slice

Primitive Type slice 

1.0.0
Expand description

A dynamically-sized view into a contiguous sequence, [T].

Contiguous here means that elements are laid out so that every element is the same distance from its neighbors.

See also the std::slice module.

Slices are a view into a block of memory represented as a pointer and a length.

// slicing a Vec
let vec = vec![1, 2, 3];
let int_slice = &vec[..];
// coercing an array to a slice
let str_slice: &[&str] = &["one", "two", "three"];

Slices are either mutable or shared. The shared slice type is &[T], while the mutable slice type is &mut [T], where T represents the element type. For example, you can mutate the block of memory that a mutable slice points to:

let mut x = [1, 2, 3];
let x = &mut x[..]; // Take a full slice of `x`.
x[1] = 7;
assert_eq!(x, &[1, 7, 3]);

It is possible to slice empty subranges of slices by using empty ranges (including slice.len()..slice.len()):

let x = [1, 2, 3];
let empty = &x[0..0];   // subslice before the first element
assert_eq!(empty, &[]);
let empty = &x[..0];    // same as &x[0..0]
assert_eq!(empty, &[]);
let empty = &x[1..1];   // empty subslice in the middle
assert_eq!(empty, &[]);
let empty = &x[3..3];   // subslice after the last element
assert_eq!(empty, &[]);
let empty = &x[3..];    // same as &x[3..3]
assert_eq!(empty, &[]);

It is not allowed to use subranges that start with lower bound bigger than slice.len():

let x = vec![1, 2, 3];
let _ = &x[4..4];

As slices store the length of the sequence they refer to, they have twice the size of pointers to Sized types. Also see the reference on dynamically sized types.

let pointer_size = size_of::<&u8>();
assert_eq!(2 * pointer_size, size_of::<&[u8]>());
assert_eq!(2 * pointer_size, size_of::<*const [u8]>());
assert_eq!(2 * pointer_size, size_of::<Box<[u8]>>());
assert_eq!(2 * pointer_size, size_of::<Rc<[u8]>>());

§Trait Implementations

Some traits are implemented for slices if the element type implements that trait. This includes Eq, Hash and Ord.

§Iteration

The slices implement IntoIterator. The iterator yields references to the slice elements.

let numbers: &[i32] = &[0, 1, 2];
for n in numbers {
    println!("{n} is a number!");
}

The mutable slice yields mutable references to the elements:

let mut scores: &mut [i32] = &mut [7, 8, 9];
for score in scores {
    *score += 1;
}

This iterator yields mutable references to the slice’s elements, so while the element type of the slice is i32, the element type of the iterator is &mut i32.

Implementations§

Source§

impl<T> [MaybeUninit<T>]

Source

pub const unsafe fn assume_init_drop(&mut self)
where T:,

🔬This is a nightly-only experimental API. (maybe_uninit_slice #63569)

Drops the contained values in place.

§Safety

It is up to the caller to guarantee that every MaybeUninit<T> in the slice really is in an initialized state. Calling this when the content is not yet fully initialized causes undefined behavior.

On top of that, all additional invariants of the type T must be satisfied, as the Drop implementation of T (or its members) may rely on this. For example, setting a Vec<T> to an invalid but non-null address makes it initialized (under the current implementation; this does not constitute a stable guarantee), because the only requirement the compiler knows about it is that the data pointer must be non-null. Dropping such a Vec<T> however will cause undefined behaviour.

Source

pub const unsafe fn assume_init_ref(&self) -> &[T]

🔬This is a nightly-only experimental API. (maybe_uninit_slice #63569)

Gets a shared reference to the contained value.

§Safety

Calling this when the content is not yet fully initialized causes undefined behavior: it is up to the caller to guarantee that every MaybeUninit<T> in the slice really is in an initialized state.

Source§

impl<T> [T]

1.0.0 (const: 1.39.0) · Source

pub const fn len(&self) -> usize

Returns the number of elements in the slice.

§Examples
let a = [1, 2, 3];
assert_eq!(a.len(), 3);
1.0.0 (const: 1.39.0) · Source

pub const fn is_empty(&self) -> bool

Returns true if the slice has a length of 0.

§Examples
let a = [1, 2, 3];
assert!(!a.is_empty());

let b: &[i32] = &[];
assert!(b.is_empty());
1.0.0 (const: 1.56.0) · Source

pub const fn first(&self) -> Option<&T>

Returns the first element of the slice, or None if it is empty.

