core/
result.rs

1//! Error handling with the `Result` type.
2//!
3//! [`Result<T, E>`][`Result`] is the type used for returning and propagating
4//! errors. It is an enum with the variants, [`Ok(T)`], representing
5//! success and containing a value, and [`Err(E)`], representing error
6//! and containing an error value.
7//!
8//! ```
9//! # #[allow(dead_code)]
10//! enum Result<T, E> {
11//!    Ok(T),
12//!    Err(E),
13//! }
14//! ```
15//!
16//! Functions return [`Result`] whenever errors are expected and
17//! recoverable. In the `std` crate, [`Result`] is most prominently used
18//! for [I/O](../../std/io/index.html).
19//!
20//! A simple function returning [`Result`] might be
21//! defined and used like so:
22//!
23//! ```
24//! #[derive(Debug)]
25//! enum Version { Version1, Version2 }
26//!
27//! fn parse_version(header: &[u8]) -> Result<Version, &'static str> {
28//!     match header.get(0) {
29//!         None => Err("invalid header length"),
30//!         Some(&1) => Ok(Version::Version1),
31//!         Some(&2) => Ok(Version::Version2),
32//!         Some(_) => Err("invalid version"),
33//!     }
34//! }
35//!
36//! let version = parse_version(&[1, 2, 3, 4]);
37//! match version {
38//!     Ok(v) => println!("working with version: {v:?}"),
39//!     Err(e) => println!("error parsing header: {e:?}"),
40//! }
41//! ```
42//!
43//! Pattern matching on [`Result`]s is clear and straightforward for
44//! simple cases, but [`Result`] comes with some convenience methods
45//! that make working with it more succinct.
46//!
47//! ```
48//! // The `is_ok` and `is_err` methods do what they say.
49//! let good_result: Result<i32, i32> = Ok(10);
50//! let bad_result: Result<i32, i32> = Err(10);
51//! assert!(good_result.is_ok() && !good_result.is_err());
52//! assert!(bad_result.is_err() && !bad_result.is_ok());
53//!
54//! // `map` and `map_err` consume the `Result` and produce another.
55//! let good_result: Result<i32, i32> = good_result.map(|i| i + 1);
56//! let bad_result: Result<i32, i32> = bad_result.map_err(|i| i - 1);
57//! assert_eq!(good_result, Ok(11));
58//! assert_eq!(bad_result, Err(9));
59//!
60//! // Use `and_then` to continue the computation.
61//! let good_result: Result<bool, i32> = good_result.and_then(|i| Ok(i == 11));
62//! assert_eq!(good_result, Ok(true));
63//!
64//! // Use `or_else` to handle the error.
65//! let bad_result: Result<i32, i32> = bad_result.or_else(|i| Ok(i + 20));
66//! assert_eq!(bad_result, Ok(29));
67//!
68//! // Consume the result and return the contents with `unwrap`.
69//! let final_awesome_result = good_result.unwrap();
70//! assert!(final_awesome_result)
71//! ```
72//!
73//! # Results must be used
74//!
75//! A common problem with using return values to indicate errors is
76//! that it is easy to ignore the return value, thus failing to handle
77//! the error. [`Result`] is annotated with the `#[must_use]` attribute,
78//! which will cause the compiler to issue a warning when a Result
79//! value is ignored. This makes [`Result`] especially useful with
80//! functions that may encounter errors but don't otherwise return a
81//! useful value.
82//!
83//! Consider the [`write_all`] method defined for I/O types
84//! by the [`Write`] trait:
85//!
86//! ```
87//! use std::io;
88//!
89//! trait Write {
90//!     fn write_all(&mut self, bytes: &[u8]) -> Result<(), io::Error>;
91//! }
92//! ```
93//!
94//! *Note: The actual definition of [`Write`] uses [`io::Result`], which
95//! is just a synonym for <code>[Result]<T, [io::Error]></code>.*
96//!
97//! This method doesn't produce a value, but the write may
98//! fail. It's crucial to handle the error case, and *not* write
99//! something like this:
100//!
101//! ```no_run
102//! # #![allow(unused_must_use)] // \o/
103//! use std::fs::File;
104//! use std::io::prelude::*;
105//!
106//! let mut file = File::create("valuable_data.txt").unwrap();
107//! // If `write_all` errors, then we'll never know, because the return
108//! // value is ignored.
109//! file.write_all(b"important message");
110//! ```
111//!
112//! If you *do* write that in Rust, the compiler will give you a
113//! warning (by default, controlled by the `unused_must_use` lint).
114//!
115//! You might instead, if you don't want to handle the error, simply
116//! assert success with [`expect`]. This will panic if the
117//! write fails, providing a marginally useful message indicating why:
118//!
119//! ```no_run
120//! use std::fs::File;
121//! use std::io::prelude::*;
122//!
123//! let mut file = File::create("valuable_data.txt").unwrap();
124//! file.write_all(b"important message").expect("failed to write message");
125//! ```
126//!
127//! You might also simply assert success:
128//!
129//! ```no_run
130//! # use std::fs::File;
131//! # use std::io::prelude::*;
132//! # let mut file = File::create("valuable_data.txt").unwrap();
133//! assert!(file.write_all(b"important message").is_ok());
134//! ```
135//!
136//! Or propagate the error up the call stack with [`?`]:
137//!
138//! ```
139//! # use std::fs::File;
140//! # use std::io::prelude::*;
141//! # use std::io;
142//! # #[allow(dead_code)]
143//! fn write_message() -> io::Result<()> {
144//!     let mut file = File::create("valuable_data.txt")?;
145//!     file.write_all(b"important message")?;
146//!     Ok(())
147//! }
148//! ```
149//!
150//! # The question mark operator, `?`
151//!
152//! When writing code that calls many functions that return the
153//! [`Result`] type, the error handling can be tedious. The question mark
154//! operator, [`?`], hides some of the boilerplate of propagating errors
155//! up the call stack.
156//!
157//! It replaces this:
158//!
159//! ```
160//! # #![allow(dead_code)]
161//! use std::fs::File;
162//! use std::io::prelude::*;
163//! use std::io;
164//!
165//! struct Info {
166//!     name: String,
167//!     age: i32,
168//!     rating: i32,
169//! }
170//!
171//! fn write_info(info: &Info) -> io::Result<()> {
172//!     // Early return on error
173//!     let mut file = match File::create("my_best_friends.txt") {
174//!            Err(e) => return Err(e),
175//!            Ok(f) => f,
176//!     };
177//!     if let Err(e) = file.write_all(format!("name: {}\n", info.name).as_bytes()) {
178//!         return Err(e)
179//!     }
180//!     if let Err(e) = file.write_all(format!("age: {}\n", info.age).as_bytes()) {
181//!         return Err(e)
182//!     }
183//!     if let Err(e) = file.write_all(format!("rating: {}\n", info.rating).as_bytes()) {
184//!         return Err(e)
185//!     }
186//!     Ok(())
187//! }
188//! ```
189//!
190//! With this:
191//!
192//! ```
193//! # #![allow(dead_code)]
194//! use std::fs::File;
195//! use std::io::prelude::*;
196//! use std::io;
197//!
198//! struct Info {
199//!     name: String,
200//!     age: i32,
201//!     rating: i32,
202//! }
203//!
204//! fn write_info(info: &Info) -> io::Result<()> {
205//!     let mut file = File::create("my_best_friends.txt")?;
206//!     // Early return on error
207//!     file.write_all(format!("name: {}\n", info.name).as_bytes())?;
208//!     file.write_all(format!("age: {}\n", info.age).as_bytes())?;
209//!     file.write_all(format!("rating: {}\n", info.rating).as_bytes())?;
210//!     Ok(())
211//! }
212//! ```
213//!
214//! *It's much nicer!*
215//!
216//! Ending the expression with [`?`] will result in the [`Ok`]'s unwrapped value, unless the result
217//! is [`Err`], in which case [`Err`] is returned early from the enclosing function.
218//!
219//! [`?`] can be used in functions that return [`Result`] because of the
220//! early return of [`Err`] that it provides.
221//!
222//! [`expect`]: Result::expect
223//! [`Write`]: ../../std/io/trait.Write.html "io::Write"
224//! [`write_all`]: ../../std/io/trait.Write.html#method.write_all "io::Write::write_all"
225//! [`io::Result`]: ../../std/io/type.Result.html "io::Result"
226//! [`?`]: crate::ops::Try
227//! [`Ok(T)`]: Ok
228//! [`Err(E)`]: Err
229//! [io::Error]: ../../std/io/struct.Error.html "io::Error"
230//!
231//! # Representation
232//!
233//! In some cases, [`Result<T, E>`] comes with size, alignment, and ABI
234//! guarantees. Specifically, one of either the `T` or `E` type must be a type
235//! that qualifies for the `Option` [representation guarantees][opt-rep] (let's
236//! call that type `I`), and the *other* type is a zero-sized type with
237//! alignment 1 (a "1-ZST").
238//!
239//! If that is the case, then `Result<T, E>` has the same size, alignment, and
240//! [function call ABI] as `I` (and therefore, as `Option<I>`). If `I` is `T`,
241//! it is therefore sound to transmute a value `t` of type `I` to type
242//! `Result<T, E>` (producing the value `Ok(t)`) and to transmute a value
243//! `Ok(t)` of type `Result<T, E>` to type `I` (producing the value `t`). If `I`
244//! is `E`, the same applies with `Ok` replaced by `Err`.
245//!
246//! For example, `NonZeroI32` qualifies for the `Option` representation
247//! guarantees and `()` is a zero-sized type with alignment 1. This means that
248//! both `Result<NonZeroI32, ()>` and `Result<(), NonZeroI32>` have the same
249//! size, alignment, and ABI as `NonZeroI32` (and `Option<NonZeroI32>`). The
250//! only difference between these is in the implied semantics:
251//!
252//! * `Option<NonZeroI32>` is "a non-zero i32 might be present"
253//! * `Result<NonZeroI32, ()>` is "a non-zero i32 success result, if any"
254//! * `Result<(), NonZeroI32>` is "a non-zero i32 error result, if any"
255//!
256//! [opt-rep]: ../option/index.html#representation "Option Representation"
257//! [function call ABI]: ../primitive.fn.html#abi-compatibility
258//!
259//! # Method overview
260//!
261//! In addition to working with pattern matching, [`Result`] provides a
262//! wide variety of different methods.
263//!
264//! ## Querying the variant
265//!
266//! The [`is_ok`] and [`is_err`] methods return [`true`] if the [`Result`]
267//! is [`Ok`] or [`Err`], respectively.
268//!
269//! The [`is_ok_and`] and [`is_err_and`] methods apply the provided function
270//! to the contents of the [`Result`] to produce a boolean value. If the [`Result`] does not have the expected variant
271//! then [`false`] is returned instead without executing the function.
272//!
273//! [`is_err`]: Result::is_err
274//! [`is_ok`]: Result::is_ok
275//! [`is_ok_and`]: Result::is_ok_and
276//! [`is_err_and`]: Result::is_err_and
277//!
278//! ## Adapters for working with references
279//!
280//! * [`as_ref`] converts from `&Result<T, E>` to `Result<&T, &E>`
281//! * [`as_mut`] converts from `&mut Result<T, E>` to `Result<&mut T, &mut E>`
282//! * [`as_deref`] converts from `&Result<T, E>` to `Result<&T::Target, &E>`
283//! * [`as_deref_mut`] converts from `&mut Result<T, E>` to
284//!   `Result<&mut T::Target, &mut E>`
285//!
286//! [`as_deref`]: Result::as_deref
287//! [`as_deref_mut`]: Result::as_deref_mut
288//! [`as_mut`]: Result::as_mut
289//! [`as_ref`]: Result::as_ref
290//!
