core/sync/
atomic.rs

1//! Atomic types
2//!
3//! Atomic types provide primitive shared-memory communication between
4//! threads, and are the building blocks of other concurrent
5//! types.
6//!
7//! This module defines atomic versions of a select number of primitive
8//! types, including [`AtomicBool`], [`AtomicIsize`], [`AtomicUsize`],
9//! [`AtomicI8`], [`AtomicU16`], etc.
10//! Atomic types present operations that, when used correctly, synchronize
11//! updates between threads.
12//!
13//! Atomic variables are safe to share between threads (they implement [`Sync`])
14//! but they do not themselves provide the mechanism for sharing and follow the
15//! [threading model](../../../std/thread/index.html#the-threading-model) of Rust.
16//! The most common way to share an atomic variable is to put it into an [`Arc`][arc] (an
17//! atomically-reference-counted shared pointer).
18//!
19//! [arc]: ../../../std/sync/struct.Arc.html
20//!
21//! Atomic types may be stored in static variables, initialized using
22//! the constant initializers like [`AtomicBool::new`]. Atomic statics
23//! are often used for lazy global initialization.
24//!
25//! ## Memory model for atomic accesses
26//!
27//! Rust atomics currently follow the same rules as [C++20 atomics][cpp], specifically the rules
28//! from the [`intro.races`][cpp-intro.races] section, without the "consume" memory ordering. Since
29//! C++ uses an object-based memory model whereas Rust is access-based, a bit of translation work
30//! has to be done to apply the C++ rules to Rust: whenever C++ talks about "the value of an
31//! object", we understand that to mean the resulting bytes obtained when doing a read. When the C++
32//! standard talks about "the value of an atomic object", this refers to the result of doing an
33//! atomic load (via the operations provided in this module). A "modification of an atomic object"
34//! refers to an atomic store.
35//!
36//! The end result is *almost* equivalent to saying that creating a *shared reference* to one of the
37//! Rust atomic types corresponds to creating an `atomic_ref` in C++, with the `atomic_ref` being
38//! destroyed when the lifetime of the shared reference ends. The main difference is that Rust
39//! permits concurrent atomic and non-atomic reads to the same memory as those cause no issue in the
40//! C++ memory model, they are just forbidden in C++ because memory is partitioned into "atomic
41//! objects" and "non-atomic objects" (with `atomic_ref` temporarily converting a non-atomic object
42//! into an atomic object).
43//!
44//! The most important aspect of this model is that *data races* are undefined behavior. A data race
45//! is defined as conflicting non-synchronized accesses where at least one of the accesses is
46//! non-atomic. Here, accesses are *conflicting* if they affect overlapping regions of memory and at
47//! least one of them is a write. (A `compare_exchange` or `compare_exchange_weak` that does not
48//! succeed is not considered a write.) They are *non-synchronized* if neither of them
49//! *happens-before* the other, according to the happens-before order of the memory model.
50//!
51//! The other possible cause of undefined behavior in the memory model are mixed-size accesses: Rust
52//! inherits the C++ limitation that non-synchronized conflicting atomic accesses may not partially
53//! overlap. In other words, every pair of non-synchronized atomic accesses must be either disjoint,
54//! access the exact same memory (including using the same access size), or both be reads.
55//!
56//! Each atomic access takes an [`Ordering`] which defines how the operation interacts with the
57//! happens-before order. These orderings behave the same as the corresponding [C++20 atomic
58//! orderings][cpp_memory_order]. For more information, see the [nomicon].
59//!
60//! [cpp]: https://en.cppreference.com/w/cpp/atomic
61//! [cpp-intro.races]: https://timsong-cpp.github.io/cppwp/n4868/intro.multithread#intro.races
62//! [cpp_memory_order]: https://en.cppreference.com/w/cpp/atomic/memory_order
63//! [nomicon]: ../../../nomicon/atomics.html
64//!
65//! ```rust,no_run undefined_behavior
66//! use std::sync::atomic::{AtomicU16, AtomicU8, Ordering};
67//! use std::mem::transmute;
68//! use std::thread;
69//!
70//! let atomic = AtomicU16::new(0);
71//!
72//! thread::scope(|s| {
73//!     // This is UB: conflicting non-synchronized accesses, at least one of which is non-atomic.
74//!     s.spawn(|| atomic.store(1, Ordering::Relaxed)); // atomic store
75//!     s.spawn(|| unsafe { atomic.as_ptr().write(2) }); // non-atomic write
76//! });
77//!
78//! thread::scope(|s| {
79//!     // This is fine: the accesses do not conflict (as none of them performs any modification).
80//!     // In C++ this would be disallowed since creating an `atomic_ref` precludes
81//!     // further non-atomic accesses, but Rust does not have that limitation.
82//!     s.spawn(|| atomic.load(Ordering::Relaxed)); // atomic load
83//!     s.spawn(|| unsafe { atomic.as_ptr().read() }); // non-atomic read
84//! });
85//!
86//! thread::scope(|s| {
87//!     // This is fine: `join` synchronizes the code in a way such that the atomic
88//!     // store happens-before the non-atomic write.
89//!     let handle = s.spawn(|| atomic.store(1, Ordering::Relaxed)); // atomic store
90//!     handle.join().expect("thread won't panic"); // synchronize
91//!     s.spawn(|| unsafe { atomic.as_ptr().write(2) }); // non-atomic write
92//! });
93//!
94//! thread::scope(|s| {
95//!     // This is UB: non-synchronized conflicting differently-sized atomic accesses.
96//!     s.spawn(|| atomic.store(1, Ordering::Relaxed));
97//!     s.spawn(|| unsafe {
98//!         let differently_sized = transmute::<&AtomicU16, &AtomicU8>(&atomic);
99//!         differently_sized.store(2, Ordering::Relaxed);
100//!     });
101//! });
102//!
103//! thread::scope(|s| {
104//!     // This is fine: `join` synchronizes the code in a way such that
105//!     // the 1-byte store happens-before the 2-byte store.
106//!     let handle = s.spawn(|| atomic.store(1, Ordering::Relaxed));
107//!     handle.join().expect("thread won't panic");
108//!     s.spawn(|| unsafe {
109//!         let differently_sized = transmute::<&AtomicU16, &AtomicU8>(&atomic);
110//!         differently_sized.store(2, Ordering::Relaxed);
111//!     });
112//! });
113//! ```
114//!
115//! # Portability
116//!
117//! All atomic types in this module are guaranteed to be [lock-free] if they're
118//! available. This means they don't internally acquire a global mutex. Atomic
119//! types and operations are not guaranteed to be wait-free. This means that
120//! operations like `fetch_or` may be implemented with a compare-and-swap loop.
121//!
122//! Atomic operations may be implemented at the instruction layer with
123//! larger-size atomics. For example some platforms use 4-byte atomic
124//! instructions to implement `AtomicI8`. Note that this emulation should not
125//! have an impact on correctness of code, it's just something to be aware of.
126//!
127//! The atomic types in this module might not be available on all platforms. The
128//! atomic types here are all widely available, however, and can generally be
129//! relied upon existing. Some notable exceptions are:
130//!
131//! * PowerPC and MIPS platforms with 32-bit pointers do not have `AtomicU64` or
132//!   `AtomicI64` types.
133//! * ARM platforms like `armv5te` that aren't for Linux only provide `load`
134//!   and `store` operations, and do not support Compare and Swap (CAS)
135//!   operations, such as `swap`, `fetch_add`, etc. Additionally on Linux,
136//!   these CAS operations are implemented via [operating system support], which
137//!   may come with a performance penalty.
138//! * ARM targets with `thumbv6m` only provide `load` and `store` operations,
139//!   and do not support Compare and Swap (CAS) operations, such as `swap`,
140//!   `fetch_add`, etc.
141//!
142//! [operating system support]: https://www.kernel.org/doc/Documentation/arm/kernel_user_helpers.txt
143//!
144//! Note that future platforms may be added that also do not have support for
145//! some atomic operations. Maximally portable code will want to be careful
146//! about which atomic types are used. `AtomicUsize` and `AtomicIsize` are
147//! generally the most portable, but even then they're not available everywhere.
148//! For reference, the `std` library requires `AtomicBool`s and pointer-sized atomics, although
149//! `core` does not.
150//!
151//! The `#[cfg(target_has_atomic)]` attribute can be used to conditionally
152//! compile based on the target's supported bit widths. It is a key-value
153//! option set for each supported size, with values "8", "16", "32", "64",
154//! "128", and "ptr" for pointer-sized atomics.
155//!
156//! [lock-free]: https://en.wikipedia.org/wiki/Non-blocking_algorithm
157//!
158//! # Atomic accesses to read-only memory
159//!
160//! In general, *all* atomic accesses on read-only memory are undefined behavior. For instance, attempting
161//! to do a `compare_exchange` that will definitely fail (making it conceptually a read-only
162//! operation) can still cause a segmentation fault if the underlying memory page is mapped read-only. Since
163//! atomic `load`s might be implemented using compare-exchange operations, even a `load` can fault
164//! on read-only memory.
165//!
166//! For the purpose of this section, "read-only memory" is defined as memory that is read-only in
167//! the underlying target, i.e., the pages are mapped with a read-only flag and any attempt to write
168//! will cause a page fault. In particular, an `&u128` reference that points to memory that is
169//! read-write mapped is *not* considered to point to "read-only memory". In Rust, almost all memory
170//! is read-write; the only exceptions are memory created by `const` items or `static` items without
171//! interior mutability, and memory that was specifically marked as read-only by the operating
172//! system via platform-specific APIs.
173//!
174//! As an exception from the general rule stated above, "sufficiently small" atomic loads with
175//! `Ordering::Relaxed` are implemented in a way that works on read-only memory, and are hence not
176//! undefined behavior. The exact size limit for what makes a load "sufficiently small" varies
177//! depending on the target:
178//!
179//! | `target_arch` | Size limit |
180//! |---------------|---------|
181//! | `x86`, `arm`, `loongarch32`, `mips`, `mips32r6`, `powerpc`, `riscv32`, `sparc`, `hexagon` | 4 bytes |
182//! | `x86_64`, `aarch64`, `loongarch64`, `mips64`, `mips64r6`, `powerpc64`, `riscv64`, `sparc64`, `s390x` | 8 bytes |
183//!
184//! Atomics loads that are larger than this limit as well as atomic loads with ordering other
185//! than `Relaxed`, as well as *all* atomic loads on targets not listed in the table, might still be
186//! read-only under certain conditions, but that is not a stable guarantee and should not be relied
187//! upon.
188//!
189//! If you need to do an acquire load on read-only memory, you can do a relaxed load followed by an
190//! acquire fence instead.
191//!
192//! # Examples
193//!
194//! A simple spinlock:
195//!
196//! ```ignore-wasm
197//! use std::sync::Arc;
198//! use std::sync::atomic::{AtomicUsize, Ordering};
199//! use std::{hint, thread};
200//!
201//! fn main() {
202//!     let spinlock = Arc::new(AtomicUsize::new(1));
203//!
204//!     let spinlock_clone = Arc::clone(&spinlock);
205//!
206//!     let thread = thread::spawn(move || {
207//!         spinlock_clone.store(0, Ordering::Release);
208//!     });
209//!
210//!     // Wait for the other thread to release the lock
211//!     while spinlock.load(Ordering::Acquire) != 0 {
212//!         hint::spin_loop();
213//!     }
214//!
215//!     if let Err(panic) = thread.join() {
216//!         println!("Thread had an error: {panic:?}");
217//!     }
218//! }
219//! ```
220//!
221//! Keep a global count of live threads:
222//!
223//! ```
224//! use std::sync::atomic::{AtomicUsize, Ordering};
225//!
226//! static GLOBAL_THREAD_COUNT: AtomicUsize = AtomicUsize::new(0);
227//!
228//! // Note that Relaxed ordering doesn't synchronize anything
229//! // except the global thread counter itself.
230//! let old_thread_count = GLOBAL_THREAD_COUNT.fetch_add(1, Ordering::Relaxed);
231//! // Note that this number may not be true at the moment of printing
232//! // because some other thread may have changed static value already.
233//! println!("live threads: {}", old_thread_count + 1);
234//! ```
235
236#![stable(feature = "rust1", since = "1.0.0")]
237#![cfg_attr(not(target_has_atomic_load_store = "8"), allow(dead_code))]
238#![cfg_attr(not(target_has_atomic_load_store = "8"), allow(unused_imports))]
239#![rustc_diagnostic_item = "atomic_mod"]
240// Clippy complains about the pattern of "safe function calling unsafe function taking pointers".
241// This happens with AtomicPtr intrinsics but is fine, as the pointers clippy is concerned about
242// are just normal values that get loaded/stored, but not dereferenced.
243#![allow(clippy::not_unsafe_ptr_arg_deref)]
244
245use self::Ordering::*;
246use crate::cell::UnsafeCell;
247#[cfg(not(feature = "ferrocene_certified"))]
248use crate::hint::spin_loop;
249use crate::intrinsics::AtomicOrdering as AO;
250#[cfg(not(feature = "ferrocene_certified"))]
251use crate::{fmt, intrinsics};
252
253// Ferrocene addition: imports for certified subset
254#[cfg(feature = "ferrocene_certified")]
255#[rustfmt::skip]
256use crate::intrinsics;
257
258trait Sealed {}
259
260/// A marker trait for primitive types which can be modified atomically.
261///
262/// This is an implementation detail for <code>[Atomic]\<T></code> which may disappear or be replaced at any time.
263///
264/// # Safety
265///
266/// Types implementing this trait must be primitives that can be modified atomically.
267///
268/// The associated `Self::AtomicInner` type must have the same size and bit validity as `Self`,
269/// but may have a higher alignment requirement, so the following `transmute`s are sound:
270///
271/// - `&mut Self::AtomicInner` as `&mut Self`
272/// - `Self` as `Self::AtomicInner` or the reverse
273#[unstable(
274    feature = "atomic_internals",
275    reason = "implementation detail which may disappear or be replaced at any time",
276    issue = "none"
277)]
278#[expect(private_bounds)]
279pub unsafe trait AtomicPrimitive: Sized + Copy + Sealed {
280    /// Temporary implementation detail.
281    type AtomicInner: Sized;
282}
283
284macro impl_atomic_primitive(
285    $Atom:ident $(<$T:ident>)? ($Primitive:ty),
286    size($size:literal),
287    align($align:literal) $(,)?
288) {
289    impl $(<$T>)? Sealed for $Primitive {}
290
291    #[unstable(
292        feature = "atomic_internals",
293        reason = "implementation detail which may disappear or be replaced at any time",
294        issue = "none"
295    )]
296    #[cfg(target_has_atomic_load_store = $size)]
297    unsafe impl $(<$T>)? AtomicPrimitive for $Primitive {
298        type AtomicInner = $Atom $(<$T>)?;
299    }
300}
301
302#[cfg(not(feature = "ferrocene_certified"))]
303impl_atomic_primitive!(AtomicBool(bool), size("8"), align(1));
304#[cfg(not(feature = "ferrocene_certified"))]
305impl_atomic_primitive!(AtomicI8(i8), size("8"), align(1));
306#[cfg(not(feature = "ferrocene_certified"))]
307impl_atomic_primitive!(AtomicU8(u8), size("8"), align(1));
308#[cfg(not(feature = "ferrocene_certified"))]
309impl_atomic_primitive!(AtomicI16(i16), size("16"), align(2));
310#[cfg(not(feature = "ferrocene_certified"))]
311impl_atomic_primitive!(AtomicU16(u16), size("16"), align(2));
312#[cfg(not(feature = "ferrocene_certified"))]
313impl_atomic_primitive!(AtomicI32(i32), size("32"), align(4));
314impl_atomic_primitive!(AtomicU32(u32), size("32"), align(4));
315#[cfg(not(feature = "ferrocene_certified"))]
316impl_atomic_primitive!(AtomicI64(i64), size("64"), align(8));
317#[cfg(not(feature = "ferrocene_certified"))]
318impl_atomic_primitive!(AtomicU64(u64), size("64"), align(8));
319#[cfg(not(feature = "ferrocene_certified"))]
320impl_atomic_primitive!(AtomicI128(i128), size("128"), align(16));
321#[cfg(not(feature = "ferrocene_certified"))]
322impl_atomic_primitive!(AtomicU128(u128), size("128"), align(16));
323
324#[cfg(target_pointer_width = "16")]
325#[cfg(not(feature = "ferrocene_certified"))]
326impl_atomic_primitive!(AtomicIsize(isize), size("ptr"), align(2));
327#[cfg(target_pointer_width = "32")]
328#[cfg(not(feature = "ferrocene_certified"))]
329impl_atomic_primitive!(AtomicIsize(isize), size("ptr"), align(4));
330#[cfg(target_pointer_width = "64")]
331#[cfg(not(feature = "ferrocene_certified"))]
332impl_atomic_primitive!(AtomicIsize(isize), size("ptr"), align(8));
333
334#[cfg(target_pointer_width = "16")]
335#[cfg(not(feature = "ferrocene_certified"))]
336impl_atomic_primitive!(AtomicUsize(usize), size("ptr"), align(2));
337#[cfg(target_pointer_width = "32")]
338#[cfg(not(feature = "ferrocene_certified"))]
339impl_atomic_primitive!(AtomicUsize(usize), size("ptr"), align(4));
340#[cfg(target_pointer_width = "64")]
341#[cfg(not(feature = "ferrocene_certified"))]
342impl_atomic_primitive!(AtomicUsize(usize), size("ptr"), align(8));
343
344#[cfg(target_pointer_width = "16")]
345#[cfg(not(feature = "ferrocene_certified"))]
346impl_atomic_primitive!(AtomicPtr<T>(*mut T), size("ptr"), align(2));
347#[cfg(target_pointer_width = "32")]
348#[cfg(not(feature = "ferrocene_certified"))]
349impl_atomic_primitive!(AtomicPtr<T>(*mut T), size("ptr"), align(4));
350#[cfg(target_pointer_width = "64")]
351#[cfg(not(feature = "ferrocene_certified"))]
352impl_atomic_primitive!(AtomicPtr<T>(*mut T), size("ptr"), align(8));
353
354/// A memory location which can be safely modified from multiple threads.
355///
356/// This has the same size and bit validity as the underlying type `T`. However,
357/// the alignment of this type is always equal to its size, even on targets where
358/// `T` has alignment less than its size.
359///
360/// For more about the differences between atomic types and non-atomic types as
361/// well as information about the portability of this type, please see the
362/// [module-level documentation].
363///
364/// **Note:** This type is only available on platforms that support atomic loads
365/// and stores of `T`.
366///
367/// [module-level documentation]: crate::sync::atomic
368#[unstable(feature = "generic_atomic", issue = "130539")]
369#[cfg(not(feature = "ferrocene_certified"))]
370pub type Atomic<T> = <T as AtomicPrimitive>::AtomicInner;
371
372// Some architectures don't have byte-sized atomics, which results in LLVM
373// emulating them using a LL/SC loop. However for AtomicBool we can take
374// advantage of the fact that it only ever contains 0 or 1 and use atomic OR/AND
375// instead, which LLVM can emulate using a larger atomic OR/AND operation.
376//
377// This list should only contain architectures which have word-sized atomic-or/
378// atomic-and instructions but don't natively support byte-sized atomics.
379#[cfg(target_has_atomic = "8")]
380#[cfg(not(feature = "ferrocene_certified"))]
381const EMULATE_ATOMIC_BOOL: bool = cfg!(any(
382    target_arch = "riscv32",
383    target_arch = "riscv64",
384    target_arch = "loongarch32",
385    target_arch = "loongarch64"
386));
387
388/// A boolean type which can be safely shared between threads.
389///
390/// This type has the same size, alignment, and bit validity as a [`bool`].
391///
392/// **Note**: This type is only available on platforms that support atomic
393/// loads and stores of `u8`.
394#[cfg(target_has_atomic_load_store = "8")]
395#[stable(feature = "rust1", since = "1.0.0")]
396#[rustc_diagnostic_item = "AtomicBool"]
397#[repr(C, align(1))]
398#[cfg(not(feature = "ferrocene_certified"))]
399pub struct AtomicBool {
400    v: UnsafeCell<u8>,
401}
402
403#[cfg(target_has_atomic_load_store = "8")]
404#[stable(feature = "rust1", since = "1.0.0")]
405#[cfg(not(feature = "ferrocene_certified"))]
406impl Default for AtomicBool {
407    /// Creates an `AtomicBool` initialized to `false`.
408    #[inline]
409    fn default() -> Self {
410        Self::new(false)
411    }
412}
413
414// Send is implicitly implemented for AtomicBool.
415#[cfg(target_has_atomic_load_store = "8")]
416#[stable(feature = "rust1", since = "1.0.0")]
417#[cfg(not(feature = "ferrocene_certified"))]
418unsafe impl Sync for AtomicBool {}
419
420/// A raw pointer type which can be safely shared between threads.
421///
422/// This type has the same size and bit validity as a `*mut T`.
423///
424/// **Note**: This type is only available on platforms that support atomic
425/// loads and stores of pointers. Its size depends on the target pointer's size.
426#[cfg(target_has_atomic_load_store = "ptr")]
427#[stable(feature = "rust1", since = "1.0.0")]
428#[rustc_diagnostic_item = "AtomicPtr"]
429#[cfg_attr(target_pointer_width = "16", repr(C, align(2)))]
430#[cfg_attr(target_pointer_width = "32", repr(C, align(4)))]
431#[cfg_attr(target_pointer_width = "64", repr(C, align(8)))]
432#[cfg(not(feature = "ferrocene_certified"))]
433pub struct AtomicPtr<T> {
434    p: UnsafeCell<*mut T>,
435}
436
437#[cfg(target_has_atomic_load_store = "ptr")]
438#[stable(feature = "rust1", since = "1.0.0")]
439#[cfg(not(feature = "ferrocene_certified"))]
440impl<T> Default for AtomicPtr<T> {
441    /// Creates a null `AtomicPtr<T>`.
442    fn default() -> AtomicPtr<T> {
443        AtomicPtr::new(crate::ptr::null_mut())
444    }
445}
446
447#[cfg(target_has_atomic_load_store = "ptr")]
448#[stable(feature = "rust1", since = "1.0.0")]
449#[cfg(not(feature = "ferrocene_certified"))]
450unsafe impl<T> Send for AtomicPtr<T> {}
451#[cfg(target_has_atomic_load_store = "ptr")]
452#[stable(feature = "rust1", since = "1.0.0")]
453#[cfg(not(feature = "ferrocene_certified"))]
454unsafe impl<T> Sync for AtomicPtr<T> {}
455
456/// Atomic memory orderings
457///
458/// Memory orderings specify the way atomic operations synchronize memory.
459/// In its weakest [`Ordering::Relaxed`], only the memory directly touched by the
460/// operation is synchronized. On the other hand, a store-load pair of [`Ordering::SeqCst`]
461/// operations synchronize other memory while additionally preserving a total order of such
462/// operations across all threads.
463///
464/// Rust's memory orderings are [the same as those of
465/// C++20](https://en.cppreference.com/w/cpp/atomic/memory_order).
466///
467/// For more information see the [nomicon].
468///
469/// [nomicon]: ../../../nomicon/atomics.html
470#[stable(feature = "rust1", since = "1.0.0")]
471#[cfg_attr(not(feature = "ferrocene_certified"), derive(Copy, Clone, Debug, Eq, PartialEq, Hash))]
472#[cfg_attr(feature = "ferrocene_certified", derive(Copy, Clone))]
473#[non_exhaustive]
474#[rustc_diagnostic_item = "Ordering"]
475pub enum Ordering {
476    /// No ordering constraints, only atomic operations.
477    ///
478    /// Corresponds to [`memory_order_relaxed`] in C++20.
479    ///
480    /// [`memory_order_relaxed`]: https://en.cppreference.com/w/cpp/atomic/memory_order#Relaxed_ordering
481    #[stable(feature = "rust1", since = "1.0.0")]
482    Relaxed,
483    /// When coupled with a store, all previous operations become ordered
484    /// before any load of this value with [`Acquire`] (or stronger) ordering.
485    /// In particular, all previous writes become visible to all threads
486    /// that perform an [`Acquire`] (or stronger) load of this value.
487    ///
488    /// Notice that using this ordering for an operation that combines loads
489    /// and stores leads to a [`Relaxed`] load operation!
490    ///
491    /// This ordering is only applicable for operations that can perform a store.
492    ///
493    /// Corresponds to [`memory_order_release`] in C++20.
494    ///
495    /// [`memory_order_release`]: https://en.cppreference.com/w/cpp/atomic/memory_order#Release-Acquire_ordering
496    #[stable(feature = "rust1", since = "1.0.0")]
497    Release,
498    /// When coupled with a load, if the loaded value was written by a store operation with
499    /// [`Release`] (or stronger) ordering, then all subsequent operations
500    /// become ordered after that store. In particular, all subsequent loads will see data
501    /// written before the store.
502    ///
503    /// Notice that using this ordering for an operation that combines loads
504    /// and stores leads to a [`Relaxed`] store operation!
505    ///
506    /// This ordering is only applicable for operations that can perform a load.
507    ///
508    /// Corresponds to [`memory_order_acquire`] in C++20.
509    ///
510    /// [`memory_order_acquire`]: https://en.cppreference.com/w/cpp/atomic/memory_order#Release-Acquire_ordering
511    #[stable(feature = "rust1", since = "1.0.0")]
512    Acquire,
513    /// Has the effects of both [`Acquire`] and [`Release`] together:
514    /// For loads it uses [`Acquire`] ordering. For stores it uses the [`Release`] ordering.
515    ///
516    /// Notice that in the case of `compare_and_swap`, it is possible that the operation ends up
517    /// not performing any store and hence it has just [`Acquire`] ordering. However,
518    /// `AcqRel` will never perform [`Relaxed`] accesses.
519    ///
520    /// This ordering is only applicable for operations that combine both loads and stores.
521    ///
522    /// Corresponds to [`memory_order_acq_rel`] in C++20.
523    ///
524    /// [`memory_order_acq_rel`]: https://en.cppreference.com/w/cpp/atomic/memory_order#Release-Acquire_ordering
525    #[stable(feature = "rust1", since = "1.0.0")]
526    AcqRel,
527    /// Like [`Acquire`]/[`Release`]/[`AcqRel`] (for load, store, and load-with-store
528    /// operations, respectively) with the additional guarantee that all threads see all
529    /// sequentially consistent operations in the same order.
530    ///
531    /// Corresponds to [`memory_order_seq_cst`] in C++20.
532    ///
533    /// [`memory_order_seq_cst`]: https://en.cppreference.com/w/cpp/atomic/memory_order#Sequentially-consistent_ordering
534    #[stable(feature = "rust1", since = "1.0.0")]
535    SeqCst,
536}
537
538/// An [`AtomicBool`] initialized to `false`.
