core/str/mod.rs
1//! String manipulation.
2//!
3//! For more details, see the [`std::str`] module.
4//!
5//! [`std::str`]: ../../std/str/index.html
6
7#![stable(feature = "rust1", since = "1.0.0")]
8
9mod converts;
10#[cfg(not(feature = "ferrocene_certified"))]
11mod count;
12mod error;
13#[cfg(not(feature = "ferrocene_certified"))]
14mod iter;
15mod traits;
16mod validations;
17
18#[cfg(not(feature = "ferrocene_certified"))]
19use self::pattern::{DoubleEndedSearcher, Pattern, ReverseSearcher, Searcher};
20#[cfg(not(feature = "ferrocene_certified"))]
21use crate::char::{self, EscapeDebugExtArgs};
22#[cfg(not(feature = "ferrocene_certified"))]
23use crate::ops::Range;
24#[cfg(not(feature = "ferrocene_certified"))]
25use crate::slice::{self, SliceIndex};
26#[cfg(not(feature = "ferrocene_certified"))]
27use crate::ub_checks::assert_unsafe_precondition;
28#[cfg(not(feature = "ferrocene_certified"))]
29use crate::{ascii, mem};
30
31// Ferrocene addition: imports for certified subset
32#[cfg(feature = "ferrocene_certified")]
33#[rustfmt::skip]
34use crate::mem;
35
36#[cfg(not(feature = "ferrocene_certified"))]
37pub mod pattern;
38
39#[cfg(not(feature = "ferrocene_certified"))]
40mod lossy;
41#[unstable(feature = "str_from_raw_parts", issue = "119206")]
42#[cfg(not(feature = "ferrocene_certified"))]
43pub use converts::{from_raw_parts, from_raw_parts_mut};
44#[stable(feature = "rust1", since = "1.0.0")]
45pub use converts::{from_utf8, from_utf8_unchecked};
46#[stable(feature = "str_mut_extras", since = "1.20.0")]
47pub use converts::{from_utf8_mut, from_utf8_unchecked_mut};
48#[stable(feature = "rust1", since = "1.0.0")]
49#[cfg(not(feature = "ferrocene_certified"))]
50pub use error::{ParseBoolError, Utf8Error};
51#[stable(feature = "encode_utf16", since = "1.8.0")]
52#[cfg(not(feature = "ferrocene_certified"))]
53pub use iter::EncodeUtf16;
54#[stable(feature = "rust1", since = "1.0.0")]
55#[allow(deprecated)]
56#[cfg(not(feature = "ferrocene_certified"))]
57pub use iter::LinesAny;
58#[stable(feature = "split_ascii_whitespace", since = "1.34.0")]
59#[cfg(not(feature = "ferrocene_certified"))]
60pub use iter::SplitAsciiWhitespace;
61#[stable(feature = "split_inclusive", since = "1.51.0")]
62#[cfg(not(feature = "ferrocene_certified"))]
63pub use iter::SplitInclusive;
64#[stable(feature = "rust1", since = "1.0.0")]
65#[cfg(not(feature = "ferrocene_certified"))]
66pub use iter::{Bytes, CharIndices, Chars, Lines, SplitWhitespace};
67#[stable(feature = "str_escape", since = "1.34.0")]
68#[cfg(not(feature = "ferrocene_certified"))]
69pub use iter::{EscapeDebug, EscapeDefault, EscapeUnicode};
70#[stable(feature = "str_match_indices", since = "1.5.0")]
71#[cfg(not(feature = "ferrocene_certified"))]
72pub use iter::{MatchIndices, RMatchIndices};
73#[cfg(not(feature = "ferrocene_certified"))]
74use iter::{MatchIndicesInternal, MatchesInternal, SplitInternal, SplitNInternal};
75#[stable(feature = "str_matches", since = "1.2.0")]
76#[cfg(not(feature = "ferrocene_certified"))]
77pub use iter::{Matches, RMatches};
78#[stable(feature = "rust1", since = "1.0.0")]
79#[cfg(not(feature = "ferrocene_certified"))]
80pub use iter::{RSplit, RSplitTerminator, Split, SplitTerminator};
81#[stable(feature = "rust1", since = "1.0.0")]
82#[cfg(not(feature = "ferrocene_certified"))]
83pub use iter::{RSplitN, SplitN};
84#[stable(feature = "utf8_chunks", since = "1.79.0")]
85#[cfg(not(feature = "ferrocene_certified"))]
86pub use lossy::{Utf8Chunk, Utf8Chunks};
87#[stable(feature = "rust1", since = "1.0.0")]
88pub use traits::FromStr;
89#[unstable(feature = "str_internals", issue = "none")]
90#[cfg(not(feature = "ferrocene_certified"))]
91pub use validations::{next_code_point, utf8_char_width};
92
93#[stable(feature = "rust1", since = "1.0.0")]
94#[cfg(feature = "ferrocene_certified")]
95#[rustfmt::skip]
96pub use {error::Utf8Error, validations::utf8_char_width};
97
98#[inline(never)]
99#[cold]
100#[track_caller]
101#[rustc_allow_const_fn_unstable(const_eval_select)]
102#[cfg(not(panic = "immediate-abort"))]
103#[cfg(not(feature = "ferrocene_certified"))]
104const fn slice_error_fail(s: &str, begin: usize, end: usize) -> ! {
105 crate::intrinsics::const_eval_select((s, begin, end), slice_error_fail_ct, slice_error_fail_rt)
106}
107
108#[cfg(panic = "immediate-abort")]
109#[cfg(not(feature = "ferrocene_certified"))]
110const fn slice_error_fail(s: &str, begin: usize, end: usize) -> ! {
111 slice_error_fail_ct(s, begin, end)
112}
113
114#[track_caller]
115#[cfg(not(feature = "ferrocene_certified"))]
116const fn slice_error_fail_ct(_: &str, _: usize, _: usize) -> ! {
117 panic!("failed to slice string");
118}
119
120#[track_caller]
121#[cfg(not(feature = "ferrocene_certified"))]
122fn slice_error_fail_rt(s: &str, begin: usize, end: usize) -> ! {
123 const MAX_DISPLAY_LENGTH: usize = 256;
124 let trunc_len = s.floor_char_boundary(MAX_DISPLAY_LENGTH);
125 let s_trunc = &s[..trunc_len];
126 let ellipsis = if trunc_len < s.len() { "[...]" } else { "" };
127
128 // 1. out of bounds
129 if begin > s.len() || end > s.len() {
130 let oob_index = if begin > s.len() { begin } else { end };
131 panic!("byte index {oob_index} is out of bounds of `{s_trunc}`{ellipsis}");
132 }
133
134 // 2. begin <= end
135 assert!(
136 begin <= end,
137 "begin <= end ({} <= {}) when slicing `{}`{}",
138 begin,
139 end,
140 s_trunc,
141 ellipsis
142 );
143
144 // 3. character boundary
145 let index = if !s.is_char_boundary(begin) { begin } else { end };
146 // find the character
147 let char_start = s.floor_char_boundary(index);
148 // `char_start` must be less than len and a char boundary
149 let ch = s[char_start..].chars().next().unwrap();
150 let char_range = char_start..char_start + ch.len_utf8();
151 panic!(
152 "byte index {} is not a char boundary; it is inside {:?} (bytes {:?}) of `{}`{}",
153 index, ch, char_range, s_trunc, ellipsis
154 );
155}
156
157impl str {
158 /// Returns the length of `self`.
159 ///
160 /// This length is in bytes, not [`char`]s or graphemes. In other words,
161 /// it might not be what a human considers the length of the string.
162 ///
163 /// [`char`]: prim@char
164 ///
165 /// # Examples
166 ///
167 /// ```
168 /// let len = "foo".len();
169 /// assert_eq!(3, len);
170 ///
171 /// assert_eq!("ƒoo".len(), 4); // fancy f!
172 /// assert_eq!("ƒoo".chars().count(), 3);
173 /// ```
174 #[stable(feature = "rust1", since = "1.0.0")]
175 #[rustc_const_stable(feature = "const_str_len", since = "1.39.0")]
176 #[rustc_diagnostic_item = "str_len"]
177 #[rustc_no_implicit_autorefs]
178 #[must_use]
179 #[inline]
180 pub const fn len(&self) -> usize {
181 self.as_bytes().len()
182 }
183
184 /// Returns `true` if `self` has a length of zero bytes.
185 ///
186 /// # Examples
187 ///
188 /// ```
189 /// let s = "";
190 /// assert!(s.is_empty());
191 ///
192 /// let s = "not empty";
193 /// assert!(!s.is_empty());
194 /// ```
195 #[stable(feature = "rust1", since = "1.0.0")]
196 #[rustc_const_stable(feature = "const_str_is_empty", since = "1.39.0")]
197 #[rustc_no_implicit_autorefs]
198 #[must_use]
199 #[inline]
200 pub const fn is_empty(&self) -> bool {
201 self.len() == 0
202 }
203
204 /// Converts a slice of bytes to a string slice.
205 ///
206 /// A string slice ([`&str`]) is made of bytes ([`u8`]), and a byte slice
207 /// ([`&[u8]`][byteslice]) is made of bytes, so this function converts between
208 /// the two. Not all byte slices are valid string slices, however: [`&str`] requires
209 /// that it is valid UTF-8. `from_utf8()` checks to ensure that the bytes are valid
210 /// UTF-8, and then does the conversion.
211 ///
212 /// [`&str`]: str
213 /// [byteslice]: prim@slice
214 ///
215 /// If you are sure that the byte slice is valid UTF-8, and you don't want to
216 /// incur the overhead of the validity check, there is an unsafe version of
217 /// this function, [`from_utf8_unchecked`], which has the same
218 /// behavior but skips the check.
219 ///
220 /// If you need a `String` instead of a `&str`, consider
221 /// [`String::from_utf8`][string].
222 ///
223 /// [string]: ../std/string/struct.String.html#method.from_utf8
224 ///
225 /// Because you can stack-allocate a `[u8; N]`, and you can take a
226 /// [`&[u8]`][byteslice] of it, this function is one way to have a
227 /// stack-allocated string. There is an example of this in the
228 /// examples section below.
229 ///
230 /// [byteslice]: slice
231 ///
232 /// # Errors
233 ///
234 /// Returns `Err` if the slice is not UTF-8 with a description as to why the
235 /// provided slice is not UTF-8.
236 ///
237 /// # Examples
238 ///
239 /// Basic usage:
240 ///
241 /// ```
242 /// // some bytes, in a vector
243 /// let sparkle_heart = vec![240, 159, 146, 150];
244 ///
245 /// // We can use the ? (try) operator to check if the bytes are valid
246 /// let sparkle_heart = str::from_utf8(&sparkle_heart)?;
247 ///
248 /// assert_eq!("💖", sparkle_heart);
249 /// # Ok::<_, std::str::Utf8Error>(())
250 /// ```
251 ///
252 /// Incorrect bytes:
253 ///
254 /// ```
255 /// // some invalid bytes, in a vector
256 /// let sparkle_heart = vec![0, 159, 146, 150];
257 ///
258 /// assert!(str::from_utf8(&sparkle_heart).is_err());
259 /// ```
260 ///
261 /// See the docs for [`Utf8Error`] for more details on the kinds of
262 /// errors that can be returned.
263 ///
264 /// A "stack allocated string":
265 ///
266 /// ```
267 /// // some bytes, in a stack-allocated array
268 /// let sparkle_heart = [240, 159, 146, 150];
269 ///
270 /// // We know these bytes are valid, so just use `unwrap()`.
271 /// let sparkle_heart: &str = str::from_utf8(&sparkle_heart).unwrap();
272 ///
273 /// assert_eq!("💖", sparkle_heart);
274 /// ```
275 #[stable(feature = "inherent_str_constructors", since = "1.87.0")]
276 #[rustc_const_stable(feature = "inherent_str_constructors", since = "1.87.0")]
277 #[rustc_diagnostic_item = "str_inherent_from_utf8"]
278 pub const fn from_utf8(v: &[u8]) -> Result<&str, Utf8Error> {
279 converts::from_utf8(v)
280 }
281
282 /// Converts a mutable slice of bytes to a mutable string slice.
283 ///
284 /// # Examples
285 ///
286 /// Basic usage:
287 ///
288 /// ```
289 /// // "Hello, Rust!" as a mutable vector
290 /// let mut hellorust = vec![72, 101, 108, 108, 111, 44, 32, 82, 117, 115, 116, 33];
291 ///
292 /// // As we know these bytes are valid, we can use `unwrap()`
293 /// let outstr = str::from_utf8_mut(&mut hellorust).unwrap();
294 ///
295 /// assert_eq!("Hello, Rust!", outstr);
296 /// ```
297 ///
298 /// Incorrect bytes:
299 ///
300 /// ```
301 /// // Some invalid bytes in a mutable vector
302 /// let mut invalid = vec![128, 223];
303 ///
304 /// assert!(str::from_utf8_mut(&mut invalid).is_err());
305 /// ```
306 /// See the docs for [`Utf8Error`] for more details on the kinds of
307 /// errors that can be returned.
308 #[stable(feature = "inherent_str_constructors", since = "1.87.0")]
309 #[rustc_const_stable(feature = "const_str_from_utf8", since = "1.87.0")]
310 #[rustc_diagnostic_item = "str_inherent_from_utf8_mut"]
311 pub const fn from_utf8_mut(v: &mut [u8]) -> Result<&mut str, Utf8Error> {
312 converts::from_utf8_mut(v)
313 }
314
315 /// Converts a slice of bytes to a string slice without checking
316 /// that the string contains valid UTF-8.
317 ///
318 /// See the safe version, [`from_utf8`], for more information.
319 ///
320 /// # Safety
321 ///
322 /// The bytes passed in must be valid UTF-8.
323 ///
324 /// # Examples
325 ///
326 /// Basic usage:
327 ///
328 /// ```
329 /// // some bytes, in a vector
330 /// let sparkle_heart = vec![240, 159, 146, 150];
331 ///
332 /// let sparkle_heart = unsafe {
333 /// str::from_utf8_unchecked(&sparkle_heart)
334 /// };
335 ///
336 /// assert_eq!("💖", sparkle_heart);
337 /// ```
338 #[inline]
339 #[must_use]
340 #[stable(feature = "inherent_str_constructors", since = "1.87.0")]
341 #[rustc_const_stable(feature = "inherent_str_constructors", since = "1.87.0")]
342 #[rustc_diagnostic_item = "str_inherent_from_utf8_unchecked"]
343 pub const unsafe fn from_utf8_unchecked(v: &[u8]) -> &str {
344 // SAFETY: converts::from_utf8_unchecked has the same safety requirements as this function.
345 unsafe { converts::from_utf8_unchecked(v) }
346 }
347
348 /// Converts a slice of bytes to a string slice without checking
349 /// that the string contains valid UTF-8; mutable version.
350 ///
351 /// See the immutable version, [`from_utf8_unchecked()`] for documentation and safety requirements.
352 ///
353 /// # Examples
354 ///
355 /// Basic usage:
356 ///
357 /// ```
358 /// let mut heart = vec![240, 159, 146, 150];
359 /// let heart = unsafe { str::from_utf8_unchecked_mut(&mut heart) };
360 ///
361 /// assert_eq!("💖", heart);
362 /// ```
363 #[inline]
364 #[must_use]
365 #[stable(feature = "inherent_str_constructors", since = "1.87.0")]
366 #[rustc_const_stable(feature = "inherent_str_constructors", since = "1.87.0")]
367 #[rustc_diagnostic_item = "str_inherent_from_utf8_unchecked_mut"]
368 pub const unsafe fn from_utf8_unchecked_mut(v: &mut [u8]) -> &mut str {
369 // SAFETY: converts::from_utf8_unchecked_mut has the same safety requirements as this function.
370 unsafe { converts::from_utf8_unchecked_mut(v) }
371 }
372
373 /// Checks that `index`-th byte is the first byte in a UTF-8 code point
374 /// sequence or the end of the string.
375 ///
376 /// The start and end of the string (when `index == self.len()`) are
377 /// considered to be boundaries.
378 ///
379 /// Returns `false` if `index` is greater than `self.len()`.
380 ///
381 /// # Examples
382 ///
383 /// ```
384 /// let s = "Löwe 老虎 Léopard";
385 /// assert!(s.is_char_boundary(0));
386 /// // start of `老`
387 /// assert!(s.is_char_boundary(6));
388 /// assert!(s.is_char_boundary(s.len()));
389 ///
390 /// // second byte of `ö`
391 /// assert!(!s.is_char_boundary(2));
392 ///
393 /// // third byte of `老`
394 /// assert!(!s.is_char_boundary(8));
395 /// ```
396 #[must_use]
397 #[stable(feature = "is_char_boundary", since = "1.9.0")]
398 #[rustc_const_stable(feature = "const_is_char_boundary", since = "1.86.0")]
399 #[inline]
400 #[cfg(not(feature = "ferrocene_certified"))]
401 pub const fn is_char_boundary(&self, index: usize) -> bool {
402 // 0 is always ok.
403 // Test for 0 explicitly so that it can optimize out the check
404 // easily and skip reading string data for that case.
