core/result.rs
1//! Error handling with the `Result` type.
2//!
3//! [`Result<T, E>`][`Result`] is the type used for returning and propagating
4//! errors. It is an enum with the variants, [`Ok(T)`], representing
5//! success and containing a value, and [`Err(E)`], representing error
6//! and containing an error value.
7//!
8//! ```
9//! # #[allow(dead_code)]
10//! enum Result<T, E> {
11//! Ok(T),
12//! Err(E),
13//! }
14//! ```
15//!
16//! Functions return [`Result`] whenever errors are expected and
17//! recoverable. In the `std` crate, [`Result`] is most prominently used
18//! for [I/O](../../std/io/index.html).
19//!
20//! A simple function returning [`Result`] might be
21//! defined and used like so:
22//!
23//! ```
24//! #[derive(Debug)]
25//! enum Version { Version1, Version2 }
26//!
27//! fn parse_version(header: &[u8]) -> Result<Version, &'static str> {
28//! match header.get(0) {
29//! None => Err("invalid header length"),
30//! Some(&1) => Ok(Version::Version1),
31//! Some(&2) => Ok(Version::Version2),
32//! Some(_) => Err("invalid version"),
33//! }
34//! }
35//!
36//! let version = parse_version(&[1, 2, 3, 4]);
37//! match version {
38//! Ok(v) => println!("working with version: {v:?}"),
39//! Err(e) => println!("error parsing header: {e:?}"),
40//! }
41//! ```
42//!
43//! Pattern matching on [`Result`]s is clear and straightforward for
44//! simple cases, but [`Result`] comes with some convenience methods
45//! that make working with it more succinct.
46//!
47//! ```
48//! // The `is_ok` and `is_err` methods do what they say.
49//! let good_result: Result<i32, i32> = Ok(10);
50//! let bad_result: Result<i32, i32> = Err(10);
51//! assert!(good_result.is_ok() && !good_result.is_err());
52//! assert!(bad_result.is_err() && !bad_result.is_ok());
53//!
54//! // `map` and `map_err` consume the `Result` and produce another.
55//! let good_result: Result<i32, i32> = good_result.map(|i| i + 1);
56//! let bad_result: Result<i32, i32> = bad_result.map_err(|i| i - 1);
57//! assert_eq!(good_result, Ok(11));
58//! assert_eq!(bad_result, Err(9));
59//!
60//! // Use `and_then` to continue the computation.
61//! let good_result: Result<bool, i32> = good_result.and_then(|i| Ok(i == 11));
62//! assert_eq!(good_result, Ok(true));
63//!
64//! // Use `or_else` to handle the error.
65//! let bad_result: Result<i32, i32> = bad_result.or_else(|i| Ok(i + 20));
66//! assert_eq!(bad_result, Ok(29));
67//!
68//! // Consume the result and return the contents with `unwrap`.
69//! let final_awesome_result = good_result.unwrap();
70//! assert!(final_awesome_result)
71//! ```
72//!
73//! # Results must be used
74//!
75//! A common problem with using return values to indicate errors is
76//! that it is easy to ignore the return value, thus failing to handle
77//! the error. [`Result`] is annotated with the `#[must_use]` attribute,
78//! which will cause the compiler to issue a warning when a Result
79//! value is ignored. This makes [`Result`] especially useful with
80//! functions that may encounter errors but don't otherwise return a
81//! useful value.
82//!
83//! Consider the [`write_all`] method defined for I/O types
84//! by the [`Write`] trait:
85//!
86//! ```
87//! use std::io;
88//!
89//! trait Write {
90//! fn write_all(&mut self, bytes: &[u8]) -> Result<(), io::Error>;
91//! }
92//! ```
93//!
94//! *Note: The actual definition of [`Write`] uses [`io::Result`], which
95//! is just a synonym for <code>[Result]<T, [io::Error]></code>.*
96//!
97//! This method doesn't produce a value, but the write may
98//! fail. It's crucial to handle the error case, and *not* write
99//! something like this:
100//!
101//! ```no_run
102//! # #![allow(unused_must_use)] // \o/
103//! use std::fs::File;
104//! use std::io::prelude::*;
105//!
106//! let mut file = File::create("valuable_data.txt").unwrap();
107//! // If `write_all` errors, then we'll never know, because the return
108//! // value is ignored.
109//! file.write_all(b"important message");
110//! ```
111//!
112//! If you *do* write that in Rust, the compiler will give you a
113//! warning (by default, controlled by the `unused_must_use` lint).
114//!
115//! You might instead, if you don't want to handle the error, simply
116//! assert success with [`expect`]. This will panic if the
117//! write fails, providing a marginally useful message indicating why:
118//!
119//! ```no_run
120//! use std::fs::File;
121//! use std::io::prelude::*;
122//!
123//! let mut file = File::create("valuable_data.txt").unwrap();
124//! file.write_all(b"important message").expect("failed to write message");
125//! ```
126//!
127//! You might also simply assert success:
128//!
129//! ```no_run
130//! # use std::fs::File;
131//! # use std::io::prelude::*;
132//! # let mut file = File::create("valuable_data.txt").unwrap();
133//! assert!(file.write_all(b"important message").is_ok());
134//! ```
135//!
136//! Or propagate the error up the call stack with [`?`]:
137//!
138//! ```
139//! # use std::fs::File;
140//! # use std::io::prelude::*;
141//! # use std::io;
142//! # #[allow(dead_code)]
143//! fn write_message() -> io::Result<()> {
144//! let mut file = File::create("valuable_data.txt")?;
145//! file.write_all(b"important message")?;
146//! Ok(())
147//! }
148//! ```
149//!
150//! # The question mark operator, `?`
151//!
152//! When writing code that calls many functions that return the
153//! [`Result`] type, the error handling can be tedious. The question mark
154//! operator, [`?`], hides some of the boilerplate of propagating errors
155//! up the call stack.
156//!
157//! It replaces this:
158//!
159//! ```
160//! # #![allow(dead_code)]
161//! use std::fs::File;
162//! use std::io::prelude::*;
163//! use std::io;
164//!
165//! struct Info {
166//! name: String,
167//! age: i32,
168//! rating: i32,
169//! }
170//!
171//! fn write_info(info: &Info) -> io::Result<()> {
172//! // Early return on error
173//! let mut file = match File::create("my_best_friends.txt") {
174//! Err(e) => return Err(e),
175//! Ok(f) => f,
176//! };
177//! if let Err(e) = file.write_all(format!("name: {}\n", info.name).as_bytes()) {
178//! return Err(e)
179//! }
180//! if let Err(e) = file.write_all(format!("age: {}\n", info.age).as_bytes()) {
181//! return Err(e)
182//! }
183//! if let Err(e) = file.write_all(format!("rating: {}\n", info.rating).as_bytes()) {
184//! return Err(e)
185//! }
186//! Ok(())
187//! }
188//! ```
189//!
190//! With this:
191//!
192//! ```
193//! # #![allow(dead_code)]
194//! use std::fs::File;
195//! use std::io::prelude::*;
196//! use std::io;
197//!
198//! struct Info {
199//! name: String,
200//! age: i32,
201//! rating: i32,
202//! }
203//!
204//! fn write_info(info: &Info) -> io::Result<()> {
205//! let mut file = File::create("my_best_friends.txt")?;
206//! // Early return on error
207//! file.write_all(format!("name: {}\n", info.name).as_bytes())?;
208//! file.write_all(format!("age: {}\n", info.age).as_bytes())?;
209//! file.write_all(format!("rating: {}\n", info.rating).as_bytes())?;
210//! Ok(())
211//! }
212//! ```
213//!
214//! *It's much nicer!*
215//!
216//! Ending the expression with [`?`] will result in the [`Ok`]'s unwrapped value, unless the result
217//! is [`Err`], in which case [`Err`] is returned early from the enclosing function.
218//!
219//! [`?`] can be used in functions that return [`Result`] because of the
220//! early return of [`Err`] that it provides.
221//!
222//! [`expect`]: Result::expect
223//! [`Write`]: ../../std/io/trait.Write.html "io::Write"
224//! [`write_all`]: ../../std/io/trait.Write.html#method.write_all "io::Write::write_all"
225//! [`io::Result`]: ../../std/io/type.Result.html "io::Result"
226//! [`?`]: crate::ops::Try
227//! [`Ok(T)`]: Ok
228//! [`Err(E)`]: Err
229//! [io::Error]: ../../std/io/struct.Error.html "io::Error"
230//!
231//! # Representation
232//!
233//! In some cases, [`Result<T, E>`] will gain the same size, alignment, and ABI
234//! guarantees as [`Option<U>`] has. One of either the `T` or `E` type must be a
235//! type that qualifies for the `Option` [representation guarantees][opt-rep],
236//! and the *other* type must meet all of the following conditions:
237//! * Is a zero-sized type with alignment 1 (a "1-ZST").
238//! * Has no fields.
239//! * Does not have the `#[non_exhaustive]` attribute.
240//!
241//! For example, `NonZeroI32` qualifies for the `Option` representation
242//! guarantees, and `()` is a zero-sized type with alignment 1, no fields, and
243//! it isn't `non_exhaustive`. This means that both `Result<NonZeroI32, ()>` and
244//! `Result<(), NonZeroI32>` have the same size, alignment, and ABI guarantees
245//! as `Option<NonZeroI32>`. The only difference is the implied semantics:
246//! * `Option<NonZeroI32>` is "a non-zero i32 might be present"
247//! * `Result<NonZeroI32, ()>` is "a non-zero i32 success result, if any"
248//! * `Result<(), NonZeroI32>` is "a non-zero i32 error result, if any"
249//!
250//! [opt-rep]: ../option/index.html#representation "Option Representation"
251//!
252//! # Method overview
253//!
254//! In addition to working with pattern matching, [`Result`] provides a
255//! wide variety of different methods.
256//!
257//! ## Querying the variant
258//!
259//! The [`is_ok`] and [`is_err`] methods return [`true`] if the [`Result`]
260//! is [`Ok`] or [`Err`], respectively.
261//!
262//! The [`is_ok_and`] and [`is_err_and`] methods apply the provided function
263//! to the contents of the [`Result`] to produce a boolean value. If the [`Result`] does not have the expected variant
264//! then [`false`] is returned instead without executing the function.
265//!
266//! [`is_err`]: Result::is_err
267//! [`is_ok`]: Result::is_ok
268//! [`is_ok_and`]: Result::is_ok_and
269//! [`is_err_and`]: Result::is_err_and
270//!
271//! ## Adapters for working with references
272//!
273//! * [`as_ref`] converts from `&Result<T, E>` to `Result<&T, &E>`
274//! * [`as_mut`] converts from `&mut Result<T, E>` to `Result<&mut T, &mut E>`
275//! * [`as_deref`] converts from `&Result<T, E>` to `Result<&T::Target, &E>`
276//! * [`as_deref_mut`] converts from `&mut Result<T, E>` to
277//! `Result<&mut T::Target, &mut E>`
278//!
279//! [`as_deref`]: Result::as_deref
280//! [`as_deref_mut`]: Result::as_deref_mut
281//! [`as_mut`]: Result::as_mut
282//! [`as_ref`]: Result::as_ref
283//!
284//! ## Extracting contained values
285//!
286//! These methods extract the contained value in a [`Result<T, E>`] when it
287//! is the [`Ok`] variant. If the [`Result`] is [`Err`]:
288//!
289//! * [`expect`] panics with a provided custom message
290//! * [`unwrap`] panics with a generic message
291//! * [`unwrap_or`] returns the provided default value
292//! * [`unwrap_or_default`] returns the default value of the type `T`
293//! (which must implement the [`Default`] trait)
294//! * [`unwrap_or_else`] returns the result of evaluating the provided
295//! function
296//! * [`unwrap_unchecked`] produces *[undefined behavior]*
297//!