539#[cfg(target_has_atomic_load_store = "8")]
540#[stable(feature = "rust1", since = "1.0.0")]
541#[deprecated(
542    since = "1.34.0",
543    note = "the `new` function is now preferred",
544    suggestion = "AtomicBool::new(false)"
545)]
546#[cfg(not(feature = "ferrocene_certified"))]
547pub const ATOMIC_BOOL_INIT: AtomicBool = AtomicBool::new(false);
548
549#[cfg(target_has_atomic_load_store = "8")]
550#[cfg(not(feature = "ferrocene_certified"))]
551impl AtomicBool {
552    /// Creates a new `AtomicBool`.
553    ///
554    /// # Examples
555    ///
556    /// ```
557    /// use std::sync::atomic::AtomicBool;
558    ///
559    /// let atomic_true = AtomicBool::new(true);
560    /// let atomic_false = AtomicBool::new(false);
561    /// ```
562    #[inline]
563    #[stable(feature = "rust1", since = "1.0.0")]
564    #[rustc_const_stable(feature = "const_atomic_new", since = "1.24.0")]
565    #[must_use]
566    pub const fn new(v: bool) -> AtomicBool {
567        AtomicBool { v: UnsafeCell::new(v as u8) }
568    }
569
570    /// Creates a new `AtomicBool` from a pointer.
571    ///
572    /// # Examples
573    ///
574    /// ```
575    /// use std::sync::atomic::{self, AtomicBool};
576    ///
577    /// // Get a pointer to an allocated value
578    /// let ptr: *mut bool = Box::into_raw(Box::new(false));
579    ///
580    /// assert!(ptr.cast::<AtomicBool>().is_aligned());
581    ///
582    /// {
583    ///     // Create an atomic view of the allocated value
584    ///     let atomic = unsafe { AtomicBool::from_ptr(ptr) };
585    ///
586    ///     // Use `atomic` for atomic operations, possibly share it with other threads
587    ///     atomic.store(true, atomic::Ordering::Relaxed);
588    /// }
589    ///
590    /// // It's ok to non-atomically access the value behind `ptr`,
591    /// // since the reference to the atomic ended its lifetime in the block above
592    /// assert_eq!(unsafe { *ptr }, true);
593    ///
594    /// // Deallocate the value
595    /// unsafe { drop(Box::from_raw(ptr)) }
596    /// ```
597    ///
598    /// # Safety
599    ///
600    /// * `ptr` must be aligned to `align_of::<AtomicBool>()` (note that this is always true, since
601    ///   `align_of::<AtomicBool>() == 1`).
602    /// * `ptr` must be [valid] for both reads and writes for the whole lifetime `'a`.
603    /// * You must adhere to the [Memory model for atomic accesses]. In particular, it is not
604    ///   allowed to mix conflicting atomic and non-atomic accesses, or atomic accesses of different
605    ///   sizes, without synchronization.
606    ///
607    /// [valid]: crate::ptr#safety
608    /// [Memory model for atomic accesses]: self#memory-model-for-atomic-accesses
609    #[inline]
610    #[stable(feature = "atomic_from_ptr", since = "1.75.0")]
611    #[rustc_const_stable(feature = "const_atomic_from_ptr", since = "1.84.0")]
612    pub const unsafe fn from_ptr<'a>(ptr: *mut bool) -> &'a AtomicBool {
613        // SAFETY: guaranteed by the caller
614        unsafe { &*ptr.cast() }
615    }
616
617    /// Returns a mutable reference to the underlying [`bool`].
618    ///
619    /// This is safe because the mutable reference guarantees that no other threads are
620    /// concurrently accessing the atomic data.
621    ///
622    /// # Examples
623    ///
624    /// ```
625    /// use std::sync::atomic::{AtomicBool, Ordering};
626    ///
627    /// let mut some_bool = AtomicBool::new(true);
628    /// assert_eq!(*some_bool.get_mut(), true);
629    /// *some_bool.get_mut() = false;
630    /// assert_eq!(some_bool.load(Ordering::SeqCst), false);
631    /// ```
632    #[inline]
633    #[stable(feature = "atomic_access", since = "1.15.0")]
634    pub fn get_mut(&mut self) -> &mut bool {
635        // SAFETY: the mutable reference guarantees unique ownership.
636        unsafe { &mut *(self.v.get() as *mut bool) }
637    }
638
639    /// Gets atomic access to a `&mut bool`.
640    ///
641    /// # Examples
642    ///
643    /// ```
644    /// #![feature(atomic_from_mut)]
645    /// use std::sync::atomic::{AtomicBool, Ordering};
646    ///
647    /// let mut some_bool = true;
648    /// let a = AtomicBool::from_mut(&mut some_bool);
649    /// a.store(false, Ordering::Relaxed);
650    /// assert_eq!(some_bool, false);
651    /// ```
652    #[inline]
653    #[cfg(target_has_atomic_equal_alignment = "8")]
654    #[unstable(feature = "atomic_from_mut", issue = "76314")]
655    pub fn from_mut(v: &mut bool) -> &mut Self {
656        // SAFETY: the mutable reference guarantees unique ownership, and
657        // alignment of both `bool` and `Self` is 1.
658        unsafe { &mut *(v as *mut bool as *mut Self) }
659    }
660
661    /// Gets non-atomic access to a `&mut [AtomicBool]` slice.
662    ///
663    /// This is safe because the mutable reference guarantees that no other threads are
664    /// concurrently accessing the atomic data.
665    ///
666    /// # Examples
667    ///
668    /// ```ignore-wasm
669    /// #![feature(atomic_from_mut)]
670    /// use std::sync::atomic::{AtomicBool, Ordering};
671    ///
672    /// let mut some_bools = [const { AtomicBool::new(false) }; 10];
673    ///
674    /// let view: &mut [bool] = AtomicBool::get_mut_slice(&mut some_bools);
675    /// assert_eq!(view, [false; 10]);
676    /// view[..5].copy_from_slice(&[true; 5]);
677    ///
678    /// std::thread::scope(|s| {
679    ///     for t in &some_bools[..5] {
680    ///         s.spawn(move || assert_eq!(t.load(Ordering::Relaxed), true));
681    ///     }
682    ///
683    ///     for f in &some_bools[5..] {
684    ///         s.spawn(move || assert_eq!(f.load(Ordering::Relaxed), false));
685    ///     }
686    /// });
687    /// ```
688    #[inline]
689    #[unstable(feature = "atomic_from_mut", issue = "76314")]
690    pub fn get_mut_slice(this: &mut [Self]) -> &mut [bool] {
691        // SAFETY: the mutable reference guarantees unique ownership.
692        unsafe { &mut *(this as *mut [Self] as *mut [bool]) }
693    }
694
695    /// Gets atomic access to a `&mut [bool]` slice.
696    ///
697    /// # Examples
698    ///
699    /// ```rust,ignore-wasm
700    /// #![feature(atomic_from_mut)]
701    /// use std::sync::atomic::{AtomicBool, Ordering};
702    ///
703    /// let mut some_bools = [false; 10];
704    /// let a = &*AtomicBool::from_mut_slice(&mut some_bools);
705    /// std::thread::scope(|s| {
706    ///     for i in 0..a.len() {
707    ///         s.spawn(move || a[i].store(true, Ordering::Relaxed));
708    ///     }
709    /// });
710    /// assert_eq!(some_bools, [true; 10]);
711    /// ```
712    #[inline]
713    #[cfg(target_has_atomic_equal_alignment = "8")]
714    #[unstable(feature = "atomic_from_mut", issue = "76314")]
715    pub fn from_mut_slice(v: &mut [bool]) -> &mut [Self] {
716        // SAFETY: the mutable reference guarantees unique ownership, and
717        // alignment of both `bool` and `Self` is 1.
718        unsafe { &mut *(v as *mut [bool] as *mut [Self]) }
719    }
720
721    /// Consumes the atomic and returns the contained value.
722    ///
723    /// This is safe because passing `self` by value guarantees that no other threads are
724    /// concurrently accessing the atomic data.
725    ///
726    /// # Examples
727    ///
728    /// ```
729    /// use std::sync::atomic::AtomicBool;
730    ///
731    /// let some_bool = AtomicBool::new(true);
732    /// assert_eq!(some_bool.into_inner(), true);
733    /// ```
734    #[inline]
735    #[stable(feature = "atomic_access", since = "1.15.0")]
736    #[rustc_const_stable(feature = "const_atomic_into_inner", since = "1.79.0")]
737    pub const fn into_inner(self) -> bool {
738        self.v.into_inner() != 0
739    }
740
741    /// Loads a value from the bool.
742    ///
743    /// `load` takes an [`Ordering`] argument which describes the memory ordering
744    /// of this operation. Possible values are [`SeqCst`], [`Acquire`] and [`Relaxed`].
745    ///
746    /// # Panics
747    ///
748    /// Panics if `order` is [`Release`] or [`AcqRel`].
749    ///
750    /// # Examples
751    ///
752    /// ```
753    /// use std::sync::atomic::{AtomicBool, Ordering};
754    ///
755    /// let some_bool = AtomicBool::new(true);
756    ///
757    /// assert_eq!(some_bool.load(Ordering::Relaxed), true);
758    /// ```
759    #[inline]
760    #[stable(feature = "rust1", since = "1.0.0")]
761    #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
762    pub fn load(&self, order: Ordering) -> bool {
763        // SAFETY: any data races are prevented by atomic intrinsics and the raw
764        // pointer passed in is valid because we got it from a reference.
765        unsafe { atomic_load(self.v.get(), order) != 0 }
766    }
767
768    /// Stores a value into the bool.
769    ///
770    /// `store` takes an [`Ordering`] argument which describes the memory ordering
771    /// of this operation. Possible values are [`SeqCst`], [`Release`] and [`Relaxed`].
772    ///
773    /// # Panics
774    ///
775    /// Panics if `order` is [`Acquire`] or [`AcqRel`].
776    ///
777    /// # Examples
778    ///
779    /// ```
780    /// use std::sync::atomic::{AtomicBool, Ordering};
781    ///
782    /// let some_bool = AtomicBool::new(true);
783    ///
784    /// some_bool.store(false, Ordering::Relaxed);
785    /// assert_eq!(some_bool.load(Ordering::Relaxed), false);
786    /// ```
787    #[inline]
788    #[stable(feature = "rust1", since = "1.0.0")]
789    #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
790    pub fn store(&self, val: bool, order: Ordering) {
791        // SAFETY: any data races are prevented by atomic intrinsics and the raw
792        // pointer passed in is valid because we got it from a reference.
793        unsafe {
794            atomic_store(self.v.get(), val as u8, order);
795        }
796    }
797
798    /// Stores a value into the bool, returning the previous value.
799    ///
800    /// `swap` takes an [`Ordering`] argument which describes the memory ordering
801    /// of this operation. All ordering modes are possible. Note that using
802    /// [`Acquire`] makes the store part of this operation [`Relaxed`], and
803    /// using [`Release`] makes the load part [`Relaxed`].
804    ///
805    /// **Note:** This method is only available on platforms that support atomic
806    /// operations on `u8`.
807    ///
808    /// # Examples
809    ///
810    /// ```
811    /// use std::sync::atomic::{AtomicBool, Ordering};
812    ///
813    /// let some_bool = AtomicBool::new(true);
814    ///
815    /// assert_eq!(some_bool.swap(false, Ordering::Relaxed), true);
816    /// assert_eq!(some_bool.load(Ordering::Relaxed), false);
817    /// ```
818    #[inline]
819    #[stable(feature = "rust1", since = "1.0.0")]
820    #[cfg(target_has_atomic = "8")]
821    #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
822    pub fn swap(&self, val: bool, order: Ordering) -> bool {
823        if EMULATE_ATOMIC_BOOL {
824            if val { self.fetch_or(true, order) } else { self.fetch_and(false, order) }
825        } else {
826            // SAFETY: data races are prevented by atomic intrinsics.
827            unsafe { atomic_swap(self.v.get(), val as u8, order) != 0 }
828        }
829    }
830
831    /// Stores a value into the [`bool`] if the current value is the same as the `current` value.
832    ///
833    /// The return value is always the previous value. If it is equal to `current`, then the value
834    /// was updated.
835    ///
836    /// `compare_and_swap` also takes an [`Ordering`] argument which describes the memory
837    /// ordering of this operation. Notice that even when using [`AcqRel`], the operation
838    /// might fail and hence just perform an `Acquire` load, but not have `Release` semantics.
839    /// Using [`Acquire`] makes the store part of this operation [`Relaxed`] if it
840    /// happens, and using [`Release`] makes the load part [`Relaxed`].
841    ///
842    /// **Note:** This method is only available on platforms that support atomic
843    /// operations on `u8`.
844    ///
845    /// # Migrating to `compare_exchange` and `compare_exchange_weak`
846    ///
847    /// `compare_and_swap` is equivalent to `compare_exchange` with the following mapping for
848    /// memory orderings:
849    ///
850    /// Original | Success | Failure
851    /// -------- | ------- | -------
852    /// Relaxed  | Relaxed | Relaxed
853    /// Acquire  | Acquire | Acquire
854    /// Release  | Release | Relaxed
855    /// AcqRel   | AcqRel  | Acquire
856    /// SeqCst   | SeqCst  | SeqCst
857    ///
858    /// `compare_and_swap` and `compare_exchange` also differ in their return type. You can use
859    /// `compare_exchange(...).unwrap_or_else(|x| x)` to recover the behavior of `compare_and_swap`,
860    /// but in most cases it is more idiomatic to check whether the return value is `Ok` or `Err`
861    /// rather than to infer success vs failure based on the value that was read.
862    ///
863    /// During migration, consider whether it makes sense to use `compare_exchange_weak` instead.
864    /// `compare_exchange_weak` is allowed to fail spuriously even when the comparison succeeds,
865    /// which allows the compiler to generate better assembly code when the compare and swap
866    /// is used in a loop.
867    ///
868    /// # Examples
869    ///
870    /// ```
871    /// use std::sync::atomic::{AtomicBool, Ordering};
872    ///
873    /// let some_bool = AtomicBool::new(true);
874    ///
875    /// assert_eq!(some_bool.compare_and_swap(true, false, Ordering::Relaxed), true);
876    /// assert_eq!(some_bool.load(Ordering::Relaxed), false);
877    ///
878    /// assert_eq!(some_bool.compare_and_swap(true, true, Ordering::Relaxed), false);
879    /// assert_eq!(some_bool.load(Ordering::Relaxed), false);
880    /// ```
881    #[cfg(not(feature = "ferrocene_certified"))]
882    #[inline]
883    #[stable(feature = "rust1", since = "1.0.0")]
884    #[deprecated(
885        since = "1.50.0",
886        note = "Use `compare_exchange` or `compare_exchange_weak` instead"
887    )]
888    #[cfg(target_has_atomic = "8")]
889    #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
890    pub fn compare_and_swap(&self, current: bool, new: bool, order: Ordering) -> bool {
891        match self.compare_exchange(current, new, order, strongest_failure_ordering(order)) {
892            Ok(x) => x,
893            Err(x) => x,
894        }
895    }
896
897    /// Stores a value into the [`bool`] if the current value is the same as the `current` value.
898    ///
899    /// The return value is a result indicating whether the new value was written and containing
900    /// the previous value. On success this value is guaranteed to be equal to `current`.
901    ///
902    /// `compare_exchange` takes two [`Ordering`] arguments to describe the memory
903    /// ordering of this operation. `success` describes the required ordering for the
904    /// read-modify-write operation that takes place if the comparison with `current` succeeds.
905    /// `failure` describes the required ordering for the load operation that takes place when
906    /// the comparison fails. Using [`Acquire`] as success ordering makes the store part
907    /// of this operation [`Relaxed`], and using [`Release`] makes the successful load
908    /// [`Relaxed`]. The failure ordering can only be [`SeqCst`], [`Acquire`] or [`Relaxed`].
909    ///
910    /// **Note:** This method is only available on platforms that support atomic
911    /// operations on `u8`.
912    ///
913    /// # Examples
914    ///
915    /// ```
916    /// use std::sync::atomic::{AtomicBool, Ordering};
917    ///
918    /// let some_bool = AtomicBool::new(true);
919    ///
920    /// assert_eq!(some_bool.compare_exchange(true,
921    ///                                       false,
922    ///                                       Ordering::Acquire,
923    ///                                       Ordering::Relaxed),
924    ///            Ok(true));
925    /// assert_eq!(some_bool.load(Ordering::Relaxed), false);
926    ///
927    /// assert_eq!(some_bool.compare_exchange(true, true,
928    ///                                       Ordering::SeqCst,
929    ///                                       Ordering::Acquire),
930    ///            Err(false));
931    /// assert_eq!(some_bool.load(Ordering::Relaxed), false);
932    /// ```
933    ///
934    /// # Considerations
935    ///
936    /// `compare_exchange` is a [compare-and-swap operation] and thus exhibits the usual downsides
937    /// of CAS operations. In particular, a load of the value followed by a successful
938    /// `compare_exchange` with the previous load *does not ensure* that other threads have not
939    /// changed the value in the interim. This is usually important when the *equality* check in
940    /// the `compare_exchange` is being used to check the *identity* of a value, but equality
941    /// does not necessarily imply identity. In this case, `compare_exchange` can lead to the
942    /// [ABA problem].
943    ///
944    /// [ABA Problem]: https://en.wikipedia.org/wiki/ABA_problem
945    /// [compare-and-swap operation]: https://en.wikipedia.org/wiki/Compare-and-swap
946    #[inline]
947    #[stable(feature = "extended_compare_and_swap", since = "1.10.0")]
948    #[doc(alias = "compare_and_swap")]
949    #[cfg(target_has_atomic = "8")]
950    #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
951    pub fn compare_exchange(
952        &self,
953        current: bool,
954        new: bool,
955        success: Ordering,
956        failure: Ordering,
957    ) -> Result<bool, bool> {
958        if EMULATE_ATOMIC_BOOL {
959            // Pick the strongest ordering from success and failure.
960            let order = match (success, failure) {
961                (SeqCst, _) => SeqCst,
962                (_, SeqCst) => SeqCst,
963                (AcqRel, _) => AcqRel,
964                (_, AcqRel) => {
965                    panic!("there is no such thing as an acquire-release failure ordering")
966                }
967                (Release, Acquire) => AcqRel,
968                (Acquire, _) => Acquire,
969                (_, Acquire) => Acquire,
970                (Release, Relaxed) => Release,
971                (_, Release) => panic!("there is no such thing as a release failure ordering"),
972                (Relaxed, Relaxed) => Relaxed,
973            };
974            let old = if current == new {
975                // This is a no-op, but we still need to perform the operation
976                // for memory ordering reasons.
977                self.fetch_or(false, order)
978            } else {
979                // This sets the value to the new one and returns the old one.
980                self.swap(new, order)
981            };
982            if old == current { Ok(old) } else { Err(old) }
983        } else {
984            // SAFETY: data races are prevented by atomic intrinsics.
985            match unsafe {
986                atomic_compare_exchange(self.v.get(), current as u8, new as u8, success, failure)
987            } {
988                Ok(x) => Ok(x != 0),
989                Err(x) => Err(x != 0),
990            }
991        }
992    }
993
994    /// Stores a value into the [`bool`] if the current value is the same as the `current` value.
995    ///
996    /// Unlike [`AtomicBool::compare_exchange`], this function is allowed to spuriously fail even when the
997    /// comparison succeeds, which can result in more efficient code on some platforms. The
998    /// return value is a result indicating whether the new value was written and containing the
999    /// previous value.
1000    ///
1001    /// `compare_exchange_weak` takes two [`Ordering`] arguments to describe the memory
1002    /// ordering of this operation. `success` describes the required ordering for the
1003    /// read-modify-write operation that takes place if the comparison with `current` succeeds.
1004    /// `failure` describes the required ordering for the load operation that takes place when
1005    /// the comparison fails. Using [`Acquire`] as success ordering makes the store part
1006    /// of this operation [`Relaxed`], and using [`Release`] makes the successful load
1007    /// [`Relaxed`]. The failure ordering can only be [`SeqCst`], [`Acquire`] or [`Relaxed`].
1008    ///
1009    /// **Note:** This method is only available on platforms that support atomic
1010    /// operations on `u8`.
1011    ///
1012    /// # Examples
1013    ///
1014    /// ```
1015    /// use std::sync::atomic::{AtomicBool, Ordering};
1016    ///
1017    /// let val = AtomicBool::new(false);
1018    ///
1019    /// let new = true;
1020    /// let mut old = val.load(Ordering::Relaxed);
1021    /// loop {
1022    ///     match val.compare_exchange_weak(old, new, Ordering::SeqCst, Ordering::Relaxed) {
1023    ///         Ok(_) => break,
1024    ///         Err(x) => old = x,
1025    ///     }
1026    /// }
1027    /// ```
1028    ///
1029    /// # Considerations
1030    ///
1031    /// `compare_exchange` is a [compare-and-swap operation] and thus exhibits the usual downsides
1032    /// of CAS operations. In particular, a load of the value followed by a successful
1033    /// `compare_exchange` with the previous load *does not ensure* that other threads have not
1034    /// changed the value in the interim. This is usually important when the *equality* check in
1035    /// the `compare_exchange` is being used to check the *identity* of a value, but equality
1036    /// does not necessarily imply identity. In this case, `compare_exchange` can lead to the
1037    /// [ABA problem].
1038    ///
1039    /// [ABA Problem]: https://en.wikipedia.org/wiki/ABA_problem
1040    /// [compare-and-swap operation]: https://en.wikipedia.org/wiki/Compare-and-swap
1041    #[inline]
1042    #[stable(feature = "extended_compare_and_swap", since = "1.10.0")]
1043    #[doc(alias = "compare_and_swap")]
1044    #[cfg(target_has_atomic = "8")]
1045    #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
1046    pub fn compare_exchange_weak(
1047        &self,
1048        current: bool,
1049        new: bool,
1050        success: Ordering,
1051        failure: Ordering,
1052    ) -> Result<bool, bool> {
1053        if EMULATE_ATOMIC_BOOL {
1054            return self.compare_exchange(current, new, success, failure);
1055        }
1056
1057        // SAFETY: data races are prevented by atomic intrinsics.
1058        match unsafe {
1059            atomic_compare_exchange_weak(self.v.get(), current as u8, new as u8, success, failure)
1060        } {
1061            Ok(x) => Ok(x != 0),
1062            Err(x) => Err(x != 0),
1063        }
1064    }
1065
1066    /// Logical "and" with a boolean value.
1067    ///
1068    /// Performs a logical "and" operation on the current value and the argument `val`, and sets
1069    /// the new value to the result.
1070    ///
1071    /// Returns the previous value.
1072    ///
1073    /// `fetch_and` takes an [`Ordering`] argument which describes the memory ordering
1074    /// of this operation. All ordering modes are possible. Note that using
1075    /// [`Acquire`] makes the store part of this operation [`Relaxed`], and
1076    /// using [`Release`] makes the load part [`Relaxed`].
1077    ///
1078    /// **Note:** This method is only available on platforms that support atomic
1079    /// operations on `u8`.
1080    ///
1081    /// # Examples
1082    ///
1083    /// ```
1084    /// use std::sync::atomic::{AtomicBool, Ordering};
1085    ///
1086    /// let foo = AtomicBool::new(true);
1087    /// assert_eq!(foo.fetch_and(false, Ordering::SeqCst), true);
1088    /// assert_eq!(foo.load(Ordering::SeqCst), false);
1089    ///
1090    /// let foo = AtomicBool::new(true);
1091    /// assert_eq!(foo.fetch_and(true, Ordering::SeqCst), true);
1092    /// assert_eq!(foo.load(Ordering::SeqCst), true);
1093    ///
1094    /// let foo = AtomicBool::new(false);
1095    /// assert_eq!(foo.fetch_and(false, Ordering::SeqCst), false);
1096    /// assert_eq!(foo.load(Ordering::SeqCst), false);
1097    /// ```
1098    #[inline]
1099    #[stable(feature = "rust1", since = "1.0.0")]
1100    #[cfg(target_has_atomic = "8")]
1101    #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
1102    pub fn fetch_and(&self, val: bool, order: Ordering) -> bool {
1103        // SAFETY: data races are prevented by atomic intrinsics.
1104        unsafe { atomic_and(self.v.get(), val as u8, order) != 0 }
1105    }
1106
1107    /// Logical "nand" with a boolean value.
1108    ///
1109    /// Performs a logical "nand" operation on the current value and the argument `val`, and sets
1110    /// the new value to the result.
1111    ///
1112    /// Returns the previous value.
1113    ///
1114    /// `fetch_nand` takes an [`Ordering`] argument which describes the memory ordering
1115    /// of this operation. All ordering modes are possible. Note that using
1116    /// [`Acquire`] makes the store part of this operation [`Relaxed`], and
1117    /// using [`Release`] makes the load part [`Relaxed`].
1118    ///
1119    /// **Note:** This method is only available on platforms that support atomic
1120    /// operations on `u8`.
1121    ///
1122    /// # Examples
1123    ///
1124    /// ```
1125    /// use std::sync::atomic::{AtomicBool, Ordering};
1126    ///
1127    /// let foo = AtomicBool::new(true);
1128    /// assert_eq!(foo.fetch_nand(false, Ordering::SeqCst), true);
1129    /// assert_eq!(foo.load(Ordering::SeqCst), true);
1130    ///
1131    /// let foo = AtomicBool::new(true);
1132    /// assert_eq!(foo.fetch_nand(true, Ordering::SeqCst), true);
1133    /// assert_eq!(foo.load(Ordering::SeqCst) as usize, 0);
1134    /// assert_eq!(foo.load(Ordering::SeqCst), false);
1135    ///
1136    /// let foo = AtomicBool::new(false);
1137    /// assert_eq!(foo.fetch_nand(false, Ordering::SeqCst), false);
1138    /// assert_eq!(foo.load(Ordering::SeqCst), true);
1139    /// ```
1140    #[inline]
1141    #[stable(feature = "rust1", since = "1.0.0")]
1142    #[cfg(target_has_atomic = "8")]
1143    #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
1144    pub fn fetch_nand(&self, val: bool, order: Ordering) -> bool {
1145        // We can't use atomic_nand here because it can result in a bool with
1146        // an invalid value. This happens because the atomic operation is done
1147        // with an 8-bit integer internally, which would set the upper 7 bits.
1148        // So we just use fetch_xor or swap instead.
1149        if val {
1150            // !(x & true) == !x
1151            // We must invert the bool.
1152            self.fetch_xor(true, order)
1153        } else {
1154            // !(x & false) == true
1155            // We must set the bool to true.
1156            self.swap(true, order)
1157        }
1158    }
1159
1160    /// Logical "or" with a boolean value.
1161    ///
1162    /// Performs a logical "or" operation on the current value and the argument `val`, and sets the
1163    /// new value to the result.
1164    ///
1165    /// Returns the previous value.
1166    ///
1167    /// `fetch_or` takes an [`Ordering`] argument which describes the memory ordering
1168    /// of this operation. All ordering modes are possible. Note that using
1169    /// [`Acquire`] makes the store part of this operation [`Relaxed`], and
1170    /// using [`Release`] makes the load part [`Relaxed`].
1171    ///
1172    /// **Note:** This method is only available on platforms that support atomic
1173    /// operations on `u8`.
