core/
option.rs

1//! Optional values.
2//!
3//! Type [`Option`] represents an optional value: every [`Option`]
4//! is either [`Some`] and contains a value, or [`None`], and
5//! does not. [`Option`] types are very common in Rust code, as
6//! they have a number of uses:
7//!
8//! * Initial values
9//! * Return values for functions that are not defined
10//!   over their entire input range (partial functions)
11//! * Return value for otherwise reporting simple errors, where [`None`] is
12//!   returned on error
13//! * Optional struct fields
14//! * Struct fields that can be loaned or "taken"
15//! * Optional function arguments
16//! * Nullable pointers
17//! * Swapping things out of difficult situations
18//!
19//! [`Option`]s are commonly paired with pattern matching to query the presence
20//! of a value and take action, always accounting for the [`None`] case.
21//!
22//! ```
23//! fn divide(numerator: f64, denominator: f64) -> Option<f64> {
24//!     if denominator == 0.0 {
25//!         None
26//!     } else {
27//!         Some(numerator / denominator)
28//!     }
29//! }
30//!
31//! // The return value of the function is an option
32//! let result = divide(2.0, 3.0);
33//!
34//! // Pattern match to retrieve the value
35//! match result {
36//!     // The division was valid
37//!     Some(x) => println!("Result: {x}"),
38//!     // The division was invalid
39//!     None    => println!("Cannot divide by 0"),
40//! }
41//! ```
42//!
43//
44// FIXME: Show how `Option` is used in practice, with lots of methods
45//
46//! # Options and pointers ("nullable" pointers)
47//!
48//! Rust's pointer types must always point to a valid location; there are
49//! no "null" references. Instead, Rust has *optional* pointers, like
50//! the optional owned box, <code>[Option]<[Box\<T>]></code>.
51//!
52//! [Box\<T>]: ../../std/boxed/struct.Box.html
53//!
54//! The following example uses [`Option`] to create an optional box of
55//! [`i32`]. Notice that in order to use the inner [`i32`] value, the
56//! `check_optional` function first needs to use pattern matching to
57//! determine whether the box has a value (i.e., it is [`Some(...)`][`Some`]) or
58//! not ([`None`]).
59//!
60//! ```
61//! let optional = None;
62//! check_optional(optional);
63//!
64//! let optional = Some(Box::new(9000));
65//! check_optional(optional);
66//!
67//! fn check_optional(optional: Option<Box<i32>>) {
68//!     match optional {
69//!         Some(p) => println!("has value {p}"),
70//!         None => println!("has no value"),
71//!     }
72//! }
73//! ```
74//!
75//! # The question mark operator, `?`
76//!
77//! Similar to the [`Result`] type, when writing code that calls many functions that return the
78//! [`Option`] type, handling `Some`/`None` can be tedious. The question mark
79//! operator, [`?`], hides some of the boilerplate of propagating values
80//! up the call stack.
81//!
82//! It replaces this:
83//!
84//! ```
85//! # #![allow(dead_code)]
86//! fn add_last_numbers(stack: &mut Vec<i32>) -> Option<i32> {
87//!     let a = stack.pop();
88//!     let b = stack.pop();
89//!
90//!     match (a, b) {
91//!         (Some(x), Some(y)) => Some(x + y),
92//!         _ => None,
93//!     }
94//! }
95//!
96//! ```
97//!
98//! With this:
99//!
100//! ```
101//! # #![allow(dead_code)]
102//! fn add_last_numbers(stack: &mut Vec<i32>) -> Option<i32> {
103//!     Some(stack.pop()? + stack.pop()?)
104//! }
105//! ```
106//!
107//! *It's much nicer!*
108//!
109//! Ending the expression with [`?`] will result in the [`Some`]'s unwrapped value, unless the
110//! result is [`None`], in which case [`None`] is returned early from the enclosing function.
111//!
112//! [`?`] can be used in functions that return [`Option`] because of the
113//! early return of [`None`] that it provides.
114//!
115//! [`?`]: crate::ops::Try
116//! [`Some`]: Some
117//! [`None`]: None
118//!
119//! # Representation
120//!
121//! Rust guarantees to optimize the following types `T` such that
122//! [`Option<T>`] has the same size, alignment, and [function call ABI] as `T`. In some
123//! of these cases, Rust further guarantees the following:
124//! - `transmute::<_, Option<T>>([0u8; size_of::<T>()])` is sound and produces
125//!   `Option::<T>::None`
126//! - `transmute::<_, [u8; size_of::<T>()]>(Option::<T>::None)` is sound and produces
127//!   `[0u8; size_of::<T>()]`
128//!
129//! These cases are identified by the second column:
130//!
131//! | `T`                                                                 | Transmuting between `[0u8; size_of::<T>()]` and `Option::<T>::None` sound? |
132//! |---------------------------------------------------------------------|----------------------------------------------------------------------------|
133//! | [`Box<U>`] (specifically, only `Box<U, Global>`)                    | when `U: Sized`                                                            |
134//! | `&U`                                                                | when `U: Sized`                                                            |
135//! | `&mut U`                                                            | when `U: Sized`                                                            |
136//! | `fn`, `extern "C" fn`[^extern_fn]                                   | always                                                                     |
137//! | [`num::NonZero*`]                                                   | always                                                                     |
138//! | [`ptr::NonNull<U>`]                                                 | when `U: Sized`                                                            |
139//! | `#[repr(transparent)]` struct around one of the types in this list. | when it holds for the inner type                                           |
140//!
141//! [^extern_fn]: this remains true for `unsafe` variants, any argument/return types, and any other ABI: `[unsafe] extern "abi" fn` (_e.g._, `extern "system" fn`)
142//!
143//! Under some conditions the above types `T` are also null pointer optimized when wrapped in a [`Result`][result_repr].
144//!
145//! [`Box<U>`]: ../../std/boxed/struct.Box.html
146//! [`num::NonZero*`]: crate::num
147//! [`ptr::NonNull<U>`]: crate::ptr::NonNull
148//! [function call ABI]: ../primitive.fn.html#abi-compatibility
149//! [result_repr]: crate::result#representation
150//!
151//! This is called the "null pointer optimization" or NPO.
152//!
153//! It is further guaranteed that, for the cases above, one can
154//! [`mem::transmute`] from all valid values of `T` to `Option<T>` and
155//! from `Some::<T>(_)` to `T` (but transmuting `None::<T>` to `T`
156//! is undefined behavior).
157//!
158//! # Method overview
159//!
160//! In addition to working with pattern matching, [`Option`] provides a wide
161//! variety of different methods.
162//!
163//! ## Querying the variant
164//!
165//! The [`is_some`] and [`is_none`] methods return [`true`] if the [`Option`]
166//! is [`Some`] or [`None`], respectively.
167//!
168//! The [`is_some_and`] and [`is_none_or`] methods apply the provided function
169//! to the contents of the [`Option`] to produce a boolean value.
170//! If this is [`None`] then a default result is returned instead without executing the function.
171//!
172//! [`is_none`]: Option::is_none
173//! [`is_some`]: Option::is_some
174//! [`is_some_and`]: Option::is_some_and
175//! [`is_none_or`]: Option::is_none_or
176//!
177//! ## Adapters for working with references
178//!
179//! * [`as_ref`] converts from <code>[&][][Option]\<T></code> to <code>[Option]<[&]T></code>
180//! * [`as_mut`] converts from <code>[&mut] [Option]\<T></code> to <code>[Option]<[&mut] T></code>
181//! * [`as_deref`] converts from <code>[&][][Option]\<T></code> to
182//!   <code>[Option]<[&]T::[Target]></code>
183//! * [`as_deref_mut`] converts from <code>[&mut] [Option]\<T></code> to
184//!   <code>[Option]<[&mut] T::[Target]></code>
185//! * [`as_pin_ref`] converts from <code>[Pin]<[&][][Option]\<T>></code> to
186//!   <code>[Option]<[Pin]<[&]T>></code>
187//! * [`as_pin_mut`] converts from <code>[Pin]<[&mut] [Option]\<T>></code> to
188//!   <code>[Option]<[Pin]<[&mut] T>></code>
189//! * [`as_slice`] returns a one-element slice of the contained value, if any.
190//!   If this is [`None`], an empty slice is returned.
191//! * [`as_mut_slice`] returns a mutable one-element slice of the contained value, if any.
192//!   If this is [`None`], an empty slice is returned.
193//!
194//! [&]: reference "shared reference"
195//! [&mut]: reference "mutable reference"
196//! [Target]: Deref::Target "ops::Deref::Target"
197//! [`as_deref`]: Option::as_deref
198//! [`as_deref_mut`]: Option::as_deref_mut
199//! [`as_mut`]: Option::as_mut
200//! [`as_pin_mut`]: Option::as_pin_mut
201//! [`as_pin_ref`]: Option::as_pin_ref
202//! [`as_ref`]: Option::as_ref
203//! [`as_slice`]: Option::as_slice
204//! [`as_mut_slice`]: Option::as_mut_slice
205//!
206//! ## Extracting the contained value
207//!
208//! These methods extract the contained value in an [`Option<T>`] when it
209//! is the [`Some`] variant. If the [`Option`] is [`None`]:
210//!
211//! * [`expect`] panics with a provided custom message
212//! * [`unwrap`] panics with a generic message
213//! * [`unwrap_or`] returns the provided default value
214//! * [`unwrap_or_default`] returns the default value of the type `T`
215//!   (which must implement the [`Default`] trait)
216//! * [`unwrap_or_else`] returns the result of evaluating the provided
217//!   function
218//! * [`unwrap_unchecked`] produces *[undefined behavior]*
219//!
220//! [`expect`]: Option::expect
221//! [`unwrap`]: Option::unwrap
222//! [`unwrap_or`]: Option::unwrap_or
223//! [`unwrap_or_default`]: Option::unwrap_or_default
224//! [`unwrap_or_else`]: Option::unwrap_or_else
225//! [`unwrap_unchecked`]: Option::unwrap_unchecked
226//! [undefined behavior]: https://doc.rust-lang.org/reference/behavior-considered-undefined.html
227//!
228//! ## Transforming contained values
229//!
230//! These methods transform [`Option`] to [`Result`]:
231//!
232//! * [`ok_or`] transforms [`Some(v)`] to [`Ok(v)`], and [`None`] to
233//!   [`Err(err)`] using the provided default `err` value
234//! * [`ok_or_else`] transforms [`Some(v)`] to [`Ok(v)`], and [`None`] to
235//!   a value of [`Err`] using the provided function
236//! * [`transpose`] transposes an [`Option`] of a [`Result`] into a
237//!   [`Result`] of an [`Option`]
238//!
239//! [`Err(err)`]: Err
240//! [`Ok(v)`]: Ok
241//! [`Some(v)`]: Some
242//! [`ok_or`]: Option::ok_or
243//! [`ok_or_else`]: Option::ok_or_else
244//! [`transpose`]: Option::transpose
245//!
246//! These methods transform the [`Some`] variant:
247//!
248//! * [`filter`] calls the provided predicate function on the contained
249//!   value `t` if the [`Option`] is [`Some(t)`], and returns [`Some(t)`]
250//!   if the function returns `true`; otherwise, returns [`None`]
251//! * [`flatten`] removes one level of nesting from an [`Option<Option<T>>`]
252//! * [`inspect`] method takes ownership of the [`Option`] and applies
253//!   the provided function to the contained value by reference if [`Some`]
254//! * [`map`] transforms [`Option<T>`] to [`Option<U>`] by applying the
255//!   provided function to the contained value of [`Some`] and leaving
256//!   [`None`] values unchanged
257//!
258//! [`Some(t)`]: Some
259//! [`filter`]: Option::filter
260//! [`flatten`]: Option::flatten
261//! [`inspect`]: Option::inspect
262//! [`map`]: Option::map
263//!
264//! These methods transform [`Option<T>`] to a value of a possibly
265//! different type `U`:
266//!
267//! * [`map_or`] applies the provided function to the contained value of
268//!   [`Some`], or returns the provided default value if the [`Option`] is
269//!   [`None`]
270//! * [`map_or_else`] applies the provided function to the contained value
271//!   of [`Some`], or returns the result of evaluating the provided
272//!   fallback function if the [`Option`] is [`None`]
273//!
274//! [`map_or`]: Option::map_or
275//! [`map_or_else`]: Option::map_or_else
276//!
277//! These methods combine the [`Some`] variants of two [`Option`] values:
278//!
279//! * [`zip`] returns [`Some((s, o))`] if `self` is [`Some(s)`] and the
280//!   provided [`Option`] value is [`Some(o)`]; otherwise, returns [`None`]
281//! * [`zip_with`] calls the provided function `f` and returns
282//!   [`Some(f(s, o))`] if `self` is [`Some(s)`] and the provided
283//!   [`Option`] value is [`Some(o)`]; otherwise, returns [`None`]
284//!
285//! [`Some(f(s, o))`]: Some
286//! [`Some(o)`]: Some
287//! [`Some(s)`]: Some
288//! [`Some((s, o))`]: Some
289//! [`zip`]: Option::zip
290//! [`zip_with`]: Option::zip_with
291//!
