std/io/cursor.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683
#[cfg(test)]
mod tests;
use crate::alloc::Allocator;
use crate::cmp;
use crate::io::prelude::*;
use crate::io::{self, BorrowedCursor, ErrorKind, IoSlice, IoSliceMut, SeekFrom};
/// A `Cursor` wraps an in-memory buffer and provides it with a
/// [`Seek`] implementation.
///
/// `Cursor`s are used with in-memory buffers, anything implementing
/// <code>[AsRef]<\[u8]></code>, to allow them to implement [`Read`] and/or [`Write`],
/// allowing these buffers to be used anywhere you might use a reader or writer
/// that does actual I/O.
///
/// The standard library implements some I/O traits on various types which
/// are commonly used as a buffer, like <code>Cursor<[Vec]\<u8>></code> and
/// <code>Cursor<[&\[u8\]][bytes]></code>.
///
/// # Examples
///
/// We may want to write bytes to a [`File`] in our production
/// code, but use an in-memory buffer in our tests. We can do this with
/// `Cursor`:
///
/// [bytes]: crate::slice "slice"
/// [`File`]: crate::fs::File
///
/// ```no_run
/// use std::io::prelude::*;
/// use std::io::{self, SeekFrom};
/// use std::fs::File;
///
/// // a library function we've written
/// fn write_ten_bytes_at_end<W: Write + Seek>(mut writer: W) -> io::Result<()> {
/// writer.seek(SeekFrom::End(-10))?;
///
/// for i in 0..10 {
/// writer.write(&[i])?;
/// }
///
/// // all went well
/// Ok(())
/// }
///
/// # fn foo() -> io::Result<()> {
/// // Here's some code that uses this library function.
/// //
/// // We might want to use a BufReader here for efficiency, but let's
/// // keep this example focused.
/// let mut file = File::create("foo.txt")?;
/// // First, we need to allocate 10 bytes to be able to write into.
/// file.set_len(10)?;
///
/// write_ten_bytes_at_end(&mut file)?;
/// # Ok(())
/// # }
///
/// // now let's write a test
/// #[test]
/// fn test_writes_bytes() {
/// // setting up a real File is much slower than an in-memory buffer,
/// // let's use a cursor instead
/// use std::io::Cursor;
/// let mut buff = Cursor::new(vec![0; 15]);
///
/// write_ten_bytes_at_end(&mut buff).unwrap();
///
/// assert_eq!(&buff.get_ref()[5..15], &[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]);
/// }
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
#[derive(Debug, Default, Eq, PartialEq)]
pub struct Cursor<T> {
inner: T,
pos: u64,
}
impl<T> Cursor<T> {
/// Creates a new cursor wrapping the provided underlying in-memory buffer.
///
/// Cursor initial position is `0` even if underlying buffer (e.g., [`Vec`])
/// is not empty. So writing to cursor starts with overwriting [`Vec`]
/// content, not with appending to it.
///
/// # Examples
///
/// ```
/// use std::io::Cursor;
///
/// let buff = Cursor::new(Vec::new());
/// # fn force_inference(_: &Cursor<Vec<u8>>) {}
/// # force_inference(&buff);
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
#[rustc_const_stable(feature = "const_io_structs", since = "1.79.0")]
pub const fn new(inner: T) -> Cursor<T> {
Cursor { pos: 0, inner }
}
/// Consumes this cursor, returning the underlying value.
///
/// # Examples
///
/// ```
/// use std::io::Cursor;
///
/// let buff = Cursor::new(Vec::new());
/// # fn force_inference(_: &Cursor<Vec<u8>>) {}
/// # force_inference(&buff);
///
/// let vec = buff.into_inner();
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
pub fn into_inner(self) -> T {
self.inner
}
/// Gets a reference to the underlying value in this cursor.
///
/// # Examples
///
/// ```
/// use std::io::Cursor;
///
/// let buff = Cursor::new(Vec::new());
/// # fn force_inference(_: &Cursor<Vec<u8>>) {}
/// # force_inference(&buff);
///
/// let reference = buff.get_ref();
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
#[rustc_const_stable(feature = "const_io_structs", since = "1.79.0")]
pub const fn get_ref(&self) -> &T {
&self.inner
}
/// Gets a mutable reference to the underlying value in this cursor.