1174    ///
1175    /// # Examples
1176    ///
1177    /// ```
1178    /// use std::sync::atomic::{AtomicBool, Ordering};
1179    ///
1180    /// let foo = AtomicBool::new(true);
1181    /// assert_eq!(foo.fetch_or(false, Ordering::SeqCst), true);
1182    /// assert_eq!(foo.load(Ordering::SeqCst), true);
1183    ///
1184    /// let foo = AtomicBool::new(true);
1185    /// assert_eq!(foo.fetch_or(true, Ordering::SeqCst), true);
1186    /// assert_eq!(foo.load(Ordering::SeqCst), true);
1187    ///
1188    /// let foo = AtomicBool::new(false);
1189    /// assert_eq!(foo.fetch_or(false, Ordering::SeqCst), false);
1190    /// assert_eq!(foo.load(Ordering::SeqCst), false);
1191    /// ```
1192    #[inline]
1193    #[stable(feature = "rust1", since = "1.0.0")]
1194    #[cfg(target_has_atomic = "8")]
1195    #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
1196    pub fn fetch_or(&self, val: bool, order: Ordering) -> bool {
1197        // SAFETY: data races are prevented by atomic intrinsics.
1198        unsafe { atomic_or(self.v.get(), val as u8, order) != 0 }
1199    }
1200
1201    /// Logical "xor" with a boolean value.
1202    ///
1203    /// Performs a logical "xor" operation on the current value and the argument `val`, and sets
1204    /// the new value to the result.
1205    ///
1206    /// Returns the previous value.
1207    ///
1208    /// `fetch_xor` takes an [`Ordering`] argument which describes the memory ordering
1209    /// of this operation. All ordering modes are possible. Note that using
1210    /// [`Acquire`] makes the store part of this operation [`Relaxed`], and
1211    /// using [`Release`] makes the load part [`Relaxed`].
1212    ///
1213    /// **Note:** This method is only available on platforms that support atomic
1214    /// operations on `u8`.
1215    ///
1216    /// # Examples
1217    ///
1218    /// ```
1219    /// use std::sync::atomic::{AtomicBool, Ordering};
1220    ///
1221    /// let foo = AtomicBool::new(true);
1222    /// assert_eq!(foo.fetch_xor(false, Ordering::SeqCst), true);
1223    /// assert_eq!(foo.load(Ordering::SeqCst), true);
1224    ///
1225    /// let foo = AtomicBool::new(true);
1226    /// assert_eq!(foo.fetch_xor(true, Ordering::SeqCst), true);
1227    /// assert_eq!(foo.load(Ordering::SeqCst), false);
1228    ///
1229    /// let foo = AtomicBool::new(false);
1230    /// assert_eq!(foo.fetch_xor(false, Ordering::SeqCst), false);
1231    /// assert_eq!(foo.load(Ordering::SeqCst), false);
1232    /// ```
1233    #[inline]
1234    #[stable(feature = "rust1", since = "1.0.0")]
1235    #[cfg(target_has_atomic = "8")]
1236    #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
1237    pub fn fetch_xor(&self, val: bool, order: Ordering) -> bool {
1238        // SAFETY: data races are prevented by atomic intrinsics.
1239        unsafe { atomic_xor(self.v.get(), val as u8, order) != 0 }
1240    }
1241
1242    /// Logical "not" with a boolean value.
1243    ///
1244    /// Performs a logical "not" operation on the current value, and sets
1245    /// the new value to the result.
1246    ///
1247    /// Returns the previous value.
1248    ///
1249    /// `fetch_not` takes an [`Ordering`] argument which describes the memory ordering
1250    /// of this operation. All ordering modes are possible. Note that using
1251    /// [`Acquire`] makes the store part of this operation [`Relaxed`], and
1252    /// using [`Release`] makes the load part [`Relaxed`].
1253    ///
1254    /// **Note:** This method is only available on platforms that support atomic
1255    /// operations on `u8`.
1256    ///
1257    /// # Examples
1258    ///
1259    /// ```
1260    /// use std::sync::atomic::{AtomicBool, Ordering};
1261    ///
1262    /// let foo = AtomicBool::new(true);
1263    /// assert_eq!(foo.fetch_not(Ordering::SeqCst), true);
1264    /// assert_eq!(foo.load(Ordering::SeqCst), false);
1265    ///
1266    /// let foo = AtomicBool::new(false);
1267    /// assert_eq!(foo.fetch_not(Ordering::SeqCst), false);
1268    /// assert_eq!(foo.load(Ordering::SeqCst), true);
1269    /// ```
1270    #[inline]
1271    #[stable(feature = "atomic_bool_fetch_not", since = "1.81.0")]
1272    #[cfg(target_has_atomic = "8")]
1273    #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
1274    pub fn fetch_not(&self, order: Ordering) -> bool {
1275        self.fetch_xor(true, order)
1276    }
1277
1278    /// Returns a mutable pointer to the underlying [`bool`].
1279    ///
1280    /// Doing non-atomic reads and writes on the resulting boolean can be a data race.
1281    /// This method is mostly useful for FFI, where the function signature may use
1282    /// `*mut bool` instead of `&AtomicBool`.
1283    ///
1284    /// Returning an `*mut` pointer from a shared reference to this atomic is safe because the
1285    /// atomic types work with interior mutability. All modifications of an atomic change the value
1286    /// through a shared reference, and can do so safely as long as they use atomic operations. Any
1287    /// use of the returned raw pointer requires an `unsafe` block and still has to uphold the
1288    /// requirements of the [memory model].
1289    ///
1290    /// # Examples
1291    ///
1292    /// ```ignore (extern-declaration)
1293    /// # fn main() {
1294    /// use std::sync::atomic::AtomicBool;
1295    ///
1296    /// extern "C" {
1297    ///     fn my_atomic_op(arg: *mut bool);
1298    /// }
1299    ///
1300    /// let mut atomic = AtomicBool::new(true);
1301    /// unsafe {
1302    ///     my_atomic_op(atomic.as_ptr());
1303    /// }
1304    /// # }
1305    /// ```
1306    ///
1307    /// [memory model]: self#memory-model-for-atomic-accesses
1308    #[inline]
1309    #[stable(feature = "atomic_as_ptr", since = "1.70.0")]
1310    #[rustc_const_stable(feature = "atomic_as_ptr", since = "1.70.0")]
1311    #[rustc_never_returns_null_ptr]
1312    pub const fn as_ptr(&self) -> *mut bool {
1313        self.v.get().cast()
1314    }
1315
1316    /// Fetches the value, and applies a function to it that returns an optional
1317    /// new value. Returns a `Result` of `Ok(previous_value)` if the function
1318    /// returned `Some(_)`, else `Err(previous_value)`.
1319    ///
1320    /// Note: This may call the function multiple times if the value has been
1321    /// changed from other threads in the meantime, as long as the function
1322    /// returns `Some(_)`, but the function will have been applied only once to
1323    /// the stored value.
1324    ///
1325    /// `fetch_update` takes two [`Ordering`] arguments to describe the memory
1326    /// ordering of this operation. The first describes the required ordering for
1327    /// when the operation finally succeeds while the second describes the
1328    /// required ordering for loads. These correspond to the success and failure
1329    /// orderings of [`AtomicBool::compare_exchange`] respectively.
1330    ///
1331    /// Using [`Acquire`] as success ordering makes the store part of this
1332    /// operation [`Relaxed`], and using [`Release`] makes the final successful
1333    /// load [`Relaxed`]. The (failed) load ordering can only be [`SeqCst`],
1334    /// [`Acquire`] or [`Relaxed`].
1335    ///
1336    /// **Note:** This method is only available on platforms that support atomic
1337    /// operations on `u8`.
1338    ///
1339    /// # Considerations
1340    ///
1341    /// This method is not magic; it is not provided by the hardware, and does not act like a
1342    /// critical section or mutex.
1343    ///
1344    /// It is implemented on top of an atomic [compare-and-swap operation], and thus is subject to
1345    /// the usual drawbacks of CAS operations. In particular, be careful of the [ABA problem].
1346    ///
1347    /// [ABA Problem]: https://en.wikipedia.org/wiki/ABA_problem
1348    /// [compare-and-swap operation]: https://en.wikipedia.org/wiki/Compare-and-swap
1349    ///
1350    /// # Examples
1351    ///
1352    /// ```rust
1353    /// use std::sync::atomic::{AtomicBool, Ordering};
1354    ///
1355    /// let x = AtomicBool::new(false);
1356    /// assert_eq!(x.fetch_update(Ordering::SeqCst, Ordering::SeqCst, |_| None), Err(false));
1357    /// assert_eq!(x.fetch_update(Ordering::SeqCst, Ordering::SeqCst, |x| Some(!x)), Ok(false));
1358    /// assert_eq!(x.fetch_update(Ordering::SeqCst, Ordering::SeqCst, |x| Some(!x)), Ok(true));
1359    /// assert_eq!(x.load(Ordering::SeqCst), false);
1360    /// ```
1361    #[inline]
1362    #[stable(feature = "atomic_fetch_update", since = "1.53.0")]
1363    #[cfg(target_has_atomic = "8")]
1364    #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
1365    pub fn fetch_update<F>(
1366        &self,
1367        set_order: Ordering,
1368        fetch_order: Ordering,
1369        mut f: F,
1370    ) -> Result<bool, bool>
1371    where
1372        F: FnMut(bool) -> Option<bool>,
1373    {
1374        let mut prev = self.load(fetch_order);
1375        while let Some(next) = f(prev) {
1376            match self.compare_exchange_weak(prev, next, set_order, fetch_order) {
1377                x @ Ok(_) => return x,
1378                Err(next_prev) => prev = next_prev,
1379            }
1380        }
1381        Err(prev)
1382    }
1383
1384    /// Fetches the value, and applies a function to it that returns an optional
1385    /// new value. Returns a `Result` of `Ok(previous_value)` if the function
1386    /// returned `Some(_)`, else `Err(previous_value)`.
1387    ///
1388    /// See also: [`update`](`AtomicBool::update`).
1389    ///
1390    /// Note: This may call the function multiple times if the value has been
1391    /// changed from other threads in the meantime, as long as the function
1392    /// returns `Some(_)`, but the function will have been applied only once to
1393    /// the stored value.
1394    ///
1395    /// `try_update` takes two [`Ordering`] arguments to describe the memory
1396    /// ordering of this operation. The first describes the required ordering for
1397    /// when the operation finally succeeds while the second describes the
1398    /// required ordering for loads. These correspond to the success and failure
1399    /// orderings of [`AtomicBool::compare_exchange`] respectively.
1400    ///
1401    /// Using [`Acquire`] as success ordering makes the store part of this
1402    /// operation [`Relaxed`], and using [`Release`] makes the final successful
1403    /// load [`Relaxed`]. The (failed) load ordering can only be [`SeqCst`],
1404    /// [`Acquire`] or [`Relaxed`].
1405    ///
1406    /// **Note:** This method is only available on platforms that support atomic
1407    /// operations on `u8`.
1408    ///
1409    /// # Considerations
1410    ///
1411    /// This method is not magic; it is not provided by the hardware, and does not act like a
1412    /// critical section or mutex.
1413    ///
1414    /// It is implemented on top of an atomic [compare-and-swap operation], and thus is subject to
1415    /// the usual drawbacks of CAS operations. In particular, be careful of the [ABA problem].
1416    ///
1417    /// [ABA Problem]: https://en.wikipedia.org/wiki/ABA_problem
1418    /// [compare-and-swap operation]: https://en.wikipedia.org/wiki/Compare-and-swap
1419    ///
1420    /// # Examples
1421    ///
1422    /// ```rust
1423    /// #![feature(atomic_try_update)]
1424    /// use std::sync::atomic::{AtomicBool, Ordering};
1425    ///
1426    /// let x = AtomicBool::new(false);
1427    /// assert_eq!(x.try_update(Ordering::SeqCst, Ordering::SeqCst, |_| None), Err(false));
1428    /// assert_eq!(x.try_update(Ordering::SeqCst, Ordering::SeqCst, |x| Some(!x)), Ok(false));
1429    /// assert_eq!(x.try_update(Ordering::SeqCst, Ordering::SeqCst, |x| Some(!x)), Ok(true));
1430    /// assert_eq!(x.load(Ordering::SeqCst), false);
1431    /// ```
1432    #[inline]
1433    #[unstable(feature = "atomic_try_update", issue = "135894")]
1434    #[cfg(target_has_atomic = "8")]
1435    #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
1436    pub fn try_update(
1437        &self,
1438        set_order: Ordering,
1439        fetch_order: Ordering,
1440        f: impl FnMut(bool) -> Option<bool>,
1441    ) -> Result<bool, bool> {
1442        // FIXME(atomic_try_update): this is currently an unstable alias to `fetch_update`;
1443        //      when stabilizing, turn `fetch_update` into a deprecated alias to `try_update`.
1444        self.fetch_update(set_order, fetch_order, f)
1445    }
1446
1447    /// Fetches the value, applies a function to it that it return a new value.
1448    /// The new value is stored and the old value is returned.
1449    ///
1450    /// See also: [`try_update`](`AtomicBool::try_update`).
1451    ///
1452    /// Note: This may call the function multiple times if the value has been changed from other threads in
1453    /// the meantime, but the function will have been applied only once to the stored value.
1454    ///
1455    /// `update` takes two [`Ordering`] arguments to describe the memory
1456    /// ordering of this operation. The first describes the required ordering for
1457    /// when the operation finally succeeds while the second describes the
1458    /// required ordering for loads. These correspond to the success and failure
1459    /// orderings of [`AtomicBool::compare_exchange`] respectively.
1460    ///
1461    /// Using [`Acquire`] as success ordering makes the store part
1462    /// of this operation [`Relaxed`], and using [`Release`] makes the final successful load
1463    /// [`Relaxed`]. The (failed) load ordering can only be [`SeqCst`], [`Acquire`] or [`Relaxed`].
1464    ///
1465    /// **Note:** This method is only available on platforms that support atomic operations on `u8`.
1466    ///
1467    /// # Considerations
1468    ///
1469    /// This method is not magic; it is not provided by the hardware, and does not act like a
1470    /// critical section or mutex.
1471    ///
1472    /// It is implemented on top of an atomic [compare-and-swap operation], and thus is subject to
1473    /// the usual drawbacks of CAS operations. In particular, be careful of the [ABA problem].
1474    ///
1475    /// [ABA Problem]: https://en.wikipedia.org/wiki/ABA_problem
1476    /// [compare-and-swap operation]: https://en.wikipedia.org/wiki/Compare-and-swap
1477    ///
1478    /// # Examples
1479    ///
1480    /// ```rust
1481    /// #![feature(atomic_try_update)]
1482    ///
1483    /// use std::sync::atomic::{AtomicBool, Ordering};
1484    ///
1485    /// let x = AtomicBool::new(false);
1486    /// assert_eq!(x.update(Ordering::SeqCst, Ordering::SeqCst, |x| !x), false);
1487    /// assert_eq!(x.update(Ordering::SeqCst, Ordering::SeqCst, |x| !x), true);
1488    /// assert_eq!(x.load(Ordering::SeqCst), false);
1489    /// ```
1490    #[inline]
1491    #[unstable(feature = "atomic_try_update", issue = "135894")]
1492    #[cfg(target_has_atomic = "8")]
1493    #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
1494    pub fn update(
1495        &self,
1496        set_order: Ordering,
1497        fetch_order: Ordering,
1498        mut f: impl FnMut(bool) -> bool,
1499    ) -> bool {
1500        let mut prev = self.load(fetch_order);
1501        loop {
1502            match self.compare_exchange_weak(prev, f(prev), set_order, fetch_order) {
1503                Ok(x) => break x,
1504                Err(next_prev) => prev = next_prev,
1505            }
1506        }
1507    }
1508}
1509
1510#[cfg(target_has_atomic_load_store = "ptr")]
1511#[cfg(not(feature = "ferrocene_certified"))]
1512impl<T> AtomicPtr<T> {
1513    /// Creates a new `AtomicPtr`.
1514    ///
1515    /// # Examples
1516    ///
1517    /// ```
1518    /// use std::sync::atomic::AtomicPtr;
1519    ///
1520    /// let ptr = &mut 5;
1521    /// let atomic_ptr = AtomicPtr::new(ptr);
1522    /// ```
1523    #[inline]
1524    #[stable(feature = "rust1", since = "1.0.0")]
1525    #[rustc_const_stable(feature = "const_atomic_new", since = "1.24.0")]
1526    pub const fn new(p: *mut T) -> AtomicPtr<T> {
1527        AtomicPtr { p: UnsafeCell::new(p) }
1528    }
1529
1530    /// Creates a new `AtomicPtr` from a pointer.
1531    ///
1532    /// # Examples
1533    ///
1534    /// ```
1535    /// use std::sync::atomic::{self, AtomicPtr};
1536    ///
1537    /// // Get a pointer to an allocated value
1538    /// let ptr: *mut *mut u8 = Box::into_raw(Box::new(std::ptr::null_mut()));
1539    ///
1540    /// assert!(ptr.cast::<AtomicPtr<u8>>().is_aligned());
1541    ///
1542    /// {
1543    ///     // Create an atomic view of the allocated value
1544    ///     let atomic = unsafe { AtomicPtr::from_ptr(ptr) };
1545    ///
1546    ///     // Use `atomic` for atomic operations, possibly share it with other threads
1547    ///     atomic.store(std::ptr::NonNull::dangling().as_ptr(), atomic::Ordering::Relaxed);
1548    /// }
1549    ///
1550    /// // It's ok to non-atomically access the value behind `ptr`,
1551    /// // since the reference to the atomic ended its lifetime in the block above
1552    /// assert!(!unsafe { *ptr }.is_null());
1553    ///
1554    /// // Deallocate the value
1555    /// unsafe { drop(Box::from_raw(ptr)) }
1556    /// ```
1557    ///
1558    /// # Safety
1559    ///
1560    /// * `ptr` must be aligned to `align_of::<AtomicPtr<T>>()` (note that on some platforms this
1561    ///   can be bigger than `align_of::<*mut T>()`).
1562    /// * `ptr` must be [valid] for both reads and writes for the whole lifetime `'a`.
1563    /// * You must adhere to the [Memory model for atomic accesses]. In particular, it is not
1564    ///   allowed to mix conflicting atomic and non-atomic accesses, or atomic accesses of different
1565    ///   sizes, without synchronization.
1566    ///
1567    /// [valid]: crate::ptr#safety
1568    /// [Memory model for atomic accesses]: self#memory-model-for-atomic-accesses
1569    #[inline]
1570    #[stable(feature = "atomic_from_ptr", since = "1.75.0")]
1571    #[rustc_const_stable(feature = "const_atomic_from_ptr", since = "1.84.0")]
1572    pub const unsafe fn from_ptr<'a>(ptr: *mut *mut T) -> &'a AtomicPtr<T> {
1573        // SAFETY: guaranteed by the caller
1574        unsafe { &*ptr.cast() }
1575    }
1576
1577    /// Returns a mutable reference to the underlying pointer.
1578    ///
1579    /// This is safe because the mutable reference guarantees that no other threads are
1580    /// concurrently accessing the atomic data.
1581    ///
1582    /// # Examples
1583    ///
1584    /// ```
1585    /// use std::sync::atomic::{AtomicPtr, Ordering};
1586    ///
1587    /// let mut data = 10;
1588    /// let mut atomic_ptr = AtomicPtr::new(&mut data);
1589    /// let mut other_data = 5;
1590    /// *atomic_ptr.get_mut() = &mut other_data;
1591    /// assert_eq!(unsafe { *atomic_ptr.load(Ordering::SeqCst) }, 5);
1592    /// ```
1593    #[inline]
1594    #[stable(feature = "atomic_access", since = "1.15.0")]
1595    pub fn get_mut(&mut self) -> &mut *mut T {
1596        self.p.get_mut()
1597    }
1598
1599    /// Gets atomic access to a pointer.
1600    ///
1601    /// # Examples
1602    ///
1603    /// ```
1604    /// #![feature(atomic_from_mut)]
1605    /// use std::sync::atomic::{AtomicPtr, Ordering};
1606    ///
1607    /// let mut data = 123;
1608    /// let mut some_ptr = &mut data as *mut i32;
1609    /// let a = AtomicPtr::from_mut(&mut some_ptr);
1610    /// let mut other_data = 456;
1611    /// a.store(&mut other_data, Ordering::Relaxed);
1612    /// assert_eq!(unsafe { *some_ptr }, 456);
1613    /// ```
1614    #[inline]
1615    #[cfg(target_has_atomic_equal_alignment = "ptr")]
1616    #[unstable(feature = "atomic_from_mut", issue = "76314")]
1617    pub fn from_mut(v: &mut *mut T) -> &mut Self {
1618        let [] = [(); align_of::<AtomicPtr<()>>() - align_of::<*mut ()>()];
1619        // SAFETY:
1620        //  - the mutable reference guarantees unique ownership.
1621        //  - the alignment of `*mut T` and `Self` is the same on all platforms
1622        //    supported by rust, as verified above.
1623        unsafe { &mut *(v as *mut *mut T as *mut Self) }
1624    }
1625
1626    /// Gets non-atomic access to a `&mut [AtomicPtr]` slice.
1627    ///
1628    /// This is safe because the mutable reference guarantees that no other threads are
1629    /// concurrently accessing the atomic data.
1630    ///
1631    /// # Examples
1632    ///
1633    /// ```ignore-wasm
1634    /// #![feature(atomic_from_mut)]
1635    /// use std::ptr::null_mut;
1636    /// use std::sync::atomic::{AtomicPtr, Ordering};
1637    ///
1638    /// let mut some_ptrs = [const { AtomicPtr::new(null_mut::<String>()) }; 10];
1639    ///
1640    /// let view: &mut [*mut String] = AtomicPtr::get_mut_slice(&mut some_ptrs);
1641    /// assert_eq!(view, [null_mut::<String>(); 10]);
1642    /// view
1643    ///     .iter_mut()
1644    ///     .enumerate()
1645    ///     .for_each(|(i, ptr)| *ptr = Box::into_raw(Box::new(format!("iteration#{i}"))));
1646    ///
1647    /// std::thread::scope(|s| {
1648    ///     for ptr in &some_ptrs {
1649    ///         s.spawn(move || {
1650    ///             let ptr = ptr.load(Ordering::Relaxed);
1651    ///             assert!(!ptr.is_null());
1652    ///
1653    ///             let name = unsafe { Box::from_raw(ptr) };
1654    ///             println!("Hello, {name}!");
1655    ///         });
1656    ///     }
1657    /// });
1658    /// ```
1659    #[inline]
1660    #[unstable(feature = "atomic_from_mut", issue = "76314")]
1661    pub fn get_mut_slice(this: &mut [Self]) -> &mut [*mut T] {
1662        // SAFETY: the mutable reference guarantees unique ownership.
1663        unsafe { &mut *(this as *mut [Self] as *mut [*mut T]) }
1664    }
1665
1666    /// Gets atomic access to a slice of pointers.
1667    ///
1668    /// # Examples
1669    ///
1670    /// ```ignore-wasm
1671    /// #![feature(atomic_from_mut)]
1672    /// use std::ptr::null_mut;
1673    /// use std::sync::atomic::{AtomicPtr, Ordering};
1674    ///
1675    /// let mut some_ptrs = [null_mut::<String>(); 10];
1676    /// let a = &*AtomicPtr::from_mut_slice(&mut some_ptrs);
1677    /// std::thread::scope(|s| {
1678    ///     for i in 0..a.len() {
1679    ///         s.spawn(move || {
1680    ///             let name = Box::new(format!("thread{i}"));
1681    ///             a[i].store(Box::into_raw(name), Ordering::Relaxed);
1682    ///         });
1683    ///     }
1684    /// });
1685    /// for p in some_ptrs {
1686    ///     assert!(!p.is_null());
1687    ///     let name = unsafe { Box::from_raw(p) };
1688    ///     println!("Hello, {name}!");
1689    /// }
1690    /// ```
1691    #[inline]
1692    #[cfg(target_has_atomic_equal_alignment = "ptr")]
1693    #[unstable(feature = "atomic_from_mut", issue = "76314")]
1694    pub fn from_mut_slice(v: &mut [*mut T]) -> &mut [Self] {
1695        // SAFETY:
1696        //  - the mutable reference guarantees unique ownership.
1697        //  - the alignment of `*mut T` and `Self` is the same on all platforms
1698        //    supported by rust, as verified above.
1699        unsafe { &mut *(v as *mut [*mut T] as *mut [Self]) }
1700    }
1701
1702    /// Consumes the atomic and returns the contained value.
1703    ///
1704    /// This is safe because passing `self` by value guarantees that no other threads are
1705    /// concurrently accessing the atomic data.
1706    ///
1707    /// # Examples
1708    ///
1709    /// ```
1710    /// use std::sync::atomic::AtomicPtr;
1711    ///
1712    /// let mut data = 5;
1713    /// let atomic_ptr = AtomicPtr::new(&mut data);
1714    /// assert_eq!(unsafe { *atomic_ptr.into_inner() }, 5);
1715    /// ```
1716    #[inline]
1717    #[stable(feature = "atomic_access", since = "1.15.0")]
1718    #[rustc_const_stable(feature = "const_atomic_into_inner", since = "1.79.0")]
1719    pub const fn into_inner(self) -> *mut T {
1720        self.p.into_inner()
1721    }
1722
1723    /// Loads a value from the pointer.
1724    ///
1725    /// `load` takes an [`Ordering`] argument which describes the memory ordering
1726    /// of this operation. Possible values are [`SeqCst`], [`Acquire`] and [`Relaxed`].
1727    ///
1728    /// # Panics
1729    ///
1730    /// Panics if `order` is [`Release`] or [`AcqRel`].
1731    ///
1732    /// # Examples
1733    ///
1734    /// ```
1735    /// use std::sync::atomic::{AtomicPtr, Ordering};
1736    ///
1737    /// let ptr = &mut 5;
1738    /// let some_ptr = AtomicPtr::new(ptr);
1739    ///
1740    /// let value = some_ptr.load(Ordering::Relaxed);
1741    /// ```
1742    #[inline]
1743    #[stable(feature = "rust1", since = "1.0.0")]
1744    #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
1745    pub fn load(&self, order: Ordering) -> *mut T {
1746        // SAFETY: data races are prevented by atomic intrinsics.
1747        unsafe { atomic_load(self.p.get(), order) }
1748    }
1749
1750    /// Stores a value into the pointer.
1751    ///
1752    /// `store` takes an [`Ordering`] argument which describes the memory ordering
1753    /// of this operation. Possible values are [`SeqCst`], [`Release`] and [`Relaxed`].
1754    ///
1755    /// # Panics
1756    ///
1757    /// Panics if `order` is [`Acquire`] or [`AcqRel`].
