std/num/
f16.rs

1//! Constants for the `f16` half-precision floating point type.
2//!
3//! *[See also the `f16` primitive type](primitive@f16).*
4//!
5//! Mathematically significant numbers are provided in the `consts` sub-module.
6
7#![unstable(feature = "f16", issue = "116909")]
8#![doc(test(attr(feature(cfg_target_has_reliable_f16_f128), expect(internal_features))))]
9
10#[unstable(feature = "f16", issue = "116909")]
11pub use core::f16::consts;
12
13#[cfg(not(test))]
14use crate::intrinsics;
15#[cfg(not(test))]
16use crate::sys::cmath;
17
18#[cfg(not(test))]
19impl f16 {
20    /// Raises a number to a floating point power.
21    ///
22    /// # Unspecified precision
23    ///
24    /// The precision of this function is non-deterministic. This means it varies by platform,
25    /// Rust version, and can even differ within the same execution from one invocation to the next.
26    ///
27    /// # Examples
28    ///
29    /// ```
30    /// #![feature(f16)]
31    /// # #[cfg(not(miri))]
32    /// # #[cfg(target_has_reliable_f16_math)] {
33    ///
34    /// let x = 2.0_f16;
35    /// let abs_difference = (x.powf(2.0) - (x * x)).abs();
36    /// assert!(abs_difference <= f16::EPSILON);
37    ///
38    /// assert_eq!(f16::powf(1.0, f16::NAN), 1.0);
39    /// assert_eq!(f16::powf(f16::NAN, 0.0), 1.0);
40    /// # }
41    /// ```
42    #[inline]
43    #[rustc_allow_incoherent_impl]
44    #[unstable(feature = "f16", issue = "116909")]
45    #[must_use = "method returns a new number and does not mutate the original value"]
46    pub fn powf(self, n: f16) -> f16 {
47        intrinsics::powf16(self, n)
48    }
49
50    /// Returns `e^(self)`, (the exponential function).
51    ///
52    /// # Unspecified precision
53    ///
54    /// The precision of this function is non-deterministic. This means it varies by platform,
55    /// Rust version, and can even differ within the same execution from one invocation to the next.
56    ///
57    /// # Examples
58    ///
59    /// ```
60    /// #![feature(f16)]
61    /// # #[cfg(not(miri))]
62    /// # #[cfg(target_has_reliable_f16_math)] {
63    ///
64    /// let one = 1.0f16;
65    /// // e^1
66    /// let e = one.exp();
67    ///
68    /// // ln(e) - 1 == 0
69    /// let abs_difference = (e.ln() - 1.0).abs();
70    ///
71    /// assert!(abs_difference <= f16::EPSILON);
72    /// # }
73    /// ```
74    #[inline]
75    #[rustc_allow_incoherent_impl]
76    #[unstable(feature = "f16", issue = "116909")]
77    #[must_use = "method returns a new number and does not mutate the original value"]
78    pub fn exp(self) -> f16 {
79        intrinsics::expf16(self)
80    }
81
82    /// Returns `2^(self)`.
83    ///
84    /// # Unspecified precision
85    ///
86    /// The precision of this function is non-deterministic. This means it varies by platform,
87    /// Rust version, and can even differ within the same execution from one invocation to the next.
88    ///
89    /// # Examples
90    ///
91    /// ```
92    /// #![feature(f16)]
93    /// # #[cfg(not(miri))]
94    /// # #[cfg(target_has_reliable_f16_math)] {
95    ///
96    /// let f = 2.0f16;
97    ///
98    /// // 2^2 - 4 == 0
99    /// let abs_difference = (f.exp2() - 4.0).abs();
100    ///
101    /// assert!(abs_difference <= f16::EPSILON);
102    /// # }
103    /// ```
104    #[inline]
105    #[rustc_allow_incoherent_impl]
106    #[unstable(feature = "f16", issue = "116909")]
107    #[must_use = "method returns a new number and does not mutate the original value"]
108    pub fn exp2(self) -> f16 {
109        intrinsics::exp2f16(self)
110    }
111
112    /// Returns the natural logarithm of the number.
113    ///
114    /// This returns NaN when the number is negative, and negative infinity when number is zero.
115    ///
116    /// # Unspecified precision
117    ///
118    /// The precision of this function is non-deterministic. This means it varies by platform,
119    /// Rust version, and can even differ within the same execution from one invocation to the next.
