core/
result.rs

1//! Error handling with the `Result` type.
2//!
3//! [`Result<T, E>`][`Result`] is the type used for returning and propagating
4//! errors. It is an enum with the variants, [`Ok(T)`], representing
5//! success and containing a value, and [`Err(E)`], representing error
6//! and containing an error value.
7//!
8//! ```
9//! # #[allow(dead_code)]
10//! enum Result<T, E> {
11//!    Ok(T),
12//!    Err(E),
13//! }
14//! ```
15//!
16//! Functions return [`Result`] whenever errors are expected and
17//! recoverable. In the `std` crate, [`Result`] is most prominently used
18//! for [I/O](../../std/io/index.html).
19//!
20//! A simple function returning [`Result`] might be
21//! defined and used like so:
22//!
23//! ```
24//! #[derive(Debug)]
25//! enum Version { Version1, Version2 }
26//!
27//! fn parse_version(header: &[u8]) -> Result<Version, &'static str> {
28//!     match header.get(0) {
29//!         None => Err("invalid header length"),
30//!         Some(&1) => Ok(Version::Version1),
31//!         Some(&2) => Ok(Version::Version2),
32//!         Some(_) => Err("invalid version"),
33//!     }
34//! }
35//!
36//! let version = parse_version(&[1, 2, 3, 4]);
37//! match version {
38//!     Ok(v) => println!("working with version: {v:?}"),
39//!     Err(e) => println!("error parsing header: {e:?}"),
40//! }
41//! ```
42//!
43//! Pattern matching on [`Result`]s is clear and straightforward for
44//! simple cases, but [`Result`] comes with some convenience methods
45//! that make working with it more succinct.
46//!
47//! ```
48//! // The `is_ok` and `is_err` methods do what they say.
49//! let good_result: Result<i32, i32> = Ok(10);
50//! let bad_result: Result<i32, i32> = Err(10);
51//! assert!(good_result.is_ok() && !good_result.is_err());
52//! assert!(bad_result.is_err() && !bad_result.is_ok());
53//!
54//! // `map` and `map_err` consume the `Result` and produce another.
55//! let good_result: Result<i32, i32> = good_result.map(|i| i + 1);
56//! let bad_result: Result<i32, i32> = bad_result.map_err(|i| i - 1);
57//! assert_eq!(good_result, Ok(11));
58//! assert_eq!(bad_result, Err(9));
59//!
60//! // Use `and_then` to continue the computation.
61//! let good_result: Result<bool, i32> = good_result.and_then(|i| Ok(i == 11));
62//! assert_eq!(good_result, Ok(true));
63//!
64//! // Use `or_else` to handle the error.
65//! let bad_result: Result<i32, i32> = bad_result.or_else(|i| Ok(i + 20));
66//! assert_eq!(bad_result, Ok(29));
67//!
68//! // Consume the result and return the contents with `unwrap`.
69//! let final_awesome_result = good_result.unwrap();
70//! assert!(final_awesome_result)
71//! ```
72//!
73//! # Results must be used
74//!
75//! A common problem with using return values to indicate errors is
76//! that it is easy to ignore the return value, thus failing to handle
77//! the error. [`Result`] is annotated with the `#[must_use]` attribute,
78//! which will cause the compiler to issue a warning when a Result
79//! value is ignored. This makes [`Result`] especially useful with
80//! functions that may encounter errors but don't otherwise return a
81//! useful value.
82//!
83//! Consider the [`write_all`] method defined for I/O types
84//! by the [`Write`] trait:
85//!
86//! ```
87//! use std::io;
88//!
89//! trait Write {
90//!     fn write_all(&mut self, bytes: &[u8]) -> Result<(), io::Error>;
91//! }
92//! ```
93//!
94//! *Note: The actual definition of [`Write`] uses [`io::Result`], which
95//! is just a synonym for <code>[Result]<T, [io::Error]></code>.*
96//!
97//! This method doesn't produce a value, but the write may
98//! fail. It's crucial to handle the error case, and *not* write
99//! something like this:
100//!
101//! ```no_run
102//! # #![allow(unused_must_use)] // \o/
103//! use std::fs::File;
104//! use std::io::prelude::*;
105//!
106//! let mut file = File::create("valuable_data.txt").unwrap();
107//! // If `write_all` errors, then we'll never know, because the return
108//! // value is ignored.
109//! file.write_all(b"important message");
110//! ```
111//!
112//! If you *do* write that in Rust, the compiler will give you a
113//! warning (by default, controlled by the `unused_must_use` lint).
114//!
115//! You might instead, if you don't want to handle the error, simply
116//! assert success with [`expect`]. This will panic if the
117//! write fails, providing a marginally useful message indicating why:
118//!
119//! ```no_run
120//! use std::fs::File;
121//! use std::io::prelude::*;
122//!
123//! let mut file = File::create("valuable_data.txt").unwrap();
124//! file.write_all(b"important message").expect("failed to write message");
125//! ```
126//!
127//! You might also simply assert success:
128//!
129//! ```no_run
130//! # use std::fs::File;
131//! # use std::io::prelude::*;
132//! # let mut file = File::create("valuable_data.txt").unwrap();
133//! assert!(file.write_all(b"important message").is_ok());
134//! ```
135//!
136//! Or propagate the error up the call stack with [`?`]:
137//!
138//! ```
139//! # use std::fs::File;
140//! # use std::io::prelude::*;
141//! # use std::io;
142//! # #[allow(dead_code)]
143//! fn write_message() -> io::Result<()> {
144//!     let mut file = File::create("valuable_data.txt")?;
145//!     file.write_all(b"important message")?;
146//!     Ok(())
147//! }
148//! ```
149//!
150//! # The question mark operator, `?`
151//!
152//! When writing code that calls many functions that return the
153//! [`Result`] type, the error handling can be tedious. The question mark
154//! operator, [`?`], hides some of the boilerplate of propagating errors
155//! up the call stack.
156//!
157//! It replaces this:
158//!
159//! ```
160//! # #![allow(dead_code)]
161//! use std::fs::File;
162//! use std::io::prelude::*;
163//! use std::io;
164//!
165//! struct Info {
166//!     name: String,
167//!     age: i32,
168//!     rating: i32,
169//! }
170//!
171//! fn write_info(info: &Info) -> io::Result<()> {
172//!     // Early return on error
173//!     let mut file = match File::create("my_best_friends.txt") {
174//!            Err(e) => return Err(e),
175//!            Ok(f) => f,
176//!     };
177//!     if let Err(e) = file.write_all(format!("name: {}\n", info.name).as_bytes()) {
178//!         return Err(e)
179//!     }
180//!     if let Err(e) = file.write_all(format!("age: {}\n", info.age).as_bytes()) {
181//!         return Err(e)
182//!     }
183//!     if let Err(e) = file.write_all(format!("rating: {}\n", info.rating).as_bytes()) {
184//!         return Err(e)
185//!     }
186//!     Ok(())
187//! }
188//! ```
189//!
190//! With this:
191//!
192//! ```
193//! # #![allow(dead_code)]
194//! use std::fs::File;
195//! use std::io::prelude::*;
196//! use std::io;
197//!
198//! struct Info {
199//!     name: String,
200//!     age: i32,
201//!     rating: i32,
202//! }
203//!
204//! fn write_info(info: &Info) -> io::Result<()> {
205//!     let mut file = File::create("my_best_friends.txt")?;
206//!     // Early return on error
207//!     file.write_all(format!("name: {}\n", info.name).as_bytes())?;
208//!     file.write_all(format!("age: {}\n", info.age).as_bytes())?;
209//!     file.write_all(format!("rating: {}\n", info.rating).as_bytes())?;
210//!     Ok(())
211//! }
212//! ```
213//!
214//! *It's much nicer!*
215//!
216//! Ending the expression with [`?`] will result in the [`Ok`]'s unwrapped value, unless the result
217//! is [`Err`], in which case [`Err`] is returned early from the enclosing function.
218//!
219//! [`?`] can be used in functions that return [`Result`] because of the
220//! early return of [`Err`] that it provides.
221//!
222//! [`expect`]: Result::expect
223//! [`Write`]: ../../std/io/trait.Write.html "io::Write"
224//! [`write_all`]: ../../std/io/trait.Write.html#method.write_all "io::Write::write_all"
225//! [`io::Result`]: ../../std/io/type.Result.html "io::Result"
226//! [`?`]: crate::ops::Try
227//! [`Ok(T)`]: Ok
228//! [`Err(E)`]: Err
229//! [io::Error]: ../../std/io/struct.Error.html "io::Error"
230//!
231//! # Representation
232//!
233//! In some cases, [`Result<T, E>`] will gain the same size, alignment, and ABI
234//! guarantees as [`Option<U>`] has. One of either the `T` or `E` type must be a
235//! type that qualifies for the `Option` [representation guarantees][opt-rep],
236//! and the *other* type must meet all of the following conditions:
237//! * Is a zero-sized type with alignment 1 (a "1-ZST").
238//! * Has no fields.
239//! * Does not have the `#[non_exhaustive]` attribute.
240//!
241//! For example, `NonZeroI32` qualifies for the `Option` representation
242//! guarantees, and `()` is a zero-sized type with alignment 1, no fields, and
243//! it isn't `non_exhaustive`. This means that both `Result<NonZeroI32, ()>` and
244//! `Result<(), NonZeroI32>` have the same size, alignment, and ABI guarantees
245//! as `Option<NonZeroI32>`. The only difference is the implied semantics:
246//! * `Option<NonZeroI32>` is "a non-zero i32 might be present"
247//! * `Result<NonZeroI32, ()>` is "a non-zero i32 success result, if any"
248//! * `Result<(), NonZeroI32>` is "a non-zero i32 error result, if any"
249//!
250//! [opt-rep]: ../option/index.html#representation "Option Representation"
251//!
252//! # Method overview
253//!
254//! In addition to working with pattern matching, [`Result`] provides a
255//! wide variety of different methods.
256//!
257//! ## Querying the variant
258//!
259//! The [`is_ok`] and [`is_err`] methods return [`true`] if the [`Result`]
260//! is [`Ok`] or [`Err`], respectively.
261//!
262//! The [`is_ok_and`] and [`is_err_and`] methods apply the provided function
263//! to the contents of the [`Result`] to produce a boolean value. If the [`Result`] does not have the expected variant
264//! then [`false`] is returned instead without executing the function.
265//!
266//! [`is_err`]: Result::is_err
267//! [`is_ok`]: Result::is_ok
268//! [`is_ok_and`]: Result::is_ok_and
269//! [`is_err_and`]: Result::is_err_and
270//!
271//! ## Adapters for working with references
272//!
273//! * [`as_ref`] converts from `&Result<T, E>` to `Result<&T, &E>`
274//! * [`as_mut`] converts from `&mut Result<T, E>` to `Result<&mut T, &mut E>`
275//! * [`as_deref`] converts from `&Result<T, E>` to `Result<&T::Target, &E>`
276//! * [`as_deref_mut`] converts from `&mut Result<T, E>` to
277//!   `Result<&mut T::Target, &mut E>`
278//!
279//! [`as_deref`]: Result::as_deref
280//! [`as_deref_mut`]: Result::as_deref_mut
281//! [`as_mut`]: Result::as_mut
282//! [`as_ref`]: Result::as_ref
283//!
284//! ## Extracting contained values
285//!
286//! These methods extract the contained value in a [`Result<T, E>`] when it
287//! is the [`Ok`] variant. If the [`Result`] is [`Err`]:
288//!