1758    ///
1759    /// # Examples
1760    ///
1761    /// ```
1762    /// use std::sync::atomic::{AtomicPtr, Ordering};
1763    ///
1764    /// let ptr = &mut 5;
1765    /// let some_ptr = AtomicPtr::new(ptr);
1766    ///
1767    /// let other_ptr = &mut 10;
1768    ///
1769    /// some_ptr.store(other_ptr, Ordering::Relaxed);
1770    /// ```
1771    #[inline]
1772    #[stable(feature = "rust1", since = "1.0.0")]
1773    #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
1774    pub fn store(&self, ptr: *mut T, order: Ordering) {
1775        // SAFETY: data races are prevented by atomic intrinsics.
1776        unsafe {
1777            atomic_store(self.p.get(), ptr, order);
1778        }
1779    }
1780
1781    /// Stores a value into the pointer, returning the previous value.
1782    ///
1783    /// `swap` takes an [`Ordering`] argument which describes the memory ordering
1784    /// of this operation. All ordering modes are possible. Note that using
1785    /// [`Acquire`] makes the store part of this operation [`Relaxed`], and
1786    /// using [`Release`] makes the load part [`Relaxed`].
1787    ///
1788    /// **Note:** This method is only available on platforms that support atomic
1789    /// operations on pointers.
1790    ///
1791    /// # Examples
1792    ///
1793    /// ```
1794    /// use std::sync::atomic::{AtomicPtr, Ordering};
1795    ///
1796    /// let ptr = &mut 5;
1797    /// let some_ptr = AtomicPtr::new(ptr);
1798    ///
1799    /// let other_ptr = &mut 10;
1800    ///
1801    /// let value = some_ptr.swap(other_ptr, Ordering::Relaxed);
1802    /// ```
1803    #[inline]
1804    #[stable(feature = "rust1", since = "1.0.0")]
1805    #[cfg(target_has_atomic = "ptr")]
1806    #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
1807    pub fn swap(&self, ptr: *mut T, order: Ordering) -> *mut T {
1808        // SAFETY: data races are prevented by atomic intrinsics.
1809        unsafe { atomic_swap(self.p.get(), ptr, order) }
1810    }
1811
1812    /// Stores a value into the pointer if the current value is the same as the `current` value.
1813    ///
1814    /// The return value is always the previous value. If it is equal to `current`, then the value
1815    /// was updated.
1816    ///
1817    /// `compare_and_swap` also takes an [`Ordering`] argument which describes the memory
1818    /// ordering of this operation. Notice that even when using [`AcqRel`], the operation
1819    /// might fail and hence just perform an `Acquire` load, but not have `Release` semantics.
1820    /// Using [`Acquire`] makes the store part of this operation [`Relaxed`] if it
1821    /// happens, and using [`Release`] makes the load part [`Relaxed`].
1822    ///
1823    /// **Note:** This method is only available on platforms that support atomic
1824    /// operations on pointers.
1825    ///
1826    /// # Migrating to `compare_exchange` and `compare_exchange_weak`
1827    ///
1828    /// `compare_and_swap` is equivalent to `compare_exchange` with the following mapping for
1829    /// memory orderings:
1830    ///
1831    /// Original | Success | Failure
1832    /// -------- | ------- | -------
1833    /// Relaxed  | Relaxed | Relaxed
1834    /// Acquire  | Acquire | Acquire
1835    /// Release  | Release | Relaxed
1836    /// AcqRel   | AcqRel  | Acquire
1837    /// SeqCst   | SeqCst  | SeqCst
1838    ///
1839    /// `compare_and_swap` and `compare_exchange` also differ in their return type. You can use
1840    /// `compare_exchange(...).unwrap_or_else(|x| x)` to recover the behavior of `compare_and_swap`,
1841    /// but in most cases it is more idiomatic to check whether the return value is `Ok` or `Err`
1842    /// rather than to infer success vs failure based on the value that was read.
1843    ///
1844    /// During migration, consider whether it makes sense to use `compare_exchange_weak` instead.
1845    /// `compare_exchange_weak` is allowed to fail spuriously even when the comparison succeeds,
1846    /// which allows the compiler to generate better assembly code when the compare and swap
1847    /// is used in a loop.
1848    ///
1849    /// # Examples
1850    ///
1851    /// ```
1852    /// use std::sync::atomic::{AtomicPtr, Ordering};
1853    ///
1854    /// let ptr = &mut 5;
1855    /// let some_ptr = AtomicPtr::new(ptr);
1856    ///
1857    /// let other_ptr = &mut 10;
1858    ///
1859    /// let value = some_ptr.compare_and_swap(ptr, other_ptr, Ordering::Relaxed);
1860    /// ```
1861    #[inline]
1862    #[stable(feature = "rust1", since = "1.0.0")]
1863    #[deprecated(
1864        since = "1.50.0",
1865        note = "Use `compare_exchange` or `compare_exchange_weak` instead"
1866    )]
1867    #[cfg(target_has_atomic = "ptr")]
1868    #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
1869    pub fn compare_and_swap(&self, current: *mut T, new: *mut T, order: Ordering) -> *mut T {
1870        match self.compare_exchange(current, new, order, strongest_failure_ordering(order)) {
1871            Ok(x) => x,
1872            Err(x) => x,
1873        }
1874    }
1875
1876    /// Stores a value into the pointer if the current value is the same as the `current` value.
1877    ///
1878    /// The return value is a result indicating whether the new value was written and containing
1879    /// the previous value. On success this value is guaranteed to be equal to `current`.
1880    ///
1881    /// `compare_exchange` takes two [`Ordering`] arguments to describe the memory
1882    /// ordering of this operation. `success` describes the required ordering for the
1883    /// read-modify-write operation that takes place if the comparison with `current` succeeds.
1884    /// `failure` describes the required ordering for the load operation that takes place when
1885    /// the comparison fails. Using [`Acquire`] as success ordering makes the store part
1886    /// of this operation [`Relaxed`], and using [`Release`] makes the successful load
1887    /// [`Relaxed`]. The failure ordering can only be [`SeqCst`], [`Acquire`] or [`Relaxed`].
1888    ///
1889    /// **Note:** This method is only available on platforms that support atomic
1890    /// operations on pointers.
1891    ///
1892    /// # Examples
1893    ///
1894    /// ```
1895    /// use std::sync::atomic::{AtomicPtr, Ordering};
1896    ///
1897    /// let ptr = &mut 5;
1898    /// let some_ptr = AtomicPtr::new(ptr);
1899    ///
1900    /// let other_ptr = &mut 10;
1901    ///
1902    /// let value = some_ptr.compare_exchange(ptr, other_ptr,
1903    ///                                       Ordering::SeqCst, Ordering::Relaxed);
1904    /// ```
1905    ///
1906    /// # Considerations
1907    ///
1908    /// `compare_exchange` is a [compare-and-swap operation] and thus exhibits the usual downsides
1909    /// of CAS operations. In particular, a load of the value followed by a successful
1910    /// `compare_exchange` with the previous load *does not ensure* that other threads have not
1911    /// changed the value in the interim. This is usually important when the *equality* check in
1912    /// the `compare_exchange` is being used to check the *identity* of a value, but equality
1913    /// does not necessarily imply identity. This is a particularly common case for pointers, as
1914    /// a pointer holding the same address does not imply that the same object exists at that
1915    /// address! In this case, `compare_exchange` can lead to the [ABA problem].
1916    ///
1917    /// [ABA Problem]: https://en.wikipedia.org/wiki/ABA_problem
1918    /// [compare-and-swap operation]: https://en.wikipedia.org/wiki/Compare-and-swap
1919    #[inline]
1920    #[stable(feature = "extended_compare_and_swap", since = "1.10.0")]
1921    #[cfg(target_has_atomic = "ptr")]
1922    #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
1923    pub fn compare_exchange(
1924        &self,
1925        current: *mut T,
1926        new: *mut T,
1927        success: Ordering,
1928        failure: Ordering,
1929    ) -> Result<*mut T, *mut T> {
1930        // SAFETY: data races are prevented by atomic intrinsics.
1931        unsafe { atomic_compare_exchange(self.p.get(), current, new, success, failure) }
1932    }
1933
1934    /// Stores a value into the pointer if the current value is the same as the `current` value.
1935    ///
1936    /// Unlike [`AtomicPtr::compare_exchange`], this function is allowed to spuriously fail even when the
1937    /// comparison succeeds, which can result in more efficient code on some platforms. The
1938    /// return value is a result indicating whether the new value was written and containing the
1939    /// previous value.
1940    ///
1941    /// `compare_exchange_weak` takes two [`Ordering`] arguments to describe the memory
1942    /// ordering of this operation. `success` describes the required ordering for the
1943    /// read-modify-write operation that takes place if the comparison with `current` succeeds.
1944    /// `failure` describes the required ordering for the load operation that takes place when
1945    /// the comparison fails. Using [`Acquire`] as success ordering makes the store part
1946    /// of this operation [`Relaxed`], and using [`Release`] makes the successful load
1947    /// [`Relaxed`]. The failure ordering can only be [`SeqCst`], [`Acquire`] or [`Relaxed`].
1948    ///
1949    /// **Note:** This method is only available on platforms that support atomic
1950    /// operations on pointers.
1951    ///
1952    /// # Examples
1953    ///
1954    /// ```
1955    /// use std::sync::atomic::{AtomicPtr, Ordering};
1956    ///
1957    /// let some_ptr = AtomicPtr::new(&mut 5);
1958    ///
1959    /// let new = &mut 10;
1960    /// let mut old = some_ptr.load(Ordering::Relaxed);
1961    /// loop {
1962    ///     match some_ptr.compare_exchange_weak(old, new, Ordering::SeqCst, Ordering::Relaxed) {
1963    ///         Ok(_) => break,
1964    ///         Err(x) => old = x,
1965    ///     }
1966    /// }
1967    /// ```
1968    ///
1969    /// # Considerations
1970    ///
1971    /// `compare_exchange` is a [compare-and-swap operation] and thus exhibits the usual downsides
1972    /// of CAS operations. In particular, a load of the value followed by a successful
1973    /// `compare_exchange` with the previous load *does not ensure* that other threads have not
1974    /// changed the value in the interim. This is usually important when the *equality* check in
1975    /// the `compare_exchange` is being used to check the *identity* of a value, but equality
1976    /// does not necessarily imply identity. This is a particularly common case for pointers, as
1977    /// a pointer holding the same address does not imply that the same object exists at that
1978    /// address! In this case, `compare_exchange` can lead to the [ABA problem].
1979    ///
1980    /// [ABA Problem]: https://en.wikipedia.org/wiki/ABA_problem
1981    /// [compare-and-swap operation]: https://en.wikipedia.org/wiki/Compare-and-swap
1982    #[inline]
1983    #[stable(feature = "extended_compare_and_swap", since = "1.10.0")]
1984    #[cfg(target_has_atomic = "ptr")]
1985    #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
1986    pub fn compare_exchange_weak(
1987        &self,
1988        current: *mut T,
1989        new: *mut T,
1990        success: Ordering,
1991        failure: Ordering,
1992    ) -> Result<*mut T, *mut T> {
1993        // SAFETY: This intrinsic is unsafe because it operates on a raw pointer
1994        // but we know for sure that the pointer is valid (we just got it from
1995        // an `UnsafeCell` that we have by reference) and the atomic operation
1996        // itself allows us to safely mutate the `UnsafeCell` contents.
1997        unsafe { atomic_compare_exchange_weak(self.p.get(), current, new, success, failure) }
1998    }
1999
2000    /// Fetches the value, and applies a function to it that returns an optional
2001    /// new value. Returns a `Result` of `Ok(previous_value)` if the function
2002    /// returned `Some(_)`, else `Err(previous_value)`.
2003    ///
2004    /// Note: This may call the function multiple times if the value has been
2005    /// changed from other threads in the meantime, as long as the function
2006    /// returns `Some(_)`, but the function will have been applied only once to
2007    /// the stored value.
2008    ///
2009    /// `fetch_update` takes two [`Ordering`] arguments to describe the memory
2010    /// ordering of this operation. The first describes the required ordering for
2011    /// when the operation finally succeeds while the second describes the
2012    /// required ordering for loads. These correspond to the success and failure
2013    /// orderings of [`AtomicPtr::compare_exchange`] respectively.
2014    ///
2015    /// Using [`Acquire`] as success ordering makes the store part of this
2016    /// operation [`Relaxed`], and using [`Release`] makes the final successful
2017    /// load [`Relaxed`]. The (failed) load ordering can only be [`SeqCst`],
2018    /// [`Acquire`] or [`Relaxed`].
2019    ///
2020    /// **Note:** This method is only available on platforms that support atomic
2021    /// operations on pointers.
2022    ///
2023    /// # Considerations
2024    ///
2025    /// This method is not magic; it is not provided by the hardware, and does not act like a
2026    /// critical section or mutex.
2027    ///
2028    /// It is implemented on top of an atomic [compare-and-swap operation], and thus is subject to
2029    /// the usual drawbacks of CAS operations. In particular, be careful of the [ABA problem],
2030    /// which is a particularly common pitfall for pointers!
2031    ///
2032    /// [ABA Problem]: https://en.wikipedia.org/wiki/ABA_problem
2033    /// [compare-and-swap operation]: https://en.wikipedia.org/wiki/Compare-and-swap
2034    ///
2035    /// # Examples
2036    ///
2037    /// ```rust
2038    /// use std::sync::atomic::{AtomicPtr, Ordering};
2039    ///
2040    /// let ptr: *mut _ = &mut 5;
2041    /// let some_ptr = AtomicPtr::new(ptr);
2042    ///
2043    /// let new: *mut _ = &mut 10;
2044    /// assert_eq!(some_ptr.fetch_update(Ordering::SeqCst, Ordering::SeqCst, |_| None), Err(ptr));
2045    /// let result = some_ptr.fetch_update(Ordering::SeqCst, Ordering::SeqCst, |x| {
2046    ///     if x == ptr {
2047    ///         Some(new)
2048    ///     } else {
2049    ///         None
2050    ///     }
2051    /// });
2052    /// assert_eq!(result, Ok(ptr));
2053    /// assert_eq!(some_ptr.load(Ordering::SeqCst), new);
2054    /// ```
2055    #[inline]
2056    #[stable(feature = "atomic_fetch_update", since = "1.53.0")]
2057    #[cfg(target_has_atomic = "ptr")]
2058    #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
2059    pub fn fetch_update<F>(
2060        &self,
2061        set_order: Ordering,
2062        fetch_order: Ordering,
2063        mut f: F,
2064    ) -> Result<*mut T, *mut T>
2065    where
2066        F: FnMut(*mut T) -> Option<*mut T>,
2067    {
2068        let mut prev = self.load(fetch_order);
2069        while let Some(next) = f(prev) {
2070            match self.compare_exchange_weak(prev, next, set_order, fetch_order) {
2071                x @ Ok(_) => return x,
2072                Err(next_prev) => prev = next_prev,
2073            }
2074        }
2075        Err(prev)
2076    }
2077    /// Fetches the value, and applies a function to it that returns an optional
2078    /// new value. Returns a `Result` of `Ok(previous_value)` if the function
2079    /// returned `Some(_)`, else `Err(previous_value)`.
2080    ///
2081    /// See also: [`update`](`AtomicPtr::update`).
2082    ///
2083    /// Note: This may call the function multiple times if the value has been
2084    /// changed from other threads in the meantime, as long as the function
2085    /// returns `Some(_)`, but the function will have been applied only once to
2086    /// the stored value.
2087    ///
2088    /// `try_update` takes two [`Ordering`] arguments to describe the memory
2089    /// ordering of this operation. The first describes the required ordering for
2090    /// when the operation finally succeeds while the second describes the
2091    /// required ordering for loads. These correspond to the success and failure
2092    /// orderings of [`AtomicPtr::compare_exchange`] respectively.
2093    ///
2094    /// Using [`Acquire`] as success ordering makes the store part of this
2095    /// operation [`Relaxed`], and using [`Release`] makes the final successful
2096    /// load [`Relaxed`]. The (failed) load ordering can only be [`SeqCst`],
2097    /// [`Acquire`] or [`Relaxed`].
2098    ///
2099    /// **Note:** This method is only available on platforms that support atomic
2100    /// operations on pointers.
2101    ///
2102    /// # Considerations
2103    ///
2104    /// This method is not magic; it is not provided by the hardware, and does not act like a
2105    /// critical section or mutex.
2106    ///
2107    /// It is implemented on top of an atomic [compare-and-swap operation], and thus is subject to
2108    /// the usual drawbacks of CAS operations. In particular, be careful of the [ABA problem],
2109    /// which is a particularly common pitfall for pointers!
2110    ///
2111    /// [ABA Problem]: https://en.wikipedia.org/wiki/ABA_problem
2112    /// [compare-and-swap operation]: https://en.wikipedia.org/wiki/Compare-and-swap
2113    ///
2114    /// # Examples
2115    ///
2116    /// ```rust
2117    /// #![feature(atomic_try_update)]
2118    /// use std::sync::atomic::{AtomicPtr, Ordering};
2119    ///
2120    /// let ptr: *mut _ = &mut 5;
2121    /// let some_ptr = AtomicPtr::new(ptr);
2122    ///
2123    /// let new: *mut _ = &mut 10;
2124    /// assert_eq!(some_ptr.try_update(Ordering::SeqCst, Ordering::SeqCst, |_| None), Err(ptr));
2125    /// let result = some_ptr.try_update(Ordering::SeqCst, Ordering::SeqCst, |x| {
2126    ///     if x == ptr {
2127    ///         Some(new)
2128    ///     } else {
2129    ///         None
2130    ///     }
2131    /// });
2132    /// assert_eq!(result, Ok(ptr));
2133    /// assert_eq!(some_ptr.load(Ordering::SeqCst), new);
2134    /// ```
2135    #[inline]
2136    #[unstable(feature = "atomic_try_update", issue = "135894")]
2137    #[cfg(target_has_atomic = "ptr")]
2138    #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
2139    pub fn try_update(
2140        &self,
2141        set_order: Ordering,
2142        fetch_order: Ordering,
2143        f: impl FnMut(*mut T) -> Option<*mut T>,
2144    ) -> Result<*mut T, *mut T> {
2145        // FIXME(atomic_try_update): this is currently an unstable alias to `fetch_update`;
2146        //      when stabilizing, turn `fetch_update` into a deprecated alias to `try_update`.
2147        self.fetch_update(set_order, fetch_order, f)
2148    }
2149
2150    /// Fetches the value, applies a function to it that it return a new value.
2151    /// The new value is stored and the old value is returned.
2152    ///
2153    /// See also: [`try_update`](`AtomicPtr::try_update`).
2154    ///
2155    /// Note: This may call the function multiple times if the value has been changed from other threads in
2156    /// the meantime, but the function will have been applied only once to the stored value.
2157    ///
2158    /// `update` takes two [`Ordering`] arguments to describe the memory
2159    /// ordering of this operation. The first describes the required ordering for
2160    /// when the operation finally succeeds while the second describes the
2161    /// required ordering for loads. These correspond to the success and failure
2162    /// orderings of [`AtomicPtr::compare_exchange`] respectively.
2163    ///
2164    /// Using [`Acquire`] as success ordering makes the store part
2165    /// of this operation [`Relaxed`], and using [`Release`] makes the final successful load
2166    /// [`Relaxed`]. The (failed) load ordering can only be [`SeqCst`], [`Acquire`] or [`Relaxed`].
2167    ///
2168    /// **Note:** This method is only available on platforms that support atomic
2169    /// operations on pointers.
2170    ///
2171    /// # Considerations
2172    ///
2173    /// This method is not magic; it is not provided by the hardware, and does not act like a
2174    /// critical section or mutex.
2175    ///
2176    /// It is implemented on top of an atomic [compare-and-swap operation], and thus is subject to
2177    /// the usual drawbacks of CAS operations. In particular, be careful of the [ABA problem],
2178    /// which is a particularly common pitfall for pointers!
2179    ///
2180    /// [ABA Problem]: https://en.wikipedia.org/wiki/ABA_problem
2181    /// [compare-and-swap operation]: https://en.wikipedia.org/wiki/Compare-and-swap
2182    ///
2183    /// # Examples
2184    ///
2185    /// ```rust
2186    /// #![feature(atomic_try_update)]
2187    ///
2188    /// use std::sync::atomic::{AtomicPtr, Ordering};
2189    ///
2190    /// let ptr: *mut _ = &mut 5;
2191    /// let some_ptr = AtomicPtr::new(ptr);
2192    ///
2193    /// let new: *mut _ = &mut 10;
2194    /// let result = some_ptr.update(Ordering::SeqCst, Ordering::SeqCst, |_| new);
2195    /// assert_eq!(result, ptr);
2196    /// assert_eq!(some_ptr.load(Ordering::SeqCst), new);
2197    /// ```
2198    #[inline]
2199    #[unstable(feature = "atomic_try_update", issue = "135894")]
2200    #[cfg(target_has_atomic = "8")]
2201    #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
2202    pub fn update(
2203        &self,
2204        set_order: Ordering,
2205        fetch_order: Ordering,
2206        mut f: impl FnMut(*mut T) -> *mut T,
2207    ) -> *mut T {
2208        let mut prev = self.load(fetch_order);
2209        loop {
2210            match self.compare_exchange_weak(prev, f(prev), set_order, fetch_order) {
2211                Ok(x) => break x,
2212                Err(next_prev) => prev = next_prev,
2213            }
2214        }
2215    }
2216
2217    /// Offsets the pointer's address by adding `val` (in units of `T`),
2218    /// returning the previous pointer.
2219    ///
2220    /// This is equivalent to using [`wrapping_add`] to atomically perform the
2221    /// equivalent of `ptr = ptr.wrapping_add(val);`.
2222    ///
2223    /// This method operates in units of `T`, which means that it cannot be used
2224    /// to offset the pointer by an amount which is not a multiple of
2225    /// `size_of::<T>()`. This can sometimes be inconvenient, as you may want to
2226    /// work with a deliberately misaligned pointer. In such cases, you may use
2227    /// the [`fetch_byte_add`](Self::fetch_byte_add) method instead.
2228    ///
2229    /// `fetch_ptr_add` takes an [`Ordering`] argument which describes the
2230    /// memory ordering of this operation. All ordering modes are possible. Note
2231    /// that using [`Acquire`] makes the store part of this operation
2232    /// [`Relaxed`], and using [`Release`] makes the load part [`Relaxed`].
2233    ///
2234    /// **Note**: This method is only available on platforms that support atomic
2235    /// operations on [`AtomicPtr`].
2236    ///
2237    /// [`wrapping_add`]: pointer::wrapping_add
2238    ///
2239    /// # Examples
2240    ///
2241    /// ```
2242    /// use core::sync::atomic::{AtomicPtr, Ordering};
2243    ///
2244    /// let atom = AtomicPtr::<i64>::new(core::ptr::null_mut());
2245    /// assert_eq!(atom.fetch_ptr_add(1, Ordering::Relaxed).addr(), 0);
2246    /// // Note: units of `size_of::<i64>()`.
2247    /// assert_eq!(atom.load(Ordering::Relaxed).addr(), 8);
2248    /// ```
2249    #[inline]
2250    #[cfg(target_has_atomic = "ptr")]
2251    #[stable(feature = "strict_provenance_atomic_ptr", since = "1.91.0")]
2252    #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
2253    pub fn fetch_ptr_add(&self, val: usize, order: Ordering) -> *mut T {
2254        self.fetch_byte_add(val.wrapping_mul(size_of::<T>()), order)
2255    }
2256
2257    /// Offsets the pointer's address by subtracting `val` (in units of `T`),
2258    /// returning the previous pointer.
2259    ///
2260    /// This is equivalent to using [`wrapping_sub`] to atomically perform the
2261    /// equivalent of `ptr = ptr.wrapping_sub(val);`.
2262    ///
2263    /// This method operates in units of `T`, which means that it cannot be used
2264    /// to offset the pointer by an amount which is not a multiple of
2265    /// `size_of::<T>()`. This can sometimes be inconvenient, as you may want to
2266    /// work with a deliberately misaligned pointer. In such cases, you may use
2267    /// the [`fetch_byte_sub`](Self::fetch_byte_sub) method instead.
2268    ///
2269    /// `fetch_ptr_sub` takes an [`Ordering`] argument which describes the memory
2270    /// ordering of this operation. All ordering modes are possible. Note that
2271    /// using [`Acquire`] makes the store part of this operation [`Relaxed`],
2272    /// and using [`Release`] makes the load part [`Relaxed`].
2273    ///
2274    /// **Note**: This method is only available on platforms that support atomic
2275    /// operations on [`AtomicPtr`].
2276    ///
2277    /// [`wrapping_sub`]: pointer::wrapping_sub
2278    ///
2279    /// # Examples
2280    ///
2281    /// ```
2282    /// use core::sync::atomic::{AtomicPtr, Ordering};
2283    ///
2284    /// let array = [1i32, 2i32];
2285    /// let atom = AtomicPtr::new(array.as_ptr().wrapping_add(1) as *mut _);
2286    ///
2287    /// assert!(core::ptr::eq(
2288    ///     atom.fetch_ptr_sub(1, Ordering::Relaxed),
2289    ///     &array[1],
2290    /// ));
2291    /// assert!(core::ptr::eq(atom.load(Ordering::Relaxed), &array[0]));
2292    /// ```
2293    #[inline]
2294    #[cfg(target_has_atomic = "ptr")]
2295    #[stable(feature = "strict_provenance_atomic_ptr", since = "1.91.0")]
2296    #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
2297    pub fn fetch_ptr_sub(&self, val: usize, order: Ordering) -> *mut T {
2298        self.fetch_byte_sub(val.wrapping_mul(size_of::<T>()), order)
2299    }
2300
2301    /// Offsets the pointer's address by adding `val` *bytes*, returning the
2302    /// previous pointer.
2303    ///
2304    /// This is equivalent to using [`wrapping_byte_add`] to atomically
2305    /// perform `ptr = ptr.wrapping_byte_add(val)`.
2306    ///
2307    /// `fetch_byte_add` takes an [`Ordering`] argument which describes the
2308    /// memory ordering of this operation. All ordering modes are possible. Note
2309    /// that using [`Acquire`] makes the store part of this operation
2310    /// [`Relaxed`], and using [`Release`] makes the load part [`Relaxed`].
2311    ///
2312    /// **Note**: This method is only available on platforms that support atomic
2313    /// operations on [`AtomicPtr`].
2314    ///
2315    /// [`wrapping_byte_add`]: pointer::wrapping_byte_add
2316    ///
2317    /// # Examples
2318    ///
2319    /// ```
2320    /// use core::sync::atomic::{AtomicPtr, Ordering};
2321    ///
2322    /// let atom = AtomicPtr::<i64>::new(core::ptr::null_mut());
2323    /// assert_eq!(atom.fetch_byte_add(1, Ordering::Relaxed).addr(), 0);
2324    /// // Note: in units of bytes, not `size_of::<i64>()`.
2325    /// assert_eq!(atom.load(Ordering::Relaxed).addr(), 1);
2326    /// ```
2327    #[inline]
2328    #[cfg(target_has_atomic = "ptr")]
2329    #[stable(feature = "strict_provenance_atomic_ptr", since = "1.91.0")]
2330    #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
2331    pub fn fetch_byte_add(&self, val: usize, order: Ordering) -> *mut T {
2332        // SAFETY: data races are prevented by atomic intrinsics.