120    ///
121    /// # Examples
122    ///
123    /// ```
124    /// #![feature(f16)]
125    /// # #[cfg(not(miri))]
126    /// # #[cfg(target_has_reliable_f16_math)] {
127    ///
128    /// let one = 1.0f16;
129    /// // e^1
130    /// let e = one.exp();
131    ///
132    /// // ln(e) - 1 == 0
133    /// let abs_difference = (e.ln() - 1.0).abs();
134    ///
135    /// assert!(abs_difference <= f16::EPSILON);
136    /// # }
137    /// ```
138    ///
139    /// Non-positive values:
140    /// ```
141    /// #![feature(f16)]
142    /// # #[cfg(not(miri))]
143    /// # #[cfg(target_has_reliable_f16_math)] {
144    ///
145    /// assert_eq!(0_f16.ln(), f16::NEG_INFINITY);
146    /// assert!((-42_f16).ln().is_nan());
147    /// # }
148    /// ```
149    #[inline]
150    #[rustc_allow_incoherent_impl]
151    #[unstable(feature = "f16", issue = "116909")]
152    #[must_use = "method returns a new number and does not mutate the original value"]
153    pub fn ln(self) -> f16 {
154        intrinsics::logf16(self)
155    }
156
157    /// Returns the logarithm of the number with respect to an arbitrary base.
158    ///
159    /// This returns NaN when the number is negative, and negative infinity when number is zero.
160    ///
161    /// The result might not be correctly rounded owing to implementation details;
162    /// `self.log2()` can produce more accurate results for base 2, and
163    /// `self.log10()` can produce more accurate results for base 10.
164    ///
165    /// # Unspecified precision
166    ///
167    /// The precision of this function is non-deterministic. This means it varies by platform,
168    /// Rust version, and can even differ within the same execution from one invocation to the next.
169    ///
170    /// # Examples
171    ///
172    /// ```
173    /// #![feature(f16)]
174    /// # #[cfg(not(miri))]
175    /// # #[cfg(target_has_reliable_f16_math)] {
176    ///
177    /// let five = 5.0f16;
178    ///
179    /// // log5(5) - 1 == 0
180    /// let abs_difference = (five.log(5.0) - 1.0).abs();
181    ///
182    /// assert!(abs_difference <= f16::EPSILON);
183    /// # }
184    /// ```
185    ///
186    /// Non-positive values:
187    /// ```
188    /// #![feature(f16)]
189    /// # #[cfg(not(miri))]
190    /// # #[cfg(target_has_reliable_f16_math)] {
191    ///
192    /// assert_eq!(0_f16.log(10.0), f16::NEG_INFINITY);
193    /// assert!((-42_f16).log(10.0).is_nan());
194    /// # }
195    /// ```
196    #[inline]
197    #[rustc_allow_incoherent_impl]
198    #[unstable(feature = "f16", issue = "116909")]
199    #[must_use = "method returns a new number and does not mutate the original value"]
200    pub fn log(self, base: f16) -> f16 {
201        self.ln() / base.ln()
202    }
203
204    /// Returns the base 2 logarithm of the number.
205    ///
206    /// This returns NaN when the number is negative, and negative infinity when number is zero.
207    ///
208    /// # Unspecified precision
209    ///
210    /// The precision of this function is non-deterministic. This means it varies by platform,
211    /// Rust version, and can even differ within the same execution from one invocation to the next.
212    ///
213    /// # Examples
214    ///
215    /// ```
216    /// #![feature(f16)]
217    /// # #[cfg(not(miri))]
218    /// # #[cfg(target_has_reliable_f16_math)] {
219    ///
220    /// let two = 2.0f16;
221    ///
222    /// // log2(2) - 1 == 0
223    /// let abs_difference = (two.log2() - 1.0).abs();
224    ///
225    /// assert!(abs_difference <= f16::EPSILON);
226    /// # }
227    /// ```
228    ///
229    /// Non-positive values:
230    /// ```
231    /// #![feature(f16)]
232    /// # #[cfg(not(miri))]
233    /// # #[cfg(target_has_reliable_f16_math)] {
234    ///
235    /// assert_eq!(0_f16.log2(), f16::NEG_INFINITY);
236    /// assert!((-42_f16).log2().is_nan());
237    /// # }
238    /// ```
239    #[inline]
240    #[rustc_allow_incoherent_impl]
241    #[unstable(feature = "f16", issue = "116909")]
242    #[must_use = "method returns a new number and does not mutate the original value"]
243    pub fn log2(self) -> f16 {
244        intrinsics::log2f16(self)
245    }
246
247    /// Returns the base 10 logarithm of the number.
248    ///
249    /// This returns NaN when the number is negative, and negative infinity when number is zero.
250    ///
251    /// # Unspecified precision
252    ///
253    /// The precision of this function is non-deterministic. This means it varies by platform,
254    /// Rust version, and can even differ within the same execution from one invocation to the next.
255    ///
256    /// # Examples
257    ///
258    /// ```
259    /// #![feature(f16)]
260    /// # #[cfg(not(miri))]
261    /// # #[cfg(target_has_reliable_f16_math)] {
262    ///
263    /// let ten = 10.0f16;
264    ///
265    /// // log10(10) - 1 == 0
266    /// let abs_difference = (ten.log10() - 1.0).abs();
267    ///
268    /// assert!(abs_difference <= f16::EPSILON);
269    /// # }
270    /// ```
271    ///
272    /// Non-positive values:
273    /// ```
274    /// #![feature(f16)]
275    /// # #[cfg(not(miri))]
276    /// # #[cfg(target_has_reliable_f16_math)] {
277    ///
278    /// assert_eq!(0_f16.log10(), f16::NEG_INFINITY);
279    /// assert!((-42_f16).log10().is_nan());
280    /// # }
281    /// ```
282    #[inline]
283    #[rustc_allow_incoherent_impl]
284    #[unstable(feature = "f16", issue = "116909")]
285    #[must_use = "method returns a new number and does not mutate the original value"]
286    pub fn log10(self) -> f16 {
287        intrinsics::log10f16(self)
288    }
289
290    /// Compute the distance between the origin and a point (`x`, `y`) on the
291    /// Euclidean plane. Equivalently, compute the length of the hypotenuse of a
292    /// right-angle triangle with other sides having length `x.abs()` and
293    /// `y.abs()`.
