core/str/mod.rs
1//! String manipulation.
2//!
3//! For more details, see the [`std::str`] module.
4//!
5//! [`std::str`]: ../../std/str/index.html
6
7#![stable(feature = "rust1", since = "1.0.0")]
8
9mod converts;
10#[cfg(not(feature = "ferrocene_certified"))]
11mod count;
12mod error;
13mod iter;
14mod traits;
15mod validations;
16
17#[cfg(not(feature = "ferrocene_certified"))]
18use self::pattern::{DoubleEndedSearcher, Pattern, ReverseSearcher, Searcher};
19#[cfg(not(feature = "ferrocene_certified"))]
20use crate::char::{self, EscapeDebugExtArgs};
21#[cfg(not(feature = "ferrocene_certified"))]
22use crate::ops::Range;
23#[cfg(not(feature = "ferrocene_certified"))]
24use crate::slice::{self, SliceIndex};
25#[cfg(not(feature = "ferrocene_certified"))]
26use crate::ub_checks::assert_unsafe_precondition;
27#[cfg(not(feature = "ferrocene_certified"))]
28use crate::{ascii, mem};
29
30// Ferrocene addition: imports for certified subset
31#[cfg(feature = "ferrocene_certified")]
32#[rustfmt::skip]
33use {self::pattern::Pattern, crate::mem};
34
35pub mod pattern;
36
37#[cfg(not(feature = "ferrocene_certified"))]
38mod lossy;
39#[unstable(feature = "str_from_raw_parts", issue = "119206")]
40#[cfg(not(feature = "ferrocene_certified"))]
41pub use converts::{from_raw_parts, from_raw_parts_mut};
42#[stable(feature = "rust1", since = "1.0.0")]
43pub use converts::{from_utf8, from_utf8_unchecked};
44#[stable(feature = "str_mut_extras", since = "1.20.0")]
45pub use converts::{from_utf8_mut, from_utf8_unchecked_mut};
46#[stable(feature = "rust1", since = "1.0.0")]
47#[cfg(not(feature = "ferrocene_certified"))]
48pub use error::{ParseBoolError, Utf8Error};
49#[stable(feature = "encode_utf16", since = "1.8.0")]
50#[cfg(not(feature = "ferrocene_certified"))]
51pub use iter::EncodeUtf16;
52#[stable(feature = "rust1", since = "1.0.0")]
53#[allow(deprecated)]
54#[cfg(not(feature = "ferrocene_certified"))]
55pub use iter::LinesAny;
56#[stable(feature = "split_ascii_whitespace", since = "1.34.0")]
57#[cfg(not(feature = "ferrocene_certified"))]
58pub use iter::SplitAsciiWhitespace;
59#[stable(feature = "split_inclusive", since = "1.51.0")]
60#[cfg(not(feature = "ferrocene_certified"))]
61pub use iter::SplitInclusive;
62#[stable(feature = "rust1", since = "1.0.0")]
63#[cfg(not(feature = "ferrocene_certified"))]
64pub use iter::{Bytes, CharIndices, Chars, Lines, SplitWhitespace};
65#[stable(feature = "str_escape", since = "1.34.0")]
66#[cfg(not(feature = "ferrocene_certified"))]
67pub use iter::{EscapeDebug, EscapeDefault, EscapeUnicode};
68#[stable(feature = "str_match_indices", since = "1.5.0")]
69#[cfg(not(feature = "ferrocene_certified"))]
70pub use iter::{MatchIndices, RMatchIndices};
71#[cfg(not(feature = "ferrocene_certified"))]
72use iter::{MatchIndicesInternal, MatchesInternal, SplitInternal, SplitNInternal};
73#[stable(feature = "str_matches", since = "1.2.0")]
74#[cfg(not(feature = "ferrocene_certified"))]
75pub use iter::{Matches, RMatches};
76#[stable(feature = "rust1", since = "1.0.0")]
77#[cfg(not(feature = "ferrocene_certified"))]
78pub use iter::{RSplit, RSplitTerminator, Split, SplitTerminator};
79#[stable(feature = "rust1", since = "1.0.0")]
80#[cfg(not(feature = "ferrocene_certified"))]
81pub use iter::{RSplitN, SplitN};
82#[stable(feature = "utf8_chunks", since = "1.79.0")]
83#[cfg(not(feature = "ferrocene_certified"))]
84pub use lossy::{Utf8Chunk, Utf8Chunks};
85#[stable(feature = "rust1", since = "1.0.0")]
86pub use traits::FromStr;
87#[unstable(feature = "str_internals", issue = "none")]
88pub use validations::{next_code_point, utf8_char_width};
89
90#[stable(feature = "rust1", since = "1.0.0")]
91#[cfg(feature = "ferrocene_certified")]
92#[rustfmt::skip]
93pub use {error::Utf8Error, iter::Chars};
94
95#[inline(never)]
96#[cold]
97#[track_caller]
98#[rustc_allow_const_fn_unstable(const_eval_select)]
99#[cfg(not(panic = "immediate-abort"))]
100const fn slice_error_fail(s: &str, begin: usize, end: usize) -> ! {
101 crate::intrinsics::const_eval_select((s, begin, end), slice_error_fail_ct, slice_error_fail_rt)
102}
103
104#[cfg(panic = "immediate-abort")]
105#[cfg(not(feature = "ferrocene_certified"))]
106const fn slice_error_fail(s: &str, begin: usize, end: usize) -> ! {
107 slice_error_fail_ct(s, begin, end)
108}
109
110#[track_caller]
111const fn slice_error_fail_ct(_: &str, _: usize, _: usize) -> ! {
112 panic!("failed to slice string");
113}
114
115#[track_caller]
116#[cfg_attr(feature = "ferrocene_certified", expect(unused_variables))]
117fn slice_error_fail_rt(s: &str, begin: usize, end: usize) -> ! {
118 const MAX_DISPLAY_LENGTH: usize = 256;
119 let trunc_len = s.floor_char_boundary(MAX_DISPLAY_LENGTH);
120 let s_trunc = &s[..trunc_len];
121 let ellipsis = if trunc_len < s.len() { "[...]" } else { "" };
122
123 // 1. out of bounds
124 if begin > s.len() || end > s.len() {
125 let oob_index = if begin > s.len() { begin } else { end };
126 panic!("byte index {oob_index} is out of bounds of `{s_trunc}`{ellipsis}");
127 }
128
129 // 2. begin <= end
130 assert!(
131 begin <= end,
132 "begin <= end ({} <= {}) when slicing `{}`{}",
133 begin,
134 end,
135 s_trunc,
136 ellipsis
137 );
138
139 // 3. character boundary
140 let index = if !s.is_char_boundary(begin) { begin } else { end };
141 // find the character
142 let char_start = s.floor_char_boundary(index);
143 // `char_start` must be less than len and a char boundary
144 let ch = s[char_start..].chars().next().unwrap();
145 let char_range = char_start..char_start + ch.len_utf8();
146 panic!(
147 "byte index {} is not a char boundary; it is inside {:?} (bytes {:?}) of `{}`{}",
148 index, ch, char_range, s_trunc, ellipsis
149 );
150}
151
152impl str {
153 /// Returns the length of `self`.
154 ///
155 /// This length is in bytes, not [`char`]s or graphemes. In other words,
156 /// it might not be what a human considers the length of the string.
157 ///
158 /// [`char`]: prim@char
159 ///
160 /// # Examples
161 ///
162 /// ```
163 /// let len = "foo".len();
164 /// assert_eq!(3, len);
165 ///
166 /// assert_eq!("ƒoo".len(), 4); // fancy f!
167 /// assert_eq!("ƒoo".chars().count(), 3);
168 /// ```
169 #[stable(feature = "rust1", since = "1.0.0")]
170 #[rustc_const_stable(feature = "const_str_len", since = "1.39.0")]
171 #[rustc_diagnostic_item = "str_len"]
172 #[rustc_no_implicit_autorefs]
173 #[must_use]
174 #[inline]
175 pub const fn len(&self) -> usize {
176 self.as_bytes().len()
177 }
178
179 /// Returns `true` if `self` has a length of zero bytes.
180 ///
181 /// # Examples
182 ///
183 /// ```
184 /// let s = "";
185 /// assert!(s.is_empty());
186 ///
187 /// let s = "not empty";
188 /// assert!(!s.is_empty());
189 /// ```
190 #[stable(feature = "rust1", since = "1.0.0")]
191 #[rustc_const_stable(feature = "const_str_is_empty", since = "1.39.0")]
192 #[rustc_no_implicit_autorefs]
193 #[must_use]
194 #[inline]
195 pub const fn is_empty(&self) -> bool {
196 self.len() == 0
197 }
198
199 /// Converts a slice of bytes to a string slice.
200 ///
201 /// A string slice ([`&str`]) is made of bytes ([`u8`]), and a byte slice
202 /// ([`&[u8]`][byteslice]) is made of bytes, so this function converts between
203 /// the two. Not all byte slices are valid string slices, however: [`&str`] requires
204 /// that it is valid UTF-8. `from_utf8()` checks to ensure that the bytes are valid
205 /// UTF-8, and then does the conversion.
206 ///
207 /// [`&str`]: str
208 /// [byteslice]: prim@slice
209 ///
210 /// If you are sure that the byte slice is valid UTF-8, and you don't want to
211 /// incur the overhead of the validity check, there is an unsafe version of
212 /// this function, [`from_utf8_unchecked`], which has the same
213 /// behavior but skips the check.
214 ///
215 /// If you need a `String` instead of a `&str`, consider
216 /// [`String::from_utf8`][string].
217 ///
218 /// [string]: ../std/string/struct.String.html#method.from_utf8
219 ///
220 /// Because you can stack-allocate a `[u8; N]`, and you can take a
221 /// [`&[u8]`][byteslice] of it, this function is one way to have a
222 /// stack-allocated string. There is an example of this in the
223 /// examples section below.
224 ///
225 /// [byteslice]: slice
226 ///
227 /// # Errors
228 ///
229 /// Returns `Err` if the slice is not UTF-8 with a description as to why the
230 /// provided slice is not UTF-8.
231 ///
232 /// # Examples
233 ///
234 /// Basic usage:
235 ///
236 /// ```
237 /// // some bytes, in a vector
238 /// let sparkle_heart = vec![240, 159, 146, 150];
239 ///
240 /// // We can use the ? (try) operator to check if the bytes are valid
241 /// let sparkle_heart = str::from_utf8(&sparkle_heart)?;
242 ///
243 /// assert_eq!("💖", sparkle_heart);
244 /// # Ok::<_, std::str::Utf8Error>(())
245 /// ```
246 ///
247 /// Incorrect bytes:
248 ///
249 /// ```
250 /// // some invalid bytes, in a vector
251 /// let sparkle_heart = vec![0, 159, 146, 150];
252 ///
253 /// assert!(str::from_utf8(&sparkle_heart).is_err());
254 /// ```
255 ///
256 /// See the docs for [`Utf8Error`] for more details on the kinds of
257 /// errors that can be returned.
258 ///
259 /// A "stack allocated string":
260 ///
261 /// ```
262 /// // some bytes, in a stack-allocated array
263 /// let sparkle_heart = [240, 159, 146, 150];
264 ///
265 /// // We know these bytes are valid, so just use `unwrap()`.
266 /// let sparkle_heart: &str = str::from_utf8(&sparkle_heart).unwrap();
267 ///
268 /// assert_eq!("💖", sparkle_heart);
269 /// ```
270 #[stable(feature = "inherent_str_constructors", since = "1.87.0")]
271 #[rustc_const_stable(feature = "inherent_str_constructors", since = "1.87.0")]
272 #[rustc_diagnostic_item = "str_inherent_from_utf8"]
273 pub const fn from_utf8(v: &[u8]) -> Result<&str, Utf8Error> {
274 converts::from_utf8(v)
275 }
276
277 /// Converts a mutable slice of bytes to a mutable string slice.
278 ///
279 /// # Examples
280 ///
281 /// Basic usage:
282 ///
283 /// ```
284 /// // "Hello, Rust!" as a mutable vector
285 /// let mut hellorust = vec![72, 101, 108, 108, 111, 44, 32, 82, 117, 115, 116, 33];
286 ///
287 /// // As we know these bytes are valid, we can use `unwrap()`
288 /// let outstr = str::from_utf8_mut(&mut hellorust).unwrap();
289 ///
290 /// assert_eq!("Hello, Rust!", outstr);
291 /// ```
292 ///
293 /// Incorrect bytes:
294 ///
295 /// ```
296 /// // Some invalid bytes in a mutable vector
297 /// let mut invalid = vec![128, 223];
298 ///
299 /// assert!(str::from_utf8_mut(&mut invalid).is_err());
300 /// ```
301 /// See the docs for [`Utf8Error`] for more details on the kinds of
302 /// errors that can be returned.
303 #[stable(feature = "inherent_str_constructors", since = "1.87.0")]
304 #[rustc_const_stable(feature = "const_str_from_utf8", since = "1.87.0")]
305 #[rustc_diagnostic_item = "str_inherent_from_utf8_mut"]
306 pub const fn from_utf8_mut(v: &mut [u8]) -> Result<&mut str, Utf8Error> {
307 converts::from_utf8_mut(v)
308 }
309
310 /// Converts a slice of bytes to a string slice without checking
311 /// that the string contains valid UTF-8.
312 ///
313 /// See the safe version, [`from_utf8`], for more information.
314 ///
315 /// # Safety
316 ///
317 /// The bytes passed in must be valid UTF-8.
318 ///
319 /// # Examples
320 ///
321 /// Basic usage:
322 ///
323 /// ```
324 /// // some bytes, in a vector
325 /// let sparkle_heart = vec![240, 159, 146, 150];
326 ///
327 /// let sparkle_heart = unsafe {
328 /// str::from_utf8_unchecked(&sparkle_heart)
329 /// };
330 ///
331 /// assert_eq!("💖", sparkle_heart);
332 /// ```
333 #[inline]
334 #[must_use]
335 #[stable(feature = "inherent_str_constructors", since = "1.87.0")]
336 #[rustc_const_stable(feature = "inherent_str_constructors", since = "1.87.0")]
337 #[rustc_diagnostic_item = "str_inherent_from_utf8_unchecked"]
338 pub const unsafe fn from_utf8_unchecked(v: &[u8]) -> &str {
339 // SAFETY: converts::from_utf8_unchecked has the same safety requirements as this function.
340 unsafe { converts::from_utf8_unchecked(v) }
341 }
342
343 /// Converts a slice of bytes to a string slice without checking
344 /// that the string contains valid UTF-8; mutable version.
345 ///
346 /// See the immutable version, [`from_utf8_unchecked()`] for documentation and safety requirements.
347 ///
348 /// # Examples
349 ///
350 /// Basic usage:
351 ///
352 /// ```
353 /// let mut heart = vec![240, 159, 146, 150];
354 /// let heart = unsafe { str::from_utf8_unchecked_mut(&mut heart) };
355 ///
356 /// assert_eq!("💖", heart);
357 /// ```
358 #[inline]
359 #[must_use]
360 #[stable(feature = "inherent_str_constructors", since = "1.87.0")]
361 #[rustc_const_stable(feature = "inherent_str_constructors", since = "1.87.0")]
362 #[rustc_diagnostic_item = "str_inherent_from_utf8_unchecked_mut"]
363 pub const unsafe fn from_utf8_unchecked_mut(v: &mut [u8]) -> &mut str {
364 // SAFETY: converts::from_utf8_unchecked_mut has the same safety requirements as this function.
365 unsafe { converts::from_utf8_unchecked_mut(v) }
366 }
367
368 /// Checks that `index`-th byte is the first byte in a UTF-8 code point
369 /// sequence or the end of the string.
370 ///
371 /// The start and end of the string (when `index == self.len()`) are
372 /// considered to be boundaries.
373 ///
374 /// Returns `false` if `index` is greater than `self.len()`.
375 ///
376 /// # Examples
377 ///
378 /// ```
379 /// let s = "Löwe 老虎 Léopard";
380 /// assert!(s.is_char_boundary(0));
381 /// // start of `老`
382 /// assert!(s.is_char_boundary(6));
383 /// assert!(s.is_char_boundary(s.len()));
384 ///
385 /// // second byte of `ö`
386 /// assert!(!s.is_char_boundary(2));
387 ///
388 /// // third byte of `老`
389 /// assert!(!s.is_char_boundary(8));
390 /// ```
391 #[must_use]
392 #[stable(feature = "is_char_boundary", since = "1.9.0")]
393 #[rustc_const_stable(feature = "const_is_char_boundary", since = "1.86.0")]
394 #[inline]
395 pub const fn is_char_boundary(&self, index: usize) -> bool {
396 // 0 is always ok.
397 // Test for 0 explicitly so that it can optimize out the check
398 // easily and skip reading string data for that case.
399 // Note that optimizing `self.get(..index)` relies on this.
400 if index == 0 {
401 return true;
402 }
403
404 if index >= self.len() {
405 // For `true` we have two options:
406 //
407 // - index == self.len()
408 // Empty strings are valid, so return true
409 // - index > self.len()
410 // In this case return false
411 //
412 // The check is placed exactly here, because it improves generated
413 // code on higher opt-levels. See PR #84751 for more details.