291//! ## Extracting contained values
292//!
293//! These methods extract the contained value in a [`Result<T, E>`] when it
294//! is the [`Ok`] variant. If the [`Result`] is [`Err`]:
295//!
296//! * [`expect`] panics with a provided custom message
297//! * [`unwrap`] panics with a generic message
298//! * [`unwrap_or`] returns the provided default value
299//! * [`unwrap_or_default`] returns the default value of the type `T`
300//!   (which must implement the [`Default`] trait)
301//! * [`unwrap_or_else`] returns the result of evaluating the provided
302//!   function
303//! * [`unwrap_unchecked`] produces *[undefined behavior]*
304//!
305//! The panicking methods [`expect`] and [`unwrap`] require `E` to
306//! implement the [`Debug`] trait.
307//!
308//! [`Debug`]: crate::fmt::Debug
309//! [`expect`]: Result::expect
310//! [`unwrap`]: Result::unwrap
311//! [`unwrap_or`]: Result::unwrap_or
312//! [`unwrap_or_default`]: Result::unwrap_or_default
313//! [`unwrap_or_else`]: Result::unwrap_or_else
314//! [`unwrap_unchecked`]: Result::unwrap_unchecked
315//! [undefined behavior]: https://doc.rust-lang.org/reference/behavior-considered-undefined.html
316//!
317//! These methods extract the contained value in a [`Result<T, E>`] when it
318//! is the [`Err`] variant. They require `T` to implement the [`Debug`]
319//! trait. If the [`Result`] is [`Ok`]:
320//!
321//! * [`expect_err`] panics with a provided custom message
322//! * [`unwrap_err`] panics with a generic message
323//! * [`unwrap_err_unchecked`] produces *[undefined behavior]*
324//!
325//! [`Debug`]: crate::fmt::Debug
326//! [`expect_err`]: Result::expect_err
327//! [`unwrap_err`]: Result::unwrap_err
328//! [`unwrap_err_unchecked`]: Result::unwrap_err_unchecked
329//! [undefined behavior]: https://doc.rust-lang.org/reference/behavior-considered-undefined.html
330//!
331//! ## Transforming contained values
332//!
333//! These methods transform [`Result`] to [`Option`]:
334//!
335//! * [`err`][Result::err] transforms [`Result<T, E>`] into [`Option<E>`],
336//!   mapping [`Err(e)`] to [`Some(e)`] and [`Ok(v)`] to [`None`]
337//! * [`ok`][Result::ok] transforms [`Result<T, E>`] into [`Option<T>`],
338//!   mapping [`Ok(v)`] to [`Some(v)`] and [`Err(e)`] to [`None`]
339//! * [`transpose`] transposes a [`Result`] of an [`Option`] into an
340//!   [`Option`] of a [`Result`]
341//!
342// Do NOT add link reference definitions for `err` or `ok`, because they
343// will generate numerous incorrect URLs for `Err` and `Ok` elsewhere, due
344// to case folding.
345//!
346//! [`Err(e)`]: Err
347//! [`Ok(v)`]: Ok
348//! [`Some(e)`]: Option::Some
349//! [`Some(v)`]: Option::Some
350//! [`transpose`]: Result::transpose
351//!
352//! These methods transform the contained value of the [`Ok`] variant:
353//!
354//! * [`map`] transforms [`Result<T, E>`] into [`Result<U, E>`] by applying
355//!   the provided function to the contained value of [`Ok`] and leaving
356//!   [`Err`] values unchanged
357//! * [`inspect`] takes ownership of the [`Result`], applies the
358//!   provided function to the contained value by reference,
359//!   and then returns the [`Result`]
360//!
361//! [`map`]: Result::map
362//! [`inspect`]: Result::inspect
363//!
364//! These methods transform the contained value of the [`Err`] variant:
365//!
366//! * [`map_err`] transforms [`Result<T, E>`] into [`Result<T, F>`] by
367//!   applying the provided function to the contained value of [`Err`] and
368//!   leaving [`Ok`] values unchanged
369//! * [`inspect_err`] takes ownership of the [`Result`], applies the
370//!   provided function to the contained value of [`Err`] by reference,
371//!   and then returns the [`Result`]
372//!
373//! [`map_err`]: Result::map_err
374//! [`inspect_err`]: Result::inspect_err
375//!
376//! These methods transform a [`Result<T, E>`] into a value of a possibly
377//! different type `U`:
378//!
379//! * [`map_or`] applies the provided function to the contained value of
380//!   [`Ok`], or returns the provided default value if the [`Result`] is
381//!   [`Err`]
382//! * [`map_or_else`] applies the provided function to the contained value
383//!   of [`Ok`], or applies the provided default fallback function to the
384//!   contained value of [`Err`]
385//!
386//! [`map_or`]: Result::map_or
387//! [`map_or_else`]: Result::map_or_else
388//!
389//! ## Boolean operators
390//!
391//! These methods treat the [`Result`] as a boolean value, where [`Ok`]
392//! acts like [`true`] and [`Err`] acts like [`false`]. There are two
393//! categories of these methods: ones that take a [`Result`] as input, and
394//! ones that take a function as input (to be lazily evaluated).
395//!
396//! The [`and`] and [`or`] methods take another [`Result`] as input, and
397//! produce a [`Result`] as output. The [`and`] method can produce a
398//! [`Result<U, E>`] value having a different inner type `U` than
399//! [`Result<T, E>`]. The [`or`] method can produce a [`Result<T, F>`]
400//! value having a different error type `F` than [`Result<T, E>`].
401//!
402//! | method  | self     | input     | output   |
403//! |---------|----------|-----------|----------|
404//! | [`and`] | `Err(e)` | (ignored) | `Err(e)` |
405//! | [`and`] | `Ok(x)`  | `Err(d)`  | `Err(d)` |
406//! | [`and`] | `Ok(x)`  | `Ok(y)`   | `Ok(y)`  |
407//! | [`or`]  | `Err(e)` | `Err(d)`  | `Err(d)` |
408//! | [`or`]  | `Err(e)` | `Ok(y)`   | `Ok(y)`  |
409//! | [`or`]  | `Ok(x)`  | (ignored) | `Ok(x)`  |
410//!
411//! [`and`]: Result::and
412//! [`or`]: Result::or
413//!
414//! The [`and_then`] and [`or_else`] methods take a function as input, and
415//! only evaluate the function when they need to produce a new value. The
416//! [`and_then`] method can produce a [`Result<U, E>`] value having a
417//! different inner type `U` than [`Result<T, E>`]. The [`or_else`] method
418//! can produce a [`Result<T, F>`] value having a different error type `F`
419//! than [`Result<T, E>`].
420//!
421//! | method       | self     | function input | function result | output   |
422//! |--------------|----------|----------------|-----------------|----------|
423//! | [`and_then`] | `Err(e)` | (not provided) | (not evaluated) | `Err(e)` |
424//! | [`and_then`] | `Ok(x)`  | `x`            | `Err(d)`        | `Err(d)` |
425//! | [`and_then`] | `Ok(x)`  | `x`            | `Ok(y)`         | `Ok(y)`  |
426//! | [`or_else`]  | `Err(e)` | `e`            | `Err(d)`        | `Err(d)` |
427//! | [`or_else`]  | `Err(e)` | `e`            | `Ok(y)`         | `Ok(y)`  |
428//! | [`or_else`]  | `Ok(x)`  | (not provided) | (not evaluated) | `Ok(x)`  |
429//!
430//! [`and_then`]: Result::and_then
431//! [`or_else`]: Result::or_else
432//!
433//! ## Comparison operators
434//!
435//! If `T` and `E` both implement [`PartialOrd`] then [`Result<T, E>`] will
436//! derive its [`PartialOrd`] implementation.  With this order, an [`Ok`]
437//! compares as less than any [`Err`], while two [`Ok`] or two [`Err`]
438//! compare as their contained values would in `T` or `E` respectively.  If `T`
439//! and `E` both also implement [`Ord`], then so does [`Result<T, E>`].
440//!
441//! ```
442//! assert!(Ok(1) < Err(0));
443//! let x: Result<i32, ()> = Ok(0);
444//! let y = Ok(1);
445//! assert!(x < y);
446//! let x: Result<(), i32> = Err(0);
447//! let y = Err(1);
448//! assert!(x < y);
449//! ```
450//!
451//! ## Iterating over `Result`
452//!
453//! A [`Result`] can be iterated over. This can be helpful if you need an
454//! iterator that is conditionally empty. The iterator will either produce
455//! a single value (when the [`Result`] is [`Ok`]), or produce no values
456//! (when the [`Result`] is [`Err`]). For example, [`into_iter`] acts like
457//! [`once(v)`] if the [`Result`] is [`Ok(v)`], and like [`empty()`] if the
458//! [`Result`] is [`Err`].
459//!
460//! [`Ok(v)`]: Ok
461//! [`empty()`]: crate::iter::empty
462//! [`once(v)`]: crate::iter::once
463//!
464//! Iterators over [`Result<T, E>`] come in three types:
465//!
466//! * [`into_iter`] consumes the [`Result`] and produces the contained
467//!   value
468//! * [`iter`] produces an immutable reference of type `&T` to the
469//!   contained value
470//! * [`iter_mut`] produces a mutable reference of type `&mut T` to the
471//!   contained value
472//!
473//! See [Iterating over `Option`] for examples of how this can be useful.
474//!
475//! [Iterating over `Option`]: crate::option#iterating-over-option
476//! [`into_iter`]: Result::into_iter
477//! [`iter`]: Result::iter
478//! [`iter_mut`]: Result::iter_mut
479//!
480//! You might want to use an iterator chain to do multiple instances of an
481//! operation that can fail, but would like to ignore failures while
482//! continuing to process the successful results. In this example, we take
483//! advantage of the iterable nature of [`Result`] to select only the
484//! [`Ok`] values using [`flatten`][Iterator::flatten].
485//!
486//! ```
487//! # use std::str::FromStr;
488//! let mut results = vec![];
489//! let mut errs = vec![];
490//! let nums: Vec<_> = ["17", "not a number", "99", "-27", "768"]
491//!    .into_iter()
492//!    .map(u8::from_str)
493//!    // Save clones of the raw `Result` values to inspect
494//!    .inspect(|x| results.push(x.clone()))
495//!    // Challenge: explain how this captures only the `Err` values
496//!    .inspect(|x| errs.extend(x.clone().err()))
497//!    .flatten()
498//!    .collect();
499//! assert_eq!(errs.len(), 3);
500//! assert_eq!(nums, [17, 99]);
501//! println!("results {results:?}");
502//! println!("errs {errs:?}");
503//! println!("nums {nums:?}");
504//! ```
505//!
506//! ## Collecting into `Result`
507//!
508//! [`Result`] implements the [`FromIterator`][impl-FromIterator] trait,
509//! which allows an iterator over [`Result`] values to be collected into a
510//! [`Result`] of a collection of each contained value of the original
511//! [`Result`] values, or [`Err`] if any of the elements was [`Err`].
512//!
513//! [impl-FromIterator]: Result#impl-FromIterator%3CResult%3CA,+E%3E%3E-for-Result%3CV,+E%3E
514//!
515//! ```
516//! let v = [Ok(2), Ok(4), Err("err!"), Ok(8)];
517//! let res: Result<Vec<_>, &str> = v.into_iter().collect();
518//! assert_eq!(res, Err("err!"));
519//! let v = [Ok(2), Ok(4), Ok(8)];
520//! let res: Result<Vec<_>, &str> = v.into_iter().collect();
521//! assert_eq!(res, Ok(vec![2, 4, 8]));
522//! ```
523//!
