core/
option.rs

1//! Optional values.
2//!
3//! Type [`Option`] represents an optional value: every [`Option`]
4//! is either [`Some`] and contains a value, or [`None`], and
5//! does not. [`Option`] types are very common in Rust code, as
6//! they have a number of uses:
7//!
8//! * Initial values
9//! * Return values for functions that are not defined
10//!   over their entire input range (partial functions)
11//! * Return value for otherwise reporting simple errors, where [`None`] is
12//!   returned on error
13//! * Optional struct fields
14//! * Struct fields that can be loaned or "taken"
15//! * Optional function arguments
16//! * Nullable pointers
17//! * Swapping things out of difficult situations
18//!
19//! [`Option`]s are commonly paired with pattern matching to query the presence
20//! of a value and take action, always accounting for the [`None`] case.
21//!
22//! ```
23//! fn divide(numerator: f64, denominator: f64) -> Option<f64> {
24//!     if denominator == 0.0 {
25//!         None
26//!     } else {
27//!         Some(numerator / denominator)
28//!     }
29//! }
30//!
31//! // The return value of the function is an option
32//! let result = divide(2.0, 3.0);
33//!
34//! // Pattern match to retrieve the value
35//! match result {
36//!     // The division was valid
37//!     Some(x) => println!("Result: {x}"),
38//!     // The division was invalid
39//!     None    => println!("Cannot divide by 0"),
40//! }
41//! ```
42//!
43//
44// FIXME: Show how `Option` is used in practice, with lots of methods
45//
46//! # Options and pointers ("nullable" pointers)
47//!
48//! Rust's pointer types must always point to a valid location; there are
49//! no "null" references. Instead, Rust has *optional* pointers, like
50//! the optional owned box, <code>[Option]<[Box\<T>]></code>.
51//!
52//! [Box\<T>]: ../../std/boxed/struct.Box.html
53//!
54//! The following example uses [`Option`] to create an optional box of
55//! [`i32`]. Notice that in order to use the inner [`i32`] value, the
56//! `check_optional` function first needs to use pattern matching to
57//! determine whether the box has a value (i.e., it is [`Some(...)`][`Some`]) or
58//! not ([`None`]).
59//!
60//! ```
61//! let optional = None;
62//! check_optional(optional);
63//!
64//! let optional = Some(Box::new(9000));
65//! check_optional(optional);
66//!
67//! fn check_optional(optional: Option<Box<i32>>) {
68//!     match optional {
69//!         Some(p) => println!("has value {p}"),
70//!         None => println!("has no value"),
71//!     }
72//! }
73//! ```
74//!
75//! # The question mark operator, `?`
76//!
77//! Similar to the [`Result`] type, when writing code that calls many functions that return the
78//! [`Option`] type, handling `Some`/`None` can be tedious. The question mark
79//! operator, [`?`], hides some of the boilerplate of propagating values
80//! up the call stack.
81//!
82//! It replaces this:
83//!
84//! ```
85//! # #![allow(dead_code)]
86//! fn add_last_numbers(stack: &mut Vec<i32>) -> Option<i32> {
87//!     let a = stack.pop();
88//!     let b = stack.pop();
89//!
90//!     match (a, b) {
91//!         (Some(x), Some(y)) => Some(x + y),
92//!         _ => None,
93//!     }
94//! }
95//!
96//! ```
97//!
98//! With this:
99//!
100//! ```
101//! # #![allow(dead_code)]
102//! fn add_last_numbers(stack: &mut Vec<i32>) -> Option<i32> {
103//!     Some(stack.pop()? + stack.pop()?)
104//! }
105//! ```
106//!
107//! *It's much nicer!*
108//!
109//! Ending the expression with [`?`] will result in the [`Some`]'s unwrapped value, unless the
110//! result is [`None`], in which case [`None`] is returned early from the enclosing function.
111//!
112//! [`?`] can be used in functions that return [`Option`] because of the
113//! early return of [`None`] that it provides.
114//!
115//! [`?`]: crate::ops::Try
116//! [`Some`]: Some
117//! [`None`]: None
118//!
119//! # Representation
120//!
121//! Rust guarantees to optimize the following types `T` such that [`Option<T>`]
122//! has the same size, alignment, and [function call ABI] as `T`. It is
123//! therefore sound, when `T` is one of these types, to transmute a value `t` of
124//! type `T` to type `Option<T>` (producing the value `Some(t)`) and to
125//! transmute a value `Some(t)` of type `Option<T>` to type `T` (producing the
126//! value `t`).
127//!
128//! In some of these cases, Rust further guarantees the following:
129//! - `transmute::<_, Option<T>>([0u8; size_of::<T>()])` is sound and produces
130//!   `Option::<T>::None`
131//! - `transmute::<_, [u8; size_of::<T>()]>(Option::<T>::None)` is sound and produces
132//!   `[0u8; size_of::<T>()]`
133//!
134//! These cases are identified by the second column:
135//!
136//! | `T`                                                                 | Transmuting between `[0u8; size_of::<T>()]` and `Option::<T>::None` sound? |
137//! |---------------------------------------------------------------------|----------------------------------------------------------------------------|
138//! | [`Box<U>`] (specifically, only `Box<U, Global>`)                    | when `U: Sized`                                                            |
139//! | `&U`                                                                | when `U: Sized`                                                            |
140//! | `&mut U`                                                            | when `U: Sized`                                                            |
141//! | `fn`, `extern "C" fn`[^extern_fn]                                   | always                                                                     |
142//! | [`num::NonZero*`]                                                   | always                                                                     |
143//! | [`ptr::NonNull<U>`]                                                 | when `U: Sized`                                                            |
144//! | `#[repr(transparent)]` struct around one of the types in this list. | when it holds for the inner type                                           |
145//!
146//! [^extern_fn]: this remains true for `unsafe` variants, any argument/return types, and any other ABI: `[unsafe] extern "abi" fn` (_e.g._, `extern "system" fn`)
147//!
148//! Under some conditions the above types `T` are also null pointer optimized when wrapped in a [`Result`][result_repr].
149//!
150//! [`Box<U>`]: ../../std/boxed/struct.Box.html
151//! [`num::NonZero*`]: crate::num
152//! [`ptr::NonNull<U>`]: crate::ptr::NonNull
153//! [function call ABI]: ../primitive.fn.html#abi-compatibility
154//! [result_repr]: crate::result#representation
155//!
156//! This is called the "null pointer optimization" or NPO.
157//!
158//! It is further guaranteed that, for the cases above, one can
159//! [`mem::transmute`] from all valid values of `T` to `Option<T>` and
160//! from `Some::<T>(_)` to `T` (but transmuting `None::<T>` to `T`
161//! is undefined behavior).
162//!
163//! # Method overview
164//!
165//! In addition to working with pattern matching, [`Option`] provides a wide
166//! variety of different methods.
167//!
168//! ## Querying the variant
169//!
170//! The [`is_some`] and [`is_none`] methods return [`true`] if the [`Option`]
171//! is [`Some`] or [`None`], respectively.
172//!
173//! The [`is_some_and`] and [`is_none_or`] methods apply the provided function
174//! to the contents of the [`Option`] to produce a boolean value.
175//! If this is [`None`] then a default result is returned instead without executing the function.
176//!
177//! [`is_none`]: Option::is_none
178//! [`is_some`]: Option::is_some
179//! [`is_some_and`]: Option::is_some_and
180//! [`is_none_or`]: Option::is_none_or
181//!