§Examples
let v = [10, 40, 30];
assert_eq!(Some(&10), v.first());

let w: &[i32] = &[];
assert_eq!(None, w.first());
1.0.0 (const: 1.83.0) · Source

pub const fn first_mut(&mut self) -> Option<&mut T>

Returns a mutable reference to the first element of the slice, or None if it is empty.

§Examples
let x = &mut [0, 1, 2];

if let Some(first) = x.first_mut() {
    *first = 5;
}
assert_eq!(x, &[5, 1, 2]);

let y: &mut [i32] = &mut [];
assert_eq!(None, y.first_mut());
1.5.0 (const: 1.56.0) · Source

pub const fn split_first(&self) -> Option<(&T, &[T])>

Returns the first and all the rest of the elements of the slice, or None if it is empty.

§Examples
let x = &[0, 1, 2];

if let Some((first, elements)) = x.split_first() {
    assert_eq!(first, &0);
    assert_eq!(elements, &[1, 2]);
}
1.5.0 (const: 1.83.0) · Source

pub const fn split_first_mut(&mut self) -> Option<(&mut T, &mut [T])>

Returns the first and all the rest of the elements of the slice, or None if it is empty.

§Examples
let x = &mut [0, 1, 2];

if let Some((first, elements)) = x.split_first_mut() {
    *first = 3;
    elements[0] = 4;
    elements[1] = 5;
}
assert_eq!(x, &[3, 4, 5]);
1.5.0 (const: 1.56.0) · Source

pub const fn split_last(&self) -> Option<(&T, &[T])>

Returns the last and all the rest of the elements of the slice, or None if it is empty.

§Examples
let x = &[0, 1, 2];

if let Some((last, elements)) = x.split_last() {
    assert_eq!(last, &2);
    assert_eq!(elements, &[0, 1]);
}
1.5.0 (const: 1.83.0) · Source

pub const fn split_last_mut(&mut self) -> Option<(&mut T, &mut [T])>

Returns the last and all the rest of the elements of the slice, or None if it is empty.

§Examples
let x = &mut [0, 1, 2];

if let Some((last, elements)) = x.split_last_mut() {
    *last = 3;
    elements[0] = 4;
    elements[1] = 5;
}
assert_eq!(x, &[4, 5, 3]);
1.0.0 (const: 1.56.0) · Source

pub const fn last(&self) -> Option<&T>

Returns the last element of the slice, or None if it is empty.

§Examples
let v = [10, 40, 30];
assert_eq!(Some(&30), v.last());

let w: &[i32] = &[];
assert_eq!(None, w.last());
1.0.0 (const: 1.83.0) · Source

pub const fn last_mut(&mut self) -> Option<&mut T>

Returns a mutable reference to the last item in the slice, or None if it is empty.

§Examples
let x = &mut [0, 1, 2];

if let Some(last) = x.last_mut() {
    *last = 10;
}
assert_eq!(x, &[0, 1, 10]);

let y: &mut [i32] = &mut [];
assert_eq!(None, y.last_mut());
1.77.0 (const: 1.77.0) · Source

pub const fn first_chunk<const N: usize>(&self) -> Option<&[T; N]>

Returns an array reference to the first N items in the slice.

If the slice is not at least N in length, this will return None.

§Examples
let u = [10, 40, 30];
assert_eq!(Some(&[10, 40]), u.first_chunk::<2>());

let v: &[i32] = &[10];
assert_eq!(None, v.first_chunk::<2>());

let w: &[i32] = &[];
assert_eq!(Some(&[]), w.first_chunk::<0>());
1.77.0 (const: 1.83.0) · Source

pub const fn first_chunk_mut<const N: usize>(&mut self) -> Option<&mut [T; N]>

Returns a mutable array reference to the first N items in the slice.

If the slice is not at least N in length, this will return None.

§Examples
let x = &mut [0, 1, 2];

if let Some(first) = x.first_chunk_mut::<2>() {
    first[0] = 5;
    first[1] = 4;
}
assert_eq!(x, &[5, 4, 2]);

assert_eq!(None, x.first_chunk_mut::<4>());
1.0.0 (const: unstable) · Source

pub fn get<I>(&self, index: I) -> Option<&I::Output>
where I: SliceIndex<Self>,

Returns a reference to an element or subslice depending on the type of index.

