core/sync/
atomic.rs

1//! Atomic types
2//!
3//! Atomic types provide primitive shared-memory communication between
4//! threads, and are the building blocks of other concurrent
5//! types.
6//!
7//! This module defines atomic versions of a select number of primitive
8//! types, including [`AtomicBool`], [`AtomicIsize`], [`AtomicUsize`],
9//! [`AtomicI8`], [`AtomicU16`], etc.
10//! Atomic types present operations that, when used correctly, synchronize
11//! updates between threads.
12//!
13//! Atomic variables are safe to share between threads (they implement [`Sync`])
14//! but they do not themselves provide the mechanism for sharing and follow the
15//! [threading model](../../../std/thread/index.html#the-threading-model) of Rust.
16//! The most common way to share an atomic variable is to put it into an [`Arc`][arc] (an
17//! atomically-reference-counted shared pointer).
18//!
19//! [arc]: ../../../std/sync/struct.Arc.html
20//!
21//! Atomic types may be stored in static variables, initialized using
22//! the constant initializers like [`AtomicBool::new`]. Atomic statics
23//! are often used for lazy global initialization.
24//!
25//! ## Memory model for atomic accesses
26//!
27//! Rust atomics currently follow the same rules as [C++20 atomics][cpp], specifically the rules
28//! from the [`intro.races`][cpp-intro.races] section, without the "consume" memory ordering. Since
29//! C++ uses an object-based memory model whereas Rust is access-based, a bit of translation work
30//! has to be done to apply the C++ rules to Rust: whenever C++ talks about "the value of an
31//! object", we understand that to mean the resulting bytes obtained when doing a read. When the C++
32//! standard talks about "the value of an atomic object", this refers to the result of doing an
33//! atomic load (via the operations provided in this module). A "modification of an atomic object"
34//! refers to an atomic store.
35//!
36//! The end result is *almost* equivalent to saying that creating a *shared reference* to one of the
37//! Rust atomic types corresponds to creating an `atomic_ref` in C++, with the `atomic_ref` being
38//! destroyed when the lifetime of the shared reference ends. The main difference is that Rust
39//! permits concurrent atomic and non-atomic reads to the same memory as those cause no issue in the
40//! C++ memory model, they are just forbidden in C++ because memory is partitioned into "atomic
41//! objects" and "non-atomic objects" (with `atomic_ref` temporarily converting a non-atomic object
42//! into an atomic object).
43//!
44//! The most important aspect of this model is that *data races* are undefined behavior. A data race
45//! is defined as conflicting non-synchronized accesses where at least one of the accesses is
46//! non-atomic. Here, accesses are *conflicting* if they affect overlapping regions of memory and at
47//! least one of them is a write. (A `compare_exchange` or `compare_exchange_weak` that does not
48//! succeed is not considered a write.) They are *non-synchronized* if neither of them
49//! *happens-before* the other, according to the happens-before order of the memory model.
50//!
51//! The other possible cause of undefined behavior in the memory model are mixed-size accesses: Rust
52//! inherits the C++ limitation that non-synchronized conflicting atomic accesses may not partially
53//! overlap. In other words, every pair of non-synchronized atomic accesses must be either disjoint,
54//! access the exact same memory (including using the same access size), or both be reads.
55//!
56//! Each atomic access takes an [`Ordering`] which defines how the operation interacts with the
57//! happens-before order. These orderings behave the same as the corresponding [C++20 atomic
58//! orderings][cpp_memory_order]. For more information, see the [nomicon].
59//!
60//! [cpp]: https://en.cppreference.com/w/cpp/atomic
61//! [cpp-intro.races]: https://timsong-cpp.github.io/cppwp/n4868/intro.multithread#intro.races
62//! [cpp_memory_order]: https://en.cppreference.com/w/cpp/atomic/memory_order
63//! [nomicon]: ../../../nomicon/atomics.html
64//!
65//! ```rust,no_run undefined_behavior
66//! use std::sync::atomic::{AtomicU16, AtomicU8, Ordering};
67//! use std::mem::transmute;
68//! use std::thread;
69//!
70//! let atomic = AtomicU16::new(0);
71//!
72//! thread::scope(|s| {
73//!     // This is UB: conflicting non-synchronized accesses, at least one of which is non-atomic.
74//!     s.spawn(|| atomic.store(1, Ordering::Relaxed)); // atomic store
75//!     s.spawn(|| unsafe { atomic.as_ptr().write(2) }); // non-atomic write
76//! });
77//!
78//! thread::scope(|s| {
79//!     // This is fine: the accesses do not conflict (as none of them performs any modification).
80//!     // In C++ this would be disallowed since creating an `atomic_ref` precludes
81//!     // further non-atomic accesses, but Rust does not have that limitation.
82//!     s.spawn(|| atomic.load(Ordering::Relaxed)); // atomic load
83//!     s.spawn(|| unsafe { atomic.as_ptr().read() }); // non-atomic read
84//! });
85//!
86//! thread::scope(|s| {
87//!     // This is fine: `join` synchronizes the code in a way such that the atomic
88//!     // store happens-before the non-atomic write.
89//!     let handle = s.spawn(|| atomic.store(1, Ordering::Relaxed)); // atomic store
90//!     handle.join().expect("thread won't panic"); // synchronize
91//!     s.spawn(|| unsafe { atomic.as_ptr().write(2) }); // non-atomic write
92//! });
93//!
94//! thread::scope(|s| {
95//!     // This is UB: non-synchronized conflicting differently-sized atomic accesses.
96//!     s.spawn(|| atomic.store(1, Ordering::Relaxed));
97//!     s.spawn(|| unsafe {
98//!         let differently_sized = transmute::<&AtomicU16, &AtomicU8>(&atomic);
99//!         differently_sized.store(2, Ordering::Relaxed);
100//!     });
101//! });
102//!
103//! thread::scope(|s| {
104//!     // This is fine: `join` synchronizes the code in a way such that
105//!     // the 1-byte store happens-before the 2-byte store.
106//!     let handle = s.spawn(|| atomic.store(1, Ordering::Relaxed));
107//!     handle.join().expect("thread won't panic");
108//!     s.spawn(|| unsafe {
109//!         let differently_sized = transmute::<&AtomicU16, &AtomicU8>(&atomic);
110//!         differently_sized.store(2, Ordering::Relaxed);
111//!     });
112//! });
113//! ```
114//!
115//! # Portability
116//!
117//! All atomic types in this module are guaranteed to be [lock-free] if they're
118//! available. This means they don't internally acquire a global mutex. Atomic
119//! types and operations are not guaranteed to be wait-free. This means that
120//! operations like `fetch_or` may be implemented with a compare-and-swap loop.
121//!
122//! Atomic operations may be implemented at the instruction layer with
123//! larger-size atomics. For example some platforms use 4-byte atomic
124//! instructions to implement `AtomicI8`. Note that this emulation should not
125//! have an impact on correctness of code, it's just something to be aware of.
126//!
127//! The atomic types in this module might not be available on all platforms. The
128//! atomic types here are all widely available, however, and can generally be
129//! relied upon existing. Some notable exceptions are:
130//!
131//! * PowerPC and MIPS platforms with 32-bit pointers do not have `AtomicU64` or
132//!   `AtomicI64` types.
133//! * ARM platforms like `armv5te` that aren't for Linux only provide `load`
134//!   and `store` operations, and do not support Compare and Swap (CAS)
135//!   operations, such as `swap`, `fetch_add`, etc. Additionally on Linux,
136//!   these CAS operations are implemented via [operating system support], which
137//!   may come with a performance penalty.
138//! * ARM targets with `thumbv6m` only provide `load` and `store` operations,
139//!   and do not support Compare and Swap (CAS) operations, such as `swap`,
140//!   `fetch_add`, etc.
141//!
142//! [operating system support]: https://www.kernel.org/doc/Documentation/arm/kernel_user_helpers.txt
143//!
144//! Note that future platforms may be added that also do not have support for
145//! some atomic operations. Maximally portable code will want to be careful
146//! about which atomic types are used. `AtomicUsize` and `AtomicIsize` are
147//! generally the most portable, but even then they're not available everywhere.
148//! For reference, the `std` library requires `AtomicBool`s and pointer-sized atomics, although
149//! `core` does not.
150//!
151//! The `#[cfg(target_has_atomic)]` attribute can be used to conditionally
152//! compile based on the target's supported bit widths. It is a key-value
153//! option set for each supported size, with values "8", "16", "32", "64",
154//! "128", and "ptr" for pointer-sized atomics.
155//!
156//! [lock-free]: https://en.wikipedia.org/wiki/Non-blocking_algorithm
157//!
158//! # Atomic accesses to read-only memory
159//!
160//! In general, *all* atomic accesses on read-only memory are undefined behavior. For instance, attempting
161//! to do a `compare_exchange` that will definitely fail (making it conceptually a read-only
162//! operation) can still cause a segmentation fault if the underlying memory page is mapped read-only. Since
163//! atomic `load`s might be implemented using compare-exchange operations, even a `load` can fault
164//! on read-only memory.
165//!
166//! For the purpose of this section, "read-only memory" is defined as memory that is read-only in
167//! the underlying target, i.e., the pages are mapped with a read-only flag and any attempt to write
168//! will cause a page fault. In particular, an `&u128` reference that points to memory that is
169//! read-write mapped is *not* considered to point to "read-only memory". In Rust, almost all memory
170//! is read-write; the only exceptions are memory created by `const` items or `static` items without
171//! interior mutability, and memory that was specifically marked as read-only by the operating
172//! system via platform-specific APIs.
173//!
174//! As an exception from the general rule stated above, "sufficiently small" atomic loads with
175//! `Ordering::Relaxed` are implemented in a way that works on read-only memory, and are hence not
176//! undefined behavior. The exact size limit for what makes a load "sufficiently small" varies
177//! depending on the target:
178//!
179//! | `target_arch` | Size limit |
180//! |---------------|---------|
181//! | `x86`, `arm`, `loongarch32`, `mips`, `mips32r6`, `powerpc`, `riscv32`, `sparc`, `hexagon` | 4 bytes |
182//! | `x86_64`, `aarch64`, `loongarch64`, `mips64`, `mips64r6`, `powerpc64`, `riscv64`, `sparc64`, `s390x` | 8 bytes |
183//!
184//! Atomics loads that are larger than this limit as well as atomic loads with ordering other
185//! than `Relaxed`, as well as *all* atomic loads on targets not listed in the table, might still be
186//! read-only under certain conditions, but that is not a stable guarantee and should not be relied
187//! upon.
188//!
189//! If you need to do an acquire load on read-only memory, you can do a relaxed load followed by an
190//! acquire fence instead.
191//!
192//! # Examples
193//!
194//! A simple spinlock:
195//!
196//! ```ignore-wasm
197//! use std::sync::Arc;
198//! use std::sync::atomic::{AtomicUsize, Ordering};
199//! use std::{hint, thread};
200//!
201//! fn main() {
202//!     let spinlock = Arc::new(AtomicUsize::new(1));
203//!
204//!     let spinlock_clone = Arc::clone(&spinlock);
205//!
206//!     let thread = thread::spawn(move || {
207//!         spinlock_clone.store(0, Ordering::Release);
208//!     });
209//!
210//!     // Wait for the other thread to release the lock
211//!     while spinlock.load(Ordering::Acquire) != 0 {
212//!         hint::spin_loop();
213//!     }
214//!
215//!     if let Err(panic) = thread.join() {
216//!         println!("Thread had an error: {panic:?}");
217//!     }
218//! }
219//! ```
220//!
221//! Keep a global count of live threads:
222//!
223//! ```
224//! use std::sync::atomic::{AtomicUsize, Ordering};
225//!
226//! static GLOBAL_THREAD_COUNT: AtomicUsize = AtomicUsize::new(0);
227//!
228//! // Note that Relaxed ordering doesn't synchronize anything
229//! // except the global thread counter itself.
230//! let old_thread_count = GLOBAL_THREAD_COUNT.fetch_add(1, Ordering::Relaxed);
231//! // Note that this number may not be true at the moment of printing
232//! // because some other thread may have changed static value already.
233//! println!("live threads: {}", old_thread_count + 1);
234//! ```
235
236#![stable(feature = "rust1", since = "1.0.0")]
237#![cfg_attr(not(target_has_atomic_load_store = "8"), allow(dead_code))]
238#![cfg_attr(not(target_has_atomic_load_store = "8"), allow(unused_imports))]
239#![rustc_diagnostic_item = "atomic_mod"]
240// Clippy complains about the pattern of "safe function calling unsafe function taking pointers".
241// This happens with AtomicPtr intrinsics but is fine, as the pointers clippy is concerned about
242// are just normal values that get loaded/stored, but not dereferenced.
243#![allow(clippy::not_unsafe_ptr_arg_deref)]
244
245use self::Ordering::*;
246use crate::cell::UnsafeCell;
247#[cfg(not(feature = "ferrocene_certified"))]
248use crate::hint::spin_loop;
249#[cfg(feature = "ferrocene_certified")]
250use crate::intrinsics;
251use crate::intrinsics::AtomicOrdering as AO;
252#[cfg(not(feature = "ferrocene_certified"))]
253use crate::{fmt, intrinsics};
254
255trait Sealed {}
256
257/// A marker trait for primitive types which can be modified atomically.
258///
259/// This is an implementation detail for <code>[Atomic]\<T></code> which may disappear or be replaced at any time.
260///
261/// # Safety
262///
263/// Types implementing this trait must be primitives that can be modified atomically.
264///
265/// The associated `Self::AtomicInner` type must have the same size and bit validity as `Self`,
266/// but may have a higher alignment requirement, so the following `transmute`s are sound:
267///
268/// - `&mut Self::AtomicInner` as `&mut Self`
269/// - `Self` as `Self::AtomicInner` or the reverse
270#[unstable(
271    feature = "atomic_internals",
272    reason = "implementation detail which may disappear or be replaced at any time",
273    issue = "none"
274)]
275#[expect(private_bounds)]
276pub unsafe trait AtomicPrimitive: Sized + Copy + Sealed {
277    /// Temporary implementation detail.
278    type AtomicInner: Sized;
279}
280
281macro impl_atomic_primitive(
282    $Atom:ident $(<$T:ident>)? ($Primitive:ty),
283    size($size:literal),
284    align($align:literal) $(,)?
285) {
286    impl $(<$T>)? Sealed for $Primitive {}
287
288    #[unstable(
289        feature = "atomic_internals",
290        reason = "implementation detail which may disappear or be replaced at any time",
291        issue = "none"
292    )]
293    #[cfg(target_has_atomic_load_store = $size)]
294    unsafe impl $(<$T>)? AtomicPrimitive for $Primitive {
295        type AtomicInner = $Atom $(<$T>)?;
296    }
297}
298
299#[cfg(not(feature = "ferrocene_certified"))]
300impl_atomic_primitive!(AtomicBool(bool), size("8"), align(1));
301#[cfg(not(feature = "ferrocene_certified"))]
302impl_atomic_primitive!(AtomicI8(i8), size("8"), align(1));
303#[cfg(not(feature = "ferrocene_certified"))]
304impl_atomic_primitive!(AtomicU8(u8), size("8"), align(1));
305#[cfg(not(feature = "ferrocene_certified"))]
306impl_atomic_primitive!(AtomicI16(i16), size("16"), align(2));
307#[cfg(not(feature = "ferrocene_certified"))]
308impl_atomic_primitive!(AtomicU16(u16), size("16"), align(2));
309#[cfg(not(feature = "ferrocene_certified"))]
310impl_atomic_primitive!(AtomicI32(i32), size("32"), align(4));
311impl_atomic_primitive!(AtomicU32(u32), size("32"), align(4));
312#[cfg(not(feature = "ferrocene_certified"))]
313impl_atomic_primitive!(AtomicI64(i64), size("64"), align(8));
314#[cfg(not(feature = "ferrocene_certified"))]
315impl_atomic_primitive!(AtomicU64(u64), size("64"), align(8));
316#[cfg(not(feature = "ferrocene_certified"))]
317impl_atomic_primitive!(AtomicI128(i128), size("128"), align(16));
318#[cfg(not(feature = "ferrocene_certified"))]
319impl_atomic_primitive!(AtomicU128(u128), size("128"), align(16));
320
321#[cfg(target_pointer_width = "16")]
322#[cfg(not(feature = "ferrocene_certified"))]
323impl_atomic_primitive!(AtomicIsize(isize), size("ptr"), align(2));
324#[cfg(target_pointer_width = "32")]
325#[cfg(not(feature = "ferrocene_certified"))]
326impl_atomic_primitive!(AtomicIsize(isize), size("ptr"), align(4));
327#[cfg(target_pointer_width = "64")]
328#[cfg(not(feature = "ferrocene_certified"))]
329impl_atomic_primitive!(AtomicIsize(isize), size("ptr"), align(8));
330
331#[cfg(target_pointer_width = "16")]
332#[cfg(not(feature = "ferrocene_certified"))]
333impl_atomic_primitive!(AtomicUsize(usize), size("ptr"), align(2));
334#[cfg(target_pointer_width = "32")]
335#[cfg(not(feature = "ferrocene_certified"))]
336impl_atomic_primitive!(AtomicUsize(usize), size("ptr"), align(4));
337#[cfg(target_pointer_width = "64")]
338#[cfg(not(feature = "ferrocene_certified"))]
339impl_atomic_primitive!(AtomicUsize(usize), size("ptr"), align(8));
340
341#[cfg(target_pointer_width = "16")]
342#[cfg(not(feature = "ferrocene_certified"))]
343impl_atomic_primitive!(AtomicPtr<T>(*mut T), size("ptr"), align(2));
344#[cfg(target_pointer_width = "32")]
345#[cfg(not(feature = "ferrocene_certified"))]
346impl_atomic_primitive!(AtomicPtr<T>(*mut T), size("ptr"), align(4));
347#[cfg(target_pointer_width = "64")]
348#[cfg(not(feature = "ferrocene_certified"))]
349impl_atomic_primitive!(AtomicPtr<T>(*mut T), size("ptr"), align(8));
350
351/// A memory location which can be safely modified from multiple threads.
352///
353/// This has the same size and bit validity as the underlying type `T`. However,
354/// the alignment of this type is always equal to its size, even on targets where
355/// `T` has alignment less than its size.
356///
357/// For more about the differences between atomic types and non-atomic types as
358/// well as information about the portability of this type, please see the
359/// [module-level documentation].
360///
361/// **Note:** This type is only available on platforms that support atomic loads
362/// and stores of `T`.
363///
364/// [module-level documentation]: crate::sync::atomic
365#[unstable(feature = "generic_atomic", issue = "130539")]
366#[cfg(not(feature = "ferrocene_certified"))]
367pub type Atomic<T> = <T as AtomicPrimitive>::AtomicInner;
368
369// Some architectures don't have byte-sized atomics, which results in LLVM
370// emulating them using a LL/SC loop. However for AtomicBool we can take
371// advantage of the fact that it only ever contains 0 or 1 and use atomic OR/AND
372// instead, which LLVM can emulate using a larger atomic OR/AND operation.
373//
374// This list should only contain architectures which have word-sized atomic-or/
375// atomic-and instructions but don't natively support byte-sized atomics.
376#[cfg(target_has_atomic = "8")]
377#[cfg(not(feature = "ferrocene_certified"))]
378const EMULATE_ATOMIC_BOOL: bool = cfg!(any(
379    target_arch = "riscv32",
380    target_arch = "riscv64",
381    target_arch = "loongarch32",
382    target_arch = "loongarch64"
383));
384
385/// A boolean type which can be safely shared between threads.
386///
387/// This type has the same size, alignment, and bit validity as a [`bool`].
388///
389/// **Note**: This type is only available on platforms that support atomic
390/// loads and stores of `u8`.
391#[cfg(target_has_atomic_load_store = "8")]
392#[stable(feature = "rust1", since = "1.0.0")]
393#[rustc_diagnostic_item = "AtomicBool"]
394#[repr(C, align(1))]
395#[cfg(not(feature = "ferrocene_certified"))]
396pub struct AtomicBool {
397    v: UnsafeCell<u8>,
398}
399
400#[cfg(target_has_atomic_load_store = "8")]
401#[stable(feature = "rust1", since = "1.0.0")]
402#[cfg(not(feature = "ferrocene_certified"))]
403impl Default for AtomicBool {
404    /// Creates an `AtomicBool` initialized to `false`.
405    #[inline]
406    fn default() -> Self {
407        Self::new(false)
408    }
409}
410
411// Send is implicitly implemented for AtomicBool.
412#[cfg(target_has_atomic_load_store = "8")]
413#[stable(feature = "rust1", since = "1.0.0")]
414#[cfg(not(feature = "ferrocene_certified"))]
415unsafe impl Sync for AtomicBool {}
416
417/// A raw pointer type which can be safely shared between threads.
418///
419/// This type has the same size and bit validity as a `*mut T`.
420///
421/// **Note**: This type is only available on platforms that support atomic
422/// loads and stores of pointers. Its size depends on the target pointer's size.
423#[cfg(target_has_atomic_load_store = "ptr")]
424#[stable(feature = "rust1", since = "1.0.0")]
425#[rustc_diagnostic_item = "AtomicPtr"]
426#[cfg_attr(target_pointer_width = "16", repr(C, align(2)))]
427#[cfg_attr(target_pointer_width = "32", repr(C, align(4)))]
428#[cfg_attr(target_pointer_width = "64", repr(C, align(8)))]
429#[cfg(not(feature = "ferrocene_certified"))]
430pub struct AtomicPtr<T> {
431    p: UnsafeCell<*mut T>,
432}
433
434#[cfg(target_has_atomic_load_store = "ptr")]
435#[stable(feature = "rust1", since = "1.0.0")]
436#[cfg(not(feature = "ferrocene_certified"))]
437impl<T> Default for AtomicPtr<T> {
438    /// Creates a null `AtomicPtr<T>`.
439    fn default() -> AtomicPtr<T> {
440        AtomicPtr::new(crate::ptr::null_mut())
441    }
442}
443
444#[cfg(target_has_atomic_load_store = "ptr")]
445#[stable(feature = "rust1", since = "1.0.0")]
446#[cfg(not(feature = "ferrocene_certified"))]
447unsafe impl<T> Send for AtomicPtr<T> {}
448#[cfg(target_has_atomic_load_store = "ptr")]
449#[stable(feature = "rust1", since = "1.0.0")]
450#[cfg(not(feature = "ferrocene_certified"))]
451unsafe impl<T> Sync for AtomicPtr<T> {}
452
453/// Atomic memory orderings
454///
455/// Memory orderings specify the way atomic operations synchronize memory.
456/// In its weakest [`Ordering::Relaxed`], only the memory directly touched by the
457/// operation is synchronized. On the other hand, a store-load pair of [`Ordering::SeqCst`]
458/// operations synchronize other memory while additionally preserving a total order of such
459/// operations across all threads.
460///
461/// Rust's memory orderings are [the same as those of
462/// C++20](https://en.cppreference.com/w/cpp/atomic/memory_order).
463///
464/// For more information see the [nomicon].
465///
466/// [nomicon]: ../../../nomicon/atomics.html
467#[stable(feature = "rust1", since = "1.0.0")]
468#[cfg_attr(not(feature = "ferrocene_certified"), derive(Copy, Clone, Debug, Eq, PartialEq, Hash))]
469#[cfg_attr(feature = "ferrocene_certified", derive(Copy, Clone))]
470#[non_exhaustive]
471#[rustc_diagnostic_item = "Ordering"]
472pub enum Ordering {
473    /// No ordering constraints, only atomic operations.
474    ///
475    /// Corresponds to [`memory_order_relaxed`] in C++20.
476    ///
477    /// [`memory_order_relaxed`]: https://en.cppreference.com/w/cpp/atomic/memory_order#Relaxed_ordering
478    #[stable(feature = "rust1", since = "1.0.0")]
479    Relaxed,
480    /// When coupled with a store, all previous operations become ordered
481    /// before any load of this value with [`Acquire`] (or stronger) ordering.
482    /// In particular, all previous writes become visible to all threads
483    /// that perform an [`Acquire`] (or stronger) load of this value.
484    ///
485    /// Notice that using this ordering for an operation that combines loads
486    /// and stores leads to a [`Relaxed`] load operation!
487    ///
488    /// This ordering is only applicable for operations that can perform a store.
489    ///
490    /// Corresponds to [`memory_order_release`] in C++20.
491    ///
492    /// [`memory_order_release`]: https://en.cppreference.com/w/cpp/atomic/memory_order#Release-Acquire_ordering
493    #[stable(feature = "rust1", since = "1.0.0")]
494    Release,
495    /// When coupled with a load, if the loaded value was written by a store operation with
496    /// [`Release`] (or stronger) ordering, then all subsequent operations
497    /// become ordered after that store. In particular, all subsequent loads will see data
498    /// written before the store.
499    ///
500    /// Notice that using this ordering for an operation that combines loads
501    /// and stores leads to a [`Relaxed`] store operation!
502    ///
503    /// This ordering is only applicable for operations that can perform a load.
504    ///
505    /// Corresponds to [`memory_order_acquire`] in C++20.
506    ///
507    /// [`memory_order_acquire`]: https://en.cppreference.com/w/cpp/atomic/memory_order#Release-Acquire_ordering
508    #[stable(feature = "rust1", since = "1.0.0")]
509    Acquire,
510    /// Has the effects of both [`Acquire`] and [`Release`] together:
511    /// For loads it uses [`Acquire`] ordering. For stores it uses the [`Release`] ordering.
512    ///
513    /// Notice that in the case of `compare_and_swap`, it is possible that the operation ends up
514    /// not performing any store and hence it has just [`Acquire`] ordering. However,
515    /// `AcqRel` will never perform [`Relaxed`] accesses.
516    ///
517    /// This ordering is only applicable for operations that combine both loads and stores.
518    ///
519    /// Corresponds to [`memory_order_acq_rel`] in C++20.
520    ///
521    /// [`memory_order_acq_rel`]: https://en.cppreference.com/w/cpp/atomic/memory_order#Release-Acquire_ordering
522    #[stable(feature = "rust1", since = "1.0.0")]
523    AcqRel,
524    /// Like [`Acquire`]/[`Release`]/[`AcqRel`] (for load, store, and load-with-store
525    /// operations, respectively) with the additional guarantee that all threads see all
526    /// sequentially consistent operations in the same order.
527    ///
528    /// Corresponds to [`memory_order_seq_cst`] in C++20.
529    ///
530    /// [`memory_order_seq_cst`]: https://en.cppreference.com/w/cpp/atomic/memory_order#Sequentially-consistent_ordering
531    #[stable(feature = "rust1", since = "1.0.0")]
532    SeqCst,
533}
534
535/// An [`AtomicBool`] initialized to `false`.
