core/str/mod.rs
1//! String manipulation.
2//!
3//! For more details, see the [`std::str`] module.
4//!
5//! [`std::str`]: ../../std/str/index.html
6
7#![stable(feature = "rust1", since = "1.0.0")]
8
9mod converts;
10#[cfg(not(feature = "ferrocene_subset"))]
11mod count;
12mod error;
13mod iter;
14mod traits;
15mod validations;
16
17#[cfg(not(feature = "ferrocene_subset"))]
18use self::pattern::{DoubleEndedSearcher, Pattern, ReverseSearcher, Searcher};
19#[cfg(not(feature = "ferrocene_subset"))]
20use crate::char::{self, EscapeDebugExtArgs};
21#[cfg(not(feature = "ferrocene_subset"))]
22use crate::ops::Range;
23#[cfg(not(feature = "ferrocene_subset"))]
24use crate::slice::{self, SliceIndex};
25#[cfg(not(feature = "ferrocene_subset"))]
26use crate::ub_checks::assert_unsafe_precondition;
27#[cfg(not(feature = "ferrocene_subset"))]
28use crate::{ascii, mem};
29
30// Ferrocene addition: imports for certified subset
31#[cfg(feature = "ferrocene_subset")]
32#[rustfmt::skip]
33use {
34 self::pattern::Pattern,
35 crate::{mem, slice::SliceIndex},
36};
37
38pub mod pattern;
39
40#[cfg(not(feature = "ferrocene_subset"))]
41mod lossy;
42#[unstable(feature = "str_from_raw_parts", issue = "119206")]
43#[cfg(not(feature = "ferrocene_subset"))]
44pub use converts::{from_raw_parts, from_raw_parts_mut};
45#[stable(feature = "rust1", since = "1.0.0")]
46pub use converts::{from_utf8, from_utf8_unchecked};
47#[stable(feature = "str_mut_extras", since = "1.20.0")]
48pub use converts::{from_utf8_mut, from_utf8_unchecked_mut};
49#[stable(feature = "rust1", since = "1.0.0")]
50#[cfg(not(feature = "ferrocene_subset"))]
51pub use error::{ParseBoolError, Utf8Error};
52#[stable(feature = "encode_utf16", since = "1.8.0")]
53#[cfg(not(feature = "ferrocene_subset"))]
54pub use iter::EncodeUtf16;
55#[stable(feature = "rust1", since = "1.0.0")]
56#[allow(deprecated)]
57#[cfg(not(feature = "ferrocene_subset"))]
58pub use iter::LinesAny;
59#[stable(feature = "split_ascii_whitespace", since = "1.34.0")]
60#[cfg(not(feature = "ferrocene_subset"))]
61pub use iter::SplitAsciiWhitespace;
62#[stable(feature = "split_inclusive", since = "1.51.0")]
63#[cfg(not(feature = "ferrocene_subset"))]
64pub use iter::SplitInclusive;
65#[stable(feature = "rust1", since = "1.0.0")]
66#[cfg(not(feature = "ferrocene_subset"))]
67pub use iter::{Bytes, CharIndices, Chars, Lines, SplitWhitespace};
68#[stable(feature = "str_escape", since = "1.34.0")]
69#[cfg(not(feature = "ferrocene_subset"))]
70pub use iter::{EscapeDebug, EscapeDefault, EscapeUnicode};
71#[stable(feature = "str_match_indices", since = "1.5.0")]
72#[cfg(not(feature = "ferrocene_subset"))]
73pub use iter::{MatchIndices, RMatchIndices};
74#[cfg(not(feature = "ferrocene_subset"))]
75use iter::{MatchIndicesInternal, MatchesInternal, SplitInternal, SplitNInternal};
76#[stable(feature = "str_matches", since = "1.2.0")]
77#[cfg(not(feature = "ferrocene_subset"))]
78pub use iter::{Matches, RMatches};
79#[stable(feature = "rust1", since = "1.0.0")]
80#[cfg(not(feature = "ferrocene_subset"))]
81pub use iter::{RSplit, RSplitTerminator, Split, SplitTerminator};
82#[stable(feature = "rust1", since = "1.0.0")]
83#[cfg(not(feature = "ferrocene_subset"))]
84pub use iter::{RSplitN, SplitN};
85#[stable(feature = "utf8_chunks", since = "1.79.0")]
86#[cfg(not(feature = "ferrocene_subset"))]
87pub use lossy::{Utf8Chunk, Utf8Chunks};
88#[stable(feature = "rust1", since = "1.0.0")]
89pub use traits::FromStr;
90#[unstable(feature = "str_internals", issue = "none")]
91pub use validations::{next_code_point, utf8_char_width};
92
93#[stable(feature = "rust1", since = "1.0.0")]
94#[cfg(feature = "ferrocene_subset")]
95#[rustfmt::skip]
96pub use {
97 error::Utf8Error,
98 iter::{Bytes, Chars},
99};
100
101#[inline(never)]
102#[cold]
103#[track_caller]
104#[rustc_allow_const_fn_unstable(const_eval_select)]
105#[cfg(not(panic = "immediate-abort"))]
106const fn slice_error_fail(s: &str, begin: usize, end: usize) -> ! {
107 crate::intrinsics::const_eval_select((s, begin, end), slice_error_fail_ct, slice_error_fail_rt)
108}
109
110#[cfg(panic = "immediate-abort")]
111#[cfg(not(feature = "ferrocene_subset"))]
112const fn slice_error_fail(s: &str, begin: usize, end: usize) -> ! {
113 slice_error_fail_ct(s, begin, end)
114}
115
116#[track_caller]
117const fn slice_error_fail_ct(_: &str, _: usize, _: usize) -> ! {
118 panic!("failed to slice string");
119}
120
121#[track_caller]
122#[cfg_attr(feature = "ferrocene_certified_runtime", expect(unused_variables))]
123fn slice_error_fail_rt(s: &str, begin: usize, end: usize) -> ! {
124 const MAX_DISPLAY_LENGTH: usize = 256;
125 let trunc_len = s.floor_char_boundary(MAX_DISPLAY_LENGTH);
126 let s_trunc = &s[..trunc_len];
127 let ellipsis = if trunc_len < s.len() { "[...]" } else { "" };
128
129 // 1. out of bounds
130 if begin > s.len() || end > s.len() {
131 let oob_index = if begin > s.len() { begin } else { end };
132 panic!("byte index {oob_index} is out of bounds of `{s_trunc}`{ellipsis}");
133 }
134
135 // 2. begin <= end
136 assert!(
137 begin <= end,
138 "begin <= end ({} <= {}) when slicing `{}`{}",
139 begin,
140 end,
141 s_trunc,
142 ellipsis
143 );
144
145 // 3. character boundary
146 let index = if !s.is_char_boundary(begin) { begin } else { end };
147 // find the character
148 let char_start = s.floor_char_boundary(index);
149 // `char_start` must be less than len and a char boundary
150 let ch = s[char_start..].chars().next().unwrap();
151 let char_range = char_start..char_start + ch.len_utf8();
152 panic!(
153 "byte index {} is not a char boundary; it is inside {:?} (bytes {:?}) of `{}`{}",
154 index, ch, char_range, s_trunc, ellipsis
155 );
156}
157
158impl str {
159 /// Returns the length of `self`.
160 ///
161 /// This length is in bytes, not [`char`]s or graphemes. In other words,
162 /// it might not be what a human considers the length of the string.
163 ///
164 /// [`char`]: prim@char
165 ///
166 /// # Examples
167 ///
168 /// ```
169 /// let len = "foo".len();
170 /// assert_eq!(3, len);
171 ///
172 /// assert_eq!("ƒoo".len(), 4); // fancy f!
173 /// assert_eq!("ƒoo".chars().count(), 3);
174 /// ```
175 #[stable(feature = "rust1", since = "1.0.0")]
176 #[rustc_const_stable(feature = "const_str_len", since = "1.39.0")]
177 #[rustc_diagnostic_item = "str_len"]
178 #[rustc_no_implicit_autorefs]
179 #[must_use]
180 #[inline]
181 pub const fn len(&self) -> usize {
182 self.as_bytes().len()
183 }
184
185 /// Returns `true` if `self` has a length of zero bytes.
186 ///
187 /// # Examples
188 ///
189 /// ```
190 /// let s = "";
191 /// assert!(s.is_empty());
192 ///
193 /// let s = "not empty";
194 /// assert!(!s.is_empty());
195 /// ```
196 #[stable(feature = "rust1", since = "1.0.0")]
197 #[rustc_const_stable(feature = "const_str_is_empty", since = "1.39.0")]
198 #[rustc_no_implicit_autorefs]
199 #[must_use]
200 #[inline]
201 pub const fn is_empty(&self) -> bool {
202 self.len() == 0
203 }
204
205 /// Converts a slice of bytes to a string slice.
206 ///
207 /// A string slice ([`&str`]) is made of bytes ([`u8`]), and a byte slice
208 /// ([`&[u8]`][byteslice]) is made of bytes, so this function converts between
209 /// the two. Not all byte slices are valid string slices, however: [`&str`] requires
210 /// that it is valid UTF-8. `from_utf8()` checks to ensure that the bytes are valid
211 /// UTF-8, and then does the conversion.
212 ///
213 /// [`&str`]: str
214 /// [byteslice]: prim@slice
215 ///
216 /// If you are sure that the byte slice is valid UTF-8, and you don't want to
217 /// incur the overhead of the validity check, there is an unsafe version of
218 /// this function, [`from_utf8_unchecked`], which has the same
219 /// behavior but skips the check.
220 ///
221 /// If you need a `String` instead of a `&str`, consider
222 /// [`String::from_utf8`][string].
223 ///
224 /// [string]: ../std/string/struct.String.html#method.from_utf8
225 ///
226 /// Because you can stack-allocate a `[u8; N]`, and you can take a
227 /// [`&[u8]`][byteslice] of it, this function is one way to have a
228 /// stack-allocated string. There is an example of this in the
229 /// examples section below.
230 ///
231 /// [byteslice]: slice
232 ///
233 /// # Errors
234 ///
235 /// Returns `Err` if the slice is not UTF-8 with a description as to why the
236 /// provided slice is not UTF-8.
237 ///
238 /// # Examples
239 ///
240 /// Basic usage:
241 ///
242 /// ```
243 /// // some bytes, in a vector
244 /// let sparkle_heart = vec![240, 159, 146, 150];
245 ///
246 /// // We can use the ? (try) operator to check if the bytes are valid
247 /// let sparkle_heart = str::from_utf8(&sparkle_heart)?;
248 ///
249 /// assert_eq!("💖", sparkle_heart);
250 /// # Ok::<_, std::str::Utf8Error>(())
251 /// ```
252 ///
253 /// Incorrect bytes:
254 ///
255 /// ```
256 /// // some invalid bytes, in a vector
257 /// let sparkle_heart = vec![0, 159, 146, 150];
258 ///
259 /// assert!(str::from_utf8(&sparkle_heart).is_err());
260 /// ```
261 ///
262 /// See the docs for [`Utf8Error`] for more details on the kinds of
263 /// errors that can be returned.
264 ///
265 /// A "stack allocated string":
266 ///
267 /// ```
268 /// // some bytes, in a stack-allocated array
269 /// let sparkle_heart = [240, 159, 146, 150];
270 ///
271 /// // We know these bytes are valid, so just use `unwrap()`.
272 /// let sparkle_heart: &str = str::from_utf8(&sparkle_heart).unwrap();
273 ///
274 /// assert_eq!("💖", sparkle_heart);
275 /// ```
276 #[stable(feature = "inherent_str_constructors", since = "1.87.0")]
277 #[rustc_const_stable(feature = "inherent_str_constructors", since = "1.87.0")]
278 #[rustc_diagnostic_item = "str_inherent_from_utf8"]
279 pub const fn from_utf8(v: &[u8]) -> Result<&str, Utf8Error> {
280 converts::from_utf8(v)
281 }
282
283 /// Converts a mutable slice of bytes to a mutable string slice.
284 ///
285 /// # Examples
286 ///
287 /// Basic usage:
288 ///
289 /// ```
290 /// // "Hello, Rust!" as a mutable vector
291 /// let mut hellorust = vec![72, 101, 108, 108, 111, 44, 32, 82, 117, 115, 116, 33];
292 ///
293 /// // As we know these bytes are valid, we can use `unwrap()`
294 /// let outstr = str::from_utf8_mut(&mut hellorust).unwrap();
295 ///
296 /// assert_eq!("Hello, Rust!", outstr);
297 /// ```
298 ///
299 /// Incorrect bytes:
300 ///
301 /// ```
302 /// // Some invalid bytes in a mutable vector
303 /// let mut invalid = vec![128, 223];
304 ///
305 /// assert!(str::from_utf8_mut(&mut invalid).is_err());
306 /// ```
307 /// See the docs for [`Utf8Error`] for more details on the kinds of
308 /// errors that can be returned.
309 #[stable(feature = "inherent_str_constructors", since = "1.87.0")]
310 #[rustc_const_stable(feature = "const_str_from_utf8", since = "1.87.0")]
311 #[rustc_diagnostic_item = "str_inherent_from_utf8_mut"]
312 pub const fn from_utf8_mut(v: &mut [u8]) -> Result<&mut str, Utf8Error> {
313 converts::from_utf8_mut(v)
314 }
315
316 /// Converts a slice of bytes to a string slice without checking
317 /// that the string contains valid UTF-8.
318 ///
319 /// See the safe version, [`from_utf8`], for more information.
320 ///
321 /// # Safety
322 ///
323 /// The bytes passed in must be valid UTF-8.
324 ///
325 /// # Examples
326 ///
327 /// Basic usage:
328 ///
329 /// ```
330 /// // some bytes, in a vector
331 /// let sparkle_heart = vec![240, 159, 146, 150];
332 ///
333 /// let sparkle_heart = unsafe {
334 /// str::from_utf8_unchecked(&sparkle_heart)
335 /// };
336 ///
337 /// assert_eq!("💖", sparkle_heart);
338 /// ```
339 #[inline]
340 #[must_use]
341 #[stable(feature = "inherent_str_constructors", since = "1.87.0")]
342 #[rustc_const_stable(feature = "inherent_str_constructors", since = "1.87.0")]
343 #[rustc_diagnostic_item = "str_inherent_from_utf8_unchecked"]
344 pub const unsafe fn from_utf8_unchecked(v: &[u8]) -> &str {
345 // SAFETY: converts::from_utf8_unchecked has the same safety requirements as this function.
346 unsafe { converts::from_utf8_unchecked(v) }
347 }
348
349 /// Converts a slice of bytes to a string slice without checking
350 /// that the string contains valid UTF-8; mutable version.
351 ///
352 /// See the immutable version, [`from_utf8_unchecked()`] for documentation and safety requirements.
353 ///
354 /// # Examples
355 ///
356 /// Basic usage:
357 ///
358 /// ```
359 /// let mut heart = vec![240, 159, 146, 150];
360 /// let heart = unsafe { str::from_utf8_unchecked_mut(&mut heart) };
361 ///
362 /// assert_eq!("💖", heart);
363 /// ```
364 #[inline]
365 #[must_use]
366 #[stable(feature = "inherent_str_constructors", since = "1.87.0")]
367 #[rustc_const_stable(feature = "inherent_str_constructors", since = "1.87.0")]
368 #[rustc_diagnostic_item = "str_inherent_from_utf8_unchecked_mut"]
369 pub const unsafe fn from_utf8_unchecked_mut(v: &mut [u8]) -> &mut str {
370 // SAFETY: converts::from_utf8_unchecked_mut has the same safety requirements as this function.
371 unsafe { converts::from_utf8_unchecked_mut(v) }
372 }
373
374 /// Checks that `index`-th byte is the first byte in a UTF-8 code point
375 /// sequence or the end of the string.
376 ///
377 /// The start and end of the string (when `index == self.len()`) are
378 /// considered to be boundaries.
379 ///
380 /// Returns `false` if `index` is greater than `self.len()`.
381 ///
382 /// # Examples
383 ///
384 /// ```
385 /// let s = "Löwe 老虎 Léopard";
386 /// assert!(s.is_char_boundary(0));
387 /// // start of `老`
388 /// assert!(s.is_char_boundary(6));
389 /// assert!(s.is_char_boundary(s.len()));
390 ///
391 /// // second byte of `ö`
392 /// assert!(!s.is_char_boundary(2));
393 ///
394 /// // third byte of `老`
395 /// assert!(!s.is_char_boundary(8));
396 /// ```
397 #[must_use]
398 #[stable(feature = "is_char_boundary", since = "1.9.0")]
399 #[rustc_const_stable(feature = "const_is_char_boundary", since = "1.86.0")]
400 #[inline]
401 pub const fn is_char_boundary(&self, index: usize) -> bool {
402 // 0 is always ok.
403 // Test for 0 explicitly so that it can optimize out the check
404 // easily and skip reading string data for that case.
405 // Note that optimizing `self.get(..index)` relies on this.