405 // Note that optimizing `self.get(..index)` relies on this.
406 if index == 0 {
407 return true;
408 }
409
410 if index >= self.len() {
411 // For `true` we have two options:
412 //
413 // - index == self.len()
414 // Empty strings are valid, so return true
415 // - index > self.len()
416 // In this case return false
417 //
418 // The check is placed exactly here, because it improves generated
419 // code on higher opt-levels. See PR #84751 for more details.
420 index == self.len()
421 } else {
422 self.as_bytes()[index].is_utf8_char_boundary()
423 }
424 }
425
426 /// Finds the closest `x` not exceeding `index` where [`is_char_boundary(x)`] is `true`.
427 ///
428 /// This method can help you truncate a string so that it's still valid UTF-8, but doesn't
429 /// exceed a given number of bytes. Note that this is done purely at the character level
430 /// and can still visually split graphemes, even though the underlying characters aren't
431 /// split. For example, the emoji 🧑🔬 (scientist) could be split so that the string only
432 /// includes 🧑 (person) instead.
433 ///
434 /// [`is_char_boundary(x)`]: Self::is_char_boundary
435 ///
436 /// # Examples
437 ///
438 /// ```
439 /// let s = "❤️🧡💛💚💙💜";
440 /// assert_eq!(s.len(), 26);
441 /// assert!(!s.is_char_boundary(13));
442 ///
443 /// let closest = s.floor_char_boundary(13);
444 /// assert_eq!(closest, 10);
445 /// assert_eq!(&s[..closest], "❤️🧡");
446 /// ```
447 #[stable(feature = "round_char_boundary", since = "1.91.0")]
448 #[rustc_const_stable(feature = "round_char_boundary", since = "1.91.0")]
449 #[inline]
450 #[cfg(not(feature = "ferrocene_certified"))]
451 pub const fn floor_char_boundary(&self, index: usize) -> usize {
452 if index >= self.len() {
453 self.len()
454 } else {
455 let mut i = index;
456 while i > 0 {
457 if self.as_bytes()[i].is_utf8_char_boundary() {
458 break;
459 }
460 i -= 1;
461 }
462
463 // The character boundary will be within four bytes of the index
464 debug_assert!(i >= index.saturating_sub(3));
465
466 i
467 }
468 }
469
470 /// Finds the closest `x` not below `index` where [`is_char_boundary(x)`] is `true`.
471 ///
472 /// If `index` is greater than the length of the string, this returns the length of the string.
473 ///
474 /// This method is the natural complement to [`floor_char_boundary`]. See that method
475 /// for more details.
476 ///
477 /// [`floor_char_boundary`]: str::floor_char_boundary
478 /// [`is_char_boundary(x)`]: Self::is_char_boundary
479 ///
480 /// # Examples
481 ///
482 /// ```
483 /// let s = "❤️🧡💛💚💙💜";
484 /// assert_eq!(s.len(), 26);
485 /// assert!(!s.is_char_boundary(13));
486 ///
487 /// let closest = s.ceil_char_boundary(13);
488 /// assert_eq!(closest, 14);
489 /// assert_eq!(&s[..closest], "❤️🧡💛");
490 /// ```
491 #[stable(feature = "round_char_boundary", since = "1.91.0")]
492 #[rustc_const_stable(feature = "round_char_boundary", since = "1.91.0")]
493 #[inline]
494 #[cfg(not(feature = "ferrocene_certified"))]
495 pub const fn ceil_char_boundary(&self, index: usize) -> usize {
496 if index >= self.len() {
497 self.len()
498 } else {
499 let mut i = index;
500 while i < self.len() {
501 if self.as_bytes()[i].is_utf8_char_boundary() {
502 break;
503 }
504 i += 1;
505 }
506
507 // The character boundary will be within four bytes of the index
508 debug_assert!(i <= index + 3);
509
510 i
511 }
512 }
513
514 /// Converts a string slice to a byte slice. To convert the byte slice back
515 /// into a string slice, use the [`from_utf8`] function.
516 ///
517 /// # Examples
518 ///
519 /// ```
520 /// let bytes = "bors".as_bytes();
521 /// assert_eq!(b"bors", bytes);
522 /// ```
523 #[stable(feature = "rust1", since = "1.0.0")]
524 #[rustc_const_stable(feature = "str_as_bytes", since = "1.39.0")]
525 #[must_use]
526 #[inline(always)]
527 #[allow(unused_attributes)]
528 pub const fn as_bytes(&self) -> &[u8] {
529 // SAFETY: const sound because we transmute two types with the same layout
530 unsafe { mem::transmute(self) }
531 }
532
533 /// Converts a mutable string slice to a mutable byte slice.
534 ///
535 /// # Safety
536 ///
537 /// The caller must ensure that the content of the slice is valid UTF-8
538 /// before the borrow ends and the underlying `str` is used.
539 ///
540 /// Use of a `str` whose contents are not valid UTF-8 is undefined behavior.
541 ///
542 /// # Examples
543 ///
544 /// Basic usage:
545 ///
546 /// ```
547 /// let mut s = String::from("Hello");
548 /// let bytes = unsafe { s.as_bytes_mut() };
549 ///
550 /// assert_eq!(b"Hello", bytes);
551 /// ```
552 ///
553 /// Mutability:
554 ///
555 /// ```
556 /// let mut s = String::from("🗻∈🌏");
557 ///
558 /// unsafe {
559 /// let bytes = s.as_bytes_mut();
560 ///
561 /// bytes[0] = 0xF0;
562 /// bytes[1] = 0x9F;
563 /// bytes[2] = 0x8D;
564 /// bytes[3] = 0x94;
565 /// }
566 ///
567 /// assert_eq!("🍔∈🌏", s);
568 /// ```
569 #[stable(feature = "str_mut_extras", since = "1.20.0")]
570 #[rustc_const_stable(feature = "const_str_as_mut", since = "1.83.0")]
571 #[must_use]
572 #[inline(always)]
573 pub const unsafe fn as_bytes_mut(&mut self) -> &mut [u8] {
574 // SAFETY: the cast from `&str` to `&[u8]` is safe since `str`
575 // has the same layout as `&[u8]` (only std can make this guarantee).
576 // The pointer dereference is safe since it comes from a mutable reference which
577 // is guaranteed to be valid for writes.
578 unsafe { &mut *(self as *mut str as *mut [u8]) }
579 }
580
581 /// Converts a string slice to a raw pointer.
582 ///
583 /// As string slices are a slice of bytes, the raw pointer points to a
584 /// [`u8`]. This pointer will be pointing to the first byte of the string
585 /// slice.
586 ///
587 /// The caller must ensure that the returned pointer is never written to.
588 /// If you need to mutate the contents of the string slice, use [`as_mut_ptr`].
589 ///
590 /// [`as_mut_ptr`]: str::as_mut_ptr
591 ///
592 /// # Examples
593 ///
594 /// ```
595 /// let s = "Hello";
596 /// let ptr = s.as_ptr();
597 /// ```
598 #[stable(feature = "rust1", since = "1.0.0")]
599 #[rustc_const_stable(feature = "rustc_str_as_ptr", since = "1.32.0")]
600 #[rustc_never_returns_null_ptr]
601 #[rustc_as_ptr]
602 #[must_use]
603 #[inline(always)]
604 pub const fn as_ptr(&self) -> *const u8 {
605 self as *const str as *const u8
606 }
607
608 /// Converts a mutable string slice to a raw pointer.
609 ///
610 /// As string slices are a slice of bytes, the raw pointer points to a
611 /// [`u8`]. This pointer will be pointing to the first byte of the string
612 /// slice.
613 ///
614 /// It is your responsibility to make sure that the string slice only gets
615 /// modified in a way that it remains valid UTF-8.
616 #[stable(feature = "str_as_mut_ptr", since = "1.36.0")]
617 #[rustc_const_stable(feature = "const_str_as_mut", since = "1.83.0")]
618 #[rustc_never_returns_null_ptr]
619 #[rustc_as_ptr]
620 #[must_use]
621 #[inline(always)]
622 pub const fn as_mut_ptr(&mut self) -> *mut u8 {
623 self as *mut str as *mut u8
624 }
625
626 /// Returns a subslice of `str`.
627 ///
628 /// This is the non-panicking alternative to indexing the `str`. Returns
629 /// [`None`] whenever equivalent indexing operation would panic.
630 ///
631 /// # Examples
632 ///
633 /// ```
634 /// let v = String::from("🗻∈🌏");
635 ///
636 /// assert_eq!(Some("🗻"), v.get(0..4));
637 ///
638 /// // indices not on UTF-8 sequence boundaries
639 /// assert!(v.get(1..).is_none());
640 /// assert!(v.get(..8).is_none());
641 ///
642 /// // out of bounds
643 /// assert!(v.get(..42).is_none());
644 /// ```
645 #[stable(feature = "str_checked_slicing", since = "1.20.0")]
646 #[rustc_const_unstable(feature = "const_index", issue = "143775")]
647 #[inline]
648 #[cfg(not(feature = "ferrocene_certified"))]
649 pub const fn get<I: [const] SliceIndex<str>>(&self, i: I) -> Option<&I::Output> {
650 i.get(self)
651 }
652
653 /// Returns a mutable subslice of `str`.
654 ///
655 /// This is the non-panicking alternative to indexing the `str`. Returns
656 /// [`None`] whenever equivalent indexing operation would panic.
657 ///
658 /// # Examples
659 ///
660 /// ```
661 /// let mut v = String::from("hello");
662 /// // correct length
663 /// assert!(v.get_mut(0..5).is_some());
664 /// // out of bounds
665 /// assert!(v.get_mut(..42).is_none());
666 /// assert_eq!(Some("he"), v.get_mut(0..2).map(|v| &*v));
667 ///
668 /// assert_eq!("hello", v);
669 /// {
670 /// let s = v.get_mut(0..2);
671 /// let s = s.map(|s| {
672 /// s.make_ascii_uppercase();
673 /// &*s
674 /// });
675 /// assert_eq!(Some("HE"), s);
676 /// }
677 /// assert_eq!("HEllo", v);
678 /// ```
679 #[stable(feature = "str_checked_slicing", since = "1.20.0")]
680 #[rustc_const_unstable(feature = "const_index", issue = "143775")]
681 #[inline]
682 #[cfg(not(feature = "ferrocene_certified"))]
683 pub const fn get_mut<I: [const] SliceIndex<str>>(&mut self, i: I) -> Option<&mut I::Output> {
684 i.get_mut(self)
685 }
686
687 /// Returns an unchecked subslice of `str`.
688 ///
689 /// This is the unchecked alternative to indexing the `str`.
690 ///
691 /// # Safety
692 ///
693 /// Callers of this function are responsible that these preconditions are
694 /// satisfied:
695 ///
696 /// * The starting index must not exceed the ending index;
697 /// * Indexes must be within bounds of the original slice;
698 /// * Indexes must lie on UTF-8 sequence boundaries.
699 ///
700 /// Failing that, the returned string slice may reference invalid memory or
701 /// violate the invariants communicated by the `str` type.
702 ///
703 /// # Examples
704 ///
705 /// ```
706 /// let v = "🗻∈🌏";
707 /// unsafe {
708 /// assert_eq!("🗻", v.get_unchecked(0..4));
709 /// assert_eq!("∈", v.get_unchecked(4..7));
710 /// assert_eq!("🌏", v.get_unchecked(7..11));
711 /// }
712 /// ```
713 #[stable(feature = "str_checked_slicing", since = "1.20.0")]
714 #[inline]
715 #[cfg(not(feature = "ferrocene_certified"))]
716 pub unsafe fn get_unchecked<I: SliceIndex<str>>(&self, i: I) -> &I::Output {
717 // SAFETY: the caller must uphold the safety contract for `get_unchecked`;
718 // the slice is dereferenceable because `self` is a safe reference.
719 // The returned pointer is safe because impls of `SliceIndex` have to guarantee that it is.
720 unsafe { &*i.get_unchecked(self) }
721 }
722
723 /// Returns a mutable, unchecked subslice of `str`.
724 ///
725 /// This is the unchecked alternative to indexing the `str`.
726 ///
727 /// # Safety
728 ///
729 /// Callers of this function are responsible that these preconditions are
730 /// satisfied:
731 ///
732 /// * The starting index must not exceed the ending index;
733 /// * Indexes must be within bounds of the original slice;
734 /// * Indexes must lie on UTF-8 sequence boundaries.
735 ///
736 /// Failing that, the returned string slice may reference invalid memory or
737 /// violate the invariants communicated by the `str` type.
738 ///
739 /// # Examples
740 ///
741 /// ```
742 /// let mut v = String::from("🗻∈🌏");
743 /// unsafe {
744 /// assert_eq!("🗻", v.get_unchecked_mut(0..4));
745 /// assert_eq!("∈", v.get_unchecked_mut(4..7));
746 /// assert_eq!("🌏", v.get_unchecked_mut(7..11));
747 /// }
748 /// ```
749 #[stable(feature = "str_checked_slicing", since = "1.20.0")]
750 #[inline]
751 #[cfg(not(feature = "ferrocene_certified"))]
752 pub unsafe fn get_unchecked_mut<I: SliceIndex<str>>(&mut self, i: I) -> &mut I::Output {
753 // SAFETY: the caller must uphold the safety contract for `get_unchecked_mut`;
754 // the slice is dereferenceable because `self` is a safe reference.
755 // The returned pointer is safe because impls of `SliceIndex` have to guarantee that it is.
756 unsafe { &mut *i.get_unchecked_mut(self) }
757 }
758
759 /// Creates a string slice from another string slice, bypassing safety
760 /// checks.
761 ///
762 /// This is generally not recommended, use with caution! For a safe
763 /// alternative see [`str`] and [`Index`].
764 ///
765 /// [`Index`]: crate::ops::Index
766 ///
767 /// This new slice goes from `begin` to `end`, including `begin` but
768 /// excluding `end`.
769 ///
770 /// To get a mutable string slice instead, see the
771 /// [`slice_mut_unchecked`] method.
772 ///
773 /// [`slice_mut_unchecked`]: str::slice_mut_unchecked
774 ///
775 /// # Safety
776 ///
777 /// Callers of this function are responsible that three preconditions are
778 /// satisfied:
779 ///
780 /// * `begin` must not exceed `end`.
781 /// * `begin` and `end` must be byte positions within the string slice.
782 /// * `begin` and `end` must lie on UTF-8 sequence boundaries.
783 ///
784 /// # Examples
785 ///
786 /// ```
787 /// let s = "Löwe 老虎 Léopard";
788 ///
789 /// unsafe {
790 /// assert_eq!("Löwe 老虎 Léopard", s.slice_unchecked(0, 21));
791 /// }
792 ///
793 /// let s = "Hello, world!";
794 ///
795 /// unsafe {
796 /// assert_eq!("world", s.slice_unchecked(7, 12));
797 /// }
798 /// ```
799 #[stable(feature = "rust1", since = "1.0.0")]
800 #[deprecated(since = "1.29.0", note = "use `get_unchecked(begin..end)` instead")]
801 #[must_use]
802 #[inline]
803 #[cfg(not(feature = "ferrocene_certified"))]
804 pub unsafe fn slice_unchecked(&self, begin: usize, end: usize) -> &str {
805 // SAFETY: the caller must uphold the safety contract for `get_unchecked`;
806 // the slice is dereferenceable because `self` is a safe reference.
807 // The returned pointer is safe because impls of `SliceIndex` have to guarantee that it is.
808 unsafe { &*(begin..end).get_unchecked(self) }
809 }
810
811 /// Creates a string slice from another string slice, bypassing safety
812 /// checks.
813 ///
814 /// This is generally not recommended, use with caution! For a safe
815 /// alternative see [`str`] and [`IndexMut`].
816 ///
817 /// [`IndexMut`]: crate::ops::IndexMut
818 ///
819 /// This new slice goes from `begin` to `end`, including `begin` but
820 /// excluding `end`.
821 ///
822 /// To get an immutable string slice instead, see the
823 /// [`slice_unchecked`] method.
824 ///
825 /// [`slice_unchecked`]: str::slice_unchecked
826 ///
827 /// # Safety
828 ///
829 /// Callers of this function are responsible that three preconditions are
830 /// satisfied:
831 ///
832 /// * `begin` must not exceed `end`.
833 /// * `begin` and `end` must be byte positions within the string slice.
834 /// * `begin` and `end` must lie on UTF-8 sequence boundaries.
835 #[stable(feature = "str_slice_mut", since = "1.5.0")]
836 #[deprecated(since = "1.29.0", note = "use `get_unchecked_mut(begin..end)` instead")]
837 #[inline]
838 #[cfg(not(feature = "ferrocene_certified"))]
839 pub unsafe fn slice_mut_unchecked(&mut self, begin: usize, end: usize) -> &mut str {
840 // SAFETY: the caller must uphold the safety contract for `get_unchecked_mut`;
841 // the slice is dereferenceable because `self` is a safe reference.
842 // The returned pointer is safe because impls of `SliceIndex` have to guarantee that it is.
843 unsafe { &mut *(begin..end).get_unchecked_mut(self) }
844 }
845
846 /// Divides one string slice into two at an index.
