167    ///
1168    /// ```should_panic
1169    /// let path = std::env::var("IMPORTANT_PATH")
1170    ///     .expect("env variable `IMPORTANT_PATH` should be set by `wrapper_script.sh`");
1171    /// ```
1172    ///
1173    /// **Hint**: If you're having trouble remembering how to phrase expect
1174    /// error messages remember to focus on the word "should" as in "env
1175    /// variable should be set by blah" or "the given binary should be available
1176    /// and executable by the current user".
1177    ///
1178    /// For more detail on expect message styles and the reasoning behind our recommendation please
1179    /// refer to the section on ["Common Message
1180    /// Styles"](../../std/error/index.html#common-message-styles) in the
1181    /// [`std::error`](../../std/error/index.html) module docs.
1182    #[inline]
1183    #[track_caller]
1184    #[stable(feature = "result_expect", since = "1.4.0")]
1185    pub fn expect(
1186        self,
1187        #[cfg(not(feature = "ferrocene_certified_runtime"))] msg: &str,
1188        #[cfg(feature = "ferrocene_certified_runtime")] msg: &'static str,
1189    ) -> T
1190    where
1191        E: fmt::Debug,
1192    {
1193        match self {
1194            Ok(t) => t,
1195            #[cfg(not(feature = "ferrocene_certified_runtime"))]
1196            Err(e) => unwrap_failed(msg, &e),
1197            #[cfg(feature = "ferrocene_certified_runtime")]
1198            Err(_) => crate::panicking::panic(msg),
1199        }
1200    }
1201
1202    /// Returns the contained [`Ok`] value, consuming the `self` value.
1203    ///
1204    /// Because this function may panic, its use is generally discouraged.
1205    /// Panics are meant for unrecoverable errors, and
1206    /// [may abort the entire program][panic-abort].
1207    ///
1208    /// Instead, prefer to use [the `?` (try) operator][try-operator], or pattern matching
1209    /// to handle the [`Err`] case explicitly, or call [`unwrap_or`],
1210    /// [`unwrap_or_else`], or [`unwrap_or_default`].
1211    ///
1212    /// [panic-abort]: https://doc.rust-lang.org/book/ch09-01-unrecoverable-errors-with-panic.html
1213    /// [try-operator]: https://doc.rust-lang.org/book/ch09-02-recoverable-errors-with-result.html#a-shortcut-for-propagating-errors-the--operator
1214    /// [`unwrap_or`]: Result::unwrap_or
1215    /// [`unwrap_or_else`]: Result::unwrap_or_else
1216    /// [`unwrap_or_default`]: Result::unwrap_or_default
1217    ///
1218    /// # Panics
1219    ///
1220    /// Panics if the value is an [`Err`], with a panic message provided by the
1221    /// [`Err`]'s value.
1222    ///
1223    ///
1224    /// # Examples
1225    ///
1226    /// Basic usage:
1227    ///
1228    /// ```
1229    /// let x: Result<u32, &str> = Ok(2);
1230    /// assert_eq!(x.unwrap(), 2);
1231    /// ```
1232    ///
1233    /// ```should_panic
1234    /// let x: Result<u32, &str> = Err("emergency failure");
1235    /// x.unwrap(); // panics with `emergency failure`
1236    /// ```
1237    #[inline(always)]
1238    #[track_caller]
1239    #[stable(feature = "rust1", since = "1.0.0")]
1240    // Ferrocene: blocked on Debug
1241    #[cfg(not(feature = "ferrocene_subset"))]
1242    pub fn unwrap(self) -> T
1243    where
1244        E: fmt::Debug,
1245    {
1246        match self {
1247            Ok(t) => t,
1248            Err(e) => unwrap_failed("called `Result::unwrap()` on an `Err` value", &e),
1249        }
1250    }
1251
1252    /// Returns the contained [`Ok`] value or a default
1253    ///
1254    /// Consumes the `self` argument then, if [`Ok`], returns the contained
1255    /// value, otherwise if [`Err`], returns the default value for that
1256    /// type.
1257    ///
1258    /// # Examples
1259    ///
1260    /// Converts a string to an integer, turning poorly-formed strings
1261    /// into 0 (the default value for integers). [`parse`] converts
1262    /// a string to any other type that implements [`FromStr`], returning an
1263    /// [`Err`] on error.
1264    ///
1265    /// ```
1266    /// let good_year_from_input = "1909";
1267    /// let bad_year_from_input = "190blarg";
1268    /// let good_year = good_year_from_input.parse().unwrap_or_default();
1269    /// let bad_year = bad_year_from_input.parse().unwrap_or_default();
1270    ///
1271    /// assert_eq!(1909, good_year);
1272    /// assert_eq!(0, bad_year);
1273    /// ```
1274    ///
1275    /// [`parse`]: str::parse
1276    /// [`FromStr`]: crate::str::FromStr
1277    #[inline]
1278    #[stable(feature = "result_unwrap_or_default", since = "1.16.0")]
1279    #[rustc_const_unstable(feature = "const_result_trait_fn", issue = "144211")]
1280    pub const fn unwrap_or_default(self) -> T
1281    where
1282        T: [const] Default + [const] Destruct,
1283        E: [const] Destruct,
1284    {
1285        match self {
1286            Ok(x) => x,
1287            Err(_) => Default::default(),
1288        }
1289    }
1290
1291    /// Returns the contained [`Err`] value, consuming the `self` value.
1292    ///
1293    /// # Panics
1294    ///
1295    /// Panics if the value is an [`Ok`], with a panic message including the
1296    /// passed message, and the content of the [`Ok`].