298//! The panicking methods [`expect`] and [`unwrap`] require `E` to
299//! implement the [`Debug`] trait.
300//!
301//! [`Debug`]: crate::fmt::Debug
302//! [`expect`]: Result::expect
303//! [`unwrap`]: Result::unwrap
304//! [`unwrap_or`]: Result::unwrap_or
305//! [`unwrap_or_default`]: Result::unwrap_or_default
306//! [`unwrap_or_else`]: Result::unwrap_or_else
307//! [`unwrap_unchecked`]: Result::unwrap_unchecked
308//! [undefined behavior]: https://doc.rust-lang.org/reference/behavior-considered-undefined.html
309//!
310//! These methods extract the contained value in a [`Result<T, E>`] when it
311//! is the [`Err`] variant. They require `T` to implement the [`Debug`]
312//! trait. If the [`Result`] is [`Ok`]:
313//!
314//! * [`expect_err`] panics with a provided custom message
315//! * [`unwrap_err`] panics with a generic message
316//! * [`unwrap_err_unchecked`] produces *[undefined behavior]*
317//!
318//! [`Debug`]: crate::fmt::Debug
319//! [`expect_err`]: Result::expect_err
320//! [`unwrap_err`]: Result::unwrap_err
321//! [`unwrap_err_unchecked`]: Result::unwrap_err_unchecked
322//! [undefined behavior]: https://doc.rust-lang.org/reference/behavior-considered-undefined.html
323//!
324//! ## Transforming contained values
325//!
326//! These methods transform [`Result`] to [`Option`]:
327//!
328//! * [`err`][Result::err] transforms [`Result<T, E>`] into [`Option<E>`],
329//! mapping [`Err(e)`] to [`Some(e)`] and [`Ok(v)`] to [`None`]
330//! * [`ok`][Result::ok] transforms [`Result<T, E>`] into [`Option<T>`],
331//! mapping [`Ok(v)`] to [`Some(v)`] and [`Err(e)`] to [`None`]
332//! * [`transpose`] transposes a [`Result`] of an [`Option`] into an
333//! [`Option`] of a [`Result`]
334//!
335// Do NOT add link reference definitions for `err` or `ok`, because they
336// will generate numerous incorrect URLs for `Err` and `Ok` elsewhere, due
337// to case folding.
338//!
339//! [`Err(e)`]: Err
340//! [`Ok(v)`]: Ok
341//! [`Some(e)`]: Option::Some
342//! [`Some(v)`]: Option::Some
343//! [`transpose`]: Result::transpose
344//!
345//! These methods transform the contained value of the [`Ok`] variant:
346//!
347//! * [`map`] transforms [`Result<T, E>`] into [`Result<U, E>`] by applying
348//! the provided function to the contained value of [`Ok`] and leaving
349//! [`Err`] values unchanged
350//! * [`inspect`] takes ownership of the [`Result`], applies the
351//! provided function to the contained value by reference,
352//! and then returns the [`Result`]
353//!
354//! [`map`]: Result::map
355//! [`inspect`]: Result::inspect
356//!
357//! These methods transform the contained value of the [`Err`] variant:
358//!
359//! * [`map_err`] transforms [`Result<T, E>`] into [`Result<T, F>`] by
360//! applying the provided function to the contained value of [`Err`] and
361//! leaving [`Ok`] values unchanged
362//! * [`inspect_err`] takes ownership of the [`Result`], applies the
363//! provided function to the contained value of [`Err`] by reference,
364//! and then returns the [`Result`]
365//!
366//! [`map_err`]: Result::map_err
367//! [`inspect_err`]: Result::inspect_err
368//!
369//! These methods transform a [`Result<T, E>`] into a value of a possibly
370//! different type `U`:
371//!
372//! * [`map_or`] applies the provided function to the contained value of
373//! [`Ok`], or returns the provided default value if the [`Result`] is
374//! [`Err`]
375//! * [`map_or_else`] applies the provided function to the contained value
376//! of [`Ok`], or applies the provided default fallback function to the
377//! contained value of [`Err`]
378//!
379//! [`map_or`]: Result::map_or
380//! [`map_or_else`]: Result::map_or_else
381//!
382//! ## Boolean operators
383//!
384//! These methods treat the [`Result`] as a boolean value, where [`Ok`]
385//! acts like [`true`] and [`Err`] acts like [`false`]. There are two
386//! categories of these methods: ones that take a [`Result`] as input, and
387//! ones that take a function as input (to be lazily evaluated).
388//!
389//! The [`and`] and [`or`] methods take another [`Result`] as input, and
390//! produce a [`Result`] as output. The [`and`] method can produce a
391//! [`Result<U, E>`] value having a different inner type `U` than
392//! [`Result<T, E>`]. The [`or`] method can produce a [`Result<T, F>`]
393//! value having a different error type `F` than [`Result<T, E>`].
394//!
395//! | method | self | input | output |
396//! |---------|----------|-----------|----------|
397//! | [`and`] | `Err(e)` | (ignored) | `Err(e)` |
398//! | [`and`] | `Ok(x)` | `Err(d)` | `Err(d)` |
399//! | [`and`] | `Ok(x)` | `Ok(y)` | `Ok(y)` |
400//! | [`or`] | `Err(e)` | `Err(d)` | `Err(d)` |
401//! | [`or`] | `Err(e)` | `Ok(y)` | `Ok(y)` |
402//! | [`or`] | `Ok(x)` | (ignored) | `Ok(x)` |
403//!
404//! [`and`]: Result::and
405//! [`or`]: Result::or
406//!
407//! The [`and_then`] and [`or_else`] methods take a function as input, and
408//! only evaluate the function when they need to produce a new value. The
409//! [`and_then`] method can produce a [`Result<U, E>`] value having a
410//! different inner type `U` than [`Result<T, E>`]. The [`or_else`] method
411//! can produce a [`Result<T, F>`] value having a different error type `F`
412//! than [`Result<T, E>`].
413//!
414//! | method | self | function input | function result | output |
415//! |--------------|----------|----------------|-----------------|----------|
416//! | [`and_then`] | `Err(e)` | (not provided) | (not evaluated) | `Err(e)` |
417//! | [`and_then`] | `Ok(x)` | `x` | `Err(d)` | `Err(d)` |
418//! | [`and_then`] | `Ok(x)` | `x` | `Ok(y)` | `Ok(y)` |
419//! | [`or_else`] | `Err(e)` | `e` | `Err(d)` | `Err(d)` |
420//! | [`or_else`] | `Err(e)` | `e` | `Ok(y)` | `Ok(y)` |
421//! | [`or_else`] | `Ok(x)` | (not provided) | (not evaluated) | `Ok(x)` |
422//!
423//! [`and_then`]: Result::and_then
424//! [`or_else`]: Result::or_else
425//!
426//! ## Comparison operators
427//!
428//! If `T` and `E` both implement [`PartialOrd`] then [`Result<T, E>`] will
429//! derive its [`PartialOrd`] implementation. With this order, an [`Ok`]
430//! compares as less than any [`Err`], while two [`Ok`] or two [`Err`]
431//! compare as their contained values would in `T` or `E` respectively. If `T`
432//! and `E` both also implement [`Ord`], then so does [`Result<T, E>`].
433//!
434//! ```
435//! assert!(Ok(1) < Err(0));
436//! let x: Result<i32, ()> = Ok(0);
437//! let y = Ok(1);
438//! assert!(x < y);
439//! let x: Result<(), i32> = Err(0);
440//! let y = Err(1);
441//! assert!(x < y);
442//! ```
443//!
444//! ## Iterating over `Result`
445//!
446//! A [`Result`] can be iterated over. This can be helpful if you need an
447//! iterator that is conditionally empty. The iterator will either produce
448//! a single value (when the [`Result`] is [`Ok`]), or produce no values
449//! (when the [`Result`] is [`Err`]). For example, [`into_iter`] acts like
450//! [`once(v)`] if the [`Result`] is [`Ok(v)`], and like [`empty()`] if the
451//! [`Result`] is [`Err`].
452//!
453//! [`Ok(v)`]: Ok
454//! [`empty()`]: crate::iter::empty
455//! [`once(v)`]: crate::iter::once
456//!
457//! Iterators over [`Result<T, E>`] come in three types:
458//!
459//! * [`into_iter`] consumes the [`Result`] and produces the contained
460//! value
461//! * [`iter`] produces an immutable reference of type `&T` to the
462//! contained value
463//! * [`iter_mut`] produces a mutable reference of type `&mut T` to the
464//! contained value
465//!
466//! See [Iterating over `Option`] for examples of how this can be useful.
467//!
468//! [Iterating over `Option`]: crate::option#iterating-over-option
469//! [`into_iter`]: Result::into_iter
470//! [`iter`]: Result::iter
471//! [`iter_mut`]: Result::iter_mut
472//!
473//! You might want to use an iterator chain to do multiple instances of an
474//! operation that can fail, but would like to ignore failures while
475//! continuing to process the successful results. In this example, we take
476//! advantage of the iterable nature of [`Result`] to select only the
477//! [`Ok`] values using [`flatten`][Iterator::flatten].
478//!
479//! ```
480//! # use std::str::FromStr;
481//! let mut results = vec![];
482//! let mut errs = vec![];
483//! let nums: Vec<_> = ["17", "not a number", "99", "-27", "768"]
484//! .into_iter()
485//! .map(u8::from_str)
486//! // Save clones of the raw `Result` values to inspect
487//! .inspect(|x| results.push(x.clone()))
488//! // Challenge: explain how this captures only the `Err` values
489//! .inspect(|x| errs.extend(x.clone().err()))
490//! .flatten()
491//! .collect();
492//! assert_eq!(errs.len(), 3);
493//! assert_eq!(nums, [17, 99]);
494//! println!("results {results:?}");
495//! println!("errs {errs:?}");
496//! println!("nums {nums:?}");
497//! ```
498//!
499//! ## Collecting into `Result`
500//!
501//! [`Result`] implements the [`FromIterator`][impl-FromIterator] trait,
502//! which allows an iterator over [`Result`] values to be collected into a
503//! [`Result`] of a collection of each contained value of the original
504//! [`Result`] values, or [`Err`] if any of the elements was [`Err`].
505//!
506//! [impl-FromIterator]: Result#impl-FromIterator%3CResult%3CA,+E%3E%3E-for-Result%3CV,+E%3E
507//!
508//! ```
509//! let v = [Ok(2), Ok(4), Err("err!"), Ok(8)];
510//! let res: Result<Vec<_>, &str> = v.into_iter().collect();
511//! assert_eq!(res, Err("err!"));
512//! let v = [Ok(2), Ok(4), Ok(8)];
513//! let res: Result<Vec<_>, &str> = v.into_iter().collect();
514//! assert_eq!(res, Ok(vec![2, 4, 8]));
515//! ```
516//!
517//! [`Result`] also implements the [`Product`][impl-Product] and
518//! [`Sum`][impl-Sum] traits, allowing an iterator over [`Result`] values
519//! to provide the [`product`][Iterator::product] and
520//! [`sum`][Iterator::sum] methods.
521//!
522//! [impl-Product]: Result#impl-Product%3CResult%3CU,+E%3E%3E-for-Result%3CT,+E%3E
523//! [impl-Sum]: Result#impl-Sum%3CResult%3CU,+E%3E%3E-for-Result%3CT,+E%3E
524//!