182//! ## Adapters for working with references
183//!
184//! * [`as_ref`] converts from <code>[&][][Option]\<T></code> to <code>[Option]<[&]T></code>
185//! * [`as_mut`] converts from <code>[&mut] [Option]\<T></code> to <code>[Option]<[&mut] T></code>
186//! * [`as_deref`] converts from <code>[&][][Option]\<T></code> to
187//!   <code>[Option]<[&]T::[Target]></code>
188//! * [`as_deref_mut`] converts from <code>[&mut] [Option]\<T></code> to
189//!   <code>[Option]<[&mut] T::[Target]></code>
190//! * [`as_pin_ref`] converts from <code>[Pin]<[&][][Option]\<T>></code> to
191//!   <code>[Option]<[Pin]<[&]T>></code>
192//! * [`as_pin_mut`] converts from <code>[Pin]<[&mut] [Option]\<T>></code> to
193//!   <code>[Option]<[Pin]<[&mut] T>></code>
194//! * [`as_slice`] returns a one-element slice of the contained value, if any.
195//!   If this is [`None`], an empty slice is returned.
196//! * [`as_mut_slice`] returns a mutable one-element slice of the contained value, if any.
197//!   If this is [`None`], an empty slice is returned.
198//!
199//! [&]: reference "shared reference"
200//! [&mut]: reference "mutable reference"
201//! [Target]: Deref::Target "ops::Deref::Target"
202//! [`as_deref`]: Option::as_deref
203//! [`as_deref_mut`]: Option::as_deref_mut
204//! [`as_mut`]: Option::as_mut
205//! [`as_pin_mut`]: Option::as_pin_mut
206//! [`as_pin_ref`]: Option::as_pin_ref
207//! [`as_ref`]: Option::as_ref
208//! [`as_slice`]: Option::as_slice
209//! [`as_mut_slice`]: Option::as_mut_slice
210//!
211//! ## Extracting the contained value
212//!
213//! These methods extract the contained value in an [`Option<T>`] when it
214//! is the [`Some`] variant. If the [`Option`] is [`None`]:
215//!
216//! * [`expect`] panics with a provided custom message
217//! * [`unwrap`] panics with a generic message
218//! * [`unwrap_or`] returns the provided default value
219//! * [`unwrap_or_default`] returns the default value of the type `T`
220//!   (which must implement the [`Default`] trait)
221//! * [`unwrap_or_else`] returns the result of evaluating the provided
222//!   function
223//! * [`unwrap_unchecked`] produces *[undefined behavior]*
224//!
225//! [`expect`]: Option::expect
226//! [`unwrap`]: Option::unwrap
227//! [`unwrap_or`]: Option::unwrap_or
228//! [`unwrap_or_default`]: Option::unwrap_or_default
229//! [`unwrap_or_else`]: Option::unwrap_or_else
230//! [`unwrap_unchecked`]: Option::unwrap_unchecked
231//! [undefined behavior]: https://doc.rust-lang.org/reference/behavior-considered-undefined.html
232//!
233//! ## Transforming contained values
234//!
235//! These methods transform [`Option`] to [`Result`]:
236//!
237//! * [`ok_or`] transforms [`Some(v)`] to [`Ok(v)`], and [`None`] to
238//!   [`Err(err)`] using the provided default `err` value
239//! * [`ok_or_else`] transforms [`Some(v)`] to [`Ok(v)`], and [`None`] to
240//!   a value of [`Err`] using the provided function
241//! * [`transpose`] transposes an [`Option`] of a [`Result`] into a
242//!   [`Result`] of an [`Option`]
243//!
244//! [`Err(err)`]: Err
245//! [`Ok(v)`]: Ok
246//! [`Some(v)`]: Some
247//! [`ok_or`]: Option::ok_or
248//! [`ok_or_else`]: Option::ok_or_else
249//! [`transpose`]: Option::transpose
250//!
251//! These methods transform the [`Some`] variant:
252//!
253//! * [`filter`] calls the provided predicate function on the contained
254//!   value `t` if the [`Option`] is [`Some(t)`], and returns [`Some(t)`]
255//!   if the function returns `true`; otherwise, returns [`None`]
256//! * [`flatten`] removes one level of nesting from an [`Option<Option<T>>`]
257//! * [`inspect`] method takes ownership of the [`Option`] and applies
258//!   the provided function to the contained value by reference if [`Some`]
259//! * [`map`] transforms [`Option<T>`] to [`Option<U>`] by applying the
260//!   provided function to the contained value of [`Some`] and leaving
261//!   [`None`] values unchanged
262//!
263//! [`Some(t)`]: Some
264//! [`filter`]: Option::filter
265//! [`flatten`]: Option::flatten
266//! [`inspect`]: Option::inspect
267//! [`map`]: Option::map
268//!
269//! These methods transform [`Option<T>`] to a value of a possibly
270//! different type `U`:
271//!
272//! * [`map_or`] applies the provided function to the contained value of
273//!   [`Some`], or returns the provided default value if the [`Option`] is
274//!   [`None`]
275//! * [`map_or_else`] applies the provided function to the contained value
276//!   of [`Some`], or returns the result of evaluating the provided
277//!   fallback function if the [`Option`] is [`None`]
278//!
279//! [`map_or`]: Option::map_or
280//! [`map_or_else`]: Option::map_or_else
281//!
282//! These methods combine the [`Some`] variants of two [`Option`] values:
283//!
284//! * [`zip`] returns [`Some((s, o))`] if `self` is [`Some(s)`] and the
285//!   provided [`Option`] value is [`Some(o)`]; otherwise, returns [`None`]
286//! * [`zip_with`] calls the provided function `f` and returns
287//!   [`Some(f(s, o))`] if `self` is [`Some(s)`] and the provided
288//!   [`Option`] value is [`Some(o)`]; otherwise, returns [`None`]
289//!
290//! [`Some(f(s, o))`]: Some
291//! [`Some(o)`]: Some
292//! [`Some(s)`]: Some
293//! [`Some((s, o))`]: Some
294//! [`zip`]: Option::zip
295//! [`zip_with`]: Option::zip_with
296//!
297//! ## Boolean operators
298//!
299//! These methods treat the [`Option`] as a boolean value, where [`Some`]
300//! acts like [`true`] and [`None`] acts like [`false`]. There are two
301//! categories of these methods: ones that take an [`Option`] as input, and
302//! ones that take a function as input (to be lazily evaluated).
303//!
304//! The [`and`], [`or`], and [`xor`] methods take another [`Option`] as
305//! input, and produce an [`Option`] as output. Only the [`and`] method can
306//! produce an [`Option<U>`] value having a different inner type `U` than
307//! [`Option<T>`].
308//!
309//! | method  | self      | input     | output    |
310//! |---------|-----------|-----------|-----------|
311//! | [`and`] | `None`    | (ignored) | `None`    |
312//! | [`and`] | `Some(x)` | `None`    | `None`    |
313//! | [`and`] | `Some(x)` | `Some(y)` | `Some(y)` |
314//! | [`or`]  | `None`    | `None`    | `None`    |
315//! | [`or`]  | `None`    | `Some(y)` | `Some(y)` |
316//! | [`or`]  | `Some(x)` | (ignored) | `Some(x)` |
317//! | [`xor`] | `None`    | `None`    | `None`    |
318//! | [`xor`] | `None`    | `Some(y)` | `Some(y)` |
319//! | [`xor`] | `Some(x)` | `None`    | `Some(x)` |
320//! | [`xor`] | `Some(x)` | `Some(y)` | `None`    |
321//!