1297    ///
1298    ///
1299    /// # Examples
1300    ///
1301    /// ```should_panic
1302    /// let x: Result<u32, &str> = Ok(10);
1303    /// x.expect_err("Testing expect_err"); // panics with `Testing expect_err: 10`
1304    /// ```
1305    #[inline]
1306    #[track_caller]
1307    #[stable(feature = "result_expect_err", since = "1.17.0")]
1308    // Ferrocene: blocked on Debug
1309    #[cfg(not(feature = "ferrocene_subset"))]
1310    pub fn expect_err(
1311        self,
1312        #[cfg(not(feature = "ferrocene_certified_runtime"))] msg: &str,
1313        #[cfg(feature = "ferrocene_certified_runtime")] msg: &'static str,
1314    ) -> E
1315    where
1316        T: fmt::Debug,
1317    {
1318        match self {
1319            #[cfg(not(feature = "ferrocene_certified_runtime"))]
1320            Ok(t) => unwrap_failed(msg, &t),
1321            #[cfg(feature = "ferrocene_certified_runtime")]
1322            Ok(_) => crate::panicking::panic(msg),
1323            Err(e) => e,
1324        }
1325    }
1326
1327    /// Returns the contained [`Err`] value, consuming the `self` value.
1328    ///
1329    /// # Panics
1330    ///
1331    /// Panics if the value is an [`Ok`], with a custom panic message provided
1332    /// by the [`Ok`]'s value.
1333    ///
1334    /// # Examples
1335    ///
1336    /// ```should_panic
1337    /// let x: Result<u32, &str> = Ok(2);
1338    /// x.unwrap_err(); // panics with `2`
1339    /// ```
1340    ///
1341    /// ```
1342    /// let x: Result<u32, &str> = Err("emergency failure");
1343    /// assert_eq!(x.unwrap_err(), "emergency failure");
1344    /// ```
1345    #[inline]
1346    #[track_caller]
1347    #[stable(feature = "rust1", since = "1.0.0")]
1348    // Ferrocene: blocked on Debug
1349    #[cfg(not(feature = "ferrocene_subset"))]
1350    pub fn unwrap_err(self) -> E
1351    where
1352        T: fmt::Debug,
1353    {
1354        match self {
1355            Ok(t) => unwrap_failed("called `Result::unwrap_err()` on an `Ok` value", &t),
1356            Err(e) => e,
1357        }
1358    }
1359
1360    /// Returns the contained [`Ok`] value, but never panics.
1361    ///
1362    /// Unlike [`unwrap`], this method is known to never panic on the
1363    /// result types it is implemented for. Therefore, it can be used
1364    /// instead of `unwrap` as a maintainability safeguard that will fail
1365    /// to compile if the error type of the `Result` is later changed
1366    /// to an error that can actually occur.
1367    ///
1368    /// [`unwrap`]: Result::unwrap
1369    ///
1370    /// # Examples
1371    ///
1372    /// ```
1373    /// # #![feature(never_type)]
1374    /// # #![feature(unwrap_infallible)]
1375    ///
1376    /// fn only_good_news() -> Result<String, !> {
1377    ///     Ok("this is fine".into())
1378    /// }
1379    ///
1380    /// let s: String = only_good_news().into_ok();
1381    /// println!("{s}");
1382    /// ```
1383    #[unstable(feature = "unwrap_infallible", reason = "newly added", issue = "61695")]
1384    #[inline]
1385    #[rustc_allow_const_fn_unstable(const_precise_live_drops)]
1386    #[rustc_const_unstable(feature = "const_convert", issue = "143773")]
1387    // Ferrocene: blocked on !
1388    #[cfg(not(feature = "ferrocene_subset"))]
1389    pub const fn into_ok(self) -> T
1390    where
1391        E: [const] Into<!>,
1392    {
1393        match self {
1394            Ok(x) => x,
1395            Err(e) => e.into(),
1396        }
1397    }
1398
1399    /// Returns the contained [`Err`] value, but never panics.
1400    ///
1401    /// Unlike [`unwrap_err`], this method is known to never panic on the
1402    /// result types it is implemented for. Therefore, it can be used
1403    /// instead of `unwrap_err` as a maintainability safeguard that will fail
1404    /// to compile if the ok type of the `Result` is later changed
1405    /// to a type that can actually occur.
1406    ///
1407    /// [`unwrap_err`]: Result::unwrap_err
1408    ///
1409    /// # Examples
1410    ///
1411    /// ```
1412    /// # #![feature(never_type)]
1413    /// # #![feature(unwrap_infallible)]
1414    ///
1415    /// fn only_bad_news() -> Result<!, String> {
1416    ///     Err("Oops, it failed".into())
1417    /// }
1418    ///
1419    /// let error: String = only_bad_news().into_err();
1420    /// println!("{error}");
1421    /// ```
1422    #[unstable(feature = "unwrap_infallible", reason = "newly added", issue = "61695")]
1423    #[inline]
1424    #[rustc_allow_const_fn_unstable(const_precise_live_drops)]
1425    #[rustc_const_unstable(feature = "const_convert", issue = "143773")]
1426    // Ferrocene: blocked on !
1427    #[cfg(not(feature = "ferrocene_subset"))]
1428    pub const fn into_err(self) -> E
1429    where
1430        T: [const] Into<!>,
1431    {
1432        match self {
1433            Ok(x) => x.into(),
1434            Err(e) => e,
1435        }
1436    }
1437
1438    ////////////////////////////////////////////////////////////////////////
1439    // Boolean operations on the values, eager and lazy
1440    /////////////////////////////////////////////////////////////////////////
1441
1442    /// Returns `res` if the result is [`Ok`], otherwise returns the [`Err`] value of `self`.
1443    ///
1444    /// Arguments passed to `and` are eagerly evaluated; if you are passing the
1445    /// result of a function call, it is recommended to use [`and_then`], which is
1446    /// lazily evaluated.