536#[cfg(target_has_atomic_load_store = "8")]
537#[stable(feature = "rust1", since = "1.0.0")]
538#[deprecated(
539    since = "1.34.0",
540    note = "the `new` function is now preferred",
541    suggestion = "AtomicBool::new(false)"
542)]
543#[cfg(not(feature = "ferrocene_certified"))]
544pub const ATOMIC_BOOL_INIT: AtomicBool = AtomicBool::new(false);
545
546#[cfg(target_has_atomic_load_store = "8")]
547#[cfg(not(feature = "ferrocene_certified"))]
548impl AtomicBool {
549    /// Creates a new `AtomicBool`.
550    ///
551    /// # Examples
552    ///
553    /// ```
554    /// use std::sync::atomic::AtomicBool;
555    ///
556    /// let atomic_true = AtomicBool::new(true);
557    /// let atomic_false = AtomicBool::new(false);
558    /// ```
559    #[inline]
560    #[stable(feature = "rust1", since = "1.0.0")]
561    #[rustc_const_stable(feature = "const_atomic_new", since = "1.24.0")]
562    #[must_use]
563    pub const fn new(v: bool) -> AtomicBool {
564        AtomicBool { v: UnsafeCell::new(v as u8) }
565    }
566
567    /// Creates a new `AtomicBool` from a pointer.
568    ///
569    /// # Examples
570    ///
571    /// ```
572    /// use std::sync::atomic::{self, AtomicBool};
573    ///
574    /// // Get a pointer to an allocated value
575    /// let ptr: *mut bool = Box::into_raw(Box::new(false));
576    ///
577    /// assert!(ptr.cast::<AtomicBool>().is_aligned());
578    ///
579    /// {
580    ///     // Create an atomic view of the allocated value
581    ///     let atomic = unsafe { AtomicBool::from_ptr(ptr) };
582    ///
583    ///     // Use `atomic` for atomic operations, possibly share it with other threads
584    ///     atomic.store(true, atomic::Ordering::Relaxed);
585    /// }
586    ///
587    /// // It's ok to non-atomically access the value behind `ptr`,
588    /// // since the reference to the atomic ended its lifetime in the block above
589    /// assert_eq!(unsafe { *ptr }, true);
590    ///
591    /// // Deallocate the value
592    /// unsafe { drop(Box::from_raw(ptr)) }
593    /// ```
594    ///
595    /// # Safety
596    ///
597    /// * `ptr` must be aligned to `align_of::<AtomicBool>()` (note that this is always true, since
598    ///   `align_of::<AtomicBool>() == 1`).
599    /// * `ptr` must be [valid] for both reads and writes for the whole lifetime `'a`.
600    /// * You must adhere to the [Memory model for atomic accesses]. In particular, it is not
601    ///   allowed to mix conflicting atomic and non-atomic accesses, or atomic accesses of different
602    ///   sizes, without synchronization.
603    ///
604    /// [valid]: crate::ptr#safety
605    /// [Memory model for atomic accesses]: self#memory-model-for-atomic-accesses
606    #[inline]
607    #[stable(feature = "atomic_from_ptr", since = "1.75.0")]
608    #[rustc_const_stable(feature = "const_atomic_from_ptr", since = "1.84.0")]
609    pub const unsafe fn from_ptr<'a>(ptr: *mut bool) -> &'a AtomicBool {
610        // SAFETY: guaranteed by the caller
611        unsafe { &*ptr.cast() }
612    }
613
614    /// Returns a mutable reference to the underlying [`bool`].
615    ///
616    /// This is safe because the mutable reference guarantees that no other threads are
617    /// concurrently accessing the atomic data.
618    ///
619    /// # Examples
620    ///
621    /// ```
622    /// use std::sync::atomic::{AtomicBool, Ordering};
623    ///
624    /// let mut some_bool = AtomicBool::new(true);
625    /// assert_eq!(*some_bool.get_mut(), true);
626    /// *some_bool.get_mut() = false;
627    /// assert_eq!(some_bool.load(Ordering::SeqCst), false);
628    /// ```
629    #[inline]
630    #[stable(feature = "atomic_access", since = "1.15.0")]
631    pub fn get_mut(&mut self) -> &mut bool {
632        // SAFETY: the mutable reference guarantees unique ownership.
633        unsafe { &mut *(self.v.get() as *mut bool) }
634    }
635
636    /// Gets atomic access to a `&mut bool`.
637    ///
638    /// # Examples
639    ///
640    /// ```
641    /// #![feature(atomic_from_mut)]
642    /// use std::sync::atomic::{AtomicBool, Ordering};
643    ///
644    /// let mut some_bool = true;
645    /// let a = AtomicBool::from_mut(&mut some_bool);
646    /// a.store(false, Ordering::Relaxed);
647    /// assert_eq!(some_bool, false);
648    /// ```
649    #[inline]
650    #[cfg(target_has_atomic_equal_alignment = "8")]
651    #[unstable(feature = "atomic_from_mut", issue = "76314")]
652    pub fn from_mut(v: &mut bool) -> &mut Self {
653        // SAFETY: the mutable reference guarantees unique ownership, and
654        // alignment of both `bool` and `Self` is 1.
655        unsafe { &mut *(v as *mut bool as *mut Self) }
656    }
657
658    /// Gets non-atomic access to a `&mut [AtomicBool]` slice.
659    ///
660    /// This is safe because the mutable reference guarantees that no other threads are
661    /// concurrently accessing the atomic data.
662    ///
663    /// # Examples
664    ///
665    /// ```ignore-wasm
666    /// #![feature(atomic_from_mut)]
667    /// use std::sync::atomic::{AtomicBool, Ordering};
668    ///
669    /// let mut some_bools = [const { AtomicBool::new(false) }; 10];
670    ///
671    /// let view: &mut [bool] = AtomicBool::get_mut_slice(&mut some_bools);
672    /// assert_eq!(view, [false; 10]);
673    /// view[..5].copy_from_slice(&[true; 5]);
674    ///
675    /// std::thread::scope(|s| {
676    ///     for t in &some_bools[..5] {
677    ///         s.spawn(move || assert_eq!(t.load(Ordering::Relaxed), true));
678    ///     }
679    ///
680    ///     for f in &some_bools[5..] {
681    ///         s.spawn(move || assert_eq!(f.load(Ordering::Relaxed), false));
682    ///     }
683    /// });
684    /// ```
685    #[inline]
686    #[unstable(feature = "atomic_from_mut", issue = "76314")]
687    pub fn get_mut_slice(this: &mut [Self]) -> &mut [bool] {
688        // SAFETY: the mutable reference guarantees unique ownership.
689        unsafe { &mut *(this as *mut [Self] as *mut [bool]) }
690    }
691
692    /// Gets atomic access to a `&mut [bool]` slice.
693    ///
694    /// # Examples
695    ///
696    /// ```rust,ignore-wasm
697    /// #![feature(atomic_from_mut)]
698    /// use std::sync::atomic::{AtomicBool, Ordering};
699    ///
700    /// let mut some_bools = [false; 10];
701    /// let a = &*AtomicBool::from_mut_slice(&mut some_bools);
702    /// std::thread::scope(|s| {
703    ///     for i in 0..a.len() {
704    ///         s.spawn(move || a[i].store(true, Ordering::Relaxed));
705    ///     }
706    /// });
707    /// assert_eq!(some_bools, [true; 10]);
708    /// ```
709    #[inline]
710    #[cfg(target_has_atomic_equal_alignment = "8")]
711    #[unstable(feature = "atomic_from_mut", issue = "76314")]
712    pub fn from_mut_slice(v: &mut [bool]) -> &mut [Self] {
713        // SAFETY: the mutable reference guarantees unique ownership, and
714        // alignment of both `bool` and `Self` is 1.
715        unsafe { &mut *(v as *mut [bool] as *mut [Self]) }
716    }
717
718    /// Consumes the atomic and returns the contained value.
719    ///
720    /// This is safe because passing `self` by value guarantees that no other threads are
721    /// concurrently accessing the atomic data.
722    ///
723    /// # Examples
724    ///
725    /// ```
726    /// use std::sync::atomic::AtomicBool;
727    ///
728    /// let some_bool = AtomicBool::new(true);
729    /// assert_eq!(some_bool.into_inner(), true);
730    /// ```
731    #[inline]
732    #[stable(feature = "atomic_access", since = "1.15.0")]
733    #[rustc_const_stable(feature = "const_atomic_into_inner", since = "1.79.0")]
734    pub const fn into_inner(self) -> bool {
735        self.v.into_inner() != 0
736    }
737
738    /// Loads a value from the bool.
739    ///
740    /// `load` takes an [`Ordering`] argument which describes the memory ordering
741    /// of this operation. Possible values are [`SeqCst`], [`Acquire`] and [`Relaxed`].
742    ///
743    /// # Panics
744    ///
745    /// Panics if `order` is [`Release`] or [`AcqRel`].
746    ///
747    /// # Examples
748    ///
749    /// ```
750    /// use std::sync::atomic::{AtomicBool, Ordering};
751    ///
752    /// let some_bool = AtomicBool::new(true);
753    ///
754    /// assert_eq!(some_bool.load(Ordering::Relaxed), true);
755    /// ```
756    #[inline]
757    #[stable(feature = "rust1", since = "1.0.0")]
758    #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
759    pub fn load(&self, order: Ordering) -> bool {
760        // SAFETY: any data races are prevented by atomic intrinsics and the raw
761        // pointer passed in is valid because we got it from a reference.
762        unsafe { atomic_load(self.v.get(), order) != 0 }
763    }
764
765    /// Stores a value into the bool.
766    ///
767    /// `store` takes an [`Ordering`] argument which describes the memory ordering
768    /// of this operation. Possible values are [`SeqCst`], [`Release`] and [`Relaxed`].
769    ///
770    /// # Panics
771    ///
772    /// Panics if `order` is [`Acquire`] or [`AcqRel`].
773    ///
774    /// # Examples
775    ///
776    /// ```
777    /// use std::sync::atomic::{AtomicBool, Ordering};
778    ///
779    /// let some_bool = AtomicBool::new(true);
780    ///
781    /// some_bool.store(false, Ordering::Relaxed);
782    /// assert_eq!(some_bool.load(Ordering::Relaxed), false);
783    /// ```
784    #[inline]
785    #[stable(feature = "rust1", since = "1.0.0")]
786    #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
787    pub fn store(&self, val: bool, order: Ordering) {
788        // SAFETY: any data races are prevented by atomic intrinsics and the raw
789        // pointer passed in is valid because we got it from a reference.
790        unsafe {
791            atomic_store(self.v.get(), val as u8, order);
792        }
793    }
794
795    /// Stores a value into the bool, returning the previous value.
796    ///
797    /// `swap` takes an [`Ordering`] argument which describes the memory ordering
798    /// of this operation. All ordering modes are possible. Note that using
799    /// [`Acquire`] makes the store part of this operation [`Relaxed`], and
800    /// using [`Release`] makes the load part [`Relaxed`].
801    ///
802    /// **Note:** This method is only available on platforms that support atomic
803    /// operations on `u8`.
804    ///
805    /// # Examples
806    ///
807    /// ```
808    /// use std::sync::atomic::{AtomicBool, Ordering};
809    ///
810    /// let some_bool = AtomicBool::new(true);
811    ///
812    /// assert_eq!(some_bool.swap(false, Ordering::Relaxed), true);
813    /// assert_eq!(some_bool.load(Ordering::Relaxed), false);
814    /// ```
815    #[inline]
816    #[stable(feature = "rust1", since = "1.0.0")]
817    #[cfg(target_has_atomic = "8")]
818    #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
819    pub fn swap(&self, val: bool, order: Ordering) -> bool {
820        if EMULATE_ATOMIC_BOOL {
821            if val { self.fetch_or(true, order) } else { self.fetch_and(false, order) }
822        } else {
823            // SAFETY: data races are prevented by atomic intrinsics.
824            unsafe { atomic_swap(self.v.get(), val as u8, order) != 0 }
825        }
826    }
827
828    /// Stores a value into the [`bool`] if the current value is the same as the `current` value.
829    ///
830    /// The return value is always the previous value. If it is equal to `current`, then the value
831    /// was updated.
832    ///
833    /// `compare_and_swap` also takes an [`Ordering`] argument which describes the memory
834    /// ordering of this operation. Notice that even when using [`AcqRel`], the operation
835    /// might fail and hence just perform an `Acquire` load, but not have `Release` semantics.
836    /// Using [`Acquire`] makes the store part of this operation [`Relaxed`] if it
837    /// happens, and using [`Release`] makes the load part [`Relaxed`].
838    ///
839    /// **Note:** This method is only available on platforms that support atomic
840    /// operations on `u8`.
841    ///
842    /// # Migrating to `compare_exchange` and `compare_exchange_weak`
843    ///
844    /// `compare_and_swap` is equivalent to `compare_exchange` with the following mapping for
845    /// memory orderings:
846    ///
847    /// Original | Success | Failure
848    /// -------- | ------- | -------
849    /// Relaxed  | Relaxed | Relaxed
850    /// Acquire  | Acquire | Acquire
851    /// Release  | Release | Relaxed
852    /// AcqRel   | AcqRel  | Acquire
853    /// SeqCst   | SeqCst  | SeqCst
854    ///
855    /// `compare_and_swap` and `compare_exchange` also differ in their return type. You can use
856    /// `compare_exchange(...).unwrap_or_else(|x| x)` to recover the behavior of `compare_and_swap`,
857    /// but in most cases it is more idiomatic to check whether the return value is `Ok` or `Err`
858    /// rather than to infer success vs failure based on the value that was read.
859    ///
860    /// During migration, consider whether it makes sense to use `compare_exchange_weak` instead.
861    /// `compare_exchange_weak` is allowed to fail spuriously even when the comparison succeeds,
862    /// which allows the compiler to generate better assembly code when the compare and swap
863    /// is used in a loop.
864    ///
865    /// # Examples
866    ///
867    /// ```
868    /// use std::sync::atomic::{AtomicBool, Ordering};
869    ///
870    /// let some_bool = AtomicBool::new(true);
871    ///
872    /// assert_eq!(some_bool.compare_and_swap(true, false, Ordering::Relaxed), true);
873    /// assert_eq!(some_bool.load(Ordering::Relaxed), false);
874    ///
875    /// assert_eq!(some_bool.compare_and_swap(true, true, Ordering::Relaxed), false);
876    /// assert_eq!(some_bool.load(Ordering::Relaxed), false);
877    /// ```
878    #[inline]
879    #[stable(feature = "rust1", since = "1.0.0")]
880    #[deprecated(
881        since = "1.50.0",
882        note = "Use `compare_exchange` or `compare_exchange_weak` instead"
883    )]
884    #[cfg(target_has_atomic = "8")]
885    #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
886    pub fn compare_and_swap(&self, current: bool, new: bool, order: Ordering) -> bool {
887        match self.compare_exchange(current, new, order, strongest_failure_ordering(order)) {
888            Ok(x) => x,
889            Err(x) => x,
890        }
891    }
892
893    /// Stores a value into the [`bool`] if the current value is the same as the `current` value.
894    ///
895    /// The return value is a result indicating whether the new value was written and containing
896    /// the previous value. On success this value is guaranteed to be equal to `current`.
897    ///
898    /// `compare_exchange` takes two [`Ordering`] arguments to describe the memory
899    /// ordering of this operation. `success` describes the required ordering for the
900    /// read-modify-write operation that takes place if the comparison with `current` succeeds.
901    /// `failure` describes the required ordering for the load operation that takes place when
902    /// the comparison fails. Using [`Acquire`] as success ordering makes the store part
903    /// of this operation [`Relaxed`], and using [`Release`] makes the successful load
904    /// [`Relaxed`]. The failure ordering can only be [`SeqCst`], [`Acquire`] or [`Relaxed`].
905    ///
906    /// **Note:** This method is only available on platforms that support atomic
907    /// operations on `u8`.
908    ///
909    /// # Examples
910    ///
911    /// ```
912    /// use std::sync::atomic::{AtomicBool, Ordering};
913    ///
914    /// let some_bool = AtomicBool::new(true);
915    ///
916    /// assert_eq!(some_bool.compare_exchange(true,
917    ///                                       false,
918    ///                                       Ordering::Acquire,
919    ///                                       Ordering::Relaxed),
920    ///            Ok(true));
921    /// assert_eq!(some_bool.load(Ordering::Relaxed), false);
922    ///
923    /// assert_eq!(some_bool.compare_exchange(true, true,
924    ///                                       Ordering::SeqCst,
925    ///                                       Ordering::Acquire),
926    ///            Err(false));
927    /// assert_eq!(some_bool.load(Ordering::Relaxed), false);
928    /// ```
929    ///
930    /// # Considerations
931    ///
932    /// `compare_exchange` is a [compare-and-swap operation] and thus exhibits the usual downsides
933    /// of CAS operations. In particular, a load of the value followed by a successful
934    /// `compare_exchange` with the previous load *does not ensure* that other threads have not
935    /// changed the value in the interim. This is usually important when the *equality* check in
936    /// the `compare_exchange` is being used to check the *identity* of a value, but equality
937    /// does not necessarily imply identity. In this case, `compare_exchange` can lead to the
938    /// [ABA problem].
939    ///
940    /// [ABA Problem]: https://en.wikipedia.org/wiki/ABA_problem
941    /// [compare-and-swap operation]: https://en.wikipedia.org/wiki/Compare-and-swap
942    #[inline]
943    #[stable(feature = "extended_compare_and_swap", since = "1.10.0")]
944    #[doc(alias = "compare_and_swap")]
945    #[cfg(target_has_atomic = "8")]
946    #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
947    pub fn compare_exchange(
948        &self,
949        current: bool,
950        new: bool,
951        success: Ordering,
952        failure: Ordering,
953    ) -> Result<bool, bool> {
954        if EMULATE_ATOMIC_BOOL {
955            // Pick the strongest ordering from success and failure.
956            let order = match (success, failure) {
957                (SeqCst, _) => SeqCst,
958                (_, SeqCst) => SeqCst,
959                (AcqRel, _) => AcqRel,
960                (_, AcqRel) => {
961                    panic!("there is no such thing as an acquire-release failure ordering")
962                }
963                (Release, Acquire) => AcqRel,
964                (Acquire, _) => Acquire,
965                (_, Acquire) => Acquire,
966                (Release, Relaxed) => Release,
967                (_, Release) => panic!("there is no such thing as a release failure ordering"),
968                (Relaxed, Relaxed) => Relaxed,
969            };
970            let old = if current == new {
971                // This is a no-op, but we still need to perform the operation
972                // for memory ordering reasons.
973                self.fetch_or(false, order)
974            } else {
975                // This sets the value to the new one and returns the old one.
976                self.swap(new, order)
977            };
978            if old == current { Ok(old) } else { Err(old) }
979        } else {
980            // SAFETY: data races are prevented by atomic intrinsics.
981            match unsafe {
982                atomic_compare_exchange(self.v.get(), current as u8, new as u8, success, failure)
983            } {
984                Ok(x) => Ok(x != 0),
985                Err(x) => Err(x != 0),
986            }
987        }
988    }
989
990    /// Stores a value into the [`bool`] if the current value is the same as the `current` value.
991    ///
992    /// Unlike [`AtomicBool::compare_exchange`], this function is allowed to spuriously fail even when the
993    /// comparison succeeds, which can result in more efficient code on some platforms. The
994    /// return value is a result indicating whether the new value was written and containing the
995    /// previous value.
996    ///
997    /// `compare_exchange_weak` takes two [`Ordering`] arguments to describe the memory
998    /// ordering of this operation. `success` describes the required ordering for the
999    /// read-modify-write operation that takes place if the comparison with `current` succeeds.
1000    /// `failure` describes the required ordering for the load operation that takes place when
1001    /// the comparison fails. Using [`Acquire`] as success ordering makes the store part
1002    /// of this operation [`Relaxed`], and using [`Release`] makes the successful load
1003    /// [`Relaxed`]. The failure ordering can only be [`SeqCst`], [`Acquire`] or [`Relaxed`].
1004    ///
1005    /// **Note:** This method is only available on platforms that support atomic
1006    /// operations on `u8`.
1007    ///
1008    /// # Examples
1009    ///
1010    /// ```
1011    /// use std::sync::atomic::{AtomicBool, Ordering};
1012    ///
1013    /// let val = AtomicBool::new(false);
1014    ///
1015    /// let new = true;
1016    /// let mut old = val.load(Ordering::Relaxed);
1017    /// loop {
1018    ///     match val.compare_exchange_weak(old, new, Ordering::SeqCst, Ordering::Relaxed) {
1019    ///         Ok(_) => break,
1020    ///         Err(x) => old = x,
1021    ///     }
1022    /// }
1023    /// ```
1024    ///
1025    /// # Considerations
1026    ///
1027    /// `compare_exchange` is a [compare-and-swap operation] and thus exhibits the usual downsides
1028    /// of CAS operations. In particular, a load of the value followed by a successful
1029    /// `compare_exchange` with the previous load *does not ensure* that other threads have not
1030    /// changed the value in the interim. This is usually important when the *equality* check in
1031    /// the `compare_exchange` is being used to check the *identity* of a value, but equality
1032    /// does not necessarily imply identity. In this case, `compare_exchange` can lead to the
1033    /// [ABA problem].
1034    ///
1035    /// [ABA Problem]: https://en.wikipedia.org/wiki/ABA_problem
1036    /// [compare-and-swap operation]: https://en.wikipedia.org/wiki/Compare-and-swap
1037    #[inline]
1038    #[stable(feature = "extended_compare_and_swap", since = "1.10.0")]
1039    #[doc(alias = "compare_and_swap")]
1040    #[cfg(target_has_atomic = "8")]
1041    #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
1042    pub fn compare_exchange_weak(
1043        &self,
1044        current: bool,
1045        new: bool,
1046        success: Ordering,
1047        failure: Ordering,
1048    ) -> Result<bool, bool> {
1049        if EMULATE_ATOMIC_BOOL {
1050            return self.compare_exchange(current, new, success, failure);
1051        }
1052
1053        // SAFETY: data races are prevented by atomic intrinsics.
1054        match unsafe {
1055            atomic_compare_exchange_weak(self.v.get(), current as u8, new as u8, success, failure)
1056        } {
1057            Ok(x) => Ok(x != 0),
1058            Err(x) => Err(x != 0),
1059        }
1060    }
1061
1062    /// Logical "and" with a boolean value.
1063    ///
1064    /// Performs a logical "and" operation on the current value and the argument `val`, and sets
1065    /// the new value to the result.
1066    ///
1067    /// Returns the previous value.
1068    ///
1069    /// `fetch_and` takes an [`Ordering`] argument which describes the memory ordering
1070    /// of this operation. All ordering modes are possible. Note that using
1071    /// [`Acquire`] makes the store part of this operation [`Relaxed`], and
1072    /// using [`Release`] makes the load part [`Relaxed`].
1073    ///
1074    /// **Note:** This method is only available on platforms that support atomic
1075    /// operations on `u8`.
1076    ///
1077    /// # Examples
1078    ///
1079    /// ```
1080    /// use std::sync::atomic::{AtomicBool, Ordering};
1081    ///
1082    /// let foo = AtomicBool::new(true);
1083    /// assert_eq!(foo.fetch_and(false, Ordering::SeqCst), true);
1084    /// assert_eq!(foo.load(Ordering::SeqCst), false);
1085    ///
1086    /// let foo = AtomicBool::new(true);
1087    /// assert_eq!(foo.fetch_and(true, Ordering::SeqCst), true);
1088    /// assert_eq!(foo.load(Ordering::SeqCst), true);
1089    ///
1090    /// let foo = AtomicBool::new(false);
1091    /// assert_eq!(foo.fetch_and(false, Ordering::SeqCst), false);
1092    /// assert_eq!(foo.load(Ordering::SeqCst), false);
1093    /// ```
1094    #[inline]
1095    #[stable(feature = "rust1", since = "1.0.0")]
1096    #[cfg(target_has_atomic = "8")]
1097    #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
1098    pub fn fetch_and(&self, val: bool, order: Ordering) -> bool {
1099        // SAFETY: data races are prevented by atomic intrinsics.
1100        unsafe { atomic_and(self.v.get(), val as u8, order) != 0 }
1101    }
1102
1103    /// Logical "nand" with a boolean value.
1104    ///
1105    /// Performs a logical "nand" operation on the current value and the argument `val`, and sets
1106    /// the new value to the result.
1107    ///
1108    /// Returns the previous value.
1109    ///
1110    /// `fetch_nand` takes an [`Ordering`] argument which describes the memory ordering
1111    /// of this operation. All ordering modes are possible. Note that using
1112    /// [`Acquire`] makes the store part of this operation [`Relaxed`], and
1113    /// using [`Release`] makes the load part [`Relaxed`].
1114    ///
1115    /// **Note:** This method is only available on platforms that support atomic
1116    /// operations on `u8`.
1117    ///
1118    /// # Examples
1119    ///
1120    /// ```
1121    /// use std::sync::atomic::{AtomicBool, Ordering};
1122    ///
1123    /// let foo = AtomicBool::new(true);
1124    /// assert_eq!(foo.fetch_nand(false, Ordering::SeqCst), true);
1125    /// assert_eq!(foo.load(Ordering::SeqCst), true);
1126    ///
1127    /// let foo = AtomicBool::new(true);
1128    /// assert_eq!(foo.fetch_nand(true, Ordering::SeqCst), true);
1129    /// assert_eq!(foo.load(Ordering::SeqCst) as usize, 0);
1130    /// assert_eq!(foo.load(Ordering::SeqCst), false);
1131    ///
1132    /// let foo = AtomicBool::new(false);
1133    /// assert_eq!(foo.fetch_nand(false, Ordering::SeqCst), false);
1134    /// assert_eq!(foo.load(Ordering::SeqCst), true);
1135    /// ```
1136    #[inline]
1137    #[stable(feature = "rust1", since = "1.0.0")]
1138    #[cfg(target_has_atomic = "8")]
1139    #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
1140    pub fn fetch_nand(&self, val: bool, order: Ordering) -> bool {
1141        // We can't use atomic_nand here because it can result in a bool with
1142        // an invalid value. This happens because the atomic operation is done
1143        // with an 8-bit integer internally, which would set the upper 7 bits.
1144        // So we just use fetch_xor or swap instead.
1145        if val {
1146            // !(x & true) == !x
1147            // We must invert the bool.
1148            self.fetch_xor(true, order)
1149        } else {
1150            // !(x & false) == true
1151            // We must set the bool to true.
1152            self.swap(true, order)
1153        }
1154    }
1155
1156    /// Logical "or" with a boolean value.
1157    ///
1158    /// Performs a logical "or" operation on the current value and the argument `val`, and sets the
1159    /// new value to the result.
1160    ///
1161    /// Returns the previous value.
1162    ///
1163    /// `fetch_or` takes an [`Ordering`] argument which describes the memory ordering
1164    /// of this operation. All ordering modes are possible. Note that using
1165    /// [`Acquire`] makes the store part of this operation [`Relaxed`], and
1166    /// using [`Release`] makes the load part [`Relaxed`].
1167    ///
1168    /// **Note:** This method is only available on platforms that support atomic
1169    /// operations on `u8`.