414 index == self.len()
415 } else {
416 self.as_bytes()[index].is_utf8_char_boundary()
417 }
418 }
419
420 /// Finds the closest `x` not exceeding `index` where [`is_char_boundary(x)`] is `true`.
421 ///
422 /// This method can help you truncate a string so that it's still valid UTF-8, but doesn't
423 /// exceed a given number of bytes. Note that this is done purely at the character level
424 /// and can still visually split graphemes, even though the underlying characters aren't
425 /// split. For example, the emoji 🧑🔬 (scientist) could be split so that the string only
426 /// includes 🧑 (person) instead.
427 ///
428 /// [`is_char_boundary(x)`]: Self::is_char_boundary
429 ///
430 /// # Examples
431 ///
432 /// ```
433 /// let s = "❤️🧡💛💚💙💜";
434 /// assert_eq!(s.len(), 26);
435 /// assert!(!s.is_char_boundary(13));
436 ///
437 /// let closest = s.floor_char_boundary(13);
438 /// assert_eq!(closest, 10);
439 /// assert_eq!(&s[..closest], "❤️🧡");
440 /// ```
441 #[stable(feature = "round_char_boundary", since = "1.91.0")]
442 #[rustc_const_stable(feature = "round_char_boundary", since = "1.91.0")]
443 #[inline]
444 pub const fn floor_char_boundary(&self, index: usize) -> usize {
445 if index >= self.len() {
446 self.len()
447 } else {
448 let mut i = index;
449 while i > 0 {
450 if self.as_bytes()[i].is_utf8_char_boundary() {
451 break;
452 }
453 i -= 1;
454 }
455
456 // The character boundary will be within four bytes of the index
457 debug_assert!(i >= index.saturating_sub(3));
458
459 i
460 }
461 }
462
463 /// Finds the closest `x` not below `index` where [`is_char_boundary(x)`] is `true`.
464 ///
465 /// If `index` is greater than the length of the string, this returns the length of the string.
466 ///
467 /// This method is the natural complement to [`floor_char_boundary`]. See that method
468 /// for more details.
469 ///
470 /// [`floor_char_boundary`]: str::floor_char_boundary
471 /// [`is_char_boundary(x)`]: Self::is_char_boundary
472 ///
473 /// # Examples
474 ///
475 /// ```
476 /// let s = "❤️🧡💛💚💙💜";
477 /// assert_eq!(s.len(), 26);
478 /// assert!(!s.is_char_boundary(13));
479 ///
480 /// let closest = s.ceil_char_boundary(13);
481 /// assert_eq!(closest, 14);
482 /// assert_eq!(&s[..closest], "❤️🧡💛");
483 /// ```
484 #[stable(feature = "round_char_boundary", since = "1.91.0")]
485 #[rustc_const_stable(feature = "round_char_boundary", since = "1.91.0")]
486 #[inline]
487 #[cfg(not(feature = "ferrocene_certified"))]
488 pub const fn ceil_char_boundary(&self, index: usize) -> usize {
489 if index >= self.len() {
490 self.len()
491 } else {
492 let mut i = index;
493 while i < self.len() {
494 if self.as_bytes()[i].is_utf8_char_boundary() {
495 break;
496 }
497 i += 1;
498 }
499
500 // The character boundary will be within four bytes of the index
501 debug_assert!(i <= index + 3);
502
503 i
504 }
505 }
506
507 /// Converts a string slice to a byte slice. To convert the byte slice back
508 /// into a string slice, use the [`from_utf8`] function.
509 ///
510 /// # Examples
511 ///
512 /// ```
513 /// let bytes = "bors".as_bytes();
514 /// assert_eq!(b"bors", bytes);
515 /// ```
516 #[stable(feature = "rust1", since = "1.0.0")]
517 #[rustc_const_stable(feature = "str_as_bytes", since = "1.39.0")]
518 #[must_use]
519 #[inline(always)]
520 #[allow(unused_attributes)]
521 pub const fn as_bytes(&self) -> &[u8] {
522 // SAFETY: const sound because we transmute two types with the same layout
523 unsafe { mem::transmute(self) }
524 }
525
526 /// Converts a mutable string slice to a mutable byte slice.
527 ///
528 /// # Safety
529 ///
530 /// The caller must ensure that the content of the slice is valid UTF-8
531 /// before the borrow ends and the underlying `str` is used.
532 ///
533 /// Use of a `str` whose contents are not valid UTF-8 is undefined behavior.
534 ///
535 /// # Examples
536 ///
537 /// Basic usage:
538 ///
539 /// ```
540 /// let mut s = String::from("Hello");
541 /// let bytes = unsafe { s.as_bytes_mut() };
542 ///
543 /// assert_eq!(b"Hello", bytes);
544 /// ```
545 ///
546 /// Mutability:
547 ///
548 /// ```
549 /// let mut s = String::from("🗻∈🌏");
550 ///
551 /// unsafe {
552 /// let bytes = s.as_bytes_mut();
553 ///
554 /// bytes[0] = 0xF0;
555 /// bytes[1] = 0x9F;
556 /// bytes[2] = 0x8D;
557 /// bytes[3] = 0x94;
558 /// }
559 ///
560 /// assert_eq!("🍔∈🌏", s);
561 /// ```
562 #[stable(feature = "str_mut_extras", since = "1.20.0")]
563 #[rustc_const_stable(feature = "const_str_as_mut", since = "1.83.0")]
564 #[must_use]
565 #[inline(always)]
566 pub const unsafe fn as_bytes_mut(&mut self) -> &mut [u8] {
567 // SAFETY: the cast from `&str` to `&[u8]` is safe since `str`
568 // has the same layout as `&[u8]` (only std can make this guarantee).
569 // The pointer dereference is safe since it comes from a mutable reference which
570 // is guaranteed to be valid for writes.
571 unsafe { &mut *(self as *mut str as *mut [u8]) }
572 }
573
574 /// Converts a string slice to a raw pointer.
575 ///
576 /// As string slices are a slice of bytes, the raw pointer points to a
577 /// [`u8`]. This pointer will be pointing to the first byte of the string
578 /// slice.
579 ///
580 /// The caller must ensure that the returned pointer is never written to.
581 /// If you need to mutate the contents of the string slice, use [`as_mut_ptr`].
582 ///
583 /// [`as_mut_ptr`]: str::as_mut_ptr
584 ///
585 /// # Examples
586 ///
587 /// ```
588 /// let s = "Hello";
589 /// let ptr = s.as_ptr();
590 /// ```
591 #[stable(feature = "rust1", since = "1.0.0")]
592 #[rustc_const_stable(feature = "rustc_str_as_ptr", since = "1.32.0")]
593 #[rustc_never_returns_null_ptr]
594 #[rustc_as_ptr]
595 #[must_use]
596 #[inline(always)]
597 pub const fn as_ptr(&self) -> *const u8 {
598 self as *const str as *const u8
599 }
600
601 /// Converts a mutable string slice to a raw pointer.
602 ///
603 /// As string slices are a slice of bytes, the raw pointer points to a
604 /// [`u8`]. This pointer will be pointing to the first byte of the string
605 /// slice.
606 ///
607 /// It is your responsibility to make sure that the string slice only gets
608 /// modified in a way that it remains valid UTF-8.
609 #[stable(feature = "str_as_mut_ptr", since = "1.36.0")]
610 #[rustc_const_stable(feature = "const_str_as_mut", since = "1.83.0")]
611 #[rustc_never_returns_null_ptr]
612 #[rustc_as_ptr]
613 #[must_use]
614 #[inline(always)]
615 pub const fn as_mut_ptr(&mut self) -> *mut u8 {
616 self as *mut str as *mut u8
617 }
618
619 /// Returns a subslice of `str`.
620 ///
621 /// This is the non-panicking alternative to indexing the `str`. Returns
622 /// [`None`] whenever equivalent indexing operation would panic.
623 ///
624 /// # Examples
625 ///
626 /// ```
627 /// let v = String::from("🗻∈🌏");
628 ///
629 /// assert_eq!(Some("🗻"), v.get(0..4));
630 ///
631 /// // indices not on UTF-8 sequence boundaries
632 /// assert!(v.get(1..).is_none());
633 /// assert!(v.get(..8).is_none());
634 ///
635 /// // out of bounds
636 /// assert!(v.get(..42).is_none());
637 /// ```
638 #[stable(feature = "str_checked_slicing", since = "1.20.0")]
639 #[rustc_const_unstable(feature = "const_index", issue = "143775")]
640 #[inline]
641 #[cfg(not(feature = "ferrocene_certified"))]
642 pub const fn get<I: [const] SliceIndex<str>>(&self, i: I) -> Option<&I::Output> {
643 i.get(self)
644 }
645
646 /// Returns a mutable subslice of `str`.
647 ///
648 /// This is the non-panicking alternative to indexing the `str`. Returns
649 /// [`None`] whenever equivalent indexing operation would panic.
650 ///
651 /// # Examples
652 ///
653 /// ```
654 /// let mut v = String::from("hello");
655 /// // correct length
656 /// assert!(v.get_mut(0..5).is_some());
657 /// // out of bounds
658 /// assert!(v.get_mut(..42).is_none());
659 /// assert_eq!(Some("he"), v.get_mut(0..2).map(|v| &*v));
660 ///
661 /// assert_eq!("hello", v);
662 /// {
663 /// let s = v.get_mut(0..2);
664 /// let s = s.map(|s| {
665 /// s.make_ascii_uppercase();
666 /// &*s
667 /// });
668 /// assert_eq!(Some("HE"), s);
669 /// }
670 /// assert_eq!("HEllo", v);
671 /// ```
672 #[stable(feature = "str_checked_slicing", since = "1.20.0")]
673 #[rustc_const_unstable(feature = "const_index", issue = "143775")]
674 #[inline]
675 #[cfg(not(feature = "ferrocene_certified"))]
676 pub const fn get_mut<I: [const] SliceIndex<str>>(&mut self, i: I) -> Option<&mut I::Output> {
677 i.get_mut(self)
678 }
679
680 /// Returns an unchecked subslice of `str`.
681 ///
682 /// This is the unchecked alternative to indexing the `str`.
683 ///
684 /// # Safety
685 ///
686 /// Callers of this function are responsible that these preconditions are
687 /// satisfied:
688 ///
689 /// * The starting index must not exceed the ending index;
690 /// * Indexes must be within bounds of the original slice;
691 /// * Indexes must lie on UTF-8 sequence boundaries.
692 ///
693 /// Failing that, the returned string slice may reference invalid memory or
694 /// violate the invariants communicated by the `str` type.
695 ///
696 /// # Examples
697 ///
698 /// ```
699 /// let v = "🗻∈🌏";
700 /// unsafe {
701 /// assert_eq!("🗻", v.get_unchecked(0..4));
702 /// assert_eq!("∈", v.get_unchecked(4..7));
703 /// assert_eq!("🌏", v.get_unchecked(7..11));
704 /// }
705 /// ```
706 #[stable(feature = "str_checked_slicing", since = "1.20.0")]
707 #[inline]
708 #[cfg(not(feature = "ferrocene_certified"))]
709 pub unsafe fn get_unchecked<I: SliceIndex<str>>(&self, i: I) -> &I::Output {
710 // SAFETY: the caller must uphold the safety contract for `get_unchecked`;
711 // the slice is dereferenceable because `self` is a safe reference.
712 // The returned pointer is safe because impls of `SliceIndex` have to guarantee that it is.
713 unsafe { &*i.get_unchecked(self) }
714 }
715
716 /// Returns a mutable, unchecked subslice of `str`.
717 ///
718 /// This is the unchecked alternative to indexing the `str`.
719 ///
720 /// # Safety
721 ///
722 /// Callers of this function are responsible that these preconditions are
723 /// satisfied:
724 ///
725 /// * The starting index must not exceed the ending index;
726 /// * Indexes must be within bounds of the original slice;
727 /// * Indexes must lie on UTF-8 sequence boundaries.
728 ///
729 /// Failing that, the returned string slice may reference invalid memory or
730 /// violate the invariants communicated by the `str` type.
731 ///
732 /// # Examples
733 ///
734 /// ```
735 /// let mut v = String::from("🗻∈🌏");
736 /// unsafe {
737 /// assert_eq!("🗻", v.get_unchecked_mut(0..4));
738 /// assert_eq!("∈", v.get_unchecked_mut(4..7));
739 /// assert_eq!("🌏", v.get_unchecked_mut(7..11));
740 /// }
741 /// ```
742 #[stable(feature = "str_checked_slicing", since = "1.20.0")]
743 #[inline]
744 #[cfg(not(feature = "ferrocene_certified"))]
745 pub unsafe fn get_unchecked_mut<I: SliceIndex<str>>(&mut self, i: I) -> &mut I::Output {
746 // SAFETY: the caller must uphold the safety contract for `get_unchecked_mut`;
747 // the slice is dereferenceable because `self` is a safe reference.
748 // The returned pointer is safe because impls of `SliceIndex` have to guarantee that it is.
749 unsafe { &mut *i.get_unchecked_mut(self) }
750 }
751
752 /// Creates a string slice from another string slice, bypassing safety
753 /// checks.
754 ///
755 /// This is generally not recommended, use with caution! For a safe
756 /// alternative see [`str`] and [`Index`].
757 ///
758 /// [`Index`]: crate::ops::Index
759 ///
760 /// This new slice goes from `begin` to `end`, including `begin` but
761 /// excluding `end`.
762 ///
763 /// To get a mutable string slice instead, see the
764 /// [`slice_mut_unchecked`] method.
765 ///
766 /// [`slice_mut_unchecked`]: str::slice_mut_unchecked
767 ///
768 /// # Safety
769 ///
770 /// Callers of this function are responsible that three preconditions are
771 /// satisfied:
772 ///
773 /// * `begin` must not exceed `end`.
774 /// * `begin` and `end` must be byte positions within the string slice.
775 /// * `begin` and `end` must lie on UTF-8 sequence boundaries.
776 ///
777 /// # Examples
778 ///
779 /// ```
780 /// let s = "Löwe 老虎 Léopard";
781 ///
782 /// unsafe {
783 /// assert_eq!("Löwe 老虎 Léopard", s.slice_unchecked(0, 21));
784 /// }
785 ///
786 /// let s = "Hello, world!";
787 ///
788 /// unsafe {
789 /// assert_eq!("world", s.slice_unchecked(7, 12));
790 /// }
791 /// ```
792 #[stable(feature = "rust1", since = "1.0.0")]
793 #[deprecated(since = "1.29.0", note = "use `get_unchecked(begin..end)` instead")]
794 #[must_use]
795 #[inline]
796 #[cfg(not(feature = "ferrocene_certified"))]
797 pub unsafe fn slice_unchecked(&self, begin: usize, end: usize) -> &str {
798 // SAFETY: the caller must uphold the safety contract for `get_unchecked`;
799 // the slice is dereferenceable because `self` is a safe reference.
800 // The returned pointer is safe because impls of `SliceIndex` have to guarantee that it is.
801 unsafe { &*(begin..end).get_unchecked(self) }
802 }
803
804 /// Creates a string slice from another string slice, bypassing safety
805 /// checks.
806 ///
807 /// This is generally not recommended, use with caution! For a safe
808 /// alternative see [`str`] and [`IndexMut`].
809 ///
810 /// [`IndexMut`]: crate::ops::IndexMut
811 ///
812 /// This new slice goes from `begin` to `end`, including `begin` but
813 /// excluding `end`.
814 ///
815 /// To get an immutable string slice instead, see the
816 /// [`slice_unchecked`] method.
817 ///
818 /// [`slice_unchecked`]: str::slice_unchecked
819 ///
820 /// # Safety
821 ///
822 /// Callers of this function are responsible that three preconditions are
823 /// satisfied:
824 ///
825 /// * `begin` must not exceed `end`.
826 /// * `begin` and `end` must be byte positions within the string slice.
827 /// * `begin` and `end` must lie on UTF-8 sequence boundaries.
828 #[stable(feature = "str_slice_mut", since = "1.5.0")]
829 #[deprecated(since = "1.29.0", note = "use `get_unchecked_mut(begin..end)` instead")]
830 #[inline]
831 #[cfg(not(feature = "ferrocene_certified"))]
832 pub unsafe fn slice_mut_unchecked(&mut self, begin: usize, end: usize) -> &mut str {
833 // SAFETY: the caller must uphold the safety contract for `get_unchecked_mut`;
834 // the slice is dereferenceable because `self` is a safe reference.
835 // The returned pointer is safe because impls of `SliceIndex` have to guarantee that it is.
836 unsafe { &mut *(begin..end).get_unchecked_mut(self) }
837 }
838
839 /// Divides one string slice into two at an index.
840 ///
841 /// The argument, `mid`, should be a byte offset from the start of the
842 /// string. It must also be on the boundary of a UTF-8 code point.
843 ///
844 /// The two slices returned go from the start of the string slice to `mid`,
845 /// and from `mid` to the end of the string slice.
846 ///
847 /// To get mutable string slices instead, see the [`split_at_mut`]
848 /// method.
