core/str/mod.rs
1//! String manipulation.
2//!
3//! For more details, see the [`std::str`] module.
4//!
5//! [`std::str`]: ../../std/str/index.html
6
7#![stable(feature = "rust1", since = "1.0.0")]
8
9mod converts;
10#[cfg(not(feature = "ferrocene_certified"))]
11mod count;
12mod error;
13#[cfg(not(feature = "ferrocene_certified"))]
14mod iter;
15mod traits;
16mod validations;
17
18#[cfg(not(feature = "ferrocene_certified"))]
19use self::pattern::{DoubleEndedSearcher, Pattern, ReverseSearcher, Searcher};
20#[cfg(not(feature = "ferrocene_certified"))]
21use crate::char::{self, EscapeDebugExtArgs};
22#[cfg(not(feature = "ferrocene_certified"))]
23use crate::ops::Range;
24#[cfg(not(feature = "ferrocene_certified"))]
25use crate::slice::{self, SliceIndex};
26#[cfg(not(feature = "ferrocene_certified"))]
27use crate::ub_checks::assert_unsafe_precondition;
28#[cfg(not(feature = "ferrocene_certified"))]
29use crate::{ascii, mem};
30
31// Ferrocene addition: imports for certified subset
32#[cfg(feature = "ferrocene_certified")]
33#[rustfmt::skip]
34use crate::mem;
35
36#[cfg(not(feature = "ferrocene_certified"))]
37pub mod pattern;
38
39#[cfg(not(feature = "ferrocene_certified"))]
40mod lossy;
41#[unstable(feature = "str_from_raw_parts", issue = "119206")]
42#[cfg(not(feature = "ferrocene_certified"))]
43pub use converts::{from_raw_parts, from_raw_parts_mut};
44#[stable(feature = "rust1", since = "1.0.0")]
45pub use converts::{from_utf8, from_utf8_unchecked};
46#[stable(feature = "str_mut_extras", since = "1.20.0")]
47pub use converts::{from_utf8_mut, from_utf8_unchecked_mut};
48#[stable(feature = "rust1", since = "1.0.0")]
49#[cfg(not(feature = "ferrocene_certified"))]
50pub use error::{ParseBoolError, Utf8Error};
51#[stable(feature = "encode_utf16", since = "1.8.0")]
52#[cfg(not(feature = "ferrocene_certified"))]
53pub use iter::EncodeUtf16;
54#[stable(feature = "rust1", since = "1.0.0")]
55#[allow(deprecated)]
56#[cfg(not(feature = "ferrocene_certified"))]
57pub use iter::LinesAny;
58#[stable(feature = "split_ascii_whitespace", since = "1.34.0")]
59#[cfg(not(feature = "ferrocene_certified"))]
60pub use iter::SplitAsciiWhitespace;
61#[stable(feature = "split_inclusive", since = "1.51.0")]
62#[cfg(not(feature = "ferrocene_certified"))]
63pub use iter::SplitInclusive;
64#[stable(feature = "rust1", since = "1.0.0")]
65#[cfg(not(feature = "ferrocene_certified"))]
66pub use iter::{Bytes, CharIndices, Chars, Lines, SplitWhitespace};
67#[stable(feature = "str_escape", since = "1.34.0")]
68#[cfg(not(feature = "ferrocene_certified"))]
69pub use iter::{EscapeDebug, EscapeDefault, EscapeUnicode};
70#[stable(feature = "str_match_indices", since = "1.5.0")]
71#[cfg(not(feature = "ferrocene_certified"))]
72pub use iter::{MatchIndices, RMatchIndices};
73#[cfg(not(feature = "ferrocene_certified"))]
74use iter::{MatchIndicesInternal, MatchesInternal, SplitInternal, SplitNInternal};
75#[stable(feature = "str_matches", since = "1.2.0")]
76#[cfg(not(feature = "ferrocene_certified"))]
77pub use iter::{Matches, RMatches};
78#[stable(feature = "rust1", since = "1.0.0")]
79#[cfg(not(feature = "ferrocene_certified"))]
80pub use iter::{RSplit, RSplitTerminator, Split, SplitTerminator};
81#[stable(feature = "rust1", since = "1.0.0")]
82#[cfg(not(feature = "ferrocene_certified"))]
83pub use iter::{RSplitN, SplitN};
84#[stable(feature = "utf8_chunks", since = "1.79.0")]
85#[cfg(not(feature = "ferrocene_certified"))]
86pub use lossy::{Utf8Chunk, Utf8Chunks};
87#[stable(feature = "rust1", since = "1.0.0")]
88pub use traits::FromStr;
89#[unstable(feature = "str_internals", issue = "none")]
90#[cfg(not(feature = "ferrocene_certified"))]
91pub use validations::{next_code_point, utf8_char_width};
92
93#[stable(feature = "rust1", since = "1.0.0")]
94#[cfg(feature = "ferrocene_certified")]
95#[rustfmt::skip]
96pub use {error::Utf8Error, validations::utf8_char_width};
97
98#[inline(never)]
99#[cold]
100#[track_caller]
101#[rustc_allow_const_fn_unstable(const_eval_select)]
102#[cfg(not(panic = "immediate-abort"))]
103#[cfg(not(feature = "ferrocene_certified"))]
104const fn slice_error_fail(s: &str, begin: usize, end: usize) -> ! {
105 crate::intrinsics::const_eval_select((s, begin, end), slice_error_fail_ct, slice_error_fail_rt)
106}
107
108#[cfg(panic = "immediate-abort")]
109#[cfg(not(feature = "ferrocene_certified"))]
110const fn slice_error_fail(s: &str, begin: usize, end: usize) -> ! {
111 slice_error_fail_ct(s, begin, end)
112}
113
114#[track_caller]
115#[cfg(not(feature = "ferrocene_certified"))]
116const fn slice_error_fail_ct(_: &str, _: usize, _: usize) -> ! {
117 panic!("failed to slice string");
118}
119
120#[track_caller]
121#[cfg(not(feature = "ferrocene_certified"))]
122fn slice_error_fail_rt(s: &str, begin: usize, end: usize) -> ! {
123 const MAX_DISPLAY_LENGTH: usize = 256;
124 let trunc_len = s.floor_char_boundary(MAX_DISPLAY_LENGTH);
125 let s_trunc = &s[..trunc_len];
126 let ellipsis = if trunc_len < s.len() { "[...]" } else { "" };
127
128 // 1. out of bounds
129 if begin > s.len() || end > s.len() {
130 let oob_index = if begin > s.len() { begin } else { end };
131 panic!("byte index {oob_index} is out of bounds of `{s_trunc}`{ellipsis}");
132 }
133
134 // 2. begin <= end
135 assert!(
136 begin <= end,
137 "begin <= end ({} <= {}) when slicing `{}`{}",
138 begin,
139 end,
140 s_trunc,
141 ellipsis
142 );
143
144 // 3. character boundary
145 let index = if !s.is_char_boundary(begin) { begin } else { end };
146 // find the character
147 let char_start = s.floor_char_boundary(index);
148 // `char_start` must be less than len and a char boundary
149 let ch = s[char_start..].chars().next().unwrap();
150 let char_range = char_start..char_start + ch.len_utf8();
151 panic!(
152 "byte index {} is not a char boundary; it is inside {:?} (bytes {:?}) of `{}`{}",
153 index, ch, char_range, s_trunc, ellipsis
154 );
155}
156
157impl str {
158 /// Returns the length of `self`.
159 ///
160 /// This length is in bytes, not [`char`]s or graphemes. In other words,
161 /// it might not be what a human considers the length of the string.
162 ///
163 /// [`char`]: prim@char
164 ///
165 /// # Examples
166 ///
167 /// ```
168 /// let len = "foo".len();
169 /// assert_eq!(3, len);
170 ///
171 /// assert_eq!("ƒoo".len(), 4); // fancy f!
172 /// assert_eq!("ƒoo".chars().count(), 3);
173 /// ```
174 #[stable(feature = "rust1", since = "1.0.0")]
175 #[rustc_const_stable(feature = "const_str_len", since = "1.39.0")]
176 #[rustc_diagnostic_item = "str_len"]
177 #[rustc_no_implicit_autorefs]
178 #[must_use]
179 #[inline]
180 pub const fn len(&self) -> usize {
181 self.as_bytes().len()
182 }
183
184 /// Returns `true` if `self` has a length of zero bytes.
185 ///
186 /// # Examples
187 ///
188 /// ```
189 /// let s = "";
190 /// assert!(s.is_empty());
191 ///
192 /// let s = "not empty";
193 /// assert!(!s.is_empty());
194 /// ```
195 #[stable(feature = "rust1", since = "1.0.0")]
196 #[rustc_const_stable(feature = "const_str_is_empty", since = "1.39.0")]
197 #[rustc_no_implicit_autorefs]
198 #[must_use]
199 #[inline]
200 pub const fn is_empty(&self) -> bool {
201 self.len() == 0
202 }
203
204 /// Converts a slice of bytes to a string slice.
205 ///
206 /// A string slice ([`&str`]) is made of bytes ([`u8`]), and a byte slice
207 /// ([`&[u8]`][byteslice]) is made of bytes, so this function converts between
208 /// the two. Not all byte slices are valid string slices, however: [`&str`] requires
209 /// that it is valid UTF-8. `from_utf8()` checks to ensure that the bytes are valid
210 /// UTF-8, and then does the conversion.
211 ///
212 /// [`&str`]: str
213 /// [byteslice]: prim@slice
214 ///
215 /// If you are sure that the byte slice is valid UTF-8, and you don't want to
216 /// incur the overhead of the validity check, there is an unsafe version of
217 /// this function, [`from_utf8_unchecked`], which has the same
218 /// behavior but skips the check.
219 ///
220 /// If you need a `String` instead of a `&str`, consider
221 /// [`String::from_utf8`][string].
222 ///
223 /// [string]: ../std/string/struct.String.html#method.from_utf8
224 ///
225 /// Because you can stack-allocate a `[u8; N]`, and you can take a
226 /// [`&[u8]`][byteslice] of it, this function is one way to have a
227 /// stack-allocated string. There is an example of this in the
228 /// examples section below.
229 ///
230 /// [byteslice]: slice
231 ///
232 /// # Errors
233 ///
234 /// Returns `Err` if the slice is not UTF-8 with a description as to why the
235 /// provided slice is not UTF-8.
236 ///
237 /// # Examples
238 ///
239 /// Basic usage:
240 ///
241 /// ```
242 /// // some bytes, in a vector
243 /// let sparkle_heart = vec![240, 159, 146, 150];
244 ///
245 /// // We can use the ? (try) operator to check if the bytes are valid
246 /// let sparkle_heart = str::from_utf8(&sparkle_heart)?;
247 ///
248 /// assert_eq!("💖", sparkle_heart);
249 /// # Ok::<_, std::str::Utf8Error>(())
250 /// ```
251 ///
252 /// Incorrect bytes:
253 ///
254 /// ```
255 /// // some invalid bytes, in a vector
256 /// let sparkle_heart = vec![0, 159, 146, 150];
257 ///
258 /// assert!(str::from_utf8(&sparkle_heart).is_err());
259 /// ```
260 ///
261 /// See the docs for [`Utf8Error`] for more details on the kinds of
262 /// errors that can be returned.
263 ///
264 /// A "stack allocated string":
265 ///
266 /// ```
267 /// // some bytes, in a stack-allocated array
268 /// let sparkle_heart = [240, 159, 146, 150];
269 ///
270 /// // We know these bytes are valid, so just use `unwrap()`.
271 /// let sparkle_heart: &str = str::from_utf8(&sparkle_heart).unwrap();
272 ///
273 /// assert_eq!("💖", sparkle_heart);
274 /// ```
275 #[stable(feature = "inherent_str_constructors", since = "1.87.0")]
276 #[rustc_const_stable(feature = "inherent_str_constructors", since = "1.87.0")]
277 #[rustc_diagnostic_item = "str_inherent_from_utf8"]
278 pub const fn from_utf8(v: &[u8]) -> Result<&str, Utf8Error> {
279 converts::from_utf8(v)
280 }
281
282 /// Converts a mutable slice of bytes to a mutable string slice.
283 ///
284 /// # Examples
285 ///
286 /// Basic usage:
287 ///
288 /// ```
289 /// // "Hello, Rust!" as a mutable vector
290 /// let mut hellorust = vec![72, 101, 108, 108, 111, 44, 32, 82, 117, 115, 116, 33];
291 ///
292 /// // As we know these bytes are valid, we can use `unwrap()`
293 /// let outstr = str::from_utf8_mut(&mut hellorust).unwrap();
294 ///
295 /// assert_eq!("Hello, Rust!", outstr);
296 /// ```
297 ///
298 /// Incorrect bytes:
299 ///
300 /// ```
301 /// // Some invalid bytes in a mutable vector
302 /// let mut invalid = vec![128, 223];
303 ///
304 /// assert!(str::from_utf8_mut(&mut invalid).is_err());
305 /// ```
306 /// See the docs for [`Utf8Error`] for more details on the kinds of
307 /// errors that can be returned.
308 #[stable(feature = "inherent_str_constructors", since = "1.87.0")]
309 #[rustc_const_stable(feature = "const_str_from_utf8", since = "1.87.0")]
310 #[rustc_diagnostic_item = "str_inherent_from_utf8_mut"]
311 pub const fn from_utf8_mut(v: &mut [u8]) -> Result<&mut str, Utf8Error> {
312 converts::from_utf8_mut(v)
313 }
314
315 /// Converts a slice of bytes to a string slice without checking
316 /// that the string contains valid UTF-8.
317 ///
318 /// See the safe version, [`from_utf8`], for more information.
319 ///
320 /// # Safety
321 ///
322 /// The bytes passed in must be valid UTF-8.
323 ///
324 /// # Examples
325 ///
326 /// Basic usage:
327 ///
328 /// ```
329 /// // some bytes, in a vector
330 /// let sparkle_heart = vec![240, 159, 146, 150];
331 ///
332 /// let sparkle_heart = unsafe {
333 /// str::from_utf8_unchecked(&sparkle_heart)
334 /// };
335 ///
336 /// assert_eq!("💖", sparkle_heart);
337 /// ```
338 #[inline]
339 #[must_use]
340 #[stable(feature = "inherent_str_constructors", since = "1.87.0")]
341 #[rustc_const_stable(feature = "inherent_str_constructors", since = "1.87.0")]
342 #[rustc_diagnostic_item = "str_inherent_from_utf8_unchecked"]
343 pub const unsafe fn from_utf8_unchecked(v: &[u8]) -> &str {
344 // SAFETY: converts::from_utf8_unchecked has the same safety requirements as this function.
345 unsafe { converts::from_utf8_unchecked(v) }
346 }
347
348 /// Converts a slice of bytes to a string slice without checking
349 /// that the string contains valid UTF-8; mutable version.
350 ///
351 /// See the immutable version, [`from_utf8_unchecked()`] for documentation and safety requirements.
352 ///
353 /// # Examples
354 ///
355 /// Basic usage:
356 ///
357 /// ```
358 /// let mut heart = vec![240, 159, 146, 150];
359 /// let heart = unsafe { str::from_utf8_unchecked_mut(&mut heart) };
360 ///
361 /// assert_eq!("💖", heart);
362 /// ```
363 #[inline]
364 #[must_use]
365 #[stable(feature = "inherent_str_constructors", since = "1.87.0")]
366 #[rustc_const_stable(feature = "inherent_str_constructors", since = "1.87.0")]
367 #[rustc_diagnostic_item = "str_inherent_from_utf8_unchecked_mut"]
368 pub const unsafe fn from_utf8_unchecked_mut(v: &mut [u8]) -> &mut str {
369 // SAFETY: converts::from_utf8_unchecked_mut has the same safety requirements as this function.
370 unsafe { converts::from_utf8_unchecked_mut(v) }
371 }
372
373 /// Checks that `index`-th byte is the first byte in a UTF-8 code point
374 /// sequence or the end of the string.
375 ///
376 /// The start and end of the string (when `index == self.len()`) are
377 /// considered to be boundaries.
378 ///
379 /// Returns `false` if `index` is greater than `self.len()`.
380 ///
381 /// # Examples
382 ///
383 /// ```
384 /// let s = "Löwe 老虎 Léopard";
385 /// assert!(s.is_char_boundary(0));
386 /// // start of `老`
387 /// assert!(s.is_char_boundary(6));
388 /// assert!(s.is_char_boundary(s.len()));
389 ///
390 /// // second byte of `ö`
391 /// assert!(!s.is_char_boundary(2));
392 ///
393 /// // third byte of `老`
394 /// assert!(!s.is_char_boundary(8));
395 /// ```
396 #[must_use]
397 #[stable(feature = "is_char_boundary", since = "1.9.0")]
398 #[rustc_const_stable(feature = "const_is_char_boundary", since = "1.86.0")]
399 #[inline]
400 #[cfg(not(feature = "ferrocene_certified"))]
401 pub const fn is_char_boundary(&self, index: usize) -> bool {
402 // 0 is always ok.
403 // Test for 0 explicitly so that it can optimize out the check
404 // easily and skip reading string data for that case.