406 if index == 0 {
407 return true;
408 }
409
410 if index >= self.len() {
411 // For `true` we have two options:
412 //
413 // - index == self.len()
414 // Empty strings are valid, so return true
415 // - index > self.len()
416 // In this case return false
417 //
418 // The check is placed exactly here, because it improves generated
419 // code on higher opt-levels. See PR #84751 for more details.
420 index == self.len()
421 } else {
422 self.as_bytes()[index].is_utf8_char_boundary()
423 }
424 }
425
426 /// Finds the closest `x` not exceeding `index` where [`is_char_boundary(x)`] is `true`.
427 ///
428 /// This method can help you truncate a string so that it's still valid UTF-8, but doesn't
429 /// exceed a given number of bytes. Note that this is done purely at the character level
430 /// and can still visually split graphemes, even though the underlying characters aren't
431 /// split. For example, the emoji 🧑🔬 (scientist) could be split so that the string only
432 /// includes 🧑 (person) instead.
433 ///
434 /// [`is_char_boundary(x)`]: Self::is_char_boundary
435 ///
436 /// # Examples
437 ///
438 /// ```
439 /// let s = "❤️🧡💛💚💙💜";
440 /// assert_eq!(s.len(), 26);
441 /// assert!(!s.is_char_boundary(13));
442 ///
443 /// let closest = s.floor_char_boundary(13);
444 /// assert_eq!(closest, 10);
445 /// assert_eq!(&s[..closest], "❤️🧡");
446 /// ```
447 #[stable(feature = "round_char_boundary", since = "1.91.0")]
448 #[rustc_const_stable(feature = "round_char_boundary", since = "1.91.0")]
449 #[inline]
450 pub const fn floor_char_boundary(&self, index: usize) -> usize {
451 if index >= self.len() {
452 self.len()
453 } else {
454 let mut i = index;
455 while i > 0 {
456 if self.as_bytes()[i].is_utf8_char_boundary() {
457 break;
458 }
459 i -= 1;
460 }
461
462 // The character boundary will be within four bytes of the index
463 debug_assert!(i >= index.saturating_sub(3));
464
465 i
466 }
467 }
468
469 /// Finds the closest `x` not below `index` where [`is_char_boundary(x)`] is `true`.
470 ///
471 /// If `index` is greater than the length of the string, this returns the length of the string.
472 ///
473 /// This method is the natural complement to [`floor_char_boundary`]. See that method
474 /// for more details.
475 ///
476 /// [`floor_char_boundary`]: str::floor_char_boundary
477 /// [`is_char_boundary(x)`]: Self::is_char_boundary
478 ///
479 /// # Examples
480 ///
481 /// ```
482 /// let s = "❤️🧡💛💚💙💜";
483 /// assert_eq!(s.len(), 26);
484 /// assert!(!s.is_char_boundary(13));
485 ///
486 /// let closest = s.ceil_char_boundary(13);
487 /// assert_eq!(closest, 14);
488 /// assert_eq!(&s[..closest], "❤️🧡💛");
489 /// ```
490 #[stable(feature = "round_char_boundary", since = "1.91.0")]
491 #[rustc_const_stable(feature = "round_char_boundary", since = "1.91.0")]
492 #[inline]
493 #[cfg(not(feature = "ferrocene_subset"))]
494 pub const fn ceil_char_boundary(&self, index: usize) -> usize {
495 if index >= self.len() {
496 self.len()
497 } else {
498 let mut i = index;
499 while i < self.len() {
500 if self.as_bytes()[i].is_utf8_char_boundary() {
501 break;
502 }
503 i += 1;
504 }
505
506 // The character boundary will be within four bytes of the index
507 debug_assert!(i <= index + 3);
508
509 i
510 }
511 }
512
513 /// Converts a string slice to a byte slice. To convert the byte slice back
514 /// into a string slice, use the [`from_utf8`] function.
515 ///
516 /// # Examples
517 ///
518 /// ```
519 /// let bytes = "bors".as_bytes();
520 /// assert_eq!(b"bors", bytes);
521 /// ```
522 #[stable(feature = "rust1", since = "1.0.0")]
523 #[rustc_const_stable(feature = "str_as_bytes", since = "1.39.0")]
524 #[must_use]
525 #[inline(always)]
526 #[allow(unused_attributes)]
527 pub const fn as_bytes(&self) -> &[u8] {
528 // SAFETY: const sound because we transmute two types with the same layout
529 unsafe { mem::transmute(self) }
530 }
531
532 /// Converts a mutable string slice to a mutable byte slice.
533 ///
534 /// # Safety
535 ///
536 /// The caller must ensure that the content of the slice is valid UTF-8
537 /// before the borrow ends and the underlying `str` is used.
538 ///
539 /// Use of a `str` whose contents are not valid UTF-8 is undefined behavior.
540 ///
541 /// # Examples
542 ///
543 /// Basic usage:
544 ///
545 /// ```
546 /// let mut s = String::from("Hello");
547 /// let bytes = unsafe { s.as_bytes_mut() };
548 ///
549 /// assert_eq!(b"Hello", bytes);
550 /// ```
551 ///
552 /// Mutability:
553 ///
554 /// ```
555 /// let mut s = String::from("🗻∈🌏");
556 ///
557 /// unsafe {
558 /// let bytes = s.as_bytes_mut();
559 ///
560 /// bytes[0] = 0xF0;
561 /// bytes[1] = 0x9F;
562 /// bytes[2] = 0x8D;
563 /// bytes[3] = 0x94;
564 /// }
565 ///
566 /// assert_eq!("🍔∈🌏", s);
567 /// ```
568 #[stable(feature = "str_mut_extras", since = "1.20.0")]
569 #[rustc_const_stable(feature = "const_str_as_mut", since = "1.83.0")]
570 #[must_use]
571 #[inline(always)]
572 pub const unsafe fn as_bytes_mut(&mut self) -> &mut [u8] {
573 // SAFETY: the cast from `&str` to `&[u8]` is safe since `str`
574 // has the same layout as `&[u8]` (only std can make this guarantee).
575 // The pointer dereference is safe since it comes from a mutable reference which
576 // is guaranteed to be valid for writes.
577 unsafe { &mut *(self as *mut str as *mut [u8]) }
578 }
579
580 /// Converts a string slice to a raw pointer.
581 ///
582 /// As string slices are a slice of bytes, the raw pointer points to a
583 /// [`u8`]. This pointer will be pointing to the first byte of the string
584 /// slice.
585 ///
586 /// The caller must ensure that the returned pointer is never written to.
587 /// If you need to mutate the contents of the string slice, use [`as_mut_ptr`].
588 ///
589 /// [`as_mut_ptr`]: str::as_mut_ptr
590 ///
591 /// # Examples
592 ///
593 /// ```
594 /// let s = "Hello";
595 /// let ptr = s.as_ptr();
596 /// ```
597 #[stable(feature = "rust1", since = "1.0.0")]
598 #[rustc_const_stable(feature = "rustc_str_as_ptr", since = "1.32.0")]
599 #[rustc_never_returns_null_ptr]
600 #[rustc_as_ptr]
601 #[must_use]
602 #[inline(always)]
603 pub const fn as_ptr(&self) -> *const u8 {
604 self as *const str as *const u8
605 }
606
607 /// Converts a mutable string slice to a raw pointer.
608 ///
609 /// As string slices are a slice of bytes, the raw pointer points to a
610 /// [`u8`]. This pointer will be pointing to the first byte of the string
611 /// slice.
612 ///
613 /// It is your responsibility to make sure that the string slice only gets
614 /// modified in a way that it remains valid UTF-8.
615 #[stable(feature = "str_as_mut_ptr", since = "1.36.0")]
616 #[rustc_const_stable(feature = "const_str_as_mut", since = "1.83.0")]
617 #[rustc_never_returns_null_ptr]
618 #[rustc_as_ptr]
619 #[must_use]
620 #[inline(always)]
621 pub const fn as_mut_ptr(&mut self) -> *mut u8 {
622 self as *mut str as *mut u8
623 }
624
625 /// Returns a subslice of `str`.
626 ///
627 /// This is the non-panicking alternative to indexing the `str`. Returns
628 /// [`None`] whenever equivalent indexing operation would panic.
629 ///
630 /// # Examples
631 ///
632 /// ```
633 /// let v = String::from("🗻∈🌏");
634 ///
635 /// assert_eq!(Some("🗻"), v.get(0..4));
636 ///
637 /// // indices not on UTF-8 sequence boundaries
638 /// assert!(v.get(1..).is_none());
639 /// assert!(v.get(..8).is_none());
640 ///
641 /// // out of bounds
642 /// assert!(v.get(..42).is_none());
643 /// ```
644 #[stable(feature = "str_checked_slicing", since = "1.20.0")]
645 #[rustc_const_unstable(feature = "const_index", issue = "143775")]
646 #[inline]
647 #[cfg(not(feature = "ferrocene_subset"))]
648 pub const fn get<I: [const] SliceIndex<str>>(&self, i: I) -> Option<&I::Output> {
649 i.get(self)
650 }
651
652 /// Returns a mutable subslice of `str`.
653 ///
654 /// This is the non-panicking alternative to indexing the `str`. Returns
655 /// [`None`] whenever equivalent indexing operation would panic.
656 ///
657 /// # Examples
658 ///
659 /// ```
660 /// let mut v = String::from("hello");
661 /// // correct length
662 /// assert!(v.get_mut(0..5).is_some());
663 /// // out of bounds
664 /// assert!(v.get_mut(..42).is_none());
665 /// assert_eq!(Some("he"), v.get_mut(0..2).map(|v| &*v));
666 ///
667 /// assert_eq!("hello", v);
668 /// {
669 /// let s = v.get_mut(0..2);
670 /// let s = s.map(|s| {
671 /// s.make_ascii_uppercase();
672 /// &*s
673 /// });
674 /// assert_eq!(Some("HE"), s);
675 /// }
676 /// assert_eq!("HEllo", v);
677 /// ```
678 #[stable(feature = "str_checked_slicing", since = "1.20.0")]
679 #[rustc_const_unstable(feature = "const_index", issue = "143775")]
680 #[inline]
681 #[cfg(not(feature = "ferrocene_subset"))]
682 pub const fn get_mut<I: [const] SliceIndex<str>>(&mut self, i: I) -> Option<&mut I::Output> {
683 i.get_mut(self)
684 }
685
686 /// Returns an unchecked subslice of `str`.
687 ///
688 /// This is the unchecked alternative to indexing the `str`.
689 ///
690 /// # Safety
691 ///
692 /// Callers of this function are responsible that these preconditions are
693 /// satisfied:
694 ///
695 /// * The starting index must not exceed the ending index;
696 /// * Indexes must be within bounds of the original slice;
697 /// * Indexes must lie on UTF-8 sequence boundaries.
698 ///
699 /// Failing that, the returned string slice may reference invalid memory or
700 /// violate the invariants communicated by the `str` type.
701 ///
702 /// # Examples
703 ///
704 /// ```
705 /// let v = "🗻∈🌏";
706 /// unsafe {
707 /// assert_eq!("🗻", v.get_unchecked(0..4));
708 /// assert_eq!("∈", v.get_unchecked(4..7));
709 /// assert_eq!("🌏", v.get_unchecked(7..11));
710 /// }
711 /// ```
712 #[stable(feature = "str_checked_slicing", since = "1.20.0")]
713 #[inline]
714 pub unsafe fn get_unchecked<I: SliceIndex<str>>(&self, i: I) -> &I::Output {
715 // SAFETY: the caller must uphold the safety contract for `get_unchecked`;
716 // the slice is dereferenceable because `self` is a safe reference.
717 // The returned pointer is safe because impls of `SliceIndex` have to guarantee that it is.
718 unsafe { &*i.get_unchecked(self) }
719 }
720
721 /// Returns a mutable, unchecked subslice of `str`.
722 ///
723 /// This is the unchecked alternative to indexing the `str`.
724 ///
725 /// # Safety
726 ///
727 /// Callers of this function are responsible that these preconditions are
728 /// satisfied:
729 ///
730 /// * The starting index must not exceed the ending index;
731 /// * Indexes must be within bounds of the original slice;
732 /// * Indexes must lie on UTF-8 sequence boundaries.
733 ///
734 /// Failing that, the returned string slice may reference invalid memory or
735 /// violate the invariants communicated by the `str` type.
736 ///
737 /// # Examples
738 ///
739 /// ```
740 /// let mut v = String::from("🗻∈🌏");
741 /// unsafe {
742 /// assert_eq!("🗻", v.get_unchecked_mut(0..4));
743 /// assert_eq!("∈", v.get_unchecked_mut(4..7));
744 /// assert_eq!("🌏", v.get_unchecked_mut(7..11));
745 /// }
746 /// ```
747 #[stable(feature = "str_checked_slicing", since = "1.20.0")]
748 #[inline]
749 #[cfg(not(feature = "ferrocene_subset"))]
750 pub unsafe fn get_unchecked_mut<I: SliceIndex<str>>(&mut self, i: I) -> &mut I::Output {
751 // SAFETY: the caller must uphold the safety contract for `get_unchecked_mut`;
752 // the slice is dereferenceable because `self` is a safe reference.
753 // The returned pointer is safe because impls of `SliceIndex` have to guarantee that it is.
754 unsafe { &mut *i.get_unchecked_mut(self) }
755 }
756
757 /// Creates a string slice from another string slice, bypassing safety
758 /// checks.
759 ///
760 /// This is generally not recommended, use with caution! For a safe
761 /// alternative see [`str`] and [`Index`].
762 ///
763 /// [`Index`]: crate::ops::Index
764 ///
765 /// This new slice goes from `begin` to `end`, including `begin` but
766 /// excluding `end`.
767 ///
768 /// To get a mutable string slice instead, see the
769 /// [`slice_mut_unchecked`] method.
770 ///
771 /// [`slice_mut_unchecked`]: str::slice_mut_unchecked
772 ///
773 /// # Safety
774 ///
775 /// Callers of this function are responsible that three preconditions are
776 /// satisfied:
777 ///
778 /// * `begin` must not exceed `end`.
779 /// * `begin` and `end` must be byte positions within the string slice.
780 /// * `begin` and `end` must lie on UTF-8 sequence boundaries.
781 ///
782 /// # Examples
783 ///
784 /// ```
785 /// let s = "Löwe 老虎 Léopard";
786 ///
787 /// unsafe {
788 /// assert_eq!("Löwe 老虎 Léopard", s.slice_unchecked(0, 21));
789 /// }
790 ///
791 /// let s = "Hello, world!";
792 ///
793 /// unsafe {
794 /// assert_eq!("world", s.slice_unchecked(7, 12));
795 /// }
796 /// ```
797 #[stable(feature = "rust1", since = "1.0.0")]
798 #[deprecated(since = "1.29.0", note = "use `get_unchecked(begin..end)` instead")]
799 #[must_use]
800 #[inline]
801 #[cfg(not(feature = "ferrocene_subset"))]
802 pub unsafe fn slice_unchecked(&self, begin: usize, end: usize) -> &str {
803 // SAFETY: the caller must uphold the safety contract for `get_unchecked`;
804 // the slice is dereferenceable because `self` is a safe reference.
805 // The returned pointer is safe because impls of `SliceIndex` have to guarantee that it is.
806 unsafe { &*(begin..end).get_unchecked(self) }
807 }
808
809 /// Creates a string slice from another string slice, bypassing safety
810 /// checks.
811 ///
812 /// This is generally not recommended, use with caution! For a safe
813 /// alternative see [`str`] and [`IndexMut`].
814 ///
815 /// [`IndexMut`]: crate::ops::IndexMut
816 ///
817 /// This new slice goes from `begin` to `end`, including `begin` but
818 /// excluding `end`.
819 ///
820 /// To get an immutable string slice instead, see the
821 /// [`slice_unchecked`] method.
822 ///
823 /// [`slice_unchecked`]: str::slice_unchecked
824 ///
825 /// # Safety
826 ///
827 /// Callers of this function are responsible that three preconditions are
828 /// satisfied:
829 ///
830 /// * `begin` must not exceed `end`.
831 /// * `begin` and `end` must be byte positions within the string slice.
832 /// * `begin` and `end` must lie on UTF-8 sequence boundaries.
833 #[stable(feature = "str_slice_mut", since = "1.5.0")]
834 #[deprecated(since = "1.29.0", note = "use `get_unchecked_mut(begin..end)` instead")]
835 #[inline]
836 #[cfg(not(feature = "ferrocene_subset"))]
837 pub unsafe fn slice_mut_unchecked(&mut self, begin: usize, end: usize) -> &mut str {
838 // SAFETY: the caller must uphold the safety contract for `get_unchecked_mut`;
839 // the slice is dereferenceable because `self` is a safe reference.
840 // The returned pointer is safe because impls of `SliceIndex` have to guarantee that it is.
841 unsafe { &mut *(begin..end).get_unchecked_mut(self) }
842 }
843
844 /// Divides one string slice into two at an index.
845 ///
846 /// The argument, `mid`, should be a byte offset from the start of the
847 /// string. It must also be on the boundary of a UTF-8 code point.
848 ///
849 /// The two slices returned go from the start of the string slice to `mid`,
850 /// and from `mid` to the end of the string slice.