289//! * [`expect`] panics with a provided custom message
290//! * [`unwrap`] panics with a generic message
291//! * [`unwrap_or`] returns the provided default value
292//! * [`unwrap_or_default`] returns the default value of the type `T`
293//!   (which must implement the [`Default`] trait)
294//! * [`unwrap_or_else`] returns the result of evaluating the provided
295//!   function
296//! * [`unwrap_unchecked`] produces *[undefined behavior]*
297//!
298//! The panicking methods [`expect`] and [`unwrap`] require `E` to
299//! implement the [`Debug`] trait.
300//!
301//! [`Debug`]: crate::fmt::Debug
302//! [`expect`]: Result::expect
303//! [`unwrap`]: Result::unwrap
304//! [`unwrap_or`]: Result::unwrap_or
305//! [`unwrap_or_default`]: Result::unwrap_or_default
306//! [`unwrap_or_else`]: Result::unwrap_or_else
307//! [`unwrap_unchecked`]: Result::unwrap_unchecked
308//! [undefined behavior]: https://doc.rust-lang.org/reference/behavior-considered-undefined.html
309//!
310//! These methods extract the contained value in a [`Result<T, E>`] when it
311//! is the [`Err`] variant. They require `T` to implement the [`Debug`]
312//! trait. If the [`Result`] is [`Ok`]:
313//!
314//! * [`expect_err`] panics with a provided custom message
315//! * [`unwrap_err`] panics with a generic message
316//! * [`unwrap_err_unchecked`] produces *[undefined behavior]*
317//!
318//! [`Debug`]: crate::fmt::Debug
319//! [`expect_err`]: Result::expect_err
320//! [`unwrap_err`]: Result::unwrap_err
321//! [`unwrap_err_unchecked`]: Result::unwrap_err_unchecked
322//! [undefined behavior]: https://doc.rust-lang.org/reference/behavior-considered-undefined.html
323//!
324//! ## Transforming contained values
325//!
326//! These methods transform [`Result`] to [`Option`]:
327//!
328//! * [`err`][Result::err] transforms [`Result<T, E>`] into [`Option<E>`],
329//!   mapping [`Err(e)`] to [`Some(e)`] and [`Ok(v)`] to [`None`]
330//! * [`ok`][Result::ok] transforms [`Result<T, E>`] into [`Option<T>`],
331//!   mapping [`Ok(v)`] to [`Some(v)`] and [`Err(e)`] to [`None`]
332//! * [`transpose`] transposes a [`Result`] of an [`Option`] into an
333//!   [`Option`] of a [`Result`]
334//!
335// Do NOT add link reference definitions for `err` or `ok`, because they
336// will generate numerous incorrect URLs for `Err` and `Ok` elsewhere, due
337// to case folding.
338//!
339//! [`Err(e)`]: Err
340//! [`Ok(v)`]: Ok
341//! [`Some(e)`]: Option::Some
342//! [`Some(v)`]: Option::Some
343//! [`transpose`]: Result::transpose
344//!
345//! These methods transform the contained value of the [`Ok`] variant:
346//!
347//! * [`map`] transforms [`Result<T, E>`] into [`Result<U, E>`] by applying
348//!   the provided function to the contained value of [`Ok`] and leaving
349//!   [`Err`] values unchanged
350//! * [`inspect`] takes ownership of the [`Result`], applies the
351//!   provided function to the contained value by reference,
352//!   and then returns the [`Result`]
353//!
354//! [`map`]: Result::map
355//! [`inspect`]: Result::inspect
356//!
357//! These methods transform the contained value of the [`Err`] variant:
358//!
359//! * [`map_err`] transforms [`Result<T, E>`] into [`Result<T, F>`] by
360//!   applying the provided function to the contained value of [`Err`] and
361//!   leaving [`Ok`] values unchanged
362//! * [`inspect_err`] takes ownership of the [`Result`], applies the
363//!   provided function to the contained value of [`Err`] by reference,
364//!   and then returns the [`Result`]
365//!
366//! [`map_err`]: Result::map_err
367//! [`inspect_err`]: Result::inspect_err
368//!
369//! These methods transform a [`Result<T, E>`] into a value of a possibly
370//! different type `U`:
371//!
372//! * [`map_or`] applies the provided function to the contained value of
373//!   [`Ok`], or returns the provided default value if the [`Result`] is
374//!   [`Err`]
375//! * [`map_or_else`] applies the provided function to the contained value
376//!   of [`Ok`], or applies the provided default fallback function to the
377//!   contained value of [`Err`]
378//!
379//! [`map_or`]: Result::map_or
380//! [`map_or_else`]: Result::map_or_else
381//!
382//! ## Boolean operators
383//!
384//! These methods treat the [`Result`] as a boolean value, where [`Ok`]
385//! acts like [`true`] and [`Err`] acts like [`false`]. There are two
386//! categories of these methods: ones that take a [`Result`] as input, and
387//! ones that take a function as input (to be lazily evaluated).
388//!
389//! The [`and`] and [`or`] methods take another [`Result`] as input, and
390//! produce a [`Result`] as output. The [`and`] method can produce a
391//! [`Result<U, E>`] value having a different inner type `U` than
392//! [`Result<T, E>`]. The [`or`] method can produce a [`Result<T, F>`]
393//! value having a different error type `F` than [`Result<T, E>`].
394//!
395//! | method  | self     | input     | output   |
396//! |---------|----------|-----------|----------|
397//! | [`and`] | `Err(e)` | (ignored) | `Err(e)` |
398//! | [`and`] | `Ok(x)`  | `Err(d)`  | `Err(d)` |
399//! | [`and`] | `Ok(x)`  | `Ok(y)`   | `Ok(y)`  |
400//! | [`or`]  | `Err(e)` | `Err(d)`  | `Err(d)` |
401//! | [`or`]  | `Err(e)` | `Ok(y)`   | `Ok(y)`  |
402//! | [`or`]  | `Ok(x)`  | (ignored) | `Ok(x)`  |
403//!
404//! [`and`]: Result::and
405//! [`or`]: Result::or
406//!
407//! The [`and_then`] and [`or_else`] methods take a function as input, and
408//! only evaluate the function when they need to produce a new value. The
409//! [`and_then`] method can produce a [`Result<U, E>`] value having a
410//! different inner type `U` than [`Result<T, E>`]. The [`or_else`] method
411//! can produce a [`Result<T, F>`] value having a different error type `F`
412//! than [`Result<T, E>`].
413//!
414//! | method       | self     | function input | function result | output   |
415//! |--------------|----------|----------------|-----------------|----------|
416//! | [`and_then`] | `Err(e)` | (not provided) | (not evaluated) | `Err(e)` |
417//! | [`and_then`] | `Ok(x)`  | `x`            | `Err(d)`        | `Err(d)` |
418//! | [`and_then`] | `Ok(x)`  | `x`            | `Ok(y)`         | `Ok(y)`  |
419//! | [`or_else`]  | `Err(e)` | `e`            | `Err(d)`        | `Err(d)` |
420//! | [`or_else`]  | `Err(e)` | `e`            | `Ok(y)`         | `Ok(y)`  |
421//! | [`or_else`]  | `Ok(x)`  | (not provided) | (not evaluated) | `Ok(x)`  |
422//!
423//! [`and_then`]: Result::and_then
424//! [`or_else`]: Result::or_else
425//!
426//! ## Comparison operators
427//!
428//! If `T` and `E` both implement [`PartialOrd`] then [`Result<T, E>`] will
429//! derive its [`PartialOrd`] implementation.  With this order, an [`Ok`]
430//! compares as less than any [`Err`], while two [`Ok`] or two [`Err`]
431//! compare as their contained values would in `T` or `E` respectively.  If `T`
432//! and `E` both also implement [`Ord`], then so does [`Result<T, E>`].
433//!
434//! ```
435//! assert!(Ok(1) < Err(0));
436//! let x: Result<i32, ()> = Ok(0);
437//! let y = Ok(1);
438//! assert!(x < y);
439//! let x: Result<(), i32> = Err(0);
440//! let y = Err(1);
441//! assert!(x < y);
442//! ```
443//!
444//! ## Iterating over `Result`
445//!
446//! A [`Result`] can be iterated over. This can be helpful if you need an
447//! iterator that is conditionally empty. The iterator will either produce
448//! a single value (when the [`Result`] is [`Ok`]), or produce no values
449//! (when the [`Result`] is [`Err`]). For example, [`into_iter`] acts like
450//! [`once(v)`] if the [`Result`] is [`Ok(v)`], and like [`empty()`] if the
451//! [`Result`] is [`Err`].
452//!
453//! [`Ok(v)`]: Ok
454//! [`empty()`]: crate::iter::empty
455//! [`once(v)`]: crate::iter::once
456//!
457//! Iterators over [`Result<T, E>`] come in three types:
458//!
459//! * [`into_iter`] consumes the [`Result`] and produces the contained
460//!   value
461//! * [`iter`] produces an immutable reference of type `&T` to the
462//!   contained value
463//! * [`iter_mut`] produces a mutable reference of type `&mut T` to the
464//!   contained value
465//!
466//! See [Iterating over `Option`] for examples of how this can be useful.
467//!
468//! [Iterating over `Option`]: crate::option#iterating-over-option
469//! [`into_iter`]: Result::into_iter
470//! [`iter`]: Result::iter
471//! [`iter_mut`]: Result::iter_mut
472//!
473//! You might want to use an iterator chain to do multiple instances of an
474//! operation that can fail, but would like to ignore failures while
475//! continuing to process the successful results. In this example, we take
476//! advantage of the iterable nature of [`Result`] to select only the
477//! [`Ok`] values using [`flatten`][Iterator::flatten].
478//!
479//! ```
480//! # use std::str::FromStr;
481//! let mut results = vec![];
482//! let mut errs = vec![];
483//! let nums: Vec<_> = ["17", "not a number", "99", "-27", "768"]
484//!    .into_iter()
485//!    .map(u8::from_str)
486//!    // Save clones of the raw `Result` values to inspect
487//!    .inspect(|x| results.push(x.clone()))
488//!    // Challenge: explain how this captures only the `Err` values
489//!    .inspect(|x| errs.extend(x.clone().err()))
490//!    .flatten()
491//!    .collect();
492//! assert_eq!(errs.len(), 3);
493//! assert_eq!(nums, [17, 99]);
494//! println!("results {results:?}");
495//! println!("errs {errs:?}");
496//! println!("nums {nums:?}");
497//! ```
498//!
499//! ## Collecting into `Result`
500//!
501//! [`Result`] implements the [`FromIterator`][impl-FromIterator] trait,
502//! which allows an iterator over [`Result`] values to be collected into a
503//! [`Result`] of a collection of each contained value of the original
504//! [`Result`] values, or [`Err`] if any of the elements was [`Err`].
505//!
506//! [impl-FromIterator]: Result#impl-FromIterator%3CResult%3CA,+E%3E%3E-for-Result%3CV,+E%3E
507//!
508//! ```
509//! let v = [Ok(2), Ok(4), Err("err!"), Ok(8)];
510//! let res: Result<Vec<_>, &str> = v.into_iter().collect();
511//! assert_eq!(res, Err("err!"));
512//! let v = [Ok(2), Ok(4), Ok(8)];
513//! let res: Result<Vec<_>, &str> = v.into_iter().collect();
514//! assert_eq!(res, Ok(vec![2, 4, 8]));
515//! ```
516//!
517//! [`Result`] also implements the [`Product`][impl-Product] and
518//! [`Sum`][impl-Sum] traits, allowing an iterator over [`Result`] values
519//! to provide the [`product`][Iterator::product] and
520//! [`sum`][Iterator::sum] methods.
521//!
522//! [impl-Product]: Result#impl-Product%3CResult%3CU,+E%3E%3E-for-Result%3CT,+E%3E
523//! [impl-Sum]: Result#impl-Sum%3CResult%3CU,+E%3E%3E-for-Result%3CT,+E%3E
524//!