1170    ///
1171    /// # Examples
1172    ///
1173    /// ```
1174    /// use std::sync::atomic::{AtomicBool, Ordering};
1175    ///
1176    /// let foo = AtomicBool::new(true);
1177    /// assert_eq!(foo.fetch_or(false, Ordering::SeqCst), true);
1178    /// assert_eq!(foo.load(Ordering::SeqCst), true);
1179    ///
1180    /// let foo = AtomicBool::new(true);
1181    /// assert_eq!(foo.fetch_or(true, Ordering::SeqCst), true);
1182    /// assert_eq!(foo.load(Ordering::SeqCst), true);
1183    ///
1184    /// let foo = AtomicBool::new(false);
1185    /// assert_eq!(foo.fetch_or(false, Ordering::SeqCst), false);
1186    /// assert_eq!(foo.load(Ordering::SeqCst), false);
1187    /// ```
1188    #[inline]
1189    #[stable(feature = "rust1", since = "1.0.0")]
1190    #[cfg(target_has_atomic = "8")]
1191    #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
1192    pub fn fetch_or(&self, val: bool, order: Ordering) -> bool {
1193        // SAFETY: data races are prevented by atomic intrinsics.
1194        unsafe { atomic_or(self.v.get(), val as u8, order) != 0 }
1195    }
1196
1197    /// Logical "xor" with a boolean value.
1198    ///
1199    /// Performs a logical "xor" operation on the current value and the argument `val`, and sets
1200    /// the new value to the result.
1201    ///
1202    /// Returns the previous value.
1203    ///
1204    /// `fetch_xor` takes an [`Ordering`] argument which describes the memory ordering
1205    /// of this operation. All ordering modes are possible. Note that using
1206    /// [`Acquire`] makes the store part of this operation [`Relaxed`], and
1207    /// using [`Release`] makes the load part [`Relaxed`].
1208    ///
1209    /// **Note:** This method is only available on platforms that support atomic
1210    /// operations on `u8`.
1211    ///
1212    /// # Examples
1213    ///
1214    /// ```
1215    /// use std::sync::atomic::{AtomicBool, Ordering};
1216    ///
1217    /// let foo = AtomicBool::new(true);
1218    /// assert_eq!(foo.fetch_xor(false, Ordering::SeqCst), true);
1219    /// assert_eq!(foo.load(Ordering::SeqCst), true);
1220    ///
1221    /// let foo = AtomicBool::new(true);
1222    /// assert_eq!(foo.fetch_xor(true, Ordering::SeqCst), true);
1223    /// assert_eq!(foo.load(Ordering::SeqCst), false);
1224    ///
1225    /// let foo = AtomicBool::new(false);
1226    /// assert_eq!(foo.fetch_xor(false, Ordering::SeqCst), false);
1227    /// assert_eq!(foo.load(Ordering::SeqCst), false);
1228    /// ```
1229    #[inline]
1230    #[stable(feature = "rust1", since = "1.0.0")]
1231    #[cfg(target_has_atomic = "8")]
1232    #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
1233    pub fn fetch_xor(&self, val: bool, order: Ordering) -> bool {
1234        // SAFETY: data races are prevented by atomic intrinsics.
1235        unsafe { atomic_xor(self.v.get(), val as u8, order) != 0 }
1236    }
1237
1238    /// Logical "not" with a boolean value.
1239    ///
1240    /// Performs a logical "not" operation on the current value, and sets
1241    /// the new value to the result.
1242    ///
1243    /// Returns the previous value.
1244    ///
1245    /// `fetch_not` takes an [`Ordering`] argument which describes the memory ordering
1246    /// of this operation. All ordering modes are possible. Note that using
1247    /// [`Acquire`] makes the store part of this operation [`Relaxed`], and
1248    /// using [`Release`] makes the load part [`Relaxed`].
1249    ///
1250    /// **Note:** This method is only available on platforms that support atomic
1251    /// operations on `u8`.
1252    ///
1253    /// # Examples
1254    ///
1255    /// ```
1256    /// use std::sync::atomic::{AtomicBool, Ordering};
1257    ///
1258    /// let foo = AtomicBool::new(true);
1259    /// assert_eq!(foo.fetch_not(Ordering::SeqCst), true);
1260    /// assert_eq!(foo.load(Ordering::SeqCst), false);
1261    ///
1262    /// let foo = AtomicBool::new(false);
1263    /// assert_eq!(foo.fetch_not(Ordering::SeqCst), false);
1264    /// assert_eq!(foo.load(Ordering::SeqCst), true);
1265    /// ```
1266    #[inline]
1267    #[stable(feature = "atomic_bool_fetch_not", since = "1.81.0")]
1268    #[cfg(target_has_atomic = "8")]
1269    #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
1270    pub fn fetch_not(&self, order: Ordering) -> bool {
1271        self.fetch_xor(true, order)
1272    }
1273
1274    /// Returns a mutable pointer to the underlying [`bool`].
1275    ///
1276    /// Doing non-atomic reads and writes on the resulting boolean can be a data race.
1277    /// This method is mostly useful for FFI, where the function signature may use
1278    /// `*mut bool` instead of `&AtomicBool`.
1279    ///
1280    /// Returning an `*mut` pointer from a shared reference to this atomic is safe because the
1281    /// atomic types work with interior mutability. All modifications of an atomic change the value
1282    /// through a shared reference, and can do so safely as long as they use atomic operations. Any
1283    /// use of the returned raw pointer requires an `unsafe` block and still has to uphold the
1284    /// requirements of the [memory model].
1285    ///
1286    /// # Examples
1287    ///
1288    /// ```ignore (extern-declaration)
1289    /// # fn main() {
1290    /// use std::sync::atomic::AtomicBool;
1291    ///
1292    /// extern "C" {
1293    ///     fn my_atomic_op(arg: *mut bool);
1294    /// }
1295    ///
1296    /// let mut atomic = AtomicBool::new(true);
1297    /// unsafe {
1298    ///     my_atomic_op(atomic.as_ptr());
1299    /// }
1300    /// # }
1301    /// ```
1302    ///
1303    /// [memory model]: self#memory-model-for-atomic-accesses
1304    #[inline]
1305    #[stable(feature = "atomic_as_ptr", since = "1.70.0")]
1306    #[rustc_const_stable(feature = "atomic_as_ptr", since = "1.70.0")]
1307    #[rustc_never_returns_null_ptr]
1308    pub const fn as_ptr(&self) -> *mut bool {
1309        self.v.get().cast()
1310    }
1311
1312    /// Fetches the value, and applies a function to it that returns an optional
1313    /// new value. Returns a `Result` of `Ok(previous_value)` if the function
1314    /// returned `Some(_)`, else `Err(previous_value)`.
1315    ///
1316    /// Note: This may call the function multiple times if the value has been
1317    /// changed from other threads in the meantime, as long as the function
1318    /// returns `Some(_)`, but the function will have been applied only once to
1319    /// the stored value.
1320    ///
1321    /// `fetch_update` takes two [`Ordering`] arguments to describe the memory
1322    /// ordering of this operation. The first describes the required ordering for
1323    /// when the operation finally succeeds while the second describes the
1324    /// required ordering for loads. These correspond to the success and failure
1325    /// orderings of [`AtomicBool::compare_exchange`] respectively.
1326    ///
1327    /// Using [`Acquire`] as success ordering makes the store part of this
1328    /// operation [`Relaxed`], and using [`Release`] makes the final successful
1329    /// load [`Relaxed`]. The (failed) load ordering can only be [`SeqCst`],
1330    /// [`Acquire`] or [`Relaxed`].
1331    ///
1332    /// **Note:** This method is only available on platforms that support atomic
1333    /// operations on `u8`.
1334    ///
1335    /// # Considerations
1336    ///
1337    /// This method is not magic; it is not provided by the hardware, and does not act like a
1338    /// critical section or mutex.
1339    ///
1340    /// It is implemented on top of an atomic [compare-and-swap operation], and thus is subject to
1341    /// the usual drawbacks of CAS operations. In particular, be careful of the [ABA problem].
1342    ///
1343    /// [ABA Problem]: https://en.wikipedia.org/wiki/ABA_problem
1344    /// [compare-and-swap operation]: https://en.wikipedia.org/wiki/Compare-and-swap
1345    ///
1346    /// # Examples
1347    ///
1348    /// ```rust
1349    /// use std::sync::atomic::{AtomicBool, Ordering};
1350    ///
1351    /// let x = AtomicBool::new(false);
1352    /// assert_eq!(x.fetch_update(Ordering::SeqCst, Ordering::SeqCst, |_| None), Err(false));
1353    /// assert_eq!(x.fetch_update(Ordering::SeqCst, Ordering::SeqCst, |x| Some(!x)), Ok(false));
1354    /// assert_eq!(x.fetch_update(Ordering::SeqCst, Ordering::SeqCst, |x| Some(!x)), Ok(true));
1355    /// assert_eq!(x.load(Ordering::SeqCst), false);
1356    /// ```
1357    #[inline]
1358    #[stable(feature = "atomic_fetch_update", since = "1.53.0")]
1359    #[cfg(target_has_atomic = "8")]
1360    #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
1361    pub fn fetch_update<F>(
1362        &self,
1363        set_order: Ordering,
1364        fetch_order: Ordering,
1365        mut f: F,
1366    ) -> Result<bool, bool>
1367    where
1368        F: FnMut(bool) -> Option<bool>,
1369    {
1370        let mut prev = self.load(fetch_order);
1371        while let Some(next) = f(prev) {
1372            match self.compare_exchange_weak(prev, next, set_order, fetch_order) {
1373                x @ Ok(_) => return x,
1374                Err(next_prev) => prev = next_prev,
1375            }
1376        }
1377        Err(prev)
1378    }
1379
1380    /// Fetches the value, and applies a function to it that returns an optional
1381    /// new value. Returns a `Result` of `Ok(previous_value)` if the function
1382    /// returned `Some(_)`, else `Err(previous_value)`.
1383    ///
1384    /// See also: [`update`](`AtomicBool::update`).
1385    ///
1386    /// Note: This may call the function multiple times if the value has been
1387    /// changed from other threads in the meantime, as long as the function
1388    /// returns `Some(_)`, but the function will have been applied only once to
1389    /// the stored value.
1390    ///
1391    /// `try_update` takes two [`Ordering`] arguments to describe the memory
1392    /// ordering of this operation. The first describes the required ordering for
1393    /// when the operation finally succeeds while the second describes the
1394    /// required ordering for loads. These correspond to the success and failure
1395    /// orderings of [`AtomicBool::compare_exchange`] respectively.
1396    ///
1397    /// Using [`Acquire`] as success ordering makes the store part of this
1398    /// operation [`Relaxed`], and using [`Release`] makes the final successful
1399    /// load [`Relaxed`]. The (failed) load ordering can only be [`SeqCst`],
1400    /// [`Acquire`] or [`Relaxed`].
1401    ///
1402    /// **Note:** This method is only available on platforms that support atomic
1403    /// operations on `u8`.
1404    ///
1405    /// # Considerations
1406    ///
1407    /// This method is not magic; it is not provided by the hardware, and does not act like a
1408    /// critical section or mutex.
1409    ///
1410    /// It is implemented on top of an atomic [compare-and-swap operation], and thus is subject to
1411    /// the usual drawbacks of CAS operations. In particular, be careful of the [ABA problem].
1412    ///
1413    /// [ABA Problem]: https://en.wikipedia.org/wiki/ABA_problem
1414    /// [compare-and-swap operation]: https://en.wikipedia.org/wiki/Compare-and-swap
1415    ///
1416    /// # Examples
1417    ///
1418    /// ```rust
1419    /// #![feature(atomic_try_update)]
1420    /// use std::sync::atomic::{AtomicBool, Ordering};
1421    ///
1422    /// let x = AtomicBool::new(false);
1423    /// assert_eq!(x.try_update(Ordering::SeqCst, Ordering::SeqCst, |_| None), Err(false));
1424    /// assert_eq!(x.try_update(Ordering::SeqCst, Ordering::SeqCst, |x| Some(!x)), Ok(false));
1425    /// assert_eq!(x.try_update(Ordering::SeqCst, Ordering::SeqCst, |x| Some(!x)), Ok(true));
1426    /// assert_eq!(x.load(Ordering::SeqCst), false);
1427    /// ```
1428    #[inline]
1429    #[unstable(feature = "atomic_try_update", issue = "135894")]
1430    #[cfg(target_has_atomic = "8")]
1431    #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
1432    pub fn try_update(
1433        &self,
1434        set_order: Ordering,
1435        fetch_order: Ordering,
1436        f: impl FnMut(bool) -> Option<bool>,
1437    ) -> Result<bool, bool> {
1438        // FIXME(atomic_try_update): this is currently an unstable alias to `fetch_update`;
1439        //      when stabilizing, turn `fetch_update` into a deprecated alias to `try_update`.
1440        self.fetch_update(set_order, fetch_order, f)
1441    }
1442
1443    /// Fetches the value, applies a function to it that it return a new value.
1444    /// The new value is stored and the old value is returned.
1445    ///
1446    /// See also: [`try_update`](`AtomicBool::try_update`).
1447    ///
1448    /// Note: This may call the function multiple times if the value has been changed from other threads in
1449    /// the meantime, but the function will have been applied only once to the stored value.
1450    ///
1451    /// `update` takes two [`Ordering`] arguments to describe the memory
1452    /// ordering of this operation. The first describes the required ordering for
1453    /// when the operation finally succeeds while the second describes the
1454    /// required ordering for loads. These correspond to the success and failure
1455    /// orderings of [`AtomicBool::compare_exchange`] respectively.
1456    ///
1457    /// Using [`Acquire`] as success ordering makes the store part
1458    /// of this operation [`Relaxed`], and using [`Release`] makes the final successful load
1459    /// [`Relaxed`]. The (failed) load ordering can only be [`SeqCst`], [`Acquire`] or [`Relaxed`].
1460    ///
1461    /// **Note:** This method is only available on platforms that support atomic operations on `u8`.
1462    ///
1463    /// # Considerations
1464    ///
1465    /// This method is not magic; it is not provided by the hardware, and does not act like a
1466    /// critical section or mutex.
1467    ///
1468    /// It is implemented on top of an atomic [compare-and-swap operation], and thus is subject to
1469    /// the usual drawbacks of CAS operations. In particular, be careful of the [ABA problem].
1470    ///
1471    /// [ABA Problem]: https://en.wikipedia.org/wiki/ABA_problem
1472    /// [compare-and-swap operation]: https://en.wikipedia.org/wiki/Compare-and-swap
1473    ///
1474    /// # Examples
1475    ///
1476    /// ```rust
1477    /// #![feature(atomic_try_update)]
1478    ///
1479    /// use std::sync::atomic::{AtomicBool, Ordering};
1480    ///
1481    /// let x = AtomicBool::new(false);
1482    /// assert_eq!(x.update(Ordering::SeqCst, Ordering::SeqCst, |x| !x), false);
1483    /// assert_eq!(x.update(Ordering::SeqCst, Ordering::SeqCst, |x| !x), true);
1484    /// assert_eq!(x.load(Ordering::SeqCst), false);
1485    /// ```
1486    #[inline]
1487    #[unstable(feature = "atomic_try_update", issue = "135894")]
1488    #[cfg(target_has_atomic = "8")]
1489    #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
1490    pub fn update(
1491        &self,
1492        set_order: Ordering,
1493        fetch_order: Ordering,
1494        mut f: impl FnMut(bool) -> bool,
1495    ) -> bool {
1496        let mut prev = self.load(fetch_order);
1497        loop {
1498            match self.compare_exchange_weak(prev, f(prev), set_order, fetch_order) {
1499                Ok(x) => break x,
1500                Err(next_prev) => prev = next_prev,
1501            }
1502        }
1503    }
1504}
1505
1506#[cfg(target_has_atomic_load_store = "ptr")]
1507#[cfg(not(feature = "ferrocene_certified"))]
1508impl<T> AtomicPtr<T> {
1509    /// Creates a new `AtomicPtr`.
1510    ///
1511    /// # Examples
1512    ///
1513    /// ```
1514    /// use std::sync::atomic::AtomicPtr;
1515    ///
1516    /// let ptr = &mut 5;
1517    /// let atomic_ptr = AtomicPtr::new(ptr);
1518    /// ```
1519    #[inline]
1520    #[stable(feature = "rust1", since = "1.0.0")]
1521    #[rustc_const_stable(feature = "const_atomic_new", since = "1.24.0")]
1522    pub const fn new(p: *mut T) -> AtomicPtr<T> {
1523        AtomicPtr { p: UnsafeCell::new(p) }
1524    }
1525
1526    /// Creates a new `AtomicPtr` from a pointer.
1527    ///
1528    /// # Examples
1529    ///
1530    /// ```
1531    /// use std::sync::atomic::{self, AtomicPtr};
1532    ///
1533    /// // Get a pointer to an allocated value
1534    /// let ptr: *mut *mut u8 = Box::into_raw(Box::new(std::ptr::null_mut()));
1535    ///
1536    /// assert!(ptr.cast::<AtomicPtr<u8>>().is_aligned());
1537    ///
1538    /// {
1539    ///     // Create an atomic view of the allocated value
1540    ///     let atomic = unsafe { AtomicPtr::from_ptr(ptr) };
1541    ///
1542    ///     // Use `atomic` for atomic operations, possibly share it with other threads
1543    ///     atomic.store(std::ptr::NonNull::dangling().as_ptr(), atomic::Ordering::Relaxed);
1544    /// }
1545    ///
1546    /// // It's ok to non-atomically access the value behind `ptr`,
1547    /// // since the reference to the atomic ended its lifetime in the block above
1548    /// assert!(!unsafe { *ptr }.is_null());
1549    ///
1550    /// // Deallocate the value
1551    /// unsafe { drop(Box::from_raw(ptr)) }
1552    /// ```
1553    ///
1554    /// # Safety
1555    ///
1556    /// * `ptr` must be aligned to `align_of::<AtomicPtr<T>>()` (note that on some platforms this
1557    ///   can be bigger than `align_of::<*mut T>()`).
1558    /// * `ptr` must be [valid] for both reads and writes for the whole lifetime `'a`.
1559    /// * You must adhere to the [Memory model for atomic accesses]. In particular, it is not
1560    ///   allowed to mix conflicting atomic and non-atomic accesses, or atomic accesses of different
1561    ///   sizes, without synchronization.
1562    ///
1563    /// [valid]: crate::ptr#safety
1564    /// [Memory model for atomic accesses]: self#memory-model-for-atomic-accesses
1565    #[inline]
1566    #[stable(feature = "atomic_from_ptr", since = "1.75.0")]
1567    #[rustc_const_stable(feature = "const_atomic_from_ptr", since = "1.84.0")]
1568    pub const unsafe fn from_ptr<'a>(ptr: *mut *mut T) -> &'a AtomicPtr<T> {
1569        // SAFETY: guaranteed by the caller
1570        unsafe { &*ptr.cast() }
1571    }
1572
1573    /// Returns a mutable reference to the underlying pointer.
1574    ///
1575    /// This is safe because the mutable reference guarantees that no other threads are
1576    /// concurrently accessing the atomic data.
1577    ///
1578    /// # Examples
1579    ///
1580    /// ```
1581    /// use std::sync::atomic::{AtomicPtr, Ordering};
1582    ///
1583    /// let mut data = 10;
1584    /// let mut atomic_ptr = AtomicPtr::new(&mut data);
1585    /// let mut other_data = 5;
1586    /// *atomic_ptr.get_mut() = &mut other_data;
1587    /// assert_eq!(unsafe { *atomic_ptr.load(Ordering::SeqCst) }, 5);
1588    /// ```
1589    #[inline]
1590    #[stable(feature = "atomic_access", since = "1.15.0")]
1591    pub fn get_mut(&mut self) -> &mut *mut T {
1592        self.p.get_mut()
1593    }
1594
1595    /// Gets atomic access to a pointer.
1596    ///
1597    /// # Examples
1598    ///
1599    /// ```
1600    /// #![feature(atomic_from_mut)]
1601    /// use std::sync::atomic::{AtomicPtr, Ordering};
1602    ///
1603    /// let mut data = 123;
1604    /// let mut some_ptr = &mut data as *mut i32;
1605    /// let a = AtomicPtr::from_mut(&mut some_ptr);
1606    /// let mut other_data = 456;
1607    /// a.store(&mut other_data, Ordering::Relaxed);
1608    /// assert_eq!(unsafe { *some_ptr }, 456);
1609    /// ```
1610    #[inline]
1611    #[cfg(target_has_atomic_equal_alignment = "ptr")]
1612    #[unstable(feature = "atomic_from_mut", issue = "76314")]
1613    pub fn from_mut(v: &mut *mut T) -> &mut Self {
1614        let [] = [(); align_of::<AtomicPtr<()>>() - align_of::<*mut ()>()];
1615        // SAFETY:
1616        //  - the mutable reference guarantees unique ownership.
1617        //  - the alignment of `*mut T` and `Self` is the same on all platforms
1618        //    supported by rust, as verified above.
1619        unsafe { &mut *(v as *mut *mut T as *mut Self) }
1620    }
1621
1622    /// Gets non-atomic access to a `&mut [AtomicPtr]` slice.
1623    ///
1624    /// This is safe because the mutable reference guarantees that no other threads are
1625    /// concurrently accessing the atomic data.
1626    ///
1627    /// # Examples
1628    ///
1629    /// ```ignore-wasm
1630    /// #![feature(atomic_from_mut)]
1631    /// use std::ptr::null_mut;
1632    /// use std::sync::atomic::{AtomicPtr, Ordering};
1633    ///
1634    /// let mut some_ptrs = [const { AtomicPtr::new(null_mut::<String>()) }; 10];
1635    ///
1636    /// let view: &mut [*mut String] = AtomicPtr::get_mut_slice(&mut some_ptrs);
1637    /// assert_eq!(view, [null_mut::<String>(); 10]);
1638    /// view
1639    ///     .iter_mut()
1640    ///     .enumerate()
1641    ///     .for_each(|(i, ptr)| *ptr = Box::into_raw(Box::new(format!("iteration#{i}"))));
1642    ///
1643    /// std::thread::scope(|s| {
1644    ///     for ptr in &some_ptrs {
1645    ///         s.spawn(move || {
1646    ///             let ptr = ptr.load(Ordering::Relaxed);
1647    ///             assert!(!ptr.is_null());
1648    ///
1649    ///             let name = unsafe { Box::from_raw(ptr) };
1650    ///             println!("Hello, {name}!");
1651    ///         });
1652    ///     }
1653    /// });
1654    /// ```
1655    #[inline]
1656    #[unstable(feature = "atomic_from_mut", issue = "76314")]
1657    pub fn get_mut_slice(this: &mut [Self]) -> &mut [*mut T] {
1658        // SAFETY: the mutable reference guarantees unique ownership.
1659        unsafe { &mut *(this as *mut [Self] as *mut [*mut T]) }
1660    }
1661
1662    /// Gets atomic access to a slice of pointers.
1663    ///
1664    /// # Examples
1665    ///
1666    /// ```ignore-wasm
1667    /// #![feature(atomic_from_mut)]
1668    /// use std::ptr::null_mut;
1669    /// use std::sync::atomic::{AtomicPtr, Ordering};
1670    ///
1671    /// let mut some_ptrs = [null_mut::<String>(); 10];
1672    /// let a = &*AtomicPtr::from_mut_slice(&mut some_ptrs);
1673    /// std::thread::scope(|s| {
1674    ///     for i in 0..a.len() {
1675    ///         s.spawn(move || {
1676    ///             let name = Box::new(format!("thread{i}"));
1677    ///             a[i].store(Box::into_raw(name), Ordering::Relaxed);
1678    ///         });
1679    ///     }
1680    /// });
1681    /// for p in some_ptrs {
1682    ///     assert!(!p.is_null());
1683    ///     let name = unsafe { Box::from_raw(p) };
1684    ///     println!("Hello, {name}!");
1685    /// }
1686    /// ```
1687    #[inline]
1688    #[cfg(target_has_atomic_equal_alignment = "ptr")]
1689    #[unstable(feature = "atomic_from_mut", issue = "76314")]
1690    pub fn from_mut_slice(v: &mut [*mut T]) -> &mut [Self] {
1691        // SAFETY:
1692        //  - the mutable reference guarantees unique ownership.
1693        //  - the alignment of `*mut T` and `Self` is the same on all platforms
1694        //    supported by rust, as verified above.
1695        unsafe { &mut *(v as *mut [*mut T] as *mut [Self]) }
1696    }
1697
1698    /// Consumes the atomic and returns the contained value.
1699    ///
1700    /// This is safe because passing `self` by value guarantees that no other threads are
1701    /// concurrently accessing the atomic data.
1702    ///
1703    /// # Examples
1704    ///
1705    /// ```
1706    /// use std::sync::atomic::AtomicPtr;
1707    ///
1708    /// let mut data = 5;
1709    /// let atomic_ptr = AtomicPtr::new(&mut data);
1710    /// assert_eq!(unsafe { *atomic_ptr.into_inner() }, 5);
1711    /// ```
1712    #[inline]
1713    #[stable(feature = "atomic_access", since = "1.15.0")]
1714    #[rustc_const_stable(feature = "const_atomic_into_inner", since = "1.79.0")]
1715    pub const fn into_inner(self) -> *mut T {
1716        self.p.into_inner()
1717    }
1718
1719    /// Loads a value from the pointer.
1720    ///
1721    /// `load` takes an [`Ordering`] argument which describes the memory ordering
1722    /// of this operation. Possible values are [`SeqCst`], [`Acquire`] and [`Relaxed`].
1723    ///
1724    /// # Panics
1725    ///
1726    /// Panics if `order` is [`Release`] or [`AcqRel`].
1727    ///
1728    /// # Examples
1729    ///
1730    /// ```
1731    /// use std::sync::atomic::{AtomicPtr, Ordering};
1732    ///
1733    /// let ptr = &mut 5;
1734    /// let some_ptr = AtomicPtr::new(ptr);
1735    ///
1736    /// let value = some_ptr.load(Ordering::Relaxed);
1737    /// ```
1738    #[inline]
1739    #[stable(feature = "rust1", since = "1.0.0")]
1740    #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
1741    pub fn load(&self, order: Ordering) -> *mut T {
1742        // SAFETY: data races are prevented by atomic intrinsics.
1743        unsafe { atomic_load(self.p.get(), order) }
1744    }
1745
1746    /// Stores a value into the pointer.
1747    ///
1748    /// `store` takes an [`Ordering`] argument which describes the memory ordering
1749    /// of this operation. Possible values are [`SeqCst`], [`Release`] and [`Relaxed`].
1750    ///
1751    /// # Panics
1752    ///
1753    /// Panics if `order` is [`Acquire`] or [`AcqRel`].
1754    ///
1755    /// # Examples
1756    ///
1757    /// ```
1758    /// use std::sync::atomic::{AtomicPtr, Ordering};
1759    ///
1760    /// let ptr = &mut 5;
1761    /// let some_ptr = AtomicPtr::new(ptr);
1762    ///
1763    /// let other_ptr = &mut 10;
1764    ///
1765    /// some_ptr.store(other_ptr, Ordering::Relaxed);
1766    /// ```
1767    #[inline]
1768    #[stable(feature = "rust1", since = "1.0.0")]
1769    #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
1770    pub fn store(&self, ptr: *mut T, order: Ordering) {
1771        // SAFETY: data races are prevented by atomic intrinsics.