1447    ///
1448    /// [`and_then`]: Result::and_then
1449    ///
1450    /// # Examples
1451    ///
1452    /// ```
1453    /// let x: Result<u32, &str> = Ok(2);
1454    /// let y: Result<&str, &str> = Err("late error");
1455    /// assert_eq!(x.and(y), Err("late error"));
1456    ///
1457    /// let x: Result<u32, &str> = Err("early error");
1458    /// let y: Result<&str, &str> = Ok("foo");
1459    /// assert_eq!(x.and(y), Err("early error"));
1460    ///
1461    /// let x: Result<u32, &str> = Err("not a 2");
1462    /// let y: Result<&str, &str> = Err("late error");
1463    /// assert_eq!(x.and(y), Err("not a 2"));
1464    ///
1465    /// let x: Result<u32, &str> = Ok(2);
1466    /// let y: Result<&str, &str> = Ok("different result type");
1467    /// assert_eq!(x.and(y), Ok("different result type"));
1468    /// ```
1469    #[inline]
1470    #[stable(feature = "rust1", since = "1.0.0")]
1471    #[rustc_const_unstable(feature = "const_result_trait_fn", issue = "144211")]
1472    pub const fn and<U>(self, res: Result<U, E>) -> Result<U, E>
1473    where
1474        T: [const] Destruct,
1475        E: [const] Destruct,
1476        U: [const] Destruct,
1477    {
1478        match self {
1479            Ok(_) => res,
1480            Err(e) => Err(e),
1481        }
1482    }
1483
1484    /// Calls `op` if the result is [`Ok`], otherwise returns the [`Err`] value of `self`.
1485    ///
1486    ///
1487    /// This function can be used for control flow based on `Result` values.
1488    ///
1489    /// # Examples
1490    ///
1491    /// ```
1492    /// fn sq_then_to_string(x: u32) -> Result<String, &'static str> {
1493    ///     x.checked_mul(x).map(|sq| sq.to_string()).ok_or("overflowed")
1494    /// }
1495    ///
1496    /// assert_eq!(Ok(2).and_then(sq_then_to_string), Ok(4.to_string()));
1497    /// assert_eq!(Ok(1_000_000).and_then(sq_then_to_string), Err("overflowed"));
1498    /// assert_eq!(Err("not a number").and_then(sq_then_to_string), Err("not a number"));
1499    /// ```
1500    ///
1501    /// Often used to chain fallible operations that may return [`Err`].
1502    ///
1503    /// ```
1504    /// use std::{io::ErrorKind, path::Path};
1505    ///
1506    /// // Note: on Windows "/" maps to "C:\"
1507    /// let root_modified_time = Path::new("/").metadata().and_then(|md| md.modified());
1508    /// assert!(root_modified_time.is_ok());
1509    ///
1510    /// let should_fail = Path::new("/bad/path").metadata().and_then(|md| md.modified());
1511    /// assert!(should_fail.is_err());
1512    /// assert_eq!(should_fail.unwrap_err().kind(), ErrorKind::NotFound);
1513    /// ```
1514    #[inline]
1515    #[stable(feature = "rust1", since = "1.0.0")]
1516    #[rustc_const_unstable(feature = "const_result_trait_fn", issue = "144211")]
1517    #[rustc_confusables("flat_map", "flatmap")]
1518    pub const fn and_then<U, F>(self, op: F) -> Result<U, E>
1519    where
1520        F: [const] FnOnce(T) -> Result<U, E> + [const] Destruct,
1521    {
1522        match self {
1523            Ok(t) => op(t),
1524            Err(e) => Err(e),
1525        }
1526    }
1527
1528    /// Returns `res` if the result is [`Err`], otherwise returns the [`Ok`] value of `self`.
1529    ///
1530    /// Arguments passed to `or` are eagerly evaluated; if you are passing the
1531    /// result of a function call, it is recommended to use [`or_else`], which is
1532    /// lazily evaluated.
1533    ///
1534    /// [`or_else`]: Result::or_else
1535    ///
1536    /// # Examples
1537    ///
1538    /// ```
1539    /// let x: Result<u32, &str> = Ok(2);
1540    /// let y: Result<u32, &str> = Err("late error");
1541    /// assert_eq!(x.or(y), Ok(2));
1542    ///
1543    /// let x: Result<u32, &str> = Err("early error");
1544    /// let y: Result<u32, &str> = Ok(2);
1545    /// assert_eq!(x.or(y), Ok(2));
1546    ///
1547    /// let x: Result<u32, &str> = Err("not a 2");
1548    /// let y: Result<u32, &str> = Err("late error");
1549    /// assert_eq!(x.or(y), Err("late error"));
1550    ///
1551    /// let x: Result<u32, &str> = Ok(2);
1552    /// let y: Result<u32, &str> = Ok(100);
1553    /// assert_eq!(x.or(y), Ok(2));
1554    /// ```
1555    #[inline]
1556    #[stable(feature = "rust1", since = "1.0.0")]
1557    #[rustc_const_unstable(feature = "const_result_trait_fn", issue = "144211")]
1558    pub const fn or<F>(self, res: Result<T, F>) -> Result<T, F>
1559    where
1560        T: [const] Destruct,
1561        E: [const] Destruct,
1562        F: [const] Destruct,
1563    {
1564        match self {
1565            Ok(v) => Ok(v),
1566            Err(_) => res,
1567        }
1568    }
1569
1570    /// Calls `op` if the result is [`Err`], otherwise returns the [`Ok`] value of `self`.
1571    ///
1572    /// This function can be used for control flow based on result values.