849 ///
850 /// [`split_at_mut`]: str::split_at_mut
851 ///
852 /// # Panics
853 ///
854 /// Panics if `mid` is not on a UTF-8 code point boundary, or if it is past
855 /// the end of the last code point of the string slice. For a non-panicking
856 /// alternative see [`split_at_checked`](str::split_at_checked).
857 ///
858 /// # Examples
859 ///
860 /// ```
861 /// let s = "Per Martin-Löf";
862 ///
863 /// let (first, last) = s.split_at(3);
864 ///
865 /// assert_eq!("Per", first);
866 /// assert_eq!(" Martin-Löf", last);
867 /// ```
868 #[inline]
869 #[must_use]
870 #[stable(feature = "str_split_at", since = "1.4.0")]
871 #[rustc_const_stable(feature = "const_str_split_at", since = "1.86.0")]
872 #[cfg(not(feature = "ferrocene_certified"))]
873 pub const fn split_at(&self, mid: usize) -> (&str, &str) {
874 match self.split_at_checked(mid) {
875 None => slice_error_fail(self, 0, mid),
876 Some(pair) => pair,
877 }
878 }
879
880 /// Divides one mutable string slice into two at an index.
881 ///
882 /// The argument, `mid`, should be a byte offset from the start of the
883 /// string. It must also be on the boundary of a UTF-8 code point.
884 ///
885 /// The two slices returned go from the start of the string slice to `mid`,
886 /// and from `mid` to the end of the string slice.
887 ///
888 /// To get immutable string slices instead, see the [`split_at`] method.
889 ///
890 /// [`split_at`]: str::split_at
891 ///
892 /// # Panics
893 ///
894 /// Panics if `mid` is not on a UTF-8 code point boundary, or if it is past
895 /// the end of the last code point of the string slice. For a non-panicking
896 /// alternative see [`split_at_mut_checked`](str::split_at_mut_checked).
897 ///
898 /// # Examples
899 ///
900 /// ```
901 /// let mut s = "Per Martin-Löf".to_string();
902 /// {
903 /// let (first, last) = s.split_at_mut(3);
904 /// first.make_ascii_uppercase();
905 /// assert_eq!("PER", first);
906 /// assert_eq!(" Martin-Löf", last);
907 /// }
908 /// assert_eq!("PER Martin-Löf", s);
909 /// ```
910 #[inline]
911 #[must_use]
912 #[stable(feature = "str_split_at", since = "1.4.0")]
913 #[rustc_const_stable(feature = "const_str_split_at", since = "1.86.0")]
914 #[cfg(not(feature = "ferrocene_certified"))]
915 pub const fn split_at_mut(&mut self, mid: usize) -> (&mut str, &mut str) {
916 // is_char_boundary checks that the index is in [0, .len()]
917 if self.is_char_boundary(mid) {
918 // SAFETY: just checked that `mid` is on a char boundary.
919 unsafe { self.split_at_mut_unchecked(mid) }
920 } else {
921 slice_error_fail(self, 0, mid)
922 }
923 }
924
925 /// Divides one string slice into two at an index.
926 ///
927 /// The argument, `mid`, should be a valid byte offset from the start of the
928 /// string. It must also be on the boundary of a UTF-8 code point. The
929 /// method returns `None` if that’s not the case.
930 ///
931 /// The two slices returned go from the start of the string slice to `mid`,
932 /// and from `mid` to the end of the string slice.
933 ///
934 /// To get mutable string slices instead, see the [`split_at_mut_checked`]
935 /// method.
936 ///
937 /// [`split_at_mut_checked`]: str::split_at_mut_checked
938 ///
939 /// # Examples
940 ///
941 /// ```
942 /// let s = "Per Martin-Löf";
943 ///
944 /// let (first, last) = s.split_at_checked(3).unwrap();
945 /// assert_eq!("Per", first);
946 /// assert_eq!(" Martin-Löf", last);
947 ///
948 /// assert_eq!(None, s.split_at_checked(13)); // Inside “ö”
949 /// assert_eq!(None, s.split_at_checked(16)); // Beyond the string length
950 /// ```
951 #[inline]
952 #[must_use]
953 #[stable(feature = "split_at_checked", since = "1.80.0")]
954 #[rustc_const_stable(feature = "const_str_split_at", since = "1.86.0")]
955 #[cfg(not(feature = "ferrocene_certified"))]
956 pub const fn split_at_checked(&self, mid: usize) -> Option<(&str, &str)> {
957 // is_char_boundary checks that the index is in [0, .len()]
958 if self.is_char_boundary(mid) {
959 // SAFETY: just checked that `mid` is on a char boundary.
960 Some(unsafe { self.split_at_unchecked(mid) })
961 } else {
962 None
963 }
964 }
965
966 /// Divides one mutable string slice into two at an index.
967 ///
968 /// The argument, `mid`, should be a valid byte offset from the start of the
969 /// string. It must also be on the boundary of a UTF-8 code point. The
970 /// method returns `None` if that’s not the case.
971 ///
972 /// The two slices returned go from the start of the string slice to `mid`,
973 /// and from `mid` to the end of the string slice.
974 ///
975 /// To get immutable string slices instead, see the [`split_at_checked`] method.
976 ///
977 /// [`split_at_checked`]: str::split_at_checked
978 ///
979 /// # Examples
980 ///
981 /// ```
982 /// let mut s = "Per Martin-Löf".to_string();
983 /// if let Some((first, last)) = s.split_at_mut_checked(3) {
984 /// first.make_ascii_uppercase();
985 /// assert_eq!("PER", first);
986 /// assert_eq!(" Martin-Löf", last);
987 /// }
988 /// assert_eq!("PER Martin-Löf", s);
989 ///
990 /// assert_eq!(None, s.split_at_mut_checked(13)); // Inside “ö”
991 /// assert_eq!(None, s.split_at_mut_checked(16)); // Beyond the string length
992 /// ```
993 #[inline]
994 #[must_use]
995 #[stable(feature = "split_at_checked", since = "1.80.0")]
996 #[rustc_const_stable(feature = "const_str_split_at", since = "1.86.0")]
997 #[cfg(not(feature = "ferrocene_certified"))]
998 pub const fn split_at_mut_checked(&mut self, mid: usize) -> Option<(&mut str, &mut str)> {
999 // is_char_boundary checks that the index is in [0, .len()]
1000 if self.is_char_boundary(mid) {
1001 // SAFETY: just checked that `mid` is on a char boundary.
1002 Some(unsafe { self.split_at_mut_unchecked(mid) })
1003 } else {
1004 None
1005 }
1006 }
1007
1008 /// Divides one string slice into two at an index.
1009 ///
1010 /// # Safety
1011 ///
1012 /// The caller must ensure that `mid` is a valid byte offset from the start
1013 /// of the string and falls on the boundary of a UTF-8 code point.
1014 #[inline]
1015 #[cfg(not(feature = "ferrocene_certified"))]
1016 const unsafe fn split_at_unchecked(&self, mid: usize) -> (&str, &str) {
1017 let len = self.len();
1018 let ptr = self.as_ptr();
1019 // SAFETY: caller guarantees `mid` is on a char boundary.
1020 unsafe {
1021 (
1022 from_utf8_unchecked(slice::from_raw_parts(ptr, mid)),
1023 from_utf8_unchecked(slice::from_raw_parts(ptr.add(mid), len - mid)),
1024 )
1025 }
1026 }
1027
1028 /// Divides one string slice into two at an index.
1029 ///
1030 /// # Safety
1031 ///
1032 /// The caller must ensure that `mid` is a valid byte offset from the start
1033 /// of the string and falls on the boundary of a UTF-8 code point.
1034 #[cfg(not(feature = "ferrocene_certified"))]
1035 const unsafe fn split_at_mut_unchecked(&mut self, mid: usize) -> (&mut str, &mut str) {
1036 let len = self.len();
1037 let ptr = self.as_mut_ptr();
1038 // SAFETY: caller guarantees `mid` is on a char boundary.
1039 unsafe {
1040 (
1041 from_utf8_unchecked_mut(slice::from_raw_parts_mut(ptr, mid)),
1042 from_utf8_unchecked_mut(slice::from_raw_parts_mut(ptr.add(mid), len - mid)),
1043 )
1044 }
1045 }
1046
1047 /// Returns an iterator over the [`char`]s of a string slice.
1048 ///
1049 /// As a string slice consists of valid UTF-8, we can iterate through a
1050 /// string slice by [`char`]. This method returns such an iterator.
1051 ///
1052 /// It's important to remember that [`char`] represents a Unicode Scalar
1053 /// Value, and might not match your idea of what a 'character' is. Iteration
1054 /// over grapheme clusters may be what you actually want. This functionality
1055 /// is not provided by Rust's standard library, check crates.io instead.
1056 ///
1057 /// # Examples
1058 ///
1059 /// Basic usage:
1060 ///
1061 /// ```
1062 /// let word = "goodbye";
1063 ///
1064 /// let count = word.chars().count();
1065 /// assert_eq!(7, count);
1066 ///
1067 /// let mut chars = word.chars();
1068 ///
1069 /// assert_eq!(Some('g'), chars.next());
1070 /// assert_eq!(Some('o'), chars.next());
1071 /// assert_eq!(Some('o'), chars.next());
1072 /// assert_eq!(Some('d'), chars.next());
1073 /// assert_eq!(Some('b'), chars.next());
1074 /// assert_eq!(Some('y'), chars.next());
1075 /// assert_eq!(Some('e'), chars.next());
1076 ///
1077 /// assert_eq!(None, chars.next());
1078 /// ```
1079 ///
1080 /// Remember, [`char`]s might not match your intuition about characters:
1081 ///
1082 /// [`char`]: prim@char
1083 ///
1084 /// ```
1085 /// let y = "y̆";
1086 ///
1087 /// let mut chars = y.chars();
1088 ///
1089 /// assert_eq!(Some('y'), chars.next()); // not 'y̆'
1090 /// assert_eq!(Some('\u{0306}'), chars.next());
1091 ///
1092 /// assert_eq!(None, chars.next());
1093 /// ```
1094 #[stable(feature = "rust1", since = "1.0.0")]
1095 #[inline]
1096 #[rustc_diagnostic_item = "str_chars"]
1097 pub fn chars(&self) -> Chars<'_> {
1098 Chars { iter: self.as_bytes().iter() }
1099 }
1100
1101 /// Returns an iterator over the [`char`]s of a string slice, and their
1102 /// positions.
1103 ///
1104 /// As a string slice consists of valid UTF-8, we can iterate through a
1105 /// string slice by [`char`]. This method returns an iterator of both
1106 /// these [`char`]s, as well as their byte positions.
1107 ///
1108 /// The iterator yields tuples. The position is first, the [`char`] is
1109 /// second.
1110 ///
1111 /// # Examples
1112 ///
1113 /// Basic usage:
1114 ///
1115 /// ```
1116 /// let word = "goodbye";
1117 ///
1118 /// let count = word.char_indices().count();
1119 /// assert_eq!(7, count);
1120 ///
1121 /// let mut char_indices = word.char_indices();
1122 ///
1123 /// assert_eq!(Some((0, 'g')), char_indices.next());
1124 /// assert_eq!(Some((1, 'o')), char_indices.next());
1125 /// assert_eq!(Some((2, 'o')), char_indices.next());
1126 /// assert_eq!(Some((3, 'd')), char_indices.next());
1127 /// assert_eq!(Some((4, 'b')), char_indices.next());
1128 /// assert_eq!(Some((5, 'y')), char_indices.next());
1129 /// assert_eq!(Some((6, 'e')), char_indices.next());
1130 ///
1131 /// assert_eq!(None, char_indices.next());
1132 /// ```
1133 ///
1134 /// Remember, [`char`]s might not match your intuition about characters:
1135 ///
1136 /// [`char`]: prim@char
1137 ///
1138 /// ```
1139 /// let yes = "y̆es";
1140 ///
1141 /// let mut char_indices = yes.char_indices();
1142 ///
1143 /// assert_eq!(Some((0, 'y')), char_indices.next()); // not (0, 'y̆')
1144 /// assert_eq!(Some((1, '\u{0306}')), char_indices.next());
1145 ///
1146 /// // note the 3 here - the previous character took up two bytes
1147 /// assert_eq!(Some((3, 'e')), char_indices.next());
1148 /// assert_eq!(Some((4, 's')), char_indices.next());
1149 ///
1150 /// assert_eq!(None, char_indices.next());
1151 /// ```
1152 #[stable(feature = "rust1", since = "1.0.0")]
1153 #[inline]
1154 #[cfg(not(feature = "ferrocene_certified"))]
1155 pub fn char_indices(&self) -> CharIndices<'_> {
1156 CharIndices { front_offset: 0, iter: self.chars() }
1157 }
1158
1159 /// Returns an iterator over the bytes of a string slice.
1160 ///
1161 /// As a string slice consists of a sequence of bytes, we can iterate
1162 /// through a string slice by byte. This method returns such an iterator.
1163 ///
1164 /// # Examples
1165 ///
1166 /// ```
1167 /// let mut bytes = "bors".bytes();
1168 ///
1169 /// assert_eq!(Some(b'b'), bytes.next());
1170 /// assert_eq!(Some(b'o'), bytes.next());
1171 /// assert_eq!(Some(b'r'), bytes.next());
1172 /// assert_eq!(Some(b's'), bytes.next());
1173 ///
1174 /// assert_eq!(None, bytes.next());
1175 /// ```
1176 #[stable(feature = "rust1", since = "1.0.0")]
1177 #[inline]
1178 #[cfg(not(feature = "ferrocene_certified"))]
1179 pub fn bytes(&self) -> Bytes<'_> {
1180 Bytes(self.as_bytes().iter().copied())
1181 }
1182
1183 /// Splits a string slice by whitespace.
1184 ///
1185 /// The iterator returned will return string slices that are sub-slices of
1186 /// the original string slice, separated by any amount of whitespace.
1187 ///
1188 /// 'Whitespace' is defined according to the terms of the Unicode Derived
1189 /// Core Property `White_Space`. If you only want to split on ASCII whitespace
1190 /// instead, use [`split_ascii_whitespace`].
1191 ///
1192 /// [`split_ascii_whitespace`]: str::split_ascii_whitespace
1193 ///
1194 /// # Examples
1195 ///
1196 /// Basic usage:
1197 ///
1198 /// ```
1199 /// let mut iter = "A few words".split_whitespace();
1200 ///
1201 /// assert_eq!(Some("A"), iter.next());
1202 /// assert_eq!(Some("few"), iter.next());
1203 /// assert_eq!(Some("words"), iter.next());
1204 ///
1205 /// assert_eq!(None, iter.next());
1206 /// ```
1207 ///
1208 /// All kinds of whitespace are considered:
1209 ///
1210 /// ```
1211 /// let mut iter = " Mary had\ta\u{2009}little \n\t lamb".split_whitespace();
1212 /// assert_eq!(Some("Mary"), iter.next());
1213 /// assert_eq!(Some("had"), iter.next());
1214 /// assert_eq!(Some("a"), iter.next());
1215 /// assert_eq!(Some("little"), iter.next());
1216 /// assert_eq!(Some("lamb"), iter.next());
1217 ///
1218 /// assert_eq!(None, iter.next());
1219 /// ```
1220 ///
1221 /// If the string is empty or all whitespace, the iterator yields no string slices:
1222 /// ```
1223 /// assert_eq!("".split_whitespace().next(), None);
1224 /// assert_eq!(" ".split_whitespace().next(), None);
1225 /// ```
1226 #[must_use = "this returns the split string as an iterator, \
1227 without modifying the original"]
1228 #[stable(feature = "split_whitespace", since = "1.1.0")]
1229 #[rustc_diagnostic_item = "str_split_whitespace"]
1230 #[inline]
1231 #[cfg(not(feature = "ferrocene_certified"))]
1232 pub fn split_whitespace(&self) -> SplitWhitespace<'_> {
1233 SplitWhitespace { inner: self.split(IsWhitespace).filter(IsNotEmpty) }
1234 }
1235
1236 /// Splits a string slice by ASCII whitespace.
1237 ///
1238 /// The iterator returned will return string slices that are sub-slices of
1239 /// the original string slice, separated by any amount of ASCII whitespace.
1240 ///
1241 /// This uses the same definition as [`char::is_ascii_whitespace`].
1242 /// To split by Unicode `Whitespace` instead, use [`split_whitespace`].