///
/// Care should be taken to avoid modifying the internal I/O state of the
/// underlying value as it may corrupt this cursor's position.
///
/// # Examples
///
/// ```
/// use std::io::Cursor;
///
/// let mut buff = Cursor::new(Vec::new());
/// # fn force_inference(_: &Cursor<Vec<u8>>) {}
/// # force_inference(&buff);
///
/// let reference = buff.get_mut();
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
#[rustc_const_unstable(feature = "const_mut_cursor", issue = "130801")]
pub const fn get_mut(&mut self) -> &mut T {
&mut self.inner
}
/// Returns the current position of this cursor.
///
/// # Examples
///
/// ```
/// use std::io::Cursor;
/// use std::io::prelude::*;
/// use std::io::SeekFrom;
///
/// let mut buff = Cursor::new(vec![1, 2, 3, 4, 5]);
///
/// assert_eq!(buff.position(), 0);
///
/// buff.seek(SeekFrom::Current(2)).unwrap();
/// assert_eq!(buff.position(), 2);
///
/// buff.seek(SeekFrom::Current(-1)).unwrap();
/// assert_eq!(buff.position(), 1);
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
#[rustc_const_stable(feature = "const_io_structs", since = "1.79.0")]
pub const fn position(&self) -> u64 {
self.pos
}
/// Sets the position of this cursor.
///
/// # Examples
///
/// ```
/// use std::io::Cursor;
///
/// let mut buff = Cursor::new(vec![1, 2, 3, 4, 5]);
///
/// assert_eq!(buff.position(), 0);
///
/// buff.set_position(2);
/// assert_eq!(buff.position(), 2);
///
/// buff.set_position(4);
/// assert_eq!(buff.position(), 4);
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
#[rustc_const_unstable(feature = "const_mut_cursor", issue = "130801")]
pub const fn set_position(&mut self, pos: u64) {
self.pos = pos;
}
}
impl<T> Cursor<T>
where
T: AsRef<[u8]>,
{
/// Splits the underlying slice at the cursor position and returns them.
///
/// # Examples
///
/// ```
/// #![feature(cursor_split)]
/// use std::io::Cursor;
///
/// let mut buff = Cursor::new(vec![1, 2, 3, 4, 5]);
///
/// assert_eq!(buff.split(), ([].as_slice(), [1, 2, 3, 4, 5].as_slice()));
///
/// buff.set_position(2);
/// assert_eq!(buff.split(), ([1, 2].as_slice(), [3, 4, 5].as_slice()));
///
/// buff.set_position(6);
/// assert_eq!(buff.split(), ([1, 2, 3, 4, 5].as_slice(), [].as_slice()));
/// ```
#[unstable(feature = "cursor_split", issue = "86369")]
pub fn split(&self) -> (&[u8], &[u8]) {
let slice = self.inner.as_ref();
let pos = self.pos.min(slice.len() as u64);
slice.split_at(pos as usize)
}
}
impl<T> Cursor<T>
where
T: AsMut<[u8]>,
{
/// Splits the underlying slice at the cursor position and returns them
/// mutably.