405 // Note that optimizing `self.get(..index)` relies on this.
406 if index == 0 {
407 return true;
408 }
409
410 if index >= self.len() {
411 // For `true` we have two options:
412 //
413 // - index == self.len()
414 // Empty strings are valid, so return true
415 // - index > self.len()
416 // In this case return false
417 //
418 // The check is placed exactly here, because it improves generated
419 // code on higher opt-levels. See PR #84751 for more details.
420 index == self.len()
421 } else {
422 self.as_bytes()[index].is_utf8_char_boundary()
423 }
424 }
425
426 /// Finds the closest `x` not exceeding `index` where [`is_char_boundary(x)`] is `true`.
427 ///
428 /// This method can help you truncate a string so that it's still valid UTF-8, but doesn't
429 /// exceed a given number of bytes. Note that this is done purely at the character level
430 /// and can still visually split graphemes, even though the underlying characters aren't
431 /// split. For example, the emoji 🧑🔬 (scientist) could be split so that the string only
432 /// includes 🧑 (person) instead.
433 ///
434 /// [`is_char_boundary(x)`]: Self::is_char_boundary
435 ///
436 /// # Examples
437 ///
438 /// ```
439 /// let s = "❤️🧡💛💚💙💜";
440 /// assert_eq!(s.len(), 26);
441 /// assert!(!s.is_char_boundary(13));
442 ///
443 /// let closest = s.floor_char_boundary(13);
444 /// assert_eq!(closest, 10);
445 /// assert_eq!(&s[..closest], "❤️🧡");
446 /// ```
447 #[stable(feature = "round_char_boundary", since = "1.91.0")]
448 #[rustc_const_stable(feature = "round_char_boundary", since = "1.91.0")]
449 #[inline]
450 #[cfg(not(feature = "ferrocene_certified"))]
451 pub const fn floor_char_boundary(&self, index: usize) -> usize {
452 if index >= self.len() {
453 self.len()
454 } else {
455 let mut i = index;
456 while i > 0 {
457 if self.as_bytes()[i].is_utf8_char_boundary() {
458 break;
459 }
460 i -= 1;
461 }
462
463 // The character boundary will be within four bytes of the index
464 debug_assert!(i >= index.saturating_sub(3));
465
466 i
467 }
468 }
469
470 /// Finds the closest `x` not below `index` where [`is_char_boundary(x)`] is `true`.
471 ///
472 /// If `index` is greater than the length of the string, this returns the length of the string.
473 ///
474 /// This method is the natural complement to [`floor_char_boundary`]. See that method
475 /// for more details.
476 ///
477 /// [`floor_char_boundary`]: str::floor_char_boundary
478 /// [`is_char_boundary(x)`]: Self::is_char_boundary
479 ///
480 /// # Examples
481 ///
482 /// ```
483 /// let s = "❤️🧡💛💚💙💜";
484 /// assert_eq!(s.len(), 26);
485 /// assert!(!s.is_char_boundary(13));
486 ///
487 /// let closest = s.ceil_char_boundary(13);
488 /// assert_eq!(closest, 14);
489 /// assert_eq!(&s[..closest], "❤️🧡💛");
490 /// ```
491 #[stable(feature = "round_char_boundary", since = "1.91.0")]
492 #[rustc_const_stable(feature = "round_char_boundary", since = "1.91.0")]
493 #[inline]
494 #[cfg(not(feature = "ferrocene_certified"))]
495 pub const fn ceil_char_boundary(&self, index: usize) -> usize {
496 if index >= self.len() {
497 self.len()
498 } else {
499 let mut i = index;
500 while i < self.len() {
501 if self.as_bytes()[i].is_utf8_char_boundary() {
502 break;
503 }
504 i += 1;
505 }
506
507 // The character boundary will be within four bytes of the index
508 debug_assert!(i <= index + 3);
509
510 i
511 }
512 }
513
514 /// Converts a string slice to a byte slice. To convert the byte slice back
515 /// into a string slice, use the [`from_utf8`] function.
516 ///
517 /// # Examples
518 ///
519 /// ```
520 /// let bytes = "bors".as_bytes();
521 /// assert_eq!(b"bors", bytes);
522 /// ```
523 #[stable(feature = "rust1", since = "1.0.0")]
524 #[rustc_const_stable(feature = "str_as_bytes", since = "1.39.0")]
525 #[must_use]
526 #[inline(always)]
527 #[allow(unused_attributes)]
528 pub const fn as_bytes(&self) -> &[u8] {
529 // SAFETY: const sound because we transmute two types with the same layout
530 unsafe { mem::transmute(self) }
531 }
532
533 /// Converts a mutable string slice to a mutable byte slice.
534 ///
535 /// # Safety
536 ///
537 /// The caller must ensure that the content of the slice is valid UTF-8
538 /// before the borrow ends and the underlying `str` is used.
539 ///
540 /// Use of a `str` whose contents are not valid UTF-8 is undefined behavior.
541 ///
542 /// # Examples
543 ///
544 /// Basic usage:
545 ///
546 /// ```
547 /// let mut s = String::from("Hello");
548 /// let bytes = unsafe { s.as_bytes_mut() };
549 ///
550 /// assert_eq!(b"Hello", bytes);
551 /// ```
552 ///
553 /// Mutability:
554 ///
555 /// ```
556 /// let mut s = String::from("🗻∈🌏");
557 ///
558 /// unsafe {
559 /// let bytes = s.as_bytes_mut();
560 ///
561 /// bytes[0] = 0xF0;
562 /// bytes[1] = 0x9F;
563 /// bytes[2] = 0x8D;
564 /// bytes[3] = 0x94;
565 /// }
566 ///
567 /// assert_eq!("🍔∈🌏", s);
568 /// ```
569 #[stable(feature = "str_mut_extras", since = "1.20.0")]
570 #[rustc_const_stable(feature = "const_str_as_mut", since = "1.83.0")]
571 #[must_use]
572 #[inline(always)]
573 pub const unsafe fn as_bytes_mut(&mut self) -> &mut [u8] {
574 // SAFETY: the cast from `&str` to `&[u8]` is safe since `str`
575 // has the same layout as `&[u8]` (only std can make this guarantee).
576 // The pointer dereference is safe since it comes from a mutable reference which
577 // is guaranteed to be valid for writes.
578 unsafe { &mut *(self as *mut str as *mut [u8]) }
579 }
580
581 /// Converts a string slice to a raw pointer.
582 ///
583 /// As string slices are a slice of bytes, the raw pointer points to a
584 /// [`u8`]. This pointer will be pointing to the first byte of the string
585 /// slice.
586 ///
587 /// The caller must ensure that the returned pointer is never written to.
588 /// If you need to mutate the contents of the string slice, use [`as_mut_ptr`].
589 ///
590 /// [`as_mut_ptr`]: str::as_mut_ptr
591 ///
592 /// # Examples
593 ///
594 /// ```
595 /// let s = "Hello";
596 /// let ptr = s.as_ptr();
597 /// ```
598 #[stable(feature = "rust1", since = "1.0.0")]
599 #[rustc_const_stable(feature = "rustc_str_as_ptr", since = "1.32.0")]
600 #[rustc_never_returns_null_ptr]
601 #[rustc_as_ptr]
602 #[must_use]
603 #[inline(always)]
604 pub const fn as_ptr(&self) -> *const u8 {
605 self as *const str as *const u8
606 }
607
608 /// Converts a mutable string slice to a raw pointer.
609 ///
610 /// As string slices are a slice of bytes, the raw pointer points to a
611 /// [`u8`]. This pointer will be pointing to the first byte of the string
612 /// slice.
613 ///
614 /// It is your responsibility to make sure that the string slice only gets
615 /// modified in a way that it remains valid UTF-8.
616 #[stable(feature = "str_as_mut_ptr", since = "1.36.0")]
617 #[rustc_const_stable(feature = "const_str_as_mut", since = "1.83.0")]
618 #[rustc_never_returns_null_ptr]
619 #[rustc_as_ptr]
620 #[must_use]
621 #[inline(always)]
622 pub const fn as_mut_ptr(&mut self) -> *mut u8 {
623 self as *mut str as *mut u8
624 }
625
626 /// Returns a subslice of `str`.
627 ///
628 /// This is the non-panicking alternative to indexing the `str`. Returns
629 /// [`None`] whenever equivalent indexing operation would panic.
630 ///
631 /// # Examples
632 ///
633 /// ```
634 /// let v = String::from("🗻∈🌏");
635 ///
636 /// assert_eq!(Some("🗻"), v.get(0..4));
637 ///
638 /// // indices not on UTF-8 sequence boundaries
639 /// assert!(v.get(1..).is_none());
640 /// assert!(v.get(..8).is_none());
641 ///
642 /// // out of bounds
643 /// assert!(v.get(..42).is_none());
644 /// ```
645 #[stable(feature = "str_checked_slicing", since = "1.20.0")]
646 #[rustc_const_unstable(feature = "const_index", issue = "143775")]
647 #[inline]
648 #[cfg(not(feature = "ferrocene_certified"))]
649 pub const fn get<I: [const] SliceIndex<str>>(&self, i: I) -> Option<&I::Output> {
650 i.get(self)
651 }
652
653 /// Returns a mutable subslice of `str`.
654 ///
655 /// This is the non-panicking alternative to indexing the `str`. Returns
656 /// [`None`] whenever equivalent indexing operation would panic.
657 ///
658 /// # Examples
659 ///
660 /// ```
661 /// let mut v = String::from("hello");
662 /// // correct length
663 /// assert!(v.get_mut(0..5).is_some());
664 /// // out of bounds
665 /// assert!(v.get_mut(..42).is_none());
666 /// assert_eq!(Some("he"), v.get_mut(0..2).map(|v| &*v));
667 ///
668 /// assert_eq!("hello", v);
669 /// {
670 /// let s = v.get_mut(0..2);
671 /// let s = s.map(|s| {
672 /// s.make_ascii_uppercase();
673 /// &*s
674 /// });
675 /// assert_eq!(Some("HE"), s);
676 /// }
677 /// assert_eq!("HEllo", v);
678 /// ```
679 #[stable(feature = "str_checked_slicing", since = "1.20.0")]
680 #[rustc_const_unstable(feature = "const_index", issue = "143775")]
681 #[inline]
682 #[cfg(not(feature = "ferrocene_certified"))]
683 pub const fn get_mut<I: [const] SliceIndex<str>>(&mut self, i: I) -> Option<&mut I::Output> {
684 i.get_mut(self)
685 }
686
687 /// Returns an unchecked subslice of `str`.
688 ///
689 /// This is the unchecked alternative to indexing the `str`.
690 ///
691 /// # Safety
692 ///
693 /// Callers of this function are responsible that these preconditions are
694 /// satisfied:
695 ///
696 /// * The starting index must not exceed the ending index;
697 /// * Indexes must be within bounds of the original slice;
698 /// * Indexes must lie on UTF-8 sequence boundaries.
699 ///
700 /// Failing that, the returned string slice may reference invalid memory or
701 /// violate the invariants communicated by the `str` type.
702 ///
703 /// # Examples
704 ///
705 /// ```
706 /// let v = "🗻∈🌏";
707 /// unsafe {
708 /// assert_eq!("🗻", v.get_unchecked(0..4));
709 /// assert_eq!("∈", v.get_unchecked(4..7));
710 /// assert_eq!("🌏", v.get_unchecked(7..11));
711 /// }
712 /// ```
713 #[stable(feature = "str_checked_slicing", since = "1.20.0")]
714 #[inline]
715 #[cfg(not(feature = "ferrocene_certified"))]
716 pub unsafe fn get_unchecked<I: SliceIndex<str>>(&self, i: I) -> &I::Output {
717 // SAFETY: the caller must uphold the safety contract for `get_unchecked`;
718 // the slice is dereferenceable because `self` is a safe reference.
719 // The returned pointer is safe because impls of `SliceIndex` have to guarantee that it is.
720 unsafe { &*i.get_unchecked(self) }
721 }
722
723 /// Returns a mutable, unchecked subslice of `str`.
724 ///
725 /// This is the unchecked alternative to indexing the `str`.
726 ///
727 /// # Safety
728 ///
729 /// Callers of this function are responsible that these preconditions are
730 /// satisfied:
731 ///
732 /// * The starting index must not exceed the ending index;
733 /// * Indexes must be within bounds of the original slice;
734 /// * Indexes must lie on UTF-8 sequence boundaries.
735 ///
736 /// Failing that, the returned string slice may reference invalid memory or
737 /// violate the invariants communicated by the `str` type.
738 ///
739 /// # Examples
740 ///
741 /// ```
742 /// let mut v = String::from("🗻∈🌏");
743 /// unsafe {
744 /// assert_eq!("🗻", v.get_unchecked_mut(0..4));
745 /// assert_eq!("∈", v.get_unchecked_mut(4..7));
746 /// assert_eq!("🌏", v.get_unchecked_mut(7..11));
747 /// }
748 /// ```
749 #[stable(feature = "str_checked_slicing", since = "1.20.0")]
750 #[inline]
751 #[cfg(not(feature = "ferrocene_certified"))]
752 pub unsafe fn get_unchecked_mut<I: SliceIndex<str>>(&mut self, i: I) -> &mut I::Output {
753 // SAFETY: the caller must uphold the safety contract for `get_unchecked_mut`;
754 // the slice is dereferenceable because `self` is a safe reference.
755 // The returned pointer is safe because impls of `SliceIndex` have to guarantee that it is.
756 unsafe { &mut *i.get_unchecked_mut(self) }
757 }
758
759 /// Creates a string slice from another string slice, bypassing safety
760 /// checks.
761 ///
762 /// This is generally not recommended, use with caution! For a safe
763 /// alternative see [`str`] and [`Index`].
764 ///
765 /// [`Index`]: crate::ops::Index
766 ///
767 /// This new slice goes from `begin` to `end`, including `begin` but
768 /// excluding `end`.
769 ///
770 /// To get a mutable string slice instead, see the
771 /// [`slice_mut_unchecked`] method.
772 ///
773 /// [`slice_mut_unchecked`]: str::slice_mut_unchecked
774 ///
775 /// # Safety
776 ///
777 /// Callers of this function are responsible that three preconditions are
778 /// satisfied:
779 ///
780 /// * `begin` must not exceed `end`.
781 /// * `begin` and `end` must be byte positions within the string slice.
782 /// * `begin` and `end` must lie on UTF-8 sequence boundaries.
783 ///
784 /// # Examples
785 ///
786 /// ```
787 /// let s = "Löwe 老虎 Léopard";
788 ///
789 /// unsafe {
790 /// assert_eq!("Löwe 老虎 Léopard", s.slice_unchecked(0, 21));
791 /// }
792 ///
793 /// let s = "Hello, world!";
794 ///
795 /// unsafe {
796 /// assert_eq!("world", s.slice_unchecked(7, 12));
797 /// }
798 /// ```
799 #[stable(feature = "rust1", since = "1.0.0")]
800 #[deprecated(since = "1.29.0", note = "use `get_unchecked(begin..end)` instead")]
801 #[must_use]
802 #[inline]
803 #[cfg(not(feature = "ferrocene_certified"))]
804 pub unsafe fn slice_unchecked(&self, begin: usize, end: usize) -> &str {
805 // SAFETY: the caller must uphold the safety contract for `get_unchecked`;
806 // the slice is dereferenceable because `self` is a safe reference.
807 // The returned pointer is safe because impls of `SliceIndex` have to guarantee that it is.
808 unsafe { &*(begin..end).get_unchecked(self) }
809 }
810
811 /// Creates a string slice from another string slice, bypassing safety
812 /// checks.
813 ///
814 /// This is generally not recommended, use with caution! For a safe
815 /// alternative see [`str`] and [`IndexMut`].
816 ///
817 /// [`IndexMut`]: crate::ops::IndexMut
818 ///
819 /// This new slice goes from `begin` to `end`, including `begin` but
820 /// excluding `end`.
821 ///
822 /// To get an immutable string slice instead, see the
823 /// [`slice_unchecked`] method.
824 ///
825 /// [`slice_unchecked`]: str::slice_unchecked
826 ///
827 /// # Safety
828 ///
829 /// Callers of this function are responsible that three preconditions are
830 /// satisfied:
831 ///
832 /// * `begin` must not exceed `end`.
833 /// * `begin` and `end` must be byte positions within the string slice.
834 /// * `begin` and `end` must lie on UTF-8 sequence boundaries.
835 #[stable(feature = "str_slice_mut", since = "1.5.0")]
836 #[deprecated(since = "1.29.0", note = "use `get_unchecked_mut(begin..end)` instead")]
837 #[inline]
838 #[cfg(not(feature = "ferrocene_certified"))]
839 pub unsafe fn slice_mut_unchecked(&mut self, begin: usize, end: usize) -> &mut str {
840 // SAFETY: the caller must uphold the safety contract for `get_unchecked_mut`;
841 // the slice is dereferenceable because `self` is a safe reference.
842 // The returned pointer is safe because impls of `SliceIndex` have to guarantee that it is.
843 unsafe { &mut *(begin..end).get_unchecked_mut(self) }
844 }
845
846 /// Divides one string slice into two at an index.