524//! [`Result`] also implements the [`Product`][impl-Product] and
525//! [`Sum`][impl-Sum] traits, allowing an iterator over [`Result`] values
526//! to provide the [`product`][Iterator::product] and
527//! [`sum`][Iterator::sum] methods.
528//!
529//! [impl-Product]: Result#impl-Product%3CResult%3CU,+E%3E%3E-for-Result%3CT,+E%3E
530//! [impl-Sum]: Result#impl-Sum%3CResult%3CU,+E%3E%3E-for-Result%3CT,+E%3E
531//!
532//! ```
533//! let v = [Err("error!"), Ok(1), Ok(2), Ok(3), Err("foo")];
534//! let res: Result<i32, &str> = v.into_iter().sum();
535//! assert_eq!(res, Err("error!"));
536//! let v = [Ok(1), Ok(2), Ok(21)];
537//! let res: Result<i32, &str> = v.into_iter().product();
538//! assert_eq!(res, Ok(42));
539//! ```
540
541#![stable(feature = "rust1", since = "1.0.0")]
542
543#[cfg(not(feature = "ferrocene_certified"))]
544use crate::iter::{self, FusedIterator, TrustedLen};
545use crate::marker::Destruct;
546use crate::ops::{self, ControlFlow, Deref, DerefMut};
547#[cfg(not(feature = "ferrocene_certified"))]
548use crate::{convert, fmt, hint};
549
550// Ferrocene addition: imports for certified subset
551#[cfg(feature = "ferrocene_certified")]
552#[rustfmt::skip]
553use crate::{convert, hint};
554
555/// `Result` is a type that represents either success ([`Ok`]) or failure ([`Err`]).
556///
557/// See the [module documentation](self) for details.
558#[doc(search_unbox)]
559#[cfg_attr(not(feature = "ferrocene_certified"), derive(Copy, Debug, Hash))]
560#[cfg_attr(not(feature = "ferrocene_certified"), derive_const(PartialEq, PartialOrd, Eq, Ord))]
561#[must_use = "this `Result` may be an `Err` variant, which should be handled"]
562#[rustc_diagnostic_item = "Result"]
563#[stable(feature = "rust1", since = "1.0.0")]
564pub enum Result<T, E> {
565    /// Contains the success value
566    #[lang = "Ok"]
567    #[stable(feature = "rust1", since = "1.0.0")]
568    Ok(#[stable(feature = "rust1", since = "1.0.0")] T),
569
570    /// Contains the error value
571    #[lang = "Err"]
572    #[stable(feature = "rust1", since = "1.0.0")]
573    Err(#[stable(feature = "rust1", since = "1.0.0")] E),
574}
575
576/////////////////////////////////////////////////////////////////////////////
577// Type implementation
578/////////////////////////////////////////////////////////////////////////////
579
580impl<T, E> Result<T, E> {
581    /////////////////////////////////////////////////////////////////////////
582    // Querying the contained values
583    /////////////////////////////////////////////////////////////////////////
584
585    /// Returns `true` if the result is [`Ok`].
586    ///
587    /// # Examples
588    ///
589    /// ```
590    /// let x: Result<i32, &str> = Ok(-3);
591    /// assert_eq!(x.is_ok(), true);
592    ///
593    /// let x: Result<i32, &str> = Err("Some error message");
594    /// assert_eq!(x.is_ok(), false);
595    /// ```
596    #[must_use = "if you intended to assert that this is ok, consider `.unwrap()` instead"]
597    #[rustc_const_stable(feature = "const_result_basics", since = "1.48.0")]
598    #[inline]
599    #[stable(feature = "rust1", since = "1.0.0")]
600    pub const fn is_ok(&self) -> bool {
601        matches!(*self, Ok(_))
602    }
603
604    /// Returns `true` if the result is [`Ok`] and the value inside of it matches a predicate.
605    ///
606    /// # Examples
607    ///
608    /// ```
609    /// let x: Result<u32, &str> = Ok(2);
610    /// assert_eq!(x.is_ok_and(|x| x > 1), true);
611    ///
612    /// let x: Result<u32, &str> = Ok(0);
613    /// assert_eq!(x.is_ok_and(|x| x > 1), false);
614    ///
615    /// let x: Result<u32, &str> = Err("hey");
616    /// assert_eq!(x.is_ok_and(|x| x > 1), false);
617    ///
618    /// let x: Result<String, &str> = Ok("ownership".to_string());
619    /// assert_eq!(x.as_ref().is_ok_and(|x| x.len() > 1), true);
620    /// println!("still alive {:?}", x);
621    /// ```
622    #[must_use]
623    #[inline]
624    #[stable(feature = "is_some_and", since = "1.70.0")]
625    #[rustc_const_unstable(feature = "const_result_trait_fn", issue = "144211")]
626    pub const fn is_ok_and<F>(self, f: F) -> bool
627    where
628        F: [const] FnOnce(T) -> bool + [const] Destruct,
629        T: [const] Destruct,
630        E: [const] Destruct,
631    {
632        match self {
633            Err(_) => false,
634            Ok(x) => f(x),
635        }
636    }
637
638    /// Returns `true` if the result is [`Err`].
639    ///
640    /// # Examples
641    ///
642    /// ```
643    /// let x: Result<i32, &str> = Ok(-3);
644    /// assert_eq!(x.is_err(), false);
645    ///
646    /// let x: Result<i32, &str> = Err("Some error message");
647    /// assert_eq!(x.is_err(), true);
648    /// ```
649    #[must_use = "if you intended to assert that this is err, consider `.unwrap_err()` instead"]
650    #[rustc_const_stable(feature = "const_result_basics", since = "1.48.0")]
651    #[inline]
652    #[stable(feature = "rust1", since = "1.0.0")]
653    pub const fn is_err(&self) -> bool {
654        !self.is_ok()
655    }
656
657    /// Returns `true` if the result is [`Err`] and the value inside of it matches a predicate.
658    ///
659    /// # Examples
660    ///
661    /// ```
662    /// use std::io::{Error, ErrorKind};
663    ///
664    /// let x: Result<u32, Error> = Err(Error::new(ErrorKind::NotFound, "!"));
665    /// assert_eq!(x.is_err_and(|x| x.kind() == ErrorKind::NotFound), true);
666    ///
667    /// let x: Result<u32, Error> = Err(Error::new(ErrorKind::PermissionDenied, "!"));
668    /// assert_eq!(x.is_err_and(|x| x.kind() == ErrorKind::NotFound), false);
669    ///
670    /// let x: Result<u32, Error> = Ok(123);
671    /// assert_eq!(x.is_err_and(|x| x.kind() == ErrorKind::NotFound), false);
672    ///
673    /// let x: Result<u32, String> = Err("ownership".to_string());
674    /// assert_eq!(x.as_ref().is_err_and(|x| x.len() > 1), true);
675    /// println!("still alive {:?}", x);
676    /// ```
677    #[must_use]
678    #[inline]
679    #[stable(feature = "is_some_and", since = "1.70.0")]
680    #[rustc_const_unstable(feature = "const_result_trait_fn", issue = "144211")]
681    pub const fn is_err_and<F>(self, f: F) -> bool
682    where
683        F: [const] FnOnce(E) -> bool + [const] Destruct,
684        E: [const] Destruct,
685        T: [const] Destruct,
686    {
687        match self {
688            Ok(_) => false,
689            Err(e) => f(e),
690        }
691    }
692
693    /////////////////////////////////////////////////////////////////////////
694    // Adapter for each variant
695    /////////////////////////////////////////////////////////////////////////
696
697    /// Converts from `Result<T, E>` to [`Option<T>`].
698    ///
699    /// Converts `self` into an [`Option<T>`], consuming `self`,
700    /// and discarding the error, if any.
701    ///
702    /// # Examples
703    ///
704    /// ```
705    /// let x: Result<u32, &str> = Ok(2);
706    /// assert_eq!(x.ok(), Some(2));
707    ///
708    /// let x: Result<u32, &str> = Err("Nothing here");
709    /// assert_eq!(x.ok(), None);
710    /// ```
711    #[inline]
712    #[stable(feature = "rust1", since = "1.0.0")]
713    #[rustc_const_unstable(feature = "const_result_trait_fn", issue = "144211")]
714    #[rustc_diagnostic_item = "result_ok_method"]
715    pub const fn ok(self) -> Option<T>
716    where
717        T: [const] Destruct,
718        E: [const] Destruct,
719    {
720        match self {
721            Ok(x) => Some(x),
722            Err(_) => None,
723        }
724    }
725
726    /// Converts from `Result<T, E>` to [`Option<E>`].
727    ///
728    /// Converts `self` into an [`Option<E>`], consuming `self`,
729    /// and discarding the success value, if any.
730    ///
731    /// # Examples
732    ///
733    /// ```
734    /// let x: Result<u32, &str> = Ok(2);
735    /// assert_eq!(x.err(), None);
736    ///
737    /// let x: Result<u32, &str> = Err("Nothing here");
738    /// assert_eq!(x.err(), Some("Nothing here"));
739    /// ```
740    #[inline]
741    #[stable(feature = "rust1", since = "1.0.0")]
742    #[rustc_const_unstable(feature = "const_result_trait_fn", issue = "144211")]
743    pub const fn err(self) -> Option<E>
744    where
745        T: [const] Destruct,
746        E: [const] Destruct,
747    {
748        match self {
749            Ok(_) => None,
750            Err(x) => Some(x),
751        }
752    }
753
754    /////////////////////////////////////////////////////////////////////////
755    // Adapter for working with references
756    /////////////////////////////////////////////////////////////////////////
757
758    /// Converts from `&Result<T, E>` to `Result<&T, &E>`.
759    ///
760    /// Produces a new `Result`, containing a reference
761    /// into the original, leaving the original in place.
762    ///
763    /// # Examples
764    ///
765    /// ```
766    /// let x: Result<u32, &str> = Ok(2);
767    /// assert_eq!(x.as_ref(), Ok(&2));
768    ///
769    /// let x: Result<u32, &str> = Err("Error");
770    /// assert_eq!(x.as_ref(), Err(&"Error"));
771    /// ```
772    #[inline]
773    #[rustc_const_stable(feature = "const_result_basics", since = "1.48.0")]
774    #[stable(feature = "rust1", since = "1.0.0")]
775    pub const fn as_ref(&self) -> Result<&T, &E> {
776        match *self {
777            Ok(ref x) => Ok(x),
778            Err(ref x) => Err(x),
779        }
780    }
781
782    /// Converts from `&mut Result<T, E>` to `Result<&mut T, &mut E>`.
783    ///
784    /// # Examples
785    ///
786    /// ```
787    /// fn mutate(r: &mut Result<i32, i32>) {
788    ///     match r.as_mut() {
789    ///         Ok(v) => *v = 42,
790    ///         Err(e) => *e = 0,
791    ///     }
792    /// }
793    ///
794    /// let mut x: Result<i32, i32> = Ok(2);
795    /// mutate(&mut x);
796    /// assert_eq!(x.unwrap(), 42);
797    ///
798    /// let mut x: Result<i32, i32> = Err(13);
799    /// mutate(&mut x);
800    /// assert_eq!(x.unwrap_err(), 0);
801    /// ```
802    #[inline]
803    #[stable(feature = "rust1", since = "1.0.0")]
804    #[rustc_const_stable(feature = "const_result", since = "1.83.0")]
805    pub const fn as_mut(&mut self) -> Result<&mut T, &mut E> {
806        match *self {
807            Ok(ref mut x) => Ok(x),
808            Err(ref mut x) => Err(x),
809        }
810    }
811
812    /////////////////////////////////////////////////////////////////////////
813    // Transforming contained values
814    /////////////////////////////////////////////////////////////////////////
815
816    /// Maps a `Result<T, E>` to `Result<U, E>` by applying a function to a
817    /// contained [`Ok`] value, leaving an [`Err`] value untouched.