  • If given a position, returns a reference to the element at that position or None if out of bounds.
  • If given a range, returns the subslice corresponding to that range, or None if out of bounds.
§Examples
let v = [10, 40, 30];
assert_eq!(Some(&40), v.get(1));
assert_eq!(Some(&[10, 40][..]), v.get(0..2));
assert_eq!(None, v.get(3));
assert_eq!(None, v.get(0..4));
1.0.0 (const: unstable) · Source

pub fn get_mut<I>(&mut self, index: I) -> Option<&mut I::Output>
where I: SliceIndex<Self>,

Returns a mutable reference to an element or subslice depending on the type of index (see get) or None if the index is out of bounds.

§Examples
let x = &mut [0, 1, 2];

if let Some(elem) = x.get_mut(1) {
    *elem = 42;
}
assert_eq!(x, &[0, 42, 2]);
1.0.0 (const: unstable) · Source

pub unsafe fn get_unchecked<I>(&self, index: I) -> &I::Output
where I: SliceIndex<Self>,

Returns a reference to an element or subslice, without doing bounds checking.

For a safe alternative see get.

§Safety

Calling this method with an out-of-bounds index is undefined behavior even if the resulting reference is not used.

You can think of this like .get(index).unwrap_unchecked(). It’s UB to call .get_unchecked(len), even if you immediately convert to a pointer. And it’s UB to call .get_unchecked(..len + 1), .get_unchecked(..=len), or similar.

§Examples
let x = &[1, 2, 4];

unsafe {
    assert_eq!(x.get_unchecked(1), &2);
}
1.0.0 (const: unstable) · Source

pub unsafe fn get_unchecked_mut<I>(&mut self, index: I) -> &mut I::Output
where I: SliceIndex<Self>,

Returns a mutable reference to an element or subslice, without doing bounds checking.

For a safe alternative see get_mut.

§Safety

Calling this method with an out-of-bounds index is undefined behavior even if the resulting reference is not used.

You can think of this like .get_mut(index).unwrap_unchecked(). It’s UB to call .get_unchecked_mut(len), even if you immediately convert to a pointer. And it’s UB to call .get_unchecked_mut(..len + 1), .get_unchecked_mut(..=len), or similar.

§Examples
let x = &mut [1, 2, 4];

unsafe {
    let elem = x.get_unchecked_mut(1);
    *elem = 13;
}
assert_eq!(x, &[1, 13, 4]);
1.0.0 (const: 1.32.0) · Source

pub const fn as_ptr(&self) -> *const T

Returns a raw pointer to the slice’s buffer.

The caller must ensure that the slice outlives the pointer this function returns, or else it will end up dangling.

The caller must also ensure that the memory the pointer (non-transitively) points to is never written to (except inside an UnsafeCell) using this pointer or any pointer derived from it. If you need to mutate the contents of the slice, use as_mut_ptr.

Modifying the container referenced by this slice may cause its buffer to be reallocated, which would also make any pointers to it invalid.

§Examples
let x = &[1, 2, 4];
let x_ptr = x.as_ptr();

unsafe {
    for i in 0..x.len() {
        assert_eq!(x.get_unchecked(i), &*x_ptr.add(i));
    }
}
1.0.0 (const: 1.61.0) · Source

pub const fn as_mut_ptr(&mut self) -> *mut T

Returns an unsafe mutable pointer to the slice’s buffer.

The caller must ensure that the slice outlives the pointer this function returns, or else it will end up dangling.

Modifying the container referenced by this slice may cause its buffer to be reallocated, which would also make any pointers to it invalid.

§Examples
let x = &mut [1, 2, 4];
let x_ptr = x.as_mut_ptr();

unsafe {
    for i in 0..x.len() {
        *x_ptr.add(i) += 2;
    }
}
assert_eq!(x, &[3, 4, 6]);
Source

pub const fn as_array<const N: usize>(&self) -> Option<&[T; N]>

🔬This is a nightly-only experimental API. (slice_as_array #133508)

Gets a reference to the underlying array.

If N is not exactly equal to the length of self, then this method returns None.

Source

pub const fn as_mut_array<const N: usize>(&mut self) -> Option<&mut [T; N]>

🔬This is a nightly-only experimental API. (slice_as_array #133508)

Gets a mutable reference to the slice’s underlying array.

If N is not exactly equal to the length of self, then this method returns None.

1.0.0 (const: unstable) · Source

pub fn iter(&self) -> Iter<'_, T>

Returns an iterator over the slice.

The iterator yields all items from start to end.

§Examples
let x = &[1, 2, 4];
let mut iterator = x.iter();

assert_eq!(iterator.next(), Some(&1));
assert_eq!(iterator.next(), Some(&2));
assert_eq!(iterator.next(), Some(&4));
assert_eq!(iterator.next(), None);
1.0.0 (const: unstable) · Source

pub fn iter_mut(&mut self) -> IterMut<'_, T>

Returns an iterator that allows modifying each value.