851 ///
852 /// To get mutable string slices instead, see the [`split_at_mut`]
853 /// method.
854 ///
855 /// [`split_at_mut`]: str::split_at_mut
856 ///
857 /// # Panics
858 ///
859 /// Panics if `mid` is not on a UTF-8 code point boundary, or if it is past
860 /// the end of the last code point of the string slice. For a non-panicking
861 /// alternative see [`split_at_checked`](str::split_at_checked).
862 ///
863 /// # Examples
864 ///
865 /// ```
866 /// let s = "Per Martin-Löf";
867 ///
868 /// let (first, last) = s.split_at(3);
869 ///
870 /// assert_eq!("Per", first);
871 /// assert_eq!(" Martin-Löf", last);
872 /// ```
873 #[inline]
874 #[must_use]
875 #[stable(feature = "str_split_at", since = "1.4.0")]
876 #[rustc_const_stable(feature = "const_str_split_at", since = "1.86.0")]
877 #[cfg(not(feature = "ferrocene_subset"))]
878 pub const fn split_at(&self, mid: usize) -> (&str, &str) {
879 match self.split_at_checked(mid) {
880 None => slice_error_fail(self, 0, mid),
881 Some(pair) => pair,
882 }
883 }
884
885 /// Divides one mutable string slice into two at an index.
886 ///
887 /// The argument, `mid`, should be a byte offset from the start of the
888 /// string. It must also be on the boundary of a UTF-8 code point.
889 ///
890 /// The two slices returned go from the start of the string slice to `mid`,
891 /// and from `mid` to the end of the string slice.
892 ///
893 /// To get immutable string slices instead, see the [`split_at`] method.
894 ///
895 /// [`split_at`]: str::split_at
896 ///
897 /// # Panics
898 ///
899 /// Panics if `mid` is not on a UTF-8 code point boundary, or if it is past
900 /// the end of the last code point of the string slice. For a non-panicking
901 /// alternative see [`split_at_mut_checked`](str::split_at_mut_checked).
902 ///
903 /// # Examples
904 ///
905 /// ```
906 /// let mut s = "Per Martin-Löf".to_string();
907 /// {
908 /// let (first, last) = s.split_at_mut(3);
909 /// first.make_ascii_uppercase();
910 /// assert_eq!("PER", first);
911 /// assert_eq!(" Martin-Löf", last);
912 /// }
913 /// assert_eq!("PER Martin-Löf", s);
914 /// ```
915 #[inline]
916 #[must_use]
917 #[stable(feature = "str_split_at", since = "1.4.0")]
918 #[rustc_const_stable(feature = "const_str_split_at", since = "1.86.0")]
919 #[cfg(not(feature = "ferrocene_subset"))]
920 pub const fn split_at_mut(&mut self, mid: usize) -> (&mut str, &mut str) {
921 // is_char_boundary checks that the index is in [0, .len()]
922 if self.is_char_boundary(mid) {
923 // SAFETY: just checked that `mid` is on a char boundary.
924 unsafe { self.split_at_mut_unchecked(mid) }
925 } else {
926 slice_error_fail(self, 0, mid)
927 }
928 }
929
930 /// Divides one string slice into two at an index.
931 ///
932 /// The argument, `mid`, should be a valid byte offset from the start of the
933 /// string. It must also be on the boundary of a UTF-8 code point. The
934 /// method returns `None` if that’s not the case.
935 ///
936 /// The two slices returned go from the start of the string slice to `mid`,
937 /// and from `mid` to the end of the string slice.
938 ///
939 /// To get mutable string slices instead, see the [`split_at_mut_checked`]
940 /// method.
941 ///
942 /// [`split_at_mut_checked`]: str::split_at_mut_checked
943 ///
944 /// # Examples
945 ///
946 /// ```
947 /// let s = "Per Martin-Löf";
948 ///
949 /// let (first, last) = s.split_at_checked(3).unwrap();
950 /// assert_eq!("Per", first);
951 /// assert_eq!(" Martin-Löf", last);
952 ///
953 /// assert_eq!(None, s.split_at_checked(13)); // Inside “ö”
954 /// assert_eq!(None, s.split_at_checked(16)); // Beyond the string length
955 /// ```
956 #[inline]
957 #[must_use]
958 #[stable(feature = "split_at_checked", since = "1.80.0")]
959 #[rustc_const_stable(feature = "const_str_split_at", since = "1.86.0")]
960 #[cfg(not(feature = "ferrocene_subset"))]
961 pub const fn split_at_checked(&self, mid: usize) -> Option<(&str, &str)> {
962 // is_char_boundary checks that the index is in [0, .len()]
963 if self.is_char_boundary(mid) {
964 // SAFETY: just checked that `mid` is on a char boundary.
965 Some(unsafe { self.split_at_unchecked(mid) })
966 } else {
967 None
968 }
969 }
970
971 /// Divides one mutable string slice into two at an index.
972 ///
973 /// The argument, `mid`, should be a valid byte offset from the start of the
974 /// string. It must also be on the boundary of a UTF-8 code point. The
975 /// method returns `None` if that’s not the case.
976 ///
977 /// The two slices returned go from the start of the string slice to `mid`,
978 /// and from `mid` to the end of the string slice.
979 ///
980 /// To get immutable string slices instead, see the [`split_at_checked`] method.
981 ///
982 /// [`split_at_checked`]: str::split_at_checked
983 ///
984 /// # Examples
985 ///
986 /// ```
987 /// let mut s = "Per Martin-Löf".to_string();
988 /// if let Some((first, last)) = s.split_at_mut_checked(3) {
989 /// first.make_ascii_uppercase();
990 /// assert_eq!("PER", first);
991 /// assert_eq!(" Martin-Löf", last);
992 /// }
993 /// assert_eq!("PER Martin-Löf", s);
994 ///
995 /// assert_eq!(None, s.split_at_mut_checked(13)); // Inside “ö”
996 /// assert_eq!(None, s.split_at_mut_checked(16)); // Beyond the string length
997 /// ```
998 #[inline]
999 #[must_use]
1000 #[stable(feature = "split_at_checked", since = "1.80.0")]
1001 #[rustc_const_stable(feature = "const_str_split_at", since = "1.86.0")]
1002 #[cfg(not(feature = "ferrocene_subset"))]
1003 pub const fn split_at_mut_checked(&mut self, mid: usize) -> Option<(&mut str, &mut str)> {
1004 // is_char_boundary checks that the index is in [0, .len()]
1005 if self.is_char_boundary(mid) {
1006 // SAFETY: just checked that `mid` is on a char boundary.
1007 Some(unsafe { self.split_at_mut_unchecked(mid) })
1008 } else {
1009 None
1010 }
1011 }
1012
1013 /// Divides one string slice into two at an index.
1014 ///
1015 /// # Safety
1016 ///
1017 /// The caller must ensure that `mid` is a valid byte offset from the start
1018 /// of the string and falls on the boundary of a UTF-8 code point.
1019 #[inline]
1020 #[cfg(not(feature = "ferrocene_subset"))]
1021 const unsafe fn split_at_unchecked(&self, mid: usize) -> (&str, &str) {
1022 let len = self.len();
1023 let ptr = self.as_ptr();
1024 // SAFETY: caller guarantees `mid` is on a char boundary.
1025 unsafe {
1026 (
1027 from_utf8_unchecked(slice::from_raw_parts(ptr, mid)),
1028 from_utf8_unchecked(slice::from_raw_parts(ptr.add(mid), len - mid)),
1029 )
1030 }
1031 }
1032
1033 /// Divides one string slice into two at an index.
1034 ///
1035 /// # Safety
1036 ///
1037 /// The caller must ensure that `mid` is a valid byte offset from the start
1038 /// of the string and falls on the boundary of a UTF-8 code point.
1039 #[cfg(not(feature = "ferrocene_subset"))]
1040 const unsafe fn split_at_mut_unchecked(&mut self, mid: usize) -> (&mut str, &mut str) {
1041 let len = self.len();
1042 let ptr = self.as_mut_ptr();
1043 // SAFETY: caller guarantees `mid` is on a char boundary.
1044 unsafe {
1045 (
1046 from_utf8_unchecked_mut(slice::from_raw_parts_mut(ptr, mid)),
1047 from_utf8_unchecked_mut(slice::from_raw_parts_mut(ptr.add(mid), len - mid)),
1048 )
1049 }
1050 }
1051
1052 /// Returns an iterator over the [`char`]s of a string slice.
1053 ///
1054 /// As a string slice consists of valid UTF-8, we can iterate through a
1055 /// string slice by [`char`]. This method returns such an iterator.
1056 ///
1057 /// It's important to remember that [`char`] represents a Unicode Scalar
1058 /// Value, and might not match your idea of what a 'character' is. Iteration
1059 /// over grapheme clusters may be what you actually want. This functionality
1060 /// is not provided by Rust's standard library, check crates.io instead.
1061 ///
1062 /// # Examples
1063 ///
1064 /// Basic usage:
1065 ///
1066 /// ```
1067 /// let word = "goodbye";
1068 ///
1069 /// let count = word.chars().count();
1070 /// assert_eq!(7, count);
1071 ///
1072 /// let mut chars = word.chars();
1073 ///
1074 /// assert_eq!(Some('g'), chars.next());
1075 /// assert_eq!(Some('o'), chars.next());
1076 /// assert_eq!(Some('o'), chars.next());
1077 /// assert_eq!(Some('d'), chars.next());
1078 /// assert_eq!(Some('b'), chars.next());
1079 /// assert_eq!(Some('y'), chars.next());
1080 /// assert_eq!(Some('e'), chars.next());
1081 ///
1082 /// assert_eq!(None, chars.next());
1083 /// ```
1084 ///
1085 /// Remember, [`char`]s might not match your intuition about characters:
1086 ///
1087 /// [`char`]: prim@char
1088 ///
1089 /// ```
1090 /// let y = "y̆";
1091 ///
1092 /// let mut chars = y.chars();
1093 ///
1094 /// assert_eq!(Some('y'), chars.next()); // not 'y̆'
1095 /// assert_eq!(Some('\u{0306}'), chars.next());
1096 ///
1097 /// assert_eq!(None, chars.next());
1098 /// ```
1099 #[stable(feature = "rust1", since = "1.0.0")]
1100 #[inline]
1101 #[rustc_diagnostic_item = "str_chars"]
1102 pub fn chars(&self) -> Chars<'_> {
1103 Chars { iter: self.as_bytes().iter() }
1104 }
1105
1106 /// Returns an iterator over the [`char`]s of a string slice, and their
1107 /// positions.
1108 ///
1109 /// As a string slice consists of valid UTF-8, we can iterate through a
1110 /// string slice by [`char`]. This method returns an iterator of both
1111 /// these [`char`]s, as well as their byte positions.
1112 ///
1113 /// The iterator yields tuples. The position is first, the [`char`] is
1114 /// second.
1115 ///
1116 /// # Examples
1117 ///
1118 /// Basic usage:
1119 ///
1120 /// ```
1121 /// let word = "goodbye";
1122 ///
1123 /// let count = word.char_indices().count();
1124 /// assert_eq!(7, count);
1125 ///
1126 /// let mut char_indices = word.char_indices();
1127 ///
1128 /// assert_eq!(Some((0, 'g')), char_indices.next());
1129 /// assert_eq!(Some((1, 'o')), char_indices.next());
1130 /// assert_eq!(Some((2, 'o')), char_indices.next());
1131 /// assert_eq!(Some((3, 'd')), char_indices.next());
1132 /// assert_eq!(Some((4, 'b')), char_indices.next());
1133 /// assert_eq!(Some((5, 'y')), char_indices.next());
1134 /// assert_eq!(Some((6, 'e')), char_indices.next());
1135 ///
1136 /// assert_eq!(None, char_indices.next());
1137 /// ```
1138 ///
1139 /// Remember, [`char`]s might not match your intuition about characters:
1140 ///
1141 /// [`char`]: prim@char
1142 ///
1143 /// ```
1144 /// let yes = "y̆es";
1145 ///
1146 /// let mut char_indices = yes.char_indices();
1147 ///
1148 /// assert_eq!(Some((0, 'y')), char_indices.next()); // not (0, 'y̆')
1149 /// assert_eq!(Some((1, '\u{0306}')), char_indices.next());
1150 ///
1151 /// // note the 3 here - the previous character took up two bytes
1152 /// assert_eq!(Some((3, 'e')), char_indices.next());
1153 /// assert_eq!(Some((4, 's')), char_indices.next());
1154 ///
1155 /// assert_eq!(None, char_indices.next());
1156 /// ```
1157 #[stable(feature = "rust1", since = "1.0.0")]
1158 #[inline]
1159 #[cfg(not(feature = "ferrocene_subset"))]
1160 pub fn char_indices(&self) -> CharIndices<'_> {
1161 CharIndices { front_offset: 0, iter: self.chars() }
1162 }
1163
1164 /// Returns an iterator over the bytes of a string slice.
1165 ///
1166 /// As a string slice consists of a sequence of bytes, we can iterate
1167 /// through a string slice by byte. This method returns such an iterator.
1168 ///
1169 /// # Examples
1170 ///
1171 /// ```
1172 /// let mut bytes = "bors".bytes();
1173 ///
1174 /// assert_eq!(Some(b'b'), bytes.next());
1175 /// assert_eq!(Some(b'o'), bytes.next());
1176 /// assert_eq!(Some(b'r'), bytes.next());
1177 /// assert_eq!(Some(b's'), bytes.next());
1178 ///
1179 /// assert_eq!(None, bytes.next());
1180 /// ```
1181 #[stable(feature = "rust1", since = "1.0.0")]
1182 #[inline]
1183 pub fn bytes(&self) -> Bytes<'_> {
1184 Bytes(self.as_bytes().iter().copied())
1185 }
1186
1187 /// Splits a string slice by whitespace.
1188 ///
1189 /// The iterator returned will return string slices that are sub-slices of
1190 /// the original string slice, separated by any amount of whitespace.
1191 ///
1192 /// 'Whitespace' is defined according to the terms of the Unicode Derived
1193 /// Core Property `White_Space`. If you only want to split on ASCII whitespace
1194 /// instead, use [`split_ascii_whitespace`].
1195 ///
1196 /// [`split_ascii_whitespace`]: str::split_ascii_whitespace
1197 ///
1198 /// # Examples
1199 ///
1200 /// Basic usage:
1201 ///
1202 /// ```
1203 /// let mut iter = "A few words".split_whitespace();
1204 ///
1205 /// assert_eq!(Some("A"), iter.next());
1206 /// assert_eq!(Some("few"), iter.next());
1207 /// assert_eq!(Some("words"), iter.next());
1208 ///
1209 /// assert_eq!(None, iter.next());
1210 /// ```
1211 ///
1212 /// All kinds of whitespace are considered:
1213 ///
1214 /// ```
1215 /// let mut iter = " Mary had\ta\u{2009}little \n\t lamb".split_whitespace();
1216 /// assert_eq!(Some("Mary"), iter.next());
1217 /// assert_eq!(Some("had"), iter.next());
1218 /// assert_eq!(Some("a"), iter.next());
1219 /// assert_eq!(Some("little"), iter.next());
1220 /// assert_eq!(Some("lamb"), iter.next());
1221 ///
1222 /// assert_eq!(None, iter.next());
1223 /// ```
1224 ///
1225 /// If the string is empty or all whitespace, the iterator yields no string slices:
1226 /// ```
1227 /// assert_eq!("".split_whitespace().next(), None);
1228 /// assert_eq!(" ".split_whitespace().next(), None);
1229 /// ```
1230 #[must_use = "this returns the split string as an iterator, \
1231 without modifying the original"]
1232 #[stable(feature = "split_whitespace", since = "1.1.0")]
1233 #[rustc_diagnostic_item = "str_split_whitespace"]
1234 #[inline]
1235 #[cfg(not(feature = "ferrocene_subset"))]
1236 pub fn split_whitespace(&self) -> SplitWhitespace<'_> {
1237 SplitWhitespace { inner: self.split(IsWhitespace).filter(IsNotEmpty) }
1238 }
1239
1240 /// Splits a string slice by ASCII whitespace.
1241 ///
1242 /// The iterator returned will return string slices that are sub-slices of
1243 /// the original string slice, separated by any amount of ASCII whitespace.
1244 ///
1245 /// This uses the same definition as [`char::is_ascii_whitespace`].
1246 /// To split by Unicode `Whitespace` instead, use [`split_whitespace`].