2333        unsafe { atomic_add(self.p.get(), val, order).cast() }
2334    }
2335
2336    /// Offsets the pointer's address by subtracting `val` *bytes*, returning the
2337    /// previous pointer.
2338    ///
2339    /// This is equivalent to using [`wrapping_byte_sub`] to atomically
2340    /// perform `ptr = ptr.wrapping_byte_sub(val)`.
2341    ///
2342    /// `fetch_byte_sub` takes an [`Ordering`] argument which describes the
2343    /// memory ordering of this operation. All ordering modes are possible. Note
2344    /// that using [`Acquire`] makes the store part of this operation
2345    /// [`Relaxed`], and using [`Release`] makes the load part [`Relaxed`].
2346    ///
2347    /// **Note**: This method is only available on platforms that support atomic
2348    /// operations on [`AtomicPtr`].
2349    ///
2350    /// [`wrapping_byte_sub`]: pointer::wrapping_byte_sub
2351    ///
2352    /// # Examples
2353    ///
2354    /// ```
2355    /// use core::sync::atomic::{AtomicPtr, Ordering};
2356    ///
2357    /// let mut arr = [0i64, 1];
2358    /// let atom = AtomicPtr::<i64>::new(&raw mut arr[1]);
2359    /// assert_eq!(atom.fetch_byte_sub(8, Ordering::Relaxed).addr(), (&raw const arr[1]).addr());
2360    /// assert_eq!(atom.load(Ordering::Relaxed).addr(), (&raw const arr[0]).addr());
2361    /// ```
2362    #[inline]
2363    #[cfg(target_has_atomic = "ptr")]
2364    #[stable(feature = "strict_provenance_atomic_ptr", since = "1.91.0")]
2365    #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
2366    pub fn fetch_byte_sub(&self, val: usize, order: Ordering) -> *mut T {
2367        // SAFETY: data races are prevented by atomic intrinsics.
2368        unsafe { atomic_sub(self.p.get(), val, order).cast() }
2369    }
2370
2371    /// Performs a bitwise "or" operation on the address of the current pointer,
2372    /// and the argument `val`, and stores a pointer with provenance of the
2373    /// current pointer and the resulting address.
2374    ///
2375    /// This is equivalent to using [`map_addr`] to atomically perform
2376    /// `ptr = ptr.map_addr(|a| a | val)`. This can be used in tagged
2377    /// pointer schemes to atomically set tag bits.
2378    ///
2379    /// **Caveat**: This operation returns the previous value. To compute the
2380    /// stored value without losing provenance, you may use [`map_addr`]. For
2381    /// example: `a.fetch_or(val).map_addr(|a| a | val)`.
2382    ///
2383    /// `fetch_or` takes an [`Ordering`] argument which describes the memory
2384    /// ordering of this operation. All ordering modes are possible. Note that
2385    /// using [`Acquire`] makes the store part of this operation [`Relaxed`],
2386    /// and using [`Release`] makes the load part [`Relaxed`].
2387    ///
2388    /// **Note**: This method is only available on platforms that support atomic
2389    /// operations on [`AtomicPtr`].
2390    ///
2391    /// This API and its claimed semantics are part of the Strict Provenance
2392    /// experiment, see the [module documentation for `ptr`][crate::ptr] for
2393    /// details.
2394    ///
2395    /// [`map_addr`]: pointer::map_addr
2396    ///
2397    /// # Examples
2398    ///
2399    /// ```
2400    /// use core::sync::atomic::{AtomicPtr, Ordering};
2401    ///
2402    /// let pointer = &mut 3i64 as *mut i64;
2403    ///
2404    /// let atom = AtomicPtr::<i64>::new(pointer);
2405    /// // Tag the bottom bit of the pointer.
2406    /// assert_eq!(atom.fetch_or(1, Ordering::Relaxed).addr() & 1, 0);
2407    /// // Extract and untag.
2408    /// let tagged = atom.load(Ordering::Relaxed);
2409    /// assert_eq!(tagged.addr() & 1, 1);
2410    /// assert_eq!(tagged.map_addr(|p| p & !1), pointer);
2411    /// ```
2412    #[inline]
2413    #[cfg(target_has_atomic = "ptr")]
2414    #[stable(feature = "strict_provenance_atomic_ptr", since = "1.91.0")]
2415    #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
2416    pub fn fetch_or(&self, val: usize, order: Ordering) -> *mut T {
2417        // SAFETY: data races are prevented by atomic intrinsics.
2418        unsafe { atomic_or(self.p.get(), val, order).cast() }
2419    }
2420
2421    /// Performs a bitwise "and" operation on the address of the current
2422    /// pointer, and the argument `val`, and stores a pointer with provenance of
2423    /// the current pointer and the resulting address.
2424    ///
2425    /// This is equivalent to using [`map_addr`] to atomically perform
2426    /// `ptr = ptr.map_addr(|a| a & val)`. This can be used in tagged
2427    /// pointer schemes to atomically unset tag bits.
2428    ///
2429    /// **Caveat**: This operation returns the previous value. To compute the
2430    /// stored value without losing provenance, you may use [`map_addr`]. For
2431    /// example: `a.fetch_and(val).map_addr(|a| a & val)`.
2432    ///
2433    /// `fetch_and` takes an [`Ordering`] argument which describes the memory
2434    /// ordering of this operation. All ordering modes are possible. Note that
2435    /// using [`Acquire`] makes the store part of this operation [`Relaxed`],
2436    /// and using [`Release`] makes the load part [`Relaxed`].
2437    ///
2438    /// **Note**: This method is only available on platforms that support atomic
2439    /// operations on [`AtomicPtr`].
2440    ///
2441    /// This API and its claimed semantics are part of the Strict Provenance
2442    /// experiment, see the [module documentation for `ptr`][crate::ptr] for
2443    /// details.
2444    ///
2445    /// [`map_addr`]: pointer::map_addr
2446    ///
2447    /// # Examples
2448    ///
2449    /// ```
2450    /// use core::sync::atomic::{AtomicPtr, Ordering};
2451    ///
2452    /// let pointer = &mut 3i64 as *mut i64;
2453    /// // A tagged pointer
2454    /// let atom = AtomicPtr::<i64>::new(pointer.map_addr(|a| a | 1));
2455    /// assert_eq!(atom.fetch_or(1, Ordering::Relaxed).addr() & 1, 1);
2456    /// // Untag, and extract the previously tagged pointer.
2457    /// let untagged = atom.fetch_and(!1, Ordering::Relaxed)
2458    ///     .map_addr(|a| a & !1);
2459    /// assert_eq!(untagged, pointer);
2460    /// ```
2461    #[inline]
2462    #[cfg(target_has_atomic = "ptr")]
2463    #[stable(feature = "strict_provenance_atomic_ptr", since = "1.91.0")]
2464    #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
2465    pub fn fetch_and(&self, val: usize, order: Ordering) -> *mut T {
2466        // SAFETY: data races are prevented by atomic intrinsics.
2467        unsafe { atomic_and(self.p.get(), val, order).cast() }
2468    }
2469
2470    /// Performs a bitwise "xor" operation on the address of the current
2471    /// pointer, and the argument `val`, and stores a pointer with provenance of
2472    /// the current pointer and the resulting address.
2473    ///
2474    /// This is equivalent to using [`map_addr`] to atomically perform
2475    /// `ptr = ptr.map_addr(|a| a ^ val)`. This can be used in tagged
2476    /// pointer schemes to atomically toggle tag bits.
2477    ///
2478    /// **Caveat**: This operation returns the previous value. To compute the
2479    /// stored value without losing provenance, you may use [`map_addr`]. For
2480    /// example: `a.fetch_xor(val).map_addr(|a| a ^ val)`.
2481    ///
2482    /// `fetch_xor` takes an [`Ordering`] argument which describes the memory
2483    /// ordering of this operation. All ordering modes are possible. Note that
2484    /// using [`Acquire`] makes the store part of this operation [`Relaxed`],
2485    /// and using [`Release`] makes the load part [`Relaxed`].
2486    ///
2487    /// **Note**: This method is only available on platforms that support atomic
2488    /// operations on [`AtomicPtr`].
2489    ///
2490    /// This API and its claimed semantics are part of the Strict Provenance
2491    /// experiment, see the [module documentation for `ptr`][crate::ptr] for
2492    /// details.
2493    ///
2494    /// [`map_addr`]: pointer::map_addr
2495    ///
2496    /// # Examples
2497    ///
2498    /// ```
2499    /// use core::sync::atomic::{AtomicPtr, Ordering};
2500    ///
2501    /// let pointer = &mut 3i64 as *mut i64;
2502    /// let atom = AtomicPtr::<i64>::new(pointer);
2503    ///
2504    /// // Toggle a tag bit on the pointer.
2505    /// atom.fetch_xor(1, Ordering::Relaxed);
2506    /// assert_eq!(atom.load(Ordering::Relaxed).addr() & 1, 1);
2507    /// ```
2508    #[inline]
2509    #[cfg(target_has_atomic = "ptr")]
2510    #[stable(feature = "strict_provenance_atomic_ptr", since = "1.91.0")]
2511    #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
2512    pub fn fetch_xor(&self, val: usize, order: Ordering) -> *mut T {
2513        // SAFETY: data races are prevented by atomic intrinsics.
2514        unsafe { atomic_xor(self.p.get(), val, order).cast() }
2515    }
2516
2517    /// Returns a mutable pointer to the underlying pointer.
2518    ///
2519    /// Doing non-atomic reads and writes on the resulting pointer can be a data race.
2520    /// This method is mostly useful for FFI, where the function signature may use
2521    /// `*mut *mut T` instead of `&AtomicPtr<T>`.
2522    ///
2523    /// Returning an `*mut` pointer from a shared reference to this atomic is safe because the
2524    /// atomic types work with interior mutability. All modifications of an atomic change the value
2525    /// through a shared reference, and can do so safely as long as they use atomic operations. Any
2526    /// use of the returned raw pointer requires an `unsafe` block and still has to uphold the
2527    /// requirements of the [memory model].
2528    ///
2529    /// # Examples
2530    ///
2531    /// ```ignore (extern-declaration)
2532    /// use std::sync::atomic::AtomicPtr;
2533    ///
2534    /// extern "C" {
2535    ///     fn my_atomic_op(arg: *mut *mut u32);
2536    /// }
2537    ///
2538    /// let mut value = 17;
2539    /// let atomic = AtomicPtr::new(&mut value);
2540    ///
2541    /// // SAFETY: Safe as long as `my_atomic_op` is atomic.
2542    /// unsafe {
2543    ///     my_atomic_op(atomic.as_ptr());
2544    /// }
2545    /// ```
2546    ///
2547    /// [memory model]: self#memory-model-for-atomic-accesses
2548    #[inline]
2549    #[stable(feature = "atomic_as_ptr", since = "1.70.0")]
2550    #[rustc_const_stable(feature = "atomic_as_ptr", since = "1.70.0")]
2551    #[rustc_never_returns_null_ptr]
2552    pub const fn as_ptr(&self) -> *mut *mut T {
2553        self.p.get()
2554    }
2555}
2556
2557#[cfg(target_has_atomic_load_store = "8")]
2558#[stable(feature = "atomic_bool_from", since = "1.24.0")]
2559#[rustc_const_unstable(feature = "const_convert", issue = "143773")]
2560#[cfg(not(feature = "ferrocene_certified"))]
2561impl const From<bool> for AtomicBool {
2562    /// Converts a `bool` into an `AtomicBool`.
2563    ///
2564    /// # Examples
2565    ///
2566    /// ```
2567    /// use std::sync::atomic::AtomicBool;
2568    /// let atomic_bool = AtomicBool::from(true);
2569    /// assert_eq!(format!("{atomic_bool:?}"), "true")
2570    /// ```
2571    #[inline]
2572    fn from(b: bool) -> Self {
2573        Self::new(b)
2574    }
2575}
2576
2577#[cfg(target_has_atomic_load_store = "ptr")]
2578#[stable(feature = "atomic_from", since = "1.23.0")]
2579#[rustc_const_unstable(feature = "const_convert", issue = "143773")]
2580#[cfg(not(feature = "ferrocene_certified"))]
2581impl<T> const From<*mut T> for AtomicPtr<T> {
2582    /// Converts a `*mut T` into an `AtomicPtr<T>`.
2583    #[inline]
2584    fn from(p: *mut T) -> Self {
2585        Self::new(p)
2586    }
2587}
2588
2589#[allow(unused_macros)] // This macro ends up being unused on some architectures.
2590macro_rules! if_8_bit {
2591    (u8, $( yes = [$($yes:tt)*], )? $( no = [$($no:tt)*], )? ) => { concat!("", $($($yes)*)?) };
2592    (i8, $( yes = [$($yes:tt)*], )? $( no = [$($no:tt)*], )? ) => { concat!("", $($($yes)*)?) };
2593    ($_:ident, $( yes = [$($yes:tt)*], )? $( no = [$($no:tt)*], )? ) => { concat!("", $($($no)*)?) };
2594}
2595
2596#[cfg(target_has_atomic_load_store)]
2597macro_rules! atomic_int {
2598    ($cfg_cas:meta,
2599     $cfg_align:meta,
2600     $stable:meta,
2601     $stable_cxchg:meta,
2602     $stable_debug:meta,
2603     $stable_access:meta,
2604     $stable_from:meta,
2605     $stable_nand:meta,
2606     $const_stable_new:meta,
2607     $const_stable_into_inner:meta,
2608     $diagnostic_item:meta,
2609     $s_int_type:literal,
2610     $extra_feature:expr,
2611     $min_fn:ident, $max_fn:ident,
2612     $align:expr,
2613     $int_type:ident $atomic_type:ident) => {
2614        /// An integer type which can be safely shared between threads.
2615        ///
2616        /// This type has the same
2617        #[doc = if_8_bit!(
2618            $int_type,
2619            yes = ["size, alignment, and bit validity"],
2620            no = ["size and bit validity"],
2621        )]
2622        /// as the underlying integer type, [`
2623        #[doc = $s_int_type]
2624        /// `].
2625        #[doc = if_8_bit! {
2626            $int_type,
2627            no = [
2628                "However, the alignment of this type is always equal to its ",
2629                "size, even on targets where [`", $s_int_type, "`] has a ",
2630                "lesser alignment."
2631            ],
2632        }]
2633        ///
2634        /// For more about the differences between atomic types and
2635        /// non-atomic types as well as information about the portability of
2636        /// this type, please see the [module-level documentation].
2637        ///
2638        /// **Note:** This type is only available on platforms that support
2639        /// atomic loads and stores of [`
2640        #[doc = $s_int_type]
2641        /// `].
2642        ///
2643        /// [module-level documentation]: crate::sync::atomic
2644        #[$stable]
2645        #[$diagnostic_item]
2646        #[repr(C, align($align))]
2647        pub struct $atomic_type {
2648            v: UnsafeCell<$int_type>,
2649        }
2650
2651        #[$stable]
2652        impl Default for $atomic_type {
2653            #[inline]
2654            fn default() -> Self {
2655                Self::new(Default::default())
2656            }
2657        }
2658
2659        #[$stable_from]
2660        #[rustc_const_unstable(feature = "const_convert", issue = "143773")]
2661        impl const From<$int_type> for $atomic_type {
2662            #[doc = concat!("Converts an `", stringify!($int_type), "` into an `", stringify!($atomic_type), "`.")]
2663            #[inline]
2664            fn from(v: $int_type) -> Self { Self::new(v) }
2665        }
2666
2667        #[$stable_debug]
2668        #[cfg(not(feature = "ferrocene_certified"))]
2669        impl fmt::Debug for $atomic_type {
2670            fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
2671                fmt::Debug::fmt(&self.load(Ordering::Relaxed), f)
2672            }
2673        }
2674
2675        // Send is implicitly implemented.
2676        #[$stable]
2677        unsafe impl Sync for $atomic_type {}
2678
2679        impl $atomic_type {
2680            /// Creates a new atomic integer.
2681            ///
2682            /// # Examples
2683            ///
2684            /// ```
2685            #[doc = concat!($extra_feature, "use std::sync::atomic::", stringify!($atomic_type), ";")]
2686            ///
2687            #[doc = concat!("let atomic_forty_two = ", stringify!($atomic_type), "::new(42);")]
2688            /// ```
2689            #[inline]
2690            #[$stable]
2691            #[$const_stable_new]
2692            #[must_use]
2693            pub const fn new(v: $int_type) -> Self {
2694                Self {v: UnsafeCell::new(v)}
2695            }
2696
2697            /// Creates a new reference to an atomic integer from a pointer.
2698            ///
2699            /// # Examples
2700            ///
2701            /// ```
2702            #[doc = concat!($extra_feature, "use std::sync::atomic::{self, ", stringify!($atomic_type), "};")]
2703            ///
2704            /// // Get a pointer to an allocated value
2705            #[doc = concat!("let ptr: *mut ", stringify!($int_type), " = Box::into_raw(Box::new(0));")]
2706            ///
2707            #[doc = concat!("assert!(ptr.cast::<", stringify!($atomic_type), ">().is_aligned());")]
2708            ///
2709            /// {
2710            ///     // Create an atomic view of the allocated value
2711            // SAFETY: this is a doc comment, tidy, it can't hurt you (also guaranteed by the construction of `ptr` and the assert above)
2712            #[doc = concat!("    let atomic = unsafe {", stringify!($atomic_type), "::from_ptr(ptr) };")]
2713            ///
2714            ///     // Use `atomic` for atomic operations, possibly share it with other threads
2715            ///     atomic.store(1, atomic::Ordering::Relaxed);
2716            /// }
2717            ///
2718            /// // It's ok to non-atomically access the value behind `ptr`,
2719            /// // since the reference to the atomic ended its lifetime in the block above
2720            /// assert_eq!(unsafe { *ptr }, 1);
2721            ///
2722            /// // Deallocate the value
2723            /// unsafe { drop(Box::from_raw(ptr)) }
2724            /// ```
2725            ///
2726            /// # Safety
2727            ///
2728            /// * `ptr` must be aligned to
2729            #[doc = concat!("  `align_of::<", stringify!($atomic_type), ">()`")]
2730            #[doc = if_8_bit!{
2731                $int_type,
2732                yes = [
2733                    "  (note that this is always true, since `align_of::<",
2734                    stringify!($atomic_type), ">() == 1`)."
2735                ],
2736                no = [
2737                    "  (note that on some platforms this can be bigger than `align_of::<",
2738                    stringify!($int_type), ">()`)."
2739                ],
2740            }]
2741            /// * `ptr` must be [valid] for both reads and writes for the whole lifetime `'a`.
2742            /// * You must adhere to the [Memory model for atomic accesses]. In particular, it is not
2743            ///   allowed to mix conflicting atomic and non-atomic accesses, or atomic accesses of different
2744            ///   sizes, without synchronization.
2745            ///
2746            /// [valid]: crate::ptr#safety
2747            /// [Memory model for atomic accesses]: self#memory-model-for-atomic-accesses
2748            #[inline]
2749            #[stable(feature = "atomic_from_ptr", since = "1.75.0")]
2750            #[rustc_const_stable(feature = "const_atomic_from_ptr", since = "1.84.0")]
2751            pub const unsafe fn from_ptr<'a>(ptr: *mut $int_type) -> &'a $atomic_type {
2752                // SAFETY: guaranteed by the caller
2753                unsafe { &*ptr.cast() }
2754            }
2755
2756
2757            /// Returns a mutable reference to the underlying integer.
2758            ///
2759            /// This is safe because the mutable reference guarantees that no other threads are
2760            /// concurrently accessing the atomic data.
2761            ///
2762            /// # Examples
2763            ///
2764            /// ```
2765            #[doc = concat!($extra_feature, "use std::sync::atomic::{", stringify!($atomic_type), ", Ordering};")]
2766            ///
2767            #[doc = concat!("let mut some_var = ", stringify!($atomic_type), "::new(10);")]
2768            /// assert_eq!(*some_var.get_mut(), 10);
2769            /// *some_var.get_mut() = 5;
2770            /// assert_eq!(some_var.load(Ordering::SeqCst), 5);
2771            /// ```
2772            #[inline]
2773            #[$stable_access]
2774            pub fn get_mut(&mut self) -> &mut $int_type {
2775                self.v.get_mut()
2776            }
2777
2778            #[doc = concat!("Get atomic access to a `&mut ", stringify!($int_type), "`.")]
2779            ///
2780            #[doc = if_8_bit! {
2781                $int_type,
2782                no = [
2783                    "**Note:** This function is only available on targets where `",
2784                    stringify!($atomic_type), "` has the same alignment as `", stringify!($int_type), "`."
2785                ],
2786            }]
2787            ///
2788            /// # Examples
2789            ///
2790            /// ```
2791            /// #![feature(atomic_from_mut)]
2792            #[doc = concat!($extra_feature, "use std::sync::atomic::{", stringify!($atomic_type), ", Ordering};")]
2793            ///
2794            /// let mut some_int = 123;
2795            #[doc = concat!("let a = ", stringify!($atomic_type), "::from_mut(&mut some_int);")]
2796            /// a.store(100, Ordering::Relaxed);
2797            /// assert_eq!(some_int, 100);
2798            /// ```
2799            ///
2800            #[inline]
2801            #[$cfg_align]
2802            #[unstable(feature = "atomic_from_mut", issue = "76314")]
2803            pub fn from_mut(v: &mut $int_type) -> &mut Self {
2804                let [] = [(); align_of::<Self>() - align_of::<$int_type>()];
2805                // SAFETY:
2806                //  - the mutable reference guarantees unique ownership.
2807                //  - the alignment of `$int_type` and `Self` is the
2808                //    same, as promised by $cfg_align and verified above.
2809                unsafe { &mut *(v as *mut $int_type as *mut Self) }
2810            }
2811
2812            #[doc = concat!("Get non-atomic access to a `&mut [", stringify!($atomic_type), "]` slice")]
2813            ///
2814            /// This is safe because the mutable reference guarantees that no other threads are
2815            /// concurrently accessing the atomic data.
2816            ///
2817            /// # Examples
2818            ///
2819            /// ```ignore-wasm
2820            /// #![feature(atomic_from_mut)]
2821            #[doc = concat!($extra_feature, "use std::sync::atomic::{", stringify!($atomic_type), ", Ordering};")]
2822            ///
2823            #[doc = concat!("let mut some_ints = [const { ", stringify!($atomic_type), "::new(0) }; 10];")]
2824            ///
2825            #[doc = concat!("let view: &mut [", stringify!($int_type), "] = ", stringify!($atomic_type), "::get_mut_slice(&mut some_ints);")]
2826            /// assert_eq!(view, [0; 10]);
2827            /// view
2828            ///     .iter_mut()
2829            ///     .enumerate()
2830            ///     .for_each(|(idx, int)| *int = idx as _);
2831            ///
2832            /// std::thread::scope(|s| {
2833            ///     some_ints
2834            ///         .iter()
2835            ///         .enumerate()
2836            ///         .for_each(|(idx, int)| {
2837            ///             s.spawn(move || assert_eq!(int.load(Ordering::Relaxed), idx as _));
2838            ///         })
2839            /// });
2840            /// ```
2841            #[inline]
2842            #[unstable(feature = "atomic_from_mut", issue = "76314")]
2843            pub fn get_mut_slice(this: &mut [Self]) -> &mut [$int_type] {
2844                // SAFETY: the mutable reference guarantees unique ownership.
2845                unsafe { &mut *(this as *mut [Self] as *mut [$int_type]) }
2846            }
2847
2848            #[doc = concat!("Get atomic access to a `&mut [", stringify!($int_type), "]` slice.")]
2849            ///
2850            /// # Examples
2851            ///
2852            /// ```ignore-wasm
2853            /// #![feature(atomic_from_mut)]
2854            #[doc = concat!($extra_feature, "use std::sync::atomic::{", stringify!($atomic_type), ", Ordering};")]
2855            ///
2856            /// let mut some_ints = [0; 10];
2857            #[doc = concat!("let a = &*", stringify!($atomic_type), "::from_mut_slice(&mut some_ints);")]
2858            /// std::thread::scope(|s| {
2859            ///     for i in 0..a.len() {
2860            ///         s.spawn(move || a[i].store(i as _, Ordering::Relaxed));
2861            ///     }
2862            /// });
2863            /// for (i, n) in some_ints.into_iter().enumerate() {
2864            ///     assert_eq!(i, n as usize);
2865            /// }
2866            /// ```
2867            #[inline]
2868            #[$cfg_align]
2869            #[unstable(feature = "atomic_from_mut", issue = "76314")]
2870            pub fn from_mut_slice(v: &mut [$int_type]) -> &mut [Self] {
2871                let [] = [(); align_of::<Self>() - align_of::<$int_type>()];
2872                // SAFETY:
2873                //  - the mutable reference guarantees unique ownership.
2874                //  - the alignment of `$int_type` and `Self` is the
2875                //    same, as promised by $cfg_align and verified above.
2876                unsafe { &mut *(v as *mut [$int_type] as *mut [Self]) }
2877            }
2878
2879            /// Consumes the atomic and returns the contained value.
2880            ///
2881            /// This is safe because passing `self` by value guarantees that no other threads are
2882            /// concurrently accessing the atomic data.
2883            ///
2884            /// # Examples
2885            ///
2886            /// ```
2887            #[doc = concat!($extra_feature, "use std::sync::atomic::", stringify!($atomic_type), ";")]
2888            ///
2889            #[doc = concat!("let some_var = ", stringify!($atomic_type), "::new(5);")]
2890            /// assert_eq!(some_var.into_inner(), 5);
2891            /// ```
2892            #[inline]
2893            #[$stable_access]
2894            #[$const_stable_into_inner]
2895            pub const fn into_inner(self) -> $int_type {
2896                self.v.into_inner()
2897            }
2898
2899            /// Loads a value from the atomic integer.
2900            ///
2901            /// `load` takes an [`Ordering`] argument which describes the memory ordering of this operation.
2902            /// Possible values are [`SeqCst`], [`Acquire`] and [`Relaxed`].
2903            ///
2904            /// # Panics
2905            ///
2906            /// Panics if `order` is [`Release`] or [`AcqRel`].
2907            ///
2908            /// # Examples
2909            ///
2910            /// ```
2911            #[doc = concat!($extra_feature, "use std::sync::atomic::{", stringify!($atomic_type), ", Ordering};")]
2912            ///
2913            #[doc = concat!("let some_var = ", stringify!($atomic_type), "::new(5);")]
2914            ///
2915            /// assert_eq!(some_var.load(Ordering::Relaxed), 5);
2916            /// ```
2917            #[inline]
2918            #[$stable]
2919            #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
2920            pub fn load(&self, order: Ordering) -> $int_type {
2921                // SAFETY: data races are prevented by atomic intrinsics.
2922                unsafe { atomic_load(self.v.get(), order) }
2923            }
2924
2925            /// Stores a value into the atomic integer.