847 ///
848 /// The argument, `mid`, should be a byte offset from the start of the
849 /// string. It must also be on the boundary of a UTF-8 code point.
850 ///
851 /// The two slices returned go from the start of the string slice to `mid`,
852 /// and from `mid` to the end of the string slice.
853 ///
854 /// To get mutable string slices instead, see the [`split_at_mut`]
855 /// method.
856 ///
857 /// [`split_at_mut`]: str::split_at_mut
858 ///
859 /// # Panics
860 ///
861 /// Panics if `mid` is not on a UTF-8 code point boundary, or if it is past
862 /// the end of the last code point of the string slice. For a non-panicking
863 /// alternative see [`split_at_checked`](str::split_at_checked).
864 ///
865 /// # Examples
866 ///
867 /// ```
868 /// let s = "Per Martin-Löf";
869 ///
870 /// let (first, last) = s.split_at(3);
871 ///
872 /// assert_eq!("Per", first);
873 /// assert_eq!(" Martin-Löf", last);
874 /// ```
875 #[inline]
876 #[must_use]
877 #[stable(feature = "str_split_at", since = "1.4.0")]
878 #[rustc_const_stable(feature = "const_str_split_at", since = "1.86.0")]
879 #[cfg(not(feature = "ferrocene_certified"))]
880 pub const fn split_at(&self, mid: usize) -> (&str, &str) {
881 match self.split_at_checked(mid) {
882 None => slice_error_fail(self, 0, mid),
883 Some(pair) => pair,
884 }
885 }
886
887 /// Divides one mutable string slice into two at an index.
888 ///
889 /// The argument, `mid`, should be a byte offset from the start of the
890 /// string. It must also be on the boundary of a UTF-8 code point.
891 ///
892 /// The two slices returned go from the start of the string slice to `mid`,
893 /// and from `mid` to the end of the string slice.
894 ///
895 /// To get immutable string slices instead, see the [`split_at`] method.
896 ///
897 /// [`split_at`]: str::split_at
898 ///
899 /// # Panics
900 ///
901 /// Panics if `mid` is not on a UTF-8 code point boundary, or if it is past
902 /// the end of the last code point of the string slice. For a non-panicking
903 /// alternative see [`split_at_mut_checked`](str::split_at_mut_checked).
904 ///
905 /// # Examples
906 ///
907 /// ```
908 /// let mut s = "Per Martin-Löf".to_string();
909 /// {
910 /// let (first, last) = s.split_at_mut(3);
911 /// first.make_ascii_uppercase();
912 /// assert_eq!("PER", first);
913 /// assert_eq!(" Martin-Löf", last);
914 /// }
915 /// assert_eq!("PER Martin-Löf", s);
916 /// ```
917 #[inline]
918 #[must_use]
919 #[stable(feature = "str_split_at", since = "1.4.0")]
920 #[rustc_const_stable(feature = "const_str_split_at", since = "1.86.0")]
921 #[cfg(not(feature = "ferrocene_certified"))]
922 pub const fn split_at_mut(&mut self, mid: usize) -> (&mut str, &mut str) {
923 // is_char_boundary checks that the index is in [0, .len()]
924 if self.is_char_boundary(mid) {
925 // SAFETY: just checked that `mid` is on a char boundary.
926 unsafe { self.split_at_mut_unchecked(mid) }
927 } else {
928 slice_error_fail(self, 0, mid)
929 }
930 }
931
932 /// Divides one string slice into two at an index.
933 ///
934 /// The argument, `mid`, should be a valid byte offset from the start of the
935 /// string. It must also be on the boundary of a UTF-8 code point. The
936 /// method returns `None` if that’s not the case.
937 ///
938 /// The two slices returned go from the start of the string slice to `mid`,
939 /// and from `mid` to the end of the string slice.
940 ///
941 /// To get mutable string slices instead, see the [`split_at_mut_checked`]
942 /// method.
943 ///
944 /// [`split_at_mut_checked`]: str::split_at_mut_checked
945 ///
946 /// # Examples
947 ///
948 /// ```
949 /// let s = "Per Martin-Löf";
950 ///
951 /// let (first, last) = s.split_at_checked(3).unwrap();
952 /// assert_eq!("Per", first);
953 /// assert_eq!(" Martin-Löf", last);
954 ///
955 /// assert_eq!(None, s.split_at_checked(13)); // Inside “ö”
956 /// assert_eq!(None, s.split_at_checked(16)); // Beyond the string length
957 /// ```
958 #[inline]
959 #[must_use]
960 #[stable(feature = "split_at_checked", since = "1.80.0")]
961 #[rustc_const_stable(feature = "const_str_split_at", since = "1.86.0")]
962 #[cfg(not(feature = "ferrocene_certified"))]
963 pub const fn split_at_checked(&self, mid: usize) -> Option<(&str, &str)> {
964 // is_char_boundary checks that the index is in [0, .len()]
965 if self.is_char_boundary(mid) {
966 // SAFETY: just checked that `mid` is on a char boundary.
967 Some(unsafe { self.split_at_unchecked(mid) })
968 } else {
969 None
970 }
971 }
972
973 /// Divides one mutable string slice into two at an index.
974 ///
975 /// The argument, `mid`, should be a valid byte offset from the start of the
976 /// string. It must also be on the boundary of a UTF-8 code point. The
977 /// method returns `None` if that’s not the case.
978 ///
979 /// The two slices returned go from the start of the string slice to `mid`,
980 /// and from `mid` to the end of the string slice.
981 ///
982 /// To get immutable string slices instead, see the [`split_at_checked`] method.
983 ///
984 /// [`split_at_checked`]: str::split_at_checked
985 ///
986 /// # Examples
987 ///
988 /// ```
989 /// let mut s = "Per Martin-Löf".to_string();
990 /// if let Some((first, last)) = s.split_at_mut_checked(3) {
991 /// first.make_ascii_uppercase();
992 /// assert_eq!("PER", first);
993 /// assert_eq!(" Martin-Löf", last);
994 /// }
995 /// assert_eq!("PER Martin-Löf", s);
996 ///
997 /// assert_eq!(None, s.split_at_mut_checked(13)); // Inside “ö”
998 /// assert_eq!(None, s.split_at_mut_checked(16)); // Beyond the string length
999 /// ```
1000 #[inline]
1001 #[must_use]
1002 #[stable(feature = "split_at_checked", since = "1.80.0")]
1003 #[rustc_const_stable(feature = "const_str_split_at", since = "1.86.0")]
1004 #[cfg(not(feature = "ferrocene_certified"))]
1005 pub const fn split_at_mut_checked(&mut self, mid: usize) -> Option<(&mut str, &mut str)> {
1006 // is_char_boundary checks that the index is in [0, .len()]
1007 if self.is_char_boundary(mid) {
1008 // SAFETY: just checked that `mid` is on a char boundary.
1009 Some(unsafe { self.split_at_mut_unchecked(mid) })
1010 } else {
1011 None
1012 }
1013 }
1014
1015 /// Divides one string slice into two at an index.
1016 ///
1017 /// # Safety
1018 ///
1019 /// The caller must ensure that `mid` is a valid byte offset from the start
1020 /// of the string and falls on the boundary of a UTF-8 code point.
1021 #[inline]
1022 #[cfg(not(feature = "ferrocene_certified"))]
1023 const unsafe fn split_at_unchecked(&self, mid: usize) -> (&str, &str) {
1024 let len = self.len();
1025 let ptr = self.as_ptr();
1026 // SAFETY: caller guarantees `mid` is on a char boundary.
1027 unsafe {
1028 (
1029 from_utf8_unchecked(slice::from_raw_parts(ptr, mid)),
1030 from_utf8_unchecked(slice::from_raw_parts(ptr.add(mid), len - mid)),
1031 )
1032 }
1033 }
1034
1035 /// Divides one string slice into two at an index.
1036 ///
1037 /// # Safety
1038 ///
1039 /// The caller must ensure that `mid` is a valid byte offset from the start
1040 /// of the string and falls on the boundary of a UTF-8 code point.
1041 #[cfg(not(feature = "ferrocene_certified"))]
1042 const unsafe fn split_at_mut_unchecked(&mut self, mid: usize) -> (&mut str, &mut str) {
1043 let len = self.len();
1044 let ptr = self.as_mut_ptr();
1045 // SAFETY: caller guarantees `mid` is on a char boundary.
1046 unsafe {
1047 (
1048 from_utf8_unchecked_mut(slice::from_raw_parts_mut(ptr, mid)),
1049 from_utf8_unchecked_mut(slice::from_raw_parts_mut(ptr.add(mid), len - mid)),
1050 )
1051 }
1052 }
1053
1054 /// Returns an iterator over the [`char`]s of a string slice.
1055 ///
1056 /// As a string slice consists of valid UTF-8, we can iterate through a
1057 /// string slice by [`char`]. This method returns such an iterator.
1058 ///
1059 /// It's important to remember that [`char`] represents a Unicode Scalar
1060 /// Value, and might not match your idea of what a 'character' is. Iteration
1061 /// over grapheme clusters may be what you actually want. This functionality
1062 /// is not provided by Rust's standard library, check crates.io instead.
1063 ///
1064 /// # Examples
1065 ///
1066 /// Basic usage:
1067 ///
1068 /// ```
1069 /// let word = "goodbye";
1070 ///
1071 /// let count = word.chars().count();
1072 /// assert_eq!(7, count);
1073 ///
1074 /// let mut chars = word.chars();
1075 ///
1076 /// assert_eq!(Some('g'), chars.next());
1077 /// assert_eq!(Some('o'), chars.next());
1078 /// assert_eq!(Some('o'), chars.next());
1079 /// assert_eq!(Some('d'), chars.next());
1080 /// assert_eq!(Some('b'), chars.next());
1081 /// assert_eq!(Some('y'), chars.next());
1082 /// assert_eq!(Some('e'), chars.next());
1083 ///
1084 /// assert_eq!(None, chars.next());
1085 /// ```
1086 ///
1087 /// Remember, [`char`]s might not match your intuition about characters:
1088 ///
1089 /// [`char`]: prim@char
1090 ///
1091 /// ```
1092 /// let y = "y̆";
1093 ///
1094 /// let mut chars = y.chars();
1095 ///
1096 /// assert_eq!(Some('y'), chars.next()); // not 'y̆'
1097 /// assert_eq!(Some('\u{0306}'), chars.next());
1098 ///
1099 /// assert_eq!(None, chars.next());
1100 /// ```
1101 #[stable(feature = "rust1", since = "1.0.0")]
1102 #[inline]
1103 #[rustc_diagnostic_item = "str_chars"]
1104 #[cfg(not(feature = "ferrocene_certified"))]
1105 pub fn chars(&self) -> Chars<'_> {
1106 Chars { iter: self.as_bytes().iter() }
1107 }
1108
1109 /// Returns an iterator over the [`char`]s of a string slice, and their
1110 /// positions.
1111 ///
1112 /// As a string slice consists of valid UTF-8, we can iterate through a
1113 /// string slice by [`char`]. This method returns an iterator of both
1114 /// these [`char`]s, as well as their byte positions.
1115 ///
1116 /// The iterator yields tuples. The position is first, the [`char`] is
1117 /// second.
1118 ///
1119 /// # Examples
1120 ///
1121 /// Basic usage:
1122 ///
1123 /// ```
1124 /// let word = "goodbye";
1125 ///
1126 /// let count = word.char_indices().count();
1127 /// assert_eq!(7, count);
1128 ///
1129 /// let mut char_indices = word.char_indices();
1130 ///
1131 /// assert_eq!(Some((0, 'g')), char_indices.next());
1132 /// assert_eq!(Some((1, 'o')), char_indices.next());
1133 /// assert_eq!(Some((2, 'o')), char_indices.next());
1134 /// assert_eq!(Some((3, 'd')), char_indices.next());
1135 /// assert_eq!(Some((4, 'b')), char_indices.next());
1136 /// assert_eq!(Some((5, 'y')), char_indices.next());
1137 /// assert_eq!(Some((6, 'e')), char_indices.next());
1138 ///
1139 /// assert_eq!(None, char_indices.next());
1140 /// ```
1141 ///
1142 /// Remember, [`char`]s might not match your intuition about characters:
1143 ///
1144 /// [`char`]: prim@char
1145 ///
1146 /// ```
1147 /// let yes = "y̆es";
1148 ///
1149 /// let mut char_indices = yes.char_indices();
1150 ///
1151 /// assert_eq!(Some((0, 'y')), char_indices.next()); // not (0, 'y̆')
1152 /// assert_eq!(Some((1, '\u{0306}')), char_indices.next());
1153 ///
1154 /// // note the 3 here - the previous character took up two bytes
1155 /// assert_eq!(Some((3, 'e')), char_indices.next());
1156 /// assert_eq!(Some((4, 's')), char_indices.next());
1157 ///
1158 /// assert_eq!(None, char_indices.next());
1159 /// ```
1160 #[stable(feature = "rust1", since = "1.0.0")]
1161 #[inline]
1162 #[cfg(not(feature = "ferrocene_certified"))]
1163 pub fn char_indices(&self) -> CharIndices<'_> {
1164 CharIndices { front_offset: 0, iter: self.chars() }
1165 }
1166
1167 /// Returns an iterator over the bytes of a string slice.
1168 ///
1169 /// As a string slice consists of a sequence of bytes, we can iterate
1170 /// through a string slice by byte. This method returns such an iterator.
1171 ///
1172 /// # Examples
1173 ///
1174 /// ```
1175 /// let mut bytes = "bors".bytes();
1176 ///
1177 /// assert_eq!(Some(b'b'), bytes.next());
1178 /// assert_eq!(Some(b'o'), bytes.next());
1179 /// assert_eq!(Some(b'r'), bytes.next());
1180 /// assert_eq!(Some(b's'), bytes.next());
1181 ///
1182 /// assert_eq!(None, bytes.next());
1183 /// ```
1184 #[stable(feature = "rust1", since = "1.0.0")]
1185 #[inline]
1186 #[cfg(not(feature = "ferrocene_certified"))]
1187 pub fn bytes(&self) -> Bytes<'_> {
1188 Bytes(self.as_bytes().iter().copied())
1189 }
1190
1191 /// Splits a string slice by whitespace.
1192 ///
1193 /// The iterator returned will return string slices that are sub-slices of
1194 /// the original string slice, separated by any amount of whitespace.
1195 ///
1196 /// 'Whitespace' is defined according to the terms of the Unicode Derived
1197 /// Core Property `White_Space`. If you only want to split on ASCII whitespace
1198 /// instead, use [`split_ascii_whitespace`].
1199 ///
1200 /// [`split_ascii_whitespace`]: str::split_ascii_whitespace
1201 ///
1202 /// # Examples
1203 ///
1204 /// Basic usage:
1205 ///
1206 /// ```
1207 /// let mut iter = "A few words".split_whitespace();
1208 ///
1209 /// assert_eq!(Some("A"), iter.next());
1210 /// assert_eq!(Some("few"), iter.next());
1211 /// assert_eq!(Some("words"), iter.next());
1212 ///
1213 /// assert_eq!(None, iter.next());
1214 /// ```
1215 ///
1216 /// All kinds of whitespace are considered:
1217 ///
1218 /// ```
1219 /// let mut iter = " Mary had\ta\u{2009}little \n\t lamb".split_whitespace();
1220 /// assert_eq!(Some("Mary"), iter.next());
1221 /// assert_eq!(Some("had"), iter.next());
1222 /// assert_eq!(Some("a"), iter.next());
1223 /// assert_eq!(Some("little"), iter.next());
1224 /// assert_eq!(Some("lamb"), iter.next());
1225 ///
1226 /// assert_eq!(None, iter.next());
1227 /// ```
1228 ///
1229 /// If the string is empty or all whitespace, the iterator yields no string slices:
1230 /// ```
1231 /// assert_eq!("".split_whitespace().next(), None);
1232 /// assert_eq!(" ".split_whitespace().next(), None);
1233 /// ```
1234 #[must_use = "this returns the split string as an iterator, \
1235 without modifying the original"]
1236 #[stable(feature = "split_whitespace", since = "1.1.0")]
1237 #[rustc_diagnostic_item = "str_split_whitespace"]
1238 #[inline]
1239 #[cfg(not(feature = "ferrocene_certified"))]
1240 pub fn split_whitespace(&self) -> SplitWhitespace<'_> {
1241 SplitWhitespace { inner: self.split(IsWhitespace).filter(IsNotEmpty) }
1242 }
1243
1244 /// Splits a string slice by ASCII whitespace.
1245 ///
1246 /// The iterator returned will return string slices that are sub-slices of
1247 /// the original string slice, separated by any amount of ASCII whitespace.
1248 ///
1249 /// This uses the same definition as [`char::is_ascii_whitespace`].
1250 /// To split by Unicode `Whitespace` instead, use [`split_whitespace`].