1573    ///
1574    ///
1575    /// # Examples
1576    ///
1577    /// ```
1578    /// fn sq(x: u32) -> Result<u32, u32> { Ok(x * x) }
1579    /// fn err(x: u32) -> Result<u32, u32> { Err(x) }
1580    ///
1581    /// assert_eq!(Ok(2).or_else(sq).or_else(sq), Ok(2));
1582    /// assert_eq!(Ok(2).or_else(err).or_else(sq), Ok(2));
1583    /// assert_eq!(Err(3).or_else(sq).or_else(err), Ok(9));
1584    /// assert_eq!(Err(3).or_else(err).or_else(err), Err(3));
1585    /// ```
1586    #[inline]
1587    #[stable(feature = "rust1", since = "1.0.0")]
1588    #[rustc_const_unstable(feature = "const_result_trait_fn", issue = "144211")]
1589    pub const fn or_else<F, O>(self, op: O) -> Result<T, F>
1590    where
1591        O: [const] FnOnce(E) -> Result<T, F> + [const] Destruct,
1592    {
1593        match self {
1594            Ok(t) => Ok(t),
1595            Err(e) => op(e),
1596        }
1597    }
1598
1599    /// Returns the contained [`Ok`] value or a provided default.
1600    ///
1601    /// Arguments passed to `unwrap_or` are eagerly evaluated; if you are passing
1602    /// the result of a function call, it is recommended to use [`unwrap_or_else`],
1603    /// which is lazily evaluated.
1604    ///
1605    /// [`unwrap_or_else`]: Result::unwrap_or_else
1606    ///
1607    /// # Examples
1608    ///
1609    /// ```
1610    /// let default = 2;
1611    /// let x: Result<u32, &str> = Ok(9);
1612    /// assert_eq!(x.unwrap_or(default), 9);
1613    ///
1614    /// let x: Result<u32, &str> = Err("error");
1615    /// assert_eq!(x.unwrap_or(default), default);
1616    /// ```
1617    #[inline]
1618    #[stable(feature = "rust1", since = "1.0.0")]
1619    #[rustc_const_unstable(feature = "const_result_trait_fn", issue = "144211")]
1620    pub const fn unwrap_or(self, default: T) -> T
1621    where
1622        T: [const] Destruct,
1623        E: [const] Destruct,
1624    {
1625        match self {
1626            Ok(t) => t,
1627            Err(_) => default,
1628        }
1629    }
1630
1631    /// Returns the contained [`Ok`] value or computes it from a closure.
1632    ///
1633    ///
1634    /// # Examples
1635    ///
1636    /// ```
1637    /// fn count(x: &str) -> usize { x.len() }
1638    ///
1639    /// assert_eq!(Ok(2).unwrap_or_else(count), 2);
1640    /// assert_eq!(Err("foo").unwrap_or_else(count), 3);
1641    /// ```
1642    #[inline]
1643    #[track_caller]
1644    #[stable(feature = "rust1", since = "1.0.0")]
1645    #[rustc_const_unstable(feature = "const_result_trait_fn", issue = "144211")]
1646    pub const fn unwrap_or_else<F>(self, op: F) -> T
1647    where
1648        F: [const] FnOnce(E) -> T + [const] Destruct,
1649    {
1650        match self {
1651            Ok(t) => t,
1652            Err(e) => op(e),
1653        }
1654    }
1655
1656    /// Returns the contained [`Ok`] value, consuming the `self` value,
1657    /// without checking that the value is not an [`Err`].
1658    ///
1659    /// # Safety
1660    ///
1661    /// Calling this method on an [`Err`] is *[undefined behavior]*.
1662    ///
1663    /// [undefined behavior]: https://doc.rust-lang.org/reference/behavior-considered-undefined.html
1664    ///
1665    /// # Examples
1666    ///
1667    /// ```
1668    /// let x: Result<u32, &str> = Ok(2);
1669    /// assert_eq!(unsafe { x.unwrap_unchecked() }, 2);
1670    /// ```
1671    ///
1672    /// ```no_run
1673    /// let x: Result<u32, &str> = Err("emergency failure");
1674    /// unsafe { x.unwrap_unchecked() }; // Undefined behavior!
1675    /// ```
1676    #[inline]
1677    #[track_caller]
1678    #[stable(feature = "option_result_unwrap_unchecked", since = "1.58.0")]
1679    #[rustc_const_unstable(feature = "const_result_unwrap_unchecked", issue = "148714")]
1680    pub const unsafe fn unwrap_unchecked(self) -> T {
1681        match self {
1682            Ok(t) => t,
1683            #[ferrocene::annotation(
1684                "This line cannot be covered as reaching `unreachable_unchecked` is undefined behavior"
1685            )]
1686            Err(e) => {
1687                // FIXME(const-hack): to avoid E: const Destruct bound
1688                super::mem::forget(e);
1689                // SAFETY: the safety contract must be upheld by the caller.
1690                unsafe { hint::unreachable_unchecked() }
1691            }
1692        }
1693    }
1694
1695    /// Returns the contained [`Err`] value, consuming the `self` value,
1696    /// without checking that the value is not an [`Ok`].
1697    ///
1698    /// # Safety
1699    ///
1700    /// Calling this method on an [`Ok`] is *[undefined behavior]*.
1701    ///
1702    /// [undefined behavior]: https://doc.rust-lang.org/reference/behavior-considered-undefined.html
1703    ///
1704    /// # Examples
1705    ///
1706    /// ```no_run
1707    /// let x: Result<u32, &str> = Ok(2);
1708    /// unsafe { x.unwrap_err_unchecked() }; // Undefined behavior!
1709    /// ```
1710    ///
1711    /// ```
1712    /// let x: Result<u32, &str> = Err("emergency failure");
1713    /// assert_eq!(unsafe { x.unwrap_err_unchecked() }, "emergency failure");
1714    /// ```
1715    #[inline]
1716    #[track_caller]
1717    #[stable(feature = "option_result_unwrap_unchecked", since = "1.58.0")]
1718    pub unsafe fn unwrap_err_unchecked(self) -> E {
1719        match self {
1720            #[ferrocene::annotation(
1721                "This line cannot be covered as reaching `unreachable_unchecked` is undefined behavior"
1722            )]
1723            // SAFETY: the safety contract must be upheld by the caller.