2926            ///
2927            /// `store` takes an [`Ordering`] argument which describes the memory ordering of this operation.
2928            ///  Possible values are [`SeqCst`], [`Release`] and [`Relaxed`].
2929            ///
2930            /// # Panics
2931            ///
2932            /// Panics if `order` is [`Acquire`] or [`AcqRel`].
2933            ///
2934            /// # Examples
2935            ///
2936            /// ```
2937            #[doc = concat!($extra_feature, "use std::sync::atomic::{", stringify!($atomic_type), ", Ordering};")]
2938            ///
2939            #[doc = concat!("let some_var = ", stringify!($atomic_type), "::new(5);")]
2940            ///
2941            /// some_var.store(10, Ordering::Relaxed);
2942            /// assert_eq!(some_var.load(Ordering::Relaxed), 10);
2943            /// ```
2944            #[inline]
2945            #[$stable]
2946            #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
2947            pub fn store(&self, val: $int_type, order: Ordering) {
2948                // SAFETY: data races are prevented by atomic intrinsics.
2949                unsafe { atomic_store(self.v.get(), val, order); }
2950            }
2951
2952            /// Stores a value into the atomic integer, returning the previous value.
2953            ///
2954            /// `swap` takes an [`Ordering`] argument which describes the memory ordering
2955            /// of this operation. All ordering modes are possible. Note that using
2956            /// [`Acquire`] makes the store part of this operation [`Relaxed`], and
2957            /// using [`Release`] makes the load part [`Relaxed`].
2958            ///
2959            /// **Note**: This method is only available on platforms that support atomic operations on
2960            #[doc = concat!("[`", $s_int_type, "`].")]
2961            ///
2962            /// # Examples
2963            ///
2964            /// ```
2965            #[doc = concat!($extra_feature, "use std::sync::atomic::{", stringify!($atomic_type), ", Ordering};")]
2966            ///
2967            #[doc = concat!("let some_var = ", stringify!($atomic_type), "::new(5);")]
2968            ///
2969            /// assert_eq!(some_var.swap(10, Ordering::Relaxed), 5);
2970            /// ```
2971            #[inline]
2972            #[$stable]
2973            #[$cfg_cas]
2974            #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
2975            pub fn swap(&self, val: $int_type, order: Ordering) -> $int_type {
2976                // SAFETY: data races are prevented by atomic intrinsics.
2977                unsafe { atomic_swap(self.v.get(), val, order) }
2978            }
2979
2980            /// Stores a value into the atomic integer if the current value is the same as
2981            /// the `current` value.
2982            ///
2983            /// The return value is always the previous value. If it is equal to `current`, then the
2984            /// value was updated.
2985            ///
2986            /// `compare_and_swap` also takes an [`Ordering`] argument which describes the memory
2987            /// ordering of this operation. Notice that even when using [`AcqRel`], the operation
2988            /// might fail and hence just perform an `Acquire` load, but not have `Release` semantics.
2989            /// Using [`Acquire`] makes the store part of this operation [`Relaxed`] if it
2990            /// happens, and using [`Release`] makes the load part [`Relaxed`].
2991            ///
2992            /// **Note**: This method is only available on platforms that support atomic operations on
2993            #[doc = concat!("[`", $s_int_type, "`].")]
2994            ///
2995            /// # Migrating to `compare_exchange` and `compare_exchange_weak`
2996            ///
2997            /// `compare_and_swap` is equivalent to `compare_exchange` with the following mapping for
2998            /// memory orderings:
2999            ///
3000            /// Original | Success | Failure
3001            /// -------- | ------- | -------
3002            /// Relaxed  | Relaxed | Relaxed
3003            /// Acquire  | Acquire | Acquire
3004            /// Release  | Release | Relaxed
3005            /// AcqRel   | AcqRel  | Acquire
3006            /// SeqCst   | SeqCst  | SeqCst
3007            ///
3008            /// `compare_and_swap` and `compare_exchange` also differ in their return type. You can use
3009            /// `compare_exchange(...).unwrap_or_else(|x| x)` to recover the behavior of `compare_and_swap`,
3010            /// but in most cases it is more idiomatic to check whether the return value is `Ok` or `Err`
3011            /// rather than to infer success vs failure based on the value that was read.
3012            ///
3013            /// During migration, consider whether it makes sense to use `compare_exchange_weak` instead.
3014            /// `compare_exchange_weak` is allowed to fail spuriously even when the comparison succeeds,
3015            /// which allows the compiler to generate better assembly code when the compare and swap
3016            /// is used in a loop.
3017            ///
3018            /// # Examples
3019            ///
3020            /// ```
3021            #[doc = concat!($extra_feature, "use std::sync::atomic::{", stringify!($atomic_type), ", Ordering};")]
3022            ///
3023            #[doc = concat!("let some_var = ", stringify!($atomic_type), "::new(5);")]
3024            ///
3025            /// assert_eq!(some_var.compare_and_swap(5, 10, Ordering::Relaxed), 5);
3026            /// assert_eq!(some_var.load(Ordering::Relaxed), 10);
3027            ///
3028            /// assert_eq!(some_var.compare_and_swap(6, 12, Ordering::Relaxed), 10);
3029            /// assert_eq!(some_var.load(Ordering::Relaxed), 10);
3030            /// ```
3031            #[cfg(not(feature = "ferrocene_certified"))]
3032            #[inline]
3033            #[$stable]
3034            #[deprecated(
3035                since = "1.50.0",
3036                note = "Use `compare_exchange` or `compare_exchange_weak` instead")
3037            ]
3038            #[$cfg_cas]
3039            #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
3040            pub fn compare_and_swap(&self,
3041                                    current: $int_type,
3042                                    new: $int_type,
3043                                    order: Ordering) -> $int_type {
3044                match self.compare_exchange(current,
3045                                            new,
3046                                            order,
3047                                            strongest_failure_ordering(order)) {
3048                    Ok(x) => x,
3049                    Err(x) => x,
3050                }
3051            }
3052
3053            /// Stores a value into the atomic integer if the current value is the same as
3054            /// the `current` value.
3055            ///
3056            /// The return value is a result indicating whether the new value was written and
3057            /// containing the previous value. On success this value is guaranteed to be equal to
3058            /// `current`.
3059            ///
3060            /// `compare_exchange` takes two [`Ordering`] arguments to describe the memory
3061            /// ordering of this operation. `success` describes the required ordering for the
3062            /// read-modify-write operation that takes place if the comparison with `current` succeeds.
3063            /// `failure` describes the required ordering for the load operation that takes place when
3064            /// the comparison fails. Using [`Acquire`] as success ordering makes the store part
3065            /// of this operation [`Relaxed`], and using [`Release`] makes the successful load
3066            /// [`Relaxed`]. The failure ordering can only be [`SeqCst`], [`Acquire`] or [`Relaxed`].
3067            ///
3068            /// **Note**: This method is only available on platforms that support atomic operations on
3069            #[doc = concat!("[`", $s_int_type, "`].")]
3070            ///
3071            /// # Examples
3072            ///
3073            /// ```
3074            #[doc = concat!($extra_feature, "use std::sync::atomic::{", stringify!($atomic_type), ", Ordering};")]
3075            ///
3076            #[doc = concat!("let some_var = ", stringify!($atomic_type), "::new(5);")]
3077            ///
3078            /// assert_eq!(some_var.compare_exchange(5, 10,
3079            ///                                      Ordering::Acquire,
3080            ///                                      Ordering::Relaxed),
3081            ///            Ok(5));
3082            /// assert_eq!(some_var.load(Ordering::Relaxed), 10);
3083            ///
3084            /// assert_eq!(some_var.compare_exchange(6, 12,
3085            ///                                      Ordering::SeqCst,
3086            ///                                      Ordering::Acquire),
3087            ///            Err(10));
3088            /// assert_eq!(some_var.load(Ordering::Relaxed), 10);
3089            /// ```
3090            ///
3091            /// # Considerations
3092            ///
3093            /// `compare_exchange` is a [compare-and-swap operation] and thus exhibits the usual downsides
3094            /// of CAS operations. In particular, a load of the value followed by a successful
3095            /// `compare_exchange` with the previous load *does not ensure* that other threads have not
3096            /// changed the value in the interim! This is usually important when the *equality* check in
3097            /// the `compare_exchange` is being used to check the *identity* of a value, but equality
3098            /// does not necessarily imply identity. This is a particularly common case for pointers, as
3099            /// a pointer holding the same address does not imply that the same object exists at that
3100            /// address! In this case, `compare_exchange` can lead to the [ABA problem].
3101            ///
3102            /// [ABA Problem]: https://en.wikipedia.org/wiki/ABA_problem
3103            /// [compare-and-swap operation]: https://en.wikipedia.org/wiki/Compare-and-swap
3104            #[inline]
3105            #[$stable_cxchg]
3106            #[$cfg_cas]
3107            #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
3108            pub fn compare_exchange(&self,
3109                                    current: $int_type,
3110                                    new: $int_type,
3111                                    success: Ordering,
3112                                    failure: Ordering) -> Result<$int_type, $int_type> {
3113                // SAFETY: data races are prevented by atomic intrinsics.
3114                unsafe { atomic_compare_exchange(self.v.get(), current, new, success, failure) }
3115            }
3116
3117            /// Stores a value into the atomic integer if the current value is the same as
3118            /// the `current` value.
3119            ///
3120            #[doc = concat!("Unlike [`", stringify!($atomic_type), "::compare_exchange`],")]
3121            /// this function is allowed to spuriously fail even
3122            /// when the comparison succeeds, which can result in more efficient code on some
3123            /// platforms. The return value is a result indicating whether the new value was
3124            /// written and containing the previous value.
3125            ///
3126            /// `compare_exchange_weak` takes two [`Ordering`] arguments to describe the memory
3127            /// ordering of this operation. `success` describes the required ordering for the
3128            /// read-modify-write operation that takes place if the comparison with `current` succeeds.
3129            /// `failure` describes the required ordering for the load operation that takes place when
3130            /// the comparison fails. Using [`Acquire`] as success ordering makes the store part
3131            /// of this operation [`Relaxed`], and using [`Release`] makes the successful load
3132            /// [`Relaxed`]. The failure ordering can only be [`SeqCst`], [`Acquire`] or [`Relaxed`].
3133            ///
3134            /// **Note**: This method is only available on platforms that support atomic operations on
3135            #[doc = concat!("[`", $s_int_type, "`].")]
3136            ///
3137            /// # Examples
3138            ///
3139            /// ```
3140            #[doc = concat!($extra_feature, "use std::sync::atomic::{", stringify!($atomic_type), ", Ordering};")]
3141            ///
3142            #[doc = concat!("let val = ", stringify!($atomic_type), "::new(4);")]
3143            ///
3144            /// let mut old = val.load(Ordering::Relaxed);
3145            /// loop {
3146            ///     let new = old * 2;
3147            ///     match val.compare_exchange_weak(old, new, Ordering::SeqCst, Ordering::Relaxed) {
3148            ///         Ok(_) => break,
3149            ///         Err(x) => old = x,
3150            ///     }
3151            /// }
3152            /// ```
3153            ///
3154            /// # Considerations
3155            ///
3156            /// `compare_exchange` is a [compare-and-swap operation] and thus exhibits the usual downsides
3157            /// of CAS operations. In particular, a load of the value followed by a successful
3158            /// `compare_exchange` with the previous load *does not ensure* that other threads have not
3159            /// changed the value in the interim. This is usually important when the *equality* check in
3160            /// the `compare_exchange` is being used to check the *identity* of a value, but equality
3161            /// does not necessarily imply identity. This is a particularly common case for pointers, as
3162            /// a pointer holding the same address does not imply that the same object exists at that
3163            /// address! In this case, `compare_exchange` can lead to the [ABA problem].
3164            ///
3165            /// [ABA Problem]: https://en.wikipedia.org/wiki/ABA_problem
3166            /// [compare-and-swap operation]: https://en.wikipedia.org/wiki/Compare-and-swap
3167            #[inline]
3168            #[$stable_cxchg]
3169            #[$cfg_cas]
3170            #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
3171            pub fn compare_exchange_weak(&self,
3172                                         current: $int_type,
3173                                         new: $int_type,
3174                                         success: Ordering,
3175                                         failure: Ordering) -> Result<$int_type, $int_type> {
3176                // SAFETY: data races are prevented by atomic intrinsics.
3177                unsafe {
3178                    atomic_compare_exchange_weak(self.v.get(), current, new, success, failure)
3179                }
3180            }
3181
3182            /// Adds to the current value, returning the previous value.
3183            ///
3184            /// This operation wraps around on overflow.
3185            ///
3186            /// `fetch_add` takes an [`Ordering`] argument which describes the memory ordering
3187            /// of this operation. All ordering modes are possible. Note that using
3188            /// [`Acquire`] makes the store part of this operation [`Relaxed`], and
3189            /// using [`Release`] makes the load part [`Relaxed`].
3190            ///
3191            /// **Note**: This method is only available on platforms that support atomic operations on
3192            #[doc = concat!("[`", $s_int_type, "`].")]
3193            ///
3194            /// # Examples
3195            ///
3196            /// ```
3197            #[doc = concat!($extra_feature, "use std::sync::atomic::{", stringify!($atomic_type), ", Ordering};")]
3198            ///
3199            #[doc = concat!("let foo = ", stringify!($atomic_type), "::new(0);")]
3200            /// assert_eq!(foo.fetch_add(10, Ordering::SeqCst), 0);
3201            /// assert_eq!(foo.load(Ordering::SeqCst), 10);
3202            /// ```
3203            #[inline]
3204            #[$stable]
3205            #[$cfg_cas]
3206            #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
3207            pub fn fetch_add(&self, val: $int_type, order: Ordering) -> $int_type {
3208                // SAFETY: data races are prevented by atomic intrinsics.
3209                unsafe { atomic_add(self.v.get(), val, order) }
3210            }
3211
3212            /// Subtracts from the current value, returning the previous value.
3213            ///
3214            /// This operation wraps around on overflow.
3215            ///
3216            /// `fetch_sub` takes an [`Ordering`] argument which describes the memory ordering
3217            /// of this operation. All ordering modes are possible. Note that using
3218            /// [`Acquire`] makes the store part of this operation [`Relaxed`], and
3219            /// using [`Release`] makes the load part [`Relaxed`].
3220            ///
3221            /// **Note**: This method is only available on platforms that support atomic operations on
3222            #[doc = concat!("[`", $s_int_type, "`].")]
3223            ///
3224            /// # Examples
3225            ///
3226            /// ```
3227            #[doc = concat!($extra_feature, "use std::sync::atomic::{", stringify!($atomic_type), ", Ordering};")]
3228            ///
3229            #[doc = concat!("let foo = ", stringify!($atomic_type), "::new(20);")]
3230            /// assert_eq!(foo.fetch_sub(10, Ordering::SeqCst), 20);
3231            /// assert_eq!(foo.load(Ordering::SeqCst), 10);
3232            /// ```
3233            #[inline]
3234            #[$stable]
3235            #[$cfg_cas]
3236            #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
3237            pub fn fetch_sub(&self, val: $int_type, order: Ordering) -> $int_type {
3238                // SAFETY: data races are prevented by atomic intrinsics.
3239                unsafe { atomic_sub(self.v.get(), val, order) }
3240            }
3241
3242            /// Bitwise "and" with the current value.
3243            ///
3244            /// Performs a bitwise "and" operation on the current value and the argument `val`, and
3245            /// sets the new value to the result.
3246            ///
3247            /// Returns the previous value.
3248            ///
3249            /// `fetch_and` takes an [`Ordering`] argument which describes the memory ordering
3250            /// of this operation. All ordering modes are possible. Note that using
3251            /// [`Acquire`] makes the store part of this operation [`Relaxed`], and
3252            /// using [`Release`] makes the load part [`Relaxed`].
3253            ///
3254            /// **Note**: This method is only available on platforms that support atomic operations on
3255            #[doc = concat!("[`", $s_int_type, "`].")]
3256            ///
3257            /// # Examples
3258            ///
3259            /// ```
3260            #[doc = concat!($extra_feature, "use std::sync::atomic::{", stringify!($atomic_type), ", Ordering};")]
3261            ///
3262            #[doc = concat!("let foo = ", stringify!($atomic_type), "::new(0b101101);")]
3263            /// assert_eq!(foo.fetch_and(0b110011, Ordering::SeqCst), 0b101101);
3264            /// assert_eq!(foo.load(Ordering::SeqCst), 0b100001);
3265            /// ```
3266            #[inline]
3267            #[$stable]
3268            #[$cfg_cas]
3269            #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
3270            pub fn fetch_and(&self, val: $int_type, order: Ordering) -> $int_type {
3271                // SAFETY: data races are prevented by atomic intrinsics.
3272                unsafe { atomic_and(self.v.get(), val, order) }
3273            }
3274
3275            /// Bitwise "nand" with the current value.
3276            ///
3277            /// Performs a bitwise "nand" operation on the current value and the argument `val`, and
3278            /// sets the new value to the result.
3279            ///
3280            /// Returns the previous value.
3281            ///
3282            /// `fetch_nand` takes an [`Ordering`] argument which describes the memory ordering
3283            /// of this operation. All ordering modes are possible. Note that using
3284            /// [`Acquire`] makes the store part of this operation [`Relaxed`], and
3285            /// using [`Release`] makes the load part [`Relaxed`].
3286            ///
3287            /// **Note**: This method is only available on platforms that support atomic operations on
3288            #[doc = concat!("[`", $s_int_type, "`].")]
3289            ///
3290            /// # Examples
3291            ///
3292            /// ```
3293            #[doc = concat!($extra_feature, "use std::sync::atomic::{", stringify!($atomic_type), ", Ordering};")]
3294            ///
3295            #[doc = concat!("let foo = ", stringify!($atomic_type), "::new(0x13);")]
3296            /// assert_eq!(foo.fetch_nand(0x31, Ordering::SeqCst), 0x13);
3297            /// assert_eq!(foo.load(Ordering::SeqCst), !(0x13 & 0x31));
3298            /// ```
3299            #[inline]
3300            #[$stable_nand]
3301            #[$cfg_cas]
3302            #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
3303            pub fn fetch_nand(&self, val: $int_type, order: Ordering) -> $int_type {
3304                // SAFETY: data races are prevented by atomic intrinsics.
3305                unsafe { atomic_nand(self.v.get(), val, order) }
3306            }
3307
3308            /// Bitwise "or" with the current value.
3309            ///
3310            /// Performs a bitwise "or" operation on the current value and the argument `val`, and
3311            /// sets the new value to the result.
3312            ///
3313            /// Returns the previous value.
3314            ///
3315            /// `fetch_or` takes an [`Ordering`] argument which describes the memory ordering
3316            /// of this operation. All ordering modes are possible. Note that using
3317            /// [`Acquire`] makes the store part of this operation [`Relaxed`], and
3318            /// using [`Release`] makes the load part [`Relaxed`].
3319            ///
3320            /// **Note**: This method is only available on platforms that support atomic operations on
3321            #[doc = concat!("[`", $s_int_type, "`].")]
3322            ///
3323            /// # Examples
3324            ///
3325            /// ```
3326            #[doc = concat!($extra_feature, "use std::sync::atomic::{", stringify!($atomic_type), ", Ordering};")]
3327            ///
3328            #[doc = concat!("let foo = ", stringify!($atomic_type), "::new(0b101101);")]
3329            /// assert_eq!(foo.fetch_or(0b110011, Ordering::SeqCst), 0b101101);
3330            /// assert_eq!(foo.load(Ordering::SeqCst), 0b111111);
3331            /// ```
3332            #[inline]
3333            #[$stable]
3334            #[$cfg_cas]
3335            #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
3336            pub fn fetch_or(&self, val: $int_type, order: Ordering) -> $int_type {
3337                // SAFETY: data races are prevented by atomic intrinsics.
3338                unsafe { atomic_or(self.v.get(), val, order) }
3339            }
3340
3341            /// Bitwise "xor" with the current value.
3342            ///
3343            /// Performs a bitwise "xor" operation on the current value and the argument `val`, and
3344            /// sets the new value to the result.
3345            ///
3346            /// Returns the previous value.
3347            ///
3348            /// `fetch_xor` takes an [`Ordering`] argument which describes the memory ordering
3349            /// of this operation. All ordering modes are possible. Note that using
3350            /// [`Acquire`] makes the store part of this operation [`Relaxed`], and
3351            /// using [`Release`] makes the load part [`Relaxed`].
3352            ///
3353            /// **Note**: This method is only available on platforms that support atomic operations on
3354            #[doc = concat!("[`", $s_int_type, "`].")]
3355            ///
3356            /// # Examples
3357            ///
3358            /// ```
3359            #[doc = concat!($extra_feature, "use std::sync::atomic::{", stringify!($atomic_type), ", Ordering};")]
3360            ///
3361            #[doc = concat!("let foo = ", stringify!($atomic_type), "::new(0b101101);")]
3362            /// assert_eq!(foo.fetch_xor(0b110011, Ordering::SeqCst), 0b101101);
3363            /// assert_eq!(foo.load(Ordering::SeqCst), 0b011110);
3364            /// ```
3365            #[inline]
3366            #[$stable]
3367            #[$cfg_cas]
3368            #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
3369            pub fn fetch_xor(&self, val: $int_type, order: Ordering) -> $int_type {
3370                // SAFETY: data races are prevented by atomic intrinsics.
3371                unsafe { atomic_xor(self.v.get(), val, order) }
3372            }
3373
3374            /// Fetches the value, and applies a function to it that returns an optional
3375            /// new value. Returns a `Result` of `Ok(previous_value)` if the function returned `Some(_)`, else
3376            /// `Err(previous_value)`.
3377            ///
3378            /// Note: This may call the function multiple times if the value has been changed from other threads in
3379            /// the meantime, as long as the function returns `Some(_)`, but the function will have been applied
3380            /// only once to the stored value.
3381            ///
3382            /// `fetch_update` takes two [`Ordering`] arguments to describe the memory ordering of this operation.
3383            /// The first describes the required ordering for when the operation finally succeeds while the second
3384            /// describes the required ordering for loads. These correspond to the success and failure orderings of
3385            #[doc = concat!("[`", stringify!($atomic_type), "::compare_exchange`]")]
3386            /// respectively.
3387            ///
3388            /// Using [`Acquire`] as success ordering makes the store part
3389            /// of this operation [`Relaxed`], and using [`Release`] makes the final successful load
3390            /// [`Relaxed`]. The (failed) load ordering can only be [`SeqCst`], [`Acquire`] or [`Relaxed`].
3391            ///
3392            /// **Note**: This method is only available on platforms that support atomic operations on
3393            #[doc = concat!("[`", $s_int_type, "`].")]
3394            ///
3395            /// # Considerations
3396            ///
3397            /// This method is not magic; it is not provided by the hardware, and does not act like a
3398            /// critical section or mutex.
3399            ///
3400            /// It is implemented on top of an atomic [compare-and-swap operation], and thus is subject to
3401            /// the usual drawbacks of CAS operations. In particular, be careful of the [ABA problem]
3402            /// if this atomic integer is an index or more generally if knowledge of only the *bitwise value*
3403            /// of the atomic is not in and of itself sufficient to ensure any required preconditions.
3404            ///
3405            /// [ABA Problem]: https://en.wikipedia.org/wiki/ABA_problem
3406            /// [compare-and-swap operation]: https://en.wikipedia.org/wiki/Compare-and-swap
3407            ///
3408            /// # Examples
3409            ///
3410            /// ```rust
3411            #[doc = concat!($extra_feature, "use std::sync::atomic::{", stringify!($atomic_type), ", Ordering};")]
3412            ///
3413            #[doc = concat!("let x = ", stringify!($atomic_type), "::new(7);")]
3414            /// assert_eq!(x.fetch_update(Ordering::SeqCst, Ordering::SeqCst, |_| None), Err(7));
3415            /// assert_eq!(x.fetch_update(Ordering::SeqCst, Ordering::SeqCst, |x| Some(x + 1)), Ok(7));
3416            /// assert_eq!(x.fetch_update(Ordering::SeqCst, Ordering::SeqCst, |x| Some(x + 1)), Ok(8));
3417            /// assert_eq!(x.load(Ordering::SeqCst), 9);
3418            /// ```
3419            #[inline]
3420            #[stable(feature = "no_more_cas", since = "1.45.0")]
3421            #[$cfg_cas]
3422            #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
3423            pub fn fetch_update<F>(&self,
3424                                   set_order: Ordering,
3425                                   fetch_order: Ordering,
3426                                   mut f: F) -> Result<$int_type, $int_type>
3427            where F: FnMut($int_type) -> Option<$int_type> {
3428                let mut prev = self.load(fetch_order);
3429                while let Some(next) = f(prev) {
3430                    match self.compare_exchange_weak(prev, next, set_order, fetch_order) {
3431                        x @ Ok(_) => return x,
3432                        Err(next_prev) => prev = next_prev
3433                    }
3434                }
3435                Err(prev)
3436            }
3437
3438            /// Fetches the value, and applies a function to it that returns an optional
3439            /// new value. Returns a `Result` of `Ok(previous_value)` if the function returned `Some(_)`, else
3440            /// `Err(previous_value)`.
3441            ///
3442            #[doc = concat!("See also: [`update`](`", stringify!($atomic_type), "::update`).")]
3443            ///
3444            /// Note: This may call the function multiple times if the value has been changed from other threads in
3445            /// the meantime, as long as the function returns `Some(_)`, but the function will have been applied
3446            /// only once to the stored value.
3447            ///
3448            /// `try_update` takes two [`Ordering`] arguments to describe the memory ordering of this operation.
3449            /// The first describes the required ordering for when the operation finally succeeds while the second
3450            /// describes the required ordering for loads. These correspond to the success and failure orderings of
3451            #[doc = concat!("[`", stringify!($atomic_type), "::compare_exchange`]")]
3452            /// respectively.
3453            ///
3454            /// Using [`Acquire`] as success ordering makes the store part
3455            /// of this operation [`Relaxed`], and using [`Release`] makes the final successful load
3456            /// [`Relaxed`]. The (failed) load ordering can only be [`SeqCst`], [`Acquire`] or [`Relaxed`].
3457            ///
3458            /// **Note**: This method is only available on platforms that support atomic operations on
3459            #[doc = concat!("[`", $s_int_type, "`].")]
3460            ///
3461            /// # Considerations
3462            ///
3463            /// This method is not magic; it is not provided by the hardware, and does not act like a
3464            /// critical section or mutex.
3465            ///
3466            /// It is implemented on top of an atomic [compare-and-swap operation], and thus is subject to
3467            /// the usual drawbacks of CAS operations. In particular, be careful of the [ABA problem]
3468            /// if this atomic integer is an index or more generally if knowledge of only the *bitwise value*
3469            /// of the atomic is not in and of itself sufficient to ensure any required preconditions.