294    ///
295    /// # Unspecified precision
296    ///
297    /// The precision of this function is non-deterministic. This means it varies by platform,
298    /// Rust version, and can even differ within the same execution from one invocation to the next.
299    ///
300    /// This function currently corresponds to the `hypotf` from libc on Unix
301    /// and Windows. Note that this might change in the future.
302    ///
303    /// # Examples
304    ///
305    /// ```
306    /// #![feature(f16)]
307    /// # #[cfg(not(miri))]
308    /// # #[cfg(target_has_reliable_f16_math)] {
309    ///
310    /// let x = 2.0f16;
311    /// let y = 3.0f16;
312    ///
313    /// // sqrt(x^2 + y^2)
314    /// let abs_difference = (x.hypot(y) - (x.powi(2) + y.powi(2)).sqrt()).abs();
315    ///
316    /// assert!(abs_difference <= f16::EPSILON);
317    /// # }
318    /// ```
319    #[inline]
320    #[rustc_allow_incoherent_impl]
321    #[unstable(feature = "f16", issue = "116909")]
322    #[must_use = "method returns a new number and does not mutate the original value"]
323    pub fn hypot(self, other: f16) -> f16 {
324        cmath::hypotf(self as f32, other as f32) as f16
325    }
326
327    /// Computes the sine of a number (in radians).
328    ///
329    /// # Unspecified precision
330    ///
331    /// The precision of this function is non-deterministic. This means it varies by platform,
332    /// Rust version, and can even differ within the same execution from one invocation to the next.
333    ///
334    /// # Examples
335    ///
336    /// ```
337    /// #![feature(f16)]
338    /// # #[cfg(not(miri))]
339    /// # #[cfg(target_has_reliable_f16_math)] {
340    ///
341    /// let x = std::f16::consts::FRAC_PI_2;
342    ///
343    /// let abs_difference = (x.sin() - 1.0).abs();
344    ///
345    /// assert!(abs_difference <= f16::EPSILON);
346    /// # }
347    /// ```
348    #[inline]
349    #[rustc_allow_incoherent_impl]
350    #[unstable(feature = "f16", issue = "116909")]
351    #[must_use = "method returns a new number and does not mutate the original value"]
352    pub fn sin(self) -> f16 {
353        intrinsics::sinf16(self)
354    }
355
356    /// Computes the cosine of a number (in radians).
357    ///
358    /// # Unspecified precision
359    ///
360    /// The precision of this function is non-deterministic. This means it varies by platform,
361    /// Rust version, and can even differ within the same execution from one invocation to the next.
362    ///
363    /// # Examples
364    ///
365    /// ```
366    /// #![feature(f16)]
367    /// # #[cfg(not(miri))]
368    /// # #[cfg(target_has_reliable_f16_math)] {
369    ///
370    /// let x = 2.0 * std::f16::consts::PI;
371    ///
372    /// let abs_difference = (x.cos() - 1.0).abs();
373    ///
374    /// assert!(abs_difference <= f16::EPSILON);
375    /// # }
376    /// ```
377    #[inline]
378    #[rustc_allow_incoherent_impl]
379    #[unstable(feature = "f16", issue = "116909")]
380    #[must_use = "method returns a new number and does not mutate the original value"]
381    pub fn cos(self) -> f16 {
382        intrinsics::cosf16(self)
383    }
384
385    /// Computes the tangent of a number (in radians).
386    ///
387    /// # Unspecified precision
388    ///
389    /// The precision of this function is non-deterministic. This means it varies by platform,
390    /// Rust version, and can even differ within the same execution from one invocation to the next.
391    ///
392    /// This function currently corresponds to the `tanf` from libc on Unix and
393    /// Windows. Note that this might change in the future.
394    ///
395    /// # Examples
396    ///
397    /// ```
398    /// #![feature(f16)]
399    /// # #[cfg(not(miri))]
400    /// # #[cfg(target_has_reliable_f16_math)] {
401    ///
402    /// let x = std::f16::consts::FRAC_PI_4;
403    /// let abs_difference = (x.tan() - 1.0).abs();
404    ///
405    /// assert!(abs_difference <= f16::EPSILON);
406    /// # }
407    /// ```
408    #[inline]
409    #[rustc_allow_incoherent_impl]
410    #[unstable(feature = "f16", issue = "116909")]
411    #[must_use = "method returns a new number and does not mutate the original value"]
412    pub fn tan(self) -> f16 {
413        cmath::tanf(self as f32) as f16
414    }
415
416    /// Computes the arcsine of a number. Return value is in radians in
417    /// the range [-pi/2, pi/2] or NaN if the number is outside the range
418    /// [-1, 1].