525//! ```
526//! let v = [Err("error!"), Ok(1), Ok(2), Ok(3), Err("foo")];
527//! let res: Result<i32, &str> = v.into_iter().sum();
528//! assert_eq!(res, Err("error!"));
529//! let v = [Ok(1), Ok(2), Ok(21)];
530//! let res: Result<i32, &str> = v.into_iter().product();
531//! assert_eq!(res, Ok(42));
532//! ```
533
534#![stable(feature = "rust1", since = "1.0.0")]
535
536#[cfg(not(feature = "ferrocene_certified"))]
537use crate::iter::{self, FusedIterator, TrustedLen};
538use crate::marker::Destruct;
539#[cfg(not(feature = "ferrocene_certified"))]
540use crate::ops::{self, ControlFlow, Deref, DerefMut};
541#[cfg(feature = "ferrocene_certified")]
542use crate::ops::{Deref, DerefMut};
543#[cfg(not(feature = "ferrocene_certified"))]
544use crate::{convert, fmt, hint};
545
546/// `Result` is a type that represents either success ([`Ok`]) or failure ([`Err`]).
547///
548/// See the [module documentation](self) for details.
549#[doc(search_unbox)]
550#[cfg_attr(
551 not(feature = "ferrocene_certified"),
552 derive(Copy, PartialEq, PartialOrd, Eq, Ord, Debug, Hash)
553)]
554#[must_use = "this `Result` may be an `Err` variant, which should be handled"]
555#[rustc_diagnostic_item = "Result"]
556#[stable(feature = "rust1", since = "1.0.0")]
557pub enum Result<T, E> {
558 /// Contains the success value
559 #[lang = "Ok"]
560 #[stable(feature = "rust1", since = "1.0.0")]
561 Ok(#[stable(feature = "rust1", since = "1.0.0")] T),
562
563 /// Contains the error value
564 #[lang = "Err"]
565 #[stable(feature = "rust1", since = "1.0.0")]
566 Err(#[stable(feature = "rust1", since = "1.0.0")] E),
567}
568
569/////////////////////////////////////////////////////////////////////////////
570// Type implementation
571/////////////////////////////////////////////////////////////////////////////
572
573impl<T, E> Result<T, E> {
574 /////////////////////////////////////////////////////////////////////////
575 // Querying the contained values
576 /////////////////////////////////////////////////////////////////////////
577
578 /// Returns `true` if the result is [`Ok`].
579 ///
580 /// # Examples
581 ///
582 /// ```
583 /// let x: Result<i32, &str> = Ok(-3);
584 /// assert_eq!(x.is_ok(), true);
585 ///
586 /// let x: Result<i32, &str> = Err("Some error message");
587 /// assert_eq!(x.is_ok(), false);
588 /// ```
589 #[must_use = "if you intended to assert that this is ok, consider `.unwrap()` instead"]
590 #[rustc_const_stable(feature = "const_result_basics", since = "1.48.0")]
591 #[inline]
592 #[stable(feature = "rust1", since = "1.0.0")]
593 pub const fn is_ok(&self) -> bool {
594 matches!(*self, Ok(_))
595 }
596
597 /// Returns `true` if the result is [`Ok`] and the value inside of it matches a predicate.
598 ///
599 /// # Examples
600 ///
601 /// ```
602 /// let x: Result<u32, &str> = Ok(2);
603 /// assert_eq!(x.is_ok_and(|x| x > 1), true);
604 ///
605 /// let x: Result<u32, &str> = Ok(0);
606 /// assert_eq!(x.is_ok_and(|x| x > 1), false);
607 ///
608 /// let x: Result<u32, &str> = Err("hey");
609 /// assert_eq!(x.is_ok_and(|x| x > 1), false);
610 ///
611 /// let x: Result<String, &str> = Ok("ownership".to_string());
612 /// assert_eq!(x.as_ref().is_ok_and(|x| x.len() > 1), true);
613 /// println!("still alive {:?}", x);
614 /// ```
615 #[must_use]
616 #[inline]
617 #[stable(feature = "is_some_and", since = "1.70.0")]
618 #[rustc_const_unstable(feature = "const_result_trait_fn", issue = "144211")]
619 pub const fn is_ok_and<F>(self, f: F) -> bool
620 where
621 F: [const] FnOnce(T) -> bool + [const] Destruct,
622 T: [const] Destruct,
623 E: [const] Destruct,
624 {
625 match self {
626 Err(_) => false,
627 Ok(x) => f(x),
628 }
629 }
630
631 /// Returns `true` if the result is [`Err`].
632 ///
633 /// # Examples
634 ///
635 /// ```
636 /// let x: Result<i32, &str> = Ok(-3);
637 /// assert_eq!(x.is_err(), false);
638 ///
639 /// let x: Result<i32, &str> = Err("Some error message");
640 /// assert_eq!(x.is_err(), true);
641 /// ```
642 #[must_use = "if you intended to assert that this is err, consider `.unwrap_err()` instead"]
643 #[rustc_const_stable(feature = "const_result_basics", since = "1.48.0")]
644 #[inline]
645 #[stable(feature = "rust1", since = "1.0.0")]
646 pub const fn is_err(&self) -> bool {
647 !self.is_ok()
648 }
649
650 /// Returns `true` if the result is [`Err`] and the value inside of it matches a predicate.
651 ///
652 /// # Examples
653 ///
654 /// ```
655 /// use std::io::{Error, ErrorKind};
656 ///
657 /// let x: Result<u32, Error> = Err(Error::new(ErrorKind::NotFound, "!"));
658 /// assert_eq!(x.is_err_and(|x| x.kind() == ErrorKind::NotFound), true);
659 ///
660 /// let x: Result<u32, Error> = Err(Error::new(ErrorKind::PermissionDenied, "!"));
661 /// assert_eq!(x.is_err_and(|x| x.kind() == ErrorKind::NotFound), false);
662 ///
663 /// let x: Result<u32, Error> = Ok(123);
664 /// assert_eq!(x.is_err_and(|x| x.kind() == ErrorKind::NotFound), false);
665 ///
666 /// let x: Result<u32, String> = Err("ownership".to_string());
667 /// assert_eq!(x.as_ref().is_err_and(|x| x.len() > 1), true);
668 /// println!("still alive {:?}", x);
669 /// ```
670 #[must_use]
671 #[inline]
672 #[stable(feature = "is_some_and", since = "1.70.0")]
673 #[rustc_const_unstable(feature = "const_result_trait_fn", issue = "144211")]
674 pub const fn is_err_and<F>(self, f: F) -> bool
675 where
676 F: [const] FnOnce(E) -> bool + [const] Destruct,
677 E: [const] Destruct,
678 T: [const] Destruct,
679 {
680 match self {
681 Ok(_) => false,
682 Err(e) => f(e),
683 }
684 }
685
686 /////////////////////////////////////////////////////////////////////////
687 // Adapter for each variant
688 /////////////////////////////////////////////////////////////////////////
689
690 /// Converts from `Result<T, E>` to [`Option<T>`].
691 ///
692 /// Converts `self` into an [`Option<T>`], consuming `self`,
693 /// and discarding the error, if any.
694 ///
695 /// # Examples
696 ///
697 /// ```
698 /// let x: Result<u32, &str> = Ok(2);
699 /// assert_eq!(x.ok(), Some(2));
700 ///
701 /// let x: Result<u32, &str> = Err("Nothing here");
702 /// assert_eq!(x.ok(), None);
703 /// ```
704 #[inline]
705 #[stable(feature = "rust1", since = "1.0.0")]
706 #[rustc_const_unstable(feature = "const_result_trait_fn", issue = "144211")]
707 #[rustc_diagnostic_item = "result_ok_method"]
708 pub const fn ok(self) -> Option<T>
709 where
710 T: [const] Destruct,
711 E: [const] Destruct,
712 {
713 match self {
714 Ok(x) => Some(x),
715 Err(_) => None,
716 }
717 }
718
719 /// Converts from `Result<T, E>` to [`Option<E>`].
720 ///
721 /// Converts `self` into an [`Option<E>`], consuming `self`,
722 /// and discarding the success value, if any.
723 ///
724 /// # Examples
725 ///
726 /// ```
727 /// let x: Result<u32, &str> = Ok(2);
728 /// assert_eq!(x.err(), None);
729 ///
730 /// let x: Result<u32, &str> = Err("Nothing here");
731 /// assert_eq!(x.err(), Some("Nothing here"));
732 /// ```
733 #[inline]
734 #[stable(feature = "rust1", since = "1.0.0")]
735 #[rustc_const_unstable(feature = "const_result_trait_fn", issue = "144211")]
736 pub const fn err(self) -> Option<E>
737 where
738 T: [const] Destruct,
739 E: [const] Destruct,
740 {
741 match self {
742 Ok(_) => None,
743 Err(x) => Some(x),
744 }
745 }
746
747 /////////////////////////////////////////////////////////////////////////
748 // Adapter for working with references
749 /////////////////////////////////////////////////////////////////////////
750
751 /// Converts from `&Result<T, E>` to `Result<&T, &E>`.
752 ///
753 /// Produces a new `Result`, containing a reference
754 /// into the original, leaving the original in place.
755 ///
756 /// # Examples
757 ///
758 /// ```
759 /// let x: Result<u32, &str> = Ok(2);
760 /// assert_eq!(x.as_ref(), Ok(&2));
761 ///
762 /// let x: Result<u32, &str> = Err("Error");
763 /// assert_eq!(x.as_ref(), Err(&"Error"));
764 /// ```
765 #[inline]
766 #[rustc_const_stable(feature = "const_result_basics", since = "1.48.0")]
767 #[stable(feature = "rust1", since = "1.0.0")]
768 pub const fn as_ref(&self) -> Result<&T, &E> {
769 match *self {
770 Ok(ref x) => Ok(x),
771 Err(ref x) => Err(x),
772 }
773 }
774
775 /// Converts from `&mut Result<T, E>` to `Result<&mut T, &mut E>`.
776 ///
777 /// # Examples
778 ///
779 /// ```
780 /// fn mutate(r: &mut Result<i32, i32>) {
781 /// match r.as_mut() {
782 /// Ok(v) => *v = 42,
783 /// Err(e) => *e = 0,
784 /// }
785 /// }
786 ///
787 /// let mut x: Result<i32, i32> = Ok(2);
788 /// mutate(&mut x);
789 /// assert_eq!(x.unwrap(), 42);
790 ///
791 /// let mut x: Result<i32, i32> = Err(13);
792 /// mutate(&mut x);
793 /// assert_eq!(x.unwrap_err(), 0);
794 /// ```
795 #[inline]
796 #[stable(feature = "rust1", since = "1.0.0")]
797 #[rustc_const_stable(feature = "const_result", since = "1.83.0")]
798 pub const fn as_mut(&mut self) -> Result<&mut T, &mut E> {
799 match *self {
800 Ok(ref mut x) => Ok(x),
801 Err(ref mut x) => Err(x),
802 }
803 }
804
805 /////////////////////////////////////////////////////////////////////////
806 // Transforming contained values
807 /////////////////////////////////////////////////////////////////////////
808
809 /// Maps a `Result<T, E>` to `Result<U, E>` by applying a function to a
810 /// contained [`Ok`] value, leaving an [`Err`] value untouched.
811 ///
812 /// This function can be used to compose the results of two functions.
813 ///
814 /// # Examples
815 ///
816 /// Print the numbers on each line of a string multiplied by two.