1251 ///
1252 /// [`split_whitespace`]: str::split_whitespace
1253 ///
1254 /// # Examples
1255 ///
1256 /// Basic usage:
1257 ///
1258 /// ```
1259 /// let mut iter = "A few words".split_ascii_whitespace();
1260 ///
1261 /// assert_eq!(Some("A"), iter.next());
1262 /// assert_eq!(Some("few"), iter.next());
1263 /// assert_eq!(Some("words"), iter.next());
1264 ///
1265 /// assert_eq!(None, iter.next());
1266 /// ```
1267 ///
1268 /// Various kinds of ASCII whitespace are considered
1269 /// (see [`char::is_ascii_whitespace`]):
1270 ///
1271 /// ```
1272 /// let mut iter = " Mary had\ta little \n\t lamb".split_ascii_whitespace();
1273 /// assert_eq!(Some("Mary"), iter.next());
1274 /// assert_eq!(Some("had"), iter.next());
1275 /// assert_eq!(Some("a"), iter.next());
1276 /// assert_eq!(Some("little"), iter.next());
1277 /// assert_eq!(Some("lamb"), iter.next());
1278 ///
1279 /// assert_eq!(None, iter.next());
1280 /// ```
1281 ///
1282 /// If the string is empty or all ASCII whitespace, the iterator yields no string slices:
1283 /// ```
1284 /// assert_eq!("".split_ascii_whitespace().next(), None);
1285 /// assert_eq!(" ".split_ascii_whitespace().next(), None);
1286 /// ```
1287 #[must_use = "this returns the split string as an iterator, \
1288 without modifying the original"]
1289 #[stable(feature = "split_ascii_whitespace", since = "1.34.0")]
1290 #[inline]
1291 #[cfg(not(feature = "ferrocene_certified"))]
1292 pub fn split_ascii_whitespace(&self) -> SplitAsciiWhitespace<'_> {
1293 let inner =
1294 self.as_bytes().split(IsAsciiWhitespace).filter(BytesIsNotEmpty).map(UnsafeBytesToStr);
1295 SplitAsciiWhitespace { inner }
1296 }
1297
1298 /// Returns an iterator over the lines of a string, as string slices.
1299 ///
1300 /// Lines are split at line endings that are either newlines (`\n`) or
1301 /// sequences of a carriage return followed by a line feed (`\r\n`).
1302 ///
1303 /// Line terminators are not included in the lines returned by the iterator.
1304 ///
1305 /// Note that any carriage return (`\r`) not immediately followed by a
1306 /// line feed (`\n`) does not split a line. These carriage returns are
1307 /// thereby included in the produced lines.
1308 ///
1309 /// The final line ending is optional. A string that ends with a final line
1310 /// ending will return the same lines as an otherwise identical string
1311 /// without a final line ending.
1312 ///
1313 /// # Examples
1314 ///
1315 /// Basic usage:
1316 ///
1317 /// ```
1318 /// let text = "foo\r\nbar\n\nbaz\r";
1319 /// let mut lines = text.lines();
1320 ///
1321 /// assert_eq!(Some("foo"), lines.next());
1322 /// assert_eq!(Some("bar"), lines.next());
1323 /// assert_eq!(Some(""), lines.next());
1324 /// // Trailing carriage return is included in the last line
1325 /// assert_eq!(Some("baz\r"), lines.next());
1326 ///
1327 /// assert_eq!(None, lines.next());
1328 /// ```
1329 ///
1330 /// The final line does not require any ending:
1331 ///
1332 /// ```
1333 /// let text = "foo\nbar\n\r\nbaz";
1334 /// let mut lines = text.lines();
1335 ///
1336 /// assert_eq!(Some("foo"), lines.next());
1337 /// assert_eq!(Some("bar"), lines.next());
1338 /// assert_eq!(Some(""), lines.next());
1339 /// assert_eq!(Some("baz"), lines.next());
1340 ///
1341 /// assert_eq!(None, lines.next());
1342 /// ```
1343 #[stable(feature = "rust1", since = "1.0.0")]
1344 #[inline]
1345 #[cfg(not(feature = "ferrocene_certified"))]
1346 pub fn lines(&self) -> Lines<'_> {
1347 Lines(self.split_inclusive('\n').map(LinesMap))
1348 }
1349
1350 /// Returns an iterator over the lines of a string.
1351 #[stable(feature = "rust1", since = "1.0.0")]
1352 #[deprecated(since = "1.4.0", note = "use lines() instead now", suggestion = "lines")]
1353 #[inline]
1354 #[allow(deprecated)]
1355 #[cfg(not(feature = "ferrocene_certified"))]
1356 pub fn lines_any(&self) -> LinesAny<'_> {
1357 LinesAny(self.lines())
1358 }
1359
1360 /// Returns an iterator of `u16` over the string encoded
1361 /// as native endian UTF-16 (without byte-order mark).
1362 ///
1363 /// # Examples
1364 ///
1365 /// ```
1366 /// let text = "Zażółć gęślą jaźń";
1367 ///
1368 /// let utf8_len = text.len();
1369 /// let utf16_len = text.encode_utf16().count();
1370 ///
1371 /// assert!(utf16_len <= utf8_len);
1372 /// ```
1373 #[must_use = "this returns the encoded string as an iterator, \
1374 without modifying the original"]
1375 #[stable(feature = "encode_utf16", since = "1.8.0")]
1376 #[cfg(not(feature = "ferrocene_certified"))]
1377 pub fn encode_utf16(&self) -> EncodeUtf16<'_> {
1378 EncodeUtf16 { chars: self.chars(), extra: 0 }
1379 }
1380
1381 /// Returns `true` if the given pattern matches a sub-slice of
1382 /// this string slice.
1383 ///
1384 /// Returns `false` if it does not.
1385 ///
1386 /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a
1387 /// function or closure that determines if a character matches.
1388 ///
1389 /// [`char`]: prim@char
1390 /// [pattern]: self::pattern
1391 ///
1392 /// # Examples
1393 ///
1394 /// ```
1395 /// let bananas = "bananas";
1396 ///
1397 /// assert!(bananas.contains("nana"));
1398 /// assert!(!bananas.contains("apples"));
1399 /// ```
1400 #[stable(feature = "rust1", since = "1.0.0")]
1401 #[inline]
1402 #[cfg(not(feature = "ferrocene_certified"))]
1403 pub fn contains<P: Pattern>(&self, pat: P) -> bool {
1404 pat.is_contained_in(self)
1405 }
1406
1407 /// Returns `true` if the given pattern matches a prefix of this
1408 /// string slice.
1409 ///
1410 /// Returns `false` if it does not.
1411 ///
1412 /// The [pattern] can be a `&str`, in which case this function will return true if
1413 /// the `&str` is a prefix of this string slice.
1414 ///
1415 /// The [pattern] can also be a [`char`], a slice of [`char`]s, or a
1416 /// function or closure that determines if a character matches.
1417 /// These will only be checked against the first character of this string slice.
1418 /// Look at the second example below regarding behavior for slices of [`char`]s.
1419 ///
1420 /// [`char`]: prim@char
1421 /// [pattern]: self::pattern
1422 ///
1423 /// # Examples
1424 ///
1425 /// ```
1426 /// let bananas = "bananas";
1427 ///
1428 /// assert!(bananas.starts_with("bana"));
1429 /// assert!(!bananas.starts_with("nana"));
1430 /// ```
1431 ///
1432 /// ```
1433 /// let bananas = "bananas";
1434 ///
1435 /// // Note that both of these assert successfully.
1436 /// assert!(bananas.starts_with(&['b', 'a', 'n', 'a']));
1437 /// assert!(bananas.starts_with(&['a', 'b', 'c', 'd']));
1438 /// ```
1439 #[stable(feature = "rust1", since = "1.0.0")]
1440 #[rustc_diagnostic_item = "str_starts_with"]
1441 #[cfg(not(feature = "ferrocene_certified"))]
1442 pub fn starts_with<P: Pattern>(&self, pat: P) -> bool {
1443 pat.is_prefix_of(self)
1444 }
1445
1446 /// Returns `true` if the given pattern matches a suffix of this
1447 /// string slice.
1448 ///
1449 /// Returns `false` if it does not.
1450 ///
1451 /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a
1452 /// function or closure that determines if a character matches.
1453 ///
1454 /// [`char`]: prim@char
1455 /// [pattern]: self::pattern
1456 ///
1457 /// # Examples
1458 ///
1459 /// ```
1460 /// let bananas = "bananas";
1461 ///
1462 /// assert!(bananas.ends_with("anas"));
1463 /// assert!(!bananas.ends_with("nana"));
1464 /// ```
1465 #[stable(feature = "rust1", since = "1.0.0")]
1466 #[rustc_diagnostic_item = "str_ends_with"]
1467 #[cfg(not(feature = "ferrocene_certified"))]
1468 pub fn ends_with<P: Pattern>(&self, pat: P) -> bool
1469 where
1470 for<'a> P::Searcher<'a>: ReverseSearcher<'a>,
1471 {
1472 pat.is_suffix_of(self)
1473 }
1474
1475 /// Returns the byte index of the first character of this string slice that
1476 /// matches the pattern.
1477 ///
1478 /// Returns [`None`] if the pattern doesn't match.
1479 ///
1480 /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a
1481 /// function or closure that determines if a character matches.
1482 ///
1483 /// [`char`]: prim@char
1484 /// [pattern]: self::pattern
1485 ///
1486 /// # Examples
1487 ///
1488 /// Simple patterns:
1489 ///
1490 /// ```
1491 /// let s = "Löwe 老虎 Léopard Gepardi";
1492 ///
1493 /// assert_eq!(s.find('L'), Some(0));
1494 /// assert_eq!(s.find('é'), Some(14));
1495 /// assert_eq!(s.find("pard"), Some(17));
1496 /// ```
1497 ///
1498 /// More complex patterns using point-free style and closures:
1499 ///
1500 /// ```
1501 /// let s = "Löwe 老虎 Léopard";
1502 ///
1503 /// assert_eq!(s.find(char::is_whitespace), Some(5));
1504 /// assert_eq!(s.find(char::is_lowercase), Some(1));
1505 /// assert_eq!(s.find(|c: char| c.is_whitespace() || c.is_lowercase()), Some(1));
1506 /// assert_eq!(s.find(|c: char| (c < 'o') && (c > 'a')), Some(4));
1507 /// ```
1508 ///
1509 /// Not finding the pattern:
1510 ///
1511 /// ```
1512 /// let s = "Löwe 老虎 Léopard";
1513 /// let x: &[_] = &['1', '2'];
1514 ///
1515 /// assert_eq!(s.find(x), None);
1516 /// ```
1517 #[stable(feature = "rust1", since = "1.0.0")]
1518 #[inline]
1519 #[cfg(not(feature = "ferrocene_certified"))]
1520 pub fn find<P: Pattern>(&self, pat: P) -> Option<usize> {
1521 pat.into_searcher(self).next_match().map(|(i, _)| i)
1522 }
1523
1524 /// Returns the byte index for the first character of the last match of the pattern in
1525 /// this string slice.
1526 ///
1527 /// Returns [`None`] if the pattern doesn't match.
1528 ///
1529 /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a
1530 /// function or closure that determines if a character matches.
1531 ///
1532 /// [`char`]: prim@char
1533 /// [pattern]: self::pattern
1534 ///
1535 /// # Examples
1536 ///
1537 /// Simple patterns:
1538 ///
1539 /// ```
1540 /// let s = "Löwe 老虎 Léopard Gepardi";
1541 ///
1542 /// assert_eq!(s.rfind('L'), Some(13));
1543 /// assert_eq!(s.rfind('é'), Some(14));
1544 /// assert_eq!(s.rfind("pard"), Some(24));
1545 /// ```
1546 ///
1547 /// More complex patterns with closures:
1548 ///
1549 /// ```
1550 /// let s = "Löwe 老虎 Léopard";
1551 ///
1552 /// assert_eq!(s.rfind(char::is_whitespace), Some(12));
1553 /// assert_eq!(s.rfind(char::is_lowercase), Some(20));
1554 /// ```
1555 ///
1556 /// Not finding the pattern:
1557 ///
1558 /// ```
1559 /// let s = "Löwe 老虎 Léopard";
1560 /// let x: &[_] = &['1', '2'];
1561 ///
1562 /// assert_eq!(s.rfind(x), None);
1563 /// ```
1564 #[stable(feature = "rust1", since = "1.0.0")]
1565 #[inline]
1566 #[cfg(not(feature = "ferrocene_certified"))]
1567 pub fn rfind<P: Pattern>(&self, pat: P) -> Option<usize>
1568 where
1569 for<'a> P::Searcher<'a>: ReverseSearcher<'a>,
1570 {
1571 pat.into_searcher(self).next_match_back().map(|(i, _)| i)
1572 }
1573
1574 /// Returns an iterator over substrings of this string slice, separated by
1575 /// characters matched by a pattern.
1576 ///
1577 /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a
1578 /// function or closure that determines if a character matches.
1579 ///
1580 /// If there are no matches the full string slice is returned as the only
1581 /// item in the iterator.
1582 ///
1583 /// [`char`]: prim@char
1584 /// [pattern]: self::pattern
1585 ///
1586 /// # Iterator behavior
1587 ///
1588 /// The returned iterator will be a [`DoubleEndedIterator`] if the pattern
1589 /// allows a reverse search and forward/reverse search yields the same
1590 /// elements. This is true for, e.g., [`char`], but not for `&str`.
1591 ///
1592 /// If the pattern allows a reverse search but its results might differ
1593 /// from a forward search, the [`rsplit`] method can be used.
1594 ///
1595 /// [`rsplit`]: str::rsplit
1596 ///
1597 /// # Examples
1598 ///
1599 /// Simple patterns:
1600 ///
1601 /// ```
1602 /// let v: Vec<&str> = "Mary had a little lamb".split(' ').collect();
1603 /// assert_eq!(v, ["Mary", "had", "a", "little", "lamb"]);
1604 ///
1605 /// let v: Vec<&str> = "".split('X').collect();
1606 /// assert_eq!(v, [""]);
1607 ///
1608 /// let v: Vec<&str> = "lionXXtigerXleopard".split('X').collect();
1609 /// assert_eq!(v, ["lion", "", "tiger", "leopard"]);
1610 ///
1611 /// let v: Vec<&str> = "lion::tiger::leopard".split("::").collect();
1612 /// assert_eq!(v, ["lion", "tiger", "leopard"]);
1613 ///
1614 /// let v: Vec<&str> = "AABBCC".split("DD").collect();
1615 /// assert_eq!(v, ["AABBCC"]);
1616 ///
1617 /// let v: Vec<&str> = "abc1def2ghi".split(char::is_numeric).collect();
1618 /// assert_eq!(v, ["abc", "def", "ghi"]);
1619 ///
1620 /// let v: Vec<&str> = "lionXtigerXleopard".split(char::is_uppercase).collect();
1621 /// assert_eq!(v, ["lion", "tiger", "leopard"]);
1622 /// ```
1623 ///
1624 /// If the pattern is a slice of chars, split on each occurrence of any of the characters:
1625 ///
1626 /// ```
1627 /// let v: Vec<&str> = "2020-11-03 23:59".split(&['-', ' ', ':', '@'][..]).collect();
1628 /// assert_eq!(v, ["2020", "11", "03", "23", "59"]);
1629 /// ```
1630 ///
1631 /// A more complex pattern, using a closure:
1632 ///
1633 /// ```
1634 /// let v: Vec<&str> = "abc1defXghi".split(|c| c == '1' || c == 'X').collect();
1635 /// assert_eq!(v, ["abc", "def", "ghi"]);
1636 /// ```
1637 ///
1638 /// If a string contains multiple contiguous separators, you will end up
1639 /// with empty strings in the output:
1640 ///
1641 /// ```
1642 /// let x = "||||a||b|c".to_string();
1643 /// let d: Vec<_> = x.split('|').collect();
1644 ///
1645 /// assert_eq!(d, &["", "", "", "", "a", "", "b", "c"]);
1646 /// ```
1647 ///
1648 /// Contiguous separators are separated by the empty string.
1649 ///
1650 /// ```
1651 /// let x = "(///)".to_string();
1652 /// let d: Vec<_> = x.split('/').collect();
1653 ///
1654 /// assert_eq!(d, &["(", "", "", ")"]);
1655 /// ```
1656 ///
1657 /// Separators at the start or end of a string are neighbored
1658 /// by empty strings.
1659 ///
1660 /// ```
1661 /// let d: Vec<_> = "010".split("0").collect();
1662 /// assert_eq!(d, &["", "1", ""]);
1663 /// ```
1664 ///
1665 /// When the empty string is used as a separator, it separates
1666 /// every character in the string, along with the beginning
1667 /// and end of the string.
1668 ///
1669 /// ```
1670 /// let f: Vec<_> = "rust".split("").collect();
1671 /// assert_eq!(f, &["", "r", "u", "s", "t", ""]);
1672 /// ```
1673 ///
1674 /// Contiguous separators can lead to possibly surprising behavior
1675 /// when whitespace is used as the separator. This code is correct:
1676 ///
1677 /// ```
1678 /// let x = " a b c".to_string();
1679 /// let d: Vec<_> = x.split(' ').collect();
1680 ///
1681 /// assert_eq!(d, &["", "", "", "", "a", "", "b", "c"]);
1682 /// ```
1683 ///
1684 /// It does _not_ give you:
1685 ///
1686 /// ```,ignore
1687 /// assert_eq!(d, &["a", "b", "c"]);
1688 /// ```
1689 ///
1690 /// Use [`split_whitespace`] for this behavior.