419    ///
420    /// # Unspecified precision
421    ///
422    /// The precision of this function is non-deterministic. This means it varies by platform,
423    /// Rust version, and can even differ within the same execution from one invocation to the next.
424    ///
425    /// This function currently corresponds to the `asinf` from libc on Unix
426    /// and Windows. Note that this might change in the future.
427    ///
428    /// # Examples
429    ///
430    /// ```
431    /// #![feature(f16)]
432    /// # #[cfg(not(miri))]
433    /// # #[cfg(target_has_reliable_f16_math)] {
434    ///
435    /// let f = std::f16::consts::FRAC_PI_4;
436    ///
437    /// // asin(sin(pi/2))
438    /// let abs_difference = (f.sin().asin() - f).abs();
439    ///
440    /// assert!(abs_difference <= f16::EPSILON);
441    /// # }
442    /// ```
443    #[inline]
444    #[doc(alias = "arcsin")]
445    #[rustc_allow_incoherent_impl]
446    #[unstable(feature = "f16", issue = "116909")]
447    #[must_use = "method returns a new number and does not mutate the original value"]
448    pub fn asin(self) -> f16 {
449        cmath::asinf(self as f32) as f16
450    }
451
452    /// Computes the arccosine of a number. Return value is in radians in
453    /// the range [0, pi] or NaN if the number is outside the range
454    /// [-1, 1].
455    ///
456    /// # Unspecified precision
457    ///
458    /// The precision of this function is non-deterministic. This means it varies by platform,
459    /// Rust version, and can even differ within the same execution from one invocation to the next.
460    ///
461    /// This function currently corresponds to the `acosf` from libc on Unix
462    /// and Windows. Note that this might change in the future.
463    ///
464    /// # Examples
465    ///
466    /// ```
467    /// #![feature(f16)]
468    /// # #[cfg(not(miri))]
469    /// # #[cfg(target_has_reliable_f16_math)] {
470    ///
471    /// let f = std::f16::consts::FRAC_PI_4;
472    ///
473    /// // acos(cos(pi/4))
474    /// let abs_difference = (f.cos().acos() - std::f16::consts::FRAC_PI_4).abs();
475    ///
476    /// assert!(abs_difference <= f16::EPSILON);
477    /// # }
478    /// ```
479    #[inline]
480    #[doc(alias = "arccos")]
481    #[rustc_allow_incoherent_impl]
482    #[unstable(feature = "f16", issue = "116909")]
483    #[must_use = "method returns a new number and does not mutate the original value"]
484    pub fn acos(self) -> f16 {
485        cmath::acosf(self as f32) as f16
486    }
487
488    /// Computes the arctangent of a number. Return value is in radians in the
489    /// range [-pi/2, pi/2];
490    ///
491    /// # Unspecified precision
492    ///
493    /// The precision of this function is non-deterministic. This means it varies by platform,
494    /// Rust version, and can even differ within the same execution from one invocation to the next.
495    ///
496    /// This function currently corresponds to the `atanf` from libc on Unix
497    /// and Windows. Note that this might change in the future.
498    ///
499    /// # Examples
500    ///
501    /// ```
502    /// #![feature(f16)]
503    /// # #[cfg(not(miri))]
504    /// # #[cfg(target_has_reliable_f16_math)] {
505    ///
506    /// let f = 1.0f16;
507    ///
508    /// // atan(tan(1))
509    /// let abs_difference = (f.tan().atan() - 1.0).abs();
510    ///
511    /// assert!(abs_difference <= f16::EPSILON);
512    /// # }
513    /// ```
514    #[inline]
515    #[doc(alias = "arctan")]
516    #[rustc_allow_incoherent_impl]
517    #[unstable(feature = "f16", issue = "116909")]
518    #[must_use = "method returns a new number and does not mutate the original value"]
519    pub fn atan(self) -> f16 {
520        cmath::atanf(self as f32) as f16
521    }
522
523    /// Computes the four quadrant arctangent of `self` (`y`) and `other` (`x`) in radians.
524    ///
525    ///  | `x`     | `y`     | Piecewise Definition | Range         |
526    ///  |---------|---------|----------------------|---------------|
527    ///  | `>= +0` | `>= +0` | `arctan(y/x)`        | `[+0, +pi/2]` |
528    ///  | `>= +0` | `<= -0` | `arctan(y/x)`        | `[-pi/2, -0]` |
529    ///  | `<= -0` | `>= +0` | `arctan(y/x) + pi`   | `[+pi/2, +pi]`|
530    ///  | `<= -0` | `<= -0` | `arctan(y/x) - pi`   | `[-pi, -pi/2]`|
531    ///
532    /// # Unspecified precision
533    ///
534    /// The precision of this function is non-deterministic. This means it varies by platform,
535    /// Rust version, and can even differ within the same execution from one invocation to the next.