525//! ```
526//! let v = [Err("error!"), Ok(1), Ok(2), Ok(3), Err("foo")];
527//! let res: Result<i32, &str> = v.into_iter().sum();
528//! assert_eq!(res, Err("error!"));
529//! let v = [Ok(1), Ok(2), Ok(21)];
530//! let res: Result<i32, &str> = v.into_iter().product();
531//! assert_eq!(res, Ok(42));
532//! ```
533
534#![stable(feature = "rust1", since = "1.0.0")]
535
536#[cfg(not(feature = "ferrocene_certified"))]
537use crate::iter::{self, FusedIterator, TrustedLen};
538use crate::marker::Destruct;
539#[cfg(not(feature = "ferrocene_certified"))]
540use crate::ops::{self, ControlFlow, Deref, DerefMut};
541#[cfg(feature = "ferrocene_certified")]
542use crate::ops::{Deref, DerefMut};
543#[cfg(not(feature = "ferrocene_certified"))]
544use crate::{convert, fmt, hint};
545
546/// `Result` is a type that represents either success ([`Ok`]) or failure ([`Err`]).
547///
548/// See the [module documentation](self) for details.
549#[doc(search_unbox)]
550#[cfg_attr(
551    not(feature = "ferrocene_certified"),
552    derive(Copy, PartialEq, PartialOrd, Eq, Ord, Debug, Hash)
553)]
554#[must_use = "this `Result` may be an `Err` variant, which should be handled"]
555#[rustc_diagnostic_item = "Result"]
556#[stable(feature = "rust1", since = "1.0.0")]
557pub enum Result<T, E> {
558    /// Contains the success value
559    #[lang = "Ok"]
560    #[stable(feature = "rust1", since = "1.0.0")]
561    Ok(#[stable(feature = "rust1", since = "1.0.0")] T),
562
563    /// Contains the error value
564    #[lang = "Err"]
565    #[stable(feature = "rust1", since = "1.0.0")]
566    Err(#[stable(feature = "rust1", since = "1.0.0")] E),
567}
568
569/////////////////////////////////////////////////////////////////////////////
570// Type implementation
571/////////////////////////////////////////////////////////////////////////////
572
573impl<T, E> Result<T, E> {
574    /////////////////////////////////////////////////////////////////////////
575    // Querying the contained values
576    /////////////////////////////////////////////////////////////////////////
577
578    /// Returns `true` if the result is [`Ok`].
579    ///
580    /// # Examples
581    ///
582    /// ```
583    /// let x: Result<i32, &str> = Ok(-3);
584    /// assert_eq!(x.is_ok(), true);
585    ///
586    /// let x: Result<i32, &str> = Err("Some error message");
587    /// assert_eq!(x.is_ok(), false);
588    /// ```
589    #[must_use = "if you intended to assert that this is ok, consider `.unwrap()` instead"]
590    #[rustc_const_stable(feature = "const_result_basics", since = "1.48.0")]
591    #[inline]
592    #[stable(feature = "rust1", since = "1.0.0")]
593    pub const fn is_ok(&self) -> bool {
594        matches!(*self, Ok(_))
595    }
596
597    /// Returns `true` if the result is [`Ok`] and the value inside of it matches a predicate.
598    ///
599    /// # Examples
600    ///
601    /// ```
602    /// let x: Result<u32, &str> = Ok(2);
603    /// assert_eq!(x.is_ok_and(|x| x > 1), true);
604    ///
605    /// let x: Result<u32, &str> = Ok(0);
606    /// assert_eq!(x.is_ok_and(|x| x > 1), false);
607    ///
608    /// let x: Result<u32, &str> = Err("hey");
609    /// assert_eq!(x.is_ok_and(|x| x > 1), false);
610    ///
611    /// let x: Result<String, &str> = Ok("ownership".to_string());
612    /// assert_eq!(x.as_ref().is_ok_and(|x| x.len() > 1), true);
613    /// println!("still alive {:?}", x);
614    /// ```
615    #[must_use]
616    #[inline]
617    #[stable(feature = "is_some_and", since = "1.70.0")]
618    #[rustc_const_unstable(feature = "const_result_trait_fn", issue = "144211")]
619    pub const fn is_ok_and<F>(self, f: F) -> bool
620    where
621        F: [const] FnOnce(T) -> bool + [const] Destruct,
622        T: [const] Destruct,
623        E: [const] Destruct,
624    {
625        match self {
626            Err(_) => false,
627            Ok(x) => f(x),
628        }
629    }
630
631    /// Returns `true` if the result is [`Err`].
632    ///
633    /// # Examples
634    ///
635    /// ```
636    /// let x: Result<i32, &str> = Ok(-3);
637    /// assert_eq!(x.is_err(), false);
638    ///
639    /// let x: Result<i32, &str> = Err("Some error message");
640    /// assert_eq!(x.is_err(), true);
641    /// ```
642    #[must_use = "if you intended to assert that this is err, consider `.unwrap_err()` instead"]
643    #[rustc_const_stable(feature = "const_result_basics", since = "1.48.0")]
644    #[inline]
645    #[stable(feature = "rust1", since = "1.0.0")]
646    pub const fn is_err(&self) -> bool {
647        !self.is_ok()
648    }
649
650    /// Returns `true` if the result is [`Err`] and the value inside of it matches a predicate.
651    ///
652    /// # Examples
653    ///
654    /// ```
655    /// use std::io::{Error, ErrorKind};
656    ///
657    /// let x: Result<u32, Error> = Err(Error::new(ErrorKind::NotFound, "!"));
658    /// assert_eq!(x.is_err_and(|x| x.kind() == ErrorKind::NotFound), true);
659    ///
660    /// let x: Result<u32, Error> = Err(Error::new(ErrorKind::PermissionDenied, "!"));
661    /// assert_eq!(x.is_err_and(|x| x.kind() == ErrorKind::NotFound), false);
662    ///
663    /// let x: Result<u32, Error> = Ok(123);
664    /// assert_eq!(x.is_err_and(|x| x.kind() == ErrorKind::NotFound), false);
665    ///
666    /// let x: Result<u32, String> = Err("ownership".to_string());
667    /// assert_eq!(x.as_ref().is_err_and(|x| x.len() > 1), true);
668    /// println!("still alive {:?}", x);
669    /// ```
670    #[must_use]
671    #[inline]
672    #[stable(feature = "is_some_and", since = "1.70.0")]
673    #[rustc_const_unstable(feature = "const_result_trait_fn", issue = "144211")]
674    pub const fn is_err_and<F>(self, f: F) -> bool
675    where
676        F: [const] FnOnce(E) -> bool + [const] Destruct,
677        E: [const] Destruct,
678        T: [const] Destruct,
679    {
680        match self {
681            Ok(_) => false,
682            Err(e) => f(e),
683        }
684    }
685
686    /////////////////////////////////////////////////////////////////////////
687    // Adapter for each variant
688    /////////////////////////////////////////////////////////////////////////
689
690    /// Converts from `Result<T, E>` to [`Option<T>`].
691    ///
692    /// Converts `self` into an [`Option<T>`], consuming `self`,
693    /// and discarding the error, if any.
694    ///
695    /// # Examples
696    ///
697    /// ```
698    /// let x: Result<u32, &str> = Ok(2);
699    /// assert_eq!(x.ok(), Some(2));
700    ///
701    /// let x: Result<u32, &str> = Err("Nothing here");
702    /// assert_eq!(x.ok(), None);
703    /// ```
704    #[inline]
705    #[stable(feature = "rust1", since = "1.0.0")]
706    #[rustc_const_unstable(feature = "const_result_trait_fn", issue = "144211")]
707    #[rustc_diagnostic_item = "result_ok_method"]
708    pub const fn ok(self) -> Option<T>
709    where
710        T: [const] Destruct,
711        E: [const] Destruct,
712    {
713        match self {
714            Ok(x) => Some(x),
715            Err(_) => None,
716        }
717    }
718
719    /// Converts from `Result<T, E>` to [`Option<E>`].
720    ///
721    /// Converts `self` into an [`Option<E>`], consuming `self`,
722    /// and discarding the success value, if any.
723    ///
724    /// # Examples
725    ///
726    /// ```
727    /// let x: Result<u32, &str> = Ok(2);
728    /// assert_eq!(x.err(), None);
729    ///
730    /// let x: Result<u32, &str> = Err("Nothing here");
731    /// assert_eq!(x.err(), Some("Nothing here"));
732    /// ```
733    #[inline]
734    #[stable(feature = "rust1", since = "1.0.0")]
735    #[rustc_const_unstable(feature = "const_result_trait_fn", issue = "144211")]
736    pub const fn err(self) -> Option<E>
737    where
738        T: [const] Destruct,
739        E: [const] Destruct,
740    {
741        match self {
742            Ok(_) => None,
743            Err(x) => Some(x),
744        }
745    }
746
747    /////////////////////////////////////////////////////////////////////////
748    // Adapter for working with references
749    /////////////////////////////////////////////////////////////////////////
750
751    /// Converts from `&Result<T, E>` to `Result<&T, &E>`.
752    ///
753    /// Produces a new `Result`, containing a reference
754    /// into the original, leaving the original in place.
755    ///
756    /// # Examples
757    ///
758    /// ```
759    /// let x: Result<u32, &str> = Ok(2);
760    /// assert_eq!(x.as_ref(), Ok(&2));
761    ///
762    /// let x: Result<u32, &str> = Err("Error");
763    /// assert_eq!(x.as_ref(), Err(&"Error"));
764    /// ```
765    #[inline]
766    #[rustc_const_stable(feature = "const_result_basics", since = "1.48.0")]
767    #[stable(feature = "rust1", since = "1.0.0")]
768    pub const fn as_ref(&self) -> Result<&T, &E> {
769        match *self {
770            Ok(ref x) => Ok(x),
771            Err(ref x) => Err(x),
772        }
773    }
774
775    /// Converts from `&mut Result<T, E>` to `Result<&mut T, &mut E>`.
776    ///
777    /// # Examples
778    ///
779    /// ```
780    /// fn mutate(r: &mut Result<i32, i32>) {
781    ///     match r.as_mut() {
782    ///         Ok(v) => *v = 42,
783    ///         Err(e) => *e = 0,
784    ///     }
785    /// }
786    ///
787    /// let mut x: Result<i32, i32> = Ok(2);
788    /// mutate(&mut x);
789    /// assert_eq!(x.unwrap(), 42);
790    ///
791    /// let mut x: Result<i32, i32> = Err(13);
792    /// mutate(&mut x);
793    /// assert_eq!(x.unwrap_err(), 0);
794    /// ```
795    #[inline]
796    #[stable(feature = "rust1", since = "1.0.0")]
797    #[rustc_const_stable(feature = "const_result", since = "1.83.0")]
798    pub const fn as_mut(&mut self) -> Result<&mut T, &mut E> {
799        match *self {
800            Ok(ref mut x) => Ok(x),
801            Err(ref mut x) => Err(x),
802        }
803    }
804
805    /////////////////////////////////////////////////////////////////////////
806    // Transforming contained values
807    /////////////////////////////////////////////////////////////////////////
808
809    /// Maps a `Result<T, E>` to `Result<U, E>` by applying a function to a
810    /// contained [`Ok`] value, leaving an [`Err`] value untouched.
811    ///
812    /// This function can be used to compose the results of two functions.
813    ///
814    /// # Examples
815    ///
816    /// Print the numbers on each line of a string multiplied by two.