847 ///
848 /// The argument, `mid`, should be a byte offset from the start of the
849 /// string. It must also be on the boundary of a UTF-8 code point.
850 ///
851 /// The two slices returned go from the start of the string slice to `mid`,
852 /// and from `mid` to the end of the string slice.
853 ///
854 /// To get mutable string slices instead, see the [`split_at_mut`]
855 /// method.
856 ///
857 /// [`split_at_mut`]: str::split_at_mut
858 ///
859 /// # Panics
860 ///
861 /// Panics if `mid` is not on a UTF-8 code point boundary, or if it is past
862 /// the end of the last code point of the string slice. For a non-panicking
863 /// alternative see [`split_at_checked`](str::split_at_checked).
864 ///
865 /// # Examples
866 ///
867 /// ```
868 /// let s = "Per Martin-Löf";
869 ///
870 /// let (first, last) = s.split_at(3);
871 ///
872 /// assert_eq!("Per", first);
873 /// assert_eq!(" Martin-Löf", last);
874 /// ```
875 #[inline]
876 #[must_use]
877 #[stable(feature = "str_split_at", since = "1.4.0")]
878 #[rustc_const_stable(feature = "const_str_split_at", since = "1.86.0")]
879 #[cfg(not(feature = "ferrocene_certified"))]
880 pub const fn split_at(&self, mid: usize) -> (&str, &str) {
881 match self.split_at_checked(mid) {
882 None => slice_error_fail(self, 0, mid),
883 Some(pair) => pair,
884 }
885 }
886
887 /// Divides one mutable string slice into two at an index.
888 ///
889 /// The argument, `mid`, should be a byte offset from the start of the
890 /// string. It must also be on the boundary of a UTF-8 code point.
891 ///
892 /// The two slices returned go from the start of the string slice to `mid`,
893 /// and from `mid` to the end of the string slice.
894 ///
895 /// To get immutable string slices instead, see the [`split_at`] method.
896 ///
897 /// [`split_at`]: str::split_at
898 ///
899 /// # Panics
900 ///
901 /// Panics if `mid` is not on a UTF-8 code point boundary, or if it is past
902 /// the end of the last code point of the string slice. For a non-panicking
903 /// alternative see [`split_at_mut_checked`](str::split_at_mut_checked).
904 ///
905 /// # Examples
906 ///
907 /// ```
908 /// let mut s = "Per Martin-Löf".to_string();
909 /// {
910 /// let (first, last) = s.split_at_mut(3);
911 /// first.make_ascii_uppercase();
912 /// assert_eq!("PER", first);
913 /// assert_eq!(" Martin-Löf", last);
914 /// }
915 /// assert_eq!("PER Martin-Löf", s);
916 /// ```
917 #[inline]
918 #[must_use]
919 #[stable(feature = "str_split_at", since = "1.4.0")]
920 #[rustc_const_stable(feature = "const_str_split_at", since = "1.86.0")]
921 #[cfg(not(feature = "ferrocene_certified"))]
922 pub const fn split_at_mut(&mut self, mid: usize) -> (&mut str, &mut str) {
923 // is_char_boundary checks that the index is in [0, .len()]
924 if self.is_char_boundary(mid) {
925 // SAFETY: just checked that `mid` is on a char boundary.
926 unsafe { self.split_at_mut_unchecked(mid) }
927 } else {
928 slice_error_fail(self, 0, mid)
929 }
930 }
931
932 /// Divides one string slice into two at an index.
933 ///
934 /// The argument, `mid`, should be a valid byte offset from the start of the
935 /// string. It must also be on the boundary of a UTF-8 code point. The
936 /// method returns `None` if that’s not the case.
937 ///
938 /// The two slices returned go from the start of the string slice to `mid`,
939 /// and from `mid` to the end of the string slice.
940 ///
941 /// To get mutable string slices instead, see the [`split_at_mut_checked`]
942 /// method.
943 ///
944 /// [`split_at_mut_checked`]: str::split_at_mut_checked
945 ///
946 /// # Examples
947 ///
948 /// ```
949 /// let s = "Per Martin-Löf";
950 ///
951 /// let (first, last) = s.split_at_checked(3).unwrap();
952 /// assert_eq!("Per", first);
953 /// assert_eq!(" Martin-Löf", last);
954 ///
955 /// assert_eq!(None, s.split_at_checked(13)); // Inside “ö”
956 /// assert_eq!(None, s.split_at_checked(16)); // Beyond the string length
957 /// ```
958 #[inline]
959 #[must_use]
960 #[stable(feature = "split_at_checked", since = "1.80.0")]
961 #[rustc_const_stable(feature = "const_str_split_at", since = "1.86.0")]
962 #[cfg(not(feature = "ferrocene_certified"))]
963 pub const fn split_at_checked(&self, mid: usize) -> Option<(&str, &str)> {
964 // is_char_boundary checks that the index is in [0, .len()]
965 if self.is_char_boundary(mid) {
966 // SAFETY: just checked that `mid` is on a char boundary.
967 Some(unsafe { self.split_at_unchecked(mid) })
968 } else {
969 None
970 }
971 }
972
973 /// Divides one mutable string slice into two at an index.
974 ///
975 /// The argument, `mid`, should be a valid byte offset from the start of the
976 /// string. It must also be on the boundary of a UTF-8 code point. The
977 /// method returns `None` if that’s not the case.
978 ///
979 /// The two slices returned go from the start of the string slice to `mid`,
980 /// and from `mid` to the end of the string slice.
981 ///
982 /// To get immutable string slices instead, see the [`split_at_checked`] method.
983 ///
984 /// [`split_at_checked`]: str::split_at_checked
985 ///
986 /// # Examples
987 ///
988 /// ```
989 /// let mut s = "Per Martin-Löf".to_string();
990 /// if let Some((first, last)) = s.split_at_mut_checked(3) {
991 /// first.make_ascii_uppercase();
992 /// assert_eq!("PER", first);
993 /// assert_eq!(" Martin-Löf", last);
994 /// }
995 /// assert_eq!("PER Martin-Löf", s);
996 ///
997 /// assert_eq!(None, s.split_at_mut_checked(13)); // Inside “ö”
998 /// assert_eq!(None, s.split_at_mut_checked(16)); // Beyond the string length
999 /// ```
1000 #[inline]
1001 #[must_use]
1002 #[stable(feature = "split_at_checked", since = "1.80.0")]
1003 #[rustc_const_stable(feature = "const_str_split_at", since = "1.86.0")]
1004 #[cfg(not(feature = "ferrocene_certified"))]
1005 pub const fn split_at_mut_checked(&mut self, mid: usize) -> Option<(&mut str, &mut str)> {
1006 // is_char_boundary checks that the index is in [0, .len()]
1007 if self.is_char_boundary(mid) {
1008 // SAFETY: just checked that `mid` is on a char boundary.
1009 Some(unsafe { self.split_at_mut_unchecked(mid) })
1010 } else {
1011 None
1012 }
1013 }
1014
1015 /// Divides one string slice into two at an index.
1016 ///
1017 /// # Safety
1018 ///
1019 /// The caller must ensure that `mid` is a valid byte offset from the start
1020 /// of the string and falls on the boundary of a UTF-8 code point.
1021 #[inline]
1022 #[cfg(not(feature = "ferrocene_certified"))]
1023 const unsafe fn split_at_unchecked(&self, mid: usize) -> (&str, &str) {
1024 let len = self.len();
1025 let ptr = self.as_ptr();
1026 // SAFETY: caller guarantees `mid` is on a char boundary.
1027 unsafe {
1028 (
1029 from_utf8_unchecked(slice::from_raw_parts(ptr, mid)),
1030 from_utf8_unchecked(slice::from_raw_parts(ptr.add(mid), len - mid)),
1031 )
1032 }
1033 }
1034
1035 /// Divides one string slice into two at an index.
1036 ///
1037 /// # Safety
1038 ///
1039 /// The caller must ensure that `mid` is a valid byte offset from the start
1040 /// of the string and falls on the boundary of a UTF-8 code point.
1041 #[cfg(not(feature = "ferrocene_certified"))]
1042 const unsafe fn split_at_mut_unchecked(&mut self, mid: usize) -> (&mut str, &mut str) {
1043 let len = self.len();
1044 let ptr = self.as_mut_ptr();
1045 // SAFETY: caller guarantees `mid` is on a char boundary.
1046 unsafe {
1047 (
1048 from_utf8_unchecked_mut(slice::from_raw_parts_mut(ptr, mid)),
1049 from_utf8_unchecked_mut(slice::from_raw_parts_mut(ptr.add(mid), len - mid)),
1050 )
1051 }
1052 }
1053
1054 /// Returns an iterator over the [`char`]s of a string slice.
1055 ///
1056 /// As a string slice consists of valid UTF-8, we can iterate through a
1057 /// string slice by [`char`]. This method returns such an iterator.
1058 ///
1059 /// It's important to remember that [`char`] represents a Unicode Scalar
1060 /// Value, and might not match your idea of what a 'character' is. Iteration
1061 /// over grapheme clusters may be what you actually want. This functionality
1062 /// is not provided by Rust's standard library, check crates.io instead.
1063 ///
1064 /// # Examples
1065 ///
1066 /// Basic usage:
1067 ///
1068 /// ```
1069 /// let word = "goodbye";
1070 ///
1071 /// let count = word.chars().count();
1072 /// assert_eq!(7, count);
1073 ///
1074 /// let mut chars = word.chars();
1075 ///
1076 /// assert_eq!(Some('g'), chars.next());
1077 /// assert_eq!(Some('o'), chars.next());
1078 /// assert_eq!(Some('o'), chars.next());
1079 /// assert_eq!(Some('d'), chars.next());
1080 /// assert_eq!(Some('b'), chars.next());
1081 /// assert_eq!(Some('y'), chars.next());
1082 /// assert_eq!(Some('e'), chars.next());
1083 ///
1084 /// assert_eq!(None, chars.next());
1085 /// ```
1086 ///
1087 /// Remember, [`char`]s might not match your intuition about characters:
1088 ///
1089 /// [`char`]: prim@char
1090 ///
1091 /// ```
1092 /// let y = "y̆";
1093 ///
1094 /// let mut chars = y.chars();
1095 ///
1096 /// assert_eq!(Some('y'), chars.next()); // not 'y̆'
1097 /// assert_eq!(Some('\u{0306}'), chars.next());
1098 ///
1099 /// assert_eq!(None, chars.next());
1100 /// ```
1101 #[stable(feature = "rust1", since = "1.0.0")]
1102 #[inline]
1103 #[rustc_diagnostic_item = "str_chars"]
1104 #[cfg(not(feature = "ferrocene_certified"))]
1105 pub fn chars(&self) -> Chars<'_> {
1106 Chars { iter: self.as_bytes().iter() }
1107 }
1108
1109 /// Returns an iterator over the [`char`]s of a string slice, and their
1110 /// positions.
1111 ///
1112 /// As a string slice consists of valid UTF-8, we can iterate through a
1113 /// string slice by [`char`]. This method returns an iterator of both
1114 /// these [`char`]s, as well as their byte positions.
1115 ///
1116 /// The iterator yields tuples. The position is first, the [`char`] is
1117 /// second.
1118 ///
1119 /// # Examples
1120 ///
1121 /// Basic usage:
1122 ///
1123 /// ```
1124 /// let word = "goodbye";
1125 ///
1126 /// let count = word.char_indices().count();
1127 /// assert_eq!(7, count);
1128 ///
1129 /// let mut char_indices = word.char_indices();
1130 ///
1131 /// assert_eq!(Some((0, 'g')), char_indices.next());
1132 /// assert_eq!(Some((1, 'o')), char_indices.next());
1133 /// assert_eq!(Some((2, 'o')), char_indices.next());
1134 /// assert_eq!(Some((3, 'd')), char_indices.next());
1135 /// assert_eq!(Some((4, 'b')), char_indices.next());
1136 /// assert_eq!(Some((5, 'y')), char_indices.next());
1137 /// assert_eq!(Some((6, 'e')), char_indices.next());
1138 ///
1139 /// assert_eq!(None, char_indices.next());
1140 /// ```
1141 ///
1142 /// Remember, [`char`]s might not match your intuition about characters:
1143 ///
1144 /// [`char`]: prim@char
1145 ///
1146 /// ```
1147 /// let yes = "y̆es";
1148 ///
1149 /// let mut char_indices = yes.char_indices();
1150 ///
1151 /// assert_eq!(Some((0, 'y')), char_indices.next()); // not (0, 'y̆')
1152 /// assert_eq!(Some((1, '\u{0306}')), char_indices.next());
1153 ///
1154 /// // note the 3 here - the previous character took up two bytes
1155 /// assert_eq!(Some((3, 'e')), char_indices.next());
1156 /// assert_eq!(Some((4, 's')), char_indices.next());
1157 ///
1158 /// assert_eq!(None, char_indices.next());
1159 /// ```
1160 #[stable(feature = "rust1", since = "1.0.0")]
1161 #[inline]
1162 #[cfg(not(feature = "ferrocene_certified"))]
1163 pub fn char_indices(&self) -> CharIndices<'_> {
1164 CharIndices { front_offset: 0, iter: self.chars() }
1165 }
1166
1167 /// Returns an iterator over the bytes of a string slice.
1168 ///
1169 /// As a string slice consists of a sequence of bytes, we can iterate
1170 /// through a string slice by byte. This method returns such an iterator.
1171 ///
1172 /// # Examples
1173 ///
1174 /// ```
1175 /// let mut bytes = "bors".bytes();
1176 ///
1177 /// assert_eq!(Some(b'b'), bytes.next());
1178 /// assert_eq!(Some(b'o'), bytes.next());
1179 /// assert_eq!(Some(b'r'), bytes.next());
1180 /// assert_eq!(Some(b's'), bytes.next());
1181 ///
1182 /// assert_eq!(None, bytes.next());
1183 /// ```
1184 #[stable(feature = "rust1", since = "1.0.0")]
1185 #[inline]
1186 #[cfg(not(feature = "ferrocene_certified"))]
1187 pub fn bytes(&self) -> Bytes<'_> {
1188 Bytes(self.as_bytes().iter().copied())
1189 }
1190
1191 /// Splits a string slice by whitespace.
1192 ///
1193 /// The iterator returned will return string slices that are sub-slices of
1194 /// the original string slice, separated by any amount of whitespace.
1195 ///
1196 /// 'Whitespace' is defined according to the terms of the Unicode Derived
1197 /// Core Property `White_Space`. If you only want to split on ASCII whitespace
1198 /// instead, use [`split_ascii_whitespace`].
1199 ///
1200 /// [`split_ascii_whitespace`]: str::split_ascii_whitespace
1201 ///
1202 /// # Examples
1203 ///
1204 /// Basic usage:
1205 ///
1206 /// ```
1207 /// let mut iter = "A few words".split_whitespace();
1208 ///
1209 /// assert_eq!(Some("A"), iter.next());
1210 /// assert_eq!(Some("few"), iter.next());
1211 /// assert_eq!(Some("words"), iter.next());
1212 ///
1213 /// assert_eq!(None, iter.next());
1214 /// ```
1215 ///
1216 /// All kinds of whitespace are considered:
1217 ///
1218 /// ```
1219 /// let mut iter = " Mary had\ta\u{2009}little \n\t lamb".split_whitespace();
1220 /// assert_eq!(Some("Mary"), iter.next());
1221 /// assert_eq!(Some("had"), iter.next());
1222 /// assert_eq!(Some("a"), iter.next());
1223 /// assert_eq!(Some("little"), iter.next());
1224 /// assert_eq!(Some("lamb"), iter.next());
1225 ///
1226 /// assert_eq!(None, iter.next());
1227 /// ```
1228 ///
1229 /// If the string is empty or all whitespace, the iterator yields no string slices:
1230 /// ```
1231 /// assert_eq!("".split_whitespace().next(), None);
1232 /// assert_eq!(" ".split_whitespace().next(), None);
1233 /// ```
1234 #[must_use = "this returns the split string as an iterator, \
1235 without modifying the original"]
1236 #[stable(feature = "split_whitespace", since = "1.1.0")]
1237 #[rustc_diagnostic_item = "str_split_whitespace"]
1238 #[inline]
1239 #[cfg(not(feature = "ferrocene_certified"))]
1240 pub fn split_whitespace(&self) -> SplitWhitespace<'_> {
1241 SplitWhitespace { inner: self.split(IsWhitespace).filter(IsNotEmpty) }
1242 }
1243
1244 /// Splits a string slice by ASCII whitespace.
1245 ///
1246 /// The iterator returned will return string slices that are sub-slices of
1247 /// the original string slice, separated by any amount of ASCII whitespace.
1248 ///
1249 /// This uses the same definition as [`char::is_ascii_whitespace`].
1250 /// To split by Unicode `Whitespace` instead, use [`split_whitespace`].