1724            Ok(_) => unsafe { hint::unreachable_unchecked() },
1725            Err(e) => e,
1726        }
1727    }
1728}
1729
1730impl<T, E> Result<&T, E> {
1731    /// Maps a `Result<&T, E>` to a `Result<T, E>` by copying the contents of the
1732    /// `Ok` part.
1733    ///
1734    /// # Examples
1735    ///
1736    /// ```
1737    /// let val = 12;
1738    /// let x: Result<&i32, i32> = Ok(&val);
1739    /// assert_eq!(x, Ok(&12));
1740    /// let copied = x.copied();
1741    /// assert_eq!(copied, Ok(12));
1742    /// ```
1743    #[inline]
1744    #[stable(feature = "result_copied", since = "1.59.0")]
1745    #[rustc_const_stable(feature = "const_result", since = "1.83.0")]
1746    #[rustc_allow_const_fn_unstable(const_precise_live_drops)]
1747    pub const fn copied(self) -> Result<T, E>
1748    where
1749        T: Copy,
1750    {
1751        // FIXME(const-hack): this implementation, which sidesteps using `Result::map` since it's not const
1752        // ready yet, should be reverted when possible to avoid code repetition
1753        match self {
1754            Ok(&v) => Ok(v),
1755            Err(e) => Err(e),
1756        }
1757    }
1758
1759    /// Maps a `Result<&T, E>` to a `Result<T, E>` by cloning the contents of the
1760    /// `Ok` part.
1761    ///
1762    /// # Examples
1763    ///
1764    /// ```
1765    /// let val = 12;
1766    /// let x: Result<&i32, i32> = Ok(&val);
1767    /// assert_eq!(x, Ok(&12));
1768    /// let cloned = x.cloned();
1769    /// assert_eq!(cloned, Ok(12));
1770    /// ```
1771    #[inline]
1772    #[stable(feature = "result_cloned", since = "1.59.0")]
1773    pub fn cloned(self) -> Result<T, E>
1774    where
1775        T: Clone,
1776    {
1777        self.map(|t| t.clone())
1778    }
1779}
1780
1781impl<T, E> Result<&mut T, E> {
1782    /// Maps a `Result<&mut T, E>` to a `Result<T, E>` by copying the contents of the
1783    /// `Ok` part.
1784    ///
1785    /// # Examples
1786    ///
1787    /// ```
1788    /// let mut val = 12;
1789    /// let x: Result<&mut i32, i32> = Ok(&mut val);
1790    /// assert_eq!(x, Ok(&mut 12));
1791    /// let copied = x.copied();
1792    /// assert_eq!(copied, Ok(12));
1793    /// ```
1794    #[inline]
1795    #[stable(feature = "result_copied", since = "1.59.0")]
1796    #[rustc_const_stable(feature = "const_result", since = "1.83.0")]
1797    #[rustc_allow_const_fn_unstable(const_precise_live_drops)]
1798    pub const fn copied(self) -> Result<T, E>
1799    where
1800        T: Copy,
1801    {
1802        // FIXME(const-hack): this implementation, which sidesteps using `Result::map` since it's not const
1803        // ready yet, should be reverted when possible to avoid code repetition
1804        match self {
1805            Ok(&mut v) => Ok(v),
1806            Err(e) => Err(e),
1807        }
1808    }
1809
1810    /// Maps a `Result<&mut T, E>` to a `Result<T, E>` by cloning the contents of the
1811    /// `Ok` part.
1812    ///
1813    /// # Examples
1814    ///
1815    /// ```
1816    /// let mut val = 12;
1817    /// let x: Result<&mut i32, i32> = Ok(&mut val);
1818    /// assert_eq!(x, Ok(&mut 12));
1819    /// let cloned = x.cloned();
1820    /// assert_eq!(cloned, Ok(12));
1821    /// ```
1822    #[inline]
1823    #[stable(feature = "result_cloned", since = "1.59.0")]
1824    pub fn cloned(self) -> Result<T, E>
1825    where
1826        T: Clone,
1827    {
1828        self.map(|t| t.clone())
1829    }
1830}
1831
1832impl<T, E> Result<Option<T>, E> {
1833    /// Transposes a `Result` of an `Option` into an `Option` of a `Result`.
1834    ///
1835    /// `Ok(None)` will be mapped to `None`.
1836    /// `Ok(Some(_))` and `Err(_)` will be mapped to `Some(Ok(_))` and `Some(Err(_))`.