817    ///
818    /// ```
819    /// let line = "1\n2\n3\n4\n";
820    ///
821    /// for num in line.lines() {
822    ///     match num.parse::<i32>().map(|i| i * 2) {
823    ///         Ok(n) => println!("{n}"),
824    ///         Err(..) => {}
825    ///     }
826    /// }
827    /// ```
828    #[inline]
829    #[stable(feature = "rust1", since = "1.0.0")]
830    #[rustc_const_unstable(feature = "const_result_trait_fn", issue = "144211")]
831    pub const fn map<U, F>(self, op: F) -> Result<U, E>
832    where
833        F: [const] FnOnce(T) -> U + [const] Destruct,
834    {
835        match self {
836            Ok(t) => Ok(op(t)),
837            Err(e) => Err(e),
838        }
839    }
840
841    /// Returns the provided default (if [`Err`]), or
842    /// applies a function to the contained value (if [`Ok`]).
843    ///
844    /// Arguments passed to `map_or` are eagerly evaluated; if you are passing
845    /// the result of a function call, it is recommended to use [`map_or_else`],
846    /// which is lazily evaluated.
847    ///
848    /// [`map_or_else`]: Result::map_or_else
849    ///
850    /// # Examples
851    ///
852    /// ```
853    /// let x: Result<_, &str> = Ok("foo");
854    /// assert_eq!(x.map_or(42, |v| v.len()), 3);
855    ///
856    /// let x: Result<&str, _> = Err("bar");
857    /// assert_eq!(x.map_or(42, |v| v.len()), 42);
858    /// ```
859    #[inline]
860    #[stable(feature = "result_map_or", since = "1.41.0")]
861    #[rustc_const_unstable(feature = "const_result_trait_fn", issue = "144211")]
862    #[must_use = "if you don't need the returned value, use `if let` instead"]
863    pub const fn map_or<U, F>(self, default: U, f: F) -> U
864    where
865        F: [const] FnOnce(T) -> U + [const] Destruct,
866        T: [const] Destruct,
867        E: [const] Destruct,
868        U: [const] Destruct,
869    {
870        match self {
871            Ok(t) => f(t),
872            Err(_) => default,
873        }
874    }
875
876    /// Maps a `Result<T, E>` to `U` by applying fallback function `default` to
877    /// a contained [`Err`] value, or function `f` to a contained [`Ok`] value.
878    ///
879    /// This function can be used to unpack a successful result
880    /// while handling an error.
881    ///
882    ///
883    /// # Examples
884    ///
885    /// ```
886    /// let k = 21;
887    ///
888    /// let x : Result<_, &str> = Ok("foo");
889    /// assert_eq!(x.map_or_else(|e| k * 2, |v| v.len()), 3);
890    ///
891    /// let x : Result<&str, _> = Err("bar");
892    /// assert_eq!(x.map_or_else(|e| k * 2, |v| v.len()), 42);
893    /// ```
894    #[inline]
895    #[stable(feature = "result_map_or_else", since = "1.41.0")]
896    #[rustc_const_unstable(feature = "const_result_trait_fn", issue = "144211")]
897    pub const fn map_or_else<U, D, F>(self, default: D, f: F) -> U
898    where
899        D: [const] FnOnce(E) -> U + [const] Destruct,
900        F: [const] FnOnce(T) -> U + [const] Destruct,
901    {
902        match self {
903            Ok(t) => f(t),
904            Err(e) => default(e),
905        }
906    }
907
908    /// Maps a `Result<T, E>` to a `U` by applying function `f` to the contained
909    /// value if the result is [`Ok`], otherwise if [`Err`], returns the
910    /// [default value] for the type `U`.
911    ///
912    /// # Examples
913    ///
914    /// ```
915    /// #![feature(result_option_map_or_default)]
916    ///
917    /// let x: Result<_, &str> = Ok("foo");
918    /// let y: Result<&str, _> = Err("bar");
919    ///
920    /// assert_eq!(x.map_or_default(|x| x.len()), 3);
921    /// assert_eq!(y.map_or_default(|y| y.len()), 0);
922    /// ```
923    ///
924    /// [default value]: Default::default
925    #[inline]
926    #[unstable(feature = "result_option_map_or_default", issue = "138099")]
927    #[rustc_const_unstable(feature = "const_result_trait_fn", issue = "144211")]
928    pub const fn map_or_default<U, F>(self, f: F) -> U
929    where
930        F: [const] FnOnce(T) -> U + [const] Destruct,
931        U: [const] Default,
932        T: [const] Destruct,
933        E: [const] Destruct,
934    {
935        match self {
936            Ok(t) => f(t),
937            Err(_) => U::default(),
938        }
939    }
940
941    /// Maps a `Result<T, E>` to `Result<T, F>` by applying a function to a
942    /// contained [`Err`] value, leaving an [`Ok`] value untouched.
943    ///
944    /// This function can be used to pass through a successful result while handling
945    /// an error.
946    ///
947    ///
948    /// # Examples
949    ///
950    /// ```
951    /// fn stringify(x: u32) -> String { format!("error code: {x}") }
952    ///
953    /// let x: Result<u32, u32> = Ok(2);
954    /// assert_eq!(x.map_err(stringify), Ok(2));
955    ///
956    /// let x: Result<u32, u32> = Err(13);
957    /// assert_eq!(x.map_err(stringify), Err("error code: 13".to_string()));
958    /// ```
959    #[inline]
960    #[stable(feature = "rust1", since = "1.0.0")]
961    #[rustc_const_unstable(feature = "const_result_trait_fn", issue = "144211")]
962    pub const fn map_err<F, O>(self, op: O) -> Result<T, F>
963    where
964        O: [const] FnOnce(E) -> F + [const] Destruct,
965    {
966        match self {
967            Ok(t) => Ok(t),
968            Err(e) => Err(op(e)),
969        }
970    }
971
972    /// Calls a function with a reference to the contained value if [`Ok`].
973    ///
974    /// Returns the original result.
975    ///
976    /// # Examples
977    ///
978    /// ```
979    /// let x: u8 = "4"
980    ///     .parse::<u8>()
981    ///     .inspect(|x| println!("original: {x}"))
982    ///     .map(|x| x.pow(3))
983    ///     .expect("failed to parse number");
984    /// ```
985    #[inline]
986    #[stable(feature = "result_option_inspect", since = "1.76.0")]
987    #[rustc_const_unstable(feature = "const_result_trait_fn", issue = "144211")]
988    pub const fn inspect<F>(self, f: F) -> Self
989    where
990        F: [const] FnOnce(&T) + [const] Destruct,
991    {
992        if let Ok(ref t) = self {
993            f(t);
994        }
995
996        self
997    }
998
999    /// Calls a function with a reference to the contained value if [`Err`].
1000    ///
1001    /// Returns the original result.
1002    ///
1003    /// # Examples
1004    ///
1005    /// ```
1006    /// use std::{fs, io};
1007    ///
1008    /// fn read() -> io::Result<String> {
1009    ///     fs::read_to_string("address.txt")
1010    ///         .inspect_err(|e| eprintln!("failed to read file: {e}"))
1011    /// }
1012    /// ```
1013    #[inline]
1014    #[stable(feature = "result_option_inspect", since = "1.76.0")]
1015    #[rustc_const_unstable(feature = "const_result_trait_fn", issue = "144211")]
1016    pub const fn inspect_err<F>(self, f: F) -> Self
1017    where
1018        F: [const] FnOnce(&E) + [const] Destruct,
1019    {
1020        if let Err(ref e) = self {
1021            f(e);
1022        }
1023
1024        self
1025    }
1026
1027    /// Converts from `Result<T, E>` (or `&Result<T, E>`) to `Result<&<T as Deref>::Target, &E>`.
1028    ///
1029    /// Coerces the [`Ok`] variant of the original [`Result`] via [`Deref`](crate::ops::Deref)
1030    /// and returns the new [`Result`].
1031    ///
1032    /// # Examples
1033    ///
1034    /// ```
1035    /// let x: Result<String, u32> = Ok("hello".to_string());
1036    /// let y: Result<&str, &u32> = Ok("hello");
1037    /// assert_eq!(x.as_deref(), y);
1038    ///
1039    /// let x: Result<String, u32> = Err(42);
1040    /// let y: Result<&str, &u32> = Err(&42);
1041    /// assert_eq!(x.as_deref(), y);
1042    /// ```
1043    #[inline]
1044    #[stable(feature = "inner_deref", since = "1.47.0")]
1045    #[rustc_const_unstable(feature = "const_convert", issue = "143773")]
1046    pub const fn as_deref(&self) -> Result<&T::Target, &E>
1047    where
1048        T: [const] Deref,
1049    {
1050        self.as_ref().map(Deref::deref)
1051    }
1052
1053    /// Converts from `Result<T, E>` (or `&mut Result<T, E>`) to `Result<&mut <T as DerefMut>::Target, &mut E>`.
1054    ///
1055    /// Coerces the [`Ok`] variant of the original [`Result`] via [`DerefMut`](crate::ops::DerefMut)
1056    /// and returns the new [`Result`].
1057    ///
1058    /// # Examples
1059    ///
1060    /// ```
1061    /// let mut s = "HELLO".to_string();
1062    /// let mut x: Result<String, u32> = Ok("hello".to_string());
1063    /// let y: Result<&mut str, &mut u32> = Ok(&mut s);
1064    /// assert_eq!(x.as_deref_mut().map(|x| { x.make_ascii_uppercase(); x }), y);
1065    ///
1066    /// let mut i = 42;
1067    /// let mut x: Result<String, u32> = Err(42);
1068    /// let y: Result<&mut str, &mut u32> = Err(&mut i);
1069    /// assert_eq!(x.as_deref_mut().map(|x| { x.make_ascii_uppercase(); x }), y);
1070    /// ```
1071    #[inline]
1072    #[stable(feature = "inner_deref", since = "1.47.0")]
1073    #[rustc_const_unstable(feature = "const_convert", issue = "143773")]
1074    pub const fn as_deref_mut(&mut self) -> Result<&mut T::Target, &mut E>
1075    where
1076        T: [const] DerefMut,
1077    {
1078        self.as_mut().map(DerefMut::deref_mut)
1079    }
1080
1081    /////////////////////////////////////////////////////////////////////////
1082    // Iterator constructors
1083    /////////////////////////////////////////////////////////////////////////
1084
1085    /// Returns an iterator over the possibly contained value.
1086    ///
1087    /// The iterator yields one value if the result is [`Result::Ok`], otherwise none.
1088    ///
1089    /// # Examples
1090    ///
1091    /// ```
1092    /// let x: Result<u32, &str> = Ok(7);
1093    /// assert_eq!(x.iter().next(), Some(&7));
1094    ///
1095    /// let x: Result<u32, &str> = Err("nothing!");
1096    /// assert_eq!(x.iter().next(), None);
1097    /// ```
1098    #[inline]
1099    #[stable(feature = "rust1", since = "1.0.0")]
1100    #[rustc_const_unstable(feature = "const_result_trait_fn", issue = "144211")]
1101    // blocked on Iterator
1102    #[cfg(not(feature = "ferrocene_certified"))]
1103    pub const fn iter(&self) -> Iter<'_, T> {
1104        Iter { inner: self.as_ref().ok() }
1105    }
1106
1107    /// Returns a mutable iterator over the possibly contained value.
1108    ///
1109    /// The iterator yields one value if the result is [`Result::Ok`], otherwise none.