322//! [`and`]: Option::and
323//! [`or`]: Option::or
324//! [`xor`]: Option::xor
325//!
326//! The [`and_then`] and [`or_else`] methods take a function as input, and
327//! only evaluate the function when they need to produce a new value. Only
328//! the [`and_then`] method can produce an [`Option<U>`] value having a
329//! different inner type `U` than [`Option<T>`].
330//!
331//! | method       | self      | function input | function result | output    |
332//! |--------------|-----------|----------------|-----------------|-----------|
333//! | [`and_then`] | `None`    | (not provided) | (not evaluated) | `None`    |
334//! | [`and_then`] | `Some(x)` | `x`            | `None`          | `None`    |
335//! | [`and_then`] | `Some(x)` | `x`            | `Some(y)`       | `Some(y)` |
336//! | [`or_else`]  | `None`    | (not provided) | `None`          | `None`    |
337//! | [`or_else`]  | `None`    | (not provided) | `Some(y)`       | `Some(y)` |
338//! | [`or_else`]  | `Some(x)` | (not provided) | (not evaluated) | `Some(x)` |
339//!
340//! [`and_then`]: Option::and_then
341//! [`or_else`]: Option::or_else
342//!
343//! This is an example of using methods like [`and_then`] and [`or`] in a
344//! pipeline of method calls. Early stages of the pipeline pass failure
345//! values ([`None`]) through unchanged, and continue processing on
346//! success values ([`Some`]). Toward the end, [`or`] substitutes an error
347//! message if it receives [`None`].
348//!
349//! ```
350//! # use std::collections::BTreeMap;
351//! let mut bt = BTreeMap::new();
352//! bt.insert(20u8, "foo");
353//! bt.insert(42u8, "bar");
354//! let res = [0u8, 1, 11, 200, 22]
355//!     .into_iter()
356//!     .map(|x| {
357//!         // `checked_sub()` returns `None` on error
358//!         x.checked_sub(1)
359//!             // same with `checked_mul()`
360//!             .and_then(|x| x.checked_mul(2))
361//!             // `BTreeMap::get` returns `None` on error
362//!             .and_then(|x| bt.get(&x))
363//!             // Substitute an error message if we have `None` so far
364//!             .or(Some(&"error!"))
365//!             .copied()
366//!             // Won't panic because we unconditionally used `Some` above
367//!             .unwrap()
368//!     })
369//!     .collect::<Vec<_>>();
370//! assert_eq!(res, ["error!", "error!", "foo", "error!", "bar"]);
371//! ```
372//!
373//! ## Comparison operators
374//!
375//! If `T` implements [`PartialOrd`] then [`Option<T>`] will derive its
376//! [`PartialOrd`] implementation.  With this order, [`None`] compares as
377//! less than any [`Some`], and two [`Some`] compare the same way as their
378//! contained values would in `T`.  If `T` also implements
379//! [`Ord`], then so does [`Option<T>`].
380//!
381//! ```
382//! assert!(None < Some(0));
383//! assert!(Some(0) < Some(1));
384//! ```
385//!
386//! ## Iterating over `Option`
387//!
388//! An [`Option`] can be iterated over. This can be helpful if you need an
389//! iterator that is conditionally empty. The iterator will either produce
390//! a single value (when the [`Option`] is [`Some`]), or produce no values
391//! (when the [`Option`] is [`None`]). For example, [`into_iter`] acts like
392//! [`once(v)`] if the [`Option`] is [`Some(v)`], and like [`empty()`] if
393//! the [`Option`] is [`None`].
394//!
395//! [`Some(v)`]: Some
396//! [`empty()`]: crate::iter::empty
397//! [`once(v)`]: crate::iter::once
398//!
399//! Iterators over [`Option<T>`] come in three types:
400//!
401//! * [`into_iter`] consumes the [`Option`] and produces the contained
402//!   value
403//! * [`iter`] produces an immutable reference of type `&T` to the
404//!   contained value
405//! * [`iter_mut`] produces a mutable reference of type `&mut T` to the
406//!   contained value
407//!
408//! [`into_iter`]: Option::into_iter
409//! [`iter`]: Option::iter
410//! [`iter_mut`]: Option::iter_mut
411//!
412//! An iterator over [`Option`] can be useful when chaining iterators, for
413//! example, to conditionally insert items. (It's not always necessary to
414//! explicitly call an iterator constructor: many [`Iterator`] methods that
415//! accept other iterators will also accept iterable types that implement
416//! [`IntoIterator`], which includes [`Option`].)
417//!
418//! ```
419//! let yep = Some(42);
420//! let nope = None;
421//! // chain() already calls into_iter(), so we don't have to do so
422//! let nums: Vec<i32> = (0..4).chain(yep).chain(4..8).collect();
423//! assert_eq!(nums, [0, 1, 2, 3, 42, 4, 5, 6, 7]);
424//! let nums: Vec<i32> = (0..4).chain(nope).chain(4..8).collect();
425//! assert_eq!(nums, [0, 1, 2, 3, 4, 5, 6, 7]);
426//! ```
427//!
428//! One reason to chain iterators in this way is that a function returning
429//! `impl Iterator` must have all possible return values be of the same
430//! concrete type. Chaining an iterated [`Option`] can help with that.
431//!
432//! ```
433//! fn make_iter(do_insert: bool) -> impl Iterator<Item = i32> {
434//!     // Explicit returns to illustrate return types matching
435//!     match do_insert {
436//!         true => return (0..4).chain(Some(42)).chain(4..8),
437//!         false => return (0..4).chain(None).chain(4..8),
438//!     }
439//! }
440//! println!("{:?}", make_iter(true).collect::<Vec<_>>());
441//! println!("{:?}", make_iter(false).collect::<Vec<_>>());
442//! ```
443//!
444//! If we try to do the same thing, but using [`once()`] and [`empty()`],
445//! we can't return `impl Iterator` anymore because the concrete types of
446//! the return values differ.
447//!
448//! [`empty()`]: crate::iter::empty
449//! [`once()`]: crate::iter::once
450//!
451//! ```compile_fail,E0308
452//! # use std::iter::{empty, once};
453//! // This won't compile because all possible returns from the function
454//! // must have the same concrete type.
455//! fn make_iter(do_insert: bool) -> impl Iterator<Item = i32> {
456//!     // Explicit returns to illustrate return types not matching
457//!     match do_insert {
458//!         true => return (0..4).chain(once(42)).chain(4..8),
459//!         false => return (0..4).chain(empty()).chain(4..8),
460//!     }
461//! }
462//! ```
463//!
464//! ## Collecting into `Option`
465//!
466//! [`Option`] implements the [`FromIterator`][impl-FromIterator] trait,
467//! which allows an iterator over [`Option`] values to be collected into an
468//! [`Option`] of a collection of each contained value of the original
469//! [`Option`] values, or [`None`] if any of the elements was [`None`].
470//!
471//! [impl-FromIterator]: Option#impl-FromIterator%3COption%3CA%3E%3E-for-Option%3CV%3E
472//!
473//! ```
474//! let v = [Some(2), Some(4), None, Some(8)];
475//! let res: Option<Vec<_>> = v.into_iter().collect();
476//! assert_eq!(res, None);
477//! let v = [Some(2), Some(4), Some(8)];
478//! let res: Option<Vec<_>> = v.into_iter().collect();
479//! assert_eq!(res, Some(vec![2, 4, 8]));
480//! ```
481//!