1243 ///
1244 /// [`split_whitespace`]: str::split_whitespace
1245 ///
1246 /// # Examples
1247 ///
1248 /// Basic usage:
1249 ///
1250 /// ```
1251 /// let mut iter = "A few words".split_ascii_whitespace();
1252 ///
1253 /// assert_eq!(Some("A"), iter.next());
1254 /// assert_eq!(Some("few"), iter.next());
1255 /// assert_eq!(Some("words"), iter.next());
1256 ///
1257 /// assert_eq!(None, iter.next());
1258 /// ```
1259 ///
1260 /// Various kinds of ASCII whitespace are considered
1261 /// (see [`char::is_ascii_whitespace`]):
1262 ///
1263 /// ```
1264 /// let mut iter = " Mary had\ta little \n\t lamb".split_ascii_whitespace();
1265 /// assert_eq!(Some("Mary"), iter.next());
1266 /// assert_eq!(Some("had"), iter.next());
1267 /// assert_eq!(Some("a"), iter.next());
1268 /// assert_eq!(Some("little"), iter.next());
1269 /// assert_eq!(Some("lamb"), iter.next());
1270 ///
1271 /// assert_eq!(None, iter.next());
1272 /// ```
1273 ///
1274 /// If the string is empty or all ASCII whitespace, the iterator yields no string slices:
1275 /// ```
1276 /// assert_eq!("".split_ascii_whitespace().next(), None);
1277 /// assert_eq!(" ".split_ascii_whitespace().next(), None);
1278 /// ```
1279 #[must_use = "this returns the split string as an iterator, \
1280 without modifying the original"]
1281 #[stable(feature = "split_ascii_whitespace", since = "1.34.0")]
1282 #[inline]
1283 #[cfg(not(feature = "ferrocene_certified"))]
1284 pub fn split_ascii_whitespace(&self) -> SplitAsciiWhitespace<'_> {
1285 let inner =
1286 self.as_bytes().split(IsAsciiWhitespace).filter(BytesIsNotEmpty).map(UnsafeBytesToStr);
1287 SplitAsciiWhitespace { inner }
1288 }
1289
1290 /// Returns an iterator over the lines of a string, as string slices.
1291 ///
1292 /// Lines are split at line endings that are either newlines (`\n`) or
1293 /// sequences of a carriage return followed by a line feed (`\r\n`).
1294 ///
1295 /// Line terminators are not included in the lines returned by the iterator.
1296 ///
1297 /// Note that any carriage return (`\r`) not immediately followed by a
1298 /// line feed (`\n`) does not split a line. These carriage returns are
1299 /// thereby included in the produced lines.
1300 ///
1301 /// The final line ending is optional. A string that ends with a final line
1302 /// ending will return the same lines as an otherwise identical string
1303 /// without a final line ending.
1304 ///
1305 /// An empty string returns an empty iterator.
1306 ///
1307 /// # Examples
1308 ///
1309 /// Basic usage:
1310 ///
1311 /// ```
1312 /// let text = "foo\r\nbar\n\nbaz\r";
1313 /// let mut lines = text.lines();
1314 ///
1315 /// assert_eq!(Some("foo"), lines.next());
1316 /// assert_eq!(Some("bar"), lines.next());
1317 /// assert_eq!(Some(""), lines.next());
1318 /// // Trailing carriage return is included in the last line
1319 /// assert_eq!(Some("baz\r"), lines.next());
1320 ///
1321 /// assert_eq!(None, lines.next());
1322 /// ```
1323 ///
1324 /// The final line does not require any ending:
1325 ///
1326 /// ```
1327 /// let text = "foo\nbar\n\r\nbaz";
1328 /// let mut lines = text.lines();
1329 ///
1330 /// assert_eq!(Some("foo"), lines.next());
1331 /// assert_eq!(Some("bar"), lines.next());
1332 /// assert_eq!(Some(""), lines.next());
1333 /// assert_eq!(Some("baz"), lines.next());
1334 ///
1335 /// assert_eq!(None, lines.next());
1336 /// ```
1337 ///
1338 /// An empty string returns an empty iterator:
1339 ///
1340 /// ```
1341 /// let text = "";
1342 /// let mut lines = text.lines();
1343 ///
1344 /// assert_eq!(lines.next(), None);
1345 /// ```
1346 #[stable(feature = "rust1", since = "1.0.0")]
1347 #[inline]
1348 #[cfg(not(feature = "ferrocene_certified"))]
1349 pub fn lines(&self) -> Lines<'_> {
1350 Lines(self.split_inclusive('\n').map(LinesMap))
1351 }
1352
1353 /// Returns an iterator over the lines of a string.
1354 #[stable(feature = "rust1", since = "1.0.0")]
1355 #[deprecated(since = "1.4.0", note = "use lines() instead now", suggestion = "lines")]
1356 #[inline]
1357 #[allow(deprecated)]
1358 #[cfg(not(feature = "ferrocene_certified"))]
1359 pub fn lines_any(&self) -> LinesAny<'_> {
1360 LinesAny(self.lines())
1361 }
1362
1363 /// Returns an iterator of `u16` over the string encoded
1364 /// as native endian UTF-16 (without byte-order mark).
1365 ///
1366 /// # Examples
1367 ///
1368 /// ```
1369 /// let text = "Zażółć gęślą jaźń";
1370 ///
1371 /// let utf8_len = text.len();
1372 /// let utf16_len = text.encode_utf16().count();
1373 ///
1374 /// assert!(utf16_len <= utf8_len);
1375 /// ```
1376 #[must_use = "this returns the encoded string as an iterator, \
1377 without modifying the original"]
1378 #[stable(feature = "encode_utf16", since = "1.8.0")]
1379 #[cfg(not(feature = "ferrocene_certified"))]
1380 pub fn encode_utf16(&self) -> EncodeUtf16<'_> {
1381 EncodeUtf16 { chars: self.chars(), extra: 0 }
1382 }
1383
1384 /// Returns `true` if the given pattern matches a sub-slice of
1385 /// this string slice.
1386 ///
1387 /// Returns `false` if it does not.
1388 ///
1389 /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a
1390 /// function or closure that determines if a character matches.
1391 ///
1392 /// [`char`]: prim@char
1393 /// [pattern]: self::pattern
1394 ///
1395 /// # Examples
1396 ///
1397 /// ```
1398 /// let bananas = "bananas";
1399 ///
1400 /// assert!(bananas.contains("nana"));
1401 /// assert!(!bananas.contains("apples"));
1402 /// ```
1403 #[stable(feature = "rust1", since = "1.0.0")]
1404 #[inline]
1405 #[cfg(not(feature = "ferrocene_certified"))]
1406 pub fn contains<P: Pattern>(&self, pat: P) -> bool {
1407 pat.is_contained_in(self)
1408 }
1409
1410 /// Returns `true` if the given pattern matches a prefix of this
1411 /// string slice.
1412 ///
1413 /// Returns `false` if it does not.
1414 ///
1415 /// The [pattern] can be a `&str`, in which case this function will return true if
1416 /// the `&str` is a prefix of this string slice.
1417 ///
1418 /// The [pattern] can also be a [`char`], a slice of [`char`]s, or a
1419 /// function or closure that determines if a character matches.
1420 /// These will only be checked against the first character of this string slice.
1421 /// Look at the second example below regarding behavior for slices of [`char`]s.
1422 ///
1423 /// [`char`]: prim@char
1424 /// [pattern]: self::pattern
1425 ///
1426 /// # Examples
1427 ///
1428 /// ```
1429 /// let bananas = "bananas";
1430 ///
1431 /// assert!(bananas.starts_with("bana"));
1432 /// assert!(!bananas.starts_with("nana"));
1433 /// ```
1434 ///
1435 /// ```
1436 /// let bananas = "bananas";
1437 ///
1438 /// // Note that both of these assert successfully.
1439 /// assert!(bananas.starts_with(&['b', 'a', 'n', 'a']));
1440 /// assert!(bananas.starts_with(&['a', 'b', 'c', 'd']));
1441 /// ```
1442 #[stable(feature = "rust1", since = "1.0.0")]
1443 #[rustc_diagnostic_item = "str_starts_with"]
1444 pub fn starts_with<P: Pattern>(&self, pat: P) -> bool {
1445 pat.is_prefix_of(self)
1446 }
1447
1448 /// Returns `true` if the given pattern matches a suffix of this
1449 /// string slice.
1450 ///
1451 /// Returns `false` if it does not.
1452 ///
1453 /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a
1454 /// function or closure that determines if a character matches.
1455 ///
1456 /// [`char`]: prim@char
1457 /// [pattern]: self::pattern
1458 ///
1459 /// # Examples
1460 ///
1461 /// ```
1462 /// let bananas = "bananas";
1463 ///
1464 /// assert!(bananas.ends_with("anas"));
1465 /// assert!(!bananas.ends_with("nana"));
1466 /// ```
1467 #[stable(feature = "rust1", since = "1.0.0")]
1468 #[rustc_diagnostic_item = "str_ends_with"]
1469 #[cfg(not(feature = "ferrocene_certified"))]
1470 pub fn ends_with<P: Pattern>(&self, pat: P) -> bool
1471 where
1472 for<'a> P::Searcher<'a>: ReverseSearcher<'a>,
1473 {
1474 pat.is_suffix_of(self)
1475 }
1476
1477 /// Returns the byte index of the first character of this string slice that
1478 /// matches the pattern.
1479 ///
1480 /// Returns [`None`] if the pattern doesn't match.
1481 ///
1482 /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a
1483 /// function or closure that determines if a character matches.
1484 ///
1485 /// [`char`]: prim@char
1486 /// [pattern]: self::pattern
1487 ///
1488 /// # Examples
1489 ///
1490 /// Simple patterns:
1491 ///
1492 /// ```
1493 /// let s = "Löwe 老虎 Léopard Gepardi";
1494 ///
1495 /// assert_eq!(s.find('L'), Some(0));
1496 /// assert_eq!(s.find('é'), Some(14));
1497 /// assert_eq!(s.find("pard"), Some(17));
1498 /// ```
1499 ///
1500 /// More complex patterns using point-free style and closures:
1501 ///
1502 /// ```
1503 /// let s = "Löwe 老虎 Léopard";
1504 ///
1505 /// assert_eq!(s.find(char::is_whitespace), Some(5));
1506 /// assert_eq!(s.find(char::is_lowercase), Some(1));
1507 /// assert_eq!(s.find(|c: char| c.is_whitespace() || c.is_lowercase()), Some(1));
1508 /// assert_eq!(s.find(|c: char| (c < 'o') && (c > 'a')), Some(4));
1509 /// ```
1510 ///
1511 /// Not finding the pattern:
1512 ///
1513 /// ```
1514 /// let s = "Löwe 老虎 Léopard";
1515 /// let x: &[_] = &['1', '2'];
1516 ///
1517 /// assert_eq!(s.find(x), None);
1518 /// ```
1519 #[stable(feature = "rust1", since = "1.0.0")]
1520 #[inline]
1521 #[cfg(not(feature = "ferrocene_certified"))]
1522 pub fn find<P: Pattern>(&self, pat: P) -> Option<usize> {
1523 pat.into_searcher(self).next_match().map(|(i, _)| i)
1524 }
1525
1526 /// Returns the byte index for the first character of the last match of the pattern in
1527 /// this string slice.
1528 ///
1529 /// Returns [`None`] if the pattern doesn't match.
1530 ///
1531 /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a
1532 /// function or closure that determines if a character matches.
1533 ///
1534 /// [`char`]: prim@char
1535 /// [pattern]: self::pattern
1536 ///
1537 /// # Examples
1538 ///
1539 /// Simple patterns:
1540 ///
1541 /// ```
1542 /// let s = "Löwe 老虎 Léopard Gepardi";
1543 ///
1544 /// assert_eq!(s.rfind('L'), Some(13));
1545 /// assert_eq!(s.rfind('é'), Some(14));
1546 /// assert_eq!(s.rfind("pard"), Some(24));
1547 /// ```
1548 ///
1549 /// More complex patterns with closures:
1550 ///
1551 /// ```
1552 /// let s = "Löwe 老虎 Léopard";
1553 ///
1554 /// assert_eq!(s.rfind(char::is_whitespace), Some(12));
1555 /// assert_eq!(s.rfind(char::is_lowercase), Some(20));
1556 /// ```
1557 ///
1558 /// Not finding the pattern:
1559 ///
1560 /// ```
1561 /// let s = "Löwe 老虎 Léopard";
1562 /// let x: &[_] = &['1', '2'];
1563 ///
1564 /// assert_eq!(s.rfind(x), None);
1565 /// ```
1566 #[stable(feature = "rust1", since = "1.0.0")]
1567 #[inline]
1568 #[cfg(not(feature = "ferrocene_certified"))]
1569 pub fn rfind<P: Pattern>(&self, pat: P) -> Option<usize>
1570 where
1571 for<'a> P::Searcher<'a>: ReverseSearcher<'a>,
1572 {
1573 pat.into_searcher(self).next_match_back().map(|(i, _)| i)
1574 }
1575
1576 /// Returns an iterator over substrings of this string slice, separated by
1577 /// characters matched by a pattern.
1578 ///
1579 /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a
1580 /// function or closure that determines if a character matches.
1581 ///
1582 /// If there are no matches the full string slice is returned as the only
1583 /// item in the iterator.
1584 ///
1585 /// [`char`]: prim@char
1586 /// [pattern]: self::pattern
1587 ///
1588 /// # Iterator behavior
1589 ///
1590 /// The returned iterator will be a [`DoubleEndedIterator`] if the pattern
1591 /// allows a reverse search and forward/reverse search yields the same
1592 /// elements. This is true for, e.g., [`char`], but not for `&str`.
1593 ///
1594 /// If the pattern allows a reverse search but its results might differ
1595 /// from a forward search, the [`rsplit`] method can be used.
1596 ///
1597 /// [`rsplit`]: str::rsplit
1598 ///
1599 /// # Examples
1600 ///
1601 /// Simple patterns:
1602 ///
1603 /// ```
1604 /// let v: Vec<&str> = "Mary had a little lamb".split(' ').collect();
1605 /// assert_eq!(v, ["Mary", "had", "a", "little", "lamb"]);
1606 ///
1607 /// let v: Vec<&str> = "".split('X').collect();
1608 /// assert_eq!(v, [""]);
1609 ///
1610 /// let v: Vec<&str> = "lionXXtigerXleopard".split('X').collect();
1611 /// assert_eq!(v, ["lion", "", "tiger", "leopard"]);
1612 ///
1613 /// let v: Vec<&str> = "lion::tiger::leopard".split("::").collect();
1614 /// assert_eq!(v, ["lion", "tiger", "leopard"]);
1615 ///
1616 /// let v: Vec<&str> = "AABBCC".split("DD").collect();
1617 /// assert_eq!(v, ["AABBCC"]);
1618 ///
1619 /// let v: Vec<&str> = "abc1def2ghi".split(char::is_numeric).collect();
1620 /// assert_eq!(v, ["abc", "def", "ghi"]);
1621 ///
1622 /// let v: Vec<&str> = "lionXtigerXleopard".split(char::is_uppercase).collect();
1623 /// assert_eq!(v, ["lion", "tiger", "leopard"]);
1624 /// ```
1625 ///
1626 /// If the pattern is a slice of chars, split on each occurrence of any of the characters:
1627 ///
1628 /// ```
1629 /// let v: Vec<&str> = "2020-11-03 23:59".split(&['-', ' ', ':', '@'][..]).collect();
1630 /// assert_eq!(v, ["2020", "11", "03", "23", "59"]);
1631 /// ```
1632 ///
1633 /// A more complex pattern, using a closure:
1634 ///
1635 /// ```
1636 /// let v: Vec<&str> = "abc1defXghi".split(|c| c == '1' || c == 'X').collect();
1637 /// assert_eq!(v, ["abc", "def", "ghi"]);
1638 /// ```
1639 ///
1640 /// If a string contains multiple contiguous separators, you will end up
1641 /// with empty strings in the output:
1642 ///
1643 /// ```
1644 /// let x = "||||a||b|c".to_string();
1645 /// let d: Vec<_> = x.split('|').collect();
1646 ///
1647 /// assert_eq!(d, &["", "", "", "", "a", "", "b", "c"]);
1648 /// ```
1649 ///
1650 /// Contiguous separators are separated by the empty string.
1651 ///
1652 /// ```
1653 /// let x = "(///)".to_string();
1654 /// let d: Vec<_> = x.split('/').collect();
1655 ///
1656 /// assert_eq!(d, &["(", "", "", ")"]);
1657 /// ```
1658 ///
1659 /// Separators at the start or end of a string are neighbored
1660 /// by empty strings.
1661 ///
1662 /// ```
1663 /// let d: Vec<_> = "010".split("0").collect();
1664 /// assert_eq!(d, &["", "1", ""]);
1665 /// ```
1666 ///
1667 /// When the empty string is used as a separator, it separates
1668 /// every character in the string, along with the beginning
1669 /// and end of the string.
1670 ///
1671 /// ```
1672 /// let f: Vec<_> = "rust".split("").collect();
1673 /// assert_eq!(f, &["", "r", "u", "s", "t", ""]);
1674 /// ```
1675 ///
1676 /// Contiguous separators can lead to possibly surprising behavior
1677 /// when whitespace is used as the separator. This code is correct:
1678 ///
1679 /// ```
1680 /// let x = " a b c".to_string();
1681 /// let d: Vec<_> = x.split(' ').collect();
1682 ///
1683 /// assert_eq!(d, &["", "", "", "", "a", "", "b", "c"]);
1684 /// ```
1685 ///
1686 /// It does _not_ give you:
1687 ///
1688 /// ```,ignore
1689 /// assert_eq!(d, &["a", "b", "c"]);
1690 /// ```
1691 ///
1692 /// Use [`split_whitespace`] for this behavior.