818    ///
819    /// This function can be used to compose the results of two functions.
820    ///
821    /// # Examples
822    ///
823    /// Print the numbers on each line of a string multiplied by two.
824    ///
825    /// ```
826    /// let line = "1\n2\n3\n4\n";
827    ///
828    /// for num in line.lines() {
829    ///     match num.parse::<i32>().map(|i| i * 2) {
830    ///         Ok(n) => println!("{n}"),
831    ///         Err(..) => {}
832    ///     }
833    /// }
834    /// ```
835    #[inline]
836    #[stable(feature = "rust1", since = "1.0.0")]
837    #[rustc_const_unstable(feature = "const_result_trait_fn", issue = "144211")]
838    pub const fn map<U, F>(self, op: F) -> Result<U, E>
839    where
840        F: [const] FnOnce(T) -> U + [const] Destruct,
841    {
842        match self {
843            Ok(t) => Ok(op(t)),
844            Err(e) => Err(e),
845        }
846    }
847
848    /// Returns the provided default (if [`Err`]), or
849    /// applies a function to the contained value (if [`Ok`]).
850    ///
851    /// Arguments passed to `map_or` are eagerly evaluated; if you are passing
852    /// the result of a function call, it is recommended to use [`map_or_else`],
853    /// which is lazily evaluated.
854    ///
855    /// [`map_or_else`]: Result::map_or_else
856    ///
857    /// # Examples
858    ///
859    /// ```
860    /// let x: Result<_, &str> = Ok("foo");
861    /// assert_eq!(x.map_or(42, |v| v.len()), 3);
862    ///
863    /// let x: Result<&str, _> = Err("bar");
864    /// assert_eq!(x.map_or(42, |v| v.len()), 42);
865    /// ```
866    #[inline]
867    #[stable(feature = "result_map_or", since = "1.41.0")]
868    #[rustc_const_unstable(feature = "const_result_trait_fn", issue = "144211")]
869    #[must_use = "if you don't need the returned value, use `if let` instead"]
870    pub const fn map_or<U, F>(self, default: U, f: F) -> U
871    where
872        F: [const] FnOnce(T) -> U + [const] Destruct,
873        T: [const] Destruct,
874        E: [const] Destruct,
875        U: [const] Destruct,
876    {
877        match self {
878            Ok(t) => f(t),
879            Err(_) => default,
880        }
881    }
882
883    /// Maps a `Result<T, E>` to `U` by applying fallback function `default` to
884    /// a contained [`Err`] value, or function `f` to a contained [`Ok`] value.
885    ///
886    /// This function can be used to unpack a successful result
887    /// while handling an error.
888    ///
889    ///
890    /// # Examples
891    ///
892    /// ```
893    /// let k = 21;
894    ///
895    /// let x : Result<_, &str> = Ok("foo");
896    /// assert_eq!(x.map_or_else(|e| k * 2, |v| v.len()), 3);
897    ///
898    /// let x : Result<&str, _> = Err("bar");
899    /// assert_eq!(x.map_or_else(|e| k * 2, |v| v.len()), 42);
900    /// ```
901    #[inline]
902    #[stable(feature = "result_map_or_else", since = "1.41.0")]
903    #[rustc_const_unstable(feature = "const_result_trait_fn", issue = "144211")]
904    pub const fn map_or_else<U, D, F>(self, default: D, f: F) -> U
905    where
906        D: [const] FnOnce(E) -> U + [const] Destruct,
907        F: [const] FnOnce(T) -> U + [const] Destruct,
908    {
909        match self {
910            Ok(t) => f(t),
911            Err(e) => default(e),
912        }
913    }
914
915    /// Maps a `Result<T, E>` to a `U` by applying function `f` to the contained
916    /// value if the result is [`Ok`], otherwise if [`Err`], returns the
917    /// [default value] for the type `U`.
918    ///
919    /// # Examples
920    ///
921    /// ```
922    /// #![feature(result_option_map_or_default)]
923    ///
924    /// let x: Result<_, &str> = Ok("foo");
925    /// let y: Result<&str, _> = Err("bar");
926    ///
927    /// assert_eq!(x.map_or_default(|x| x.len()), 3);
928    /// assert_eq!(y.map_or_default(|y| y.len()), 0);
929    /// ```
930    ///
931    /// [default value]: Default::default
932    #[inline]
933    #[unstable(feature = "result_option_map_or_default", issue = "138099")]
934    #[rustc_const_unstable(feature = "const_result_trait_fn", issue = "144211")]
935    pub const fn map_or_default<U, F>(self, f: F) -> U
936    where
937        F: [const] FnOnce(T) -> U + [const] Destruct,
938        U: [const] Default,
939        T: [const] Destruct,
940        E: [const] Destruct,
941    {
942        match self {
943            Ok(t) => f(t),
944            Err(_) => U::default(),
945        }
946    }
947
948    /// Maps a `Result<T, E>` to `Result<T, F>` by applying a function to a
949    /// contained [`Err`] value, leaving an [`Ok`] value untouched.
950    ///
951    /// This function can be used to pass through a successful result while handling
952    /// an error.
953    ///
954    ///
955    /// # Examples
956    ///
957    /// ```
958    /// fn stringify(x: u32) -> String { format!("error code: {x}") }
959    ///
960    /// let x: Result<u32, u32> = Ok(2);
961    /// assert_eq!(x.map_err(stringify), Ok(2));
962    ///
963    /// let x: Result<u32, u32> = Err(13);
964    /// assert_eq!(x.map_err(stringify), Err("error code: 13".to_string()));
965    /// ```
966    #[inline]
967    #[stable(feature = "rust1", since = "1.0.0")]
968    #[rustc_const_unstable(feature = "const_result_trait_fn", issue = "144211")]
969    pub const fn map_err<F, O>(self, op: O) -> Result<T, F>
970    where
971        O: [const] FnOnce(E) -> F + [const] Destruct,
972    {
973        match self {
974            Ok(t) => Ok(t),
975            Err(e) => Err(op(e)),
976        }
977    }
978
979    /// Calls a function with a reference to the contained value if [`Ok`].
980    ///
981    /// Returns the original result.
982    ///
983    /// # Examples
984    ///
985    /// ```
986    /// let x: u8 = "4"
987    ///     .parse::<u8>()
988    ///     .inspect(|x| println!("original: {x}"))
989    ///     .map(|x| x.pow(3))
990    ///     .expect("failed to parse number");
991    /// ```
992    #[inline]
993    #[stable(feature = "result_option_inspect", since = "1.76.0")]
994    #[rustc_const_unstable(feature = "const_result_trait_fn", issue = "144211")]
995    pub const fn inspect<F>(self, f: F) -> Self
996    where
997        F: [const] FnOnce(&T) + [const] Destruct,
998    {
999        if let Ok(ref t) = self {
1000            f(t);
1001        }
1002
1003        self
1004    }
1005
1006    /// Calls a function with a reference to the contained value if [`Err`].
1007    ///
1008    /// Returns the original result.
1009    ///
1010    /// # Examples
1011    ///
1012    /// ```
1013    /// use std::{fs, io};
1014    ///
1015    /// fn read() -> io::Result<String> {
1016    ///     fs::read_to_string("address.txt")
1017    ///         .inspect_err(|e| eprintln!("failed to read file: {e}"))
1018    /// }
1019    /// ```
1020    #[inline]
1021    #[stable(feature = "result_option_inspect", since = "1.76.0")]
1022    #[rustc_const_unstable(feature = "const_result_trait_fn", issue = "144211")]
1023    pub const fn inspect_err<F>(self, f: F) -> Self
1024    where
1025        F: [const] FnOnce(&E) + [const] Destruct,
1026    {
1027        if let Err(ref e) = self {
1028            f(e);
1029        }
1030
1031        self
1032    }
1033
1034    /// Converts from `Result<T, E>` (or `&Result<T, E>`) to `Result<&<T as Deref>::Target, &E>`.
1035    ///
1036    /// Coerces the [`Ok`] variant of the original [`Result`] via [`Deref`](crate::ops::Deref)
1037    /// and returns the new [`Result`].
1038    ///
1039    /// # Examples
1040    ///
1041    /// ```
1042    /// let x: Result<String, u32> = Ok("hello".to_string());
1043    /// let y: Result<&str, &u32> = Ok("hello");
1044    /// assert_eq!(x.as_deref(), y);
1045    ///
1046    /// let x: Result<String, u32> = Err(42);
1047    /// let y: Result<&str, &u32> = Err(&42);
1048    /// assert_eq!(x.as_deref(), y);
1049    /// ```
1050    #[inline]
1051    #[stable(feature = "inner_deref", since = "1.47.0")]
1052    #[rustc_const_unstable(feature = "const_convert", issue = "143773")]
1053    pub const fn as_deref(&self) -> Result<&T::Target, &E>
1054    where
1055        T: [const] Deref,
1056    {
1057        self.as_ref().map(Deref::deref)
1058    }
1059
1060    /// Converts from `Result<T, E>` (or `&mut Result<T, E>`) to `Result<&mut <T as DerefMut>::Target, &mut E>`.
1061    ///
1062    /// Coerces the [`Ok`] variant of the original [`Result`] via [`DerefMut`](crate::ops::DerefMut)
1063    /// and returns the new [`Result`].
1064    ///
1065    /// # Examples
1066    ///
1067    /// ```
1068    /// let mut s = "HELLO".to_string();
1069    /// let mut x: Result<String, u32> = Ok("hello".to_string());
1070    /// let y: Result<&mut str, &mut u32> = Ok(&mut s);
1071    /// assert_eq!(x.as_deref_mut().map(|x| { x.make_ascii_uppercase(); x }), y);
1072    ///
1073    /// let mut i = 42;
1074    /// let mut x: Result<String, u32> = Err(42);
1075    /// let y: Result<&mut str, &mut u32> = Err(&mut i);
1076    /// assert_eq!(x.as_deref_mut().map(|x| { x.make_ascii_uppercase(); x }), y);
1077    /// ```
1078    #[inline]
1079    #[stable(feature = "inner_deref", since = "1.47.0")]
1080    #[rustc_const_unstable(feature = "const_convert", issue = "143773")]
1081    pub const fn as_deref_mut(&mut self) -> Result<&mut T::Target, &mut E>
1082    where
1083        T: [const] DerefMut,
1084    {
1085        self.as_mut().map(DerefMut::deref_mut)
1086    }
1087
1088    /////////////////////////////////////////////////////////////////////////
1089    // Iterator constructors
1090    /////////////////////////////////////////////////////////////////////////
1091
1092    /// Returns an iterator over the possibly contained value.
1093    ///
1094    /// The iterator yields one value if the result is [`Result::Ok`], otherwise none.
1095    ///
1096    /// # Examples
1097    ///
1098    /// ```
1099    /// let x: Result<u32, &str> = Ok(7);
1100    /// assert_eq!(x.iter().next(), Some(&7));
1101    ///
1102    /// let x: Result<u32, &str> = Err("nothing!");
1103    /// assert_eq!(x.iter().next(), None);
1104    /// ```
1105    #[inline]
1106    #[stable(feature = "rust1", since = "1.0.0")]
1107    #[rustc_const_unstable(feature = "const_result_trait_fn", issue = "144211")]
1108    // Ferrocene: blocked on Iterator
1109    #[cfg(not(feature = "ferrocene_certified"))]
1110    pub const fn iter(&self) -> Iter<'_, T> {
1111        Iter { inner: self.as_ref().ok() }
1112    }
1113
1114    /// Returns a mutable iterator over the possibly contained value.
1115    ///
1116    /// The iterator yields one value if the result is [`Result::Ok`], otherwise none.