1772        unsafe {
1773            atomic_store(self.p.get(), ptr, order);
1774        }
1775    }
1776
1777    /// Stores a value into the pointer, returning the previous value.
1778    ///
1779    /// `swap` takes an [`Ordering`] argument which describes the memory ordering
1780    /// of this operation. All ordering modes are possible. Note that using
1781    /// [`Acquire`] makes the store part of this operation [`Relaxed`], and
1782    /// using [`Release`] makes the load part [`Relaxed`].
1783    ///
1784    /// **Note:** This method is only available on platforms that support atomic
1785    /// operations on pointers.
1786    ///
1787    /// # Examples
1788    ///
1789    /// ```
1790    /// use std::sync::atomic::{AtomicPtr, Ordering};
1791    ///
1792    /// let ptr = &mut 5;
1793    /// let some_ptr = AtomicPtr::new(ptr);
1794    ///
1795    /// let other_ptr = &mut 10;
1796    ///
1797    /// let value = some_ptr.swap(other_ptr, Ordering::Relaxed);
1798    /// ```
1799    #[inline]
1800    #[stable(feature = "rust1", since = "1.0.0")]
1801    #[cfg(target_has_atomic = "ptr")]
1802    #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
1803    pub fn swap(&self, ptr: *mut T, order: Ordering) -> *mut T {
1804        // SAFETY: data races are prevented by atomic intrinsics.
1805        unsafe { atomic_swap(self.p.get(), ptr, order) }
1806    }
1807
1808    /// Stores a value into the pointer if the current value is the same as the `current` value.
1809    ///
1810    /// The return value is always the previous value. If it is equal to `current`, then the value
1811    /// was updated.
1812    ///
1813    /// `compare_and_swap` also takes an [`Ordering`] argument which describes the memory
1814    /// ordering of this operation. Notice that even when using [`AcqRel`], the operation
1815    /// might fail and hence just perform an `Acquire` load, but not have `Release` semantics.
1816    /// Using [`Acquire`] makes the store part of this operation [`Relaxed`] if it
1817    /// happens, and using [`Release`] makes the load part [`Relaxed`].
1818    ///
1819    /// **Note:** This method is only available on platforms that support atomic
1820    /// operations on pointers.
1821    ///
1822    /// # Migrating to `compare_exchange` and `compare_exchange_weak`
1823    ///
1824    /// `compare_and_swap` is equivalent to `compare_exchange` with the following mapping for
1825    /// memory orderings:
1826    ///
1827    /// Original | Success | Failure
1828    /// -------- | ------- | -------
1829    /// Relaxed  | Relaxed | Relaxed
1830    /// Acquire  | Acquire | Acquire
1831    /// Release  | Release | Relaxed
1832    /// AcqRel   | AcqRel  | Acquire
1833    /// SeqCst   | SeqCst  | SeqCst
1834    ///
1835    /// `compare_and_swap` and `compare_exchange` also differ in their return type. You can use
1836    /// `compare_exchange(...).unwrap_or_else(|x| x)` to recover the behavior of `compare_and_swap`,
1837    /// but in most cases it is more idiomatic to check whether the return value is `Ok` or `Err`
1838    /// rather than to infer success vs failure based on the value that was read.
1839    ///
1840    /// During migration, consider whether it makes sense to use `compare_exchange_weak` instead.
1841    /// `compare_exchange_weak` is allowed to fail spuriously even when the comparison succeeds,
1842    /// which allows the compiler to generate better assembly code when the compare and swap
1843    /// is used in a loop.
1844    ///
1845    /// # Examples
1846    ///
1847    /// ```
1848    /// use std::sync::atomic::{AtomicPtr, Ordering};
1849    ///
1850    /// let ptr = &mut 5;
1851    /// let some_ptr = AtomicPtr::new(ptr);
1852    ///
1853    /// let other_ptr = &mut 10;
1854    ///
1855    /// let value = some_ptr.compare_and_swap(ptr, other_ptr, Ordering::Relaxed);
1856    /// ```
1857    #[inline]
1858    #[stable(feature = "rust1", since = "1.0.0")]
1859    #[deprecated(
1860        since = "1.50.0",
1861        note = "Use `compare_exchange` or `compare_exchange_weak` instead"
1862    )]
1863    #[cfg(target_has_atomic = "ptr")]
1864    #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
1865    pub fn compare_and_swap(&self, current: *mut T, new: *mut T, order: Ordering) -> *mut T {
1866        match self.compare_exchange(current, new, order, strongest_failure_ordering(order)) {
1867            Ok(x) => x,
1868            Err(x) => x,
1869        }
1870    }
1871
1872    /// Stores a value into the pointer if the current value is the same as the `current` value.
1873    ///
1874    /// The return value is a result indicating whether the new value was written and containing
1875    /// the previous value. On success this value is guaranteed to be equal to `current`.
1876    ///
1877    /// `compare_exchange` takes two [`Ordering`] arguments to describe the memory
1878    /// ordering of this operation. `success` describes the required ordering for the
1879    /// read-modify-write operation that takes place if the comparison with `current` succeeds.
1880    /// `failure` describes the required ordering for the load operation that takes place when
1881    /// the comparison fails. Using [`Acquire`] as success ordering makes the store part
1882    /// of this operation [`Relaxed`], and using [`Release`] makes the successful load
1883    /// [`Relaxed`]. The failure ordering can only be [`SeqCst`], [`Acquire`] or [`Relaxed`].
1884    ///
1885    /// **Note:** This method is only available on platforms that support atomic
1886    /// operations on pointers.
1887    ///
1888    /// # Examples
1889    ///
1890    /// ```
1891    /// use std::sync::atomic::{AtomicPtr, Ordering};
1892    ///
1893    /// let ptr = &mut 5;
1894    /// let some_ptr = AtomicPtr::new(ptr);
1895    ///
1896    /// let other_ptr = &mut 10;
1897    ///
1898    /// let value = some_ptr.compare_exchange(ptr, other_ptr,
1899    ///                                       Ordering::SeqCst, Ordering::Relaxed);
1900    /// ```
1901    ///
1902    /// # Considerations
1903    ///
1904    /// `compare_exchange` is a [compare-and-swap operation] and thus exhibits the usual downsides
1905    /// of CAS operations. In particular, a load of the value followed by a successful
1906    /// `compare_exchange` with the previous load *does not ensure* that other threads have not
1907    /// changed the value in the interim. This is usually important when the *equality* check in
1908    /// the `compare_exchange` is being used to check the *identity* of a value, but equality
1909    /// does not necessarily imply identity. This is a particularly common case for pointers, as
1910    /// a pointer holding the same address does not imply that the same object exists at that
1911    /// address! In this case, `compare_exchange` can lead to the [ABA problem].
1912    ///
1913    /// [ABA Problem]: https://en.wikipedia.org/wiki/ABA_problem
1914    /// [compare-and-swap operation]: https://en.wikipedia.org/wiki/Compare-and-swap
1915    #[inline]
1916    #[stable(feature = "extended_compare_and_swap", since = "1.10.0")]
1917    #[cfg(target_has_atomic = "ptr")]
1918    #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
1919    pub fn compare_exchange(
1920        &self,
1921        current: *mut T,
1922        new: *mut T,
1923        success: Ordering,
1924        failure: Ordering,
1925    ) -> Result<*mut T, *mut T> {
1926        // SAFETY: data races are prevented by atomic intrinsics.
1927        unsafe { atomic_compare_exchange(self.p.get(), current, new, success, failure) }
1928    }
1929
1930    /// Stores a value into the pointer if the current value is the same as the `current` value.
1931    ///
1932    /// Unlike [`AtomicPtr::compare_exchange`], this function is allowed to spuriously fail even when the
1933    /// comparison succeeds, which can result in more efficient code on some platforms. The
1934    /// return value is a result indicating whether the new value was written and containing the
1935    /// previous value.
1936    ///
1937    /// `compare_exchange_weak` takes two [`Ordering`] arguments to describe the memory
1938    /// ordering of this operation. `success` describes the required ordering for the
1939    /// read-modify-write operation that takes place if the comparison with `current` succeeds.
1940    /// `failure` describes the required ordering for the load operation that takes place when
1941    /// the comparison fails. Using [`Acquire`] as success ordering makes the store part
1942    /// of this operation [`Relaxed`], and using [`Release`] makes the successful load
1943    /// [`Relaxed`]. The failure ordering can only be [`SeqCst`], [`Acquire`] or [`Relaxed`].
1944    ///
1945    /// **Note:** This method is only available on platforms that support atomic
1946    /// operations on pointers.
1947    ///
1948    /// # Examples
1949    ///
1950    /// ```
1951    /// use std::sync::atomic::{AtomicPtr, Ordering};
1952    ///
1953    /// let some_ptr = AtomicPtr::new(&mut 5);
1954    ///
1955    /// let new = &mut 10;
1956    /// let mut old = some_ptr.load(Ordering::Relaxed);
1957    /// loop {
1958    ///     match some_ptr.compare_exchange_weak(old, new, Ordering::SeqCst, Ordering::Relaxed) {
1959    ///         Ok(_) => break,
1960    ///         Err(x) => old = x,
1961    ///     }
1962    /// }
1963    /// ```
1964    ///
1965    /// # Considerations
1966    ///
1967    /// `compare_exchange` is a [compare-and-swap operation] and thus exhibits the usual downsides
1968    /// of CAS operations. In particular, a load of the value followed by a successful
1969    /// `compare_exchange` with the previous load *does not ensure* that other threads have not
1970    /// changed the value in the interim. This is usually important when the *equality* check in
1971    /// the `compare_exchange` is being used to check the *identity* of a value, but equality
1972    /// does not necessarily imply identity. This is a particularly common case for pointers, as
1973    /// a pointer holding the same address does not imply that the same object exists at that
1974    /// address! In this case, `compare_exchange` can lead to the [ABA problem].
1975    ///
1976    /// [ABA Problem]: https://en.wikipedia.org/wiki/ABA_problem
1977    /// [compare-and-swap operation]: https://en.wikipedia.org/wiki/Compare-and-swap
1978    #[inline]
1979    #[stable(feature = "extended_compare_and_swap", since = "1.10.0")]
1980    #[cfg(target_has_atomic = "ptr")]
1981    #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
1982    pub fn compare_exchange_weak(
1983        &self,
1984        current: *mut T,
1985        new: *mut T,
1986        success: Ordering,
1987        failure: Ordering,
1988    ) -> Result<*mut T, *mut T> {
1989        // SAFETY: This intrinsic is unsafe because it operates on a raw pointer
1990        // but we know for sure that the pointer is valid (we just got it from
1991        // an `UnsafeCell` that we have by reference) and the atomic operation
1992        // itself allows us to safely mutate the `UnsafeCell` contents.
1993        unsafe { atomic_compare_exchange_weak(self.p.get(), current, new, success, failure) }
1994    }
1995
1996    /// Fetches the value, and applies a function to it that returns an optional
1997    /// new value. Returns a `Result` of `Ok(previous_value)` if the function
1998    /// returned `Some(_)`, else `Err(previous_value)`.
1999    ///
2000    /// Note: This may call the function multiple times if the value has been
2001    /// changed from other threads in the meantime, as long as the function
2002    /// returns `Some(_)`, but the function will have been applied only once to
2003    /// the stored value.
2004    ///
2005    /// `fetch_update` takes two [`Ordering`] arguments to describe the memory
2006    /// ordering of this operation. The first describes the required ordering for
2007    /// when the operation finally succeeds while the second describes the
2008    /// required ordering for loads. These correspond to the success and failure
2009    /// orderings of [`AtomicPtr::compare_exchange`] respectively.
2010    ///
2011    /// Using [`Acquire`] as success ordering makes the store part of this
2012    /// operation [`Relaxed`], and using [`Release`] makes the final successful
2013    /// load [`Relaxed`]. The (failed) load ordering can only be [`SeqCst`],
2014    /// [`Acquire`] or [`Relaxed`].
2015    ///
2016    /// **Note:** This method is only available on platforms that support atomic
2017    /// operations on pointers.
2018    ///
2019    /// # Considerations
2020    ///
2021    /// This method is not magic; it is not provided by the hardware, and does not act like a
2022    /// critical section or mutex.
2023    ///
2024    /// It is implemented on top of an atomic [compare-and-swap operation], and thus is subject to
2025    /// the usual drawbacks of CAS operations. In particular, be careful of the [ABA problem],
2026    /// which is a particularly common pitfall for pointers!
2027    ///
2028    /// [ABA Problem]: https://en.wikipedia.org/wiki/ABA_problem
2029    /// [compare-and-swap operation]: https://en.wikipedia.org/wiki/Compare-and-swap
2030    ///
2031    /// # Examples
2032    ///
2033    /// ```rust
2034    /// use std::sync::atomic::{AtomicPtr, Ordering};
2035    ///
2036    /// let ptr: *mut _ = &mut 5;
2037    /// let some_ptr = AtomicPtr::new(ptr);
2038    ///
2039    /// let new: *mut _ = &mut 10;
2040    /// assert_eq!(some_ptr.fetch_update(Ordering::SeqCst, Ordering::SeqCst, |_| None), Err(ptr));
2041    /// let result = some_ptr.fetch_update(Ordering::SeqCst, Ordering::SeqCst, |x| {
2042    ///     if x == ptr {
2043    ///         Some(new)
2044    ///     } else {
2045    ///         None
2046    ///     }
2047    /// });
2048    /// assert_eq!(result, Ok(ptr));
2049    /// assert_eq!(some_ptr.load(Ordering::SeqCst), new);
2050    /// ```
2051    #[inline]
2052    #[stable(feature = "atomic_fetch_update", since = "1.53.0")]
2053    #[cfg(target_has_atomic = "ptr")]
2054    #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
2055    pub fn fetch_update<F>(
2056        &self,
2057        set_order: Ordering,
2058        fetch_order: Ordering,
2059        mut f: F,
2060    ) -> Result<*mut T, *mut T>
2061    where
2062        F: FnMut(*mut T) -> Option<*mut T>,
2063    {
2064        let mut prev = self.load(fetch_order);
2065        while let Some(next) = f(prev) {
2066            match self.compare_exchange_weak(prev, next, set_order, fetch_order) {
2067                x @ Ok(_) => return x,
2068                Err(next_prev) => prev = next_prev,
2069            }
2070        }
2071        Err(prev)
2072    }
2073    /// Fetches the value, and applies a function to it that returns an optional
2074    /// new value. Returns a `Result` of `Ok(previous_value)` if the function
2075    /// returned `Some(_)`, else `Err(previous_value)`.
2076    ///
2077    /// See also: [`update`](`AtomicPtr::update`).
2078    ///
2079    /// Note: This may call the function multiple times if the value has been
2080    /// changed from other threads in the meantime, as long as the function
2081    /// returns `Some(_)`, but the function will have been applied only once to
2082    /// the stored value.
2083    ///
2084    /// `try_update` takes two [`Ordering`] arguments to describe the memory
2085    /// ordering of this operation. The first describes the required ordering for
2086    /// when the operation finally succeeds while the second describes the
2087    /// required ordering for loads. These correspond to the success and failure
2088    /// orderings of [`AtomicPtr::compare_exchange`] respectively.
2089    ///
2090    /// Using [`Acquire`] as success ordering makes the store part of this
2091    /// operation [`Relaxed`], and using [`Release`] makes the final successful
2092    /// load [`Relaxed`]. The (failed) load ordering can only be [`SeqCst`],
2093    /// [`Acquire`] or [`Relaxed`].
2094    ///
2095    /// **Note:** This method is only available on platforms that support atomic
2096    /// operations on pointers.
2097    ///
2098    /// # Considerations
2099    ///
2100    /// This method is not magic; it is not provided by the hardware, and does not act like a
2101    /// critical section or mutex.
2102    ///
2103    /// It is implemented on top of an atomic [compare-and-swap operation], and thus is subject to
2104    /// the usual drawbacks of CAS operations. In particular, be careful of the [ABA problem],
2105    /// which is a particularly common pitfall for pointers!
2106    ///
2107    /// [ABA Problem]: https://en.wikipedia.org/wiki/ABA_problem
2108    /// [compare-and-swap operation]: https://en.wikipedia.org/wiki/Compare-and-swap
2109    ///
2110    /// # Examples
2111    ///
2112    /// ```rust
2113    /// #![feature(atomic_try_update)]
2114    /// use std::sync::atomic::{AtomicPtr, Ordering};
2115    ///
2116    /// let ptr: *mut _ = &mut 5;
2117    /// let some_ptr = AtomicPtr::new(ptr);
2118    ///
2119    /// let new: *mut _ = &mut 10;
2120    /// assert_eq!(some_ptr.try_update(Ordering::SeqCst, Ordering::SeqCst, |_| None), Err(ptr));
2121    /// let result = some_ptr.try_update(Ordering::SeqCst, Ordering::SeqCst, |x| {
2122    ///     if x == ptr {
2123    ///         Some(new)
2124    ///     } else {
2125    ///         None
2126    ///     }
2127    /// });
2128    /// assert_eq!(result, Ok(ptr));
2129    /// assert_eq!(some_ptr.load(Ordering::SeqCst), new);
2130    /// ```
2131    #[inline]
2132    #[unstable(feature = "atomic_try_update", issue = "135894")]
2133    #[cfg(target_has_atomic = "ptr")]
2134    #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
2135    pub fn try_update(
2136        &self,
2137        set_order: Ordering,
2138        fetch_order: Ordering,
2139        f: impl FnMut(*mut T) -> Option<*mut T>,
2140    ) -> Result<*mut T, *mut T> {
2141        // FIXME(atomic_try_update): this is currently an unstable alias to `fetch_update`;
2142        //      when stabilizing, turn `fetch_update` into a deprecated alias to `try_update`.
2143        self.fetch_update(set_order, fetch_order, f)
2144    }
2145
2146    /// Fetches the value, applies a function to it that it return a new value.
2147    /// The new value is stored and the old value is returned.
2148    ///
2149    /// See also: [`try_update`](`AtomicPtr::try_update`).
2150    ///
2151    /// Note: This may call the function multiple times if the value has been changed from other threads in
2152    /// the meantime, but the function will have been applied only once to the stored value.
2153    ///
2154    /// `update` takes two [`Ordering`] arguments to describe the memory
2155    /// ordering of this operation. The first describes the required ordering for
2156    /// when the operation finally succeeds while the second describes the
2157    /// required ordering for loads. These correspond to the success and failure
2158    /// orderings of [`AtomicPtr::compare_exchange`] respectively.
2159    ///
2160    /// Using [`Acquire`] as success ordering makes the store part
2161    /// of this operation [`Relaxed`], and using [`Release`] makes the final successful load
2162    /// [`Relaxed`]. The (failed) load ordering can only be [`SeqCst`], [`Acquire`] or [`Relaxed`].
2163    ///
2164    /// **Note:** This method is only available on platforms that support atomic
2165    /// operations on pointers.
2166    ///
2167    /// # Considerations
2168    ///
2169    /// This method is not magic; it is not provided by the hardware, and does not act like a
2170    /// critical section or mutex.
2171    ///
2172    /// It is implemented on top of an atomic [compare-and-swap operation], and thus is subject to
2173    /// the usual drawbacks of CAS operations. In particular, be careful of the [ABA problem],
2174    /// which is a particularly common pitfall for pointers!
2175    ///
2176    /// [ABA Problem]: https://en.wikipedia.org/wiki/ABA_problem
2177    /// [compare-and-swap operation]: https://en.wikipedia.org/wiki/Compare-and-swap
2178    ///
2179    /// # Examples
2180    ///
2181    /// ```rust
2182    /// #![feature(atomic_try_update)]
2183    ///
2184    /// use std::sync::atomic::{AtomicPtr, Ordering};
2185    ///
2186    /// let ptr: *mut _ = &mut 5;
2187    /// let some_ptr = AtomicPtr::new(ptr);
2188    ///
2189    /// let new: *mut _ = &mut 10;
2190    /// let result = some_ptr.update(Ordering::SeqCst, Ordering::SeqCst, |_| new);
2191    /// assert_eq!(result, ptr);
2192    /// assert_eq!(some_ptr.load(Ordering::SeqCst), new);
2193    /// ```
2194    #[inline]
2195    #[unstable(feature = "atomic_try_update", issue = "135894")]
2196    #[cfg(target_has_atomic = "8")]
2197    #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
2198    pub fn update(
2199        &self,
2200        set_order: Ordering,
2201        fetch_order: Ordering,
2202        mut f: impl FnMut(*mut T) -> *mut T,
2203    ) -> *mut T {
2204        let mut prev = self.load(fetch_order);
2205        loop {
2206            match self.compare_exchange_weak(prev, f(prev), set_order, fetch_order) {
2207                Ok(x) => break x,
2208                Err(next_prev) => prev = next_prev,
2209            }
2210        }
2211    }
2212
2213    /// Offsets the pointer's address by adding `val` (in units of `T`),
2214    /// returning the previous pointer.
2215    ///
2216    /// This is equivalent to using [`wrapping_add`] to atomically perform the
2217    /// equivalent of `ptr = ptr.wrapping_add(val);`.
2218    ///
2219    /// This method operates in units of `T`, which means that it cannot be used
2220    /// to offset the pointer by an amount which is not a multiple of
2221    /// `size_of::<T>()`. This can sometimes be inconvenient, as you may want to
2222    /// work with a deliberately misaligned pointer. In such cases, you may use
2223    /// the [`fetch_byte_add`](Self::fetch_byte_add) method instead.
2224    ///
2225    /// `fetch_ptr_add` takes an [`Ordering`] argument which describes the
2226    /// memory ordering of this operation. All ordering modes are possible. Note
2227    /// that using [`Acquire`] makes the store part of this operation
2228    /// [`Relaxed`], and using [`Release`] makes the load part [`Relaxed`].
2229    ///
2230    /// **Note**: This method is only available on platforms that support atomic
2231    /// operations on [`AtomicPtr`].
2232    ///
2233    /// [`wrapping_add`]: pointer::wrapping_add
2234    ///
2235    /// # Examples
2236    ///
2237    /// ```
2238    /// use core::sync::atomic::{AtomicPtr, Ordering};
2239    ///
2240    /// let atom = AtomicPtr::<i64>::new(core::ptr::null_mut());
2241    /// assert_eq!(atom.fetch_ptr_add(1, Ordering::Relaxed).addr(), 0);
2242    /// // Note: units of `size_of::<i64>()`.
2243    /// assert_eq!(atom.load(Ordering::Relaxed).addr(), 8);
2244    /// ```
2245    #[inline]
2246    #[cfg(target_has_atomic = "ptr")]
2247    #[stable(feature = "strict_provenance_atomic_ptr", since = "CURRENT_RUSTC_VERSION")]
2248    #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
2249    pub fn fetch_ptr_add(&self, val: usize, order: Ordering) -> *mut T {
2250        self.fetch_byte_add(val.wrapping_mul(size_of::<T>()), order)
2251    }
2252
2253    /// Offsets the pointer's address by subtracting `val` (in units of `T`),
2254    /// returning the previous pointer.
2255    ///
2256    /// This is equivalent to using [`wrapping_sub`] to atomically perform the
2257    /// equivalent of `ptr = ptr.wrapping_sub(val);`.
2258    ///
2259    /// This method operates in units of `T`, which means that it cannot be used
2260    /// to offset the pointer by an amount which is not a multiple of
2261    /// `size_of::<T>()`. This can sometimes be inconvenient, as you may want to
2262    /// work with a deliberately misaligned pointer. In such cases, you may use
2263    /// the [`fetch_byte_sub`](Self::fetch_byte_sub) method instead.
2264    ///
2265    /// `fetch_ptr_sub` takes an [`Ordering`] argument which describes the memory
2266    /// ordering of this operation. All ordering modes are possible. Note that
2267    /// using [`Acquire`] makes the store part of this operation [`Relaxed`],
2268    /// and using [`Release`] makes the load part [`Relaxed`].
2269    ///
2270    /// **Note**: This method is only available on platforms that support atomic
2271    /// operations on [`AtomicPtr`].
2272    ///
2273    /// [`wrapping_sub`]: pointer::wrapping_sub
2274    ///
2275    /// # Examples
2276    ///
2277    /// ```
2278    /// use core::sync::atomic::{AtomicPtr, Ordering};
2279    ///
2280    /// let array = [1i32, 2i32];
2281    /// let atom = AtomicPtr::new(array.as_ptr().wrapping_add(1) as *mut _);
2282    ///
2283    /// assert!(core::ptr::eq(
2284    ///     atom.fetch_ptr_sub(1, Ordering::Relaxed),
2285    ///     &array[1],
2286    /// ));
2287    /// assert!(core::ptr::eq(atom.load(Ordering::Relaxed), &array[0]));
2288    /// ```
2289    #[inline]
2290    #[cfg(target_has_atomic = "ptr")]
2291    #[stable(feature = "strict_provenance_atomic_ptr", since = "CURRENT_RUSTC_VERSION")]
2292    #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
2293    pub fn fetch_ptr_sub(&self, val: usize, order: Ordering) -> *mut T {
2294        self.fetch_byte_sub(val.wrapping_mul(size_of::<T>()), order)
2295    }
2296
2297    /// Offsets the pointer's address by adding `val` *bytes*, returning the
2298    /// previous pointer.
2299    ///
2300    /// This is equivalent to using [`wrapping_byte_add`] to atomically
2301    /// perform `ptr = ptr.wrapping_byte_add(val)`.
2302    ///
2303    /// `fetch_byte_add` takes an [`Ordering`] argument which describes the
2304    /// memory ordering of this operation. All ordering modes are possible. Note
2305    /// that using [`Acquire`] makes the store part of this operation
2306    /// [`Relaxed`], and using [`Release`] makes the load part [`Relaxed`].
2307    ///
2308    /// **Note**: This method is only available on platforms that support atomic
2309    /// operations on [`AtomicPtr`].
2310    ///
2311    /// [`wrapping_byte_add`]: pointer::wrapping_byte_add
2312    ///
2313    /// # Examples
2314    ///
2315    /// ```
2316    /// use core::sync::atomic::{AtomicPtr, Ordering};
2317    ///
2318    /// let atom = AtomicPtr::<i64>::new(core::ptr::null_mut());
2319    /// assert_eq!(atom.fetch_byte_add(1, Ordering::Relaxed).addr(), 0);
2320    /// // Note: in units of bytes, not `size_of::<i64>()`.
2321    /// assert_eq!(atom.load(Ordering::Relaxed).addr(), 1);
2322    /// ```
2323    #[inline]
2324    #[cfg(target_has_atomic = "ptr")]
2325    #[stable(feature = "strict_provenance_atomic_ptr", since = "CURRENT_RUSTC_VERSION")]
2326    #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
2327    pub fn fetch_byte_add(&self, val: usize, order: Ordering) -> *mut T {
2328        // SAFETY: data races are prevented by atomic intrinsics.