3470            ///
3471            /// [ABA Problem]: https://en.wikipedia.org/wiki/ABA_problem
3472            /// [compare-and-swap operation]: https://en.wikipedia.org/wiki/Compare-and-swap
3473            ///
3474            /// # Examples
3475            ///
3476            /// ```rust
3477            /// #![feature(atomic_try_update)]
3478            #[doc = concat!($extra_feature, "use std::sync::atomic::{", stringify!($atomic_type), ", Ordering};")]
3479            ///
3480            #[doc = concat!("let x = ", stringify!($atomic_type), "::new(7);")]
3481            /// assert_eq!(x.try_update(Ordering::SeqCst, Ordering::SeqCst, |_| None), Err(7));
3482            /// assert_eq!(x.try_update(Ordering::SeqCst, Ordering::SeqCst, |x| Some(x + 1)), Ok(7));
3483            /// assert_eq!(x.try_update(Ordering::SeqCst, Ordering::SeqCst, |x| Some(x + 1)), Ok(8));
3484            /// assert_eq!(x.load(Ordering::SeqCst), 9);
3485            /// ```
3486            #[inline]
3487            #[unstable(feature = "atomic_try_update", issue = "135894")]
3488            #[$cfg_cas]
3489            #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
3490            pub fn try_update(
3491                &self,
3492                set_order: Ordering,
3493                fetch_order: Ordering,
3494                f: impl FnMut($int_type) -> Option<$int_type>,
3495            ) -> Result<$int_type, $int_type> {
3496                // FIXME(atomic_try_update): this is currently an unstable alias to `fetch_update`;
3497                //      when stabilizing, turn `fetch_update` into a deprecated alias to `try_update`.
3498                self.fetch_update(set_order, fetch_order, f)
3499            }
3500
3501            /// Fetches the value, applies a function to it that it return a new value.
3502            /// The new value is stored and the old value is returned.
3503            ///
3504            #[doc = concat!("See also: [`try_update`](`", stringify!($atomic_type), "::try_update`).")]
3505            ///
3506            /// Note: This may call the function multiple times if the value has been changed from other threads in
3507            /// the meantime, but the function will have been applied only once to the stored value.
3508            ///
3509            /// `update` takes two [`Ordering`] arguments to describe the memory ordering of this operation.
3510            /// The first describes the required ordering for when the operation finally succeeds while the second
3511            /// describes the required ordering for loads. These correspond to the success and failure orderings of
3512            #[doc = concat!("[`", stringify!($atomic_type), "::compare_exchange`]")]
3513            /// respectively.
3514            ///
3515            /// Using [`Acquire`] as success ordering makes the store part
3516            /// of this operation [`Relaxed`], and using [`Release`] makes the final successful load
3517            /// [`Relaxed`]. The (failed) load ordering can only be [`SeqCst`], [`Acquire`] or [`Relaxed`].
3518            ///
3519            /// **Note**: This method is only available on platforms that support atomic operations on
3520            #[doc = concat!("[`", $s_int_type, "`].")]
3521            ///
3522            /// # Considerations
3523            ///
3524            /// [CAS operation]: https://en.wikipedia.org/wiki/Compare-and-swap
3525            /// This method is not magic; it is not provided by the hardware, and does not act like a
3526            /// critical section or mutex.
3527            ///
3528            /// It is implemented on top of an atomic [compare-and-swap operation], and thus is subject to
3529            /// the usual drawbacks of CAS operations. In particular, be careful of the [ABA problem]
3530            /// if this atomic integer is an index or more generally if knowledge of only the *bitwise value*
3531            /// of the atomic is not in and of itself sufficient to ensure any required preconditions.
3532            ///
3533            /// [ABA Problem]: https://en.wikipedia.org/wiki/ABA_problem
3534            /// [compare-and-swap operation]: https://en.wikipedia.org/wiki/Compare-and-swap
3535            ///
3536            /// # Examples
3537            ///
3538            /// ```rust
3539            /// #![feature(atomic_try_update)]
3540            #[doc = concat!($extra_feature, "use std::sync::atomic::{", stringify!($atomic_type), ", Ordering};")]
3541            ///
3542            #[doc = concat!("let x = ", stringify!($atomic_type), "::new(7);")]
3543            /// assert_eq!(x.update(Ordering::SeqCst, Ordering::SeqCst, |x| x + 1), 7);
3544            /// assert_eq!(x.update(Ordering::SeqCst, Ordering::SeqCst, |x| x + 1), 8);
3545            /// assert_eq!(x.load(Ordering::SeqCst), 9);
3546            /// ```
3547            #[inline]
3548            #[unstable(feature = "atomic_try_update", issue = "135894")]
3549            #[$cfg_cas]
3550            #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
3551            pub fn update(
3552                &self,
3553                set_order: Ordering,
3554                fetch_order: Ordering,
3555                mut f: impl FnMut($int_type) -> $int_type,
3556            ) -> $int_type {
3557                let mut prev = self.load(fetch_order);
3558                loop {
3559                    match self.compare_exchange_weak(prev, f(prev), set_order, fetch_order) {
3560                        Ok(x) => break x,
3561                        Err(next_prev) => prev = next_prev,
3562                    }
3563                }
3564            }
3565
3566            /// Maximum with the current value.
3567            ///
3568            /// Finds the maximum of the current value and the argument `val`, and
3569            /// sets the new value to the result.
3570            ///
3571            /// Returns the previous value.
3572            ///
3573            /// `fetch_max` takes an [`Ordering`] argument which describes the memory ordering
3574            /// of this operation. All ordering modes are possible. Note that using
3575            /// [`Acquire`] makes the store part of this operation [`Relaxed`], and
3576            /// using [`Release`] makes the load part [`Relaxed`].
3577            ///
3578            /// **Note**: This method is only available on platforms that support atomic operations on
3579            #[doc = concat!("[`", $s_int_type, "`].")]
3580            ///
3581            /// # Examples
3582            ///
3583            /// ```
3584            #[doc = concat!($extra_feature, "use std::sync::atomic::{", stringify!($atomic_type), ", Ordering};")]
3585            ///
3586            #[doc = concat!("let foo = ", stringify!($atomic_type), "::new(23);")]
3587            /// assert_eq!(foo.fetch_max(42, Ordering::SeqCst), 23);
3588            /// assert_eq!(foo.load(Ordering::SeqCst), 42);
3589            /// ```
3590            ///
3591            /// If you want to obtain the maximum value in one step, you can use the following:
3592            ///
3593            /// ```
3594            #[doc = concat!($extra_feature, "use std::sync::atomic::{", stringify!($atomic_type), ", Ordering};")]
3595            ///
3596            #[doc = concat!("let foo = ", stringify!($atomic_type), "::new(23);")]
3597            /// let bar = 42;
3598            /// let max_foo = foo.fetch_max(bar, Ordering::SeqCst).max(bar);
3599            /// assert!(max_foo == 42);
3600            /// ```
3601            #[inline]
3602            #[stable(feature = "atomic_min_max", since = "1.45.0")]
3603            #[$cfg_cas]
3604            #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
3605            pub fn fetch_max(&self, val: $int_type, order: Ordering) -> $int_type {
3606                // SAFETY: data races are prevented by atomic intrinsics.
3607                unsafe { $max_fn(self.v.get(), val, order) }
3608            }
3609
3610            /// Minimum with the current value.
3611            ///
3612            /// Finds the minimum of the current value and the argument `val`, and
3613            /// sets the new value to the result.
3614            ///
3615            /// Returns the previous value.
3616            ///
3617            /// `fetch_min` takes an [`Ordering`] argument which describes the memory ordering
3618            /// of this operation. All ordering modes are possible. Note that using
3619            /// [`Acquire`] makes the store part of this operation [`Relaxed`], and
3620            /// using [`Release`] makes the load part [`Relaxed`].
3621            ///
3622            /// **Note**: This method is only available on platforms that support atomic operations on
3623            #[doc = concat!("[`", $s_int_type, "`].")]
3624            ///
3625            /// # Examples
3626            ///
3627            /// ```
3628            #[doc = concat!($extra_feature, "use std::sync::atomic::{", stringify!($atomic_type), ", Ordering};")]
3629            ///
3630            #[doc = concat!("let foo = ", stringify!($atomic_type), "::new(23);")]
3631            /// assert_eq!(foo.fetch_min(42, Ordering::Relaxed), 23);
3632            /// assert_eq!(foo.load(Ordering::Relaxed), 23);
3633            /// assert_eq!(foo.fetch_min(22, Ordering::Relaxed), 23);
3634            /// assert_eq!(foo.load(Ordering::Relaxed), 22);
3635            /// ```
3636            ///
3637            /// If you want to obtain the minimum value in one step, you can use the following:
3638            ///
3639            /// ```
3640            #[doc = concat!($extra_feature, "use std::sync::atomic::{", stringify!($atomic_type), ", Ordering};")]
3641            ///
3642            #[doc = concat!("let foo = ", stringify!($atomic_type), "::new(23);")]
3643            /// let bar = 12;
3644            /// let min_foo = foo.fetch_min(bar, Ordering::SeqCst).min(bar);
3645            /// assert_eq!(min_foo, 12);
3646            /// ```
3647            #[inline]
3648            #[stable(feature = "atomic_min_max", since = "1.45.0")]
3649            #[$cfg_cas]
3650            #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
3651            pub fn fetch_min(&self, val: $int_type, order: Ordering) -> $int_type {
3652                // SAFETY: data races are prevented by atomic intrinsics.
3653                unsafe { $min_fn(self.v.get(), val, order) }
3654            }
3655
3656            /// Returns a mutable pointer to the underlying integer.
3657            ///
3658            /// Doing non-atomic reads and writes on the resulting integer can be a data race.
3659            /// This method is mostly useful for FFI, where the function signature may use
3660            #[doc = concat!("`*mut ", stringify!($int_type), "` instead of `&", stringify!($atomic_type), "`.")]
3661            ///
3662            /// Returning an `*mut` pointer from a shared reference to this atomic is safe because the
3663            /// atomic types work with interior mutability. All modifications of an atomic change the value
3664            /// through a shared reference, and can do so safely as long as they use atomic operations. Any
3665            /// use of the returned raw pointer requires an `unsafe` block and still has to uphold the
3666            /// requirements of the [memory model].
3667            ///
3668            /// # Examples
3669            ///
3670            /// ```ignore (extern-declaration)
3671            /// # fn main() {
3672            #[doc = concat!($extra_feature, "use std::sync::atomic::", stringify!($atomic_type), ";")]
3673            ///
3674            /// extern "C" {
3675            #[doc = concat!("    fn my_atomic_op(arg: *mut ", stringify!($int_type), ");")]
3676            /// }
3677            ///
3678            #[doc = concat!("let atomic = ", stringify!($atomic_type), "::new(1);")]
3679            ///
3680            /// // SAFETY: Safe as long as `my_atomic_op` is atomic.
3681            /// unsafe {
3682            ///     my_atomic_op(atomic.as_ptr());
3683            /// }
3684            /// # }
3685            /// ```
3686            ///
3687            /// [memory model]: self#memory-model-for-atomic-accesses
3688            #[inline]
3689            #[stable(feature = "atomic_as_ptr", since = "1.70.0")]
3690            #[rustc_const_stable(feature = "atomic_as_ptr", since = "1.70.0")]
3691            #[rustc_never_returns_null_ptr]
3692            pub const fn as_ptr(&self) -> *mut $int_type {
3693                self.v.get()
3694            }
3695        }
3696    }
3697}
3698
3699#[cfg(target_has_atomic_load_store = "8")]
3700#[cfg(not(feature = "ferrocene_certified"))]
3701atomic_int! {
3702    cfg(target_has_atomic = "8"),
3703    cfg(target_has_atomic_equal_alignment = "8"),
3704    stable(feature = "integer_atomics_stable", since = "1.34.0"),
3705    stable(feature = "integer_atomics_stable", since = "1.34.0"),
3706    stable(feature = "integer_atomics_stable", since = "1.34.0"),
3707    stable(feature = "integer_atomics_stable", since = "1.34.0"),
3708    stable(feature = "integer_atomics_stable", since = "1.34.0"),
3709    stable(feature = "integer_atomics_stable", since = "1.34.0"),
3710    rustc_const_stable(feature = "const_integer_atomics", since = "1.34.0"),
3711    rustc_const_stable(feature = "const_atomic_into_inner", since = "1.79.0"),
3712    rustc_diagnostic_item = "AtomicI8",
3713    "i8",
3714    "",
3715    atomic_min, atomic_max,
3716    1,
3717    i8 AtomicI8
3718}
3719#[cfg(target_has_atomic_load_store = "8")]
3720#[cfg(not(feature = "ferrocene_certified"))]
3721atomic_int! {
3722    cfg(target_has_atomic = "8"),
3723    cfg(target_has_atomic_equal_alignment = "8"),
3724    stable(feature = "integer_atomics_stable", since = "1.34.0"),
3725    stable(feature = "integer_atomics_stable", since = "1.34.0"),
3726    stable(feature = "integer_atomics_stable", since = "1.34.0"),
3727    stable(feature = "integer_atomics_stable", since = "1.34.0"),
3728    stable(feature = "integer_atomics_stable", since = "1.34.0"),
3729    stable(feature = "integer_atomics_stable", since = "1.34.0"),
3730    rustc_const_stable(feature = "const_integer_atomics", since = "1.34.0"),
3731    rustc_const_stable(feature = "const_atomic_into_inner", since = "1.79.0"),
3732    rustc_diagnostic_item = "AtomicU8",
3733    "u8",
3734    "",
3735    atomic_umin, atomic_umax,
3736    1,
3737    u8 AtomicU8
3738}
3739#[cfg(target_has_atomic_load_store = "16")]
3740#[cfg(not(feature = "ferrocene_certified"))]
3741atomic_int! {
3742    cfg(target_has_atomic = "16"),
3743    cfg(target_has_atomic_equal_alignment = "16"),
3744    stable(feature = "integer_atomics_stable", since = "1.34.0"),
3745    stable(feature = "integer_atomics_stable", since = "1.34.0"),
3746    stable(feature = "integer_atomics_stable", since = "1.34.0"),
3747    stable(feature = "integer_atomics_stable", since = "1.34.0"),
3748    stable(feature = "integer_atomics_stable", since = "1.34.0"),
3749    stable(feature = "integer_atomics_stable", since = "1.34.0"),
3750    rustc_const_stable(feature = "const_integer_atomics", since = "1.34.0"),
3751    rustc_const_stable(feature = "const_atomic_into_inner", since = "1.79.0"),
3752    rustc_diagnostic_item = "AtomicI16",
3753    "i16",
3754    "",
3755    atomic_min, atomic_max,
3756    2,
3757    i16 AtomicI16
3758}
3759#[cfg(target_has_atomic_load_store = "16")]
3760#[cfg(not(feature = "ferrocene_certified"))]
3761atomic_int! {
3762    cfg(target_has_atomic = "16"),
3763    cfg(target_has_atomic_equal_alignment = "16"),
3764    stable(feature = "integer_atomics_stable", since = "1.34.0"),
3765    stable(feature = "integer_atomics_stable", since = "1.34.0"),
3766    stable(feature = "integer_atomics_stable", since = "1.34.0"),
3767    stable(feature = "integer_atomics_stable", since = "1.34.0"),
3768    stable(feature = "integer_atomics_stable", since = "1.34.0"),
3769    stable(feature = "integer_atomics_stable", since = "1.34.0"),
3770    rustc_const_stable(feature = "const_integer_atomics", since = "1.34.0"),
3771    rustc_const_stable(feature = "const_atomic_into_inner", since = "1.79.0"),
3772    rustc_diagnostic_item = "AtomicU16",
3773    "u16",
3774    "",
3775    atomic_umin, atomic_umax,
3776    2,
3777    u16 AtomicU16
3778}
3779#[cfg(target_has_atomic_load_store = "32")]
3780#[cfg(not(feature = "ferrocene_certified"))]
3781atomic_int! {
3782    cfg(target_has_atomic = "32"),
3783    cfg(target_has_atomic_equal_alignment = "32"),
3784    stable(feature = "integer_atomics_stable", since = "1.34.0"),
3785    stable(feature = "integer_atomics_stable", since = "1.34.0"),
3786    stable(feature = "integer_atomics_stable", since = "1.34.0"),
3787    stable(feature = "integer_atomics_stable", since = "1.34.0"),
3788    stable(feature = "integer_atomics_stable", since = "1.34.0"),
3789    stable(feature = "integer_atomics_stable", since = "1.34.0"),
3790    rustc_const_stable(feature = "const_integer_atomics", since = "1.34.0"),
3791    rustc_const_stable(feature = "const_atomic_into_inner", since = "1.79.0"),
3792    rustc_diagnostic_item = "AtomicI32",
3793    "i32",
3794    "",
3795    atomic_min, atomic_max,
3796    4,
3797    i32 AtomicI32
3798}
3799#[cfg(target_has_atomic_load_store = "32")]
3800atomic_int! {
3801    cfg(target_has_atomic = "32"),
3802    cfg(target_has_atomic_equal_alignment = "32"),
3803    stable(feature = "integer_atomics_stable", since = "1.34.0"),
3804    stable(feature = "integer_atomics_stable", since = "1.34.0"),
3805    stable(feature = "integer_atomics_stable", since = "1.34.0"),
3806    stable(feature = "integer_atomics_stable", since = "1.34.0"),
3807    stable(feature = "integer_atomics_stable", since = "1.34.0"),
3808    stable(feature = "integer_atomics_stable", since = "1.34.0"),
3809    rustc_const_stable(feature = "const_integer_atomics", since = "1.34.0"),
3810    rustc_const_stable(feature = "const_atomic_into_inner", since = "1.79.0"),
3811    rustc_diagnostic_item = "AtomicU32",
3812    "u32",
3813    "",
3814    atomic_umin, atomic_umax,
3815    4,
3816    u32 AtomicU32
3817}
3818#[cfg(target_has_atomic_load_store = "64")]
3819#[cfg(not(feature = "ferrocene_certified"))]
3820atomic_int! {
3821    cfg(target_has_atomic = "64"),
3822    cfg(target_has_atomic_equal_alignment = "64"),
3823    stable(feature = "integer_atomics_stable", since = "1.34.0"),
3824    stable(feature = "integer_atomics_stable", since = "1.34.0"),
3825    stable(feature = "integer_atomics_stable", since = "1.34.0"),
3826    stable(feature = "integer_atomics_stable", since = "1.34.0"),
3827    stable(feature = "integer_atomics_stable", since = "1.34.0"),
3828    stable(feature = "integer_atomics_stable", since = "1.34.0"),
3829    rustc_const_stable(feature = "const_integer_atomics", since = "1.34.0"),
3830    rustc_const_stable(feature = "const_atomic_into_inner", since = "1.79.0"),
3831    rustc_diagnostic_item = "AtomicI64",
3832    "i64",
3833    "",
3834    atomic_min, atomic_max,
3835    8,
3836    i64 AtomicI64
3837}
3838#[cfg(target_has_atomic_load_store = "64")]
3839#[cfg(not(feature = "ferrocene_certified"))]
3840atomic_int! {
3841    cfg(target_has_atomic = "64"),
3842    cfg(target_has_atomic_equal_alignment = "64"),
3843    stable(feature = "integer_atomics_stable", since = "1.34.0"),
3844    stable(feature = "integer_atomics_stable", since = "1.34.0"),
3845    stable(feature = "integer_atomics_stable", since = "1.34.0"),
3846    stable(feature = "integer_atomics_stable", since = "1.34.0"),
3847    stable(feature = "integer_atomics_stable", since = "1.34.0"),
3848    stable(feature = "integer_atomics_stable", since = "1.34.0"),
3849    rustc_const_stable(feature = "const_integer_atomics", since = "1.34.0"),
3850    rustc_const_stable(feature = "const_atomic_into_inner", since = "1.79.0"),
3851    rustc_diagnostic_item = "AtomicU64",
3852    "u64",
3853    "",
3854    atomic_umin, atomic_umax,
3855    8,
3856    u64 AtomicU64
3857}
3858#[cfg(target_has_atomic_load_store = "128")]
3859#[cfg(not(feature = "ferrocene_certified"))]
3860atomic_int! {
3861    cfg(target_has_atomic = "128"),
3862    cfg(target_has_atomic_equal_alignment = "128"),
3863    unstable(feature = "integer_atomics", issue = "99069"),
3864    unstable(feature = "integer_atomics", issue = "99069"),
3865    unstable(feature = "integer_atomics", issue = "99069"),
3866    unstable(feature = "integer_atomics", issue = "99069"),
3867    unstable(feature = "integer_atomics", issue = "99069"),
3868    unstable(feature = "integer_atomics", issue = "99069"),
3869    rustc_const_unstable(feature = "integer_atomics", issue = "99069"),
3870    rustc_const_unstable(feature = "integer_atomics", issue = "99069"),
3871    rustc_diagnostic_item = "AtomicI128",
3872    "i128",
3873    "#![feature(integer_atomics)]\n\n",
3874    atomic_min, atomic_max,
3875    16,
3876    i128 AtomicI128
3877}
3878#[cfg(target_has_atomic_load_store = "128")]
3879#[cfg(not(feature = "ferrocene_certified"))]
3880atomic_int! {
3881    cfg(target_has_atomic = "128"),
3882    cfg(target_has_atomic_equal_alignment = "128"),
3883    unstable(feature = "integer_atomics", issue = "99069"),
3884    unstable(feature = "integer_atomics", issue = "99069"),
3885    unstable(feature = "integer_atomics", issue = "99069"),
3886    unstable(feature = "integer_atomics", issue = "99069"),
3887    unstable(feature = "integer_atomics", issue = "99069"),
3888    unstable(feature = "integer_atomics", issue = "99069"),
3889    rustc_const_unstable(feature = "integer_atomics", issue = "99069"),
3890    rustc_const_unstable(feature = "integer_atomics", issue = "99069"),
3891    rustc_diagnostic_item = "AtomicU128",
3892    "u128",
3893    "#![feature(integer_atomics)]\n\n",
3894    atomic_umin, atomic_umax,
3895    16,
3896    u128 AtomicU128
3897}
3898
3899#[cfg(target_has_atomic_load_store = "ptr")]
3900#[cfg(not(feature = "ferrocene_certified"))]
3901macro_rules! atomic_int_ptr_sized {
3902    ( $($target_pointer_width:literal $align:literal)* ) => { $(
3903        #[cfg(target_pointer_width = $target_pointer_width)]
3904        atomic_int! {
3905            cfg(target_has_atomic = "ptr"),
3906            cfg(target_has_atomic_equal_alignment = "ptr"),
3907            stable(feature = "rust1", since = "1.0.0"),
3908            stable(feature = "extended_compare_and_swap", since = "1.10.0"),
3909            stable(feature = "atomic_debug", since = "1.3.0"),
3910            stable(feature = "atomic_access", since = "1.15.0"),
3911            stable(feature = "atomic_from", since = "1.23.0"),
3912            stable(feature = "atomic_nand", since = "1.27.0"),
3913            rustc_const_stable(feature = "const_ptr_sized_atomics", since = "1.24.0"),
3914            rustc_const_stable(feature = "const_atomic_into_inner", since = "1.79.0"),
3915            rustc_diagnostic_item = "AtomicIsize",
3916            "isize",
3917            "",
3918            atomic_min, atomic_max,
3919            $align,
3920            isize AtomicIsize
3921        }
3922        #[cfg(target_pointer_width = $target_pointer_width)]
3923        atomic_int! {
3924            cfg(target_has_atomic = "ptr"),
3925            cfg(target_has_atomic_equal_alignment = "ptr"),
3926            stable(feature = "rust1", since = "1.0.0"),
3927            stable(feature = "extended_compare_and_swap", since = "1.10.0"),
3928            stable(feature = "atomic_debug", since = "1.3.0"),
3929            stable(feature = "atomic_access", since = "1.15.0"),
3930            stable(feature = "atomic_from", since = "1.23.0"),
3931            stable(feature = "atomic_nand", since = "1.27.0"),
3932            rustc_const_stable(feature = "const_ptr_sized_atomics", since = "1.24.0"),
3933            rustc_const_stable(feature = "const_atomic_into_inner", since = "1.79.0"),
3934            rustc_diagnostic_item = "AtomicUsize",
3935            "usize",
3936            "",
3937            atomic_umin, atomic_umax,
3938            $align,
3939            usize AtomicUsize
3940        }
3941
3942        /// An [`AtomicIsize`] initialized to `0`.
3943        #[cfg(target_pointer_width = $target_pointer_width)]
3944        #[stable(feature = "rust1", since = "1.0.0")]
3945        #[deprecated(
3946            since = "1.34.0",
3947            note = "the `new` function is now preferred",
3948            suggestion = "AtomicIsize::new(0)",
3949        )]
3950        pub const ATOMIC_ISIZE_INIT: AtomicIsize = AtomicIsize::new(0);
3951
3952        /// An [`AtomicUsize`] initialized to `0`.
3953        #[cfg(target_pointer_width = $target_pointer_width)]
3954        #[stable(feature = "rust1", since = "1.0.0")]
3955        #[deprecated(
3956            since = "1.34.0",
3957            note = "the `new` function is now preferred",
3958            suggestion = "AtomicUsize::new(0)",
3959        )]
3960        pub const ATOMIC_USIZE_INIT: AtomicUsize = AtomicUsize::new(0);
3961    )* };
3962}
3963
3964#[cfg(target_has_atomic_load_store = "ptr")]
3965#[cfg(not(feature = "ferrocene_certified"))]
3966atomic_int_ptr_sized! {
3967    "16" 2
3968    "32" 4
3969    "64" 8
3970}
3971
3972#[cfg(not(feature = "ferrocene_certified"))]
3973#[inline]
3974#[cfg(target_has_atomic)]
3975fn strongest_failure_ordering(order: Ordering) -> Ordering {
3976    match order {
3977        Release => Relaxed,
3978        Relaxed => Relaxed,
3979        SeqCst => SeqCst,
3980        Acquire => Acquire,
3981        AcqRel => Acquire,
3982    }
3983}
3984
3985#[inline]
3986#[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
3987unsafe fn atomic_store<T: Copy>(dst: *mut T, val: T, order: Ordering) {
3988    // SAFETY: the caller must uphold the safety contract for `atomic_store`.
3989    unsafe {
3990        match order {
3991            Relaxed => intrinsics::atomic_store::<T, { AO::Relaxed }>(dst, val),
3992            Release => intrinsics::atomic_store::<T, { AO::Release }>(dst, val),
3993            SeqCst => intrinsics::atomic_store::<T, { AO::SeqCst }>(dst, val),
3994            Acquire => panic!("there is no such thing as an acquire store"),
3995            AcqRel => panic!("there is no such thing as an acquire-release store"),
3996        }
3997    }
3998}
3999
4000#[inline]
4001#[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
4002unsafe fn atomic_load<T: Copy>(dst: *const T, order: Ordering) -> T {
4003    // SAFETY: the caller must uphold the safety contract for `atomic_load`.
