core/
option.rs

1//! Optional values.
2//!
3//! Type [`Option`] represents an optional value: every [`Option`]
4//! is either [`Some`] and contains a value, or [`None`], and
5//! does not. [`Option`] types are very common in Rust code, as
6//! they have a number of uses:
7//!
8//! * Initial values
9//! * Return values for functions that are not defined
10//!   over their entire input range (partial functions)
11//! * Return value for otherwise reporting simple errors, where [`None`] is
12//!   returned on error
13//! * Optional struct fields
14//! * Struct fields that can be loaned or "taken"
15//! * Optional function arguments
16//! * Nullable pointers
17//! * Swapping things out of difficult situations
18//!
19//! [`Option`]s are commonly paired with pattern matching to query the presence
20//! of a value and take action, always accounting for the [`None`] case.
21//!
22//! ```
23//! fn divide(numerator: f64, denominator: f64) -> Option<f64> {
24//!     if denominator == 0.0 {
25//!         None
26//!     } else {
27//!         Some(numerator / denominator)
28//!     }
29//! }
30//!
31//! // The return value of the function is an option
32//! let result = divide(2.0, 3.0);
33//!
34//! // Pattern match to retrieve the value
35//! match result {
36//!     // The division was valid
37//!     Some(x) => println!("Result: {x}"),
38//!     // The division was invalid
39//!     None    => println!("Cannot divide by 0"),
40//! }
41//! ```
42//!
43//
44// FIXME: Show how `Option` is used in practice, with lots of methods
45//
46//! # Options and pointers ("nullable" pointers)
47//!
48//! Rust's pointer types must always point to a valid location; there are
49//! no "null" references. Instead, Rust has *optional* pointers, like
50//! the optional owned box, <code>[Option]<[Box\<T>]></code>.
51//!
52//! [Box\<T>]: ../../std/boxed/struct.Box.html
53//!
54//! The following example uses [`Option`] to create an optional box of
55//! [`i32`]. Notice that in order to use the inner [`i32`] value, the
56//! `check_optional` function first needs to use pattern matching to
57//! determine whether the box has a value (i.e., it is [`Some(...)`][`Some`]) or
58//! not ([`None`]).
59//!
60//! ```
61//! let optional = None;
62//! check_optional(optional);
63//!
64//! let optional = Some(Box::new(9000));
65//! check_optional(optional);
66//!
67//! fn check_optional(optional: Option<Box<i32>>) {
68//!     match optional {
69//!         Some(p) => println!("has value {p}"),
70//!         None => println!("has no value"),
71//!     }
72//! }
73//! ```
74//!
75//! # The question mark operator, `?`
76//!
77//! Similar to the [`Result`] type, when writing code that calls many functions that return the
78//! [`Option`] type, handling `Some`/`None` can be tedious. The question mark
79//! operator, [`?`], hides some of the boilerplate of propagating values
80//! up the call stack.
81//!
82//! It replaces this:
83//!
84//! ```
85//! # #![allow(dead_code)]
86//! fn add_last_numbers(stack: &mut Vec<i32>) -> Option<i32> {
87//!     let a = stack.pop();
88//!     let b = stack.pop();
89//!
90//!     match (a, b) {
91//!         (Some(x), Some(y)) => Some(x + y),
92//!         _ => None,
93//!     }
94//! }
95//!
96//! ```
97//!
98//! With this:
99//!
100//! ```
101//! # #![allow(dead_code)]
102//! fn add_last_numbers(stack: &mut Vec<i32>) -> Option<i32> {
103//!     Some(stack.pop()? + stack.pop()?)
104//! }
105//! ```
106//!
107//! *It's much nicer!*
108//!
109//! Ending the expression with [`?`] will result in the [`Some`]'s unwrapped value, unless the
110//! result is [`None`], in which case [`None`] is returned early from the enclosing function.
111//!
112//! [`?`] can be used in functions that return [`Option`] because of the
113//! early return of [`None`] that it provides.
114//!
115//! [`?`]: crate::ops::Try
116//! [`Some`]: Some
117//! [`None`]: None
118//!
119//! # Representation
120//!
121//! Rust guarantees to optimize the following types `T` such that
122//! [`Option<T>`] has the same size, alignment, and [function call ABI] as `T`. In some
123//! of these cases, Rust further guarantees the following:
124//! - `transmute::<_, Option<T>>([0u8; size_of::<T>()])` is sound and produces
125//!   `Option::<T>::None`
126//! - `transmute::<_, [u8; size_of::<T>()]>(Option::<T>::None)` is sound and produces
127//!   `[0u8; size_of::<T>()]`
128//!
129//! These cases are identified by the second column:
130//!
131//! | `T`                                                                 | Transmuting between `[0u8; size_of::<T>()]` and `Option::<T>::None` sound? |
132//! |---------------------------------------------------------------------|----------------------------------------------------------------------------|
133//! | [`Box<U>`] (specifically, only `Box<U, Global>`)                    | when `U: Sized`                                                            |
134//! | `&U`                                                                | when `U: Sized`                                                            |
135//! | `&mut U`                                                            | when `U: Sized`                                                            |
136//! | `fn`, `extern "C" fn`[^extern_fn]                                   | always                                                                     |
137//! | [`num::NonZero*`]                                                   | always                                                                     |
138//! | [`ptr::NonNull<U>`]                                                 | when `U: Sized`                                                            |
139//! | `#[repr(transparent)]` struct around one of the types in this list. | when it holds for the inner type                                           |
140//!
141//! [^extern_fn]: this remains true for `unsafe` variants, any argument/return types, and any other ABI: `[unsafe] extern "abi" fn` (_e.g._, `extern "system" fn`)
142//!
143//! Under some conditions the above types `T` are also null pointer optimized when wrapped in a [`Result`][result_repr].
144//!
145//! [`Box<U>`]: ../../std/boxed/struct.Box.html
146//! [`num::NonZero*`]: crate::num
147//! [`ptr::NonNull<U>`]: crate::ptr::NonNull
148//! [function call ABI]: ../primitive.fn.html#abi-compatibility
149//! [result_repr]: crate::result#representation
150//!
151//! This is called the "null pointer optimization" or NPO.
152//!
153//! It is further guaranteed that, for the cases above, one can
154//! [`mem::transmute`] from all valid values of `T` to `Option<T>` and
155//! from `Some::<T>(_)` to `T` (but transmuting `None::<T>` to `T`
156//! is undefined behavior).
157//!
158//! # Method overview
159//!
160//! In addition to working with pattern matching, [`Option`] provides a wide
161//! variety of different methods.
162//!
163//! ## Querying the variant
164//!
165//! The [`is_some`] and [`is_none`] methods return [`true`] if the [`Option`]
166//! is [`Some`] or [`None`], respectively.
167//!
168//! The [`is_some_and`] and [`is_none_or`] methods apply the provided function
169//! to the contents of the [`Option`] to produce a boolean value.
170//! If this is [`None`] then a default result is returned instead without executing the function.
171//!
172//! [`is_none`]: Option::is_none
173//! [`is_some`]: Option::is_some
174//! [`is_some_and`]: Option::is_some_and
175//! [`is_none_or`]: Option::is_none_or
176//!
177//! ## Adapters for working with references
178//!
179//! * [`as_ref`] converts from <code>[&][][Option]\<T></code> to <code>[Option]<[&]T></code>
180//! * [`as_mut`] converts from <code>[&mut] [Option]\<T></code> to <code>[Option]<[&mut] T></code>
181//! * [`as_deref`] converts from <code>[&][][Option]\<T></code> to
182//!   <code>[Option]<[&]T::[Target]></code>
183//! * [`as_deref_mut`] converts from <code>[&mut] [Option]\<T></code> to
184//!   <code>[Option]<[&mut] T::[Target]></code>
185//! * [`as_pin_ref`] converts from <code>[Pin]<[&][][Option]\<T>></code> to
186//!   <code>[Option]<[Pin]<[&]T>></code>
187//! * [`as_pin_mut`] converts from <code>[Pin]<[&mut] [Option]\<T>></code> to
188//!   <code>[Option]<[Pin]<[&mut] T>></code>
189//! * [`as_slice`] returns a one-element slice of the contained value, if any.
190//!   If this is [`None`], an empty slice is returned.
191//! * [`as_mut_slice`] returns a mutable one-element slice of the contained value, if any.
192//!   If this is [`None`], an empty slice is returned.
193//!
194//! [&]: reference "shared reference"
195//! [&mut]: reference "mutable reference"
196//! [Target]: Deref::Target "ops::Deref::Target"
197//! [`as_deref`]: Option::as_deref
198//! [`as_deref_mut`]: Option::as_deref_mut
199//! [`as_mut`]: Option::as_mut
200//! [`as_pin_mut`]: Option::as_pin_mut
201//! [`as_pin_ref`]: Option::as_pin_ref
202//! [`as_ref`]: Option::as_ref
203//! [`as_slice`]: Option::as_slice
204//! [`as_mut_slice`]: Option::as_mut_slice
205//!
206//! ## Extracting the contained value
207//!
208//! These methods extract the contained value in an [`Option<T>`] when it
209//! is the [`Some`] variant. If the [`Option`] is [`None`]:
210//!
211//! * [`expect`] panics with a provided custom message
212//! * [`unwrap`] panics with a generic message
213//! * [`unwrap_or`] returns the provided default value
214//! * [`unwrap_or_default`] returns the default value of the type `T`
215//!   (which must implement the [`Default`] trait)
216//! * [`unwrap_or_else`] returns the result of evaluating the provided
217//!   function
218//! * [`unwrap_unchecked`] produces *[undefined behavior]*
219//!
220//! [`expect`]: Option::expect
221//! [`unwrap`]: Option::unwrap
222//! [`unwrap_or`]: Option::unwrap_or
223//! [`unwrap_or_default`]: Option::unwrap_or_default
224//! [`unwrap_or_else`]: Option::unwrap_or_else
225//! [`unwrap_unchecked`]: Option::unwrap_unchecked
226//! [undefined behavior]: https://doc.rust-lang.org/reference/behavior-considered-undefined.html
227//!
228//! ## Transforming contained values
229//!
230//! These methods transform [`Option`] to [`Result`]:
231//!
232//! * [`ok_or`] transforms [`Some(v)`] to [`Ok(v)`], and [`None`] to
233//!   [`Err(err)`] using the provided default `err` value
234//! * [`ok_or_else`] transforms [`Some(v)`] to [`Ok(v)`], and [`None`] to
235//!   a value of [`Err`] using the provided function
236//! * [`transpose`] transposes an [`Option`] of a [`Result`] into a
237//!   [`Result`] of an [`Option`]
238//!
239//! [`Err(err)`]: Err
240//! [`Ok(v)`]: Ok
241//! [`Some(v)`]: Some
242//! [`ok_or`]: Option::ok_or
243//! [`ok_or_else`]: Option::ok_or_else
244//! [`transpose`]: Option::transpose
245//!
246//! These methods transform the [`Some`] variant:
247//!
248//! * [`filter`] calls the provided predicate function on the contained
249//!   value `t` if the [`Option`] is [`Some(t)`], and returns [`Some(t)`]
250//!   if the function returns `true`; otherwise, returns [`None`]
251//! * [`flatten`] removes one level of nesting from an [`Option<Option<T>>`]
252//! * [`inspect`] method takes ownership of the [`Option`] and applies
253//!   the provided function to the contained value by reference if [`Some`]
254//! * [`map`] transforms [`Option<T>`] to [`Option<U>`] by applying the
255//!   provided function to the contained value of [`Some`] and leaving
256//!   [`None`] values unchanged
257//!
258//! [`Some(t)`]: Some
259//! [`filter`]: Option::filter
260//! [`flatten`]: Option::flatten
261//! [`inspect`]: Option::inspect
262//! [`map`]: Option::map
263//!
264//! These methods transform [`Option<T>`] to a value of a possibly
265//! different type `U`:
266//!
267//! * [`map_or`] applies the provided function to the contained value of
268//!   [`Some`], or returns the provided default value if the [`Option`] is
269//!   [`None`]
270//! * [`map_or_else`] applies the provided function to the contained value
271//!   of [`Some`], or returns the result of evaluating the provided
272//!   fallback function if the [`Option`] is [`None`]
273//!
274//! [`map_or`]: Option::map_or
275//! [`map_or_else`]: Option::map_or_else
276//!
277//! These methods combine the [`Some`] variants of two [`Option`] values:
278//!
279//! * [`zip`] returns [`Some((s, o))`] if `self` is [`Some(s)`] and the
280//!   provided [`Option`] value is [`Some(o)`]; otherwise, returns [`None`]
281//! * [`zip_with`] calls the provided function `f` and returns
282//!   [`Some(f(s, o))`] if `self` is [`Some(s)`] and the provided
283//!   [`Option`] value is [`Some(o)`]; otherwise, returns [`None`]
284//!
285//! [`Some(f(s, o))`]: Some
286//! [`Some(o)`]: Some
287//! [`Some(s)`]: Some
288//! [`Some((s, o))`]: Some
289//! [`zip`]: Option::zip
290//! [`zip_with`]: Option::zip_with
291//!
292//! ## Boolean operators
293//!
294//! These methods treat the [`Option`] as a boolean value, where [`Some`]
295//! acts like [`true`] and [`None`] acts like [`false`]. There are two
296//! categories of these methods: ones that take an [`Option`] as input, and
297//! ones that take a function as input (to be lazily evaluated).
298//!
299//! The [`and`], [`or`], and [`xor`] methods take another [`Option`] as
300//! input, and produce an [`Option`] as output. Only the [`and`] method can
301//! produce an [`Option<U>`] value having a different inner type `U` than
302//! [`Option<T>`].
303//!
304//! | method  | self      | input     | output    |
305//! |---------|-----------|-----------|-----------|
306//! | [`and`] | `None`    | (ignored) | `None`    |
307//! | [`and`] | `Some(x)` | `None`    | `None`    |
308//! | [`and`] | `Some(x)` | `Some(y)` | `Some(y)` |
309//! | [`or`]  | `None`    | `None`    | `None`    |
310//! | [`or`]  | `None`    | `Some(y)` | `Some(y)` |
311//! | [`or`]  | `Some(x)` | (ignored) | `Some(x)` |
312//! | [`xor`] | `None`    | `None`    | `None`    |
313//! | [`xor`] | `None`    | `Some(y)` | `Some(y)` |
314//! | [`xor`] | `Some(x)` | `None`    | `Some(x)` |
315//! | [`xor`] | `Some(x)` | `Some(y)` | `None`    |
316//!