1693 ///
1694 /// [`split_whitespace`]: str::split_whitespace
1695 #[stable(feature = "rust1", since = "1.0.0")]
1696 #[inline]
1697 #[cfg(not(feature = "ferrocene_certified"))]
1698 pub fn split<P: Pattern>(&self, pat: P) -> Split<'_, P> {
1699 Split(SplitInternal {
1700 start: 0,
1701 end: self.len(),
1702 matcher: pat.into_searcher(self),
1703 allow_trailing_empty: true,
1704 finished: false,
1705 })
1706 }
1707
1708 /// Returns an iterator over substrings of this string slice, separated by
1709 /// characters matched by a pattern.
1710 ///
1711 /// Differs from the iterator produced by `split` in that `split_inclusive`
1712 /// leaves the matched part as the terminator of the substring.
1713 ///
1714 /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a
1715 /// function or closure that determines if a character matches.
1716 ///
1717 /// [`char`]: prim@char
1718 /// [pattern]: self::pattern
1719 ///
1720 /// # Examples
1721 ///
1722 /// ```
1723 /// let v: Vec<&str> = "Mary had a little lamb\nlittle lamb\nlittle lamb."
1724 /// .split_inclusive('\n').collect();
1725 /// assert_eq!(v, ["Mary had a little lamb\n", "little lamb\n", "little lamb."]);
1726 /// ```
1727 ///
1728 /// If the last element of the string is matched,
1729 /// that element will be considered the terminator of the preceding substring.
1730 /// That substring will be the last item returned by the iterator.
1731 ///
1732 /// ```
1733 /// let v: Vec<&str> = "Mary had a little lamb\nlittle lamb\nlittle lamb.\n"
1734 /// .split_inclusive('\n').collect();
1735 /// assert_eq!(v, ["Mary had a little lamb\n", "little lamb\n", "little lamb.\n"]);
1736 /// ```
1737 #[stable(feature = "split_inclusive", since = "1.51.0")]
1738 #[inline]
1739 #[cfg(not(feature = "ferrocene_certified"))]
1740 pub fn split_inclusive<P: Pattern>(&self, pat: P) -> SplitInclusive<'_, P> {
1741 SplitInclusive(SplitInternal {
1742 start: 0,
1743 end: self.len(),
1744 matcher: pat.into_searcher(self),
1745 allow_trailing_empty: false,
1746 finished: false,
1747 })
1748 }
1749
1750 /// Returns an iterator over substrings of the given string slice, separated
1751 /// by characters matched by a pattern and yielded in reverse order.
1752 ///
1753 /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a
1754 /// function or closure that determines if a character matches.
1755 ///
1756 /// [`char`]: prim@char
1757 /// [pattern]: self::pattern
1758 ///
1759 /// # Iterator behavior
1760 ///
1761 /// The returned iterator requires that the pattern supports a reverse
1762 /// search, and it will be a [`DoubleEndedIterator`] if a forward/reverse
1763 /// search yields the same elements.
1764 ///
1765 /// For iterating from the front, the [`split`] method can be used.
1766 ///
1767 /// [`split`]: str::split
1768 ///
1769 /// # Examples
1770 ///
1771 /// Simple patterns:
1772 ///
1773 /// ```
1774 /// let v: Vec<&str> = "Mary had a little lamb".rsplit(' ').collect();
1775 /// assert_eq!(v, ["lamb", "little", "a", "had", "Mary"]);
1776 ///
1777 /// let v: Vec<&str> = "".rsplit('X').collect();
1778 /// assert_eq!(v, [""]);
1779 ///
1780 /// let v: Vec<&str> = "lionXXtigerXleopard".rsplit('X').collect();
1781 /// assert_eq!(v, ["leopard", "tiger", "", "lion"]);
1782 ///
1783 /// let v: Vec<&str> = "lion::tiger::leopard".rsplit("::").collect();
1784 /// assert_eq!(v, ["leopard", "tiger", "lion"]);
1785 /// ```
1786 ///
1787 /// A more complex pattern, using a closure:
1788 ///
1789 /// ```
1790 /// let v: Vec<&str> = "abc1defXghi".rsplit(|c| c == '1' || c == 'X').collect();
1791 /// assert_eq!(v, ["ghi", "def", "abc"]);
1792 /// ```
1793 #[stable(feature = "rust1", since = "1.0.0")]
1794 #[inline]
1795 #[cfg(not(feature = "ferrocene_certified"))]
1796 pub fn rsplit<P: Pattern>(&self, pat: P) -> RSplit<'_, P>
1797 where
1798 for<'a> P::Searcher<'a>: ReverseSearcher<'a>,
1799 {
1800 RSplit(self.split(pat).0)
1801 }
1802
1803 /// Returns an iterator over substrings of the given string slice, separated
1804 /// by characters matched by a pattern.
1805 ///
1806 /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a
1807 /// function or closure that determines if a character matches.
1808 ///
1809 /// [`char`]: prim@char
1810 /// [pattern]: self::pattern
1811 ///
1812 /// Equivalent to [`split`], except that the trailing substring
1813 /// is skipped if empty.
1814 ///
1815 /// [`split`]: str::split
1816 ///
1817 /// This method can be used for string data that is _terminated_,
1818 /// rather than _separated_ by a pattern.
1819 ///
1820 /// # Iterator behavior
1821 ///
1822 /// The returned iterator will be a [`DoubleEndedIterator`] if the pattern
1823 /// allows a reverse search and forward/reverse search yields the same
1824 /// elements. This is true for, e.g., [`char`], but not for `&str`.
1825 ///
1826 /// If the pattern allows a reverse search but its results might differ
1827 /// from a forward search, the [`rsplit_terminator`] method can be used.
1828 ///
1829 /// [`rsplit_terminator`]: str::rsplit_terminator
1830 ///
1831 /// # Examples
1832 ///
1833 /// ```
1834 /// let v: Vec<&str> = "A.B.".split_terminator('.').collect();
1835 /// assert_eq!(v, ["A", "B"]);
1836 ///
1837 /// let v: Vec<&str> = "A..B..".split_terminator(".").collect();
1838 /// assert_eq!(v, ["A", "", "B", ""]);
1839 ///
1840 /// let v: Vec<&str> = "A.B:C.D".split_terminator(&['.', ':'][..]).collect();
1841 /// assert_eq!(v, ["A", "B", "C", "D"]);
1842 /// ```
1843 #[stable(feature = "rust1", since = "1.0.0")]
1844 #[inline]
1845 #[cfg(not(feature = "ferrocene_certified"))]
1846 pub fn split_terminator<P: Pattern>(&self, pat: P) -> SplitTerminator<'_, P> {
1847 SplitTerminator(SplitInternal { allow_trailing_empty: false, ..self.split(pat).0 })
1848 }
1849
1850 /// Returns an iterator over substrings of `self`, separated by characters
1851 /// matched by a pattern and yielded in reverse order.
1852 ///
1853 /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a
1854 /// function or closure that determines if a character matches.
1855 ///
1856 /// [`char`]: prim@char
1857 /// [pattern]: self::pattern
1858 ///
1859 /// Equivalent to [`split`], except that the trailing substring is
1860 /// skipped if empty.
1861 ///
1862 /// [`split`]: str::split
1863 ///
1864 /// This method can be used for string data that is _terminated_,
1865 /// rather than _separated_ by a pattern.
1866 ///
1867 /// # Iterator behavior
1868 ///
1869 /// The returned iterator requires that the pattern supports a
1870 /// reverse search, and it will be double ended if a forward/reverse
1871 /// search yields the same elements.
1872 ///
1873 /// For iterating from the front, the [`split_terminator`] method can be
1874 /// used.
1875 ///
1876 /// [`split_terminator`]: str::split_terminator
1877 ///
1878 /// # Examples
1879 ///
1880 /// ```
1881 /// let v: Vec<&str> = "A.B.".rsplit_terminator('.').collect();
1882 /// assert_eq!(v, ["B", "A"]);
1883 ///
1884 /// let v: Vec<&str> = "A..B..".rsplit_terminator(".").collect();
1885 /// assert_eq!(v, ["", "B", "", "A"]);
1886 ///
1887 /// let v: Vec<&str> = "A.B:C.D".rsplit_terminator(&['.', ':'][..]).collect();
1888 /// assert_eq!(v, ["D", "C", "B", "A"]);
1889 /// ```
1890 #[stable(feature = "rust1", since = "1.0.0")]
1891 #[inline]
1892 #[cfg(not(feature = "ferrocene_certified"))]
1893 pub fn rsplit_terminator<P: Pattern>(&self, pat: P) -> RSplitTerminator<'_, P>
1894 where
1895 for<'a> P::Searcher<'a>: ReverseSearcher<'a>,
1896 {
1897 RSplitTerminator(self.split_terminator(pat).0)
1898 }
1899
1900 /// Returns an iterator over substrings of the given string slice, separated
1901 /// by a pattern, restricted to returning at most `n` items.
1902 ///
1903 /// If `n` substrings are returned, the last substring (the `n`th substring)
1904 /// will contain the remainder of the string.
1905 ///
1906 /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a
1907 /// function or closure that determines if a character matches.
1908 ///
1909 /// [`char`]: prim@char
1910 /// [pattern]: self::pattern
1911 ///
1912 /// # Iterator behavior
1913 ///
1914 /// The returned iterator will not be double ended, because it is
1915 /// not efficient to support.
1916 ///
1917 /// If the pattern allows a reverse search, the [`rsplitn`] method can be
1918 /// used.
1919 ///
1920 /// [`rsplitn`]: str::rsplitn
1921 ///
1922 /// # Examples
1923 ///
1924 /// Simple patterns:
1925 ///
1926 /// ```
1927 /// let v: Vec<&str> = "Mary had a little lambda".splitn(3, ' ').collect();
1928 /// assert_eq!(v, ["Mary", "had", "a little lambda"]);
1929 ///
1930 /// let v: Vec<&str> = "lionXXtigerXleopard".splitn(3, "X").collect();
1931 /// assert_eq!(v, ["lion", "", "tigerXleopard"]);
1932 ///
1933 /// let v: Vec<&str> = "abcXdef".splitn(1, 'X').collect();
1934 /// assert_eq!(v, ["abcXdef"]);
1935 ///
1936 /// let v: Vec<&str> = "".splitn(1, 'X').collect();
1937 /// assert_eq!(v, [""]);
1938 /// ```
1939 ///
1940 /// A more complex pattern, using a closure:
1941 ///
1942 /// ```
1943 /// let v: Vec<&str> = "abc1defXghi".splitn(2, |c| c == '1' || c == 'X').collect();
1944 /// assert_eq!(v, ["abc", "defXghi"]);
1945 /// ```
1946 #[stable(feature = "rust1", since = "1.0.0")]
1947 #[inline]
1948 #[cfg(not(feature = "ferrocene_certified"))]
1949 pub fn splitn<P: Pattern>(&self, n: usize, pat: P) -> SplitN<'_, P> {
1950 SplitN(SplitNInternal { iter: self.split(pat).0, count: n })
1951 }
1952
1953 /// Returns an iterator over substrings of this string slice, separated by a
1954 /// pattern, starting from the end of the string, restricted to returning at
1955 /// most `n` items.
1956 ///
1957 /// If `n` substrings are returned, the last substring (the `n`th substring)
1958 /// will contain the remainder of the string.
1959 ///
1960 /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a
1961 /// function or closure that determines if a character matches.
1962 ///
1963 /// [`char`]: prim@char
1964 /// [pattern]: self::pattern
1965 ///
1966 /// # Iterator behavior
1967 ///
1968 /// The returned iterator will not be double ended, because it is not
1969 /// efficient to support.
1970 ///
1971 /// For splitting from the front, the [`splitn`] method can be used.
1972 ///
1973 /// [`splitn`]: str::splitn
1974 ///
1975 /// # Examples
1976 ///
1977 /// Simple patterns:
1978 ///
1979 /// ```
1980 /// let v: Vec<&str> = "Mary had a little lamb".rsplitn(3, ' ').collect();
1981 /// assert_eq!(v, ["lamb", "little", "Mary had a"]);
1982 ///
1983 /// let v: Vec<&str> = "lionXXtigerXleopard".rsplitn(3, 'X').collect();
1984 /// assert_eq!(v, ["leopard", "tiger", "lionX"]);
1985 ///
1986 /// let v: Vec<&str> = "lion::tiger::leopard".rsplitn(2, "::").collect();
1987 /// assert_eq!(v, ["leopard", "lion::tiger"]);
1988 /// ```
1989 ///
1990 /// A more complex pattern, using a closure:
1991 ///
1992 /// ```
1993 /// let v: Vec<&str> = "abc1defXghi".rsplitn(2, |c| c == '1' || c == 'X').collect();
1994 /// assert_eq!(v, ["ghi", "abc1def"]);
1995 /// ```
1996 #[stable(feature = "rust1", since = "1.0.0")]
1997 #[inline]
1998 #[cfg(not(feature = "ferrocene_certified"))]
1999 pub fn rsplitn<P: Pattern>(&self, n: usize, pat: P) -> RSplitN<'_, P>
2000 where
2001 for<'a> P::Searcher<'a>: ReverseSearcher<'a>,
2002 {
2003 RSplitN(self.splitn(n, pat).0)
2004 }
2005
2006 /// Splits the string on the first occurrence of the specified delimiter and
2007 /// returns prefix before delimiter and suffix after delimiter.
2008 ///
2009 /// # Examples
2010 ///
2011 /// ```
2012 /// assert_eq!("cfg".split_once('='), None);
2013 /// assert_eq!("cfg=".split_once('='), Some(("cfg", "")));
2014 /// assert_eq!("cfg=foo".split_once('='), Some(("cfg", "foo")));
2015 /// assert_eq!("cfg=foo=bar".split_once('='), Some(("cfg", "foo=bar")));
2016 /// ```
2017 #[stable(feature = "str_split_once", since = "1.52.0")]
2018 #[inline]
2019 #[cfg(not(feature = "ferrocene_certified"))]
2020 pub fn split_once<P: Pattern>(&self, delimiter: P) -> Option<(&'_ str, &'_ str)> {
2021 let (start, end) = delimiter.into_searcher(self).next_match()?;
2022 // SAFETY: `Searcher` is known to return valid indices.
2023 unsafe { Some((self.get_unchecked(..start), self.get_unchecked(end..))) }
2024 }
2025
2026 /// Splits the string on the last occurrence of the specified delimiter and
2027 /// returns prefix before delimiter and suffix after delimiter.
2028 ///
2029 /// # Examples
2030 ///
2031 /// ```
2032 /// assert_eq!("cfg".rsplit_once('='), None);
2033 /// assert_eq!("cfg=".rsplit_once('='), Some(("cfg", "")));
2034 /// assert_eq!("cfg=foo".rsplit_once('='), Some(("cfg", "foo")));
2035 /// assert_eq!("cfg=foo=bar".rsplit_once('='), Some(("cfg=foo", "bar")));
2036 /// ```
2037 #[stable(feature = "str_split_once", since = "1.52.0")]
2038 #[inline]
2039 #[cfg(not(feature = "ferrocene_certified"))]
2040 pub fn rsplit_once<P: Pattern>(&self, delimiter: P) -> Option<(&'_ str, &'_ str)>
2041 where
2042 for<'a> P::Searcher<'a>: ReverseSearcher<'a>,
2043 {
2044 let (start, end) = delimiter.into_searcher(self).next_match_back()?;
2045 // SAFETY: `Searcher` is known to return valid indices.
2046 unsafe { Some((self.get_unchecked(..start), self.get_unchecked(end..))) }
2047 }
2048
2049 /// Returns an iterator over the disjoint matches of a pattern within the
2050 /// given string slice.
2051 ///
2052 /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a
2053 /// function or closure that determines if a character matches.
2054 ///
2055 /// [`char`]: prim@char
2056 /// [pattern]: self::pattern
2057 ///
2058 /// # Iterator behavior
2059 ///
2060 /// The returned iterator will be a [`DoubleEndedIterator`] if the pattern
2061 /// allows a reverse search and forward/reverse search yields the same
2062 /// elements. This is true for, e.g., [`char`], but not for `&str`.
2063 ///
2064 /// If the pattern allows a reverse search but its results might differ
2065 /// from a forward search, the [`rmatches`] method can be used.
2066 ///
2067 /// [`rmatches`]: str::rmatches
2068 ///
2069 /// # Examples
2070 ///
2071 /// ```
2072 /// let v: Vec<&str> = "abcXXXabcYYYabc".matches("abc").collect();
2073 /// assert_eq!(v, ["abc", "abc", "abc"]);
2074 ///
2075 /// let v: Vec<&str> = "1abc2abc3".matches(char::is_numeric).collect();
2076 /// assert_eq!(v, ["1", "2", "3"]);
2077 /// ```
2078 #[stable(feature = "str_matches", since = "1.2.0")]
2079 #[inline]
2080 #[cfg(not(feature = "ferrocene_certified"))]
2081 pub fn matches<P: Pattern>(&self, pat: P) -> Matches<'_, P> {
2082 Matches(MatchesInternal(pat.into_searcher(self)))
2083 }
2084
2085 /// Returns an iterator over the disjoint matches of a pattern within this
2086 /// string slice, yielded in reverse order.