292//! ## Boolean operators
293//!
294//! These methods treat the [`Option`] as a boolean value, where [`Some`]
295//! acts like [`true`] and [`None`] acts like [`false`]. There are two
296//! categories of these methods: ones that take an [`Option`] as input, and
297//! ones that take a function as input (to be lazily evaluated).
298//!
299//! The [`and`], [`or`], and [`xor`] methods take another [`Option`] as
300//! input, and produce an [`Option`] as output. Only the [`and`] method can
301//! produce an [`Option<U>`] value having a different inner type `U` than
302//! [`Option<T>`].
303//!
304//! | method  | self      | input     | output    |
305//! |---------|-----------|-----------|-----------|
306//! | [`and`] | `None`    | (ignored) | `None`    |
307//! | [`and`] | `Some(x)` | `None`    | `None`    |
308//! | [`and`] | `Some(x)` | `Some(y)` | `Some(y)` |
309//! | [`or`]  | `None`    | `None`    | `None`    |
310//! | [`or`]  | `None`    | `Some(y)` | `Some(y)` |
311//! | [`or`]  | `Some(x)` | (ignored) | `Some(x)` |
312//! | [`xor`] | `None`    | `None`    | `None`    |
313//! | [`xor`] | `None`    | `Some(y)` | `Some(y)` |
314//! | [`xor`] | `Some(x)` | `None`    | `Some(x)` |
315//! | [`xor`] | `Some(x)` | `Some(y)` | `None`    |
316//!
317//! [`and`]: Option::and
318//! [`or`]: Option::or
319//! [`xor`]: Option::xor
320//!
321//! The [`and_then`] and [`or_else`] methods take a function as input, and
322//! only evaluate the function when they need to produce a new value. Only
323//! the [`and_then`] method can produce an [`Option<U>`] value having a
324//! different inner type `U` than [`Option<T>`].
325//!
326//! | method       | self      | function input | function result | output    |
327//! |--------------|-----------|----------------|-----------------|-----------|
328//! | [`and_then`] | `None`    | (not provided) | (not evaluated) | `None`    |
329//! | [`and_then`] | `Some(x)` | `x`            | `None`          | `None`    |
330//! | [`and_then`] | `Some(x)` | `x`            | `Some(y)`       | `Some(y)` |
331//! | [`or_else`]  | `None`    | (not provided) | `None`          | `None`    |
332//! | [`or_else`]  | `None`    | (not provided) | `Some(y)`       | `Some(y)` |
333//! | [`or_else`]  | `Some(x)` | (not provided) | (not evaluated) | `Some(x)` |
334//!
335//! [`and_then`]: Option::and_then
336//! [`or_else`]: Option::or_else
337//!
338//! This is an example of using methods like [`and_then`] and [`or`] in a
339//! pipeline of method calls. Early stages of the pipeline pass failure
340//! values ([`None`]) through unchanged, and continue processing on
341//! success values ([`Some`]). Toward the end, [`or`] substitutes an error
342//! message if it receives [`None`].
343//!
344//! ```
345//! # use std::collections::BTreeMap;
346//! let mut bt = BTreeMap::new();
347//! bt.insert(20u8, "foo");
348//! bt.insert(42u8, "bar");
349//! let res = [0u8, 1, 11, 200, 22]
350//!     .into_iter()
351//!     .map(|x| {
352//!         // `checked_sub()` returns `None` on error
353//!         x.checked_sub(1)
354//!             // same with `checked_mul()`
355//!             .and_then(|x| x.checked_mul(2))
356//!             // `BTreeMap::get` returns `None` on error
357//!             .and_then(|x| bt.get(&x))
358//!             // Substitute an error message if we have `None` so far
359//!             .or(Some(&"error!"))
360//!             .copied()
361//!             // Won't panic because we unconditionally used `Some` above
362//!             .unwrap()
363//!     })
364//!     .collect::<Vec<_>>();
365//! assert_eq!(res, ["error!", "error!", "foo", "error!", "bar"]);
366//! ```
367//!
368//! ## Comparison operators
369//!
370//! If `T` implements [`PartialOrd`] then [`Option<T>`] will derive its
371//! [`PartialOrd`] implementation.  With this order, [`None`] compares as
372//! less than any [`Some`], and two [`Some`] compare the same way as their
373//! contained values would in `T`.  If `T` also implements
374//! [`Ord`], then so does [`Option<T>`].
375//!
376//! ```
377//! assert!(None < Some(0));
378//! assert!(Some(0) < Some(1));
379//! ```
380//!
381//! ## Iterating over `Option`
382//!
383//! An [`Option`] can be iterated over. This can be helpful if you need an
384//! iterator that is conditionally empty. The iterator will either produce
385//! a single value (when the [`Option`] is [`Some`]), or produce no values
386//! (when the [`Option`] is [`None`]). For example, [`into_iter`] acts like
387//! [`once(v)`] if the [`Option`] is [`Some(v)`], and like [`empty()`] if
388//! the [`Option`] is [`None`].
389//!
390//! [`Some(v)`]: Some
391//! [`empty()`]: crate::iter::empty
392//! [`once(v)`]: crate::iter::once
393//!
394//! Iterators over [`Option<T>`] come in three types:
395//!
396//! * [`into_iter`] consumes the [`Option`] and produces the contained
397//!   value
398//! * [`iter`] produces an immutable reference of type `&T` to the
399//!   contained value
400//! * [`iter_mut`] produces a mutable reference of type `&mut T` to the
401//!   contained value
402//!
403//! [`into_iter`]: Option::into_iter
404//! [`iter`]: Option::iter
405//! [`iter_mut`]: Option::iter_mut
406//!
407//! An iterator over [`Option`] can be useful when chaining iterators, for
408//! example, to conditionally insert items. (It's not always necessary to
409//! explicitly call an iterator constructor: many [`Iterator`] methods that
410//! accept other iterators will also accept iterable types that implement
411//! [`IntoIterator`], which includes [`Option`].)
412//!
413//! ```
414//! let yep = Some(42);
415//! let nope = None;
416//! // chain() already calls into_iter(), so we don't have to do so
417//! let nums: Vec<i32> = (0..4).chain(yep).chain(4..8).collect();
418//! assert_eq!(nums, [0, 1, 2, 3, 42, 4, 5, 6, 7]);
419//! let nums: Vec<i32> = (0..4).chain(nope).chain(4..8).collect();
420//! assert_eq!(nums, [0, 1, 2, 3, 4, 5, 6, 7]);
421//! ```
422//!
423//! One reason to chain iterators in this way is that a function returning
424//! `impl Iterator` must have all possible return values be of the same
425//! concrete type. Chaining an iterated [`Option`] can help with that.
426//!
427//! ```
428//! fn make_iter(do_insert: bool) -> impl Iterator<Item = i32> {
429//!     // Explicit returns to illustrate return types matching
430//!     match do_insert {
431//!         true => return (0..4).chain(Some(42)).chain(4..8),
432//!         false => return (0..4).chain(None).chain(4..8),
433//!     }
434//! }
435//! println!("{:?}", make_iter(true).collect::<Vec<_>>());
436//! println!("{:?}", make_iter(false).collect::<Vec<_>>());
437//! ```
438//!
439//! If we try to do the same thing, but using [`once()`] and [`empty()`],
440//! we can't return `impl Iterator` anymore because the concrete types of
441//! the return values differ.
442//!
443//! [`empty()`]: crate::iter::empty
444//! [`once()`]: crate::iter::once
445//!
446//! ```compile_fail,E0308
447//! # use std::iter::{empty, once};
448//! // This won't compile because all possible returns from the function
449//! // must have the same concrete type.
450//! fn make_iter(do_insert: bool) -> impl Iterator<Item = i32> {
451//!     // Explicit returns to illustrate return types not matching
452//!     match do_insert {
453//!         true => return (0..4).chain(once(42)).chain(4..8),
454//!         false => return (0..4).chain(empty()).chain(4..8),
455//!     }
456//! }
457//! ```
458//!
459//! ## Collecting into `Option`
460//!
461//! [`Option`] implements the [`FromIterator`][impl-FromIterator] trait,
462//! which allows an iterator over [`Option`] values to be collected into an
463//! [`Option`] of a collection of each contained value of the original
464//! [`Option`] values, or [`None`] if any of the elements was [`None`].
465//!
466//! [impl-FromIterator]: Option#impl-FromIterator%3COption%3CA%3E%3E-for-Option%3CV%3E
467//!
468//! ```
469//! let v = [Some(2), Some(4), None, Some(8)];
470//! let res: Option<Vec<_>> = v.into_iter().collect();
471//! assert_eq!(res, None);
472//! let v = [Some(2), Some(4), Some(8)];
473//! let res: Option<Vec<_>> = v.into_iter().collect();
474//! assert_eq!(res, Some(vec![2, 4, 8]));
475//! ```
476//!
477//! [`Option`] also implements the [`Product`][impl-Product] and
478//! [`Sum`][impl-Sum] traits, allowing an iterator over [`Option`] values
479//! to provide the [`product`][Iterator::product] and
480//! [`sum`][Iterator::sum] methods.
481//!
482//! [impl-Product]: Option#impl-Product%3COption%3CU%3E%3E-for-Option%3CT%3E
483//! [impl-Sum]: Option#impl-Sum%3COption%3CU%3E%3E-for-Option%3CT%3E
484//!
485//! ```
486//! let v = [None, Some(1), Some(2), Some(3)];
487//! let res: Option<i32> = v.into_iter().sum();
488//! assert_eq!(res, None);
489//! let v = [Some(1), Some(2), Some(21)];
490//! let res: Option<i32> = v.into_iter().product();
491//! assert_eq!(res, Some(42));
492//! ```
493//!
494//! ## Modifying an [`Option`] in-place
495//!
496//! These methods return a mutable reference to the contained value of an
497//! [`Option<T>`]:
498//!
499//! * [`insert`] inserts a value, dropping any old contents
500//! * [`get_or_insert`] gets the current value, inserting a provided
501//!   default value if it is [`None`]
502//! * [`get_or_insert_default`] gets the current value, inserting the
503//!   default value of type `T` (which must implement [`Default`]) if it is
504//!   [`None`]
505//! * [`get_or_insert_with`] gets the current value, inserting a default
506//!   computed by the provided function if it is [`None`]
507//!
508//! [`get_or_insert`]: Option::get_or_insert
509//! [`get_or_insert_default`]: Option::get_or_insert_default
510//! [`get_or_insert_with`]: Option::get_or_insert_with
511//! [`insert`]: Option::insert
512//!
513//! These methods transfer ownership of the contained value of an
514//! [`Option`]:
515//!
516//! * [`take`] takes ownership of the contained value of an [`Option`], if
517//!   any, replacing the [`Option`] with [`None`]
518//! * [`replace`] takes ownership of the contained value of an [`Option`],
519//!   if any, replacing the [`Option`] with a [`Some`] containing the
520//!   provided value
521//!
522//! [`replace`]: Option::replace
523//! [`take`]: Option::take
524//!
525//! # Examples
526//!
527//! Basic pattern matching on [`Option`]:
528//!
529//! ```
530//! let msg = Some("howdy");
531//!
532//! // Take a reference to the contained string
533//! if let Some(m) = &msg {
534//!     println!("{}", *m);
535//! }
536//!
537//! // Remove the contained string, destroying the Option
538//! let unwrapped_msg = msg.unwrap_or("default message");
539//! ```
540//!
541//! Initialize a result to [`None`] before a loop:
542//!
543//! ```
544//! enum Kingdom { Plant(u32, &'static str), Animal(u32, &'static str) }
545//!
546//! // A list of data to search through.
547//! let all_the_big_things = [
548//!     Kingdom::Plant(250, "redwood"),
549//!     Kingdom::Plant(230, "noble fir"),
550//!     Kingdom::Plant(229, "sugar pine"),
551//!     Kingdom::Animal(25, "blue whale"),
552//!     Kingdom::Animal(19, "fin whale"),
553//!     Kingdom::Animal(15, "north pacific right whale"),
554//! ];
555//!
556//! // We're going to search for the name of the biggest animal,
557//! // but to start with we've just got `None`.
558//! let mut name_of_biggest_animal = None;
559//! let mut size_of_biggest_animal = 0;
560//! for big_thing in &all_the_big_things {
561//!     match *big_thing {
562//!         Kingdom::Animal(size, name) if size > size_of_biggest_animal => {
563//!             // Now we've found the name of some big animal
564//!             size_of_biggest_animal = size;
565//!             name_of_biggest_animal = Some(name);
566//!         }
567//!         Kingdom::Animal(..) | Kingdom::Plant(..) => ()
568//!     }
569//! }
570//!