536    ///
537    /// This function currently corresponds to the `atan2f` from libc on Unix
538    /// and Windows. Note that this might change in the future.
539    ///
540    /// # Examples
541    ///
542    /// ```
543    /// #![feature(f16)]
544    /// # #[cfg(not(miri))]
545    /// # #[cfg(target_has_reliable_f16_math)] {
546    ///
547    /// // Positive angles measured counter-clockwise
548    /// // from positive x axis
549    /// // -pi/4 radians (45 deg clockwise)
550    /// let x1 = 3.0f16;
551    /// let y1 = -3.0f16;
552    ///
553    /// // 3pi/4 radians (135 deg counter-clockwise)
554    /// let x2 = -3.0f16;
555    /// let y2 = 3.0f16;
556    ///
557    /// let abs_difference_1 = (y1.atan2(x1) - (-std::f16::consts::FRAC_PI_4)).abs();
558    /// let abs_difference_2 = (y2.atan2(x2) - (3.0 * std::f16::consts::FRAC_PI_4)).abs();
559    ///
560    /// assert!(abs_difference_1 <= f16::EPSILON);
561    /// assert!(abs_difference_2 <= f16::EPSILON);
562    /// # }
563    /// ```
564    #[inline]
565    #[rustc_allow_incoherent_impl]
566    #[unstable(feature = "f16", issue = "116909")]
567    #[must_use = "method returns a new number and does not mutate the original value"]
568    pub fn atan2(self, other: f16) -> f16 {
569        cmath::atan2f(self as f32, other as f32) as f16
570    }
571
572    /// Simultaneously computes the sine and cosine of the number, `x`. Returns
573    /// `(sin(x), cos(x))`.
574    ///
575    /// # Unspecified precision
576    ///
577    /// The precision of this function is non-deterministic. This means it varies by platform,
578    /// Rust version, and can even differ within the same execution from one invocation to the next.
579    ///
580    /// This function currently corresponds to the `(f16::sin(x),
581    /// f16::cos(x))`. Note that this might change in the future.
582    ///
583    /// # Examples
584    ///
585    /// ```
586    /// #![feature(f16)]
587    /// # #[cfg(not(miri))]
588    /// # #[cfg(target_has_reliable_f16_math)] {
589    ///
590    /// let x = std::f16::consts::FRAC_PI_4;
591    /// let f = x.sin_cos();
592    ///
593    /// let abs_difference_0 = (f.0 - x.sin()).abs();
594    /// let abs_difference_1 = (f.1 - x.cos()).abs();
595    ///
596    /// assert!(abs_difference_0 <= f16::EPSILON);
597    /// assert!(abs_difference_1 <= f16::EPSILON);
598    /// # }
599    /// ```
600    #[inline]
601    #[doc(alias = "sincos")]
602    #[rustc_allow_incoherent_impl]
603    #[unstable(feature = "f16", issue = "116909")]
604    pub fn sin_cos(self) -> (f16, f16) {
605        (self.sin(), self.cos())
606    }
607
608    /// Returns `e^(self) - 1` in a way that is accurate even if the
609    /// number is close to zero.
610    ///
611    /// # Unspecified precision
612    ///
613    /// The precision of this function is non-deterministic. This means it varies by platform,
614    /// Rust version, and can even differ within the same execution from one invocation to the next.
615    ///
616    /// This function currently corresponds to the `expm1f` from libc on Unix
617    /// and Windows. Note that this might change in the future.
618    ///
619    /// # Examples
620    ///
621    /// ```
622    /// #![feature(f16)]
623    /// # #[cfg(not(miri))]
624    /// # #[cfg(target_has_reliable_f16_math)] {
625    ///
626    /// let x = 1e-4_f16;
627    ///
628    /// // for very small x, e^x is approximately 1 + x + x^2 / 2
629    /// let approx = x + x * x / 2.0;
630    /// let abs_difference = (x.exp_m1() - approx).abs();
631    ///
632    /// assert!(abs_difference < 1e-4);
633    /// # }
634    /// ```
635    #[inline]
636    #[rustc_allow_incoherent_impl]
637    #[unstable(feature = "f16", issue = "116909")]
638    #[must_use = "method returns a new number and does not mutate the original value"]
639    pub fn exp_m1(self) -> f16 {
640        cmath::expm1f(self as f32) as f16
641    }
642
643    /// Returns `ln(1+n)` (natural logarithm) more accurately than if
644    /// the operations were performed separately.
645    ///
646    /// This returns NaN when `n < -1.0`, and negative infinity when `n == -1.0`.
647    ///
648    /// # Unspecified precision
649    ///
650    /// The precision of this function is non-deterministic. This means it varies by platform,
651    /// Rust version, and can even differ within the same execution from one invocation to the next.
652    ///
653    /// This function currently corresponds to the `log1pf` from libc on Unix
654    /// and Windows. Note that this might change in the future.