2087 ///
2088 /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a
2089 /// function or closure that determines if a character matches.
2090 ///
2091 /// [`char`]: prim@char
2092 /// [pattern]: self::pattern
2093 ///
2094 /// # Iterator behavior
2095 ///
2096 /// The returned iterator requires that the pattern supports a reverse
2097 /// search, and it will be a [`DoubleEndedIterator`] if a forward/reverse
2098 /// search yields the same elements.
2099 ///
2100 /// For iterating from the front, the [`matches`] method can be used.
2101 ///
2102 /// [`matches`]: str::matches
2103 ///
2104 /// # Examples
2105 ///
2106 /// ```
2107 /// let v: Vec<&str> = "abcXXXabcYYYabc".rmatches("abc").collect();
2108 /// assert_eq!(v, ["abc", "abc", "abc"]);
2109 ///
2110 /// let v: Vec<&str> = "1abc2abc3".rmatches(char::is_numeric).collect();
2111 /// assert_eq!(v, ["3", "2", "1"]);
2112 /// ```
2113 #[stable(feature = "str_matches", since = "1.2.0")]
2114 #[inline]
2115 #[cfg(not(feature = "ferrocene_certified"))]
2116 pub fn rmatches<P: Pattern>(&self, pat: P) -> RMatches<'_, P>
2117 where
2118 for<'a> P::Searcher<'a>: ReverseSearcher<'a>,
2119 {
2120 RMatches(self.matches(pat).0)
2121 }
2122
2123 /// Returns an iterator over the disjoint matches of a pattern within this string
2124 /// slice as well as the index that the match starts at.
2125 ///
2126 /// For matches of `pat` within `self` that overlap, only the indices
2127 /// corresponding to the first match are returned.
2128 ///
2129 /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a
2130 /// function or closure that determines if a character matches.
2131 ///
2132 /// [`char`]: prim@char
2133 /// [pattern]: self::pattern
2134 ///
2135 /// # Iterator behavior
2136 ///
2137 /// The returned iterator will be a [`DoubleEndedIterator`] if the pattern
2138 /// allows a reverse search and forward/reverse search yields the same
2139 /// elements. This is true for, e.g., [`char`], but not for `&str`.
2140 ///
2141 /// If the pattern allows a reverse search but its results might differ
2142 /// from a forward search, the [`rmatch_indices`] method can be used.
2143 ///
2144 /// [`rmatch_indices`]: str::rmatch_indices
2145 ///
2146 /// # Examples
2147 ///
2148 /// ```
2149 /// let v: Vec<_> = "abcXXXabcYYYabc".match_indices("abc").collect();
2150 /// assert_eq!(v, [(0, "abc"), (6, "abc"), (12, "abc")]);
2151 ///
2152 /// let v: Vec<_> = "1abcabc2".match_indices("abc").collect();
2153 /// assert_eq!(v, [(1, "abc"), (4, "abc")]);
2154 ///
2155 /// let v: Vec<_> = "ababa".match_indices("aba").collect();
2156 /// assert_eq!(v, [(0, "aba")]); // only the first `aba`
2157 /// ```
2158 #[stable(feature = "str_match_indices", since = "1.5.0")]
2159 #[inline]
2160 #[cfg(not(feature = "ferrocene_certified"))]
2161 pub fn match_indices<P: Pattern>(&self, pat: P) -> MatchIndices<'_, P> {
2162 MatchIndices(MatchIndicesInternal(pat.into_searcher(self)))
2163 }
2164
2165 /// Returns an iterator over the disjoint matches of a pattern within `self`,
2166 /// yielded in reverse order along with the index of the match.
2167 ///
2168 /// For matches of `pat` within `self` that overlap, only the indices
2169 /// corresponding to the last match are returned.
2170 ///
2171 /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a
2172 /// function or closure that determines if a character matches.
2173 ///
2174 /// [`char`]: prim@char
2175 /// [pattern]: self::pattern
2176 ///
2177 /// # Iterator behavior
2178 ///
2179 /// The returned iterator requires that the pattern supports a reverse
2180 /// search, and it will be a [`DoubleEndedIterator`] if a forward/reverse
2181 /// search yields the same elements.
2182 ///
2183 /// For iterating from the front, the [`match_indices`] method can be used.
2184 ///
2185 /// [`match_indices`]: str::match_indices
2186 ///
2187 /// # Examples
2188 ///
2189 /// ```
2190 /// let v: Vec<_> = "abcXXXabcYYYabc".rmatch_indices("abc").collect();
2191 /// assert_eq!(v, [(12, "abc"), (6, "abc"), (0, "abc")]);
2192 ///
2193 /// let v: Vec<_> = "1abcabc2".rmatch_indices("abc").collect();
2194 /// assert_eq!(v, [(4, "abc"), (1, "abc")]);
2195 ///
2196 /// let v: Vec<_> = "ababa".rmatch_indices("aba").collect();
2197 /// assert_eq!(v, [(2, "aba")]); // only the last `aba`
2198 /// ```
2199 #[stable(feature = "str_match_indices", since = "1.5.0")]
2200 #[inline]
2201 #[cfg(not(feature = "ferrocene_certified"))]
2202 pub fn rmatch_indices<P: Pattern>(&self, pat: P) -> RMatchIndices<'_, P>
2203 where
2204 for<'a> P::Searcher<'a>: ReverseSearcher<'a>,
2205 {
2206 RMatchIndices(self.match_indices(pat).0)
2207 }
2208
2209 /// Returns a string slice with leading and trailing whitespace removed.
2210 ///
2211 /// 'Whitespace' is defined according to the terms of the Unicode Derived
2212 /// Core Property `White_Space`, which includes newlines.
2213 ///
2214 /// # Examples
2215 ///
2216 /// ```
2217 /// let s = "\n Hello\tworld\t\n";
2218 ///
2219 /// assert_eq!("Hello\tworld", s.trim());
2220 /// ```
2221 #[inline]
2222 #[must_use = "this returns the trimmed string as a slice, \
2223 without modifying the original"]
2224 #[stable(feature = "rust1", since = "1.0.0")]
2225 #[rustc_diagnostic_item = "str_trim"]
2226 #[cfg(not(feature = "ferrocene_certified"))]
2227 pub fn trim(&self) -> &str {
2228 self.trim_matches(char::is_whitespace)
2229 }
2230
2231 /// Returns a string slice with leading whitespace removed.
2232 ///
2233 /// 'Whitespace' is defined according to the terms of the Unicode Derived
2234 /// Core Property `White_Space`, which includes newlines.
2235 ///
2236 /// # Text directionality
2237 ///
2238 /// A string is a sequence of bytes. `start` in this context means the first
2239 /// position of that byte string; for a left-to-right language like English or
2240 /// Russian, this will be left side, and for right-to-left languages like
2241 /// Arabic or Hebrew, this will be the right side.
2242 ///
2243 /// # Examples
2244 ///
2245 /// Basic usage:
2246 ///
2247 /// ```
2248 /// let s = "\n Hello\tworld\t\n";
2249 /// assert_eq!("Hello\tworld\t\n", s.trim_start());
2250 /// ```
2251 ///
2252 /// Directionality:
2253 ///
2254 /// ```
2255 /// let s = " English ";
2256 /// assert!(Some('E') == s.trim_start().chars().next());
2257 ///
2258 /// let s = " עברית ";
2259 /// assert!(Some('ע') == s.trim_start().chars().next());
2260 /// ```
2261 #[inline]
2262 #[must_use = "this returns the trimmed string as a new slice, \
2263 without modifying the original"]
2264 #[stable(feature = "trim_direction", since = "1.30.0")]
2265 #[rustc_diagnostic_item = "str_trim_start"]
2266 #[cfg(not(feature = "ferrocene_certified"))]
2267 pub fn trim_start(&self) -> &str {
2268 self.trim_start_matches(char::is_whitespace)
2269 }
2270
2271 /// Returns a string slice with trailing whitespace removed.
2272 ///
2273 /// 'Whitespace' is defined according to the terms of the Unicode Derived
2274 /// Core Property `White_Space`, which includes newlines.
2275 ///
2276 /// # Text directionality
2277 ///
2278 /// A string is a sequence of bytes. `end` in this context means the last
2279 /// position of that byte string; for a left-to-right language like English or
2280 /// Russian, this will be right side, and for right-to-left languages like
2281 /// Arabic or Hebrew, this will be the left side.
2282 ///
2283 /// # Examples
2284 ///
2285 /// Basic usage:
2286 ///
2287 /// ```
2288 /// let s = "\n Hello\tworld\t\n";
2289 /// assert_eq!("\n Hello\tworld", s.trim_end());
2290 /// ```
2291 ///
2292 /// Directionality:
2293 ///
2294 /// ```
2295 /// let s = " English ";
2296 /// assert!(Some('h') == s.trim_end().chars().rev().next());
2297 ///
2298 /// let s = " עברית ";
2299 /// assert!(Some('ת') == s.trim_end().chars().rev().next());
2300 /// ```
2301 #[inline]
2302 #[must_use = "this returns the trimmed string as a new slice, \
2303 without modifying the original"]
2304 #[stable(feature = "trim_direction", since = "1.30.0")]
2305 #[rustc_diagnostic_item = "str_trim_end"]
2306 #[cfg(not(feature = "ferrocene_certified"))]
2307 pub fn trim_end(&self) -> &str {
2308 self.trim_end_matches(char::is_whitespace)
2309 }
2310
2311 /// Returns a string slice with leading whitespace removed.
2312 ///
2313 /// 'Whitespace' is defined according to the terms of the Unicode Derived
2314 /// Core Property `White_Space`.
2315 ///
2316 /// # Text directionality
2317 ///
2318 /// A string is a sequence of bytes. 'Left' in this context means the first
2319 /// position of that byte string; for a language like Arabic or Hebrew
2320 /// which are 'right to left' rather than 'left to right', this will be
2321 /// the _right_ side, not the left.
2322 ///
2323 /// # Examples
2324 ///
2325 /// Basic usage:
2326 ///
2327 /// ```
2328 /// let s = " Hello\tworld\t";
2329 ///
2330 /// assert_eq!("Hello\tworld\t", s.trim_left());
2331 /// ```
2332 ///
2333 /// Directionality:
2334 ///
2335 /// ```
2336 /// let s = " English";
2337 /// assert!(Some('E') == s.trim_left().chars().next());
2338 ///
2339 /// let s = " עברית";
2340 /// assert!(Some('ע') == s.trim_left().chars().next());
2341 /// ```
2342 #[must_use = "this returns the trimmed string as a new slice, \
2343 without modifying the original"]
2344 #[inline]
2345 #[stable(feature = "rust1", since = "1.0.0")]
2346 #[deprecated(since = "1.33.0", note = "superseded by `trim_start`", suggestion = "trim_start")]
2347 #[cfg(not(feature = "ferrocene_certified"))]
2348 pub fn trim_left(&self) -> &str {
2349 self.trim_start()
2350 }
2351
2352 /// Returns a string slice with trailing whitespace removed.
2353 ///
2354 /// 'Whitespace' is defined according to the terms of the Unicode Derived
2355 /// Core Property `White_Space`.
2356 ///
2357 /// # Text directionality
2358 ///
2359 /// A string is a sequence of bytes. 'Right' in this context means the last
2360 /// position of that byte string; for a language like Arabic or Hebrew
2361 /// which are 'right to left' rather than 'left to right', this will be
2362 /// the _left_ side, not the right.
2363 ///
2364 /// # Examples
2365 ///
2366 /// Basic usage:
2367 ///
2368 /// ```
2369 /// let s = " Hello\tworld\t";
2370 ///
2371 /// assert_eq!(" Hello\tworld", s.trim_right());
2372 /// ```
2373 ///
2374 /// Directionality:
2375 ///
2376 /// ```
2377 /// let s = "English ";
2378 /// assert!(Some('h') == s.trim_right().chars().rev().next());
2379 ///
2380 /// let s = "עברית ";
2381 /// assert!(Some('ת') == s.trim_right().chars().rev().next());
2382 /// ```
2383 #[must_use = "this returns the trimmed string as a new slice, \
2384 without modifying the original"]
2385 #[inline]
2386 #[stable(feature = "rust1", since = "1.0.0")]
2387 #[deprecated(since = "1.33.0", note = "superseded by `trim_end`", suggestion = "trim_end")]
2388 #[cfg(not(feature = "ferrocene_certified"))]
2389 pub fn trim_right(&self) -> &str {
2390 self.trim_end()
2391 }
2392
2393 /// Returns a string slice with all prefixes and suffixes that match a
2394 /// pattern repeatedly removed.
2395 ///
2396 /// The [pattern] can be a [`char`], a slice of [`char`]s, or a function
2397 /// or closure that determines if a character matches.
2398 ///
2399 /// [`char`]: prim@char
2400 /// [pattern]: self::pattern
2401 ///
2402 /// # Examples
2403 ///
2404 /// Simple patterns:
2405 ///
2406 /// ```
2407 /// assert_eq!("11foo1bar11".trim_matches('1'), "foo1bar");
2408 /// assert_eq!("123foo1bar123".trim_matches(char::is_numeric), "foo1bar");
2409 ///
2410 /// let x: &[_] = &['1', '2'];
2411 /// assert_eq!("12foo1bar12".trim_matches(x), "foo1bar");
2412 /// ```
2413 ///
2414 /// A more complex pattern, using a closure:
2415 ///
2416 /// ```
2417 /// assert_eq!("1foo1barXX".trim_matches(|c| c == '1' || c == 'X'), "foo1bar");
2418 /// ```
2419 #[must_use = "this returns the trimmed string as a new slice, \
2420 without modifying the original"]
2421 #[stable(feature = "rust1", since = "1.0.0")]
2422 #[cfg(not(feature = "ferrocene_certified"))]
2423 pub fn trim_matches<P: Pattern>(&self, pat: P) -> &str
2424 where
2425 for<'a> P::Searcher<'a>: DoubleEndedSearcher<'a>,
2426 {
2427 let mut i = 0;
2428 let mut j = 0;
2429 let mut matcher = pat.into_searcher(self);
2430 if let Some((a, b)) = matcher.next_reject() {
2431 i = a;
2432 j = b; // Remember earliest known match, correct it below if
2433 // last match is different
2434 }
2435 if let Some((_, b)) = matcher.next_reject_back() {
2436 j = b;
2437 }
2438 // SAFETY: `Searcher` is known to return valid indices.
2439 unsafe { self.get_unchecked(i..j) }
2440 }
2441
2442 /// Returns a string slice with all prefixes that match a pattern
2443 /// repeatedly removed.
2444 ///
2445 /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a
2446 /// function or closure that determines if a character matches.
2447 ///
2448 /// [`char`]: prim@char
2449 /// [pattern]: self::pattern
2450 ///
2451 /// # Text directionality
2452 ///
2453 /// A string is a sequence of bytes. `start` in this context means the first
2454 /// position of that byte string; for a left-to-right language like English or
2455 /// Russian, this will be left side, and for right-to-left languages like
2456 /// Arabic or Hebrew, this will be the right side.
2457 ///
2458 /// # Examples
2459 ///
2460 /// ```
2461 /// assert_eq!("11foo1bar11".trim_start_matches('1'), "foo1bar11");
2462 /// assert_eq!("123foo1bar123".trim_start_matches(char::is_numeric), "foo1bar123");
2463 ///
2464 /// let x: &[_] = &['1', '2'];
2465 /// assert_eq!("12foo1bar12".trim_start_matches(x), "foo1bar12");
2466 /// ```
2467 #[must_use = "this returns the trimmed string as a new slice, \
2468 without modifying the original"]
2469 #[stable(feature = "trim_direction", since = "1.30.0")]
2470 #[cfg(not(feature = "ferrocene_certified"))]
2471 pub fn trim_start_matches<P: Pattern>(&self, pat: P) -> &str {
2472 let mut i = self.len();
2473 let mut matcher = pat.into_searcher(self);
2474 if let Some((a, _)) = matcher.next_reject() {
2475 i = a;
2476 }
2477 // SAFETY: `Searcher` is known to return valid indices.
2478 unsafe { self.get_unchecked(i..self.len()) }
2479 }
2480
2481 /// Returns a string slice with the prefix removed.
2482 ///
2483 /// If the string starts with the pattern `prefix`, returns the substring after the prefix,
2484 /// wrapped in `Some`. Unlike [`trim_start_matches`], this method removes the prefix exactly once.
2485 ///
2486 /// If the string does not start with `prefix`, returns `None`.
2487 ///
2488 /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a
2489 /// function or closure that determines if a character matches.