1837    ///
1838    /// # Examples
1839    ///
1840    /// ```
1841    /// #[derive(Debug, Eq, PartialEq)]
1842    /// struct SomeErr;
1843    ///
1844    /// let x: Result<Option<i32>, SomeErr> = Ok(Some(5));
1845    /// let y: Option<Result<i32, SomeErr>> = Some(Ok(5));
1846    /// assert_eq!(x.transpose(), y);
1847    /// ```
1848    #[inline]
1849    #[stable(feature = "transpose_result", since = "1.33.0")]
1850    #[rustc_const_stable(feature = "const_result", since = "1.83.0")]
1851    #[rustc_allow_const_fn_unstable(const_precise_live_drops)]
1852    pub const fn transpose(self) -> Option<Result<T, E>> {
1853        match self {
1854            Ok(Some(x)) => Some(Ok(x)),
1855            Ok(None) => None,
1856            Err(e) => Some(Err(e)),
1857        }
1858    }
1859}
1860
1861impl<T, E> Result<Result<T, E>, E> {
1862    /// Converts from `Result<Result<T, E>, E>` to `Result<T, E>`
1863    ///
1864    /// # Examples
1865    ///
1866    /// ```
1867    /// let x: Result<Result<&'static str, u32>, u32> = Ok(Ok("hello"));
1868    /// assert_eq!(Ok("hello"), x.flatten());
1869    ///
1870    /// let x: Result<Result<&'static str, u32>, u32> = Ok(Err(6));
1871    /// assert_eq!(Err(6), x.flatten());
1872    ///
1873    /// let x: Result<Result<&'static str, u32>, u32> = Err(6);
1874    /// assert_eq!(Err(6), x.flatten());
1875    /// ```
1876    ///
1877    /// Flattening only removes one level of nesting at a time:
1878    ///
1879    /// ```
1880    /// let x: Result<Result<Result<&'static str, u32>, u32>, u32> = Ok(Ok(Ok("hello")));
1881    /// assert_eq!(Ok(Ok("hello")), x.flatten());
1882    /// assert_eq!(Ok("hello"), x.flatten().flatten());
1883    /// ```
1884    #[inline]
1885    #[stable(feature = "result_flattening", since = "1.89.0")]
1886    #[rustc_allow_const_fn_unstable(const_precise_live_drops)]
1887    #[rustc_const_stable(feature = "result_flattening", since = "1.89.0")]
1888    // Ferrocene: blocked on const impl Drop for Result<Result<T, E>>
1889    #[cfg(not(feature = "ferrocene_subset"))]
1890    pub const fn flatten(self) -> Result<T, E> {
1891        // FIXME(const-hack): could be written with `and_then`
1892        match self {
1893            Ok(inner) => inner,
1894            Err(e) => Err(e),
1895        }
1896    }
1897}
1898
1899// This is a separate function to reduce the code size of the methods
1900#[cfg(not(panic = "immediate-abort"))]
1901#[inline(never)]
1902#[cold]
1903#[track_caller]
1904// Ferrocene: blocked on Debug
1905#[cfg(not(feature = "ferrocene_subset"))]
1906fn unwrap_failed(msg: &str, error: &dyn fmt::Debug) -> ! {
1907    panic!("{msg}: {error:?}");
1908}
1909
1910// This is a separate function to avoid constructing a `dyn Debug`
1911// that gets immediately thrown away, since vtables don't get cleaned up
1912// by dead code elimination if a trait object is constructed even if it goes
1913// unused
1914#[cfg(panic = "immediate-abort")]
1915#[inline]
1916#[cold]
1917#[track_caller]
1918// Ferrocene: blocked on Debug
1919#[cfg(not(feature = "ferrocene_subset"))]
1920const fn unwrap_failed<T>(_msg: &str, _error: &T) -> ! {
1921    panic!()
1922}
1923
1924/////////////////////////////////////////////////////////////////////////////
1925// Trait implementations
1926/////////////////////////////////////////////////////////////////////////////
1927
1928#[stable(feature = "rust1", since = "1.0.0")]
1929impl<T, E> Clone for Result<T, E>
1930where
1931    T: Clone,
1932    E: Clone,
1933{
1934    #[inline]
1935    fn clone(&self) -> Self {
1936        match self {
1937            Ok(x) => Ok(x.clone()),
1938            Err(x) => Err(x.clone()),
1939        }
1940    }
1941
1942    #[inline]
1943    fn clone_from(&mut self, source: &Self) {
1944        match (self, source) {
1945            (Ok(to), Ok(from)) => to.clone_from(from),
1946            (Err(to), Err(from)) => to.clone_from(from),
1947            (to, from) => *to = from.clone(),
1948        }
1949    }
1950}
1951
1952#[unstable(feature = "ergonomic_clones", issue = "132290")]
1953#[cfg(not(feature = "ferrocene_subset"))]
1954impl<T, E> crate::clone::UseCloned for Result<T, E>
1955where
1956    T: crate::clone::UseCloned,
1957    E: crate::clone::UseCloned,
1958{
1959}
1960
1961#[stable(feature = "rust1", since = "1.0.0")]
1962#[cfg(not(feature = "ferrocene_subset"))]
1963impl<T, E> IntoIterator for Result<T, E> {
1964    type Item = T;
1965    type IntoIter = IntoIter<T>;
1966
1967    /// Returns a consuming iterator over the possibly contained value.
1968    ///
1969    /// The iterator yields one value if the result is [`Result::Ok`], otherwise none.
1970    ///
1971    /// # Examples
1972    ///
1973    /// ```
1974    /// let x: Result<u32, &str> = Ok(5);
1975    /// let v: Vec<u32> = x.into_iter().collect();
1976    /// assert_eq!(v, [5]);
1977    ///
1978    /// let x: Result<u32, &str> = Err("nothing!");
1979    /// let v: Vec<u32> = x.into_iter().collect();
1980    /// assert_eq!(v, []);
1981    /// ```
1982    #[inline]
1983    fn into_iter(self) -> IntoIter<T> {
1984        IntoIter { inner: self.ok() }
1985    }
1986}
1987
1988#[stable(since = "1.4.0", feature = "result_iter")]
1989#[cfg(not(feature = "ferrocene_subset"))]
1990impl<'a, T, E> IntoIterator for &'a Result<T, E> {
1991    type Item = &'a T;
1992    type IntoIter = Iter<'a, T>;
1993
1994    fn into_iter(self) -> Iter<'a, T> {
1995        self.iter()
1996    }
1997}
1998
1999#[stable(since = "1.4.0", feature = "result_iter")]
2000#[cfg(not(feature = "ferrocene_subset"))]
2001impl<'a, T, E> IntoIterator for &'a mut Result<T, E> {
2002    type Item = &'a mut T;
2003    type IntoIter = IterMut<'a, T>;
2004
2005    fn into_iter(self) -> IterMut<'a, T> {
2006        self.iter_mut()
2007    }
2008}
2009
2010/////////////////////////////////////////////////////////////////////////////
2011// The Result Iterators
2012/////////////////////////////////////////////////////////////////////////////
2013
2014/// An iterator over a reference to the [`Ok`] variant of a [`Result`].