317//! [`and`]: Option::and
318//! [`or`]: Option::or
319//! [`xor`]: Option::xor
320//!
321//! The [`and_then`] and [`or_else`] methods take a function as input, and
322//! only evaluate the function when they need to produce a new value. Only
323//! the [`and_then`] method can produce an [`Option<U>`] value having a
324//! different inner type `U` than [`Option<T>`].
325//!
326//! | method       | self      | function input | function result | output    |
327//! |--------------|-----------|----------------|-----------------|-----------|
328//! | [`and_then`] | `None`    | (not provided) | (not evaluated) | `None`    |
329//! | [`and_then`] | `Some(x)` | `x`            | `None`          | `None`    |
330//! | [`and_then`] | `Some(x)` | `x`            | `Some(y)`       | `Some(y)` |
331//! | [`or_else`]  | `None`    | (not provided) | `None`          | `None`    |
332//! | [`or_else`]  | `None`    | (not provided) | `Some(y)`       | `Some(y)` |
333//! | [`or_else`]  | `Some(x)` | (not provided) | (not evaluated) | `Some(x)` |
334//!
335//! [`and_then`]: Option::and_then
336//! [`or_else`]: Option::or_else
337//!
338//! This is an example of using methods like [`and_then`] and [`or`] in a
339//! pipeline of method calls. Early stages of the pipeline pass failure
340//! values ([`None`]) through unchanged, and continue processing on
341//! success values ([`Some`]). Toward the end, [`or`] substitutes an error
342//! message if it receives [`None`].
343//!
344//! ```
345//! # use std::collections::BTreeMap;
346//! let mut bt = BTreeMap::new();
347//! bt.insert(20u8, "foo");
348//! bt.insert(42u8, "bar");
349//! let res = [0u8, 1, 11, 200, 22]
350//!     .into_iter()
351//!     .map(|x| {
352//!         // `checked_sub()` returns `None` on error
353//!         x.checked_sub(1)
354//!             // same with `checked_mul()`
355//!             .and_then(|x| x.checked_mul(2))
356//!             // `BTreeMap::get` returns `None` on error
357//!             .and_then(|x| bt.get(&x))
358//!             // Substitute an error message if we have `None` so far
359//!             .or(Some(&"error!"))
360//!             .copied()
361//!             // Won't panic because we unconditionally used `Some` above
362//!             .unwrap()
363//!     })
364//!     .collect::<Vec<_>>();
365//! assert_eq!(res, ["error!", "error!", "foo", "error!", "bar"]);
366//! ```
367//!
368//! ## Comparison operators
369//!
370//! If `T` implements [`PartialOrd`] then [`Option<T>`] will derive its
371//! [`PartialOrd`] implementation.  With this order, [`None`] compares as
372//! less than any [`Some`], and two [`Some`] compare the same way as their
373//! contained values would in `T`.  If `T` also implements
374//! [`Ord`], then so does [`Option<T>`].
375//!
376//! ```
377//! assert!(None < Some(0));
378//! assert!(Some(0) < Some(1));
379//! ```
380//!
381//! ## Iterating over `Option`
382//!
383//! An [`Option`] can be iterated over. This can be helpful if you need an
384//! iterator that is conditionally empty. The iterator will either produce
385//! a single value (when the [`Option`] is [`Some`]), or produce no values
386//! (when the [`Option`] is [`None`]). For example, [`into_iter`] acts like
387//! [`once(v)`] if the [`Option`] is [`Some(v)`], and like [`empty()`] if
388//! the [`Option`] is [`None`].
389//!
390//! [`Some(v)`]: Some
391//! [`empty()`]: crate::iter::empty
392//! [`once(v)`]: crate::iter::once
393//!
394//! Iterators over [`Option<T>`] come in three types:
395//!
396//! * [`into_iter`] consumes the [`Option`] and produces the contained
397//!   value
398//! * [`iter`] produces an immutable reference of type `&T` to the
399//!   contained value
400//! * [`iter_mut`] produces a mutable reference of type `&mut T` to the
401//!   contained value
402//!
403//! [`into_iter`]: Option::into_iter
404//! [`iter`]: Option::iter
405//! [`iter_mut`]: Option::iter_mut
406//!
407//! An iterator over [`Option`] can be useful when chaining iterators, for
408//! example, to conditionally insert items. (It's not always necessary to
409//! explicitly call an iterator constructor: many [`Iterator`] methods that
410//! accept other iterators will also accept iterable types that implement
411//! [`IntoIterator`], which includes [`Option`].)
412//!
413//! ```
414//! let yep = Some(42);
415//! let nope = None;
416//! // chain() already calls into_iter(), so we don't have to do so
417//! let nums: Vec<i32> = (0..4).chain(yep).chain(4..8).collect();
418//! assert_eq!(nums, [0, 1, 2, 3, 42, 4, 5, 6, 7]);
419//! let nums: Vec<i32> = (0..4).chain(nope).chain(4..8).collect();
420//! assert_eq!(nums, [0, 1, 2, 3, 4, 5, 6, 7]);
421//! ```
422//!
423//! One reason to chain iterators in this way is that a function returning
424//! `impl Iterator` must have all possible return values be of the same
425//! concrete type. Chaining an iterated [`Option`] can help with that.
426//!
427//! ```
428//! fn make_iter(do_insert: bool) -> impl Iterator<Item = i32> {
429//!     // Explicit returns to illustrate return types matching
430//!     match do_insert {
431//!         true => return (0..4).chain(Some(42)).chain(4..8),
432//!         false => return (0..4).chain(None).chain(4..8),
433//!     }
434//! }
435//! println!("{:?}", make_iter(true).collect::<Vec<_>>());
436//! println!("{:?}", make_iter(false).collect::<Vec<_>>());
437//! ```
438//!
439//! If we try to do the same thing, but using [`once()`] and [`empty()`],
440//! we can't return `impl Iterator` anymore because the concrete types of
441//! the return values differ.
442//!
443//! [`empty()`]: crate::iter::empty
444//! [`once()`]: crate::iter::once
445//!
446//! ```compile_fail,E0308
447//! # use std::iter::{empty, once};
448//! // This won't compile because all possible returns from the function
449//! // must have the same concrete type.
450//! fn make_iter(do_insert: bool) -> impl Iterator<Item = i32> {
451//!     // Explicit returns to illustrate return types not matching
452//!     match do_insert {
453//!         true => return (0..4).chain(once(42)).chain(4..8),
454//!         false => return (0..4).chain(empty()).chain(4..8),
455//!     }
456//! }
457//! ```
458//!
459//! ## Collecting into `Option`
460//!
461//! [`Option`] implements the [`FromIterator`][impl-FromIterator] trait,
462//! which allows an iterator over [`Option`] values to be collected into an
463//! [`Option`] of a collection of each contained value of the original
464//! [`Option`] values, or [`None`] if any of the elements was [`None`].
465//!
466//! [impl-FromIterator]: Option#impl-FromIterator%3COption%3CA%3E%3E-for-Option%3CV%3E
467//!
468//! ```
469//! let v = [Some(2), Some(4), None, Some(8)];
470//! let res: Option<Vec<_>> = v.into_iter().collect();
471//! assert_eq!(res, None);
472//! let v = [Some(2), Some(4), Some(8)];
473//! let res: Option<Vec<_>> = v.into_iter().collect();
474//! assert_eq!(res, Some(vec![2, 4, 8]));
475//! ```
476//!
477//! [`Option`] also implements the [`Product`][impl-Product] and
478//! [`Sum`][impl-Sum] traits, allowing an iterator over [`Option`] values
479//! to provide the [`product`][Iterator::product] and
480//! [`sum`][Iterator::sum] methods.
481//!
482//! [impl-Product]: Option#impl-Product%3COption%3CU%3E%3E-for-Option%3CT%3E
483//! [impl-Sum]: Option#impl-Sum%3COption%3CU%3E%3E-for-Option%3CT%3E
484//!
485//! ```
486//! let v = [None, Some(1), Some(2), Some(3)];
487//! let res: Option<i32> = v.into_iter().sum();
488//! assert_eq!(res, None);
489//! let v = [Some(1), Some(2), Some(21)];
490//! let res: Option<i32> = v.into_iter().product();
491//! assert_eq!(res, Some(42));
492//! ```
493//!
494//! ## Modifying an [`Option`] in-place
495//!
496//! These methods return a mutable reference to the contained value of an
497//! [`Option<T>`]:
498//!
499//! * [`insert`] inserts a value, dropping any old contents
500//! * [`get_or_insert`] gets the current value, inserting a provided
501//!   default value if it is [`None`]
502//! * [`get_or_insert_default`] gets the current value, inserting the
503//!   default value of type `T` (which must implement [`Default`]) if it is
504//!   [`None`]
505//! * [`get_or_insert_with`] gets the current value, inserting a default
506//!   computed by the provided function if it is [`None`]
507//!
508//! [`get_or_insert`]: Option::get_or_insert
509//! [`get_or_insert_default`]: Option::get_or_insert_default
510//! [`get_or_insert_with`]: Option::get_or_insert_with
511//! [`insert`]: Option::insert
512//!
513//! These methods transfer ownership of the contained value of an
514//! [`Option`]:
515//!
516//! * [`take`] takes ownership of the contained value of an [`Option`], if
517//!   any, replacing the [`Option`] with [`None`]
518//! * [`replace`] takes ownership of the contained value of an [`Option`],
519//!   if any, replacing the [`Option`] with a [`Some`] containing the
520//!   provided value
521//!
522//! [`replace`]: Option::replace
523//! [`take`]: Option::take
524//!
525//! # Examples
526//!
527//! Basic pattern matching on [`Option`]:
528//!
529//! ```
530//! let msg = Some("howdy");
531//!
532//! // Take a reference to the contained string
533//! if let Some(m) = &msg {
534//!     println!("{}", *m);
535//! }
536//!
537//! // Remove the contained string, destroying the Option
538//! let unwrapped_msg = msg.unwrap_or("default message");
539//! ```
540//!
541//! Initialize a result to [`None`] before a loop:
542//!
543//! ```
544//! enum Kingdom { Plant(u32, &'static str), Animal(u32, &'static str) }
545//!
546//! // A list of data to search through.
547//! let all_the_big_things = [
548//!     Kingdom::Plant(250, "redwood"),
549//!     Kingdom::Plant(230, "noble fir"),
550//!     Kingdom::Plant(229, "sugar pine"),
551//!     Kingdom::Animal(25, "blue whale"),
552//!     Kingdom::Animal(19, "fin whale"),
553//!     Kingdom::Animal(15, "north pacific right whale"),
554//! ];
555//!
556//! // We're going to search for the name of the biggest animal,
557//! // but to start with we've just got `None`.
558//! let mut name_of_biggest_animal = None;
559//! let mut size_of_biggest_animal = 0;
560//! for big_thing in &all_the_big_things {
561//!     match *big_thing {
562//!         Kingdom::Animal(size, name) if size > size_of_biggest_animal => {
563//!             // Now we've found the name of some big animal
564//!             size_of_biggest_animal = size;
565//!             name_of_biggest_animal = Some(name);
566//!         }
567//!         Kingdom::Animal(..) | Kingdom::Plant(..) => ()
568//!     }
569//! }
570//!
571//! match name_of_biggest_animal {
572//!     Some(name) => println!("the biggest animal is {name}"),
573//!     None => println!("there are no animals :("),
574//! }
575//! ```
576
577#![stable(feature = "rust1", since = "1.0.0")]
578
579#[cfg(not(feature = "ferrocene_certified"))]
580use crate::iter::{self, FusedIterator, TrustedLen};
581use crate::marker::Destruct;
582#[cfg(not(feature = "ferrocene_certified"))]
583use crate::ops::{self, ControlFlow, Deref, DerefMut};
584#[cfg(feature = "ferrocene_certified")]
585use crate::ops::{Deref, DerefMut};
586#[cfg(not(feature = "ferrocene_certified"))]
587use crate::panicking::{panic, panic_display};
588#[cfg(not(feature = "ferrocene_certified"))]
589use crate::pin::Pin;
590#[cfg(not(feature = "ferrocene_certified"))]
591use crate::{cmp, convert, hint, mem, slice};
592
593/// The `Option` type. See [the module level documentation](self) for more.
594#[doc(search_unbox)]
595#[cfg_attr(not(feature = "ferrocene_certified"), derive(Copy, Eq, Debug, Hash))]
596#[rustc_diagnostic_item = "Option"]
597#[lang = "Option"]
598#[stable(feature = "rust1", since = "1.0.0")]
599#[allow(clippy::derived_hash_with_manual_eq)] // PartialEq is manually implemented equivalently
600pub enum Option<T> {
601    /// No value.
602    #[lang = "None"]
603    #[stable(feature = "rust1", since = "1.0.0")]
604    None,
605    /// Some value of type `T`.
606    #[lang = "Some"]
607    #[stable(feature = "rust1", since = "1.0.0")]
608    Some(#[stable(feature = "rust1", since = "1.0.0")] T),
609}
610
611/////////////////////////////////////////////////////////////////////////////
612// Type implementation
613/////////////////////////////////////////////////////////////////////////////
614
615impl<T> Option<T> {
616    /////////////////////////////////////////////////////////////////////////
617    // Querying the contained values
618    /////////////////////////////////////////////////////////////////////////
619
620    /// Returns `true` if the option is a [`Some`] value.
621    ///
622    /// # Examples
623    ///
624    /// ```
625    /// let x: Option<u32> = Some(2);
626    /// assert_eq!(x.is_some(), true);
627    ///
628    /// let x: Option<u32> = None;
629    /// assert_eq!(x.is_some(), false);
630    /// ```
631    #[must_use = "if you intended to assert that this has a value, consider `.unwrap()` instead"]
632    #[inline]
633    #[stable(feature = "rust1", since = "1.0.0")]
634    #[rustc_const_stable(feature = "const_option_basics", since = "1.48.0")]
635    pub const fn is_some(&self) -> bool {
636        matches!(*self, Some(_))
637    }
638
639    /// Returns `true` if the option is a [`Some`] and the value inside of it matches a predicate.
