core/str/
mod.rs

1//! String manipulation.
2//!
3//! For more details, see the [`std::str`] module.
4//!
5//! [`std::str`]: ../../std/str/index.html
6
7#![stable(feature = "rust1", since = "1.0.0")]
8
9mod converts;
10mod count;
11mod error;
12mod iter;
13mod traits;
14mod validations;
15
16#[cfg(not(feature = "ferrocene_subset"))]
17use self::pattern::{DoubleEndedSearcher, Pattern, ReverseSearcher, Searcher};
18#[cfg(not(feature = "ferrocene_subset"))]
19use crate::char::{self, EscapeDebugExtArgs};
20#[cfg(not(feature = "ferrocene_subset"))]
21use crate::ops::Range;
22#[cfg(not(feature = "ferrocene_subset"))]
23use crate::slice::{self, SliceIndex};
24#[cfg(not(feature = "ferrocene_subset"))]
25use crate::ub_checks::assert_unsafe_precondition;
26#[cfg(not(feature = "ferrocene_subset"))]
27use crate::{ascii, mem};
28
29// Ferrocene addition: imports for certified subset
30#[cfg(feature = "ferrocene_subset")]
31#[rustfmt::skip]
32use {
33    self::pattern::{Pattern, ReverseSearcher},
34    crate::{mem, slice::SliceIndex},
35};
36
37pub mod pattern;
38
39#[cfg(not(feature = "ferrocene_subset"))]
40mod lossy;
41#[unstable(feature = "str_from_raw_parts", issue = "119206")]
42pub use converts::{from_raw_parts, from_raw_parts_mut};
43#[stable(feature = "rust1", since = "1.0.0")]
44pub use converts::{from_utf8, from_utf8_unchecked};
45#[stable(feature = "str_mut_extras", since = "1.20.0")]
46pub use converts::{from_utf8_mut, from_utf8_unchecked_mut};
47#[stable(feature = "rust1", since = "1.0.0")]
48#[cfg(not(feature = "ferrocene_subset"))]
49pub use error::{ParseBoolError, Utf8Error};
50#[stable(feature = "encode_utf16", since = "1.8.0")]
51#[cfg(not(feature = "ferrocene_subset"))]
52pub use iter::EncodeUtf16;
53#[stable(feature = "rust1", since = "1.0.0")]
54#[allow(deprecated)]
55#[cfg(not(feature = "ferrocene_subset"))]
56pub use iter::LinesAny;
57#[stable(feature = "split_ascii_whitespace", since = "1.34.0")]
58#[cfg(not(feature = "ferrocene_subset"))]
59pub use iter::SplitAsciiWhitespace;
60#[stable(feature = "split_inclusive", since = "1.51.0")]
61pub use iter::SplitInclusive;
62#[stable(feature = "rust1", since = "1.0.0")]
63#[cfg(not(feature = "ferrocene_subset"))]
64pub use iter::{Bytes, CharIndices, Chars, Lines, SplitWhitespace};
65#[stable(feature = "str_escape", since = "1.34.0")]
66#[cfg(not(feature = "ferrocene_subset"))]
67pub use iter::{EscapeDebug, EscapeDefault, EscapeUnicode};
68#[stable(feature = "str_match_indices", since = "1.5.0")]
69#[cfg(not(feature = "ferrocene_subset"))]
70pub use iter::{MatchIndices, RMatchIndices};
71#[cfg(not(feature = "ferrocene_subset"))]
72use iter::{MatchIndicesInternal, MatchesInternal, SplitInternal, SplitNInternal};
73#[stable(feature = "str_matches", since = "1.2.0")]
74#[cfg(not(feature = "ferrocene_subset"))]
75pub use iter::{Matches, RMatches};
76#[stable(feature = "rust1", since = "1.0.0")]
77#[cfg(not(feature = "ferrocene_subset"))]
78pub use iter::{RSplit, RSplitTerminator, Split, SplitTerminator};
79#[stable(feature = "rust1", since = "1.0.0")]
80#[cfg(not(feature = "ferrocene_subset"))]
81pub use iter::{RSplitN, SplitN};
82#[stable(feature = "utf8_chunks", since = "1.79.0")]
83#[cfg(not(feature = "ferrocene_subset"))]
84pub use lossy::{Utf8Chunk, Utf8Chunks};
85#[stable(feature = "rust1", since = "1.0.0")]
86pub use traits::FromStr;
87#[unstable(feature = "str_internals", issue = "none")]
88pub use validations::{next_code_point, utf8_char_width};
89
90#[stable(feature = "rust1", since = "1.0.0")]
91#[cfg(feature = "ferrocene_subset")]
92#[rustfmt::skip]
93pub use {
94    error::Utf8Error,
95    iter::{Bytes, CharIndices, Chars},
96};
97
98#[cfg(feature = "ferrocene_subset")]
99#[rustfmt::skip]
100use iter::SplitInternal;
101
102#[inline(never)]
103#[cold]
104#[track_caller]
105#[rustc_allow_const_fn_unstable(const_eval_select)]
106#[cfg(not(panic = "immediate-abort"))]
107const fn slice_error_fail(s: &str, begin: usize, end: usize) -> ! {
108    crate::intrinsics::const_eval_select((s, begin, end), slice_error_fail_ct, slice_error_fail_rt)
109}
110
111#[cfg(panic = "immediate-abort")]
112#[cfg(not(feature = "ferrocene_subset"))]
113const fn slice_error_fail(s: &str, begin: usize, end: usize) -> ! {
114    slice_error_fail_ct(s, begin, end)
115}
116
117#[track_caller]
118#[ferrocene::annotation("Cannot be covered as this only runs during compilation.")]
119const fn slice_error_fail_ct(_: &str, _: usize, _: usize) -> ! {
120    panic!("failed to slice string");
121}
122
123#[track_caller]
124fn slice_error_fail_rt(s: &str, begin: usize, end: usize) -> ! {
125    const MAX_DISPLAY_LENGTH: usize = 256;
126    let trunc_len = s.floor_char_boundary(MAX_DISPLAY_LENGTH);
127    let s_trunc = &s[..trunc_len];
128    let ellipsis = if trunc_len < s.len() { "[...]" } else { "" };
129
130    // 1. out of bounds
131    if begin > s.len() || end > s.len() {
132        let oob_index = if begin > s.len() { begin } else { end };
133        panic!("byte index {oob_index} is out of bounds of `{s_trunc}`{ellipsis}");
134    }
135
136    // 2. begin <= end
137    assert!(
138        begin <= end,
139        "begin <= end ({} <= {}) when slicing `{}`{}",
140        begin,
141        end,
142        s_trunc,
143        ellipsis
144    );
145
146    // 3. character boundary
147    let index = if !s.is_char_boundary(begin) { begin } else { end };
148    // find the character
149    let char_start = s.floor_char_boundary(index);
150    // `char_start` must be less than len and a char boundary
151    let ch = s[char_start..].chars().next().unwrap();
152    let char_range = char_start..char_start + ch.len_utf8();
153    panic!(
154        "byte index {} is not a char boundary; it is inside {:?} (bytes {:?}) of `{}`{}",
155        index, ch, char_range, s_trunc, ellipsis
156    );
157}
158
159impl str {
160    /// Returns the length of `self`.
161    ///
162    /// This length is in bytes, not [`char`]s or graphemes. In other words,
163    /// it might not be what a human considers the length of the string.
164    ///
165    /// [`char`]: prim@char
166    ///
167    /// # Examples
168    ///
169    /// ```
170    /// let len = "foo".len();
171    /// assert_eq!(3, len);
172    ///
173    /// assert_eq!("ƒoo".len(), 4); // fancy f!
174    /// assert_eq!("ƒoo".chars().count(), 3);
175    /// ```
176    #[stable(feature = "rust1", since = "1.0.0")]
177    #[rustc_const_stable(feature = "const_str_len", since = "1.39.0")]
178    #[rustc_diagnostic_item = "str_len"]
179    #[rustc_no_implicit_autorefs]
180    #[must_use]
181    #[inline]
182    pub const fn len(&self) -> usize {
183        self.as_bytes().len()
184    }
185
186    /// Returns `true` if `self` has a length of zero bytes.
187    ///
188    /// # Examples
189    ///
190    /// ```
191    /// let s = "";
192    /// assert!(s.is_empty());
193    ///
194    /// let s = "not empty";
195    /// assert!(!s.is_empty());
196    /// ```
197    #[stable(feature = "rust1", since = "1.0.0")]
198    #[rustc_const_stable(feature = "const_str_is_empty", since = "1.39.0")]
199    #[rustc_no_implicit_autorefs]
200    #[must_use]
201    #[inline]
202    pub const fn is_empty(&self) -> bool {
203        self.len() == 0
204    }
205
206    /// Converts a slice of bytes to a string slice.
207    ///
208    /// A string slice ([`&str`]) is made of bytes ([`u8`]), and a byte slice
209    /// ([`&[u8]`][byteslice]) is made of bytes, so this function converts between
210    /// the two. Not all byte slices are valid string slices, however: [`&str`] requires
211    /// that it is valid UTF-8. `from_utf8()` checks to ensure that the bytes are valid
212    /// UTF-8, and then does the conversion.
213    ///
214    /// [`&str`]: str
215    /// [byteslice]: prim@slice
216    ///
217    /// If you are sure that the byte slice is valid UTF-8, and you don't want to
218    /// incur the overhead of the validity check, there is an unsafe version of
219    /// this function, [`from_utf8_unchecked`], which has the same
220    /// behavior but skips the check.
221    ///
222    /// If you need a `String` instead of a `&str`, consider
223    /// [`String::from_utf8`][string].
224    ///
225    /// [string]: ../std/string/struct.String.html#method.from_utf8
226    ///
227    /// Because you can stack-allocate a `[u8; N]`, and you can take a
228    /// [`&[u8]`][byteslice] of it, this function is one way to have a
229    /// stack-allocated string. There is an example of this in the
230    /// examples section below.
231    ///
232    /// [byteslice]: slice
233    ///
234    /// # Errors
235    ///
236    /// Returns `Err` if the slice is not UTF-8 with a description as to why the
237    /// provided slice is not UTF-8.
238    ///
239    /// # Examples
240    ///
241    /// Basic usage:
242    ///
243    /// ```
244    /// // some bytes, in a vector
245    /// let sparkle_heart = vec![240, 159, 146, 150];
246    ///
247    /// // We can use the ? (try) operator to check if the bytes are valid
248    /// let sparkle_heart = str::from_utf8(&sparkle_heart)?;
249    ///
250    /// assert_eq!("💖", sparkle_heart);
251    /// # Ok::<_, std::str::Utf8Error>(())
252    /// ```
253    ///
254    /// Incorrect bytes:
255    ///
256    /// ```
257    /// // some invalid bytes, in a vector
258    /// let sparkle_heart = vec![0, 159, 146, 150];
259    ///
260    /// assert!(str::from_utf8(&sparkle_heart).is_err());
261    /// ```
262    ///
263    /// See the docs for [`Utf8Error`] for more details on the kinds of
264    /// errors that can be returned.
265    ///
266    /// A "stack allocated string":
267    ///
268    /// ```
269    /// // some bytes, in a stack-allocated array
270    /// let sparkle_heart = [240, 159, 146, 150];
271    ///
272    /// // We know these bytes are valid, so just use `unwrap()`.
273    /// let sparkle_heart: &str = str::from_utf8(&sparkle_heart).unwrap();
274    ///
275    /// assert_eq!("💖", sparkle_heart);
276    /// ```
277    #[stable(feature = "inherent_str_constructors", since = "1.87.0")]
278    #[rustc_const_stable(feature = "inherent_str_constructors", since = "1.87.0")]
279    #[rustc_diagnostic_item = "str_inherent_from_utf8"]
280    pub const fn from_utf8(v: &[u8]) -> Result<&str, Utf8Error> {
281        converts::from_utf8(v)
282    }
283
284    /// Converts a mutable slice of bytes to a mutable string slice.
285    ///
286    /// # Examples
287    ///
288    /// Basic usage:
289    ///
290    /// ```
291    /// // "Hello, Rust!" as a mutable vector
292    /// let mut hellorust = vec![72, 101, 108, 108, 111, 44, 32, 82, 117, 115, 116, 33];
293    ///
294    /// // As we know these bytes are valid, we can use `unwrap()`
295    /// let outstr = str::from_utf8_mut(&mut hellorust).unwrap();
296    ///
297    /// assert_eq!("Hello, Rust!", outstr);
298    /// ```
299    ///
300    /// Incorrect bytes:
301    ///
302    /// ```
303    /// // Some invalid bytes in a mutable vector
304    /// let mut invalid = vec![128, 223];
305    ///
306    /// assert!(str::from_utf8_mut(&mut invalid).is_err());
307    /// ```
308    /// See the docs for [`Utf8Error`] for more details on the kinds of
309    /// errors that can be returned.
310    #[stable(feature = "inherent_str_constructors", since = "1.87.0")]
311    #[rustc_const_stable(feature = "const_str_from_utf8", since = "1.87.0")]
312    #[rustc_diagnostic_item = "str_inherent_from_utf8_mut"]
313    pub const fn from_utf8_mut(v: &mut [u8]) -> Result<&mut str, Utf8Error> {
314        converts::from_utf8_mut(v)
315    }
316
317    /// Converts a slice of bytes to a string slice without checking
318    /// that the string contains valid UTF-8.
319    ///
320    /// See the safe version, [`from_utf8`], for more information.
321    ///
322    /// # Safety
323    ///
324    /// The bytes passed in must be valid UTF-8.
325    ///
326    /// # Examples
327    ///
328    /// Basic usage:
329    ///
330    /// ```
331    /// // some bytes, in a vector
332    /// let sparkle_heart = vec![240, 159, 146, 150];
333    ///
334    /// let sparkle_heart = unsafe {
335    ///     str::from_utf8_unchecked(&sparkle_heart)
336    /// };
337    ///
338    /// assert_eq!("💖", sparkle_heart);
339    /// ```
340    #[inline]
341    #[must_use]
342    #[stable(feature = "inherent_str_constructors", since = "1.87.0")]
343    #[rustc_const_stable(feature = "inherent_str_constructors", since = "1.87.0")]
344    #[rustc_diagnostic_item = "str_inherent_from_utf8_unchecked"]
345    pub const unsafe fn from_utf8_unchecked(v: &[u8]) -> &str {
346        // SAFETY: converts::from_utf8_unchecked has the same safety requirements as this function.
347        unsafe { converts::from_utf8_unchecked(v) }
348    }
349
350    /// Converts a slice of bytes to a string slice without checking
351    /// that the string contains valid UTF-8; mutable version.
352    ///
353    /// See the immutable version, [`from_utf8_unchecked()`] for documentation and safety requirements.
354    ///
355    /// # Examples
356    ///
357    /// Basic usage:
358    ///
359    /// ```
360    /// let mut heart = vec![240, 159, 146, 150];
361    /// let heart = unsafe { str::from_utf8_unchecked_mut(&mut heart) };
362    ///
363    /// assert_eq!("💖", heart);
364    /// ```
365    #[inline]
366    #[must_use]
367    #[stable(feature = "inherent_str_constructors", since = "1.87.0")]
368    #[rustc_const_stable(feature = "inherent_str_constructors", since = "1.87.0")]
369    #[rustc_diagnostic_item = "str_inherent_from_utf8_unchecked_mut"]
370    pub const unsafe fn from_utf8_unchecked_mut(v: &mut [u8]) -> &mut str {
371        // SAFETY: converts::from_utf8_unchecked_mut has the same safety requirements as this function.
372        unsafe { converts::from_utf8_unchecked_mut(v) }
373    }
374
375    /// Checks that `index`-th byte is the first byte in a UTF-8 code point
376    /// sequence or the end of the string.
377    ///
378    /// The start and end of the string (when `index == self.len()`) are
379    /// considered to be boundaries.
380    ///
381    /// Returns `false` if `index` is greater than `self.len()`.
382    ///
383    /// # Examples
384    ///
385    /// ```
386    /// let s = "Löwe 老虎 Léopard";
387    /// assert!(s.is_char_boundary(0));
388    /// // start of `老`
389    /// assert!(s.is_char_boundary(6));
390    /// assert!(s.is_char_boundary(s.len()));
391    ///
392    /// // second byte of `ö`
393    /// assert!(!s.is_char_boundary(2));
394    ///
395    /// // third byte of `老`
396    /// assert!(!s.is_char_boundary(8));
397    /// ```
398    #[must_use]
399    #[stable(feature = "is_char_boundary", since = "1.9.0")]
400    #[rustc_const_stable(feature = "const_is_char_boundary", since = "1.86.0")]
401    #[inline]
402    pub const fn is_char_boundary(&self, index: usize) -> bool {
403        // 0 is always ok.
404        // Test for 0 explicitly so that it can optimize out the check
405        // easily and skip reading string data for that case.
406        // Note that optimizing `self.get(..index)` relies on this.