482//! [`Option`] also implements the [`Product`][impl-Product] and
483//! [`Sum`][impl-Sum] traits, allowing an iterator over [`Option`] values
484//! to provide the [`product`][Iterator::product] and
485//! [`sum`][Iterator::sum] methods.
486//!
487//! [impl-Product]: Option#impl-Product%3COption%3CU%3E%3E-for-Option%3CT%3E
488//! [impl-Sum]: Option#impl-Sum%3COption%3CU%3E%3E-for-Option%3CT%3E
489//!
490//! ```
491//! let v = [None, Some(1), Some(2), Some(3)];
492//! let res: Option<i32> = v.into_iter().sum();
493//! assert_eq!(res, None);
494//! let v = [Some(1), Some(2), Some(21)];
495//! let res: Option<i32> = v.into_iter().product();
496//! assert_eq!(res, Some(42));
497//! ```
498//!
499//! ## Modifying an [`Option`] in-place
500//!
501//! These methods return a mutable reference to the contained value of an
502//! [`Option<T>`]:
503//!
504//! * [`insert`] inserts a value, dropping any old contents
505//! * [`get_or_insert`] gets the current value, inserting a provided
506//!   default value if it is [`None`]
507//! * [`get_or_insert_default`] gets the current value, inserting the
508//!   default value of type `T` (which must implement [`Default`]) if it is
509//!   [`None`]
510//! * [`get_or_insert_with`] gets the current value, inserting a default
511//!   computed by the provided function if it is [`None`]
512//!
513//! [`get_or_insert`]: Option::get_or_insert
514//! [`get_or_insert_default`]: Option::get_or_insert_default
515//! [`get_or_insert_with`]: Option::get_or_insert_with
516//! [`insert`]: Option::insert
517//!
518//! These methods transfer ownership of the contained value of an
519//! [`Option`]:
520//!
521//! * [`take`] takes ownership of the contained value of an [`Option`], if
522//!   any, replacing the [`Option`] with [`None`]
523//! * [`replace`] takes ownership of the contained value of an [`Option`],
524//!   if any, replacing the [`Option`] with a [`Some`] containing the
525//!   provided value
526//!
527//! [`replace`]: Option::replace
528//! [`take`]: Option::take
529//!
530//! # Examples
531//!
532//! Basic pattern matching on [`Option`]:
533//!
534//! ```
535//! let msg = Some("howdy");
536//!
537//! // Take a reference to the contained string
538//! if let Some(m) = &msg {
539//!     println!("{}", *m);
540//! }
541//!
542//! // Remove the contained string, destroying the Option
543//! let unwrapped_msg = msg.unwrap_or("default message");
544//! ```
545//!
546//! Initialize a result to [`None`] before a loop:
547//!
548//! ```
549//! enum Kingdom { Plant(u32, &'static str), Animal(u32, &'static str) }
550//!
551//! // A list of data to search through.
552//! let all_the_big_things = [
553//!     Kingdom::Plant(250, "redwood"),
554//!     Kingdom::Plant(230, "noble fir"),
555//!     Kingdom::Plant(229, "sugar pine"),
556//!     Kingdom::Animal(25, "blue whale"),
557//!     Kingdom::Animal(19, "fin whale"),
558//!     Kingdom::Animal(15, "north pacific right whale"),
559//! ];
560//!
561//! // We're going to search for the name of the biggest animal,
562//! // but to start with we've just got `None`.
563//! let mut name_of_biggest_animal = None;
564//! let mut size_of_biggest_animal = 0;
565//! for big_thing in &all_the_big_things {
566//!     match *big_thing {
567//!         Kingdom::Animal(size, name) if size > size_of_biggest_animal => {
568//!             // Now we've found the name of some big animal
569//!             size_of_biggest_animal = size;
570//!             name_of_biggest_animal = Some(name);
571//!         }
572//!         Kingdom::Animal(..) | Kingdom::Plant(..) => ()
573//!     }
574//! }
575//!
576//! match name_of_biggest_animal {
577//!     Some(name) => println!("the biggest animal is {name}"),
578//!     None => println!("there are no animals :("),
579//! }
580//! ```
581
582#![stable(feature = "rust1", since = "1.0.0")]
583
584use crate::clone::TrivialClone;
585#[cfg(not(feature = "ferrocene_subset"))]
586use crate::iter::{self, FusedIterator, TrustedLen};
587use crate::marker::Destruct;
588use crate::ops::{self, ControlFlow, Deref, DerefMut};
589use crate::panicking::panic;
590#[cfg(not(feature = "ferrocene_certified_runtime"))]
591use crate::panicking::panic_display;
592#[cfg(not(feature = "ferrocene_subset"))]
593use crate::pin::Pin;
594#[cfg(not(feature = "ferrocene_subset"))]
595use crate::{cmp, convert, hint, mem, slice};
596
597// Ferrocene addition: imports for certified subset
598#[cfg(feature = "ferrocene_subset")]
599#[rustfmt::skip]
600use crate::{convert, hint, mem};
601
602/// The `Option` type. See [the module level documentation](self) for more.
603#[doc(search_unbox)]
604#[cfg_attr(not(feature = "ferrocene_subset"), derive(Copy, Debug, Hash))]
605#[cfg_attr(not(feature = "ferrocene_subset"), derive_const(Eq))]
606#[cfg_attr(feature = "ferrocene_subset", derive(Copy))]
607#[rustc_diagnostic_item = "Option"]
608#[lang = "Option"]
609#[stable(feature = "rust1", since = "1.0.0")]
610#[allow(clippy::derived_hash_with_manual_eq)] // PartialEq is manually implemented equivalently
611pub enum Option<T> {
612    /// No value.
613    #[lang = "None"]
614    #[stable(feature = "rust1", since = "1.0.0")]
615    None,
616    /// Some value of type `T`.
617    #[lang = "Some"]
618    #[stable(feature = "rust1", since = "1.0.0")]
619    Some(#[stable(feature = "rust1", since = "1.0.0")] T),
620}
621
622/////////////////////////////////////////////////////////////////////////////
623// Type implementation
624/////////////////////////////////////////////////////////////////////////////
625
626impl<T> Option<T> {
627    /////////////////////////////////////////////////////////////////////////
628    // Querying the contained values
629    /////////////////////////////////////////////////////////////////////////
630
631    /// Returns `true` if the option is a [`Some`] value.
632    ///
633    /// # Examples
634    ///
635    /// ```
636    /// let x: Option<u32> = Some(2);
637    /// assert_eq!(x.is_some(), true);
638    ///
639    /// let x: Option<u32> = None;
640    /// assert_eq!(x.is_some(), false);
641    /// ```
642    #[must_use = "if you intended to assert that this has a value, consider `.unwrap()` instead"]
643    #[inline]
644    #[stable(feature = "rust1", since = "1.0.0")]
645    #[rustc_const_stable(feature = "const_option_basics", since = "1.48.0")]
646    pub const fn is_some(&self) -> bool {
647        matches!(*self, Some(_))
648    }
649
650    /// Returns `true` if the option is a [`Some`] and the value inside of it matches a predicate.