///
/// # Examples
///
/// ```
/// #![feature(cursor_split)]
/// use std::io::Cursor;
///
/// let mut buff = Cursor::new(vec![1, 2, 3, 4, 5]);
///
/// assert_eq!(buff.split_mut(), ([].as_mut_slice(), [1, 2, 3, 4, 5].as_mut_slice()));
///
/// buff.set_position(2);
/// assert_eq!(buff.split_mut(), ([1, 2].as_mut_slice(), [3, 4, 5].as_mut_slice()));
///
/// buff.set_position(6);
/// assert_eq!(buff.split_mut(), ([1, 2, 3, 4, 5].as_mut_slice(), [].as_mut_slice()));
/// ```
#[unstable(feature = "cursor_split", issue = "86369")]
pub fn split_mut(&mut self) -> (&mut [u8], &mut [u8]) {
let slice = self.inner.as_mut();
let pos = self.pos.min(slice.len() as u64);
slice.split_at_mut(pos as usize)
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl<T> Clone for Cursor<T>
where
T: Clone,
{
#[inline]
fn clone(&self) -> Self {
Cursor { inner: self.inner.clone(), pos: self.pos }
}
#[inline]
fn clone_from(&mut self, other: &Self) {
self.inner.clone_from(&other.inner);
self.pos = other.pos;
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl<T> io::Seek for Cursor<T>
where
T: AsRef<[u8]>,
{
fn seek(&mut self, style: SeekFrom) -> io::Result<u64> {
let (base_pos, offset) = match style {
SeekFrom::Start(n) => {
self.pos = n;
return Ok(n);
}
SeekFrom::End(n) => (self.inner.as_ref().len() as u64, n),
SeekFrom::Current(n) => (self.pos, n),
};
match base_pos.checked_add_signed(offset) {
Some(n) => {
self.pos = n;
Ok(self.pos)
}
None => Err(io::const_io_error!(
ErrorKind::InvalidInput,
"invalid seek to a negative or overflowing position",
)),
}
}
fn stream_len(&mut self) -> io::Result<u64> {
Ok(self.inner.as_ref().len() as u64)
}
fn stream_position(&mut self) -> io::Result<u64> {
Ok(self.pos)
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl<T> Read for Cursor<T>
where
T: AsRef<[u8]>,
{
fn read(&mut self, buf: &mut [u8]) -> io::Result<usize> {
let n = Read::read(&mut Cursor::split(self).1, buf)?;
self.pos += n as u64;
Ok(n)
}
fn read_buf(&mut self, mut cursor: BorrowedCursor<'_>) -> io::Result<()> {
let prev_written = cursor.written();
Read::read_buf(&mut Cursor::split(self).1, cursor.reborrow())?;
self.pos += (cursor.written() - prev_written) as u64;
Ok(())
}
fn read_vectored(&mut self, bufs: &mut [IoSliceMut<'_>]) -> io::Result<usize> {
let mut nread = 0;
for buf in bufs {
let n = self.read(buf)?;
nread += n;
if n < buf.len() {
break;
}
}
Ok(nread)
}
fn is_read_vectored(&self) -> bool {
true
}
fn read_exact(&mut self, buf: &mut [u8]) -> io::Result<()> {
let result = Read::read_exact(&mut Cursor::split(self).1, buf);
match result {
Ok(_) => self.pos += buf.len() as u64,
// The only possible error condition is EOF, so place the cursor at "EOF"
Err(_) => self.pos = self.inner.as_ref().len() as u64,
}
result
}
fn read_buf_exact(&mut self, mut cursor: BorrowedCursor<'_>) -> io::Result<()> {
let prev_written = cursor.written();
let result = Read::read_buf_exact(&mut Cursor::split(self).1, cursor.reborrow());
self.pos += (cursor.written() - prev_written) as u64;
result
}
fn read_to_end(&mut self, buf: &mut Vec<u8>) -> io::Result<usize> {
let content = Cursor::split(self).1;
let len = content.len();
buf.try_reserve(len)?;
buf.extend_from_slice(content);
self.pos += len as u64;
Ok(len)
}
fn read_to_string(&mut self, buf: &mut String) -> io::Result<usize> {
let content =
crate::str::from_utf8(Cursor::split(self).1).map_err(|_| io::Error::INVALID_UTF8)?;
let len = content.len();
buf.try_reserve(len)?;
buf.push_str(content);
self.pos += len as u64;
Ok(len)
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl<T> BufRead for Cursor<T>
where
T: AsRef<[u8]>,
{
fn fill_buf(&mut self) -> io::Result<&[u8]> {
Ok(Cursor::split(self).1)
}
fn consume(&mut self, amt: usize) {
self.pos += amt as u64;
}
}
// Non-resizing write implementation
#[inline]
fn slice_write(pos_mut: &mut u64, slice: &mut [u8], buf: &[u8]) -> io::Result<usize> {
let pos = cmp::min(*pos_mut, slice.len() as u64);
let amt = (&mut slice[(pos as usize)..]).write(buf)?;
*pos_mut += amt as u64;
Ok(amt)
}
#[inline]
fn slice_write_vectored(
pos_mut: &mut u64,
slice: &mut [u8],
bufs: &[IoSlice<'_>],
) -> io::Result<usize> {
let mut nwritten = 0;
for buf in bufs {
let n = slice_write(pos_mut, slice, buf)?;
nwritten += n;
if n < buf.len() {
break;
}
}
Ok(nwritten)
}
/// Reserves the required space, and pads the vec with 0s if necessary.