The iterator yields all items from start to end.

§Examples
let x = &mut [1, 2, 4];
for elem in x.iter_mut() {
    *elem += 2;
}
assert_eq!(x, &[3, 4, 6]);
1.9.0 (const: 1.87.0) · Source

pub const fn copy_from_slice(&mut self, src: &[T])
where T: Copy,

Copies all elements from src into self, using a memcpy.

The length of src must be the same as self.

If T does not implement Copy, use clone_from_slice.

§Panics

This function will panic if the two slices have different lengths.

§Examples

Copying two elements from a slice into another:

let src = [1, 2, 3, 4];
let mut dst = [0, 0];

// Because the slices have to be the same length,
// we slice the source slice from four elements
// to two. It will panic if we don't do this.
dst.copy_from_slice(&src[2..]);

assert_eq!(src, [1, 2, 3, 4]);
assert_eq!(dst, [3, 4]);

Rust enforces that there can only be one mutable reference with no immutable references to a particular piece of data in a particular scope. Because of this, attempting to use copy_from_slice on a single slice will result in a compile failure:

let mut slice = [1, 2, 3, 4, 5];

slice[..2].copy_from_slice(&slice[3..]); // compile fail!

To work around this, we can use split_at_mut to create two distinct sub-slices from a slice:

let mut slice = [1, 2, 3, 4, 5];

{
    let (left, right) = slice.split_at_mut(2);
    left.copy_from_slice(&right[1..]);
}

assert_eq!(slice, [4, 5, 3, 4, 5]);

Trait Implementations§

1.0.0 (const: unstable) · Source§

impl<T> AsMut<[T]> for [T]

Source§

fn as_mut(&mut self) -> &mut [T]

Converts this type into a mutable reference of the (usually inferred) input type.
1.0.0 (const: unstable) · Source§

impl AsRef<[u8]> for str

Source§

fn as_ref(&self) -> &[u8]

Converts this type into a shared reference of the (usually inferred) input type.
1.0.0 (const: unstable) · Source§

impl<T, I> Index<I> for [T]
where I: SliceIndex<[T]>,

Source§

type Output = <I as SliceIndex<[T]>>::Output

The returned type after indexing.
Source§

fn index(&self, index: I) -> &I::Output

Performs the indexing (container[index]) operation. Read more
1.0.0 (const: unstable) · Source§

impl<T, I> IndexMut<I> for [T]
where I: SliceIndex<[T]>,

Source§

fn index_mut(&mut self, index: I) -> &mut I::Output

Performs the mutable indexing (container[index]) operation. Read more
1.0.0 · Source§

impl<'a, T> IntoIterator for &'a [T]

Source§

type Item = &'a T

The type of the elements being iterated over.
Source§

type IntoIter = Iter<'a, T>

Which kind of iterator are we turning this into?
Source§

fn into_iter(self) -> Iter<'a, T>

Creates an iterator from a value. Read more
1.0.0 · Source§

impl<'a, T> IntoIterator for &'a mut [T]

Source§

type Item = &'a mut T

The type of the elements being iterated over.
Source§

type IntoIter = IterMut<'a, T>

Which kind of iterator are we turning this into?
Source§

fn into_iter(self) -> IterMut<'a, T>

Creates an iterator from a value. Read more
1.0.0 (const: unstable) · Source§

impl<T, U, const N: usize> PartialEq<&[U]> for [T; N]
where T: PartialEq<U>,

Source§

fn eq(&self, other: &&[U]) -> bool

Tests for self and other values to be equal, and is used by ==.
Source§

fn ne(&self, other: &&[U]) -> bool

Tests for !=. The default implementation is almost always sufficient, and should not be overridden without very good reason.
1.0.0 (const: unstable) · Source§

impl<T, U, const N: usize> PartialEq<&mut [U]> for [T; N]
where T: PartialEq<U>,

Source§

fn eq(&self, other: &&mut [U]) -> bool

Tests for self and other values to be equal, and is used by ==.
Source§

fn ne(&self, other: &&mut [U]) -> bool

Tests for !=. The default implementation is almost always sufficient, and should not be overridden without very good reason.
1.0.0 (const: unstable) · Source§