2329        unsafe { atomic_add(self.p.get(), val, order).cast() }
2330    }
2331
2332    /// Offsets the pointer's address by subtracting `val` *bytes*, returning the
2333    /// previous pointer.
2334    ///
2335    /// This is equivalent to using [`wrapping_byte_sub`] to atomically
2336    /// perform `ptr = ptr.wrapping_byte_sub(val)`.
2337    ///
2338    /// `fetch_byte_sub` takes an [`Ordering`] argument which describes the
2339    /// memory ordering of this operation. All ordering modes are possible. Note
2340    /// that using [`Acquire`] makes the store part of this operation
2341    /// [`Relaxed`], and using [`Release`] makes the load part [`Relaxed`].
2342    ///
2343    /// **Note**: This method is only available on platforms that support atomic
2344    /// operations on [`AtomicPtr`].
2345    ///
2346    /// [`wrapping_byte_sub`]: pointer::wrapping_byte_sub
2347    ///
2348    /// # Examples
2349    ///
2350    /// ```
2351    /// use core::sync::atomic::{AtomicPtr, Ordering};
2352    ///
2353    /// let mut arr = [0i64, 1];
2354    /// let atom = AtomicPtr::<i64>::new(&raw mut arr[1]);
2355    /// assert_eq!(atom.fetch_byte_sub(8, Ordering::Relaxed).addr(), (&raw const arr[1]).addr());
2356    /// assert_eq!(atom.load(Ordering::Relaxed).addr(), (&raw const arr[0]).addr());
2357    /// ```
2358    #[inline]
2359    #[cfg(target_has_atomic = "ptr")]
2360    #[stable(feature = "strict_provenance_atomic_ptr", since = "CURRENT_RUSTC_VERSION")]
2361    #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
2362    pub fn fetch_byte_sub(&self, val: usize, order: Ordering) -> *mut T {
2363        // SAFETY: data races are prevented by atomic intrinsics.
2364        unsafe { atomic_sub(self.p.get(), val, order).cast() }
2365    }
2366
2367    /// Performs a bitwise "or" operation on the address of the current pointer,
2368    /// and the argument `val`, and stores a pointer with provenance of the
2369    /// current pointer and the resulting address.
2370    ///
2371    /// This is equivalent to using [`map_addr`] to atomically perform
2372    /// `ptr = ptr.map_addr(|a| a | val)`. This can be used in tagged
2373    /// pointer schemes to atomically set tag bits.
2374    ///
2375    /// **Caveat**: This operation returns the previous value. To compute the
2376    /// stored value without losing provenance, you may use [`map_addr`]. For
2377    /// example: `a.fetch_or(val).map_addr(|a| a | val)`.
2378    ///
2379    /// `fetch_or` takes an [`Ordering`] argument which describes the memory
2380    /// ordering of this operation. All ordering modes are possible. Note that
2381    /// using [`Acquire`] makes the store part of this operation [`Relaxed`],
2382    /// and using [`Release`] makes the load part [`Relaxed`].
2383    ///
2384    /// **Note**: This method is only available on platforms that support atomic
2385    /// operations on [`AtomicPtr`].
2386    ///
2387    /// This API and its claimed semantics are part of the Strict Provenance
2388    /// experiment, see the [module documentation for `ptr`][crate::ptr] for
2389    /// details.
2390    ///
2391    /// [`map_addr`]: pointer::map_addr
2392    ///
2393    /// # Examples
2394    ///
2395    /// ```
2396    /// use core::sync::atomic::{AtomicPtr, Ordering};
2397    ///
2398    /// let pointer = &mut 3i64 as *mut i64;
2399    ///
2400    /// let atom = AtomicPtr::<i64>::new(pointer);
2401    /// // Tag the bottom bit of the pointer.
2402    /// assert_eq!(atom.fetch_or(1, Ordering::Relaxed).addr() & 1, 0);
2403    /// // Extract and untag.
2404    /// let tagged = atom.load(Ordering::Relaxed);
2405    /// assert_eq!(tagged.addr() & 1, 1);
2406    /// assert_eq!(tagged.map_addr(|p| p & !1), pointer);
2407    /// ```
2408    #[inline]
2409    #[cfg(target_has_atomic = "ptr")]
2410    #[stable(feature = "strict_provenance_atomic_ptr", since = "CURRENT_RUSTC_VERSION")]
2411    #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
2412    pub fn fetch_or(&self, val: usize, order: Ordering) -> *mut T {
2413        // SAFETY: data races are prevented by atomic intrinsics.
2414        unsafe { atomic_or(self.p.get(), val, order).cast() }
2415    }
2416
2417    /// Performs a bitwise "and" operation on the address of the current
2418    /// pointer, and the argument `val`, and stores a pointer with provenance of
2419    /// the current pointer and the resulting address.
2420    ///
2421    /// This is equivalent to using [`map_addr`] to atomically perform
2422    /// `ptr = ptr.map_addr(|a| a & val)`. This can be used in tagged
2423    /// pointer schemes to atomically unset tag bits.
2424    ///
2425    /// **Caveat**: This operation returns the previous value. To compute the
2426    /// stored value without losing provenance, you may use [`map_addr`]. For
2427    /// example: `a.fetch_and(val).map_addr(|a| a & val)`.
2428    ///
2429    /// `fetch_and` takes an [`Ordering`] argument which describes the memory
2430    /// ordering of this operation. All ordering modes are possible. Note that
2431    /// using [`Acquire`] makes the store part of this operation [`Relaxed`],
2432    /// and using [`Release`] makes the load part [`Relaxed`].
2433    ///
2434    /// **Note**: This method is only available on platforms that support atomic
2435    /// operations on [`AtomicPtr`].
2436    ///
2437    /// This API and its claimed semantics are part of the Strict Provenance
2438    /// experiment, see the [module documentation for `ptr`][crate::ptr] for
2439    /// details.
2440    ///
2441    /// [`map_addr`]: pointer::map_addr
2442    ///
2443    /// # Examples
2444    ///
2445    /// ```
2446    /// use core::sync::atomic::{AtomicPtr, Ordering};
2447    ///
2448    /// let pointer = &mut 3i64 as *mut i64;
2449    /// // A tagged pointer
2450    /// let atom = AtomicPtr::<i64>::new(pointer.map_addr(|a| a | 1));
2451    /// assert_eq!(atom.fetch_or(1, Ordering::Relaxed).addr() & 1, 1);
2452    /// // Untag, and extract the previously tagged pointer.
2453    /// let untagged = atom.fetch_and(!1, Ordering::Relaxed)
2454    ///     .map_addr(|a| a & !1);
2455    /// assert_eq!(untagged, pointer);
2456    /// ```
2457    #[inline]
2458    #[cfg(target_has_atomic = "ptr")]
2459    #[stable(feature = "strict_provenance_atomic_ptr", since = "CURRENT_RUSTC_VERSION")]
2460    #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
2461    pub fn fetch_and(&self, val: usize, order: Ordering) -> *mut T {
2462        // SAFETY: data races are prevented by atomic intrinsics.
2463        unsafe { atomic_and(self.p.get(), val, order).cast() }
2464    }
2465
2466    /// Performs a bitwise "xor" operation on the address of the current
2467    /// pointer, and the argument `val`, and stores a pointer with provenance of
2468    /// the current pointer and the resulting address.
2469    ///
2470    /// This is equivalent to using [`map_addr`] to atomically perform
2471    /// `ptr = ptr.map_addr(|a| a ^ val)`. This can be used in tagged
2472    /// pointer schemes to atomically toggle tag bits.
2473    ///
2474    /// **Caveat**: This operation returns the previous value. To compute the
2475    /// stored value without losing provenance, you may use [`map_addr`]. For
2476    /// example: `a.fetch_xor(val).map_addr(|a| a ^ val)`.
2477    ///
2478    /// `fetch_xor` takes an [`Ordering`] argument which describes the memory
2479    /// ordering of this operation. All ordering modes are possible. Note that
2480    /// using [`Acquire`] makes the store part of this operation [`Relaxed`],
2481    /// and using [`Release`] makes the load part [`Relaxed`].
2482    ///
2483    /// **Note**: This method is only available on platforms that support atomic
2484    /// operations on [`AtomicPtr`].
2485    ///
2486    /// This API and its claimed semantics are part of the Strict Provenance
2487    /// experiment, see the [module documentation for `ptr`][crate::ptr] for
2488    /// details.
2489    ///
2490    /// [`map_addr`]: pointer::map_addr
2491    ///
2492    /// # Examples
2493    ///
2494    /// ```
2495    /// use core::sync::atomic::{AtomicPtr, Ordering};
2496    ///
2497    /// let pointer = &mut 3i64 as *mut i64;
2498    /// let atom = AtomicPtr::<i64>::new(pointer);
2499    ///
2500    /// // Toggle a tag bit on the pointer.
2501    /// atom.fetch_xor(1, Ordering::Relaxed);
2502    /// assert_eq!(atom.load(Ordering::Relaxed).addr() & 1, 1);
2503    /// ```
2504    #[inline]
2505    #[cfg(target_has_atomic = "ptr")]
2506    #[stable(feature = "strict_provenance_atomic_ptr", since = "CURRENT_RUSTC_VERSION")]
2507    #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
2508    pub fn fetch_xor(&self, val: usize, order: Ordering) -> *mut T {
2509        // SAFETY: data races are prevented by atomic intrinsics.
2510        unsafe { atomic_xor(self.p.get(), val, order).cast() }
2511    }
2512
2513    /// Returns a mutable pointer to the underlying pointer.
2514    ///
2515    /// Doing non-atomic reads and writes on the resulting pointer can be a data race.
2516    /// This method is mostly useful for FFI, where the function signature may use
2517    /// `*mut *mut T` instead of `&AtomicPtr<T>`.
2518    ///
2519    /// Returning an `*mut` pointer from a shared reference to this atomic is safe because the
2520    /// atomic types work with interior mutability. All modifications of an atomic change the value
2521    /// through a shared reference, and can do so safely as long as they use atomic operations. Any
2522    /// use of the returned raw pointer requires an `unsafe` block and still has to uphold the
2523    /// requirements of the [memory model].
2524    ///
2525    /// # Examples
2526    ///
2527    /// ```ignore (extern-declaration)
2528    /// use std::sync::atomic::AtomicPtr;
2529    ///
2530    /// extern "C" {
2531    ///     fn my_atomic_op(arg: *mut *mut u32);
2532    /// }
2533    ///
2534    /// let mut value = 17;
2535    /// let atomic = AtomicPtr::new(&mut value);
2536    ///
2537    /// // SAFETY: Safe as long as `my_atomic_op` is atomic.
2538    /// unsafe {
2539    ///     my_atomic_op(atomic.as_ptr());
2540    /// }
2541    /// ```
2542    ///
2543    /// [memory model]: self#memory-model-for-atomic-accesses
2544    #[inline]
2545    #[stable(feature = "atomic_as_ptr", since = "1.70.0")]
2546    #[rustc_const_stable(feature = "atomic_as_ptr", since = "1.70.0")]
2547    #[rustc_never_returns_null_ptr]
2548    pub const fn as_ptr(&self) -> *mut *mut T {
2549        self.p.get()
2550    }
2551}
2552
2553#[cfg(target_has_atomic_load_store = "8")]
2554#[stable(feature = "atomic_bool_from", since = "1.24.0")]
2555#[rustc_const_unstable(feature = "const_convert", issue = "143773")]
2556#[cfg(not(feature = "ferrocene_certified"))]
2557impl const From<bool> for AtomicBool {
2558    /// Converts a `bool` into an `AtomicBool`.
2559    ///
2560    /// # Examples
2561    ///
2562    /// ```
2563    /// use std::sync::atomic::AtomicBool;
2564    /// let atomic_bool = AtomicBool::from(true);
2565    /// assert_eq!(format!("{atomic_bool:?}"), "true")
2566    /// ```
2567    #[inline]
2568    fn from(b: bool) -> Self {
2569        Self::new(b)
2570    }
2571}
2572
2573#[cfg(target_has_atomic_load_store = "ptr")]
2574#[stable(feature = "atomic_from", since = "1.23.0")]
2575#[rustc_const_unstable(feature = "const_convert", issue = "143773")]
2576#[cfg(not(feature = "ferrocene_certified"))]
2577impl<T> const From<*mut T> for AtomicPtr<T> {
2578    /// Converts a `*mut T` into an `AtomicPtr<T>`.
2579    #[inline]
2580    fn from(p: *mut T) -> Self {
2581        Self::new(p)
2582    }
2583}
2584
2585#[allow(unused_macros)] // This macro ends up being unused on some architectures.
2586macro_rules! if_8_bit {
2587    (u8, $( yes = [$($yes:tt)*], )? $( no = [$($no:tt)*], )? ) => { concat!("", $($($yes)*)?) };
2588    (i8, $( yes = [$($yes:tt)*], )? $( no = [$($no:tt)*], )? ) => { concat!("", $($($yes)*)?) };
2589    ($_:ident, $( yes = [$($yes:tt)*], )? $( no = [$($no:tt)*], )? ) => { concat!("", $($($no)*)?) };
2590}
2591
2592#[cfg(target_has_atomic_load_store)]
2593macro_rules! atomic_int {
2594    ($cfg_cas:meta,
2595     $cfg_align:meta,
2596     $stable:meta,
2597     $stable_cxchg:meta,
2598     $stable_debug:meta,
2599     $stable_access:meta,
2600     $stable_from:meta,
2601     $stable_nand:meta,
2602     $const_stable_new:meta,
2603     $const_stable_into_inner:meta,
2604     $diagnostic_item:meta,
2605     $s_int_type:literal,
2606     $extra_feature:expr,
2607     $min_fn:ident, $max_fn:ident,
2608     $align:expr,
2609     $int_type:ident $atomic_type:ident) => {
2610        /// An integer type which can be safely shared between threads.
2611        ///
2612        /// This type has the same
2613        #[doc = if_8_bit!(
2614            $int_type,
2615            yes = ["size, alignment, and bit validity"],
2616            no = ["size and bit validity"],
2617        )]
2618        /// as the underlying integer type, [`
2619        #[doc = $s_int_type]
2620        /// `].
2621        #[doc = if_8_bit! {
2622            $int_type,
2623            no = [
2624                "However, the alignment of this type is always equal to its ",
2625                "size, even on targets where [`", $s_int_type, "`] has a ",
2626                "lesser alignment."
2627            ],
2628        }]
2629        ///
2630        /// For more about the differences between atomic types and
2631        /// non-atomic types as well as information about the portability of
2632        /// this type, please see the [module-level documentation].
2633        ///
2634        /// **Note:** This type is only available on platforms that support
2635        /// atomic loads and stores of [`
2636        #[doc = $s_int_type]
2637        /// `].
2638        ///
2639        /// [module-level documentation]: crate::sync::atomic
2640        #[$stable]
2641        #[$diagnostic_item]
2642        #[repr(C, align($align))]
2643        pub struct $atomic_type {
2644            v: UnsafeCell<$int_type>,
2645        }
2646
2647        #[$stable]
2648        impl Default for $atomic_type {
2649            #[inline]
2650            fn default() -> Self {
2651                Self::new(Default::default())
2652            }
2653        }
2654
2655        #[$stable_from]
2656        #[rustc_const_unstable(feature = "const_convert", issue = "143773")]
2657        impl const From<$int_type> for $atomic_type {
2658            #[doc = concat!("Converts an `", stringify!($int_type), "` into an `", stringify!($atomic_type), "`.")]
2659            #[inline]
2660            fn from(v: $int_type) -> Self { Self::new(v) }
2661        }
2662
2663        #[$stable_debug]
2664        #[cfg(not(feature = "ferrocene_certified"))]
2665        impl fmt::Debug for $atomic_type {
2666            fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
2667                fmt::Debug::fmt(&self.load(Ordering::Relaxed), f)
2668            }
2669        }
2670
2671        // Send is implicitly implemented.
2672        #[$stable]
2673        unsafe impl Sync for $atomic_type {}
2674
2675        impl $atomic_type {
2676            /// Creates a new atomic integer.
2677            ///
2678            /// # Examples
2679            ///
2680            /// ```
2681            #[doc = concat!($extra_feature, "use std::sync::atomic::", stringify!($atomic_type), ";")]
2682            ///
2683            #[doc = concat!("let atomic_forty_two = ", stringify!($atomic_type), "::new(42);")]
2684            /// ```
2685            #[inline]
2686            #[$stable]
2687            #[$const_stable_new]
2688            #[must_use]
2689            pub const fn new(v: $int_type) -> Self {
2690                Self {v: UnsafeCell::new(v)}
2691            }
2692
2693            /// Creates a new reference to an atomic integer from a pointer.
2694            ///
2695            /// # Examples
2696            ///
2697            /// ```
2698            #[doc = concat!($extra_feature, "use std::sync::atomic::{self, ", stringify!($atomic_type), "};")]
2699            ///
2700            /// // Get a pointer to an allocated value
2701            #[doc = concat!("let ptr: *mut ", stringify!($int_type), " = Box::into_raw(Box::new(0));")]
2702            ///
2703            #[doc = concat!("assert!(ptr.cast::<", stringify!($atomic_type), ">().is_aligned());")]
2704            ///
2705            /// {
2706            ///     // Create an atomic view of the allocated value
2707            // SAFETY: this is a doc comment, tidy, it can't hurt you (also guaranteed by the construction of `ptr` and the assert above)
2708            #[doc = concat!("    let atomic = unsafe {", stringify!($atomic_type), "::from_ptr(ptr) };")]
2709            ///
2710            ///     // Use `atomic` for atomic operations, possibly share it with other threads
2711            ///     atomic.store(1, atomic::Ordering::Relaxed);
2712            /// }
2713            ///
2714            /// // It's ok to non-atomically access the value behind `ptr`,
2715            /// // since the reference to the atomic ended its lifetime in the block above
2716            /// assert_eq!(unsafe { *ptr }, 1);
2717            ///
2718            /// // Deallocate the value
2719            /// unsafe { drop(Box::from_raw(ptr)) }
2720            /// ```
2721            ///
2722            /// # Safety
2723            ///
2724            /// * `ptr` must be aligned to
2725            #[doc = concat!("  `align_of::<", stringify!($atomic_type), ">()`")]
2726            #[doc = if_8_bit!{
2727                $int_type,
2728                yes = [
2729                    "  (note that this is always true, since `align_of::<",
2730                    stringify!($atomic_type), ">() == 1`)."
2731                ],
2732                no = [
2733                    "  (note that on some platforms this can be bigger than `align_of::<",
2734                    stringify!($int_type), ">()`)."
2735                ],
2736            }]
2737            /// * `ptr` must be [valid] for both reads and writes for the whole lifetime `'a`.
2738            /// * You must adhere to the [Memory model for atomic accesses]. In particular, it is not
2739            ///   allowed to mix conflicting atomic and non-atomic accesses, or atomic accesses of different
2740            ///   sizes, without synchronization.
2741            ///
2742            /// [valid]: crate::ptr#safety
2743            /// [Memory model for atomic accesses]: self#memory-model-for-atomic-accesses
2744            #[inline]
2745            #[stable(feature = "atomic_from_ptr", since = "1.75.0")]
2746            #[rustc_const_stable(feature = "const_atomic_from_ptr", since = "1.84.0")]
2747            pub const unsafe fn from_ptr<'a>(ptr: *mut $int_type) -> &'a $atomic_type {
2748                // SAFETY: guaranteed by the caller
2749                unsafe { &*ptr.cast() }
2750            }
2751
2752
2753            /// Returns a mutable reference to the underlying integer.
2754            ///
2755            /// This is safe because the mutable reference guarantees that no other threads are
2756            /// concurrently accessing the atomic data.
2757            ///
2758            /// # Examples
2759            ///
2760            /// ```
2761            #[doc = concat!($extra_feature, "use std::sync::atomic::{", stringify!($atomic_type), ", Ordering};")]
2762            ///
2763            #[doc = concat!("let mut some_var = ", stringify!($atomic_type), "::new(10);")]
2764            /// assert_eq!(*some_var.get_mut(), 10);
2765            /// *some_var.get_mut() = 5;
2766            /// assert_eq!(some_var.load(Ordering::SeqCst), 5);
2767            /// ```
2768            #[inline]
2769            #[$stable_access]
2770            pub fn get_mut(&mut self) -> &mut $int_type {
2771                self.v.get_mut()
2772            }
2773
2774            #[doc = concat!("Get atomic access to a `&mut ", stringify!($int_type), "`.")]
2775            ///
2776            #[doc = if_8_bit! {
2777                $int_type,
2778                no = [
2779                    "**Note:** This function is only available on targets where `",
2780                    stringify!($atomic_type), "` has the same alignment as `", stringify!($int_type), "`."
2781                ],
2782            }]
2783            ///
2784            /// # Examples
2785            ///
2786            /// ```
2787            /// #![feature(atomic_from_mut)]
2788            #[doc = concat!($extra_feature, "use std::sync::atomic::{", stringify!($atomic_type), ", Ordering};")]
2789            ///
2790            /// let mut some_int = 123;
2791            #[doc = concat!("let a = ", stringify!($atomic_type), "::from_mut(&mut some_int);")]
2792            /// a.store(100, Ordering::Relaxed);
2793            /// assert_eq!(some_int, 100);
2794            /// ```
2795            ///
2796            #[inline]
2797            #[$cfg_align]
2798            #[unstable(feature = "atomic_from_mut", issue = "76314")]
2799            pub fn from_mut(v: &mut $int_type) -> &mut Self {
2800                let [] = [(); align_of::<Self>() - align_of::<$int_type>()];
2801                // SAFETY:
2802                //  - the mutable reference guarantees unique ownership.
2803                //  - the alignment of `$int_type` and `Self` is the
2804                //    same, as promised by $cfg_align and verified above.
2805                unsafe { &mut *(v as *mut $int_type as *mut Self) }
2806            }
2807
2808            #[doc = concat!("Get non-atomic access to a `&mut [", stringify!($atomic_type), "]` slice")]
2809            ///
2810            /// This is safe because the mutable reference guarantees that no other threads are
2811            /// concurrently accessing the atomic data.
2812            ///
2813            /// # Examples
2814            ///
2815            /// ```ignore-wasm
2816            /// #![feature(atomic_from_mut)]
2817            #[doc = concat!($extra_feature, "use std::sync::atomic::{", stringify!($atomic_type), ", Ordering};")]
2818            ///
2819            #[doc = concat!("let mut some_ints = [const { ", stringify!($atomic_type), "::new(0) }; 10];")]
2820            ///
2821            #[doc = concat!("let view: &mut [", stringify!($int_type), "] = ", stringify!($atomic_type), "::get_mut_slice(&mut some_ints);")]
2822            /// assert_eq!(view, [0; 10]);
2823            /// view
2824            ///     .iter_mut()
2825            ///     .enumerate()
2826            ///     .for_each(|(idx, int)| *int = idx as _);
2827            ///
2828            /// std::thread::scope(|s| {
2829            ///     some_ints
2830            ///         .iter()
2831            ///         .enumerate()
2832            ///         .for_each(|(idx, int)| {
2833            ///             s.spawn(move || assert_eq!(int.load(Ordering::Relaxed), idx as _));
2834            ///         })
2835            /// });
2836            /// ```
2837            #[inline]
2838            #[unstable(feature = "atomic_from_mut", issue = "76314")]
2839            pub fn get_mut_slice(this: &mut [Self]) -> &mut [$int_type] {
2840                // SAFETY: the mutable reference guarantees unique ownership.
2841                unsafe { &mut *(this as *mut [Self] as *mut [$int_type]) }
2842            }
2843
2844            #[doc = concat!("Get atomic access to a `&mut [", stringify!($int_type), "]` slice.")]
2845            ///
2846            /// # Examples
2847            ///
2848            /// ```ignore-wasm
2849            /// #![feature(atomic_from_mut)]
2850            #[doc = concat!($extra_feature, "use std::sync::atomic::{", stringify!($atomic_type), ", Ordering};")]
2851            ///
2852            /// let mut some_ints = [0; 10];
2853            #[doc = concat!("let a = &*", stringify!($atomic_type), "::from_mut_slice(&mut some_ints);")]
2854            /// std::thread::scope(|s| {
2855            ///     for i in 0..a.len() {
2856            ///         s.spawn(move || a[i].store(i as _, Ordering::Relaxed));
2857            ///     }
2858            /// });
2859            /// for (i, n) in some_ints.into_iter().enumerate() {
2860            ///     assert_eq!(i, n as usize);
2861            /// }
2862            /// ```
2863            #[inline]
2864            #[$cfg_align]
2865            #[unstable(feature = "atomic_from_mut", issue = "76314")]
2866            pub fn from_mut_slice(v: &mut [$int_type]) -> &mut [Self] {
2867                let [] = [(); align_of::<Self>() - align_of::<$int_type>()];
2868                // SAFETY:
2869                //  - the mutable reference guarantees unique ownership.
2870                //  - the alignment of `$int_type` and `Self` is the
2871                //    same, as promised by $cfg_align and verified above.
2872                unsafe { &mut *(v as *mut [$int_type] as *mut [Self]) }
2873            }
2874
2875            /// Consumes the atomic and returns the contained value.
2876            ///
2877            /// This is safe because passing `self` by value guarantees that no other threads are
2878            /// concurrently accessing the atomic data.
2879            ///
2880            /// # Examples
2881            ///
2882            /// ```
2883            #[doc = concat!($extra_feature, "use std::sync::atomic::", stringify!($atomic_type), ";")]
2884            ///
2885            #[doc = concat!("let some_var = ", stringify!($atomic_type), "::new(5);")]
2886            /// assert_eq!(some_var.into_inner(), 5);
2887            /// ```
2888            #[inline]
2889            #[$stable_access]
2890            #[$const_stable_into_inner]
2891            pub const fn into_inner(self) -> $int_type {
2892                self.v.into_inner()
2893            }
2894
2895            /// Loads a value from the atomic integer.
2896            ///
2897            /// `load` takes an [`Ordering`] argument which describes the memory ordering of this operation.
2898            /// Possible values are [`SeqCst`], [`Acquire`] and [`Relaxed`].
2899            ///
2900            /// # Panics
2901            ///
2902            /// Panics if `order` is [`Release`] or [`AcqRel`].
2903            ///
2904            /// # Examples
2905            ///
2906            /// ```
2907            #[doc = concat!($extra_feature, "use std::sync::atomic::{", stringify!($atomic_type), ", Ordering};")]
2908            ///
2909            #[doc = concat!("let some_var = ", stringify!($atomic_type), "::new(5);")]
2910            ///
2911            /// assert_eq!(some_var.load(Ordering::Relaxed), 5);
2912            /// ```
2913            #[inline]
2914            #[$stable]
2915            #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
2916            pub fn load(&self, order: Ordering) -> $int_type {
2917                // SAFETY: data races are prevented by atomic intrinsics.
2918                unsafe { atomic_load(self.v.get(), order) }
2919            }
2920
2921            /// Stores a value into the atomic integer.