571//! match name_of_biggest_animal {
572//!     Some(name) => println!("the biggest animal is {name}"),
573//!     None => println!("there are no animals :("),
574//! }
575//! ```
576
577#![stable(feature = "rust1", since = "1.0.0")]
578
579use crate::iter::{self, FusedIterator, TrustedLen};
580use crate::ops::{self, ControlFlow, Deref, DerefMut};
581use crate::panicking::{panic, panic_display};
582use crate::pin::Pin;
583use crate::{cmp, convert, hint, mem, slice};
584
585/// The `Option` type. See [the module level documentation](self) for more.
586#[doc(search_unbox)]
587#[derive(Copy, Eq, Debug, Hash)]
588#[rustc_diagnostic_item = "Option"]
589#[lang = "Option"]
590#[stable(feature = "rust1", since = "1.0.0")]
591#[allow(clippy::derived_hash_with_manual_eq)] // PartialEq is manually implemented equivalently
592pub enum Option<T> {
593    /// No value.
594    #[lang = "None"]
595    #[stable(feature = "rust1", since = "1.0.0")]
596    None,
597    /// Some value of type `T`.
598    #[lang = "Some"]
599    #[stable(feature = "rust1", since = "1.0.0")]
600    Some(#[stable(feature = "rust1", since = "1.0.0")] T),
601}
602
603/////////////////////////////////////////////////////////////////////////////
604// Type implementation
605/////////////////////////////////////////////////////////////////////////////
606
607impl<T> Option<T> {
608    /////////////////////////////////////////////////////////////////////////
609    // Querying the contained values
610    /////////////////////////////////////////////////////////////////////////
611
612    /// Returns `true` if the option is a [`Some`] value.
613    ///
614    /// # Examples
615    ///
616    /// ```
617    /// let x: Option<u32> = Some(2);
618    /// assert_eq!(x.is_some(), true);
619    ///
620    /// let x: Option<u32> = None;
621    /// assert_eq!(x.is_some(), false);
622    /// ```
623    #[must_use = "if you intended to assert that this has a value, consider `.unwrap()` instead"]
624    #[inline]
625    #[stable(feature = "rust1", since = "1.0.0")]
626    #[rustc_const_stable(feature = "const_option_basics", since = "1.48.0")]
627    pub const fn is_some(&self) -> bool {
628        matches!(*self, Some(_))
629    }
630
631    /// Returns `true` if the option is a [`Some`] and the value inside of it matches a predicate.
632    ///
633    /// # Examples
634    ///
635    /// ```
636    /// let x: Option<u32> = Some(2);
637    /// assert_eq!(x.is_some_and(|x| x > 1), true);
638    ///
639    /// let x: Option<u32> = Some(0);
640    /// assert_eq!(x.is_some_and(|x| x > 1), false);
641    ///
642    /// let x: Option<u32> = None;
643    /// assert_eq!(x.is_some_and(|x| x > 1), false);
644    ///
645    /// let x: Option<String> = Some("ownership".to_string());
646    /// assert_eq!(x.as_ref().is_some_and(|x| x.len() > 1), true);
647    /// println!("still alive {:?}", x);
648    /// ```
649    #[must_use]
650    #[inline]
651    #[stable(feature = "is_some_and", since = "1.70.0")]
652    pub fn is_some_and(self, f: impl FnOnce(T) -> bool) -> bool {
653        match self {
654            None => false,
655            Some(x) => f(x),
656        }
657    }
658
659    /// Returns `true` if the option is a [`None`] value.
660    ///
661    /// # Examples
662    ///
663    /// ```
664    /// let x: Option<u32> = Some(2);
665    /// assert_eq!(x.is_none(), false);
666    ///
667    /// let x: Option<u32> = None;
668    /// assert_eq!(x.is_none(), true);
669    /// ```
670    #[must_use = "if you intended to assert that this doesn't have a value, consider \
671                  wrapping this in an `assert!()` instead"]
672    #[inline]
673    #[stable(feature = "rust1", since = "1.0.0")]
674    #[rustc_const_stable(feature = "const_option_basics", since = "1.48.0")]
675    pub const fn is_none(&self) -> bool {
676        !self.is_some()
677    }
678
679    /// Returns `true` if the option is a [`None`] or the value inside of it matches a predicate.
680    ///
681    /// # Examples
682    ///
683    /// ```
684    /// let x: Option<u32> = Some(2);
685    /// assert_eq!(x.is_none_or(|x| x > 1), true);
686    ///
687    /// let x: Option<u32> = Some(0);
688    /// assert_eq!(x.is_none_or(|x| x > 1), false);
689    ///
690    /// let x: Option<u32> = None;
691    /// assert_eq!(x.is_none_or(|x| x > 1), true);
692    ///
693    /// let x: Option<String> = Some("ownership".to_string());
694    /// assert_eq!(x.as_ref().is_none_or(|x| x.len() > 1), true);
695    /// println!("still alive {:?}", x);
696    /// ```
697    #[must_use]
698    #[inline]
699    #[stable(feature = "is_none_or", since = "1.82.0")]
700    pub fn is_none_or(self, f: impl FnOnce(T) -> bool) -> bool {
701        match self {
702            None => true,
703            Some(x) => f(x),
704        }
705    }
706
707    /////////////////////////////////////////////////////////////////////////
708    // Adapter for working with references
709    /////////////////////////////////////////////////////////////////////////
710
711    /// Converts from `&Option<T>` to `Option<&T>`.
712    ///
713    /// # Examples
714    ///
715    /// Calculates the length of an <code>Option<[String]></code> as an <code>Option<[usize]></code>
716    /// without moving the [`String`]. The [`map`] method takes the `self` argument by value,
717    /// consuming the original, so this technique uses `as_ref` to first take an `Option` to a
718    /// reference to the value inside the original.
719    ///
720    /// [`map`]: Option::map
721    /// [String]: ../../std/string/struct.String.html "String"
722    /// [`String`]: ../../std/string/struct.String.html "String"
723    ///
724    /// ```
725    /// let text: Option<String> = Some("Hello, world!".to_string());
726    /// // First, cast `Option<String>` to `Option<&String>` with `as_ref`,
727    /// // then consume *that* with `map`, leaving `text` on the stack.
728    /// let text_length: Option<usize> = text.as_ref().map(|s| s.len());
729    /// println!("still can print text: {text:?}");
730    /// ```
731    #[inline]
732    #[rustc_const_stable(feature = "const_option_basics", since = "1.48.0")]
733    #[stable(feature = "rust1", since = "1.0.0")]
734    pub const fn as_ref(&self) -> Option<&T> {
735        match *self {
736            Some(ref x) => Some(x),
737            None => None,
738        }
739    }
740
741    /// Converts from `&mut Option<T>` to `Option<&mut T>`.
742    ///
743    /// # Examples
744    ///
745    /// ```
746    /// let mut x = Some(2);
747    /// match x.as_mut() {
748    ///     Some(v) => *v = 42,
749    ///     None => {},
750    /// }
751    /// assert_eq!(x, Some(42));
752    /// ```
753    #[inline]
754    #[stable(feature = "rust1", since = "1.0.0")]
755    #[rustc_const_stable(feature = "const_option", since = "1.83.0")]
756    pub const fn as_mut(&mut self) -> Option<&mut T> {
757        match *self {
758            Some(ref mut x) => Some(x),
759            None => None,
760        }
761    }
762
763    /// Converts from <code>[Pin]<[&]Option\<T>></code> to <code>Option<[Pin]<[&]T>></code>.
764    ///
765    /// [&]: reference "shared reference"
766    #[inline]
767    #[must_use]
768    #[stable(feature = "pin", since = "1.33.0")]
769    #[rustc_const_stable(feature = "const_option_ext", since = "1.84.0")]
770    pub const fn as_pin_ref(self: Pin<&Self>) -> Option<Pin<&T>> {
771        // FIXME(const-hack): use `map` once that is possible
772        match Pin::get_ref(self).as_ref() {
773            // SAFETY: `x` is guaranteed to be pinned because it comes from `self`
774            // which is pinned.
775            Some(x) => unsafe { Some(Pin::new_unchecked(x)) },
776            None => None,
777        }
778    }
779
780    /// Converts from <code>[Pin]<[&mut] Option\<T>></code> to <code>Option<[Pin]<[&mut] T>></code>.
781    ///
782    /// [&mut]: reference "mutable reference"
783    #[inline]
784    #[must_use]
785    #[stable(feature = "pin", since = "1.33.0")]
786    #[rustc_const_stable(feature = "const_option_ext", since = "1.84.0")]
787    pub const fn as_pin_mut(self: Pin<&mut Self>) -> Option<Pin<&mut T>> {
788        // SAFETY: `get_unchecked_mut` is never used to move the `Option` inside `self`.
789        // `x` is guaranteed to be pinned because it comes from `self` which is pinned.
790        unsafe {
791            // FIXME(const-hack): use `map` once that is possible
792            match Pin::get_unchecked_mut(self).as_mut() {
793                Some(x) => Some(Pin::new_unchecked(x)),
794                None => None,
795            }
796        }
797    }
798
799    #[inline]
800    const fn len(&self) -> usize {
801        // Using the intrinsic avoids emitting a branch to get the 0 or 1.
802        let discriminant: isize = crate::intrinsics::discriminant_value(self);
803        discriminant as usize
804    }
805
806    /// Returns a slice of the contained value, if any. If this is `None`, an
807    /// empty slice is returned. This can be useful to have a single type of
808    /// iterator over an `Option` or slice.
809    ///
810    /// Note: Should you have an `Option<&T>` and wish to get a slice of `T`,
811    /// you can unpack it via `opt.map_or(&[], std::slice::from_ref)`.
812    ///
813    /// # Examples
814    ///
815    /// ```rust
816    /// assert_eq!(
817    ///     [Some(1234).as_slice(), None.as_slice()],
818    ///     [&[1234][..], &[][..]],
819    /// );
820    /// ```
821    ///
822    /// The inverse of this function is (discounting
823    /// borrowing) [`[_]::first`](slice::first):
824    ///
825    /// ```rust
826    /// for i in [Some(1234_u16), None] {
827    ///     assert_eq!(i.as_ref(), i.as_slice().first());
828    /// }
829    /// ```
830    #[inline]
831    #[must_use]
832    #[stable(feature = "option_as_slice", since = "1.75.0")]
833    #[rustc_const_stable(feature = "const_option_ext", since = "1.84.0")]
834    pub const fn as_slice(&self) -> &[T] {
835        // SAFETY: When the `Option` is `Some`, we're using the actual pointer
836        // to the payload, with a length of 1, so this is equivalent to
837        // `slice::from_ref`, and thus is safe.
838        // When the `Option` is `None`, the length used is 0, so to be safe it
839        // just needs to be aligned, which it is because `&self` is aligned and
840        // the offset used is a multiple of alignment.
841        //
842        // In the new version, the intrinsic always returns a pointer to an
843        // in-bounds and correctly aligned position for a `T` (even if in the
844        // `None` case it's just padding).
845        unsafe {
846            slice::from_raw_parts(
847                (self as *const Self).byte_add(core::mem::offset_of!(Self, Some.0)).cast(),
848                self.len(),
849            )
850        }
851    }
852
853    /// Returns a mutable slice of the contained value, if any. If this is
854    /// `None`, an empty slice is returned. This can be useful to have a
855    /// single type of iterator over an `Option` or slice.
856    ///
857    /// Note: Should you have an `Option<&mut T>` instead of a
858    /// `&mut Option<T>`, which this method takes, you can obtain a mutable
859    /// slice via `opt.map_or(&mut [], std::slice::from_mut)`.
860    ///
861    /// # Examples
862    ///
863    /// ```rust
864    /// assert_eq!(
865    ///     [Some(1234).as_mut_slice(), None.as_mut_slice()],
866    ///     [&mut [1234][..], &mut [][..]],
867    /// );
868    /// ```
869    ///
870    /// The result is a mutable slice of zero or one items that points into
871    /// our original `Option`:
872    ///
873    /// ```rust
874    /// let mut x = Some(1234);
875    /// x.as_mut_slice()[0] += 1;
876    /// assert_eq!(x, Some(1235));
877    /// ```
878    ///
879    /// The inverse of this method (discounting borrowing)
880    /// is [`[_]::first_mut`](slice::first_mut):
881    ///
882    /// ```rust
883    /// assert_eq!(Some(123).as_mut_slice().first_mut(), Some(&mut 123))
884    /// ```
885    #[inline]
886    #[must_use]
887    #[stable(feature = "option_as_slice", since = "1.75.0")]
888    #[rustc_const_stable(feature = "const_option_ext", since = "1.84.0")]
889    pub const fn as_mut_slice(&mut self) -> &mut [T] {
890        // SAFETY: When the `Option` is `Some`, we're using the actual pointer
891        // to the payload, with a length of 1, so this is equivalent to
892        // `slice::from_mut`, and thus is safe.
893        // When the `Option` is `None`, the length used is 0, so to be safe it
894        // just needs to be aligned, which it is because `&self` is aligned and
895        // the offset used is a multiple of alignment.