655    ///
656    /// # Examples
657    ///
658    /// ```
659    /// #![feature(f16)]
660    /// # #[cfg(not(miri))]
661    /// # #[cfg(target_has_reliable_f16_math)] {
662    ///
663    /// let x = 1e-4_f16;
664    ///
665    /// // for very small x, ln(1 + x) is approximately x - x^2 / 2
666    /// let approx = x - x * x / 2.0;
667    /// let abs_difference = (x.ln_1p() - approx).abs();
668    ///
669    /// assert!(abs_difference < 1e-4);
670    /// # }
671    /// ```
672    ///
673    /// Out-of-range values:
674    /// ```
675    /// #![feature(f16)]
676    /// # #[cfg(not(miri))]
677    /// # #[cfg(target_has_reliable_f16_math)] {
678    ///
679    /// assert_eq!((-1.0_f16).ln_1p(), f16::NEG_INFINITY);
680    /// assert!((-2.0_f16).ln_1p().is_nan());
681    /// # }
682    /// ```
683    #[inline]
684    #[doc(alias = "log1p")]
685    #[rustc_allow_incoherent_impl]
686    #[unstable(feature = "f16", issue = "116909")]
687    #[must_use = "method returns a new number and does not mutate the original value"]
688    pub fn ln_1p(self) -> f16 {
689        cmath::log1pf(self as f32) as f16
690    }
691
692    /// Hyperbolic sine function.
693    ///
694    /// # Unspecified precision
695    ///
696    /// The precision of this function is non-deterministic. This means it varies by platform,
697    /// Rust version, and can even differ within the same execution from one invocation to the next.
698    ///
699    /// This function currently corresponds to the `sinhf` from libc on Unix
700    /// and Windows. Note that this might change in the future.
701    ///
702    /// # Examples
703    ///
704    /// ```
705    /// #![feature(f16)]
706    /// # #[cfg(not(miri))]
707    /// # #[cfg(target_has_reliable_f16_math)] {
708    ///
709    /// let e = std::f16::consts::E;
710    /// let x = 1.0f16;
711    ///
712    /// let f = x.sinh();
713    /// // Solving sinh() at 1 gives `(e^2-1)/(2e)`
714    /// let g = ((e * e) - 1.0) / (2.0 * e);
715    /// let abs_difference = (f - g).abs();
716    ///
717    /// assert!(abs_difference <= f16::EPSILON);
718    /// # }
719    /// ```
720    #[inline]
721    #[rustc_allow_incoherent_impl]
722    #[unstable(feature = "f16", issue = "116909")]
723    #[must_use = "method returns a new number and does not mutate the original value"]
724    pub fn sinh(self) -> f16 {
725        cmath::sinhf(self as f32) as f16
726    }
727
728    /// Hyperbolic cosine function.
729    ///
730    /// # Unspecified precision
731    ///
732    /// The precision of this function is non-deterministic. This means it varies by platform,
733    /// Rust version, and can even differ within the same execution from one invocation to the next.
734    ///
735    /// This function currently corresponds to the `coshf` from libc on Unix
736    /// and Windows. Note that this might change in the future.
737    ///
738    /// # Examples
739    ///
740    /// ```
741    /// #![feature(f16)]
742    /// # #[cfg(not(miri))]
743    /// # #[cfg(target_has_reliable_f16_math)] {
744    ///
745    /// let e = std::f16::consts::E;
746    /// let x = 1.0f16;
747    /// let f = x.cosh();
748    /// // Solving cosh() at 1 gives this result
749    /// let g = ((e * e) + 1.0) / (2.0 * e);
750    /// let abs_difference = (f - g).abs();
751    ///
752    /// // Same result
753    /// assert!(abs_difference <= f16::EPSILON);
754    /// # }
755    /// ```
756    #[inline]
757    #[rustc_allow_incoherent_impl]
758    #[unstable(feature = "f16", issue = "116909")]
759    #[must_use = "method returns a new number and does not mutate the original value"]
760    pub fn cosh(self) -> f16 {
761        cmath::coshf(self as f32) as f16
762    }
763
764    /// Hyperbolic tangent function.
765    ///
766    /// # Unspecified precision
767    ///
768    /// The precision of this function is non-deterministic. This means it varies by platform,
769    /// Rust version, and can even differ within the same execution from one invocation to the next.
770    ///
771    /// This function currently corresponds to the `tanhf` from libc on Unix
772    /// and Windows. Note that this might change in the future.