817 ///
818 /// ```
819 /// let line = "1\n2\n3\n4\n";
820 ///
821 /// for num in line.lines() {
822 /// match num.parse::<i32>().map(|i| i * 2) {
823 /// Ok(n) => println!("{n}"),
824 /// Err(..) => {}
825 /// }
826 /// }
827 /// ```
828 #[inline]
829 #[stable(feature = "rust1", since = "1.0.0")]
830 #[rustc_const_unstable(feature = "const_result_trait_fn", issue = "144211")]
831 pub const fn map<U, F>(self, op: F) -> Result<U, E>
832 where
833 F: [const] FnOnce(T) -> U + [const] Destruct,
834 {
835 match self {
836 Ok(t) => Ok(op(t)),
837 Err(e) => Err(e),
838 }
839 }
840
841 /// Returns the provided default (if [`Err`]), or
842 /// applies a function to the contained value (if [`Ok`]).
843 ///
844 /// Arguments passed to `map_or` are eagerly evaluated; if you are passing
845 /// the result of a function call, it is recommended to use [`map_or_else`],
846 /// which is lazily evaluated.
847 ///
848 /// [`map_or_else`]: Result::map_or_else
849 ///
850 /// # Examples
851 ///
852 /// ```
853 /// let x: Result<_, &str> = Ok("foo");
854 /// assert_eq!(x.map_or(42, |v| v.len()), 3);
855 ///
856 /// let x: Result<&str, _> = Err("bar");
857 /// assert_eq!(x.map_or(42, |v| v.len()), 42);
858 /// ```
859 #[inline]
860 #[stable(feature = "result_map_or", since = "1.41.0")]
861 #[rustc_const_unstable(feature = "const_result_trait_fn", issue = "144211")]
862 #[must_use = "if you don't need the returned value, use `if let` instead"]
863 pub const fn map_or<U, F>(self, default: U, f: F) -> U
864 where
865 F: [const] FnOnce(T) -> U + [const] Destruct,
866 T: [const] Destruct,
867 E: [const] Destruct,
868 U: [const] Destruct,
869 {
870 match self {
871 Ok(t) => f(t),
872 Err(_) => default,
873 }
874 }
875
876 /// Maps a `Result<T, E>` to `U` by applying fallback function `default` to
877 /// a contained [`Err`] value, or function `f` to a contained [`Ok`] value.
878 ///
879 /// This function can be used to unpack a successful result
880 /// while handling an error.
881 ///
882 ///
883 /// # Examples
884 ///
885 /// ```
886 /// let k = 21;
887 ///
888 /// let x : Result<_, &str> = Ok("foo");
889 /// assert_eq!(x.map_or_else(|e| k * 2, |v| v.len()), 3);
890 ///
891 /// let x : Result<&str, _> = Err("bar");
892 /// assert_eq!(x.map_or_else(|e| k * 2, |v| v.len()), 42);
893 /// ```
894 #[inline]
895 #[stable(feature = "result_map_or_else", since = "1.41.0")]
896 #[rustc_const_unstable(feature = "const_result_trait_fn", issue = "144211")]
897 pub const fn map_or_else<U, D, F>(self, default: D, f: F) -> U
898 where
899 D: [const] FnOnce(E) -> U + [const] Destruct,
900 F: [const] FnOnce(T) -> U + [const] Destruct,
901 {
902 match self {
903 Ok(t) => f(t),
904 Err(e) => default(e),
905 }
906 }
907
908 /// Maps a `Result<T, E>` to a `U` by applying function `f` to the contained
909 /// value if the result is [`Ok`], otherwise if [`Err`], returns the
910 /// [default value] for the type `U`.
911 ///
912 /// # Examples
913 ///
914 /// ```
915 /// #![feature(result_option_map_or_default)]
916 ///
917 /// let x: Result<_, &str> = Ok("foo");
918 /// let y: Result<&str, _> = Err("bar");
919 ///
920 /// assert_eq!(x.map_or_default(|x| x.len()), 3);
921 /// assert_eq!(y.map_or_default(|y| y.len()), 0);
922 /// ```
923 ///
924 /// [default value]: Default::default
925 #[inline]
926 #[unstable(feature = "result_option_map_or_default", issue = "138099")]
927 #[rustc_const_unstable(feature = "const_result_trait_fn", issue = "144211")]
928 pub const fn map_or_default<U, F>(self, f: F) -> U
929 where
930 F: [const] FnOnce(T) -> U + [const] Destruct,
931 U: [const] Default,
932 T: [const] Destruct,
933 E: [const] Destruct,
934 {
935 match self {
936 Ok(t) => f(t),
937 Err(_) => U::default(),
938 }
939 }
940
941 /// Maps a `Result<T, E>` to `Result<T, F>` by applying a function to a
942 /// contained [`Err`] value, leaving an [`Ok`] value untouched.
943 ///
944 /// This function can be used to pass through a successful result while handling
945 /// an error.
946 ///
947 ///
948 /// # Examples
949 ///
950 /// ```
951 /// fn stringify(x: u32) -> String { format!("error code: {x}") }
952 ///
953 /// let x: Result<u32, u32> = Ok(2);
954 /// assert_eq!(x.map_err(stringify), Ok(2));
955 ///
956 /// let x: Result<u32, u32> = Err(13);
957 /// assert_eq!(x.map_err(stringify), Err("error code: 13".to_string()));
958 /// ```
959 #[inline]
960 #[stable(feature = "rust1", since = "1.0.0")]
961 #[rustc_const_unstable(feature = "const_result_trait_fn", issue = "144211")]
962 pub const fn map_err<F, O>(self, op: O) -> Result<T, F>
963 where
964 O: [const] FnOnce(E) -> F + [const] Destruct,
965 {
966 match self {
967 Ok(t) => Ok(t),
968 Err(e) => Err(op(e)),
969 }
970 }
971
972 /// Calls a function with a reference to the contained value if [`Ok`].
973 ///
974 /// Returns the original result.
975 ///
976 /// # Examples
977 ///
978 /// ```
979 /// let x: u8 = "4"
980 /// .parse::<u8>()
981 /// .inspect(|x| println!("original: {x}"))
982 /// .map(|x| x.pow(3))
983 /// .expect("failed to parse number");
984 /// ```
985 #[inline]
986 #[stable(feature = "result_option_inspect", since = "1.76.0")]
987 #[rustc_const_unstable(feature = "const_result_trait_fn", issue = "144211")]
988 pub const fn inspect<F>(self, f: F) -> Self
989 where
990 F: [const] FnOnce(&T) + [const] Destruct,
991 {
992 if let Ok(ref t) = self {
993 f(t);
994 }
995
996 self
997 }
998
999 /// Calls a function with a reference to the contained value if [`Err`].
1000 ///
1001 /// Returns the original result.
1002 ///
1003 /// # Examples
1004 ///
1005 /// ```
1006 /// use std::{fs, io};
1007 ///
1008 /// fn read() -> io::Result<String> {
1009 /// fs::read_to_string("address.txt")
1010 /// .inspect_err(|e| eprintln!("failed to read file: {e}"))
1011 /// }
1012 /// ```
1013 #[inline]
1014 #[stable(feature = "result_option_inspect", since = "1.76.0")]
1015 #[rustc_const_unstable(feature = "const_result_trait_fn", issue = "144211")]
1016 pub const fn inspect_err<F>(self, f: F) -> Self
1017 where
1018 F: [const] FnOnce(&E) + [const] Destruct,
1019 {
1020 if let Err(ref e) = self {
1021 f(e);
1022 }
1023
1024 self
1025 }
1026
1027 /// Converts from `Result<T, E>` (or `&Result<T, E>`) to `Result<&<T as Deref>::Target, &E>`.
1028 ///
1029 /// Coerces the [`Ok`] variant of the original [`Result`] via [`Deref`](crate::ops::Deref)
1030 /// and returns the new [`Result`].
1031 ///
1032 /// # Examples
1033 ///
1034 /// ```
1035 /// let x: Result<String, u32> = Ok("hello".to_string());
1036 /// let y: Result<&str, &u32> = Ok("hello");
1037 /// assert_eq!(x.as_deref(), y);
1038 ///
1039 /// let x: Result<String, u32> = Err(42);
1040 /// let y: Result<&str, &u32> = Err(&42);
1041 /// assert_eq!(x.as_deref(), y);
1042 /// ```
1043 #[inline]
1044 #[stable(feature = "inner_deref", since = "1.47.0")]
1045 #[rustc_const_unstable(feature = "const_convert", issue = "143773")]
1046 pub const fn as_deref(&self) -> Result<&T::Target, &E>
1047 where
1048 T: [const] Deref,
1049 {
1050 self.as_ref().map(Deref::deref)
1051 }
1052
1053 /// Converts from `Result<T, E>` (or `&mut Result<T, E>`) to `Result<&mut <T as DerefMut>::Target, &mut E>`.
1054 ///
1055 /// Coerces the [`Ok`] variant of the original [`Result`] via [`DerefMut`](crate::ops::DerefMut)
1056 /// and returns the new [`Result`].
1057 ///
1058 /// # Examples
1059 ///
1060 /// ```
1061 /// let mut s = "HELLO".to_string();
1062 /// let mut x: Result<String, u32> = Ok("hello".to_string());
1063 /// let y: Result<&mut str, &mut u32> = Ok(&mut s);
1064 /// assert_eq!(x.as_deref_mut().map(|x| { x.make_ascii_uppercase(); x }), y);
1065 ///
1066 /// let mut i = 42;
1067 /// let mut x: Result<String, u32> = Err(42);
1068 /// let y: Result<&mut str, &mut u32> = Err(&mut i);
1069 /// assert_eq!(x.as_deref_mut().map(|x| { x.make_ascii_uppercase(); x }), y);
1070 /// ```
1071 #[inline]
1072 #[stable(feature = "inner_deref", since = "1.47.0")]
1073 #[rustc_const_unstable(feature = "const_convert", issue = "143773")]
1074 pub const fn as_deref_mut(&mut self) -> Result<&mut T::Target, &mut E>
1075 where
1076 T: [const] DerefMut,
1077 {
1078 self.as_mut().map(DerefMut::deref_mut)
1079 }
1080
1081 /////////////////////////////////////////////////////////////////////////
1082 // Iterator constructors
1083 /////////////////////////////////////////////////////////////////////////
1084
1085 /// Returns an iterator over the possibly contained value.
1086 ///
1087 /// The iterator yields one value if the result is [`Result::Ok`], otherwise none.
1088 ///
1089 /// # Examples
1090 ///
1091 /// ```
1092 /// let x: Result<u32, &str> = Ok(7);
1093 /// assert_eq!(x.iter().next(), Some(&7));
1094 ///
1095 /// let x: Result<u32, &str> = Err("nothing!");
1096 /// assert_eq!(x.iter().next(), None);
1097 /// ```
1098 #[inline]
1099 #[stable(feature = "rust1", since = "1.0.0")]
1100 #[rustc_const_unstable(feature = "const_result_trait_fn", issue = "144211")]
1101 // blocked on Iterator
1102 #[cfg(not(feature = "ferrocene_certified"))]
1103 pub const fn iter(&self) -> Iter<'_, T> {
1104 Iter { inner: self.as_ref().ok() }
1105 }
1106
1107 /// Returns a mutable iterator over the possibly contained value.
1108 ///
1109 /// The iterator yields one value if the result is [`Result::Ok`], otherwise none.