1247 ///
1248 /// [`split_whitespace`]: str::split_whitespace
1249 ///
1250 /// # Examples
1251 ///
1252 /// Basic usage:
1253 ///
1254 /// ```
1255 /// let mut iter = "A few words".split_ascii_whitespace();
1256 ///
1257 /// assert_eq!(Some("A"), iter.next());
1258 /// assert_eq!(Some("few"), iter.next());
1259 /// assert_eq!(Some("words"), iter.next());
1260 ///
1261 /// assert_eq!(None, iter.next());
1262 /// ```
1263 ///
1264 /// Various kinds of ASCII whitespace are considered
1265 /// (see [`char::is_ascii_whitespace`]):
1266 ///
1267 /// ```
1268 /// let mut iter = " Mary had\ta little \n\t lamb".split_ascii_whitespace();
1269 /// assert_eq!(Some("Mary"), iter.next());
1270 /// assert_eq!(Some("had"), iter.next());
1271 /// assert_eq!(Some("a"), iter.next());
1272 /// assert_eq!(Some("little"), iter.next());
1273 /// assert_eq!(Some("lamb"), iter.next());
1274 ///
1275 /// assert_eq!(None, iter.next());
1276 /// ```
1277 ///
1278 /// If the string is empty or all ASCII whitespace, the iterator yields no string slices:
1279 /// ```
1280 /// assert_eq!("".split_ascii_whitespace().next(), None);
1281 /// assert_eq!(" ".split_ascii_whitespace().next(), None);
1282 /// ```
1283 #[must_use = "this returns the split string as an iterator, \
1284 without modifying the original"]
1285 #[stable(feature = "split_ascii_whitespace", since = "1.34.0")]
1286 #[inline]
1287 #[cfg(not(feature = "ferrocene_subset"))]
1288 pub fn split_ascii_whitespace(&self) -> SplitAsciiWhitespace<'_> {
1289 let inner =
1290 self.as_bytes().split(IsAsciiWhitespace).filter(BytesIsNotEmpty).map(UnsafeBytesToStr);
1291 SplitAsciiWhitespace { inner }
1292 }
1293
1294 /// Returns an iterator over the lines of a string, as string slices.
1295 ///
1296 /// Lines are split at line endings that are either newlines (`\n`) or
1297 /// sequences of a carriage return followed by a line feed (`\r\n`).
1298 ///
1299 /// Line terminators are not included in the lines returned by the iterator.
1300 ///
1301 /// Note that any carriage return (`\r`) not immediately followed by a
1302 /// line feed (`\n`) does not split a line. These carriage returns are
1303 /// thereby included in the produced lines.
1304 ///
1305 /// The final line ending is optional. A string that ends with a final line
1306 /// ending will return the same lines as an otherwise identical string
1307 /// without a final line ending.
1308 ///
1309 /// An empty string returns an empty iterator.
1310 ///
1311 /// # Examples
1312 ///
1313 /// Basic usage:
1314 ///
1315 /// ```
1316 /// let text = "foo\r\nbar\n\nbaz\r";
1317 /// let mut lines = text.lines();
1318 ///
1319 /// assert_eq!(Some("foo"), lines.next());
1320 /// assert_eq!(Some("bar"), lines.next());
1321 /// assert_eq!(Some(""), lines.next());
1322 /// // Trailing carriage return is included in the last line
1323 /// assert_eq!(Some("baz\r"), lines.next());
1324 ///
1325 /// assert_eq!(None, lines.next());
1326 /// ```
1327 ///
1328 /// The final line does not require any ending:
1329 ///
1330 /// ```
1331 /// let text = "foo\nbar\n\r\nbaz";
1332 /// let mut lines = text.lines();
1333 ///
1334 /// assert_eq!(Some("foo"), lines.next());
1335 /// assert_eq!(Some("bar"), lines.next());
1336 /// assert_eq!(Some(""), lines.next());
1337 /// assert_eq!(Some("baz"), lines.next());
1338 ///
1339 /// assert_eq!(None, lines.next());
1340 /// ```
1341 ///
1342 /// An empty string returns an empty iterator:
1343 ///
1344 /// ```
1345 /// let text = "";
1346 /// let mut lines = text.lines();
1347 ///
1348 /// assert_eq!(lines.next(), None);
1349 /// ```
1350 #[stable(feature = "rust1", since = "1.0.0")]
1351 #[inline]
1352 #[cfg(not(feature = "ferrocene_subset"))]
1353 pub fn lines(&self) -> Lines<'_> {
1354 Lines(self.split_inclusive('\n').map(LinesMap))
1355 }
1356
1357 /// Returns an iterator over the lines of a string.
1358 #[stable(feature = "rust1", since = "1.0.0")]
1359 #[deprecated(since = "1.4.0", note = "use lines() instead now", suggestion = "lines")]
1360 #[inline]
1361 #[allow(deprecated)]
1362 #[cfg(not(feature = "ferrocene_subset"))]
1363 pub fn lines_any(&self) -> LinesAny<'_> {
1364 LinesAny(self.lines())
1365 }
1366
1367 /// Returns an iterator of `u16` over the string encoded
1368 /// as native endian UTF-16 (without byte-order mark).
1369 ///
1370 /// # Examples
1371 ///
1372 /// ```
1373 /// let text = "Zażółć gęślą jaźń";
1374 ///
1375 /// let utf8_len = text.len();
1376 /// let utf16_len = text.encode_utf16().count();
1377 ///
1378 /// assert!(utf16_len <= utf8_len);
1379 /// ```
1380 #[must_use = "this returns the encoded string as an iterator, \
1381 without modifying the original"]
1382 #[stable(feature = "encode_utf16", since = "1.8.0")]
1383 #[cfg(not(feature = "ferrocene_subset"))]
1384 pub fn encode_utf16(&self) -> EncodeUtf16<'_> {
1385 EncodeUtf16 { chars: self.chars(), extra: 0 }
1386 }
1387
1388 /// Returns `true` if the given pattern matches a sub-slice of
1389 /// this string slice.
1390 ///
1391 /// Returns `false` if it does not.
1392 ///
1393 /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a
1394 /// function or closure that determines if a character matches.
1395 ///
1396 /// [`char`]: prim@char
1397 /// [pattern]: self::pattern
1398 ///
1399 /// # Examples
1400 ///
1401 /// ```
1402 /// let bananas = "bananas";
1403 ///
1404 /// assert!(bananas.contains("nana"));
1405 /// assert!(!bananas.contains("apples"));
1406 /// ```
1407 #[stable(feature = "rust1", since = "1.0.0")]
1408 #[inline]
1409 #[cfg(not(feature = "ferrocene_subset"))]
1410 pub fn contains<P: Pattern>(&self, pat: P) -> bool {
1411 pat.is_contained_in(self)
1412 }
1413
1414 /// Returns `true` if the given pattern matches a prefix of this
1415 /// string slice.
1416 ///
1417 /// Returns `false` if it does not.
1418 ///
1419 /// The [pattern] can be a `&str`, in which case this function will return true if
1420 /// the `&str` is a prefix of this string slice.
1421 ///
1422 /// The [pattern] can also be a [`char`], a slice of [`char`]s, or a
1423 /// function or closure that determines if a character matches.
1424 /// These will only be checked against the first character of this string slice.
1425 /// Look at the second example below regarding behavior for slices of [`char`]s.
1426 ///
1427 /// [`char`]: prim@char
1428 /// [pattern]: self::pattern
1429 ///
1430 /// # Examples
1431 ///
1432 /// ```
1433 /// let bananas = "bananas";
1434 ///
1435 /// assert!(bananas.starts_with("bana"));
1436 /// assert!(!bananas.starts_with("nana"));
1437 /// ```
1438 ///
1439 /// ```
1440 /// let bananas = "bananas";
1441 ///
1442 /// // Note that both of these assert successfully.
1443 /// assert!(bananas.starts_with(&['b', 'a', 'n', 'a']));
1444 /// assert!(bananas.starts_with(&['a', 'b', 'c', 'd']));
1445 /// ```
1446 #[stable(feature = "rust1", since = "1.0.0")]
1447 #[rustc_diagnostic_item = "str_starts_with"]
1448 pub fn starts_with<P: Pattern>(&self, pat: P) -> bool {
1449 pat.is_prefix_of(self)
1450 }
1451
1452 /// Returns `true` if the given pattern matches a suffix of this
1453 /// string slice.
1454 ///
1455 /// Returns `false` if it does not.
1456 ///
1457 /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a
1458 /// function or closure that determines if a character matches.
1459 ///
1460 /// [`char`]: prim@char
1461 /// [pattern]: self::pattern
1462 ///
1463 /// # Examples
1464 ///
1465 /// ```
1466 /// let bananas = "bananas";
1467 ///
1468 /// assert!(bananas.ends_with("anas"));
1469 /// assert!(!bananas.ends_with("nana"));
1470 /// ```
1471 #[stable(feature = "rust1", since = "1.0.0")]
1472 #[rustc_diagnostic_item = "str_ends_with"]
1473 #[cfg(not(feature = "ferrocene_subset"))]
1474 pub fn ends_with<P: Pattern>(&self, pat: P) -> bool
1475 where
1476 for<'a> P::Searcher<'a>: ReverseSearcher<'a>,
1477 {
1478 pat.is_suffix_of(self)
1479 }
1480
1481 /// Returns the byte index of the first character of this string slice that
1482 /// matches the pattern.
1483 ///
1484 /// Returns [`None`] if the pattern doesn't match.
1485 ///
1486 /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a
1487 /// function or closure that determines if a character matches.
1488 ///
1489 /// [`char`]: prim@char
1490 /// [pattern]: self::pattern
1491 ///
1492 /// # Examples
1493 ///
1494 /// Simple patterns:
1495 ///
1496 /// ```
1497 /// let s = "Löwe 老虎 Léopard Gepardi";
1498 ///
1499 /// assert_eq!(s.find('L'), Some(0));
1500 /// assert_eq!(s.find('é'), Some(14));
1501 /// assert_eq!(s.find("pard"), Some(17));
1502 /// ```
1503 ///
1504 /// More complex patterns using point-free style and closures:
1505 ///
1506 /// ```
1507 /// let s = "Löwe 老虎 Léopard";
1508 ///
1509 /// assert_eq!(s.find(char::is_whitespace), Some(5));
1510 /// assert_eq!(s.find(char::is_lowercase), Some(1));
1511 /// assert_eq!(s.find(|c: char| c.is_whitespace() || c.is_lowercase()), Some(1));
1512 /// assert_eq!(s.find(|c: char| (c < 'o') && (c > 'a')), Some(4));
1513 /// ```
1514 ///
1515 /// Not finding the pattern:
1516 ///
1517 /// ```
1518 /// let s = "Löwe 老虎 Léopard";
1519 /// let x: &[_] = &['1', '2'];
1520 ///
1521 /// assert_eq!(s.find(x), None);
1522 /// ```
1523 #[stable(feature = "rust1", since = "1.0.0")]
1524 #[inline]
1525 #[cfg(not(feature = "ferrocene_subset"))]
1526 pub fn find<P: Pattern>(&self, pat: P) -> Option<usize> {
1527 pat.into_searcher(self).next_match().map(|(i, _)| i)
1528 }
1529
1530 /// Returns the byte index for the first character of the last match of the pattern in
1531 /// this string slice.
1532 ///
1533 /// Returns [`None`] if the pattern doesn't match.
1534 ///
1535 /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a
1536 /// function or closure that determines if a character matches.
1537 ///
1538 /// [`char`]: prim@char
1539 /// [pattern]: self::pattern
1540 ///
1541 /// # Examples
1542 ///
1543 /// Simple patterns:
1544 ///
1545 /// ```
1546 /// let s = "Löwe 老虎 Léopard Gepardi";
1547 ///
1548 /// assert_eq!(s.rfind('L'), Some(13));
1549 /// assert_eq!(s.rfind('é'), Some(14));
1550 /// assert_eq!(s.rfind("pard"), Some(24));
1551 /// ```
1552 ///
1553 /// More complex patterns with closures:
1554 ///
1555 /// ```
1556 /// let s = "Löwe 老虎 Léopard";
1557 ///
1558 /// assert_eq!(s.rfind(char::is_whitespace), Some(12));
1559 /// assert_eq!(s.rfind(char::is_lowercase), Some(20));
1560 /// ```
1561 ///
1562 /// Not finding the pattern:
1563 ///
1564 /// ```
1565 /// let s = "Löwe 老虎 Léopard";
1566 /// let x: &[_] = &['1', '2'];
1567 ///
1568 /// assert_eq!(s.rfind(x), None);
1569 /// ```
1570 #[stable(feature = "rust1", since = "1.0.0")]
1571 #[inline]
1572 #[cfg(not(feature = "ferrocene_subset"))]
1573 pub fn rfind<P: Pattern>(&self, pat: P) -> Option<usize>
1574 where
1575 for<'a> P::Searcher<'a>: ReverseSearcher<'a>,
1576 {
1577 pat.into_searcher(self).next_match_back().map(|(i, _)| i)
1578 }
1579
1580 /// Returns an iterator over substrings of this string slice, separated by
1581 /// characters matched by a pattern.
1582 ///
1583 /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a
1584 /// function or closure that determines if a character matches.
1585 ///
1586 /// If there are no matches the full string slice is returned as the only
1587 /// item in the iterator.
1588 ///
1589 /// [`char`]: prim@char
1590 /// [pattern]: self::pattern
1591 ///
1592 /// # Iterator behavior
1593 ///
1594 /// The returned iterator will be a [`DoubleEndedIterator`] if the pattern
1595 /// allows a reverse search and forward/reverse search yields the same
1596 /// elements. This is true for, e.g., [`char`], but not for `&str`.
1597 ///
1598 /// If the pattern allows a reverse search but its results might differ
1599 /// from a forward search, the [`rsplit`] method can be used.
1600 ///
1601 /// [`rsplit`]: str::rsplit
1602 ///
1603 /// # Examples
1604 ///
1605 /// Simple patterns:
1606 ///
1607 /// ```
1608 /// let v: Vec<&str> = "Mary had a little lamb".split(' ').collect();
1609 /// assert_eq!(v, ["Mary", "had", "a", "little", "lamb"]);
1610 ///
1611 /// let v: Vec<&str> = "".split('X').collect();
1612 /// assert_eq!(v, [""]);
1613 ///
1614 /// let v: Vec<&str> = "lionXXtigerXleopard".split('X').collect();
1615 /// assert_eq!(v, ["lion", "", "tiger", "leopard"]);
1616 ///
1617 /// let v: Vec<&str> = "lion::tiger::leopard".split("::").collect();
1618 /// assert_eq!(v, ["lion", "tiger", "leopard"]);
1619 ///
1620 /// let v: Vec<&str> = "AABBCC".split("DD").collect();
1621 /// assert_eq!(v, ["AABBCC"]);
1622 ///
1623 /// let v: Vec<&str> = "abc1def2ghi".split(char::is_numeric).collect();
1624 /// assert_eq!(v, ["abc", "def", "ghi"]);
1625 ///
1626 /// let v: Vec<&str> = "lionXtigerXleopard".split(char::is_uppercase).collect();
1627 /// assert_eq!(v, ["lion", "tiger", "leopard"]);
1628 /// ```
1629 ///
1630 /// If the pattern is a slice of chars, split on each occurrence of any of the characters:
1631 ///
1632 /// ```
1633 /// let v: Vec<&str> = "2020-11-03 23:59".split(&['-', ' ', ':', '@'][..]).collect();
1634 /// assert_eq!(v, ["2020", "11", "03", "23", "59"]);
1635 /// ```
1636 ///
1637 /// A more complex pattern, using a closure:
1638 ///
1639 /// ```
1640 /// let v: Vec<&str> = "abc1defXghi".split(|c| c == '1' || c == 'X').collect();
1641 /// assert_eq!(v, ["abc", "def", "ghi"]);
1642 /// ```
1643 ///
1644 /// If a string contains multiple contiguous separators, you will end up
1645 /// with empty strings in the output:
1646 ///
1647 /// ```
1648 /// let x = "||||a||b|c".to_string();
1649 /// let d: Vec<_> = x.split('|').collect();
1650 ///
1651 /// assert_eq!(d, &["", "", "", "", "a", "", "b", "c"]);
1652 /// ```
1653 ///
1654 /// Contiguous separators are separated by the empty string.
1655 ///
1656 /// ```
1657 /// let x = "(///)".to_string();
1658 /// let d: Vec<_> = x.split('/').collect();
1659 ///
1660 /// assert_eq!(d, &["(", "", "", ")"]);
1661 /// ```
1662 ///
1663 /// Separators at the start or end of a string are neighbored
1664 /// by empty strings.
1665 ///
1666 /// ```
1667 /// let d: Vec<_> = "010".split("0").collect();
1668 /// assert_eq!(d, &["", "1", ""]);
1669 /// ```
1670 ///
1671 /// When the empty string is used as a separator, it separates
1672 /// every character in the string, along with the beginning
1673 /// and end of the string.
1674 ///
1675 /// ```
1676 /// let f: Vec<_> = "rust".split("").collect();
1677 /// assert_eq!(f, &["", "r", "u", "s", "t", ""]);
1678 /// ```
1679 ///
1680 /// Contiguous separators can lead to possibly surprising behavior
1681 /// when whitespace is used as the separator. This code is correct:
1682 ///
1683 /// ```
1684 /// let x = " a b c".to_string();
1685 /// let d: Vec<_> = x.split(' ').collect();
1686 ///
1687 /// assert_eq!(d, &["", "", "", "", "a", "", "b", "c"]);
1688 /// ```
1689 ///
1690 /// It does _not_ give you:
1691 ///
1692 /// ```,ignore
1693 /// assert_eq!(d, &["a", "b", "c"]);
1694 /// ```
1695 ///
1696 /// Use [`split_whitespace`] for this behavior.