1691 ///
1692 /// [`split_whitespace`]: str::split_whitespace
1693 #[stable(feature = "rust1", since = "1.0.0")]
1694 #[inline]
1695 #[cfg(not(feature = "ferrocene_certified"))]
1696 pub fn split<P: Pattern>(&self, pat: P) -> Split<'_, P> {
1697 Split(SplitInternal {
1698 start: 0,
1699 end: self.len(),
1700 matcher: pat.into_searcher(self),
1701 allow_trailing_empty: true,
1702 finished: false,
1703 })
1704 }
1705
1706 /// Returns an iterator over substrings of this string slice, separated by
1707 /// characters matched by a pattern.
1708 ///
1709 /// Differs from the iterator produced by `split` in that `split_inclusive`
1710 /// leaves the matched part as the terminator of the substring.
1711 ///
1712 /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a
1713 /// function or closure that determines if a character matches.
1714 ///
1715 /// [`char`]: prim@char
1716 /// [pattern]: self::pattern
1717 ///
1718 /// # Examples
1719 ///
1720 /// ```
1721 /// let v: Vec<&str> = "Mary had a little lamb\nlittle lamb\nlittle lamb."
1722 /// .split_inclusive('\n').collect();
1723 /// assert_eq!(v, ["Mary had a little lamb\n", "little lamb\n", "little lamb."]);
1724 /// ```
1725 ///
1726 /// If the last element of the string is matched,
1727 /// that element will be considered the terminator of the preceding substring.
1728 /// That substring will be the last item returned by the iterator.
1729 ///
1730 /// ```
1731 /// let v: Vec<&str> = "Mary had a little lamb\nlittle lamb\nlittle lamb.\n"
1732 /// .split_inclusive('\n').collect();
1733 /// assert_eq!(v, ["Mary had a little lamb\n", "little lamb\n", "little lamb.\n"]);
1734 /// ```
1735 #[stable(feature = "split_inclusive", since = "1.51.0")]
1736 #[inline]
1737 #[cfg(not(feature = "ferrocene_certified"))]
1738 pub fn split_inclusive<P: Pattern>(&self, pat: P) -> SplitInclusive<'_, P> {
1739 SplitInclusive(SplitInternal {
1740 start: 0,
1741 end: self.len(),
1742 matcher: pat.into_searcher(self),
1743 allow_trailing_empty: false,
1744 finished: false,
1745 })
1746 }
1747
1748 /// Returns an iterator over substrings of the given string slice, separated
1749 /// by characters matched by a pattern and yielded in reverse order.
1750 ///
1751 /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a
1752 /// function or closure that determines if a character matches.
1753 ///
1754 /// [`char`]: prim@char
1755 /// [pattern]: self::pattern
1756 ///
1757 /// # Iterator behavior
1758 ///
1759 /// The returned iterator requires that the pattern supports a reverse
1760 /// search, and it will be a [`DoubleEndedIterator`] if a forward/reverse
1761 /// search yields the same elements.
1762 ///
1763 /// For iterating from the front, the [`split`] method can be used.
1764 ///
1765 /// [`split`]: str::split
1766 ///
1767 /// # Examples
1768 ///
1769 /// Simple patterns:
1770 ///
1771 /// ```
1772 /// let v: Vec<&str> = "Mary had a little lamb".rsplit(' ').collect();
1773 /// assert_eq!(v, ["lamb", "little", "a", "had", "Mary"]);
1774 ///
1775 /// let v: Vec<&str> = "".rsplit('X').collect();
1776 /// assert_eq!(v, [""]);
1777 ///
1778 /// let v: Vec<&str> = "lionXXtigerXleopard".rsplit('X').collect();
1779 /// assert_eq!(v, ["leopard", "tiger", "", "lion"]);
1780 ///
1781 /// let v: Vec<&str> = "lion::tiger::leopard".rsplit("::").collect();
1782 /// assert_eq!(v, ["leopard", "tiger", "lion"]);
1783 /// ```
1784 ///
1785 /// A more complex pattern, using a closure:
1786 ///
1787 /// ```
1788 /// let v: Vec<&str> = "abc1defXghi".rsplit(|c| c == '1' || c == 'X').collect();
1789 /// assert_eq!(v, ["ghi", "def", "abc"]);
1790 /// ```
1791 #[stable(feature = "rust1", since = "1.0.0")]
1792 #[inline]
1793 #[cfg(not(feature = "ferrocene_certified"))]
1794 pub fn rsplit<P: Pattern>(&self, pat: P) -> RSplit<'_, P>
1795 where
1796 for<'a> P::Searcher<'a>: ReverseSearcher<'a>,
1797 {
1798 RSplit(self.split(pat).0)
1799 }
1800
1801 /// Returns an iterator over substrings of the given string slice, separated
1802 /// by characters matched by a pattern.
1803 ///
1804 /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a
1805 /// function or closure that determines if a character matches.
1806 ///
1807 /// [`char`]: prim@char
1808 /// [pattern]: self::pattern
1809 ///
1810 /// Equivalent to [`split`], except that the trailing substring
1811 /// is skipped if empty.
1812 ///
1813 /// [`split`]: str::split
1814 ///
1815 /// This method can be used for string data that is _terminated_,
1816 /// rather than _separated_ by a pattern.
1817 ///
1818 /// # Iterator behavior
1819 ///
1820 /// The returned iterator will be a [`DoubleEndedIterator`] if the pattern
1821 /// allows a reverse search and forward/reverse search yields the same
1822 /// elements. This is true for, e.g., [`char`], but not for `&str`.
1823 ///
1824 /// If the pattern allows a reverse search but its results might differ
1825 /// from a forward search, the [`rsplit_terminator`] method can be used.
1826 ///
1827 /// [`rsplit_terminator`]: str::rsplit_terminator
1828 ///
1829 /// # Examples
1830 ///
1831 /// ```
1832 /// let v: Vec<&str> = "A.B.".split_terminator('.').collect();
1833 /// assert_eq!(v, ["A", "B"]);
1834 ///
1835 /// let v: Vec<&str> = "A..B..".split_terminator(".").collect();
1836 /// assert_eq!(v, ["A", "", "B", ""]);
1837 ///
1838 /// let v: Vec<&str> = "A.B:C.D".split_terminator(&['.', ':'][..]).collect();
1839 /// assert_eq!(v, ["A", "B", "C", "D"]);
1840 /// ```
1841 #[stable(feature = "rust1", since = "1.0.0")]
1842 #[inline]
1843 #[cfg(not(feature = "ferrocene_certified"))]
1844 pub fn split_terminator<P: Pattern>(&self, pat: P) -> SplitTerminator<'_, P> {
1845 SplitTerminator(SplitInternal { allow_trailing_empty: false, ..self.split(pat).0 })
1846 }
1847
1848 /// Returns an iterator over substrings of `self`, separated by characters
1849 /// matched by a pattern and yielded in reverse order.
1850 ///
1851 /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a
1852 /// function or closure that determines if a character matches.
1853 ///
1854 /// [`char`]: prim@char
1855 /// [pattern]: self::pattern
1856 ///
1857 /// Equivalent to [`split`], except that the trailing substring is
1858 /// skipped if empty.
1859 ///
1860 /// [`split`]: str::split
1861 ///
1862 /// This method can be used for string data that is _terminated_,
1863 /// rather than _separated_ by a pattern.
1864 ///
1865 /// # Iterator behavior
1866 ///
1867 /// The returned iterator requires that the pattern supports a
1868 /// reverse search, and it will be double ended if a forward/reverse
1869 /// search yields the same elements.
1870 ///
1871 /// For iterating from the front, the [`split_terminator`] method can be
1872 /// used.
1873 ///
1874 /// [`split_terminator`]: str::split_terminator
1875 ///
1876 /// # Examples
1877 ///
1878 /// ```
1879 /// let v: Vec<&str> = "A.B.".rsplit_terminator('.').collect();
1880 /// assert_eq!(v, ["B", "A"]);
1881 ///
1882 /// let v: Vec<&str> = "A..B..".rsplit_terminator(".").collect();
1883 /// assert_eq!(v, ["", "B", "", "A"]);
1884 ///
1885 /// let v: Vec<&str> = "A.B:C.D".rsplit_terminator(&['.', ':'][..]).collect();
1886 /// assert_eq!(v, ["D", "C", "B", "A"]);
1887 /// ```
1888 #[stable(feature = "rust1", since = "1.0.0")]
1889 #[inline]
1890 #[cfg(not(feature = "ferrocene_certified"))]
1891 pub fn rsplit_terminator<P: Pattern>(&self, pat: P) -> RSplitTerminator<'_, P>
1892 where
1893 for<'a> P::Searcher<'a>: ReverseSearcher<'a>,
1894 {
1895 RSplitTerminator(self.split_terminator(pat).0)
1896 }
1897
1898 /// Returns an iterator over substrings of the given string slice, separated
1899 /// by a pattern, restricted to returning at most `n` items.
1900 ///
1901 /// If `n` substrings are returned, the last substring (the `n`th substring)
1902 /// will contain the remainder of the string.
1903 ///
1904 /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a
1905 /// function or closure that determines if a character matches.
1906 ///
1907 /// [`char`]: prim@char
1908 /// [pattern]: self::pattern
1909 ///
1910 /// # Iterator behavior
1911 ///
1912 /// The returned iterator will not be double ended, because it is
1913 /// not efficient to support.
1914 ///
1915 /// If the pattern allows a reverse search, the [`rsplitn`] method can be
1916 /// used.
1917 ///
1918 /// [`rsplitn`]: str::rsplitn
1919 ///
1920 /// # Examples
1921 ///
1922 /// Simple patterns:
1923 ///
1924 /// ```
1925 /// let v: Vec<&str> = "Mary had a little lambda".splitn(3, ' ').collect();
1926 /// assert_eq!(v, ["Mary", "had", "a little lambda"]);
1927 ///
1928 /// let v: Vec<&str> = "lionXXtigerXleopard".splitn(3, "X").collect();
1929 /// assert_eq!(v, ["lion", "", "tigerXleopard"]);
1930 ///
1931 /// let v: Vec<&str> = "abcXdef".splitn(1, 'X').collect();
1932 /// assert_eq!(v, ["abcXdef"]);
1933 ///
1934 /// let v: Vec<&str> = "".splitn(1, 'X').collect();
1935 /// assert_eq!(v, [""]);
1936 /// ```
1937 ///
1938 /// A more complex pattern, using a closure:
1939 ///
1940 /// ```
1941 /// let v: Vec<&str> = "abc1defXghi".splitn(2, |c| c == '1' || c == 'X').collect();
1942 /// assert_eq!(v, ["abc", "defXghi"]);
1943 /// ```
1944 #[stable(feature = "rust1", since = "1.0.0")]
1945 #[inline]
1946 #[cfg(not(feature = "ferrocene_certified"))]
1947 pub fn splitn<P: Pattern>(&self, n: usize, pat: P) -> SplitN<'_, P> {
1948 SplitN(SplitNInternal { iter: self.split(pat).0, count: n })
1949 }
1950
1951 /// Returns an iterator over substrings of this string slice, separated by a
1952 /// pattern, starting from the end of the string, restricted to returning at
1953 /// most `n` items.
1954 ///
1955 /// If `n` substrings are returned, the last substring (the `n`th substring)
1956 /// will contain the remainder of the string.
1957 ///
1958 /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a
1959 /// function or closure that determines if a character matches.
1960 ///
1961 /// [`char`]: prim@char
1962 /// [pattern]: self::pattern
1963 ///
1964 /// # Iterator behavior
1965 ///
1966 /// The returned iterator will not be double ended, because it is not
1967 /// efficient to support.
1968 ///
1969 /// For splitting from the front, the [`splitn`] method can be used.
1970 ///
1971 /// [`splitn`]: str::splitn
1972 ///
1973 /// # Examples
1974 ///
1975 /// Simple patterns:
1976 ///
1977 /// ```
1978 /// let v: Vec<&str> = "Mary had a little lamb".rsplitn(3, ' ').collect();
1979 /// assert_eq!(v, ["lamb", "little", "Mary had a"]);
1980 ///
1981 /// let v: Vec<&str> = "lionXXtigerXleopard".rsplitn(3, 'X').collect();
1982 /// assert_eq!(v, ["leopard", "tiger", "lionX"]);
1983 ///
1984 /// let v: Vec<&str> = "lion::tiger::leopard".rsplitn(2, "::").collect();
1985 /// assert_eq!(v, ["leopard", "lion::tiger"]);
1986 /// ```
1987 ///
1988 /// A more complex pattern, using a closure:
1989 ///
1990 /// ```
1991 /// let v: Vec<&str> = "abc1defXghi".rsplitn(2, |c| c == '1' || c == 'X').collect();
1992 /// assert_eq!(v, ["ghi", "abc1def"]);
1993 /// ```
1994 #[stable(feature = "rust1", since = "1.0.0")]
1995 #[inline]
1996 #[cfg(not(feature = "ferrocene_certified"))]
1997 pub fn rsplitn<P: Pattern>(&self, n: usize, pat: P) -> RSplitN<'_, P>
1998 where
1999 for<'a> P::Searcher<'a>: ReverseSearcher<'a>,
2000 {
2001 RSplitN(self.splitn(n, pat).0)
2002 }
2003
2004 /// Splits the string on the first occurrence of the specified delimiter and
2005 /// returns prefix before delimiter and suffix after delimiter.
2006 ///
2007 /// # Examples
2008 ///
2009 /// ```
2010 /// assert_eq!("cfg".split_once('='), None);
2011 /// assert_eq!("cfg=".split_once('='), Some(("cfg", "")));
2012 /// assert_eq!("cfg=foo".split_once('='), Some(("cfg", "foo")));
2013 /// assert_eq!("cfg=foo=bar".split_once('='), Some(("cfg", "foo=bar")));
2014 /// ```
2015 #[stable(feature = "str_split_once", since = "1.52.0")]
2016 #[inline]
2017 #[cfg(not(feature = "ferrocene_certified"))]
2018 pub fn split_once<P: Pattern>(&self, delimiter: P) -> Option<(&'_ str, &'_ str)> {
2019 let (start, end) = delimiter.into_searcher(self).next_match()?;
2020 // SAFETY: `Searcher` is known to return valid indices.
2021 unsafe { Some((self.get_unchecked(..start), self.get_unchecked(end..))) }
2022 }
2023
2024 /// Splits the string on the last occurrence of the specified delimiter and
2025 /// returns prefix before delimiter and suffix after delimiter.
2026 ///
2027 /// # Examples
2028 ///
2029 /// ```
2030 /// assert_eq!("cfg".rsplit_once('='), None);
2031 /// assert_eq!("cfg=foo".rsplit_once('='), Some(("cfg", "foo")));
2032 /// assert_eq!("cfg=foo=bar".rsplit_once('='), Some(("cfg=foo", "bar")));
2033 /// ```
2034 #[stable(feature = "str_split_once", since = "1.52.0")]
2035 #[inline]
2036 #[cfg(not(feature = "ferrocene_certified"))]
2037 pub fn rsplit_once<P: Pattern>(&self, delimiter: P) -> Option<(&'_ str, &'_ str)>
2038 where
2039 for<'a> P::Searcher<'a>: ReverseSearcher<'a>,
2040 {
2041 let (start, end) = delimiter.into_searcher(self).next_match_back()?;
2042 // SAFETY: `Searcher` is known to return valid indices.
2043 unsafe { Some((self.get_unchecked(..start), self.get_unchecked(end..))) }
2044 }
2045
2046 /// Returns an iterator over the disjoint matches of a pattern within the
2047 /// given string slice.
2048 ///
2049 /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a
2050 /// function or closure that determines if a character matches.
2051 ///
2052 /// [`char`]: prim@char
2053 /// [pattern]: self::pattern
2054 ///
2055 /// # Iterator behavior
2056 ///
2057 /// The returned iterator will be a [`DoubleEndedIterator`] if the pattern
2058 /// allows a reverse search and forward/reverse search yields the same
2059 /// elements. This is true for, e.g., [`char`], but not for `&str`.
2060 ///
2061 /// If the pattern allows a reverse search but its results might differ
2062 /// from a forward search, the [`rmatches`] method can be used.
2063 ///
2064 /// [`rmatches`]: str::rmatches
2065 ///
2066 /// # Examples
2067 ///
2068 /// ```
2069 /// let v: Vec<&str> = "abcXXXabcYYYabc".matches("abc").collect();
2070 /// assert_eq!(v, ["abc", "abc", "abc"]);
2071 ///
2072 /// let v: Vec<&str> = "1abc2abc3".matches(char::is_numeric).collect();
2073 /// assert_eq!(v, ["1", "2", "3"]);
2074 /// ```
2075 #[stable(feature = "str_matches", since = "1.2.0")]
2076 #[inline]
2077 #[cfg(not(feature = "ferrocene_certified"))]
2078 pub fn matches<P: Pattern>(&self, pat: P) -> Matches<'_, P> {
2079 Matches(MatchesInternal(pat.into_searcher(self)))
2080 }
2081
2082 /// Returns an iterator over the disjoint matches of a pattern within this
2083 /// string slice, yielded in reverse order.