1110 ///
1111 /// # Examples
1112 ///
1113 /// ```
1114 /// let mut x: Result<u32, &str> = Ok(7);
1115 /// match x.iter_mut().next() {
1116 /// Some(v) => *v = 40,
1117 /// None => {},
1118 /// }
1119 /// assert_eq!(x, Ok(40));
1120 ///
1121 /// let mut x: Result<u32, &str> = Err("nothing!");
1122 /// assert_eq!(x.iter_mut().next(), None);
1123 /// ```
1124 #[inline]
1125 #[stable(feature = "rust1", since = "1.0.0")]
1126 #[rustc_const_unstable(feature = "const_result_trait_fn", issue = "144211")]
1127 // blocked on Iterator
1128 #[cfg(not(feature = "ferrocene_certified"))]
1129 pub const fn iter_mut(&mut self) -> IterMut<'_, T> {
1130 IterMut { inner: self.as_mut().ok() }
1131 }
1132
1133 /////////////////////////////////////////////////////////////////////////
1134 // Extract a value
1135 /////////////////////////////////////////////////////////////////////////
1136
1137 /// Returns the contained [`Ok`] value, consuming the `self` value.
1138 ///
1139 /// Because this function may panic, its use is generally discouraged.
1140 /// Instead, prefer to use pattern matching and handle the [`Err`]
1141 /// case explicitly, or call [`unwrap_or`], [`unwrap_or_else`], or
1142 /// [`unwrap_or_default`].
1143 ///
1144 /// [`unwrap_or`]: Result::unwrap_or
1145 /// [`unwrap_or_else`]: Result::unwrap_or_else
1146 /// [`unwrap_or_default`]: Result::unwrap_or_default
1147 ///
1148 /// # Panics
1149 ///
1150 /// Panics if the value is an [`Err`], with a panic message including the
1151 /// passed message, and the content of the [`Err`].
1152 ///
1153 ///
1154 /// # Examples
1155 ///
1156 /// ```should_panic
1157 /// let x: Result<u32, &str> = Err("emergency failure");
1158 /// x.expect("Testing expect"); // panics with `Testing expect: emergency failure`
1159 /// ```
1160 ///
1161 /// # Recommended Message Style
1162 ///
1163 /// We recommend that `expect` messages are used to describe the reason you
1164 /// _expect_ the `Result` should be `Ok`.
1165 ///
1166 /// ```should_panic
1167 /// let path = std::env::var("IMPORTANT_PATH")
1168 /// .expect("env variable `IMPORTANT_PATH` should be set by `wrapper_script.sh`");
1169 /// ```
1170 ///
1171 /// **Hint**: If you're having trouble remembering how to phrase expect
1172 /// error messages remember to focus on the word "should" as in "env
1173 /// variable should be set by blah" or "the given binary should be available
1174 /// and executable by the current user".
1175 ///
1176 /// For more detail on expect message styles and the reasoning behind our recommendation please
1177 /// refer to the section on ["Common Message
1178 /// Styles"](../../std/error/index.html#common-message-styles) in the
1179 /// [`std::error`](../../std/error/index.html) module docs.
1180 #[inline]
1181 #[track_caller]
1182 #[stable(feature = "result_expect", since = "1.4.0")]
1183 // blocked on Debug
1184 #[cfg(not(feature = "ferrocene_certified"))]
1185 pub fn expect(self, msg: &str) -> T
1186 where
1187 E: fmt::Debug,
1188 {
1189 match self {
1190 Ok(t) => t,
1191 Err(e) => unwrap_failed(msg, &e),
1192 }
1193 }
1194
1195 /// Returns the contained [`Ok`] value, consuming the `self` value.
1196 ///
1197 /// Because this function may panic, its use is generally discouraged.
1198 /// Panics are meant for unrecoverable errors, and
1199 /// [may abort the entire program][panic-abort].
1200 ///
1201 /// Instead, prefer to use [the `?` (try) operator][try-operator], or pattern matching
1202 /// to handle the [`Err`] case explicitly, or call [`unwrap_or`],
1203 /// [`unwrap_or_else`], or [`unwrap_or_default`].
1204 ///
1205 /// [panic-abort]: https://doc.rust-lang.org/book/ch09-01-unrecoverable-errors-with-panic.html
1206 /// [try-operator]: https://doc.rust-lang.org/book/ch09-02-recoverable-errors-with-result.html#a-shortcut-for-propagating-errors-the--operator
1207 /// [`unwrap_or`]: Result::unwrap_or
1208 /// [`unwrap_or_else`]: Result::unwrap_or_else
1209 /// [`unwrap_or_default`]: Result::unwrap_or_default
1210 ///
1211 /// # Panics
1212 ///
1213 /// Panics if the value is an [`Err`], with a panic message provided by the
1214 /// [`Err`]'s value.
1215 ///
1216 ///
1217 /// # Examples
1218 ///
1219 /// Basic usage:
1220 ///
1221 /// ```
1222 /// let x: Result<u32, &str> = Ok(2);
1223 /// assert_eq!(x.unwrap(), 2);
1224 /// ```
1225 ///
1226 /// ```should_panic
1227 /// let x: Result<u32, &str> = Err("emergency failure");
1228 /// x.unwrap(); // panics with `emergency failure`
1229 /// ```
1230 #[inline(always)]
1231 #[track_caller]
1232 #[stable(feature = "rust1", since = "1.0.0")]
1233 // blocked on Debug
1234 #[cfg(not(feature = "ferrocene_certified"))]
1235 pub fn unwrap(self) -> T
1236 where
1237 E: fmt::Debug,
1238 {
1239 match self {
1240 Ok(t) => t,
1241 Err(e) => unwrap_failed("called `Result::unwrap()` on an `Err` value", &e),
1242 }
1243 }
1244
1245 /// Returns the contained [`Ok`] value or a default
1246 ///
1247 /// Consumes the `self` argument then, if [`Ok`], returns the contained
1248 /// value, otherwise if [`Err`], returns the default value for that
1249 /// type.
1250 ///
1251 /// # Examples
1252 ///
1253 /// Converts a string to an integer, turning poorly-formed strings
1254 /// into 0 (the default value for integers). [`parse`] converts
1255 /// a string to any other type that implements [`FromStr`], returning an
1256 /// [`Err`] on error.
1257 ///
1258 /// ```
1259 /// let good_year_from_input = "1909";
1260 /// let bad_year_from_input = "190blarg";
1261 /// let good_year = good_year_from_input.parse().unwrap_or_default();
1262 /// let bad_year = bad_year_from_input.parse().unwrap_or_default();
1263 ///
1264 /// assert_eq!(1909, good_year);
1265 /// assert_eq!(0, bad_year);
1266 /// ```
1267 ///
1268 /// [`parse`]: str::parse
1269 /// [`FromStr`]: crate::str::FromStr
1270 #[inline]
1271 #[stable(feature = "result_unwrap_or_default", since = "1.16.0")]
1272 #[rustc_const_unstable(feature = "const_result_trait_fn", issue = "144211")]
1273 pub const fn unwrap_or_default(self) -> T
1274 where
1275 T: [const] Default + [const] Destruct,
1276 E: [const] Destruct,
1277 {
1278 match self {
1279 Ok(x) => x,
1280 Err(_) => Default::default(),
1281 }
1282 }
1283
1284 /// Returns the contained [`Err`] value, consuming the `self` value.
1285 ///
1286 /// # Panics
1287 ///
1288 /// Panics if the value is an [`Ok`], with a panic message including the
1289 /// passed message, and the content of the [`Ok`].
1290 ///
1291 ///
1292 /// # Examples
1293 ///
1294 /// ```should_panic
1295 /// let x: Result<u32, &str> = Ok(10);
1296 /// x.expect_err("Testing expect_err"); // panics with `Testing expect_err: 10`
1297 /// ```
1298 #[inline]
1299 #[track_caller]
1300 #[stable(feature = "result_expect_err", since = "1.17.0")]
1301 // blocked on Debug
1302 #[cfg(not(feature = "ferrocene_certified"))]
1303 pub fn expect_err(self, msg: &str) -> E
1304 where
1305 T: fmt::Debug,
1306 {
1307 match self {
1308 Ok(t) => unwrap_failed(msg, &t),
1309 Err(e) => e,
1310 }
1311 }
1312
1313 /// Returns the contained [`Err`] value, consuming the `self` value.
1314 ///
1315 /// # Panics
1316 ///
1317 /// Panics if the value is an [`Ok`], with a custom panic message provided
1318 /// by the [`Ok`]'s value.
1319 ///
1320 /// # Examples
1321 ///
1322 /// ```should_panic
1323 /// let x: Result<u32, &str> = Ok(2);
1324 /// x.unwrap_err(); // panics with `2`
1325 /// ```
1326 ///
1327 /// ```
1328 /// let x: Result<u32, &str> = Err("emergency failure");
1329 /// assert_eq!(x.unwrap_err(), "emergency failure");
1330 /// ```
1331 #[inline]
1332 #[track_caller]
1333 #[stable(feature = "rust1", since = "1.0.0")]
1334 // blocked on Debug
1335 #[cfg(not(feature = "ferrocene_certified"))]
1336 pub fn unwrap_err(self) -> E
1337 where
1338 T: fmt::Debug,
1339 {
1340 match self {
1341 Ok(t) => unwrap_failed("called `Result::unwrap_err()` on an `Ok` value", &t),
1342 Err(e) => e,
1343 }
1344 }
1345
1346 /// Returns the contained [`Ok`] value, but never panics.
1347 ///
1348 /// Unlike [`unwrap`], this method is known to never panic on the
1349 /// result types it is implemented for. Therefore, it can be used
1350 /// instead of `unwrap` as a maintainability safeguard that will fail
1351 /// to compile if the error type of the `Result` is later changed
1352 /// to an error that can actually occur.
1353 ///
1354 /// [`unwrap`]: Result::unwrap
1355 ///
1356 /// # Examples
1357 ///
1358 /// ```
1359 /// # #![feature(never_type)]
1360 /// # #![feature(unwrap_infallible)]
1361 ///
1362 /// fn only_good_news() -> Result<String, !> {
1363 /// Ok("this is fine".into())
1364 /// }
1365 ///
1366 /// let s: String = only_good_news().into_ok();
1367 /// println!("{s}");
1368 /// ```
1369 #[unstable(feature = "unwrap_infallible", reason = "newly added", issue = "61695")]
1370 #[inline]
1371 #[rustc_allow_const_fn_unstable(const_precise_live_drops)]
1372 #[rustc_const_unstable(feature = "const_convert", issue = "143773")]
1373 // blocked on !
1374 #[cfg(not(feature = "ferrocene_certified"))]
1375 pub const fn into_ok(self) -> T
1376 where
1377 E: [const] Into<!>,
1378 {
1379 match self {
1380 Ok(x) => x,
1381 Err(e) => e.into(),
1382 }
1383 }
1384
1385 /// Returns the contained [`Err`] value, but never panics.
1386 ///
1387 /// Unlike [`unwrap_err`], this method is known to never panic on the
1388 /// result types it is implemented for. Therefore, it can be used
1389 /// instead of `unwrap_err` as a maintainability safeguard that will fail
1390 /// to compile if the ok type of the `Result` is later changed
1391 /// to a type that can actually occur.
1392 ///
1393 /// [`unwrap_err`]: Result::unwrap_err
1394 ///
1395 /// # Examples
1396 ///
1397 /// ```
1398 /// # #![feature(never_type)]
1399 /// # #![feature(unwrap_infallible)]
1400 ///
1401 /// fn only_bad_news() -> Result<!, String> {
1402 /// Err("Oops, it failed".into())
1403 /// }
1404 ///
1405 /// let error: String = only_bad_news().into_err();
1406 /// println!("{error}");
1407 /// ```
1408 #[unstable(feature = "unwrap_infallible", reason = "newly added", issue = "61695")]
1409 #[inline]
1410 #[rustc_allow_const_fn_unstable(const_precise_live_drops)]
1411 #[rustc_const_unstable(feature = "const_convert", issue = "143773")]
1412 // blocked on !