fn reserve_and_pad<A: Allocator>(
pos_mut: &mut u64,
vec: &mut Vec<u8, A>,
buf_len: usize,
) -> io::Result<usize> {
let pos: usize = (*pos_mut).try_into().map_err(|_| {
io::const_io_error!(
ErrorKind::InvalidInput,
"cursor position exceeds maximum possible vector length",
)
})?;
// For safety reasons, we don't want these numbers to overflow
// otherwise our allocation won't be enough
let desired_cap = pos.saturating_add(buf_len);
if desired_cap > vec.capacity() {
// We want our vec's total capacity
// to have room for (pos+buf_len) bytes. Reserve allocates
// based on additional elements from the length, so we need to
// reserve the difference
vec.reserve(desired_cap - vec.len());
}
// Pad if pos is above the current len.
if pos > vec.len() {
let diff = pos - vec.len();
// Unfortunately, `resize()` would suffice but the optimiser does not
// realise the `reserve` it does can be eliminated. So we do it manually
// to eliminate that extra branch
let spare = vec.spare_capacity_mut();
debug_assert!(spare.len() >= diff);
// Safety: we have allocated enough capacity for this.
// And we are only writing, not reading
unsafe {
spare.get_unchecked_mut(..diff).fill(core::mem::MaybeUninit::new(0));
vec.set_len(pos);
}
}
Ok(pos)
}
/// Writes the slice to the vec without allocating
/// # Safety: vec must have buf.len() spare capacity
unsafe fn vec_write_unchecked<A>(pos: usize, vec: &mut Vec<u8, A>, buf: &[u8]) -> usize
where
A: Allocator,
{
debug_assert!(vec.capacity() >= pos + buf.len());
unsafe { vec.as_mut_ptr().add(pos).copy_from(buf.as_ptr(), buf.len()) };
pos + buf.len()
}
/// Resizing write implementation for [`Cursor`]
///
/// Cursor is allowed to have a pre-allocated and initialised
/// vector body, but with a position of 0. This means the [`Write`]
/// will overwrite the contents of the vec.
///
/// This also allows for the vec body to be empty, but with a position of N.
/// This means that [`Write`] will pad the vec with 0 initially,
/// before writing anything from that point
fn vec_write<A>(pos_mut: &mut u64, vec: &mut Vec<u8, A>, buf: &[u8]) -> io::Result<usize>
where
A: Allocator,
{
let buf_len = buf.len();
let mut pos = reserve_and_pad(pos_mut, vec, buf_len)?;
// Write the buf then progress the vec forward if necessary
// Safety: we have ensured that the capacity is available
// and that all bytes get written up to pos
unsafe {
pos = vec_write_unchecked(pos, vec, buf);
if pos > vec.len() {
vec.set_len(pos);
}
};
// Bump us forward
*pos_mut += buf_len as u64;
Ok(buf_len)
}
/// Resizing write_vectored implementation for [`Cursor`]
///
/// Cursor is allowed to have a pre-allocated and initialised
/// vector body, but with a position of 0. This means the [`Write`]
/// will overwrite the contents of the vec.
///
/// This also allows for the vec body to be empty, but with a position of N.