407        if index == 0 {
408            return true;
409        }
410
411        if index >= self.len() {
412            // For `true` we have two options:
413            //
414            // - index == self.len()
415            //   Empty strings are valid, so return true
416            // - index > self.len()
417            //   In this case return false
418            //
419            // The check is placed exactly here, because it improves generated
420            // code on higher opt-levels. See PR #84751 for more details.
421            index == self.len()
422        } else {
423            self.as_bytes()[index].is_utf8_char_boundary()
424        }
425    }
426
427    /// Finds the closest `x` not exceeding `index` where [`is_char_boundary(x)`] is `true`.
428    ///
429    /// This method can help you truncate a string so that it's still valid UTF-8, but doesn't
430    /// exceed a given number of bytes. Note that this is done purely at the character level
431    /// and can still visually split graphemes, even though the underlying characters aren't
432    /// split. For example, the emoji 🧑‍🔬 (scientist) could be split so that the string only
433    /// includes 🧑 (person) instead.
434    ///
435    /// [`is_char_boundary(x)`]: Self::is_char_boundary
436    ///
437    /// # Examples
438    ///
439    /// ```
440    /// let s = "❤️🧡💛💚💙💜";
441    /// assert_eq!(s.len(), 26);
442    /// assert!(!s.is_char_boundary(13));
443    ///
444    /// let closest = s.floor_char_boundary(13);
445    /// assert_eq!(closest, 10);
446    /// assert_eq!(&s[..closest], "❤️🧡");
447    /// ```
448    #[stable(feature = "round_char_boundary", since = "1.91.0")]
449    #[rustc_const_stable(feature = "round_char_boundary", since = "1.91.0")]
450    #[inline]
451    pub const fn floor_char_boundary(&self, index: usize) -> usize {
452        if index >= self.len() {
453            self.len()
454        } else {
455            let mut i = index;
456            while i > 0 {
457                if self.as_bytes()[i].is_utf8_char_boundary() {
458                    break;
459                }
460                i -= 1;
461            }
462
463            //  The character boundary will be within four bytes of the index
464            debug_assert!(i >= index.saturating_sub(3));
465
466            i
467        }
468    }
469
470    /// Finds the closest `x` not below `index` where [`is_char_boundary(x)`] is `true`.
471    ///
472    /// If `index` is greater than the length of the string, this returns the length of the string.
473    ///
474    /// This method is the natural complement to [`floor_char_boundary`]. See that method
475    /// for more details.
476    ///
477    /// [`floor_char_boundary`]: str::floor_char_boundary
478    /// [`is_char_boundary(x)`]: Self::is_char_boundary
479    ///
480    /// # Examples
481    ///
482    /// ```
483    /// let s = "❤️🧡💛💚💙💜";
484    /// assert_eq!(s.len(), 26);
485    /// assert!(!s.is_char_boundary(13));
486    ///
487    /// let closest = s.ceil_char_boundary(13);
488    /// assert_eq!(closest, 14);
489    /// assert_eq!(&s[..closest], "❤️🧡💛");
490    /// ```
491    #[stable(feature = "round_char_boundary", since = "1.91.0")]
492    #[rustc_const_stable(feature = "round_char_boundary", since = "1.91.0")]
493    #[inline]
494    #[cfg(not(feature = "ferrocene_subset"))]
495    pub const fn ceil_char_boundary(&self, index: usize) -> usize {
496        if index >= self.len() {
497            self.len()
498        } else {
499            let mut i = index;
500            while i < self.len() {
501                if self.as_bytes()[i].is_utf8_char_boundary() {
502                    break;
503                }
504                i += 1;
505            }
506
507            //  The character boundary will be within four bytes of the index
508            debug_assert!(i <= index + 3);
509
510            i
511        }
512    }
513
514    /// Converts a string slice to a byte slice. To convert the byte slice back
515    /// into a string slice, use the [`from_utf8`] function.
516    ///
517    /// # Examples
518    ///
519    /// ```
520    /// let bytes = "bors".as_bytes();
521    /// assert_eq!(b"bors", bytes);
522    /// ```
523    #[stable(feature = "rust1", since = "1.0.0")]
524    #[rustc_const_stable(feature = "str_as_bytes", since = "1.39.0")]
525    #[must_use]
526    #[inline(always)]
527    #[allow(unused_attributes)]
528    pub const fn as_bytes(&self) -> &[u8] {
529        // SAFETY: const sound because we transmute two types with the same layout
530        unsafe { mem::transmute(self) }
531    }
532
533    /// Converts a mutable string slice to a mutable byte slice.
534    ///
535    /// # Safety
536    ///
537    /// The caller must ensure that the content of the slice is valid UTF-8
538    /// before the borrow ends and the underlying `str` is used.
539    ///
540    /// Use of a `str` whose contents are not valid UTF-8 is undefined behavior.
541    ///
542    /// # Examples
543    ///
544    /// Basic usage:
545    ///
546    /// ```
547    /// let mut s = String::from("Hello");
548    /// let bytes = unsafe { s.as_bytes_mut() };
549    ///
550    /// assert_eq!(b"Hello", bytes);
551    /// ```
552    ///
553    /// Mutability:
554    ///
555    /// ```
556    /// let mut s = String::from("🗻∈🌏");
557    ///
558    /// unsafe {
559    ///     let bytes = s.as_bytes_mut();
560    ///
561    ///     bytes[0] = 0xF0;
562    ///     bytes[1] = 0x9F;
563    ///     bytes[2] = 0x8D;
564    ///     bytes[3] = 0x94;
565    /// }
566    ///
567    /// assert_eq!("🍔∈🌏", s);
568    /// ```
569    #[stable(feature = "str_mut_extras", since = "1.20.0")]
570    #[rustc_const_stable(feature = "const_str_as_mut", since = "1.83.0")]
571    #[must_use]
572    #[inline(always)]
573    pub const unsafe fn as_bytes_mut(&mut self) -> &mut [u8] {
574        // SAFETY: the cast from `&str` to `&[u8]` is safe since `str`
575        // has the same layout as `&[u8]` (only std can make this guarantee).
576        // The pointer dereference is safe since it comes from a mutable reference which
577        // is guaranteed to be valid for writes.
578        unsafe { &mut *(self as *mut str as *mut [u8]) }
579    }
580
581    /// Converts a string slice to a raw pointer.
582    ///
583    /// As string slices are a slice of bytes, the raw pointer points to a
584    /// [`u8`]. This pointer will be pointing to the first byte of the string
585    /// slice.
586    ///
587    /// The caller must ensure that the returned pointer is never written to.
588    /// If you need to mutate the contents of the string slice, use [`as_mut_ptr`].
589    ///
590    /// [`as_mut_ptr`]: str::as_mut_ptr
591    ///
592    /// # Examples
593    ///
594    /// ```
595    /// let s = "Hello";
596    /// let ptr = s.as_ptr();
597    /// ```
598    #[stable(feature = "rust1", since = "1.0.0")]
599    #[rustc_const_stable(feature = "rustc_str_as_ptr", since = "1.32.0")]
600    #[rustc_never_returns_null_ptr]
601    #[rustc_as_ptr]
602    #[must_use]
603    #[inline(always)]
604    pub const fn as_ptr(&self) -> *const u8 {
605        self as *const str as *const u8
606    }
607
608    /// Converts a mutable string slice to a raw pointer.
609    ///
610    /// As string slices are a slice of bytes, the raw pointer points to a
611    /// [`u8`]. This pointer will be pointing to the first byte of the string
612    /// slice.
613    ///
614    /// It is your responsibility to make sure that the string slice only gets
615    /// modified in a way that it remains valid UTF-8.
616    #[stable(feature = "str_as_mut_ptr", since = "1.36.0")]
617    #[rustc_const_stable(feature = "const_str_as_mut", since = "1.83.0")]
618    #[rustc_never_returns_null_ptr]
619    #[rustc_as_ptr]
620    #[must_use]
621    #[inline(always)]
622    pub const fn as_mut_ptr(&mut self) -> *mut u8 {
623        self as *mut str as *mut u8
624    }
625
626    /// Returns a subslice of `str`.
627    ///
628    /// This is the non-panicking alternative to indexing the `str`. Returns
629    /// [`None`] whenever equivalent indexing operation would panic.
630    ///
631    /// # Examples
632    ///
633    /// ```
634    /// let v = String::from("🗻∈🌏");
635    ///
636    /// assert_eq!(Some("🗻"), v.get(0..4));
637    ///
638    /// // indices not on UTF-8 sequence boundaries
639    /// assert!(v.get(1..).is_none());
640    /// assert!(v.get(..8).is_none());
641    ///
642    /// // out of bounds
643    /// assert!(v.get(..42).is_none());
644    /// ```
645    #[stable(feature = "str_checked_slicing", since = "1.20.0")]
646    #[rustc_const_unstable(feature = "const_index", issue = "143775")]
647    #[inline]
648    #[cfg(not(feature = "ferrocene_subset"))]
649    pub const fn get<I: [const] SliceIndex<str>>(&self, i: I) -> Option<&I::Output> {
650        i.get(self)
651    }
652
653    /// Returns a mutable subslice of `str`.
654    ///
655    /// This is the non-panicking alternative to indexing the `str`. Returns
656    /// [`None`] whenever equivalent indexing operation would panic.
657    ///
658    /// # Examples
659    ///
660    /// ```
661    /// let mut v = String::from("hello");
662    /// // correct length
663    /// assert!(v.get_mut(0..5).is_some());
664    /// // out of bounds
665    /// assert!(v.get_mut(..42).is_none());
666    /// assert_eq!(Some("he"), v.get_mut(0..2).map(|v| &*v));
667    ///
668    /// assert_eq!("hello", v);
669    /// {
670    ///     let s = v.get_mut(0..2);
671    ///     let s = s.map(|s| {
672    ///         s.make_ascii_uppercase();
673    ///         &*s
674    ///     });
675    ///     assert_eq!(Some("HE"), s);
676    /// }
677    /// assert_eq!("HEllo", v);
678    /// ```
679    #[stable(feature = "str_checked_slicing", since = "1.20.0")]
680    #[rustc_const_unstable(feature = "const_index", issue = "143775")]
681    #[inline]
682    #[cfg(not(feature = "ferrocene_subset"))]
683    pub const fn get_mut<I: [const] SliceIndex<str>>(&mut self, i: I) -> Option<&mut I::Output> {
684        i.get_mut(self)
685    }
686
687    /// Returns an unchecked subslice of `str`.
688    ///
689    /// This is the unchecked alternative to indexing the `str`.
690    ///
691    /// # Safety
692    ///
693    /// Callers of this function are responsible that these preconditions are
694    /// satisfied:
695    ///
696    /// * The starting index must not exceed the ending index;
697    /// * Indexes must be within bounds of the original slice;
698    /// * Indexes must lie on UTF-8 sequence boundaries.
699    ///
700    /// Failing that, the returned string slice may reference invalid memory or
701    /// violate the invariants communicated by the `str` type.
702    ///
703    /// # Examples
704    ///
705    /// ```
706    /// let v = "🗻∈🌏";
707    /// unsafe {
708    ///     assert_eq!("🗻", v.get_unchecked(0..4));
709    ///     assert_eq!("∈", v.get_unchecked(4..7));
710    ///     assert_eq!("🌏", v.get_unchecked(7..11));
711    /// }
712    /// ```
713    #[stable(feature = "str_checked_slicing", since = "1.20.0")]
714    #[inline]
715    pub unsafe fn get_unchecked<I: SliceIndex<str>>(&self, i: I) -> &I::Output {
716        // SAFETY: the caller must uphold the safety contract for `get_unchecked`;
717        // the slice is dereferenceable because `self` is a safe reference.
718        // The returned pointer is safe because impls of `SliceIndex` have to guarantee that it is.
719        unsafe { &*i.get_unchecked(self) }
720    }
721
722    /// Returns a mutable, unchecked subslice of `str`.
723    ///
724    /// This is the unchecked alternative to indexing the `str`.
725    ///
726    /// # Safety
727    ///
728    /// Callers of this function are responsible that these preconditions are
729    /// satisfied:
730    ///
731    /// * The starting index must not exceed the ending index;
732    /// * Indexes must be within bounds of the original slice;
733    /// * Indexes must lie on UTF-8 sequence boundaries.
734    ///
735    /// Failing that, the returned string slice may reference invalid memory or
736    /// violate the invariants communicated by the `str` type.
737    ///
738    /// # Examples
739    ///
740    /// ```
741    /// let mut v = String::from("🗻∈🌏");
742    /// unsafe {
743    ///     assert_eq!("🗻", v.get_unchecked_mut(0..4));
744    ///     assert_eq!("∈", v.get_unchecked_mut(4..7));
745    ///     assert_eq!("🌏", v.get_unchecked_mut(7..11));
746    /// }
747    /// ```
748    #[stable(feature = "str_checked_slicing", since = "1.20.0")]
749    #[inline]
750    #[cfg(not(feature = "ferrocene_subset"))]
751    pub unsafe fn get_unchecked_mut<I: SliceIndex<str>>(&mut self, i: I) -> &mut I::Output {
752        // SAFETY: the caller must uphold the safety contract for `get_unchecked_mut`;
753        // the slice is dereferenceable because `self` is a safe reference.
754        // The returned pointer is safe because impls of `SliceIndex` have to guarantee that it is.
755        unsafe { &mut *i.get_unchecked_mut(self) }
756    }
757
758    /// Creates a string slice from another string slice, bypassing safety
759    /// checks.
760    ///
761    /// This is generally not recommended, use with caution! For a safe
762    /// alternative see [`str`] and [`Index`].
763    ///
764    /// [`Index`]: crate::ops::Index
765    ///
766    /// This new slice goes from `begin` to `end`, including `begin` but
767    /// excluding `end`.
768    ///
769    /// To get a mutable string slice instead, see the
770    /// [`slice_mut_unchecked`] method.
771    ///
772    /// [`slice_mut_unchecked`]: str::slice_mut_unchecked
773    ///
774    /// # Safety
775    ///
776    /// Callers of this function are responsible that three preconditions are
777    /// satisfied:
778    ///
779    /// * `begin` must not exceed `end`.
780    /// * `begin` and `end` must be byte positions within the string slice.
781    /// * `begin` and `end` must lie on UTF-8 sequence boundaries.
782    ///
783    /// # Examples
784    ///
785    /// ```
786    /// let s = "Löwe 老虎 Léopard";
787    ///
788    /// unsafe {
789    ///     assert_eq!("Löwe 老虎 Léopard", s.slice_unchecked(0, 21));
790    /// }
791    ///
792    /// let s = "Hello, world!";
793    ///
794    /// unsafe {
795    ///     assert_eq!("world", s.slice_unchecked(7, 12));
796    /// }
797    /// ```
798    #[stable(feature = "rust1", since = "1.0.0")]
799    #[deprecated(since = "1.29.0", note = "use `get_unchecked(begin..end)` instead")]
800    #[must_use]
801    #[inline]
802    #[cfg(not(feature = "ferrocene_subset"))]
803    pub unsafe fn slice_unchecked(&self, begin: usize, end: usize) -> &str {
804        // SAFETY: the caller must uphold the safety contract for `get_unchecked`;
805        // the slice is dereferenceable because `self` is a safe reference.
806        // The returned pointer is safe because impls of `SliceIndex` have to guarantee that it is.
807        unsafe { &*(begin..end).get_unchecked(self) }
808    }
809
810    /// Creates a string slice from another string slice, bypassing safety
811    /// checks.
812    ///
813    /// This is generally not recommended, use with caution! For a safe
814    /// alternative see [`str`] and [`IndexMut`].
815    ///
816    /// [`IndexMut`]: crate::ops::IndexMut
817    ///
818    /// This new slice goes from `begin` to `end`, including `begin` but
819    /// excluding `end`.
820    ///
821    /// To get an immutable string slice instead, see the
822    /// [`slice_unchecked`] method.
823    ///
824    /// [`slice_unchecked`]: str::slice_unchecked
825    ///
826    /// # Safety
827    ///
828    /// Callers of this function are responsible that three preconditions are
829    /// satisfied:
830    ///
831    /// * `begin` must not exceed `end`.
832    /// * `begin` and `end` must be byte positions within the string slice.
833    /// * `begin` and `end` must lie on UTF-8 sequence boundaries.
834    #[stable(feature = "str_slice_mut", since = "1.5.0")]
835    #[deprecated(since = "1.29.0", note = "use `get_unchecked_mut(begin..end)` instead")]
836    #[inline]
837    #[cfg(not(feature = "ferrocene_subset"))]
838    pub unsafe fn slice_mut_unchecked(&mut self, begin: usize, end: usize) -> &mut str {
839        // SAFETY: the caller must uphold the safety contract for `get_unchecked_mut`;
840        // the slice is dereferenceable because `self` is a safe reference.
841        // The returned pointer is safe because impls of `SliceIndex` have to guarantee that it is.
842        unsafe { &mut *(begin..end).get_unchecked_mut(self) }
843    }
844
845    /// Divides one string slice into two at an index.
846    ///
847    /// The argument, `mid`, should be a byte offset from the start of the
848    /// string. It must also be on the boundary of a UTF-8 code point.
849    ///
850    /// The two slices returned go from the start of the string slice to `mid`,
851    /// and from `mid` to the end of the string slice.