651    ///
652    /// # Examples
653    ///
654    /// ```
655    /// let x: Option<u32> = Some(2);
656    /// assert_eq!(x.is_some_and(|x| x > 1), true);
657    ///
658    /// let x: Option<u32> = Some(0);
659    /// assert_eq!(x.is_some_and(|x| x > 1), false);
660    ///
661    /// let x: Option<u32> = None;
662    /// assert_eq!(x.is_some_and(|x| x > 1), false);
663    ///
664    /// let x: Option<String> = Some("ownership".to_string());
665    /// assert_eq!(x.as_ref().is_some_and(|x| x.len() > 1), true);
666    /// println!("still alive {:?}", x);
667    /// ```
668    #[must_use]
669    #[inline]
670    #[stable(feature = "is_some_and", since = "1.70.0")]
671    #[rustc_const_unstable(feature = "const_option_ops", issue = "143956")]
672    pub const fn is_some_and(self, f: impl [const] FnOnce(T) -> bool + [const] Destruct) -> bool {
673        match self {
674            None => false,
675            Some(x) => f(x),
676        }
677    }
678
679    /// Returns `true` if the option is a [`None`] value.
680    ///
681    /// # Examples
682    ///
683    /// ```
684    /// let x: Option<u32> = Some(2);
685    /// assert_eq!(x.is_none(), false);
686    ///
687    /// let x: Option<u32> = None;
688    /// assert_eq!(x.is_none(), true);
689    /// ```
690    #[must_use = "if you intended to assert that this doesn't have a value, consider \
691                  wrapping this in an `assert!()` instead"]
692    #[inline]
693    #[stable(feature = "rust1", since = "1.0.0")]
694    #[rustc_const_stable(feature = "const_option_basics", since = "1.48.0")]
695    pub const fn is_none(&self) -> bool {
696        !self.is_some()
697    }
698
699    /// Returns `true` if the option is a [`None`] or the value inside of it matches a predicate.
700    ///
701    /// # Examples
702    ///
703    /// ```
704    /// let x: Option<u32> = Some(2);
705    /// assert_eq!(x.is_none_or(|x| x > 1), true);
706    ///
707    /// let x: Option<u32> = Some(0);
708    /// assert_eq!(x.is_none_or(|x| x > 1), false);
709    ///
710    /// let x: Option<u32> = None;
711    /// assert_eq!(x.is_none_or(|x| x > 1), true);
712    ///
713    /// let x: Option<String> = Some("ownership".to_string());
714    /// assert_eq!(x.as_ref().is_none_or(|x| x.len() > 1), true);
715    /// println!("still alive {:?}", x);
716    /// ```
717    #[must_use]
718    #[inline]
719    #[stable(feature = "is_none_or", since = "1.82.0")]
720    #[rustc_const_unstable(feature = "const_option_ops", issue = "143956")]
721    pub const fn is_none_or(self, f: impl [const] FnOnce(T) -> bool + [const] Destruct) -> bool {
722        match self {
723            None => true,
724            Some(x) => f(x),
725        }
726    }
727
728    /////////////////////////////////////////////////////////////////////////
729    // Adapter for working with references
730    /////////////////////////////////////////////////////////////////////////
731
732    /// Converts from `&Option<T>` to `Option<&T>`.
733    ///
734    /// # Examples
735    ///
736    /// Calculates the length of an <code>Option<[String]></code> as an <code>Option<[usize]></code>
737    /// without moving the [`String`]. The [`map`] method takes the `self` argument by value,
738    /// consuming the original, so this technique uses `as_ref` to first take an `Option` to a
739    /// reference to the value inside the original.
740    ///
741    /// [`map`]: Option::map
742    /// [String]: ../../std/string/struct.String.html "String"
743    /// [`String`]: ../../std/string/struct.String.html "String"
744    ///
745    /// ```
746    /// let text: Option<String> = Some("Hello, world!".to_string());
747    /// // First, cast `Option<String>` to `Option<&String>` with `as_ref`,
748    /// // then consume *that* with `map`, leaving `text` on the stack.
749    /// let text_length: Option<usize> = text.as_ref().map(|s| s.len());
750    /// println!("still can print text: {text:?}");
751    /// ```
752    #[inline]
753    #[rustc_const_stable(feature = "const_option_basics", since = "1.48.0")]
754    #[stable(feature = "rust1", since = "1.0.0")]
755    pub const fn as_ref(&self) -> Option<&T> {
756        match *self {
757            Some(ref x) => Some(x),
758            None => None,
759        }
760    }
761
762    /// Converts from `&mut Option<T>` to `Option<&mut T>`.
763    ///
764    /// # Examples
765    ///
766    /// ```
767    /// let mut x = Some(2);
768    /// match x.as_mut() {
769    ///     Some(v) => *v = 42,
770    ///     None => {},
771    /// }
772    /// assert_eq!(x, Some(42));
773    /// ```
774    #[inline]
775    #[stable(feature = "rust1", since = "1.0.0")]
776    #[rustc_const_stable(feature = "const_option", since = "1.83.0")]
777    pub const fn as_mut(&mut self) -> Option<&mut T> {
778        match *self {
779            Some(ref mut x) => Some(x),
780            None => None,
781        }
782    }
783
784    /// Converts from <code>[Pin]<[&]Option\<T>></code> to <code>Option<[Pin]<[&]T>></code>.
785    ///
786    /// [&]: reference "shared reference"
787    #[inline]
788    #[must_use]
789    #[stable(feature = "pin", since = "1.33.0")]
790    #[rustc_const_stable(feature = "const_option_ext", since = "1.84.0")]
791    #[cfg(not(feature = "ferrocene_subset"))]
792    pub const fn as_pin_ref(self: Pin<&Self>) -> Option<Pin<&T>> {
793        // FIXME(const-hack): use `map` once that is possible
794        match Pin::get_ref(self).as_ref() {
795            // SAFETY: `x` is guaranteed to be pinned because it comes from `self`
796            // which is pinned.
797            Some(x) => unsafe { Some(Pin::new_unchecked(x)) },
798            None => None,
799        }
800    }
801
802    /// Converts from <code>[Pin]<[&mut] Option\<T>></code> to <code>Option<[Pin]<[&mut] T>></code>.
803    ///
804    /// [&mut]: reference "mutable reference"
805    #[inline]
806    #[must_use]
807    #[stable(feature = "pin", since = "1.33.0")]
808    #[rustc_const_stable(feature = "const_option_ext", since = "1.84.0")]
809    #[cfg(not(feature = "ferrocene_subset"))]
810    pub const fn as_pin_mut(self: Pin<&mut Self>) -> Option<Pin<&mut T>> {
811        // SAFETY: `get_unchecked_mut` is never used to move the `Option` inside `self`.
812        // `x` is guaranteed to be pinned because it comes from `self` which is pinned.
813        unsafe {
814            // FIXME(const-hack): use `map` once that is possible
815            match Pin::get_unchecked_mut(self).as_mut() {
816                Some(x) => Some(Pin::new_unchecked(x)),
817                None => None,
818            }
819        }
820    }
821
822    #[inline]
823    const fn len(&self) -> usize {
824        // Using the intrinsic avoids emitting a branch to get the 0 or 1.
825        let discriminant: isize = crate::intrinsics::discriminant_value(self);
826        discriminant as usize
827    }
828
829    /// Returns a slice of the contained value, if any. If this is `None`, an
830    /// empty slice is returned. This can be useful to have a single type of
831    /// iterator over an `Option` or slice.
832    ///
833    /// Note: Should you have an `Option<&T>` and wish to get a slice of `T`,
834    /// you can unpack it via `opt.map_or(&[], std::slice::from_ref)`.