1117    ///
1118    /// # Examples
1119    ///
1120    /// ```
1121    /// let mut x: Result<u32, &str> = Ok(7);
1122    /// match x.iter_mut().next() {
1123    ///     Some(v) => *v = 40,
1124    ///     None => {},
1125    /// }
1126    /// assert_eq!(x, Ok(40));
1127    ///
1128    /// let mut x: Result<u32, &str> = Err("nothing!");
1129    /// assert_eq!(x.iter_mut().next(), None);
1130    /// ```
1131    #[inline]
1132    #[stable(feature = "rust1", since = "1.0.0")]
1133    #[rustc_const_unstable(feature = "const_result_trait_fn", issue = "144211")]
1134    // Ferrocene: blocked on Iterator
1135    #[cfg(not(feature = "ferrocene_certified"))]
1136    pub const fn iter_mut(&mut self) -> IterMut<'_, T> {
1137        IterMut { inner: self.as_mut().ok() }
1138    }
1139
1140    /////////////////////////////////////////////////////////////////////////
1141    // Extract a value
1142    /////////////////////////////////////////////////////////////////////////
1143
1144    /// Returns the contained [`Ok`] value, consuming the `self` value.
1145    ///
1146    /// Because this function may panic, its use is generally discouraged.
1147    /// Instead, prefer to use pattern matching and handle the [`Err`]
1148    /// case explicitly, or call [`unwrap_or`], [`unwrap_or_else`], or
1149    /// [`unwrap_or_default`].
1150    ///
1151    /// [`unwrap_or`]: Result::unwrap_or
1152    /// [`unwrap_or_else`]: Result::unwrap_or_else
1153    /// [`unwrap_or_default`]: Result::unwrap_or_default
1154    ///
1155    /// # Panics
1156    ///
1157    /// Panics if the value is an [`Err`], with a panic message including the
1158    /// passed message, and the content of the [`Err`].
1159    ///
1160    ///
1161    /// # Examples
1162    ///
1163    /// ```should_panic
1164    /// let x: Result<u32, &str> = Err("emergency failure");
1165    /// x.expect("Testing expect"); // panics with `Testing expect: emergency failure`
1166    /// ```
1167    ///
1168    /// # Recommended Message Style
1169    ///
1170    /// We recommend that `expect` messages are used to describe the reason you
1171    /// _expect_ the `Result` should be `Ok`.
1172    ///
1173    /// ```should_panic
1174    /// let path = std::env::var("IMPORTANT_PATH")
1175    ///     .expect("env variable `IMPORTANT_PATH` should be set by `wrapper_script.sh`");
1176    /// ```
1177    ///
1178    /// **Hint**: If you're having trouble remembering how to phrase expect
1179    /// error messages remember to focus on the word "should" as in "env
1180    /// variable should be set by blah" or "the given binary should be available
1181    /// and executable by the current user".
1182    ///
1183    /// For more detail on expect message styles and the reasoning behind our recommendation please
1184    /// refer to the section on ["Common Message
1185    /// Styles"](../../std/error/index.html#common-message-styles) in the
1186    /// [`std::error`](../../std/error/index.html) module docs.
1187    #[inline]
1188    #[track_caller]
1189    #[stable(feature = "result_expect", since = "1.4.0")]
1190    // Ferrocene: blocked on Debug
1191    #[cfg(not(feature = "ferrocene_certified"))]
1192    pub fn expect(self, msg: &str) -> T
1193    where
1194        E: fmt::Debug,
1195    {
1196        match self {
1197            Ok(t) => t,
1198            Err(e) => unwrap_failed(msg, &e),
1199        }
1200    }
1201
1202    /// Returns the contained [`Ok`] value, consuming the `self` value.
1203    ///
1204    /// Because this function may panic, its use is generally discouraged.
1205    /// Panics are meant for unrecoverable errors, and
1206    /// [may abort the entire program][panic-abort].
1207    ///
1208    /// Instead, prefer to use [the `?` (try) operator][try-operator], or pattern matching
1209    /// to handle the [`Err`] case explicitly, or call [`unwrap_or`],
1210    /// [`unwrap_or_else`], or [`unwrap_or_default`].
1211    ///
1212    /// [panic-abort]: https://doc.rust-lang.org/book/ch09-01-unrecoverable-errors-with-panic.html
1213    /// [try-operator]: https://doc.rust-lang.org/book/ch09-02-recoverable-errors-with-result.html#a-shortcut-for-propagating-errors-the--operator
1214    /// [`unwrap_or`]: Result::unwrap_or
1215    /// [`unwrap_or_else`]: Result::unwrap_or_else
1216    /// [`unwrap_or_default`]: Result::unwrap_or_default
1217    ///
1218    /// # Panics
1219    ///
1220    /// Panics if the value is an [`Err`], with a panic message provided by the
1221    /// [`Err`]'s value.
1222    ///
1223    ///
1224    /// # Examples
1225    ///
1226    /// Basic usage:
1227    ///
1228    /// ```
1229    /// let x: Result<u32, &str> = Ok(2);
1230    /// assert_eq!(x.unwrap(), 2);
1231    /// ```
1232    ///
1233    /// ```should_panic
1234    /// let x: Result<u32, &str> = Err("emergency failure");
1235    /// x.unwrap(); // panics with `emergency failure`
1236    /// ```
1237    #[inline(always)]
1238    #[track_caller]
1239    #[stable(feature = "rust1", since = "1.0.0")]
1240    // Ferrocene: blocked on Debug
1241    #[cfg(not(feature = "ferrocene_certified"))]
1242    pub fn unwrap(self) -> T
1243    where
1244        E: fmt::Debug,
1245    {
1246        match self {
1247            Ok(t) => t,
1248            Err(e) => unwrap_failed("called `Result::unwrap()` on an `Err` value", &e),
1249        }
1250    }
1251
1252    /// Returns the contained [`Ok`] value or a default
1253    ///
1254    /// Consumes the `self` argument then, if [`Ok`], returns the contained
1255    /// value, otherwise if [`Err`], returns the default value for that
1256    /// type.
1257    ///
1258    /// # Examples
1259    ///
1260    /// Converts a string to an integer, turning poorly-formed strings
1261    /// into 0 (the default value for integers). [`parse`] converts
1262    /// a string to any other type that implements [`FromStr`], returning an
1263    /// [`Err`] on error.
1264    ///
1265    /// ```
1266    /// let good_year_from_input = "1909";
1267    /// let bad_year_from_input = "190blarg";
1268    /// let good_year = good_year_from_input.parse().unwrap_or_default();
1269    /// let bad_year = bad_year_from_input.parse().unwrap_or_default();
1270    ///
1271    /// assert_eq!(1909, good_year);
1272    /// assert_eq!(0, bad_year);
1273    /// ```
1274    ///
1275    /// [`parse`]: str::parse
1276    /// [`FromStr`]: crate::str::FromStr
1277    #[inline]
1278    #[stable(feature = "result_unwrap_or_default", since = "1.16.0")]
1279    #[rustc_const_unstable(feature = "const_result_trait_fn", issue = "144211")]
1280    pub const fn unwrap_or_default(self) -> T
1281    where
1282        T: [const] Default + [const] Destruct,
1283        E: [const] Destruct,
1284    {
1285        match self {
1286            Ok(x) => x,
1287            Err(_) => Default::default(),
1288        }
1289    }
1290
1291    /// Returns the contained [`Err`] value, consuming the `self` value.
1292    ///
1293    /// # Panics
1294    ///
1295    /// Panics if the value is an [`Ok`], with a panic message including the
1296    /// passed message, and the content of the [`Ok`].
1297    ///
1298    ///
1299    /// # Examples
1300    ///
1301    /// ```should_panic
1302    /// let x: Result<u32, &str> = Ok(10);
1303    /// x.expect_err("Testing expect_err"); // panics with `Testing expect_err: 10`
1304    /// ```
1305    #[inline]
1306    #[track_caller]
1307    #[stable(feature = "result_expect_err", since = "1.17.0")]
1308    // Ferrocene: blocked on Debug
1309    #[cfg(not(feature = "ferrocene_certified"))]
1310    pub fn expect_err(self, msg: &str) -> E
1311    where
1312        T: fmt::Debug,
1313    {
1314        match self {
1315            Ok(t) => unwrap_failed(msg, &t),
1316            Err(e) => e,
1317        }
1318    }
1319
1320    /// Returns the contained [`Err`] value, consuming the `self` value.
1321    ///
1322    /// # Panics
1323    ///
1324    /// Panics if the value is an [`Ok`], with a custom panic message provided
1325    /// by the [`Ok`]'s value.
1326    ///
1327    /// # Examples
1328    ///
1329    /// ```should_panic
1330    /// let x: Result<u32, &str> = Ok(2);
1331    /// x.unwrap_err(); // panics with `2`
1332    /// ```
1333    ///
1334    /// ```
1335    /// let x: Result<u32, &str> = Err("emergency failure");
1336    /// assert_eq!(x.unwrap_err(), "emergency failure");
1337    /// ```
1338    #[inline]
1339    #[track_caller]
1340    #[stable(feature = "rust1", since = "1.0.0")]
1341    // Ferrocene: blocked on Debug
1342    #[cfg(not(feature = "ferrocene_certified"))]
1343    pub fn unwrap_err(self) -> E
1344    where
1345        T: fmt::Debug,
1346    {
1347        match self {
1348            Ok(t) => unwrap_failed("called `Result::unwrap_err()` on an `Ok` value", &t),
1349            Err(e) => e,
1350        }
1351    }
1352
1353    /// Returns the contained [`Ok`] value, but never panics.
1354    ///
1355    /// Unlike [`unwrap`], this method is known to never panic on the
1356    /// result types it is implemented for. Therefore, it can be used
1357    /// instead of `unwrap` as a maintainability safeguard that will fail
1358    /// to compile if the error type of the `Result` is later changed
1359    /// to an error that can actually occur.
1360    ///
1361    /// [`unwrap`]: Result::unwrap
1362    ///
1363    /// # Examples
1364    ///
1365    /// ```
1366    /// # #![feature(never_type)]
1367    /// # #![feature(unwrap_infallible)]
1368    ///
1369    /// fn only_good_news() -> Result<String, !> {
1370    ///     Ok("this is fine".into())
1371    /// }
1372    ///
1373    /// let s: String = only_good_news().into_ok();
1374    /// println!("{s}");
1375    /// ```
1376    #[unstable(feature = "unwrap_infallible", reason = "newly added", issue = "61695")]
1377    #[inline]
1378    #[rustc_allow_const_fn_unstable(const_precise_live_drops)]
1379    #[rustc_const_unstable(feature = "const_convert", issue = "143773")]
1380    // Ferrocene: blocked on !
1381    #[cfg(not(feature = "ferrocene_certified"))]
1382    pub const fn into_ok(self) -> T
1383    where
1384        E: [const] Into<!>,
1385    {
1386        match self {
1387            Ok(x) => x,
1388            Err(e) => e.into(),
1389        }
1390    }
1391
1392    /// Returns the contained [`Err`] value, but never panics.
1393    ///
1394    /// Unlike [`unwrap_err`], this method is known to never panic on the
1395    /// result types it is implemented for. Therefore, it can be used
1396    /// instead of `unwrap_err` as a maintainability safeguard that will fail
1397    /// to compile if the ok type of the `Result` is later changed
1398    /// to a type that can actually occur.
1399    ///
1400    /// [`unwrap_err`]: Result::unwrap_err
1401    ///
1402    /// # Examples
1403    ///
1404    /// ```
1405    /// # #![feature(never_type)]
1406    /// # #![feature(unwrap_infallible)]
1407    ///
1408    /// fn only_bad_news() -> Result<!, String> {
1409    ///     Err("Oops, it failed".into())
1410    /// }
1411    ///
1412    /// let error: String = only_bad_news().into_err();
1413    /// println!("{error}");
1414    /// ```
1415    #[unstable(feature = "unwrap_infallible", reason = "newly added", issue = "61695")]
1416    #[inline]
1417    #[rustc_allow_const_fn_unstable(const_precise_live_drops)]
1418    #[rustc_const_unstable(feature = "const_convert", issue = "143773")]
1419    // Ferrocene: blocked on !