852    ///
853    /// To get mutable string slices instead, see the [`split_at_mut`]
854    /// method.
855    ///
856    /// [`split_at_mut`]: str::split_at_mut
857    ///
858    /// # Panics
859    ///
860    /// Panics if `mid` is not on a UTF-8 code point boundary, or if it is past
861    /// the end of the last code point of the string slice.  For a non-panicking
862    /// alternative see [`split_at_checked`](str::split_at_checked).
863    ///
864    /// # Examples
865    ///
866    /// ```
867    /// let s = "Per Martin-Löf";
868    ///
869    /// let (first, last) = s.split_at(3);
870    ///
871    /// assert_eq!("Per", first);
872    /// assert_eq!(" Martin-Löf", last);
873    /// ```
874    #[inline]
875    #[must_use]
876    #[stable(feature = "str_split_at", since = "1.4.0")]
877    #[rustc_const_stable(feature = "const_str_split_at", since = "1.86.0")]
878    #[cfg(not(feature = "ferrocene_subset"))]
879    pub const fn split_at(&self, mid: usize) -> (&str, &str) {
880        match self.split_at_checked(mid) {
881            None => slice_error_fail(self, 0, mid),
882            Some(pair) => pair,
883        }
884    }
885
886    /// Divides one mutable string slice into two at an index.
887    ///
888    /// The argument, `mid`, should be a byte offset from the start of the
889    /// string. It must also be on the boundary of a UTF-8 code point.
890    ///
891    /// The two slices returned go from the start of the string slice to `mid`,
892    /// and from `mid` to the end of the string slice.
893    ///
894    /// To get immutable string slices instead, see the [`split_at`] method.
895    ///
896    /// [`split_at`]: str::split_at
897    ///
898    /// # Panics
899    ///
900    /// Panics if `mid` is not on a UTF-8 code point boundary, or if it is past
901    /// the end of the last code point of the string slice.  For a non-panicking
902    /// alternative see [`split_at_mut_checked`](str::split_at_mut_checked).
903    ///
904    /// # Examples
905    ///
906    /// ```
907    /// let mut s = "Per Martin-Löf".to_string();
908    /// {
909    ///     let (first, last) = s.split_at_mut(3);
910    ///     first.make_ascii_uppercase();
911    ///     assert_eq!("PER", first);
912    ///     assert_eq!(" Martin-Löf", last);
913    /// }
914    /// assert_eq!("PER Martin-Löf", s);
915    /// ```
916    #[inline]
917    #[must_use]
918    #[stable(feature = "str_split_at", since = "1.4.0")]
919    #[rustc_const_stable(feature = "const_str_split_at", since = "1.86.0")]
920    #[cfg(not(feature = "ferrocene_subset"))]
921    pub const fn split_at_mut(&mut self, mid: usize) -> (&mut str, &mut str) {
922        // is_char_boundary checks that the index is in [0, .len()]
923        if self.is_char_boundary(mid) {
924            // SAFETY: just checked that `mid` is on a char boundary.
925            unsafe { self.split_at_mut_unchecked(mid) }
926        } else {
927            slice_error_fail(self, 0, mid)
928        }
929    }
930
931    /// Divides one string slice into two at an index.
932    ///
933    /// The argument, `mid`, should be a valid byte offset from the start of the
934    /// string. It must also be on the boundary of a UTF-8 code point. The
935    /// method returns `None` if that’s not the case.
936    ///
937    /// The two slices returned go from the start of the string slice to `mid`,
938    /// and from `mid` to the end of the string slice.
939    ///
940    /// To get mutable string slices instead, see the [`split_at_mut_checked`]
941    /// method.
942    ///
943    /// [`split_at_mut_checked`]: str::split_at_mut_checked
944    ///
945    /// # Examples
946    ///
947    /// ```
948    /// let s = "Per Martin-Löf";
949    ///
950    /// let (first, last) = s.split_at_checked(3).unwrap();
951    /// assert_eq!("Per", first);
952    /// assert_eq!(" Martin-Löf", last);
953    ///
954    /// assert_eq!(None, s.split_at_checked(13));  // Inside “ö”
955    /// assert_eq!(None, s.split_at_checked(16));  // Beyond the string length
956    /// ```
957    #[inline]
958    #[must_use]
959    #[stable(feature = "split_at_checked", since = "1.80.0")]
960    #[rustc_const_stable(feature = "const_str_split_at", since = "1.86.0")]
961    #[cfg(not(feature = "ferrocene_subset"))]
962    pub const fn split_at_checked(&self, mid: usize) -> Option<(&str, &str)> {
963        // is_char_boundary checks that the index is in [0, .len()]
964        if self.is_char_boundary(mid) {
965            // SAFETY: just checked that `mid` is on a char boundary.
966            Some(unsafe { self.split_at_unchecked(mid) })
967        } else {
968            None
969        }
970    }
971
972    /// Divides one mutable string slice into two at an index.
973    ///
974    /// The argument, `mid`, should be a valid byte offset from the start of the
975    /// string. It must also be on the boundary of a UTF-8 code point. The
976    /// method returns `None` if that’s not the case.
977    ///
978    /// The two slices returned go from the start of the string slice to `mid`,
979    /// and from `mid` to the end of the string slice.
980    ///
981    /// To get immutable string slices instead, see the [`split_at_checked`] method.
982    ///
983    /// [`split_at_checked`]: str::split_at_checked
984    ///
985    /// # Examples
986    ///
987    /// ```
988    /// let mut s = "Per Martin-Löf".to_string();
989    /// if let Some((first, last)) = s.split_at_mut_checked(3) {
990    ///     first.make_ascii_uppercase();
991    ///     assert_eq!("PER", first);
992    ///     assert_eq!(" Martin-Löf", last);
993    /// }
994    /// assert_eq!("PER Martin-Löf", s);
995    ///
996    /// assert_eq!(None, s.split_at_mut_checked(13));  // Inside “ö”
997    /// assert_eq!(None, s.split_at_mut_checked(16));  // Beyond the string length
998    /// ```
999    #[inline]
1000    #[must_use]
1001    #[stable(feature = "split_at_checked", since = "1.80.0")]
1002    #[rustc_const_stable(feature = "const_str_split_at", since = "1.86.0")]
1003    #[cfg(not(feature = "ferrocene_subset"))]
1004    pub const fn split_at_mut_checked(&mut self, mid: usize) -> Option<(&mut str, &mut str)> {
1005        // is_char_boundary checks that the index is in [0, .len()]
1006        if self.is_char_boundary(mid) {
1007            // SAFETY: just checked that `mid` is on a char boundary.
1008            Some(unsafe { self.split_at_mut_unchecked(mid) })
1009        } else {
1010            None
1011        }
1012    }
1013
1014    /// Divides one string slice into two at an index.
1015    ///
1016    /// # Safety
1017    ///
1018    /// The caller must ensure that `mid` is a valid byte offset from the start
1019    /// of the string and falls on the boundary of a UTF-8 code point.
1020    #[inline]
1021    #[cfg(not(feature = "ferrocene_subset"))]
1022    const unsafe fn split_at_unchecked(&self, mid: usize) -> (&str, &str) {
1023        let len = self.len();
1024        let ptr = self.as_ptr();
1025        // SAFETY: caller guarantees `mid` is on a char boundary.
1026        unsafe {
1027            (
1028                from_utf8_unchecked(slice::from_raw_parts(ptr, mid)),
1029                from_utf8_unchecked(slice::from_raw_parts(ptr.add(mid), len - mid)),
1030            )
1031        }
1032    }
1033
1034    /// Divides one string slice into two at an index.
1035    ///
1036    /// # Safety
1037    ///
1038    /// The caller must ensure that `mid` is a valid byte offset from the start
1039    /// of the string and falls on the boundary of a UTF-8 code point.
1040    #[cfg(not(feature = "ferrocene_subset"))]
1041    const unsafe fn split_at_mut_unchecked(&mut self, mid: usize) -> (&mut str, &mut str) {
1042        let len = self.len();
1043        let ptr = self.as_mut_ptr();
1044        // SAFETY: caller guarantees `mid` is on a char boundary.
1045        unsafe {
1046            (
1047                from_utf8_unchecked_mut(slice::from_raw_parts_mut(ptr, mid)),
1048                from_utf8_unchecked_mut(slice::from_raw_parts_mut(ptr.add(mid), len - mid)),
1049            )
1050        }
1051    }
1052
1053    /// Returns an iterator over the [`char`]s of a string slice.
1054    ///
1055    /// As a string slice consists of valid UTF-8, we can iterate through a
1056    /// string slice by [`char`]. This method returns such an iterator.
1057    ///
1058    /// It's important to remember that [`char`] represents a Unicode Scalar
1059    /// Value, and might not match your idea of what a 'character' is. Iteration
1060    /// over grapheme clusters may be what you actually want. This functionality
1061    /// is not provided by Rust's standard library, check crates.io instead.
1062    ///
1063    /// # Examples
1064    ///
1065    /// Basic usage:
1066    ///
1067    /// ```
1068    /// let word = "goodbye";
1069    ///
1070    /// let count = word.chars().count();
1071    /// assert_eq!(7, count);
1072    ///
1073    /// let mut chars = word.chars();
1074    ///
1075    /// assert_eq!(Some('g'), chars.next());
1076    /// assert_eq!(Some('o'), chars.next());
1077    /// assert_eq!(Some('o'), chars.next());
1078    /// assert_eq!(Some('d'), chars.next());
1079    /// assert_eq!(Some('b'), chars.next());
1080    /// assert_eq!(Some('y'), chars.next());
1081    /// assert_eq!(Some('e'), chars.next());
1082    ///
1083    /// assert_eq!(None, chars.next());
1084    /// ```
1085    ///
1086    /// Remember, [`char`]s might not match your intuition about characters:
1087    ///
1088    /// [`char`]: prim@char
1089    ///
1090    /// ```
1091    /// let y = "y̆";
1092    ///
1093    /// let mut chars = y.chars();
1094    ///
1095    /// assert_eq!(Some('y'), chars.next()); // not 'y̆'
1096    /// assert_eq!(Some('\u{0306}'), chars.next());
1097    ///
1098    /// assert_eq!(None, chars.next());
1099    /// ```
1100    #[stable(feature = "rust1", since = "1.0.0")]
1101    #[inline]
1102    #[rustc_diagnostic_item = "str_chars"]
1103    pub fn chars(&self) -> Chars<'_> {
1104        Chars { iter: self.as_bytes().iter() }
1105    }
1106
1107    /// Returns an iterator over the [`char`]s of a string slice, and their
1108    /// positions.
1109    ///
1110    /// As a string slice consists of valid UTF-8, we can iterate through a
1111    /// string slice by [`char`]. This method returns an iterator of both
1112    /// these [`char`]s, as well as their byte positions.
1113    ///
1114    /// The iterator yields tuples. The position is first, the [`char`] is
1115    /// second.
1116    ///
1117    /// # Examples
1118    ///
1119    /// Basic usage:
1120    ///
1121    /// ```
1122    /// let word = "goodbye";
1123    ///
1124    /// let count = word.char_indices().count();
1125    /// assert_eq!(7, count);
1126    ///
1127    /// let mut char_indices = word.char_indices();
1128    ///
1129    /// assert_eq!(Some((0, 'g')), char_indices.next());
1130    /// assert_eq!(Some((1, 'o')), char_indices.next());
1131    /// assert_eq!(Some((2, 'o')), char_indices.next());
1132    /// assert_eq!(Some((3, 'd')), char_indices.next());
1133    /// assert_eq!(Some((4, 'b')), char_indices.next());
1134    /// assert_eq!(Some((5, 'y')), char_indices.next());
1135    /// assert_eq!(Some((6, 'e')), char_indices.next());
1136    ///
1137    /// assert_eq!(None, char_indices.next());
1138    /// ```
1139    ///
1140    /// Remember, [`char`]s might not match your intuition about characters:
1141    ///
1142    /// [`char`]: prim@char
1143    ///
1144    /// ```
1145    /// let yes = "y̆es";
1146    ///
1147    /// let mut char_indices = yes.char_indices();
1148    ///
1149    /// assert_eq!(Some((0, 'y')), char_indices.next()); // not (0, 'y̆')
1150    /// assert_eq!(Some((1, '\u{0306}')), char_indices.next());
1151    ///
1152    /// // note the 3 here - the previous character took up two bytes
1153    /// assert_eq!(Some((3, 'e')), char_indices.next());
1154    /// assert_eq!(Some((4, 's')), char_indices.next());
1155    ///
1156    /// assert_eq!(None, char_indices.next());
1157    /// ```
1158    #[stable(feature = "rust1", since = "1.0.0")]
1159    #[inline]
1160    pub fn char_indices(&self) -> CharIndices<'_> {
1161        CharIndices { front_offset: 0, iter: self.chars() }
1162    }
1163
1164    /// Returns an iterator over the bytes of a string slice.
1165    ///
1166    /// As a string slice consists of a sequence of bytes, we can iterate
1167    /// through a string slice by byte. This method returns such an iterator.
1168    ///
1169    /// # Examples
1170    ///
1171    /// ```
1172    /// let mut bytes = "bors".bytes();
1173    ///
1174    /// assert_eq!(Some(b'b'), bytes.next());
1175    /// assert_eq!(Some(b'o'), bytes.next());
1176    /// assert_eq!(Some(b'r'), bytes.next());
1177    /// assert_eq!(Some(b's'), bytes.next());
1178    ///
1179    /// assert_eq!(None, bytes.next());
1180    /// ```
1181    #[stable(feature = "rust1", since = "1.0.0")]
1182    #[inline]
1183    pub fn bytes(&self) -> Bytes<'_> {
1184        Bytes(self.as_bytes().iter().copied())
1185    }
1186
1187    /// Splits a string slice by whitespace.
1188    ///
1189    /// The iterator returned will return string slices that are sub-slices of
1190    /// the original string slice, separated by any amount of whitespace.
1191    ///
1192    /// 'Whitespace' is defined according to the terms of the Unicode Derived
1193    /// Core Property `White_Space`. If you only want to split on ASCII whitespace
1194    /// instead, use [`split_ascii_whitespace`].
1195    ///
1196    /// [`split_ascii_whitespace`]: str::split_ascii_whitespace
1197    ///
1198    /// # Examples
1199    ///
1200    /// Basic usage:
1201    ///
1202    /// ```
1203    /// let mut iter = "A few words".split_whitespace();
1204    ///
1205    /// assert_eq!(Some("A"), iter.next());
1206    /// assert_eq!(Some("few"), iter.next());
1207    /// assert_eq!(Some("words"), iter.next());
1208    ///
1209    /// assert_eq!(None, iter.next());
1210    /// ```
1211    ///
1212    /// All kinds of whitespace are considered:
1213    ///
1214    /// ```
1215    /// let mut iter = " Mary   had\ta\u{2009}little  \n\t lamb".split_whitespace();
1216    /// assert_eq!(Some("Mary"), iter.next());
1217    /// assert_eq!(Some("had"), iter.next());
1218    /// assert_eq!(Some("a"), iter.next());
1219    /// assert_eq!(Some("little"), iter.next());
1220    /// assert_eq!(Some("lamb"), iter.next());
1221    ///
1222    /// assert_eq!(None, iter.next());
1223    /// ```
1224    ///
1225    /// If the string is empty or all whitespace, the iterator yields no string slices:
1226    /// ```
1227    /// assert_eq!("".split_whitespace().next(), None);
1228    /// assert_eq!("   ".split_whitespace().next(), None);
1229    /// ```
1230    #[must_use = "this returns the split string as an iterator, \
1231                  without modifying the original"]
1232    #[stable(feature = "split_whitespace", since = "1.1.0")]
1233    #[rustc_diagnostic_item = "str_split_whitespace"]
1234    #[inline]
1235    #[cfg(not(feature = "ferrocene_subset"))]
1236    pub fn split_whitespace(&self) -> SplitWhitespace<'_> {
1237        SplitWhitespace { inner: self.split(IsWhitespace).filter(IsNotEmpty) }
1238    }
1239
1240    /// Splits a string slice by ASCII whitespace.
1241    ///
1242    /// The iterator returned will return string slices that are sub-slices of
1243    /// the original string slice, separated by any amount of ASCII whitespace.
1244    ///
1245    /// This uses the same definition as [`char::is_ascii_whitespace`].
1246    /// To split by Unicode `Whitespace` instead, use [`split_whitespace`].