/// This means that [`Write`] will pad the vec with 0 initially,
/// before writing anything from that point
fn vec_write_vectored<A>(
pos_mut: &mut u64,
vec: &mut Vec<u8, A>,
bufs: &[IoSlice<'_>],
) -> io::Result<usize>
where
A: Allocator,
{
// For safety reasons, we don't want this sum to overflow ever.
// If this saturates, the reserve should panic to avoid any unsound writing.
let buf_len = bufs.iter().fold(0usize, |a, b| a.saturating_add(b.len()));
let mut pos = reserve_and_pad(pos_mut, vec, buf_len)?;
// Write the buf then progress the vec forward if necessary
// Safety: we have ensured that the capacity is available
// and that all bytes get written up to the last pos
unsafe {
for buf in bufs {
pos = vec_write_unchecked(pos, vec, buf);
}
if pos > vec.len() {
vec.set_len(pos);
}
}
// Bump us forward
*pos_mut += buf_len as u64;
Ok(buf_len)
}
#[stable(feature = "rust1", since = "1.0.0")]
impl Write for Cursor<&mut [u8]> {
#[inline]
fn write(&mut self, buf: &[u8]) -> io::Result<usize> {
slice_write(&mut self.pos, self.inner, buf)
}
#[inline]
fn write_vectored(&mut self, bufs: &[IoSlice<'_>]) -> io::Result<usize> {
slice_write_vectored(&mut self.pos, self.inner, bufs)
}
#[inline]
fn is_write_vectored(&self) -> bool {
true
}
#[inline]
fn flush(&mut self) -> io::Result<()> {
Ok(())
}
}
#[stable(feature = "cursor_mut_vec", since = "1.25.0")]
impl<A> Write for Cursor<&mut Vec<u8, A>>
where
A: Allocator,
{
fn write(&mut self, buf: &[u8]) -> io::Result<usize> {
vec_write(&mut self.pos, self.inner, buf)
}
fn write_vectored(&mut self, bufs: &[IoSlice<'_>]) -> io::Result<usize> {
vec_write_vectored(&mut self.pos, self.inner, bufs)
}
#[inline]
fn is_write_vectored(&self) -> bool {
true
}
#[inline]
fn flush(&mut self) -> io::Result<()> {
Ok(())
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl<A> Write for Cursor<Vec<u8, A>>
where
A: Allocator,
{
fn write(&mut self, buf: &[u8]) -> io::Result<usize> {
vec_write(&mut self.pos, &mut self.inner, buf)
}
fn write_vectored(&mut self, bufs: &[IoSlice<'_>]) -> io::Result<usize> {
vec_write_vectored(&mut self.pos, &mut self.inner, bufs)
}
#[inline]
fn is_write_vectored(&self) -> bool {
true
}
#[inline]
fn flush(&mut self) -> io::Result<()> {
Ok(())
}
}
#[stable(feature = "cursor_box_slice", since = "1.5.0")]
impl<A> Write for Cursor<Box<[u8], A>>
where
A: Allocator,
{
#[inline]
fn write(&mut self, buf: &[u8]) -> io::Result<usize> {
slice_write(&mut self.pos, &mut self.inner, buf)
}
#[inline]
fn write_vectored(&mut self, bufs: &[IoSlice<'_>]) -> io::Result<usize> {
slice_write_vectored(&mut self.pos, &mut self.inner, bufs)
}
#[inline]
fn is_write_vectored(&self) -> bool {
true
}
#[inline]
fn flush(&mut self) -> io::Result<()> {
Ok(())
}
}
#[stable(feature = "cursor_array", since = "1.61.0")]
impl<const N: usize> Write for Cursor<[u8; N]> {
#[inline]
fn write(&mut self, buf: &[u8]) -> io::Result<usize> {
slice_write(&mut self.pos, &mut self.inner, buf)
}
#[inline]
fn write_vectored(&mut self, bufs: &[IoSlice<'_>]) -> io::Result<usize> {
slice_write_vectored(&mut self.pos, &mut self.inner, bufs)
}
#[inline]
fn is_write_vectored(&self) -> bool {
true
}
#[inline]
fn flush(&mut self) -> io::Result<()> {
Ok(())
}
}