835    ///
836    /// # Examples
837    ///
838    /// ```rust
839    /// assert_eq!(
840    ///     [Some(1234).as_slice(), None.as_slice()],
841    ///     [&[1234][..], &[][..]],
842    /// );
843    /// ```
844    ///
845    /// The inverse of this function is (discounting
846    /// borrowing) [`[_]::first`](slice::first):
847    ///
848    /// ```rust
849    /// for i in [Some(1234_u16), None] {
850    ///     assert_eq!(i.as_ref(), i.as_slice().first());
851    /// }
852    /// ```
853    #[inline]
854    #[must_use]
855    #[stable(feature = "option_as_slice", since = "1.75.0")]
856    #[rustc_const_stable(feature = "const_option_ext", since = "1.84.0")]
857    #[cfg(not(feature = "ferrocene_subset"))]
858    pub const fn as_slice(&self) -> &[T] {
859        // SAFETY: When the `Option` is `Some`, we're using the actual pointer
860        // to the payload, with a length of 1, so this is equivalent to
861        // `slice::from_ref`, and thus is safe.
862        // When the `Option` is `None`, the length used is 0, so to be safe it
863        // just needs to be aligned, which it is because `&self` is aligned and
864        // the offset used is a multiple of alignment.
865        //
866        // Here we assume that `offset_of!` always returns an offset to an
867        // in-bounds and correctly aligned position for a `T` (even if in the
868        // `None` case it's just padding).
869        unsafe {
870            slice::from_raw_parts(
871                (self as *const Self).byte_add(core::mem::offset_of!(Self, Some.0)).cast(),
872                self.len(),
873            )
874        }
875    }
876
877    /// Returns a mutable slice of the contained value, if any. If this is
878    /// `None`, an empty slice is returned. This can be useful to have a
879    /// single type of iterator over an `Option` or slice.
880    ///
881    /// Note: Should you have an `Option<&mut T>` instead of a
882    /// `&mut Option<T>`, which this method takes, you can obtain a mutable
883    /// slice via `opt.map_or(&mut [], std::slice::from_mut)`.
884    ///
885    /// # Examples
886    ///
887    /// ```rust
888    /// assert_eq!(
889    ///     [Some(1234).as_mut_slice(), None.as_mut_slice()],
890    ///     [&mut [1234][..], &mut [][..]],
891    /// );
892    /// ```
893    ///
894    /// The result is a mutable slice of zero or one items that points into
895    /// our original `Option`:
896    ///
897    /// ```rust
898    /// let mut x = Some(1234);
899    /// x.as_mut_slice()[0] += 1;
900    /// assert_eq!(x, Some(1235));
901    /// ```
902    ///
903    /// The inverse of this method (discounting borrowing)
904    /// is [`[_]::first_mut`](slice::first_mut):
905    ///
906    /// ```rust
907    /// assert_eq!(Some(123).as_mut_slice().first_mut(), Some(&mut 123))
908    /// ```
909    #[inline]
910    #[must_use]
911    #[stable(feature = "option_as_slice", since = "1.75.0")]
912    #[rustc_const_stable(feature = "const_option_ext", since = "1.84.0")]
913    #[cfg(not(feature = "ferrocene_subset"))]
914    pub const fn as_mut_slice(&mut self) -> &mut [T] {
915        // SAFETY: When the `Option` is `Some`, we're using the actual pointer
916        // to the payload, with a length of 1, so this is equivalent to
917        // `slice::from_mut`, and thus is safe.
918        // When the `Option` is `None`, the length used is 0, so to be safe it
919        // just needs to be aligned, which it is because `&self` is aligned and
920        // the offset used is a multiple of alignment.
921        //
922        // In the new version, the intrinsic creates a `*const T` from a
923        // mutable reference  so it is safe to cast back to a mutable pointer
924        // here. As with `as_slice`, the intrinsic always returns a pointer to
925        // an in-bounds and correctly aligned position for a `T` (even if in
926        // the `None` case it's just padding).
927        unsafe {
928            slice::from_raw_parts_mut(
929                (self as *mut Self).byte_add(core::mem::offset_of!(Self, Some.0)).cast(),
930                self.len(),
931            )
932        }
933    }
934
935    /////////////////////////////////////////////////////////////////////////
936    // Getting to contained values
937    /////////////////////////////////////////////////////////////////////////
938
939    /// Returns the contained [`Some`] value, consuming the `self` value.
940    ///
941    /// # Panics
942    ///
943    /// Panics if the value is a [`None`] with a custom panic message provided by
944    /// `msg`.
945    ///
946    /// # Examples
947    ///
948    /// ```
949    /// let x = Some("value");
950    /// assert_eq!(x.expect("fruits are healthy"), "value");
951    /// ```
952    ///
953    /// ```should_panic
954    /// let x: Option<&str> = None;
955    /// x.expect("fruits are healthy"); // panics with `fruits are healthy`
956    /// ```
957    ///
958    /// # Recommended Message Style
959    ///
960    /// We recommend that `expect` messages are used to describe the reason you
961    /// _expect_ the `Option` should be `Some`.
962    ///
963    /// ```should_panic
964    /// # let slice: &[u8] = &[];
965    /// let item = slice.get(0)
966    ///     .expect("slice should not be empty");
967    /// ```
968    ///
969    /// **Hint**: If you're having trouble remembering how to phrase expect
970    /// error messages remember to focus on the word "should" as in "env
971    /// variable should be set by blah" or "the given binary should be available
972    /// and executable by the current user".
973    ///
974    /// For more detail on expect message styles and the reasoning behind our
975    /// recommendation please refer to the section on ["Common Message
976    /// Styles"](../../std/error/index.html#common-message-styles) in the [`std::error`](../../std/error/index.html) module docs.
977    #[inline]
978    #[track_caller]
979    #[stable(feature = "rust1", since = "1.0.0")]
980    #[rustc_diagnostic_item = "option_expect"]
981    #[rustc_allow_const_fn_unstable(const_precise_live_drops)]
982    #[rustc_const_stable(feature = "const_option", since = "1.83.0")]
983    pub const fn expect(
984        self,
985        #[cfg(not(feature = "ferrocene_certified_runtime"))] msg: &str,
986        #[cfg(feature = "ferrocene_certified_runtime")] msg: &'static str,
987    ) -> T {
988        match self {
989            Some(val) => val,
990            #[cfg(not(feature = "ferrocene_certified_runtime"))]
991            None => expect_failed(msg),
992            #[cfg(feature = "ferrocene_certified_runtime")]
993            None => panic(msg),
994        }
995    }
996
997    /// Returns the contained [`Some`] value, consuming the `self` value.
998    ///
999    /// Because this function may panic, its use is generally discouraged.
1000    /// Panics are meant for unrecoverable errors, and
1001    /// [may abort the entire program][panic-abort].
1002    ///
1003    /// Instead, prefer to use pattern matching and handle the [`None`]
1004    /// case explicitly, or call [`unwrap_or`], [`unwrap_or_else`], or
1005    /// [`unwrap_or_default`]. In functions returning `Option`, you can use
1006    /// [the `?` (try) operator][try-option].