1247    ///
1248    /// [`split_whitespace`]: str::split_whitespace
1249    ///
1250    /// # Examples
1251    ///
1252    /// Basic usage:
1253    ///
1254    /// ```
1255    /// let mut iter = "A few words".split_ascii_whitespace();
1256    ///
1257    /// assert_eq!(Some("A"), iter.next());
1258    /// assert_eq!(Some("few"), iter.next());
1259    /// assert_eq!(Some("words"), iter.next());
1260    ///
1261    /// assert_eq!(None, iter.next());
1262    /// ```
1263    ///
1264    /// Various kinds of ASCII whitespace are considered
1265    /// (see [`char::is_ascii_whitespace`]):
1266    ///
1267    /// ```
1268    /// let mut iter = " Mary   had\ta little  \n\t lamb".split_ascii_whitespace();
1269    /// assert_eq!(Some("Mary"), iter.next());
1270    /// assert_eq!(Some("had"), iter.next());
1271    /// assert_eq!(Some("a"), iter.next());
1272    /// assert_eq!(Some("little"), iter.next());
1273    /// assert_eq!(Some("lamb"), iter.next());
1274    ///
1275    /// assert_eq!(None, iter.next());
1276    /// ```
1277    ///
1278    /// If the string is empty or all ASCII whitespace, the iterator yields no string slices:
1279    /// ```
1280    /// assert_eq!("".split_ascii_whitespace().next(), None);
1281    /// assert_eq!("   ".split_ascii_whitespace().next(), None);
1282    /// ```
1283    #[must_use = "this returns the split string as an iterator, \
1284                  without modifying the original"]
1285    #[stable(feature = "split_ascii_whitespace", since = "1.34.0")]
1286    #[inline]
1287    #[cfg(not(feature = "ferrocene_subset"))]
1288    pub fn split_ascii_whitespace(&self) -> SplitAsciiWhitespace<'_> {
1289        let inner =
1290            self.as_bytes().split(IsAsciiWhitespace).filter(BytesIsNotEmpty).map(UnsafeBytesToStr);
1291        SplitAsciiWhitespace { inner }
1292    }
1293
1294    /// Returns an iterator over the lines of a string, as string slices.
1295    ///
1296    /// Lines are split at line endings that are either newlines (`\n`) or
1297    /// sequences of a carriage return followed by a line feed (`\r\n`).
1298    ///
1299    /// Line terminators are not included in the lines returned by the iterator.
1300    ///
1301    /// Note that any carriage return (`\r`) not immediately followed by a
1302    /// line feed (`\n`) does not split a line. These carriage returns are
1303    /// thereby included in the produced lines.
1304    ///
1305    /// The final line ending is optional. A string that ends with a final line
1306    /// ending will return the same lines as an otherwise identical string
1307    /// without a final line ending.
1308    ///
1309    /// An empty string returns an empty iterator.
1310    ///
1311    /// # Examples
1312    ///
1313    /// Basic usage:
1314    ///
1315    /// ```
1316    /// let text = "foo\r\nbar\n\nbaz\r";
1317    /// let mut lines = text.lines();
1318    ///
1319    /// assert_eq!(Some("foo"), lines.next());
1320    /// assert_eq!(Some("bar"), lines.next());
1321    /// assert_eq!(Some(""), lines.next());
1322    /// // Trailing carriage return is included in the last line
1323    /// assert_eq!(Some("baz\r"), lines.next());
1324    ///
1325    /// assert_eq!(None, lines.next());
1326    /// ```
1327    ///
1328    /// The final line does not require any ending:
1329    ///
1330    /// ```
1331    /// let text = "foo\nbar\n\r\nbaz";
1332    /// let mut lines = text.lines();
1333    ///
1334    /// assert_eq!(Some("foo"), lines.next());
1335    /// assert_eq!(Some("bar"), lines.next());
1336    /// assert_eq!(Some(""), lines.next());
1337    /// assert_eq!(Some("baz"), lines.next());
1338    ///
1339    /// assert_eq!(None, lines.next());
1340    /// ```
1341    ///
1342    /// An empty string returns an empty iterator:
1343    ///
1344    /// ```
1345    /// let text = "";
1346    /// let mut lines = text.lines();
1347    ///
1348    /// assert_eq!(lines.next(), None);
1349    /// ```
1350    #[stable(feature = "rust1", since = "1.0.0")]
1351    #[inline]
1352    #[cfg(not(feature = "ferrocene_subset"))]
1353    pub fn lines(&self) -> Lines<'_> {
1354        Lines(self.split_inclusive('\n').map(LinesMap))
1355    }
1356
1357    /// Returns an iterator over the lines of a string.
1358    #[stable(feature = "rust1", since = "1.0.0")]
1359    #[deprecated(since = "1.4.0", note = "use lines() instead now", suggestion = "lines")]
1360    #[inline]
1361    #[allow(deprecated)]
1362    #[cfg(not(feature = "ferrocene_subset"))]
1363    pub fn lines_any(&self) -> LinesAny<'_> {
1364        LinesAny(self.lines())
1365    }
1366
1367    /// Returns an iterator of `u16` over the string encoded
1368    /// as native endian UTF-16 (without byte-order mark).
1369    ///
1370    /// # Examples
1371    ///
1372    /// ```
1373    /// let text = "Zażółć gęślą jaźń";
1374    ///
1375    /// let utf8_len = text.len();
1376    /// let utf16_len = text.encode_utf16().count();
1377    ///
1378    /// assert!(utf16_len <= utf8_len);
1379    /// ```
1380    #[must_use = "this returns the encoded string as an iterator, \
1381                  without modifying the original"]
1382    #[stable(feature = "encode_utf16", since = "1.8.0")]
1383    #[cfg(not(feature = "ferrocene_subset"))]
1384    pub fn encode_utf16(&self) -> EncodeUtf16<'_> {
1385        EncodeUtf16 { chars: self.chars(), extra: 0 }
1386    }
1387
1388    /// Returns `true` if the given pattern matches a sub-slice of
1389    /// this string slice.
1390    ///
1391    /// Returns `false` if it does not.
1392    ///
1393    /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a
1394    /// function or closure that determines if a character matches.
1395    ///
1396    /// [`char`]: prim@char
1397    /// [pattern]: self::pattern
1398    ///
1399    /// # Examples
1400    ///
1401    /// ```
1402    /// let bananas = "bananas";
1403    ///
1404    /// assert!(bananas.contains("nana"));
1405    /// assert!(!bananas.contains("apples"));
1406    /// ```
1407    #[stable(feature = "rust1", since = "1.0.0")]
1408    #[inline]
1409    #[cfg(not(feature = "ferrocene_subset"))]
1410    pub fn contains<P: Pattern>(&self, pat: P) -> bool {
1411        pat.is_contained_in(self)
1412    }
1413
1414    /// Returns `true` if the given pattern matches a prefix of this
1415    /// string slice.
1416    ///
1417    /// Returns `false` if it does not.
1418    ///
1419    /// The [pattern] can be a `&str`, in which case this function will return true if
1420    /// the `&str` is a prefix of this string slice.
1421    ///
1422    /// The [pattern] can also be a [`char`], a slice of [`char`]s, or a
1423    /// function or closure that determines if a character matches.
1424    /// These will only be checked against the first character of this string slice.
1425    /// Look at the second example below regarding behavior for slices of [`char`]s.
1426    ///
1427    /// [`char`]: prim@char
1428    /// [pattern]: self::pattern
1429    ///
1430    /// # Examples
1431    ///
1432    /// ```
1433    /// let bananas = "bananas";
1434    ///
1435    /// assert!(bananas.starts_with("bana"));
1436    /// assert!(!bananas.starts_with("nana"));
1437    /// ```
1438    ///
1439    /// ```
1440    /// let bananas = "bananas";
1441    ///
1442    /// // Note that both of these assert successfully.
1443    /// assert!(bananas.starts_with(&['b', 'a', 'n', 'a']));
1444    /// assert!(bananas.starts_with(&['a', 'b', 'c', 'd']));
1445    /// ```
1446    #[stable(feature = "rust1", since = "1.0.0")]
1447    #[rustc_diagnostic_item = "str_starts_with"]
1448    pub fn starts_with<P: Pattern>(&self, pat: P) -> bool {
1449        pat.is_prefix_of(self)
1450    }
1451
1452    /// Returns `true` if the given pattern matches a suffix of this
1453    /// string slice.
1454    ///
1455    /// Returns `false` if it does not.
1456    ///
1457    /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a
1458    /// function or closure that determines if a character matches.
1459    ///
1460    /// [`char`]: prim@char
1461    /// [pattern]: self::pattern
1462    ///
1463    /// # Examples
1464    ///
1465    /// ```
1466    /// let bananas = "bananas";
1467    ///
1468    /// assert!(bananas.ends_with("anas"));
1469    /// assert!(!bananas.ends_with("nana"));
1470    /// ```
1471    #[stable(feature = "rust1", since = "1.0.0")]
1472    #[rustc_diagnostic_item = "str_ends_with"]
1473    pub fn ends_with<P: Pattern>(&self, pat: P) -> bool
1474    where
1475        for<'a> P::Searcher<'a>: ReverseSearcher<'a>,
1476    {
1477        pat.is_suffix_of(self)
1478    }
1479
1480    /// Returns the byte index of the first character of this string slice that
1481    /// matches the pattern.
1482    ///
1483    /// Returns [`None`] if the pattern doesn't match.
1484    ///
1485    /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a
1486    /// function or closure that determines if a character matches.
1487    ///
1488    /// [`char`]: prim@char
1489    /// [pattern]: self::pattern
1490    ///
1491    /// # Examples
1492    ///
1493    /// Simple patterns:
1494    ///
1495    /// ```
1496    /// let s = "Löwe 老虎 Léopard Gepardi";
1497    ///
1498    /// assert_eq!(s.find('L'), Some(0));
1499    /// assert_eq!(s.find('é'), Some(14));
1500    /// assert_eq!(s.find("pard"), Some(17));
1501    /// ```
1502    ///
1503    /// More complex patterns using point-free style and closures:
1504    ///
1505    /// ```
1506    /// let s = "Löwe 老虎 Léopard";
1507    ///
1508    /// assert_eq!(s.find(char::is_whitespace), Some(5));
1509    /// assert_eq!(s.find(char::is_lowercase), Some(1));
1510    /// assert_eq!(s.find(|c: char| c.is_whitespace() || c.is_lowercase()), Some(1));
1511    /// assert_eq!(s.find(|c: char| (c < 'o') && (c > 'a')), Some(4));
1512    /// ```
1513    ///
1514    /// Not finding the pattern:
1515    ///
1516    /// ```
1517    /// let s = "Löwe 老虎 Léopard";
1518    /// let x: &[_] = &['1', '2'];
1519    ///
1520    /// assert_eq!(s.find(x), None);
1521    /// ```
1522    #[stable(feature = "rust1", since = "1.0.0")]
1523    #[inline]
1524    #[cfg(not(feature = "ferrocene_subset"))]
1525    pub fn find<P: Pattern>(&self, pat: P) -> Option<usize> {
1526        pat.into_searcher(self).next_match().map(|(i, _)| i)
1527    }
1528
1529    /// Returns the byte index for the first character of the last match of the pattern in
1530    /// this string slice.
1531    ///
1532    /// Returns [`None`] if the pattern doesn't match.
1533    ///
1534    /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a
1535    /// function or closure that determines if a character matches.
1536    ///
1537    /// [`char`]: prim@char
1538    /// [pattern]: self::pattern
1539    ///
1540    /// # Examples
1541    ///
1542    /// Simple patterns:
1543    ///
1544    /// ```
1545    /// let s = "Löwe 老虎 Léopard Gepardi";
1546    ///
1547    /// assert_eq!(s.rfind('L'), Some(13));
1548    /// assert_eq!(s.rfind('é'), Some(14));
1549    /// assert_eq!(s.rfind("pard"), Some(24));
1550    /// ```
1551    ///
1552    /// More complex patterns with closures:
1553    ///
1554    /// ```
1555    /// let s = "Löwe 老虎 Léopard";
1556    ///
1557    /// assert_eq!(s.rfind(char::is_whitespace), Some(12));
1558    /// assert_eq!(s.rfind(char::is_lowercase), Some(20));
1559    /// ```
1560    ///
1561    /// Not finding the pattern:
1562    ///
1563    /// ```
1564    /// let s = "Löwe 老虎 Léopard";
1565    /// let x: &[_] = &['1', '2'];
1566    ///
1567    /// assert_eq!(s.rfind(x), None);
1568    /// ```
1569    #[stable(feature = "rust1", since = "1.0.0")]
1570    #[inline]
1571    #[cfg(not(feature = "ferrocene_subset"))]
1572    pub fn rfind<P: Pattern>(&self, pat: P) -> Option<usize>
1573    where
1574        for<'a> P::Searcher<'a>: ReverseSearcher<'a>,
1575    {
1576        pat.into_searcher(self).next_match_back().map(|(i, _)| i)
1577    }
1578
1579    /// Returns an iterator over substrings of this string slice, separated by
1580    /// characters matched by a pattern.
1581    ///
1582    /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a
1583    /// function or closure that determines if a character matches.
1584    ///
1585    /// If there are no matches the full string slice is returned as the only
1586    /// item in the iterator.
1587    ///
1588    /// [`char`]: prim@char
1589    /// [pattern]: self::pattern
1590    ///
1591    /// # Iterator behavior
1592    ///
1593    /// The returned iterator will be a [`DoubleEndedIterator`] if the pattern
1594    /// allows a reverse search and forward/reverse search yields the same
1595    /// elements. This is true for, e.g., [`char`], but not for `&str`.
1596    ///
1597    /// If the pattern allows a reverse search but its results might differ
1598    /// from a forward search, the [`rsplit`] method can be used.
1599    ///
1600    /// [`rsplit`]: str::rsplit
1601    ///
1602    /// # Examples
1603    ///
1604    /// Simple patterns:
1605    ///
1606    /// ```
1607    /// let v: Vec<&str> = "Mary had a little lamb".split(' ').collect();
1608    /// assert_eq!(v, ["Mary", "had", "a", "little", "lamb"]);
1609    ///
1610    /// let v: Vec<&str> = "".split('X').collect();
1611    /// assert_eq!(v, [""]);
1612    ///
1613    /// let v: Vec<&str> = "lionXXtigerXleopard".split('X').collect();
1614    /// assert_eq!(v, ["lion", "", "tiger", "leopard"]);
1615    ///
1616    /// let v: Vec<&str> = "lion::tiger::leopard".split("::").collect();
1617    /// assert_eq!(v, ["lion", "tiger", "leopard"]);
1618    ///
1619    /// let v: Vec<&str> = "AABBCC".split("DD").collect();
1620    /// assert_eq!(v, ["AABBCC"]);
1621    ///
1622    /// let v: Vec<&str> = "abc1def2ghi".split(char::is_numeric).collect();
1623    /// assert_eq!(v, ["abc", "def", "ghi"]);
1624    ///
1625    /// let v: Vec<&str> = "lionXtigerXleopard".split(char::is_uppercase).collect();
1626    /// assert_eq!(v, ["lion", "tiger", "leopard"]);
1627    /// ```
1628    ///
1629    /// If the pattern is a slice of chars, split on each occurrence of any of the characters:
1630    ///
1631    /// ```
1632    /// let v: Vec<&str> = "2020-11-03 23:59".split(&['-', ' ', ':', '@'][..]).collect();
1633    /// assert_eq!(v, ["2020", "11", "03", "23", "59"]);
1634    /// ```
1635    ///
1636    /// A more complex pattern, using a closure:
1637    ///
1638    /// ```
1639    /// let v: Vec<&str> = "abc1defXghi".split(|c| c == '1' || c == 'X').collect();
1640    /// assert_eq!(v, ["abc", "def", "ghi"]);
1641    /// ```
1642    ///
1643    /// If a string contains multiple contiguous separators, you will end up
1644    /// with empty strings in the output:
1645    ///
1646    /// ```
1647    /// let x = "||||a||b|c".to_string();
1648    /// let d: Vec<_> = x.split('|').collect();
1649    ///
1650    /// assert_eq!(d, &["", "", "", "", "a", "", "b", "c"]);
1651    /// ```
1652    ///
1653    /// Contiguous separators are separated by the empty string.
1654    ///
1655    /// ```
1656    /// let x = "(///)".to_string();
1657    /// let d: Vec<_> = x.split('/').collect();
1658    ///
1659    /// assert_eq!(d, &["(", "", "", ")"]);
1660    /// ```
1661    ///
1662    /// Separators at the start or end of a string are neighbored
1663    /// by empty strings.
1664    ///
1665    /// ```
1666    /// let d: Vec<_> = "010".split("0").collect();
1667    /// assert_eq!(d, &["", "1", ""]);
1668    /// ```
1669    ///
1670    /// When the empty string is used as a separator, it separates
1671    /// every character in the string, along with the beginning
1672    /// and end of the string.
1673    ///
1674    /// ```
1675    /// let f: Vec<_> = "rust".split("").collect();
1676    /// assert_eq!(f, &["", "r", "u", "s", "t", ""]);
1677    /// ```
1678    ///
1679    /// Contiguous separators can lead to possibly surprising behavior
1680    /// when whitespace is used as the separator. This code is correct:
1681    ///
1682    /// ```
1683    /// let x = "    a  b c".to_string();
1684    /// let d: Vec<_> = x.split(' ').collect();
1685    ///
1686    /// assert_eq!(d, &["", "", "", "", "a", "", "b", "c"]);
1687    /// ```
1688    ///
1689    /// It does _not_ give you:
1690    ///
1691    /// ```,ignore
1692    /// assert_eq!(d, &["a", "b", "c"]);
1693    /// ```
1694    ///
1695    /// Use [`split_whitespace`] for this behavior.