1413 #[cfg(not(feature = "ferrocene_certified"))]
1414 pub const fn into_err(self) -> E
1415 where
1416 T: [const] Into<!>,
1417 {
1418 match self {
1419 Ok(x) => x.into(),
1420 Err(e) => e,
1421 }
1422 }
1423
1424 ////////////////////////////////////////////////////////////////////////
1425 // Boolean operations on the values, eager and lazy
1426 /////////////////////////////////////////////////////////////////////////
1427
1428 /// Returns `res` if the result is [`Ok`], otherwise returns the [`Err`] value of `self`.
1429 ///
1430 /// Arguments passed to `and` are eagerly evaluated; if you are passing the
1431 /// result of a function call, it is recommended to use [`and_then`], which is
1432 /// lazily evaluated.
1433 ///
1434 /// [`and_then`]: Result::and_then
1435 ///
1436 /// # Examples
1437 ///
1438 /// ```
1439 /// let x: Result<u32, &str> = Ok(2);
1440 /// let y: Result<&str, &str> = Err("late error");
1441 /// assert_eq!(x.and(y), Err("late error"));
1442 ///
1443 /// let x: Result<u32, &str> = Err("early error");
1444 /// let y: Result<&str, &str> = Ok("foo");
1445 /// assert_eq!(x.and(y), Err("early error"));
1446 ///
1447 /// let x: Result<u32, &str> = Err("not a 2");
1448 /// let y: Result<&str, &str> = Err("late error");
1449 /// assert_eq!(x.and(y), Err("not a 2"));
1450 ///
1451 /// let x: Result<u32, &str> = Ok(2);
1452 /// let y: Result<&str, &str> = Ok("different result type");
1453 /// assert_eq!(x.and(y), Ok("different result type"));
1454 /// ```
1455 #[inline]
1456 #[stable(feature = "rust1", since = "1.0.0")]
1457 #[rustc_const_unstable(feature = "const_result_trait_fn", issue = "144211")]
1458 pub const fn and<U>(self, res: Result<U, E>) -> Result<U, E>
1459 where
1460 T: [const] Destruct,
1461 E: [const] Destruct,
1462 U: [const] Destruct,
1463 {
1464 match self {
1465 Ok(_) => res,
1466 Err(e) => Err(e),
1467 }
1468 }
1469
1470 /// Calls `op` if the result is [`Ok`], otherwise returns the [`Err`] value of `self`.
1471 ///
1472 ///
1473 /// This function can be used for control flow based on `Result` values.
1474 ///
1475 /// # Examples
1476 ///
1477 /// ```
1478 /// fn sq_then_to_string(x: u32) -> Result<String, &'static str> {
1479 /// x.checked_mul(x).map(|sq| sq.to_string()).ok_or("overflowed")
1480 /// }
1481 ///
1482 /// assert_eq!(Ok(2).and_then(sq_then_to_string), Ok(4.to_string()));
1483 /// assert_eq!(Ok(1_000_000).and_then(sq_then_to_string), Err("overflowed"));
1484 /// assert_eq!(Err("not a number").and_then(sq_then_to_string), Err("not a number"));
1485 /// ```
1486 ///
1487 /// Often used to chain fallible operations that may return [`Err`].
1488 ///
1489 /// ```
1490 /// use std::{io::ErrorKind, path::Path};
1491 ///
1492 /// // Note: on Windows "/" maps to "C:\"
1493 /// let root_modified_time = Path::new("/").metadata().and_then(|md| md.modified());
1494 /// assert!(root_modified_time.is_ok());
1495 ///
1496 /// let should_fail = Path::new("/bad/path").metadata().and_then(|md| md.modified());
1497 /// assert!(should_fail.is_err());
1498 /// assert_eq!(should_fail.unwrap_err().kind(), ErrorKind::NotFound);
1499 /// ```
1500 #[inline]
1501 #[stable(feature = "rust1", since = "1.0.0")]
1502 #[rustc_const_unstable(feature = "const_result_trait_fn", issue = "144211")]
1503 #[rustc_confusables("flat_map", "flatmap")]
1504 pub const fn and_then<U, F>(self, op: F) -> Result<U, E>
1505 where
1506 F: [const] FnOnce(T) -> Result<U, E> + [const] Destruct,
1507 {
1508 match self {
1509 Ok(t) => op(t),
1510 Err(e) => Err(e),
1511 }
1512 }
1513
1514 /// Returns `res` if the result is [`Err`], otherwise returns the [`Ok`] value of `self`.
1515 ///
1516 /// Arguments passed to `or` are eagerly evaluated; if you are passing the
1517 /// result of a function call, it is recommended to use [`or_else`], which is
1518 /// lazily evaluated.
1519 ///
1520 /// [`or_else`]: Result::or_else
1521 ///
1522 /// # Examples
1523 ///
1524 /// ```
1525 /// let x: Result<u32, &str> = Ok(2);
1526 /// let y: Result<u32, &str> = Err("late error");
1527 /// assert_eq!(x.or(y), Ok(2));
1528 ///
1529 /// let x: Result<u32, &str> = Err("early error");
1530 /// let y: Result<u32, &str> = Ok(2);
1531 /// assert_eq!(x.or(y), Ok(2));
1532 ///
1533 /// let x: Result<u32, &str> = Err("not a 2");
1534 /// let y: Result<u32, &str> = Err("late error");
1535 /// assert_eq!(x.or(y), Err("late error"));
1536 ///
1537 /// let x: Result<u32, &str> = Ok(2);
1538 /// let y: Result<u32, &str> = Ok(100);
1539 /// assert_eq!(x.or(y), Ok(2));
1540 /// ```
1541 #[inline]
1542 #[stable(feature = "rust1", since = "1.0.0")]
1543 #[rustc_const_unstable(feature = "const_result_trait_fn", issue = "144211")]
1544 pub const fn or<F>(self, res: Result<T, F>) -> Result<T, F>
1545 where
1546 T: [const] Destruct,
1547 E: [const] Destruct,
1548 F: [const] Destruct,
1549 {
1550 match self {
1551 Ok(v) => Ok(v),
1552 Err(_) => res,
1553 }
1554 }
1555
1556 /// Calls `op` if the result is [`Err`], otherwise returns the [`Ok`] value of `self`.
1557 ///
1558 /// This function can be used for control flow based on result values.
1559 ///
1560 ///
1561 /// # Examples
1562 ///
1563 /// ```
1564 /// fn sq(x: u32) -> Result<u32, u32> { Ok(x * x) }
1565 /// fn err(x: u32) -> Result<u32, u32> { Err(x) }
1566 ///
1567 /// assert_eq!(Ok(2).or_else(sq).or_else(sq), Ok(2));
1568 /// assert_eq!(Ok(2).or_else(err).or_else(sq), Ok(2));
1569 /// assert_eq!(Err(3).or_else(sq).or_else(err), Ok(9));
1570 /// assert_eq!(Err(3).or_else(err).or_else(err), Err(3));
1571 /// ```
1572 #[inline]
1573 #[stable(feature = "rust1", since = "1.0.0")]
1574 #[rustc_const_unstable(feature = "const_result_trait_fn", issue = "144211")]
1575 pub const fn or_else<F, O>(self, op: O) -> Result<T, F>
1576 where
1577 O: [const] FnOnce(E) -> Result<T, F> + [const] Destruct,
1578 {
1579 match self {
1580 Ok(t) => Ok(t),
1581 Err(e) => op(e),
1582 }
1583 }
1584
1585 /// Returns the contained [`Ok`] value or a provided default.
1586 ///
1587 /// Arguments passed to `unwrap_or` are eagerly evaluated; if you are passing
1588 /// the result of a function call, it is recommended to use [`unwrap_or_else`],
1589 /// which is lazily evaluated.
1590 ///
1591 /// [`unwrap_or_else`]: Result::unwrap_or_else
1592 ///
1593 /// # Examples
1594 ///
1595 /// ```
1596 /// let default = 2;
1597 /// let x: Result<u32, &str> = Ok(9);
1598 /// assert_eq!(x.unwrap_or(default), 9);
1599 ///
1600 /// let x: Result<u32, &str> = Err("error");
1601 /// assert_eq!(x.unwrap_or(default), default);
1602 /// ```
1603 #[inline]
1604 #[stable(feature = "rust1", since = "1.0.0")]
1605 #[rustc_const_unstable(feature = "const_result_trait_fn", issue = "144211")]
1606 pub const fn unwrap_or(self, default: T) -> T
1607 where
1608 T: [const] Destruct,
1609 E: [const] Destruct,
1610 {
1611 match self {
1612 Ok(t) => t,
1613 Err(_) => default,
1614 }
1615 }
1616
1617 /// Returns the contained [`Ok`] value or computes it from a closure.
1618 ///
1619 ///
1620 /// # Examples
1621 ///
1622 /// ```
1623 /// fn count(x: &str) -> usize { x.len() }
1624 ///
1625 /// assert_eq!(Ok(2).unwrap_or_else(count), 2);
1626 /// assert_eq!(Err("foo").unwrap_or_else(count), 3);
1627 /// ```
1628 #[inline]
1629 #[track_caller]
1630 #[stable(feature = "rust1", since = "1.0.0")]
1631 #[rustc_const_unstable(feature = "const_result_trait_fn", issue = "144211")]
1632 pub const fn unwrap_or_else<F>(self, op: F) -> T
1633 where
1634 F: [const] FnOnce(E) -> T + [const] Destruct,
1635 {
1636 match self {
1637 Ok(t) => t,
1638 Err(e) => op(e),
1639 }
1640 }
1641
1642 /// Returns the contained [`Ok`] value, consuming the `self` value,
1643 /// without checking that the value is not an [`Err`].
1644 ///
1645 /// # Safety
1646 ///
1647 /// Calling this method on an [`Err`] is *[undefined behavior]*.
1648 ///
1649 /// [undefined behavior]: https://doc.rust-lang.org/reference/behavior-considered-undefined.html
1650 ///
1651 /// # Examples
1652 ///
1653 /// ```
1654 /// let x: Result<u32, &str> = Ok(2);
1655 /// assert_eq!(unsafe { x.unwrap_unchecked() }, 2);
1656 /// ```
1657 ///
1658 /// ```no_run
1659 /// let x: Result<u32, &str> = Err("emergency failure");
1660 /// unsafe { x.unwrap_unchecked() }; // Undefined behavior!
1661 /// ```
1662 #[inline]
1663 #[track_caller]
1664 #[stable(feature = "option_result_unwrap_unchecked", since = "1.58.0")]
1665 // blocked on hint
1666 #[cfg(not(feature = "ferrocene_certified"))]
1667 pub unsafe fn unwrap_unchecked(self) -> T {
1668 match self {
1669 Ok(t) => t,
1670 // SAFETY: the safety contract must be upheld by the caller.
1671 Err(_) => unsafe { hint::unreachable_unchecked() },
1672 }
1673 }
1674
1675 /// Returns the contained [`Err`] value, consuming the `self` value,
1676 /// without checking that the value is not an [`Ok`].
1677 ///
1678 /// # Safety
1679 ///
1680 /// Calling this method on an [`Ok`] is *[undefined behavior]*.
1681 ///
1682 /// [undefined behavior]: https://doc.rust-lang.org/reference/behavior-considered-undefined.html
1683 ///
1684 /// # Examples
1685 ///
1686 /// ```no_run
1687 /// let x: Result<u32, &str> = Ok(2);
1688 /// unsafe { x.unwrap_err_unchecked() }; // Undefined behavior!