impl<T, U> PartialEq<[U]> for [T]
where T: PartialEq<U>,

Source§

fn eq(&self, other: &[U]) -> bool

Tests for self and other values to be equal, and is used by ==.
Source§

fn ne(&self, other: &[U]) -> bool

Tests for !=. The default implementation is almost always sufficient, and should not be overridden without very good reason.
1.0.0 (const: unstable) · Source§

impl<T, U, const N: usize> PartialEq<[U]> for [T; N]
where T: PartialEq<U>,

Source§

fn eq(&self, other: &[U]) -> bool

Tests for self and other values to be equal, and is used by ==.
Source§

fn ne(&self, other: &[U]) -> bool

Tests for !=. The default implementation is almost always sufficient, and should not be overridden without very good reason.
1.0.0 (const: unstable) · Source§

impl<T, U, const N: usize> PartialEq<[U; N]> for &[T]
where T: PartialEq<U>,

Source§

fn eq(&self, other: &[U; N]) -> bool

Tests for self and other values to be equal, and is used by ==.
Source§

fn ne(&self, other: &[U; N]) -> bool

Tests for !=. The default implementation is almost always sufficient, and should not be overridden without very good reason.
1.0.0 (const: unstable) · Source§

impl<T, U, const N: usize> PartialEq<[U; N]> for &mut [T]
where T: PartialEq<U>,

Source§

fn eq(&self, other: &[U; N]) -> bool

Tests for self and other values to be equal, and is used by ==.
Source§

fn ne(&self, other: &[U; N]) -> bool

Tests for !=. The default implementation is almost always sufficient, and should not be overridden without very good reason.
1.0.0 (const: unstable) · Source§

impl<T, U, const N: usize> PartialEq<[U; N]> for [T]
where T: PartialEq<U>,

Source§

fn eq(&self, other: &[U; N]) -> bool

Tests for self and other values to be equal, and is used by ==.
Source§

fn ne(&self, other: &[U; N]) -> bool

Tests for !=. The default implementation is almost always sufficient, and should not be overridden without very good reason.
1.53.0 · Source§

impl<T> SliceIndex<[T]> for (Bound<usize>, Bound<usize>)

Source§

type Output = [T]

The output type returned by methods.
Source§

fn get(self, slice: &[T]) -> Option<&Self::Output>

🔬This is a nightly-only experimental API. (slice_index_methods)
Returns a shared reference to the output at this location, if in bounds.
Source§

fn get_mut(self, slice: &mut [T]) -> Option<&mut Self::Output>

🔬This is a nightly-only experimental API. (slice_index_methods)
Returns a mutable reference to the output at this location, if in bounds.
Source§

unsafe fn get_unchecked(self, slice: *const [T]) -> *const Self::Output

🔬This is a nightly-only experimental API. (slice_index_methods)
Returns a pointer to the output at this location, without performing any bounds checking. Read more
Source§

unsafe fn get_unchecked_mut(self, slice: *mut [T]) -> *mut Self::Output

🔬This is a nightly-only experimental API. (slice_index_methods)
Returns a mutable pointer to the output at this location, without performing any bounds checking. Read more
Source§

fn index(self, slice: &[T]) -> &Self::Output

🔬This is a nightly-only experimental API. (slice_index_methods)
Returns a shared reference to the output at this location, panicking if out of bounds.
Source§

fn index_mut(self, slice: &mut [T]) -> &mut Self::Output

🔬This is a nightly-only experimental API. (slice_index_methods)
Returns a mutable reference to the output at this location, panicking if out of bounds.
1.15.0 (const: unstable) · Source§

impl<T> SliceIndex<[T]> for Range<usize>

The methods index and index_mut panic if:

  • the start of the range is greater than the end of the range or
  • the end of the range is out of bounds.
Source§

type Output = [T]

The output type returned by methods.
Source§

fn get(self, slice: &[T]) -> Option<&[T]>

🔬This is a nightly-only experimental API. (slice_index_methods)
Returns a shared reference to the output at this location, if in bounds.
Source§

fn get_mut(self, slice: &mut [T]) -> Option<&mut [T]>

🔬This is a nightly-only experimental API. (slice_index_methods)
Returns a mutable reference to the output at this location, if in bounds.
Source§

unsafe fn get_unchecked(self, slice: *const [T]) -> *const [T]

🔬This is a nightly-only experimental API. (slice_index_methods)
Returns a pointer to the output at this location, without performing any bounds checking. Read more
Source§

unsafe fn get_unchecked_mut(self, slice: *mut [T]) -> *mut [T]

🔬This is a nightly-only experimental API. (slice_index_methods)
Returns a mutable pointer to the output at this location, without performing any bounds checking. Read more
Source§

fn index(self, slice: &[T]) -> &[T]

🔬This is a nightly-only experimental API. (slice_index_methods)
Returns a shared reference to the output at this location, panicking if out of bounds.
Source§

fn index_mut(self, slice: &mut [T]) -> &mut [T]

🔬This is a nightly-only experimental API. (slice_index_methods)
Returns a mutable reference to the output at this location, panicking if out of bounds.
1.15.0 (const: unstable) · Source§

impl<T> SliceIndex<[T]> for RangeFrom<usize>

The methods index and index_mut panic if the start of the range is out of bounds.