2490 ///
2491 /// [`char`]: prim@char
2492 /// [pattern]: self::pattern
2493 /// [`trim_start_matches`]: Self::trim_start_matches
2494 ///
2495 /// # Examples
2496 ///
2497 /// ```
2498 /// assert_eq!("foo:bar".strip_prefix("foo:"), Some("bar"));
2499 /// assert_eq!("foo:bar".strip_prefix("bar"), None);
2500 /// assert_eq!("foofoo".strip_prefix("foo"), Some("foo"));
2501 /// ```
2502 #[must_use = "this returns the remaining substring as a new slice, \
2503 without modifying the original"]
2504 #[stable(feature = "str_strip", since = "1.45.0")]
2505 #[cfg(not(feature = "ferrocene_certified"))]
2506 pub fn strip_prefix<P: Pattern>(&self, prefix: P) -> Option<&str> {
2507 prefix.strip_prefix_of(self)
2508 }
2509
2510 /// Returns a string slice with the suffix removed.
2511 ///
2512 /// If the string ends with the pattern `suffix`, returns the substring before the suffix,
2513 /// wrapped in `Some`. Unlike [`trim_end_matches`], this method removes the suffix exactly once.
2514 ///
2515 /// If the string does not end with `suffix`, returns `None`.
2516 ///
2517 /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a
2518 /// function or closure that determines if a character matches.
2519 ///
2520 /// [`char`]: prim@char
2521 /// [pattern]: self::pattern
2522 /// [`trim_end_matches`]: Self::trim_end_matches
2523 ///
2524 /// # Examples
2525 ///
2526 /// ```
2527 /// assert_eq!("bar:foo".strip_suffix(":foo"), Some("bar"));
2528 /// assert_eq!("bar:foo".strip_suffix("bar"), None);
2529 /// assert_eq!("foofoo".strip_suffix("foo"), Some("foo"));
2530 /// ```
2531 #[must_use = "this returns the remaining substring as a new slice, \
2532 without modifying the original"]
2533 #[stable(feature = "str_strip", since = "1.45.0")]
2534 #[cfg(not(feature = "ferrocene_certified"))]
2535 pub fn strip_suffix<P: Pattern>(&self, suffix: P) -> Option<&str>
2536 where
2537 for<'a> P::Searcher<'a>: ReverseSearcher<'a>,
2538 {
2539 suffix.strip_suffix_of(self)
2540 }
2541
2542 /// Returns a string slice with the prefix and suffix removed.
2543 ///
2544 /// If the string starts with the pattern `prefix` and ends with the pattern `suffix`, returns
2545 /// the substring after the prefix and before the suffix, wrapped in `Some`.
2546 /// Unlike [`trim_start_matches`] and [`trim_end_matches`], this method removes both the prefix
2547 /// and suffix exactly once.
2548 ///
2549 /// If the string does not start with `prefix` or does not end with `suffix`, returns `None`.
2550 ///
2551 /// Each [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a
2552 /// function or closure that determines if a character matches.
2553 ///
2554 /// [`char`]: prim@char
2555 /// [pattern]: self::pattern
2556 /// [`trim_start_matches`]: Self::trim_start_matches
2557 /// [`trim_end_matches`]: Self::trim_end_matches
2558 ///
2559 /// # Examples
2560 ///
2561 /// ```
2562 /// #![feature(strip_circumfix)]
2563 ///
2564 /// assert_eq!("bar:hello:foo".strip_circumfix("bar:", ":foo"), Some("hello"));
2565 /// assert_eq!("bar:foo".strip_circumfix("foo", "foo"), None);
2566 /// assert_eq!("foo:bar;".strip_circumfix("foo:", ';'), Some("bar"));
2567 /// ```
2568 #[must_use = "this returns the remaining substring as a new slice, \
2569 without modifying the original"]
2570 #[unstable(feature = "strip_circumfix", issue = "147946")]
2571 #[cfg(not(feature = "ferrocene_certified"))]
2572 pub fn strip_circumfix<P: Pattern, S: Pattern>(&self, prefix: P, suffix: S) -> Option<&str>
2573 where
2574 for<'a> S::Searcher<'a>: ReverseSearcher<'a>,
2575 {
2576 self.strip_prefix(prefix)?.strip_suffix(suffix)
2577 }
2578
2579 /// Returns a string slice with the optional prefix removed.
2580 ///
2581 /// If the string starts with the pattern `prefix`, returns the substring after the prefix.
2582 /// Unlike [`strip_prefix`], this method always returns `&str` for easy method chaining,
2583 /// instead of returning [`Option<&str>`].
2584 ///
2585 /// If the string does not start with `prefix`, returns the original string unchanged.
2586 ///
2587 /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a
2588 /// function or closure that determines if a character matches.
2589 ///
2590 /// [`char`]: prim@char
2591 /// [pattern]: self::pattern
2592 /// [`strip_prefix`]: Self::strip_prefix
2593 ///
2594 /// # Examples
2595 ///
2596 /// ```
2597 /// #![feature(trim_prefix_suffix)]
2598 ///
2599 /// // Prefix present - removes it
2600 /// assert_eq!("foo:bar".trim_prefix("foo:"), "bar");
2601 /// assert_eq!("foofoo".trim_prefix("foo"), "foo");
2602 ///
2603 /// // Prefix absent - returns original string
2604 /// assert_eq!("foo:bar".trim_prefix("bar"), "foo:bar");
2605 ///
2606 /// // Method chaining example
2607 /// assert_eq!("<https://example.com/>".trim_prefix('<').trim_suffix('>'), "https://example.com/");
2608 /// ```
2609 #[must_use = "this returns the remaining substring as a new slice, \
2610 without modifying the original"]
2611 #[unstable(feature = "trim_prefix_suffix", issue = "142312")]
2612 #[cfg(not(feature = "ferrocene_certified"))]
2613 pub fn trim_prefix<P: Pattern>(&self, prefix: P) -> &str {
2614 prefix.strip_prefix_of(self).unwrap_or(self)
2615 }
2616
2617 /// Returns a string slice with the optional suffix removed.
2618 ///
2619 /// If the string ends with the pattern `suffix`, returns the substring before the suffix.
2620 /// Unlike [`strip_suffix`], this method always returns `&str` for easy method chaining,
2621 /// instead of returning [`Option<&str>`].
2622 ///
2623 /// If the string does not end with `suffix`, returns the original string unchanged.
2624 ///
2625 /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a
2626 /// function or closure that determines if a character matches.
2627 ///
2628 /// [`char`]: prim@char
2629 /// [pattern]: self::pattern
2630 /// [`strip_suffix`]: Self::strip_suffix
2631 ///
2632 /// # Examples
2633 ///
2634 /// ```
2635 /// #![feature(trim_prefix_suffix)]
2636 ///
2637 /// // Suffix present - removes it
2638 /// assert_eq!("bar:foo".trim_suffix(":foo"), "bar");
2639 /// assert_eq!("foofoo".trim_suffix("foo"), "foo");
2640 ///
2641 /// // Suffix absent - returns original string
2642 /// assert_eq!("bar:foo".trim_suffix("bar"), "bar:foo");
2643 ///
2644 /// // Method chaining example
2645 /// assert_eq!("<https://example.com/>".trim_prefix('<').trim_suffix('>'), "https://example.com/");
2646 /// ```
2647 #[must_use = "this returns the remaining substring as a new slice, \
2648 without modifying the original"]
2649 #[unstable(feature = "trim_prefix_suffix", issue = "142312")]
2650 #[cfg(not(feature = "ferrocene_certified"))]
2651 pub fn trim_suffix<P: Pattern>(&self, suffix: P) -> &str
2652 where
2653 for<'a> P::Searcher<'a>: ReverseSearcher<'a>,
2654 {
2655 suffix.strip_suffix_of(self).unwrap_or(self)
2656 }
2657
2658 /// Returns a string slice with all suffixes that match a pattern
2659 /// repeatedly removed.
2660 ///
2661 /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a
2662 /// function or closure that determines if a character matches.
2663 ///
2664 /// [`char`]: prim@char
2665 /// [pattern]: self::pattern
2666 ///
2667 /// # Text directionality
2668 ///
2669 /// A string is a sequence of bytes. `end` in this context means the last
2670 /// position of that byte string; for a left-to-right language like English or
2671 /// Russian, this will be right side, and for right-to-left languages like
2672 /// Arabic or Hebrew, this will be the left side.
2673 ///
2674 /// # Examples
2675 ///
2676 /// Simple patterns:
2677 ///
2678 /// ```
2679 /// assert_eq!("11foo1bar11".trim_end_matches('1'), "11foo1bar");
2680 /// assert_eq!("123foo1bar123".trim_end_matches(char::is_numeric), "123foo1bar");
2681 ///
2682 /// let x: &[_] = &['1', '2'];
2683 /// assert_eq!("12foo1bar12".trim_end_matches(x), "12foo1bar");
2684 /// ```
2685 ///
2686 /// A more complex pattern, using a closure:
2687 ///
2688 /// ```
2689 /// assert_eq!("1fooX".trim_end_matches(|c| c == '1' || c == 'X'), "1foo");
2690 /// ```
2691 #[must_use = "this returns the trimmed string as a new slice, \
2692 without modifying the original"]
2693 #[stable(feature = "trim_direction", since = "1.30.0")]
2694 #[cfg(not(feature = "ferrocene_certified"))]
2695 pub fn trim_end_matches<P: Pattern>(&self, pat: P) -> &str
2696 where
2697 for<'a> P::Searcher<'a>: ReverseSearcher<'a>,
2698 {
2699 let mut j = 0;
2700 let mut matcher = pat.into_searcher(self);
2701 if let Some((_, b)) = matcher.next_reject_back() {
2702 j = b;
2703 }
2704 // SAFETY: `Searcher` is known to return valid indices.
2705 unsafe { self.get_unchecked(0..j) }
2706 }
2707
2708 /// Returns a string slice with all prefixes that match a pattern
2709 /// repeatedly removed.
2710 ///
2711 /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a
2712 /// function or closure that determines if a character matches.
2713 ///
2714 /// [`char`]: prim@char
2715 /// [pattern]: self::pattern
2716 ///
2717 /// # Text directionality
2718 ///
2719 /// A string is a sequence of bytes. 'Left' in this context means the first
2720 /// position of that byte string; for a language like Arabic or Hebrew
2721 /// which are 'right to left' rather than 'left to right', this will be
2722 /// the _right_ side, not the left.
2723 ///
2724 /// # Examples
2725 ///
2726 /// ```
2727 /// assert_eq!("11foo1bar11".trim_left_matches('1'), "foo1bar11");
2728 /// assert_eq!("123foo1bar123".trim_left_matches(char::is_numeric), "foo1bar123");
2729 ///
2730 /// let x: &[_] = &['1', '2'];
2731 /// assert_eq!("12foo1bar12".trim_left_matches(x), "foo1bar12");
2732 /// ```
2733 #[stable(feature = "rust1", since = "1.0.0")]
2734 #[deprecated(
2735 since = "1.33.0",
2736 note = "superseded by `trim_start_matches`",
2737 suggestion = "trim_start_matches"
2738 )]
2739 #[cfg(not(feature = "ferrocene_certified"))]
2740 pub fn trim_left_matches<P: Pattern>(&self, pat: P) -> &str {
2741 self.trim_start_matches(pat)
2742 }
2743
2744 /// Returns a string slice with all suffixes that match a pattern
2745 /// repeatedly removed.
2746 ///
2747 /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a
2748 /// function or closure that determines if a character matches.
2749 ///
2750 /// [`char`]: prim@char
2751 /// [pattern]: self::pattern
2752 ///
2753 /// # Text directionality
2754 ///
2755 /// A string is a sequence of bytes. 'Right' in this context means the last
2756 /// position of that byte string; for a language like Arabic or Hebrew
2757 /// which are 'right to left' rather than 'left to right', this will be
2758 /// the _left_ side, not the right.
2759 ///
2760 /// # Examples
2761 ///
2762 /// Simple patterns:
2763 ///
2764 /// ```
2765 /// assert_eq!("11foo1bar11".trim_right_matches('1'), "11foo1bar");
2766 /// assert_eq!("123foo1bar123".trim_right_matches(char::is_numeric), "123foo1bar");
2767 ///
2768 /// let x: &[_] = &['1', '2'];
2769 /// assert_eq!("12foo1bar12".trim_right_matches(x), "12foo1bar");
2770 /// ```
2771 ///
2772 /// A more complex pattern, using a closure:
2773 ///
2774 /// ```
2775 /// assert_eq!("1fooX".trim_right_matches(|c| c == '1' || c == 'X'), "1foo");
2776 /// ```
2777 #[stable(feature = "rust1", since = "1.0.0")]
2778 #[deprecated(
2779 since = "1.33.0",
2780 note = "superseded by `trim_end_matches`",
2781 suggestion = "trim_end_matches"
2782 )]
2783 #[cfg(not(feature = "ferrocene_certified"))]
2784 pub fn trim_right_matches<P: Pattern>(&self, pat: P) -> &str
2785 where
2786 for<'a> P::Searcher<'a>: ReverseSearcher<'a>,
2787 {
2788 self.trim_end_matches(pat)
2789 }
2790
2791 /// Parses this string slice into another type.
2792 ///
2793 /// Because `parse` is so general, it can cause problems with type
2794 /// inference. As such, `parse` is one of the few times you'll see
2795 /// the syntax affectionately known as the 'turbofish': `::<>`. This
2796 /// helps the inference algorithm understand specifically which type
2797 /// you're trying to parse into.
2798 ///
2799 /// `parse` can parse into any type that implements the [`FromStr`] trait.
2800 ///
2801 /// # Errors
2802 ///
2803 /// Will return [`Err`] if it's not possible to parse this string slice into
2804 /// the desired type.
2805 ///
2806 /// [`Err`]: FromStr::Err
2807 ///
2808 /// # Examples
2809 ///
2810 /// Basic usage:
2811 ///
2812 /// ```
2813 /// let four: u32 = "4".parse().unwrap();
2814 ///
2815 /// assert_eq!(4, four);
2816 /// ```
2817 ///
2818 /// Using the 'turbofish' instead of annotating `four`:
2819 ///
2820 /// ```
2821 /// let four = "4".parse::<u32>();
2822 ///
2823 /// assert_eq!(Ok(4), four);
2824 /// ```
2825 ///
2826 /// Failing to parse:
2827 ///
2828 /// ```
2829 /// let nope = "j".parse::<u32>();
2830 ///
2831 /// assert!(nope.is_err());
2832 /// ```
2833 #[inline]
2834 #[stable(feature = "rust1", since = "1.0.0")]
2835 pub fn parse<F: FromStr>(&self) -> Result<F, F::Err> {
2836 FromStr::from_str(self)
2837 }
2838
2839 /// Checks if all characters in this string are within the ASCII range.
2840 ///
2841 /// An empty string returns `true`.
2842 ///
2843 /// # Examples
2844 ///
2845 /// ```
2846 /// let ascii = "hello!\n";
2847 /// let non_ascii = "Grüße, Jürgen ❤";
2848 ///
2849 /// assert!(ascii.is_ascii());
2850 /// assert!(!non_ascii.is_ascii());
2851 /// ```
2852 #[stable(feature = "ascii_methods_on_intrinsics", since = "1.23.0")]
2853 #[rustc_const_stable(feature = "const_slice_is_ascii", since = "1.74.0")]
2854 #[must_use]
2855 #[inline]
2856 #[cfg(not(feature = "ferrocene_certified"))]
2857 pub const fn is_ascii(&self) -> bool {
2858 // We can treat each byte as character here: all multibyte characters
2859 // start with a byte that is not in the ASCII range, so we will stop
2860 // there already.
2861 self.as_bytes().is_ascii()
2862 }
2863
2864 /// If this string slice [`is_ascii`](Self::is_ascii), returns it as a slice
2865 /// of [ASCII characters](`ascii::Char`), otherwise returns `None`.
2866 #[unstable(feature = "ascii_char", issue = "110998")]
2867 #[must_use]
2868 #[inline]
2869 #[cfg(not(feature = "ferrocene_certified"))]
2870 pub const fn as_ascii(&self) -> Option<&[ascii::Char]> {
2871 // Like in `is_ascii`, we can work on the bytes directly.
2872 self.as_bytes().as_ascii()
2873 }
2874
2875 /// Converts this string slice into a slice of [ASCII characters](ascii::Char),
2876 /// without checking whether they are valid.
2877 ///
2878 /// # Safety
2879 ///
2880 /// Every character in this string must be ASCII, or else this is UB.
2881 #[unstable(feature = "ascii_char", issue = "110998")]
2882 #[must_use]
2883 #[inline]
2884 #[cfg(not(feature = "ferrocene_certified"))]
2885 pub const unsafe fn as_ascii_unchecked(&self) -> &[ascii::Char] {
2886 assert_unsafe_precondition!(
2887 check_library_ub,
2888 "as_ascii_unchecked requires that the string is valid ASCII",
2889 (it: &str = self) => it.is_ascii()
2890 );
2891
2892 // SAFETY: the caller promised that every byte of this string slice
2893 // is ASCII.
2894 unsafe { self.as_bytes().as_ascii_unchecked() }
2895 }
2896
2897 /// Checks that two strings are an ASCII case-insensitive match.
2898 ///
2899 /// Same as `to_ascii_lowercase(a) == to_ascii_lowercase(b)`,
2900 /// but without allocating and copying temporaries.