1251 ///
1252 /// [`split_whitespace`]: str::split_whitespace
1253 ///
1254 /// # Examples
1255 ///
1256 /// Basic usage:
1257 ///
1258 /// ```
1259 /// let mut iter = "A few words".split_ascii_whitespace();
1260 ///
1261 /// assert_eq!(Some("A"), iter.next());
1262 /// assert_eq!(Some("few"), iter.next());
1263 /// assert_eq!(Some("words"), iter.next());
1264 ///
1265 /// assert_eq!(None, iter.next());
1266 /// ```
1267 ///
1268 /// Various kinds of ASCII whitespace are considered
1269 /// (see [`char::is_ascii_whitespace`]):
1270 ///
1271 /// ```
1272 /// let mut iter = " Mary had\ta little \n\t lamb".split_ascii_whitespace();
1273 /// assert_eq!(Some("Mary"), iter.next());
1274 /// assert_eq!(Some("had"), iter.next());
1275 /// assert_eq!(Some("a"), iter.next());
1276 /// assert_eq!(Some("little"), iter.next());
1277 /// assert_eq!(Some("lamb"), iter.next());
1278 ///
1279 /// assert_eq!(None, iter.next());
1280 /// ```
1281 ///
1282 /// If the string is empty or all ASCII whitespace, the iterator yields no string slices:
1283 /// ```
1284 /// assert_eq!("".split_ascii_whitespace().next(), None);
1285 /// assert_eq!(" ".split_ascii_whitespace().next(), None);
1286 /// ```
1287 #[must_use = "this returns the split string as an iterator, \
1288 without modifying the original"]
1289 #[stable(feature = "split_ascii_whitespace", since = "1.34.0")]
1290 #[inline]
1291 #[cfg(not(feature = "ferrocene_certified"))]
1292 pub fn split_ascii_whitespace(&self) -> SplitAsciiWhitespace<'_> {
1293 let inner =
1294 self.as_bytes().split(IsAsciiWhitespace).filter(BytesIsNotEmpty).map(UnsafeBytesToStr);
1295 SplitAsciiWhitespace { inner }
1296 }
1297
1298 /// Returns an iterator over the lines of a string, as string slices.
1299 ///
1300 /// Lines are split at line endings that are either newlines (`\n`) or
1301 /// sequences of a carriage return followed by a line feed (`\r\n`).
1302 ///
1303 /// Line terminators are not included in the lines returned by the iterator.
1304 ///
1305 /// Note that any carriage return (`\r`) not immediately followed by a
1306 /// line feed (`\n`) does not split a line. These carriage returns are
1307 /// thereby included in the produced lines.
1308 ///
1309 /// The final line ending is optional. A string that ends with a final line
1310 /// ending will return the same lines as an otherwise identical string
1311 /// without a final line ending.
1312 ///
1313 /// # Examples
1314 ///
1315 /// Basic usage:
1316 ///
1317 /// ```
1318 /// let text = "foo\r\nbar\n\nbaz\r";
1319 /// let mut lines = text.lines();
1320 ///
1321 /// assert_eq!(Some("foo"), lines.next());
1322 /// assert_eq!(Some("bar"), lines.next());
1323 /// assert_eq!(Some(""), lines.next());
1324 /// // Trailing carriage return is included in the last line
1325 /// assert_eq!(Some("baz\r"), lines.next());
1326 ///
1327 /// assert_eq!(None, lines.next());
1328 /// ```
1329 ///
1330 /// The final line does not require any ending:
1331 ///
1332 /// ```
1333 /// let text = "foo\nbar\n\r\nbaz";
1334 /// let mut lines = text.lines();
1335 ///
1336 /// assert_eq!(Some("foo"), lines.next());
1337 /// assert_eq!(Some("bar"), lines.next());
1338 /// assert_eq!(Some(""), lines.next());
1339 /// assert_eq!(Some("baz"), lines.next());
1340 ///
1341 /// assert_eq!(None, lines.next());
1342 /// ```
1343 #[stable(feature = "rust1", since = "1.0.0")]
1344 #[inline]
1345 #[cfg(not(feature = "ferrocene_certified"))]
1346 pub fn lines(&self) -> Lines<'_> {
1347 Lines(self.split_inclusive('\n').map(LinesMap))
1348 }
1349
1350 /// Returns an iterator over the lines of a string.
1351 #[stable(feature = "rust1", since = "1.0.0")]
1352 #[deprecated(since = "1.4.0", note = "use lines() instead now", suggestion = "lines")]
1353 #[inline]
1354 #[allow(deprecated)]
1355 #[cfg(not(feature = "ferrocene_certified"))]
1356 pub fn lines_any(&self) -> LinesAny<'_> {
1357 LinesAny(self.lines())
1358 }
1359
1360 /// Returns an iterator of `u16` over the string encoded
1361 /// as native endian UTF-16 (without byte-order mark).
1362 ///
1363 /// # Examples
1364 ///
1365 /// ```
1366 /// let text = "Zażółć gęślą jaźń";
1367 ///
1368 /// let utf8_len = text.len();
1369 /// let utf16_len = text.encode_utf16().count();
1370 ///
1371 /// assert!(utf16_len <= utf8_len);
1372 /// ```
1373 #[must_use = "this returns the encoded string as an iterator, \
1374 without modifying the original"]
1375 #[stable(feature = "encode_utf16", since = "1.8.0")]
1376 #[cfg(not(feature = "ferrocene_certified"))]
1377 pub fn encode_utf16(&self) -> EncodeUtf16<'_> {
1378 EncodeUtf16 { chars: self.chars(), extra: 0 }
1379 }
1380
1381 /// Returns `true` if the given pattern matches a sub-slice of
1382 /// this string slice.
1383 ///
1384 /// Returns `false` if it does not.
1385 ///
1386 /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a
1387 /// function or closure that determines if a character matches.
1388 ///
1389 /// [`char`]: prim@char
1390 /// [pattern]: self::pattern
1391 ///
1392 /// # Examples
1393 ///
1394 /// ```
1395 /// let bananas = "bananas";
1396 ///
1397 /// assert!(bananas.contains("nana"));
1398 /// assert!(!bananas.contains("apples"));
1399 /// ```
1400 #[stable(feature = "rust1", since = "1.0.0")]
1401 #[inline]
1402 #[cfg(not(feature = "ferrocene_certified"))]
1403 pub fn contains<P: Pattern>(&self, pat: P) -> bool {
1404 pat.is_contained_in(self)
1405 }
1406
1407 /// Returns `true` if the given pattern matches a prefix of this
1408 /// string slice.
1409 ///
1410 /// Returns `false` if it does not.
1411 ///
1412 /// The [pattern] can be a `&str`, in which case this function will return true if
1413 /// the `&str` is a prefix of this string slice.
1414 ///
1415 /// The [pattern] can also be a [`char`], a slice of [`char`]s, or a
1416 /// function or closure that determines if a character matches.
1417 /// These will only be checked against the first character of this string slice.
1418 /// Look at the second example below regarding behavior for slices of [`char`]s.
1419 ///
1420 /// [`char`]: prim@char
1421 /// [pattern]: self::pattern
1422 ///
1423 /// # Examples
1424 ///
1425 /// ```
1426 /// let bananas = "bananas";
1427 ///
1428 /// assert!(bananas.starts_with("bana"));
1429 /// assert!(!bananas.starts_with("nana"));
1430 /// ```
1431 ///
1432 /// ```
1433 /// let bananas = "bananas";
1434 ///
1435 /// // Note that both of these assert successfully.
1436 /// assert!(bananas.starts_with(&['b', 'a', 'n', 'a']));
1437 /// assert!(bananas.starts_with(&['a', 'b', 'c', 'd']));
1438 /// ```
1439 #[stable(feature = "rust1", since = "1.0.0")]
1440 #[rustc_diagnostic_item = "str_starts_with"]
1441 #[cfg(not(feature = "ferrocene_certified"))]
1442 pub fn starts_with<P: Pattern>(&self, pat: P) -> bool {
1443 pat.is_prefix_of(self)
1444 }
1445
1446 /// Returns `true` if the given pattern matches a suffix of this
1447 /// string slice.
1448 ///
1449 /// Returns `false` if it does not.
1450 ///
1451 /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a
1452 /// function or closure that determines if a character matches.
1453 ///
1454 /// [`char`]: prim@char
1455 /// [pattern]: self::pattern
1456 ///
1457 /// # Examples
1458 ///
1459 /// ```
1460 /// let bananas = "bananas";
1461 ///
1462 /// assert!(bananas.ends_with("anas"));
1463 /// assert!(!bananas.ends_with("nana"));
1464 /// ```
1465 #[stable(feature = "rust1", since = "1.0.0")]
1466 #[rustc_diagnostic_item = "str_ends_with"]
1467 #[cfg(not(feature = "ferrocene_certified"))]
1468 pub fn ends_with<P: Pattern>(&self, pat: P) -> bool
1469 where
1470 for<'a> P::Searcher<'a>: ReverseSearcher<'a>,
1471 {
1472 pat.is_suffix_of(self)
1473 }
1474
1475 /// Returns the byte index of the first character of this string slice that
1476 /// matches the pattern.
1477 ///
1478 /// Returns [`None`] if the pattern doesn't match.
1479 ///
1480 /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a
1481 /// function or closure that determines if a character matches.
1482 ///
1483 /// [`char`]: prim@char
1484 /// [pattern]: self::pattern
1485 ///
1486 /// # Examples
1487 ///
1488 /// Simple patterns:
1489 ///
1490 /// ```
1491 /// let s = "Löwe 老虎 Léopard Gepardi";
1492 ///
1493 /// assert_eq!(s.find('L'), Some(0));
1494 /// assert_eq!(s.find('é'), Some(14));
1495 /// assert_eq!(s.find("pard"), Some(17));
1496 /// ```
1497 ///
1498 /// More complex patterns using point-free style and closures:
1499 ///
1500 /// ```
1501 /// let s = "Löwe 老虎 Léopard";
1502 ///
1503 /// assert_eq!(s.find(char::is_whitespace), Some(5));
1504 /// assert_eq!(s.find(char::is_lowercase), Some(1));
1505 /// assert_eq!(s.find(|c: char| c.is_whitespace() || c.is_lowercase()), Some(1));
1506 /// assert_eq!(s.find(|c: char| (c < 'o') && (c > 'a')), Some(4));
1507 /// ```
1508 ///
1509 /// Not finding the pattern:
1510 ///
1511 /// ```
1512 /// let s = "Löwe 老虎 Léopard";
1513 /// let x: &[_] = &['1', '2'];
1514 ///
1515 /// assert_eq!(s.find(x), None);
1516 /// ```
1517 #[stable(feature = "rust1", since = "1.0.0")]
1518 #[inline]
1519 #[cfg(not(feature = "ferrocene_certified"))]
1520 pub fn find<P: Pattern>(&self, pat: P) -> Option<usize> {
1521 pat.into_searcher(self).next_match().map(|(i, _)| i)
1522 }
1523
1524 /// Returns the byte index for the first character of the last match of the pattern in
1525 /// this string slice.
1526 ///
1527 /// Returns [`None`] if the pattern doesn't match.
1528 ///
1529 /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a
1530 /// function or closure that determines if a character matches.
1531 ///
1532 /// [`char`]: prim@char
1533 /// [pattern]: self::pattern
1534 ///
1535 /// # Examples
1536 ///
1537 /// Simple patterns:
1538 ///
1539 /// ```
1540 /// let s = "Löwe 老虎 Léopard Gepardi";
1541 ///
1542 /// assert_eq!(s.rfind('L'), Some(13));
1543 /// assert_eq!(s.rfind('é'), Some(14));
1544 /// assert_eq!(s.rfind("pard"), Some(24));
1545 /// ```
1546 ///
1547 /// More complex patterns with closures:
1548 ///
1549 /// ```
1550 /// let s = "Löwe 老虎 Léopard";
1551 ///
1552 /// assert_eq!(s.rfind(char::is_whitespace), Some(12));
1553 /// assert_eq!(s.rfind(char::is_lowercase), Some(20));
1554 /// ```
1555 ///
1556 /// Not finding the pattern:
1557 ///
1558 /// ```
1559 /// let s = "Löwe 老虎 Léopard";
1560 /// let x: &[_] = &['1', '2'];
1561 ///
1562 /// assert_eq!(s.rfind(x), None);
1563 /// ```
1564 #[stable(feature = "rust1", since = "1.0.0")]
1565 #[inline]
1566 #[cfg(not(feature = "ferrocene_certified"))]
1567 pub fn rfind<P: Pattern>(&self, pat: P) -> Option<usize>
1568 where
1569 for<'a> P::Searcher<'a>: ReverseSearcher<'a>,
1570 {
1571 pat.into_searcher(self).next_match_back().map(|(i, _)| i)
1572 }
1573
1574 /// Returns an iterator over substrings of this string slice, separated by
1575 /// characters matched by a pattern.
1576 ///
1577 /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a
1578 /// function or closure that determines if a character matches.
1579 ///
1580 /// If there are no matches the full string slice is returned as the only
1581 /// item in the iterator.
1582 ///
1583 /// [`char`]: prim@char
1584 /// [pattern]: self::pattern
1585 ///
1586 /// # Iterator behavior
1587 ///
1588 /// The returned iterator will be a [`DoubleEndedIterator`] if the pattern
1589 /// allows a reverse search and forward/reverse search yields the same
1590 /// elements. This is true for, e.g., [`char`], but not for `&str`.
1591 ///
1592 /// If the pattern allows a reverse search but its results might differ
1593 /// from a forward search, the [`rsplit`] method can be used.
1594 ///
1595 /// [`rsplit`]: str::rsplit
1596 ///
1597 /// # Examples
1598 ///
1599 /// Simple patterns:
1600 ///
1601 /// ```
1602 /// let v: Vec<&str> = "Mary had a little lamb".split(' ').collect();
1603 /// assert_eq!(v, ["Mary", "had", "a", "little", "lamb"]);
1604 ///
1605 /// let v: Vec<&str> = "".split('X').collect();
1606 /// assert_eq!(v, [""]);
1607 ///
1608 /// let v: Vec<&str> = "lionXXtigerXleopard".split('X').collect();
1609 /// assert_eq!(v, ["lion", "", "tiger", "leopard"]);
1610 ///
1611 /// let v: Vec<&str> = "lion::tiger::leopard".split("::").collect();
1612 /// assert_eq!(v, ["lion", "tiger", "leopard"]);
1613 ///
1614 /// let v: Vec<&str> = "AABBCC".split("DD").collect();
1615 /// assert_eq!(v, ["AABBCC"]);
1616 ///
1617 /// let v: Vec<&str> = "abc1def2ghi".split(char::is_numeric).collect();
1618 /// assert_eq!(v, ["abc", "def", "ghi"]);
1619 ///
1620 /// let v: Vec<&str> = "lionXtigerXleopard".split(char::is_uppercase).collect();
1621 /// assert_eq!(v, ["lion", "tiger", "leopard"]);
1622 /// ```
1623 ///
1624 /// If the pattern is a slice of chars, split on each occurrence of any of the characters:
1625 ///
1626 /// ```
1627 /// let v: Vec<&str> = "2020-11-03 23:59".split(&['-', ' ', ':', '@'][..]).collect();
1628 /// assert_eq!(v, ["2020", "11", "03", "23", "59"]);
1629 /// ```
1630 ///
1631 /// A more complex pattern, using a closure:
1632 ///
1633 /// ```
1634 /// let v: Vec<&str> = "abc1defXghi".split(|c| c == '1' || c == 'X').collect();
1635 /// assert_eq!(v, ["abc", "def", "ghi"]);
1636 /// ```
1637 ///
1638 /// If a string contains multiple contiguous separators, you will end up
1639 /// with empty strings in the output:
1640 ///
1641 /// ```
1642 /// let x = "||||a||b|c".to_string();
1643 /// let d: Vec<_> = x.split('|').collect();
1644 ///
1645 /// assert_eq!(d, &["", "", "", "", "a", "", "b", "c"]);
1646 /// ```
1647 ///
1648 /// Contiguous separators are separated by the empty string.
1649 ///
1650 /// ```
1651 /// let x = "(///)".to_string();
1652 /// let d: Vec<_> = x.split('/').collect();
1653 ///
1654 /// assert_eq!(d, &["(", "", "", ")"]);
1655 /// ```
1656 ///
1657 /// Separators at the start or end of a string are neighbored
1658 /// by empty strings.
1659 ///
1660 /// ```
1661 /// let d: Vec<_> = "010".split("0").collect();
1662 /// assert_eq!(d, &["", "1", ""]);
1663 /// ```
1664 ///
1665 /// When the empty string is used as a separator, it separates
1666 /// every character in the string, along with the beginning
1667 /// and end of the string.
1668 ///
1669 /// ```
1670 /// let f: Vec<_> = "rust".split("").collect();
1671 /// assert_eq!(f, &["", "r", "u", "s", "t", ""]);
1672 /// ```
1673 ///
1674 /// Contiguous separators can lead to possibly surprising behavior
1675 /// when whitespace is used as the separator. This code is correct:
1676 ///
1677 /// ```
1678 /// let x = " a b c".to_string();
1679 /// let d: Vec<_> = x.split(' ').collect();
1680 ///
1681 /// assert_eq!(d, &["", "", "", "", "a", "", "b", "c"]);
1682 /// ```
1683 ///
1684 /// It does _not_ give you:
1685 ///
1686 /// ```,ignore
1687 /// assert_eq!(d, &["a", "b", "c"]);
1688 /// ```
1689 ///
1690 /// Use [`split_whitespace`] for this behavior.