1110    ///
1111    /// # Examples
1112    ///
1113    /// ```
1114    /// let mut x: Result<u32, &str> = Ok(7);
1115    /// match x.iter_mut().next() {
1116    ///     Some(v) => *v = 40,
1117    ///     None => {},
1118    /// }
1119    /// assert_eq!(x, Ok(40));
1120    ///
1121    /// let mut x: Result<u32, &str> = Err("nothing!");
1122    /// assert_eq!(x.iter_mut().next(), None);
1123    /// ```
1124    #[inline]
1125    #[stable(feature = "rust1", since = "1.0.0")]
1126    #[rustc_const_unstable(feature = "const_result_trait_fn", issue = "144211")]
1127    // blocked on Iterator
1128    #[cfg(not(feature = "ferrocene_certified"))]
1129    pub const fn iter_mut(&mut self) -> IterMut<'_, T> {
1130        IterMut { inner: self.as_mut().ok() }
1131    }
1132
1133    /////////////////////////////////////////////////////////////////////////
1134    // Extract a value
1135    /////////////////////////////////////////////////////////////////////////
1136
1137    /// Returns the contained [`Ok`] value, consuming the `self` value.
1138    ///
1139    /// Because this function may panic, its use is generally discouraged.
1140    /// Instead, prefer to use pattern matching and handle the [`Err`]
1141    /// case explicitly, or call [`unwrap_or`], [`unwrap_or_else`], or
1142    /// [`unwrap_or_default`].
1143    ///
1144    /// [`unwrap_or`]: Result::unwrap_or
1145    /// [`unwrap_or_else`]: Result::unwrap_or_else
1146    /// [`unwrap_or_default`]: Result::unwrap_or_default
1147    ///
1148    /// # Panics
1149    ///
1150    /// Panics if the value is an [`Err`], with a panic message including the
1151    /// passed message, and the content of the [`Err`].
1152    ///
1153    ///
1154    /// # Examples
1155    ///
1156    /// ```should_panic
1157    /// let x: Result<u32, &str> = Err("emergency failure");
1158    /// x.expect("Testing expect"); // panics with `Testing expect: emergency failure`
1159    /// ```
1160    ///
1161    /// # Recommended Message Style
1162    ///
1163    /// We recommend that `expect` messages are used to describe the reason you
1164    /// _expect_ the `Result` should be `Ok`.
1165    ///
1166    /// ```should_panic
1167    /// let path = std::env::var("IMPORTANT_PATH")
1168    ///     .expect("env variable `IMPORTANT_PATH` should be set by `wrapper_script.sh`");
1169    /// ```
1170    ///
1171    /// **Hint**: If you're having trouble remembering how to phrase expect
1172    /// error messages remember to focus on the word "should" as in "env
1173    /// variable should be set by blah" or "the given binary should be available
1174    /// and executable by the current user".
1175    ///
1176    /// For more detail on expect message styles and the reasoning behind our recommendation please
1177    /// refer to the section on ["Common Message
1178    /// Styles"](../../std/error/index.html#common-message-styles) in the
1179    /// [`std::error`](../../std/error/index.html) module docs.
1180    #[inline]
1181    #[track_caller]
1182    #[stable(feature = "result_expect", since = "1.4.0")]
1183    // blocked on Debug
1184    #[cfg(not(feature = "ferrocene_certified"))]
1185    pub fn expect(self, msg: &str) -> T
1186    where
1187        E: fmt::Debug,
1188    {
1189        match self {
1190            Ok(t) => t,
1191            Err(e) => unwrap_failed(msg, &e),
1192        }
1193    }
1194
1195    /// Returns the contained [`Ok`] value, consuming the `self` value.
1196    ///
1197    /// Because this function may panic, its use is generally discouraged.
1198    /// Panics are meant for unrecoverable errors, and
1199    /// [may abort the entire program][panic-abort].
1200    ///
1201    /// Instead, prefer to use [the `?` (try) operator][try-operator], or pattern matching
1202    /// to handle the [`Err`] case explicitly, or call [`unwrap_or`],
1203    /// [`unwrap_or_else`], or [`unwrap_or_default`].
1204    ///
1205    /// [panic-abort]: https://doc.rust-lang.org/book/ch09-01-unrecoverable-errors-with-panic.html
1206    /// [try-operator]: https://doc.rust-lang.org/book/ch09-02-recoverable-errors-with-result.html#a-shortcut-for-propagating-errors-the--operator
1207    /// [`unwrap_or`]: Result::unwrap_or
1208    /// [`unwrap_or_else`]: Result::unwrap_or_else
1209    /// [`unwrap_or_default`]: Result::unwrap_or_default
1210    ///
1211    /// # Panics
1212    ///
1213    /// Panics if the value is an [`Err`], with a panic message provided by the
1214    /// [`Err`]'s value.
1215    ///
1216    ///
1217    /// # Examples
1218    ///
1219    /// Basic usage:
1220    ///
1221    /// ```
1222    /// let x: Result<u32, &str> = Ok(2);
1223    /// assert_eq!(x.unwrap(), 2);
1224    /// ```
1225    ///
1226    /// ```should_panic
1227    /// let x: Result<u32, &str> = Err("emergency failure");
1228    /// x.unwrap(); // panics with `emergency failure`
1229    /// ```
1230    #[inline(always)]
1231    #[track_caller]
1232    #[stable(feature = "rust1", since = "1.0.0")]
1233    // blocked on Debug
1234    #[cfg(not(feature = "ferrocene_certified"))]
1235    pub fn unwrap(self) -> T
1236    where
1237        E: fmt::Debug,
1238    {
1239        match self {
1240            Ok(t) => t,
1241            Err(e) => unwrap_failed("called `Result::unwrap()` on an `Err` value", &e),
1242        }
1243    }
1244
1245    /// Returns the contained [`Ok`] value or a default
1246    ///
1247    /// Consumes the `self` argument then, if [`Ok`], returns the contained
1248    /// value, otherwise if [`Err`], returns the default value for that
1249    /// type.
1250    ///
1251    /// # Examples
1252    ///
1253    /// Converts a string to an integer, turning poorly-formed strings
1254    /// into 0 (the default value for integers). [`parse`] converts
1255    /// a string to any other type that implements [`FromStr`], returning an
1256    /// [`Err`] on error.
1257    ///
1258    /// ```
1259    /// let good_year_from_input = "1909";
1260    /// let bad_year_from_input = "190blarg";
1261    /// let good_year = good_year_from_input.parse().unwrap_or_default();
1262    /// let bad_year = bad_year_from_input.parse().unwrap_or_default();
1263    ///
1264    /// assert_eq!(1909, good_year);
1265    /// assert_eq!(0, bad_year);
1266    /// ```
1267    ///
1268    /// [`parse`]: str::parse
1269    /// [`FromStr`]: crate::str::FromStr
1270    #[inline]
1271    #[stable(feature = "result_unwrap_or_default", since = "1.16.0")]
1272    #[rustc_const_unstable(feature = "const_result_trait_fn", issue = "144211")]
1273    pub const fn unwrap_or_default(self) -> T
1274    where
1275        T: [const] Default + [const] Destruct,
1276        E: [const] Destruct,
1277    {
1278        match self {
1279            Ok(x) => x,
1280            Err(_) => Default::default(),
1281        }
1282    }
1283
1284    /// Returns the contained [`Err`] value, consuming the `self` value.
1285    ///
1286    /// # Panics
1287    ///
1288    /// Panics if the value is an [`Ok`], with a panic message including the
1289    /// passed message, and the content of the [`Ok`].
1290    ///
1291    ///
1292    /// # Examples
1293    ///
1294    /// ```should_panic
1295    /// let x: Result<u32, &str> = Ok(10);
1296    /// x.expect_err("Testing expect_err"); // panics with `Testing expect_err: 10`
1297    /// ```
1298    #[inline]
1299    #[track_caller]
1300    #[stable(feature = "result_expect_err", since = "1.17.0")]
1301    // blocked on Debug
1302    #[cfg(not(feature = "ferrocene_certified"))]
1303    pub fn expect_err(self, msg: &str) -> E
1304    where
1305        T: fmt::Debug,
1306    {
1307        match self {
1308            Ok(t) => unwrap_failed(msg, &t),
1309            Err(e) => e,
1310        }
1311    }
1312
1313    /// Returns the contained [`Err`] value, consuming the `self` value.
1314    ///
1315    /// # Panics
1316    ///
1317    /// Panics if the value is an [`Ok`], with a custom panic message provided
1318    /// by the [`Ok`]'s value.
1319    ///
1320    /// # Examples
1321    ///
1322    /// ```should_panic
1323    /// let x: Result<u32, &str> = Ok(2);
1324    /// x.unwrap_err(); // panics with `2`
1325    /// ```
1326    ///
1327    /// ```
1328    /// let x: Result<u32, &str> = Err("emergency failure");
1329    /// assert_eq!(x.unwrap_err(), "emergency failure");
1330    /// ```
1331    #[inline]
1332    #[track_caller]
1333    #[stable(feature = "rust1", since = "1.0.0")]
1334    // blocked on Debug
1335    #[cfg(not(feature = "ferrocene_certified"))]
1336    pub fn unwrap_err(self) -> E
1337    where
1338        T: fmt::Debug,
1339    {
1340        match self {
1341            Ok(t) => unwrap_failed("called `Result::unwrap_err()` on an `Ok` value", &t),
1342            Err(e) => e,
1343        }
1344    }
1345
1346    /// Returns the contained [`Ok`] value, but never panics.
1347    ///
1348    /// Unlike [`unwrap`], this method is known to never panic on the
1349    /// result types it is implemented for. Therefore, it can be used
1350    /// instead of `unwrap` as a maintainability safeguard that will fail
1351    /// to compile if the error type of the `Result` is later changed
1352    /// to an error that can actually occur.
1353    ///
1354    /// [`unwrap`]: Result::unwrap
1355    ///
1356    /// # Examples
1357    ///
1358    /// ```
1359    /// # #![feature(never_type)]
1360    /// # #![feature(unwrap_infallible)]
1361    ///
1362    /// fn only_good_news() -> Result<String, !> {
1363    ///     Ok("this is fine".into())
1364    /// }
1365    ///
1366    /// let s: String = only_good_news().into_ok();
1367    /// println!("{s}");
1368    /// ```
1369    #[unstable(feature = "unwrap_infallible", reason = "newly added", issue = "61695")]
1370    #[inline]
1371    #[rustc_allow_const_fn_unstable(const_precise_live_drops)]
1372    #[rustc_const_unstable(feature = "const_convert", issue = "143773")]
1373    // blocked on !
1374    #[cfg(not(feature = "ferrocene_certified"))]
1375    pub const fn into_ok(self) -> T
1376    where
1377        E: [const] Into<!>,
1378    {
1379        match self {
1380            Ok(x) => x,
1381            Err(e) => e.into(),
1382        }
1383    }
1384
1385    /// Returns the contained [`Err`] value, but never panics.
1386    ///
1387    /// Unlike [`unwrap_err`], this method is known to never panic on the
1388    /// result types it is implemented for. Therefore, it can be used
1389    /// instead of `unwrap_err` as a maintainability safeguard that will fail
1390    /// to compile if the ok type of the `Result` is later changed
1391    /// to a type that can actually occur.
1392    ///
1393    /// [`unwrap_err`]: Result::unwrap_err
1394    ///
1395    /// # Examples
1396    ///
1397    /// ```
1398    /// # #![feature(never_type)]
1399    /// # #![feature(unwrap_infallible)]
1400    ///
1401    /// fn only_bad_news() -> Result<!, String> {
1402    ///     Err("Oops, it failed".into())
1403    /// }
1404    ///
1405    /// let error: String = only_bad_news().into_err();
1406    /// println!("{error}");
1407    /// ```
1408    #[unstable(feature = "unwrap_infallible", reason = "newly added", issue = "61695")]
1409    #[inline]
1410    #[rustc_allow_const_fn_unstable(const_precise_live_drops)]
1411    #[rustc_const_unstable(feature = "const_convert", issue = "143773")]
1412    // blocked on !