1420    #[cfg(not(feature = "ferrocene_certified"))]
1421    pub const fn into_err(self) -> E
1422    where
1423        T: [const] Into<!>,
1424    {
1425        match self {
1426            Ok(x) => x.into(),
1427            Err(e) => e,
1428        }
1429    }
1430
1431    ////////////////////////////////////////////////////////////////////////
1432    // Boolean operations on the values, eager and lazy
1433    /////////////////////////////////////////////////////////////////////////
1434
1435    /// Returns `res` if the result is [`Ok`], otherwise returns the [`Err`] value of `self`.
1436    ///
1437    /// Arguments passed to `and` are eagerly evaluated; if you are passing the
1438    /// result of a function call, it is recommended to use [`and_then`], which is
1439    /// lazily evaluated.
1440    ///
1441    /// [`and_then`]: Result::and_then
1442    ///
1443    /// # Examples
1444    ///
1445    /// ```
1446    /// let x: Result<u32, &str> = Ok(2);
1447    /// let y: Result<&str, &str> = Err("late error");
1448    /// assert_eq!(x.and(y), Err("late error"));
1449    ///
1450    /// let x: Result<u32, &str> = Err("early error");
1451    /// let y: Result<&str, &str> = Ok("foo");
1452    /// assert_eq!(x.and(y), Err("early error"));
1453    ///
1454    /// let x: Result<u32, &str> = Err("not a 2");
1455    /// let y: Result<&str, &str> = Err("late error");
1456    /// assert_eq!(x.and(y), Err("not a 2"));
1457    ///
1458    /// let x: Result<u32, &str> = Ok(2);
1459    /// let y: Result<&str, &str> = Ok("different result type");
1460    /// assert_eq!(x.and(y), Ok("different result type"));
1461    /// ```
1462    #[inline]
1463    #[stable(feature = "rust1", since = "1.0.0")]
1464    #[rustc_const_unstable(feature = "const_result_trait_fn", issue = "144211")]
1465    pub const fn and<U>(self, res: Result<U, E>) -> Result<U, E>
1466    where
1467        T: [const] Destruct,
1468        E: [const] Destruct,
1469        U: [const] Destruct,
1470    {
1471        match self {
1472            Ok(_) => res,
1473            Err(e) => Err(e),
1474        }
1475    }
1476
1477    /// Calls `op` if the result is [`Ok`], otherwise returns the [`Err`] value of `self`.
1478    ///
1479    ///
1480    /// This function can be used for control flow based on `Result` values.
1481    ///
1482    /// # Examples
1483    ///
1484    /// ```
1485    /// fn sq_then_to_string(x: u32) -> Result<String, &'static str> {
1486    ///     x.checked_mul(x).map(|sq| sq.to_string()).ok_or("overflowed")
1487    /// }
1488    ///
1489    /// assert_eq!(Ok(2).and_then(sq_then_to_string), Ok(4.to_string()));
1490    /// assert_eq!(Ok(1_000_000).and_then(sq_then_to_string), Err("overflowed"));
1491    /// assert_eq!(Err("not a number").and_then(sq_then_to_string), Err("not a number"));
1492    /// ```
1493    ///
1494    /// Often used to chain fallible operations that may return [`Err`].
1495    ///
1496    /// ```
1497    /// use std::{io::ErrorKind, path::Path};
1498    ///
1499    /// // Note: on Windows "/" maps to "C:\"
1500    /// let root_modified_time = Path::new("/").metadata().and_then(|md| md.modified());
1501    /// assert!(root_modified_time.is_ok());
1502    ///
1503    /// let should_fail = Path::new("/bad/path").metadata().and_then(|md| md.modified());
1504    /// assert!(should_fail.is_err());
1505    /// assert_eq!(should_fail.unwrap_err().kind(), ErrorKind::NotFound);
1506    /// ```
1507    #[inline]
1508    #[stable(feature = "rust1", since = "1.0.0")]
1509    #[rustc_const_unstable(feature = "const_result_trait_fn", issue = "144211")]
1510    #[rustc_confusables("flat_map", "flatmap")]
1511    pub const fn and_then<U, F>(self, op: F) -> Result<U, E>
1512    where
1513        F: [const] FnOnce(T) -> Result<U, E> + [const] Destruct,
1514    {
1515        match self {
1516            Ok(t) => op(t),
1517            Err(e) => Err(e),
1518        }
1519    }
1520
1521    /// Returns `res` if the result is [`Err`], otherwise returns the [`Ok`] value of `self`.
1522    ///
1523    /// Arguments passed to `or` are eagerly evaluated; if you are passing the
1524    /// result of a function call, it is recommended to use [`or_else`], which is
1525    /// lazily evaluated.
1526    ///
1527    /// [`or_else`]: Result::or_else
1528    ///
1529    /// # Examples
1530    ///
1531    /// ```
1532    /// let x: Result<u32, &str> = Ok(2);
1533    /// let y: Result<u32, &str> = Err("late error");
1534    /// assert_eq!(x.or(y), Ok(2));
1535    ///
1536    /// let x: Result<u32, &str> = Err("early error");
1537    /// let y: Result<u32, &str> = Ok(2);
1538    /// assert_eq!(x.or(y), Ok(2));
1539    ///
1540    /// let x: Result<u32, &str> = Err("not a 2");
1541    /// let y: Result<u32, &str> = Err("late error");
1542    /// assert_eq!(x.or(y), Err("late error"));
1543    ///
1544    /// let x: Result<u32, &str> = Ok(2);
1545    /// let y: Result<u32, &str> = Ok(100);
1546    /// assert_eq!(x.or(y), Ok(2));
1547    /// ```
1548    #[inline]
1549    #[stable(feature = "rust1", since = "1.0.0")]
1550    #[rustc_const_unstable(feature = "const_result_trait_fn", issue = "144211")]
1551    pub const fn or<F>(self, res: Result<T, F>) -> Result<T, F>
1552    where
1553        T: [const] Destruct,
1554        E: [const] Destruct,
1555        F: [const] Destruct,
1556    {
1557        match self {
1558            Ok(v) => Ok(v),
1559            Err(_) => res,
1560        }
1561    }
1562
1563    /// Calls `op` if the result is [`Err`], otherwise returns the [`Ok`] value of `self`.
1564    ///
1565    /// This function can be used for control flow based on result values.
1566    ///
1567    ///
1568    /// # Examples
1569    ///
1570    /// ```
1571    /// fn sq(x: u32) -> Result<u32, u32> { Ok(x * x) }
1572    /// fn err(x: u32) -> Result<u32, u32> { Err(x) }
1573    ///
1574    /// assert_eq!(Ok(2).or_else(sq).or_else(sq), Ok(2));
1575    /// assert_eq!(Ok(2).or_else(err).or_else(sq), Ok(2));
1576    /// assert_eq!(Err(3).or_else(sq).or_else(err), Ok(9));
1577    /// assert_eq!(Err(3).or_else(err).or_else(err), Err(3));
1578    /// ```
1579    #[inline]
1580    #[stable(feature = "rust1", since = "1.0.0")]
1581    #[rustc_const_unstable(feature = "const_result_trait_fn", issue = "144211")]
1582    pub const fn or_else<F, O>(self, op: O) -> Result<T, F>
1583    where
1584        O: [const] FnOnce(E) -> Result<T, F> + [const] Destruct,
1585    {
1586        match self {
1587            Ok(t) => Ok(t),
1588            Err(e) => op(e),
1589        }
1590    }
1591
1592    /// Returns the contained [`Ok`] value or a provided default.
1593    ///
1594    /// Arguments passed to `unwrap_or` are eagerly evaluated; if you are passing
1595    /// the result of a function call, it is recommended to use [`unwrap_or_else`],
1596    /// which is lazily evaluated.
1597    ///
1598    /// [`unwrap_or_else`]: Result::unwrap_or_else
1599    ///
1600    /// # Examples
1601    ///
1602    /// ```
1603    /// let default = 2;
1604    /// let x: Result<u32, &str> = Ok(9);
1605    /// assert_eq!(x.unwrap_or(default), 9);
1606    ///
1607    /// let x: Result<u32, &str> = Err("error");
1608    /// assert_eq!(x.unwrap_or(default), default);
1609    /// ```
1610    #[inline]
1611    #[stable(feature = "rust1", since = "1.0.0")]
1612    #[rustc_const_unstable(feature = "const_result_trait_fn", issue = "144211")]
1613    pub const fn unwrap_or(self, default: T) -> T
1614    where
1615        T: [const] Destruct,
1616        E: [const] Destruct,
1617    {
1618        match self {
1619            Ok(t) => t,
1620            Err(_) => default,
1621        }
1622    }
1623
1624    /// Returns the contained [`Ok`] value or computes it from a closure.
1625    ///
1626    ///
1627    /// # Examples
1628    ///
1629    /// ```
1630    /// fn count(x: &str) -> usize { x.len() }
1631    ///
1632    /// assert_eq!(Ok(2).unwrap_or_else(count), 2);
1633    /// assert_eq!(Err("foo").unwrap_or_else(count), 3);
1634    /// ```
1635    #[inline]
1636    #[track_caller]
1637    #[stable(feature = "rust1", since = "1.0.0")]
1638    #[rustc_const_unstable(feature = "const_result_trait_fn", issue = "144211")]
1639    pub const fn unwrap_or_else<F>(self, op: F) -> T
1640    where
1641        F: [const] FnOnce(E) -> T + [const] Destruct,
1642    {
1643        match self {
1644            Ok(t) => t,
1645            Err(e) => op(e),
1646        }
1647    }
1648
1649    /// Returns the contained [`Ok`] value, consuming the `self` value,
1650    /// without checking that the value is not an [`Err`].
1651    ///
1652    /// # Safety
1653    ///
1654    /// Calling this method on an [`Err`] is *[undefined behavior]*.
1655    ///
1656    /// [undefined behavior]: https://doc.rust-lang.org/reference/behavior-considered-undefined.html
1657    ///
1658    /// # Examples
1659    ///
1660    /// ```
1661    /// let x: Result<u32, &str> = Ok(2);
1662    /// assert_eq!(unsafe { x.unwrap_unchecked() }, 2);
1663    /// ```
1664    ///
1665    /// ```no_run
1666    /// let x: Result<u32, &str> = Err("emergency failure");
1667    /// unsafe { x.unwrap_unchecked() }; // Undefined behavior!
1668    /// ```
1669    #[inline]
1670    #[track_caller]
1671    #[stable(feature = "option_result_unwrap_unchecked", since = "1.58.0")]
1672    pub unsafe fn unwrap_unchecked(self) -> T {
1673        match self {
1674            Ok(t) => t,
1675            #[ferrocene::annotation(
1676                "This line cannot be covered as reaching `unreachable_unchecked` is undefined behavior"
1677            )]
1678            // SAFETY: the safety contract must be upheld by the caller.
1679            Err(_) => unsafe { hint::unreachable_unchecked() },
1680        }
1681    }
1682
1683    /// Returns the contained [`Err`] value, consuming the `self` value,
1684    /// without checking that the value is not an [`Ok`].
1685    ///
1686    /// # Safety
1687    ///
1688    /// Calling this method on an [`Ok`] is *[undefined behavior]*.