1691 ///
1692 /// [`split_whitespace`]: str::split_whitespace
1693 #[stable(feature = "rust1", since = "1.0.0")]
1694 #[inline]
1695 #[cfg(not(feature = "ferrocene_certified"))]
1696 pub fn split<P: Pattern>(&self, pat: P) -> Split<'_, P> {
1697 Split(SplitInternal {
1698 start: 0,
1699 end: self.len(),
1700 matcher: pat.into_searcher(self),
1701 allow_trailing_empty: true,
1702 finished: false,
1703 })
1704 }
1705
1706 /// Returns an iterator over substrings of this string slice, separated by
1707 /// characters matched by a pattern.
1708 ///
1709 /// Differs from the iterator produced by `split` in that `split_inclusive`
1710 /// leaves the matched part as the terminator of the substring.
1711 ///
1712 /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a
1713 /// function or closure that determines if a character matches.
1714 ///
1715 /// [`char`]: prim@char
1716 /// [pattern]: self::pattern
1717 ///
1718 /// # Examples
1719 ///
1720 /// ```
1721 /// let v: Vec<&str> = "Mary had a little lamb\nlittle lamb\nlittle lamb."
1722 /// .split_inclusive('\n').collect();
1723 /// assert_eq!(v, ["Mary had a little lamb\n", "little lamb\n", "little lamb."]);
1724 /// ```
1725 ///
1726 /// If the last element of the string is matched,
1727 /// that element will be considered the terminator of the preceding substring.
1728 /// That substring will be the last item returned by the iterator.
1729 ///
1730 /// ```
1731 /// let v: Vec<&str> = "Mary had a little lamb\nlittle lamb\nlittle lamb.\n"
1732 /// .split_inclusive('\n').collect();
1733 /// assert_eq!(v, ["Mary had a little lamb\n", "little lamb\n", "little lamb.\n"]);
1734 /// ```
1735 #[stable(feature = "split_inclusive", since = "1.51.0")]
1736 #[inline]
1737 #[cfg(not(feature = "ferrocene_certified"))]
1738 pub fn split_inclusive<P: Pattern>(&self, pat: P) -> SplitInclusive<'_, P> {
1739 SplitInclusive(SplitInternal {
1740 start: 0,
1741 end: self.len(),
1742 matcher: pat.into_searcher(self),
1743 allow_trailing_empty: false,
1744 finished: false,
1745 })
1746 }
1747
1748 /// Returns an iterator over substrings of the given string slice, separated
1749 /// by characters matched by a pattern and yielded in reverse order.
1750 ///
1751 /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a
1752 /// function or closure that determines if a character matches.
1753 ///
1754 /// [`char`]: prim@char
1755 /// [pattern]: self::pattern
1756 ///
1757 /// # Iterator behavior
1758 ///
1759 /// The returned iterator requires that the pattern supports a reverse
1760 /// search, and it will be a [`DoubleEndedIterator`] if a forward/reverse
1761 /// search yields the same elements.
1762 ///
1763 /// For iterating from the front, the [`split`] method can be used.
1764 ///
1765 /// [`split`]: str::split
1766 ///
1767 /// # Examples
1768 ///
1769 /// Simple patterns:
1770 ///
1771 /// ```
1772 /// let v: Vec<&str> = "Mary had a little lamb".rsplit(' ').collect();
1773 /// assert_eq!(v, ["lamb", "little", "a", "had", "Mary"]);
1774 ///
1775 /// let v: Vec<&str> = "".rsplit('X').collect();
1776 /// assert_eq!(v, [""]);
1777 ///
1778 /// let v: Vec<&str> = "lionXXtigerXleopard".rsplit('X').collect();
1779 /// assert_eq!(v, ["leopard", "tiger", "", "lion"]);
1780 ///
1781 /// let v: Vec<&str> = "lion::tiger::leopard".rsplit("::").collect();
1782 /// assert_eq!(v, ["leopard", "tiger", "lion"]);
1783 /// ```
1784 ///
1785 /// A more complex pattern, using a closure:
1786 ///
1787 /// ```
1788 /// let v: Vec<&str> = "abc1defXghi".rsplit(|c| c == '1' || c == 'X').collect();
1789 /// assert_eq!(v, ["ghi", "def", "abc"]);
1790 /// ```
1791 #[stable(feature = "rust1", since = "1.0.0")]
1792 #[inline]
1793 #[cfg(not(feature = "ferrocene_certified"))]
1794 pub fn rsplit<P: Pattern>(&self, pat: P) -> RSplit<'_, P>
1795 where
1796 for<'a> P::Searcher<'a>: ReverseSearcher<'a>,
1797 {
1798 RSplit(self.split(pat).0)
1799 }
1800
1801 /// Returns an iterator over substrings of the given string slice, separated
1802 /// by characters matched by a pattern.
1803 ///
1804 /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a
1805 /// function or closure that determines if a character matches.
1806 ///
1807 /// [`char`]: prim@char
1808 /// [pattern]: self::pattern
1809 ///
1810 /// Equivalent to [`split`], except that the trailing substring
1811 /// is skipped if empty.
1812 ///
1813 /// [`split`]: str::split
1814 ///
1815 /// This method can be used for string data that is _terminated_,
1816 /// rather than _separated_ by a pattern.
1817 ///
1818 /// # Iterator behavior
1819 ///
1820 /// The returned iterator will be a [`DoubleEndedIterator`] if the pattern
1821 /// allows a reverse search and forward/reverse search yields the same
1822 /// elements. This is true for, e.g., [`char`], but not for `&str`.
1823 ///
1824 /// If the pattern allows a reverse search but its results might differ
1825 /// from a forward search, the [`rsplit_terminator`] method can be used.
1826 ///
1827 /// [`rsplit_terminator`]: str::rsplit_terminator
1828 ///
1829 /// # Examples
1830 ///
1831 /// ```
1832 /// let v: Vec<&str> = "A.B.".split_terminator('.').collect();
1833 /// assert_eq!(v, ["A", "B"]);
1834 ///
1835 /// let v: Vec<&str> = "A..B..".split_terminator(".").collect();
1836 /// assert_eq!(v, ["A", "", "B", ""]);
1837 ///
1838 /// let v: Vec<&str> = "A.B:C.D".split_terminator(&['.', ':'][..]).collect();
1839 /// assert_eq!(v, ["A", "B", "C", "D"]);
1840 /// ```
1841 #[stable(feature = "rust1", since = "1.0.0")]
1842 #[inline]
1843 #[cfg(not(feature = "ferrocene_certified"))]
1844 pub fn split_terminator<P: Pattern>(&self, pat: P) -> SplitTerminator<'_, P> {
1845 SplitTerminator(SplitInternal { allow_trailing_empty: false, ..self.split(pat).0 })
1846 }
1847
1848 /// Returns an iterator over substrings of `self`, separated by characters
1849 /// matched by a pattern and yielded in reverse order.
1850 ///
1851 /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a
1852 /// function or closure that determines if a character matches.
1853 ///
1854 /// [`char`]: prim@char
1855 /// [pattern]: self::pattern
1856 ///
1857 /// Equivalent to [`split`], except that the trailing substring is
1858 /// skipped if empty.
1859 ///
1860 /// [`split`]: str::split
1861 ///
1862 /// This method can be used for string data that is _terminated_,
1863 /// rather than _separated_ by a pattern.
1864 ///
1865 /// # Iterator behavior
1866 ///
1867 /// The returned iterator requires that the pattern supports a
1868 /// reverse search, and it will be double ended if a forward/reverse
1869 /// search yields the same elements.
1870 ///
1871 /// For iterating from the front, the [`split_terminator`] method can be
1872 /// used.
1873 ///
1874 /// [`split_terminator`]: str::split_terminator
1875 ///
1876 /// # Examples
1877 ///
1878 /// ```
1879 /// let v: Vec<&str> = "A.B.".rsplit_terminator('.').collect();
1880 /// assert_eq!(v, ["B", "A"]);
1881 ///
1882 /// let v: Vec<&str> = "A..B..".rsplit_terminator(".").collect();
1883 /// assert_eq!(v, ["", "B", "", "A"]);
1884 ///
1885 /// let v: Vec<&str> = "A.B:C.D".rsplit_terminator(&['.', ':'][..]).collect();
1886 /// assert_eq!(v, ["D", "C", "B", "A"]);
1887 /// ```
1888 #[stable(feature = "rust1", since = "1.0.0")]
1889 #[inline]
1890 #[cfg(not(feature = "ferrocene_certified"))]
1891 pub fn rsplit_terminator<P: Pattern>(&self, pat: P) -> RSplitTerminator<'_, P>
1892 where
1893 for<'a> P::Searcher<'a>: ReverseSearcher<'a>,
1894 {
1895 RSplitTerminator(self.split_terminator(pat).0)
1896 }
1897
1898 /// Returns an iterator over substrings of the given string slice, separated
1899 /// by a pattern, restricted to returning at most `n` items.
1900 ///
1901 /// If `n` substrings are returned, the last substring (the `n`th substring)
1902 /// will contain the remainder of the string.
1903 ///
1904 /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a
1905 /// function or closure that determines if a character matches.
1906 ///
1907 /// [`char`]: prim@char
1908 /// [pattern]: self::pattern
1909 ///
1910 /// # Iterator behavior
1911 ///
1912 /// The returned iterator will not be double ended, because it is
1913 /// not efficient to support.
1914 ///
1915 /// If the pattern allows a reverse search, the [`rsplitn`] method can be
1916 /// used.
1917 ///
1918 /// [`rsplitn`]: str::rsplitn
1919 ///
1920 /// # Examples
1921 ///
1922 /// Simple patterns:
1923 ///
1924 /// ```
1925 /// let v: Vec<&str> = "Mary had a little lambda".splitn(3, ' ').collect();
1926 /// assert_eq!(v, ["Mary", "had", "a little lambda"]);
1927 ///
1928 /// let v: Vec<&str> = "lionXXtigerXleopard".splitn(3, "X").collect();
1929 /// assert_eq!(v, ["lion", "", "tigerXleopard"]);
1930 ///
1931 /// let v: Vec<&str> = "abcXdef".splitn(1, 'X').collect();
1932 /// assert_eq!(v, ["abcXdef"]);
1933 ///
1934 /// let v: Vec<&str> = "".splitn(1, 'X').collect();
1935 /// assert_eq!(v, [""]);
1936 /// ```
1937 ///
1938 /// A more complex pattern, using a closure:
1939 ///
1940 /// ```
1941 /// let v: Vec<&str> = "abc1defXghi".splitn(2, |c| c == '1' || c == 'X').collect();
1942 /// assert_eq!(v, ["abc", "defXghi"]);
1943 /// ```
1944 #[stable(feature = "rust1", since = "1.0.0")]
1945 #[inline]
1946 #[cfg(not(feature = "ferrocene_certified"))]
1947 pub fn splitn<P: Pattern>(&self, n: usize, pat: P) -> SplitN<'_, P> {
1948 SplitN(SplitNInternal { iter: self.split(pat).0, count: n })
1949 }
1950
1951 /// Returns an iterator over substrings of this string slice, separated by a
1952 /// pattern, starting from the end of the string, restricted to returning at
1953 /// most `n` items.
1954 ///
1955 /// If `n` substrings are returned, the last substring (the `n`th substring)
1956 /// will contain the remainder of the string.
1957 ///
1958 /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a
1959 /// function or closure that determines if a character matches.
1960 ///
1961 /// [`char`]: prim@char
1962 /// [pattern]: self::pattern
1963 ///
1964 /// # Iterator behavior
1965 ///
1966 /// The returned iterator will not be double ended, because it is not
1967 /// efficient to support.
1968 ///
1969 /// For splitting from the front, the [`splitn`] method can be used.
1970 ///
1971 /// [`splitn`]: str::splitn
1972 ///
1973 /// # Examples
1974 ///
1975 /// Simple patterns:
1976 ///
1977 /// ```
1978 /// let v: Vec<&str> = "Mary had a little lamb".rsplitn(3, ' ').collect();
1979 /// assert_eq!(v, ["lamb", "little", "Mary had a"]);
1980 ///
1981 /// let v: Vec<&str> = "lionXXtigerXleopard".rsplitn(3, 'X').collect();
1982 /// assert_eq!(v, ["leopard", "tiger", "lionX"]);
1983 ///
1984 /// let v: Vec<&str> = "lion::tiger::leopard".rsplitn(2, "::").collect();
1985 /// assert_eq!(v, ["leopard", "lion::tiger"]);
1986 /// ```
1987 ///
1988 /// A more complex pattern, using a closure:
1989 ///
1990 /// ```
1991 /// let v: Vec<&str> = "abc1defXghi".rsplitn(2, |c| c == '1' || c == 'X').collect();
1992 /// assert_eq!(v, ["ghi", "abc1def"]);
1993 /// ```
1994 #[stable(feature = "rust1", since = "1.0.0")]
1995 #[inline]
1996 #[cfg(not(feature = "ferrocene_certified"))]
1997 pub fn rsplitn<P: Pattern>(&self, n: usize, pat: P) -> RSplitN<'_, P>
1998 where
1999 for<'a> P::Searcher<'a>: ReverseSearcher<'a>,
2000 {
2001 RSplitN(self.splitn(n, pat).0)
2002 }
2003
2004 /// Splits the string on the first occurrence of the specified delimiter and
2005 /// returns prefix before delimiter and suffix after delimiter.
2006 ///
2007 /// # Examples
2008 ///
2009 /// ```
2010 /// assert_eq!("cfg".split_once('='), None);
2011 /// assert_eq!("cfg=".split_once('='), Some(("cfg", "")));
2012 /// assert_eq!("cfg=foo".split_once('='), Some(("cfg", "foo")));
2013 /// assert_eq!("cfg=foo=bar".split_once('='), Some(("cfg", "foo=bar")));
2014 /// ```
2015 #[stable(feature = "str_split_once", since = "1.52.0")]
2016 #[inline]
2017 #[cfg(not(feature = "ferrocene_certified"))]
2018 pub fn split_once<P: Pattern>(&self, delimiter: P) -> Option<(&'_ str, &'_ str)> {
2019 let (start, end) = delimiter.into_searcher(self).next_match()?;
2020 // SAFETY: `Searcher` is known to return valid indices.
2021 unsafe { Some((self.get_unchecked(..start), self.get_unchecked(end..))) }
2022 }
2023
2024 /// Splits the string on the last occurrence of the specified delimiter and
2025 /// returns prefix before delimiter and suffix after delimiter.
2026 ///
2027 /// # Examples
2028 ///
2029 /// ```
2030 /// assert_eq!("cfg".rsplit_once('='), None);
2031 /// assert_eq!("cfg=".rsplit_once('='), Some(("cfg", "")));
2032 /// assert_eq!("cfg=foo".rsplit_once('='), Some(("cfg", "foo")));
2033 /// assert_eq!("cfg=foo=bar".rsplit_once('='), Some(("cfg=foo", "bar")));
2034 /// ```
2035 #[stable(feature = "str_split_once", since = "1.52.0")]
2036 #[inline]
2037 #[cfg(not(feature = "ferrocene_certified"))]
2038 pub fn rsplit_once<P: Pattern>(&self, delimiter: P) -> Option<(&'_ str, &'_ str)>
2039 where
2040 for<'a> P::Searcher<'a>: ReverseSearcher<'a>,
2041 {
2042 let (start, end) = delimiter.into_searcher(self).next_match_back()?;
2043 // SAFETY: `Searcher` is known to return valid indices.
2044 unsafe { Some((self.get_unchecked(..start), self.get_unchecked(end..))) }
2045 }
2046
2047 /// Returns an iterator over the disjoint matches of a pattern within the
2048 /// given string slice.
2049 ///
2050 /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a
2051 /// function or closure that determines if a character matches.
2052 ///
2053 /// [`char`]: prim@char
2054 /// [pattern]: self::pattern
2055 ///
2056 /// # Iterator behavior
2057 ///
2058 /// The returned iterator will be a [`DoubleEndedIterator`] if the pattern
2059 /// allows a reverse search and forward/reverse search yields the same
2060 /// elements. This is true for, e.g., [`char`], but not for `&str`.
2061 ///
2062 /// If the pattern allows a reverse search but its results might differ
2063 /// from a forward search, the [`rmatches`] method can be used.
2064 ///
2065 /// [`rmatches`]: str::rmatches
2066 ///
2067 /// # Examples
2068 ///
2069 /// ```
2070 /// let v: Vec<&str> = "abcXXXabcYYYabc".matches("abc").collect();
2071 /// assert_eq!(v, ["abc", "abc", "abc"]);
2072 ///
2073 /// let v: Vec<&str> = "1abc2abc3".matches(char::is_numeric).collect();
2074 /// assert_eq!(v, ["1", "2", "3"]);
2075 /// ```
2076 #[stable(feature = "str_matches", since = "1.2.0")]
2077 #[inline]
2078 #[cfg(not(feature = "ferrocene_certified"))]
2079 pub fn matches<P: Pattern>(&self, pat: P) -> Matches<'_, P> {
2080 Matches(MatchesInternal(pat.into_searcher(self)))
2081 }
2082
2083 /// Returns an iterator over the disjoint matches of a pattern within this
2084 /// string slice, yielded in reverse order.