1696    ///
1697    /// [`split_whitespace`]: str::split_whitespace
1698    #[stable(feature = "rust1", since = "1.0.0")]
1699    #[inline]
1700    #[cfg(not(feature = "ferrocene_subset"))]
1701    pub fn split<P: Pattern>(&self, pat: P) -> Split<'_, P> {
1702        Split(SplitInternal {
1703            start: 0,
1704            end: self.len(),
1705            matcher: pat.into_searcher(self),
1706            allow_trailing_empty: true,
1707            finished: false,
1708        })
1709    }
1710
1711    /// Returns an iterator over substrings of this string slice, separated by
1712    /// characters matched by a pattern.
1713    ///
1714    /// Differs from the iterator produced by `split` in that `split_inclusive`
1715    /// leaves the matched part as the terminator of the substring.
1716    ///
1717    /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a
1718    /// function or closure that determines if a character matches.
1719    ///
1720    /// [`char`]: prim@char
1721    /// [pattern]: self::pattern
1722    ///
1723    /// # Examples
1724    ///
1725    /// ```
1726    /// let v: Vec<&str> = "Mary had a little lamb\nlittle lamb\nlittle lamb."
1727    ///     .split_inclusive('\n').collect();
1728    /// assert_eq!(v, ["Mary had a little lamb\n", "little lamb\n", "little lamb."]);
1729    /// ```
1730    ///
1731    /// If the last element of the string is matched,
1732    /// that element will be considered the terminator of the preceding substring.
1733    /// That substring will be the last item returned by the iterator.
1734    ///
1735    /// ```
1736    /// let v: Vec<&str> = "Mary had a little lamb\nlittle lamb\nlittle lamb.\n"
1737    ///     .split_inclusive('\n').collect();
1738    /// assert_eq!(v, ["Mary had a little lamb\n", "little lamb\n", "little lamb.\n"]);
1739    /// ```
1740    #[stable(feature = "split_inclusive", since = "1.51.0")]
1741    #[inline]
1742    pub fn split_inclusive<P: Pattern>(&self, pat: P) -> SplitInclusive<'_, P> {
1743        SplitInclusive(SplitInternal {
1744            start: 0,
1745            end: self.len(),
1746            matcher: pat.into_searcher(self),
1747            allow_trailing_empty: false,
1748            finished: false,
1749        })
1750    }
1751
1752    /// Returns an iterator over substrings of the given string slice, separated
1753    /// by characters matched by a pattern and yielded in reverse order.
1754    ///
1755    /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a
1756    /// function or closure that determines if a character matches.
1757    ///
1758    /// [`char`]: prim@char
1759    /// [pattern]: self::pattern
1760    ///
1761    /// # Iterator behavior
1762    ///
1763    /// The returned iterator requires that the pattern supports a reverse
1764    /// search, and it will be a [`DoubleEndedIterator`] if a forward/reverse
1765    /// search yields the same elements.
1766    ///
1767    /// For iterating from the front, the [`split`] method can be used.
1768    ///
1769    /// [`split`]: str::split
1770    ///
1771    /// # Examples
1772    ///
1773    /// Simple patterns:
1774    ///
1775    /// ```
1776    /// let v: Vec<&str> = "Mary had a little lamb".rsplit(' ').collect();
1777    /// assert_eq!(v, ["lamb", "little", "a", "had", "Mary"]);
1778    ///
1779    /// let v: Vec<&str> = "".rsplit('X').collect();
1780    /// assert_eq!(v, [""]);
1781    ///
1782    /// let v: Vec<&str> = "lionXXtigerXleopard".rsplit('X').collect();
1783    /// assert_eq!(v, ["leopard", "tiger", "", "lion"]);
1784    ///
1785    /// let v: Vec<&str> = "lion::tiger::leopard".rsplit("::").collect();
1786    /// assert_eq!(v, ["leopard", "tiger", "lion"]);
1787    /// ```
1788    ///
1789    /// A more complex pattern, using a closure:
1790    ///
1791    /// ```
1792    /// let v: Vec<&str> = "abc1defXghi".rsplit(|c| c == '1' || c == 'X').collect();
1793    /// assert_eq!(v, ["ghi", "def", "abc"]);
1794    /// ```
1795    #[stable(feature = "rust1", since = "1.0.0")]
1796    #[inline]
1797    #[cfg(not(feature = "ferrocene_subset"))]
1798    pub fn rsplit<P: Pattern>(&self, pat: P) -> RSplit<'_, P>
1799    where
1800        for<'a> P::Searcher<'a>: ReverseSearcher<'a>,
1801    {
1802        RSplit(self.split(pat).0)
1803    }
1804
1805    /// Returns an iterator over substrings of the given string slice, separated
1806    /// by characters matched by a pattern.
1807    ///
1808    /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a
1809    /// function or closure that determines if a character matches.
1810    ///
1811    /// [`char`]: prim@char
1812    /// [pattern]: self::pattern
1813    ///
1814    /// Equivalent to [`split`], except that the trailing substring
1815    /// is skipped if empty.
1816    ///
1817    /// [`split`]: str::split
1818    ///
1819    /// This method can be used for string data that is _terminated_,
1820    /// rather than _separated_ by a pattern.
1821    ///
1822    /// # Iterator behavior
1823    ///
1824    /// The returned iterator will be a [`DoubleEndedIterator`] if the pattern
1825    /// allows a reverse search and forward/reverse search yields the same
1826    /// elements. This is true for, e.g., [`char`], but not for `&str`.
1827    ///
1828    /// If the pattern allows a reverse search but its results might differ
1829    /// from a forward search, the [`rsplit_terminator`] method can be used.
1830    ///
1831    /// [`rsplit_terminator`]: str::rsplit_terminator
1832    ///
1833    /// # Examples
1834    ///
1835    /// ```
1836    /// let v: Vec<&str> = "A.B.".split_terminator('.').collect();
1837    /// assert_eq!(v, ["A", "B"]);
1838    ///
1839    /// let v: Vec<&str> = "A..B..".split_terminator(".").collect();
1840    /// assert_eq!(v, ["A", "", "B", ""]);
1841    ///
1842    /// let v: Vec<&str> = "A.B:C.D".split_terminator(&['.', ':'][..]).collect();
1843    /// assert_eq!(v, ["A", "B", "C", "D"]);
1844    /// ```
1845    #[stable(feature = "rust1", since = "1.0.0")]
1846    #[inline]
1847    #[cfg(not(feature = "ferrocene_subset"))]
1848    pub fn split_terminator<P: Pattern>(&self, pat: P) -> SplitTerminator<'_, P> {
1849        SplitTerminator(SplitInternal { allow_trailing_empty: false, ..self.split(pat).0 })
1850    }
1851
1852    /// Returns an iterator over substrings of `self`, separated by characters
1853    /// matched by a pattern and yielded in reverse order.
1854    ///
1855    /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a
1856    /// function or closure that determines if a character matches.
1857    ///
1858    /// [`char`]: prim@char
1859    /// [pattern]: self::pattern
1860    ///
1861    /// Equivalent to [`split`], except that the trailing substring is
1862    /// skipped if empty.
1863    ///
1864    /// [`split`]: str::split
1865    ///
1866    /// This method can be used for string data that is _terminated_,
1867    /// rather than _separated_ by a pattern.
1868    ///
1869    /// # Iterator behavior
1870    ///
1871    /// The returned iterator requires that the pattern supports a
1872    /// reverse search, and it will be double ended if a forward/reverse
1873    /// search yields the same elements.
1874    ///
1875    /// For iterating from the front, the [`split_terminator`] method can be
1876    /// used.
1877    ///
1878    /// [`split_terminator`]: str::split_terminator
1879    ///
1880    /// # Examples
1881    ///
1882    /// ```
1883    /// let v: Vec<&str> = "A.B.".rsplit_terminator('.').collect();
1884    /// assert_eq!(v, ["B", "A"]);
1885    ///
1886    /// let v: Vec<&str> = "A..B..".rsplit_terminator(".").collect();
1887    /// assert_eq!(v, ["", "B", "", "A"]);
1888    ///
1889    /// let v: Vec<&str> = "A.B:C.D".rsplit_terminator(&['.', ':'][..]).collect();
1890    /// assert_eq!(v, ["D", "C", "B", "A"]);
1891    /// ```
1892    #[stable(feature = "rust1", since = "1.0.0")]
1893    #[inline]
1894    #[cfg(not(feature = "ferrocene_subset"))]
1895    pub fn rsplit_terminator<P: Pattern>(&self, pat: P) -> RSplitTerminator<'_, P>
1896    where
1897        for<'a> P::Searcher<'a>: ReverseSearcher<'a>,
1898    {
1899        RSplitTerminator(self.split_terminator(pat).0)
1900    }
1901
1902    /// Returns an iterator over substrings of the given string slice, separated
1903    /// by a pattern, restricted to returning at most `n` items.
1904    ///
1905    /// If `n` substrings are returned, the last substring (the `n`th substring)
1906    /// will contain the remainder of the string.
1907    ///
1908    /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a
1909    /// function or closure that determines if a character matches.
1910    ///
1911    /// [`char`]: prim@char
1912    /// [pattern]: self::pattern
1913    ///
1914    /// # Iterator behavior
1915    ///
1916    /// The returned iterator will not be double ended, because it is
1917    /// not efficient to support.
1918    ///
1919    /// If the pattern allows a reverse search, the [`rsplitn`] method can be
1920    /// used.
1921    ///
1922    /// [`rsplitn`]: str::rsplitn
1923    ///
1924    /// # Examples
1925    ///
1926    /// Simple patterns:
1927    ///
1928    /// ```
1929    /// let v: Vec<&str> = "Mary had a little lambda".splitn(3, ' ').collect();
1930    /// assert_eq!(v, ["Mary", "had", "a little lambda"]);
1931    ///
1932    /// let v: Vec<&str> = "lionXXtigerXleopard".splitn(3, "X").collect();
1933    /// assert_eq!(v, ["lion", "", "tigerXleopard"]);
1934    ///
1935    /// let v: Vec<&str> = "abcXdef".splitn(1, 'X').collect();
1936    /// assert_eq!(v, ["abcXdef"]);
1937    ///
1938    /// let v: Vec<&str> = "".splitn(1, 'X').collect();
1939    /// assert_eq!(v, [""]);
1940    /// ```
1941    ///
1942    /// A more complex pattern, using a closure:
1943    ///
1944    /// ```
1945    /// let v: Vec<&str> = "abc1defXghi".splitn(2, |c| c == '1' || c == 'X').collect();
1946    /// assert_eq!(v, ["abc", "defXghi"]);
1947    /// ```
1948    #[stable(feature = "rust1", since = "1.0.0")]
1949    #[inline]
1950    #[cfg(not(feature = "ferrocene_subset"))]
1951    pub fn splitn<P: Pattern>(&self, n: usize, pat: P) -> SplitN<'_, P> {
1952        SplitN(SplitNInternal { iter: self.split(pat).0, count: n })
1953    }
1954
1955    /// Returns an iterator over substrings of this string slice, separated by a
1956    /// pattern, starting from the end of the string, restricted to returning at
1957    /// most `n` items.
1958    ///
1959    /// If `n` substrings are returned, the last substring (the `n`th substring)
1960    /// will contain the remainder of the string.
1961    ///
1962    /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a
1963    /// function or closure that determines if a character matches.
1964    ///
1965    /// [`char`]: prim@char
1966    /// [pattern]: self::pattern
1967    ///
1968    /// # Iterator behavior
1969    ///
1970    /// The returned iterator will not be double ended, because it is not
1971    /// efficient to support.
1972    ///
1973    /// For splitting from the front, the [`splitn`] method can be used.
1974    ///
1975    /// [`splitn`]: str::splitn
1976    ///
1977    /// # Examples
1978    ///
1979    /// Simple patterns:
1980    ///
1981    /// ```
1982    /// let v: Vec<&str> = "Mary had a little lamb".rsplitn(3, ' ').collect();
1983    /// assert_eq!(v, ["lamb", "little", "Mary had a"]);
1984    ///
1985    /// let v: Vec<&str> = "lionXXtigerXleopard".rsplitn(3, 'X').collect();
1986    /// assert_eq!(v, ["leopard", "tiger", "lionX"]);
1987    ///
1988    /// let v: Vec<&str> = "lion::tiger::leopard".rsplitn(2, "::").collect();
1989    /// assert_eq!(v, ["leopard", "lion::tiger"]);
1990    /// ```
1991    ///
1992    /// A more complex pattern, using a closure:
1993    ///
1994    /// ```
1995    /// let v: Vec<&str> = "abc1defXghi".rsplitn(2, |c| c == '1' || c == 'X').collect();
1996    /// assert_eq!(v, ["ghi", "abc1def"]);
1997    /// ```
1998    #[stable(feature = "rust1", since = "1.0.0")]
1999    #[inline]
2000    #[cfg(not(feature = "ferrocene_subset"))]
2001    pub fn rsplitn<P: Pattern>(&self, n: usize, pat: P) -> RSplitN<'_, P>
2002    where
2003        for<'a> P::Searcher<'a>: ReverseSearcher<'a>,
2004    {
2005        RSplitN(self.splitn(n, pat).0)
2006    }
2007
2008    /// Splits the string on the first occurrence of the specified delimiter and
2009    /// returns prefix before delimiter and suffix after delimiter.
2010    ///
2011    /// # Examples
2012    ///
2013    /// ```
2014    /// assert_eq!("cfg".split_once('='), None);
2015    /// assert_eq!("cfg=".split_once('='), Some(("cfg", "")));
2016    /// assert_eq!("cfg=foo".split_once('='), Some(("cfg", "foo")));
2017    /// assert_eq!("cfg=foo=bar".split_once('='), Some(("cfg", "foo=bar")));
2018    /// ```
2019    #[stable(feature = "str_split_once", since = "1.52.0")]
2020    #[inline]
2021    #[cfg(not(feature = "ferrocene_subset"))]
2022    pub fn split_once<P: Pattern>(&self, delimiter: P) -> Option<(&'_ str, &'_ str)> {
2023        let (start, end) = delimiter.into_searcher(self).next_match()?;
2024        // SAFETY: `Searcher` is known to return valid indices.
2025        unsafe { Some((self.get_unchecked(..start), self.get_unchecked(end..))) }
2026    }
2027
2028    /// Splits the string on the last occurrence of the specified delimiter and
2029    /// returns prefix before delimiter and suffix after delimiter.
2030    ///
2031    /// # Examples
2032    ///
2033    /// ```
2034    /// assert_eq!("cfg".rsplit_once('='), None);
2035    /// assert_eq!("cfg=".rsplit_once('='), Some(("cfg", "")));
2036    /// assert_eq!("cfg=foo".rsplit_once('='), Some(("cfg", "foo")));
2037    /// assert_eq!("cfg=foo=bar".rsplit_once('='), Some(("cfg=foo", "bar")));
2038    /// ```
2039    #[stable(feature = "str_split_once", since = "1.52.0")]
2040    #[inline]
2041    #[cfg(not(feature = "ferrocene_subset"))]
2042    pub fn rsplit_once<P: Pattern>(&self, delimiter: P) -> Option<(&'_ str, &'_ str)>
2043    where
2044        for<'a> P::Searcher<'a>: ReverseSearcher<'a>,
2045    {
2046        let (start, end) = delimiter.into_searcher(self).next_match_back()?;
2047        // SAFETY: `Searcher` is known to return valid indices.
2048        unsafe { Some((self.get_unchecked(..start), self.get_unchecked(end..))) }
2049    }
2050
2051    /// Returns an iterator over the disjoint matches of a pattern within the
2052    /// given string slice.
2053    ///
2054    /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a
2055    /// function or closure that determines if a character matches.
2056    ///
2057    /// [`char`]: prim@char
2058    /// [pattern]: self::pattern
2059    ///
2060    /// # Iterator behavior
2061    ///
2062    /// The returned iterator will be a [`DoubleEndedIterator`] if the pattern
2063    /// allows a reverse search and forward/reverse search yields the same
2064    /// elements. This is true for, e.g., [`char`], but not for `&str`.
2065    ///
2066    /// If the pattern allows a reverse search but its results might differ
2067    /// from a forward search, the [`rmatches`] method can be used.
2068    ///
2069    /// [`rmatches`]: str::rmatches
2070    ///
2071    /// # Examples
2072    ///
2073    /// ```
2074    /// let v: Vec<&str> = "abcXXXabcYYYabc".matches("abc").collect();
2075    /// assert_eq!(v, ["abc", "abc", "abc"]);
2076    ///
2077    /// let v: Vec<&str> = "1abc2abc3".matches(char::is_numeric).collect();
2078    /// assert_eq!(v, ["1", "2", "3"]);
2079    /// ```
2080    #[stable(feature = "str_matches", since = "1.2.0")]
2081    #[inline]
2082    #[cfg(not(feature = "ferrocene_subset"))]
2083    pub fn matches<P: Pattern>(&self, pat: P) -> Matches<'_, P> {
2084        Matches(MatchesInternal(pat.into_searcher(self)))
2085    }
2086
2087    /// Returns an iterator over the disjoint matches of a pattern within this
2088    /// string slice, yielded in reverse order.