Source§

type Output = [T]

The output type returned by methods.
Source§

fn get(self, slice: &[T]) -> Option<&[T]>

🔬This is a nightly-only experimental API. (slice_index_methods)
Returns a shared reference to the output at this location, if in bounds.
Source§

fn get_mut(self, slice: &mut [T]) -> Option<&mut [T]>

🔬This is a nightly-only experimental API. (slice_index_methods)
Returns a mutable reference to the output at this location, if in bounds.
Source§

unsafe fn get_unchecked(self, slice: *const [T]) -> *const [T]

🔬This is a nightly-only experimental API. (slice_index_methods)
Returns a pointer to the output at this location, without performing any bounds checking. Read more
Source§

unsafe fn get_unchecked_mut(self, slice: *mut [T]) -> *mut [T]

🔬This is a nightly-only experimental API. (slice_index_methods)
Returns a mutable pointer to the output at this location, without performing any bounds checking. Read more
Source§

fn index(self, slice: &[T]) -> &[T]

🔬This is a nightly-only experimental API. (slice_index_methods)
Returns a shared reference to the output at this location, panicking if out of bounds.
Source§

fn index_mut(self, slice: &mut [T]) -> &mut [T]

🔬This is a nightly-only experimental API. (slice_index_methods)
Returns a mutable reference to the output at this location, panicking if out of bounds.
1.15.0 (const: unstable) · Source§

impl<T> SliceIndex<[T]> for RangeFull

Source§

type Output = [T]

The output type returned by methods.
Source§

fn get(self, slice: &[T]) -> Option<&[T]>

🔬This is a nightly-only experimental API. (slice_index_methods)
Returns a shared reference to the output at this location, if in bounds.
Source§

fn get_mut(self, slice: &mut [T]) -> Option<&mut [T]>

🔬This is a nightly-only experimental API. (slice_index_methods)
Returns a mutable reference to the output at this location, if in bounds.
Source§

unsafe fn get_unchecked(self, slice: *const [T]) -> *const [T]

🔬This is a nightly-only experimental API. (slice_index_methods)
Returns a pointer to the output at this location, without performing any bounds checking. Read more
Source§

unsafe fn get_unchecked_mut(self, slice: *mut [T]) -> *mut [T]

🔬This is a nightly-only experimental API. (slice_index_methods)
Returns a mutable pointer to the output at this location, without performing any bounds checking. Read more
Source§

fn index(self, slice: &[T]) -> &[T]

🔬This is a nightly-only experimental API. (slice_index_methods)
Returns a shared reference to the output at this location, panicking if out of bounds.
Source§

fn index_mut(self, slice: &mut [T]) -> &mut [T]

🔬This is a nightly-only experimental API. (slice_index_methods)
Returns a mutable reference to the output at this location, panicking if out of bounds.
1.26.0 (const: unstable) · Source§

impl<T> SliceIndex<[T]> for RangeInclusive<usize>

The methods index and index_mut panic if:

  • the end of the range is usize::MAX or
  • the start of the range is greater than the end of the range or
  • the end of the range is out of bounds.
Source§

type Output = [T]

The output type returned by methods.
Source§

fn get(self, slice: &[T]) -> Option<&[T]>

🔬This is a nightly-only experimental API. (slice_index_methods)
Returns a shared reference to the output at this location, if in bounds.
Source§

fn get_mut(self, slice: &mut [T]) -> Option<&mut [T]>

🔬This is a nightly-only experimental API. (slice_index_methods)
Returns a mutable reference to the output at this location, if in bounds.
Source§

unsafe fn get_unchecked(self, slice: *const [T]) -> *const [T]

🔬This is a nightly-only experimental API. (slice_index_methods)
Returns a pointer to the output at this location, without performing any bounds checking. Read more
Source§

unsafe fn get_unchecked_mut(self, slice: *mut [T]) -> *mut [T]

🔬This is a nightly-only experimental API. (slice_index_methods)
Returns a mutable pointer to the output at this location, without performing any bounds checking. Read more
Source§

fn index(self, slice: &[T]) -> &[T]

🔬This is a nightly-only experimental API. (slice_index_methods)
Returns a shared reference to the output at this location, panicking if out of bounds.
Source§

fn index_mut(self, slice: &mut [T]) -> &mut [T]

🔬This is a nightly-only experimental API. (slice_index_methods)
Returns a mutable reference to the output at this location, panicking if out of bounds.
1.15.0 (const: unstable) · Source§

impl<T> SliceIndex<[T]> for RangeTo<usize>

The methods index and index_mut panic if the end of the range is out of bounds.