640    ///
641    /// # Examples
642    ///
643    /// ```
644    /// let x: Option<u32> = Some(2);
645    /// assert_eq!(x.is_some_and(|x| x > 1), true);
646    ///
647    /// let x: Option<u32> = Some(0);
648    /// assert_eq!(x.is_some_and(|x| x > 1), false);
649    ///
650    /// let x: Option<u32> = None;
651    /// assert_eq!(x.is_some_and(|x| x > 1), false);
652    ///
653    /// let x: Option<String> = Some("ownership".to_string());
654    /// assert_eq!(x.as_ref().is_some_and(|x| x.len() > 1), true);
655    /// println!("still alive {:?}", x);
656    /// ```
657    #[must_use]
658    #[inline]
659    #[stable(feature = "is_some_and", since = "1.70.0")]
660    #[rustc_const_unstable(feature = "const_option_ops", issue = "143956")]
661    pub const fn is_some_and(self, f: impl [const] FnOnce(T) -> bool + [const] Destruct) -> bool {
662        match self {
663            None => false,
664            Some(x) => f(x),
665        }
666    }
667
668    /// Returns `true` if the option is a [`None`] value.
669    ///
670    /// # Examples
671    ///
672    /// ```
673    /// let x: Option<u32> = Some(2);
674    /// assert_eq!(x.is_none(), false);
675    ///
676    /// let x: Option<u32> = None;
677    /// assert_eq!(x.is_none(), true);
678    /// ```
679    #[must_use = "if you intended to assert that this doesn't have a value, consider \
680                  wrapping this in an `assert!()` instead"]
681    #[inline]
682    #[stable(feature = "rust1", since = "1.0.0")]
683    #[rustc_const_stable(feature = "const_option_basics", since = "1.48.0")]
684    #[cfg(not(feature = "ferrocene_certified"))]
685    pub const fn is_none(&self) -> bool {
686        !self.is_some()
687    }
688
689    /// Returns `true` if the option is a [`None`] or the value inside of it matches a predicate.
690    ///
691    /// # Examples
692    ///
693    /// ```
694    /// let x: Option<u32> = Some(2);
695    /// assert_eq!(x.is_none_or(|x| x > 1), true);
696    ///
697    /// let x: Option<u32> = Some(0);
698    /// assert_eq!(x.is_none_or(|x| x > 1), false);
699    ///
700    /// let x: Option<u32> = None;
701    /// assert_eq!(x.is_none_or(|x| x > 1), true);
702    ///
703    /// let x: Option<String> = Some("ownership".to_string());
704    /// assert_eq!(x.as_ref().is_none_or(|x| x.len() > 1), true);
705    /// println!("still alive {:?}", x);
706    /// ```
707    #[must_use]
708    #[inline]
709    #[stable(feature = "is_none_or", since = "1.82.0")]
710    #[rustc_const_unstable(feature = "const_option_ops", issue = "143956")]
711    pub const fn is_none_or(self, f: impl [const] FnOnce(T) -> bool + [const] Destruct) -> bool {
712        match self {
713            None => true,
714            Some(x) => f(x),
715        }
716    }
717
718    /////////////////////////////////////////////////////////////////////////
719    // Adapter for working with references
720    /////////////////////////////////////////////////////////////////////////
721
722    /// Converts from `&Option<T>` to `Option<&T>`.
723    ///
724    /// # Examples
725    ///
726    /// Calculates the length of an <code>Option<[String]></code> as an <code>Option<[usize]></code>
727    /// without moving the [`String`]. The [`map`] method takes the `self` argument by value,
728    /// consuming the original, so this technique uses `as_ref` to first take an `Option` to a
729    /// reference to the value inside the original.
730    ///
731    /// [`map`]: Option::map
732    /// [String]: ../../std/string/struct.String.html "String"
733    /// [`String`]: ../../std/string/struct.String.html "String"
734    ///
735    /// ```
736    /// let text: Option<String> = Some("Hello, world!".to_string());
737    /// // First, cast `Option<String>` to `Option<&String>` with `as_ref`,
738    /// // then consume *that* with `map`, leaving `text` on the stack.
739    /// let text_length: Option<usize> = text.as_ref().map(|s| s.len());
740    /// println!("still can print text: {text:?}");
741    /// ```
742    #[inline]
743    #[rustc_const_stable(feature = "const_option_basics", since = "1.48.0")]
744    #[stable(feature = "rust1", since = "1.0.0")]
745    pub const fn as_ref(&self) -> Option<&T> {
746        match *self {
747            Some(ref x) => Some(x),
748            None => None,
749        }
750    }
751
752    /// Converts from `&mut Option<T>` to `Option<&mut T>`.
753    ///
754    /// # Examples
755    ///
756    /// ```
757    /// let mut x = Some(2);
758    /// match x.as_mut() {
759    ///     Some(v) => *v = 42,
760    ///     None => {},
761    /// }
762    /// assert_eq!(x, Some(42));
763    /// ```
764    #[inline]
765    #[stable(feature = "rust1", since = "1.0.0")]
766    #[rustc_const_stable(feature = "const_option", since = "1.83.0")]
767    pub const fn as_mut(&mut self) -> Option<&mut T> {
768        match *self {
769            Some(ref mut x) => Some(x),
770            None => None,
771        }
772    }
773
774    /// Converts from <code>[Pin]<[&]Option\<T>></code> to <code>Option<[Pin]<[&]T>></code>.
775    ///
776    /// [&]: reference "shared reference"
777    #[inline]
778    #[must_use]
779    #[stable(feature = "pin", since = "1.33.0")]
780    #[rustc_const_stable(feature = "const_option_ext", since = "1.84.0")]
781    #[cfg(not(feature = "ferrocene_certified"))]
782    pub const fn as_pin_ref(self: Pin<&Self>) -> Option<Pin<&T>> {
783        // FIXME(const-hack): use `map` once that is possible
784        match Pin::get_ref(self).as_ref() {
785            // SAFETY: `x` is guaranteed to be pinned because it comes from `self`
786            // which is pinned.
787            Some(x) => unsafe { Some(Pin::new_unchecked(x)) },
788            None => None,
789        }
790    }
791
792    /// Converts from <code>[Pin]<[&mut] Option\<T>></code> to <code>Option<[Pin]<[&mut] T>></code>.
793    ///
794    /// [&mut]: reference "mutable reference"
795    #[inline]
796    #[must_use]
797    #[stable(feature = "pin", since = "1.33.0")]
798    #[rustc_const_stable(feature = "const_option_ext", since = "1.84.0")]
799    #[cfg(not(feature = "ferrocene_certified"))]
800    pub const fn as_pin_mut(self: Pin<&mut Self>) -> Option<Pin<&mut T>> {
801        // SAFETY: `get_unchecked_mut` is never used to move the `Option` inside `self`.
802        // `x` is guaranteed to be pinned because it comes from `self` which is pinned.
803        unsafe {
804            // FIXME(const-hack): use `map` once that is possible
805            match Pin::get_unchecked_mut(self).as_mut() {
806                Some(x) => Some(Pin::new_unchecked(x)),
807                None => None,
808            }
809        }
810    }
811
812    #[inline]
813    #[cfg(not(feature = "ferrocene_certified"))]
814    const fn len(&self) -> usize {
815        // Using the intrinsic avoids emitting a branch to get the 0 or 1.
816        let discriminant: isize = crate::intrinsics::discriminant_value(self);
817        discriminant as usize
818    }
819
820    /// Returns a slice of the contained value, if any. If this is `None`, an
821    /// empty slice is returned. This can be useful to have a single type of
822    /// iterator over an `Option` or slice.
823    ///
824    /// Note: Should you have an `Option<&T>` and wish to get a slice of `T`,
825    /// you can unpack it via `opt.map_or(&[], std::slice::from_ref)`.
826    ///
827    /// # Examples
828    ///
829    /// ```rust
830    /// assert_eq!(
831    ///     [Some(1234).as_slice(), None.as_slice()],
832    ///     [&[1234][..], &[][..]],
833    /// );
834    /// ```
835    ///
836    /// The inverse of this function is (discounting
837    /// borrowing) [`[_]::first`](slice::first):
838    ///
839    /// ```rust
840    /// for i in [Some(1234_u16), None] {
841    ///     assert_eq!(i.as_ref(), i.as_slice().first());
842    /// }
843    /// ```
844    #[inline]
845    #[must_use]
846    #[stable(feature = "option_as_slice", since = "1.75.0")]
847    #[rustc_const_stable(feature = "const_option_ext", since = "1.84.0")]
848    #[cfg(not(feature = "ferrocene_certified"))]
849    pub const fn as_slice(&self) -> &[T] {
850        // SAFETY: When the `Option` is `Some`, we're using the actual pointer
851        // to the payload, with a length of 1, so this is equivalent to
852        // `slice::from_ref`, and thus is safe.
853        // When the `Option` is `None`, the length used is 0, so to be safe it
854        // just needs to be aligned, which it is because `&self` is aligned and
855        // the offset used is a multiple of alignment.
856        //
857        // Here we assume that `offset_of!` always returns an offset to an
858        // in-bounds and correctly aligned position for a `T` (even if in the
859        // `None` case it's just padding).
860        unsafe {
861            slice::from_raw_parts(
862                (self as *const Self).byte_add(core::mem::offset_of!(Self, Some.0)).cast(),
863                self.len(),
864            )
865        }
866    }
867
868    /// Returns a mutable slice of the contained value, if any. If this is
869    /// `None`, an empty slice is returned. This can be useful to have a
870    /// single type of iterator over an `Option` or slice.
871    ///
872    /// Note: Should you have an `Option<&mut T>` instead of a
873    /// `&mut Option<T>`, which this method takes, you can obtain a mutable
874    /// slice via `opt.map_or(&mut [], std::slice::from_mut)`.
875    ///
876    /// # Examples
877    ///
878    /// ```rust
879    /// assert_eq!(
880    ///     [Some(1234).as_mut_slice(), None.as_mut_slice()],
881    ///     [&mut [1234][..], &mut [][..]],
882    /// );
883    /// ```
884    ///
885    /// The result is a mutable slice of zero or one items that points into
886    /// our original `Option`:
887    ///
888    /// ```rust
889    /// let mut x = Some(1234);
890    /// x.as_mut_slice()[0] += 1;
891    /// assert_eq!(x, Some(1235));
892    /// ```
893    ///
894    /// The inverse of this method (discounting borrowing)
895    /// is [`[_]::first_mut`](slice::first_mut):
896    ///
897    /// ```rust
898    /// assert_eq!(Some(123).as_mut_slice().first_mut(), Some(&mut 123))
899    /// ```
900    #[inline]
901    #[must_use]
902    #[stable(feature = "option_as_slice", since = "1.75.0")]
903    #[rustc_const_stable(feature = "const_option_ext", since = "1.84.0")]
904    #[cfg(not(feature = "ferrocene_certified"))]
905    pub const fn as_mut_slice(&mut self) -> &mut [T] {
906        // SAFETY: When the `Option` is `Some`, we're using the actual pointer
907        // to the payload, with a length of 1, so this is equivalent to
908        // `slice::from_mut`, and thus is safe.
909        // When the `Option` is `None`, the length used is 0, so to be safe it
910        // just needs to be aligned, which it is because `&self` is aligned and
911        // the offset used is a multiple of alignment.
912        //
913        // In the new version, the intrinsic creates a `*const T` from a
914        // mutable reference  so it is safe to cast back to a mutable pointer
915        // here. As with `as_slice`, the intrinsic always returns a pointer to
916        // an in-bounds and correctly aligned position for a `T` (even if in
917        // the `None` case it's just padding).
918        unsafe {
919            slice::from_raw_parts_mut(
920                (self as *mut Self).byte_add(core::mem::offset_of!(Self, Some.0)).cast(),
921                self.len(),
922            )
923        }
924    }
925
926    /////////////////////////////////////////////////////////////////////////
927    // Getting to contained values
928    /////////////////////////////////////////////////////////////////////////
929
930    /// Returns the contained [`Some`] value, consuming the `self` value.
931    ///
932    /// # Panics
933    ///
934    /// Panics if the value is a [`None`] with a custom panic message provided by
935    /// `msg`.
936    ///
937    /// # Examples
938    ///
939    /// ```
940    /// let x = Some("value");
941    /// assert_eq!(x.expect("fruits are healthy"), "value");
942    /// ```
943    ///
944    /// ```should_panic
945    /// let x: Option<&str> = None;
946    /// x.expect("fruits are healthy"); // panics with `fruits are healthy`
947    /// ```
948    ///
949    /// # Recommended Message Style
950    ///
951    /// We recommend that `expect` messages are used to describe the reason you
952    /// _expect_ the `Option` should be `Some`.
953    ///
954    /// ```should_panic
955    /// # let slice: &[u8] = &[];
956    /// let item = slice.get(0)
957    ///     .expect("slice should not be empty");
958    /// ```
959    ///
960    /// **Hint**: If you're having trouble remembering how to phrase expect
961    /// error messages remember to focus on the word "should" as in "env
962    /// variable should be set by blah" or "the given binary should be available
963    /// and executable by the current user".
964    ///
965    /// For more detail on expect message styles and the reasoning behind our
966    /// recommendation please refer to the section on ["Common Message
967    /// Styles"](../../std/error/index.html#common-message-styles) in the [`std::error`](../../std/error/index.html) module docs.
968    #[inline]
969    #[track_caller]
970    #[stable(feature = "rust1", since = "1.0.0")]
971    #[rustc_diagnostic_item = "option_expect"]
972    #[rustc_allow_const_fn_unstable(const_precise_live_drops)]
973    #[rustc_const_stable(feature = "const_option", since = "1.83.0")]
974    #[cfg(not(feature = "ferrocene_certified"))]
975    pub const fn expect(self, msg: &str) -> T {
976        match self {
977            Some(val) => val,
978            None => expect_failed(msg),
979        }
980    }
981
982    /// Returns the contained [`Some`] value, consuming the `self` value.
983    ///
984    /// Because this function may panic, its use is generally discouraged.
985    /// Panics are meant for unrecoverable errors, and
986    /// [may abort the entire program][panic-abort].