2015///
2016/// The iterator yields one value if the result is [`Ok`], otherwise none.
2017///
2018/// Created by [`Result::iter`].
2019#[derive(Debug)]
2020#[stable(feature = "rust1", since = "1.0.0")]
2021#[cfg(not(feature = "ferrocene_subset"))]
2022pub struct Iter<'a, T: 'a> {
2023    inner: Option<&'a T>,
2024}
2025
2026#[stable(feature = "rust1", since = "1.0.0")]
2027#[cfg(not(feature = "ferrocene_subset"))]
2028impl<'a, T> Iterator for Iter<'a, T> {
2029    type Item = &'a T;
2030
2031    #[inline]
2032    fn next(&mut self) -> Option<&'a T> {
2033        self.inner.take()
2034    }
2035    #[inline]
2036    fn size_hint(&self) -> (usize, Option<usize>) {
2037        let n = if self.inner.is_some() { 1 } else { 0 };
2038        (n, Some(n))
2039    }
2040}
2041
2042#[stable(feature = "rust1", since = "1.0.0")]
2043#[cfg(not(feature = "ferrocene_subset"))]
2044impl<'a, T> DoubleEndedIterator for Iter<'a, T> {
2045    #[inline]
2046    fn next_back(&mut self) -> Option<&'a T> {
2047        self.inner.take()
2048    }
2049}
2050
2051#[stable(feature = "rust1", since = "1.0.0")]
2052#[cfg(not(feature = "ferrocene_subset"))]
2053impl<T> ExactSizeIterator for Iter<'_, T> {}
2054
2055#[stable(feature = "fused", since = "1.26.0")]
2056#[cfg(not(feature = "ferrocene_subset"))]
2057impl<T> FusedIterator for Iter<'_, T> {}
2058
2059#[unstable(feature = "trusted_len", issue = "37572")]
2060#[cfg(not(feature = "ferrocene_subset"))]
2061unsafe impl<A> TrustedLen for Iter<'_, A> {}
2062
2063#[stable(feature = "rust1", since = "1.0.0")]
2064#[cfg(not(feature = "ferrocene_subset"))]
2065impl<T> Clone for Iter<'_, T> {
2066    #[inline]
2067    fn clone(&self) -> Self {
2068        Iter { inner: self.inner }
2069    }
2070}
2071
2072/// An iterator over a mutable reference to the [`Ok`] variant of a [`Result`].
2073///
2074/// Created by [`Result::iter_mut`].
2075#[derive(Debug)]
2076#[stable(feature = "rust1", since = "1.0.0")]
2077#[cfg(not(feature = "ferrocene_subset"))]
2078pub struct IterMut<'a, T: 'a> {
2079    inner: Option<&'a mut T>,
2080}
2081
2082#[stable(feature = "rust1", since = "1.0.0")]
2083#[cfg(not(feature = "ferrocene_subset"))]
2084impl<'a, T> Iterator for IterMut<'a, T> {
2085    type Item = &'a mut T;
2086
2087    #[inline]
2088    fn next(&mut self) -> Option<&'a mut T> {
2089        self.inner.take()
2090    }
2091    #[inline]
2092    fn size_hint(&self) -> (usize, Option<usize>) {
2093        let n = if self.inner.is_some() { 1 } else { 0 };
2094        (n, Some(n))
2095    }
2096}
2097
2098#[stable(feature = "rust1", since = "1.0.0")]
2099#[cfg(not(feature = "ferrocene_subset"))]
2100impl<'a, T> DoubleEndedIterator for IterMut<'a, T> {
2101    #[inline]
2102    fn next_back(&mut self) -> Option<&'a mut T> {
2103        self.inner.take()
2104    }
2105}
2106
2107#[stable(feature = "rust1", since = "1.0.0")]
2108#[cfg(not(feature = "ferrocene_subset"))]
2109impl<T> ExactSizeIterator for IterMut<'_, T> {}
2110
2111#[stable(feature = "fused", since = "1.26.0")]
2112#[cfg(not(feature = "ferrocene_subset"))]
2113impl<T> FusedIterator for IterMut<'_, T> {}
2114
2115#[unstable(feature = "trusted_len", issue = "37572")]
2116#[cfg(not(feature = "ferrocene_subset"))]
2117unsafe impl<A> TrustedLen for IterMut<'_, A> {}
2118
2119/// An iterator over the value in a [`Ok`] variant of a [`Result`].
2120///
2121/// The iterator yields one value if the result is [`Ok`], otherwise none.
2122///
2123/// This struct is created by the [`into_iter`] method on
2124/// [`Result`] (provided by the [`IntoIterator`] trait).