2085 ///
2086 /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a
2087 /// function or closure that determines if a character matches.
2088 ///
2089 /// [`char`]: prim@char
2090 /// [pattern]: self::pattern
2091 ///
2092 /// # Iterator behavior
2093 ///
2094 /// The returned iterator requires that the pattern supports a reverse
2095 /// search, and it will be a [`DoubleEndedIterator`] if a forward/reverse
2096 /// search yields the same elements.
2097 ///
2098 /// For iterating from the front, the [`matches`] method can be used.
2099 ///
2100 /// [`matches`]: str::matches
2101 ///
2102 /// # Examples
2103 ///
2104 /// ```
2105 /// let v: Vec<&str> = "abcXXXabcYYYabc".rmatches("abc").collect();
2106 /// assert_eq!(v, ["abc", "abc", "abc"]);
2107 ///
2108 /// let v: Vec<&str> = "1abc2abc3".rmatches(char::is_numeric).collect();
2109 /// assert_eq!(v, ["3", "2", "1"]);
2110 /// ```
2111 #[stable(feature = "str_matches", since = "1.2.0")]
2112 #[inline]
2113 #[cfg(not(feature = "ferrocene_certified"))]
2114 pub fn rmatches<P: Pattern>(&self, pat: P) -> RMatches<'_, P>
2115 where
2116 for<'a> P::Searcher<'a>: ReverseSearcher<'a>,
2117 {
2118 RMatches(self.matches(pat).0)
2119 }
2120
2121 /// Returns an iterator over the disjoint matches of a pattern within this string
2122 /// slice as well as the index that the match starts at.
2123 ///
2124 /// For matches of `pat` within `self` that overlap, only the indices
2125 /// corresponding to the first match are returned.
2126 ///
2127 /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a
2128 /// function or closure that determines if a character matches.
2129 ///
2130 /// [`char`]: prim@char
2131 /// [pattern]: self::pattern
2132 ///
2133 /// # Iterator behavior
2134 ///
2135 /// The returned iterator will be a [`DoubleEndedIterator`] if the pattern
2136 /// allows a reverse search and forward/reverse search yields the same
2137 /// elements. This is true for, e.g., [`char`], but not for `&str`.
2138 ///
2139 /// If the pattern allows a reverse search but its results might differ
2140 /// from a forward search, the [`rmatch_indices`] method can be used.
2141 ///
2142 /// [`rmatch_indices`]: str::rmatch_indices
2143 ///
2144 /// # Examples
2145 ///
2146 /// ```
2147 /// let v: Vec<_> = "abcXXXabcYYYabc".match_indices("abc").collect();
2148 /// assert_eq!(v, [(0, "abc"), (6, "abc"), (12, "abc")]);
2149 ///
2150 /// let v: Vec<_> = "1abcabc2".match_indices("abc").collect();
2151 /// assert_eq!(v, [(1, "abc"), (4, "abc")]);
2152 ///
2153 /// let v: Vec<_> = "ababa".match_indices("aba").collect();
2154 /// assert_eq!(v, [(0, "aba")]); // only the first `aba`
2155 /// ```
2156 #[stable(feature = "str_match_indices", since = "1.5.0")]
2157 #[inline]
2158 #[cfg(not(feature = "ferrocene_certified"))]
2159 pub fn match_indices<P: Pattern>(&self, pat: P) -> MatchIndices<'_, P> {
2160 MatchIndices(MatchIndicesInternal(pat.into_searcher(self)))
2161 }
2162
2163 /// Returns an iterator over the disjoint matches of a pattern within `self`,
2164 /// yielded in reverse order along with the index of the match.
2165 ///
2166 /// For matches of `pat` within `self` that overlap, only the indices
2167 /// corresponding to the last match are returned.
2168 ///
2169 /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a
2170 /// function or closure that determines if a character matches.
2171 ///
2172 /// [`char`]: prim@char
2173 /// [pattern]: self::pattern
2174 ///
2175 /// # Iterator behavior
2176 ///
2177 /// The returned iterator requires that the pattern supports a reverse
2178 /// search, and it will be a [`DoubleEndedIterator`] if a forward/reverse
2179 /// search yields the same elements.
2180 ///
2181 /// For iterating from the front, the [`match_indices`] method can be used.
2182 ///
2183 /// [`match_indices`]: str::match_indices
2184 ///
2185 /// # Examples
2186 ///
2187 /// ```
2188 /// let v: Vec<_> = "abcXXXabcYYYabc".rmatch_indices("abc").collect();
2189 /// assert_eq!(v, [(12, "abc"), (6, "abc"), (0, "abc")]);
2190 ///
2191 /// let v: Vec<_> = "1abcabc2".rmatch_indices("abc").collect();
2192 /// assert_eq!(v, [(4, "abc"), (1, "abc")]);
2193 ///
2194 /// let v: Vec<_> = "ababa".rmatch_indices("aba").collect();
2195 /// assert_eq!(v, [(2, "aba")]); // only the last `aba`
2196 /// ```
2197 #[stable(feature = "str_match_indices", since = "1.5.0")]
2198 #[inline]
2199 #[cfg(not(feature = "ferrocene_certified"))]
2200 pub fn rmatch_indices<P: Pattern>(&self, pat: P) -> RMatchIndices<'_, P>
2201 where
2202 for<'a> P::Searcher<'a>: ReverseSearcher<'a>,
2203 {
2204 RMatchIndices(self.match_indices(pat).0)
2205 }
2206
2207 /// Returns a string slice with leading and trailing whitespace removed.
2208 ///
2209 /// 'Whitespace' is defined according to the terms of the Unicode Derived
2210 /// Core Property `White_Space`, which includes newlines.
2211 ///
2212 /// # Examples
2213 ///
2214 /// ```
2215 /// let s = "\n Hello\tworld\t\n";
2216 ///
2217 /// assert_eq!("Hello\tworld", s.trim());
2218 /// ```
2219 #[inline]
2220 #[must_use = "this returns the trimmed string as a slice, \
2221 without modifying the original"]
2222 #[stable(feature = "rust1", since = "1.0.0")]
2223 #[rustc_diagnostic_item = "str_trim"]
2224 #[cfg(not(feature = "ferrocene_certified"))]
2225 pub fn trim(&self) -> &str {
2226 self.trim_matches(char::is_whitespace)
2227 }
2228
2229 /// Returns a string slice with leading whitespace removed.
2230 ///
2231 /// 'Whitespace' is defined according to the terms of the Unicode Derived
2232 /// Core Property `White_Space`, which includes newlines.
2233 ///
2234 /// # Text directionality
2235 ///
2236 /// A string is a sequence of bytes. `start` in this context means the first
2237 /// position of that byte string; for a left-to-right language like English or
2238 /// Russian, this will be left side, and for right-to-left languages like
2239 /// Arabic or Hebrew, this will be the right side.
2240 ///
2241 /// # Examples
2242 ///
2243 /// Basic usage:
2244 ///
2245 /// ```
2246 /// let s = "\n Hello\tworld\t\n";
2247 /// assert_eq!("Hello\tworld\t\n", s.trim_start());
2248 /// ```
2249 ///
2250 /// Directionality:
2251 ///
2252 /// ```
2253 /// let s = " English ";
2254 /// assert!(Some('E') == s.trim_start().chars().next());
2255 ///
2256 /// let s = " עברית ";
2257 /// assert!(Some('ע') == s.trim_start().chars().next());
2258 /// ```
2259 #[inline]
2260 #[must_use = "this returns the trimmed string as a new slice, \
2261 without modifying the original"]
2262 #[stable(feature = "trim_direction", since = "1.30.0")]
2263 #[rustc_diagnostic_item = "str_trim_start"]
2264 #[cfg(not(feature = "ferrocene_certified"))]
2265 pub fn trim_start(&self) -> &str {
2266 self.trim_start_matches(char::is_whitespace)
2267 }
2268
2269 /// Returns a string slice with trailing whitespace removed.
2270 ///
2271 /// 'Whitespace' is defined according to the terms of the Unicode Derived
2272 /// Core Property `White_Space`, which includes newlines.
2273 ///
2274 /// # Text directionality
2275 ///
2276 /// A string is a sequence of bytes. `end` in this context means the last
2277 /// position of that byte string; for a left-to-right language like English or
2278 /// Russian, this will be right side, and for right-to-left languages like
2279 /// Arabic or Hebrew, this will be the left side.
2280 ///
2281 /// # Examples
2282 ///
2283 /// Basic usage:
2284 ///
2285 /// ```
2286 /// let s = "\n Hello\tworld\t\n";
2287 /// assert_eq!("\n Hello\tworld", s.trim_end());
2288 /// ```
2289 ///
2290 /// Directionality:
2291 ///
2292 /// ```
2293 /// let s = " English ";
2294 /// assert!(Some('h') == s.trim_end().chars().rev().next());
2295 ///
2296 /// let s = " עברית ";
2297 /// assert!(Some('ת') == s.trim_end().chars().rev().next());
2298 /// ```
2299 #[inline]
2300 #[must_use = "this returns the trimmed string as a new slice, \
2301 without modifying the original"]
2302 #[stable(feature = "trim_direction", since = "1.30.0")]
2303 #[rustc_diagnostic_item = "str_trim_end"]
2304 #[cfg(not(feature = "ferrocene_certified"))]
2305 pub fn trim_end(&self) -> &str {
2306 self.trim_end_matches(char::is_whitespace)
2307 }
2308
2309 /// Returns a string slice with leading whitespace removed.
2310 ///
2311 /// 'Whitespace' is defined according to the terms of the Unicode Derived
2312 /// Core Property `White_Space`.
2313 ///
2314 /// # Text directionality
2315 ///
2316 /// A string is a sequence of bytes. 'Left' in this context means the first
2317 /// position of that byte string; for a language like Arabic or Hebrew
2318 /// which are 'right to left' rather than 'left to right', this will be
2319 /// the _right_ side, not the left.
2320 ///
2321 /// # Examples
2322 ///
2323 /// Basic usage:
2324 ///
2325 /// ```
2326 /// let s = " Hello\tworld\t";
2327 ///
2328 /// assert_eq!("Hello\tworld\t", s.trim_left());
2329 /// ```
2330 ///
2331 /// Directionality:
2332 ///
2333 /// ```
2334 /// let s = " English";
2335 /// assert!(Some('E') == s.trim_left().chars().next());
2336 ///
2337 /// let s = " עברית";
2338 /// assert!(Some('ע') == s.trim_left().chars().next());
2339 /// ```
2340 #[must_use = "this returns the trimmed string as a new slice, \
2341 without modifying the original"]
2342 #[inline]
2343 #[stable(feature = "rust1", since = "1.0.0")]
2344 #[deprecated(since = "1.33.0", note = "superseded by `trim_start`", suggestion = "trim_start")]
2345 #[cfg(not(feature = "ferrocene_certified"))]
2346 pub fn trim_left(&self) -> &str {
2347 self.trim_start()
2348 }
2349
2350 /// Returns a string slice with trailing whitespace removed.
2351 ///
2352 /// 'Whitespace' is defined according to the terms of the Unicode Derived
2353 /// Core Property `White_Space`.
2354 ///
2355 /// # Text directionality
2356 ///
2357 /// A string is a sequence of bytes. 'Right' in this context means the last
2358 /// position of that byte string; for a language like Arabic or Hebrew
2359 /// which are 'right to left' rather than 'left to right', this will be
2360 /// the _left_ side, not the right.
2361 ///
2362 /// # Examples
2363 ///
2364 /// Basic usage:
2365 ///
2366 /// ```
2367 /// let s = " Hello\tworld\t";
2368 ///
2369 /// assert_eq!(" Hello\tworld", s.trim_right());
2370 /// ```
2371 ///
2372 /// Directionality:
2373 ///
2374 /// ```
2375 /// let s = "English ";
2376 /// assert!(Some('h') == s.trim_right().chars().rev().next());
2377 ///
2378 /// let s = "עברית ";
2379 /// assert!(Some('ת') == s.trim_right().chars().rev().next());
2380 /// ```
2381 #[must_use = "this returns the trimmed string as a new slice, \
2382 without modifying the original"]
2383 #[inline]
2384 #[stable(feature = "rust1", since = "1.0.0")]
2385 #[deprecated(since = "1.33.0", note = "superseded by `trim_end`", suggestion = "trim_end")]
2386 #[cfg(not(feature = "ferrocene_certified"))]
2387 pub fn trim_right(&self) -> &str {
2388 self.trim_end()
2389 }
2390
2391 /// Returns a string slice with all prefixes and suffixes that match a
2392 /// pattern repeatedly removed.
2393 ///
2394 /// The [pattern] can be a [`char`], a slice of [`char`]s, or a function
2395 /// or closure that determines if a character matches.
2396 ///
2397 /// [`char`]: prim@char
2398 /// [pattern]: self::pattern
2399 ///
2400 /// # Examples
2401 ///
2402 /// Simple patterns:
2403 ///
2404 /// ```
2405 /// assert_eq!("11foo1bar11".trim_matches('1'), "foo1bar");
2406 /// assert_eq!("123foo1bar123".trim_matches(char::is_numeric), "foo1bar");
2407 ///
2408 /// let x: &[_] = &['1', '2'];
2409 /// assert_eq!("12foo1bar12".trim_matches(x), "foo1bar");
2410 /// ```
2411 ///
2412 /// A more complex pattern, using a closure:
2413 ///
2414 /// ```
2415 /// assert_eq!("1foo1barXX".trim_matches(|c| c == '1' || c == 'X'), "foo1bar");
2416 /// ```
2417 #[must_use = "this returns the trimmed string as a new slice, \
2418 without modifying the original"]
2419 #[stable(feature = "rust1", since = "1.0.0")]
2420 #[cfg(not(feature = "ferrocene_certified"))]
2421 pub fn trim_matches<P: Pattern>(&self, pat: P) -> &str
2422 where
2423 for<'a> P::Searcher<'a>: DoubleEndedSearcher<'a>,
2424 {
2425 let mut i = 0;
2426 let mut j = 0;
2427 let mut matcher = pat.into_searcher(self);
2428 if let Some((a, b)) = matcher.next_reject() {
2429 i = a;
2430 j = b; // Remember earliest known match, correct it below if
2431 // last match is different
2432 }
2433 if let Some((_, b)) = matcher.next_reject_back() {
2434 j = b;
2435 }
2436 // SAFETY: `Searcher` is known to return valid indices.
2437 unsafe { self.get_unchecked(i..j) }
2438 }
2439
2440 /// Returns a string slice with all prefixes that match a pattern
2441 /// repeatedly removed.
2442 ///
2443 /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a
2444 /// function or closure that determines if a character matches.
2445 ///
2446 /// [`char`]: prim@char
2447 /// [pattern]: self::pattern
2448 ///
2449 /// # Text directionality
2450 ///
2451 /// A string is a sequence of bytes. `start` in this context means the first
2452 /// position of that byte string; for a left-to-right language like English or
2453 /// Russian, this will be left side, and for right-to-left languages like
2454 /// Arabic or Hebrew, this will be the right side.
2455 ///
2456 /// # Examples
2457 ///
2458 /// ```
2459 /// assert_eq!("11foo1bar11".trim_start_matches('1'), "foo1bar11");
2460 /// assert_eq!("123foo1bar123".trim_start_matches(char::is_numeric), "foo1bar123");
2461 ///
2462 /// let x: &[_] = &['1', '2'];
2463 /// assert_eq!("12foo1bar12".trim_start_matches(x), "foo1bar12");
2464 /// ```
2465 #[must_use = "this returns the trimmed string as a new slice, \
2466 without modifying the original"]
2467 #[stable(feature = "trim_direction", since = "1.30.0")]
2468 #[cfg(not(feature = "ferrocene_certified"))]
2469 pub fn trim_start_matches<P: Pattern>(&self, pat: P) -> &str {
2470 let mut i = self.len();
2471 let mut matcher = pat.into_searcher(self);
2472 if let Some((a, _)) = matcher.next_reject() {
2473 i = a;
2474 }
2475 // SAFETY: `Searcher` is known to return valid indices.
2476 unsafe { self.get_unchecked(i..self.len()) }
2477 }
2478
2479 /// Returns a string slice with the prefix removed.
2480 ///
2481 /// If the string starts with the pattern `prefix`, returns the substring after the prefix,
2482 /// wrapped in `Some`. Unlike [`trim_start_matches`], this method removes the prefix exactly once.
2483 ///
2484 /// If the string does not start with `prefix`, returns `None`.
2485 ///
2486 /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a
2487 /// function or closure that determines if a character matches.