987    ///
988    /// Instead, prefer to use pattern matching and handle the [`None`]
989    /// case explicitly, or call [`unwrap_or`], [`unwrap_or_else`], or
990    /// [`unwrap_or_default`]. In functions returning `Option`, you can use
991    /// [the `?` (try) operator][try-option].
992    ///
993    /// [panic-abort]: https://doc.rust-lang.org/book/ch09-01-unrecoverable-errors-with-panic.html
994    /// [try-option]: https://doc.rust-lang.org/book/ch09-02-recoverable-errors-with-result.html#where-the--operator-can-be-used
995    /// [`unwrap_or`]: Option::unwrap_or
996    /// [`unwrap_or_else`]: Option::unwrap_or_else
997    /// [`unwrap_or_default`]: Option::unwrap_or_default
998    ///
999    /// # Panics
1000    ///
1001    /// Panics if the self value equals [`None`].
1002    ///
1003    /// # Examples
1004    ///
1005    /// ```
1006    /// let x = Some("air");
1007    /// assert_eq!(x.unwrap(), "air");
1008    /// ```
1009    ///
1010    /// ```should_panic
1011    /// let x: Option<&str> = None;
1012    /// assert_eq!(x.unwrap(), "air"); // fails
1013    /// ```
1014    #[inline(always)]
1015    #[track_caller]
1016    #[stable(feature = "rust1", since = "1.0.0")]
1017    #[rustc_diagnostic_item = "option_unwrap"]
1018    #[rustc_allow_const_fn_unstable(const_precise_live_drops)]
1019    #[rustc_const_stable(feature = "const_option", since = "1.83.0")]
1020    #[cfg(not(feature = "ferrocene_certified"))]
1021    pub const fn unwrap(self) -> T {
1022        match self {
1023            Some(val) => val,
1024            None => unwrap_failed(),
1025        }
1026    }
1027
1028    /// Returns the contained [`Some`] value or a provided default.
1029    ///
1030    /// Arguments passed to `unwrap_or` are eagerly evaluated; if you are passing
1031    /// the result of a function call, it is recommended to use [`unwrap_or_else`],
1032    /// which is lazily evaluated.
1033    ///
1034    /// [`unwrap_or_else`]: Option::unwrap_or_else
1035    ///
1036    /// # Examples
1037    ///
1038    /// ```
1039    /// assert_eq!(Some("car").unwrap_or("bike"), "car");
1040    /// assert_eq!(None.unwrap_or("bike"), "bike");
1041    /// ```
1042    #[inline]
1043    #[stable(feature = "rust1", since = "1.0.0")]
1044    #[rustc_allow_const_fn_unstable(const_precise_live_drops)]
1045    #[rustc_const_unstable(feature = "const_option_ops", issue = "143956")]
1046    pub const fn unwrap_or(self, default: T) -> T
1047    where
1048        T: [const] Destruct,
1049    {
1050        match self {
1051            Some(x) => x,
1052            None => default,
1053        }
1054    }
1055
1056    /// Returns the contained [`Some`] value or computes it from a closure.
1057    ///
1058    /// # Examples
1059    ///
1060    /// ```
1061    /// let k = 10;
1062    /// assert_eq!(Some(4).unwrap_or_else(|| 2 * k), 4);
1063    /// assert_eq!(None.unwrap_or_else(|| 2 * k), 20);
1064    /// ```
1065    #[inline]
1066    #[track_caller]
1067    #[stable(feature = "rust1", since = "1.0.0")]
1068    #[rustc_const_unstable(feature = "const_option_ops", issue = "143956")]
1069    pub const fn unwrap_or_else<F>(self, f: F) -> T
1070    where
1071        F: [const] FnOnce() -> T + [const] Destruct,
1072    {
1073        match self {
1074            Some(x) => x,
1075            None => f(),
1076        }
1077    }
1078
1079    /// Returns the contained [`Some`] value or a default.
1080    ///
1081    /// Consumes the `self` argument then, if [`Some`], returns the contained
1082    /// value, otherwise if [`None`], returns the [default value] for that
1083    /// type.
1084    ///
1085    /// # Examples
1086    ///
1087    /// ```
1088    /// let x: Option<u32> = None;
1089    /// let y: Option<u32> = Some(12);
1090    ///
1091    /// assert_eq!(x.unwrap_or_default(), 0);
1092    /// assert_eq!(y.unwrap_or_default(), 12);
1093    /// ```
1094    ///
1095    /// [default value]: Default::default
1096    /// [`parse`]: str::parse
1097    /// [`FromStr`]: crate::str::FromStr
1098    #[inline]
1099    #[stable(feature = "rust1", since = "1.0.0")]
1100    #[rustc_const_unstable(feature = "const_option_ops", issue = "143956")]
1101    pub const fn unwrap_or_default(self) -> T
1102    where
1103        T: [const] Default,
1104    {
1105        match self {
1106            Some(x) => x,
1107            None => T::default(),
1108        }
1109    }
1110
1111    /// Returns the contained [`Some`] value, consuming the `self` value,
1112    /// without checking that the value is not [`None`].
1113    ///
1114    /// # Safety
1115    ///
1116    /// Calling this method on [`None`] is *[undefined behavior]*.
1117    ///
1118    /// [undefined behavior]: https://doc.rust-lang.org/reference/behavior-considered-undefined.html
1119    ///
1120    /// # Examples
1121    ///
1122    /// ```
1123    /// let x = Some("air");
1124    /// assert_eq!(unsafe { x.unwrap_unchecked() }, "air");
1125    /// ```
1126    ///
1127    /// ```no_run
1128    /// let x: Option<&str> = None;
1129    /// assert_eq!(unsafe { x.unwrap_unchecked() }, "air"); // Undefined behavior!
1130    /// ```
1131    #[inline]
1132    #[track_caller]
1133    #[stable(feature = "option_result_unwrap_unchecked", since = "1.58.0")]
1134    #[rustc_allow_const_fn_unstable(const_precise_live_drops)]
1135    #[rustc_const_stable(feature = "const_option", since = "1.83.0")]
1136    #[cfg(not(feature = "ferrocene_certified"))]
1137    pub const unsafe fn unwrap_unchecked(self) -> T {
1138        match self {
1139            Some(val) => val,
1140            // SAFETY: the safety contract must be upheld by the caller.
1141            None => unsafe { hint::unreachable_unchecked() },
1142        }
1143    }
1144
1145    /////////////////////////////////////////////////////////////////////////
1146    // Transforming contained values
1147    /////////////////////////////////////////////////////////////////////////
1148
1149    /// Maps an `Option<T>` to `Option<U>` by applying a function to a contained value (if `Some`) or returns `None` (if `None`).
1150    ///
1151    /// # Examples
1152    ///
1153    /// Calculates the length of an <code>Option<[String]></code> as an
1154    /// <code>Option<[usize]></code>, consuming the original:
1155    ///
1156    /// [String]: ../../std/string/struct.String.html "String"
1157    /// ```
1158    /// let maybe_some_string = Some(String::from("Hello, World!"));
1159    /// // `Option::map` takes self *by value*, consuming `maybe_some_string`
1160    /// let maybe_some_len = maybe_some_string.map(|s| s.len());
1161    /// assert_eq!(maybe_some_len, Some(13));
1162    ///
1163    /// let x: Option<&str> = None;
1164    /// assert_eq!(x.map(|s| s.len()), None);
1165    /// ```
1166    #[inline]
1167    #[stable(feature = "rust1", since = "1.0.0")]
1168    #[rustc_const_unstable(feature = "const_option_ops", issue = "143956")]
1169    pub const fn map<U, F>(self, f: F) -> Option<U>
1170    where
1171        F: [const] FnOnce(T) -> U + [const] Destruct,
1172    {
1173        match self {
1174            Some(x) => Some(f(x)),
1175            None => None,
1176        }
1177    }
1178
1179    /// Calls a function with a reference to the contained value if [`Some`].
1180    ///
1181    /// Returns the original option.
1182    ///
1183    /// # Examples
1184    ///
1185    /// ```
1186    /// let list = vec![1, 2, 3];
1187    ///
1188    /// // prints "got: 2"
1189    /// let x = list
1190    ///     .get(1)
1191    ///     .inspect(|x| println!("got: {x}"))
1192    ///     .expect("list should be long enough");
1193    ///
1194    /// // prints nothing
1195    /// list.get(5).inspect(|x| println!("got: {x}"));
1196    /// ```
1197    #[inline]
1198    #[stable(feature = "result_option_inspect", since = "1.76.0")]
1199    #[rustc_const_unstable(feature = "const_option_ops", issue = "143956")]
1200    pub const fn inspect<F>(self, f: F) -> Self
1201    where
1202        F: [const] FnOnce(&T) + [const] Destruct,
1203    {
1204        if let Some(ref x) = self {
1205            f(x);
1206        }
1207
1208        self
1209    }
1210
1211    /// Returns the provided default result (if none),
1212    /// or applies a function to the contained value (if any).
1213    ///
1214    /// Arguments passed to `map_or` are eagerly evaluated; if you are passing
1215    /// the result of a function call, it is recommended to use [`map_or_else`],
1216    /// which is lazily evaluated.
1217    ///
1218    /// [`map_or_else`]: Option::map_or_else
1219    ///
1220    /// # Examples
1221    ///
1222    /// ```
1223    /// let x = Some("foo");
1224    /// assert_eq!(x.map_or(42, |v| v.len()), 3);
1225    ///
1226    /// let x: Option<&str> = None;
1227    /// assert_eq!(x.map_or(42, |v| v.len()), 42);
1228    /// ```
1229    #[inline]
1230    #[stable(feature = "rust1", since = "1.0.0")]
1231    #[must_use = "if you don't need the returned value, use `if let` instead"]
1232    #[rustc_const_unstable(feature = "const_option_ops", issue = "143956")]
1233    pub const fn map_or<U, F>(self, default: U, f: F) -> U
1234    where
1235        F: [const] FnOnce(T) -> U + [const] Destruct,
1236        U: [const] Destruct,
1237    {
1238        match self {
1239            Some(t) => f(t),
1240            None => default,
1241        }
1242    }
1243
1244    /// Computes a default function result (if none), or
1245    /// applies a different function to the contained value (if any).
1246    ///
1247    /// # Basic examples
1248    ///
1249    /// ```
1250    /// let k = 21;
1251    ///
1252    /// let x = Some("foo");
1253    /// assert_eq!(x.map_or_else(|| 2 * k, |v| v.len()), 3);
1254    ///
1255    /// let x: Option<&str> = None;
1256    /// assert_eq!(x.map_or_else(|| 2 * k, |v| v.len()), 42);
1257    /// ```
1258    ///
1259    /// # Handling a Result-based fallback
1260    ///
1261    /// A somewhat common occurrence when dealing with optional values
1262    /// in combination with [`Result<T, E>`] is the case where one wants to invoke
1263    /// a fallible fallback if the option is not present.  This example
1264    /// parses a command line argument (if present), or the contents of a file to
1265    /// an integer.  However, unlike accessing the command line argument, reading
1266    /// the file is fallible, so it must be wrapped with `Ok`.
1267    ///
1268    /// ```no_run
1269    /// # fn main() -> Result<(), Box<dyn std::error::Error>> {
1270    /// let v: u64 = std::env::args()
1271    ///    .nth(1)
1272    ///    .map_or_else(|| std::fs::read_to_string("/etc/someconfig.conf"), Ok)?
1273    ///    .parse()?;
1274    /// #   Ok(())
1275    /// # }
1276    /// ```
1277    #[inline]
1278    #[stable(feature = "rust1", since = "1.0.0")]
1279    #[rustc_const_unstable(feature = "const_option_ops", issue = "143956")]
1280    pub const fn map_or_else<U, D, F>(self, default: D, f: F) -> U
1281    where
1282        D: [const] FnOnce() -> U + [const] Destruct,
1283        F: [const] FnOnce(T) -> U + [const] Destruct,
1284    {
1285        match self {
1286            Some(t) => f(t),
1287            None => default(),
1288        }
1289    }
1290
1291    /// Maps an `Option<T>` to a `U` by applying function `f` to the contained
1292    /// value if the option is [`Some`], otherwise if [`None`], returns the
1293    /// [default value] for the type `U`.
1294    ///
1295    /// # Examples
1296    ///
1297    /// ```
1298    /// #![feature(result_option_map_or_default)]
1299    ///
1300    /// let x: Option<&str> = Some("hi");
1301    /// let y: Option<&str> = None;
1302    ///
1303    /// assert_eq!(x.map_or_default(|x| x.len()), 2);
1304    /// assert_eq!(y.map_or_default(|y| y.len()), 0);
1305    /// ```
1306    ///
1307    /// [default value]: Default::default
1308    #[inline]
1309    #[unstable(feature = "result_option_map_or_default", issue = "138099")]
1310    #[rustc_const_unstable(feature = "const_option_ops", issue = "143956")]
1311    pub const fn map_or_default<U, F>(self, f: F) -> U
1312    where
1313        U: [const] Default,
1314        F: [const] FnOnce(T) -> U + [const] Destruct,
1315    {
1316        match self {
1317            Some(t) => f(t),
1318            None => U::default(),
1319        }
1320    }
1321
1322    /// Transforms the `Option<T>` into a [`Result<T, E>`], mapping [`Some(v)`] to
1323    /// [`Ok(v)`] and [`None`] to [`Err(err)`].
1324    ///
1325    /// Arguments passed to `ok_or` are eagerly evaluated; if you are passing the
1326    /// result of a function call, it is recommended to use [`ok_or_else`], which is
1327    /// lazily evaluated.
1328    ///
1329    /// [`Ok(v)`]: Ok
1330    /// [`Err(err)`]: Err
1331    /// [`Some(v)`]: Some
1332    /// [`ok_or_else`]: Option::ok_or_else
1333    ///
1334    /// # Examples
1335    ///
1336    /// ```
1337    /// let x = Some("foo");
1338    /// assert_eq!(x.ok_or(0), Ok("foo"));
1339    ///
1340    /// let x: Option<&str> = None;
1341    /// assert_eq!(x.ok_or(0), Err(0));
1342    /// ```
1343    #[inline]
1344    #[stable(feature = "rust1", since = "1.0.0")]
1345    #[rustc_const_unstable(feature = "const_option_ops", issue = "143956")]
1346    pub const fn ok_or<E: [const] Destruct>(self, err: E) -> Result<T, E> {
1347        match self {
1348            Some(v) => Ok(v),
1349            None => Err(err),
1350        }
1351    }
1352
1353    /// Transforms the `Option<T>` into a [`Result<T, E>`], mapping [`Some(v)`] to
1354    /// [`Ok(v)`] and [`None`] to [`Err(err())`].