2089    ///
2090    /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a
2091    /// function or closure that determines if a character matches.
2092    ///
2093    /// [`char`]: prim@char
2094    /// [pattern]: self::pattern
2095    ///
2096    /// # Iterator behavior
2097    ///
2098    /// The returned iterator requires that the pattern supports a reverse
2099    /// search, and it will be a [`DoubleEndedIterator`] if a forward/reverse
2100    /// search yields the same elements.
2101    ///
2102    /// For iterating from the front, the [`matches`] method can be used.
2103    ///
2104    /// [`matches`]: str::matches
2105    ///
2106    /// # Examples
2107    ///
2108    /// ```
2109    /// let v: Vec<&str> = "abcXXXabcYYYabc".rmatches("abc").collect();
2110    /// assert_eq!(v, ["abc", "abc", "abc"]);
2111    ///
2112    /// let v: Vec<&str> = "1abc2abc3".rmatches(char::is_numeric).collect();
2113    /// assert_eq!(v, ["3", "2", "1"]);
2114    /// ```
2115    #[stable(feature = "str_matches", since = "1.2.0")]
2116    #[inline]
2117    #[cfg(not(feature = "ferrocene_subset"))]
2118    pub fn rmatches<P: Pattern>(&self, pat: P) -> RMatches<'_, P>
2119    where
2120        for<'a> P::Searcher<'a>: ReverseSearcher<'a>,
2121    {
2122        RMatches(self.matches(pat).0)
2123    }
2124
2125    /// Returns an iterator over the disjoint matches of a pattern within this string
2126    /// slice as well as the index that the match starts at.
2127    ///
2128    /// For matches of `pat` within `self` that overlap, only the indices
2129    /// corresponding to the first match are returned.
2130    ///
2131    /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a
2132    /// function or closure that determines if a character matches.
2133    ///
2134    /// [`char`]: prim@char
2135    /// [pattern]: self::pattern
2136    ///
2137    /// # Iterator behavior
2138    ///
2139    /// The returned iterator will be a [`DoubleEndedIterator`] if the pattern
2140    /// allows a reverse search and forward/reverse search yields the same
2141    /// elements. This is true for, e.g., [`char`], but not for `&str`.
2142    ///
2143    /// If the pattern allows a reverse search but its results might differ
2144    /// from a forward search, the [`rmatch_indices`] method can be used.
2145    ///
2146    /// [`rmatch_indices`]: str::rmatch_indices
2147    ///
2148    /// # Examples
2149    ///
2150    /// ```
2151    /// let v: Vec<_> = "abcXXXabcYYYabc".match_indices("abc").collect();
2152    /// assert_eq!(v, [(0, "abc"), (6, "abc"), (12, "abc")]);
2153    ///
2154    /// let v: Vec<_> = "1abcabc2".match_indices("abc").collect();
2155    /// assert_eq!(v, [(1, "abc"), (4, "abc")]);
2156    ///
2157    /// let v: Vec<_> = "ababa".match_indices("aba").collect();
2158    /// assert_eq!(v, [(0, "aba")]); // only the first `aba`
2159    /// ```
2160    #[stable(feature = "str_match_indices", since = "1.5.0")]
2161    #[inline]
2162    #[cfg(not(feature = "ferrocene_subset"))]
2163    pub fn match_indices<P: Pattern>(&self, pat: P) -> MatchIndices<'_, P> {
2164        MatchIndices(MatchIndicesInternal(pat.into_searcher(self)))
2165    }
2166
2167    /// Returns an iterator over the disjoint matches of a pattern within `self`,
2168    /// yielded in reverse order along with the index of the match.
2169    ///
2170    /// For matches of `pat` within `self` that overlap, only the indices
2171    /// corresponding to the last match are returned.
2172    ///
2173    /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a
2174    /// function or closure that determines if a character matches.
2175    ///
2176    /// [`char`]: prim@char
2177    /// [pattern]: self::pattern
2178    ///
2179    /// # Iterator behavior
2180    ///
2181    /// The returned iterator requires that the pattern supports a reverse
2182    /// search, and it will be a [`DoubleEndedIterator`] if a forward/reverse
2183    /// search yields the same elements.
2184    ///
2185    /// For iterating from the front, the [`match_indices`] method can be used.
2186    ///
2187    /// [`match_indices`]: str::match_indices
2188    ///
2189    /// # Examples
2190    ///
2191    /// ```
2192    /// let v: Vec<_> = "abcXXXabcYYYabc".rmatch_indices("abc").collect();
2193    /// assert_eq!(v, [(12, "abc"), (6, "abc"), (0, "abc")]);
2194    ///
2195    /// let v: Vec<_> = "1abcabc2".rmatch_indices("abc").collect();
2196    /// assert_eq!(v, [(4, "abc"), (1, "abc")]);
2197    ///
2198    /// let v: Vec<_> = "ababa".rmatch_indices("aba").collect();
2199    /// assert_eq!(v, [(2, "aba")]); // only the last `aba`
2200    /// ```
2201    #[stable(feature = "str_match_indices", since = "1.5.0")]
2202    #[inline]
2203    #[cfg(not(feature = "ferrocene_subset"))]
2204    pub fn rmatch_indices<P: Pattern>(&self, pat: P) -> RMatchIndices<'_, P>
2205    where
2206        for<'a> P::Searcher<'a>: ReverseSearcher<'a>,
2207    {
2208        RMatchIndices(self.match_indices(pat).0)
2209    }
2210
2211    /// Returns a string slice with leading and trailing whitespace removed.
2212    ///
2213    /// 'Whitespace' is defined according to the terms of the Unicode Derived
2214    /// Core Property `White_Space`, which includes newlines.
2215    ///
2216    /// # Examples
2217    ///
2218    /// ```
2219    /// let s = "\n Hello\tworld\t\n";
2220    ///
2221    /// assert_eq!("Hello\tworld", s.trim());
2222    /// ```
2223    #[inline]
2224    #[must_use = "this returns the trimmed string as a slice, \
2225                  without modifying the original"]
2226    #[stable(feature = "rust1", since = "1.0.0")]
2227    #[rustc_diagnostic_item = "str_trim"]
2228    #[cfg(not(feature = "ferrocene_subset"))]
2229    pub fn trim(&self) -> &str {
2230        self.trim_matches(char::is_whitespace)
2231    }
2232
2233    /// Returns a string slice with leading whitespace removed.
2234    ///
2235    /// 'Whitespace' is defined according to the terms of the Unicode Derived
2236    /// Core Property `White_Space`, which includes newlines.
2237    ///
2238    /// # Text directionality
2239    ///
2240    /// A string is a sequence of bytes. `start` in this context means the first
2241    /// position of that byte string; for a left-to-right language like English or
2242    /// Russian, this will be left side, and for right-to-left languages like
2243    /// Arabic or Hebrew, this will be the right side.
2244    ///
2245    /// # Examples
2246    ///
2247    /// Basic usage:
2248    ///
2249    /// ```
2250    /// let s = "\n Hello\tworld\t\n";
2251    /// assert_eq!("Hello\tworld\t\n", s.trim_start());
2252    /// ```
2253    ///
2254    /// Directionality:
2255    ///
2256    /// ```
2257    /// let s = "  English  ";
2258    /// assert!(Some('E') == s.trim_start().chars().next());
2259    ///
2260    /// let s = "  עברית  ";
2261    /// assert!(Some('ע') == s.trim_start().chars().next());
2262    /// ```
2263    #[inline]
2264    #[must_use = "this returns the trimmed string as a new slice, \
2265                  without modifying the original"]
2266    #[stable(feature = "trim_direction", since = "1.30.0")]
2267    #[rustc_diagnostic_item = "str_trim_start"]
2268    #[cfg(not(feature = "ferrocene_subset"))]
2269    pub fn trim_start(&self) -> &str {
2270        self.trim_start_matches(char::is_whitespace)
2271    }
2272
2273    /// Returns a string slice with trailing whitespace removed.
2274    ///
2275    /// 'Whitespace' is defined according to the terms of the Unicode Derived
2276    /// Core Property `White_Space`, which includes newlines.
2277    ///
2278    /// # Text directionality
2279    ///
2280    /// A string is a sequence of bytes. `end` in this context means the last
2281    /// position of that byte string; for a left-to-right language like English or
2282    /// Russian, this will be right side, and for right-to-left languages like
2283    /// Arabic or Hebrew, this will be the left side.
2284    ///
2285    /// # Examples
2286    ///
2287    /// Basic usage:
2288    ///
2289    /// ```
2290    /// let s = "\n Hello\tworld\t\n";
2291    /// assert_eq!("\n Hello\tworld", s.trim_end());
2292    /// ```
2293    ///
2294    /// Directionality:
2295    ///
2296    /// ```
2297    /// let s = "  English  ";
2298    /// assert!(Some('h') == s.trim_end().chars().rev().next());
2299    ///
2300    /// let s = "  עברית  ";
2301    /// assert!(Some('ת') == s.trim_end().chars().rev().next());
2302    /// ```
2303    #[inline]
2304    #[must_use = "this returns the trimmed string as a new slice, \
2305                  without modifying the original"]
2306    #[stable(feature = "trim_direction", since = "1.30.0")]
2307    #[rustc_diagnostic_item = "str_trim_end"]
2308    #[cfg(not(feature = "ferrocene_subset"))]
2309    pub fn trim_end(&self) -> &str {
2310        self.trim_end_matches(char::is_whitespace)
2311    }
2312
2313    /// Returns a string slice with leading whitespace removed.
2314    ///
2315    /// 'Whitespace' is defined according to the terms of the Unicode Derived
2316    /// Core Property `White_Space`.
2317    ///
2318    /// # Text directionality
2319    ///
2320    /// A string is a sequence of bytes. 'Left' in this context means the first
2321    /// position of that byte string; for a language like Arabic or Hebrew
2322    /// which are 'right to left' rather than 'left to right', this will be
2323    /// the _right_ side, not the left.
2324    ///
2325    /// # Examples
2326    ///
2327    /// Basic usage:
2328    ///
2329    /// ```
2330    /// let s = " Hello\tworld\t";
2331    ///
2332    /// assert_eq!("Hello\tworld\t", s.trim_left());
2333    /// ```
2334    ///
2335    /// Directionality:
2336    ///
2337    /// ```
2338    /// let s = "  English";
2339    /// assert!(Some('E') == s.trim_left().chars().next());
2340    ///
2341    /// let s = "  עברית";
2342    /// assert!(Some('ע') == s.trim_left().chars().next());
2343    /// ```
2344    #[must_use = "this returns the trimmed string as a new slice, \
2345                  without modifying the original"]
2346    #[inline]
2347    #[stable(feature = "rust1", since = "1.0.0")]
2348    #[deprecated(since = "1.33.0", note = "superseded by `trim_start`", suggestion = "trim_start")]
2349    #[cfg(not(feature = "ferrocene_subset"))]
2350    pub fn trim_left(&self) -> &str {
2351        self.trim_start()
2352    }
2353
2354    /// Returns a string slice with trailing whitespace removed.
2355    ///
2356    /// 'Whitespace' is defined according to the terms of the Unicode Derived
2357    /// Core Property `White_Space`.
2358    ///
2359    /// # Text directionality
2360    ///
2361    /// A string is a sequence of bytes. 'Right' in this context means the last
2362    /// position of that byte string; for a language like Arabic or Hebrew
2363    /// which are 'right to left' rather than 'left to right', this will be
2364    /// the _left_ side, not the right.
2365    ///
2366    /// # Examples
2367    ///
2368    /// Basic usage:
2369    ///
2370    /// ```
2371    /// let s = " Hello\tworld\t";
2372    ///
2373    /// assert_eq!(" Hello\tworld", s.trim_right());
2374    /// ```
2375    ///
2376    /// Directionality:
2377    ///
2378    /// ```
2379    /// let s = "English  ";
2380    /// assert!(Some('h') == s.trim_right().chars().rev().next());
2381    ///
2382    /// let s = "עברית  ";
2383    /// assert!(Some('ת') == s.trim_right().chars().rev().next());
2384    /// ```
2385    #[must_use = "this returns the trimmed string as a new slice, \
2386                  without modifying the original"]
2387    #[inline]
2388    #[stable(feature = "rust1", since = "1.0.0")]
2389    #[deprecated(since = "1.33.0", note = "superseded by `trim_end`", suggestion = "trim_end")]
2390    #[cfg(not(feature = "ferrocene_subset"))]
2391    pub fn trim_right(&self) -> &str {
2392        self.trim_end()
2393    }
2394
2395    /// Returns a string slice with all prefixes and suffixes that match a
2396    /// pattern repeatedly removed.
2397    ///
2398    /// The [pattern] can be a [`char`], a slice of [`char`]s, or a function
2399    /// or closure that determines if a character matches.
2400    ///
2401    /// [`char`]: prim@char
2402    /// [pattern]: self::pattern
2403    ///
2404    /// # Examples
2405    ///
2406    /// Simple patterns:
2407    ///
2408    /// ```
2409    /// assert_eq!("11foo1bar11".trim_matches('1'), "foo1bar");
2410    /// assert_eq!("123foo1bar123".trim_matches(char::is_numeric), "foo1bar");
2411    ///
2412    /// let x: &[_] = &['1', '2'];
2413    /// assert_eq!("12foo1bar12".trim_matches(x), "foo1bar");
2414    /// ```
2415    ///
2416    /// A more complex pattern, using a closure:
2417    ///
2418    /// ```
2419    /// assert_eq!("1foo1barXX".trim_matches(|c| c == '1' || c == 'X'), "foo1bar");
2420    /// ```
2421    #[must_use = "this returns the trimmed string as a new slice, \
2422                  without modifying the original"]
2423    #[stable(feature = "rust1", since = "1.0.0")]
2424    #[cfg(not(feature = "ferrocene_subset"))]
2425    pub fn trim_matches<P: Pattern>(&self, pat: P) -> &str
2426    where
2427        for<'a> P::Searcher<'a>: DoubleEndedSearcher<'a>,
2428    {
2429        let mut i = 0;
2430        let mut j = 0;
2431        let mut matcher = pat.into_searcher(self);
2432        if let Some((a, b)) = matcher.next_reject() {
2433            i = a;
2434            j = b; // Remember earliest known match, correct it below if
2435            // last match is different
2436        }
2437        if let Some((_, b)) = matcher.next_reject_back() {
2438            j = b;
2439        }
2440        // SAFETY: `Searcher` is known to return valid indices.
2441        unsafe { self.get_unchecked(i..j) }
2442    }
2443
2444    /// Returns a string slice with all prefixes that match a pattern
2445    /// repeatedly removed.
2446    ///
2447    /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a
2448    /// function or closure that determines if a character matches.
2449    ///
2450    /// [`char`]: prim@char
2451    /// [pattern]: self::pattern
2452    ///
2453    /// # Text directionality
2454    ///
2455    /// A string is a sequence of bytes. `start` in this context means the first
2456    /// position of that byte string; for a left-to-right language like English or
2457    /// Russian, this will be left side, and for right-to-left languages like
2458    /// Arabic or Hebrew, this will be the right side.
2459    ///
2460    /// # Examples
2461    ///
2462    /// ```
2463    /// assert_eq!("11foo1bar11".trim_start_matches('1'), "foo1bar11");
2464    /// assert_eq!("123foo1bar123".trim_start_matches(char::is_numeric), "foo1bar123");
2465    ///
2466    /// let x: &[_] = &['1', '2'];
2467    /// assert_eq!("12foo1bar12".trim_start_matches(x), "foo1bar12");
2468    /// ```
2469    #[must_use = "this returns the trimmed string as a new slice, \
2470                  without modifying the original"]
2471    #[stable(feature = "trim_direction", since = "1.30.0")]
2472    #[cfg(not(feature = "ferrocene_subset"))]
2473    pub fn trim_start_matches<P: Pattern>(&self, pat: P) -> &str {
2474        let mut i = self.len();
2475        let mut matcher = pat.into_searcher(self);
2476        if let Some((a, _)) = matcher.next_reject() {
2477            i = a;
2478        }
2479        // SAFETY: `Searcher` is known to return valid indices.
2480        unsafe { self.get_unchecked(i..self.len()) }
2481    }
2482
2483    /// Returns a string slice with the prefix removed.
2484    ///
2485    /// If the string starts with the pattern `prefix`, returns the substring after the prefix,
2486    /// wrapped in `Some`. Unlike [`trim_start_matches`], this method removes the prefix exactly once.
2487    ///
2488    /// If the string does not start with `prefix`, returns `None`.
2489    ///
2490    /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a
2491    /// function or closure that determines if a character matches.