1697 ///
1698 /// [`split_whitespace`]: str::split_whitespace
1699 #[stable(feature = "rust1", since = "1.0.0")]
1700 #[inline]
1701 #[cfg(not(feature = "ferrocene_subset"))]
1702 pub fn split<P: Pattern>(&self, pat: P) -> Split<'_, P> {
1703 Split(SplitInternal {
1704 start: 0,
1705 end: self.len(),
1706 matcher: pat.into_searcher(self),
1707 allow_trailing_empty: true,
1708 finished: false,
1709 })
1710 }
1711
1712 /// Returns an iterator over substrings of this string slice, separated by
1713 /// characters matched by a pattern.
1714 ///
1715 /// Differs from the iterator produced by `split` in that `split_inclusive`
1716 /// leaves the matched part as the terminator of the substring.
1717 ///
1718 /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a
1719 /// function or closure that determines if a character matches.
1720 ///
1721 /// [`char`]: prim@char
1722 /// [pattern]: self::pattern
1723 ///
1724 /// # Examples
1725 ///
1726 /// ```
1727 /// let v: Vec<&str> = "Mary had a little lamb\nlittle lamb\nlittle lamb."
1728 /// .split_inclusive('\n').collect();
1729 /// assert_eq!(v, ["Mary had a little lamb\n", "little lamb\n", "little lamb."]);
1730 /// ```
1731 ///
1732 /// If the last element of the string is matched,
1733 /// that element will be considered the terminator of the preceding substring.
1734 /// That substring will be the last item returned by the iterator.
1735 ///
1736 /// ```
1737 /// let v: Vec<&str> = "Mary had a little lamb\nlittle lamb\nlittle lamb.\n"
1738 /// .split_inclusive('\n').collect();
1739 /// assert_eq!(v, ["Mary had a little lamb\n", "little lamb\n", "little lamb.\n"]);
1740 /// ```
1741 #[stable(feature = "split_inclusive", since = "1.51.0")]
1742 #[inline]
1743 #[cfg(not(feature = "ferrocene_subset"))]
1744 pub fn split_inclusive<P: Pattern>(&self, pat: P) -> SplitInclusive<'_, P> {
1745 SplitInclusive(SplitInternal {
1746 start: 0,
1747 end: self.len(),
1748 matcher: pat.into_searcher(self),
1749 allow_trailing_empty: false,
1750 finished: false,
1751 })
1752 }
1753
1754 /// Returns an iterator over substrings of the given string slice, separated
1755 /// by characters matched by a pattern and yielded in reverse order.
1756 ///
1757 /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a
1758 /// function or closure that determines if a character matches.
1759 ///
1760 /// [`char`]: prim@char
1761 /// [pattern]: self::pattern
1762 ///
1763 /// # Iterator behavior
1764 ///
1765 /// The returned iterator requires that the pattern supports a reverse
1766 /// search, and it will be a [`DoubleEndedIterator`] if a forward/reverse
1767 /// search yields the same elements.
1768 ///
1769 /// For iterating from the front, the [`split`] method can be used.
1770 ///
1771 /// [`split`]: str::split
1772 ///
1773 /// # Examples
1774 ///
1775 /// Simple patterns:
1776 ///
1777 /// ```
1778 /// let v: Vec<&str> = "Mary had a little lamb".rsplit(' ').collect();
1779 /// assert_eq!(v, ["lamb", "little", "a", "had", "Mary"]);
1780 ///
1781 /// let v: Vec<&str> = "".rsplit('X').collect();
1782 /// assert_eq!(v, [""]);
1783 ///
1784 /// let v: Vec<&str> = "lionXXtigerXleopard".rsplit('X').collect();
1785 /// assert_eq!(v, ["leopard", "tiger", "", "lion"]);
1786 ///
1787 /// let v: Vec<&str> = "lion::tiger::leopard".rsplit("::").collect();
1788 /// assert_eq!(v, ["leopard", "tiger", "lion"]);
1789 /// ```
1790 ///
1791 /// A more complex pattern, using a closure:
1792 ///
1793 /// ```
1794 /// let v: Vec<&str> = "abc1defXghi".rsplit(|c| c == '1' || c == 'X').collect();
1795 /// assert_eq!(v, ["ghi", "def", "abc"]);
1796 /// ```
1797 #[stable(feature = "rust1", since = "1.0.0")]
1798 #[inline]
1799 #[cfg(not(feature = "ferrocene_subset"))]
1800 pub fn rsplit<P: Pattern>(&self, pat: P) -> RSplit<'_, P>
1801 where
1802 for<'a> P::Searcher<'a>: ReverseSearcher<'a>,
1803 {
1804 RSplit(self.split(pat).0)
1805 }
1806
1807 /// Returns an iterator over substrings of the given string slice, separated
1808 /// by characters matched by a pattern.
1809 ///
1810 /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a
1811 /// function or closure that determines if a character matches.
1812 ///
1813 /// [`char`]: prim@char
1814 /// [pattern]: self::pattern
1815 ///
1816 /// Equivalent to [`split`], except that the trailing substring
1817 /// is skipped if empty.
1818 ///
1819 /// [`split`]: str::split
1820 ///
1821 /// This method can be used for string data that is _terminated_,
1822 /// rather than _separated_ by a pattern.
1823 ///
1824 /// # Iterator behavior
1825 ///
1826 /// The returned iterator will be a [`DoubleEndedIterator`] if the pattern
1827 /// allows a reverse search and forward/reverse search yields the same
1828 /// elements. This is true for, e.g., [`char`], but not for `&str`.
1829 ///
1830 /// If the pattern allows a reverse search but its results might differ
1831 /// from a forward search, the [`rsplit_terminator`] method can be used.
1832 ///
1833 /// [`rsplit_terminator`]: str::rsplit_terminator
1834 ///
1835 /// # Examples
1836 ///
1837 /// ```
1838 /// let v: Vec<&str> = "A.B.".split_terminator('.').collect();
1839 /// assert_eq!(v, ["A", "B"]);
1840 ///
1841 /// let v: Vec<&str> = "A..B..".split_terminator(".").collect();
1842 /// assert_eq!(v, ["A", "", "B", ""]);
1843 ///
1844 /// let v: Vec<&str> = "A.B:C.D".split_terminator(&['.', ':'][..]).collect();
1845 /// assert_eq!(v, ["A", "B", "C", "D"]);
1846 /// ```
1847 #[stable(feature = "rust1", since = "1.0.0")]
1848 #[inline]
1849 #[cfg(not(feature = "ferrocene_subset"))]
1850 pub fn split_terminator<P: Pattern>(&self, pat: P) -> SplitTerminator<'_, P> {
1851 SplitTerminator(SplitInternal { allow_trailing_empty: false, ..self.split(pat).0 })
1852 }
1853
1854 /// Returns an iterator over substrings of `self`, separated by characters
1855 /// matched by a pattern and yielded in reverse order.
1856 ///
1857 /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a
1858 /// function or closure that determines if a character matches.
1859 ///
1860 /// [`char`]: prim@char
1861 /// [pattern]: self::pattern
1862 ///
1863 /// Equivalent to [`split`], except that the trailing substring is
1864 /// skipped if empty.
1865 ///
1866 /// [`split`]: str::split
1867 ///
1868 /// This method can be used for string data that is _terminated_,
1869 /// rather than _separated_ by a pattern.
1870 ///
1871 /// # Iterator behavior
1872 ///
1873 /// The returned iterator requires that the pattern supports a
1874 /// reverse search, and it will be double ended if a forward/reverse
1875 /// search yields the same elements.
1876 ///
1877 /// For iterating from the front, the [`split_terminator`] method can be
1878 /// used.
1879 ///
1880 /// [`split_terminator`]: str::split_terminator
1881 ///
1882 /// # Examples
1883 ///
1884 /// ```
1885 /// let v: Vec<&str> = "A.B.".rsplit_terminator('.').collect();
1886 /// assert_eq!(v, ["B", "A"]);
1887 ///
1888 /// let v: Vec<&str> = "A..B..".rsplit_terminator(".").collect();
1889 /// assert_eq!(v, ["", "B", "", "A"]);
1890 ///
1891 /// let v: Vec<&str> = "A.B:C.D".rsplit_terminator(&['.', ':'][..]).collect();
1892 /// assert_eq!(v, ["D", "C", "B", "A"]);
1893 /// ```
1894 #[stable(feature = "rust1", since = "1.0.0")]
1895 #[inline]
1896 #[cfg(not(feature = "ferrocene_subset"))]
1897 pub fn rsplit_terminator<P: Pattern>(&self, pat: P) -> RSplitTerminator<'_, P>
1898 where
1899 for<'a> P::Searcher<'a>: ReverseSearcher<'a>,
1900 {
1901 RSplitTerminator(self.split_terminator(pat).0)
1902 }
1903
1904 /// Returns an iterator over substrings of the given string slice, separated
1905 /// by a pattern, restricted to returning at most `n` items.
1906 ///
1907 /// If `n` substrings are returned, the last substring (the `n`th substring)
1908 /// will contain the remainder of the string.
1909 ///
1910 /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a
1911 /// function or closure that determines if a character matches.
1912 ///
1913 /// [`char`]: prim@char
1914 /// [pattern]: self::pattern
1915 ///
1916 /// # Iterator behavior
1917 ///
1918 /// The returned iterator will not be double ended, because it is
1919 /// not efficient to support.
1920 ///
1921 /// If the pattern allows a reverse search, the [`rsplitn`] method can be
1922 /// used.
1923 ///
1924 /// [`rsplitn`]: str::rsplitn
1925 ///
1926 /// # Examples
1927 ///
1928 /// Simple patterns:
1929 ///
1930 /// ```
1931 /// let v: Vec<&str> = "Mary had a little lambda".splitn(3, ' ').collect();
1932 /// assert_eq!(v, ["Mary", "had", "a little lambda"]);
1933 ///
1934 /// let v: Vec<&str> = "lionXXtigerXleopard".splitn(3, "X").collect();
1935 /// assert_eq!(v, ["lion", "", "tigerXleopard"]);
1936 ///
1937 /// let v: Vec<&str> = "abcXdef".splitn(1, 'X').collect();
1938 /// assert_eq!(v, ["abcXdef"]);
1939 ///
1940 /// let v: Vec<&str> = "".splitn(1, 'X').collect();
1941 /// assert_eq!(v, [""]);
1942 /// ```
1943 ///
1944 /// A more complex pattern, using a closure:
1945 ///
1946 /// ```
1947 /// let v: Vec<&str> = "abc1defXghi".splitn(2, |c| c == '1' || c == 'X').collect();
1948 /// assert_eq!(v, ["abc", "defXghi"]);
1949 /// ```
1950 #[stable(feature = "rust1", since = "1.0.0")]
1951 #[inline]
1952 #[cfg(not(feature = "ferrocene_subset"))]
1953 pub fn splitn<P: Pattern>(&self, n: usize, pat: P) -> SplitN<'_, P> {
1954 SplitN(SplitNInternal { iter: self.split(pat).0, count: n })
1955 }
1956
1957 /// Returns an iterator over substrings of this string slice, separated by a
1958 /// pattern, starting from the end of the string, restricted to returning at
1959 /// most `n` items.
1960 ///
1961 /// If `n` substrings are returned, the last substring (the `n`th substring)
1962 /// will contain the remainder of the string.
1963 ///
1964 /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a
1965 /// function or closure that determines if a character matches.
1966 ///
1967 /// [`char`]: prim@char
1968 /// [pattern]: self::pattern
1969 ///
1970 /// # Iterator behavior
1971 ///
1972 /// The returned iterator will not be double ended, because it is not
1973 /// efficient to support.
1974 ///
1975 /// For splitting from the front, the [`splitn`] method can be used.
1976 ///
1977 /// [`splitn`]: str::splitn
1978 ///
1979 /// # Examples
1980 ///
1981 /// Simple patterns:
1982 ///
1983 /// ```
1984 /// let v: Vec<&str> = "Mary had a little lamb".rsplitn(3, ' ').collect();
1985 /// assert_eq!(v, ["lamb", "little", "Mary had a"]);
1986 ///
1987 /// let v: Vec<&str> = "lionXXtigerXleopard".rsplitn(3, 'X').collect();
1988 /// assert_eq!(v, ["leopard", "tiger", "lionX"]);
1989 ///
1990 /// let v: Vec<&str> = "lion::tiger::leopard".rsplitn(2, "::").collect();
1991 /// assert_eq!(v, ["leopard", "lion::tiger"]);
1992 /// ```
1993 ///
1994 /// A more complex pattern, using a closure:
1995 ///
1996 /// ```
1997 /// let v: Vec<&str> = "abc1defXghi".rsplitn(2, |c| c == '1' || c == 'X').collect();
1998 /// assert_eq!(v, ["ghi", "abc1def"]);
1999 /// ```
2000 #[stable(feature = "rust1", since = "1.0.0")]
2001 #[inline]
2002 #[cfg(not(feature = "ferrocene_subset"))]
2003 pub fn rsplitn<P: Pattern>(&self, n: usize, pat: P) -> RSplitN<'_, P>
2004 where
2005 for<'a> P::Searcher<'a>: ReverseSearcher<'a>,
2006 {
2007 RSplitN(self.splitn(n, pat).0)
2008 }
2009
2010 /// Splits the string on the first occurrence of the specified delimiter and
2011 /// returns prefix before delimiter and suffix after delimiter.
2012 ///
2013 /// # Examples
2014 ///
2015 /// ```
2016 /// assert_eq!("cfg".split_once('='), None);
2017 /// assert_eq!("cfg=".split_once('='), Some(("cfg", "")));
2018 /// assert_eq!("cfg=foo".split_once('='), Some(("cfg", "foo")));
2019 /// assert_eq!("cfg=foo=bar".split_once('='), Some(("cfg", "foo=bar")));
2020 /// ```
2021 #[stable(feature = "str_split_once", since = "1.52.0")]
2022 #[inline]
2023 #[cfg(not(feature = "ferrocene_subset"))]
2024 pub fn split_once<P: Pattern>(&self, delimiter: P) -> Option<(&'_ str, &'_ str)> {
2025 let (start, end) = delimiter.into_searcher(self).next_match()?;
2026 // SAFETY: `Searcher` is known to return valid indices.
2027 unsafe { Some((self.get_unchecked(..start), self.get_unchecked(end..))) }
2028 }
2029
2030 /// Splits the string on the last occurrence of the specified delimiter and
2031 /// returns prefix before delimiter and suffix after delimiter.
2032 ///
2033 /// # Examples
2034 ///
2035 /// ```
2036 /// assert_eq!("cfg".rsplit_once('='), None);
2037 /// assert_eq!("cfg=".rsplit_once('='), Some(("cfg", "")));
2038 /// assert_eq!("cfg=foo".rsplit_once('='), Some(("cfg", "foo")));
2039 /// assert_eq!("cfg=foo=bar".rsplit_once('='), Some(("cfg=foo", "bar")));
2040 /// ```
2041 #[stable(feature = "str_split_once", since = "1.52.0")]
2042 #[inline]
2043 #[cfg(not(feature = "ferrocene_subset"))]
2044 pub fn rsplit_once<P: Pattern>(&self, delimiter: P) -> Option<(&'_ str, &'_ str)>
2045 where
2046 for<'a> P::Searcher<'a>: ReverseSearcher<'a>,
2047 {
2048 let (start, end) = delimiter.into_searcher(self).next_match_back()?;
2049 // SAFETY: `Searcher` is known to return valid indices.
2050 unsafe { Some((self.get_unchecked(..start), self.get_unchecked(end..))) }
2051 }
2052
2053 /// Returns an iterator over the disjoint matches of a pattern within the
2054 /// given string slice.
2055 ///
2056 /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a
2057 /// function or closure that determines if a character matches.
2058 ///
2059 /// [`char`]: prim@char
2060 /// [pattern]: self::pattern
2061 ///
2062 /// # Iterator behavior
2063 ///
2064 /// The returned iterator will be a [`DoubleEndedIterator`] if the pattern
2065 /// allows a reverse search and forward/reverse search yields the same
2066 /// elements. This is true for, e.g., [`char`], but not for `&str`.
2067 ///
2068 /// If the pattern allows a reverse search but its results might differ
2069 /// from a forward search, the [`rmatches`] method can be used.
2070 ///
2071 /// [`rmatches`]: str::rmatches
2072 ///
2073 /// # Examples
2074 ///
2075 /// ```
2076 /// let v: Vec<&str> = "abcXXXabcYYYabc".matches("abc").collect();
2077 /// assert_eq!(v, ["abc", "abc", "abc"]);
2078 ///
2079 /// let v: Vec<&str> = "1abc2abc3".matches(char::is_numeric).collect();
2080 /// assert_eq!(v, ["1", "2", "3"]);
2081 /// ```
2082 #[stable(feature = "str_matches", since = "1.2.0")]
2083 #[inline]
2084 #[cfg(not(feature = "ferrocene_subset"))]
2085 pub fn matches<P: Pattern>(&self, pat: P) -> Matches<'_, P> {
2086 Matches(MatchesInternal(pat.into_searcher(self)))
2087 }
2088
2089 /// Returns an iterator over the disjoint matches of a pattern within this
2090 /// string slice, yielded in reverse order.