2488 ///
2489 /// [`char`]: prim@char
2490 /// [pattern]: self::pattern
2491 /// [`trim_start_matches`]: Self::trim_start_matches
2492 ///
2493 /// # Examples
2494 ///
2495 /// ```
2496 /// assert_eq!("foo:bar".strip_prefix("foo:"), Some("bar"));
2497 /// assert_eq!("foo:bar".strip_prefix("bar"), None);
2498 /// assert_eq!("foofoo".strip_prefix("foo"), Some("foo"));
2499 /// ```
2500 #[must_use = "this returns the remaining substring as a new slice, \
2501 without modifying the original"]
2502 #[stable(feature = "str_strip", since = "1.45.0")]
2503 #[cfg(not(feature = "ferrocene_certified"))]
2504 pub fn strip_prefix<P: Pattern>(&self, prefix: P) -> Option<&str> {
2505 prefix.strip_prefix_of(self)
2506 }
2507
2508 /// Returns a string slice with the suffix removed.
2509 ///
2510 /// If the string ends with the pattern `suffix`, returns the substring before the suffix,
2511 /// wrapped in `Some`. Unlike [`trim_end_matches`], this method removes the suffix exactly once.
2512 ///
2513 /// If the string does not end with `suffix`, returns `None`.
2514 ///
2515 /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a
2516 /// function or closure that determines if a character matches.
2517 ///
2518 /// [`char`]: prim@char
2519 /// [pattern]: self::pattern
2520 /// [`trim_end_matches`]: Self::trim_end_matches
2521 ///
2522 /// # Examples
2523 ///
2524 /// ```
2525 /// assert_eq!("bar:foo".strip_suffix(":foo"), Some("bar"));
2526 /// assert_eq!("bar:foo".strip_suffix("bar"), None);
2527 /// assert_eq!("foofoo".strip_suffix("foo"), Some("foo"));
2528 /// ```
2529 #[must_use = "this returns the remaining substring as a new slice, \
2530 without modifying the original"]
2531 #[stable(feature = "str_strip", since = "1.45.0")]
2532 #[cfg(not(feature = "ferrocene_certified"))]
2533 pub fn strip_suffix<P: Pattern>(&self, suffix: P) -> Option<&str>
2534 where
2535 for<'a> P::Searcher<'a>: ReverseSearcher<'a>,
2536 {
2537 suffix.strip_suffix_of(self)
2538 }
2539
2540 /// Returns a string slice with the prefix and suffix removed.
2541 ///
2542 /// If the string starts with the pattern `prefix` and ends with the pattern `suffix`, returns
2543 /// the substring after the prefix and before the suffix, wrapped in `Some`.
2544 /// Unlike [`trim_start_matches`] and [`trim_end_matches`], this method removes both the prefix
2545 /// and suffix exactly once.
2546 ///
2547 /// If the string does not start with `prefix` or does not end with `suffix`, returns `None`.
2548 ///
2549 /// Each [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a
2550 /// function or closure that determines if a character matches.
2551 ///
2552 /// [`char`]: prim@char
2553 /// [pattern]: self::pattern
2554 /// [`trim_start_matches`]: Self::trim_start_matches
2555 /// [`trim_end_matches`]: Self::trim_end_matches
2556 ///
2557 /// # Examples
2558 ///
2559 /// ```
2560 /// #![feature(strip_circumfix)]
2561 ///
2562 /// assert_eq!("bar:hello:foo".strip_circumfix("bar:", ":foo"), Some("hello"));
2563 /// assert_eq!("bar:foo".strip_circumfix("foo", "foo"), None);
2564 /// assert_eq!("foo:bar;".strip_circumfix("foo:", ';'), Some("bar"));
2565 /// ```
2566 #[must_use = "this returns the remaining substring as a new slice, \
2567 without modifying the original"]
2568 #[unstable(feature = "strip_circumfix", issue = "147946")]
2569 #[cfg(not(feature = "ferrocene_certified"))]
2570 pub fn strip_circumfix<P: Pattern, S: Pattern>(&self, prefix: P, suffix: S) -> Option<&str>
2571 where
2572 for<'a> S::Searcher<'a>: ReverseSearcher<'a>,
2573 {
2574 self.strip_prefix(prefix)?.strip_suffix(suffix)
2575 }
2576
2577 /// Returns a string slice with the optional prefix removed.
2578 ///
2579 /// If the string starts with the pattern `prefix`, returns the substring after the prefix.
2580 /// Unlike [`strip_prefix`], this method always returns `&str` for easy method chaining,
2581 /// instead of returning [`Option<&str>`].
2582 ///
2583 /// If the string does not start with `prefix`, returns the original string unchanged.
2584 ///
2585 /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a
2586 /// function or closure that determines if a character matches.
2587 ///
2588 /// [`char`]: prim@char
2589 /// [pattern]: self::pattern
2590 /// [`strip_prefix`]: Self::strip_prefix
2591 ///
2592 /// # Examples
2593 ///
2594 /// ```
2595 /// #![feature(trim_prefix_suffix)]
2596 ///
2597 /// // Prefix present - removes it
2598 /// assert_eq!("foo:bar".trim_prefix("foo:"), "bar");
2599 /// assert_eq!("foofoo".trim_prefix("foo"), "foo");
2600 ///
2601 /// // Prefix absent - returns original string
2602 /// assert_eq!("foo:bar".trim_prefix("bar"), "foo:bar");
2603 ///
2604 /// // Method chaining example
2605 /// assert_eq!("<https://example.com/>".trim_prefix('<').trim_suffix('>'), "https://example.com/");
2606 /// ```
2607 #[must_use = "this returns the remaining substring as a new slice, \
2608 without modifying the original"]
2609 #[unstable(feature = "trim_prefix_suffix", issue = "142312")]
2610 #[cfg(not(feature = "ferrocene_certified"))]
2611 pub fn trim_prefix<P: Pattern>(&self, prefix: P) -> &str {
2612 prefix.strip_prefix_of(self).unwrap_or(self)
2613 }
2614
2615 /// Returns a string slice with the optional suffix removed.
2616 ///
2617 /// If the string ends with the pattern `suffix`, returns the substring before the suffix.
2618 /// Unlike [`strip_suffix`], this method always returns `&str` for easy method chaining,
2619 /// instead of returning [`Option<&str>`].
2620 ///
2621 /// If the string does not end with `suffix`, returns the original string unchanged.
2622 ///
2623 /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a
2624 /// function or closure that determines if a character matches.
2625 ///
2626 /// [`char`]: prim@char
2627 /// [pattern]: self::pattern
2628 /// [`strip_suffix`]: Self::strip_suffix
2629 ///
2630 /// # Examples
2631 ///
2632 /// ```
2633 /// #![feature(trim_prefix_suffix)]
2634 ///
2635 /// // Suffix present - removes it
2636 /// assert_eq!("bar:foo".trim_suffix(":foo"), "bar");
2637 /// assert_eq!("foofoo".trim_suffix("foo"), "foo");
2638 ///
2639 /// // Suffix absent - returns original string
2640 /// assert_eq!("bar:foo".trim_suffix("bar"), "bar:foo");
2641 ///
2642 /// // Method chaining example
2643 /// assert_eq!("<https://example.com/>".trim_prefix('<').trim_suffix('>'), "https://example.com/");
2644 /// ```
2645 #[must_use = "this returns the remaining substring as a new slice, \
2646 without modifying the original"]
2647 #[unstable(feature = "trim_prefix_suffix", issue = "142312")]
2648 #[cfg(not(feature = "ferrocene_certified"))]
2649 pub fn trim_suffix<P: Pattern>(&self, suffix: P) -> &str
2650 where
2651 for<'a> P::Searcher<'a>: ReverseSearcher<'a>,
2652 {
2653 suffix.strip_suffix_of(self).unwrap_or(self)
2654 }
2655
2656 /// Returns a string slice with all suffixes that match a pattern
2657 /// repeatedly removed.
2658 ///
2659 /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a
2660 /// function or closure that determines if a character matches.
2661 ///
2662 /// [`char`]: prim@char
2663 /// [pattern]: self::pattern
2664 ///
2665 /// # Text directionality
2666 ///
2667 /// A string is a sequence of bytes. `end` in this context means the last
2668 /// position of that byte string; for a left-to-right language like English or
2669 /// Russian, this will be right side, and for right-to-left languages like
2670 /// Arabic or Hebrew, this will be the left side.
2671 ///
2672 /// # Examples
2673 ///
2674 /// Simple patterns:
2675 ///
2676 /// ```
2677 /// assert_eq!("11foo1bar11".trim_end_matches('1'), "11foo1bar");
2678 /// assert_eq!("123foo1bar123".trim_end_matches(char::is_numeric), "123foo1bar");
2679 ///
2680 /// let x: &[_] = &['1', '2'];
2681 /// assert_eq!("12foo1bar12".trim_end_matches(x), "12foo1bar");
2682 /// ```
2683 ///
2684 /// A more complex pattern, using a closure:
2685 ///
2686 /// ```
2687 /// assert_eq!("1fooX".trim_end_matches(|c| c == '1' || c == 'X'), "1foo");
2688 /// ```
2689 #[must_use = "this returns the trimmed string as a new slice, \
2690 without modifying the original"]
2691 #[stable(feature = "trim_direction", since = "1.30.0")]
2692 #[cfg(not(feature = "ferrocene_certified"))]
2693 pub fn trim_end_matches<P: Pattern>(&self, pat: P) -> &str
2694 where
2695 for<'a> P::Searcher<'a>: ReverseSearcher<'a>,
2696 {
2697 let mut j = 0;
2698 let mut matcher = pat.into_searcher(self);
2699 if let Some((_, b)) = matcher.next_reject_back() {
2700 j = b;
2701 }
2702 // SAFETY: `Searcher` is known to return valid indices.
2703 unsafe { self.get_unchecked(0..j) }
2704 }
2705
2706 /// Returns a string slice with all prefixes that match a pattern
2707 /// repeatedly removed.
2708 ///
2709 /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a
2710 /// function or closure that determines if a character matches.
2711 ///
2712 /// [`char`]: prim@char
2713 /// [pattern]: self::pattern
2714 ///
2715 /// # Text directionality
2716 ///
2717 /// A string is a sequence of bytes. 'Left' in this context means the first
2718 /// position of that byte string; for a language like Arabic or Hebrew
2719 /// which are 'right to left' rather than 'left to right', this will be
2720 /// the _right_ side, not the left.
2721 ///
2722 /// # Examples
2723 ///
2724 /// ```
2725 /// assert_eq!("11foo1bar11".trim_left_matches('1'), "foo1bar11");
2726 /// assert_eq!("123foo1bar123".trim_left_matches(char::is_numeric), "foo1bar123");
2727 ///
2728 /// let x: &[_] = &['1', '2'];
2729 /// assert_eq!("12foo1bar12".trim_left_matches(x), "foo1bar12");
2730 /// ```
2731 #[stable(feature = "rust1", since = "1.0.0")]
2732 #[deprecated(
2733 since = "1.33.0",
2734 note = "superseded by `trim_start_matches`",
2735 suggestion = "trim_start_matches"
2736 )]
2737 #[cfg(not(feature = "ferrocene_certified"))]
2738 pub fn trim_left_matches<P: Pattern>(&self, pat: P) -> &str {
2739 self.trim_start_matches(pat)
2740 }
2741
2742 /// Returns a string slice with all suffixes that match a pattern
2743 /// repeatedly removed.
2744 ///
2745 /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a
2746 /// function or closure that determines if a character matches.
2747 ///
2748 /// [`char`]: prim@char
2749 /// [pattern]: self::pattern
2750 ///
2751 /// # Text directionality
2752 ///
2753 /// A string is a sequence of bytes. 'Right' in this context means the last
2754 /// position of that byte string; for a language like Arabic or Hebrew
2755 /// which are 'right to left' rather than 'left to right', this will be
2756 /// the _left_ side, not the right.
2757 ///
2758 /// # Examples
2759 ///
2760 /// Simple patterns:
2761 ///
2762 /// ```
2763 /// assert_eq!("11foo1bar11".trim_right_matches('1'), "11foo1bar");
2764 /// assert_eq!("123foo1bar123".trim_right_matches(char::is_numeric), "123foo1bar");
2765 ///
2766 /// let x: &[_] = &['1', '2'];
2767 /// assert_eq!("12foo1bar12".trim_right_matches(x), "12foo1bar");
2768 /// ```
2769 ///
2770 /// A more complex pattern, using a closure:
2771 ///
2772 /// ```
2773 /// assert_eq!("1fooX".trim_right_matches(|c| c == '1' || c == 'X'), "1foo");
2774 /// ```
2775 #[stable(feature = "rust1", since = "1.0.0")]
2776 #[deprecated(
2777 since = "1.33.0",
2778 note = "superseded by `trim_end_matches`",
2779 suggestion = "trim_end_matches"
2780 )]
2781 #[cfg(not(feature = "ferrocene_certified"))]
2782 pub fn trim_right_matches<P: Pattern>(&self, pat: P) -> &str
2783 where
2784 for<'a> P::Searcher<'a>: ReverseSearcher<'a>,
2785 {
2786 self.trim_end_matches(pat)
2787 }
2788
2789 /// Parses this string slice into another type.
2790 ///
2791 /// Because `parse` is so general, it can cause problems with type
2792 /// inference. As such, `parse` is one of the few times you'll see
2793 /// the syntax affectionately known as the 'turbofish': `::<>`. This
2794 /// helps the inference algorithm understand specifically which type
2795 /// you're trying to parse into.
2796 ///
2797 /// `parse` can parse into any type that implements the [`FromStr`] trait.
2798 ///
2799 /// # Errors
2800 ///
2801 /// Will return [`Err`] if it's not possible to parse this string slice into
2802 /// the desired type.
2803 ///
2804 /// [`Err`]: FromStr::Err
2805 ///
2806 /// # Examples
2807 ///
2808 /// Basic usage:
2809 ///
2810 /// ```
2811 /// let four: u32 = "4".parse().unwrap();
2812 ///
2813 /// assert_eq!(4, four);
2814 /// ```
2815 ///
2816 /// Using the 'turbofish' instead of annotating `four`:
2817 ///
2818 /// ```
2819 /// let four = "4".parse::<u32>();
2820 ///
2821 /// assert_eq!(Ok(4), four);
2822 /// ```
2823 ///
2824 /// Failing to parse:
2825 ///
2826 /// ```
2827 /// let nope = "j".parse::<u32>();
2828 ///
2829 /// assert!(nope.is_err());
2830 /// ```
2831 #[inline]
2832 #[stable(feature = "rust1", since = "1.0.0")]
2833 pub fn parse<F: FromStr>(&self) -> Result<F, F::Err> {
2834 FromStr::from_str(self)
2835 }
2836
2837 /// Checks if all characters in this string are within the ASCII range.
2838 ///
2839 /// An empty string returns `true`.
2840 ///
2841 /// # Examples
2842 ///
2843 /// ```
2844 /// let ascii = "hello!\n";
2845 /// let non_ascii = "Grüße, Jürgen ❤";
2846 ///
2847 /// assert!(ascii.is_ascii());
2848 /// assert!(!non_ascii.is_ascii());
2849 /// ```
2850 #[stable(feature = "ascii_methods_on_intrinsics", since = "1.23.0")]
2851 #[rustc_const_stable(feature = "const_slice_is_ascii", since = "1.74.0")]
2852 #[must_use]
2853 #[inline]
2854 #[cfg(not(feature = "ferrocene_certified"))]
2855 pub const fn is_ascii(&self) -> bool {
2856 // We can treat each byte as character here: all multibyte characters
2857 // start with a byte that is not in the ASCII range, so we will stop
2858 // there already.
2859 self.as_bytes().is_ascii()
2860 }
2861
2862 /// If this string slice [`is_ascii`](Self::is_ascii), returns it as a slice
2863 /// of [ASCII characters](`ascii::Char`), otherwise returns `None`.
2864 #[unstable(feature = "ascii_char", issue = "110998")]
2865 #[must_use]
2866 #[inline]
2867 #[cfg(not(feature = "ferrocene_certified"))]
2868 pub const fn as_ascii(&self) -> Option<&[ascii::Char]> {
2869 // Like in `is_ascii`, we can work on the bytes directly.
2870 self.as_bytes().as_ascii()
2871 }
2872
2873 /// Converts this string slice into a slice of [ASCII characters](ascii::Char),
2874 /// without checking whether they are valid.
2875 ///
2876 /// # Safety
2877 ///
2878 /// Every character in this string must be ASCII, or else this is UB.
2879 #[unstable(feature = "ascii_char", issue = "110998")]
2880 #[must_use]
2881 #[inline]
2882 #[cfg(not(feature = "ferrocene_certified"))]
2883 pub const unsafe fn as_ascii_unchecked(&self) -> &[ascii::Char] {
2884 assert_unsafe_precondition!(
2885 check_library_ub,
2886 "as_ascii_unchecked requires that the string is valid ASCII",
2887 (it: &str = self) => it.is_ascii()
2888 );
2889
2890 // SAFETY: the caller promised that every byte of this string slice
2891 // is ASCII.
2892 unsafe { self.as_bytes().as_ascii_unchecked() }
2893 }
2894
2895 /// Checks that two strings are an ASCII case-insensitive match.
2896 ///
2897 /// Same as `to_ascii_lowercase(a) == to_ascii_lowercase(b)`,
2898 /// but without allocating and copying temporaries.