1355    ///
1356    /// [`Ok(v)`]: Ok
1357    /// [`Err(err())`]: Err
1358    /// [`Some(v)`]: Some
1359    ///
1360    /// # Examples
1361    ///
1362    /// ```
1363    /// let x = Some("foo");
1364    /// assert_eq!(x.ok_or_else(|| 0), Ok("foo"));
1365    ///
1366    /// let x: Option<&str> = None;
1367    /// assert_eq!(x.ok_or_else(|| 0), Err(0));
1368    /// ```
1369    #[inline]
1370    #[stable(feature = "rust1", since = "1.0.0")]
1371    #[rustc_const_unstable(feature = "const_option_ops", issue = "143956")]
1372    pub const fn ok_or_else<E, F>(self, err: F) -> Result<T, E>
1373    where
1374        F: [const] FnOnce() -> E + [const] Destruct,
1375    {
1376        match self {
1377            Some(v) => Ok(v),
1378            None => Err(err()),
1379        }
1380    }
1381
1382    /// Converts from `Option<T>` (or `&Option<T>`) to `Option<&T::Target>`.
1383    ///
1384    /// Leaves the original Option in-place, creating a new one with a reference
1385    /// to the original one, additionally coercing the contents via [`Deref`].
1386    ///
1387    /// # Examples
1388    ///
1389    /// ```
1390    /// let x: Option<String> = Some("hey".to_owned());
1391    /// assert_eq!(x.as_deref(), Some("hey"));
1392    ///
1393    /// let x: Option<String> = None;
1394    /// assert_eq!(x.as_deref(), None);
1395    /// ```
1396    #[inline]
1397    #[stable(feature = "option_deref", since = "1.40.0")]
1398    #[rustc_const_unstable(feature = "const_convert", issue = "143773")]
1399    pub const fn as_deref(&self) -> Option<&T::Target>
1400    where
1401        T: [const] Deref,
1402    {
1403        self.as_ref().map(Deref::deref)
1404    }
1405
1406    /// Converts from `Option<T>` (or `&mut Option<T>`) to `Option<&mut T::Target>`.
1407    ///
1408    /// Leaves the original `Option` in-place, creating a new one containing a mutable reference to
1409    /// the inner type's [`Deref::Target`] type.
1410    ///
1411    /// # Examples
1412    ///
1413    /// ```
1414    /// let mut x: Option<String> = Some("hey".to_owned());
1415    /// assert_eq!(x.as_deref_mut().map(|x| {
1416    ///     x.make_ascii_uppercase();
1417    ///     x
1418    /// }), Some("HEY".to_owned().as_mut_str()));
1419    /// ```
1420    #[inline]
1421    #[stable(feature = "option_deref", since = "1.40.0")]
1422    #[rustc_const_unstable(feature = "const_convert", issue = "143773")]
1423    pub const fn as_deref_mut(&mut self) -> Option<&mut T::Target>
1424    where
1425        T: [const] DerefMut,
1426    {
1427        self.as_mut().map(DerefMut::deref_mut)
1428    }
1429
1430    /////////////////////////////////////////////////////////////////////////
1431    // Iterator constructors
1432    /////////////////////////////////////////////////////////////////////////
1433
1434    /// Returns an iterator over the possibly contained value.
1435    ///
1436    /// # Examples
1437    ///
1438    /// ```
1439    /// let x = Some(4);
1440    /// assert_eq!(x.iter().next(), Some(&4));
1441    ///
1442    /// let x: Option<u32> = None;
1443    /// assert_eq!(x.iter().next(), None);
1444    /// ```
1445    #[inline]
1446    #[stable(feature = "rust1", since = "1.0.0")]
1447    pub fn iter(&self) -> Iter<'_, T> {
1448        Iter { inner: Item { opt: self.as_ref() } }
1449    }
1450
1451    /// Returns a mutable iterator over the possibly contained value.
1452    ///
1453    /// # Examples
1454    ///
1455    /// ```
1456    /// let mut x = Some(4);
1457    /// match x.iter_mut().next() {
1458    ///     Some(v) => *v = 42,
1459    ///     None => {},
1460    /// }
1461    /// assert_eq!(x, Some(42));
1462    ///
1463    /// let mut x: Option<u32> = None;
1464    /// assert_eq!(x.iter_mut().next(), None);
1465    /// ```
1466    #[inline]
1467    #[stable(feature = "rust1", since = "1.0.0")]
1468    pub fn iter_mut(&mut self) -> IterMut<'_, T> {
1469        IterMut { inner: Item { opt: self.as_mut() } }
1470    }
1471
1472    /////////////////////////////////////////////////////////////////////////
1473    // Boolean operations on the values, eager and lazy
1474    /////////////////////////////////////////////////////////////////////////
1475
1476    /// Returns [`None`] if the option is [`None`], otherwise returns `optb`.
1477    ///
1478    /// Arguments passed to `and` are eagerly evaluated; if you are passing the
1479    /// result of a function call, it is recommended to use [`and_then`], which is
1480    /// lazily evaluated.
1481    ///
1482    /// [`and_then`]: Option::and_then
1483    ///
1484    /// # Examples
1485    ///
1486    /// ```
1487    /// let x = Some(2);
1488    /// let y: Option<&str> = None;
1489    /// assert_eq!(x.and(y), None);
1490    ///
1491    /// let x: Option<u32> = None;
1492    /// let y = Some("foo");
1493    /// assert_eq!(x.and(y), None);
1494    ///
1495    /// let x = Some(2);
1496    /// let y = Some("foo");
1497    /// assert_eq!(x.and(y), Some("foo"));
1498    ///
1499    /// let x: Option<u32> = None;
1500    /// let y: Option<&str> = None;
1501    /// assert_eq!(x.and(y), None);
1502    /// ```
1503    #[inline]
1504    #[stable(feature = "rust1", since = "1.0.0")]
1505    #[rustc_const_unstable(feature = "const_option_ops", issue = "143956")]
1506    pub const fn and<U>(self, optb: Option<U>) -> Option<U>
1507    where
1508        T: [const] Destruct,
1509        U: [const] Destruct,
1510    {
1511        match self {
1512            Some(_) => optb,
1513            None => None,
1514        }
1515    }
1516
1517    /// Returns [`None`] if the option is [`None`], otherwise calls `f` with the
1518    /// wrapped value and returns the result.
1519    ///
1520    /// Some languages call this operation flatmap.
1521    ///
1522    /// # Examples
1523    ///
1524    /// ```
1525    /// fn sq_then_to_string(x: u32) -> Option<String> {
1526    ///     x.checked_mul(x).map(|sq| sq.to_string())
1527    /// }
1528    ///
1529    /// assert_eq!(Some(2).and_then(sq_then_to_string), Some(4.to_string()));
1530    /// assert_eq!(Some(1_000_000).and_then(sq_then_to_string), None); // overflowed!
1531    /// assert_eq!(None.and_then(sq_then_to_string), None);
1532    /// ```
1533    ///
1534    /// Often used to chain fallible operations that may return [`None`].
1535    ///
1536    /// ```
1537    /// let arr_2d = [["A0", "A1"], ["B0", "B1"]];
1538    ///
1539    /// let item_0_1 = arr_2d.get(0).and_then(|row| row.get(1));
1540    /// assert_eq!(item_0_1, Some(&"A1"));
1541    ///
1542    /// let item_2_0 = arr_2d.get(2).and_then(|row| row.get(0));
1543    /// assert_eq!(item_2_0, None);
1544    /// ```
1545    #[doc(alias = "flatmap")]
1546    #[inline]
1547    #[stable(feature = "rust1", since = "1.0.0")]
1548    #[rustc_confusables("flat_map", "flatmap")]
1549    #[rustc_const_unstable(feature = "const_option_ops", issue = "143956")]
1550    pub const fn and_then<U, F>(self, f: F) -> Option<U>
1551    where
1552        F: [const] FnOnce(T) -> Option<U> + [const] Destruct,
1553    {
1554        match self {
1555            Some(x) => f(x),
1556            None => None,
1557        }
1558    }
1559
1560    /// Returns [`None`] if the option is [`None`], otherwise calls `predicate`
1561    /// with the wrapped value and returns:
1562    ///
1563    /// - [`Some(t)`] if `predicate` returns `true` (where `t` is the wrapped
1564    ///   value), and
1565    /// - [`None`] if `predicate` returns `false`.
1566    ///
1567    /// This function works similar to [`Iterator::filter()`]. You can imagine
1568    /// the `Option<T>` being an iterator over one or zero elements. `filter()`
1569    /// lets you decide which elements to keep.
1570    ///
1571    /// # Examples
1572    ///
1573    /// ```rust
1574    /// fn is_even(n: &i32) -> bool {
1575    ///     n % 2 == 0
1576    /// }
1577    ///
1578    /// assert_eq!(None.filter(is_even), None);
1579    /// assert_eq!(Some(3).filter(is_even), None);
1580    /// assert_eq!(Some(4).filter(is_even), Some(4));
1581    /// ```
1582    ///
1583    /// [`Some(t)`]: Some
1584    #[inline]
1585    #[stable(feature = "option_filter", since = "1.27.0")]
1586    #[rustc_const_unstable(feature = "const_option_ops", issue = "143956")]
1587    pub const fn filter<P>(self, predicate: P) -> Self
1588    where
1589        P: [const] FnOnce(&T) -> bool + [const] Destruct,
1590        T: [const] Destruct,
1591    {
1592        if let Some(x) = self {
1593            if predicate(&x) {
1594                return Some(x);
1595            }
1596        }
1597        None
1598    }
1599
1600    /// Returns the option if it contains a value, otherwise returns `optb`.
1601    ///
1602    /// Arguments passed to `or` are eagerly evaluated; if you are passing the
1603    /// result of a function call, it is recommended to use [`or_else`], which is
1604    /// lazily evaluated.
1605    ///
1606    /// [`or_else`]: Option::or_else
1607    ///
1608    /// # Examples
1609    ///
1610    /// ```
1611    /// let x = Some(2);
1612    /// let y = None;
1613    /// assert_eq!(x.or(y), Some(2));
1614    ///
1615    /// let x = None;
1616    /// let y = Some(100);
1617    /// assert_eq!(x.or(y), Some(100));
1618    ///
1619    /// let x = Some(2);
1620    /// let y = Some(100);
1621    /// assert_eq!(x.or(y), Some(2));
1622    ///
1623    /// let x: Option<u32> = None;
1624    /// let y = None;
1625    /// assert_eq!(x.or(y), None);
1626    /// ```
1627    #[inline]
1628    #[stable(feature = "rust1", since = "1.0.0")]
1629    #[rustc_const_unstable(feature = "const_option_ops", issue = "143956")]
1630    pub const fn or(self, optb: Option<T>) -> Option<T>
1631    where
1632        T: [const] Destruct,
1633    {
1634        match self {
1635            x @ Some(_) => x,
1636            None => optb,
1637        }
1638    }
1639
1640    /// Returns the option if it contains a value, otherwise calls `f` and
1641    /// returns the result.
1642    ///
1643    /// # Examples
1644    ///
1645    /// ```
1646    /// fn nobody() -> Option<&'static str> { None }
1647    /// fn vikings() -> Option<&'static str> { Some("vikings") }
1648    ///
1649    /// assert_eq!(Some("barbarians").or_else(vikings), Some("barbarians"));
1650    /// assert_eq!(None.or_else(vikings), Some("vikings"));
1651    /// assert_eq!(None.or_else(nobody), None);
1652    /// ```
1653    #[inline]
1654    #[stable(feature = "rust1", since = "1.0.0")]
1655    #[rustc_const_unstable(feature = "const_option_ops", issue = "143956")]
1656    pub const fn or_else<F>(self, f: F) -> Option<T>
1657    where
1658        F: [const] FnOnce() -> Option<T> + [const] Destruct,
1659        //FIXME(const_hack): this `T: [const] Destruct` is unnecessary, but even precise live drops can't tell
1660        // no value of type `T` gets dropped here
1661        T: [const] Destruct,
1662    {
1663        match self {
1664            x @ Some(_) => x,
1665            None => f(),
1666        }
1667    }
1668
1669    /// Returns [`Some`] if exactly one of `self`, `optb` is [`Some`], otherwise returns [`None`].
1670    ///
1671    /// # Examples
1672    ///
1673    /// ```
1674    /// let x = Some(2);
1675    /// let y: Option<u32> = None;
1676    /// assert_eq!(x.xor(y), Some(2));
1677    ///
1678    /// let x: Option<u32> = None;
1679    /// let y = Some(2);
1680    /// assert_eq!(x.xor(y), Some(2));
1681    ///
1682    /// let x = Some(2);
1683    /// let y = Some(2);
1684    /// assert_eq!(x.xor(y), None);
1685    ///
1686    /// let x: Option<u32> = None;
1687    /// let y: Option<u32> = None;
1688    /// assert_eq!(x.xor(y), None);
1689    /// ```
1690    #[inline]
1691    #[stable(feature = "option_xor", since = "1.37.0")]
1692    #[rustc_const_unstable(feature = "const_option_ops", issue = "143956")]
1693    pub const fn xor(self, optb: Option<T>) -> Option<T>
1694    where
1695        T: [const] Destruct,
1696    {
1697        match (self, optb) {
1698            (a @ Some(_), None) => a,
1699            (None, b @ Some(_)) => b,
1700            _ => None,
1701        }
1702    }
1703
1704    /////////////////////////////////////////////////////////////////////////
1705    // Entry-like operations to insert a value and return a reference
1706    /////////////////////////////////////////////////////////////////////////
1707
1708    /// Inserts `value` into the option, then returns a mutable reference to it.
1709    ///
1710    /// If the option already contains a value, the old value is dropped.
1711    ///
1712    /// See also [`Option::get_or_insert`], which doesn't update the value if
1713    /// the option already contains [`Some`].