2084 ///
2085 /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a
2086 /// function or closure that determines if a character matches.
2087 ///
2088 /// [`char`]: prim@char
2089 /// [pattern]: self::pattern
2090 ///
2091 /// # Iterator behavior
2092 ///
2093 /// The returned iterator requires that the pattern supports a reverse
2094 /// search, and it will be a [`DoubleEndedIterator`] if a forward/reverse
2095 /// search yields the same elements.
2096 ///
2097 /// For iterating from the front, the [`matches`] method can be used.
2098 ///
2099 /// [`matches`]: str::matches
2100 ///
2101 /// # Examples
2102 ///
2103 /// ```
2104 /// let v: Vec<&str> = "abcXXXabcYYYabc".rmatches("abc").collect();
2105 /// assert_eq!(v, ["abc", "abc", "abc"]);
2106 ///
2107 /// let v: Vec<&str> = "1abc2abc3".rmatches(char::is_numeric).collect();
2108 /// assert_eq!(v, ["3", "2", "1"]);
2109 /// ```
2110 #[stable(feature = "str_matches", since = "1.2.0")]
2111 #[inline]
2112 #[cfg(not(feature = "ferrocene_certified"))]
2113 pub fn rmatches<P: Pattern>(&self, pat: P) -> RMatches<'_, P>
2114 where
2115 for<'a> P::Searcher<'a>: ReverseSearcher<'a>,
2116 {
2117 RMatches(self.matches(pat).0)
2118 }
2119
2120 /// Returns an iterator over the disjoint matches of a pattern within this string
2121 /// slice as well as the index that the match starts at.
2122 ///
2123 /// For matches of `pat` within `self` that overlap, only the indices
2124 /// corresponding to the first match are returned.
2125 ///
2126 /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a
2127 /// function or closure that determines if a character matches.
2128 ///
2129 /// [`char`]: prim@char
2130 /// [pattern]: self::pattern
2131 ///
2132 /// # Iterator behavior
2133 ///
2134 /// The returned iterator will be a [`DoubleEndedIterator`] if the pattern
2135 /// allows a reverse search and forward/reverse search yields the same
2136 /// elements. This is true for, e.g., [`char`], but not for `&str`.
2137 ///
2138 /// If the pattern allows a reverse search but its results might differ
2139 /// from a forward search, the [`rmatch_indices`] method can be used.
2140 ///
2141 /// [`rmatch_indices`]: str::rmatch_indices
2142 ///
2143 /// # Examples
2144 ///
2145 /// ```
2146 /// let v: Vec<_> = "abcXXXabcYYYabc".match_indices("abc").collect();
2147 /// assert_eq!(v, [(0, "abc"), (6, "abc"), (12, "abc")]);
2148 ///
2149 /// let v: Vec<_> = "1abcabc2".match_indices("abc").collect();
2150 /// assert_eq!(v, [(1, "abc"), (4, "abc")]);
2151 ///
2152 /// let v: Vec<_> = "ababa".match_indices("aba").collect();
2153 /// assert_eq!(v, [(0, "aba")]); // only the first `aba`
2154 /// ```
2155 #[stable(feature = "str_match_indices", since = "1.5.0")]
2156 #[inline]
2157 #[cfg(not(feature = "ferrocene_certified"))]
2158 pub fn match_indices<P: Pattern>(&self, pat: P) -> MatchIndices<'_, P> {
2159 MatchIndices(MatchIndicesInternal(pat.into_searcher(self)))
2160 }
2161
2162 /// Returns an iterator over the disjoint matches of a pattern within `self`,
2163 /// yielded in reverse order along with the index of the match.
2164 ///
2165 /// For matches of `pat` within `self` that overlap, only the indices
2166 /// corresponding to the last match are returned.
2167 ///
2168 /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a
2169 /// function or closure that determines if a character matches.
2170 ///
2171 /// [`char`]: prim@char
2172 /// [pattern]: self::pattern
2173 ///
2174 /// # Iterator behavior
2175 ///
2176 /// The returned iterator requires that the pattern supports a reverse
2177 /// search, and it will be a [`DoubleEndedIterator`] if a forward/reverse
2178 /// search yields the same elements.
2179 ///
2180 /// For iterating from the front, the [`match_indices`] method can be used.
2181 ///
2182 /// [`match_indices`]: str::match_indices
2183 ///
2184 /// # Examples
2185 ///
2186 /// ```
2187 /// let v: Vec<_> = "abcXXXabcYYYabc".rmatch_indices("abc").collect();
2188 /// assert_eq!(v, [(12, "abc"), (6, "abc"), (0, "abc")]);
2189 ///
2190 /// let v: Vec<_> = "1abcabc2".rmatch_indices("abc").collect();
2191 /// assert_eq!(v, [(4, "abc"), (1, "abc")]);
2192 ///
2193 /// let v: Vec<_> = "ababa".rmatch_indices("aba").collect();
2194 /// assert_eq!(v, [(2, "aba")]); // only the last `aba`
2195 /// ```
2196 #[stable(feature = "str_match_indices", since = "1.5.0")]
2197 #[inline]
2198 #[cfg(not(feature = "ferrocene_certified"))]
2199 pub fn rmatch_indices<P: Pattern>(&self, pat: P) -> RMatchIndices<'_, P>
2200 where
2201 for<'a> P::Searcher<'a>: ReverseSearcher<'a>,
2202 {
2203 RMatchIndices(self.match_indices(pat).0)
2204 }
2205
2206 /// Returns a string slice with leading and trailing whitespace removed.
2207 ///
2208 /// 'Whitespace' is defined according to the terms of the Unicode Derived
2209 /// Core Property `White_Space`, which includes newlines.
2210 ///
2211 /// # Examples
2212 ///
2213 /// ```
2214 /// let s = "\n Hello\tworld\t\n";
2215 ///
2216 /// assert_eq!("Hello\tworld", s.trim());
2217 /// ```
2218 #[inline]
2219 #[must_use = "this returns the trimmed string as a slice, \
2220 without modifying the original"]
2221 #[stable(feature = "rust1", since = "1.0.0")]
2222 #[rustc_diagnostic_item = "str_trim"]
2223 #[cfg(not(feature = "ferrocene_certified"))]
2224 pub fn trim(&self) -> &str {
2225 self.trim_matches(char::is_whitespace)
2226 }
2227
2228 /// Returns a string slice with leading whitespace removed.
2229 ///
2230 /// 'Whitespace' is defined according to the terms of the Unicode Derived
2231 /// Core Property `White_Space`, which includes newlines.
2232 ///
2233 /// # Text directionality
2234 ///
2235 /// A string is a sequence of bytes. `start` in this context means the first
2236 /// position of that byte string; for a left-to-right language like English or
2237 /// Russian, this will be left side, and for right-to-left languages like
2238 /// Arabic or Hebrew, this will be the right side.
2239 ///
2240 /// # Examples
2241 ///
2242 /// Basic usage:
2243 ///
2244 /// ```
2245 /// let s = "\n Hello\tworld\t\n";
2246 /// assert_eq!("Hello\tworld\t\n", s.trim_start());
2247 /// ```
2248 ///
2249 /// Directionality:
2250 ///
2251 /// ```
2252 /// let s = " English ";
2253 /// assert!(Some('E') == s.trim_start().chars().next());
2254 ///
2255 /// let s = " עברית ";
2256 /// assert!(Some('ע') == s.trim_start().chars().next());
2257 /// ```
2258 #[inline]
2259 #[must_use = "this returns the trimmed string as a new slice, \
2260 without modifying the original"]
2261 #[stable(feature = "trim_direction", since = "1.30.0")]
2262 #[rustc_diagnostic_item = "str_trim_start"]
2263 #[cfg(not(feature = "ferrocene_certified"))]
2264 pub fn trim_start(&self) -> &str {
2265 self.trim_start_matches(char::is_whitespace)
2266 }
2267
2268 /// Returns a string slice with trailing whitespace removed.
2269 ///
2270 /// 'Whitespace' is defined according to the terms of the Unicode Derived
2271 /// Core Property `White_Space`, which includes newlines.
2272 ///
2273 /// # Text directionality
2274 ///
2275 /// A string is a sequence of bytes. `end` in this context means the last
2276 /// position of that byte string; for a left-to-right language like English or
2277 /// Russian, this will be right side, and for right-to-left languages like
2278 /// Arabic or Hebrew, this will be the left side.
2279 ///
2280 /// # Examples
2281 ///
2282 /// Basic usage:
2283 ///
2284 /// ```
2285 /// let s = "\n Hello\tworld\t\n";
2286 /// assert_eq!("\n Hello\tworld", s.trim_end());
2287 /// ```
2288 ///
2289 /// Directionality:
2290 ///
2291 /// ```
2292 /// let s = " English ";
2293 /// assert!(Some('h') == s.trim_end().chars().rev().next());
2294 ///
2295 /// let s = " עברית ";
2296 /// assert!(Some('ת') == s.trim_end().chars().rev().next());
2297 /// ```
2298 #[inline]
2299 #[must_use = "this returns the trimmed string as a new slice, \
2300 without modifying the original"]
2301 #[stable(feature = "trim_direction", since = "1.30.0")]
2302 #[rustc_diagnostic_item = "str_trim_end"]
2303 #[cfg(not(feature = "ferrocene_certified"))]
2304 pub fn trim_end(&self) -> &str {
2305 self.trim_end_matches(char::is_whitespace)
2306 }
2307
2308 /// Returns a string slice with leading whitespace removed.
2309 ///
2310 /// 'Whitespace' is defined according to the terms of the Unicode Derived
2311 /// Core Property `White_Space`.
2312 ///
2313 /// # Text directionality
2314 ///
2315 /// A string is a sequence of bytes. 'Left' in this context means the first
2316 /// position of that byte string; for a language like Arabic or Hebrew
2317 /// which are 'right to left' rather than 'left to right', this will be
2318 /// the _right_ side, not the left.
2319 ///
2320 /// # Examples
2321 ///
2322 /// Basic usage:
2323 ///
2324 /// ```
2325 /// let s = " Hello\tworld\t";
2326 ///
2327 /// assert_eq!("Hello\tworld\t", s.trim_left());
2328 /// ```
2329 ///
2330 /// Directionality:
2331 ///
2332 /// ```
2333 /// let s = " English";
2334 /// assert!(Some('E') == s.trim_left().chars().next());
2335 ///
2336 /// let s = " עברית";
2337 /// assert!(Some('ע') == s.trim_left().chars().next());
2338 /// ```
2339 #[must_use = "this returns the trimmed string as a new slice, \
2340 without modifying the original"]
2341 #[inline]
2342 #[stable(feature = "rust1", since = "1.0.0")]
2343 #[deprecated(since = "1.33.0", note = "superseded by `trim_start`", suggestion = "trim_start")]
2344 #[cfg(not(feature = "ferrocene_certified"))]
2345 pub fn trim_left(&self) -> &str {
2346 self.trim_start()
2347 }
2348
2349 /// Returns a string slice with trailing whitespace removed.
2350 ///
2351 /// 'Whitespace' is defined according to the terms of the Unicode Derived
2352 /// Core Property `White_Space`.
2353 ///
2354 /// # Text directionality
2355 ///
2356 /// A string is a sequence of bytes. 'Right' in this context means the last
2357 /// position of that byte string; for a language like Arabic or Hebrew
2358 /// which are 'right to left' rather than 'left to right', this will be
2359 /// the _left_ side, not the right.
2360 ///
2361 /// # Examples
2362 ///
2363 /// Basic usage:
2364 ///
2365 /// ```
2366 /// let s = " Hello\tworld\t";
2367 ///
2368 /// assert_eq!(" Hello\tworld", s.trim_right());
2369 /// ```
2370 ///
2371 /// Directionality:
2372 ///
2373 /// ```
2374 /// let s = "English ";
2375 /// assert!(Some('h') == s.trim_right().chars().rev().next());
2376 ///
2377 /// let s = "עברית ";
2378 /// assert!(Some('ת') == s.trim_right().chars().rev().next());
2379 /// ```
2380 #[must_use = "this returns the trimmed string as a new slice, \
2381 without modifying the original"]
2382 #[inline]
2383 #[stable(feature = "rust1", since = "1.0.0")]
2384 #[deprecated(since = "1.33.0", note = "superseded by `trim_end`", suggestion = "trim_end")]
2385 #[cfg(not(feature = "ferrocene_certified"))]
2386 pub fn trim_right(&self) -> &str {
2387 self.trim_end()
2388 }
2389
2390 /// Returns a string slice with all prefixes and suffixes that match a
2391 /// pattern repeatedly removed.
2392 ///
2393 /// The [pattern] can be a [`char`], a slice of [`char`]s, or a function
2394 /// or closure that determines if a character matches.
2395 ///
2396 /// [`char`]: prim@char
2397 /// [pattern]: self::pattern
2398 ///
2399 /// # Examples
2400 ///
2401 /// Simple patterns:
2402 ///
2403 /// ```
2404 /// assert_eq!("11foo1bar11".trim_matches('1'), "foo1bar");
2405 /// assert_eq!("123foo1bar123".trim_matches(char::is_numeric), "foo1bar");
2406 ///
2407 /// let x: &[_] = &['1', '2'];
2408 /// assert_eq!("12foo1bar12".trim_matches(x), "foo1bar");
2409 /// ```
2410 ///
2411 /// A more complex pattern, using a closure:
2412 ///
2413 /// ```
2414 /// assert_eq!("1foo1barXX".trim_matches(|c| c == '1' || c == 'X'), "foo1bar");
2415 /// ```
2416 #[must_use = "this returns the trimmed string as a new slice, \
2417 without modifying the original"]
2418 #[stable(feature = "rust1", since = "1.0.0")]
2419 #[cfg(not(feature = "ferrocene_certified"))]
2420 pub fn trim_matches<P: Pattern>(&self, pat: P) -> &str
2421 where
2422 for<'a> P::Searcher<'a>: DoubleEndedSearcher<'a>,
2423 {
2424 let mut i = 0;
2425 let mut j = 0;
2426 let mut matcher = pat.into_searcher(self);
2427 if let Some((a, b)) = matcher.next_reject() {
2428 i = a;
2429 j = b; // Remember earliest known match, correct it below if
2430 // last match is different
2431 }
2432 if let Some((_, b)) = matcher.next_reject_back() {
2433 j = b;
2434 }
2435 // SAFETY: `Searcher` is known to return valid indices.
2436 unsafe { self.get_unchecked(i..j) }
2437 }
2438
2439 /// Returns a string slice with all prefixes that match a pattern
2440 /// repeatedly removed.
2441 ///
2442 /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a
2443 /// function or closure that determines if a character matches.
2444 ///
2445 /// [`char`]: prim@char
2446 /// [pattern]: self::pattern
2447 ///
2448 /// # Text directionality
2449 ///
2450 /// A string is a sequence of bytes. `start` in this context means the first
2451 /// position of that byte string; for a left-to-right language like English or
2452 /// Russian, this will be left side, and for right-to-left languages like
2453 /// Arabic or Hebrew, this will be the right side.
2454 ///
2455 /// # Examples
2456 ///
2457 /// ```
2458 /// assert_eq!("11foo1bar11".trim_start_matches('1'), "foo1bar11");
2459 /// assert_eq!("123foo1bar123".trim_start_matches(char::is_numeric), "foo1bar123");
2460 ///
2461 /// let x: &[_] = &['1', '2'];
2462 /// assert_eq!("12foo1bar12".trim_start_matches(x), "foo1bar12");
2463 /// ```
2464 #[must_use = "this returns the trimmed string as a new slice, \
2465 without modifying the original"]
2466 #[stable(feature = "trim_direction", since = "1.30.0")]
2467 #[cfg(not(feature = "ferrocene_certified"))]
2468 pub fn trim_start_matches<P: Pattern>(&self, pat: P) -> &str {
2469 let mut i = self.len();
2470 let mut matcher = pat.into_searcher(self);
2471 if let Some((a, _)) = matcher.next_reject() {
2472 i = a;
2473 }
2474 // SAFETY: `Searcher` is known to return valid indices.
2475 unsafe { self.get_unchecked(i..self.len()) }
2476 }
2477
2478 /// Returns a string slice with the prefix removed.
2479 ///
2480 /// If the string starts with the pattern `prefix`, returns the substring after the prefix,
2481 /// wrapped in `Some`. Unlike [`trim_start_matches`], this method removes the prefix exactly once.
2482 ///
2483 /// If the string does not start with `prefix`, returns `None`.
2484 ///
2485 /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a
2486 /// function or closure that determines if a character matches.