773    ///
774    /// # Examples
775    ///
776    /// ```
777    /// #![feature(f16)]
778    /// # #[cfg(not(miri))]
779    /// # #[cfg(target_has_reliable_f16_math)] {
780    ///
781    /// let e = std::f16::consts::E;
782    /// let x = 1.0f16;
783    ///
784    /// let f = x.tanh();
785    /// // Solving tanh() at 1 gives `(1 - e^(-2))/(1 + e^(-2))`
786    /// let g = (1.0 - e.powi(-2)) / (1.0 + e.powi(-2));
787    /// let abs_difference = (f - g).abs();
788    ///
789    /// assert!(abs_difference <= f16::EPSILON);
790    /// # }
791    /// ```
792    #[inline]
793    #[rustc_allow_incoherent_impl]
794    #[unstable(feature = "f16", issue = "116909")]
795    #[must_use = "method returns a new number and does not mutate the original value"]
796    pub fn tanh(self) -> f16 {
797        cmath::tanhf(self as f32) as f16
798    }
799
800    /// Inverse hyperbolic sine function.
801    ///
802    /// # Unspecified precision
803    ///
804    /// The precision of this function is non-deterministic. This means it varies by platform,
805    /// Rust version, and can even differ within the same execution from one invocation to the next.
806    ///
807    /// # Examples
808    ///
809    /// ```
810    /// #![feature(f16)]
811    /// # #[cfg(not(miri))]
812    /// # #[cfg(target_has_reliable_f16_math)] {
813    ///
814    /// let x = 1.0f16;
815    /// let f = x.sinh().asinh();
816    ///
817    /// let abs_difference = (f - x).abs();
818    ///
819    /// assert!(abs_difference <= f16::EPSILON);
820    /// # }
821    /// ```
822    #[inline]
823    #[doc(alias = "arcsinh")]
824    #[rustc_allow_incoherent_impl]
825    #[unstable(feature = "f16", issue = "116909")]
826    #[must_use = "method returns a new number and does not mutate the original value"]
827    pub fn asinh(self) -> f16 {
828        let ax = self.abs();
829        let ix = 1.0 / ax;
830        (ax + (ax / (Self::hypot(1.0, ix) + ix))).ln_1p().copysign(self)
831    }
832
833    /// Inverse hyperbolic cosine function.
834    ///
835    /// # Unspecified precision
836    ///
837    /// The precision of this function is non-deterministic. This means it varies by platform,
838    /// Rust version, and can even differ within the same execution from one invocation to the next.
839    ///
840    /// # Examples
841    ///
842    /// ```
843    /// #![feature(f16)]
844    /// # #[cfg(not(miri))]
845    /// # #[cfg(target_has_reliable_f16_math)] {
846    ///
847    /// let x = 1.0f16;
848    /// let f = x.cosh().acosh();
849    ///
850    /// let abs_difference = (f - x).abs();
851    ///
852    /// assert!(abs_difference <= f16::EPSILON);
853    /// # }
854    /// ```
855    #[inline]
856    #[doc(alias = "arccosh")]
857    #[rustc_allow_incoherent_impl]
858    #[unstable(feature = "f16", issue = "116909")]
859    #[must_use = "method returns a new number and does not mutate the original value"]
860    pub fn acosh(self) -> f16 {
861        if self < 1.0 {
862            Self::NAN
863        } else {
864            (self + ((self - 1.0).sqrt() * (self + 1.0).sqrt())).ln()
865        }
866    }
867
868    /// Inverse hyperbolic tangent function.
869    ///
870    /// # Unspecified precision
871    ///
872    /// The precision of this function is non-deterministic. This means it varies by platform,
873    /// Rust version, and can even differ within the same execution from one invocation to the next.
874    ///
875    /// # Examples
876    ///
877    /// ```
878    /// #![feature(f16)]
879    /// # #[cfg(not(miri))]
880    /// # #[cfg(target_has_reliable_f16_math)] {
881    ///
882    /// let x = std::f16::consts::FRAC_PI_6;
883    /// let f = x.tanh().atanh();
884    ///
885    /// let abs_difference = (f - x).abs();
886    ///
887    /// assert!(abs_difference <= 0.01);
888    /// # }
889    /// ```
890    #[inline]
891    #[doc(alias = "arctanh")]
892    #[rustc_allow_incoherent_impl]
893    #[unstable(feature = "f16", issue = "116909")]
894    #[must_use = "method returns a new number and does not mutate the original value"]
895    pub fn atanh(self) -> f16 {
896        0.5 * ((2.0 * self) / (1.0 - self)).ln_1p()
897    }
898
899    /// Gamma function.
900    ///
901    /// # Unspecified precision
902    ///
903    /// The precision of this function is non-deterministic. This means it varies by platform,
904    /// Rust version, and can even differ within the same execution from one invocation to the next.
905    ///
906    /// This function currently corresponds to the `tgammaf` from libc on Unix
907    /// and Windows. Note that this might change in the future.
908    ///
909    /// # Examples
910    ///
911    /// ```
912    /// #![feature(f16)]
913    /// #![feature(float_gamma)]
914    /// # #[cfg(not(miri))]
915    /// # #[cfg(target_has_reliable_f16_math)] {
916    ///
917    /// let x = 5.0f16;
918    ///
919    /// let abs_difference = (x.gamma() - 24.0).abs();
920    ///
921    /// assert!(abs_difference <= f16::EPSILON);
922    /// # }
923    /// ```
924    #[inline]
925    #[rustc_allow_incoherent_impl]
926    #[unstable(feature = "f16", issue = "116909")]
927    // #[unstable(feature = "float_gamma", issue = "99842")]
928    #[must_use = "method returns a new number and does not mutate the original value"]
929    pub fn gamma(self) -> f16 {
930        cmath::tgammaf(self as f32) as f16
931    }
932
933    /// Natural logarithm of the absolute value of the gamma function
934    ///
935    /// The integer part of the tuple indicates the sign of the gamma function.