2091 ///
2092 /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a
2093 /// function or closure that determines if a character matches.
2094 ///
2095 /// [`char`]: prim@char
2096 /// [pattern]: self::pattern
2097 ///
2098 /// # Iterator behavior
2099 ///
2100 /// The returned iterator requires that the pattern supports a reverse
2101 /// search, and it will be a [`DoubleEndedIterator`] if a forward/reverse
2102 /// search yields the same elements.
2103 ///
2104 /// For iterating from the front, the [`matches`] method can be used.
2105 ///
2106 /// [`matches`]: str::matches
2107 ///
2108 /// # Examples
2109 ///
2110 /// ```
2111 /// let v: Vec<&str> = "abcXXXabcYYYabc".rmatches("abc").collect();
2112 /// assert_eq!(v, ["abc", "abc", "abc"]);
2113 ///
2114 /// let v: Vec<&str> = "1abc2abc3".rmatches(char::is_numeric).collect();
2115 /// assert_eq!(v, ["3", "2", "1"]);
2116 /// ```
2117 #[stable(feature = "str_matches", since = "1.2.0")]
2118 #[inline]
2119 #[cfg(not(feature = "ferrocene_subset"))]
2120 pub fn rmatches<P: Pattern>(&self, pat: P) -> RMatches<'_, P>
2121 where
2122 for<'a> P::Searcher<'a>: ReverseSearcher<'a>,
2123 {
2124 RMatches(self.matches(pat).0)
2125 }
2126
2127 /// Returns an iterator over the disjoint matches of a pattern within this string
2128 /// slice as well as the index that the match starts at.
2129 ///
2130 /// For matches of `pat` within `self` that overlap, only the indices
2131 /// corresponding to the first match are returned.
2132 ///
2133 /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a
2134 /// function or closure that determines if a character matches.
2135 ///
2136 /// [`char`]: prim@char
2137 /// [pattern]: self::pattern
2138 ///
2139 /// # Iterator behavior
2140 ///
2141 /// The returned iterator will be a [`DoubleEndedIterator`] if the pattern
2142 /// allows a reverse search and forward/reverse search yields the same
2143 /// elements. This is true for, e.g., [`char`], but not for `&str`.
2144 ///
2145 /// If the pattern allows a reverse search but its results might differ
2146 /// from a forward search, the [`rmatch_indices`] method can be used.
2147 ///
2148 /// [`rmatch_indices`]: str::rmatch_indices
2149 ///
2150 /// # Examples
2151 ///
2152 /// ```
2153 /// let v: Vec<_> = "abcXXXabcYYYabc".match_indices("abc").collect();
2154 /// assert_eq!(v, [(0, "abc"), (6, "abc"), (12, "abc")]);
2155 ///
2156 /// let v: Vec<_> = "1abcabc2".match_indices("abc").collect();
2157 /// assert_eq!(v, [(1, "abc"), (4, "abc")]);
2158 ///
2159 /// let v: Vec<_> = "ababa".match_indices("aba").collect();
2160 /// assert_eq!(v, [(0, "aba")]); // only the first `aba`
2161 /// ```
2162 #[stable(feature = "str_match_indices", since = "1.5.0")]
2163 #[inline]
2164 #[cfg(not(feature = "ferrocene_subset"))]
2165 pub fn match_indices<P: Pattern>(&self, pat: P) -> MatchIndices<'_, P> {
2166 MatchIndices(MatchIndicesInternal(pat.into_searcher(self)))
2167 }
2168
2169 /// Returns an iterator over the disjoint matches of a pattern within `self`,
2170 /// yielded in reverse order along with the index of the match.
2171 ///
2172 /// For matches of `pat` within `self` that overlap, only the indices
2173 /// corresponding to the last match are returned.
2174 ///
2175 /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a
2176 /// function or closure that determines if a character matches.
2177 ///
2178 /// [`char`]: prim@char
2179 /// [pattern]: self::pattern
2180 ///
2181 /// # Iterator behavior
2182 ///
2183 /// The returned iterator requires that the pattern supports a reverse
2184 /// search, and it will be a [`DoubleEndedIterator`] if a forward/reverse
2185 /// search yields the same elements.
2186 ///
2187 /// For iterating from the front, the [`match_indices`] method can be used.
2188 ///
2189 /// [`match_indices`]: str::match_indices
2190 ///
2191 /// # Examples
2192 ///
2193 /// ```
2194 /// let v: Vec<_> = "abcXXXabcYYYabc".rmatch_indices("abc").collect();
2195 /// assert_eq!(v, [(12, "abc"), (6, "abc"), (0, "abc")]);
2196 ///
2197 /// let v: Vec<_> = "1abcabc2".rmatch_indices("abc").collect();
2198 /// assert_eq!(v, [(4, "abc"), (1, "abc")]);
2199 ///
2200 /// let v: Vec<_> = "ababa".rmatch_indices("aba").collect();
2201 /// assert_eq!(v, [(2, "aba")]); // only the last `aba`
2202 /// ```
2203 #[stable(feature = "str_match_indices", since = "1.5.0")]
2204 #[inline]
2205 #[cfg(not(feature = "ferrocene_subset"))]
2206 pub fn rmatch_indices<P: Pattern>(&self, pat: P) -> RMatchIndices<'_, P>
2207 where
2208 for<'a> P::Searcher<'a>: ReverseSearcher<'a>,
2209 {
2210 RMatchIndices(self.match_indices(pat).0)
2211 }
2212
2213 /// Returns a string slice with leading and trailing whitespace removed.
2214 ///
2215 /// 'Whitespace' is defined according to the terms of the Unicode Derived
2216 /// Core Property `White_Space`, which includes newlines.
2217 ///
2218 /// # Examples
2219 ///
2220 /// ```
2221 /// let s = "\n Hello\tworld\t\n";
2222 ///
2223 /// assert_eq!("Hello\tworld", s.trim());
2224 /// ```
2225 #[inline]
2226 #[must_use = "this returns the trimmed string as a slice, \
2227 without modifying the original"]
2228 #[stable(feature = "rust1", since = "1.0.0")]
2229 #[rustc_diagnostic_item = "str_trim"]
2230 #[cfg(not(feature = "ferrocene_subset"))]
2231 pub fn trim(&self) -> &str {
2232 self.trim_matches(char::is_whitespace)
2233 }
2234
2235 /// Returns a string slice with leading whitespace removed.
2236 ///
2237 /// 'Whitespace' is defined according to the terms of the Unicode Derived
2238 /// Core Property `White_Space`, which includes newlines.
2239 ///
2240 /// # Text directionality
2241 ///
2242 /// A string is a sequence of bytes. `start` in this context means the first
2243 /// position of that byte string; for a left-to-right language like English or
2244 /// Russian, this will be left side, and for right-to-left languages like
2245 /// Arabic or Hebrew, this will be the right side.
2246 ///
2247 /// # Examples
2248 ///
2249 /// Basic usage:
2250 ///
2251 /// ```
2252 /// let s = "\n Hello\tworld\t\n";
2253 /// assert_eq!("Hello\tworld\t\n", s.trim_start());
2254 /// ```
2255 ///
2256 /// Directionality:
2257 ///
2258 /// ```
2259 /// let s = " English ";
2260 /// assert!(Some('E') == s.trim_start().chars().next());
2261 ///
2262 /// let s = " עברית ";
2263 /// assert!(Some('ע') == s.trim_start().chars().next());
2264 /// ```
2265 #[inline]
2266 #[must_use = "this returns the trimmed string as a new slice, \
2267 without modifying the original"]
2268 #[stable(feature = "trim_direction", since = "1.30.0")]
2269 #[rustc_diagnostic_item = "str_trim_start"]
2270 #[cfg(not(feature = "ferrocene_subset"))]
2271 pub fn trim_start(&self) -> &str {
2272 self.trim_start_matches(char::is_whitespace)
2273 }
2274
2275 /// Returns a string slice with trailing whitespace removed.
2276 ///
2277 /// 'Whitespace' is defined according to the terms of the Unicode Derived
2278 /// Core Property `White_Space`, which includes newlines.
2279 ///
2280 /// # Text directionality
2281 ///
2282 /// A string is a sequence of bytes. `end` in this context means the last
2283 /// position of that byte string; for a left-to-right language like English or
2284 /// Russian, this will be right side, and for right-to-left languages like
2285 /// Arabic or Hebrew, this will be the left side.
2286 ///
2287 /// # Examples
2288 ///
2289 /// Basic usage:
2290 ///
2291 /// ```
2292 /// let s = "\n Hello\tworld\t\n";
2293 /// assert_eq!("\n Hello\tworld", s.trim_end());
2294 /// ```
2295 ///
2296 /// Directionality:
2297 ///
2298 /// ```
2299 /// let s = " English ";
2300 /// assert!(Some('h') == s.trim_end().chars().rev().next());
2301 ///
2302 /// let s = " עברית ";
2303 /// assert!(Some('ת') == s.trim_end().chars().rev().next());
2304 /// ```
2305 #[inline]
2306 #[must_use = "this returns the trimmed string as a new slice, \
2307 without modifying the original"]
2308 #[stable(feature = "trim_direction", since = "1.30.0")]
2309 #[rustc_diagnostic_item = "str_trim_end"]
2310 #[cfg(not(feature = "ferrocene_subset"))]
2311 pub fn trim_end(&self) -> &str {
2312 self.trim_end_matches(char::is_whitespace)
2313 }
2314
2315 /// Returns a string slice with leading whitespace removed.
2316 ///
2317 /// 'Whitespace' is defined according to the terms of the Unicode Derived
2318 /// Core Property `White_Space`.
2319 ///
2320 /// # Text directionality
2321 ///
2322 /// A string is a sequence of bytes. 'Left' in this context means the first
2323 /// position of that byte string; for a language like Arabic or Hebrew
2324 /// which are 'right to left' rather than 'left to right', this will be
2325 /// the _right_ side, not the left.
2326 ///
2327 /// # Examples
2328 ///
2329 /// Basic usage:
2330 ///
2331 /// ```
2332 /// let s = " Hello\tworld\t";
2333 ///
2334 /// assert_eq!("Hello\tworld\t", s.trim_left());
2335 /// ```
2336 ///
2337 /// Directionality:
2338 ///
2339 /// ```
2340 /// let s = " English";
2341 /// assert!(Some('E') == s.trim_left().chars().next());
2342 ///
2343 /// let s = " עברית";
2344 /// assert!(Some('ע') == s.trim_left().chars().next());
2345 /// ```
2346 #[must_use = "this returns the trimmed string as a new slice, \
2347 without modifying the original"]
2348 #[inline]
2349 #[stable(feature = "rust1", since = "1.0.0")]
2350 #[deprecated(since = "1.33.0", note = "superseded by `trim_start`", suggestion = "trim_start")]
2351 #[cfg(not(feature = "ferrocene_subset"))]
2352 pub fn trim_left(&self) -> &str {
2353 self.trim_start()
2354 }
2355
2356 /// Returns a string slice with trailing whitespace removed.
2357 ///
2358 /// 'Whitespace' is defined according to the terms of the Unicode Derived
2359 /// Core Property `White_Space`.
2360 ///
2361 /// # Text directionality
2362 ///
2363 /// A string is a sequence of bytes. 'Right' in this context means the last
2364 /// position of that byte string; for a language like Arabic or Hebrew
2365 /// which are 'right to left' rather than 'left to right', this will be
2366 /// the _left_ side, not the right.
2367 ///
2368 /// # Examples
2369 ///
2370 /// Basic usage:
2371 ///
2372 /// ```
2373 /// let s = " Hello\tworld\t";
2374 ///
2375 /// assert_eq!(" Hello\tworld", s.trim_right());
2376 /// ```
2377 ///
2378 /// Directionality:
2379 ///
2380 /// ```
2381 /// let s = "English ";
2382 /// assert!(Some('h') == s.trim_right().chars().rev().next());
2383 ///
2384 /// let s = "עברית ";
2385 /// assert!(Some('ת') == s.trim_right().chars().rev().next());
2386 /// ```
2387 #[must_use = "this returns the trimmed string as a new slice, \
2388 without modifying the original"]
2389 #[inline]
2390 #[stable(feature = "rust1", since = "1.0.0")]
2391 #[deprecated(since = "1.33.0", note = "superseded by `trim_end`", suggestion = "trim_end")]
2392 #[cfg(not(feature = "ferrocene_subset"))]
2393 pub fn trim_right(&self) -> &str {
2394 self.trim_end()
2395 }
2396
2397 /// Returns a string slice with all prefixes and suffixes that match a
2398 /// pattern repeatedly removed.
2399 ///
2400 /// The [pattern] can be a [`char`], a slice of [`char`]s, or a function
2401 /// or closure that determines if a character matches.
2402 ///
2403 /// [`char`]: prim@char
2404 /// [pattern]: self::pattern
2405 ///
2406 /// # Examples
2407 ///
2408 /// Simple patterns:
2409 ///
2410 /// ```
2411 /// assert_eq!("11foo1bar11".trim_matches('1'), "foo1bar");
2412 /// assert_eq!("123foo1bar123".trim_matches(char::is_numeric), "foo1bar");
2413 ///
2414 /// let x: &[_] = &['1', '2'];
2415 /// assert_eq!("12foo1bar12".trim_matches(x), "foo1bar");
2416 /// ```
2417 ///
2418 /// A more complex pattern, using a closure:
2419 ///
2420 /// ```
2421 /// assert_eq!("1foo1barXX".trim_matches(|c| c == '1' || c == 'X'), "foo1bar");
2422 /// ```
2423 #[must_use = "this returns the trimmed string as a new slice, \
2424 without modifying the original"]
2425 #[stable(feature = "rust1", since = "1.0.0")]
2426 #[cfg(not(feature = "ferrocene_subset"))]
2427 pub fn trim_matches<P: Pattern>(&self, pat: P) -> &str
2428 where
2429 for<'a> P::Searcher<'a>: DoubleEndedSearcher<'a>,
2430 {
2431 let mut i = 0;
2432 let mut j = 0;
2433 let mut matcher = pat.into_searcher(self);
2434 if let Some((a, b)) = matcher.next_reject() {
2435 i = a;
2436 j = b; // Remember earliest known match, correct it below if
2437 // last match is different
2438 }
2439 if let Some((_, b)) = matcher.next_reject_back() {
2440 j = b;
2441 }
2442 // SAFETY: `Searcher` is known to return valid indices.
2443 unsafe { self.get_unchecked(i..j) }
2444 }
2445
2446 /// Returns a string slice with all prefixes that match a pattern
2447 /// repeatedly removed.
2448 ///
2449 /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a
2450 /// function or closure that determines if a character matches.
2451 ///
2452 /// [`char`]: prim@char
2453 /// [pattern]: self::pattern
2454 ///
2455 /// # Text directionality
2456 ///
2457 /// A string is a sequence of bytes. `start` in this context means the first
2458 /// position of that byte string; for a left-to-right language like English or
2459 /// Russian, this will be left side, and for right-to-left languages like
2460 /// Arabic or Hebrew, this will be the right side.
2461 ///
2462 /// # Examples
2463 ///
2464 /// ```
2465 /// assert_eq!("11foo1bar11".trim_start_matches('1'), "foo1bar11");
2466 /// assert_eq!("123foo1bar123".trim_start_matches(char::is_numeric), "foo1bar123");
2467 ///
2468 /// let x: &[_] = &['1', '2'];
2469 /// assert_eq!("12foo1bar12".trim_start_matches(x), "foo1bar12");
2470 /// ```
2471 #[must_use = "this returns the trimmed string as a new slice, \
2472 without modifying the original"]
2473 #[stable(feature = "trim_direction", since = "1.30.0")]
2474 #[cfg(not(feature = "ferrocene_subset"))]
2475 pub fn trim_start_matches<P: Pattern>(&self, pat: P) -> &str {
2476 let mut i = self.len();
2477 let mut matcher = pat.into_searcher(self);
2478 if let Some((a, _)) = matcher.next_reject() {
2479 i = a;
2480 }
2481 // SAFETY: `Searcher` is known to return valid indices.
2482 unsafe { self.get_unchecked(i..self.len()) }
2483 }
2484
2485 /// Returns a string slice with the prefix removed.
2486 ///
2487 /// If the string starts with the pattern `prefix`, returns the substring after the prefix,
2488 /// wrapped in `Some`. Unlike [`trim_start_matches`], this method removes the prefix exactly once.
2489 ///
2490 /// If the string does not start with `prefix`, returns `None`.
2491 ///
2492 /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a
2493 /// function or closure that determines if a character matches.