896        //
897        // In the new version, the intrinsic creates a `*const T` from a
898        // mutable reference  so it is safe to cast back to a mutable pointer
899        // here. As with `as_slice`, the intrinsic always returns a pointer to
900        // an in-bounds and correctly aligned position for a `T` (even if in
901        // the `None` case it's just padding).
902        unsafe {
903            slice::from_raw_parts_mut(
904                (self as *mut Self).byte_add(core::mem::offset_of!(Self, Some.0)).cast(),
905                self.len(),
906            )
907        }
908    }
909
910    /////////////////////////////////////////////////////////////////////////
911    // Getting to contained values
912    /////////////////////////////////////////////////////////////////////////
913
914    /// Returns the contained [`Some`] value, consuming the `self` value.
915    ///
916    /// # Panics
917    ///
918    /// Panics if the value is a [`None`] with a custom panic message provided by
919    /// `msg`.
920    ///
921    /// # Examples
922    ///
923    /// ```
924    /// let x = Some("value");
925    /// assert_eq!(x.expect("fruits are healthy"), "value");
926    /// ```
927    ///
928    /// ```should_panic
929    /// let x: Option<&str> = None;
930    /// x.expect("fruits are healthy"); // panics with `fruits are healthy`
931    /// ```
932    ///
933    /// # Recommended Message Style
934    ///
935    /// We recommend that `expect` messages are used to describe the reason you
936    /// _expect_ the `Option` should be `Some`.
937    ///
938    /// ```should_panic
939    /// # let slice: &[u8] = &[];
940    /// let item = slice.get(0)
941    ///     .expect("slice should not be empty");
942    /// ```
943    ///
944    /// **Hint**: If you're having trouble remembering how to phrase expect
945    /// error messages remember to focus on the word "should" as in "env
946    /// variable should be set by blah" or "the given binary should be available
947    /// and executable by the current user".
948    ///
949    /// For more detail on expect message styles and the reasoning behind our
950    /// recommendation please refer to the section on ["Common Message
951    /// Styles"](../../std/error/index.html#common-message-styles) in the [`std::error`](../../std/error/index.html) module docs.
952    #[inline]
953    #[track_caller]
954    #[stable(feature = "rust1", since = "1.0.0")]
955    #[rustc_diagnostic_item = "option_expect"]
956    #[rustc_allow_const_fn_unstable(const_precise_live_drops)]
957    #[rustc_const_stable(feature = "const_option", since = "1.83.0")]
958    pub const fn expect(self, msg: &str) -> T {
959        match self {
960            Some(val) => val,
961            None => expect_failed(msg),
962        }
963    }
964
965    /// Returns the contained [`Some`] value, consuming the `self` value.
966    ///
967    /// Because this function may panic, its use is generally discouraged.
968    /// Panics are meant for unrecoverable errors, and
969    /// [may abort the entire program][panic-abort].
970    ///
971    /// Instead, prefer to use pattern matching and handle the [`None`]
972    /// case explicitly, or call [`unwrap_or`], [`unwrap_or_else`], or
973    /// [`unwrap_or_default`]. In functions returning `Option`, you can use
974    /// [the `?` (try) operator][try-option].
975    ///
976    /// [panic-abort]: https://doc.rust-lang.org/book/ch09-01-unrecoverable-errors-with-panic.html
977    /// [try-option]: https://doc.rust-lang.org/book/ch09-02-recoverable-errors-with-result.html#where-the--operator-can-be-used
978    /// [`unwrap_or`]: Option::unwrap_or
979    /// [`unwrap_or_else`]: Option::unwrap_or_else
980    /// [`unwrap_or_default`]: Option::unwrap_or_default
981    ///
982    /// # Panics
983    ///
984    /// Panics if the self value equals [`None`].
985    ///
986    /// # Examples
987    ///
988    /// ```
989    /// let x = Some("air");
990    /// assert_eq!(x.unwrap(), "air");
991    /// ```
992    ///
993    /// ```should_panic
994    /// let x: Option<&str> = None;
995    /// assert_eq!(x.unwrap(), "air"); // fails
996    /// ```
997    #[inline(always)]
998    #[track_caller]
999    #[stable(feature = "rust1", since = "1.0.0")]
1000    #[rustc_diagnostic_item = "option_unwrap"]
1001    #[rustc_allow_const_fn_unstable(const_precise_live_drops)]
1002    #[rustc_const_stable(feature = "const_option", since = "1.83.0")]
1003    pub const fn unwrap(self) -> T {
1004        match self {
1005            Some(val) => val,
1006            None => unwrap_failed(),
1007        }
1008    }
1009
1010    /// Returns the contained [`Some`] value or a provided default.
1011    ///
1012    /// Arguments passed to `unwrap_or` are eagerly evaluated; if you are passing
1013    /// the result of a function call, it is recommended to use [`unwrap_or_else`],
1014    /// which is lazily evaluated.
1015    ///
1016    /// [`unwrap_or_else`]: Option::unwrap_or_else
1017    ///
1018    /// # Examples
1019    ///
1020    /// ```
1021    /// assert_eq!(Some("car").unwrap_or("bike"), "car");
1022    /// assert_eq!(None.unwrap_or("bike"), "bike");
1023    /// ```
1024    #[inline]
1025    #[stable(feature = "rust1", since = "1.0.0")]
1026    pub fn unwrap_or(self, default: T) -> T {
1027        match self {
1028            Some(x) => x,
1029            None => default,
1030        }
1031    }
1032
1033    /// Returns the contained [`Some`] value or computes it from a closure.
1034    ///
1035    /// # Examples
1036    ///
1037    /// ```
1038    /// let k = 10;
1039    /// assert_eq!(Some(4).unwrap_or_else(|| 2 * k), 4);
1040    /// assert_eq!(None.unwrap_or_else(|| 2 * k), 20);
1041    /// ```
1042    #[inline]
1043    #[track_caller]
1044    #[stable(feature = "rust1", since = "1.0.0")]
1045    pub fn unwrap_or_else<F>(self, f: F) -> T
1046    where
1047        F: FnOnce() -> T,
1048    {
1049        match self {
1050            Some(x) => x,
1051            None => f(),
1052        }
1053    }
1054
1055    /// Returns the contained [`Some`] value or a default.
1056    ///
1057    /// Consumes the `self` argument then, if [`Some`], returns the contained
1058    /// value, otherwise if [`None`], returns the [default value] for that
1059    /// type.
1060    ///
1061    /// # Examples
1062    ///
1063    /// ```
1064    /// let x: Option<u32> = None;
1065    /// let y: Option<u32> = Some(12);
1066    ///
1067    /// assert_eq!(x.unwrap_or_default(), 0);
1068    /// assert_eq!(y.unwrap_or_default(), 12);
1069    /// ```
1070    ///
1071    /// [default value]: Default::default
1072    /// [`parse`]: str::parse
1073    /// [`FromStr`]: crate::str::FromStr
1074    #[inline]
1075    #[stable(feature = "rust1", since = "1.0.0")]
1076    pub fn unwrap_or_default(self) -> T
1077    where
1078        T: Default,
1079    {
1080        match self {
1081            Some(x) => x,
1082            None => T::default(),
1083        }
1084    }
1085
1086    /// Returns the contained [`Some`] value, consuming the `self` value,
1087    /// without checking that the value is not [`None`].
1088    ///
1089    /// # Safety
1090    ///
1091    /// Calling this method on [`None`] is *[undefined behavior]*.
1092    ///
1093    /// [undefined behavior]: https://doc.rust-lang.org/reference/behavior-considered-undefined.html
1094    ///
1095    /// # Examples
1096    ///
1097    /// ```
1098    /// let x = Some("air");
1099    /// assert_eq!(unsafe { x.unwrap_unchecked() }, "air");
1100    /// ```
1101    ///
1102    /// ```no_run
1103    /// let x: Option<&str> = None;
1104    /// assert_eq!(unsafe { x.unwrap_unchecked() }, "air"); // Undefined behavior!
1105    /// ```
1106    #[inline]
1107    #[track_caller]
1108    #[stable(feature = "option_result_unwrap_unchecked", since = "1.58.0")]
1109    #[rustc_allow_const_fn_unstable(const_precise_live_drops)]
1110    #[rustc_const_stable(feature = "const_option", since = "1.83.0")]
1111    pub const unsafe fn unwrap_unchecked(self) -> T {
1112        match self {
1113            Some(val) => val,
1114            // SAFETY: the safety contract must be upheld by the caller.
1115            None => unsafe { hint::unreachable_unchecked() },
1116        }
1117    }
1118
1119    /////////////////////////////////////////////////////////////////////////
1120    // Transforming contained values
1121    /////////////////////////////////////////////////////////////////////////
1122
1123    /// Maps an `Option<T>` to `Option<U>` by applying a function to a contained value (if `Some`) or returns `None` (if `None`).
1124    ///
1125    /// # Examples
1126    ///
1127    /// Calculates the length of an <code>Option<[String]></code> as an
1128    /// <code>Option<[usize]></code>, consuming the original:
1129    ///
1130    /// [String]: ../../std/string/struct.String.html "String"
1131    /// ```
1132    /// let maybe_some_string = Some(String::from("Hello, World!"));
1133    /// // `Option::map` takes self *by value*, consuming `maybe_some_string`
1134    /// let maybe_some_len = maybe_some_string.map(|s| s.len());
1135    /// assert_eq!(maybe_some_len, Some(13));
1136    ///
1137    /// let x: Option<&str> = None;
1138    /// assert_eq!(x.map(|s| s.len()), None);
1139    /// ```
1140    #[inline]
1141    #[stable(feature = "rust1", since = "1.0.0")]
1142    pub fn map<U, F>(self, f: F) -> Option<U>
1143    where
1144        F: FnOnce(T) -> U,
1145    {
1146        match self {
1147            Some(x) => Some(f(x)),
1148            None => None,
1149        }
1150    }
1151
1152    /// Calls a function with a reference to the contained value if [`Some`].
1153    ///
1154    /// Returns the original option.
1155    ///
1156    /// # Examples
1157    ///
1158    /// ```
1159    /// let list = vec![1, 2, 3];
1160    ///
1161    /// // prints "got: 2"
1162    /// let x = list
1163    ///     .get(1)
1164    ///     .inspect(|x| println!("got: {x}"))
1165    ///     .expect("list should be long enough");
1166    ///
1167    /// // prints nothing
1168    /// list.get(5).inspect(|x| println!("got: {x}"));
1169    /// ```
1170    #[inline]
1171    #[stable(feature = "result_option_inspect", since = "1.76.0")]
1172    pub fn inspect<F: FnOnce(&T)>(self, f: F) -> Self {
1173        if let Some(ref x) = self {
1174            f(x);
1175        }
1176
1177        self
1178    }
1179
1180    /// Returns the provided default result (if none),
1181    /// or applies a function to the contained value (if any).
1182    ///
1183    /// Arguments passed to `map_or` are eagerly evaluated; if you are passing
1184    /// the result of a function call, it is recommended to use [`map_or_else`],
1185    /// which is lazily evaluated.
1186    ///
1187    /// [`map_or_else`]: Option::map_or_else
1188    ///
1189    /// # Examples
1190    ///
1191    /// ```
1192    /// let x = Some("foo");
1193    /// assert_eq!(x.map_or(42, |v| v.len()), 3);
1194    ///
1195    /// let x: Option<&str> = None;
1196    /// assert_eq!(x.map_or(42, |v| v.len()), 42);
1197    /// ```
1198    #[inline]
1199    #[stable(feature = "rust1", since = "1.0.0")]
1200    #[must_use = "if you don't need the returned value, use `if let` instead"]
1201    pub fn map_or<U, F>(self, default: U, f: F) -> U
1202    where
1203        F: FnOnce(T) -> U,
1204    {
1205        match self {
1206            Some(t) => f(t),
1207            None => default,
1208        }
1209    }
1210
1211    /// Computes a default function result (if none), or
1212    /// applies a different function to the contained value (if any).
1213    ///
1214    /// # Basic examples
1215    ///
1216    /// ```
1217    /// let k = 21;
1218    ///
1219    /// let x = Some("foo");
1220    /// assert_eq!(x.map_or_else(|| 2 * k, |v| v.len()), 3);
1221    ///
1222    /// let x: Option<&str> = None;
1223    /// assert_eq!(x.map_or_else(|| 2 * k, |v| v.len()), 42);
1224    /// ```
1225    ///
1226    /// # Handling a Result-based fallback
1227    ///
1228    /// A somewhat common occurrence when dealing with optional values
1229    /// in combination with [`Result<T, E>`] is the case where one wants to invoke
1230    /// a fallible fallback if the option is not present.  This example
1231    /// parses a command line argument (if present), or the contents of a file to
1232    /// an integer.  However, unlike accessing the command line argument, reading
1233    /// the file is fallible, so it must be wrapped with `Ok`.
1234    ///
1235    /// ```no_run
1236    /// # fn main() -> Result<(), Box<dyn std::error::Error>> {
1237    /// let v: u64 = std::env::args()
1238    ///    .nth(1)
1239    ///    .map_or_else(|| std::fs::read_to_string("/etc/someconfig.conf"), Ok)?