2922            ///
2923            /// `store` takes an [`Ordering`] argument which describes the memory ordering of this operation.
2924            ///  Possible values are [`SeqCst`], [`Release`] and [`Relaxed`].
2925            ///
2926            /// # Panics
2927            ///
2928            /// Panics if `order` is [`Acquire`] or [`AcqRel`].
2929            ///
2930            /// # Examples
2931            ///
2932            /// ```
2933            #[doc = concat!($extra_feature, "use std::sync::atomic::{", stringify!($atomic_type), ", Ordering};")]
2934            ///
2935            #[doc = concat!("let some_var = ", stringify!($atomic_type), "::new(5);")]
2936            ///
2937            /// some_var.store(10, Ordering::Relaxed);
2938            /// assert_eq!(some_var.load(Ordering::Relaxed), 10);
2939            /// ```
2940            #[inline]
2941            #[$stable]
2942            #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
2943            pub fn store(&self, val: $int_type, order: Ordering) {
2944                // SAFETY: data races are prevented by atomic intrinsics.
2945                unsafe { atomic_store(self.v.get(), val, order); }
2946            }
2947
2948            /// Stores a value into the atomic integer, returning the previous value.
2949            ///
2950            /// `swap` takes an [`Ordering`] argument which describes the memory ordering
2951            /// of this operation. All ordering modes are possible. Note that using
2952            /// [`Acquire`] makes the store part of this operation [`Relaxed`], and
2953            /// using [`Release`] makes the load part [`Relaxed`].
2954            ///
2955            /// **Note**: This method is only available on platforms that support atomic operations on
2956            #[doc = concat!("[`", $s_int_type, "`].")]
2957            ///
2958            /// # Examples
2959            ///
2960            /// ```
2961            #[doc = concat!($extra_feature, "use std::sync::atomic::{", stringify!($atomic_type), ", Ordering};")]
2962            ///
2963            #[doc = concat!("let some_var = ", stringify!($atomic_type), "::new(5);")]
2964            ///
2965            /// assert_eq!(some_var.swap(10, Ordering::Relaxed), 5);
2966            /// ```
2967            #[inline]
2968            #[$stable]
2969            #[$cfg_cas]
2970            #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
2971            pub fn swap(&self, val: $int_type, order: Ordering) -> $int_type {
2972                // SAFETY: data races are prevented by atomic intrinsics.
2973                unsafe { atomic_swap(self.v.get(), val, order) }
2974            }
2975
2976            /// Stores a value into the atomic integer if the current value is the same as
2977            /// the `current` value.
2978            ///
2979            /// The return value is always the previous value. If it is equal to `current`, then the
2980            /// value was updated.
2981            ///
2982            /// `compare_and_swap` also takes an [`Ordering`] argument which describes the memory
2983            /// ordering of this operation. Notice that even when using [`AcqRel`], the operation
2984            /// might fail and hence just perform an `Acquire` load, but not have `Release` semantics.
2985            /// Using [`Acquire`] makes the store part of this operation [`Relaxed`] if it
2986            /// happens, and using [`Release`] makes the load part [`Relaxed`].
2987            ///
2988            /// **Note**: This method is only available on platforms that support atomic operations on
2989            #[doc = concat!("[`", $s_int_type, "`].")]
2990            ///
2991            /// # Migrating to `compare_exchange` and `compare_exchange_weak`
2992            ///
2993            /// `compare_and_swap` is equivalent to `compare_exchange` with the following mapping for
2994            /// memory orderings:
2995            ///
2996            /// Original | Success | Failure
2997            /// -------- | ------- | -------
2998            /// Relaxed  | Relaxed | Relaxed
2999            /// Acquire  | Acquire | Acquire
3000            /// Release  | Release | Relaxed
3001            /// AcqRel   | AcqRel  | Acquire
3002            /// SeqCst   | SeqCst  | SeqCst
3003            ///
3004            /// `compare_and_swap` and `compare_exchange` also differ in their return type. You can use
3005            /// `compare_exchange(...).unwrap_or_else(|x| x)` to recover the behavior of `compare_and_swap`,
3006            /// but in most cases it is more idiomatic to check whether the return value is `Ok` or `Err`
3007            /// rather than to infer success vs failure based on the value that was read.
3008            ///
3009            /// During migration, consider whether it makes sense to use `compare_exchange_weak` instead.
3010            /// `compare_exchange_weak` is allowed to fail spuriously even when the comparison succeeds,
3011            /// which allows the compiler to generate better assembly code when the compare and swap
3012            /// is used in a loop.
3013            ///
3014            /// # Examples
3015            ///
3016            /// ```
3017            #[doc = concat!($extra_feature, "use std::sync::atomic::{", stringify!($atomic_type), ", Ordering};")]
3018            ///
3019            #[doc = concat!("let some_var = ", stringify!($atomic_type), "::new(5);")]
3020            ///
3021            /// assert_eq!(some_var.compare_and_swap(5, 10, Ordering::Relaxed), 5);
3022            /// assert_eq!(some_var.load(Ordering::Relaxed), 10);
3023            ///
3024            /// assert_eq!(some_var.compare_and_swap(6, 12, Ordering::Relaxed), 10);
3025            /// assert_eq!(some_var.load(Ordering::Relaxed), 10);
3026            /// ```
3027            #[inline]
3028            #[$stable]
3029            #[deprecated(
3030                since = "1.50.0",
3031                note = "Use `compare_exchange` or `compare_exchange_weak` instead")
3032            ]
3033            #[$cfg_cas]
3034            #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
3035            pub fn compare_and_swap(&self,
3036                                    current: $int_type,
3037                                    new: $int_type,
3038                                    order: Ordering) -> $int_type {
3039                match self.compare_exchange(current,
3040                                            new,
3041                                            order,
3042                                            strongest_failure_ordering(order)) {
3043                    Ok(x) => x,
3044                    Err(x) => x,
3045                }
3046            }
3047
3048            /// Stores a value into the atomic integer if the current value is the same as
3049            /// the `current` value.
3050            ///
3051            /// The return value is a result indicating whether the new value was written and
3052            /// containing the previous value. On success this value is guaranteed to be equal to
3053            /// `current`.
3054            ///
3055            /// `compare_exchange` takes two [`Ordering`] arguments to describe the memory
3056            /// ordering of this operation. `success` describes the required ordering for the
3057            /// read-modify-write operation that takes place if the comparison with `current` succeeds.
3058            /// `failure` describes the required ordering for the load operation that takes place when
3059            /// the comparison fails. Using [`Acquire`] as success ordering makes the store part
3060            /// of this operation [`Relaxed`], and using [`Release`] makes the successful load
3061            /// [`Relaxed`]. The failure ordering can only be [`SeqCst`], [`Acquire`] or [`Relaxed`].
3062            ///
3063            /// **Note**: This method is only available on platforms that support atomic operations on
3064            #[doc = concat!("[`", $s_int_type, "`].")]
3065            ///
3066            /// # Examples
3067            ///
3068            /// ```
3069            #[doc = concat!($extra_feature, "use std::sync::atomic::{", stringify!($atomic_type), ", Ordering};")]
3070            ///
3071            #[doc = concat!("let some_var = ", stringify!($atomic_type), "::new(5);")]
3072            ///
3073            /// assert_eq!(some_var.compare_exchange(5, 10,
3074            ///                                      Ordering::Acquire,
3075            ///                                      Ordering::Relaxed),
3076            ///            Ok(5));
3077            /// assert_eq!(some_var.load(Ordering::Relaxed), 10);
3078            ///
3079            /// assert_eq!(some_var.compare_exchange(6, 12,
3080            ///                                      Ordering::SeqCst,
3081            ///                                      Ordering::Acquire),
3082            ///            Err(10));
3083            /// assert_eq!(some_var.load(Ordering::Relaxed), 10);
3084            /// ```
3085            ///
3086            /// # Considerations
3087            ///
3088            /// `compare_exchange` is a [compare-and-swap operation] and thus exhibits the usual downsides
3089            /// of CAS operations. In particular, a load of the value followed by a successful
3090            /// `compare_exchange` with the previous load *does not ensure* that other threads have not
3091            /// changed the value in the interim! This is usually important when the *equality* check in
3092            /// the `compare_exchange` is being used to check the *identity* of a value, but equality
3093            /// does not necessarily imply identity. This is a particularly common case for pointers, as
3094            /// a pointer holding the same address does not imply that the same object exists at that
3095            /// address! In this case, `compare_exchange` can lead to the [ABA problem].
3096            ///
3097            /// [ABA Problem]: https://en.wikipedia.org/wiki/ABA_problem
3098            /// [compare-and-swap operation]: https://en.wikipedia.org/wiki/Compare-and-swap
3099            #[inline]
3100            #[$stable_cxchg]
3101            #[$cfg_cas]
3102            #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
3103            pub fn compare_exchange(&self,
3104                                    current: $int_type,
3105                                    new: $int_type,
3106                                    success: Ordering,
3107                                    failure: Ordering) -> Result<$int_type, $int_type> {
3108                // SAFETY: data races are prevented by atomic intrinsics.
3109                unsafe { atomic_compare_exchange(self.v.get(), current, new, success, failure) }
3110            }
3111
3112            /// Stores a value into the atomic integer if the current value is the same as
3113            /// the `current` value.
3114            ///
3115            #[doc = concat!("Unlike [`", stringify!($atomic_type), "::compare_exchange`],")]
3116            /// this function is allowed to spuriously fail even
3117            /// when the comparison succeeds, which can result in more efficient code on some
3118            /// platforms. The return value is a result indicating whether the new value was
3119            /// written and containing the previous value.
3120            ///
3121            /// `compare_exchange_weak` takes two [`Ordering`] arguments to describe the memory
3122            /// ordering of this operation. `success` describes the required ordering for the
3123            /// read-modify-write operation that takes place if the comparison with `current` succeeds.
3124            /// `failure` describes the required ordering for the load operation that takes place when
3125            /// the comparison fails. Using [`Acquire`] as success ordering makes the store part
3126            /// of this operation [`Relaxed`], and using [`Release`] makes the successful load
3127            /// [`Relaxed`]. The failure ordering can only be [`SeqCst`], [`Acquire`] or [`Relaxed`].
3128            ///
3129            /// **Note**: This method is only available on platforms that support atomic operations on
3130            #[doc = concat!("[`", $s_int_type, "`].")]
3131            ///
3132            /// # Examples
3133            ///
3134            /// ```
3135            #[doc = concat!($extra_feature, "use std::sync::atomic::{", stringify!($atomic_type), ", Ordering};")]
3136            ///
3137            #[doc = concat!("let val = ", stringify!($atomic_type), "::new(4);")]
3138            ///
3139            /// let mut old = val.load(Ordering::Relaxed);
3140            /// loop {
3141            ///     let new = old * 2;
3142            ///     match val.compare_exchange_weak(old, new, Ordering::SeqCst, Ordering::Relaxed) {
3143            ///         Ok(_) => break,
3144            ///         Err(x) => old = x,
3145            ///     }
3146            /// }
3147            /// ```
3148            ///
3149            /// # Considerations
3150            ///
3151            /// `compare_exchange` is a [compare-and-swap operation] and thus exhibits the usual downsides
3152            /// of CAS operations. In particular, a load of the value followed by a successful
3153            /// `compare_exchange` with the previous load *does not ensure* that other threads have not
3154            /// changed the value in the interim. This is usually important when the *equality* check in
3155            /// the `compare_exchange` is being used to check the *identity* of a value, but equality
3156            /// does not necessarily imply identity. This is a particularly common case for pointers, as
3157            /// a pointer holding the same address does not imply that the same object exists at that
3158            /// address! In this case, `compare_exchange` can lead to the [ABA problem].
3159            ///
3160            /// [ABA Problem]: https://en.wikipedia.org/wiki/ABA_problem
3161            /// [compare-and-swap operation]: https://en.wikipedia.org/wiki/Compare-and-swap
3162            #[inline]
3163            #[$stable_cxchg]
3164            #[$cfg_cas]
3165            #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
3166            pub fn compare_exchange_weak(&self,
3167                                         current: $int_type,
3168                                         new: $int_type,
3169                                         success: Ordering,
3170                                         failure: Ordering) -> Result<$int_type, $int_type> {
3171                // SAFETY: data races are prevented by atomic intrinsics.
3172                unsafe {
3173                    atomic_compare_exchange_weak(self.v.get(), current, new, success, failure)
3174                }
3175            }
3176
3177            /// Adds to the current value, returning the previous value.
3178            ///
3179            /// This operation wraps around on overflow.
3180            ///
3181            /// `fetch_add` takes an [`Ordering`] argument which describes the memory ordering
3182            /// of this operation. All ordering modes are possible. Note that using
3183            /// [`Acquire`] makes the store part of this operation [`Relaxed`], and
3184            /// using [`Release`] makes the load part [`Relaxed`].
3185            ///
3186            /// **Note**: This method is only available on platforms that support atomic operations on
3187            #[doc = concat!("[`", $s_int_type, "`].")]
3188            ///
3189            /// # Examples
3190            ///
3191            /// ```
3192            #[doc = concat!($extra_feature, "use std::sync::atomic::{", stringify!($atomic_type), ", Ordering};")]
3193            ///
3194            #[doc = concat!("let foo = ", stringify!($atomic_type), "::new(0);")]
3195            /// assert_eq!(foo.fetch_add(10, Ordering::SeqCst), 0);
3196            /// assert_eq!(foo.load(Ordering::SeqCst), 10);
3197            /// ```
3198            #[inline]
3199            #[$stable]
3200            #[$cfg_cas]
3201            #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
3202            pub fn fetch_add(&self, val: $int_type, order: Ordering) -> $int_type {
3203                // SAFETY: data races are prevented by atomic intrinsics.
3204                unsafe { atomic_add(self.v.get(), val, order) }
3205            }
3206
3207            /// Subtracts from the current value, returning the previous value.
3208            ///
3209            /// This operation wraps around on overflow.
3210            ///
3211            /// `fetch_sub` takes an [`Ordering`] argument which describes the memory ordering
3212            /// of this operation. All ordering modes are possible. Note that using
3213            /// [`Acquire`] makes the store part of this operation [`Relaxed`], and
3214            /// using [`Release`] makes the load part [`Relaxed`].
3215            ///
3216            /// **Note**: This method is only available on platforms that support atomic operations on
3217            #[doc = concat!("[`", $s_int_type, "`].")]
3218            ///
3219            /// # Examples
3220            ///
3221            /// ```
3222            #[doc = concat!($extra_feature, "use std::sync::atomic::{", stringify!($atomic_type), ", Ordering};")]
3223            ///
3224            #[doc = concat!("let foo = ", stringify!($atomic_type), "::new(20);")]
3225            /// assert_eq!(foo.fetch_sub(10, Ordering::SeqCst), 20);
3226            /// assert_eq!(foo.load(Ordering::SeqCst), 10);
3227            /// ```
3228            #[inline]
3229            #[$stable]
3230            #[$cfg_cas]
3231            #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
3232            pub fn fetch_sub(&self, val: $int_type, order: Ordering) -> $int_type {
3233                // SAFETY: data races are prevented by atomic intrinsics.
3234                unsafe { atomic_sub(self.v.get(), val, order) }
3235            }
3236
3237            /// Bitwise "and" with the current value.
3238            ///
3239            /// Performs a bitwise "and" operation on the current value and the argument `val`, and
3240            /// sets the new value to the result.
3241            ///
3242            /// Returns the previous value.
3243            ///
3244            /// `fetch_and` takes an [`Ordering`] argument which describes the memory ordering
3245            /// of this operation. All ordering modes are possible. Note that using
3246            /// [`Acquire`] makes the store part of this operation [`Relaxed`], and
3247            /// using [`Release`] makes the load part [`Relaxed`].
3248            ///
3249            /// **Note**: This method is only available on platforms that support atomic operations on
3250            #[doc = concat!("[`", $s_int_type, "`].")]
3251            ///
3252            /// # Examples
3253            ///
3254            /// ```
3255            #[doc = concat!($extra_feature, "use std::sync::atomic::{", stringify!($atomic_type), ", Ordering};")]
3256            ///
3257            #[doc = concat!("let foo = ", stringify!($atomic_type), "::new(0b101101);")]
3258            /// assert_eq!(foo.fetch_and(0b110011, Ordering::SeqCst), 0b101101);
3259            /// assert_eq!(foo.load(Ordering::SeqCst), 0b100001);
3260            /// ```
3261            #[inline]
3262            #[$stable]
3263            #[$cfg_cas]
3264            #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
3265            pub fn fetch_and(&self, val: $int_type, order: Ordering) -> $int_type {
3266                // SAFETY: data races are prevented by atomic intrinsics.
3267                unsafe { atomic_and(self.v.get(), val, order) }
3268            }
3269
3270            /// Bitwise "nand" with the current value.
3271            ///
3272            /// Performs a bitwise "nand" operation on the current value and the argument `val`, and
3273            /// sets the new value to the result.
3274            ///
3275            /// Returns the previous value.
3276            ///
3277            /// `fetch_nand` takes an [`Ordering`] argument which describes the memory ordering
3278            /// of this operation. All ordering modes are possible. Note that using
3279            /// [`Acquire`] makes the store part of this operation [`Relaxed`], and
3280            /// using [`Release`] makes the load part [`Relaxed`].
3281            ///
3282            /// **Note**: This method is only available on platforms that support atomic operations on
3283            #[doc = concat!("[`", $s_int_type, "`].")]
3284            ///
3285            /// # Examples
3286            ///
3287            /// ```
3288            #[doc = concat!($extra_feature, "use std::sync::atomic::{", stringify!($atomic_type), ", Ordering};")]
3289            ///
3290            #[doc = concat!("let foo = ", stringify!($atomic_type), "::new(0x13);")]
3291            /// assert_eq!(foo.fetch_nand(0x31, Ordering::SeqCst), 0x13);
3292            /// assert_eq!(foo.load(Ordering::SeqCst), !(0x13 & 0x31));
3293            /// ```
3294            #[inline]
3295            #[$stable_nand]
3296            #[$cfg_cas]
3297            #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
3298            pub fn fetch_nand(&self, val: $int_type, order: Ordering) -> $int_type {
3299                // SAFETY: data races are prevented by atomic intrinsics.
3300                unsafe { atomic_nand(self.v.get(), val, order) }
3301            }
3302
3303            /// Bitwise "or" with the current value.
3304            ///
3305            /// Performs a bitwise "or" operation on the current value and the argument `val`, and
3306            /// sets the new value to the result.
3307            ///
3308            /// Returns the previous value.
3309            ///
3310            /// `fetch_or` takes an [`Ordering`] argument which describes the memory ordering
3311            /// of this operation. All ordering modes are possible. Note that using
3312            /// [`Acquire`] makes the store part of this operation [`Relaxed`], and
3313            /// using [`Release`] makes the load part [`Relaxed`].
3314            ///
3315            /// **Note**: This method is only available on platforms that support atomic operations on
3316            #[doc = concat!("[`", $s_int_type, "`].")]
3317            ///
3318            /// # Examples
3319            ///
3320            /// ```
3321            #[doc = concat!($extra_feature, "use std::sync::atomic::{", stringify!($atomic_type), ", Ordering};")]
3322            ///
3323            #[doc = concat!("let foo = ", stringify!($atomic_type), "::new(0b101101);")]
3324            /// assert_eq!(foo.fetch_or(0b110011, Ordering::SeqCst), 0b101101);
3325            /// assert_eq!(foo.load(Ordering::SeqCst), 0b111111);
3326            /// ```
3327            #[inline]
3328            #[$stable]
3329            #[$cfg_cas]
3330            #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
3331            pub fn fetch_or(&self, val: $int_type, order: Ordering) -> $int_type {
3332                // SAFETY: data races are prevented by atomic intrinsics.
3333                unsafe { atomic_or(self.v.get(), val, order) }
3334            }
3335
3336            /// Bitwise "xor" with the current value.
3337            ///
3338            /// Performs a bitwise "xor" operation on the current value and the argument `val`, and
3339            /// sets the new value to the result.
3340            ///
3341            /// Returns the previous value.
3342            ///
3343            /// `fetch_xor` takes an [`Ordering`] argument which describes the memory ordering
3344            /// of this operation. All ordering modes are possible. Note that using
3345            /// [`Acquire`] makes the store part of this operation [`Relaxed`], and
3346            /// using [`Release`] makes the load part [`Relaxed`].
3347            ///
3348            /// **Note**: This method is only available on platforms that support atomic operations on
3349            #[doc = concat!("[`", $s_int_type, "`].")]
3350            ///
3351            /// # Examples
3352            ///
3353            /// ```
3354            #[doc = concat!($extra_feature, "use std::sync::atomic::{", stringify!($atomic_type), ", Ordering};")]
3355            ///
3356            #[doc = concat!("let foo = ", stringify!($atomic_type), "::new(0b101101);")]
3357            /// assert_eq!(foo.fetch_xor(0b110011, Ordering::SeqCst), 0b101101);
3358            /// assert_eq!(foo.load(Ordering::SeqCst), 0b011110);
3359            /// ```
3360            #[inline]
3361            #[$stable]
3362            #[$cfg_cas]
3363            #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
3364            pub fn fetch_xor(&self, val: $int_type, order: Ordering) -> $int_type {
3365                // SAFETY: data races are prevented by atomic intrinsics.
3366                unsafe { atomic_xor(self.v.get(), val, order) }
3367            }
3368
3369            /// Fetches the value, and applies a function to it that returns an optional
3370            /// new value. Returns a `Result` of `Ok(previous_value)` if the function returned `Some(_)`, else
3371            /// `Err(previous_value)`.
3372            ///
3373            /// Note: This may call the function multiple times if the value has been changed from other threads in
3374            /// the meantime, as long as the function returns `Some(_)`, but the function will have been applied
3375            /// only once to the stored value.
3376            ///
3377            /// `fetch_update` takes two [`Ordering`] arguments to describe the memory ordering of this operation.
3378            /// The first describes the required ordering for when the operation finally succeeds while the second
3379            /// describes the required ordering for loads. These correspond to the success and failure orderings of
3380            #[doc = concat!("[`", stringify!($atomic_type), "::compare_exchange`]")]
3381            /// respectively.
3382            ///
3383            /// Using [`Acquire`] as success ordering makes the store part
3384            /// of this operation [`Relaxed`], and using [`Release`] makes the final successful load
3385            /// [`Relaxed`]. The (failed) load ordering can only be [`SeqCst`], [`Acquire`] or [`Relaxed`].
3386            ///
3387            /// **Note**: This method is only available on platforms that support atomic operations on
3388            #[doc = concat!("[`", $s_int_type, "`].")]
3389            ///
3390            /// # Considerations
3391            ///
3392            /// This method is not magic; it is not provided by the hardware, and does not act like a
3393            /// critical section or mutex.
3394            ///
3395            /// It is implemented on top of an atomic [compare-and-swap operation], and thus is subject to
3396            /// the usual drawbacks of CAS operations. In particular, be careful of the [ABA problem]
3397            /// if this atomic integer is an index or more generally if knowledge of only the *bitwise value*
3398            /// of the atomic is not in and of itself sufficient to ensure any required preconditions.
3399            ///
3400            /// [ABA Problem]: https://en.wikipedia.org/wiki/ABA_problem
3401            /// [compare-and-swap operation]: https://en.wikipedia.org/wiki/Compare-and-swap
3402            ///
3403            /// # Examples
3404            ///
3405            /// ```rust
3406            #[doc = concat!($extra_feature, "use std::sync::atomic::{", stringify!($atomic_type), ", Ordering};")]
3407            ///
3408            #[doc = concat!("let x = ", stringify!($atomic_type), "::new(7);")]
3409            /// assert_eq!(x.fetch_update(Ordering::SeqCst, Ordering::SeqCst, |_| None), Err(7));
3410            /// assert_eq!(x.fetch_update(Ordering::SeqCst, Ordering::SeqCst, |x| Some(x + 1)), Ok(7));
3411            /// assert_eq!(x.fetch_update(Ordering::SeqCst, Ordering::SeqCst, |x| Some(x + 1)), Ok(8));
3412            /// assert_eq!(x.load(Ordering::SeqCst), 9);
3413            /// ```
3414            #[inline]
3415            #[stable(feature = "no_more_cas", since = "1.45.0")]
3416            #[$cfg_cas]
3417            #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
3418            pub fn fetch_update<F>(&self,
3419                                   set_order: Ordering,
3420                                   fetch_order: Ordering,
3421                                   mut f: F) -> Result<$int_type, $int_type>
3422            where F: FnMut($int_type) -> Option<$int_type> {
3423                let mut prev = self.load(fetch_order);
3424                while let Some(next) = f(prev) {
3425                    match self.compare_exchange_weak(prev, next, set_order, fetch_order) {
3426                        x @ Ok(_) => return x,
3427                        Err(next_prev) => prev = next_prev
3428                    }
3429                }
3430                Err(prev)
3431            }
3432
3433            /// Fetches the value, and applies a function to it that returns an optional
3434            /// new value. Returns a `Result` of `Ok(previous_value)` if the function returned `Some(_)`, else
3435            /// `Err(previous_value)`.
3436            ///
3437            #[doc = concat!("See also: [`update`](`", stringify!($atomic_type), "::update`).")]
3438            ///
3439            /// Note: This may call the function multiple times if the value has been changed from other threads in
3440            /// the meantime, as long as the function returns `Some(_)`, but the function will have been applied
3441            /// only once to the stored value.
3442            ///
3443            /// `try_update` takes two [`Ordering`] arguments to describe the memory ordering of this operation.
3444            /// The first describes the required ordering for when the operation finally succeeds while the second
3445            /// describes the required ordering for loads. These correspond to the success and failure orderings of
3446            #[doc = concat!("[`", stringify!($atomic_type), "::compare_exchange`]")]
3447            /// respectively.
3448            ///
3449            /// Using [`Acquire`] as success ordering makes the store part
3450            /// of this operation [`Relaxed`], and using [`Release`] makes the final successful load
3451            /// [`Relaxed`]. The (failed) load ordering can only be [`SeqCst`], [`Acquire`] or [`Relaxed`].
3452            ///
3453            /// **Note**: This method is only available on platforms that support atomic operations on
3454            #[doc = concat!("[`", $s_int_type, "`].")]
3455            ///
3456            /// # Considerations
3457            ///
3458            /// This method is not magic; it is not provided by the hardware, and does not act like a
3459            /// critical section or mutex.
3460            ///
3461            /// It is implemented on top of an atomic [compare-and-swap operation], and thus is subject to
3462            /// the usual drawbacks of CAS operations. In particular, be careful of the [ABA problem]
3463            /// if this atomic integer is an index or more generally if knowledge of only the *bitwise value*
3464            /// of the atomic is not in and of itself sufficient to ensure any required preconditions.