936    ///
937    /// # Unspecified precision
938    ///
939    /// The precision of this function is non-deterministic. This means it varies by platform,
940    /// Rust version, and can even differ within the same execution from one invocation to the next.
941    ///
942    /// This function currently corresponds to the `lgamma_r` from libc on Unix
943    /// and Windows. Note that this might change in the future.
944    ///
945    /// # Examples
946    ///
947    /// ```
948    /// #![feature(f16)]
949    /// #![feature(float_gamma)]
950    /// # #[cfg(not(miri))]
951    /// # #[cfg(target_has_reliable_f16_math)] {
952    ///
953    /// let x = 2.0f16;
954    ///
955    /// let abs_difference = (x.ln_gamma().0 - 0.0).abs();
956    ///
957    /// assert!(abs_difference <= f16::EPSILON);
958    /// # }
959    /// ```
960    #[inline]
961    #[rustc_allow_incoherent_impl]
962    #[unstable(feature = "f16", issue = "116909")]
963    // #[unstable(feature = "float_gamma", issue = "99842")]
964    #[must_use = "method returns a new number and does not mutate the original value"]
965    pub fn ln_gamma(self) -> (f16, i32) {
966        let mut signgamp: i32 = 0;
967        let x = cmath::lgammaf_r(self as f32, &mut signgamp) as f16;
968        (x, signgamp)
969    }
970
971    /// Error function.
972    ///
973    /// # Unspecified precision
974    ///
975    /// The precision of this function is non-deterministic. This means it varies by platform,
976    /// Rust version, and can even differ within the same execution from one invocation to the next.
977    ///
978    /// This function currently corresponds to the `erff` from libc on Unix
979    /// and Windows. Note that this might change in the future.
980    ///
981    /// # Examples
982    ///
983    /// ```
984    /// #![feature(f16)]
985    /// #![feature(float_erf)]
986    /// # #[cfg(not(miri))]
987    /// # #[cfg(target_has_reliable_f16_math)] {
988    /// /// The error function relates what percent of a normal distribution lies
989    /// /// within `x` standard deviations (scaled by `1/sqrt(2)`).
990    /// fn within_standard_deviations(x: f16) -> f16 {
991    ///     (x * std::f16::consts::FRAC_1_SQRT_2).erf() * 100.0
992    /// }
993    ///
994    /// // 68% of a normal distribution is within one standard deviation
995    /// assert!((within_standard_deviations(1.0) - 68.269).abs() < 0.1);
996    /// // 95% of a normal distribution is within two standard deviations
997    /// assert!((within_standard_deviations(2.0) - 95.450).abs() < 0.1);
998    /// // 99.7% of a normal distribution is within three standard deviations
999    /// assert!((within_standard_deviations(3.0) - 99.730).abs() < 0.1);
1000    /// # }
1001    /// ```
1002    #[rustc_allow_incoherent_impl]
1003    #[must_use = "method returns a new number and does not mutate the original value"]
1004    #[unstable(feature = "f16", issue = "116909")]
1005    // #[unstable(feature = "float_erf", issue = "136321")]
1006    #[inline]
1007    pub fn erf(self) -> f16 {
1008        cmath::erff(self as f32) as f16
1009    }
1010
1011    /// Complementary error function.
1012    ///
1013    /// # Unspecified precision
1014    ///
1015    /// The precision of this function is non-deterministic. This means it varies by platform,
1016    /// Rust version, and can even differ within the same execution from one invocation to the next.
1017    ///
1018    /// This function currently corresponds to the `erfcf` from libc on Unix
1019    /// and Windows. Note that this might change in the future.
1020    ///
1021    /// # Examples
1022    ///
1023    /// ```
1024    /// #![feature(f16)]
1025    /// #![feature(float_erf)]
1026    /// # #[cfg(not(miri))]
1027    /// # #[cfg(target_has_reliable_f16_math)] {
1028    /// let x: f16 = 0.123;
1029    ///
1030    /// let one = x.erf() + x.erfc();
1031    /// let abs_difference = (one - 1.0).abs();
1032    ///
1033    /// assert!(abs_difference <= f16::EPSILON);
1034    /// # }
1035    /// ```
1036    #[rustc_allow_incoherent_impl]
1037    #[must_use = "method returns a new number and does not mutate the original value"]
1038    #[unstable(feature = "f16", issue = "116909")]
1039    // #[unstable(feature = "float_erf", issue = "136321")]
1040    #[inline]
1041    pub fn erfc(self) -> f16 {
1042        cmath::erfcf(self as f32) as f16
1043    }
1044}