1240    ///    .parse()?;
1241    /// #   Ok(())
1242    /// # }
1243    /// ```
1244    #[inline]
1245    #[stable(feature = "rust1", since = "1.0.0")]
1246    pub fn map_or_else<U, D, F>(self, default: D, f: F) -> U
1247    where
1248        D: FnOnce() -> U,
1249        F: FnOnce(T) -> U,
1250    {
1251        match self {
1252            Some(t) => f(t),
1253            None => default(),
1254        }
1255    }
1256
1257    /// Maps an `Option<T>` to a `U` by applying function `f` to the contained
1258    /// value if the option is [`Some`], otherwise if [`None`], returns the
1259    /// [default value] for the type `U`.
1260    ///
1261    /// # Examples
1262    ///
1263    /// ```
1264    /// #![feature(result_option_map_or_default)]
1265    ///
1266    /// let x: Option<&str> = Some("hi");
1267    /// let y: Option<&str> = None;
1268    ///
1269    /// assert_eq!(x.map_or_default(|x| x.len()), 2);
1270    /// assert_eq!(y.map_or_default(|y| y.len()), 0);
1271    /// ```
1272    ///
1273    /// [default value]: Default::default
1274    #[inline]
1275    #[unstable(feature = "result_option_map_or_default", issue = "138099")]
1276    pub fn map_or_default<U, F>(self, f: F) -> U
1277    where
1278        U: Default,
1279        F: FnOnce(T) -> U,
1280    {
1281        match self {
1282            Some(t) => f(t),
1283            None => U::default(),
1284        }
1285    }
1286
1287    /// Transforms the `Option<T>` into a [`Result<T, E>`], mapping [`Some(v)`] to
1288    /// [`Ok(v)`] and [`None`] to [`Err(err)`].
1289    ///
1290    /// Arguments passed to `ok_or` are eagerly evaluated; if you are passing the
1291    /// result of a function call, it is recommended to use [`ok_or_else`], which is
1292    /// lazily evaluated.
1293    ///
1294    /// [`Ok(v)`]: Ok
1295    /// [`Err(err)`]: Err
1296    /// [`Some(v)`]: Some
1297    /// [`ok_or_else`]: Option::ok_or_else
1298    ///
1299    /// # Examples
1300    ///
1301    /// ```
1302    /// let x = Some("foo");
1303    /// assert_eq!(x.ok_or(0), Ok("foo"));
1304    ///
1305    /// let x: Option<&str> = None;
1306    /// assert_eq!(x.ok_or(0), Err(0));
1307    /// ```
1308    #[inline]
1309    #[stable(feature = "rust1", since = "1.0.0")]
1310    pub fn ok_or<E>(self, err: E) -> Result<T, E> {
1311        match self {
1312            Some(v) => Ok(v),
1313            None => Err(err),
1314        }
1315    }
1316
1317    /// Transforms the `Option<T>` into a [`Result<T, E>`], mapping [`Some(v)`] to
1318    /// [`Ok(v)`] and [`None`] to [`Err(err())`].
1319    ///
1320    /// [`Ok(v)`]: Ok
1321    /// [`Err(err())`]: Err
1322    /// [`Some(v)`]: Some
1323    ///
1324    /// # Examples
1325    ///
1326    /// ```
1327    /// let x = Some("foo");
1328    /// assert_eq!(x.ok_or_else(|| 0), Ok("foo"));
1329    ///
1330    /// let x: Option<&str> = None;
1331    /// assert_eq!(x.ok_or_else(|| 0), Err(0));
1332    /// ```
1333    #[inline]
1334    #[stable(feature = "rust1", since = "1.0.0")]
1335    pub fn ok_or_else<E, F>(self, err: F) -> Result<T, E>
1336    where
1337        F: FnOnce() -> E,
1338    {
1339        match self {
1340            Some(v) => Ok(v),
1341            None => Err(err()),
1342        }
1343    }
1344
1345    /// Converts from `Option<T>` (or `&Option<T>`) to `Option<&T::Target>`.
1346    ///
1347    /// Leaves the original Option in-place, creating a new one with a reference
1348    /// to the original one, additionally coercing the contents via [`Deref`].
1349    ///
1350    /// # Examples
1351    ///
1352    /// ```
1353    /// let x: Option<String> = Some("hey".to_owned());
1354    /// assert_eq!(x.as_deref(), Some("hey"));
1355    ///
1356    /// let x: Option<String> = None;
1357    /// assert_eq!(x.as_deref(), None);
1358    /// ```
1359    #[inline]
1360    #[stable(feature = "option_deref", since = "1.40.0")]
1361    pub fn as_deref(&self) -> Option<&T::Target>
1362    where
1363        T: Deref,
1364    {
1365        self.as_ref().map(|t| t.deref())
1366    }
1367
1368    /// Converts from `Option<T>` (or `&mut Option<T>`) to `Option<&mut T::Target>`.
1369    ///
1370    /// Leaves the original `Option` in-place, creating a new one containing a mutable reference to
1371    /// the inner type's [`Deref::Target`] type.
1372    ///
1373    /// # Examples
1374    ///
1375    /// ```
1376    /// let mut x: Option<String> = Some("hey".to_owned());
1377    /// assert_eq!(x.as_deref_mut().map(|x| {
1378    ///     x.make_ascii_uppercase();
1379    ///     x
1380    /// }), Some("HEY".to_owned().as_mut_str()));
1381    /// ```
1382    #[inline]
1383    #[stable(feature = "option_deref", since = "1.40.0")]
1384    pub fn as_deref_mut(&mut self) -> Option<&mut T::Target>
1385    where
1386        T: DerefMut,
1387    {
1388        self.as_mut().map(|t| t.deref_mut())
1389    }
1390
1391    /////////////////////////////////////////////////////////////////////////
1392    // Iterator constructors
1393    /////////////////////////////////////////////////////////////////////////
1394
1395    /// Returns an iterator over the possibly contained value.
1396    ///
1397    /// # Examples
1398    ///
1399    /// ```
1400    /// let x = Some(4);
1401    /// assert_eq!(x.iter().next(), Some(&4));
1402    ///
1403    /// let x: Option<u32> = None;
1404    /// assert_eq!(x.iter().next(), None);
1405    /// ```
1406    #[inline]
1407    #[stable(feature = "rust1", since = "1.0.0")]
1408    pub fn iter(&self) -> Iter<'_, T> {
1409        Iter { inner: Item { opt: self.as_ref() } }
1410    }
1411
1412    /// Returns a mutable iterator over the possibly contained value.
1413    ///
1414    /// # Examples
1415    ///
1416    /// ```
1417    /// let mut x = Some(4);
1418    /// match x.iter_mut().next() {
1419    ///     Some(v) => *v = 42,
1420    ///     None => {},
1421    /// }
1422    /// assert_eq!(x, Some(42));
1423    ///
1424    /// let mut x: Option<u32> = None;
1425    /// assert_eq!(x.iter_mut().next(), None);
1426    /// ```
1427    #[inline]
1428    #[stable(feature = "rust1", since = "1.0.0")]
1429    pub fn iter_mut(&mut self) -> IterMut<'_, T> {
1430        IterMut { inner: Item { opt: self.as_mut() } }
1431    }
1432
1433    /////////////////////////////////////////////////////////////////////////
1434    // Boolean operations on the values, eager and lazy
1435    /////////////////////////////////////////////////////////////////////////
1436
1437    /// Returns [`None`] if the option is [`None`], otherwise returns `optb`.
1438    ///
1439    /// Arguments passed to `and` are eagerly evaluated; if you are passing the
1440    /// result of a function call, it is recommended to use [`and_then`], which is
1441    /// lazily evaluated.
1442    ///
1443    /// [`and_then`]: Option::and_then
1444    ///
1445    /// # Examples
1446    ///
1447    /// ```
1448    /// let x = Some(2);
1449    /// let y: Option<&str> = None;
1450    /// assert_eq!(x.and(y), None);
1451    ///
1452    /// let x: Option<u32> = None;
1453    /// let y = Some("foo");
1454    /// assert_eq!(x.and(y), None);
1455    ///
1456    /// let x = Some(2);
1457    /// let y = Some("foo");
1458    /// assert_eq!(x.and(y), Some("foo"));
1459    ///
1460    /// let x: Option<u32> = None;
1461    /// let y: Option<&str> = None;
1462    /// assert_eq!(x.and(y), None);
1463    /// ```
1464    #[inline]
1465    #[stable(feature = "rust1", since = "1.0.0")]
1466    pub fn and<U>(self, optb: Option<U>) -> Option<U> {
1467        match self {
1468            Some(_) => optb,
1469            None => None,
1470        }
1471    }
1472
1473    /// Returns [`None`] if the option is [`None`], otherwise calls `f` with the
1474    /// wrapped value and returns the result.
1475    ///
1476    /// Some languages call this operation flatmap.
1477    ///
1478    /// # Examples
1479    ///
1480    /// ```
1481    /// fn sq_then_to_string(x: u32) -> Option<String> {
1482    ///     x.checked_mul(x).map(|sq| sq.to_string())
1483    /// }
1484    ///
1485    /// assert_eq!(Some(2).and_then(sq_then_to_string), Some(4.to_string()));
1486    /// assert_eq!(Some(1_000_000).and_then(sq_then_to_string), None); // overflowed!
1487    /// assert_eq!(None.and_then(sq_then_to_string), None);
1488    /// ```
1489    ///
1490    /// Often used to chain fallible operations that may return [`None`].
1491    ///
1492    /// ```
1493    /// let arr_2d = [["A0", "A1"], ["B0", "B1"]];
1494    ///
1495    /// let item_0_1 = arr_2d.get(0).and_then(|row| row.get(1));
1496    /// assert_eq!(item_0_1, Some(&"A1"));
1497    ///
1498    /// let item_2_0 = arr_2d.get(2).and_then(|row| row.get(0));
1499    /// assert_eq!(item_2_0, None);
1500    /// ```
1501    #[doc(alias = "flatmap")]
1502    #[inline]
1503    #[stable(feature = "rust1", since = "1.0.0")]
1504    #[rustc_confusables("flat_map", "flatmap")]
1505    pub fn and_then<U, F>(self, f: F) -> Option<U>
1506    where
1507        F: FnOnce(T) -> Option<U>,
1508    {
1509        match self {
1510            Some(x) => f(x),
1511            None => None,
1512        }
1513    }
1514
1515    /// Returns [`None`] if the option is [`None`], otherwise calls `predicate`
1516    /// with the wrapped value and returns:
1517    ///
1518    /// - [`Some(t)`] if `predicate` returns `true` (where `t` is the wrapped
1519    ///   value), and
1520    /// - [`None`] if `predicate` returns `false`.
1521    ///
1522    /// This function works similar to [`Iterator::filter()`]. You can imagine
1523    /// the `Option<T>` being an iterator over one or zero elements. `filter()`
1524    /// lets you decide which elements to keep.
1525    ///
1526    /// # Examples
1527    ///
1528    /// ```rust
1529    /// fn is_even(n: &i32) -> bool {
1530    ///     n % 2 == 0
1531    /// }
1532    ///
1533    /// assert_eq!(None.filter(is_even), None);
1534    /// assert_eq!(Some(3).filter(is_even), None);
1535    /// assert_eq!(Some(4).filter(is_even), Some(4));
1536    /// ```
1537    ///
1538    /// [`Some(t)`]: Some
1539    #[inline]
1540    #[stable(feature = "option_filter", since = "1.27.0")]
1541    pub fn filter<P>(self, predicate: P) -> Self
1542    where
1543        P: FnOnce(&T) -> bool,
1544    {
1545        if let Some(x) = self {
1546            if predicate(&x) {
1547                return Some(x);
1548            }
1549        }
1550        None
1551    }
1552
1553    /// Returns the option if it contains a value, otherwise returns `optb`.
1554    ///
1555    /// Arguments passed to `or` are eagerly evaluated; if you are passing the
1556    /// result of a function call, it is recommended to use [`or_else`], which is
1557    /// lazily evaluated.
1558    ///
1559    /// [`or_else`]: Option::or_else
1560    ///
1561    /// # Examples
1562    ///
1563    /// ```
1564    /// let x = Some(2);
1565    /// let y = None;
1566    /// assert_eq!(x.or(y), Some(2));
1567    ///
1568    /// let x = None;
1569    /// let y = Some(100);
1570    /// assert_eq!(x.or(y), Some(100));
1571    ///
1572    /// let x = Some(2);
1573    /// let y = Some(100);
1574    /// assert_eq!(x.or(y), Some(2));
1575    ///
1576    /// let x: Option<u32> = None;
1577    /// let y = None;
1578    /// assert_eq!(x.or(y), None);
1579    /// ```
1580    #[inline]
1581    #[stable(feature = "rust1", since = "1.0.0")]
1582    pub fn or(self, optb: Option<T>) -> Option<T> {
1583        match self {
1584            x @ Some(_) => x,
1585            None => optb,
1586        }
1587    }
1588
1589    /// Returns the option if it contains a value, otherwise calls `f` and
1590    /// returns the result.