3465            ///
3466            /// [ABA Problem]: https://en.wikipedia.org/wiki/ABA_problem
3467            /// [compare-and-swap operation]: https://en.wikipedia.org/wiki/Compare-and-swap
3468            ///
3469            /// # Examples
3470            ///
3471            /// ```rust
3472            /// #![feature(atomic_try_update)]
3473            #[doc = concat!($extra_feature, "use std::sync::atomic::{", stringify!($atomic_type), ", Ordering};")]
3474            ///
3475            #[doc = concat!("let x = ", stringify!($atomic_type), "::new(7);")]
3476            /// assert_eq!(x.try_update(Ordering::SeqCst, Ordering::SeqCst, |_| None), Err(7));
3477            /// assert_eq!(x.try_update(Ordering::SeqCst, Ordering::SeqCst, |x| Some(x + 1)), Ok(7));
3478            /// assert_eq!(x.try_update(Ordering::SeqCst, Ordering::SeqCst, |x| Some(x + 1)), Ok(8));
3479            /// assert_eq!(x.load(Ordering::SeqCst), 9);
3480            /// ```
3481            #[inline]
3482            #[unstable(feature = "atomic_try_update", issue = "135894")]
3483            #[$cfg_cas]
3484            #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
3485            pub fn try_update(
3486                &self,
3487                set_order: Ordering,
3488                fetch_order: Ordering,
3489                f: impl FnMut($int_type) -> Option<$int_type>,
3490            ) -> Result<$int_type, $int_type> {
3491                // FIXME(atomic_try_update): this is currently an unstable alias to `fetch_update`;
3492                //      when stabilizing, turn `fetch_update` into a deprecated alias to `try_update`.
3493                self.fetch_update(set_order, fetch_order, f)
3494            }
3495
3496            /// Fetches the value, applies a function to it that it return a new value.
3497            /// The new value is stored and the old value is returned.
3498            ///
3499            #[doc = concat!("See also: [`try_update`](`", stringify!($atomic_type), "::try_update`).")]
3500            ///
3501            /// Note: This may call the function multiple times if the value has been changed from other threads in
3502            /// the meantime, but the function will have been applied only once to the stored value.
3503            ///
3504            /// `update` takes two [`Ordering`] arguments to describe the memory ordering of this operation.
3505            /// The first describes the required ordering for when the operation finally succeeds while the second
3506            /// describes the required ordering for loads. These correspond to the success and failure orderings of
3507            #[doc = concat!("[`", stringify!($atomic_type), "::compare_exchange`]")]
3508            /// respectively.
3509            ///
3510            /// Using [`Acquire`] as success ordering makes the store part
3511            /// of this operation [`Relaxed`], and using [`Release`] makes the final successful load
3512            /// [`Relaxed`]. The (failed) load ordering can only be [`SeqCst`], [`Acquire`] or [`Relaxed`].
3513            ///
3514            /// **Note**: This method is only available on platforms that support atomic operations on
3515            #[doc = concat!("[`", $s_int_type, "`].")]
3516            ///
3517            /// # Considerations
3518            ///
3519            /// [CAS operation]: https://en.wikipedia.org/wiki/Compare-and-swap
3520            /// This method is not magic; it is not provided by the hardware, and does not act like a
3521            /// critical section or mutex.
3522            ///
3523            /// It is implemented on top of an atomic [compare-and-swap operation], and thus is subject to
3524            /// the usual drawbacks of CAS operations. In particular, be careful of the [ABA problem]
3525            /// if this atomic integer is an index or more generally if knowledge of only the *bitwise value*
3526            /// of the atomic is not in and of itself sufficient to ensure any required preconditions.
3527            ///
3528            /// [ABA Problem]: https://en.wikipedia.org/wiki/ABA_problem
3529            /// [compare-and-swap operation]: https://en.wikipedia.org/wiki/Compare-and-swap
3530            ///
3531            /// # Examples
3532            ///
3533            /// ```rust
3534            /// #![feature(atomic_try_update)]
3535            #[doc = concat!($extra_feature, "use std::sync::atomic::{", stringify!($atomic_type), ", Ordering};")]
3536            ///
3537            #[doc = concat!("let x = ", stringify!($atomic_type), "::new(7);")]
3538            /// assert_eq!(x.update(Ordering::SeqCst, Ordering::SeqCst, |x| x + 1), 7);
3539            /// assert_eq!(x.update(Ordering::SeqCst, Ordering::SeqCst, |x| x + 1), 8);
3540            /// assert_eq!(x.load(Ordering::SeqCst), 9);
3541            /// ```
3542            #[inline]
3543            #[unstable(feature = "atomic_try_update", issue = "135894")]
3544            #[$cfg_cas]
3545            #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
3546            pub fn update(
3547                &self,
3548                set_order: Ordering,
3549                fetch_order: Ordering,
3550                mut f: impl FnMut($int_type) -> $int_type,
3551            ) -> $int_type {
3552                let mut prev = self.load(fetch_order);
3553                loop {
3554                    match self.compare_exchange_weak(prev, f(prev), set_order, fetch_order) {
3555                        Ok(x) => break x,
3556                        Err(next_prev) => prev = next_prev,
3557                    }
3558                }
3559            }
3560
3561            /// Maximum with the current value.
3562            ///
3563            /// Finds the maximum of the current value and the argument `val`, and
3564            /// sets the new value to the result.
3565            ///
3566            /// Returns the previous value.
3567            ///
3568            /// `fetch_max` takes an [`Ordering`] argument which describes the memory ordering
3569            /// of this operation. All ordering modes are possible. Note that using
3570            /// [`Acquire`] makes the store part of this operation [`Relaxed`], and
3571            /// using [`Release`] makes the load part [`Relaxed`].
3572            ///
3573            /// **Note**: This method is only available on platforms that support atomic operations on
3574            #[doc = concat!("[`", $s_int_type, "`].")]
3575            ///
3576            /// # Examples
3577            ///
3578            /// ```
3579            #[doc = concat!($extra_feature, "use std::sync::atomic::{", stringify!($atomic_type), ", Ordering};")]
3580            ///
3581            #[doc = concat!("let foo = ", stringify!($atomic_type), "::new(23);")]
3582            /// assert_eq!(foo.fetch_max(42, Ordering::SeqCst), 23);
3583            /// assert_eq!(foo.load(Ordering::SeqCst), 42);
3584            /// ```
3585            ///
3586            /// If you want to obtain the maximum value in one step, you can use the following:
3587            ///
3588            /// ```
3589            #[doc = concat!($extra_feature, "use std::sync::atomic::{", stringify!($atomic_type), ", Ordering};")]
3590            ///
3591            #[doc = concat!("let foo = ", stringify!($atomic_type), "::new(23);")]
3592            /// let bar = 42;
3593            /// let max_foo = foo.fetch_max(bar, Ordering::SeqCst).max(bar);
3594            /// assert!(max_foo == 42);
3595            /// ```
3596            #[inline]
3597            #[stable(feature = "atomic_min_max", since = "1.45.0")]
3598            #[$cfg_cas]
3599            #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
3600            pub fn fetch_max(&self, val: $int_type, order: Ordering) -> $int_type {
3601                // SAFETY: data races are prevented by atomic intrinsics.
3602                unsafe { $max_fn(self.v.get(), val, order) }
3603            }
3604
3605            /// Minimum with the current value.
3606            ///
3607            /// Finds the minimum of the current value and the argument `val`, and
3608            /// sets the new value to the result.
3609            ///
3610            /// Returns the previous value.
3611            ///
3612            /// `fetch_min` takes an [`Ordering`] argument which describes the memory ordering
3613            /// of this operation. All ordering modes are possible. Note that using
3614            /// [`Acquire`] makes the store part of this operation [`Relaxed`], and
3615            /// using [`Release`] makes the load part [`Relaxed`].
3616            ///
3617            /// **Note**: This method is only available on platforms that support atomic operations on
3618            #[doc = concat!("[`", $s_int_type, "`].")]
3619            ///
3620            /// # Examples
3621            ///
3622            /// ```
3623            #[doc = concat!($extra_feature, "use std::sync::atomic::{", stringify!($atomic_type), ", Ordering};")]
3624            ///
3625            #[doc = concat!("let foo = ", stringify!($atomic_type), "::new(23);")]
3626            /// assert_eq!(foo.fetch_min(42, Ordering::Relaxed), 23);
3627            /// assert_eq!(foo.load(Ordering::Relaxed), 23);
3628            /// assert_eq!(foo.fetch_min(22, Ordering::Relaxed), 23);
3629            /// assert_eq!(foo.load(Ordering::Relaxed), 22);
3630            /// ```
3631            ///
3632            /// If you want to obtain the minimum value in one step, you can use the following:
3633            ///
3634            /// ```
3635            #[doc = concat!($extra_feature, "use std::sync::atomic::{", stringify!($atomic_type), ", Ordering};")]
3636            ///
3637            #[doc = concat!("let foo = ", stringify!($atomic_type), "::new(23);")]
3638            /// let bar = 12;
3639            /// let min_foo = foo.fetch_min(bar, Ordering::SeqCst).min(bar);
3640            /// assert_eq!(min_foo, 12);
3641            /// ```
3642            #[inline]
3643            #[stable(feature = "atomic_min_max", since = "1.45.0")]
3644            #[$cfg_cas]
3645            #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
3646            pub fn fetch_min(&self, val: $int_type, order: Ordering) -> $int_type {
3647                // SAFETY: data races are prevented by atomic intrinsics.
3648                unsafe { $min_fn(self.v.get(), val, order) }
3649            }
3650
3651            /// Returns a mutable pointer to the underlying integer.
3652            ///
3653            /// Doing non-atomic reads and writes on the resulting integer can be a data race.
3654            /// This method is mostly useful for FFI, where the function signature may use
3655            #[doc = concat!("`*mut ", stringify!($int_type), "` instead of `&", stringify!($atomic_type), "`.")]
3656            ///
3657            /// Returning an `*mut` pointer from a shared reference to this atomic is safe because the
3658            /// atomic types work with interior mutability. All modifications of an atomic change the value
3659            /// through a shared reference, and can do so safely as long as they use atomic operations. Any
3660            /// use of the returned raw pointer requires an `unsafe` block and still has to uphold the
3661            /// requirements of the [memory model].
3662            ///
3663            /// # Examples
3664            ///
3665            /// ```ignore (extern-declaration)
3666            /// # fn main() {
3667            #[doc = concat!($extra_feature, "use std::sync::atomic::", stringify!($atomic_type), ";")]
3668            ///
3669            /// extern "C" {
3670            #[doc = concat!("    fn my_atomic_op(arg: *mut ", stringify!($int_type), ");")]
3671            /// }
3672            ///
3673            #[doc = concat!("let atomic = ", stringify!($atomic_type), "::new(1);")]
3674            ///
3675            /// // SAFETY: Safe as long as `my_atomic_op` is atomic.
3676            /// unsafe {
3677            ///     my_atomic_op(atomic.as_ptr());
3678            /// }
3679            /// # }
3680            /// ```
3681            ///
3682            /// [memory model]: self#memory-model-for-atomic-accesses
3683            #[inline]
3684            #[stable(feature = "atomic_as_ptr", since = "1.70.0")]
3685            #[rustc_const_stable(feature = "atomic_as_ptr", since = "1.70.0")]
3686            #[rustc_never_returns_null_ptr]
3687            pub const fn as_ptr(&self) -> *mut $int_type {
3688                self.v.get()
3689            }
3690        }
3691    }
3692}
3693
3694#[cfg(target_has_atomic_load_store = "8")]
3695#[cfg(not(feature = "ferrocene_certified"))]
3696atomic_int! {
3697    cfg(target_has_atomic = "8"),
3698    cfg(target_has_atomic_equal_alignment = "8"),
3699    stable(feature = "integer_atomics_stable", since = "1.34.0"),
3700    stable(feature = "integer_atomics_stable", since = "1.34.0"),
3701    stable(feature = "integer_atomics_stable", since = "1.34.0"),
3702    stable(feature = "integer_atomics_stable", since = "1.34.0"),
3703    stable(feature = "integer_atomics_stable", since = "1.34.0"),
3704    stable(feature = "integer_atomics_stable", since = "1.34.0"),
3705    rustc_const_stable(feature = "const_integer_atomics", since = "1.34.0"),
3706    rustc_const_stable(feature = "const_atomic_into_inner", since = "1.79.0"),
3707    rustc_diagnostic_item = "AtomicI8",
3708    "i8",
3709    "",
3710    atomic_min, atomic_max,
3711    1,
3712    i8 AtomicI8
3713}
3714#[cfg(target_has_atomic_load_store = "8")]
3715#[cfg(not(feature = "ferrocene_certified"))]
3716atomic_int! {
3717    cfg(target_has_atomic = "8"),
3718    cfg(target_has_atomic_equal_alignment = "8"),
3719    stable(feature = "integer_atomics_stable", since = "1.34.0"),
3720    stable(feature = "integer_atomics_stable", since = "1.34.0"),
3721    stable(feature = "integer_atomics_stable", since = "1.34.0"),
3722    stable(feature = "integer_atomics_stable", since = "1.34.0"),
3723    stable(feature = "integer_atomics_stable", since = "1.34.0"),
3724    stable(feature = "integer_atomics_stable", since = "1.34.0"),
3725    rustc_const_stable(feature = "const_integer_atomics", since = "1.34.0"),
3726    rustc_const_stable(feature = "const_atomic_into_inner", since = "1.79.0"),
3727    rustc_diagnostic_item = "AtomicU8",
3728    "u8",
3729    "",
3730    atomic_umin, atomic_umax,
3731    1,
3732    u8 AtomicU8
3733}
3734#[cfg(target_has_atomic_load_store = "16")]
3735#[cfg(not(feature = "ferrocene_certified"))]
3736atomic_int! {
3737    cfg(target_has_atomic = "16"),
3738    cfg(target_has_atomic_equal_alignment = "16"),
3739    stable(feature = "integer_atomics_stable", since = "1.34.0"),
3740    stable(feature = "integer_atomics_stable", since = "1.34.0"),
3741    stable(feature = "integer_atomics_stable", since = "1.34.0"),
3742    stable(feature = "integer_atomics_stable", since = "1.34.0"),
3743    stable(feature = "integer_atomics_stable", since = "1.34.0"),
3744    stable(feature = "integer_atomics_stable", since = "1.34.0"),
3745    rustc_const_stable(feature = "const_integer_atomics", since = "1.34.0"),
3746    rustc_const_stable(feature = "const_atomic_into_inner", since = "1.79.0"),
3747    rustc_diagnostic_item = "AtomicI16",
3748    "i16",
3749    "",
3750    atomic_min, atomic_max,
3751    2,
3752    i16 AtomicI16
3753}
3754#[cfg(target_has_atomic_load_store = "16")]
3755#[cfg(not(feature = "ferrocene_certified"))]
3756atomic_int! {
3757    cfg(target_has_atomic = "16"),
3758    cfg(target_has_atomic_equal_alignment = "16"),
3759    stable(feature = "integer_atomics_stable", since = "1.34.0"),
3760    stable(feature = "integer_atomics_stable", since = "1.34.0"),
3761    stable(feature = "integer_atomics_stable", since = "1.34.0"),
3762    stable(feature = "integer_atomics_stable", since = "1.34.0"),
3763    stable(feature = "integer_atomics_stable", since = "1.34.0"),
3764    stable(feature = "integer_atomics_stable", since = "1.34.0"),
3765    rustc_const_stable(feature = "const_integer_atomics", since = "1.34.0"),
3766    rustc_const_stable(feature = "const_atomic_into_inner", since = "1.79.0"),
3767    rustc_diagnostic_item = "AtomicU16",
3768    "u16",
3769    "",
3770    atomic_umin, atomic_umax,
3771    2,
3772    u16 AtomicU16
3773}
3774#[cfg(target_has_atomic_load_store = "32")]
3775#[cfg(not(feature = "ferrocene_certified"))]
3776atomic_int! {
3777    cfg(target_has_atomic = "32"),
3778    cfg(target_has_atomic_equal_alignment = "32"),
3779    stable(feature = "integer_atomics_stable", since = "1.34.0"),
3780    stable(feature = "integer_atomics_stable", since = "1.34.0"),
3781    stable(feature = "integer_atomics_stable", since = "1.34.0"),
3782    stable(feature = "integer_atomics_stable", since = "1.34.0"),
3783    stable(feature = "integer_atomics_stable", since = "1.34.0"),
3784    stable(feature = "integer_atomics_stable", since = "1.34.0"),
3785    rustc_const_stable(feature = "const_integer_atomics", since = "1.34.0"),
3786    rustc_const_stable(feature = "const_atomic_into_inner", since = "1.79.0"),
3787    rustc_diagnostic_item = "AtomicI32",
3788    "i32",
3789    "",
3790    atomic_min, atomic_max,
3791    4,
3792    i32 AtomicI32
3793}
3794#[cfg(target_has_atomic_load_store = "32")]
3795atomic_int! {
3796    cfg(target_has_atomic = "32"),
3797    cfg(target_has_atomic_equal_alignment = "32"),
3798    stable(feature = "integer_atomics_stable", since = "1.34.0"),
3799    stable(feature = "integer_atomics_stable", since = "1.34.0"),
3800    stable(feature = "integer_atomics_stable", since = "1.34.0"),
3801    stable(feature = "integer_atomics_stable", since = "1.34.0"),
3802    stable(feature = "integer_atomics_stable", since = "1.34.0"),
3803    stable(feature = "integer_atomics_stable", since = "1.34.0"),
3804    rustc_const_stable(feature = "const_integer_atomics", since = "1.34.0"),
3805    rustc_const_stable(feature = "const_atomic_into_inner", since = "1.79.0"),
3806    rustc_diagnostic_item = "AtomicU32",
3807    "u32",
3808    "",
3809    atomic_umin, atomic_umax,
3810    4,
3811    u32 AtomicU32
3812}
3813#[cfg(target_has_atomic_load_store = "64")]
3814#[cfg(not(feature = "ferrocene_certified"))]
3815atomic_int! {
3816    cfg(target_has_atomic = "64"),
3817    cfg(target_has_atomic_equal_alignment = "64"),
3818    stable(feature = "integer_atomics_stable", since = "1.34.0"),
3819    stable(feature = "integer_atomics_stable", since = "1.34.0"),
3820    stable(feature = "integer_atomics_stable", since = "1.34.0"),
3821    stable(feature = "integer_atomics_stable", since = "1.34.0"),
3822    stable(feature = "integer_atomics_stable", since = "1.34.0"),
3823    stable(feature = "integer_atomics_stable", since = "1.34.0"),
3824    rustc_const_stable(feature = "const_integer_atomics", since = "1.34.0"),
3825    rustc_const_stable(feature = "const_atomic_into_inner", since = "1.79.0"),
3826    rustc_diagnostic_item = "AtomicI64",
3827    "i64",
3828    "",
3829    atomic_min, atomic_max,
3830    8,
3831    i64 AtomicI64
3832}
3833#[cfg(target_has_atomic_load_store = "64")]
3834#[cfg(not(feature = "ferrocene_certified"))]
3835atomic_int! {
3836    cfg(target_has_atomic = "64"),
3837    cfg(target_has_atomic_equal_alignment = "64"),
3838    stable(feature = "integer_atomics_stable", since = "1.34.0"),
3839    stable(feature = "integer_atomics_stable", since = "1.34.0"),
3840    stable(feature = "integer_atomics_stable", since = "1.34.0"),
3841    stable(feature = "integer_atomics_stable", since = "1.34.0"),
3842    stable(feature = "integer_atomics_stable", since = "1.34.0"),
3843    stable(feature = "integer_atomics_stable", since = "1.34.0"),
3844    rustc_const_stable(feature = "const_integer_atomics", since = "1.34.0"),
3845    rustc_const_stable(feature = "const_atomic_into_inner", since = "1.79.0"),
3846    rustc_diagnostic_item = "AtomicU64",
3847    "u64",
3848    "",
3849    atomic_umin, atomic_umax,
3850    8,
3851    u64 AtomicU64
3852}
3853#[cfg(target_has_atomic_load_store = "128")]
3854#[cfg(not(feature = "ferrocene_certified"))]
3855atomic_int! {
3856    cfg(target_has_atomic = "128"),
3857    cfg(target_has_atomic_equal_alignment = "128"),
3858    unstable(feature = "integer_atomics", issue = "99069"),
3859    unstable(feature = "integer_atomics", issue = "99069"),
3860    unstable(feature = "integer_atomics", issue = "99069"),
3861    unstable(feature = "integer_atomics", issue = "99069"),
3862    unstable(feature = "integer_atomics", issue = "99069"),
3863    unstable(feature = "integer_atomics", issue = "99069"),
3864    rustc_const_unstable(feature = "integer_atomics", issue = "99069"),
3865    rustc_const_unstable(feature = "integer_atomics", issue = "99069"),
3866    rustc_diagnostic_item = "AtomicI128",
3867    "i128",
3868    "#![feature(integer_atomics)]\n\n",
3869    atomic_min, atomic_max,
3870    16,
3871    i128 AtomicI128
3872}
3873#[cfg(target_has_atomic_load_store = "128")]
3874#[cfg(not(feature = "ferrocene_certified"))]
3875atomic_int! {
3876    cfg(target_has_atomic = "128"),
3877    cfg(target_has_atomic_equal_alignment = "128"),
3878    unstable(feature = "integer_atomics", issue = "99069"),
3879    unstable(feature = "integer_atomics", issue = "99069"),
3880    unstable(feature = "integer_atomics", issue = "99069"),
3881    unstable(feature = "integer_atomics", issue = "99069"),
3882    unstable(feature = "integer_atomics", issue = "99069"),
3883    unstable(feature = "integer_atomics", issue = "99069"),
3884    rustc_const_unstable(feature = "integer_atomics", issue = "99069"),
3885    rustc_const_unstable(feature = "integer_atomics", issue = "99069"),
3886    rustc_diagnostic_item = "AtomicU128",
3887    "u128",
3888    "#![feature(integer_atomics)]\n\n",
3889    atomic_umin, atomic_umax,
3890    16,
3891    u128 AtomicU128
3892}
3893
3894#[cfg(target_has_atomic_load_store = "ptr")]
3895#[cfg(not(feature = "ferrocene_certified"))]
3896macro_rules! atomic_int_ptr_sized {
3897    ( $($target_pointer_width:literal $align:literal)* ) => { $(
3898        #[cfg(target_pointer_width = $target_pointer_width)]
3899        atomic_int! {
3900            cfg(target_has_atomic = "ptr"),
3901            cfg(target_has_atomic_equal_alignment = "ptr"),
3902            stable(feature = "rust1", since = "1.0.0"),
3903            stable(feature = "extended_compare_and_swap", since = "1.10.0"),
3904            stable(feature = "atomic_debug", since = "1.3.0"),
3905            stable(feature = "atomic_access", since = "1.15.0"),
3906            stable(feature = "atomic_from", since = "1.23.0"),
3907            stable(feature = "atomic_nand", since = "1.27.0"),
3908            rustc_const_stable(feature = "const_ptr_sized_atomics", since = "1.24.0"),
3909            rustc_const_stable(feature = "const_atomic_into_inner", since = "1.79.0"),
3910            rustc_diagnostic_item = "AtomicIsize",
3911            "isize",
3912            "",
3913            atomic_min, atomic_max,
3914            $align,
3915            isize AtomicIsize
3916        }
3917        #[cfg(target_pointer_width = $target_pointer_width)]
3918        atomic_int! {
3919            cfg(target_has_atomic = "ptr"),
3920            cfg(target_has_atomic_equal_alignment = "ptr"),
3921            stable(feature = "rust1", since = "1.0.0"),
3922            stable(feature = "extended_compare_and_swap", since = "1.10.0"),
3923            stable(feature = "atomic_debug", since = "1.3.0"),
3924            stable(feature = "atomic_access", since = "1.15.0"),
3925            stable(feature = "atomic_from", since = "1.23.0"),
3926            stable(feature = "atomic_nand", since = "1.27.0"),
3927            rustc_const_stable(feature = "const_ptr_sized_atomics", since = "1.24.0"),
3928            rustc_const_stable(feature = "const_atomic_into_inner", since = "1.79.0"),
3929            rustc_diagnostic_item = "AtomicUsize",
3930            "usize",
3931            "",
3932            atomic_umin, atomic_umax,
3933            $align,
3934            usize AtomicUsize
3935        }
3936
3937        /// An [`AtomicIsize`] initialized to `0`.
3938        #[cfg(target_pointer_width = $target_pointer_width)]
3939        #[stable(feature = "rust1", since = "1.0.0")]
3940        #[deprecated(
3941            since = "1.34.0",
3942            note = "the `new` function is now preferred",
3943            suggestion = "AtomicIsize::new(0)",
3944        )]
3945        pub const ATOMIC_ISIZE_INIT: AtomicIsize = AtomicIsize::new(0);
3946
3947        /// An [`AtomicUsize`] initialized to `0`.
3948        #[cfg(target_pointer_width = $target_pointer_width)]
3949        #[stable(feature = "rust1", since = "1.0.0")]
3950        #[deprecated(
3951            since = "1.34.0",
3952            note = "the `new` function is now preferred",
3953            suggestion = "AtomicUsize::new(0)",
3954        )]
3955        pub const ATOMIC_USIZE_INIT: AtomicUsize = AtomicUsize::new(0);
3956    )* };
3957}
3958
3959#[cfg(target_has_atomic_load_store = "ptr")]
3960#[cfg(not(feature = "ferrocene_certified"))]
3961atomic_int_ptr_sized! {
3962    "16" 2
3963    "32" 4
3964    "64" 8
3965}
3966
3967#[inline]
3968#[cfg(target_has_atomic)]
3969fn strongest_failure_ordering(order: Ordering) -> Ordering {
3970    match order {
3971        Release => Relaxed,
3972        Relaxed => Relaxed,
3973        SeqCst => SeqCst,
3974        Acquire => Acquire,
3975        AcqRel => Acquire,
3976    }
3977}
3978
3979#[inline]
3980#[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
3981unsafe fn atomic_store<T: Copy>(dst: *mut T, val: T, order: Ordering) {
3982    // SAFETY: the caller must uphold the safety contract for `atomic_store`.
3983    unsafe {
3984        match order {
3985            Relaxed => intrinsics::atomic_store::<T, { AO::Relaxed }>(dst, val),
3986            Release => intrinsics::atomic_store::<T, { AO::Release }>(dst, val),
3987            SeqCst => intrinsics::atomic_store::<T, { AO::SeqCst }>(dst, val),
3988            Acquire => panic!("there is no such thing as an acquire store"),
3989            AcqRel => panic!("there is no such thing as an acquire-release store"),
3990        }
3991    }
3992}
3993
3994#[inline]
3995#[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
3996unsafe fn atomic_load<T: Copy>(dst: *const T, order: Ordering) -> T {
3997    // SAFETY: the caller must uphold the safety contract for `atomic_load`.