2125///
2126/// [`into_iter`]: IntoIterator::into_iter
2127#[derive(Clone, Debug)]
2128#[stable(feature = "rust1", since = "1.0.0")]
2129#[cfg(not(feature = "ferrocene_subset"))]
2130pub struct IntoIter<T> {
2131    inner: Option<T>,
2132}
2133
2134#[stable(feature = "rust1", since = "1.0.0")]
2135#[cfg(not(feature = "ferrocene_subset"))]
2136impl<T> Iterator for IntoIter<T> {
2137    type Item = T;
2138
2139    #[inline]
2140    fn next(&mut self) -> Option<T> {
2141        self.inner.take()
2142    }
2143    #[inline]
2144    fn size_hint(&self) -> (usize, Option<usize>) {
2145        let n = if self.inner.is_some() { 1 } else { 0 };
2146        (n, Some(n))
2147    }
2148}
2149
2150#[stable(feature = "rust1", since = "1.0.0")]
2151#[cfg(not(feature = "ferrocene_subset"))]
2152impl<T> DoubleEndedIterator for IntoIter<T> {
2153    #[inline]
2154    fn next_back(&mut self) -> Option<T> {
2155        self.inner.take()
2156    }
2157}
2158
2159#[stable(feature = "rust1", since = "1.0.0")]
2160#[cfg(not(feature = "ferrocene_subset"))]
2161impl<T> ExactSizeIterator for IntoIter<T> {}
2162
2163#[stable(feature = "fused", since = "1.26.0")]
2164#[cfg(not(feature = "ferrocene_subset"))]
2165impl<T> FusedIterator for IntoIter<T> {}
2166
2167#[unstable(feature = "trusted_len", issue = "37572")]
2168#[cfg(not(feature = "ferrocene_subset"))]
2169unsafe impl<A> TrustedLen for IntoIter<A> {}
2170
2171/////////////////////////////////////////////////////////////////////////////
2172// FromIterator
2173/////////////////////////////////////////////////////////////////////////////
2174
2175#[stable(feature = "rust1", since = "1.0.0")]
2176#[cfg(not(feature = "ferrocene_subset"))]
2177impl<A, E, V: FromIterator<A>> FromIterator<Result<A, E>> for Result<V, E> {
2178    /// Takes each element in the `Iterator`: if it is an `Err`, no further
2179    /// elements are taken, and the `Err` is returned. Should no `Err` occur, a
2180    /// container with the values of each `Result` is returned.
2181    ///
2182    /// Here is an example which increments every integer in a vector,
2183    /// checking for overflow:
2184    ///
2185    /// ```
2186    /// let v = vec![1, 2];
2187    /// let res: Result<Vec<u32>, &'static str> = v.iter().map(|x: &u32|
2188    ///     x.checked_add(1).ok_or("Overflow!")
2189    /// ).collect();
2190    /// assert_eq!(res, Ok(vec![2, 3]));
2191    /// ```
2192    ///
2193    /// Here is another example that tries to subtract one from another list
2194    /// of integers, this time checking for underflow:
2195    ///
2196    /// ```
2197    /// let v = vec![1, 2, 0];
2198    /// let res: Result<Vec<u32>, &'static str> = v.iter().map(|x: &u32|
2199    ///     x.checked_sub(1).ok_or("Underflow!")
2200    /// ).collect();
2201    /// assert_eq!(res, Err("Underflow!"));
2202    /// ```
2203    ///
2204    /// Here is a variation on the previous example, showing that no
2205    /// further elements are taken from `iter` after the first `Err`.
2206    ///
2207    /// ```
2208    /// let v = vec![3, 2, 1, 10];
2209    /// let mut shared = 0;
2210    /// let res: Result<Vec<u32>, &'static str> = v.iter().map(|x: &u32| {
2211    ///     shared += x;
2212    ///     x.checked_sub(2).ok_or("Underflow!")
2213    /// }).collect();
2214    /// assert_eq!(res, Err("Underflow!"));
2215    /// assert_eq!(shared, 6);
2216    /// ```
2217    ///
2218    /// Since the third element caused an underflow, no further elements were taken,
2219    /// so the final value of `shared` is 6 (= `3 + 2 + 1`), not 16.
2220    #[inline]
2221    fn from_iter<I: IntoIterator<Item = Result<A, E>>>(iter: I) -> Result<V, E> {
2222        iter::try_process(iter.into_iter(), |i| i.collect())
2223    }
2224}
2225
2226#[unstable(feature = "try_trait_v2", issue = "84277", old_name = "try_trait")]
2227#[rustc_const_unstable(feature = "const_try", issue = "74935")]
2228impl<T, E> const ops::Try for Result<T, E> {
2229    type Output = T;
2230    type Residual = Result<convert::Infallible, E>;
2231
2232    #[inline]
2233    fn from_output(output: Self::Output) -> Self {
2234        Ok(output)
2235    }
2236
2237    #[inline]
2238    fn branch(self) -> ControlFlow<Self::Residual, Self::Output> {
2239        match self {
2240            Ok(v) => ControlFlow::Continue(v),
2241            Err(e) => ControlFlow::Break(Err(e)),
2242        }
2243    }
2244}
2245
2246#[unstable(feature = "try_trait_v2", issue = "84277", old_name = "try_trait")]
2247#[rustc_const_unstable(feature = "const_try", issue = "74935")]
2248impl<T, E, F: [const] From<E>> const ops::FromResidual<Result<convert::Infallible, E>>
2249    for Result<T, F>
2250{
2251    #[inline]
2252    #[track_caller]
2253    fn from_residual(residual: Result<convert::Infallible, E>) -> Self {
2254        match residual {
2255            Err(e) => Err(From::from(e)),
2256        }
2257    }
2258}
2259#[diagnostic::do_not_recommend]
2260#[unstable(feature = "try_trait_v2_yeet", issue = "96374")]
2261#[rustc_const_unstable(feature = "const_try", issue = "74935")]
2262#[cfg(not(feature = "ferrocene_subset"))]
2263impl<T, E, F: [const] From<E>> const ops::FromResidual<ops::Yeet<E>> for Result<T, F> {
2264    #[inline]
2265    fn from_residual(ops::Yeet(e): ops::Yeet<E>) -> Self {
2266        Err(From::from(e))
2267    }
2268}
2269
2270#[unstable(feature = "try_trait_v2_residual", issue = "91285")]
2271#[rustc_const_unstable(feature = "const_try", issue = "74935")]
2272impl<T, E> const ops::Residual<T> for Result<convert::Infallible, E> {
2273    type TryType = Result<T, E>;
2274}