1591    ///
1592    /// # Examples
1593    ///
1594    /// ```
1595    /// fn nobody() -> Option<&'static str> { None }
1596    /// fn vikings() -> Option<&'static str> { Some("vikings") }
1597    ///
1598    /// assert_eq!(Some("barbarians").or_else(vikings), Some("barbarians"));
1599    /// assert_eq!(None.or_else(vikings), Some("vikings"));
1600    /// assert_eq!(None.or_else(nobody), None);
1601    /// ```
1602    #[inline]
1603    #[stable(feature = "rust1", since = "1.0.0")]
1604    pub fn or_else<F>(self, f: F) -> Option<T>
1605    where
1606        F: FnOnce() -> Option<T>,
1607    {
1608        match self {
1609            x @ Some(_) => x,
1610            None => f(),
1611        }
1612    }
1613
1614    /// Returns [`Some`] if exactly one of `self`, `optb` is [`Some`], otherwise returns [`None`].
1615    ///
1616    /// # Examples
1617    ///
1618    /// ```
1619    /// let x = Some(2);
1620    /// let y: Option<u32> = None;
1621    /// assert_eq!(x.xor(y), Some(2));
1622    ///
1623    /// let x: Option<u32> = None;
1624    /// let y = Some(2);
1625    /// assert_eq!(x.xor(y), Some(2));
1626    ///
1627    /// let x = Some(2);
1628    /// let y = Some(2);
1629    /// assert_eq!(x.xor(y), None);
1630    ///
1631    /// let x: Option<u32> = None;
1632    /// let y: Option<u32> = None;
1633    /// assert_eq!(x.xor(y), None);
1634    /// ```
1635    #[inline]
1636    #[stable(feature = "option_xor", since = "1.37.0")]
1637    pub fn xor(self, optb: Option<T>) -> Option<T> {
1638        match (self, optb) {
1639            (a @ Some(_), None) => a,
1640            (None, b @ Some(_)) => b,
1641            _ => None,
1642        }
1643    }
1644
1645    /////////////////////////////////////////////////////////////////////////
1646    // Entry-like operations to insert a value and return a reference
1647    /////////////////////////////////////////////////////////////////////////
1648
1649    /// Inserts `value` into the option, then returns a mutable reference to it.
1650    ///
1651    /// If the option already contains a value, the old value is dropped.
1652    ///
1653    /// See also [`Option::get_or_insert`], which doesn't update the value if
1654    /// the option already contains [`Some`].
1655    ///
1656    /// # Example
1657    ///
1658    /// ```
1659    /// let mut opt = None;
1660    /// let val = opt.insert(1);
1661    /// assert_eq!(*val, 1);
1662    /// assert_eq!(opt.unwrap(), 1);
1663    /// let val = opt.insert(2);
1664    /// assert_eq!(*val, 2);
1665    /// *val = 3;
1666    /// assert_eq!(opt.unwrap(), 3);
1667    /// ```
1668    #[must_use = "if you intended to set a value, consider assignment instead"]
1669    #[inline]
1670    #[stable(feature = "option_insert", since = "1.53.0")]
1671    pub fn insert(&mut self, value: T) -> &mut T {
1672        *self = Some(value);
1673
1674        // SAFETY: the code above just filled the option
1675        unsafe { self.as_mut().unwrap_unchecked() }
1676    }
1677
1678    /// Inserts `value` into the option if it is [`None`], then
1679    /// returns a mutable reference to the contained value.
1680    ///
1681    /// See also [`Option::insert`], which updates the value even if
1682    /// the option already contains [`Some`].
1683    ///
1684    /// # Examples
1685    ///
1686    /// ```
1687    /// let mut x = None;
1688    ///
1689    /// {
1690    ///     let y: &mut u32 = x.get_or_insert(5);
1691    ///     assert_eq!(y, &5);
1692    ///
1693    ///     *y = 7;
1694    /// }
1695    ///
1696    /// assert_eq!(x, Some(7));
1697    /// ```
1698    #[inline]
1699    #[stable(feature = "option_entry", since = "1.20.0")]
1700    pub fn get_or_insert(&mut self, value: T) -> &mut T {
1701        self.get_or_insert_with(|| value)
1702    }
1703
1704    /// Inserts the default value into the option if it is [`None`], then
1705    /// returns a mutable reference to the contained value.
1706    ///
1707    /// # Examples
1708    ///
1709    /// ```
1710    /// let mut x = None;
1711    ///
1712    /// {
1713    ///     let y: &mut u32 = x.get_or_insert_default();
1714    ///     assert_eq!(y, &0);
1715    ///
1716    ///     *y = 7;
1717    /// }
1718    ///
1719    /// assert_eq!(x, Some(7));
1720    /// ```
1721    #[inline]
1722    #[stable(feature = "option_get_or_insert_default", since = "1.83.0")]
1723    pub fn get_or_insert_default(&mut self) -> &mut T
1724    where
1725        T: Default,
1726    {
1727        self.get_or_insert_with(T::default)
1728    }
1729
1730    /// Inserts a value computed from `f` into the option if it is [`None`],
1731    /// then returns a mutable reference to the contained value.
1732    ///
1733    /// # Examples
1734    ///
1735    /// ```
1736    /// let mut x = None;
1737    ///
1738    /// {
1739    ///     let y: &mut u32 = x.get_or_insert_with(|| 5);
1740    ///     assert_eq!(y, &5);
1741    ///
1742    ///     *y = 7;
1743    /// }
1744    ///
1745    /// assert_eq!(x, Some(7));
1746    /// ```
1747    #[inline]
1748    #[stable(feature = "option_entry", since = "1.20.0")]
1749    pub fn get_or_insert_with<F>(&mut self, f: F) -> &mut T
1750    where
1751        F: FnOnce() -> T,
1752    {
1753        if let None = self {
1754            *self = Some(f());
1755        }
1756
1757        // SAFETY: a `None` variant for `self` would have been replaced by a `Some`
1758        // variant in the code above.
1759        unsafe { self.as_mut().unwrap_unchecked() }
1760    }
1761
1762    /////////////////////////////////////////////////////////////////////////
1763    // Misc
1764    /////////////////////////////////////////////////////////////////////////
1765
1766    /// Takes the value out of the option, leaving a [`None`] in its place.
1767    ///
1768    /// # Examples
1769    ///
1770    /// ```
1771    /// let mut x = Some(2);
1772    /// let y = x.take();
1773    /// assert_eq!(x, None);
1774    /// assert_eq!(y, Some(2));
1775    ///
1776    /// let mut x: Option<u32> = None;
1777    /// let y = x.take();
1778    /// assert_eq!(x, None);
1779    /// assert_eq!(y, None);
1780    /// ```
1781    #[inline]
1782    #[stable(feature = "rust1", since = "1.0.0")]
1783    #[rustc_const_stable(feature = "const_option", since = "1.83.0")]
1784    pub const fn take(&mut self) -> Option<T> {
1785        // FIXME(const-hack) replace `mem::replace` by `mem::take` when the latter is const ready
1786        mem::replace(self, None)
1787    }
1788
1789    /// Takes the value out of the option, but only if the predicate evaluates to
1790    /// `true` on a mutable reference to the value.
1791    ///
1792    /// In other words, replaces `self` with `None` if the predicate returns `true`.
1793    /// This method operates similar to [`Option::take`] but conditional.
1794    ///
1795    /// # Examples
1796    ///
1797    /// ```
1798    /// let mut x = Some(42);
1799    ///
1800    /// let prev = x.take_if(|v| if *v == 42 {
1801    ///     *v += 1;
1802    ///     false
1803    /// } else {
1804    ///     false
1805    /// });
1806    /// assert_eq!(x, Some(43));
1807    /// assert_eq!(prev, None);
1808    ///
1809    /// let prev = x.take_if(|v| *v == 43);
1810    /// assert_eq!(x, None);
1811    /// assert_eq!(prev, Some(43));
1812    /// ```
1813    #[inline]
1814    #[stable(feature = "option_take_if", since = "1.80.0")]
1815    pub fn take_if<P>(&mut self, predicate: P) -> Option<T>
1816    where
1817        P: FnOnce(&mut T) -> bool,
1818    {
1819        if self.as_mut().map_or(false, predicate) { self.take() } else { None }
1820    }
1821
1822    /// Replaces the actual value in the option by the value given in parameter,
1823    /// returning the old value if present,
1824    /// leaving a [`Some`] in its place without deinitializing either one.
1825    ///
1826    /// # Examples
1827    ///
1828    /// ```
1829    /// let mut x = Some(2);
1830    /// let old = x.replace(5);
1831    /// assert_eq!(x, Some(5));
1832    /// assert_eq!(old, Some(2));
1833    ///
1834    /// let mut x = None;
1835    /// let old = x.replace(3);
1836    /// assert_eq!(x, Some(3));
1837    /// assert_eq!(old, None);
1838    /// ```
1839    #[inline]
1840    #[stable(feature = "option_replace", since = "1.31.0")]
1841    #[rustc_const_stable(feature = "const_option", since = "1.83.0")]
1842    pub const fn replace(&mut self, value: T) -> Option<T> {
1843        mem::replace(self, Some(value))
1844    }
1845
1846    /// Zips `self` with another `Option`.
1847    ///
1848    /// If `self` is `Some(s)` and `other` is `Some(o)`, this method returns `Some((s, o))`.
1849    /// Otherwise, `None` is returned.
1850    ///
1851    /// # Examples
1852    ///
1853    /// ```
1854    /// let x = Some(1);
1855    /// let y = Some("hi");
1856    /// let z = None::<u8>;
1857    ///
1858    /// assert_eq!(x.zip(y), Some((1, "hi")));
1859    /// assert_eq!(x.zip(z), None);
1860    /// ```
1861    #[stable(feature = "option_zip_option", since = "1.46.0")]
1862    pub fn zip<U>(self, other: Option<U>) -> Option<(T, U)> {
1863        match (self, other) {
1864            (Some(a), Some(b)) => Some((a, b)),
1865            _ => None,
1866        }
1867    }
1868
1869    /// Zips `self` and another `Option` with function `f`.
1870    ///
1871    /// If `self` is `Some(s)` and `other` is `Some(o)`, this method returns `Some(f(s, o))`.
1872    /// Otherwise, `None` is returned.
1873    ///
1874    /// # Examples
1875    ///
1876    /// ```
1877    /// #![feature(option_zip)]
1878    ///
1879    /// #[derive(Debug, PartialEq)]
1880    /// struct Point {
1881    ///     x: f64,
1882    ///     y: f64,
1883    /// }
1884    ///
1885    /// impl Point {
1886    ///     fn new(x: f64, y: f64) -> Self {
1887    ///         Self { x, y }
1888    ///     }
1889    /// }
1890    ///
1891    /// let x = Some(17.5);
1892    /// let y = Some(42.7);
1893    ///
1894    /// assert_eq!(x.zip_with(y, Point::new), Some(Point { x: 17.5, y: 42.7 }));
1895    /// assert_eq!(x.zip_with(None, Point::new), None);
1896    /// ```
1897    #[unstable(feature = "option_zip", issue = "70086")]
1898    pub fn zip_with<U, F, R>(self, other: Option<U>, f: F) -> Option<R>
1899    where
1900        F: FnOnce(T, U) -> R,
1901    {
1902        match (self, other) {
1903            (Some(a), Some(b)) => Some(f(a, b)),
1904            _ => None,
1905        }
1906    }
1907}
1908
1909impl<T, U> Option<(T, U)> {
1910    /// Unzips an option containing a tuple of two options.
1911    ///
1912    /// If `self` is `Some((a, b))` this method returns `(Some(a), Some(b))`.
1913    /// Otherwise, `(None, None)` is returned.
1914    ///
1915    /// # Examples
1916    ///
1917    /// ```
1918    /// let x = Some((1, "hi"));
1919    /// let y = None::<(u8, u32)>;
1920    ///
1921    /// assert_eq!(x.unzip(), (Some(1), Some("hi")));
1922    /// assert_eq!(y.unzip(), (None, None));
1923    /// ```
1924    #[inline]
1925    #[stable(feature = "unzip_option", since = "1.66.0")]
1926    pub fn unzip(self) -> (Option<T>, Option<U>) {
1927        match self {
1928            Some((a, b)) => (Some(a), Some(b)),
1929            None => (None, None),
1930        }
1931    }
1932}
1933
1934impl<T> Option<&T> {
1935    /// Maps an `Option<&T>` to an `Option<T>` by copying the contents of the
1936    /// option.