2492    ///
2493    /// [`char`]: prim@char
2494    /// [pattern]: self::pattern
2495    /// [`trim_start_matches`]: Self::trim_start_matches
2496    ///
2497    /// # Examples
2498    ///
2499    /// ```
2500    /// assert_eq!("foo:bar".strip_prefix("foo:"), Some("bar"));
2501    /// assert_eq!("foo:bar".strip_prefix("bar"), None);
2502    /// assert_eq!("foofoo".strip_prefix("foo"), Some("foo"));
2503    /// ```
2504    #[must_use = "this returns the remaining substring as a new slice, \
2505                  without modifying the original"]
2506    #[stable(feature = "str_strip", since = "1.45.0")]
2507    #[cfg(not(feature = "ferrocene_subset"))]
2508    pub fn strip_prefix<P: Pattern>(&self, prefix: P) -> Option<&str> {
2509        prefix.strip_prefix_of(self)
2510    }
2511
2512    /// Returns a string slice with the suffix removed.
2513    ///
2514    /// If the string ends with the pattern `suffix`, returns the substring before the suffix,
2515    /// wrapped in `Some`.  Unlike [`trim_end_matches`], this method removes the suffix exactly once.
2516    ///
2517    /// If the string does not end with `suffix`, returns `None`.
2518    ///
2519    /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a
2520    /// function or closure that determines if a character matches.
2521    ///
2522    /// [`char`]: prim@char
2523    /// [pattern]: self::pattern
2524    /// [`trim_end_matches`]: Self::trim_end_matches
2525    ///
2526    /// # Examples
2527    ///
2528    /// ```
2529    /// assert_eq!("bar:foo".strip_suffix(":foo"), Some("bar"));
2530    /// assert_eq!("bar:foo".strip_suffix("bar"), None);
2531    /// assert_eq!("foofoo".strip_suffix("foo"), Some("foo"));
2532    /// ```
2533    #[must_use = "this returns the remaining substring as a new slice, \
2534                  without modifying the original"]
2535    #[stable(feature = "str_strip", since = "1.45.0")]
2536    #[cfg(not(feature = "ferrocene_subset"))]
2537    pub fn strip_suffix<P: Pattern>(&self, suffix: P) -> Option<&str>
2538    where
2539        for<'a> P::Searcher<'a>: ReverseSearcher<'a>,
2540    {
2541        suffix.strip_suffix_of(self)
2542    }
2543
2544    /// Returns a string slice with the prefix and suffix removed.
2545    ///
2546    /// If the string starts with the pattern `prefix` and ends with the pattern `suffix`, returns
2547    /// the substring after the prefix and before the suffix, wrapped in `Some`.
2548    /// Unlike [`trim_start_matches`] and [`trim_end_matches`], this method removes both the prefix
2549    /// and suffix exactly once.
2550    ///
2551    /// If the string does not start with `prefix` or does not end with `suffix`, returns `None`.
2552    ///
2553    /// Each [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a
2554    /// function or closure that determines if a character matches.
2555    ///
2556    /// [`char`]: prim@char
2557    /// [pattern]: self::pattern
2558    /// [`trim_start_matches`]: Self::trim_start_matches
2559    /// [`trim_end_matches`]: Self::trim_end_matches
2560    ///
2561    /// # Examples
2562    ///
2563    /// ```
2564    /// #![feature(strip_circumfix)]
2565    ///
2566    /// assert_eq!("bar:hello:foo".strip_circumfix("bar:", ":foo"), Some("hello"));
2567    /// assert_eq!("bar:foo".strip_circumfix("foo", "foo"), None);
2568    /// assert_eq!("foo:bar;".strip_circumfix("foo:", ';'), Some("bar"));
2569    /// ```
2570    #[must_use = "this returns the remaining substring as a new slice, \
2571                  without modifying the original"]
2572    #[unstable(feature = "strip_circumfix", issue = "147946")]
2573    #[cfg(not(feature = "ferrocene_subset"))]
2574    pub fn strip_circumfix<P: Pattern, S: Pattern>(&self, prefix: P, suffix: S) -> Option<&str>
2575    where
2576        for<'a> S::Searcher<'a>: ReverseSearcher<'a>,
2577    {
2578        self.strip_prefix(prefix)?.strip_suffix(suffix)
2579    }
2580
2581    /// Returns a string slice with the optional prefix removed.
2582    ///
2583    /// If the string starts with the pattern `prefix`, returns the substring after the prefix.
2584    /// Unlike [`strip_prefix`], this method always returns `&str` for easy method chaining,
2585    /// instead of returning [`Option<&str>`].
2586    ///
2587    /// If the string does not start with `prefix`, returns the original string unchanged.
2588    ///
2589    /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a
2590    /// function or closure that determines if a character matches.
2591    ///
2592    /// [`char`]: prim@char
2593    /// [pattern]: self::pattern
2594    /// [`strip_prefix`]: Self::strip_prefix
2595    ///
2596    /// # Examples
2597    ///
2598    /// ```
2599    /// #![feature(trim_prefix_suffix)]
2600    ///
2601    /// // Prefix present - removes it
2602    /// assert_eq!("foo:bar".trim_prefix("foo:"), "bar");
2603    /// assert_eq!("foofoo".trim_prefix("foo"), "foo");
2604    ///
2605    /// // Prefix absent - returns original string
2606    /// assert_eq!("foo:bar".trim_prefix("bar"), "foo:bar");
2607    ///
2608    /// // Method chaining example
2609    /// assert_eq!("<https://example.com/>".trim_prefix('<').trim_suffix('>'), "https://example.com/");
2610    /// ```
2611    #[must_use = "this returns the remaining substring as a new slice, \
2612                  without modifying the original"]
2613    #[unstable(feature = "trim_prefix_suffix", issue = "142312")]
2614    #[cfg(not(feature = "ferrocene_subset"))]
2615    pub fn trim_prefix<P: Pattern>(&self, prefix: P) -> &str {
2616        prefix.strip_prefix_of(self).unwrap_or(self)
2617    }
2618
2619    /// Returns a string slice with the optional suffix removed.
2620    ///
2621    /// If the string ends with the pattern `suffix`, returns the substring before the suffix.
2622    /// Unlike [`strip_suffix`], this method always returns `&str` for easy method chaining,
2623    /// instead of returning [`Option<&str>`].
2624    ///
2625    /// If the string does not end with `suffix`, returns the original string unchanged.
2626    ///
2627    /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a
2628    /// function or closure that determines if a character matches.
2629    ///
2630    /// [`char`]: prim@char
2631    /// [pattern]: self::pattern
2632    /// [`strip_suffix`]: Self::strip_suffix
2633    ///
2634    /// # Examples
2635    ///
2636    /// ```
2637    /// #![feature(trim_prefix_suffix)]
2638    ///
2639    /// // Suffix present - removes it
2640    /// assert_eq!("bar:foo".trim_suffix(":foo"), "bar");
2641    /// assert_eq!("foofoo".trim_suffix("foo"), "foo");
2642    ///
2643    /// // Suffix absent - returns original string
2644    /// assert_eq!("bar:foo".trim_suffix("bar"), "bar:foo");
2645    ///
2646    /// // Method chaining example
2647    /// assert_eq!("<https://example.com/>".trim_prefix('<').trim_suffix('>'), "https://example.com/");
2648    /// ```
2649    #[must_use = "this returns the remaining substring as a new slice, \
2650                  without modifying the original"]
2651    #[unstable(feature = "trim_prefix_suffix", issue = "142312")]
2652    #[cfg(not(feature = "ferrocene_subset"))]
2653    pub fn trim_suffix<P: Pattern>(&self, suffix: P) -> &str
2654    where
2655        for<'a> P::Searcher<'a>: ReverseSearcher<'a>,
2656    {
2657        suffix.strip_suffix_of(self).unwrap_or(self)
2658    }
2659
2660    /// Returns a string slice with all suffixes that match a pattern
2661    /// repeatedly removed.
2662    ///
2663    /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a
2664    /// function or closure that determines if a character matches.
2665    ///
2666    /// [`char`]: prim@char
2667    /// [pattern]: self::pattern
2668    ///
2669    /// # Text directionality
2670    ///
2671    /// A string is a sequence of bytes. `end` in this context means the last
2672    /// position of that byte string; for a left-to-right language like English or
2673    /// Russian, this will be right side, and for right-to-left languages like
2674    /// Arabic or Hebrew, this will be the left side.
2675    ///
2676    /// # Examples
2677    ///
2678    /// Simple patterns:
2679    ///
2680    /// ```
2681    /// assert_eq!("11foo1bar11".trim_end_matches('1'), "11foo1bar");
2682    /// assert_eq!("123foo1bar123".trim_end_matches(char::is_numeric), "123foo1bar");
2683    ///
2684    /// let x: &[_] = &['1', '2'];
2685    /// assert_eq!("12foo1bar12".trim_end_matches(x), "12foo1bar");
2686    /// ```
2687    ///
2688    /// A more complex pattern, using a closure:
2689    ///
2690    /// ```
2691    /// assert_eq!("1fooX".trim_end_matches(|c| c == '1' || c == 'X'), "1foo");
2692    /// ```
2693    #[must_use = "this returns the trimmed string as a new slice, \
2694                  without modifying the original"]
2695    #[stable(feature = "trim_direction", since = "1.30.0")]
2696    #[cfg(not(feature = "ferrocene_subset"))]
2697    pub fn trim_end_matches<P: Pattern>(&self, pat: P) -> &str
2698    where
2699        for<'a> P::Searcher<'a>: ReverseSearcher<'a>,
2700    {
2701        let mut j = 0;
2702        let mut matcher = pat.into_searcher(self);
2703        if let Some((_, b)) = matcher.next_reject_back() {
2704            j = b;
2705        }
2706        // SAFETY: `Searcher` is known to return valid indices.
2707        unsafe { self.get_unchecked(0..j) }
2708    }
2709
2710    /// Returns a string slice with all prefixes that match a pattern
2711    /// repeatedly removed.
2712    ///
2713    /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a
2714    /// function or closure that determines if a character matches.
2715    ///
2716    /// [`char`]: prim@char
2717    /// [pattern]: self::pattern
2718    ///
2719    /// # Text directionality
2720    ///
2721    /// A string is a sequence of bytes. 'Left' in this context means the first
2722    /// position of that byte string; for a language like Arabic or Hebrew
2723    /// which are 'right to left' rather than 'left to right', this will be
2724    /// the _right_ side, not the left.
2725    ///
2726    /// # Examples
2727    ///
2728    /// ```
2729    /// assert_eq!("11foo1bar11".trim_left_matches('1'), "foo1bar11");
2730    /// assert_eq!("123foo1bar123".trim_left_matches(char::is_numeric), "foo1bar123");
2731    ///
2732    /// let x: &[_] = &['1', '2'];
2733    /// assert_eq!("12foo1bar12".trim_left_matches(x), "foo1bar12");
2734    /// ```
2735    #[stable(feature = "rust1", since = "1.0.0")]
2736    #[deprecated(
2737        since = "1.33.0",
2738        note = "superseded by `trim_start_matches`",
2739        suggestion = "trim_start_matches"
2740    )]
2741    #[cfg(not(feature = "ferrocene_subset"))]
2742    pub fn trim_left_matches<P: Pattern>(&self, pat: P) -> &str {
2743        self.trim_start_matches(pat)
2744    }
2745
2746    /// Returns a string slice with all suffixes that match a pattern
2747    /// repeatedly removed.
2748    ///
2749    /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a
2750    /// function or closure that determines if a character matches.
2751    ///
2752    /// [`char`]: prim@char
2753    /// [pattern]: self::pattern
2754    ///
2755    /// # Text directionality
2756    ///
2757    /// A string is a sequence of bytes. 'Right' in this context means the last
2758    /// position of that byte string; for a language like Arabic or Hebrew
2759    /// which are 'right to left' rather than 'left to right', this will be
2760    /// the _left_ side, not the right.
2761    ///
2762    /// # Examples
2763    ///
2764    /// Simple patterns:
2765    ///
2766    /// ```
2767    /// assert_eq!("11foo1bar11".trim_right_matches('1'), "11foo1bar");
2768    /// assert_eq!("123foo1bar123".trim_right_matches(char::is_numeric), "123foo1bar");
2769    ///
2770    /// let x: &[_] = &['1', '2'];
2771    /// assert_eq!("12foo1bar12".trim_right_matches(x), "12foo1bar");
2772    /// ```
2773    ///
2774    /// A more complex pattern, using a closure:
2775    ///
2776    /// ```
2777    /// assert_eq!("1fooX".trim_right_matches(|c| c == '1' || c == 'X'), "1foo");
2778    /// ```
2779    #[stable(feature = "rust1", since = "1.0.0")]
2780    #[deprecated(
2781        since = "1.33.0",
2782        note = "superseded by `trim_end_matches`",
2783        suggestion = "trim_end_matches"
2784    )]
2785    #[cfg(not(feature = "ferrocene_subset"))]
2786    pub fn trim_right_matches<P: Pattern>(&self, pat: P) -> &str
2787    where
2788        for<'a> P::Searcher<'a>: ReverseSearcher<'a>,
2789    {
2790        self.trim_end_matches(pat)
2791    }
2792
2793    /// Parses this string slice into another type.
2794    ///
2795    /// Because `parse` is so general, it can cause problems with type
2796    /// inference. As such, `parse` is one of the few times you'll see
2797    /// the syntax affectionately known as the 'turbofish': `::<>`. This
2798    /// helps the inference algorithm understand specifically which type
2799    /// you're trying to parse into.
2800    ///
2801    /// `parse` can parse into any type that implements the [`FromStr`] trait.
2802    ///
2803    /// # Errors
2804    ///
2805    /// Will return [`Err`] if it's not possible to parse this string slice into
2806    /// the desired type.
2807    ///
2808    /// [`Err`]: FromStr::Err
2809    ///
2810    /// # Examples
2811    ///
2812    /// Basic usage:
2813    ///
2814    /// ```
2815    /// let four: u32 = "4".parse().unwrap();
2816    ///
2817    /// assert_eq!(4, four);
2818    /// ```
2819    ///
2820    /// Using the 'turbofish' instead of annotating `four`:
2821    ///
2822    /// ```
2823    /// let four = "4".parse::<u32>();
2824    ///
2825    /// assert_eq!(Ok(4), four);
2826    /// ```
2827    ///
2828    /// Failing to parse:
2829    ///
2830    /// ```
2831    /// let nope = "j".parse::<u32>();
2832    ///
2833    /// assert!(nope.is_err());
2834    /// ```
2835    #[inline]
2836    #[stable(feature = "rust1", since = "1.0.0")]
2837    pub fn parse<F: FromStr>(&self) -> Result<F, F::Err> {
2838        FromStr::from_str(self)
2839    }
2840
2841    /// Checks if all characters in this string are within the ASCII range.
2842    ///
2843    /// An empty string returns `true`.
2844    ///
2845    /// # Examples
2846    ///
2847    /// ```
2848    /// let ascii = "hello!\n";
2849    /// let non_ascii = "Grüße, Jürgen ❤";
2850    ///
2851    /// assert!(ascii.is_ascii());
2852    /// assert!(!non_ascii.is_ascii());
2853    /// ```
2854    #[stable(feature = "ascii_methods_on_intrinsics", since = "1.23.0")]
2855    #[rustc_const_stable(feature = "const_slice_is_ascii", since = "1.74.0")]
2856    #[must_use]
2857    #[inline]
2858    #[cfg(not(feature = "ferrocene_subset"))]
2859    pub const fn is_ascii(&self) -> bool {
2860        // We can treat each byte as character here: all multibyte characters
2861        // start with a byte that is not in the ASCII range, so we will stop
2862        // there already.
2863        self.as_bytes().is_ascii()
2864    }
2865
2866    /// If this string slice [`is_ascii`](Self::is_ascii), returns it as a slice
2867    /// of [ASCII characters](`ascii::Char`), otherwise returns `None`.
2868    #[unstable(feature = "ascii_char", issue = "110998")]
2869    #[must_use]
2870    #[inline]
2871    #[cfg(not(feature = "ferrocene_subset"))]
2872    pub const fn as_ascii(&self) -> Option<&[ascii::Char]> {
2873        // Like in `is_ascii`, we can work on the bytes directly.
2874        self.as_bytes().as_ascii()
2875    }
2876
2877    /// Converts this string slice into a slice of [ASCII characters](ascii::Char),
2878    /// without checking whether they are valid.
2879    ///
2880    /// # Safety
2881    ///
2882    /// Every character in this string must be ASCII, or else this is UB.
2883    #[unstable(feature = "ascii_char", issue = "110998")]
2884    #[must_use]
2885    #[inline]
2886    #[cfg(not(feature = "ferrocene_subset"))]
2887    pub const unsafe fn as_ascii_unchecked(&self) -> &[ascii::Char] {
2888        assert_unsafe_precondition!(
2889            check_library_ub,
2890            "as_ascii_unchecked requires that the string is valid ASCII",
2891            (it: &str = self) => it.is_ascii()
2892        );
2893
2894        // SAFETY: the caller promised that every byte of this string slice
2895        // is ASCII.
2896        unsafe { self.as_bytes().as_ascii_unchecked() }
2897    }
2898
2899    /// Checks that two strings are an ASCII case-insensitive match.
2900    ///
2901    /// Same as `to_ascii_lowercase(a) == to_ascii_lowercase(b)`,
2902    /// but without allocating and copying temporaries.