3998    unsafe {
3999        match order {
4000            Relaxed => intrinsics::atomic_load::<T, { AO::Relaxed }>(dst),
4001            Acquire => intrinsics::atomic_load::<T, { AO::Acquire }>(dst),
4002            SeqCst => intrinsics::atomic_load::<T, { AO::SeqCst }>(dst),
4003            Release => panic!("there is no such thing as a release load"),
4004            AcqRel => panic!("there is no such thing as an acquire-release load"),
4005        }
4006    }
4007}
4008
4009#[inline]
4010#[cfg(target_has_atomic)]
4011#[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
4012unsafe fn atomic_swap<T: Copy>(dst: *mut T, val: T, order: Ordering) -> T {
4013    // SAFETY: the caller must uphold the safety contract for `atomic_swap`.
4014    unsafe {
4015        match order {
4016            Relaxed => intrinsics::atomic_xchg::<T, { AO::Relaxed }>(dst, val),
4017            Acquire => intrinsics::atomic_xchg::<T, { AO::Acquire }>(dst, val),
4018            Release => intrinsics::atomic_xchg::<T, { AO::Release }>(dst, val),
4019            AcqRel => intrinsics::atomic_xchg::<T, { AO::AcqRel }>(dst, val),
4020            SeqCst => intrinsics::atomic_xchg::<T, { AO::SeqCst }>(dst, val),
4021        }
4022    }
4023}
4024
4025/// Returns the previous value (like __sync_fetch_and_add).
4026#[inline]
4027#[cfg(target_has_atomic)]
4028#[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
4029unsafe fn atomic_add<T: Copy, U: Copy>(dst: *mut T, val: U, order: Ordering) -> T {
4030    // SAFETY: the caller must uphold the safety contract for `atomic_add`.
4031    unsafe {
4032        match order {
4033            Relaxed => intrinsics::atomic_xadd::<T, U, { AO::Relaxed }>(dst, val),
4034            Acquire => intrinsics::atomic_xadd::<T, U, { AO::Acquire }>(dst, val),
4035            Release => intrinsics::atomic_xadd::<T, U, { AO::Release }>(dst, val),
4036            AcqRel => intrinsics::atomic_xadd::<T, U, { AO::AcqRel }>(dst, val),
4037            SeqCst => intrinsics::atomic_xadd::<T, U, { AO::SeqCst }>(dst, val),
4038        }
4039    }
4040}
4041
4042/// Returns the previous value (like __sync_fetch_and_sub).
4043#[inline]
4044#[cfg(target_has_atomic)]
4045#[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
4046unsafe fn atomic_sub<T: Copy, U: Copy>(dst: *mut T, val: U, order: Ordering) -> T {
4047    // SAFETY: the caller must uphold the safety contract for `atomic_sub`.
4048    unsafe {
4049        match order {
4050            Relaxed => intrinsics::atomic_xsub::<T, U, { AO::Relaxed }>(dst, val),
4051            Acquire => intrinsics::atomic_xsub::<T, U, { AO::Acquire }>(dst, val),
4052            Release => intrinsics::atomic_xsub::<T, U, { AO::Release }>(dst, val),
4053            AcqRel => intrinsics::atomic_xsub::<T, U, { AO::AcqRel }>(dst, val),
4054            SeqCst => intrinsics::atomic_xsub::<T, U, { AO::SeqCst }>(dst, val),
4055        }
4056    }
4057}
4058
4059/// Publicly exposed for stdarch; nobody else should use this.
4060#[inline]
4061#[cfg(target_has_atomic)]
4062#[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
4063#[unstable(feature = "core_intrinsics", issue = "none")]
4064#[doc(hidden)]
4065pub unsafe fn atomic_compare_exchange<T: Copy>(
4066    dst: *mut T,
4067    old: T,
4068    new: T,
4069    success: Ordering,
4070    failure: Ordering,
4071) -> Result<T, T> {
4072    // SAFETY: the caller must uphold the safety contract for `atomic_compare_exchange`.
4073    let (val, ok) = unsafe {
4074        match (success, failure) {
4075            (Relaxed, Relaxed) => {
4076                intrinsics::atomic_cxchg::<T, { AO::Relaxed }, { AO::Relaxed }>(dst, old, new)
4077            }
4078            (Relaxed, Acquire) => {
4079                intrinsics::atomic_cxchg::<T, { AO::Relaxed }, { AO::Acquire }>(dst, old, new)
4080            }
4081            (Relaxed, SeqCst) => {
4082                intrinsics::atomic_cxchg::<T, { AO::Relaxed }, { AO::SeqCst }>(dst, old, new)
4083            }
4084            (Acquire, Relaxed) => {
4085                intrinsics::atomic_cxchg::<T, { AO::Acquire }, { AO::Relaxed }>(dst, old, new)
4086            }
4087            (Acquire, Acquire) => {
4088                intrinsics::atomic_cxchg::<T, { AO::Acquire }, { AO::Acquire }>(dst, old, new)
4089            }
4090            (Acquire, SeqCst) => {
4091                intrinsics::atomic_cxchg::<T, { AO::Acquire }, { AO::SeqCst }>(dst, old, new)
4092            }
4093            (Release, Relaxed) => {
4094                intrinsics::atomic_cxchg::<T, { AO::Release }, { AO::Relaxed }>(dst, old, new)
4095            }
4096            (Release, Acquire) => {
4097                intrinsics::atomic_cxchg::<T, { AO::Release }, { AO::Acquire }>(dst, old, new)
4098            }
4099            (Release, SeqCst) => {
4100                intrinsics::atomic_cxchg::<T, { AO::Release }, { AO::SeqCst }>(dst, old, new)
4101            }
4102            (AcqRel, Relaxed) => {
4103                intrinsics::atomic_cxchg::<T, { AO::AcqRel }, { AO::Relaxed }>(dst, old, new)
4104            }
4105            (AcqRel, Acquire) => {
4106                intrinsics::atomic_cxchg::<T, { AO::AcqRel }, { AO::Acquire }>(dst, old, new)
4107            }
4108            (AcqRel, SeqCst) => {
4109                intrinsics::atomic_cxchg::<T, { AO::AcqRel }, { AO::SeqCst }>(dst, old, new)
4110            }
4111            (SeqCst, Relaxed) => {
4112                intrinsics::atomic_cxchg::<T, { AO::SeqCst }, { AO::Relaxed }>(dst, old, new)
4113            }
4114            (SeqCst, Acquire) => {
4115                intrinsics::atomic_cxchg::<T, { AO::SeqCst }, { AO::Acquire }>(dst, old, new)
4116            }
4117            (SeqCst, SeqCst) => {
4118                intrinsics::atomic_cxchg::<T, { AO::SeqCst }, { AO::SeqCst }>(dst, old, new)
4119            }
4120            (_, AcqRel) => panic!("there is no such thing as an acquire-release failure ordering"),
4121            (_, Release) => panic!("there is no such thing as a release failure ordering"),
4122        }
4123    };
4124    if ok { Ok(val) } else { Err(val) }
4125}
4126
4127#[inline]
4128#[cfg(target_has_atomic)]
4129#[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
4130unsafe fn atomic_compare_exchange_weak<T: Copy>(
4131    dst: *mut T,
4132    old: T,
4133    new: T,
4134    success: Ordering,
4135    failure: Ordering,
4136) -> Result<T, T> {
4137    // SAFETY: the caller must uphold the safety contract for `atomic_compare_exchange_weak`.
4138    let (val, ok) = unsafe {
4139        match (success, failure) {
4140            (Relaxed, Relaxed) => {
4141                intrinsics::atomic_cxchgweak::<T, { AO::Relaxed }, { AO::Relaxed }>(dst, old, new)
4142            }
4143            (Relaxed, Acquire) => {
4144                intrinsics::atomic_cxchgweak::<T, { AO::Relaxed }, { AO::Acquire }>(dst, old, new)
4145            }
4146            (Relaxed, SeqCst) => {
4147                intrinsics::atomic_cxchgweak::<T, { AO::Relaxed }, { AO::SeqCst }>(dst, old, new)
4148            }
4149            (Acquire, Relaxed) => {
4150                intrinsics::atomic_cxchgweak::<T, { AO::Acquire }, { AO::Relaxed }>(dst, old, new)
4151            }
4152            (Acquire, Acquire) => {
4153                intrinsics::atomic_cxchgweak::<T, { AO::Acquire }, { AO::Acquire }>(dst, old, new)
4154            }
4155            (Acquire, SeqCst) => {
4156                intrinsics::atomic_cxchgweak::<T, { AO::Acquire }, { AO::SeqCst }>(dst, old, new)
4157            }
4158            (Release, Relaxed) => {
4159                intrinsics::atomic_cxchgweak::<T, { AO::Release }, { AO::Relaxed }>(dst, old, new)
4160            }
4161            (Release, Acquire) => {
4162                intrinsics::atomic_cxchgweak::<T, { AO::Release }, { AO::Acquire }>(dst, old, new)
4163            }
4164            (Release, SeqCst) => {
4165                intrinsics::atomic_cxchgweak::<T, { AO::Release }, { AO::SeqCst }>(dst, old, new)
4166            }
4167            (AcqRel, Relaxed) => {
4168                intrinsics::atomic_cxchgweak::<T, { AO::AcqRel }, { AO::Relaxed }>(dst, old, new)
4169            }
4170            (AcqRel, Acquire) => {
4171                intrinsics::atomic_cxchgweak::<T, { AO::AcqRel }, { AO::Acquire }>(dst, old, new)
4172            }
4173            (AcqRel, SeqCst) => {
4174                intrinsics::atomic_cxchgweak::<T, { AO::AcqRel }, { AO::SeqCst }>(dst, old, new)
4175            }
4176            (SeqCst, Relaxed) => {
4177                intrinsics::atomic_cxchgweak::<T, { AO::SeqCst }, { AO::Relaxed }>(dst, old, new)
4178            }
4179            (SeqCst, Acquire) => {
4180                intrinsics::atomic_cxchgweak::<T, { AO::SeqCst }, { AO::Acquire }>(dst, old, new)
4181            }
4182            (SeqCst, SeqCst) => {
4183                intrinsics::atomic_cxchgweak::<T, { AO::SeqCst }, { AO::SeqCst }>(dst, old, new)
4184            }
4185            (_, AcqRel) => panic!("there is no such thing as an acquire-release failure ordering"),
4186            (_, Release) => panic!("there is no such thing as a release failure ordering"),
4187        }
4188    };
4189    if ok { Ok(val) } else { Err(val) }
4190}
4191
4192#[inline]
4193#[cfg(target_has_atomic)]
4194#[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
4195unsafe fn atomic_and<T: Copy, U: Copy>(dst: *mut T, val: U, order: Ordering) -> T {
4196    // SAFETY: the caller must uphold the safety contract for `atomic_and`
4197    unsafe {
4198        match order {
4199            Relaxed => intrinsics::atomic_and::<T, U, { AO::Relaxed }>(dst, val),
4200            Acquire => intrinsics::atomic_and::<T, U, { AO::Acquire }>(dst, val),
4201            Release => intrinsics::atomic_and::<T, U, { AO::Release }>(dst, val),
4202            AcqRel => intrinsics::atomic_and::<T, U, { AO::AcqRel }>(dst, val),
4203            SeqCst => intrinsics::atomic_and::<T, U, { AO::SeqCst }>(dst, val),
4204        }
4205    }
4206}
4207
4208#[inline]
4209#[cfg(target_has_atomic)]
4210#[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
4211unsafe fn atomic_nand<T: Copy, U: Copy>(dst: *mut T, val: U, order: Ordering) -> T {
4212    // SAFETY: the caller must uphold the safety contract for `atomic_nand`
4213    unsafe {
4214        match order {
4215            Relaxed => intrinsics::atomic_nand::<T, U, { AO::Relaxed }>(dst, val),
4216            Acquire => intrinsics::atomic_nand::<T, U, { AO::Acquire }>(dst, val),
4217            Release => intrinsics::atomic_nand::<T, U, { AO::Release }>(dst, val),
4218            AcqRel => intrinsics::atomic_nand::<T, U, { AO::AcqRel }>(dst, val),
4219            SeqCst => intrinsics::atomic_nand::<T, U, { AO::SeqCst }>(dst, val),
4220        }
4221    }
4222}
4223
4224#[inline]
4225#[cfg(target_has_atomic)]
4226#[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
4227unsafe fn atomic_or<T: Copy, U: Copy>(dst: *mut T, val: U, order: Ordering) -> T {
4228    // SAFETY: the caller must uphold the safety contract for `atomic_or`
4229    unsafe {
4230        match order {
4231            SeqCst => intrinsics::atomic_or::<T, U, { AO::SeqCst }>(dst, val),
4232            Acquire => intrinsics::atomic_or::<T, U, { AO::Acquire }>(dst, val),
4233            Release => intrinsics::atomic_or::<T, U, { AO::Release }>(dst, val),
4234            AcqRel => intrinsics::atomic_or::<T, U, { AO::AcqRel }>(dst, val),
4235            Relaxed => intrinsics::atomic_or::<T, U, { AO::Relaxed }>(dst, val),
4236        }
4237    }
4238}
4239
4240#[inline]
4241#[cfg(target_has_atomic)]
4242#[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
4243unsafe fn atomic_xor<T: Copy, U: Copy>(dst: *mut T, val: U, order: Ordering) -> T {
4244    // SAFETY: the caller must uphold the safety contract for `atomic_xor`
4245    unsafe {
4246        match order {
4247            SeqCst => intrinsics::atomic_xor::<T, U, { AO::SeqCst }>(dst, val),
4248            Acquire => intrinsics::atomic_xor::<T, U, { AO::Acquire }>(dst, val),
4249            Release => intrinsics::atomic_xor::<T, U, { AO::Release }>(dst, val),
4250            AcqRel => intrinsics::atomic_xor::<T, U, { AO::AcqRel }>(dst, val),
4251            Relaxed => intrinsics::atomic_xor::<T, U, { AO::Relaxed }>(dst, val),
4252        }
4253    }
4254}
4255
4256/// Updates `*dst` to the max value of `val` and the old value (signed comparison)
4257#[inline]
4258#[cfg(target_has_atomic)]
4259#[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
4260#[cfg(not(feature = "ferrocene_certified"))]
4261unsafe fn atomic_max<T: Copy>(dst: *mut T, val: T, order: Ordering) -> T {
4262    // SAFETY: the caller must uphold the safety contract for `atomic_max`
4263    unsafe {
4264        match order {
4265            Relaxed => intrinsics::atomic_max::<T, { AO::Relaxed }>(dst, val),
4266            Acquire => intrinsics::atomic_max::<T, { AO::Acquire }>(dst, val),
4267            Release => intrinsics::atomic_max::<T, { AO::Release }>(dst, val),
4268            AcqRel => intrinsics::atomic_max::<T, { AO::AcqRel }>(dst, val),
4269            SeqCst => intrinsics::atomic_max::<T, { AO::SeqCst }>(dst, val),
4270        }
4271    }
4272}
4273
4274/// Updates `*dst` to the min value of `val` and the old value (signed comparison)
4275#[inline]
4276#[cfg(target_has_atomic)]
4277#[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
4278#[cfg(not(feature = "ferrocene_certified"))]
4279unsafe fn atomic_min<T: Copy>(dst: *mut T, val: T, order: Ordering) -> T {
4280    // SAFETY: the caller must uphold the safety contract for `atomic_min`
4281    unsafe {
4282        match order {
4283            Relaxed => intrinsics::atomic_min::<T, { AO::Relaxed }>(dst, val),
4284            Acquire => intrinsics::atomic_min::<T, { AO::Acquire }>(dst, val),
4285            Release => intrinsics::atomic_min::<T, { AO::Release }>(dst, val),
4286            AcqRel => intrinsics::atomic_min::<T, { AO::AcqRel }>(dst, val),
4287            SeqCst => intrinsics::atomic_min::<T, { AO::SeqCst }>(dst, val),
4288        }
4289    }
4290}
4291
4292/// Updates `*dst` to the max value of `val` and the old value (unsigned comparison)
4293#[inline]
4294#[cfg(target_has_atomic)]
4295#[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
4296unsafe fn atomic_umax<T: Copy>(dst: *mut T, val: T, order: Ordering) -> T {
4297    // SAFETY: the caller must uphold the safety contract for `atomic_umax`
4298    unsafe {
4299        match order {
4300            Relaxed => intrinsics::atomic_umax::<T, { AO::Relaxed }>(dst, val),
4301            Acquire => intrinsics::atomic_umax::<T, { AO::Acquire }>(dst, val),
4302            Release => intrinsics::atomic_umax::<T, { AO::Release }>(dst, val),
4303            AcqRel => intrinsics::atomic_umax::<T, { AO::AcqRel }>(dst, val),
4304            SeqCst => intrinsics::atomic_umax::<T, { AO::SeqCst }>(dst, val),
4305        }
4306    }
4307}
4308
4309/// Updates `*dst` to the min value of `val` and the old value (unsigned comparison)
4310#[inline]
4311#[cfg(target_has_atomic)]
4312#[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
4313unsafe fn atomic_umin<T: Copy>(dst: *mut T, val: T, order: Ordering) -> T {
4314    // SAFETY: the caller must uphold the safety contract for `atomic_umin`
4315    unsafe {
4316        match order {
4317            Relaxed => intrinsics::atomic_umin::<T, { AO::Relaxed }>(dst, val),
4318            Acquire => intrinsics::atomic_umin::<T, { AO::Acquire }>(dst, val),
4319            Release => intrinsics::atomic_umin::<T, { AO::Release }>(dst, val),
4320            AcqRel => intrinsics::atomic_umin::<T, { AO::AcqRel }>(dst, val),
4321            SeqCst => intrinsics::atomic_umin::<T, { AO::SeqCst }>(dst, val),
4322        }
4323    }
4324}
4325
4326/// An atomic fence.
4327///
4328/// Fences create synchronization between themselves and atomic operations or fences in other
4329/// threads. To achieve this, a fence prevents the compiler and CPU from reordering certain types of
4330/// memory operations around it.
4331///
4332/// A fence 'A' which has (at least) [`Release`] ordering semantics, synchronizes
4333/// with a fence 'B' with (at least) [`Acquire`] semantics, if and only if there
4334/// exist operations X and Y, both operating on some atomic object 'm' such
4335/// that A is sequenced before X, Y is sequenced before B and Y observes
4336/// the change to m. This provides a happens-before dependence between A and B.
4337///
4338/// ```text
4339///     Thread 1                                          Thread 2
4340///
4341/// fence(Release);      A --------------
4342/// m.store(3, Relaxed); X ---------    |
4343///                                |    |
4344///                                |    |
4345///                                -------------> Y  if m.load(Relaxed) == 3 {
4346///                                     |-------> B      fence(Acquire);
4347///                                                      ...
4348///                                                  }
4349/// ```
4350///
4351/// Note that in the example above, it is crucial that the accesses to `m` are atomic. Fences cannot
4352/// be used to establish synchronization among non-atomic accesses in different threads. However,
4353/// thanks to the happens-before relationship between A and B, any non-atomic accesses that
4354/// happen-before A are now also properly synchronized with any non-atomic accesses that
4355/// happen-after B.
4356///
4357/// Atomic operations with [`Release`] or [`Acquire`] semantics can also synchronize
4358/// with a fence.
4359///
4360/// A fence which has [`SeqCst`] ordering, in addition to having both [`Acquire`]
4361/// and [`Release`] semantics, participates in the global program order of the
4362/// other [`SeqCst`] operations and/or fences.
4363///
4364/// Accepts [`Acquire`], [`Release`], [`AcqRel`] and [`SeqCst`] orderings.
4365///
4366/// # Panics
4367///
4368/// Panics if `order` is [`Relaxed`].
4369///
4370/// # Examples
4371///
4372/// ```
4373/// use std::sync::atomic::AtomicBool;
4374/// use std::sync::atomic::fence;
4375/// use std::sync::atomic::Ordering;
4376///
4377/// // A mutual exclusion primitive based on spinlock.
4378/// pub struct Mutex {
4379///     flag: AtomicBool,
4380/// }
4381///
4382/// impl Mutex {
4383///     pub fn new() -> Mutex {
4384///         Mutex {
4385///             flag: AtomicBool::new(false),
4386///         }
4387///     }
4388///
4389///     pub fn lock(&self) {
4390///         // Wait until the old value is `false`.
4391///         while self
4392///             .flag
4393///             .compare_exchange_weak(false, true, Ordering::Relaxed, Ordering::Relaxed)
4394///             .is_err()
4395///         {}
4396///         // This fence synchronizes-with store in `unlock`.
4397///         fence(Ordering::Acquire);
4398///     }
4399///
4400///     pub fn unlock(&self) {
4401///         self.flag.store(false, Ordering::Release);
4402///     }
4403/// }
4404/// ```
4405#[inline]
4406#[stable(feature = "rust1", since = "1.0.0")]
4407#[rustc_diagnostic_item = "fence"]
4408#[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
4409#[cfg(not(feature = "ferrocene_certified"))]
4410pub fn fence(order: Ordering) {
4411    // SAFETY: using an atomic fence is safe.
4412    unsafe {
4413        match order {
4414            Acquire => intrinsics::atomic_fence::<{ AO::Acquire }>(),
4415            Release => intrinsics::atomic_fence::<{ AO::Release }>(),
4416            AcqRel => intrinsics::atomic_fence::<{ AO::AcqRel }>(),
4417            SeqCst => intrinsics::atomic_fence::<{ AO::SeqCst }>(),
4418            Relaxed => panic!("there is no such thing as a relaxed fence"),
4419        }
4420    }
4421}
4422
4423/// A "compiler-only" atomic fence.
4424///
4425/// Like [`fence`], this function establishes synchronization with other atomic operations and
4426/// fences. However, unlike [`fence`], `compiler_fence` only establishes synchronization with
4427/// operations *in the same thread*. This may at first sound rather useless, since code within a
4428/// thread is typically already totally ordered and does not need any further synchronization.
4429/// However, there are cases where code can run on the same thread without being ordered:
4430/// - The most common case is that of a *signal handler*: a signal handler runs in the same thread
4431///   as the code it interrupted, but it is not ordered with respect to that code. `compiler_fence`
4432///   can be used to establish synchronization between a thread and its signal handler, the same way
4433///   that `fence` can be used to establish synchronization across threads.
4434/// - Similar situations can arise in embedded programming with interrupt handlers, or in custom
4435///   implementations of preemptive green threads. In general, `compiler_fence` can establish
4436///   synchronization with code that is guaranteed to run on the same hardware CPU.
4437///
4438/// See [`fence`] for how a fence can be used to achieve synchronization. Note that just like
4439/// [`fence`], synchronization still requires atomic operations to be used in both threads -- it is
4440/// not possible to perform synchronization entirely with fences and non-atomic operations.
4441///
4442/// `compiler_fence` does not emit any machine code, but restricts the kinds of memory re-ordering
4443/// the compiler is allowed to do. `compiler_fence` corresponds to [`atomic_signal_fence`] in C and
4444/// C++.
4445///
4446/// [`atomic_signal_fence`]: https://en.cppreference.com/w/cpp/atomic/atomic_signal_fence
4447///
4448/// # Panics
4449///
4450/// Panics if `order` is [`Relaxed`].
4451///
4452/// # Examples
4453///
4454/// Without the two `compiler_fence` calls, the read of `IMPORTANT_VARIABLE` in `signal_handler`
4455/// is *undefined behavior* due to a data race, despite everything happening in a single thread.
4456/// This is because the signal handler is considered to run concurrently with its associated
4457/// thread, and explicit synchronization is required to pass data between a thread and its
4458/// signal handler. The code below uses two `compiler_fence` calls to establish the usual
4459/// release-acquire synchronization pattern (see [`fence`] for an image).
4460///
4461/// ```
4462/// use std::sync::atomic::AtomicBool;
4463/// use std::sync::atomic::Ordering;
4464/// use std::sync::atomic::compiler_fence;
4465///
4466/// static mut IMPORTANT_VARIABLE: usize = 0;
4467/// static IS_READY: AtomicBool = AtomicBool::new(false);
4468///
4469/// fn main() {
4470///     unsafe { IMPORTANT_VARIABLE = 42 };
4471///     // Marks earlier writes as being released with future relaxed stores.
4472///     compiler_fence(Ordering::Release);
4473///     IS_READY.store(true, Ordering::Relaxed);
4474/// }
4475///
4476/// fn signal_handler() {
4477///     if IS_READY.load(Ordering::Relaxed) {
4478///         // Acquires writes that were released with relaxed stores that we read from.
4479///         compiler_fence(Ordering::Acquire);
4480///         assert_eq!(unsafe { IMPORTANT_VARIABLE }, 42);
4481///     }
4482/// }
4483/// ```
4484#[inline]
4485#[stable(feature = "compiler_fences", since = "1.21.0")]
4486#[rustc_diagnostic_item = "compiler_fence"]
4487#[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
4488#[cfg(not(feature = "ferrocene_certified"))]
4489pub fn compiler_fence(order: Ordering) {
4490    // SAFETY: using an atomic fence is safe.
4491    unsafe {
4492        match order {
4493            Acquire => intrinsics::atomic_singlethreadfence::<{ AO::Acquire }>(),
4494            Release => intrinsics::atomic_singlethreadfence::<{ AO::Release }>(),
4495            AcqRel => intrinsics::atomic_singlethreadfence::<{ AO::AcqRel }>(),
4496            SeqCst => intrinsics::atomic_singlethreadfence::<{ AO::SeqCst }>(),
4497            Relaxed => panic!("there is no such thing as a relaxed fence"),
4498        }
4499    }
4500}
4501
4502#[cfg(target_has_atomic_load_store = "8")]
4503#[stable(feature = "atomic_debug", since = "1.3.0")]
4504#[cfg(not(feature = "ferrocene_certified"))]
4505impl fmt::Debug for AtomicBool {
4506    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
4507        fmt::Debug::fmt(&self.load(Ordering::Relaxed), f)
4508    }
4509}
4510
4511#[cfg(target_has_atomic_load_store = "ptr")]
4512#[stable(feature = "atomic_debug", since = "1.3.0")]
4513#[cfg(not(feature = "ferrocene_certified"))]
4514impl<T> fmt::Debug for AtomicPtr<T> {
4515    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
4516        fmt::Debug::fmt(&self.load(Ordering::Relaxed), f)
4517    }
4518}
4519
4520#[cfg(target_has_atomic_load_store = "ptr")]
4521#[stable(feature = "atomic_pointer", since = "1.24.0")]
4522#[cfg(not(feature = "ferrocene_certified"))]
4523impl<T> fmt::Pointer for AtomicPtr<T> {
4524    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
4525        fmt::Pointer::fmt(&self.load(Ordering::Relaxed), f)
4526    }
4527}
4528
4529/// Signals the processor that it is inside a busy-wait spin-loop ("spin lock").
4530///
4531/// This function is deprecated in favor of [`hint::spin_loop`].
4532///
4533/// [`hint::spin_loop`]: crate::hint::spin_loop
4534#[inline]
4535#[stable(feature = "spin_loop_hint", since = "1.24.0")]
4536#[deprecated(since = "1.51.0", note = "use hint::spin_loop instead")]
4537#[cfg(not(feature = "ferrocene_certified"))]
4538pub fn spin_loop_hint() {
4539    spin_loop()
4540}