Source§

type Output = [T]

The output type returned by methods.
Source§

fn get(self, slice: &[T]) -> Option<&[T]>

🔬This is a nightly-only experimental API. (slice_index_methods)
Returns a shared reference to the output at this location, if in bounds.
Source§

fn get_mut(self, slice: &mut [T]) -> Option<&mut [T]>

🔬This is a nightly-only experimental API. (slice_index_methods)
Returns a mutable reference to the output at this location, if in bounds.
Source§

unsafe fn get_unchecked(self, slice: *const [T]) -> *const [T]

🔬This is a nightly-only experimental API. (slice_index_methods)
Returns a pointer to the output at this location, without performing any bounds checking. Read more
Source§

unsafe fn get_unchecked_mut(self, slice: *mut [T]) -> *mut [T]

🔬This is a nightly-only experimental API. (slice_index_methods)
Returns a mutable pointer to the output at this location, without performing any bounds checking. Read more
Source§

fn index(self, slice: &[T]) -> &[T]

🔬This is a nightly-only experimental API. (slice_index_methods)
Returns a shared reference to the output at this location, panicking if out of bounds.
Source§

fn index_mut(self, slice: &mut [T]) -> &mut [T]

🔬This is a nightly-only experimental API. (slice_index_methods)
Returns a mutable reference to the output at this location, panicking if out of bounds.
1.26.0 (const: unstable) · Source§

impl<T> SliceIndex<[T]> for RangeToInclusive<usize>

The methods index and index_mut panic if the end of the range is out of bounds.

Source§

type Output = [T]

The output type returned by methods.
Source§

fn get(self, slice: &[T]) -> Option<&[T]>

🔬This is a nightly-only experimental API. (slice_index_methods)
Returns a shared reference to the output at this location, if in bounds.
Source§

fn get_mut(self, slice: &mut [T]) -> Option<&mut [T]>

🔬This is a nightly-only experimental API. (slice_index_methods)
Returns a mutable reference to the output at this location, if in bounds.
Source§

unsafe fn get_unchecked(self, slice: *const [T]) -> *const [T]

🔬This is a nightly-only experimental API. (slice_index_methods)
Returns a pointer to the output at this location, without performing any bounds checking. Read more
Source§

unsafe fn get_unchecked_mut(self, slice: *mut [T]) -> *mut [T]

🔬This is a nightly-only experimental API. (slice_index_methods)
Returns a mutable pointer to the output at this location, without performing any bounds checking. Read more
Source§

fn index(self, slice: &[T]) -> &[T]

🔬This is a nightly-only experimental API. (slice_index_methods)
Returns a shared reference to the output at this location, panicking if out of bounds.
Source§

fn index_mut(self, slice: &mut [T]) -> &mut [T]

🔬This is a nightly-only experimental API. (slice_index_methods)
Returns a mutable reference to the output at this location, panicking if out of bounds.
1.15.0 (const: unstable) · Source§

impl<T> SliceIndex<[T]> for usize

The methods index and index_mut panic if the index is out of bounds.

Source§

type Output = T

The output type returned by methods.
Source§

fn get(self, slice: &[T]) -> Option<&T>

🔬This is a nightly-only experimental API. (slice_index_methods)
Returns a shared reference to the output at this location, if in bounds.
Source§

fn get_mut(self, slice: &mut [T]) -> Option<&mut T>

🔬This is a nightly-only experimental API. (slice_index_methods)
Returns a mutable reference to the output at this location, if in bounds.
Source§

unsafe fn get_unchecked(self, slice: *const [T]) -> *const T

🔬This is a nightly-only experimental API. (slice_index_methods)
Returns a pointer to the output at this location, without performing any bounds checking. Read more
Source§

unsafe fn get_unchecked_mut(self, slice: *mut [T]) -> *mut T

🔬This is a nightly-only experimental API. (slice_index_methods)
Returns a mutable pointer to the output at this location, without performing any bounds checking. Read more
Source§

fn index(self, slice: &[T]) -> &T

🔬This is a nightly-only experimental API. (slice_index_methods)
Returns a shared reference to the output at this location, panicking if out of bounds.
Source§

fn index_mut(self, slice: &mut [T]) -> &mut T

🔬This is a nightly-only experimental API. (slice_index_methods)
Returns a mutable reference to the output at this location, panicking if out of bounds.
1.34.0 (const: unstable) · Source§

impl<'a, T, const N: usize> TryFrom<&'a [T]> for &'a [T; N]