1689 /// ```
1690 ///
1691 /// ```
1692 /// let x: Result<u32, &str> = Err("emergency failure");
1693 /// assert_eq!(unsafe { x.unwrap_err_unchecked() }, "emergency failure");
1694 /// ```
1695 #[inline]
1696 #[track_caller]
1697 #[stable(feature = "option_result_unwrap_unchecked", since = "1.58.0")]
1698 // blocked on hint
1699 #[cfg(not(feature = "ferrocene_certified"))]
1700 pub unsafe fn unwrap_err_unchecked(self) -> E {
1701 match self {
1702 // SAFETY: the safety contract must be upheld by the caller.
1703 Ok(_) => unsafe { hint::unreachable_unchecked() },
1704 Err(e) => e,
1705 }
1706 }
1707}
1708
1709impl<T, E> Result<&T, E> {
1710 /// Maps a `Result<&T, E>` to a `Result<T, E>` by copying the contents of the
1711 /// `Ok` part.
1712 ///
1713 /// # Examples
1714 ///
1715 /// ```
1716 /// let val = 12;
1717 /// let x: Result<&i32, i32> = Ok(&val);
1718 /// assert_eq!(x, Ok(&12));
1719 /// let copied = x.copied();
1720 /// assert_eq!(copied, Ok(12));
1721 /// ```
1722 #[inline]
1723 #[stable(feature = "result_copied", since = "1.59.0")]
1724 #[rustc_const_stable(feature = "const_result", since = "1.83.0")]
1725 #[rustc_allow_const_fn_unstable(const_precise_live_drops)]
1726 pub const fn copied(self) -> Result<T, E>
1727 where
1728 T: Copy,
1729 {
1730 // FIXME(const-hack): this implementation, which sidesteps using `Result::map` since it's not const
1731 // ready yet, should be reverted when possible to avoid code repetition
1732 match self {
1733 Ok(&v) => Ok(v),
1734 Err(e) => Err(e),
1735 }
1736 }
1737
1738 /// Maps a `Result<&T, E>` to a `Result<T, E>` by cloning the contents of the
1739 /// `Ok` part.
1740 ///
1741 /// # Examples
1742 ///
1743 /// ```
1744 /// let val = 12;
1745 /// let x: Result<&i32, i32> = Ok(&val);
1746 /// assert_eq!(x, Ok(&12));
1747 /// let cloned = x.cloned();
1748 /// assert_eq!(cloned, Ok(12));
1749 /// ```
1750 #[inline]
1751 #[stable(feature = "result_cloned", since = "1.59.0")]
1752 pub fn cloned(self) -> Result<T, E>
1753 where
1754 T: Clone,
1755 {
1756 self.map(|t| t.clone())
1757 }
1758}
1759
1760impl<T, E> Result<&mut T, E> {
1761 /// Maps a `Result<&mut T, E>` to a `Result<T, E>` by copying the contents of the
1762 /// `Ok` part.
1763 ///
1764 /// # Examples
1765 ///
1766 /// ```
1767 /// let mut val = 12;
1768 /// let x: Result<&mut i32, i32> = Ok(&mut val);
1769 /// assert_eq!(x, Ok(&mut 12));
1770 /// let copied = x.copied();
1771 /// assert_eq!(copied, Ok(12));
1772 /// ```
1773 #[inline]
1774 #[stable(feature = "result_copied", since = "1.59.0")]
1775 #[rustc_const_stable(feature = "const_result", since = "1.83.0")]
1776 #[rustc_allow_const_fn_unstable(const_precise_live_drops)]
1777 pub const fn copied(self) -> Result<T, E>
1778 where
1779 T: Copy,
1780 {
1781 // FIXME(const-hack): this implementation, which sidesteps using `Result::map` since it's not const
1782 // ready yet, should be reverted when possible to avoid code repetition
1783 match self {
1784 Ok(&mut v) => Ok(v),
1785 Err(e) => Err(e),
1786 }
1787 }
1788
1789 /// Maps a `Result<&mut T, E>` to a `Result<T, E>` by cloning the contents of the
1790 /// `Ok` part.
1791 ///
1792 /// # Examples
1793 ///
1794 /// ```
1795 /// let mut val = 12;
1796 /// let x: Result<&mut i32, i32> = Ok(&mut val);
1797 /// assert_eq!(x, Ok(&mut 12));
1798 /// let cloned = x.cloned();
1799 /// assert_eq!(cloned, Ok(12));
1800 /// ```
1801 #[inline]
1802 #[stable(feature = "result_cloned", since = "1.59.0")]
1803 pub fn cloned(self) -> Result<T, E>
1804 where
1805 T: Clone,
1806 {
1807 self.map(|t| t.clone())
1808 }
1809}
1810
1811impl<T, E> Result<Option<T>, E> {
1812 /// Transposes a `Result` of an `Option` into an `Option` of a `Result`.
1813 ///
1814 /// `Ok(None)` will be mapped to `None`.
1815 /// `Ok(Some(_))` and `Err(_)` will be mapped to `Some(Ok(_))` and `Some(Err(_))`.
1816 ///
1817 /// # Examples
1818 ///
1819 /// ```
1820 /// #[derive(Debug, Eq, PartialEq)]
1821 /// struct SomeErr;
1822 ///
1823 /// let x: Result<Option<i32>, SomeErr> = Ok(Some(5));
1824 /// let y: Option<Result<i32, SomeErr>> = Some(Ok(5));
1825 /// assert_eq!(x.transpose(), y);
1826 /// ```
1827 #[inline]
1828 #[stable(feature = "transpose_result", since = "1.33.0")]
1829 #[rustc_const_stable(feature = "const_result", since = "1.83.0")]
1830 #[rustc_allow_const_fn_unstable(const_precise_live_drops)]
1831 pub const fn transpose(self) -> Option<Result<T, E>> {
1832 match self {
1833 Ok(Some(x)) => Some(Ok(x)),
1834 Ok(None) => None,
1835 Err(e) => Some(Err(e)),
1836 }
1837 }
1838}
1839
1840impl<T, E> Result<Result<T, E>, E> {
1841 /// Converts from `Result<Result<T, E>, E>` to `Result<T, E>`
1842 ///
1843 /// # Examples
1844 ///
1845 /// ```
1846 /// let x: Result<Result<&'static str, u32>, u32> = Ok(Ok("hello"));
1847 /// assert_eq!(Ok("hello"), x.flatten());
1848 ///
1849 /// let x: Result<Result<&'static str, u32>, u32> = Ok(Err(6));
1850 /// assert_eq!(Err(6), x.flatten());
1851 ///
1852 /// let x: Result<Result<&'static str, u32>, u32> = Err(6);
1853 /// assert_eq!(Err(6), x.flatten());
1854 /// ```
1855 ///
1856 /// Flattening only removes one level of nesting at a time:
1857 ///
1858 /// ```
1859 /// let x: Result<Result<Result<&'static str, u32>, u32>, u32> = Ok(Ok(Ok("hello")));
1860 /// assert_eq!(Ok(Ok("hello")), x.flatten());
1861 /// assert_eq!(Ok("hello"), x.flatten().flatten());
1862 /// ```
1863 #[inline]
1864 #[stable(feature = "result_flattening", since = "1.89.0")]
1865 #[rustc_allow_const_fn_unstable(const_precise_live_drops)]
1866 #[rustc_const_stable(feature = "result_flattening", since = "1.89.0")]
1867 // blocked on const impl Drop for Result<Result<T, E>>
1868 #[cfg(not(feature = "ferrocene_certified"))]
1869 pub const fn flatten(self) -> Result<T, E> {
1870 // FIXME(const-hack): could be written with `and_then`
1871 match self {
1872 Ok(inner) => inner,
1873 Err(e) => Err(e),
1874 }
1875 }
1876}
1877
1878// This is a separate function to reduce the code size of the methods
1879#[cfg(not(feature = "panic_immediate_abort"))]
1880#[inline(never)]
1881#[cold]
1882#[track_caller]
1883// blocked on Debug
1884#[cfg(not(feature = "ferrocene_certified"))]
1885fn unwrap_failed(msg: &str, error: &dyn fmt::Debug) -> ! {
1886 panic!("{msg}: {error:?}");
1887}
1888
1889// This is a separate function to avoid constructing a `dyn Debug`
1890// that gets immediately thrown away, since vtables don't get cleaned up
1891// by dead code elimination if a trait object is constructed even if it goes
1892// unused
1893#[cfg(feature = "panic_immediate_abort")]
1894#[inline]
1895#[cold]
1896#[track_caller]
1897// blocked on Debug
1898#[cfg(not(feature = "ferrocene_certified"))]
1899const fn unwrap_failed<T>(_msg: &str, _error: &T) -> ! {
1900 panic!()
1901}
1902
1903/////////////////////////////////////////////////////////////////////////////
1904// Trait implementations
1905/////////////////////////////////////////////////////////////////////////////
1906
1907#[stable(feature = "rust1", since = "1.0.0")]
1908#[cfg(not(feature = "ferrocene_certified"))]
1909impl<T, E> Clone for Result<T, E>
1910where
1911 T: Clone,
1912 E: Clone,
1913{
1914 #[inline]
1915 fn clone(&self) -> Self {
1916 match self {
1917 Ok(x) => Ok(x.clone()),
1918 Err(x) => Err(x.clone()),
1919 }
1920 }
1921
1922 #[inline]
1923 fn clone_from(&mut self, source: &Self) {
1924 match (self, source) {
1925 (Ok(to), Ok(from)) => to.clone_from(from),
1926 (Err(to), Err(from)) => to.clone_from(from),
1927 (to, from) => *to = from.clone(),
1928 }
1929 }
1930}
1931
1932#[unstable(feature = "ergonomic_clones", issue = "132290")]
1933#[cfg(not(feature = "ferrocene_certified"))]
1934impl<T, E> crate::clone::UseCloned for Result<T, E>
1935where
1936 T: crate::clone::UseCloned,
1937 E: crate::clone::UseCloned,
1938{
1939}
1940
1941#[stable(feature = "rust1", since = "1.0.0")]
1942#[cfg(not(feature = "ferrocene_certified"))]
1943impl<T, E> IntoIterator for Result<T, E> {
1944 type Item = T;
1945 type IntoIter = IntoIter<T>;
1946
1947 /// Returns a consuming iterator over the possibly contained value.
1948 ///
1949 /// The iterator yields one value if the result is [`Result::Ok`], otherwise none.
1950 ///
1951 /// # Examples
1952 ///
1953 /// ```
1954 /// let x: Result<u32, &str> = Ok(5);
1955 /// let v: Vec<u32> = x.into_iter().collect();
1956 /// assert_eq!(v, [5]);
1957 ///
1958 /// let x: Result<u32, &str> = Err("nothing!");
1959 /// let v: Vec<u32> = x.into_iter().collect();
1960 /// assert_eq!(v, []);
1961 /// ```
1962 #[inline]
1963 fn into_iter(self) -> IntoIter<T> {
1964 IntoIter { inner: self.ok() }
1965 }
1966}
1967
1968#[stable(since = "1.4.0", feature = "result_iter")]
1969#[cfg(not(feature = "ferrocene_certified"))]
1970impl<'a, T, E> IntoIterator for &'a Result<T, E> {
1971 type Item = &'a T;
1972 type IntoIter = Iter<'a, T>;
1973
1974 fn into_iter(self) -> Iter<'a, T> {
1975 self.iter()
1976 }
1977}
1978
1979#[stable(since = "1.4.0", feature = "result_iter")]
1980#[cfg(not(feature = "ferrocene_certified"))]
1981impl<'a, T, E> IntoIterator for &'a mut Result<T, E> {
1982 type Item = &'a mut T;
1983 type IntoIter = IterMut<'a, T>;
1984
1985 fn into_iter(self) -> IterMut<'a, T> {
1986 self.iter_mut()
1987 }
1988}
1989
1990/////////////////////////////////////////////////////////////////////////////
1991// The Result Iterators
1992/////////////////////////////////////////////////////////////////////////////
1993
1994/// An iterator over a reference to the [`Ok`] variant of a [`Result`].