2899 ///
2900 /// # Examples
2901 ///
2902 /// ```
2903 /// assert!("Ferris".eq_ignore_ascii_case("FERRIS"));
2904 /// assert!("Ferrös".eq_ignore_ascii_case("FERRöS"));
2905 /// assert!(!"Ferrös".eq_ignore_ascii_case("FERRÖS"));
2906 /// ```
2907 #[stable(feature = "ascii_methods_on_intrinsics", since = "1.23.0")]
2908 #[rustc_const_stable(feature = "const_eq_ignore_ascii_case", since = "1.89.0")]
2909 #[must_use]
2910 #[inline]
2911 #[cfg(not(feature = "ferrocene_certified"))]
2912 pub const fn eq_ignore_ascii_case(&self, other: &str) -> bool {
2913 self.as_bytes().eq_ignore_ascii_case(other.as_bytes())
2914 }
2915
2916 /// Converts this string to its ASCII upper case equivalent in-place.
2917 ///
2918 /// ASCII letters 'a' to 'z' are mapped to 'A' to 'Z',
2919 /// but non-ASCII letters are unchanged.
2920 ///
2921 /// To return a new uppercased value without modifying the existing one, use
2922 /// [`to_ascii_uppercase()`].
2923 ///
2924 /// [`to_ascii_uppercase()`]: #method.to_ascii_uppercase
2925 ///
2926 /// # Examples
2927 ///
2928 /// ```
2929 /// let mut s = String::from("Grüße, Jürgen ❤");
2930 ///
2931 /// s.make_ascii_uppercase();
2932 ///
2933 /// assert_eq!("GRüßE, JüRGEN ❤", s);
2934 /// ```
2935 #[stable(feature = "ascii_methods_on_intrinsics", since = "1.23.0")]
2936 #[rustc_const_stable(feature = "const_make_ascii", since = "1.84.0")]
2937 #[inline]
2938 #[cfg(not(feature = "ferrocene_certified"))]
2939 pub const fn make_ascii_uppercase(&mut self) {
2940 // SAFETY: changing ASCII letters only does not invalidate UTF-8.
2941 let me = unsafe { self.as_bytes_mut() };
2942 me.make_ascii_uppercase()
2943 }
2944
2945 /// Converts this string to its ASCII lower case equivalent in-place.
2946 ///
2947 /// ASCII letters 'A' to 'Z' are mapped to 'a' to 'z',
2948 /// but non-ASCII letters are unchanged.
2949 ///
2950 /// To return a new lowercased value without modifying the existing one, use
2951 /// [`to_ascii_lowercase()`].
2952 ///
2953 /// [`to_ascii_lowercase()`]: #method.to_ascii_lowercase
2954 ///
2955 /// # Examples
2956 ///
2957 /// ```
2958 /// let mut s = String::from("GRÜßE, JÜRGEN ❤");
2959 ///
2960 /// s.make_ascii_lowercase();
2961 ///
2962 /// assert_eq!("grÜße, jÜrgen ❤", s);
2963 /// ```
2964 #[stable(feature = "ascii_methods_on_intrinsics", since = "1.23.0")]
2965 #[rustc_const_stable(feature = "const_make_ascii", since = "1.84.0")]
2966 #[inline]
2967 #[cfg(not(feature = "ferrocene_certified"))]
2968 pub const fn make_ascii_lowercase(&mut self) {
2969 // SAFETY: changing ASCII letters only does not invalidate UTF-8.
2970 let me = unsafe { self.as_bytes_mut() };
2971 me.make_ascii_lowercase()
2972 }
2973
2974 /// Returns a string slice with leading ASCII whitespace removed.
2975 ///
2976 /// 'Whitespace' refers to the definition used by
2977 /// [`u8::is_ascii_whitespace`].
2978 ///
2979 /// [`u8::is_ascii_whitespace`]: u8::is_ascii_whitespace
2980 ///
2981 /// # Examples
2982 ///
2983 /// ```
2984 /// assert_eq!(" \t \u{3000}hello world\n".trim_ascii_start(), "\u{3000}hello world\n");
2985 /// assert_eq!(" ".trim_ascii_start(), "");
2986 /// assert_eq!("".trim_ascii_start(), "");
2987 /// ```
2988 #[must_use = "this returns the trimmed string as a new slice, \
2989 without modifying the original"]
2990 #[stable(feature = "byte_slice_trim_ascii", since = "1.80.0")]
2991 #[rustc_const_stable(feature = "byte_slice_trim_ascii", since = "1.80.0")]
2992 #[inline]
2993 #[cfg(not(feature = "ferrocene_certified"))]
2994 pub const fn trim_ascii_start(&self) -> &str {
2995 // SAFETY: Removing ASCII characters from a `&str` does not invalidate
2996 // UTF-8.
2997 unsafe { core::str::from_utf8_unchecked(self.as_bytes().trim_ascii_start()) }
2998 }
2999
3000 /// Returns a string slice with trailing ASCII whitespace removed.
3001 ///
3002 /// 'Whitespace' refers to the definition used by
3003 /// [`u8::is_ascii_whitespace`].
3004 ///
3005 /// [`u8::is_ascii_whitespace`]: u8::is_ascii_whitespace
3006 ///
3007 /// # Examples
3008 ///
3009 /// ```
3010 /// assert_eq!("\r hello world\u{3000}\n ".trim_ascii_end(), "\r hello world\u{3000}");
3011 /// assert_eq!(" ".trim_ascii_end(), "");
3012 /// assert_eq!("".trim_ascii_end(), "");
3013 /// ```
3014 #[must_use = "this returns the trimmed string as a new slice, \
3015 without modifying the original"]
3016 #[stable(feature = "byte_slice_trim_ascii", since = "1.80.0")]
3017 #[rustc_const_stable(feature = "byte_slice_trim_ascii", since = "1.80.0")]
3018 #[inline]
3019 #[cfg(not(feature = "ferrocene_certified"))]
3020 pub const fn trim_ascii_end(&self) -> &str {
3021 // SAFETY: Removing ASCII characters from a `&str` does not invalidate
3022 // UTF-8.
3023 unsafe { core::str::from_utf8_unchecked(self.as_bytes().trim_ascii_end()) }
3024 }
3025
3026 /// Returns a string slice with leading and trailing ASCII whitespace
3027 /// removed.
3028 ///
3029 /// 'Whitespace' refers to the definition used by
3030 /// [`u8::is_ascii_whitespace`].
3031 ///
3032 /// [`u8::is_ascii_whitespace`]: u8::is_ascii_whitespace
3033 ///
3034 /// # Examples
3035 ///
3036 /// ```
3037 /// assert_eq!("\r hello world\n ".trim_ascii(), "hello world");
3038 /// assert_eq!(" ".trim_ascii(), "");
3039 /// assert_eq!("".trim_ascii(), "");
3040 /// ```
3041 #[must_use = "this returns the trimmed string as a new slice, \
3042 without modifying the original"]
3043 #[stable(feature = "byte_slice_trim_ascii", since = "1.80.0")]
3044 #[rustc_const_stable(feature = "byte_slice_trim_ascii", since = "1.80.0")]
3045 #[inline]
3046 #[cfg(not(feature = "ferrocene_certified"))]
3047 pub const fn trim_ascii(&self) -> &str {
3048 // SAFETY: Removing ASCII characters from a `&str` does not invalidate
3049 // UTF-8.
3050 unsafe { core::str::from_utf8_unchecked(self.as_bytes().trim_ascii()) }
3051 }
3052
3053 /// Returns an iterator that escapes each char in `self` with [`char::escape_debug`].
3054 ///
3055 /// Note: only extended grapheme codepoints that begin the string will be
3056 /// escaped.
3057 ///
3058 /// # Examples
3059 ///
3060 /// As an iterator:
3061 ///
3062 /// ```
3063 /// for c in "❤\n!".escape_debug() {
3064 /// print!("{c}");
3065 /// }
3066 /// println!();
3067 /// ```
3068 ///
3069 /// Using `println!` directly:
3070 ///
3071 /// ```
3072 /// println!("{}", "❤\n!".escape_debug());
3073 /// ```
3074 ///
3075 ///
3076 /// Both are equivalent to:
3077 ///
3078 /// ```
3079 /// println!("❤\\n!");
3080 /// ```
3081 ///
3082 /// Using `to_string`:
3083 ///
3084 /// ```
3085 /// assert_eq!("❤\n!".escape_debug().to_string(), "❤\\n!");
3086 /// ```
3087 #[must_use = "this returns the escaped string as an iterator, \
3088 without modifying the original"]
3089 #[stable(feature = "str_escape", since = "1.34.0")]
3090 #[cfg(not(feature = "ferrocene_certified"))]
3091 pub fn escape_debug(&self) -> EscapeDebug<'_> {
3092 let mut chars = self.chars();
3093 EscapeDebug {
3094 inner: chars
3095 .next()
3096 .map(|first| first.escape_debug_ext(EscapeDebugExtArgs::ESCAPE_ALL))
3097 .into_iter()
3098 .flatten()
3099 .chain(chars.flat_map(CharEscapeDebugContinue)),
3100 }
3101 }
3102
3103 /// Returns an iterator that escapes each char in `self` with [`char::escape_default`].
3104 ///
3105 /// # Examples
3106 ///
3107 /// As an iterator:
3108 ///
3109 /// ```
3110 /// for c in "❤\n!".escape_default() {
3111 /// print!("{c}");
3112 /// }
3113 /// println!();
3114 /// ```
3115 ///
3116 /// Using `println!` directly:
3117 ///
3118 /// ```
3119 /// println!("{}", "❤\n!".escape_default());
3120 /// ```
3121 ///
3122 ///
3123 /// Both are equivalent to:
3124 ///
3125 /// ```
3126 /// println!("\\u{{2764}}\\n!");
3127 /// ```
3128 ///
3129 /// Using `to_string`:
3130 ///
3131 /// ```
3132 /// assert_eq!("❤\n!".escape_default().to_string(), "\\u{2764}\\n!");
3133 /// ```
3134 #[must_use = "this returns the escaped string as an iterator, \
3135 without modifying the original"]
3136 #[stable(feature = "str_escape", since = "1.34.0")]
3137 #[cfg(not(feature = "ferrocene_certified"))]
3138 pub fn escape_default(&self) -> EscapeDefault<'_> {
3139 EscapeDefault { inner: self.chars().flat_map(CharEscapeDefault) }
3140 }
3141
3142 /// Returns an iterator that escapes each char in `self` with [`char::escape_unicode`].
3143 ///
3144 /// # Examples
3145 ///
3146 /// As an iterator:
3147 ///
3148 /// ```
3149 /// for c in "❤\n!".escape_unicode() {
3150 /// print!("{c}");
3151 /// }
3152 /// println!();
3153 /// ```
3154 ///
3155 /// Using `println!` directly:
3156 ///
3157 /// ```
3158 /// println!("{}", "❤\n!".escape_unicode());
3159 /// ```
3160 ///
3161 ///
3162 /// Both are equivalent to:
3163 ///
3164 /// ```
3165 /// println!("\\u{{2764}}\\u{{a}}\\u{{21}}");
3166 /// ```
3167 ///
3168 /// Using `to_string`:
3169 ///
3170 /// ```
3171 /// assert_eq!("❤\n!".escape_unicode().to_string(), "\\u{2764}\\u{a}\\u{21}");
3172 /// ```
3173 #[must_use = "this returns the escaped string as an iterator, \
3174 without modifying the original"]
3175 #[stable(feature = "str_escape", since = "1.34.0")]
3176 #[cfg(not(feature = "ferrocene_certified"))]
3177 pub fn escape_unicode(&self) -> EscapeUnicode<'_> {
3178 EscapeUnicode { inner: self.chars().flat_map(CharEscapeUnicode) }
3179 }
3180
3181 /// Returns the range that a substring points to.
3182 ///
3183 /// Returns `None` if `substr` does not point within `self`.
3184 ///
3185 /// Unlike [`str::find`], **this does not search through the string**.
3186 /// Instead, it uses pointer arithmetic to find where in the string
3187 /// `substr` is derived from.
3188 ///
3189 /// This is useful for extending [`str::split`] and similar methods.
3190 ///
3191 /// Note that this method may return false positives (typically either
3192 /// `Some(0..0)` or `Some(self.len()..self.len())`) if `substr` is a
3193 /// zero-length `str` that points at the beginning or end of another,
3194 /// independent, `str`.
3195 ///
3196 /// # Examples
3197 /// ```
3198 /// #![feature(substr_range)]
3199 ///
3200 /// let data = "a, b, b, a";
3201 /// let mut iter = data.split(", ").map(|s| data.substr_range(s).unwrap());
3202 ///
3203 /// assert_eq!(iter.next(), Some(0..1));
3204 /// assert_eq!(iter.next(), Some(3..4));
3205 /// assert_eq!(iter.next(), Some(6..7));
3206 /// assert_eq!(iter.next(), Some(9..10));
3207 /// ```
3208 #[must_use]
3209 #[unstable(feature = "substr_range", issue = "126769")]
3210 #[cfg(not(feature = "ferrocene_certified"))]
3211 pub fn substr_range(&self, substr: &str) -> Option<Range<usize>> {
3212 self.as_bytes().subslice_range(substr.as_bytes())
3213 }
3214
3215 /// Returns the same string as a string slice `&str`.
3216 ///
3217 /// This method is redundant when used directly on `&str`, but
3218 /// it helps dereferencing other string-like types to string slices,
3219 /// for example references to `Box<str>` or `Arc<str>`.
3220 #[inline]
3221 #[unstable(feature = "str_as_str", issue = "130366")]
3222 pub const fn as_str(&self) -> &str {
3223 self
3224 }
3225}
3226
3227#[stable(feature = "rust1", since = "1.0.0")]
3228#[rustc_const_unstable(feature = "const_convert", issue = "143773")]
3229impl const AsRef<[u8]> for str {
3230 #[inline]
3231 fn as_ref(&self) -> &[u8] {
3232 self.as_bytes()
3233 }
3234}
3235
3236#[stable(feature = "rust1", since = "1.0.0")]
3237#[rustc_const_unstable(feature = "const_default", issue = "143894")]
3238impl const Default for &str {
3239 /// Creates an empty str
3240 #[inline]
3241 fn default() -> Self {
3242 ""
3243 }
3244}
3245
3246#[stable(feature = "default_mut_str", since = "1.28.0")]
3247#[rustc_const_unstable(feature = "const_default", issue = "143894")]
3248#[cfg(not(feature = "ferrocene_certified"))]
3249impl const Default for &mut str {
3250 /// Creates an empty mutable str
3251 #[inline]
3252 fn default() -> Self {
3253 // SAFETY: The empty string is valid UTF-8.
3254 unsafe { from_utf8_unchecked_mut(&mut []) }
3255 }
3256}
3257
3258#[cfg(not(feature = "ferrocene_certified"))]
3259impl_fn_for_zst! {
3260 /// A nameable, cloneable fn type
3261 #[derive(Clone)]
3262 struct LinesMap impl<'a> Fn = |line: &'a str| -> &'a str {
3263 let Some(line) = line.strip_suffix('\n') else { return line };
3264 let Some(line) = line.strip_suffix('\r') else { return line };
3265 line
3266 };
3267
3268 #[derive(Clone)]
3269 struct CharEscapeDebugContinue impl Fn = |c: char| -> char::EscapeDebug {
3270 c.escape_debug_ext(EscapeDebugExtArgs {
3271 escape_grapheme_extended: false,
3272 escape_single_quote: true,
3273 escape_double_quote: true
3274 })
3275 };
3276
3277 #[derive(Clone)]
3278 struct CharEscapeUnicode impl Fn = |c: char| -> char::EscapeUnicode {
3279 c.escape_unicode()
3280 };
3281 #[derive(Clone)]
3282 struct CharEscapeDefault impl Fn = |c: char| -> char::EscapeDefault {
3283 c.escape_default()
3284 };
3285
3286 #[derive(Clone)]
3287 struct IsWhitespace impl Fn = |c: char| -> bool {
3288 c.is_whitespace()
3289 };
3290
3291 #[derive(Clone)]
3292 struct IsAsciiWhitespace impl Fn = |byte: &u8| -> bool {
3293 byte.is_ascii_whitespace()
3294 };
3295
3296 #[derive(Clone)]
3297 struct IsNotEmpty impl<'a, 'b> Fn = |s: &'a &'b str| -> bool {
3298 !s.is_empty()
3299 };
3300
3301 #[derive(Clone)]
3302 struct BytesIsNotEmpty impl<'a, 'b> Fn = |s: &'a &'b [u8]| -> bool {
3303 !s.is_empty()
3304 };
3305
3306 #[derive(Clone)]
3307 struct UnsafeBytesToStr impl<'a> Fn = |bytes: &'a [u8]| -> &'a str {
3308 // SAFETY: not safe
3309 unsafe { from_utf8_unchecked(bytes) }
3310 };
3311}
3312
3313// This is required to make `impl From<&str> for Box<dyn Error>` and `impl<E> From<E> for Box<dyn Error>` not overlap.
3314#[stable(feature = "error_in_core_neg_impl", since = "1.65.0")]
3315#[cfg(not(feature = "ferrocene_certified"))]
3316impl !crate::error::Error for &str {}