1689    ///
1690    /// [undefined behavior]: https://doc.rust-lang.org/reference/behavior-considered-undefined.html
1691    ///
1692    /// # Examples
1693    ///
1694    /// ```no_run
1695    /// let x: Result<u32, &str> = Ok(2);
1696    /// unsafe { x.unwrap_err_unchecked() }; // Undefined behavior!
1697    /// ```
1698    ///
1699    /// ```
1700    /// let x: Result<u32, &str> = Err("emergency failure");
1701    /// assert_eq!(unsafe { x.unwrap_err_unchecked() }, "emergency failure");
1702    /// ```
1703    #[inline]
1704    #[track_caller]
1705    #[stable(feature = "option_result_unwrap_unchecked", since = "1.58.0")]
1706    pub unsafe fn unwrap_err_unchecked(self) -> E {
1707        match self {
1708            #[ferrocene::annotation(
1709                "This line cannot be covered as reaching `unreachable_unchecked` is undefined behavior"
1710            )]
1711            // SAFETY: the safety contract must be upheld by the caller.
1712            Ok(_) => unsafe { hint::unreachable_unchecked() },
1713            Err(e) => e,
1714        }
1715    }
1716}
1717
1718impl<T, E> Result<&T, E> {
1719    /// Maps a `Result<&T, E>` to a `Result<T, E>` by copying the contents of the
1720    /// `Ok` part.
1721    ///
1722    /// # Examples
1723    ///
1724    /// ```
1725    /// let val = 12;
1726    /// let x: Result<&i32, i32> = Ok(&val);
1727    /// assert_eq!(x, Ok(&12));
1728    /// let copied = x.copied();
1729    /// assert_eq!(copied, Ok(12));
1730    /// ```
1731    #[inline]
1732    #[stable(feature = "result_copied", since = "1.59.0")]
1733    #[rustc_const_stable(feature = "const_result", since = "1.83.0")]
1734    #[rustc_allow_const_fn_unstable(const_precise_live_drops)]
1735    pub const fn copied(self) -> Result<T, E>
1736    where
1737        T: Copy,
1738    {
1739        // FIXME(const-hack): this implementation, which sidesteps using `Result::map` since it's not const
1740        // ready yet, should be reverted when possible to avoid code repetition
1741        match self {
1742            Ok(&v) => Ok(v),
1743            Err(e) => Err(e),
1744        }
1745    }
1746
1747    /// Maps a `Result<&T, E>` to a `Result<T, E>` by cloning the contents of the
1748    /// `Ok` part.
1749    ///
1750    /// # Examples
1751    ///
1752    /// ```
1753    /// let val = 12;
1754    /// let x: Result<&i32, i32> = Ok(&val);
1755    /// assert_eq!(x, Ok(&12));
1756    /// let cloned = x.cloned();
1757    /// assert_eq!(cloned, Ok(12));
1758    /// ```
1759    #[inline]
1760    #[stable(feature = "result_cloned", since = "1.59.0")]
1761    pub fn cloned(self) -> Result<T, E>
1762    where
1763        T: Clone,
1764    {
1765        self.map(|t| t.clone())
1766    }
1767}
1768
1769impl<T, E> Result<&mut T, E> {
1770    /// Maps a `Result<&mut T, E>` to a `Result<T, E>` by copying the contents of the
1771    /// `Ok` part.
1772    ///
1773    /// # Examples
1774    ///
1775    /// ```
1776    /// let mut val = 12;
1777    /// let x: Result<&mut i32, i32> = Ok(&mut val);
1778    /// assert_eq!(x, Ok(&mut 12));
1779    /// let copied = x.copied();
1780    /// assert_eq!(copied, Ok(12));
1781    /// ```
1782    #[inline]
1783    #[stable(feature = "result_copied", since = "1.59.0")]
1784    #[rustc_const_stable(feature = "const_result", since = "1.83.0")]
1785    #[rustc_allow_const_fn_unstable(const_precise_live_drops)]
1786    pub const fn copied(self) -> Result<T, E>
1787    where
1788        T: Copy,
1789    {
1790        // FIXME(const-hack): this implementation, which sidesteps using `Result::map` since it's not const
1791        // ready yet, should be reverted when possible to avoid code repetition
1792        match self {
1793            Ok(&mut v) => Ok(v),
1794            Err(e) => Err(e),
1795        }
1796    }
1797
1798    /// Maps a `Result<&mut T, E>` to a `Result<T, E>` by cloning the contents of the
1799    /// `Ok` part.
1800    ///
1801    /// # Examples
1802    ///
1803    /// ```
1804    /// let mut val = 12;
1805    /// let x: Result<&mut i32, i32> = Ok(&mut val);
1806    /// assert_eq!(x, Ok(&mut 12));
1807    /// let cloned = x.cloned();
1808    /// assert_eq!(cloned, Ok(12));
1809    /// ```
1810    #[inline]
1811    #[stable(feature = "result_cloned", since = "1.59.0")]
1812    pub fn cloned(self) -> Result<T, E>
1813    where
1814        T: Clone,
1815    {
1816        self.map(|t| t.clone())
1817    }
1818}
1819
1820impl<T, E> Result<Option<T>, E> {
1821    /// Transposes a `Result` of an `Option` into an `Option` of a `Result`.
1822    ///
1823    /// `Ok(None)` will be mapped to `None`.
1824    /// `Ok(Some(_))` and `Err(_)` will be mapped to `Some(Ok(_))` and `Some(Err(_))`.
1825    ///
1826    /// # Examples
1827    ///
1828    /// ```
1829    /// #[derive(Debug, Eq, PartialEq)]
1830    /// struct SomeErr;
1831    ///
1832    /// let x: Result<Option<i32>, SomeErr> = Ok(Some(5));
1833    /// let y: Option<Result<i32, SomeErr>> = Some(Ok(5));
1834    /// assert_eq!(x.transpose(), y);
1835    /// ```
1836    #[inline]
1837    #[stable(feature = "transpose_result", since = "1.33.0")]
1838    #[rustc_const_stable(feature = "const_result", since = "1.83.0")]
1839    #[rustc_allow_const_fn_unstable(const_precise_live_drops)]
1840    pub const fn transpose(self) -> Option<Result<T, E>> {
1841        match self {
1842            Ok(Some(x)) => Some(Ok(x)),
1843            Ok(None) => None,
1844            Err(e) => Some(Err(e)),
1845        }
1846    }
1847}
1848
1849impl<T, E> Result<Result<T, E>, E> {
1850    /// Converts from `Result<Result<T, E>, E>` to `Result<T, E>`
1851    ///
1852    /// # Examples
1853    ///
1854    /// ```
1855    /// let x: Result<Result<&'static str, u32>, u32> = Ok(Ok("hello"));
1856    /// assert_eq!(Ok("hello"), x.flatten());
1857    ///
1858    /// let x: Result<Result<&'static str, u32>, u32> = Ok(Err(6));
1859    /// assert_eq!(Err(6), x.flatten());
1860    ///
1861    /// let x: Result<Result<&'static str, u32>, u32> = Err(6);
1862    /// assert_eq!(Err(6), x.flatten());
1863    /// ```
1864    ///
1865    /// Flattening only removes one level of nesting at a time:
1866    ///
1867    /// ```
1868    /// let x: Result<Result<Result<&'static str, u32>, u32>, u32> = Ok(Ok(Ok("hello")));
1869    /// assert_eq!(Ok(Ok("hello")), x.flatten());
1870    /// assert_eq!(Ok("hello"), x.flatten().flatten());
1871    /// ```
1872    #[inline]
1873    #[stable(feature = "result_flattening", since = "1.89.0")]
1874    #[rustc_allow_const_fn_unstable(const_precise_live_drops)]
1875    #[rustc_const_stable(feature = "result_flattening", since = "1.89.0")]
1876    // Ferrocene: blocked on const impl Drop for Result<Result<T, E>>
1877    #[cfg(not(feature = "ferrocene_certified"))]
1878    pub const fn flatten(self) -> Result<T, E> {
1879        // FIXME(const-hack): could be written with `and_then`
1880        match self {
1881            Ok(inner) => inner,
1882            Err(e) => Err(e),
1883        }
1884    }
1885}
1886
1887// This is a separate function to reduce the code size of the methods
1888#[cfg(not(panic = "immediate-abort"))]
1889#[inline(never)]
1890#[cold]
1891#[track_caller]
1892// Ferrocene: blocked on Debug
1893#[cfg(not(feature = "ferrocene_certified"))]
1894fn unwrap_failed(msg: &str, error: &dyn fmt::Debug) -> ! {
1895    panic!("{msg}: {error:?}");
1896}
1897
1898// This is a separate function to avoid constructing a `dyn Debug`
1899// that gets immediately thrown away, since vtables don't get cleaned up
1900// by dead code elimination if a trait object is constructed even if it goes
1901// unused
1902#[cfg(panic = "immediate-abort")]
1903#[inline]
1904#[cold]
1905#[track_caller]
1906// Ferrocene: blocked on Debug
1907#[cfg(not(feature = "ferrocene_certified"))]
1908const fn unwrap_failed<T>(_msg: &str, _error: &T) -> ! {
1909    panic!()
1910}
1911
1912/////////////////////////////////////////////////////////////////////////////
1913// Trait implementations
1914/////////////////////////////////////////////////////////////////////////////
1915
1916#[stable(feature = "rust1", since = "1.0.0")]
1917#[cfg(not(feature = "ferrocene_certified"))]
1918impl<T, E> Clone for Result<T, E>
1919where
1920    T: Clone,
1921    E: Clone,
1922{
1923    #[inline]
1924    fn clone(&self) -> Self {
1925        match self {
1926            Ok(x) => Ok(x.clone()),
1927            Err(x) => Err(x.clone()),
1928        }
1929    }
1930
1931    #[inline]
1932    fn clone_from(&mut self, source: &Self) {
1933        match (self, source) {
1934            (Ok(to), Ok(from)) => to.clone_from(from),
1935            (Err(to), Err(from)) => to.clone_from(from),
1936            (to, from) => *to = from.clone(),
1937        }
1938    }
1939}
1940
1941#[unstable(feature = "ergonomic_clones", issue = "132290")]
1942#[cfg(not(feature = "ferrocene_certified"))]
1943impl<T, E> crate::clone::UseCloned for Result<T, E>
1944where
1945    T: crate::clone::UseCloned,
1946    E: crate::clone::UseCloned,
1947{
1948}
1949
1950#[stable(feature = "rust1", since = "1.0.0")]
1951#[cfg(not(feature = "ferrocene_certified"))]
1952impl<T, E> IntoIterator for Result<T, E> {
1953    type Item = T;
1954    type IntoIter = IntoIter<T>;
1955
1956    /// Returns a consuming iterator over the possibly contained value.
1957    ///
1958    /// The iterator yields one value if the result is [`Result::Ok`], otherwise none.
1959    ///
1960    /// # Examples
1961    ///
1962    /// ```
1963    /// let x: Result<u32, &str> = Ok(5);
1964    /// let v: Vec<u32> = x.into_iter().collect();
1965    /// assert_eq!(v, [5]);
1966    ///
1967    /// let x: Result<u32, &str> = Err("nothing!");
1968    /// let v: Vec<u32> = x.into_iter().collect();
1969    /// assert_eq!(v, []);
1970    /// ```
1971    #[inline]
1972    fn into_iter(self) -> IntoIter<T> {
1973        IntoIter { inner: self.ok() }
1974    }
1975}
1976
1977#[stable(since = "1.4.0", feature = "result_iter")]
1978#[cfg(not(feature = "ferrocene_certified"))]
1979impl<'a, T, E> IntoIterator for &'a Result<T, E> {
1980    type Item = &'a T;
1981    type IntoIter = Iter<'a, T>;
1982
1983    fn into_iter(self) -> Iter<'a, T> {
1984        self.iter()
1985    }
1986}
1987
1988#[stable(since = "1.4.0", feature = "result_iter")]
1989#[cfg(not(feature = "ferrocene_certified"))]
1990impl<'a, T, E> IntoIterator for &'a mut Result<T, E> {
1991    type Item = &'a mut T;
1992    type IntoIter = IterMut<'a, T>;
1993
1994    fn into_iter(self) -> IterMut<'a, T> {
1995        self.iter_mut()
1996    }
1997}
1998
1999/////////////////////////////////////////////////////////////////////////////
2000// The Result Iterators
2001/////////////////////////////////////////////////////////////////////////////
2002
2003/// An iterator over a reference to the [`Ok`] variant of a [`Result`].