1714    ///
1715    /// # Example
1716    ///
1717    /// ```
1718    /// let mut opt = None;
1719    /// let val = opt.insert(1);
1720    /// assert_eq!(*val, 1);
1721    /// assert_eq!(opt.unwrap(), 1);
1722    /// let val = opt.insert(2);
1723    /// assert_eq!(*val, 2);
1724    /// *val = 3;
1725    /// assert_eq!(opt.unwrap(), 3);
1726    /// ```
1727    #[must_use = "if you intended to set a value, consider assignment instead"]
1728    #[inline]
1729    #[stable(feature = "option_insert", since = "1.53.0")]
1730    #[rustc_const_unstable(feature = "const_option_ops", issue = "143956")]
1731    #[cfg(not(feature = "ferrocene_certified"))]
1732    pub const fn insert(&mut self, value: T) -> &mut T
1733    where
1734        T: [const] Destruct,
1735    {
1736        *self = Some(value);
1737
1738        // SAFETY: the code above just filled the option
1739        unsafe { self.as_mut().unwrap_unchecked() }
1740    }
1741
1742    /// Inserts `value` into the option if it is [`None`], then
1743    /// returns a mutable reference to the contained value.
1744    ///
1745    /// See also [`Option::insert`], which updates the value even if
1746    /// the option already contains [`Some`].
1747    ///
1748    /// # Examples
1749    ///
1750    /// ```
1751    /// let mut x = None;
1752    ///
1753    /// {
1754    ///     let y: &mut u32 = x.get_or_insert(5);
1755    ///     assert_eq!(y, &5);
1756    ///
1757    ///     *y = 7;
1758    /// }
1759    ///
1760    /// assert_eq!(x, Some(7));
1761    /// ```
1762    #[inline]
1763    #[stable(feature = "option_entry", since = "1.20.0")]
1764    #[cfg(not(feature = "ferrocene_certified"))]
1765    pub fn get_or_insert(&mut self, value: T) -> &mut T {
1766        self.get_or_insert_with(|| value)
1767    }
1768
1769    /// Inserts the default value into the option if it is [`None`], then
1770    /// returns a mutable reference to the contained value.
1771    ///
1772    /// # Examples
1773    ///
1774    /// ```
1775    /// let mut x = None;
1776    ///
1777    /// {
1778    ///     let y: &mut u32 = x.get_or_insert_default();
1779    ///     assert_eq!(y, &0);
1780    ///
1781    ///     *y = 7;
1782    /// }
1783    ///
1784    /// assert_eq!(x, Some(7));
1785    /// ```
1786    #[inline]
1787    #[stable(feature = "option_get_or_insert_default", since = "1.83.0")]
1788    #[rustc_const_unstable(feature = "const_option_ops", issue = "143956")]
1789    #[cfg(not(feature = "ferrocene_certified"))]
1790    pub const fn get_or_insert_default(&mut self) -> &mut T
1791    where
1792        T: [const] Default + [const] Destruct,
1793    {
1794        self.get_or_insert_with(T::default)
1795    }
1796
1797    /// Inserts a value computed from `f` into the option if it is [`None`],
1798    /// then returns a mutable reference to the contained value.
1799    ///
1800    /// # Examples
1801    ///
1802    /// ```
1803    /// let mut x = None;
1804    ///
1805    /// {
1806    ///     let y: &mut u32 = x.get_or_insert_with(|| 5);
1807    ///     assert_eq!(y, &5);
1808    ///
1809    ///     *y = 7;
1810    /// }
1811    ///
1812    /// assert_eq!(x, Some(7));
1813    /// ```
1814    #[inline]
1815    #[stable(feature = "option_entry", since = "1.20.0")]
1816    #[rustc_const_unstable(feature = "const_option_ops", issue = "143956")]
1817    #[cfg(not(feature = "ferrocene_certified"))]
1818    pub const fn get_or_insert_with<F>(&mut self, f: F) -> &mut T
1819    where
1820        F: [const] FnOnce() -> T + [const] Destruct,
1821        T: [const] Destruct,
1822    {
1823        if let None = self {
1824            *self = Some(f());
1825        }
1826
1827        // SAFETY: a `None` variant for `self` would have been replaced by a `Some`
1828        // variant in the code above.
1829        unsafe { self.as_mut().unwrap_unchecked() }
1830    }
1831
1832    /////////////////////////////////////////////////////////////////////////
1833    // Misc
1834    /////////////////////////////////////////////////////////////////////////
1835
1836    /// Takes the value out of the option, leaving a [`None`] in its place.
1837    ///
1838    /// # Examples
1839    ///
1840    /// ```
1841    /// let mut x = Some(2);
1842    /// let y = x.take();
1843    /// assert_eq!(x, None);
1844    /// assert_eq!(y, Some(2));
1845    ///
1846    /// let mut x: Option<u32> = None;
1847    /// let y = x.take();
1848    /// assert_eq!(x, None);
1849    /// assert_eq!(y, None);
1850    /// ```
1851    #[inline]
1852    #[stable(feature = "rust1", since = "1.0.0")]
1853    #[rustc_const_stable(feature = "const_option", since = "1.83.0")]
1854    #[cfg(not(feature = "ferrocene_certified"))]
1855    pub const fn take(&mut self) -> Option<T> {
1856        // FIXME(const-hack) replace `mem::replace` by `mem::take` when the latter is const ready
1857        mem::replace(self, None)
1858    }
1859
1860    /// Takes the value out of the option, but only if the predicate evaluates to
1861    /// `true` on a mutable reference to the value.
1862    ///
1863    /// In other words, replaces `self` with `None` if the predicate returns `true`.
1864    /// This method operates similar to [`Option::take`] but conditional.
1865    ///
1866    /// # Examples
1867    ///
1868    /// ```
1869    /// let mut x = Some(42);
1870    ///
1871    /// let prev = x.take_if(|v| if *v == 42 {
1872    ///     *v += 1;
1873    ///     false
1874    /// } else {
1875    ///     false
1876    /// });
1877    /// assert_eq!(x, Some(43));
1878    /// assert_eq!(prev, None);
1879    ///
1880    /// let prev = x.take_if(|v| *v == 43);
1881    /// assert_eq!(x, None);
1882    /// assert_eq!(prev, Some(43));
1883    /// ```
1884    #[inline]
1885    #[stable(feature = "option_take_if", since = "1.80.0")]
1886    #[rustc_const_unstable(feature = "const_option_ops", issue = "143956")]
1887    #[cfg(not(feature = "ferrocene_certified"))]
1888    pub const fn take_if<P>(&mut self, predicate: P) -> Option<T>
1889    where
1890        P: [const] FnOnce(&mut T) -> bool + [const] Destruct,
1891    {
1892        if self.as_mut().map_or(false, predicate) { self.take() } else { None }
1893    }
1894
1895    /// Replaces the actual value in the option by the value given in parameter,
1896    /// returning the old value if present,
1897    /// leaving a [`Some`] in its place without deinitializing either one.
1898    ///
1899    /// # Examples
1900    ///
1901    /// ```
1902    /// let mut x = Some(2);
1903    /// let old = x.replace(5);
1904    /// assert_eq!(x, Some(5));
1905    /// assert_eq!(old, Some(2));
1906    ///
1907    /// let mut x = None;
1908    /// let old = x.replace(3);
1909    /// assert_eq!(x, Some(3));
1910    /// assert_eq!(old, None);
1911    /// ```
1912    #[inline]
1913    #[stable(feature = "option_replace", since = "1.31.0")]
1914    #[rustc_const_stable(feature = "const_option", since = "1.83.0")]
1915    #[cfg(not(feature = "ferrocene_certified"))]
1916    pub const fn replace(&mut self, value: T) -> Option<T> {
1917        mem::replace(self, Some(value))
1918    }
1919
1920    /// Zips `self` with another `Option`.
1921    ///
1922    /// If `self` is `Some(s)` and `other` is `Some(o)`, this method returns `Some((s, o))`.
1923    /// Otherwise, `None` is returned.
1924    ///
1925    /// # Examples
1926    ///
1927    /// ```
1928    /// let x = Some(1);
1929    /// let y = Some("hi");
1930    /// let z = None::<u8>;
1931    ///
1932    /// assert_eq!(x.zip(y), Some((1, "hi")));
1933    /// assert_eq!(x.zip(z), None);
1934    /// ```
1935    #[stable(feature = "option_zip_option", since = "1.46.0")]
1936    #[rustc_const_unstable(feature = "const_option_ops", issue = "143956")]
1937    pub const fn zip<U>(self, other: Option<U>) -> Option<(T, U)>
1938    where
1939        T: [const] Destruct,
1940        U: [const] Destruct,
1941    {
1942        match (self, other) {
1943            (Some(a), Some(b)) => Some((a, b)),
1944            _ => None,
1945        }
1946    }
1947
1948    /// Zips `self` and another `Option` with function `f`.
1949    ///
1950    /// If `self` is `Some(s)` and `other` is `Some(o)`, this method returns `Some(f(s, o))`.
1951    /// Otherwise, `None` is returned.
1952    ///
1953    /// # Examples
1954    ///
1955    /// ```
1956    /// #![feature(option_zip)]
1957    ///
1958    /// #[derive(Debug, PartialEq)]
1959    /// struct Point {
1960    ///     x: f64,
1961    ///     y: f64,
1962    /// }
1963    ///
1964    /// impl Point {
1965    ///     fn new(x: f64, y: f64) -> Self {
1966    ///         Self { x, y }
1967    ///     }
1968    /// }
1969    ///
1970    /// let x = Some(17.5);
1971    /// let y = Some(42.7);
1972    ///
1973    /// assert_eq!(x.zip_with(y, Point::new), Some(Point { x: 17.5, y: 42.7 }));
1974    /// assert_eq!(x.zip_with(None, Point::new), None);
1975    /// ```
1976    #[unstable(feature = "option_zip", issue = "70086")]
1977    #[rustc_const_unstable(feature = "const_option_ops", issue = "143956")]
1978    #[cfg(not(feature = "ferrocene_certified"))]
1979    pub const fn zip_with<U, F, R>(self, other: Option<U>, f: F) -> Option<R>
1980    where
1981        F: [const] FnOnce(T, U) -> R + [const] Destruct,
1982        T: [const] Destruct,
1983        U: [const] Destruct,
1984    {
1985        match (self, other) {
1986            (Some(a), Some(b)) => Some(f(a, b)),
1987            _ => None,
1988        }
1989    }
1990
1991    /// Reduces two options into one, using the provided function if both are `Some`.
1992    ///
1993    /// If `self` is `Some(s)` and `other` is `Some(o)`, this method returns `Some(f(s, o))`.
1994    /// Otherwise, if only one of `self` and `other` is `Some`, that one is returned.
1995    /// If both `self` and `other` are `None`, `None` is returned.
1996    ///
1997    /// # Examples
1998    ///
1999    /// ```
2000    /// #![feature(option_reduce)]
2001    ///
2002    /// let s12 = Some(12);
2003    /// let s17 = Some(17);
2004    /// let n = None;
2005    /// let f = |a, b| a + b;
2006    ///
2007    /// assert_eq!(s12.reduce(s17, f), Some(29));
2008    /// assert_eq!(s12.reduce(n, f), Some(12));
2009    /// assert_eq!(n.reduce(s17, f), Some(17));
2010    /// assert_eq!(n.reduce(n, f), None);
2011    /// ```
2012    #[unstable(feature = "option_reduce", issue = "144273")]
2013    pub fn reduce<U, R, F>(self, other: Option<U>, f: F) -> Option<R>
2014    where
2015        T: Into<R>,
2016        U: Into<R>,
2017        F: FnOnce(T, U) -> R,
2018    {
2019        match (self, other) {
2020            (Some(a), Some(b)) => Some(f(a, b)),
2021            (Some(a), _) => Some(a.into()),
2022            (_, Some(b)) => Some(b.into()),
2023            _ => None,
2024        }
2025    }
2026}
2027
2028impl<T, U> Option<(T, U)> {
2029    /// Unzips an option containing a tuple of two options.
2030    ///
2031    /// If `self` is `Some((a, b))` this method returns `(Some(a), Some(b))`.
2032    /// Otherwise, `(None, None)` is returned.
2033    ///
2034    /// # Examples
2035    ///
2036    /// ```
2037    /// let x = Some((1, "hi"));
2038    /// let y = None::<(u8, u32)>;
2039    ///
2040    /// assert_eq!(x.unzip(), (Some(1), Some("hi")));
2041    /// assert_eq!(y.unzip(), (None, None));
2042    /// ```
2043    #[inline]
2044    #[stable(feature = "unzip_option", since = "1.66.0")]
2045    pub fn unzip(self) -> (Option<T>, Option<U>) {
2046        match self {
2047            Some((a, b)) => (Some(a), Some(b)),
2048            None => (None, None),
2049        }
2050    }
2051}
2052
2053impl<T> Option<&T> {
2054    /// Maps an `Option<&T>` to an `Option<T>` by copying the contents of the
2055    /// option.
2056    ///
2057    /// # Examples
2058    ///
2059    /// ```
2060    /// let x = 12;
2061    /// let opt_x = Some(&x);
2062    /// assert_eq!(opt_x, Some(&12));
2063    /// let copied = opt_x.copied();
2064    /// assert_eq!(copied, Some(12));
2065    /// ```
2066    #[must_use = "`self` will be dropped if the result is not used"]
2067    #[stable(feature = "copied", since = "1.35.0")]
2068    #[rustc_const_stable(feature = "const_option", since = "1.83.0")]
2069    pub const fn copied(self) -> Option<T>
2070    where
2071        T: Copy,
2072    {
2073        // FIXME(const-hack): this implementation, which sidesteps using `Option::map` since it's not const
2074        // ready yet, should be reverted when possible to avoid code repetition
2075        match self {
2076            Some(&v) => Some(v),
2077            None => None,
2078        }
2079    }
2080
2081    /// Maps an `Option<&T>` to an `Option<T>` by cloning the contents of the
2082    /// option.
2083    ///
2084    /// # Examples
2085    ///
2086    /// ```
2087    /// let x = 12;
2088    /// let opt_x = Some(&x);
2089    /// assert_eq!(opt_x, Some(&12));
2090    /// let cloned = opt_x.cloned();
2091    /// assert_eq!(cloned, Some(12));
2092    /// ```
2093    #[must_use = "`self` will be dropped if the result is not used"]
2094    #[stable(feature = "rust1", since = "1.0.0")]
2095    pub fn cloned(self) -> Option<T>
2096    where
2097        T: Clone,
2098    {
2099        match self {
2100            Some(t) => Some(t.clone()),
2101            None => None,
2102        }
2103    }
2104}
2105
2106impl<T> Option<&mut T> {
2107    /// Maps an `Option<&mut T>` to an `Option<T>` by copying the contents of the
2108    /// option.