1937    ///
1938    /// # Examples
1939    ///
1940    /// ```
1941    /// let x = 12;
1942    /// let opt_x = Some(&x);
1943    /// assert_eq!(opt_x, Some(&12));
1944    /// let copied = opt_x.copied();
1945    /// assert_eq!(copied, Some(12));
1946    /// ```
1947    #[must_use = "`self` will be dropped if the result is not used"]
1948    #[stable(feature = "copied", since = "1.35.0")]
1949    #[rustc_const_stable(feature = "const_option", since = "1.83.0")]
1950    pub const fn copied(self) -> Option<T>
1951    where
1952        T: Copy,
1953    {
1954        // FIXME(const-hack): this implementation, which sidesteps using `Option::map` since it's not const
1955        // ready yet, should be reverted when possible to avoid code repetition
1956        match self {
1957            Some(&v) => Some(v),
1958            None => None,
1959        }
1960    }
1961
1962    /// Maps an `Option<&T>` to an `Option<T>` by cloning the contents of the
1963    /// option.
1964    ///
1965    /// # Examples
1966    ///
1967    /// ```
1968    /// let x = 12;
1969    /// let opt_x = Some(&x);
1970    /// assert_eq!(opt_x, Some(&12));
1971    /// let cloned = opt_x.cloned();
1972    /// assert_eq!(cloned, Some(12));
1973    /// ```
1974    #[must_use = "`self` will be dropped if the result is not used"]
1975    #[stable(feature = "rust1", since = "1.0.0")]
1976    pub fn cloned(self) -> Option<T>
1977    where
1978        T: Clone,
1979    {
1980        match self {
1981            Some(t) => Some(t.clone()),
1982            None => None,
1983        }
1984    }
1985}
1986
1987impl<T> Option<&mut T> {
1988    /// Maps an `Option<&mut T>` to an `Option<T>` by copying the contents of the
1989    /// option.
1990    ///
1991    /// # Examples
1992    ///
1993    /// ```
1994    /// let mut x = 12;
1995    /// let opt_x = Some(&mut x);
1996    /// assert_eq!(opt_x, Some(&mut 12));
1997    /// let copied = opt_x.copied();
1998    /// assert_eq!(copied, Some(12));
1999    /// ```
2000    #[must_use = "`self` will be dropped if the result is not used"]
2001    #[stable(feature = "copied", since = "1.35.0")]
2002    #[rustc_const_stable(feature = "const_option", since = "1.83.0")]
2003    pub const fn copied(self) -> Option<T>
2004    where
2005        T: Copy,
2006    {
2007        match self {
2008            Some(&mut t) => Some(t),
2009            None => None,
2010        }
2011    }
2012
2013    /// Maps an `Option<&mut T>` to an `Option<T>` by cloning the contents of the
2014    /// option.
2015    ///
2016    /// # Examples
2017    ///
2018    /// ```
2019    /// let mut x = 12;
2020    /// let opt_x = Some(&mut x);
2021    /// assert_eq!(opt_x, Some(&mut 12));
2022    /// let cloned = opt_x.cloned();
2023    /// assert_eq!(cloned, Some(12));
2024    /// ```
2025    #[must_use = "`self` will be dropped if the result is not used"]
2026    #[stable(since = "1.26.0", feature = "option_ref_mut_cloned")]
2027    pub fn cloned(self) -> Option<T>
2028    where
2029        T: Clone,
2030    {
2031        match self {
2032            Some(t) => Some(t.clone()),
2033            None => None,
2034        }
2035    }
2036}
2037
2038impl<T, E> Option<Result<T, E>> {
2039    /// Transposes an `Option` of a [`Result`] into a [`Result`] of an `Option`.
2040    ///
2041    /// [`None`] will be mapped to <code>[Ok]\([None])</code>.
2042    /// <code>[Some]\([Ok]\(\_))</code> and <code>[Some]\([Err]\(\_))</code> will be mapped to
2043    /// <code>[Ok]\([Some]\(\_))</code> and <code>[Err]\(\_)</code>.
2044    ///
2045    /// # Examples
2046    ///
2047    /// ```
2048    /// #[derive(Debug, Eq, PartialEq)]
2049    /// struct SomeErr;
2050    ///
2051    /// let x: Result<Option<i32>, SomeErr> = Ok(Some(5));
2052    /// let y: Option<Result<i32, SomeErr>> = Some(Ok(5));
2053    /// assert_eq!(x, y.transpose());
2054    /// ```
2055    #[inline]
2056    #[stable(feature = "transpose_result", since = "1.33.0")]
2057    #[rustc_allow_const_fn_unstable(const_precise_live_drops)]
2058    #[rustc_const_stable(feature = "const_option", since = "1.83.0")]
2059    pub const fn transpose(self) -> Result<Option<T>, E> {
2060        match self {
2061            Some(Ok(x)) => Ok(Some(x)),
2062            Some(Err(e)) => Err(e),
2063            None => Ok(None),
2064        }
2065    }
2066}
2067
2068#[cfg_attr(not(feature = "panic_immediate_abort"), inline(never))]
2069#[cfg_attr(feature = "panic_immediate_abort", inline)]
2070#[cold]
2071#[track_caller]
2072const fn unwrap_failed() -> ! {
2073    panic("called `Option::unwrap()` on a `None` value")
2074}
2075
2076// This is a separate function to reduce the code size of .expect() itself.
2077#[cfg_attr(not(feature = "panic_immediate_abort"), inline(never))]
2078#[cfg_attr(feature = "panic_immediate_abort", inline)]
2079#[cold]
2080#[track_caller]
2081const fn expect_failed(msg: &str) -> ! {
2082    panic_display(&msg)
2083}
2084
2085/////////////////////////////////////////////////////////////////////////////
2086// Trait implementations
2087/////////////////////////////////////////////////////////////////////////////
2088
2089#[stable(feature = "rust1", since = "1.0.0")]
2090impl<T> Clone for Option<T>
2091where
2092    T: Clone,
2093{
2094    #[inline]
2095    fn clone(&self) -> Self {
2096        match self {
2097            Some(x) => Some(x.clone()),
2098            None => None,
2099        }
2100    }
2101
2102    #[inline]
2103    fn clone_from(&mut self, source: &Self) {
2104        match (self, source) {
2105            (Some(to), Some(from)) => to.clone_from(from),
2106            (to, from) => *to = from.clone(),
2107        }
2108    }
2109}
2110
2111#[unstable(feature = "ergonomic_clones", issue = "132290")]
2112impl<T> crate::clone::UseCloned for Option<T> where T: crate::clone::UseCloned {}
2113
2114#[stable(feature = "rust1", since = "1.0.0")]
2115#[rustc_const_unstable(feature = "const_default", issue = "143894")]
2116impl<T> const Default for Option<T> {
2117    /// Returns [`None`][Option::None].
2118    ///
2119    /// # Examples
2120    ///
2121    /// ```
2122    /// let opt: Option<u32> = Option::default();
2123    /// assert!(opt.is_none());
2124    /// ```
2125    #[inline]
2126    fn default() -> Option<T> {
2127        None
2128    }
2129}
2130
2131#[stable(feature = "rust1", since = "1.0.0")]
2132impl<T> IntoIterator for Option<T> {
2133    type Item = T;
2134    type IntoIter = IntoIter<T>;
2135
2136    /// Returns a consuming iterator over the possibly contained value.
2137    ///
2138    /// # Examples
2139    ///
2140    /// ```
2141    /// let x = Some("string");
2142    /// let v: Vec<&str> = x.into_iter().collect();
2143    /// assert_eq!(v, ["string"]);
2144    ///
2145    /// let x = None;
2146    /// let v: Vec<&str> = x.into_iter().collect();
2147    /// assert!(v.is_empty());
2148    /// ```
2149    #[inline]
2150    fn into_iter(self) -> IntoIter<T> {
2151        IntoIter { inner: Item { opt: self } }
2152    }
2153}
2154
2155#[stable(since = "1.4.0", feature = "option_iter")]
2156impl<'a, T> IntoIterator for &'a Option<T> {
2157    type Item = &'a T;
2158    type IntoIter = Iter<'a, T>;
2159
2160    fn into_iter(self) -> Iter<'a, T> {
2161        self.iter()
2162    }
2163}
2164
2165#[stable(since = "1.4.0", feature = "option_iter")]
2166impl<'a, T> IntoIterator for &'a mut Option<T> {
2167    type Item = &'a mut T;
2168    type IntoIter = IterMut<'a, T>;
2169
2170    fn into_iter(self) -> IterMut<'a, T> {
2171        self.iter_mut()
2172    }
2173}
2174
2175#[stable(since = "1.12.0", feature = "option_from")]
2176impl<T> From<T> for Option<T> {
2177    /// Moves `val` into a new [`Some`].
2178    ///
2179    /// # Examples
2180    ///
2181    /// ```
2182    /// let o: Option<u8> = Option::from(67);
2183    ///
2184    /// assert_eq!(Some(67), o);
2185    /// ```
2186    fn from(val: T) -> Option<T> {
2187        Some(val)
2188    }
2189}
2190
2191#[stable(feature = "option_ref_from_ref_option", since = "1.30.0")]
2192impl<'a, T> From<&'a Option<T>> for Option<&'a T> {
2193    /// Converts from `&Option<T>` to `Option<&T>`.
2194    ///
2195    /// # Examples
2196    ///
2197    /// Converts an <code>[Option]<[String]></code> into an <code>[Option]<[usize]></code>, preserving
2198    /// the original. The [`map`] method takes the `self` argument by value, consuming the original,
2199    /// so this technique uses `from` to first take an [`Option`] to a reference
2200    /// to the value inside the original.
2201    ///
2202    /// [`map`]: Option::map
2203    /// [String]: ../../std/string/struct.String.html "String"
2204    ///
2205    /// ```
2206    /// let s: Option<String> = Some(String::from("Hello, Rustaceans!"));
2207    /// let o: Option<usize> = Option::from(&s).map(|ss: &String| ss.len());
2208    ///
2209    /// println!("Can still print s: {s:?}");
2210    ///
2211    /// assert_eq!(o, Some(18));
2212    /// ```
2213    fn from(o: &'a Option<T>) -> Option<&'a T> {
2214        o.as_ref()
2215    }
2216}
2217
2218#[stable(feature = "option_ref_from_ref_option", since = "1.30.0")]
2219impl<'a, T> From<&'a mut Option<T>> for Option<&'a mut T> {
2220    /// Converts from `&mut Option<T>` to `Option<&mut T>`
2221    ///
2222    /// # Examples
2223    ///
2224    /// ```
2225    /// let mut s = Some(String::from("Hello"));
2226    /// let o: Option<&mut String> = Option::from(&mut s);
2227    ///
2228    /// match o {
2229    ///     Some(t) => *t = String::from("Hello, Rustaceans!"),
2230    ///     None => (),
2231    /// }
2232    ///
2233    /// assert_eq!(s, Some(String::from("Hello, Rustaceans!")));
2234    /// ```
2235    fn from(o: &'a mut Option<T>) -> Option<&'a mut T> {
2236        o.as_mut()
2237    }
2238}
2239
2240// Ideally, LLVM should be able to optimize our derive code to this.
2241// Once https://github.com/llvm/llvm-project/issues/52622 is fixed, we can
2242// go back to deriving `PartialEq`.
2243#[stable(feature = "rust1", since = "1.0.0")]
2244impl<T> crate::marker::StructuralPartialEq for Option<T> {}
2245#[stable(feature = "rust1", since = "1.0.0")]
2246impl<T: PartialEq> PartialEq for Option<T> {
2247    #[inline]
2248    fn eq(&self, other: &Self) -> bool {
2249        // Spelling out the cases explicitly optimizes better than
2250        // `_ => false`
2251        match (self, other) {
2252            (Some(l), Some(r)) => *l == *r,
2253            (Some(_), None) => false,
2254            (None, Some(_)) => false,
2255            (None, None) => true,
2256        }
2257    }
2258}
2259
2260// Manually implementing here somewhat improves codegen for
2261// https://github.com/rust-lang/rust/issues/49892, although still
2262// not optimal.
2263#[stable(feature = "rust1", since = "1.0.0")]
2264impl<T: PartialOrd> PartialOrd for Option<T> {
2265    #[inline]
2266    fn partial_cmp(&self, other: &Self) -> Option<cmp::Ordering> {
2267        match (self, other) {
2268            (Some(l), Some(r)) => l.partial_cmp(r),
2269            (Some(_), None) => Some(cmp::Ordering::Greater),
2270            (None, Some(_)) => Some(cmp::Ordering::Less),
2271            (None, None) => Some(cmp::Ordering::Equal),
2272        }
2273    }
2274}
2275
2276#[stable(feature = "rust1", since = "1.0.0")]
2277impl<T: Ord> Ord for Option<T> {
2278    #[inline]
2279    fn cmp(&self, other: &Self) -> cmp::Ordering {
2280        match (self, other) {
2281            (Some(l), Some(r)) => l.cmp(r),
2282            (Some(_), None) => cmp::Ordering::Greater,
2283            (None, Some(_)) => cmp::Ordering::Less,
2284            (None, None) => cmp::Ordering::Equal,
2285        }
2286    }
2287}
2288
2289/////////////////////////////////////////////////////////////////////////////
2290// The Option Iterators
2291/////////////////////////////////////////////////////////////////////////////
2292
2293#[derive(Clone, Debug)]
2294struct Item<A> {
2295    opt: Option<A>,
2296}
2297
2298impl<A> Iterator for Item<A> {
2299    type Item = A;
2300
2301    #[inline]
2302    fn next(&mut self) -> Option<A> {
2303        self.opt.take()
2304    }
2305
2306    #[inline]
2307    fn size_hint(&self) -> (usize, Option<usize>) {
2308        let len = self.len();
2309        (len, Some(len))
2310    }
2311}
2312
2313impl<A> DoubleEndedIterator for Item<A> {
2314    #[inline]
2315    fn next_back(&mut self) -> Option<A> {
2316        self.opt.take()
2317    }
2318}
2319
2320impl<A> ExactSizeIterator for Item<A> {
2321    #[inline]
2322    fn len(&self) -> usize {
2323        self.opt.len()
2324    }
2325}
2326impl<A> FusedIterator for Item<A> {}
2327unsafe impl<A> TrustedLen for Item<A> {}
2328
2329/// An iterator over a reference to the [`Some`] variant of an [`Option`].