2004///
2005/// The iterator yields one value if the result is [`Ok`], otherwise none.
2006///
2007/// Created by [`Result::iter`].
2008#[derive(Debug)]
2009#[stable(feature = "rust1", since = "1.0.0")]
2010#[cfg(not(feature = "ferrocene_certified"))]
2011pub struct Iter<'a, T: 'a> {
2012    inner: Option<&'a T>,
2013}
2014
2015#[stable(feature = "rust1", since = "1.0.0")]
2016#[cfg(not(feature = "ferrocene_certified"))]
2017impl<'a, T> Iterator for Iter<'a, T> {
2018    type Item = &'a T;
2019
2020    #[inline]
2021    fn next(&mut self) -> Option<&'a T> {
2022        self.inner.take()
2023    }
2024    #[inline]
2025    fn size_hint(&self) -> (usize, Option<usize>) {
2026        let n = if self.inner.is_some() { 1 } else { 0 };
2027        (n, Some(n))
2028    }
2029}
2030
2031#[stable(feature = "rust1", since = "1.0.0")]
2032#[cfg(not(feature = "ferrocene_certified"))]
2033impl<'a, T> DoubleEndedIterator for Iter<'a, T> {
2034    #[inline]
2035    fn next_back(&mut self) -> Option<&'a T> {
2036        self.inner.take()
2037    }
2038}
2039
2040#[stable(feature = "rust1", since = "1.0.0")]
2041#[cfg(not(feature = "ferrocene_certified"))]
2042impl<T> ExactSizeIterator for Iter<'_, T> {}
2043
2044#[stable(feature = "fused", since = "1.26.0")]
2045#[cfg(not(feature = "ferrocene_certified"))]
2046impl<T> FusedIterator for Iter<'_, T> {}
2047
2048#[unstable(feature = "trusted_len", issue = "37572")]
2049#[cfg(not(feature = "ferrocene_certified"))]
2050unsafe impl<A> TrustedLen for Iter<'_, A> {}
2051
2052#[stable(feature = "rust1", since = "1.0.0")]
2053#[cfg(not(feature = "ferrocene_certified"))]
2054impl<T> Clone for Iter<'_, T> {
2055    #[inline]
2056    fn clone(&self) -> Self {
2057        Iter { inner: self.inner }
2058    }
2059}
2060
2061/// An iterator over a mutable reference to the [`Ok`] variant of a [`Result`].
2062///
2063/// Created by [`Result::iter_mut`].
2064#[derive(Debug)]
2065#[stable(feature = "rust1", since = "1.0.0")]
2066#[cfg(not(feature = "ferrocene_certified"))]
2067pub struct IterMut<'a, T: 'a> {
2068    inner: Option<&'a mut T>,
2069}
2070
2071#[stable(feature = "rust1", since = "1.0.0")]
2072#[cfg(not(feature = "ferrocene_certified"))]
2073impl<'a, T> Iterator for IterMut<'a, T> {
2074    type Item = &'a mut T;
2075
2076    #[inline]
2077    fn next(&mut self) -> Option<&'a mut T> {
2078        self.inner.take()
2079    }
2080    #[inline]
2081    fn size_hint(&self) -> (usize, Option<usize>) {
2082        let n = if self.inner.is_some() { 1 } else { 0 };
2083        (n, Some(n))
2084    }
2085}
2086
2087#[stable(feature = "rust1", since = "1.0.0")]
2088#[cfg(not(feature = "ferrocene_certified"))]
2089impl<'a, T> DoubleEndedIterator for IterMut<'a, T> {
2090    #[inline]
2091    fn next_back(&mut self) -> Option<&'a mut T> {
2092        self.inner.take()
2093    }
2094}
2095
2096#[stable(feature = "rust1", since = "1.0.0")]
2097#[cfg(not(feature = "ferrocene_certified"))]
2098impl<T> ExactSizeIterator for IterMut<'_, T> {}
2099
2100#[stable(feature = "fused", since = "1.26.0")]
2101#[cfg(not(feature = "ferrocene_certified"))]
2102impl<T> FusedIterator for IterMut<'_, T> {}
2103
2104#[unstable(feature = "trusted_len", issue = "37572")]
2105#[cfg(not(feature = "ferrocene_certified"))]
2106unsafe impl<A> TrustedLen for IterMut<'_, A> {}
2107
2108/// An iterator over the value in a [`Ok`] variant of a [`Result`].
2109///
2110/// The iterator yields one value if the result is [`Ok`], otherwise none.
2111///
2112/// This struct is created by the [`into_iter`] method on
2113/// [`Result`] (provided by the [`IntoIterator`] trait).
2114///
2115/// [`into_iter`]: IntoIterator::into_iter
2116#[derive(Clone, Debug)]
2117#[stable(feature = "rust1", since = "1.0.0")]
2118#[cfg(not(feature = "ferrocene_certified"))]
2119pub struct IntoIter<T> {
2120    inner: Option<T>,
2121}
2122
2123#[stable(feature = "rust1", since = "1.0.0")]
2124#[cfg(not(feature = "ferrocene_certified"))]
2125impl<T> Iterator for IntoIter<T> {
2126    type Item = T;
2127
2128    #[inline]
2129    fn next(&mut self) -> Option<T> {
2130        self.inner.take()
2131    }
2132    #[inline]
2133    fn size_hint(&self) -> (usize, Option<usize>) {
2134        let n = if self.inner.is_some() { 1 } else { 0 };
2135        (n, Some(n))
2136    }
2137}
2138
2139#[stable(feature = "rust1", since = "1.0.0")]
2140#[cfg(not(feature = "ferrocene_certified"))]
2141impl<T> DoubleEndedIterator for IntoIter<T> {
2142    #[inline]
2143    fn next_back(&mut self) -> Option<T> {
2144        self.inner.take()
2145    }
2146}
2147
2148#[stable(feature = "rust1", since = "1.0.0")]
2149#[cfg(not(feature = "ferrocene_certified"))]
2150impl<T> ExactSizeIterator for IntoIter<T> {}
2151
2152#[stable(feature = "fused", since = "1.26.0")]
2153#[cfg(not(feature = "ferrocene_certified"))]
2154impl<T> FusedIterator for IntoIter<T> {}
2155
2156#[unstable(feature = "trusted_len", issue = "37572")]
2157#[cfg(not(feature = "ferrocene_certified"))]
2158unsafe impl<A> TrustedLen for IntoIter<A> {}
2159
2160/////////////////////////////////////////////////////////////////////////////
2161// FromIterator
2162/////////////////////////////////////////////////////////////////////////////
2163
2164#[stable(feature = "rust1", since = "1.0.0")]
2165#[cfg(not(feature = "ferrocene_certified"))]
2166impl<A, E, V: FromIterator<A>> FromIterator<Result<A, E>> for Result<V, E> {
2167    /// Takes each element in the `Iterator`: if it is an `Err`, no further
2168    /// elements are taken, and the `Err` is returned. Should no `Err` occur, a
2169    /// container with the values of each `Result` is returned.
2170    ///
2171    /// Here is an example which increments every integer in a vector,
2172    /// checking for overflow:
2173    ///
2174    /// ```
2175    /// let v = vec![1, 2];
2176    /// let res: Result<Vec<u32>, &'static str> = v.iter().map(|x: &u32|
2177    ///     x.checked_add(1).ok_or("Overflow!")
2178    /// ).collect();
2179    /// assert_eq!(res, Ok(vec![2, 3]));
2180    /// ```
2181    ///
2182    /// Here is another example that tries to subtract one from another list
2183    /// of integers, this time checking for underflow:
2184    ///
2185    /// ```
2186    /// let v = vec![1, 2, 0];
2187    /// let res: Result<Vec<u32>, &'static str> = v.iter().map(|x: &u32|
2188    ///     x.checked_sub(1).ok_or("Underflow!")
2189    /// ).collect();
2190    /// assert_eq!(res, Err("Underflow!"));
2191    /// ```
2192    ///
2193    /// Here is a variation on the previous example, showing that no
2194    /// further elements are taken from `iter` after the first `Err`.
2195    ///
2196    /// ```
2197    /// let v = vec![3, 2, 1, 10];
2198    /// let mut shared = 0;
2199    /// let res: Result<Vec<u32>, &'static str> = v.iter().map(|x: &u32| {
2200    ///     shared += x;
2201    ///     x.checked_sub(2).ok_or("Underflow!")
2202    /// }).collect();
2203    /// assert_eq!(res, Err("Underflow!"));
2204    /// assert_eq!(shared, 6);
2205    /// ```
2206    ///
2207    /// Since the third element caused an underflow, no further elements were taken,
2208    /// so the final value of `shared` is 6 (= `3 + 2 + 1`), not 16.
2209    #[inline]
2210    fn from_iter<I: IntoIterator<Item = Result<A, E>>>(iter: I) -> Result<V, E> {
2211        iter::try_process(iter.into_iter(), |i| i.collect())
2212    }
2213}
2214
2215#[unstable(feature = "try_trait_v2", issue = "84277", old_name = "try_trait")]
2216#[rustc_const_unstable(feature = "const_try", issue = "74935")]
2217impl<T, E> const ops::Try for Result<T, E> {
2218    type Output = T;
2219    type Residual = Result<convert::Infallible, E>;
2220
2221    #[inline]
2222    fn from_output(output: Self::Output) -> Self {
2223        Ok(output)
2224    }
2225
2226    #[inline]
2227    fn branch(self) -> ControlFlow<Self::Residual, Self::Output> {
2228        match self {
2229            Ok(v) => ControlFlow::Continue(v),
2230            Err(e) => ControlFlow::Break(Err(e)),
2231        }
2232    }
2233}
2234
2235#[unstable(feature = "try_trait_v2", issue = "84277", old_name = "try_trait")]
2236#[rustc_const_unstable(feature = "const_try", issue = "74935")]
2237impl<T, E, F: [const] From<E>> const ops::FromResidual<Result<convert::Infallible, E>>
2238    for Result<T, F>
2239{
2240    #[inline]
2241    #[track_caller]
2242    fn from_residual(residual: Result<convert::Infallible, E>) -> Self {
2243        match residual {
2244            Err(e) => Err(From::from(e)),
2245        }
2246    }
2247}
2248#[diagnostic::do_not_recommend]
2249#[unstable(feature = "try_trait_v2_yeet", issue = "96374")]
2250#[rustc_const_unstable(feature = "const_try", issue = "74935")]
2251#[cfg(not(feature = "ferrocene_certified"))]
2252impl<T, E, F: [const] From<E>> const ops::FromResidual<ops::Yeet<E>> for Result<T, F> {
2253    #[inline]
2254    fn from_residual(ops::Yeet(e): ops::Yeet<E>) -> Self {
2255        Err(From::from(e))
2256    }
2257}
2258
2259#[unstable(feature = "try_trait_v2_residual", issue = "91285")]
2260#[rustc_const_unstable(feature = "const_try", issue = "74935")]
2261impl<T, E> const ops::Residual<T> for Result<convert::Infallible, E> {
2262    type TryType = Result<T, E>;
2263}