2109    ///
2110    /// # Examples
2111    ///
2112    /// ```
2113    /// let mut x = 12;
2114    /// let opt_x = Some(&mut x);
2115    /// assert_eq!(opt_x, Some(&mut 12));
2116    /// let copied = opt_x.copied();
2117    /// assert_eq!(copied, Some(12));
2118    /// ```
2119    #[must_use = "`self` will be dropped if the result is not used"]
2120    #[stable(feature = "copied", since = "1.35.0")]
2121    #[rustc_const_stable(feature = "const_option", since = "1.83.0")]
2122    pub const fn copied(self) -> Option<T>
2123    where
2124        T: Copy,
2125    {
2126        match self {
2127            Some(&mut t) => Some(t),
2128            None => None,
2129        }
2130    }
2131
2132    /// Maps an `Option<&mut T>` to an `Option<T>` by cloning the contents of the
2133    /// option.
2134    ///
2135    /// # Examples
2136    ///
2137    /// ```
2138    /// let mut x = 12;
2139    /// let opt_x = Some(&mut x);
2140    /// assert_eq!(opt_x, Some(&mut 12));
2141    /// let cloned = opt_x.cloned();
2142    /// assert_eq!(cloned, Some(12));
2143    /// ```
2144    #[must_use = "`self` will be dropped if the result is not used"]
2145    #[stable(since = "1.26.0", feature = "option_ref_mut_cloned")]
2146    pub fn cloned(self) -> Option<T>
2147    where
2148        T: Clone,
2149    {
2150        match self {
2151            Some(t) => Some(t.clone()),
2152            None => None,
2153        }
2154    }
2155}
2156
2157impl<T, E> Option<Result<T, E>> {
2158    /// Transposes an `Option` of a [`Result`] into a [`Result`] of an `Option`.
2159    ///
2160    /// <code>[Some]\([Ok]\(\_))</code> is mapped to <code>[Ok]\([Some]\(\_))</code>,
2161    /// <code>[Some]\([Err]\(\_))</code> is mapped to <code>[Err]\(\_)</code>,
2162    /// and [`None`] will be mapped to <code>[Ok]\([None])</code>.
2163    ///
2164    /// # Examples
2165    ///
2166    /// ```
2167    /// #[derive(Debug, Eq, PartialEq)]
2168    /// struct SomeErr;
2169    ///
2170    /// let x: Option<Result<i32, SomeErr>> = Some(Ok(5));
2171    /// let y: Result<Option<i32>, SomeErr> = Ok(Some(5));
2172    /// assert_eq!(x.transpose(), y);
2173    /// ```
2174    #[inline]
2175    #[stable(feature = "transpose_result", since = "1.33.0")]
2176    #[rustc_allow_const_fn_unstable(const_precise_live_drops)]
2177    #[rustc_const_stable(feature = "const_option", since = "1.83.0")]
2178    pub const fn transpose(self) -> Result<Option<T>, E> {
2179        match self {
2180            Some(Ok(x)) => Ok(Some(x)),
2181            Some(Err(e)) => Err(e),
2182            None => Ok(None),
2183        }
2184    }
2185}
2186
2187#[cfg_attr(not(feature = "panic_immediate_abort"), inline(never))]
2188#[cfg_attr(feature = "panic_immediate_abort", inline)]
2189#[cold]
2190#[track_caller]
2191#[cfg(not(feature = "ferrocene_certified"))]
2192const fn unwrap_failed() -> ! {
2193    panic("called `Option::unwrap()` on a `None` value")
2194}
2195
2196// This is a separate function to reduce the code size of .expect() itself.
2197#[cfg_attr(not(feature = "panic_immediate_abort"), inline(never))]
2198#[cfg_attr(feature = "panic_immediate_abort", inline)]
2199#[cold]
2200#[track_caller]
2201#[cfg(not(feature = "ferrocene_certified"))]
2202const fn expect_failed(msg: &str) -> ! {
2203    panic_display(&msg)
2204}
2205
2206/////////////////////////////////////////////////////////////////////////////
2207// Trait implementations
2208/////////////////////////////////////////////////////////////////////////////
2209
2210#[stable(feature = "rust1", since = "1.0.0")]
2211#[rustc_const_unstable(feature = "const_clone", issue = "142757")]
2212impl<T> const Clone for Option<T>
2213where
2214    // FIXME(const_hack): the T: [const] Destruct should be inferred from the Self: [const] Destruct in clone_from.
2215    // See https://github.com/rust-lang/rust/issues/144207
2216    T: [const] Clone + [const] Destruct,
2217{
2218    #[inline]
2219    fn clone(&self) -> Self {
2220        match self {
2221            Some(x) => Some(x.clone()),
2222            None => None,
2223        }
2224    }
2225
2226    #[inline]
2227    fn clone_from(&mut self, source: &Self) {
2228        match (self, source) {
2229            (Some(to), Some(from)) => to.clone_from(from),
2230            (to, from) => *to = from.clone(),
2231        }
2232    }
2233}
2234
2235#[unstable(feature = "ergonomic_clones", issue = "132290")]
2236#[cfg(not(feature = "ferrocene_certified"))]
2237impl<T> crate::clone::UseCloned for Option<T> where T: crate::clone::UseCloned {}
2238
2239#[stable(feature = "rust1", since = "1.0.0")]
2240#[rustc_const_unstable(feature = "const_default", issue = "143894")]
2241impl<T> const Default for Option<T> {
2242    /// Returns [`None`][Option::None].
2243    ///
2244    /// # Examples
2245    ///
2246    /// ```
2247    /// let opt: Option<u32> = Option::default();
2248    /// assert!(opt.is_none());
2249    /// ```
2250    #[inline]
2251    fn default() -> Option<T> {
2252        None
2253    }
2254}
2255
2256#[stable(feature = "rust1", since = "1.0.0")]
2257#[cfg(not(feature = "ferrocene_certified"))]
2258impl<T> IntoIterator for Option<T> {
2259    type Item = T;
2260    type IntoIter = IntoIter<T>;
2261
2262    /// Returns a consuming iterator over the possibly contained value.
2263    ///
2264    /// # Examples
2265    ///
2266    /// ```
2267    /// let x = Some("string");
2268    /// let v: Vec<&str> = x.into_iter().collect();
2269    /// assert_eq!(v, ["string"]);
2270    ///
2271    /// let x = None;
2272    /// let v: Vec<&str> = x.into_iter().collect();
2273    /// assert!(v.is_empty());
2274    /// ```
2275    #[inline]
2276    fn into_iter(self) -> IntoIter<T> {
2277        IntoIter { inner: Item { opt: self } }
2278    }
2279}
2280
2281#[stable(since = "1.4.0", feature = "option_iter")]
2282#[cfg(not(feature = "ferrocene_certified"))]
2283impl<'a, T> IntoIterator for &'a Option<T> {
2284    type Item = &'a T;
2285    type IntoIter = Iter<'a, T>;
2286
2287    fn into_iter(self) -> Iter<'a, T> {
2288        self.iter()
2289    }
2290}
2291
2292#[stable(since = "1.4.0", feature = "option_iter")]
2293#[cfg(not(feature = "ferrocene_certified"))]
2294impl<'a, T> IntoIterator for &'a mut Option<T> {
2295    type Item = &'a mut T;
2296    type IntoIter = IterMut<'a, T>;
2297
2298    fn into_iter(self) -> IterMut<'a, T> {
2299        self.iter_mut()
2300    }
2301}
2302
2303#[stable(since = "1.12.0", feature = "option_from")]
2304#[rustc_const_unstable(feature = "const_convert", issue = "143773")]
2305impl<T> const From<T> for Option<T> {
2306    /// Moves `val` into a new [`Some`].
2307    ///
2308    /// # Examples
2309    ///
2310    /// ```
2311    /// let o: Option<u8> = Option::from(67);
2312    ///
2313    /// assert_eq!(Some(67), o);
2314    /// ```
2315    fn from(val: T) -> Option<T> {
2316        Some(val)
2317    }
2318}
2319
2320#[stable(feature = "option_ref_from_ref_option", since = "1.30.0")]
2321#[rustc_const_unstable(feature = "const_convert", issue = "143773")]
2322impl<'a, T> const From<&'a Option<T>> for Option<&'a T> {
2323    /// Converts from `&Option<T>` to `Option<&T>`.
2324    ///
2325    /// # Examples
2326    ///
2327    /// Converts an <code>[Option]<[String]></code> into an <code>[Option]<[usize]></code>, preserving
2328    /// the original. The [`map`] method takes the `self` argument by value, consuming the original,
2329    /// so this technique uses `from` to first take an [`Option`] to a reference
2330    /// to the value inside the original.
2331    ///
2332    /// [`map`]: Option::map
2333    /// [String]: ../../std/string/struct.String.html "String"
2334    ///
2335    /// ```
2336    /// let s: Option<String> = Some(String::from("Hello, Rustaceans!"));
2337    /// let o: Option<usize> = Option::from(&s).map(|ss: &String| ss.len());
2338    ///
2339    /// println!("Can still print s: {s:?}");
2340    ///
2341    /// assert_eq!(o, Some(18));
2342    /// ```
2343    fn from(o: &'a Option<T>) -> Option<&'a T> {
2344        o.as_ref()
2345    }
2346}
2347
2348#[stable(feature = "option_ref_from_ref_option", since = "1.30.0")]
2349#[rustc_const_unstable(feature = "const_convert", issue = "143773")]
2350impl<'a, T> const From<&'a mut Option<T>> for Option<&'a mut T> {
2351    /// Converts from `&mut Option<T>` to `Option<&mut T>`
2352    ///
2353    /// # Examples
2354    ///
2355    /// ```
2356    /// let mut s = Some(String::from("Hello"));
2357    /// let o: Option<&mut String> = Option::from(&mut s);
2358    ///
2359    /// match o {
2360    ///     Some(t) => *t = String::from("Hello, Rustaceans!"),
2361    ///     None => (),
2362    /// }
2363    ///
2364    /// assert_eq!(s, Some(String::from("Hello, Rustaceans!")));
2365    /// ```
2366    fn from(o: &'a mut Option<T>) -> Option<&'a mut T> {
2367        o.as_mut()
2368    }
2369}
2370
2371// Ideally, LLVM should be able to optimize our derive code to this.
2372// Once https://github.com/llvm/llvm-project/issues/52622 is fixed, we can
2373// go back to deriving `PartialEq`.
2374#[stable(feature = "rust1", since = "1.0.0")]
2375#[cfg(not(feature = "ferrocene_certified"))]
2376impl<T> crate::marker::StructuralPartialEq for Option<T> {}
2377#[stable(feature = "rust1", since = "1.0.0")]
2378#[rustc_const_unstable(feature = "const_cmp", issue = "143800")]
2379#[cfg(not(feature = "ferrocene_certified"))]
2380impl<T: [const] PartialEq> const PartialEq for Option<T> {
2381    #[inline]
2382    fn eq(&self, other: &Self) -> bool {
2383        // Spelling out the cases explicitly optimizes better than
2384        // `_ => false`
2385        match (self, other) {
2386            (Some(l), Some(r)) => *l == *r,
2387            (Some(_), None) => false,
2388            (None, Some(_)) => false,
2389            (None, None) => true,
2390        }
2391    }
2392}
2393
2394// Manually implementing here somewhat improves codegen for
2395// https://github.com/rust-lang/rust/issues/49892, although still
2396// not optimal.
2397#[stable(feature = "rust1", since = "1.0.0")]
2398#[cfg(not(feature = "ferrocene_certified"))]
2399impl<T: PartialOrd> PartialOrd for Option<T> {
2400    #[inline]
2401    fn partial_cmp(&self, other: &Self) -> Option<cmp::Ordering> {
2402        match (self, other) {
2403            (Some(l), Some(r)) => l.partial_cmp(r),
2404            (Some(_), None) => Some(cmp::Ordering::Greater),
2405            (None, Some(_)) => Some(cmp::Ordering::Less),
2406            (None, None) => Some(cmp::Ordering::Equal),
2407        }
2408    }
2409}
2410
2411#[stable(feature = "rust1", since = "1.0.0")]
2412#[cfg(not(feature = "ferrocene_certified"))]
2413impl<T: Ord> Ord for Option<T> {
2414    #[inline]
2415    fn cmp(&self, other: &Self) -> cmp::Ordering {
2416        match (self, other) {
2417            (Some(l), Some(r)) => l.cmp(r),
2418            (Some(_), None) => cmp::Ordering::Greater,
2419            (None, Some(_)) => cmp::Ordering::Less,
2420            (None, None) => cmp::Ordering::Equal,
2421        }
2422    }
2423}
2424
2425/////////////////////////////////////////////////////////////////////////////
2426// The Option Iterators
2427/////////////////////////////////////////////////////////////////////////////
2428
2429#[cfg_attr(not(feature = "ferrocene_certified"), derive(Clone, Debug))]
2430struct Item<A> {
2431    #[allow(dead_code)]
2432    opt: Option<A>,
2433}
2434
2435#[cfg(not(feature = "ferrocene_certified"))]
2436impl<A> Iterator for Item<A> {
2437    type Item = A;
2438
2439    #[inline]
2440    fn next(&mut self) -> Option<A> {
2441        self.opt.take()
2442    }
2443
2444    #[inline]
2445    fn size_hint(&self) -> (usize, Option<usize>) {
2446        let len = self.len();
2447        (len, Some(len))
2448    }
2449}
2450
2451#[cfg(not(feature = "ferrocene_certified"))]
2452impl<A> DoubleEndedIterator for Item<A> {
2453    #[inline]
2454    fn next_back(&mut self) -> Option<A> {
2455        self.opt.take()
2456    }
2457}
2458
2459#[cfg(not(feature = "ferrocene_certified"))]
2460impl<A> ExactSizeIterator for Item<A> {
2461    #[inline]
2462    fn len(&self) -> usize {
2463        self.opt.len()
2464    }
2465}
2466#[cfg(not(feature = "ferrocene_certified"))]
2467impl<A> FusedIterator for Item<A> {}
2468#[cfg(not(feature = "ferrocene_certified"))]
2469unsafe impl<A> TrustedLen for Item<A> {}
2470
2471/// An iterator over a reference to the [`Some`] variant of an [`Option`].