2494 ///
2495 /// [`char`]: prim@char
2496 /// [pattern]: self::pattern
2497 /// [`trim_start_matches`]: Self::trim_start_matches
2498 ///
2499 /// # Examples
2500 ///
2501 /// ```
2502 /// assert_eq!("foo:bar".strip_prefix("foo:"), Some("bar"));
2503 /// assert_eq!("foo:bar".strip_prefix("bar"), None);
2504 /// assert_eq!("foofoo".strip_prefix("foo"), Some("foo"));
2505 /// ```
2506 #[must_use = "this returns the remaining substring as a new slice, \
2507 without modifying the original"]
2508 #[stable(feature = "str_strip", since = "1.45.0")]
2509 #[cfg(not(feature = "ferrocene_subset"))]
2510 pub fn strip_prefix<P: Pattern>(&self, prefix: P) -> Option<&str> {
2511 prefix.strip_prefix_of(self)
2512 }
2513
2514 /// Returns a string slice with the suffix removed.
2515 ///
2516 /// If the string ends with the pattern `suffix`, returns the substring before the suffix,
2517 /// wrapped in `Some`. Unlike [`trim_end_matches`], this method removes the suffix exactly once.
2518 ///
2519 /// If the string does not end with `suffix`, returns `None`.
2520 ///
2521 /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a
2522 /// function or closure that determines if a character matches.
2523 ///
2524 /// [`char`]: prim@char
2525 /// [pattern]: self::pattern
2526 /// [`trim_end_matches`]: Self::trim_end_matches
2527 ///
2528 /// # Examples
2529 ///
2530 /// ```
2531 /// assert_eq!("bar:foo".strip_suffix(":foo"), Some("bar"));
2532 /// assert_eq!("bar:foo".strip_suffix("bar"), None);
2533 /// assert_eq!("foofoo".strip_suffix("foo"), Some("foo"));
2534 /// ```
2535 #[must_use = "this returns the remaining substring as a new slice, \
2536 without modifying the original"]
2537 #[stable(feature = "str_strip", since = "1.45.0")]
2538 #[cfg(not(feature = "ferrocene_subset"))]
2539 pub fn strip_suffix<P: Pattern>(&self, suffix: P) -> Option<&str>
2540 where
2541 for<'a> P::Searcher<'a>: ReverseSearcher<'a>,
2542 {
2543 suffix.strip_suffix_of(self)
2544 }
2545
2546 /// Returns a string slice with the prefix and suffix removed.
2547 ///
2548 /// If the string starts with the pattern `prefix` and ends with the pattern `suffix`, returns
2549 /// the substring after the prefix and before the suffix, wrapped in `Some`.
2550 /// Unlike [`trim_start_matches`] and [`trim_end_matches`], this method removes both the prefix
2551 /// and suffix exactly once.
2552 ///
2553 /// If the string does not start with `prefix` or does not end with `suffix`, returns `None`.
2554 ///
2555 /// Each [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a
2556 /// function or closure that determines if a character matches.
2557 ///
2558 /// [`char`]: prim@char
2559 /// [pattern]: self::pattern
2560 /// [`trim_start_matches`]: Self::trim_start_matches
2561 /// [`trim_end_matches`]: Self::trim_end_matches
2562 ///
2563 /// # Examples
2564 ///
2565 /// ```
2566 /// #![feature(strip_circumfix)]
2567 ///
2568 /// assert_eq!("bar:hello:foo".strip_circumfix("bar:", ":foo"), Some("hello"));
2569 /// assert_eq!("bar:foo".strip_circumfix("foo", "foo"), None);
2570 /// assert_eq!("foo:bar;".strip_circumfix("foo:", ';'), Some("bar"));
2571 /// ```
2572 #[must_use = "this returns the remaining substring as a new slice, \
2573 without modifying the original"]
2574 #[unstable(feature = "strip_circumfix", issue = "147946")]
2575 #[cfg(not(feature = "ferrocene_subset"))]
2576 pub fn strip_circumfix<P: Pattern, S: Pattern>(&self, prefix: P, suffix: S) -> Option<&str>
2577 where
2578 for<'a> S::Searcher<'a>: ReverseSearcher<'a>,
2579 {
2580 self.strip_prefix(prefix)?.strip_suffix(suffix)
2581 }
2582
2583 /// Returns a string slice with the optional prefix removed.
2584 ///
2585 /// If the string starts with the pattern `prefix`, returns the substring after the prefix.
2586 /// Unlike [`strip_prefix`], this method always returns `&str` for easy method chaining,
2587 /// instead of returning [`Option<&str>`].
2588 ///
2589 /// If the string does not start with `prefix`, returns the original string unchanged.
2590 ///
2591 /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a
2592 /// function or closure that determines if a character matches.
2593 ///
2594 /// [`char`]: prim@char
2595 /// [pattern]: self::pattern
2596 /// [`strip_prefix`]: Self::strip_prefix
2597 ///
2598 /// # Examples
2599 ///
2600 /// ```
2601 /// #![feature(trim_prefix_suffix)]
2602 ///
2603 /// // Prefix present - removes it
2604 /// assert_eq!("foo:bar".trim_prefix("foo:"), "bar");
2605 /// assert_eq!("foofoo".trim_prefix("foo"), "foo");
2606 ///
2607 /// // Prefix absent - returns original string
2608 /// assert_eq!("foo:bar".trim_prefix("bar"), "foo:bar");
2609 ///
2610 /// // Method chaining example
2611 /// assert_eq!("<https://example.com/>".trim_prefix('<').trim_suffix('>'), "https://example.com/");
2612 /// ```
2613 #[must_use = "this returns the remaining substring as a new slice, \
2614 without modifying the original"]
2615 #[unstable(feature = "trim_prefix_suffix", issue = "142312")]
2616 #[cfg(not(feature = "ferrocene_subset"))]
2617 pub fn trim_prefix<P: Pattern>(&self, prefix: P) -> &str {
2618 prefix.strip_prefix_of(self).unwrap_or(self)
2619 }
2620
2621 /// Returns a string slice with the optional suffix removed.
2622 ///
2623 /// If the string ends with the pattern `suffix`, returns the substring before the suffix.
2624 /// Unlike [`strip_suffix`], this method always returns `&str` for easy method chaining,
2625 /// instead of returning [`Option<&str>`].
2626 ///
2627 /// If the string does not end with `suffix`, returns the original string unchanged.
2628 ///
2629 /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a
2630 /// function or closure that determines if a character matches.
2631 ///
2632 /// [`char`]: prim@char
2633 /// [pattern]: self::pattern
2634 /// [`strip_suffix`]: Self::strip_suffix
2635 ///
2636 /// # Examples
2637 ///
2638 /// ```
2639 /// #![feature(trim_prefix_suffix)]
2640 ///
2641 /// // Suffix present - removes it
2642 /// assert_eq!("bar:foo".trim_suffix(":foo"), "bar");
2643 /// assert_eq!("foofoo".trim_suffix("foo"), "foo");
2644 ///
2645 /// // Suffix absent - returns original string
2646 /// assert_eq!("bar:foo".trim_suffix("bar"), "bar:foo");
2647 ///
2648 /// // Method chaining example
2649 /// assert_eq!("<https://example.com/>".trim_prefix('<').trim_suffix('>'), "https://example.com/");
2650 /// ```
2651 #[must_use = "this returns the remaining substring as a new slice, \
2652 without modifying the original"]
2653 #[unstable(feature = "trim_prefix_suffix", issue = "142312")]
2654 #[cfg(not(feature = "ferrocene_subset"))]
2655 pub fn trim_suffix<P: Pattern>(&self, suffix: P) -> &str
2656 where
2657 for<'a> P::Searcher<'a>: ReverseSearcher<'a>,
2658 {
2659 suffix.strip_suffix_of(self).unwrap_or(self)
2660 }
2661
2662 /// Returns a string slice with all suffixes that match a pattern
2663 /// repeatedly removed.
2664 ///
2665 /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a
2666 /// function or closure that determines if a character matches.
2667 ///
2668 /// [`char`]: prim@char
2669 /// [pattern]: self::pattern
2670 ///
2671 /// # Text directionality
2672 ///
2673 /// A string is a sequence of bytes. `end` in this context means the last
2674 /// position of that byte string; for a left-to-right language like English or
2675 /// Russian, this will be right side, and for right-to-left languages like
2676 /// Arabic or Hebrew, this will be the left side.
2677 ///
2678 /// # Examples
2679 ///
2680 /// Simple patterns:
2681 ///
2682 /// ```
2683 /// assert_eq!("11foo1bar11".trim_end_matches('1'), "11foo1bar");
2684 /// assert_eq!("123foo1bar123".trim_end_matches(char::is_numeric), "123foo1bar");
2685 ///
2686 /// let x: &[_] = &['1', '2'];
2687 /// assert_eq!("12foo1bar12".trim_end_matches(x), "12foo1bar");
2688 /// ```
2689 ///
2690 /// A more complex pattern, using a closure:
2691 ///
2692 /// ```
2693 /// assert_eq!("1fooX".trim_end_matches(|c| c == '1' || c == 'X'), "1foo");
2694 /// ```
2695 #[must_use = "this returns the trimmed string as a new slice, \
2696 without modifying the original"]
2697 #[stable(feature = "trim_direction", since = "1.30.0")]
2698 #[cfg(not(feature = "ferrocene_subset"))]
2699 pub fn trim_end_matches<P: Pattern>(&self, pat: P) -> &str
2700 where
2701 for<'a> P::Searcher<'a>: ReverseSearcher<'a>,
2702 {
2703 let mut j = 0;
2704 let mut matcher = pat.into_searcher(self);
2705 if let Some((_, b)) = matcher.next_reject_back() {
2706 j = b;
2707 }
2708 // SAFETY: `Searcher` is known to return valid indices.
2709 unsafe { self.get_unchecked(0..j) }
2710 }
2711
2712 /// Returns a string slice with all prefixes that match a pattern
2713 /// repeatedly removed.
2714 ///
2715 /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a
2716 /// function or closure that determines if a character matches.
2717 ///
2718 /// [`char`]: prim@char
2719 /// [pattern]: self::pattern
2720 ///
2721 /// # Text directionality
2722 ///
2723 /// A string is a sequence of bytes. 'Left' in this context means the first
2724 /// position of that byte string; for a language like Arabic or Hebrew
2725 /// which are 'right to left' rather than 'left to right', this will be
2726 /// the _right_ side, not the left.
2727 ///
2728 /// # Examples
2729 ///
2730 /// ```
2731 /// assert_eq!("11foo1bar11".trim_left_matches('1'), "foo1bar11");
2732 /// assert_eq!("123foo1bar123".trim_left_matches(char::is_numeric), "foo1bar123");
2733 ///
2734 /// let x: &[_] = &['1', '2'];
2735 /// assert_eq!("12foo1bar12".trim_left_matches(x), "foo1bar12");
2736 /// ```
2737 #[stable(feature = "rust1", since = "1.0.0")]
2738 #[deprecated(
2739 since = "1.33.0",
2740 note = "superseded by `trim_start_matches`",
2741 suggestion = "trim_start_matches"
2742 )]
2743 #[cfg(not(feature = "ferrocene_subset"))]
2744 pub fn trim_left_matches<P: Pattern>(&self, pat: P) -> &str {
2745 self.trim_start_matches(pat)
2746 }
2747
2748 /// Returns a string slice with all suffixes that match a pattern
2749 /// repeatedly removed.
2750 ///
2751 /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a
2752 /// function or closure that determines if a character matches.
2753 ///
2754 /// [`char`]: prim@char
2755 /// [pattern]: self::pattern
2756 ///
2757 /// # Text directionality
2758 ///
2759 /// A string is a sequence of bytes. 'Right' in this context means the last
2760 /// position of that byte string; for a language like Arabic or Hebrew
2761 /// which are 'right to left' rather than 'left to right', this will be
2762 /// the _left_ side, not the right.
2763 ///
2764 /// # Examples
2765 ///
2766 /// Simple patterns:
2767 ///
2768 /// ```
2769 /// assert_eq!("11foo1bar11".trim_right_matches('1'), "11foo1bar");
2770 /// assert_eq!("123foo1bar123".trim_right_matches(char::is_numeric), "123foo1bar");
2771 ///
2772 /// let x: &[_] = &['1', '2'];
2773 /// assert_eq!("12foo1bar12".trim_right_matches(x), "12foo1bar");
2774 /// ```
2775 ///
2776 /// A more complex pattern, using a closure:
2777 ///
2778 /// ```
2779 /// assert_eq!("1fooX".trim_right_matches(|c| c == '1' || c == 'X'), "1foo");
2780 /// ```
2781 #[stable(feature = "rust1", since = "1.0.0")]
2782 #[deprecated(
2783 since = "1.33.0",
2784 note = "superseded by `trim_end_matches`",
2785 suggestion = "trim_end_matches"
2786 )]
2787 #[cfg(not(feature = "ferrocene_subset"))]
2788 pub fn trim_right_matches<P: Pattern>(&self, pat: P) -> &str
2789 where
2790 for<'a> P::Searcher<'a>: ReverseSearcher<'a>,
2791 {
2792 self.trim_end_matches(pat)
2793 }
2794
2795 /// Parses this string slice into another type.
2796 ///
2797 /// Because `parse` is so general, it can cause problems with type
2798 /// inference. As such, `parse` is one of the few times you'll see
2799 /// the syntax affectionately known as the 'turbofish': `::<>`. This
2800 /// helps the inference algorithm understand specifically which type
2801 /// you're trying to parse into.
2802 ///
2803 /// `parse` can parse into any type that implements the [`FromStr`] trait.
2804 ///
2805 /// # Errors
2806 ///
2807 /// Will return [`Err`] if it's not possible to parse this string slice into
2808 /// the desired type.
2809 ///
2810 /// [`Err`]: FromStr::Err
2811 ///
2812 /// # Examples
2813 ///
2814 /// Basic usage:
2815 ///
2816 /// ```
2817 /// let four: u32 = "4".parse().unwrap();
2818 ///
2819 /// assert_eq!(4, four);
2820 /// ```
2821 ///
2822 /// Using the 'turbofish' instead of annotating `four`:
2823 ///
2824 /// ```
2825 /// let four = "4".parse::<u32>();
2826 ///
2827 /// assert_eq!(Ok(4), four);
2828 /// ```
2829 ///
2830 /// Failing to parse:
2831 ///
2832 /// ```
2833 /// let nope = "j".parse::<u32>();
2834 ///
2835 /// assert!(nope.is_err());
2836 /// ```
2837 #[inline]
2838 #[stable(feature = "rust1", since = "1.0.0")]
2839 pub fn parse<F: FromStr>(&self) -> Result<F, F::Err> {
2840 FromStr::from_str(self)
2841 }
2842
2843 /// Checks if all characters in this string are within the ASCII range.
2844 ///
2845 /// An empty string returns `true`.
2846 ///
2847 /// # Examples
2848 ///
2849 /// ```
2850 /// let ascii = "hello!\n";
2851 /// let non_ascii = "Grüße, Jürgen ❤";
2852 ///
2853 /// assert!(ascii.is_ascii());
2854 /// assert!(!non_ascii.is_ascii());
2855 /// ```
2856 #[stable(feature = "ascii_methods_on_intrinsics", since = "1.23.0")]
2857 #[rustc_const_stable(feature = "const_slice_is_ascii", since = "1.74.0")]
2858 #[must_use]
2859 #[inline]
2860 #[cfg(not(feature = "ferrocene_subset"))]
2861 pub const fn is_ascii(&self) -> bool {
2862 // We can treat each byte as character here: all multibyte characters
2863 // start with a byte that is not in the ASCII range, so we will stop
2864 // there already.
2865 self.as_bytes().is_ascii()
2866 }
2867
2868 /// If this string slice [`is_ascii`](Self::is_ascii), returns it as a slice
2869 /// of [ASCII characters](`ascii::Char`), otherwise returns `None`.
2870 #[unstable(feature = "ascii_char", issue = "110998")]
2871 #[must_use]
2872 #[inline]
2873 #[cfg(not(feature = "ferrocene_subset"))]
2874 pub const fn as_ascii(&self) -> Option<&[ascii::Char]> {
2875 // Like in `is_ascii`, we can work on the bytes directly.
2876 self.as_bytes().as_ascii()
2877 }
2878
2879 /// Converts this string slice into a slice of [ASCII characters](ascii::Char),
2880 /// without checking whether they are valid.
2881 ///
2882 /// # Safety
2883 ///
2884 /// Every character in this string must be ASCII, or else this is UB.
2885 #[unstable(feature = "ascii_char", issue = "110998")]
2886 #[must_use]
2887 #[inline]
2888 #[cfg(not(feature = "ferrocene_subset"))]
2889 pub const unsafe fn as_ascii_unchecked(&self) -> &[ascii::Char] {
2890 assert_unsafe_precondition!(
2891 check_library_ub,
2892 "as_ascii_unchecked requires that the string is valid ASCII",
2893 (it: &str = self) => it.is_ascii()
2894 );
2895
2896 // SAFETY: the caller promised that every byte of this string slice
2897 // is ASCII.
2898 unsafe { self.as_bytes().as_ascii_unchecked() }
2899 }
2900
2901 /// Checks that two strings are an ASCII case-insensitive match.
2902 ///
2903 /// Same as `to_ascii_lowercase(a) == to_ascii_lowercase(b)`,
2904 /// but without allocating and copying temporaries.