4004    unsafe {
4005        match order {
4006            Relaxed => intrinsics::atomic_load::<T, { AO::Relaxed }>(dst),
4007            Acquire => intrinsics::atomic_load::<T, { AO::Acquire }>(dst),
4008            SeqCst => intrinsics::atomic_load::<T, { AO::SeqCst }>(dst),
4009            Release => panic!("there is no such thing as a release load"),
4010            AcqRel => panic!("there is no such thing as an acquire-release load"),
4011        }
4012    }
4013}
4014
4015#[inline]
4016#[cfg(target_has_atomic)]
4017#[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
4018unsafe fn atomic_swap<T: Copy>(dst: *mut T, val: T, order: Ordering) -> T {
4019    // SAFETY: the caller must uphold the safety contract for `atomic_swap`.
4020    unsafe {
4021        match order {
4022            Relaxed => intrinsics::atomic_xchg::<T, { AO::Relaxed }>(dst, val),
4023            Acquire => intrinsics::atomic_xchg::<T, { AO::Acquire }>(dst, val),
4024            Release => intrinsics::atomic_xchg::<T, { AO::Release }>(dst, val),
4025            AcqRel => intrinsics::atomic_xchg::<T, { AO::AcqRel }>(dst, val),
4026            SeqCst => intrinsics::atomic_xchg::<T, { AO::SeqCst }>(dst, val),
4027        }
4028    }
4029}
4030
4031/// Returns the previous value (like __sync_fetch_and_add).
4032#[inline]
4033#[cfg(target_has_atomic)]
4034#[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
4035unsafe fn atomic_add<T: Copy, U: Copy>(dst: *mut T, val: U, order: Ordering) -> T {
4036    // SAFETY: the caller must uphold the safety contract for `atomic_add`.
4037    unsafe {
4038        match order {
4039            Relaxed => intrinsics::atomic_xadd::<T, U, { AO::Relaxed }>(dst, val),
4040            Acquire => intrinsics::atomic_xadd::<T, U, { AO::Acquire }>(dst, val),
4041            Release => intrinsics::atomic_xadd::<T, U, { AO::Release }>(dst, val),
4042            AcqRel => intrinsics::atomic_xadd::<T, U, { AO::AcqRel }>(dst, val),
4043            SeqCst => intrinsics::atomic_xadd::<T, U, { AO::SeqCst }>(dst, val),
4044        }
4045    }
4046}
4047
4048/// Returns the previous value (like __sync_fetch_and_sub).
4049#[inline]
4050#[cfg(target_has_atomic)]
4051#[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
4052unsafe fn atomic_sub<T: Copy, U: Copy>(dst: *mut T, val: U, order: Ordering) -> T {
4053    // SAFETY: the caller must uphold the safety contract for `atomic_sub`.
4054    unsafe {
4055        match order {
4056            Relaxed => intrinsics::atomic_xsub::<T, U, { AO::Relaxed }>(dst, val),
4057            Acquire => intrinsics::atomic_xsub::<T, U, { AO::Acquire }>(dst, val),
4058            Release => intrinsics::atomic_xsub::<T, U, { AO::Release }>(dst, val),
4059            AcqRel => intrinsics::atomic_xsub::<T, U, { AO::AcqRel }>(dst, val),
4060            SeqCst => intrinsics::atomic_xsub::<T, U, { AO::SeqCst }>(dst, val),
4061        }
4062    }
4063}
4064
4065/// Publicly exposed for stdarch; nobody else should use this.
4066#[inline]
4067#[cfg(target_has_atomic)]
4068#[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
4069#[unstable(feature = "core_intrinsics", issue = "none")]
4070#[doc(hidden)]
4071pub unsafe fn atomic_compare_exchange<T: Copy>(
4072    dst: *mut T,
4073    old: T,
4074    new: T,
4075    success: Ordering,
4076    failure: Ordering,
4077) -> Result<T, T> {
4078    // SAFETY: the caller must uphold the safety contract for `atomic_compare_exchange`.
4079    let (val, ok) = unsafe {
4080        match (success, failure) {
4081            (Relaxed, Relaxed) => {
4082                intrinsics::atomic_cxchg::<T, { AO::Relaxed }, { AO::Relaxed }>(dst, old, new)
4083            }
4084            (Relaxed, Acquire) => {
4085                intrinsics::atomic_cxchg::<T, { AO::Relaxed }, { AO::Acquire }>(dst, old, new)
4086            }
4087            (Relaxed, SeqCst) => {
4088                intrinsics::atomic_cxchg::<T, { AO::Relaxed }, { AO::SeqCst }>(dst, old, new)
4089            }
4090            (Acquire, Relaxed) => {
4091                intrinsics::atomic_cxchg::<T, { AO::Acquire }, { AO::Relaxed }>(dst, old, new)
4092            }
4093            (Acquire, Acquire) => {
4094                intrinsics::atomic_cxchg::<T, { AO::Acquire }, { AO::Acquire }>(dst, old, new)
4095            }
4096            (Acquire, SeqCst) => {
4097                intrinsics::atomic_cxchg::<T, { AO::Acquire }, { AO::SeqCst }>(dst, old, new)
4098            }
4099            (Release, Relaxed) => {
4100                intrinsics::atomic_cxchg::<T, { AO::Release }, { AO::Relaxed }>(dst, old, new)
4101            }
4102            (Release, Acquire) => {
4103                intrinsics::atomic_cxchg::<T, { AO::Release }, { AO::Acquire }>(dst, old, new)
4104            }
4105            (Release, SeqCst) => {
4106                intrinsics::atomic_cxchg::<T, { AO::Release }, { AO::SeqCst }>(dst, old, new)
4107            }
4108            (AcqRel, Relaxed) => {
4109                intrinsics::atomic_cxchg::<T, { AO::AcqRel }, { AO::Relaxed }>(dst, old, new)
4110            }
4111            (AcqRel, Acquire) => {
4112                intrinsics::atomic_cxchg::<T, { AO::AcqRel }, { AO::Acquire }>(dst, old, new)
4113            }
4114            (AcqRel, SeqCst) => {
4115                intrinsics::atomic_cxchg::<T, { AO::AcqRel }, { AO::SeqCst }>(dst, old, new)
4116            }
4117            (SeqCst, Relaxed) => {
4118                intrinsics::atomic_cxchg::<T, { AO::SeqCst }, { AO::Relaxed }>(dst, old, new)
4119            }
4120            (SeqCst, Acquire) => {
4121                intrinsics::atomic_cxchg::<T, { AO::SeqCst }, { AO::Acquire }>(dst, old, new)
4122            }
4123            (SeqCst, SeqCst) => {
4124                intrinsics::atomic_cxchg::<T, { AO::SeqCst }, { AO::SeqCst }>(dst, old, new)
4125            }
4126            (_, AcqRel) => panic!("there is no such thing as an acquire-release failure ordering"),
4127            (_, Release) => panic!("there is no such thing as a release failure ordering"),
4128        }
4129    };
4130    if ok { Ok(val) } else { Err(val) }
4131}
4132
4133#[inline]
4134#[cfg(target_has_atomic)]
4135#[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
4136unsafe fn atomic_compare_exchange_weak<T: Copy>(
4137    dst: *mut T,
4138    old: T,
4139    new: T,
4140    success: Ordering,
4141    failure: Ordering,
4142) -> Result<T, T> {
4143    // SAFETY: the caller must uphold the safety contract for `atomic_compare_exchange_weak`.
4144    let (val, ok) = unsafe {
4145        match (success, failure) {
4146            (Relaxed, Relaxed) => {
4147                intrinsics::atomic_cxchgweak::<T, { AO::Relaxed }, { AO::Relaxed }>(dst, old, new)
4148            }
4149            (Relaxed, Acquire) => {
4150                intrinsics::atomic_cxchgweak::<T, { AO::Relaxed }, { AO::Acquire }>(dst, old, new)
4151            }
4152            (Relaxed, SeqCst) => {
4153                intrinsics::atomic_cxchgweak::<T, { AO::Relaxed }, { AO::SeqCst }>(dst, old, new)
4154            }
4155            (Acquire, Relaxed) => {
4156                intrinsics::atomic_cxchgweak::<T, { AO::Acquire }, { AO::Relaxed }>(dst, old, new)
4157            }
4158            (Acquire, Acquire) => {
4159                intrinsics::atomic_cxchgweak::<T, { AO::Acquire }, { AO::Acquire }>(dst, old, new)
4160            }
4161            (Acquire, SeqCst) => {
4162                intrinsics::atomic_cxchgweak::<T, { AO::Acquire }, { AO::SeqCst }>(dst, old, new)
4163            }
4164            (Release, Relaxed) => {
4165                intrinsics::atomic_cxchgweak::<T, { AO::Release }, { AO::Relaxed }>(dst, old, new)
4166            }
4167            (Release, Acquire) => {
4168                intrinsics::atomic_cxchgweak::<T, { AO::Release }, { AO::Acquire }>(dst, old, new)
4169            }
4170            (Release, SeqCst) => {
4171                intrinsics::atomic_cxchgweak::<T, { AO::Release }, { AO::SeqCst }>(dst, old, new)
4172            }
4173            (AcqRel, Relaxed) => {
4174                intrinsics::atomic_cxchgweak::<T, { AO::AcqRel }, { AO::Relaxed }>(dst, old, new)
4175            }
4176            (AcqRel, Acquire) => {
4177                intrinsics::atomic_cxchgweak::<T, { AO::AcqRel }, { AO::Acquire }>(dst, old, new)
4178            }
4179            (AcqRel, SeqCst) => {
4180                intrinsics::atomic_cxchgweak::<T, { AO::AcqRel }, { AO::SeqCst }>(dst, old, new)
4181            }
4182            (SeqCst, Relaxed) => {
4183                intrinsics::atomic_cxchgweak::<T, { AO::SeqCst }, { AO::Relaxed }>(dst, old, new)
4184            }
4185            (SeqCst, Acquire) => {
4186                intrinsics::atomic_cxchgweak::<T, { AO::SeqCst }, { AO::Acquire }>(dst, old, new)
4187            }
4188            (SeqCst, SeqCst) => {
4189                intrinsics::atomic_cxchgweak::<T, { AO::SeqCst }, { AO::SeqCst }>(dst, old, new)
4190            }
4191            (_, AcqRel) => panic!("there is no such thing as an acquire-release failure ordering"),
4192            (_, Release) => panic!("there is no such thing as a release failure ordering"),
4193        }
4194    };
4195    if ok { Ok(val) } else { Err(val) }
4196}
4197
4198#[inline]
4199#[cfg(target_has_atomic)]
4200#[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
4201unsafe fn atomic_and<T: Copy, U: Copy>(dst: *mut T, val: U, order: Ordering) -> T {
4202    // SAFETY: the caller must uphold the safety contract for `atomic_and`
4203    unsafe {
4204        match order {
4205            Relaxed => intrinsics::atomic_and::<T, U, { AO::Relaxed }>(dst, val),
4206            Acquire => intrinsics::atomic_and::<T, U, { AO::Acquire }>(dst, val),
4207            Release => intrinsics::atomic_and::<T, U, { AO::Release }>(dst, val),
4208            AcqRel => intrinsics::atomic_and::<T, U, { AO::AcqRel }>(dst, val),
4209            SeqCst => intrinsics::atomic_and::<T, U, { AO::SeqCst }>(dst, val),
4210        }
4211    }
4212}
4213
4214#[inline]
4215#[cfg(target_has_atomic)]
4216#[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
4217unsafe fn atomic_nand<T: Copy, U: Copy>(dst: *mut T, val: U, order: Ordering) -> T {
4218    // SAFETY: the caller must uphold the safety contract for `atomic_nand`
4219    unsafe {
4220        match order {
4221            Relaxed => intrinsics::atomic_nand::<T, U, { AO::Relaxed }>(dst, val),
4222            Acquire => intrinsics::atomic_nand::<T, U, { AO::Acquire }>(dst, val),
4223            Release => intrinsics::atomic_nand::<T, U, { AO::Release }>(dst, val),
4224            AcqRel => intrinsics::atomic_nand::<T, U, { AO::AcqRel }>(dst, val),
4225            SeqCst => intrinsics::atomic_nand::<T, U, { AO::SeqCst }>(dst, val),
4226        }
4227    }
4228}
4229
4230#[inline]
4231#[cfg(target_has_atomic)]
4232#[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
4233unsafe fn atomic_or<T: Copy, U: Copy>(dst: *mut T, val: U, order: Ordering) -> T {
4234    // SAFETY: the caller must uphold the safety contract for `atomic_or`
4235    unsafe {
4236        match order {
4237            SeqCst => intrinsics::atomic_or::<T, U, { AO::SeqCst }>(dst, val),
4238            Acquire => intrinsics::atomic_or::<T, U, { AO::Acquire }>(dst, val),
4239            Release => intrinsics::atomic_or::<T, U, { AO::Release }>(dst, val),
4240            AcqRel => intrinsics::atomic_or::<T, U, { AO::AcqRel }>(dst, val),
4241            Relaxed => intrinsics::atomic_or::<T, U, { AO::Relaxed }>(dst, val),
4242        }
4243    }
4244}
4245
4246#[inline]
4247#[cfg(target_has_atomic)]
4248#[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
4249unsafe fn atomic_xor<T: Copy, U: Copy>(dst: *mut T, val: U, order: Ordering) -> T {
4250    // SAFETY: the caller must uphold the safety contract for `atomic_xor`
4251    unsafe {
4252        match order {
4253            SeqCst => intrinsics::atomic_xor::<T, U, { AO::SeqCst }>(dst, val),
4254            Acquire => intrinsics::atomic_xor::<T, U, { AO::Acquire }>(dst, val),
4255            Release => intrinsics::atomic_xor::<T, U, { AO::Release }>(dst, val),
4256            AcqRel => intrinsics::atomic_xor::<T, U, { AO::AcqRel }>(dst, val),
4257            Relaxed => intrinsics::atomic_xor::<T, U, { AO::Relaxed }>(dst, val),
4258        }
4259    }
4260}
4261
4262/// Updates `*dst` to the max value of `val` and the old value (signed comparison)
4263#[inline]
4264#[cfg(target_has_atomic)]
4265#[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
4266#[cfg(not(feature = "ferrocene_certified"))]
4267unsafe fn atomic_max<T: Copy>(dst: *mut T, val: T, order: Ordering) -> T {
4268    // SAFETY: the caller must uphold the safety contract for `atomic_max`
4269    unsafe {
4270        match order {
4271            Relaxed => intrinsics::atomic_max::<T, { AO::Relaxed }>(dst, val),
4272            Acquire => intrinsics::atomic_max::<T, { AO::Acquire }>(dst, val),
4273            Release => intrinsics::atomic_max::<T, { AO::Release }>(dst, val),
4274            AcqRel => intrinsics::atomic_max::<T, { AO::AcqRel }>(dst, val),
4275            SeqCst => intrinsics::atomic_max::<T, { AO::SeqCst }>(dst, val),
4276        }
4277    }
4278}
4279
4280/// Updates `*dst` to the min value of `val` and the old value (signed comparison)
4281#[inline]
4282#[cfg(target_has_atomic)]
4283#[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
4284#[cfg(not(feature = "ferrocene_certified"))]
4285unsafe fn atomic_min<T: Copy>(dst: *mut T, val: T, order: Ordering) -> T {
4286    // SAFETY: the caller must uphold the safety contract for `atomic_min`
4287    unsafe {
4288        match order {
4289            Relaxed => intrinsics::atomic_min::<T, { AO::Relaxed }>(dst, val),
4290            Acquire => intrinsics::atomic_min::<T, { AO::Acquire }>(dst, val),
4291            Release => intrinsics::atomic_min::<T, { AO::Release }>(dst, val),
4292            AcqRel => intrinsics::atomic_min::<T, { AO::AcqRel }>(dst, val),
4293            SeqCst => intrinsics::atomic_min::<T, { AO::SeqCst }>(dst, val),
4294        }
4295    }
4296}
4297
4298/// Updates `*dst` to the max value of `val` and the old value (unsigned comparison)
4299#[inline]
4300#[cfg(target_has_atomic)]
4301#[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
4302unsafe fn atomic_umax<T: Copy>(dst: *mut T, val: T, order: Ordering) -> T {
4303    // SAFETY: the caller must uphold the safety contract for `atomic_umax`
4304    unsafe {
4305        match order {
4306            Relaxed => intrinsics::atomic_umax::<T, { AO::Relaxed }>(dst, val),
4307            Acquire => intrinsics::atomic_umax::<T, { AO::Acquire }>(dst, val),
4308            Release => intrinsics::atomic_umax::<T, { AO::Release }>(dst, val),
4309            AcqRel => intrinsics::atomic_umax::<T, { AO::AcqRel }>(dst, val),
4310            SeqCst => intrinsics::atomic_umax::<T, { AO::SeqCst }>(dst, val),
4311        }
4312    }
4313}
4314
4315/// Updates `*dst` to the min value of `val` and the old value (unsigned comparison)
4316#[inline]
4317#[cfg(target_has_atomic)]
4318#[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
4319unsafe fn atomic_umin<T: Copy>(dst: *mut T, val: T, order: Ordering) -> T {
4320    // SAFETY: the caller must uphold the safety contract for `atomic_umin`
4321    unsafe {
4322        match order {
4323            Relaxed => intrinsics::atomic_umin::<T, { AO::Relaxed }>(dst, val),
4324            Acquire => intrinsics::atomic_umin::<T, { AO::Acquire }>(dst, val),
4325            Release => intrinsics::atomic_umin::<T, { AO::Release }>(dst, val),
4326            AcqRel => intrinsics::atomic_umin::<T, { AO::AcqRel }>(dst, val),
4327            SeqCst => intrinsics::atomic_umin::<T, { AO::SeqCst }>(dst, val),
4328        }
4329    }
4330}
4331
4332/// An atomic fence.
4333///
4334/// Fences create synchronization between themselves and atomic operations or fences in other
4335/// threads. To achieve this, a fence prevents the compiler and CPU from reordering certain types of
4336/// memory operations around it.
4337///
4338/// A fence 'A' which has (at least) [`Release`] ordering semantics, synchronizes
4339/// with a fence 'B' with (at least) [`Acquire`] semantics, if and only if there
4340/// exist operations X and Y, both operating on some atomic object 'm' such
4341/// that A is sequenced before X, Y is sequenced before B and Y observes
4342/// the change to m. This provides a happens-before dependence between A and B.
4343///
4344/// ```text
4345///     Thread 1                                          Thread 2
4346///
4347/// fence(Release);      A --------------
4348/// m.store(3, Relaxed); X ---------    |
4349///                                |    |
4350///                                |    |
4351///                                -------------> Y  if m.load(Relaxed) == 3 {
4352///                                     |-------> B      fence(Acquire);
4353///                                                      ...
4354///                                                  }
4355/// ```
4356///
4357/// Note that in the example above, it is crucial that the accesses to `m` are atomic. Fences cannot
4358/// be used to establish synchronization among non-atomic accesses in different threads. However,
4359/// thanks to the happens-before relationship between A and B, any non-atomic accesses that
4360/// happen-before A are now also properly synchronized with any non-atomic accesses that
4361/// happen-after B.
4362///
4363/// Atomic operations with [`Release`] or [`Acquire`] semantics can also synchronize
4364/// with a fence.
4365///
4366/// A fence which has [`SeqCst`] ordering, in addition to having both [`Acquire`]
4367/// and [`Release`] semantics, participates in the global program order of the
4368/// other [`SeqCst`] operations and/or fences.
4369///
4370/// Accepts [`Acquire`], [`Release`], [`AcqRel`] and [`SeqCst`] orderings.
4371///
4372/// # Panics
4373///
4374/// Panics if `order` is [`Relaxed`].
4375///
4376/// # Examples
4377///
4378/// ```
4379/// use std::sync::atomic::AtomicBool;
4380/// use std::sync::atomic::fence;
4381/// use std::sync::atomic::Ordering;
4382///
4383/// // A mutual exclusion primitive based on spinlock.
4384/// pub struct Mutex {
4385///     flag: AtomicBool,
4386/// }
4387///
4388/// impl Mutex {
4389///     pub fn new() -> Mutex {
4390///         Mutex {
4391///             flag: AtomicBool::new(false),
4392///         }
4393///     }
4394///
4395///     pub fn lock(&self) {
4396///         // Wait until the old value is `false`.
4397///         while self
4398///             .flag
4399///             .compare_exchange_weak(false, true, Ordering::Relaxed, Ordering::Relaxed)
4400///             .is_err()
4401///         {}
4402///         // This fence synchronizes-with store in `unlock`.
4403///         fence(Ordering::Acquire);
4404///     }
4405///
4406///     pub fn unlock(&self) {
4407///         self.flag.store(false, Ordering::Release);
4408///     }
4409/// }
4410/// ```
4411#[inline]
4412#[stable(feature = "rust1", since = "1.0.0")]
4413#[rustc_diagnostic_item = "fence"]
4414#[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
4415#[cfg(not(feature = "ferrocene_certified"))]
4416pub fn fence(order: Ordering) {
4417    // SAFETY: using an atomic fence is safe.
4418    unsafe {
4419        match order {
4420            Acquire => intrinsics::atomic_fence::<{ AO::Acquire }>(),
4421            Release => intrinsics::atomic_fence::<{ AO::Release }>(),
4422            AcqRel => intrinsics::atomic_fence::<{ AO::AcqRel }>(),
4423            SeqCst => intrinsics::atomic_fence::<{ AO::SeqCst }>(),
4424            Relaxed => panic!("there is no such thing as a relaxed fence"),
4425        }
4426    }
4427}
4428
4429/// A "compiler-only" atomic fence.
4430///
4431/// Like [`fence`], this function establishes synchronization with other atomic operations and
4432/// fences. However, unlike [`fence`], `compiler_fence` only establishes synchronization with
4433/// operations *in the same thread*. This may at first sound rather useless, since code within a
4434/// thread is typically already totally ordered and does not need any further synchronization.
4435/// However, there are cases where code can run on the same thread without being ordered:
4436/// - The most common case is that of a *signal handler*: a signal handler runs in the same thread
4437///   as the code it interrupted, but it is not ordered with respect to that code. `compiler_fence`
4438///   can be used to establish synchronization between a thread and its signal handler, the same way
4439///   that `fence` can be used to establish synchronization across threads.
4440/// - Similar situations can arise in embedded programming with interrupt handlers, or in custom
4441///   implementations of preemptive green threads. In general, `compiler_fence` can establish
4442///   synchronization with code that is guaranteed to run on the same hardware CPU.
4443///
4444/// See [`fence`] for how a fence can be used to achieve synchronization. Note that just like
4445/// [`fence`], synchronization still requires atomic operations to be used in both threads -- it is
4446/// not possible to perform synchronization entirely with fences and non-atomic operations.
4447///
4448/// `compiler_fence` does not emit any machine code, but restricts the kinds of memory re-ordering
4449/// the compiler is allowed to do. `compiler_fence` corresponds to [`atomic_signal_fence`] in C and
4450/// C++.
4451///
4452/// [`atomic_signal_fence`]: https://en.cppreference.com/w/cpp/atomic/atomic_signal_fence
4453///
4454/// # Panics
4455///
4456/// Panics if `order` is [`Relaxed`].
4457///
4458/// # Examples
4459///
4460/// Without the two `compiler_fence` calls, the read of `IMPORTANT_VARIABLE` in `signal_handler`
4461/// is *undefined behavior* due to a data race, despite everything happening in a single thread.
4462/// This is because the signal handler is considered to run concurrently with its associated
4463/// thread, and explicit synchronization is required to pass data between a thread and its
4464/// signal handler. The code below uses two `compiler_fence` calls to establish the usual
4465/// release-acquire synchronization pattern (see [`fence`] for an image).
4466///
4467/// ```
4468/// use std::sync::atomic::AtomicBool;
4469/// use std::sync::atomic::Ordering;
4470/// use std::sync::atomic::compiler_fence;
4471///
4472/// static mut IMPORTANT_VARIABLE: usize = 0;
4473/// static IS_READY: AtomicBool = AtomicBool::new(false);
4474///
4475/// fn main() {
4476///     unsafe { IMPORTANT_VARIABLE = 42 };
4477///     // Marks earlier writes as being released with future relaxed stores.
4478///     compiler_fence(Ordering::Release);
4479///     IS_READY.store(true, Ordering::Relaxed);
4480/// }
4481///
4482/// fn signal_handler() {
4483///     if IS_READY.load(Ordering::Relaxed) {
4484///         // Acquires writes that were released with relaxed stores that we read from.
4485///         compiler_fence(Ordering::Acquire);
4486///         assert_eq!(unsafe { IMPORTANT_VARIABLE }, 42);
4487///     }
4488/// }
4489/// ```
4490#[inline]
4491#[stable(feature = "compiler_fences", since = "1.21.0")]
4492#[rustc_diagnostic_item = "compiler_fence"]
4493#[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
4494#[cfg(not(feature = "ferrocene_certified"))]
4495pub fn compiler_fence(order: Ordering) {
4496    // SAFETY: using an atomic fence is safe.
4497    unsafe {
4498        match order {
4499            Acquire => intrinsics::atomic_singlethreadfence::<{ AO::Acquire }>(),
4500            Release => intrinsics::atomic_singlethreadfence::<{ AO::Release }>(),
4501            AcqRel => intrinsics::atomic_singlethreadfence::<{ AO::AcqRel }>(),
4502            SeqCst => intrinsics::atomic_singlethreadfence::<{ AO::SeqCst }>(),
4503            Relaxed => panic!("there is no such thing as a relaxed fence"),
4504        }
4505    }
4506}
4507
4508#[cfg(target_has_atomic_load_store = "8")]
4509#[stable(feature = "atomic_debug", since = "1.3.0")]
4510#[cfg(not(feature = "ferrocene_certified"))]
4511impl fmt::Debug for AtomicBool {
4512    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
4513        fmt::Debug::fmt(&self.load(Ordering::Relaxed), f)
4514    }
4515}
4516
4517#[cfg(target_has_atomic_load_store = "ptr")]
4518#[stable(feature = "atomic_debug", since = "1.3.0")]
4519#[cfg(not(feature = "ferrocene_certified"))]
4520impl<T> fmt::Debug for AtomicPtr<T> {
4521    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
4522        fmt::Debug::fmt(&self.load(Ordering::Relaxed), f)
4523    }
4524}
4525
4526#[cfg(target_has_atomic_load_store = "ptr")]
4527#[stable(feature = "atomic_pointer", since = "1.24.0")]
4528#[cfg(not(feature = "ferrocene_certified"))]
4529impl<T> fmt::Pointer for AtomicPtr<T> {
4530    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
4531        fmt::Pointer::fmt(&self.load(Ordering::Relaxed), f)
4532    }
4533}
4534
4535/// Signals the processor that it is inside a busy-wait spin-loop ("spin lock").
4536///
4537/// This function is deprecated in favor of [`hint::spin_loop`].
4538///
4539/// [`hint::spin_loop`]: crate::hint::spin_loop
4540#[inline]
4541#[stable(feature = "spin_loop_hint", since = "1.24.0")]
4542#[deprecated(since = "1.51.0", note = "use hint::spin_loop instead")]
4543#[cfg(not(feature = "ferrocene_certified"))]
4544pub fn spin_loop_hint() {
4545    spin_loop()
4546}