2487 ///
2488 /// [`char`]: prim@char
2489 /// [pattern]: self::pattern
2490 /// [`trim_start_matches`]: Self::trim_start_matches
2491 ///
2492 /// # Examples
2493 ///
2494 /// ```
2495 /// assert_eq!("foo:bar".strip_prefix("foo:"), Some("bar"));
2496 /// assert_eq!("foo:bar".strip_prefix("bar"), None);
2497 /// assert_eq!("foofoo".strip_prefix("foo"), Some("foo"));
2498 /// ```
2499 #[must_use = "this returns the remaining substring as a new slice, \
2500 without modifying the original"]
2501 #[stable(feature = "str_strip", since = "1.45.0")]
2502 #[cfg(not(feature = "ferrocene_certified"))]
2503 pub fn strip_prefix<P: Pattern>(&self, prefix: P) -> Option<&str> {
2504 prefix.strip_prefix_of(self)
2505 }
2506
2507 /// Returns a string slice with the suffix removed.
2508 ///
2509 /// If the string ends with the pattern `suffix`, returns the substring before the suffix,
2510 /// wrapped in `Some`. Unlike [`trim_end_matches`], this method removes the suffix exactly once.
2511 ///
2512 /// If the string does not end with `suffix`, returns `None`.
2513 ///
2514 /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a
2515 /// function or closure that determines if a character matches.
2516 ///
2517 /// [`char`]: prim@char
2518 /// [pattern]: self::pattern
2519 /// [`trim_end_matches`]: Self::trim_end_matches
2520 ///
2521 /// # Examples
2522 ///
2523 /// ```
2524 /// assert_eq!("bar:foo".strip_suffix(":foo"), Some("bar"));
2525 /// assert_eq!("bar:foo".strip_suffix("bar"), None);
2526 /// assert_eq!("foofoo".strip_suffix("foo"), Some("foo"));
2527 /// ```
2528 #[must_use = "this returns the remaining substring as a new slice, \
2529 without modifying the original"]
2530 #[stable(feature = "str_strip", since = "1.45.0")]
2531 #[cfg(not(feature = "ferrocene_certified"))]
2532 pub fn strip_suffix<P: Pattern>(&self, suffix: P) -> Option<&str>
2533 where
2534 for<'a> P::Searcher<'a>: ReverseSearcher<'a>,
2535 {
2536 suffix.strip_suffix_of(self)
2537 }
2538
2539 /// Returns a string slice with the prefix and suffix removed.
2540 ///
2541 /// If the string starts with the pattern `prefix` and ends with the pattern `suffix`, returns
2542 /// the substring after the prefix and before the suffix, wrapped in `Some`.
2543 /// Unlike [`trim_start_matches`] and [`trim_end_matches`], this method removes both the prefix
2544 /// and suffix exactly once.
2545 ///
2546 /// If the string does not start with `prefix` or does not end with `suffix`, returns `None`.
2547 ///
2548 /// Each [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a
2549 /// function or closure that determines if a character matches.
2550 ///
2551 /// [`char`]: prim@char
2552 /// [pattern]: self::pattern
2553 /// [`trim_start_matches`]: Self::trim_start_matches
2554 /// [`trim_end_matches`]: Self::trim_end_matches
2555 ///
2556 /// # Examples
2557 ///
2558 /// ```
2559 /// #![feature(strip_circumfix)]
2560 ///
2561 /// assert_eq!("bar:hello:foo".strip_circumfix("bar:", ":foo"), Some("hello"));
2562 /// assert_eq!("bar:foo".strip_circumfix("foo", "foo"), None);
2563 /// assert_eq!("foo:bar;".strip_circumfix("foo:", ';'), Some("bar"));
2564 /// ```
2565 #[must_use = "this returns the remaining substring as a new slice, \
2566 without modifying the original"]
2567 #[unstable(feature = "strip_circumfix", issue = "147946")]
2568 #[cfg(not(feature = "ferrocene_certified"))]
2569 pub fn strip_circumfix<P: Pattern, S: Pattern>(&self, prefix: P, suffix: S) -> Option<&str>
2570 where
2571 for<'a> S::Searcher<'a>: ReverseSearcher<'a>,
2572 {
2573 self.strip_prefix(prefix)?.strip_suffix(suffix)
2574 }
2575
2576 /// Returns a string slice with the optional prefix removed.
2577 ///
2578 /// If the string starts with the pattern `prefix`, returns the substring after the prefix.
2579 /// Unlike [`strip_prefix`], this method always returns `&str` for easy method chaining,
2580 /// instead of returning [`Option<&str>`].
2581 ///
2582 /// If the string does not start with `prefix`, returns the original string unchanged.
2583 ///
2584 /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a
2585 /// function or closure that determines if a character matches.
2586 ///
2587 /// [`char`]: prim@char
2588 /// [pattern]: self::pattern
2589 /// [`strip_prefix`]: Self::strip_prefix
2590 ///
2591 /// # Examples
2592 ///
2593 /// ```
2594 /// #![feature(trim_prefix_suffix)]
2595 ///
2596 /// // Prefix present - removes it
2597 /// assert_eq!("foo:bar".trim_prefix("foo:"), "bar");
2598 /// assert_eq!("foofoo".trim_prefix("foo"), "foo");
2599 ///
2600 /// // Prefix absent - returns original string
2601 /// assert_eq!("foo:bar".trim_prefix("bar"), "foo:bar");
2602 ///
2603 /// // Method chaining example
2604 /// assert_eq!("<https://example.com/>".trim_prefix('<').trim_suffix('>'), "https://example.com/");
2605 /// ```
2606 #[must_use = "this returns the remaining substring as a new slice, \
2607 without modifying the original"]
2608 #[unstable(feature = "trim_prefix_suffix", issue = "142312")]
2609 #[cfg(not(feature = "ferrocene_certified"))]
2610 pub fn trim_prefix<P: Pattern>(&self, prefix: P) -> &str {
2611 prefix.strip_prefix_of(self).unwrap_or(self)
2612 }
2613
2614 /// Returns a string slice with the optional suffix removed.
2615 ///
2616 /// If the string ends with the pattern `suffix`, returns the substring before the suffix.
2617 /// Unlike [`strip_suffix`], this method always returns `&str` for easy method chaining,
2618 /// instead of returning [`Option<&str>`].
2619 ///
2620 /// If the string does not end with `suffix`, returns the original string unchanged.
2621 ///
2622 /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a
2623 /// function or closure that determines if a character matches.
2624 ///
2625 /// [`char`]: prim@char
2626 /// [pattern]: self::pattern
2627 /// [`strip_suffix`]: Self::strip_suffix
2628 ///
2629 /// # Examples
2630 ///
2631 /// ```
2632 /// #![feature(trim_prefix_suffix)]
2633 ///
2634 /// // Suffix present - removes it
2635 /// assert_eq!("bar:foo".trim_suffix(":foo"), "bar");
2636 /// assert_eq!("foofoo".trim_suffix("foo"), "foo");
2637 ///
2638 /// // Suffix absent - returns original string
2639 /// assert_eq!("bar:foo".trim_suffix("bar"), "bar:foo");
2640 ///
2641 /// // Method chaining example
2642 /// assert_eq!("<https://example.com/>".trim_prefix('<').trim_suffix('>'), "https://example.com/");
2643 /// ```
2644 #[must_use = "this returns the remaining substring as a new slice, \
2645 without modifying the original"]
2646 #[unstable(feature = "trim_prefix_suffix", issue = "142312")]
2647 #[cfg(not(feature = "ferrocene_certified"))]
2648 pub fn trim_suffix<P: Pattern>(&self, suffix: P) -> &str
2649 where
2650 for<'a> P::Searcher<'a>: ReverseSearcher<'a>,
2651 {
2652 suffix.strip_suffix_of(self).unwrap_or(self)
2653 }
2654
2655 /// Returns a string slice with all suffixes that match a pattern
2656 /// repeatedly removed.
2657 ///
2658 /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a
2659 /// function or closure that determines if a character matches.
2660 ///
2661 /// [`char`]: prim@char
2662 /// [pattern]: self::pattern
2663 ///
2664 /// # Text directionality
2665 ///
2666 /// A string is a sequence of bytes. `end` in this context means the last
2667 /// position of that byte string; for a left-to-right language like English or
2668 /// Russian, this will be right side, and for right-to-left languages like
2669 /// Arabic or Hebrew, this will be the left side.
2670 ///
2671 /// # Examples
2672 ///
2673 /// Simple patterns:
2674 ///
2675 /// ```
2676 /// assert_eq!("11foo1bar11".trim_end_matches('1'), "11foo1bar");
2677 /// assert_eq!("123foo1bar123".trim_end_matches(char::is_numeric), "123foo1bar");
2678 ///
2679 /// let x: &[_] = &['1', '2'];
2680 /// assert_eq!("12foo1bar12".trim_end_matches(x), "12foo1bar");
2681 /// ```
2682 ///
2683 /// A more complex pattern, using a closure:
2684 ///
2685 /// ```
2686 /// assert_eq!("1fooX".trim_end_matches(|c| c == '1' || c == 'X'), "1foo");
2687 /// ```
2688 #[must_use = "this returns the trimmed string as a new slice, \
2689 without modifying the original"]
2690 #[stable(feature = "trim_direction", since = "1.30.0")]
2691 #[cfg(not(feature = "ferrocene_certified"))]
2692 pub fn trim_end_matches<P: Pattern>(&self, pat: P) -> &str
2693 where
2694 for<'a> P::Searcher<'a>: ReverseSearcher<'a>,
2695 {
2696 let mut j = 0;
2697 let mut matcher = pat.into_searcher(self);
2698 if let Some((_, b)) = matcher.next_reject_back() {
2699 j = b;
2700 }
2701 // SAFETY: `Searcher` is known to return valid indices.
2702 unsafe { self.get_unchecked(0..j) }
2703 }
2704
2705 /// Returns a string slice with all prefixes that match a pattern
2706 /// repeatedly removed.
2707 ///
2708 /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a
2709 /// function or closure that determines if a character matches.
2710 ///
2711 /// [`char`]: prim@char
2712 /// [pattern]: self::pattern
2713 ///
2714 /// # Text directionality
2715 ///
2716 /// A string is a sequence of bytes. 'Left' in this context means the first
2717 /// position of that byte string; for a language like Arabic or Hebrew
2718 /// which are 'right to left' rather than 'left to right', this will be
2719 /// the _right_ side, not the left.
2720 ///
2721 /// # Examples
2722 ///
2723 /// ```
2724 /// assert_eq!("11foo1bar11".trim_left_matches('1'), "foo1bar11");
2725 /// assert_eq!("123foo1bar123".trim_left_matches(char::is_numeric), "foo1bar123");
2726 ///
2727 /// let x: &[_] = &['1', '2'];
2728 /// assert_eq!("12foo1bar12".trim_left_matches(x), "foo1bar12");
2729 /// ```
2730 #[stable(feature = "rust1", since = "1.0.0")]
2731 #[deprecated(
2732 since = "1.33.0",
2733 note = "superseded by `trim_start_matches`",
2734 suggestion = "trim_start_matches"
2735 )]
2736 #[cfg(not(feature = "ferrocene_certified"))]
2737 pub fn trim_left_matches<P: Pattern>(&self, pat: P) -> &str {
2738 self.trim_start_matches(pat)
2739 }
2740
2741 /// Returns a string slice with all suffixes that match a pattern
2742 /// repeatedly removed.
2743 ///
2744 /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a
2745 /// function or closure that determines if a character matches.
2746 ///
2747 /// [`char`]: prim@char
2748 /// [pattern]: self::pattern
2749 ///
2750 /// # Text directionality
2751 ///
2752 /// A string is a sequence of bytes. 'Right' in this context means the last
2753 /// position of that byte string; for a language like Arabic or Hebrew
2754 /// which are 'right to left' rather than 'left to right', this will be
2755 /// the _left_ side, not the right.
2756 ///
2757 /// # Examples
2758 ///
2759 /// Simple patterns:
2760 ///
2761 /// ```
2762 /// assert_eq!("11foo1bar11".trim_right_matches('1'), "11foo1bar");
2763 /// assert_eq!("123foo1bar123".trim_right_matches(char::is_numeric), "123foo1bar");
2764 ///
2765 /// let x: &[_] = &['1', '2'];
2766 /// assert_eq!("12foo1bar12".trim_right_matches(x), "12foo1bar");
2767 /// ```
2768 ///
2769 /// A more complex pattern, using a closure:
2770 ///
2771 /// ```
2772 /// assert_eq!("1fooX".trim_right_matches(|c| c == '1' || c == 'X'), "1foo");
2773 /// ```
2774 #[stable(feature = "rust1", since = "1.0.0")]
2775 #[deprecated(
2776 since = "1.33.0",
2777 note = "superseded by `trim_end_matches`",
2778 suggestion = "trim_end_matches"
2779 )]
2780 #[cfg(not(feature = "ferrocene_certified"))]
2781 pub fn trim_right_matches<P: Pattern>(&self, pat: P) -> &str
2782 where
2783 for<'a> P::Searcher<'a>: ReverseSearcher<'a>,
2784 {
2785 self.trim_end_matches(pat)
2786 }
2787
2788 /// Parses this string slice into another type.
2789 ///
2790 /// Because `parse` is so general, it can cause problems with type
2791 /// inference. As such, `parse` is one of the few times you'll see
2792 /// the syntax affectionately known as the 'turbofish': `::<>`. This
2793 /// helps the inference algorithm understand specifically which type
2794 /// you're trying to parse into.
2795 ///
2796 /// `parse` can parse into any type that implements the [`FromStr`] trait.
2797 ///
2798 /// # Errors
2799 ///
2800 /// Will return [`Err`] if it's not possible to parse this string slice into
2801 /// the desired type.
2802 ///
2803 /// [`Err`]: FromStr::Err
2804 ///
2805 /// # Examples
2806 ///
2807 /// Basic usage:
2808 ///
2809 /// ```
2810 /// let four: u32 = "4".parse().unwrap();
2811 ///
2812 /// assert_eq!(4, four);
2813 /// ```
2814 ///
2815 /// Using the 'turbofish' instead of annotating `four`:
2816 ///
2817 /// ```
2818 /// let four = "4".parse::<u32>();
2819 ///
2820 /// assert_eq!(Ok(4), four);
2821 /// ```
2822 ///
2823 /// Failing to parse:
2824 ///
2825 /// ```
2826 /// let nope = "j".parse::<u32>();
2827 ///
2828 /// assert!(nope.is_err());
2829 /// ```
2830 #[inline]
2831 #[stable(feature = "rust1", since = "1.0.0")]
2832 pub fn parse<F: FromStr>(&self) -> Result<F, F::Err> {
2833 FromStr::from_str(self)
2834 }
2835
2836 /// Checks if all characters in this string are within the ASCII range.
2837 ///
2838 /// An empty string returns `true`.
2839 ///
2840 /// # Examples
2841 ///
2842 /// ```
2843 /// let ascii = "hello!\n";
2844 /// let non_ascii = "Grüße, Jürgen ❤";
2845 ///
2846 /// assert!(ascii.is_ascii());
2847 /// assert!(!non_ascii.is_ascii());
2848 /// ```
2849 #[stable(feature = "ascii_methods_on_intrinsics", since = "1.23.0")]
2850 #[rustc_const_stable(feature = "const_slice_is_ascii", since = "1.74.0")]
2851 #[must_use]
2852 #[inline]
2853 #[cfg(not(feature = "ferrocene_certified"))]
2854 pub const fn is_ascii(&self) -> bool {
2855 // We can treat each byte as character here: all multibyte characters
2856 // start with a byte that is not in the ASCII range, so we will stop
2857 // there already.
2858 self.as_bytes().is_ascii()
2859 }
2860
2861 /// If this string slice [`is_ascii`](Self::is_ascii), returns it as a slice
2862 /// of [ASCII characters](`ascii::Char`), otherwise returns `None`.
2863 #[unstable(feature = "ascii_char", issue = "110998")]
2864 #[must_use]
2865 #[inline]
2866 #[cfg(not(feature = "ferrocene_certified"))]
2867 pub const fn as_ascii(&self) -> Option<&[ascii::Char]> {
2868 // Like in `is_ascii`, we can work on the bytes directly.
2869 self.as_bytes().as_ascii()
2870 }
2871
2872 /// Converts this string slice into a slice of [ASCII characters](ascii::Char),
2873 /// without checking whether they are valid.
2874 ///
2875 /// # Safety
2876 ///
2877 /// Every character in this string must be ASCII, or else this is UB.
2878 #[unstable(feature = "ascii_char", issue = "110998")]
2879 #[must_use]
2880 #[inline]
2881 #[cfg(not(feature = "ferrocene_certified"))]
2882 pub const unsafe fn as_ascii_unchecked(&self) -> &[ascii::Char] {
2883 assert_unsafe_precondition!(
2884 check_library_ub,
2885 "as_ascii_unchecked requires that the string is valid ASCII",
2886 (it: &str = self) => it.is_ascii()
2887 );
2888
2889 // SAFETY: the caller promised that every byte of this string slice
2890 // is ASCII.
2891 unsafe { self.as_bytes().as_ascii_unchecked() }
2892 }
2893
2894 /// Checks that two strings are an ASCII case-insensitive match.
2895 ///
2896 /// Same as `to_ascii_lowercase(a) == to_ascii_lowercase(b)`,
2897 /// but without allocating and copying temporaries.