2903    ///
2904    /// # Examples
2905    ///
2906    /// ```
2907    /// assert!("Ferris".eq_ignore_ascii_case("FERRIS"));
2908    /// assert!("Ferrös".eq_ignore_ascii_case("FERRöS"));
2909    /// assert!(!"Ferrös".eq_ignore_ascii_case("FERRÖS"));
2910    /// ```
2911    #[stable(feature = "ascii_methods_on_intrinsics", since = "1.23.0")]
2912    #[rustc_const_stable(feature = "const_eq_ignore_ascii_case", since = "1.89.0")]
2913    #[must_use]
2914    #[inline]
2915    pub const fn eq_ignore_ascii_case(&self, other: &str) -> bool {
2916        self.as_bytes().eq_ignore_ascii_case(other.as_bytes())
2917    }
2918
2919    /// Converts this string to its ASCII upper case equivalent in-place.
2920    ///
2921    /// ASCII letters 'a' to 'z' are mapped to 'A' to 'Z',
2922    /// but non-ASCII letters are unchanged.
2923    ///
2924    /// To return a new uppercased value without modifying the existing one, use
2925    /// [`to_ascii_uppercase()`].
2926    ///
2927    /// [`to_ascii_uppercase()`]: #method.to_ascii_uppercase
2928    ///
2929    /// # Examples
2930    ///
2931    /// ```
2932    /// let mut s = String::from("Grüße, Jürgen ❤");
2933    ///
2934    /// s.make_ascii_uppercase();
2935    ///
2936    /// assert_eq!("GRüßE, JüRGEN ❤", s);
2937    /// ```
2938    #[stable(feature = "ascii_methods_on_intrinsics", since = "1.23.0")]
2939    #[rustc_const_stable(feature = "const_make_ascii", since = "1.84.0")]
2940    #[inline]
2941    #[cfg(not(feature = "ferrocene_subset"))]
2942    pub const fn make_ascii_uppercase(&mut self) {
2943        // SAFETY: changing ASCII letters only does not invalidate UTF-8.
2944        let me = unsafe { self.as_bytes_mut() };
2945        me.make_ascii_uppercase()
2946    }
2947
2948    /// Converts this string to its ASCII lower case equivalent in-place.
2949    ///
2950    /// ASCII letters 'A' to 'Z' are mapped to 'a' to 'z',
2951    /// but non-ASCII letters are unchanged.
2952    ///
2953    /// To return a new lowercased value without modifying the existing one, use
2954    /// [`to_ascii_lowercase()`].
2955    ///
2956    /// [`to_ascii_lowercase()`]: #method.to_ascii_lowercase
2957    ///
2958    /// # Examples
2959    ///
2960    /// ```
2961    /// let mut s = String::from("GRÜßE, JÜRGEN ❤");
2962    ///
2963    /// s.make_ascii_lowercase();
2964    ///
2965    /// assert_eq!("grÜße, jÜrgen ❤", s);
2966    /// ```
2967    #[stable(feature = "ascii_methods_on_intrinsics", since = "1.23.0")]
2968    #[rustc_const_stable(feature = "const_make_ascii", since = "1.84.0")]
2969    #[inline]
2970    #[cfg(not(feature = "ferrocene_subset"))]
2971    pub const fn make_ascii_lowercase(&mut self) {
2972        // SAFETY: changing ASCII letters only does not invalidate UTF-8.
2973        let me = unsafe { self.as_bytes_mut() };
2974        me.make_ascii_lowercase()
2975    }
2976
2977    /// Returns a string slice with leading ASCII whitespace removed.
2978    ///
2979    /// 'Whitespace' refers to the definition used by
2980    /// [`u8::is_ascii_whitespace`].
2981    ///
2982    /// [`u8::is_ascii_whitespace`]: u8::is_ascii_whitespace
2983    ///
2984    /// # Examples
2985    ///
2986    /// ```
2987    /// assert_eq!(" \t \u{3000}hello world\n".trim_ascii_start(), "\u{3000}hello world\n");
2988    /// assert_eq!("  ".trim_ascii_start(), "");
2989    /// assert_eq!("".trim_ascii_start(), "");
2990    /// ```
2991    #[must_use = "this returns the trimmed string as a new slice, \
2992                  without modifying the original"]
2993    #[stable(feature = "byte_slice_trim_ascii", since = "1.80.0")]
2994    #[rustc_const_stable(feature = "byte_slice_trim_ascii", since = "1.80.0")]
2995    #[inline]
2996    #[cfg(not(feature = "ferrocene_subset"))]
2997    pub const fn trim_ascii_start(&self) -> &str {
2998        // SAFETY: Removing ASCII characters from a `&str` does not invalidate
2999        // UTF-8.
3000        unsafe { core::str::from_utf8_unchecked(self.as_bytes().trim_ascii_start()) }
3001    }
3002
3003    /// Returns a string slice with trailing ASCII whitespace removed.
3004    ///
3005    /// 'Whitespace' refers to the definition used by
3006    /// [`u8::is_ascii_whitespace`].
3007    ///
3008    /// [`u8::is_ascii_whitespace`]: u8::is_ascii_whitespace
3009    ///
3010    /// # Examples
3011    ///
3012    /// ```
3013    /// assert_eq!("\r hello world\u{3000}\n ".trim_ascii_end(), "\r hello world\u{3000}");
3014    /// assert_eq!("  ".trim_ascii_end(), "");
3015    /// assert_eq!("".trim_ascii_end(), "");
3016    /// ```
3017    #[must_use = "this returns the trimmed string as a new slice, \
3018                  without modifying the original"]
3019    #[stable(feature = "byte_slice_trim_ascii", since = "1.80.0")]
3020    #[rustc_const_stable(feature = "byte_slice_trim_ascii", since = "1.80.0")]
3021    #[inline]
3022    #[cfg(not(feature = "ferrocene_subset"))]
3023    pub const fn trim_ascii_end(&self) -> &str {
3024        // SAFETY: Removing ASCII characters from a `&str` does not invalidate
3025        // UTF-8.
3026        unsafe { core::str::from_utf8_unchecked(self.as_bytes().trim_ascii_end()) }
3027    }
3028
3029    /// Returns a string slice with leading and trailing ASCII whitespace
3030    /// removed.
3031    ///
3032    /// 'Whitespace' refers to the definition used by
3033    /// [`u8::is_ascii_whitespace`].
3034    ///
3035    /// [`u8::is_ascii_whitespace`]: u8::is_ascii_whitespace
3036    ///
3037    /// # Examples
3038    ///
3039    /// ```
3040    /// assert_eq!("\r hello world\n ".trim_ascii(), "hello world");
3041    /// assert_eq!("  ".trim_ascii(), "");
3042    /// assert_eq!("".trim_ascii(), "");
3043    /// ```
3044    #[must_use = "this returns the trimmed string as a new slice, \
3045                  without modifying the original"]
3046    #[stable(feature = "byte_slice_trim_ascii", since = "1.80.0")]
3047    #[rustc_const_stable(feature = "byte_slice_trim_ascii", since = "1.80.0")]
3048    #[inline]
3049    #[cfg(not(feature = "ferrocene_subset"))]
3050    pub const fn trim_ascii(&self) -> &str {
3051        // SAFETY: Removing ASCII characters from a `&str` does not invalidate
3052        // UTF-8.
3053        unsafe { core::str::from_utf8_unchecked(self.as_bytes().trim_ascii()) }
3054    }
3055
3056    /// Returns an iterator that escapes each char in `self` with [`char::escape_debug`].
3057    ///
3058    /// Note: only extended grapheme codepoints that begin the string will be
3059    /// escaped.
3060    ///
3061    /// # Examples
3062    ///
3063    /// As an iterator:
3064    ///
3065    /// ```
3066    /// for c in "❤\n!".escape_debug() {
3067    ///     print!("{c}");
3068    /// }
3069    /// println!();
3070    /// ```
3071    ///
3072    /// Using `println!` directly:
3073    ///
3074    /// ```
3075    /// println!("{}", "❤\n!".escape_debug());
3076    /// ```
3077    ///
3078    ///
3079    /// Both are equivalent to:
3080    ///
3081    /// ```
3082    /// println!("❤\\n!");
3083    /// ```
3084    ///
3085    /// Using `to_string`:
3086    ///
3087    /// ```
3088    /// assert_eq!("❤\n!".escape_debug().to_string(), "❤\\n!");
3089    /// ```
3090    #[must_use = "this returns the escaped string as an iterator, \
3091                  without modifying the original"]
3092    #[stable(feature = "str_escape", since = "1.34.0")]
3093    #[cfg(not(feature = "ferrocene_subset"))]
3094    pub fn escape_debug(&self) -> EscapeDebug<'_> {
3095        let mut chars = self.chars();
3096        EscapeDebug {
3097            inner: chars
3098                .next()
3099                .map(|first| first.escape_debug_ext(EscapeDebugExtArgs::ESCAPE_ALL))
3100                .into_iter()
3101                .flatten()
3102                .chain(chars.flat_map(CharEscapeDebugContinue)),
3103        }
3104    }
3105
3106    /// Returns an iterator that escapes each char in `self` with [`char::escape_default`].
3107    ///
3108    /// # Examples
3109    ///
3110    /// As an iterator:
3111    ///
3112    /// ```
3113    /// for c in "❤\n!".escape_default() {
3114    ///     print!("{c}");
3115    /// }
3116    /// println!();
3117    /// ```
3118    ///
3119    /// Using `println!` directly:
3120    ///
3121    /// ```
3122    /// println!("{}", "❤\n!".escape_default());
3123    /// ```
3124    ///
3125    ///
3126    /// Both are equivalent to:
3127    ///
3128    /// ```
3129    /// println!("\\u{{2764}}\\n!");
3130    /// ```
3131    ///
3132    /// Using `to_string`:
3133    ///
3134    /// ```
3135    /// assert_eq!("❤\n!".escape_default().to_string(), "\\u{2764}\\n!");
3136    /// ```
3137    #[must_use = "this returns the escaped string as an iterator, \
3138                  without modifying the original"]
3139    #[stable(feature = "str_escape", since = "1.34.0")]
3140    #[cfg(not(feature = "ferrocene_subset"))]
3141    pub fn escape_default(&self) -> EscapeDefault<'_> {
3142        EscapeDefault { inner: self.chars().flat_map(CharEscapeDefault) }
3143    }
3144
3145    /// Returns an iterator that escapes each char in `self` with [`char::escape_unicode`].
3146    ///
3147    /// # Examples
3148    ///
3149    /// As an iterator:
3150    ///
3151    /// ```
3152    /// for c in "❤\n!".escape_unicode() {
3153    ///     print!("{c}");
3154    /// }
3155    /// println!();
3156    /// ```
3157    ///
3158    /// Using `println!` directly:
3159    ///
3160    /// ```
3161    /// println!("{}", "❤\n!".escape_unicode());
3162    /// ```
3163    ///
3164    ///
3165    /// Both are equivalent to:
3166    ///
3167    /// ```
3168    /// println!("\\u{{2764}}\\u{{a}}\\u{{21}}");
3169    /// ```
3170    ///
3171    /// Using `to_string`:
3172    ///
3173    /// ```
3174    /// assert_eq!("❤\n!".escape_unicode().to_string(), "\\u{2764}\\u{a}\\u{21}");
3175    /// ```
3176    #[must_use = "this returns the escaped string as an iterator, \
3177                  without modifying the original"]
3178    #[stable(feature = "str_escape", since = "1.34.0")]
3179    #[cfg(not(feature = "ferrocene_subset"))]
3180    pub fn escape_unicode(&self) -> EscapeUnicode<'_> {
3181        EscapeUnicode { inner: self.chars().flat_map(CharEscapeUnicode) }
3182    }
3183
3184    /// Returns the range that a substring points to.
3185    ///
3186    /// Returns `None` if `substr` does not point within `self`.
3187    ///
3188    /// Unlike [`str::find`], **this does not search through the string**.
3189    /// Instead, it uses pointer arithmetic to find where in the string
3190    /// `substr` is derived from.
3191    ///
3192    /// This is useful for extending [`str::split`] and similar methods.
3193    ///
3194    /// Note that this method may return false positives (typically either
3195    /// `Some(0..0)` or `Some(self.len()..self.len())`) if `substr` is a
3196    /// zero-length `str` that points at the beginning or end of another,
3197    /// independent, `str`.
3198    ///
3199    /// # Examples
3200    /// ```
3201    /// #![feature(substr_range)]
3202    ///
3203    /// let data = "a, b, b, a";
3204    /// let mut iter = data.split(", ").map(|s| data.substr_range(s).unwrap());
3205    ///
3206    /// assert_eq!(iter.next(), Some(0..1));
3207    /// assert_eq!(iter.next(), Some(3..4));
3208    /// assert_eq!(iter.next(), Some(6..7));
3209    /// assert_eq!(iter.next(), Some(9..10));
3210    /// ```
3211    #[must_use]
3212    #[unstable(feature = "substr_range", issue = "126769")]
3213    #[cfg(not(feature = "ferrocene_subset"))]
3214    pub fn substr_range(&self, substr: &str) -> Option<Range<usize>> {
3215        self.as_bytes().subslice_range(substr.as_bytes())
3216    }
3217
3218    /// Returns the same string as a string slice `&str`.
3219    ///
3220    /// This method is redundant when used directly on `&str`, but
3221    /// it helps dereferencing other string-like types to string slices,
3222    /// for example references to `Box<str>` or `Arc<str>`.
3223    #[inline]
3224    #[unstable(feature = "str_as_str", issue = "130366")]
3225    pub const fn as_str(&self) -> &str {
3226        self
3227    }
3228}
3229
3230#[stable(feature = "rust1", since = "1.0.0")]
3231#[rustc_const_unstable(feature = "const_convert", issue = "143773")]
3232impl const AsRef<[u8]> for str {
3233    #[inline]
3234    fn as_ref(&self) -> &[u8] {
3235        self.as_bytes()
3236    }
3237}
3238
3239#[stable(feature = "rust1", since = "1.0.0")]
3240#[rustc_const_unstable(feature = "const_default", issue = "143894")]
3241impl const Default for &str {
3242    /// Creates an empty str
3243    #[inline]
3244    fn default() -> Self {
3245        ""
3246    }
3247}
3248
3249#[stable(feature = "default_mut_str", since = "1.28.0")]
3250#[rustc_const_unstable(feature = "const_default", issue = "143894")]
3251#[cfg(not(feature = "ferrocene_subset"))]
3252impl const Default for &mut str {
3253    /// Creates an empty mutable str
3254    #[inline]
3255    fn default() -> Self {
3256        // SAFETY: The empty string is valid UTF-8.
3257        unsafe { from_utf8_unchecked_mut(&mut []) }
3258    }
3259}
3260
3261#[cfg(not(feature = "ferrocene_subset"))]
3262impl_fn_for_zst! {
3263    /// A nameable, cloneable fn type
3264    #[derive(Clone)]
3265    struct LinesMap impl<'a> Fn = |line: &'a str| -> &'a str {
3266        let Some(line) = line.strip_suffix('\n') else { return line };
3267        let Some(line) = line.strip_suffix('\r') else { return line };
3268        line
3269    };
3270
3271    #[derive(Clone)]
3272    struct CharEscapeDebugContinue impl Fn = |c: char| -> char::EscapeDebug {
3273        c.escape_debug_ext(EscapeDebugExtArgs {
3274            escape_grapheme_extended: false,
3275            escape_single_quote: true,
3276            escape_double_quote: true
3277        })
3278    };
3279
3280    #[derive(Clone)]
3281    struct CharEscapeUnicode impl Fn = |c: char| -> char::EscapeUnicode {
3282        c.escape_unicode()
3283    };
3284    #[derive(Clone)]
3285    struct CharEscapeDefault impl Fn = |c: char| -> char::EscapeDefault {
3286        c.escape_default()
3287    };
3288
3289    #[derive(Clone)]
3290    struct IsWhitespace impl Fn = |c: char| -> bool {
3291        c.is_whitespace()
3292    };
3293
3294    #[derive(Clone)]
3295    struct IsAsciiWhitespace impl Fn = |byte: &u8| -> bool {
3296        byte.is_ascii_whitespace()
3297    };
3298
3299    #[derive(Clone)]
3300    struct IsNotEmpty impl<'a, 'b> Fn = |s: &'a &'b str| -> bool {
3301        !s.is_empty()
3302    };
3303
3304    #[derive(Clone)]
3305    struct BytesIsNotEmpty impl<'a, 'b> Fn = |s: &'a &'b [u8]| -> bool {
3306        !s.is_empty()
3307    };
3308
3309    #[derive(Clone)]
3310    struct UnsafeBytesToStr impl<'a> Fn = |bytes: &'a [u8]| -> &'a str {
3311        // SAFETY: not safe
3312        unsafe { from_utf8_unchecked(bytes) }
3313    };
3314}
3315
3316// This is required to make `impl From<&str> for Box<dyn Error>` and `impl<E> From<E> for Box<dyn Error>` not overlap.
3317#[stable(feature = "error_in_core_neg_impl", since = "1.65.0")]
3318#[cfg(not(feature = "ferrocene_subset"))]
3319impl !crate::error::Error for &str {}