2905 ///
2906 /// # Examples
2907 ///
2908 /// ```
2909 /// assert!("Ferris".eq_ignore_ascii_case("FERRIS"));
2910 /// assert!("Ferrös".eq_ignore_ascii_case("FERRöS"));
2911 /// assert!(!"Ferrös".eq_ignore_ascii_case("FERRÖS"));
2912 /// ```
2913 #[stable(feature = "ascii_methods_on_intrinsics", since = "1.23.0")]
2914 #[rustc_const_stable(feature = "const_eq_ignore_ascii_case", since = "1.89.0")]
2915 #[must_use]
2916 #[inline]
2917 pub const fn eq_ignore_ascii_case(&self, other: &str) -> bool {
2918 self.as_bytes().eq_ignore_ascii_case(other.as_bytes())
2919 }
2920
2921 /// Converts this string to its ASCII upper case equivalent in-place.
2922 ///
2923 /// ASCII letters 'a' to 'z' are mapped to 'A' to 'Z',
2924 /// but non-ASCII letters are unchanged.
2925 ///
2926 /// To return a new uppercased value without modifying the existing one, use
2927 /// [`to_ascii_uppercase()`].
2928 ///
2929 /// [`to_ascii_uppercase()`]: #method.to_ascii_uppercase
2930 ///
2931 /// # Examples
2932 ///
2933 /// ```
2934 /// let mut s = String::from("Grüße, Jürgen ❤");
2935 ///
2936 /// s.make_ascii_uppercase();
2937 ///
2938 /// assert_eq!("GRüßE, JüRGEN ❤", s);
2939 /// ```
2940 #[stable(feature = "ascii_methods_on_intrinsics", since = "1.23.0")]
2941 #[rustc_const_stable(feature = "const_make_ascii", since = "1.84.0")]
2942 #[inline]
2943 #[cfg(not(feature = "ferrocene_subset"))]
2944 pub const fn make_ascii_uppercase(&mut self) {
2945 // SAFETY: changing ASCII letters only does not invalidate UTF-8.
2946 let me = unsafe { self.as_bytes_mut() };
2947 me.make_ascii_uppercase()
2948 }
2949
2950 /// Converts this string to its ASCII lower case equivalent in-place.
2951 ///
2952 /// ASCII letters 'A' to 'Z' are mapped to 'a' to 'z',
2953 /// but non-ASCII letters are unchanged.
2954 ///
2955 /// To return a new lowercased value without modifying the existing one, use
2956 /// [`to_ascii_lowercase()`].
2957 ///
2958 /// [`to_ascii_lowercase()`]: #method.to_ascii_lowercase
2959 ///
2960 /// # Examples
2961 ///
2962 /// ```
2963 /// let mut s = String::from("GRÜßE, JÜRGEN ❤");
2964 ///
2965 /// s.make_ascii_lowercase();
2966 ///
2967 /// assert_eq!("grÜße, jÜrgen ❤", s);
2968 /// ```
2969 #[stable(feature = "ascii_methods_on_intrinsics", since = "1.23.0")]
2970 #[rustc_const_stable(feature = "const_make_ascii", since = "1.84.0")]
2971 #[inline]
2972 #[cfg(not(feature = "ferrocene_subset"))]
2973 pub const fn make_ascii_lowercase(&mut self) {
2974 // SAFETY: changing ASCII letters only does not invalidate UTF-8.
2975 let me = unsafe { self.as_bytes_mut() };
2976 me.make_ascii_lowercase()
2977 }
2978
2979 /// Returns a string slice with leading ASCII whitespace removed.
2980 ///
2981 /// 'Whitespace' refers to the definition used by
2982 /// [`u8::is_ascii_whitespace`].
2983 ///
2984 /// [`u8::is_ascii_whitespace`]: u8::is_ascii_whitespace
2985 ///
2986 /// # Examples
2987 ///
2988 /// ```
2989 /// assert_eq!(" \t \u{3000}hello world\n".trim_ascii_start(), "\u{3000}hello world\n");
2990 /// assert_eq!(" ".trim_ascii_start(), "");
2991 /// assert_eq!("".trim_ascii_start(), "");
2992 /// ```
2993 #[must_use = "this returns the trimmed string as a new slice, \
2994 without modifying the original"]
2995 #[stable(feature = "byte_slice_trim_ascii", since = "1.80.0")]
2996 #[rustc_const_stable(feature = "byte_slice_trim_ascii", since = "1.80.0")]
2997 #[inline]
2998 #[cfg(not(feature = "ferrocene_subset"))]
2999 pub const fn trim_ascii_start(&self) -> &str {
3000 // SAFETY: Removing ASCII characters from a `&str` does not invalidate
3001 // UTF-8.
3002 unsafe { core::str::from_utf8_unchecked(self.as_bytes().trim_ascii_start()) }
3003 }
3004
3005 /// Returns a string slice with trailing ASCII whitespace removed.
3006 ///
3007 /// 'Whitespace' refers to the definition used by
3008 /// [`u8::is_ascii_whitespace`].
3009 ///
3010 /// [`u8::is_ascii_whitespace`]: u8::is_ascii_whitespace
3011 ///
3012 /// # Examples
3013 ///
3014 /// ```
3015 /// assert_eq!("\r hello world\u{3000}\n ".trim_ascii_end(), "\r hello world\u{3000}");
3016 /// assert_eq!(" ".trim_ascii_end(), "");
3017 /// assert_eq!("".trim_ascii_end(), "");
3018 /// ```
3019 #[must_use = "this returns the trimmed string as a new slice, \
3020 without modifying the original"]
3021 #[stable(feature = "byte_slice_trim_ascii", since = "1.80.0")]
3022 #[rustc_const_stable(feature = "byte_slice_trim_ascii", since = "1.80.0")]
3023 #[inline]
3024 #[cfg(not(feature = "ferrocene_subset"))]
3025 pub const fn trim_ascii_end(&self) -> &str {
3026 // SAFETY: Removing ASCII characters from a `&str` does not invalidate
3027 // UTF-8.
3028 unsafe { core::str::from_utf8_unchecked(self.as_bytes().trim_ascii_end()) }
3029 }
3030
3031 /// Returns a string slice with leading and trailing ASCII whitespace
3032 /// removed.
3033 ///
3034 /// 'Whitespace' refers to the definition used by
3035 /// [`u8::is_ascii_whitespace`].
3036 ///
3037 /// [`u8::is_ascii_whitespace`]: u8::is_ascii_whitespace
3038 ///
3039 /// # Examples
3040 ///
3041 /// ```
3042 /// assert_eq!("\r hello world\n ".trim_ascii(), "hello world");
3043 /// assert_eq!(" ".trim_ascii(), "");
3044 /// assert_eq!("".trim_ascii(), "");
3045 /// ```
3046 #[must_use = "this returns the trimmed string as a new slice, \
3047 without modifying the original"]
3048 #[stable(feature = "byte_slice_trim_ascii", since = "1.80.0")]
3049 #[rustc_const_stable(feature = "byte_slice_trim_ascii", since = "1.80.0")]
3050 #[inline]
3051 #[cfg(not(feature = "ferrocene_subset"))]
3052 pub const fn trim_ascii(&self) -> &str {
3053 // SAFETY: Removing ASCII characters from a `&str` does not invalidate
3054 // UTF-8.
3055 unsafe { core::str::from_utf8_unchecked(self.as_bytes().trim_ascii()) }
3056 }
3057
3058 /// Returns an iterator that escapes each char in `self` with [`char::escape_debug`].
3059 ///
3060 /// Note: only extended grapheme codepoints that begin the string will be
3061 /// escaped.
3062 ///
3063 /// # Examples
3064 ///
3065 /// As an iterator:
3066 ///
3067 /// ```
3068 /// for c in "❤\n!".escape_debug() {
3069 /// print!("{c}");
3070 /// }
3071 /// println!();
3072 /// ```
3073 ///
3074 /// Using `println!` directly:
3075 ///
3076 /// ```
3077 /// println!("{}", "❤\n!".escape_debug());
3078 /// ```
3079 ///
3080 ///
3081 /// Both are equivalent to:
3082 ///
3083 /// ```
3084 /// println!("❤\\n!");
3085 /// ```
3086 ///
3087 /// Using `to_string`:
3088 ///
3089 /// ```
3090 /// assert_eq!("❤\n!".escape_debug().to_string(), "❤\\n!");
3091 /// ```
3092 #[must_use = "this returns the escaped string as an iterator, \
3093 without modifying the original"]
3094 #[stable(feature = "str_escape", since = "1.34.0")]
3095 #[cfg(not(feature = "ferrocene_subset"))]
3096 pub fn escape_debug(&self) -> EscapeDebug<'_> {
3097 let mut chars = self.chars();
3098 EscapeDebug {
3099 inner: chars
3100 .next()
3101 .map(|first| first.escape_debug_ext(EscapeDebugExtArgs::ESCAPE_ALL))
3102 .into_iter()
3103 .flatten()
3104 .chain(chars.flat_map(CharEscapeDebugContinue)),
3105 }
3106 }
3107
3108 /// Returns an iterator that escapes each char in `self` with [`char::escape_default`].
3109 ///
3110 /// # Examples
3111 ///
3112 /// As an iterator:
3113 ///
3114 /// ```
3115 /// for c in "❤\n!".escape_default() {
3116 /// print!("{c}");
3117 /// }
3118 /// println!();
3119 /// ```
3120 ///
3121 /// Using `println!` directly:
3122 ///
3123 /// ```
3124 /// println!("{}", "❤\n!".escape_default());
3125 /// ```
3126 ///
3127 ///
3128 /// Both are equivalent to:
3129 ///
3130 /// ```
3131 /// println!("\\u{{2764}}\\n!");
3132 /// ```
3133 ///
3134 /// Using `to_string`:
3135 ///
3136 /// ```
3137 /// assert_eq!("❤\n!".escape_default().to_string(), "\\u{2764}\\n!");
3138 /// ```
3139 #[must_use = "this returns the escaped string as an iterator, \
3140 without modifying the original"]
3141 #[stable(feature = "str_escape", since = "1.34.0")]
3142 #[cfg(not(feature = "ferrocene_subset"))]
3143 pub fn escape_default(&self) -> EscapeDefault<'_> {
3144 EscapeDefault { inner: self.chars().flat_map(CharEscapeDefault) }
3145 }
3146
3147 /// Returns an iterator that escapes each char in `self` with [`char::escape_unicode`].
3148 ///
3149 /// # Examples
3150 ///
3151 /// As an iterator:
3152 ///
3153 /// ```
3154 /// for c in "❤\n!".escape_unicode() {
3155 /// print!("{c}");
3156 /// }
3157 /// println!();
3158 /// ```
3159 ///
3160 /// Using `println!` directly:
3161 ///
3162 /// ```
3163 /// println!("{}", "❤\n!".escape_unicode());
3164 /// ```
3165 ///
3166 ///
3167 /// Both are equivalent to:
3168 ///
3169 /// ```
3170 /// println!("\\u{{2764}}\\u{{a}}\\u{{21}}");
3171 /// ```
3172 ///
3173 /// Using `to_string`:
3174 ///
3175 /// ```
3176 /// assert_eq!("❤\n!".escape_unicode().to_string(), "\\u{2764}\\u{a}\\u{21}");
3177 /// ```
3178 #[must_use = "this returns the escaped string as an iterator, \
3179 without modifying the original"]
3180 #[stable(feature = "str_escape", since = "1.34.0")]
3181 #[cfg(not(feature = "ferrocene_subset"))]
3182 pub fn escape_unicode(&self) -> EscapeUnicode<'_> {
3183 EscapeUnicode { inner: self.chars().flat_map(CharEscapeUnicode) }
3184 }
3185
3186 /// Returns the range that a substring points to.
3187 ///
3188 /// Returns `None` if `substr` does not point within `self`.
3189 ///
3190 /// Unlike [`str::find`], **this does not search through the string**.
3191 /// Instead, it uses pointer arithmetic to find where in the string
3192 /// `substr` is derived from.
3193 ///
3194 /// This is useful for extending [`str::split`] and similar methods.
3195 ///
3196 /// Note that this method may return false positives (typically either
3197 /// `Some(0..0)` or `Some(self.len()..self.len())`) if `substr` is a
3198 /// zero-length `str` that points at the beginning or end of another,
3199 /// independent, `str`.
3200 ///
3201 /// # Examples
3202 /// ```
3203 /// #![feature(substr_range)]
3204 ///
3205 /// let data = "a, b, b, a";
3206 /// let mut iter = data.split(", ").map(|s| data.substr_range(s).unwrap());
3207 ///
3208 /// assert_eq!(iter.next(), Some(0..1));
3209 /// assert_eq!(iter.next(), Some(3..4));
3210 /// assert_eq!(iter.next(), Some(6..7));
3211 /// assert_eq!(iter.next(), Some(9..10));
3212 /// ```
3213 #[must_use]
3214 #[unstable(feature = "substr_range", issue = "126769")]
3215 #[cfg(not(feature = "ferrocene_subset"))]
3216 pub fn substr_range(&self, substr: &str) -> Option<Range<usize>> {
3217 self.as_bytes().subslice_range(substr.as_bytes())
3218 }
3219
3220 /// Returns the same string as a string slice `&str`.
3221 ///
3222 /// This method is redundant when used directly on `&str`, but
3223 /// it helps dereferencing other string-like types to string slices,
3224 /// for example references to `Box<str>` or `Arc<str>`.
3225 #[inline]
3226 #[unstable(feature = "str_as_str", issue = "130366")]
3227 pub const fn as_str(&self) -> &str {
3228 self
3229 }
3230}
3231
3232#[stable(feature = "rust1", since = "1.0.0")]
3233#[rustc_const_unstable(feature = "const_convert", issue = "143773")]
3234impl const AsRef<[u8]> for str {
3235 #[inline]
3236 fn as_ref(&self) -> &[u8] {
3237 self.as_bytes()
3238 }
3239}
3240
3241#[stable(feature = "rust1", since = "1.0.0")]
3242#[rustc_const_unstable(feature = "const_default", issue = "143894")]
3243impl const Default for &str {
3244 /// Creates an empty str
3245 #[inline]
3246 fn default() -> Self {
3247 ""
3248 }
3249}
3250
3251#[stable(feature = "default_mut_str", since = "1.28.0")]
3252#[rustc_const_unstable(feature = "const_default", issue = "143894")]
3253#[cfg(not(feature = "ferrocene_subset"))]
3254impl const Default for &mut str {
3255 /// Creates an empty mutable str
3256 #[inline]
3257 fn default() -> Self {
3258 // SAFETY: The empty string is valid UTF-8.
3259 unsafe { from_utf8_unchecked_mut(&mut []) }
3260 }
3261}
3262
3263#[cfg(not(feature = "ferrocene_subset"))]
3264impl_fn_for_zst! {
3265 /// A nameable, cloneable fn type
3266 #[derive(Clone)]
3267 struct LinesMap impl<'a> Fn = |line: &'a str| -> &'a str {
3268 let Some(line) = line.strip_suffix('\n') else { return line };
3269 let Some(line) = line.strip_suffix('\r') else { return line };
3270 line
3271 };
3272
3273 #[derive(Clone)]
3274 struct CharEscapeDebugContinue impl Fn = |c: char| -> char::EscapeDebug {
3275 c.escape_debug_ext(EscapeDebugExtArgs {
3276 escape_grapheme_extended: false,
3277 escape_single_quote: true,
3278 escape_double_quote: true
3279 })
3280 };
3281
3282 #[derive(Clone)]
3283 struct CharEscapeUnicode impl Fn = |c: char| -> char::EscapeUnicode {
3284 c.escape_unicode()
3285 };
3286 #[derive(Clone)]
3287 struct CharEscapeDefault impl Fn = |c: char| -> char::EscapeDefault {
3288 c.escape_default()
3289 };
3290
3291 #[derive(Clone)]
3292 struct IsWhitespace impl Fn = |c: char| -> bool {
3293 c.is_whitespace()
3294 };
3295
3296 #[derive(Clone)]
3297 struct IsAsciiWhitespace impl Fn = |byte: &u8| -> bool {
3298 byte.is_ascii_whitespace()
3299 };
3300
3301 #[derive(Clone)]
3302 struct IsNotEmpty impl<'a, 'b> Fn = |s: &'a &'b str| -> bool {
3303 !s.is_empty()
3304 };
3305
3306 #[derive(Clone)]
3307 struct BytesIsNotEmpty impl<'a, 'b> Fn = |s: &'a &'b [u8]| -> bool {
3308 !s.is_empty()
3309 };
3310
3311 #[derive(Clone)]
3312 struct UnsafeBytesToStr impl<'a> Fn = |bytes: &'a [u8]| -> &'a str {
3313 // SAFETY: not safe
3314 unsafe { from_utf8_unchecked(bytes) }
3315 };
3316}
3317
3318// This is required to make `impl From<&str> for Box<dyn Error>` and `impl<E> From<E> for Box<dyn Error>` not overlap.
3319#[stable(feature = "error_in_core_neg_impl", since = "1.65.0")]
3320#[cfg(not(feature = "ferrocene_subset"))]
3321impl !crate::error::Error for &str {}