1413    #[cfg(not(feature = "ferrocene_certified"))]
1414    pub const fn into_err(self) -> E
1415    where
1416        T: [const] Into<!>,
1417    {
1418        match self {
1419            Ok(x) => x.into(),
1420            Err(e) => e,
1421        }
1422    }
1423
1424    ////////////////////////////////////////////////////////////////////////
1425    // Boolean operations on the values, eager and lazy
1426    /////////////////////////////////////////////////////////////////////////
1427
1428    /// Returns `res` if the result is [`Ok`], otherwise returns the [`Err`] value of `self`.
1429    ///
1430    /// Arguments passed to `and` are eagerly evaluated; if you are passing the
1431    /// result of a function call, it is recommended to use [`and_then`], which is
1432    /// lazily evaluated.
1433    ///
1434    /// [`and_then`]: Result::and_then
1435    ///
1436    /// # Examples
1437    ///
1438    /// ```
1439    /// let x: Result<u32, &str> = Ok(2);
1440    /// let y: Result<&str, &str> = Err("late error");
1441    /// assert_eq!(x.and(y), Err("late error"));
1442    ///
1443    /// let x: Result<u32, &str> = Err("early error");
1444    /// let y: Result<&str, &str> = Ok("foo");
1445    /// assert_eq!(x.and(y), Err("early error"));
1446    ///
1447    /// let x: Result<u32, &str> = Err("not a 2");
1448    /// let y: Result<&str, &str> = Err("late error");
1449    /// assert_eq!(x.and(y), Err("not a 2"));
1450    ///
1451    /// let x: Result<u32, &str> = Ok(2);
1452    /// let y: Result<&str, &str> = Ok("different result type");
1453    /// assert_eq!(x.and(y), Ok("different result type"));
1454    /// ```
1455    #[inline]
1456    #[stable(feature = "rust1", since = "1.0.0")]
1457    #[rustc_const_unstable(feature = "const_result_trait_fn", issue = "144211")]
1458    pub const fn and<U>(self, res: Result<U, E>) -> Result<U, E>
1459    where
1460        T: [const] Destruct,
1461        E: [const] Destruct,
1462        U: [const] Destruct,
1463    {
1464        match self {
1465            Ok(_) => res,
1466            Err(e) => Err(e),
1467        }
1468    }
1469
1470    /// Calls `op` if the result is [`Ok`], otherwise returns the [`Err`] value of `self`.
1471    ///
1472    ///
1473    /// This function can be used for control flow based on `Result` values.
1474    ///
1475    /// # Examples
1476    ///
1477    /// ```
1478    /// fn sq_then_to_string(x: u32) -> Result<String, &'static str> {
1479    ///     x.checked_mul(x).map(|sq| sq.to_string()).ok_or("overflowed")
1480    /// }
1481    ///
1482    /// assert_eq!(Ok(2).and_then(sq_then_to_string), Ok(4.to_string()));
1483    /// assert_eq!(Ok(1_000_000).and_then(sq_then_to_string), Err("overflowed"));
1484    /// assert_eq!(Err("not a number").and_then(sq_then_to_string), Err("not a number"));
1485    /// ```
1486    ///
1487    /// Often used to chain fallible operations that may return [`Err`].
1488    ///
1489    /// ```
1490    /// use std::{io::ErrorKind, path::Path};
1491    ///
1492    /// // Note: on Windows "/" maps to "C:\"
1493    /// let root_modified_time = Path::new("/").metadata().and_then(|md| md.modified());
1494    /// assert!(root_modified_time.is_ok());
1495    ///
1496    /// let should_fail = Path::new("/bad/path").metadata().and_then(|md| md.modified());
1497    /// assert!(should_fail.is_err());
1498    /// assert_eq!(should_fail.unwrap_err().kind(), ErrorKind::NotFound);
1499    /// ```
1500    #[inline]
1501    #[stable(feature = "rust1", since = "1.0.0")]
1502    #[rustc_const_unstable(feature = "const_result_trait_fn", issue = "144211")]
1503    #[rustc_confusables("flat_map", "flatmap")]
1504    pub const fn and_then<U, F>(self, op: F) -> Result<U, E>
1505    where
1506        F: [const] FnOnce(T) -> Result<U, E> + [const] Destruct,
1507    {
1508        match self {
1509            Ok(t) => op(t),
1510            Err(e) => Err(e),
1511        }
1512    }
1513
1514    /// Returns `res` if the result is [`Err`], otherwise returns the [`Ok`] value of `self`.
1515    ///
1516    /// Arguments passed to `or` are eagerly evaluated; if you are passing the
1517    /// result of a function call, it is recommended to use [`or_else`], which is
1518    /// lazily evaluated.
1519    ///
1520    /// [`or_else`]: Result::or_else
1521    ///
1522    /// # Examples
1523    ///
1524    /// ```
1525    /// let x: Result<u32, &str> = Ok(2);
1526    /// let y: Result<u32, &str> = Err("late error");
1527    /// assert_eq!(x.or(y), Ok(2));
1528    ///
1529    /// let x: Result<u32, &str> = Err("early error");
1530    /// let y: Result<u32, &str> = Ok(2);
1531    /// assert_eq!(x.or(y), Ok(2));
1532    ///
1533    /// let x: Result<u32, &str> = Err("not a 2");
1534    /// let y: Result<u32, &str> = Err("late error");
1535    /// assert_eq!(x.or(y), Err("late error"));
1536    ///
1537    /// let x: Result<u32, &str> = Ok(2);
1538    /// let y: Result<u32, &str> = Ok(100);
1539    /// assert_eq!(x.or(y), Ok(2));
1540    /// ```
1541    #[inline]
1542    #[stable(feature = "rust1", since = "1.0.0")]
1543    #[rustc_const_unstable(feature = "const_result_trait_fn", issue = "144211")]
1544    pub const fn or<F>(self, res: Result<T, F>) -> Result<T, F>
1545    where
1546        T: [const] Destruct,
1547        E: [const] Destruct,
1548        F: [const] Destruct,
1549    {
1550        match self {
1551            Ok(v) => Ok(v),
1552            Err(_) => res,
1553        }
1554    }
1555
1556    /// Calls `op` if the result is [`Err`], otherwise returns the [`Ok`] value of `self`.
1557    ///
1558    /// This function can be used for control flow based on result values.
1559    ///
1560    ///
1561    /// # Examples
1562    ///
1563    /// ```
1564    /// fn sq(x: u32) -> Result<u32, u32> { Ok(x * x) }
1565    /// fn err(x: u32) -> Result<u32, u32> { Err(x) }
1566    ///
1567    /// assert_eq!(Ok(2).or_else(sq).or_else(sq), Ok(2));
1568    /// assert_eq!(Ok(2).or_else(err).or_else(sq), Ok(2));
1569    /// assert_eq!(Err(3).or_else(sq).or_else(err), Ok(9));
1570    /// assert_eq!(Err(3).or_else(err).or_else(err), Err(3));
1571    /// ```
1572    #[inline]
1573    #[stable(feature = "rust1", since = "1.0.0")]
1574    #[rustc_const_unstable(feature = "const_result_trait_fn", issue = "144211")]
1575    pub const fn or_else<F, O>(self, op: O) -> Result<T, F>
1576    where
1577        O: [const] FnOnce(E) -> Result<T, F> + [const] Destruct,
1578    {
1579        match self {
1580            Ok(t) => Ok(t),
1581            Err(e) => op(e),
1582        }
1583    }
1584
1585    /// Returns the contained [`Ok`] value or a provided default.
1586    ///
1587    /// Arguments passed to `unwrap_or` are eagerly evaluated; if you are passing
1588    /// the result of a function call, it is recommended to use [`unwrap_or_else`],
1589    /// which is lazily evaluated.
1590    ///
1591    /// [`unwrap_or_else`]: Result::unwrap_or_else
1592    ///
1593    /// # Examples
1594    ///
1595    /// ```
1596    /// let default = 2;
1597    /// let x: Result<u32, &str> = Ok(9);
1598    /// assert_eq!(x.unwrap_or(default), 9);
1599    ///
1600    /// let x: Result<u32, &str> = Err("error");
1601    /// assert_eq!(x.unwrap_or(default), default);
1602    /// ```
1603    #[inline]
1604    #[stable(feature = "rust1", since = "1.0.0")]
1605    #[rustc_const_unstable(feature = "const_result_trait_fn", issue = "144211")]
1606    pub const fn unwrap_or(self, default: T) -> T
1607    where
1608        T: [const] Destruct,
1609        E: [const] Destruct,
1610    {
1611        match self {
1612            Ok(t) => t,
1613            Err(_) => default,
1614        }
1615    }
1616
1617    /// Returns the contained [`Ok`] value or computes it from a closure.
1618    ///
1619    ///
1620    /// # Examples
1621    ///
1622    /// ```
1623    /// fn count(x: &str) -> usize { x.len() }
1624    ///
1625    /// assert_eq!(Ok(2).unwrap_or_else(count), 2);
1626    /// assert_eq!(Err("foo").unwrap_or_else(count), 3);
1627    /// ```
1628    #[inline]
1629    #[track_caller]
1630    #[stable(feature = "rust1", since = "1.0.0")]
1631    #[rustc_const_unstable(feature = "const_result_trait_fn", issue = "144211")]
1632    pub const fn unwrap_or_else<F>(self, op: F) -> T
1633    where
1634        F: [const] FnOnce(E) -> T + [const] Destruct,
1635    {
1636        match self {
1637            Ok(t) => t,
1638            Err(e) => op(e),
1639        }
1640    }
1641
1642    /// Returns the contained [`Ok`] value, consuming the `self` value,
1643    /// without checking that the value is not an [`Err`].
1644    ///
1645    /// # Safety
1646    ///
1647    /// Calling this method on an [`Err`] is *[undefined behavior]*.
1648    ///
1649    /// [undefined behavior]: https://doc.rust-lang.org/reference/behavior-considered-undefined.html
1650    ///
1651    /// # Examples
1652    ///
1653    /// ```
1654    /// let x: Result<u32, &str> = Ok(2);
1655    /// assert_eq!(unsafe { x.unwrap_unchecked() }, 2);
1656    /// ```
1657    ///
1658    /// ```no_run
1659    /// let x: Result<u32, &str> = Err("emergency failure");
1660    /// unsafe { x.unwrap_unchecked() }; // Undefined behavior!
1661    /// ```
1662    #[inline]
1663    #[track_caller]
1664    #[stable(feature = "option_result_unwrap_unchecked", since = "1.58.0")]
1665    // blocked on hint
1666    #[cfg(not(feature = "ferrocene_certified"))]
1667    pub unsafe fn unwrap_unchecked(self) -> T {
1668        match self {
1669            Ok(t) => t,
1670            // SAFETY: the safety contract must be upheld by the caller.
1671            Err(_) => unsafe { hint::unreachable_unchecked() },
1672        }
1673    }
1674
1675    /// Returns the contained [`Err`] value, consuming the `self` value,
1676    /// without checking that the value is not an [`Ok`].
1677    ///
1678    /// # Safety
1679    ///
1680    /// Calling this method on an [`Ok`] is *[undefined behavior]*.
1681    ///
1682    /// [undefined behavior]: https://doc.rust-lang.org/reference/behavior-considered-undefined.html
1683    ///
1684    /// # Examples
1685    ///
1686    /// ```no_run
1687    /// let x: Result<u32, &str> = Ok(2);
1688    /// unsafe { x.unwrap_err_unchecked() }; // Undefined behavior!