1007    ///
1008    /// [panic-abort]: https://doc.rust-lang.org/book/ch09-01-unrecoverable-errors-with-panic.html
1009    /// [try-option]: https://doc.rust-lang.org/book/ch09-02-recoverable-errors-with-result.html#where-the--operator-can-be-used
1010    /// [`unwrap_or`]: Option::unwrap_or
1011    /// [`unwrap_or_else`]: Option::unwrap_or_else
1012    /// [`unwrap_or_default`]: Option::unwrap_or_default
1013    ///
1014    /// # Panics
1015    ///
1016    /// Panics if the self value equals [`None`].
1017    ///
1018    /// # Examples
1019    ///
1020    /// ```
1021    /// let x = Some("air");
1022    /// assert_eq!(x.unwrap(), "air");
1023    /// ```
1024    ///
1025    /// ```should_panic
1026    /// let x: Option<&str> = None;
1027    /// assert_eq!(x.unwrap(), "air"); // fails
1028    /// ```
1029    #[inline(always)]
1030    #[track_caller]
1031    #[stable(feature = "rust1", since = "1.0.0")]
1032    #[rustc_diagnostic_item = "option_unwrap"]
1033    #[rustc_allow_const_fn_unstable(const_precise_live_drops)]
1034    #[rustc_const_stable(feature = "const_option", since = "1.83.0")]
1035    pub const fn unwrap(self) -> T {
1036        match self {
1037            Some(val) => val,
1038            None => unwrap_failed(),
1039        }
1040    }
1041
1042    /// Returns the contained [`Some`] value or a provided default.
1043    ///
1044    /// Arguments passed to `unwrap_or` are eagerly evaluated; if you are passing
1045    /// the result of a function call, it is recommended to use [`unwrap_or_else`],
1046    /// which is lazily evaluated.
1047    ///
1048    /// [`unwrap_or_else`]: Option::unwrap_or_else
1049    ///
1050    /// # Examples
1051    ///
1052    /// ```
1053    /// assert_eq!(Some("car").unwrap_or("bike"), "car");
1054    /// assert_eq!(None.unwrap_or("bike"), "bike");
1055    /// ```
1056    #[inline]
1057    #[stable(feature = "rust1", since = "1.0.0")]
1058    #[rustc_allow_const_fn_unstable(const_precise_live_drops)]
1059    #[rustc_const_unstable(feature = "const_option_ops", issue = "143956")]
1060    pub const fn unwrap_or(self, default: T) -> T
1061    where
1062        T: [const] Destruct,
1063    {
1064        match self {
1065            Some(x) => x,
1066            None => default,
1067        }
1068    }
1069
1070    /// Returns the contained [`Some`] value or computes it from a closure.
1071    ///
1072    /// # Examples
1073    ///
1074    /// ```
1075    /// let k = 10;
1076    /// assert_eq!(Some(4).unwrap_or_else(|| 2 * k), 4);
1077    /// assert_eq!(None.unwrap_or_else(|| 2 * k), 20);
1078    /// ```
1079    #[inline]
1080    #[track_caller]
1081    #[stable(feature = "rust1", since = "1.0.0")]
1082    #[rustc_const_unstable(feature = "const_option_ops", issue = "143956")]
1083    pub const fn unwrap_or_else<F>(self, f: F) -> T
1084    where
1085        F: [const] FnOnce() -> T + [const] Destruct,
1086    {
1087        match self {
1088            Some(x) => x,
1089            None => f(),
1090        }
1091    }
1092
1093    /// Returns the contained [`Some`] value or a default.
1094    ///
1095    /// Consumes the `self` argument then, if [`Some`], returns the contained
1096    /// value, otherwise if [`None`], returns the [default value] for that
1097    /// type.
1098    ///
1099    /// # Examples
1100    ///
1101    /// ```
1102    /// let x: Option<u32> = None;
1103    /// let y: Option<u32> = Some(12);
1104    ///
1105    /// assert_eq!(x.unwrap_or_default(), 0);
1106    /// assert_eq!(y.unwrap_or_default(), 12);
1107    /// ```
1108    ///
1109    /// [default value]: Default::default
1110    /// [`parse`]: str::parse
1111    /// [`FromStr`]: crate::str::FromStr
1112    #[inline]
1113    #[stable(feature = "rust1", since = "1.0.0")]
1114    #[rustc_const_unstable(feature = "const_option_ops", issue = "143956")]
1115    pub const fn unwrap_or_default(self) -> T
1116    where
1117        T: [const] Default,
1118    {
1119        match self {
1120            Some(x) => x,
1121            None => T::default(),
1122        }
1123    }
1124
1125    /// Returns the contained [`Some`] value, consuming the `self` value,
1126    /// without checking that the value is not [`None`].
1127    ///
1128    /// # Safety
1129    ///
1130    /// Calling this method on [`None`] is *[undefined behavior]*.
1131    ///
1132    /// [undefined behavior]: https://doc.rust-lang.org/reference/behavior-considered-undefined.html
1133    ///
1134    /// # Examples
1135    ///
1136    /// ```
1137    /// let x = Some("air");
1138    /// assert_eq!(unsafe { x.unwrap_unchecked() }, "air");
1139    /// ```
1140    ///
1141    /// ```no_run
1142    /// let x: Option<&str> = None;
1143    /// assert_eq!(unsafe { x.unwrap_unchecked() }, "air"); // Undefined behavior!
1144    /// ```
1145    #[inline]
1146    #[track_caller]
1147    #[stable(feature = "option_result_unwrap_unchecked", since = "1.58.0")]
1148    #[rustc_allow_const_fn_unstable(const_precise_live_drops)]
1149    #[rustc_const_stable(feature = "const_option", since = "1.83.0")]
1150    pub const unsafe fn unwrap_unchecked(self) -> T {
1151        match self {
1152            Some(val) => val,
1153            #[ferrocene::annotation(
1154                "This line cannot be covered as reaching `unreachable_unchecked` is undefined behavior."
1155            )]
1156            // SAFETY: the safety contract must be upheld by the caller.
1157            None => unsafe { hint::unreachable_unchecked() },
1158        }
1159    }
1160
1161    /////////////////////////////////////////////////////////////////////////
1162    // Transforming contained values
1163    /////////////////////////////////////////////////////////////////////////
1164
1165    /// Maps an `Option<T>` to `Option<U>` by applying a function to a contained value (if `Some`) or returns `None` (if `None`).
1166    ///
1167    /// # Examples
1168    ///
1169    /// Calculates the length of an <code>Option<[String]></code> as an
1170    /// <code>Option<[usize]></code>, consuming the original:
1171    ///
1172    /// [String]: ../../std/string/struct.String.html "String"
1173    /// ```
1174    /// let maybe_some_string = Some(String::from("Hello, World!"));
1175    /// // `Option::map` takes self *by value*, consuming `maybe_some_string`
1176    /// let maybe_some_len = maybe_some_string.map(|s| s.len());
1177    /// assert_eq!(maybe_some_len, Some(13));
1178    ///
1179    /// let x: Option<&str> = None;
1180    /// assert_eq!(x.map(|s| s.len()), None);
1181    /// ```
1182    #[inline]
1183    #[stable(feature = "rust1", since = "1.0.0")]
1184    #[rustc_const_unstable(feature = "const_option_ops", issue = "143956")]
1185    pub const fn map<U, F>(self, f: F) -> Option<U>
1186    where
1187        F: [const] FnOnce(T) -> U + [const] Destruct,
1188    {
1189        match self {
1190            Some(x) => Some(f(x)),
1191            None => None,
1192        }
1193    }
1194
1195    /// Calls a function with a reference to the contained value if [`Some`].
1196    ///
1197    /// Returns the original option.