2472///
2473/// The iterator yields one value if the [`Option`] is a [`Some`], otherwise none.
2474///
2475/// This `struct` is created by the [`Option::iter`] function.
2476#[stable(feature = "rust1", since = "1.0.0")]
2477#[cfg_attr(not(feature = "ferrocene_certified"), derive(Debug))]
2478pub struct Iter<'a, A: 'a> {
2479    #[cfg_attr(feature = "ferrocene_certified", allow(dead_code))]
2480    inner: Item<&'a A>,
2481}
2482
2483#[stable(feature = "rust1", since = "1.0.0")]
2484#[cfg(not(feature = "ferrocene_certified"))]
2485impl<'a, A> Iterator for Iter<'a, A> {
2486    type Item = &'a A;
2487
2488    #[inline]
2489    fn next(&mut self) -> Option<&'a A> {
2490        self.inner.next()
2491    }
2492    #[inline]
2493    fn size_hint(&self) -> (usize, Option<usize>) {
2494        self.inner.size_hint()
2495    }
2496}
2497
2498#[stable(feature = "rust1", since = "1.0.0")]
2499#[cfg(not(feature = "ferrocene_certified"))]
2500impl<'a, A> DoubleEndedIterator for Iter<'a, A> {
2501    #[inline]
2502    fn next_back(&mut self) -> Option<&'a A> {
2503        self.inner.next_back()
2504    }
2505}
2506
2507#[stable(feature = "rust1", since = "1.0.0")]
2508#[cfg(not(feature = "ferrocene_certified"))]
2509impl<A> ExactSizeIterator for Iter<'_, A> {}
2510
2511#[stable(feature = "fused", since = "1.26.0")]
2512#[cfg(not(feature = "ferrocene_certified"))]
2513impl<A> FusedIterator for Iter<'_, A> {}
2514
2515#[unstable(feature = "trusted_len", issue = "37572")]
2516#[cfg(not(feature = "ferrocene_certified"))]
2517unsafe impl<A> TrustedLen for Iter<'_, A> {}
2518
2519#[stable(feature = "rust1", since = "1.0.0")]
2520#[cfg(not(feature = "ferrocene_certified"))]
2521impl<A> Clone for Iter<'_, A> {
2522    #[inline]
2523    fn clone(&self) -> Self {
2524        Iter { inner: self.inner.clone() }
2525    }
2526}
2527
2528/// An iterator over a mutable reference to the [`Some`] variant of an [`Option`].
2529///
2530/// The iterator yields one value if the [`Option`] is a [`Some`], otherwise none.
2531///
2532/// This `struct` is created by the [`Option::iter_mut`] function.
2533#[stable(feature = "rust1", since = "1.0.0")]
2534#[cfg_attr(not(feature = "ferrocene_certified"), derive(Debug))]
2535pub struct IterMut<'a, A: 'a> {
2536    #[cfg_attr(feature = "ferrocene_certified", allow(dead_code))]
2537    inner: Item<&'a mut A>,
2538}
2539
2540#[stable(feature = "rust1", since = "1.0.0")]
2541#[cfg(not(feature = "ferrocene_certified"))]
2542impl<'a, A> Iterator for IterMut<'a, A> {
2543    type Item = &'a mut A;
2544
2545    #[inline]
2546    fn next(&mut self) -> Option<&'a mut A> {
2547        self.inner.next()
2548    }
2549    #[inline]
2550    fn size_hint(&self) -> (usize, Option<usize>) {
2551        self.inner.size_hint()
2552    }
2553}
2554
2555#[stable(feature = "rust1", since = "1.0.0")]
2556#[cfg(not(feature = "ferrocene_certified"))]
2557impl<'a, A> DoubleEndedIterator for IterMut<'a, A> {
2558    #[inline]
2559    fn next_back(&mut self) -> Option<&'a mut A> {
2560        self.inner.next_back()
2561    }
2562}
2563
2564#[stable(feature = "rust1", since = "1.0.0")]
2565#[cfg(not(feature = "ferrocene_certified"))]
2566impl<A> ExactSizeIterator for IterMut<'_, A> {}
2567
2568#[stable(feature = "fused", since = "1.26.0")]
2569#[cfg(not(feature = "ferrocene_certified"))]
2570impl<A> FusedIterator for IterMut<'_, A> {}
2571#[unstable(feature = "trusted_len", issue = "37572")]
2572#[cfg(not(feature = "ferrocene_certified"))]
2573unsafe impl<A> TrustedLen for IterMut<'_, A> {}
2574
2575/// An iterator over the value in [`Some`] variant of an [`Option`].
2576///
2577/// The iterator yields one value if the [`Option`] is a [`Some`], otherwise none.
2578///
2579/// This `struct` is created by the [`Option::into_iter`] function.
2580#[derive(Clone, Debug)]
2581#[stable(feature = "rust1", since = "1.0.0")]
2582#[cfg(not(feature = "ferrocene_certified"))]
2583pub struct IntoIter<A> {
2584    inner: Item<A>,
2585}
2586
2587#[stable(feature = "rust1", since = "1.0.0")]
2588#[cfg(not(feature = "ferrocene_certified"))]
2589impl<A> Iterator for IntoIter<A> {
2590    type Item = A;
2591
2592    #[inline]
2593    fn next(&mut self) -> Option<A> {
2594        self.inner.next()
2595    }
2596    #[inline]
2597    fn size_hint(&self) -> (usize, Option<usize>) {
2598        self.inner.size_hint()
2599    }
2600}
2601
2602#[stable(feature = "rust1", since = "1.0.0")]
2603#[cfg(not(feature = "ferrocene_certified"))]
2604impl<A> DoubleEndedIterator for IntoIter<A> {
2605    #[inline]
2606    fn next_back(&mut self) -> Option<A> {
2607        self.inner.next_back()
2608    }
2609}
2610
2611#[stable(feature = "rust1", since = "1.0.0")]
2612#[cfg(not(feature = "ferrocene_certified"))]
2613impl<A> ExactSizeIterator for IntoIter<A> {}
2614
2615#[stable(feature = "fused", since = "1.26.0")]
2616#[cfg(not(feature = "ferrocene_certified"))]
2617impl<A> FusedIterator for IntoIter<A> {}
2618
2619#[unstable(feature = "trusted_len", issue = "37572")]
2620#[cfg(not(feature = "ferrocene_certified"))]
2621unsafe impl<A> TrustedLen for IntoIter<A> {}
2622
2623/////////////////////////////////////////////////////////////////////////////
2624// FromIterator
2625/////////////////////////////////////////////////////////////////////////////
2626
2627#[stable(feature = "rust1", since = "1.0.0")]
2628#[cfg(not(feature = "ferrocene_certified"))]
2629impl<A, V: FromIterator<A>> FromIterator<Option<A>> for Option<V> {
2630    /// Takes each element in the [`Iterator`]: if it is [`None`][Option::None],
2631    /// no further elements are taken, and the [`None`][Option::None] is
2632    /// returned. Should no [`None`][Option::None] occur, a container of type
2633    /// `V` containing the values of each [`Option`] is returned.
2634    ///
2635    /// # Examples
2636    ///
2637    /// Here is an example which increments every integer in a vector.
2638    /// We use the checked variant of `add` that returns `None` when the
2639    /// calculation would result in an overflow.
2640    ///
2641    /// ```
2642    /// let items = vec![0_u16, 1, 2];
2643    ///
2644    /// let res: Option<Vec<u16>> = items
2645    ///     .iter()
2646    ///     .map(|x| x.checked_add(1))
2647    ///     .collect();
2648    ///
2649    /// assert_eq!(res, Some(vec![1, 2, 3]));
2650    /// ```
2651    ///
2652    /// As you can see, this will return the expected, valid items.
2653    ///
2654    /// Here is another example that tries to subtract one from another list
2655    /// of integers, this time checking for underflow:
2656    ///
2657    /// ```
2658    /// let items = vec![2_u16, 1, 0];
2659    ///
2660    /// let res: Option<Vec<u16>> = items
2661    ///     .iter()
2662    ///     .map(|x| x.checked_sub(1))
2663    ///     .collect();
2664    ///
2665    /// assert_eq!(res, None);
2666    /// ```
2667    ///
2668    /// Since the last element is zero, it would underflow. Thus, the resulting
2669    /// value is `None`.
2670    ///
2671    /// Here is a variation on the previous example, showing that no
2672    /// further elements are taken from `iter` after the first `None`.
2673    ///
2674    /// ```
2675    /// let items = vec![3_u16, 2, 1, 10];
2676    ///
2677    /// let mut shared = 0;
2678    ///
2679    /// let res: Option<Vec<u16>> = items
2680    ///     .iter()
2681    ///     .map(|x| { shared += x; x.checked_sub(2) })
2682    ///     .collect();
2683    ///
2684    /// assert_eq!(res, None);
2685    /// assert_eq!(shared, 6);
2686    /// ```
2687    ///
2688    /// Since the third element caused an underflow, no further elements were taken,
2689    /// so the final value of `shared` is 6 (= `3 + 2 + 1`), not 16.
2690    #[inline]
2691    fn from_iter<I: IntoIterator<Item = Option<A>>>(iter: I) -> Option<V> {
2692        // FIXME(#11084): This could be replaced with Iterator::scan when this
2693        // performance bug is closed.
2694
2695        iter::try_process(iter.into_iter(), |i| i.collect())
2696    }
2697}
2698
2699#[unstable(feature = "try_trait_v2", issue = "84277", old_name = "try_trait")]
2700#[rustc_const_unstable(feature = "const_try", issue = "74935")]
2701#[cfg(not(feature = "ferrocene_certified"))]
2702impl<T> const ops::Try for Option<T> {
2703    type Output = T;
2704    type Residual = Option<convert::Infallible>;
2705
2706    #[inline]
2707    fn from_output(output: Self::Output) -> Self {
2708        Some(output)
2709    }
2710
2711    #[inline]
2712    fn branch(self) -> ControlFlow<Self::Residual, Self::Output> {
2713        match self {
2714            Some(v) => ControlFlow::Continue(v),
2715            None => ControlFlow::Break(None),
2716        }
2717    }
2718}
2719
2720#[unstable(feature = "try_trait_v2", issue = "84277", old_name = "try_trait")]
2721#[rustc_const_unstable(feature = "const_try", issue = "74935")]
2722// Note: manually specifying the residual type instead of using the default to work around
2723// https://github.com/rust-lang/rust/issues/99940
2724#[cfg(not(feature = "ferrocene_certified"))]
2725impl<T> const ops::FromResidual<Option<convert::Infallible>> for Option<T> {
2726    #[inline]
2727    fn from_residual(residual: Option<convert::Infallible>) -> Self {
2728        match residual {
2729            None => None,
2730        }
2731    }
2732}
2733
2734#[diagnostic::do_not_recommend]
2735#[unstable(feature = "try_trait_v2_yeet", issue = "96374")]
2736#[rustc_const_unstable(feature = "const_try", issue = "74935")]
2737#[cfg(not(feature = "ferrocene_certified"))]
2738impl<T> const ops::FromResidual<ops::Yeet<()>> for Option<T> {
2739    #[inline]
2740    fn from_residual(ops::Yeet(()): ops::Yeet<()>) -> Self {
2741        None
2742    }
2743}
2744
2745#[unstable(feature = "try_trait_v2_residual", issue = "91285")]
2746#[rustc_const_unstable(feature = "const_try", issue = "74935")]
2747#[cfg(not(feature = "ferrocene_certified"))]
2748impl<T> const ops::Residual<T> for Option<convert::Infallible> {
2749    type TryType = Option<T>;
2750}
2751
2752impl<T> Option<Option<T>> {
2753    /// Converts from `Option<Option<T>>` to `Option<T>`.
2754    ///
2755    /// # Examples
2756    ///
2757    /// Basic usage:
2758    ///
2759    /// ```
2760    /// let x: Option<Option<u32>> = Some(Some(6));
2761    /// assert_eq!(Some(6), x.flatten());
2762    ///
2763    /// let x: Option<Option<u32>> = Some(None);
2764    /// assert_eq!(None, x.flatten());
2765    ///
2766    /// let x: Option<Option<u32>> = None;
2767    /// assert_eq!(None, x.flatten());
2768    /// ```
2769    ///
2770    /// Flattening only removes one level of nesting at a time:
2771    ///
2772    /// ```
2773    /// let x: Option<Option<Option<u32>>> = Some(Some(Some(6)));
2774    /// assert_eq!(Some(Some(6)), x.flatten());
2775    /// assert_eq!(Some(6), x.flatten().flatten());
2776    /// ```
2777    #[inline]
2778    #[stable(feature = "option_flattening", since = "1.40.0")]
2779    #[rustc_allow_const_fn_unstable(const_precise_live_drops)]
2780    #[rustc_const_stable(feature = "const_option", since = "1.83.0")]
2781    pub const fn flatten(self) -> Option<T> {
2782        // FIXME(const-hack): could be written with `and_then`
2783        match self {
2784            Some(inner) => inner,
2785            None => None,
2786        }
2787    }
2788}
2789
2790#[cfg(not(feature = "ferrocene_certified"))]
2791impl<T, const N: usize> [Option<T>; N] {
2792    /// Transposes a `[Option<T>; N]` into a `Option<[T; N]>`.
2793    ///
2794    /// # Examples
2795    ///
2796    /// ```
2797    /// #![feature(option_array_transpose)]
2798    /// # use std::option::Option;
2799    ///
2800    /// let data = [Some(0); 1000];
2801    /// let data: Option<[u8; 1000]> = data.transpose();
2802    /// assert_eq!(data, Some([0; 1000]));
2803    ///
2804    /// let data = [Some(0), None];
2805    /// let data: Option<[u8; 2]> = data.transpose();
2806    /// assert_eq!(data, None);
2807    /// ```
2808    #[inline]
2809    #[unstable(feature = "option_array_transpose", issue = "130828")]
2810    pub fn transpose(self) -> Option<[T; N]> {
2811        self.try_map(core::convert::identity)
2812    }
2813}