1689    /// ```
1690    ///
1691    /// ```
1692    /// let x: Result<u32, &str> = Err("emergency failure");
1693    /// assert_eq!(unsafe { x.unwrap_err_unchecked() }, "emergency failure");
1694    /// ```
1695    #[inline]
1696    #[track_caller]
1697    #[stable(feature = "option_result_unwrap_unchecked", since = "1.58.0")]
1698    // blocked on hint
1699    #[cfg(not(feature = "ferrocene_certified"))]
1700    pub unsafe fn unwrap_err_unchecked(self) -> E {
1701        match self {
1702            // SAFETY: the safety contract must be upheld by the caller.
1703            Ok(_) => unsafe { hint::unreachable_unchecked() },
1704            Err(e) => e,
1705        }
1706    }
1707}
1708
1709impl<T, E> Result<&T, E> {
1710    /// Maps a `Result<&T, E>` to a `Result<T, E>` by copying the contents of the
1711    /// `Ok` part.
1712    ///
1713    /// # Examples
1714    ///
1715    /// ```
1716    /// let val = 12;
1717    /// let x: Result<&i32, i32> = Ok(&val);
1718    /// assert_eq!(x, Ok(&12));
1719    /// let copied = x.copied();
1720    /// assert_eq!(copied, Ok(12));
1721    /// ```
1722    #[inline]
1723    #[stable(feature = "result_copied", since = "1.59.0")]
1724    #[rustc_const_stable(feature = "const_result", since = "1.83.0")]
1725    #[rustc_allow_const_fn_unstable(const_precise_live_drops)]
1726    pub const fn copied(self) -> Result<T, E>
1727    where
1728        T: Copy,
1729    {
1730        // FIXME(const-hack): this implementation, which sidesteps using `Result::map` since it's not const
1731        // ready yet, should be reverted when possible to avoid code repetition
1732        match self {
1733            Ok(&v) => Ok(v),
1734            Err(e) => Err(e),
1735        }
1736    }
1737
1738    /// Maps a `Result<&T, E>` to a `Result<T, E>` by cloning the contents of the
1739    /// `Ok` part.
1740    ///
1741    /// # Examples
1742    ///
1743    /// ```
1744    /// let val = 12;
1745    /// let x: Result<&i32, i32> = Ok(&val);
1746    /// assert_eq!(x, Ok(&12));
1747    /// let cloned = x.cloned();
1748    /// assert_eq!(cloned, Ok(12));
1749    /// ```
1750    #[inline]
1751    #[stable(feature = "result_cloned", since = "1.59.0")]
1752    pub fn cloned(self) -> Result<T, E>
1753    where
1754        T: Clone,
1755    {
1756        self.map(|t| t.clone())
1757    }
1758}
1759
1760impl<T, E> Result<&mut T, E> {
1761    /// Maps a `Result<&mut T, E>` to a `Result<T, E>` by copying the contents of the
1762    /// `Ok` part.
1763    ///
1764    /// # Examples
1765    ///
1766    /// ```
1767    /// let mut val = 12;
1768    /// let x: Result<&mut i32, i32> = Ok(&mut val);
1769    /// assert_eq!(x, Ok(&mut 12));
1770    /// let copied = x.copied();
1771    /// assert_eq!(copied, Ok(12));
1772    /// ```
1773    #[inline]
1774    #[stable(feature = "result_copied", since = "1.59.0")]
1775    #[rustc_const_stable(feature = "const_result", since = "1.83.0")]
1776    #[rustc_allow_const_fn_unstable(const_precise_live_drops)]
1777    pub const fn copied(self) -> Result<T, E>
1778    where
1779        T: Copy,
1780    {
1781        // FIXME(const-hack): this implementation, which sidesteps using `Result::map` since it's not const
1782        // ready yet, should be reverted when possible to avoid code repetition
1783        match self {
1784            Ok(&mut v) => Ok(v),
1785            Err(e) => Err(e),
1786        }
1787    }
1788
1789    /// Maps a `Result<&mut T, E>` to a `Result<T, E>` by cloning the contents of the
1790    /// `Ok` part.
1791    ///
1792    /// # Examples
1793    ///
1794    /// ```
1795    /// let mut val = 12;
1796    /// let x: Result<&mut i32, i32> = Ok(&mut val);
1797    /// assert_eq!(x, Ok(&mut 12));
1798    /// let cloned = x.cloned();
1799    /// assert_eq!(cloned, Ok(12));
1800    /// ```
1801    #[inline]
1802    #[stable(feature = "result_cloned", since = "1.59.0")]
1803    pub fn cloned(self) -> Result<T, E>
1804    where
1805        T: Clone,
1806    {
1807        self.map(|t| t.clone())
1808    }
1809}
1810
1811impl<T, E> Result<Option<T>, E> {
1812    /// Transposes a `Result` of an `Option` into an `Option` of a `Result`.
1813    ///
1814    /// `Ok(None)` will be mapped to `None`.
1815    /// `Ok(Some(_))` and `Err(_)` will be mapped to `Some(Ok(_))` and `Some(Err(_))`.
1816    ///
1817    /// # Examples
1818    ///
1819    /// ```
1820    /// #[derive(Debug, Eq, PartialEq)]
1821    /// struct SomeErr;
1822    ///
1823    /// let x: Result<Option<i32>, SomeErr> = Ok(Some(5));
1824    /// let y: Option<Result<i32, SomeErr>> = Some(Ok(5));
1825    /// assert_eq!(x.transpose(), y);
1826    /// ```
1827    #[inline]
1828    #[stable(feature = "transpose_result", since = "1.33.0")]
1829    #[rustc_const_stable(feature = "const_result", since = "1.83.0")]
1830    #[rustc_allow_const_fn_unstable(const_precise_live_drops)]
1831    pub const fn transpose(self) -> Option<Result<T, E>> {
1832        match self {
1833            Ok(Some(x)) => Some(Ok(x)),
1834            Ok(None) => None,
1835            Err(e) => Some(Err(e)),
1836        }
1837    }
1838}
1839
1840impl<T, E> Result<Result<T, E>, E> {
1841    /// Converts from `Result<Result<T, E>, E>` to `Result<T, E>`
1842    ///
1843    /// # Examples
1844    ///
1845    /// ```
1846    /// let x: Result<Result<&'static str, u32>, u32> = Ok(Ok("hello"));
1847    /// assert_eq!(Ok("hello"), x.flatten());
1848    ///
1849    /// let x: Result<Result<&'static str, u32>, u32> = Ok(Err(6));
1850    /// assert_eq!(Err(6), x.flatten());
1851    ///
1852    /// let x: Result<Result<&'static str, u32>, u32> = Err(6);
1853    /// assert_eq!(Err(6), x.flatten());
1854    /// ```
1855    ///
1856    /// Flattening only removes one level of nesting at a time:
1857    ///
1858    /// ```
1859    /// let x: Result<Result<Result<&'static str, u32>, u32>, u32> = Ok(Ok(Ok("hello")));
1860    /// assert_eq!(Ok(Ok("hello")), x.flatten());
1861    /// assert_eq!(Ok("hello"), x.flatten().flatten());
1862    /// ```
1863    #[inline]
1864    #[stable(feature = "result_flattening", since = "1.89.0")]
1865    #[rustc_allow_const_fn_unstable(const_precise_live_drops)]
1866    #[rustc_const_stable(feature = "result_flattening", since = "1.89.0")]
1867    // blocked on const impl Drop for Result<Result<T, E>>
1868    #[cfg(not(feature = "ferrocene_certified"))]
1869    pub const fn flatten(self) -> Result<T, E> {
1870        // FIXME(const-hack): could be written with `and_then`
1871        match self {
1872            Ok(inner) => inner,
1873            Err(e) => Err(e),
1874        }
1875    }
1876}
1877
1878// This is a separate function to reduce the code size of the methods
1879#[cfg(not(feature = "panic_immediate_abort"))]
1880#[inline(never)]
1881#[cold]
1882#[track_caller]
1883// blocked on Debug
1884#[cfg(not(feature = "ferrocene_certified"))]
1885fn unwrap_failed(msg: &str, error: &dyn fmt::Debug) -> ! {
1886    panic!("{msg}: {error:?}");
1887}
1888
1889// This is a separate function to avoid constructing a `dyn Debug`
1890// that gets immediately thrown away, since vtables don't get cleaned up
1891// by dead code elimination if a trait object is constructed even if it goes
1892// unused
1893#[cfg(feature = "panic_immediate_abort")]
1894#[inline]
1895#[cold]
1896#[track_caller]
1897// blocked on Debug
1898#[cfg(not(feature = "ferrocene_certified"))]
1899const fn unwrap_failed<T>(_msg: &str, _error: &T) -> ! {
1900    panic!()
1901}
1902
1903/////////////////////////////////////////////////////////////////////////////
1904// Trait implementations
1905/////////////////////////////////////////////////////////////////////////////
1906
1907#[stable(feature = "rust1", since = "1.0.0")]
1908#[cfg(not(feature = "ferrocene_certified"))]
1909impl<T, E> Clone for Result<T, E>
1910where
1911    T: Clone,
1912    E: Clone,
1913{
1914    #[inline]
1915    fn clone(&self) -> Self {
1916        match self {
1917            Ok(x) => Ok(x.clone()),
1918            Err(x) => Err(x.clone()),
1919        }
1920    }
1921
1922    #[inline]
1923    fn clone_from(&mut self, source: &Self) {
1924        match (self, source) {
1925            (Ok(to), Ok(from)) => to.clone_from(from),
1926            (Err(to), Err(from)) => to.clone_from(from),
1927            (to, from) => *to = from.clone(),
1928        }
1929    }
1930}
1931
1932#[unstable(feature = "ergonomic_clones", issue = "132290")]
1933#[cfg(not(feature = "ferrocene_certified"))]
1934impl<T, E> crate::clone::UseCloned for Result<T, E>
1935where
1936    T: crate::clone::UseCloned,
1937    E: crate::clone::UseCloned,
1938{
1939}
1940
1941#[stable(feature = "rust1", since = "1.0.0")]
1942#[cfg(not(feature = "ferrocene_certified"))]
1943impl<T, E> IntoIterator for Result<T, E> {
1944    type Item = T;
1945    type IntoIter = IntoIter<T>;
1946
1947    /// Returns a consuming iterator over the possibly contained value.
1948    ///
1949    /// The iterator yields one value if the result is [`Result::Ok`], otherwise none.
1950    ///
1951    /// # Examples
1952    ///
1953    /// ```
1954    /// let x: Result<u32, &str> = Ok(5);
1955    /// let v: Vec<u32> = x.into_iter().collect();
1956    /// assert_eq!(v, [5]);
1957    ///
1958    /// let x: Result<u32, &str> = Err("nothing!");
1959    /// let v: Vec<u32> = x.into_iter().collect();
1960    /// assert_eq!(v, []);
1961    /// ```
1962    #[inline]
1963    fn into_iter(self) -> IntoIter<T> {
1964        IntoIter { inner: self.ok() }
1965    }
1966}
1967
1968#[stable(since = "1.4.0", feature = "result_iter")]
1969#[cfg(not(feature = "ferrocene_certified"))]
1970impl<'a, T, E> IntoIterator for &'a Result<T, E> {
1971    type Item = &'a T;
1972    type IntoIter = Iter<'a, T>;
1973
1974    fn into_iter(self) -> Iter<'a, T> {
1975        self.iter()
1976    }
1977}
1978
1979#[stable(since = "1.4.0", feature = "result_iter")]
1980#[cfg(not(feature = "ferrocene_certified"))]
1981impl<'a, T, E> IntoIterator for &'a mut Result<T, E> {
1982    type Item = &'a mut T;
1983    type IntoIter = IterMut<'a, T>;
1984
1985    fn into_iter(self) -> IterMut<'a, T> {
1986        self.iter_mut()
1987    }
1988}
1989
1990/////////////////////////////////////////////////////////////////////////////
1991// The Result Iterators
1992/////////////////////////////////////////////////////////////////////////////
1993
1994/// An iterator over a reference to the [`Ok`] variant of a [`Result`].