2901 ///
2902 /// # Examples
2903 ///
2904 /// ```
2905 /// assert!("Ferris".eq_ignore_ascii_case("FERRIS"));
2906 /// assert!("Ferrös".eq_ignore_ascii_case("FERRöS"));
2907 /// assert!(!"Ferrös".eq_ignore_ascii_case("FERRÖS"));
2908 /// ```
2909 #[stable(feature = "ascii_methods_on_intrinsics", since = "1.23.0")]
2910 #[rustc_const_stable(feature = "const_eq_ignore_ascii_case", since = "1.89.0")]
2911 #[must_use]
2912 #[inline]
2913 #[cfg(not(feature = "ferrocene_certified"))]
2914 pub const fn eq_ignore_ascii_case(&self, other: &str) -> bool {
2915 self.as_bytes().eq_ignore_ascii_case(other.as_bytes())
2916 }
2917
2918 /// Converts this string to its ASCII upper case equivalent in-place.
2919 ///
2920 /// ASCII letters 'a' to 'z' are mapped to 'A' to 'Z',
2921 /// but non-ASCII letters are unchanged.
2922 ///
2923 /// To return a new uppercased value without modifying the existing one, use
2924 /// [`to_ascii_uppercase()`].
2925 ///
2926 /// [`to_ascii_uppercase()`]: #method.to_ascii_uppercase
2927 ///
2928 /// # Examples
2929 ///
2930 /// ```
2931 /// let mut s = String::from("Grüße, Jürgen ❤");
2932 ///
2933 /// s.make_ascii_uppercase();
2934 ///
2935 /// assert_eq!("GRüßE, JüRGEN ❤", s);
2936 /// ```
2937 #[stable(feature = "ascii_methods_on_intrinsics", since = "1.23.0")]
2938 #[rustc_const_stable(feature = "const_make_ascii", since = "1.84.0")]
2939 #[inline]
2940 #[cfg(not(feature = "ferrocene_certified"))]
2941 pub const fn make_ascii_uppercase(&mut self) {
2942 // SAFETY: changing ASCII letters only does not invalidate UTF-8.
2943 let me = unsafe { self.as_bytes_mut() };
2944 me.make_ascii_uppercase()
2945 }
2946
2947 /// Converts this string to its ASCII lower case equivalent in-place.
2948 ///
2949 /// ASCII letters 'A' to 'Z' are mapped to 'a' to 'z',
2950 /// but non-ASCII letters are unchanged.
2951 ///
2952 /// To return a new lowercased value without modifying the existing one, use
2953 /// [`to_ascii_lowercase()`].
2954 ///
2955 /// [`to_ascii_lowercase()`]: #method.to_ascii_lowercase
2956 ///
2957 /// # Examples
2958 ///
2959 /// ```
2960 /// let mut s = String::from("GRÜßE, JÜRGEN ❤");
2961 ///
2962 /// s.make_ascii_lowercase();
2963 ///
2964 /// assert_eq!("grÜße, jÜrgen ❤", s);
2965 /// ```
2966 #[stable(feature = "ascii_methods_on_intrinsics", since = "1.23.0")]
2967 #[rustc_const_stable(feature = "const_make_ascii", since = "1.84.0")]
2968 #[inline]
2969 #[cfg(not(feature = "ferrocene_certified"))]
2970 pub const fn make_ascii_lowercase(&mut self) {
2971 // SAFETY: changing ASCII letters only does not invalidate UTF-8.
2972 let me = unsafe { self.as_bytes_mut() };
2973 me.make_ascii_lowercase()
2974 }
2975
2976 /// Returns a string slice with leading ASCII whitespace removed.
2977 ///
2978 /// 'Whitespace' refers to the definition used by
2979 /// [`u8::is_ascii_whitespace`].
2980 ///
2981 /// [`u8::is_ascii_whitespace`]: u8::is_ascii_whitespace
2982 ///
2983 /// # Examples
2984 ///
2985 /// ```
2986 /// assert_eq!(" \t \u{3000}hello world\n".trim_ascii_start(), "\u{3000}hello world\n");
2987 /// assert_eq!(" ".trim_ascii_start(), "");
2988 /// assert_eq!("".trim_ascii_start(), "");
2989 /// ```
2990 #[must_use = "this returns the trimmed string as a new slice, \
2991 without modifying the original"]
2992 #[stable(feature = "byte_slice_trim_ascii", since = "1.80.0")]
2993 #[rustc_const_stable(feature = "byte_slice_trim_ascii", since = "1.80.0")]
2994 #[inline]
2995 #[cfg(not(feature = "ferrocene_certified"))]
2996 pub const fn trim_ascii_start(&self) -> &str {
2997 // SAFETY: Removing ASCII characters from a `&str` does not invalidate
2998 // UTF-8.
2999 unsafe { core::str::from_utf8_unchecked(self.as_bytes().trim_ascii_start()) }
3000 }
3001
3002 /// Returns a string slice with trailing ASCII whitespace removed.
3003 ///
3004 /// 'Whitespace' refers to the definition used by
3005 /// [`u8::is_ascii_whitespace`].
3006 ///
3007 /// [`u8::is_ascii_whitespace`]: u8::is_ascii_whitespace
3008 ///
3009 /// # Examples
3010 ///
3011 /// ```
3012 /// assert_eq!("\r hello world\u{3000}\n ".trim_ascii_end(), "\r hello world\u{3000}");
3013 /// assert_eq!(" ".trim_ascii_end(), "");
3014 /// assert_eq!("".trim_ascii_end(), "");
3015 /// ```
3016 #[must_use = "this returns the trimmed string as a new slice, \
3017 without modifying the original"]
3018 #[stable(feature = "byte_slice_trim_ascii", since = "1.80.0")]
3019 #[rustc_const_stable(feature = "byte_slice_trim_ascii", since = "1.80.0")]
3020 #[inline]
3021 #[cfg(not(feature = "ferrocene_certified"))]
3022 pub const fn trim_ascii_end(&self) -> &str {
3023 // SAFETY: Removing ASCII characters from a `&str` does not invalidate
3024 // UTF-8.
3025 unsafe { core::str::from_utf8_unchecked(self.as_bytes().trim_ascii_end()) }
3026 }
3027
3028 /// Returns a string slice with leading and trailing ASCII whitespace
3029 /// removed.
3030 ///
3031 /// 'Whitespace' refers to the definition used by
3032 /// [`u8::is_ascii_whitespace`].
3033 ///
3034 /// [`u8::is_ascii_whitespace`]: u8::is_ascii_whitespace
3035 ///
3036 /// # Examples
3037 ///
3038 /// ```
3039 /// assert_eq!("\r hello world\n ".trim_ascii(), "hello world");
3040 /// assert_eq!(" ".trim_ascii(), "");
3041 /// assert_eq!("".trim_ascii(), "");
3042 /// ```
3043 #[must_use = "this returns the trimmed string as a new slice, \
3044 without modifying the original"]
3045 #[stable(feature = "byte_slice_trim_ascii", since = "1.80.0")]
3046 #[rustc_const_stable(feature = "byte_slice_trim_ascii", since = "1.80.0")]
3047 #[inline]
3048 #[cfg(not(feature = "ferrocene_certified"))]
3049 pub const fn trim_ascii(&self) -> &str {
3050 // SAFETY: Removing ASCII characters from a `&str` does not invalidate
3051 // UTF-8.
3052 unsafe { core::str::from_utf8_unchecked(self.as_bytes().trim_ascii()) }
3053 }
3054
3055 /// Returns an iterator that escapes each char in `self` with [`char::escape_debug`].
3056 ///
3057 /// Note: only extended grapheme codepoints that begin the string will be
3058 /// escaped.
3059 ///
3060 /// # Examples
3061 ///
3062 /// As an iterator:
3063 ///
3064 /// ```
3065 /// for c in "❤\n!".escape_debug() {
3066 /// print!("{c}");
3067 /// }
3068 /// println!();
3069 /// ```
3070 ///
3071 /// Using `println!` directly:
3072 ///
3073 /// ```
3074 /// println!("{}", "❤\n!".escape_debug());
3075 /// ```
3076 ///
3077 ///
3078 /// Both are equivalent to:
3079 ///
3080 /// ```
3081 /// println!("❤\\n!");
3082 /// ```
3083 ///
3084 /// Using `to_string`:
3085 ///
3086 /// ```
3087 /// assert_eq!("❤\n!".escape_debug().to_string(), "❤\\n!");
3088 /// ```
3089 #[must_use = "this returns the escaped string as an iterator, \
3090 without modifying the original"]
3091 #[stable(feature = "str_escape", since = "1.34.0")]
3092 #[cfg(not(feature = "ferrocene_certified"))]
3093 pub fn escape_debug(&self) -> EscapeDebug<'_> {
3094 let mut chars = self.chars();
3095 EscapeDebug {
3096 inner: chars
3097 .next()
3098 .map(|first| first.escape_debug_ext(EscapeDebugExtArgs::ESCAPE_ALL))
3099 .into_iter()
3100 .flatten()
3101 .chain(chars.flat_map(CharEscapeDebugContinue)),
3102 }
3103 }
3104
3105 /// Returns an iterator that escapes each char in `self` with [`char::escape_default`].
3106 ///
3107 /// # Examples
3108 ///
3109 /// As an iterator:
3110 ///
3111 /// ```
3112 /// for c in "❤\n!".escape_default() {
3113 /// print!("{c}");
3114 /// }
3115 /// println!();
3116 /// ```
3117 ///
3118 /// Using `println!` directly:
3119 ///
3120 /// ```
3121 /// println!("{}", "❤\n!".escape_default());
3122 /// ```
3123 ///
3124 ///
3125 /// Both are equivalent to:
3126 ///
3127 /// ```
3128 /// println!("\\u{{2764}}\\n!");
3129 /// ```
3130 ///
3131 /// Using `to_string`:
3132 ///
3133 /// ```
3134 /// assert_eq!("❤\n!".escape_default().to_string(), "\\u{2764}\\n!");
3135 /// ```
3136 #[must_use = "this returns the escaped string as an iterator, \
3137 without modifying the original"]
3138 #[stable(feature = "str_escape", since = "1.34.0")]
3139 #[cfg(not(feature = "ferrocene_certified"))]
3140 pub fn escape_default(&self) -> EscapeDefault<'_> {
3141 EscapeDefault { inner: self.chars().flat_map(CharEscapeDefault) }
3142 }
3143
3144 /// Returns an iterator that escapes each char in `self` with [`char::escape_unicode`].
3145 ///
3146 /// # Examples
3147 ///
3148 /// As an iterator:
3149 ///
3150 /// ```
3151 /// for c in "❤\n!".escape_unicode() {
3152 /// print!("{c}");
3153 /// }
3154 /// println!();
3155 /// ```
3156 ///
3157 /// Using `println!` directly:
3158 ///
3159 /// ```
3160 /// println!("{}", "❤\n!".escape_unicode());
3161 /// ```
3162 ///
3163 ///
3164 /// Both are equivalent to:
3165 ///
3166 /// ```
3167 /// println!("\\u{{2764}}\\u{{a}}\\u{{21}}");
3168 /// ```
3169 ///
3170 /// Using `to_string`:
3171 ///
3172 /// ```
3173 /// assert_eq!("❤\n!".escape_unicode().to_string(), "\\u{2764}\\u{a}\\u{21}");
3174 /// ```
3175 #[must_use = "this returns the escaped string as an iterator, \
3176 without modifying the original"]
3177 #[stable(feature = "str_escape", since = "1.34.0")]
3178 #[cfg(not(feature = "ferrocene_certified"))]
3179 pub fn escape_unicode(&self) -> EscapeUnicode<'_> {
3180 EscapeUnicode { inner: self.chars().flat_map(CharEscapeUnicode) }
3181 }
3182
3183 /// Returns the range that a substring points to.
3184 ///
3185 /// Returns `None` if `substr` does not point within `self`.
3186 ///
3187 /// Unlike [`str::find`], **this does not search through the string**.
3188 /// Instead, it uses pointer arithmetic to find where in the string
3189 /// `substr` is derived from.
3190 ///
3191 /// This is useful for extending [`str::split`] and similar methods.
3192 ///
3193 /// Note that this method may return false positives (typically either
3194 /// `Some(0..0)` or `Some(self.len()..self.len())`) if `substr` is a
3195 /// zero-length `str` that points at the beginning or end of another,
3196 /// independent, `str`.
3197 ///
3198 /// # Examples
3199 /// ```
3200 /// #![feature(substr_range)]
3201 ///
3202 /// let data = "a, b, b, a";
3203 /// let mut iter = data.split(", ").map(|s| data.substr_range(s).unwrap());
3204 ///
3205 /// assert_eq!(iter.next(), Some(0..1));
3206 /// assert_eq!(iter.next(), Some(3..4));
3207 /// assert_eq!(iter.next(), Some(6..7));
3208 /// assert_eq!(iter.next(), Some(9..10));
3209 /// ```
3210 #[must_use]
3211 #[unstable(feature = "substr_range", issue = "126769")]
3212 #[cfg(not(feature = "ferrocene_certified"))]
3213 pub fn substr_range(&self, substr: &str) -> Option<Range<usize>> {
3214 self.as_bytes().subslice_range(substr.as_bytes())
3215 }
3216
3217 /// Returns the same string as a string slice `&str`.
3218 ///
3219 /// This method is redundant when used directly on `&str`, but
3220 /// it helps dereferencing other string-like types to string slices,
3221 /// for example references to `Box<str>` or `Arc<str>`.
3222 #[inline]
3223 #[unstable(feature = "str_as_str", issue = "130366")]
3224 pub const fn as_str(&self) -> &str {
3225 self
3226 }
3227}
3228
3229#[stable(feature = "rust1", since = "1.0.0")]
3230#[rustc_const_unstable(feature = "const_convert", issue = "143773")]
3231impl const AsRef<[u8]> for str {
3232 #[inline]
3233 fn as_ref(&self) -> &[u8] {
3234 self.as_bytes()
3235 }
3236}
3237
3238#[stable(feature = "rust1", since = "1.0.0")]
3239#[rustc_const_unstable(feature = "const_default", issue = "143894")]
3240impl const Default for &str {
3241 /// Creates an empty str
3242 #[inline]
3243 fn default() -> Self {
3244 ""
3245 }
3246}
3247
3248#[stable(feature = "default_mut_str", since = "1.28.0")]
3249#[rustc_const_unstable(feature = "const_default", issue = "143894")]
3250#[cfg(not(feature = "ferrocene_certified"))]
3251impl const Default for &mut str {
3252 /// Creates an empty mutable str
3253 #[inline]
3254 fn default() -> Self {
3255 // SAFETY: The empty string is valid UTF-8.
3256 unsafe { from_utf8_unchecked_mut(&mut []) }
3257 }
3258}
3259
3260#[cfg(not(feature = "ferrocene_certified"))]
3261impl_fn_for_zst! {
3262 /// A nameable, cloneable fn type
3263 #[derive(Clone)]
3264 struct LinesMap impl<'a> Fn = |line: &'a str| -> &'a str {
3265 let Some(line) = line.strip_suffix('\n') else { return line };
3266 let Some(line) = line.strip_suffix('\r') else { return line };
3267 line
3268 };
3269
3270 #[derive(Clone)]
3271 struct CharEscapeDebugContinue impl Fn = |c: char| -> char::EscapeDebug {
3272 c.escape_debug_ext(EscapeDebugExtArgs {
3273 escape_grapheme_extended: false,
3274 escape_single_quote: true,
3275 escape_double_quote: true
3276 })
3277 };
3278
3279 #[derive(Clone)]
3280 struct CharEscapeUnicode impl Fn = |c: char| -> char::EscapeUnicode {
3281 c.escape_unicode()
3282 };
3283 #[derive(Clone)]
3284 struct CharEscapeDefault impl Fn = |c: char| -> char::EscapeDefault {
3285 c.escape_default()
3286 };
3287
3288 #[derive(Clone)]
3289 struct IsWhitespace impl Fn = |c: char| -> bool {
3290 c.is_whitespace()
3291 };
3292
3293 #[derive(Clone)]
3294 struct IsAsciiWhitespace impl Fn = |byte: &u8| -> bool {
3295 byte.is_ascii_whitespace()
3296 };
3297
3298 #[derive(Clone)]
3299 struct IsNotEmpty impl<'a, 'b> Fn = |s: &'a &'b str| -> bool {
3300 !s.is_empty()
3301 };
3302
3303 #[derive(Clone)]
3304 struct BytesIsNotEmpty impl<'a, 'b> Fn = |s: &'a &'b [u8]| -> bool {
3305 !s.is_empty()
3306 };
3307
3308 #[derive(Clone)]
3309 struct UnsafeBytesToStr impl<'a> Fn = |bytes: &'a [u8]| -> &'a str {
3310 // SAFETY: not safe
3311 unsafe { from_utf8_unchecked(bytes) }
3312 };
3313}
3314
3315// This is required to make `impl From<&str> for Box<dyn Error>` and `impl<E> From<E> for Box<dyn Error>` not overlap.
3316#[stable(feature = "error_in_core_neg_impl", since = "1.65.0")]
3317#[cfg(not(feature = "ferrocene_certified"))]
3318impl !crate::error::Error for &str {}