Tries to create an array ref &[T; N] from a slice ref &[T]. Succeeds if slice.len() == N.

let bytes: [u8; 3] = [1, 0, 2];

let bytes_head: &[u8; 2] = <&[u8; 2]>::try_from(&bytes[0..2]).unwrap();
assert_eq!(1, u16::from_le_bytes(*bytes_head));

let bytes_tail: &[u8; 2] = bytes[1..3].try_into().unwrap();
assert_eq!(512, u16::from_le_bytes(*bytes_tail));
Source§

type Error = TryFromSliceError

The type returned in the event of a conversion error.
Source§

fn try_from(slice: &'a [T]) -> Result<&'a [T; N], TryFromSliceError>

Performs the conversion.
1.34.0 (const: unstable) · Source§

impl<T, const N: usize> TryFrom<&[T]> for [T; N]
where T: Copy,

Tries to create an array [T; N] by copying from a slice &[T]. Succeeds if slice.len() == N.

let bytes: [u8; 3] = [1, 0, 2];

let bytes_head: [u8; 2] = <[u8; 2]>::try_from(&bytes[0..2]).unwrap();
assert_eq!(1, u16::from_le_bytes(bytes_head));

let bytes_tail: [u8; 2] = bytes[1..3].try_into().unwrap();
assert_eq!(512, u16::from_le_bytes(bytes_tail));
Source§

type Error = TryFromSliceError

The type returned in the event of a conversion error.
Source§

fn try_from(slice: &[T]) -> Result<[T; N], TryFromSliceError>

Performs the conversion.
1.34.0 (const: unstable) · Source§

impl<'a, T, const N: usize> TryFrom<&'a mut [T]> for &'a mut [T; N]

Tries to create a mutable array ref &mut [T; N] from a mutable slice ref &mut [T]. Succeeds if slice.len() == N.

let mut bytes: [u8; 3] = [1, 0, 2];

let bytes_head: &mut [u8; 2] = <&mut [u8; 2]>::try_from(&mut bytes[0..2]).unwrap();
assert_eq!(1, u16::from_le_bytes(*bytes_head));

let bytes_tail: &mut [u8; 2] = (&mut bytes[1..3]).try_into().unwrap();
assert_eq!(512, u16::from_le_bytes(*bytes_tail));
Source§

type Error = TryFromSliceError

The type returned in the event of a conversion error.
Source§

fn try_from(slice: &'a mut [T]) -> Result<&'a mut [T; N], TryFromSliceError>

Performs the conversion.
1.59.0 (const: unstable) · Source§

impl<T, const N: usize> TryFrom<&mut [T]> for [T; N]
where T: Copy,

Tries to create an array [T; N] by copying from a mutable slice &mut [T]. Succeeds if slice.len() == N.

let mut bytes: [u8; 3] = [1, 0, 2];

let bytes_head: [u8; 2] = <[u8; 2]>::try_from(&mut bytes[0..2]).unwrap();
assert_eq!(1, u16::from_le_bytes(bytes_head));

let bytes_tail: [u8; 2] = (&mut bytes[1..3]).try_into().unwrap();
assert_eq!(512, u16::from_le_bytes(bytes_tail));
Source§

type Error = TryFromSliceError

The type returned in the event of a conversion error.
Source§

fn try_from(slice: &mut [T]) -> Result<[T; N], TryFromSliceError>

Performs the conversion.
1.0.0 (const: unstable) · Source§

impl<T: Eq> Eq for [T]

1.80.0 · Source§

impl<T> !Iterator for [T]

Source§

impl<T> StructuralPartialEq for [T]

Auto Trait Implementations§

§

impl<T> Freeze for [T]
where T: Freeze,

§

impl<T> Send for [T]
where T: Send,

§

impl<T> !Sized for [T]

§

impl<T> Sync for [T]
where T: Sync,

§

impl<T> Unpin for [T]
where T: Unpin,