1995///
1996/// The iterator yields one value if the result is [`Ok`], otherwise none.
1997///
1998/// Created by [`Result::iter`].
1999#[derive(Debug)]
2000#[stable(feature = "rust1", since = "1.0.0")]
2001#[cfg(not(feature = "ferrocene_certified"))]
2002pub struct Iter<'a, T: 'a> {
2003    inner: Option<&'a T>,
2004}
2005
2006#[stable(feature = "rust1", since = "1.0.0")]
2007#[cfg(not(feature = "ferrocene_certified"))]
2008impl<'a, T> Iterator for Iter<'a, T> {
2009    type Item = &'a T;
2010
2011    #[inline]
2012    fn next(&mut self) -> Option<&'a T> {
2013        self.inner.take()
2014    }
2015    #[inline]
2016    fn size_hint(&self) -> (usize, Option<usize>) {
2017        let n = if self.inner.is_some() { 1 } else { 0 };
2018        (n, Some(n))
2019    }
2020}
2021
2022#[stable(feature = "rust1", since = "1.0.0")]
2023#[cfg(not(feature = "ferrocene_certified"))]
2024impl<'a, T> DoubleEndedIterator for Iter<'a, T> {
2025    #[inline]
2026    fn next_back(&mut self) -> Option<&'a T> {
2027        self.inner.take()
2028    }
2029}
2030
2031#[stable(feature = "rust1", since = "1.0.0")]
2032#[cfg(not(feature = "ferrocene_certified"))]
2033impl<T> ExactSizeIterator for Iter<'_, T> {}
2034
2035#[stable(feature = "fused", since = "1.26.0")]
2036#[cfg(not(feature = "ferrocene_certified"))]
2037impl<T> FusedIterator for Iter<'_, T> {}
2038
2039#[unstable(feature = "trusted_len", issue = "37572")]
2040#[cfg(not(feature = "ferrocene_certified"))]
2041unsafe impl<A> TrustedLen for Iter<'_, A> {}
2042
2043#[stable(feature = "rust1", since = "1.0.0")]
2044#[cfg(not(feature = "ferrocene_certified"))]
2045impl<T> Clone for Iter<'_, T> {
2046    #[inline]
2047    fn clone(&self) -> Self {
2048        Iter { inner: self.inner }
2049    }
2050}
2051
2052/// An iterator over a mutable reference to the [`Ok`] variant of a [`Result`].
2053///
2054/// Created by [`Result::iter_mut`].
2055#[derive(Debug)]
2056#[stable(feature = "rust1", since = "1.0.0")]
2057#[cfg(not(feature = "ferrocene_certified"))]
2058pub struct IterMut<'a, T: 'a> {
2059    inner: Option<&'a mut T>,
2060}
2061
2062#[stable(feature = "rust1", since = "1.0.0")]
2063#[cfg(not(feature = "ferrocene_certified"))]
2064impl<'a, T> Iterator for IterMut<'a, T> {
2065    type Item = &'a mut T;
2066
2067    #[inline]
2068    fn next(&mut self) -> Option<&'a mut T> {
2069        self.inner.take()
2070    }
2071    #[inline]
2072    fn size_hint(&self) -> (usize, Option<usize>) {
2073        let n = if self.inner.is_some() { 1 } else { 0 };
2074        (n, Some(n))
2075    }
2076}
2077
2078#[stable(feature = "rust1", since = "1.0.0")]
2079#[cfg(not(feature = "ferrocene_certified"))]
2080impl<'a, T> DoubleEndedIterator for IterMut<'a, T> {
2081    #[inline]
2082    fn next_back(&mut self) -> Option<&'a mut T> {
2083        self.inner.take()
2084    }
2085}
2086
2087#[stable(feature = "rust1", since = "1.0.0")]
2088#[cfg(not(feature = "ferrocene_certified"))]
2089impl<T> ExactSizeIterator for IterMut<'_, T> {}
2090
2091#[stable(feature = "fused", since = "1.26.0")]
2092#[cfg(not(feature = "ferrocene_certified"))]
2093impl<T> FusedIterator for IterMut<'_, T> {}
2094
2095#[unstable(feature = "trusted_len", issue = "37572")]
2096#[cfg(not(feature = "ferrocene_certified"))]
2097unsafe impl<A> TrustedLen for IterMut<'_, A> {}
2098
2099/// An iterator over the value in a [`Ok`] variant of a [`Result`].
2100///
2101/// The iterator yields one value if the result is [`Ok`], otherwise none.
2102///
2103/// This struct is created by the [`into_iter`] method on
2104/// [`Result`] (provided by the [`IntoIterator`] trait).
2105///
2106/// [`into_iter`]: IntoIterator::into_iter
2107#[derive(Clone, Debug)]
2108#[stable(feature = "rust1", since = "1.0.0")]
2109#[cfg(not(feature = "ferrocene_certified"))]
2110pub struct IntoIter<T> {
2111    inner: Option<T>,
2112}
2113
2114#[stable(feature = "rust1", since = "1.0.0")]
2115#[cfg(not(feature = "ferrocene_certified"))]
2116impl<T> Iterator for IntoIter<T> {
2117    type Item = T;
2118
2119    #[inline]
2120    fn next(&mut self) -> Option<T> {
2121        self.inner.take()
2122    }
2123    #[inline]
2124    fn size_hint(&self) -> (usize, Option<usize>) {
2125        let n = if self.inner.is_some() { 1 } else { 0 };
2126        (n, Some(n))
2127    }
2128}
2129
2130#[stable(feature = "rust1", since = "1.0.0")]
2131#[cfg(not(feature = "ferrocene_certified"))]
2132impl<T> DoubleEndedIterator for IntoIter<T> {
2133    #[inline]
2134    fn next_back(&mut self) -> Option<T> {
2135        self.inner.take()
2136    }
2137}
2138
2139#[stable(feature = "rust1", since = "1.0.0")]
2140#[cfg(not(feature = "ferrocene_certified"))]
2141impl<T> ExactSizeIterator for IntoIter<T> {}
2142
2143#[stable(feature = "fused", since = "1.26.0")]
2144#[cfg(not(feature = "ferrocene_certified"))]
2145impl<T> FusedIterator for IntoIter<T> {}
2146
2147#[unstable(feature = "trusted_len", issue = "37572")]
2148#[cfg(not(feature = "ferrocene_certified"))]
2149unsafe impl<A> TrustedLen for IntoIter<A> {}
2150
2151/////////////////////////////////////////////////////////////////////////////
2152// FromIterator
2153/////////////////////////////////////////////////////////////////////////////
2154
2155#[stable(feature = "rust1", since = "1.0.0")]
2156#[cfg(not(feature = "ferrocene_certified"))]
2157impl<A, E, V: FromIterator<A>> FromIterator<Result<A, E>> for Result<V, E> {
2158    /// Takes each element in the `Iterator`: if it is an `Err`, no further
2159    /// elements are taken, and the `Err` is returned. Should no `Err` occur, a
2160    /// container with the values of each `Result` is returned.
2161    ///
2162    /// Here is an example which increments every integer in a vector,
2163    /// checking for overflow:
2164    ///
2165    /// ```
2166    /// let v = vec![1, 2];
2167    /// let res: Result<Vec<u32>, &'static str> = v.iter().map(|x: &u32|
2168    ///     x.checked_add(1).ok_or("Overflow!")
2169    /// ).collect();
2170    /// assert_eq!(res, Ok(vec![2, 3]));
2171    /// ```
2172    ///
2173    /// Here is another example that tries to subtract one from another list
2174    /// of integers, this time checking for underflow:
2175    ///
2176    /// ```
2177    /// let v = vec![1, 2, 0];
2178    /// let res: Result<Vec<u32>, &'static str> = v.iter().map(|x: &u32|
2179    ///     x.checked_sub(1).ok_or("Underflow!")
2180    /// ).collect();
2181    /// assert_eq!(res, Err("Underflow!"));
2182    /// ```
2183    ///
2184    /// Here is a variation on the previous example, showing that no
2185    /// further elements are taken from `iter` after the first `Err`.
2186    ///
2187    /// ```
2188    /// let v = vec![3, 2, 1, 10];
2189    /// let mut shared = 0;
2190    /// let res: Result<Vec<u32>, &'static str> = v.iter().map(|x: &u32| {
2191    ///     shared += x;
2192    ///     x.checked_sub(2).ok_or("Underflow!")
2193    /// }).collect();
2194    /// assert_eq!(res, Err("Underflow!"));
2195    /// assert_eq!(shared, 6);
2196    /// ```
2197    ///
2198    /// Since the third element caused an underflow, no further elements were taken,
2199    /// so the final value of `shared` is 6 (= `3 + 2 + 1`), not 16.
2200    #[inline]
2201    fn from_iter<I: IntoIterator<Item = Result<A, E>>>(iter: I) -> Result<V, E> {
2202        iter::try_process(iter.into_iter(), |i| i.collect())
2203    }
2204}
2205
2206#[unstable(feature = "try_trait_v2", issue = "84277", old_name = "try_trait")]
2207#[rustc_const_unstable(feature = "const_try", issue = "74935")]
2208#[cfg(not(feature = "ferrocene_certified"))]
2209impl<T, E> const ops::Try for Result<T, E> {
2210    type Output = T;
2211    type Residual = Result<convert::Infallible, E>;
2212
2213    #[inline]
2214    fn from_output(output: Self::Output) -> Self {
2215        Ok(output)
2216    }
2217
2218    #[inline]
2219    fn branch(self) -> ControlFlow<Self::Residual, Self::Output> {
2220        match self {
2221            Ok(v) => ControlFlow::Continue(v),
2222            Err(e) => ControlFlow::Break(Err(e)),
2223        }
2224    }
2225}
2226
2227#[unstable(feature = "try_trait_v2", issue = "84277", old_name = "try_trait")]
2228#[rustc_const_unstable(feature = "const_try", issue = "74935")]
2229#[cfg(not(feature = "ferrocene_certified"))]
2230impl<T, E, F: [const] From<E>> const ops::FromResidual<Result<convert::Infallible, E>>
2231    for Result<T, F>
2232{
2233    #[inline]
2234    #[track_caller]
2235    fn from_residual(residual: Result<convert::Infallible, E>) -> Self {
2236        match residual {
2237            Err(e) => Err(From::from(e)),
2238        }
2239    }
2240}
2241#[diagnostic::do_not_recommend]
2242#[unstable(feature = "try_trait_v2_yeet", issue = "96374")]
2243#[rustc_const_unstable(feature = "const_try", issue = "74935")]
2244#[cfg(not(feature = "ferrocene_certified"))]
2245impl<T, E, F: [const] From<E>> const ops::FromResidual<ops::Yeet<E>> for Result<T, F> {
2246    #[inline]
2247    fn from_residual(ops::Yeet(e): ops::Yeet<E>) -> Self {
2248        Err(From::from(e))
2249    }
2250}
2251
2252#[unstable(feature = "try_trait_v2_residual", issue = "91285")]
2253#[rustc_const_unstable(feature = "const_try", issue = "74935")]
2254#[cfg(not(feature = "ferrocene_certified"))]
2255impl<T, E> const ops::Residual<T> for Result<convert::Infallible, E> {
2256    type TryType = Result<T, E>;
2257}