2330///
2331/// The iterator yields one value if the [`Option`] is a [`Some`], otherwise none.
2332///
2333/// This `struct` is created by the [`Option::iter`] function.
2334#[stable(feature = "rust1", since = "1.0.0")]
2335#[derive(Debug)]
2336pub struct Iter<'a, A: 'a> {
2337    inner: Item<&'a A>,
2338}
2339
2340#[stable(feature = "rust1", since = "1.0.0")]
2341impl<'a, A> Iterator for Iter<'a, A> {
2342    type Item = &'a A;
2343
2344    #[inline]
2345    fn next(&mut self) -> Option<&'a A> {
2346        self.inner.next()
2347    }
2348    #[inline]
2349    fn size_hint(&self) -> (usize, Option<usize>) {
2350        self.inner.size_hint()
2351    }
2352}
2353
2354#[stable(feature = "rust1", since = "1.0.0")]
2355impl<'a, A> DoubleEndedIterator for Iter<'a, A> {
2356    #[inline]
2357    fn next_back(&mut self) -> Option<&'a A> {
2358        self.inner.next_back()
2359    }
2360}
2361
2362#[stable(feature = "rust1", since = "1.0.0")]
2363impl<A> ExactSizeIterator for Iter<'_, A> {}
2364
2365#[stable(feature = "fused", since = "1.26.0")]
2366impl<A> FusedIterator for Iter<'_, A> {}
2367
2368#[unstable(feature = "trusted_len", issue = "37572")]
2369unsafe impl<A> TrustedLen for Iter<'_, A> {}
2370
2371#[stable(feature = "rust1", since = "1.0.0")]
2372impl<A> Clone for Iter<'_, A> {
2373    #[inline]
2374    fn clone(&self) -> Self {
2375        Iter { inner: self.inner.clone() }
2376    }
2377}
2378
2379/// An iterator over a mutable reference to the [`Some`] variant of an [`Option`].
2380///
2381/// The iterator yields one value if the [`Option`] is a [`Some`], otherwise none.
2382///
2383/// This `struct` is created by the [`Option::iter_mut`] function.
2384#[stable(feature = "rust1", since = "1.0.0")]
2385#[derive(Debug)]
2386pub struct IterMut<'a, A: 'a> {
2387    inner: Item<&'a mut A>,
2388}
2389
2390#[stable(feature = "rust1", since = "1.0.0")]
2391impl<'a, A> Iterator for IterMut<'a, A> {
2392    type Item = &'a mut A;
2393
2394    #[inline]
2395    fn next(&mut self) -> Option<&'a mut A> {
2396        self.inner.next()
2397    }
2398    #[inline]
2399    fn size_hint(&self) -> (usize, Option<usize>) {
2400        self.inner.size_hint()
2401    }
2402}
2403
2404#[stable(feature = "rust1", since = "1.0.0")]
2405impl<'a, A> DoubleEndedIterator for IterMut<'a, A> {
2406    #[inline]
2407    fn next_back(&mut self) -> Option<&'a mut A> {
2408        self.inner.next_back()
2409    }
2410}
2411
2412#[stable(feature = "rust1", since = "1.0.0")]
2413impl<A> ExactSizeIterator for IterMut<'_, A> {}
2414
2415#[stable(feature = "fused", since = "1.26.0")]
2416impl<A> FusedIterator for IterMut<'_, A> {}
2417#[unstable(feature = "trusted_len", issue = "37572")]
2418unsafe impl<A> TrustedLen for IterMut<'_, A> {}
2419
2420/// An iterator over the value in [`Some`] variant of an [`Option`].
2421///
2422/// The iterator yields one value if the [`Option`] is a [`Some`], otherwise none.
2423///
2424/// This `struct` is created by the [`Option::into_iter`] function.
2425#[derive(Clone, Debug)]
2426#[stable(feature = "rust1", since = "1.0.0")]
2427pub struct IntoIter<A> {
2428    inner: Item<A>,
2429}
2430
2431#[stable(feature = "rust1", since = "1.0.0")]
2432impl<A> Iterator for IntoIter<A> {
2433    type Item = A;
2434
2435    #[inline]
2436    fn next(&mut self) -> Option<A> {
2437        self.inner.next()
2438    }
2439    #[inline]
2440    fn size_hint(&self) -> (usize, Option<usize>) {
2441        self.inner.size_hint()
2442    }
2443}
2444
2445#[stable(feature = "rust1", since = "1.0.0")]
2446impl<A> DoubleEndedIterator for IntoIter<A> {
2447    #[inline]
2448    fn next_back(&mut self) -> Option<A> {
2449        self.inner.next_back()
2450    }
2451}
2452
2453#[stable(feature = "rust1", since = "1.0.0")]
2454impl<A> ExactSizeIterator for IntoIter<A> {}
2455
2456#[stable(feature = "fused", since = "1.26.0")]
2457impl<A> FusedIterator for IntoIter<A> {}
2458
2459#[unstable(feature = "trusted_len", issue = "37572")]
2460unsafe impl<A> TrustedLen for IntoIter<A> {}
2461
2462/////////////////////////////////////////////////////////////////////////////
2463// FromIterator
2464/////////////////////////////////////////////////////////////////////////////
2465
2466#[stable(feature = "rust1", since = "1.0.0")]
2467impl<A, V: FromIterator<A>> FromIterator<Option<A>> for Option<V> {
2468    /// Takes each element in the [`Iterator`]: if it is [`None`][Option::None],
2469    /// no further elements are taken, and the [`None`][Option::None] is
2470    /// returned. Should no [`None`][Option::None] occur, a container of type
2471    /// `V` containing the values of each [`Option`] is returned.
2472    ///
2473    /// # Examples
2474    ///
2475    /// Here is an example which increments every integer in a vector.
2476    /// We use the checked variant of `add` that returns `None` when the
2477    /// calculation would result in an overflow.
2478    ///
2479    /// ```
2480    /// let items = vec![0_u16, 1, 2];
2481    ///
2482    /// let res: Option<Vec<u16>> = items
2483    ///     .iter()
2484    ///     .map(|x| x.checked_add(1))
2485    ///     .collect();
2486    ///
2487    /// assert_eq!(res, Some(vec![1, 2, 3]));
2488    /// ```
2489    ///
2490    /// As you can see, this will return the expected, valid items.
2491    ///
2492    /// Here is another example that tries to subtract one from another list
2493    /// of integers, this time checking for underflow:
2494    ///
2495    /// ```
2496    /// let items = vec![2_u16, 1, 0];
2497    ///
2498    /// let res: Option<Vec<u16>> = items
2499    ///     .iter()
2500    ///     .map(|x| x.checked_sub(1))
2501    ///     .collect();
2502    ///
2503    /// assert_eq!(res, None);
2504    /// ```
2505    ///
2506    /// Since the last element is zero, it would underflow. Thus, the resulting
2507    /// value is `None`.
2508    ///
2509    /// Here is a variation on the previous example, showing that no
2510    /// further elements are taken from `iter` after the first `None`.
2511    ///
2512    /// ```
2513    /// let items = vec![3_u16, 2, 1, 10];
2514    ///
2515    /// let mut shared = 0;
2516    ///
2517    /// let res: Option<Vec<u16>> = items
2518    ///     .iter()
2519    ///     .map(|x| { shared += x; x.checked_sub(2) })
2520    ///     .collect();
2521    ///
2522    /// assert_eq!(res, None);
2523    /// assert_eq!(shared, 6);
2524    /// ```
2525    ///
2526    /// Since the third element caused an underflow, no further elements were taken,
2527    /// so the final value of `shared` is 6 (= `3 + 2 + 1`), not 16.
2528    #[inline]
2529    fn from_iter<I: IntoIterator<Item = Option<A>>>(iter: I) -> Option<V> {
2530        // FIXME(#11084): This could be replaced with Iterator::scan when this
2531        // performance bug is closed.
2532
2533        iter::try_process(iter.into_iter(), |i| i.collect())
2534    }
2535}
2536
2537#[unstable(feature = "try_trait_v2", issue = "84277", old_name = "try_trait")]
2538impl<T> ops::Try for Option<T> {
2539    type Output = T;
2540    type Residual = Option<convert::Infallible>;
2541
2542    #[inline]
2543    fn from_output(output: Self::Output) -> Self {
2544        Some(output)
2545    }
2546
2547    #[inline]
2548    fn branch(self) -> ControlFlow<Self::Residual, Self::Output> {
2549        match self {
2550            Some(v) => ControlFlow::Continue(v),
2551            None => ControlFlow::Break(None),
2552        }
2553    }
2554}
2555
2556#[unstable(feature = "try_trait_v2", issue = "84277", old_name = "try_trait")]
2557// Note: manually specifying the residual type instead of using the default to work around
2558// https://github.com/rust-lang/rust/issues/99940
2559impl<T> ops::FromResidual<Option<convert::Infallible>> for Option<T> {
2560    #[inline]
2561    fn from_residual(residual: Option<convert::Infallible>) -> Self {
2562        match residual {
2563            None => None,
2564        }
2565    }
2566}
2567
2568#[diagnostic::do_not_recommend]
2569#[unstable(feature = "try_trait_v2_yeet", issue = "96374")]
2570impl<T> ops::FromResidual<ops::Yeet<()>> for Option<T> {
2571    #[inline]
2572    fn from_residual(ops::Yeet(()): ops::Yeet<()>) -> Self {
2573        None
2574    }
2575}
2576
2577#[unstable(feature = "try_trait_v2_residual", issue = "91285")]
2578impl<T> ops::Residual<T> for Option<convert::Infallible> {
2579    type TryType = Option<T>;
2580}
2581
2582impl<T> Option<Option<T>> {
2583    /// Converts from `Option<Option<T>>` to `Option<T>`.
2584    ///
2585    /// # Examples
2586    ///
2587    /// Basic usage:
2588    ///
2589    /// ```
2590    /// let x: Option<Option<u32>> = Some(Some(6));
2591    /// assert_eq!(Some(6), x.flatten());
2592    ///
2593    /// let x: Option<Option<u32>> = Some(None);
2594    /// assert_eq!(None, x.flatten());
2595    ///
2596    /// let x: Option<Option<u32>> = None;
2597    /// assert_eq!(None, x.flatten());
2598    /// ```
2599    ///
2600    /// Flattening only removes one level of nesting at a time:
2601    ///
2602    /// ```
2603    /// let x: Option<Option<Option<u32>>> = Some(Some(Some(6)));
2604    /// assert_eq!(Some(Some(6)), x.flatten());
2605    /// assert_eq!(Some(6), x.flatten().flatten());
2606    /// ```
2607    #[inline]
2608    #[stable(feature = "option_flattening", since = "1.40.0")]
2609    #[rustc_allow_const_fn_unstable(const_precise_live_drops)]
2610    #[rustc_const_stable(feature = "const_option", since = "1.83.0")]
2611    pub const fn flatten(self) -> Option<T> {
2612        // FIXME(const-hack): could be written with `and_then`
2613        match self {
2614            Some(inner) => inner,
2615            None => None,
2616        }
2617    }
2618}
2619
2620impl<T, const N: usize> [Option<T>; N] {
2621    /// Transposes a `[Option<T>; N]` into a `Option<[T; N]>`.
2622    ///
2623    /// # Examples
2624    ///
2625    /// ```
2626    /// #![feature(option_array_transpose)]
2627    /// # use std::option::Option;
2628    ///
2629    /// let data = [Some(0); 1000];
2630    /// let data: Option<[u8; 1000]> = data.transpose();
2631    /// assert_eq!(data, Some([0; 1000]));
2632    ///
2633    /// let data = [Some(0), None];
2634    /// let data: Option<[u8; 2]> = data.transpose();
2635    /// assert_eq!(data, None);
2636    /// ```
2637    #[inline]
2638    #[unstable(feature = "option_array_transpose", issue = "130828")]
2639    pub fn transpose(self) -> Option<[T; N]> {
2640        self.try_map(core::convert::identity)
2641    }
2642}