2898 ///
2899 /// # Examples
2900 ///
2901 /// ```
2902 /// assert!("Ferris".eq_ignore_ascii_case("FERRIS"));
2903 /// assert!("Ferrös".eq_ignore_ascii_case("FERRöS"));
2904 /// assert!(!"Ferrös".eq_ignore_ascii_case("FERRÖS"));
2905 /// ```
2906 #[stable(feature = "ascii_methods_on_intrinsics", since = "1.23.0")]
2907 #[rustc_const_stable(feature = "const_eq_ignore_ascii_case", since = "1.89.0")]
2908 #[must_use]
2909 #[inline]
2910 #[cfg(not(feature = "ferrocene_certified"))]
2911 pub const fn eq_ignore_ascii_case(&self, other: &str) -> bool {
2912 self.as_bytes().eq_ignore_ascii_case(other.as_bytes())
2913 }
2914
2915 /// Converts this string to its ASCII upper case equivalent in-place.
2916 ///
2917 /// ASCII letters 'a' to 'z' are mapped to 'A' to 'Z',
2918 /// but non-ASCII letters are unchanged.
2919 ///
2920 /// To return a new uppercased value without modifying the existing one, use
2921 /// [`to_ascii_uppercase()`].
2922 ///
2923 /// [`to_ascii_uppercase()`]: #method.to_ascii_uppercase
2924 ///
2925 /// # Examples
2926 ///
2927 /// ```
2928 /// let mut s = String::from("Grüße, Jürgen ❤");
2929 ///
2930 /// s.make_ascii_uppercase();
2931 ///
2932 /// assert_eq!("GRüßE, JüRGEN ❤", s);
2933 /// ```
2934 #[stable(feature = "ascii_methods_on_intrinsics", since = "1.23.0")]
2935 #[rustc_const_stable(feature = "const_make_ascii", since = "1.84.0")]
2936 #[inline]
2937 #[cfg(not(feature = "ferrocene_certified"))]
2938 pub const fn make_ascii_uppercase(&mut self) {
2939 // SAFETY: changing ASCII letters only does not invalidate UTF-8.
2940 let me = unsafe { self.as_bytes_mut() };
2941 me.make_ascii_uppercase()
2942 }
2943
2944 /// Converts this string to its ASCII lower case equivalent in-place.
2945 ///
2946 /// ASCII letters 'A' to 'Z' are mapped to 'a' to 'z',
2947 /// but non-ASCII letters are unchanged.
2948 ///
2949 /// To return a new lowercased value without modifying the existing one, use
2950 /// [`to_ascii_lowercase()`].
2951 ///
2952 /// [`to_ascii_lowercase()`]: #method.to_ascii_lowercase
2953 ///
2954 /// # Examples
2955 ///
2956 /// ```
2957 /// let mut s = String::from("GRÜßE, JÜRGEN ❤");
2958 ///
2959 /// s.make_ascii_lowercase();
2960 ///
2961 /// assert_eq!("grÜße, jÜrgen ❤", s);
2962 /// ```
2963 #[stable(feature = "ascii_methods_on_intrinsics", since = "1.23.0")]
2964 #[rustc_const_stable(feature = "const_make_ascii", since = "1.84.0")]
2965 #[inline]
2966 #[cfg(not(feature = "ferrocene_certified"))]
2967 pub const fn make_ascii_lowercase(&mut self) {
2968 // SAFETY: changing ASCII letters only does not invalidate UTF-8.
2969 let me = unsafe { self.as_bytes_mut() };
2970 me.make_ascii_lowercase()
2971 }
2972
2973 /// Returns a string slice with leading ASCII whitespace removed.
2974 ///
2975 /// 'Whitespace' refers to the definition used by
2976 /// [`u8::is_ascii_whitespace`].
2977 ///
2978 /// [`u8::is_ascii_whitespace`]: u8::is_ascii_whitespace
2979 ///
2980 /// # Examples
2981 ///
2982 /// ```
2983 /// assert_eq!(" \t \u{3000}hello world\n".trim_ascii_start(), "\u{3000}hello world\n");
2984 /// assert_eq!(" ".trim_ascii_start(), "");
2985 /// assert_eq!("".trim_ascii_start(), "");
2986 /// ```
2987 #[must_use = "this returns the trimmed string as a new slice, \
2988 without modifying the original"]
2989 #[stable(feature = "byte_slice_trim_ascii", since = "1.80.0")]
2990 #[rustc_const_stable(feature = "byte_slice_trim_ascii", since = "1.80.0")]
2991 #[inline]
2992 #[cfg(not(feature = "ferrocene_certified"))]
2993 pub const fn trim_ascii_start(&self) -> &str {
2994 // SAFETY: Removing ASCII characters from a `&str` does not invalidate
2995 // UTF-8.
2996 unsafe { core::str::from_utf8_unchecked(self.as_bytes().trim_ascii_start()) }
2997 }
2998
2999 /// Returns a string slice with trailing ASCII whitespace removed.
3000 ///
3001 /// 'Whitespace' refers to the definition used by
3002 /// [`u8::is_ascii_whitespace`].
3003 ///
3004 /// [`u8::is_ascii_whitespace`]: u8::is_ascii_whitespace
3005 ///
3006 /// # Examples
3007 ///
3008 /// ```
3009 /// assert_eq!("\r hello world\u{3000}\n ".trim_ascii_end(), "\r hello world\u{3000}");
3010 /// assert_eq!(" ".trim_ascii_end(), "");
3011 /// assert_eq!("".trim_ascii_end(), "");
3012 /// ```
3013 #[must_use = "this returns the trimmed string as a new slice, \
3014 without modifying the original"]
3015 #[stable(feature = "byte_slice_trim_ascii", since = "1.80.0")]
3016 #[rustc_const_stable(feature = "byte_slice_trim_ascii", since = "1.80.0")]
3017 #[inline]
3018 #[cfg(not(feature = "ferrocene_certified"))]
3019 pub const fn trim_ascii_end(&self) -> &str {
3020 // SAFETY: Removing ASCII characters from a `&str` does not invalidate
3021 // UTF-8.
3022 unsafe { core::str::from_utf8_unchecked(self.as_bytes().trim_ascii_end()) }
3023 }
3024
3025 /// Returns a string slice with leading and trailing ASCII whitespace
3026 /// removed.
3027 ///
3028 /// 'Whitespace' refers to the definition used by
3029 /// [`u8::is_ascii_whitespace`].
3030 ///
3031 /// [`u8::is_ascii_whitespace`]: u8::is_ascii_whitespace
3032 ///
3033 /// # Examples
3034 ///
3035 /// ```
3036 /// assert_eq!("\r hello world\n ".trim_ascii(), "hello world");
3037 /// assert_eq!(" ".trim_ascii(), "");
3038 /// assert_eq!("".trim_ascii(), "");
3039 /// ```
3040 #[must_use = "this returns the trimmed string as a new slice, \
3041 without modifying the original"]
3042 #[stable(feature = "byte_slice_trim_ascii", since = "1.80.0")]
3043 #[rustc_const_stable(feature = "byte_slice_trim_ascii", since = "1.80.0")]
3044 #[inline]
3045 #[cfg(not(feature = "ferrocene_certified"))]
3046 pub const fn trim_ascii(&self) -> &str {
3047 // SAFETY: Removing ASCII characters from a `&str` does not invalidate
3048 // UTF-8.
3049 unsafe { core::str::from_utf8_unchecked(self.as_bytes().trim_ascii()) }
3050 }
3051
3052 /// Returns an iterator that escapes each char in `self` with [`char::escape_debug`].
3053 ///
3054 /// Note: only extended grapheme codepoints that begin the string will be
3055 /// escaped.
3056 ///
3057 /// # Examples
3058 ///
3059 /// As an iterator:
3060 ///
3061 /// ```
3062 /// for c in "❤\n!".escape_debug() {
3063 /// print!("{c}");
3064 /// }
3065 /// println!();
3066 /// ```
3067 ///
3068 /// Using `println!` directly:
3069 ///
3070 /// ```
3071 /// println!("{}", "❤\n!".escape_debug());
3072 /// ```
3073 ///
3074 ///
3075 /// Both are equivalent to:
3076 ///
3077 /// ```
3078 /// println!("❤\\n!");
3079 /// ```
3080 ///
3081 /// Using `to_string`:
3082 ///
3083 /// ```
3084 /// assert_eq!("❤\n!".escape_debug().to_string(), "❤\\n!");
3085 /// ```
3086 #[must_use = "this returns the escaped string as an iterator, \
3087 without modifying the original"]
3088 #[stable(feature = "str_escape", since = "1.34.0")]
3089 #[cfg(not(feature = "ferrocene_certified"))]
3090 pub fn escape_debug(&self) -> EscapeDebug<'_> {
3091 let mut chars = self.chars();
3092 EscapeDebug {
3093 inner: chars
3094 .next()
3095 .map(|first| first.escape_debug_ext(EscapeDebugExtArgs::ESCAPE_ALL))
3096 .into_iter()
3097 .flatten()
3098 .chain(chars.flat_map(CharEscapeDebugContinue)),
3099 }
3100 }
3101
3102 /// Returns an iterator that escapes each char in `self` with [`char::escape_default`].
3103 ///
3104 /// # Examples
3105 ///
3106 /// As an iterator:
3107 ///
3108 /// ```
3109 /// for c in "❤\n!".escape_default() {
3110 /// print!("{c}");
3111 /// }
3112 /// println!();
3113 /// ```
3114 ///
3115 /// Using `println!` directly:
3116 ///
3117 /// ```
3118 /// println!("{}", "❤\n!".escape_default());
3119 /// ```
3120 ///
3121 ///
3122 /// Both are equivalent to:
3123 ///
3124 /// ```
3125 /// println!("\\u{{2764}}\\n!");
3126 /// ```
3127 ///
3128 /// Using `to_string`:
3129 ///
3130 /// ```
3131 /// assert_eq!("❤\n!".escape_default().to_string(), "\\u{2764}\\n!");
3132 /// ```
3133 #[must_use = "this returns the escaped string as an iterator, \
3134 without modifying the original"]
3135 #[stable(feature = "str_escape", since = "1.34.0")]
3136 #[cfg(not(feature = "ferrocene_certified"))]
3137 pub fn escape_default(&self) -> EscapeDefault<'_> {
3138 EscapeDefault { inner: self.chars().flat_map(CharEscapeDefault) }
3139 }
3140
3141 /// Returns an iterator that escapes each char in `self` with [`char::escape_unicode`].
3142 ///
3143 /// # Examples
3144 ///
3145 /// As an iterator:
3146 ///
3147 /// ```
3148 /// for c in "❤\n!".escape_unicode() {
3149 /// print!("{c}");
3150 /// }
3151 /// println!();
3152 /// ```
3153 ///
3154 /// Using `println!` directly:
3155 ///
3156 /// ```
3157 /// println!("{}", "❤\n!".escape_unicode());
3158 /// ```
3159 ///
3160 ///
3161 /// Both are equivalent to:
3162 ///
3163 /// ```
3164 /// println!("\\u{{2764}}\\u{{a}}\\u{{21}}");
3165 /// ```
3166 ///
3167 /// Using `to_string`:
3168 ///
3169 /// ```
3170 /// assert_eq!("❤\n!".escape_unicode().to_string(), "\\u{2764}\\u{a}\\u{21}");
3171 /// ```
3172 #[must_use = "this returns the escaped string as an iterator, \
3173 without modifying the original"]
3174 #[stable(feature = "str_escape", since = "1.34.0")]
3175 #[cfg(not(feature = "ferrocene_certified"))]
3176 pub fn escape_unicode(&self) -> EscapeUnicode<'_> {
3177 EscapeUnicode { inner: self.chars().flat_map(CharEscapeUnicode) }
3178 }
3179
3180 /// Returns the range that a substring points to.
3181 ///
3182 /// Returns `None` if `substr` does not point within `self`.
3183 ///
3184 /// Unlike [`str::find`], **this does not search through the string**.
3185 /// Instead, it uses pointer arithmetic to find where in the string
3186 /// `substr` is derived from.
3187 ///
3188 /// This is useful for extending [`str::split`] and similar methods.
3189 ///
3190 /// Note that this method may return false positives (typically either
3191 /// `Some(0..0)` or `Some(self.len()..self.len())`) if `substr` is a
3192 /// zero-length `str` that points at the beginning or end of another,
3193 /// independent, `str`.
3194 ///
3195 /// # Examples
3196 /// ```
3197 /// #![feature(substr_range)]
3198 ///
3199 /// let data = "a, b, b, a";
3200 /// let mut iter = data.split(", ").map(|s| data.substr_range(s).unwrap());
3201 ///
3202 /// assert_eq!(iter.next(), Some(0..1));
3203 /// assert_eq!(iter.next(), Some(3..4));
3204 /// assert_eq!(iter.next(), Some(6..7));
3205 /// assert_eq!(iter.next(), Some(9..10));
3206 /// ```
3207 #[must_use]
3208 #[unstable(feature = "substr_range", issue = "126769")]
3209 #[cfg(not(feature = "ferrocene_certified"))]
3210 pub fn substr_range(&self, substr: &str) -> Option<Range<usize>> {
3211 self.as_bytes().subslice_range(substr.as_bytes())
3212 }
3213
3214 /// Returns the same string as a string slice `&str`.
3215 ///
3216 /// This method is redundant when used directly on `&str`, but
3217 /// it helps dereferencing other string-like types to string slices,
3218 /// for example references to `Box<str>` or `Arc<str>`.
3219 #[inline]
3220 #[unstable(feature = "str_as_str", issue = "130366")]
3221 pub const fn as_str(&self) -> &str {
3222 self
3223 }
3224}
3225
3226#[stable(feature = "rust1", since = "1.0.0")]
3227#[rustc_const_unstable(feature = "const_convert", issue = "143773")]
3228impl const AsRef<[u8]> for str {
3229 #[inline]
3230 fn as_ref(&self) -> &[u8] {
3231 self.as_bytes()
3232 }
3233}
3234
3235#[stable(feature = "rust1", since = "1.0.0")]
3236#[rustc_const_unstable(feature = "const_default", issue = "143894")]
3237impl const Default for &str {
3238 /// Creates an empty str
3239 #[inline]
3240 fn default() -> Self {
3241 ""
3242 }
3243}
3244
3245#[stable(feature = "default_mut_str", since = "1.28.0")]
3246#[rustc_const_unstable(feature = "const_default", issue = "143894")]
3247#[cfg(not(feature = "ferrocene_certified"))]
3248impl const Default for &mut str {
3249 /// Creates an empty mutable str
3250 #[inline]
3251 fn default() -> Self {
3252 // SAFETY: The empty string is valid UTF-8.
3253 unsafe { from_utf8_unchecked_mut(&mut []) }
3254 }
3255}
3256
3257#[cfg(not(feature = "ferrocene_certified"))]
3258impl_fn_for_zst! {
3259 /// A nameable, cloneable fn type
3260 #[derive(Clone)]
3261 struct LinesMap impl<'a> Fn = |line: &'a str| -> &'a str {
3262 let Some(line) = line.strip_suffix('\n') else { return line };
3263 let Some(line) = line.strip_suffix('\r') else { return line };
3264 line
3265 };
3266
3267 #[derive(Clone)]
3268 struct CharEscapeDebugContinue impl Fn = |c: char| -> char::EscapeDebug {
3269 c.escape_debug_ext(EscapeDebugExtArgs {
3270 escape_grapheme_extended: false,
3271 escape_single_quote: true,
3272 escape_double_quote: true
3273 })
3274 };
3275
3276 #[derive(Clone)]
3277 struct CharEscapeUnicode impl Fn = |c: char| -> char::EscapeUnicode {
3278 c.escape_unicode()
3279 };
3280 #[derive(Clone)]
3281 struct CharEscapeDefault impl Fn = |c: char| -> char::EscapeDefault {
3282 c.escape_default()
3283 };
3284
3285 #[derive(Clone)]
3286 struct IsWhitespace impl Fn = |c: char| -> bool {
3287 c.is_whitespace()
3288 };
3289
3290 #[derive(Clone)]
3291 struct IsAsciiWhitespace impl Fn = |byte: &u8| -> bool {
3292 byte.is_ascii_whitespace()
3293 };
3294
3295 #[derive(Clone)]
3296 struct IsNotEmpty impl<'a, 'b> Fn = |s: &'a &'b str| -> bool {
3297 !s.is_empty()
3298 };
3299
3300 #[derive(Clone)]
3301 struct BytesIsNotEmpty impl<'a, 'b> Fn = |s: &'a &'b [u8]| -> bool {
3302 !s.is_empty()
3303 };
3304
3305 #[derive(Clone)]
3306 struct UnsafeBytesToStr impl<'a> Fn = |bytes: &'a [u8]| -> &'a str {
3307 // SAFETY: not safe
3308 unsafe { from_utf8_unchecked(bytes) }
3309 };
3310}
3311
3312// This is required to make `impl From<&str> for Box<dyn Error>` and `impl<E> From<E> for Box<dyn Error>` not overlap.
3313#[stable(feature = "error_in_core_neg_impl", since = "1.65.0")]
3314#[cfg(not(feature = "ferrocene_certified"))]
3315impl !crate::error::Error for &str {}