1995///
1996/// The iterator yields one value if the result is [`Ok`], otherwise none.
1997///
1998/// Created by [`Result::iter`].
1999#[derive(Debug)]
2000#[stable(feature = "rust1", since = "1.0.0")]
2001#[cfg(not(feature = "ferrocene_certified"))]
2002pub struct Iter<'a, T: 'a> {
2003 inner: Option<&'a T>,
2004}
2005
2006#[stable(feature = "rust1", since = "1.0.0")]
2007#[cfg(not(feature = "ferrocene_certified"))]
2008impl<'a, T> Iterator for Iter<'a, T> {
2009 type Item = &'a T;
2010
2011 #[inline]
2012 fn next(&mut self) -> Option<&'a T> {
2013 self.inner.take()
2014 }
2015 #[inline]
2016 fn size_hint(&self) -> (usize, Option<usize>) {
2017 let n = if self.inner.is_some() { 1 } else { 0 };
2018 (n, Some(n))
2019 }
2020}
2021
2022#[stable(feature = "rust1", since = "1.0.0")]
2023#[cfg(not(feature = "ferrocene_certified"))]
2024impl<'a, T> DoubleEndedIterator for Iter<'a, T> {
2025 #[inline]
2026 fn next_back(&mut self) -> Option<&'a T> {
2027 self.inner.take()
2028 }
2029}
2030
2031#[stable(feature = "rust1", since = "1.0.0")]
2032#[cfg(not(feature = "ferrocene_certified"))]
2033impl<T> ExactSizeIterator for Iter<'_, T> {}
2034
2035#[stable(feature = "fused", since = "1.26.0")]
2036#[cfg(not(feature = "ferrocene_certified"))]
2037impl<T> FusedIterator for Iter<'_, T> {}
2038
2039#[unstable(feature = "trusted_len", issue = "37572")]
2040#[cfg(not(feature = "ferrocene_certified"))]
2041unsafe impl<A> TrustedLen for Iter<'_, A> {}
2042
2043#[stable(feature = "rust1", since = "1.0.0")]
2044#[cfg(not(feature = "ferrocene_certified"))]
2045impl<T> Clone for Iter<'_, T> {
2046 #[inline]
2047 fn clone(&self) -> Self {
2048 Iter { inner: self.inner }
2049 }
2050}
2051
2052/// An iterator over a mutable reference to the [`Ok`] variant of a [`Result`].
2053///
2054/// Created by [`Result::iter_mut`].
2055#[derive(Debug)]
2056#[stable(feature = "rust1", since = "1.0.0")]
2057#[cfg(not(feature = "ferrocene_certified"))]
2058pub struct IterMut<'a, T: 'a> {
2059 inner: Option<&'a mut T>,
2060}
2061
2062#[stable(feature = "rust1", since = "1.0.0")]
2063#[cfg(not(feature = "ferrocene_certified"))]
2064impl<'a, T> Iterator for IterMut<'a, T> {
2065 type Item = &'a mut T;
2066
2067 #[inline]
2068 fn next(&mut self) -> Option<&'a mut T> {
2069 self.inner.take()
2070 }
2071 #[inline]
2072 fn size_hint(&self) -> (usize, Option<usize>) {
2073 let n = if self.inner.is_some() { 1 } else { 0 };
2074 (n, Some(n))
2075 }
2076}
2077
2078#[stable(feature = "rust1", since = "1.0.0")]
2079#[cfg(not(feature = "ferrocene_certified"))]
2080impl<'a, T> DoubleEndedIterator for IterMut<'a, T> {
2081 #[inline]
2082 fn next_back(&mut self) -> Option<&'a mut T> {
2083 self.inner.take()
2084 }
2085}
2086
2087#[stable(feature = "rust1", since = "1.0.0")]
2088#[cfg(not(feature = "ferrocene_certified"))]
2089impl<T> ExactSizeIterator for IterMut<'_, T> {}
2090
2091#[stable(feature = "fused", since = "1.26.0")]
2092#[cfg(not(feature = "ferrocene_certified"))]
2093impl<T> FusedIterator for IterMut<'_, T> {}
2094
2095#[unstable(feature = "trusted_len", issue = "37572")]
2096#[cfg(not(feature = "ferrocene_certified"))]
2097unsafe impl<A> TrustedLen for IterMut<'_, A> {}
2098
2099/// An iterator over the value in a [`Ok`] variant of a [`Result`].
2100///
2101/// The iterator yields one value if the result is [`Ok`], otherwise none.
2102///
2103/// This struct is created by the [`into_iter`] method on
2104/// [`Result`] (provided by the [`IntoIterator`] trait).
2105///
2106/// [`into_iter`]: IntoIterator::into_iter
2107#[derive(Clone, Debug)]
2108#[stable(feature = "rust1", since = "1.0.0")]
2109#[cfg(not(feature = "ferrocene_certified"))]
2110pub struct IntoIter<T> {
2111 inner: Option<T>,
2112}
2113
2114#[stable(feature = "rust1", since = "1.0.0")]
2115#[cfg(not(feature = "ferrocene_certified"))]
2116impl<T> Iterator for IntoIter<T> {
2117 type Item = T;
2118
2119 #[inline]
2120 fn next(&mut self) -> Option<T> {
2121 self.inner.take()
2122 }
2123 #[inline]
2124 fn size_hint(&self) -> (usize, Option<usize>) {
2125 let n = if self.inner.is_some() { 1 } else { 0 };
2126 (n, Some(n))
2127 }
2128}
2129
2130#[stable(feature = "rust1", since = "1.0.0")]
2131#[cfg(not(feature = "ferrocene_certified"))]
2132impl<T> DoubleEndedIterator for IntoIter<T> {
2133 #[inline]
2134 fn next_back(&mut self) -> Option<T> {
2135 self.inner.take()
2136 }
2137}
2138
2139#[stable(feature = "rust1", since = "1.0.0")]
2140#[cfg(not(feature = "ferrocene_certified"))]
2141impl<T> ExactSizeIterator for IntoIter<T> {}
2142
2143#[stable(feature = "fused", since = "1.26.0")]
2144#[cfg(not(feature = "ferrocene_certified"))]
2145impl<T> FusedIterator for IntoIter<T> {}
2146
2147#[unstable(feature = "trusted_len", issue = "37572")]
2148#[cfg(not(feature = "ferrocene_certified"))]
2149unsafe impl<A> TrustedLen for IntoIter<A> {}
2150
2151/////////////////////////////////////////////////////////////////////////////
2152// FromIterator
2153/////////////////////////////////////////////////////////////////////////////
2154
2155#[stable(feature = "rust1", since = "1.0.0")]
2156#[cfg(not(feature = "ferrocene_certified"))]
2157impl<A, E, V: FromIterator<A>> FromIterator<Result<A, E>> for Result<V, E> {
2158 /// Takes each element in the `Iterator`: if it is an `Err`, no further
2159 /// elements are taken, and the `Err` is returned. Should no `Err` occur, a
2160 /// container with the values of each `Result` is returned.
2161 ///
2162 /// Here is an example which increments every integer in a vector,
2163 /// checking for overflow:
2164 ///
2165 /// ```
2166 /// let v = vec![1, 2];
2167 /// let res: Result<Vec<u32>, &'static str> = v.iter().map(|x: &u32|
2168 /// x.checked_add(1).ok_or("Overflow!")
2169 /// ).collect();
2170 /// assert_eq!(res, Ok(vec![2, 3]));
2171 /// ```
2172 ///
2173 /// Here is another example that tries to subtract one from another list
2174 /// of integers, this time checking for underflow:
2175 ///
2176 /// ```
2177 /// let v = vec![1, 2, 0];
2178 /// let res: Result<Vec<u32>, &'static str> = v.iter().map(|x: &u32|
2179 /// x.checked_sub(1).ok_or("Underflow!")
2180 /// ).collect();
2181 /// assert_eq!(res, Err("Underflow!"));
2182 /// ```
2183 ///
2184 /// Here is a variation on the previous example, showing that no
2185 /// further elements are taken from `iter` after the first `Err`.
2186 ///
2187 /// ```
2188 /// let v = vec![3, 2, 1, 10];
2189 /// let mut shared = 0;
2190 /// let res: Result<Vec<u32>, &'static str> = v.iter().map(|x: &u32| {
2191 /// shared += x;
2192 /// x.checked_sub(2).ok_or("Underflow!")
2193 /// }).collect();
2194 /// assert_eq!(res, Err("Underflow!"));
2195 /// assert_eq!(shared, 6);
2196 /// ```
2197 ///
2198 /// Since the third element caused an underflow, no further elements were taken,
2199 /// so the final value of `shared` is 6 (= `3 + 2 + 1`), not 16.
2200 #[inline]
2201 fn from_iter<I: IntoIterator<Item = Result<A, E>>>(iter: I) -> Result<V, E> {
2202 iter::try_process(iter.into_iter(), |i| i.collect())
2203 }
2204}
2205
2206#[unstable(feature = "try_trait_v2", issue = "84277", old_name = "try_trait")]
2207#[rustc_const_unstable(feature = "const_try", issue = "74935")]
2208#[cfg(not(feature = "ferrocene_certified"))]
2209impl<T, E> const ops::Try for Result<T, E> {
2210 type Output = T;
2211 type Residual = Result<convert::Infallible, E>;
2212
2213 #[inline]
2214 fn from_output(output: Self::Output) -> Self {
2215 Ok(output)
2216 }
2217
2218 #[inline]
2219 fn branch(self) -> ControlFlow<Self::Residual, Self::Output> {
2220 match self {
2221 Ok(v) => ControlFlow::Continue(v),
2222 Err(e) => ControlFlow::Break(Err(e)),
2223 }
2224 }
2225}
2226
2227#[unstable(feature = "try_trait_v2", issue = "84277", old_name = "try_trait")]
2228#[rustc_const_unstable(feature = "const_try", issue = "74935")]
2229#[cfg(not(feature = "ferrocene_certified"))]
2230impl<T, E, F: [const] From<E>> const ops::FromResidual<Result<convert::Infallible, E>>
2231 for Result<T, F>
2232{
2233 #[inline]
2234 #[track_caller]
2235 fn from_residual(residual: Result<convert::Infallible, E>) -> Self {
2236 match residual {
2237 Err(e) => Err(From::from(e)),
2238 }
2239 }
2240}
2241#[diagnostic::do_not_recommend]
2242#[unstable(feature = "try_trait_v2_yeet", issue = "96374")]
2243#[rustc_const_unstable(feature = "const_try", issue = "74935")]
2244#[cfg(not(feature = "ferrocene_certified"))]
2245impl<T, E, F: [const] From<E>> const ops::FromResidual<ops::Yeet<E>> for Result<T, F> {
2246 #[inline]
2247 fn from_residual(ops::Yeet(e): ops::Yeet<E>) -> Self {
2248 Err(From::from(e))
2249 }
2250}
2251
2252#[unstable(feature = "try_trait_v2_residual", issue = "91285")]
2253#[rustc_const_unstable(feature = "const_try", issue = "74935")]
2254#[cfg(not(feature = "ferrocene_certified"))]
2255impl<T, E> const ops::Residual<T> for Result<convert::Infallible, E> {
2256 type TryType = Result<T, E>;
2257}