1198    ///
1199    /// # Examples
1200    ///
1201    /// ```
1202    /// let list = vec![1, 2, 3];
1203    ///
1204    /// // prints "got: 2"
1205    /// let x = list
1206    ///     .get(1)
1207    ///     .inspect(|x| println!("got: {x}"))
1208    ///     .expect("list should be long enough");
1209    ///
1210    /// // prints nothing
1211    /// list.get(5).inspect(|x| println!("got: {x}"));
1212    /// ```
1213    #[inline]
1214    #[stable(feature = "result_option_inspect", since = "1.76.0")]
1215    #[rustc_const_unstable(feature = "const_option_ops", issue = "143956")]
1216    pub const fn inspect<F>(self, f: F) -> Self
1217    where
1218        F: [const] FnOnce(&T) + [const] Destruct,
1219    {
1220        if let Some(ref x) = self {
1221            f(x);
1222        }
1223
1224        self
1225    }
1226
1227    /// Returns the provided default result (if none),
1228    /// or applies a function to the contained value (if any).
1229    ///
1230    /// Arguments passed to `map_or` are eagerly evaluated; if you are passing
1231    /// the result of a function call, it is recommended to use [`map_or_else`],
1232    /// which is lazily evaluated.
1233    ///
1234    /// [`map_or_else`]: Option::map_or_else
1235    ///
1236    /// # Examples
1237    ///
1238    /// ```
1239    /// let x = Some("foo");
1240    /// assert_eq!(x.map_or(42, |v| v.len()), 3);
1241    ///
1242    /// let x: Option<&str> = None;
1243    /// assert_eq!(x.map_or(42, |v| v.len()), 42);
1244    /// ```
1245    #[inline]
1246    #[stable(feature = "rust1", since = "1.0.0")]
1247    #[must_use = "if you don't need the returned value, use `if let` instead"]
1248    #[rustc_const_unstable(feature = "const_option_ops", issue = "143956")]
1249    pub const fn map_or<U, F>(self, default: U, f: F) -> U
1250    where
1251        F: [const] FnOnce(T) -> U + [const] Destruct,
1252        U: [const] Destruct,
1253    {
1254        match self {
1255            Some(t) => f(t),
1256            None => default,
1257        }
1258    }
1259
1260    /// Computes a default function result (if none), or
1261    /// applies a different function to the contained value (if any).
1262    ///
1263    /// # Basic examples
1264    ///
1265    /// ```
1266    /// let k = 21;
1267    ///
1268    /// let x = Some("foo");
1269    /// assert_eq!(x.map_or_else(|| 2 * k, |v| v.len()), 3);
1270    ///
1271    /// let x: Option<&str> = None;
1272    /// assert_eq!(x.map_or_else(|| 2 * k, |v| v.len()), 42);
1273    /// ```
1274    ///
1275    /// # Handling a Result-based fallback
1276    ///
1277    /// A somewhat common occurrence when dealing with optional values
1278    /// in combination with [`Result<T, E>`] is the case where one wants to invoke
1279    /// a fallible fallback if the option is not present.  This example
1280    /// parses a command line argument (if present), or the contents of a file to
1281    /// an integer.  However, unlike accessing the command line argument, reading
1282    /// the file is fallible, so it must be wrapped with `Ok`.
1283    ///
1284    /// ```no_run
1285    /// # fn main() -> Result<(), Box<dyn std::error::Error>> {
1286    /// let v: u64 = std::env::args()
1287    ///    .nth(1)
1288    ///    .map_or_else(|| std::fs::read_to_string("/etc/someconfig.conf"), Ok)?
1289    ///    .parse()?;
1290    /// #   Ok(())
1291    /// # }
1292    /// ```
1293    #[inline]
1294    #[stable(feature = "rust1", since = "1.0.0")]
1295    #[rustc_const_unstable(feature = "const_option_ops", issue = "143956")]
1296    pub const fn map_or_else<U, D, F>(self, default: D, f: F) -> U
1297    where
1298        D: [const] FnOnce() -> U + [const] Destruct,
1299        F: [const] FnOnce(T) -> U + [const] Destruct,
1300    {
1301        match self {
1302            Some(t) => f(t),
1303            None => default(),
1304        }
1305    }
1306
1307    /// Maps an `Option<T>` to a `U` by applying function `f` to the contained
1308    /// value if the option is [`Some`], otherwise if [`None`], returns the
1309    /// [default value] for the type `U`.
1310    ///
1311    /// # Examples
1312    ///
1313    /// ```
1314    /// #![feature(result_option_map_or_default)]
1315    ///
1316    /// let x: Option<&str> = Some("hi");
1317    /// let y: Option<&str> = None;
1318    ///
1319    /// assert_eq!(x.map_or_default(|x| x.len()), 2);
1320    /// assert_eq!(y.map_or_default(|y| y.len()), 0);
1321    /// ```
1322    ///
1323    /// [default value]: Default::default
1324    #[inline]
1325    #[unstable(feature = "result_option_map_or_default", issue = "138099")]
1326    #[rustc_const_unstable(feature = "const_option_ops", issue = "143956")]
1327    pub const fn map_or_default<U, F>(self, f: F) -> U
1328    where
1329        U: [const] Default,
1330        F: [const] FnOnce(T) -> U + [const] Destruct,
1331    {
1332        match self {
1333            Some(t) => f(t),
1334            None => U::default(),
1335        }
1336    }
1337
1338    /// Transforms the `Option<T>` into a [`Result<T, E>`], mapping [`Some(v)`] to
1339    /// [`Ok(v)`] and [`None`] to [`Err(err)`].
1340    ///
1341    /// Arguments passed to `ok_or` are eagerly evaluated; if you are passing the
1342    /// result of a function call, it is recommended to use [`ok_or_else`], which is
1343    /// lazily evaluated.
1344    ///
1345    /// [`Ok(v)`]: Ok
1346    /// [`Err(err)`]: Err
1347    /// [`Some(v)`]: Some
1348    /// [`ok_or_else`]: Option::ok_or_else
1349    ///
1350    /// # Examples
1351    ///
1352    /// ```
1353    /// let x = Some("foo");
1354    /// assert_eq!(x.ok_or(0), Ok("foo"));
1355    ///
1356    /// let x: Option<&str> = None;
1357    /// assert_eq!(x.ok_or(0), Err(0));
1358    /// ```
1359    #[inline]
1360    #[stable(feature = "rust1", since = "1.0.0")]
1361    #[rustc_const_unstable(feature = "const_option_ops", issue = "143956")]
1362    pub const fn ok_or<E: [const] Destruct>(self, err: E) -> Result<T, E> {
1363        match self {
1364            Some(v) => Ok(v),
1365            None => Err(err),
1366        }
1367    }
1368
1369    /// Transforms the `Option<T>` into a [`Result<T, E>`], mapping [`Some(v)`] to
1370    /// [`Ok(v)`] and [`None`] to [`Err(err())`].
1371    ///
1372    /// [`Ok(v)`]: Ok
1373    /// [`Err(err())`]: Err
1374    /// [`Some(v)`]: Some
1375    ///
1376    /// # Examples
1377    ///
1378    /// ```
1379    /// let x = Some("foo");
1380    /// assert_eq!(x.ok_or_else(|| 0), Ok("foo"));
1381    ///
1382    /// let x: Option<&str> = None;
1383    /// assert_eq!(x.ok_or_else(|| 0), Err(0));
1384    /// ```
1385    #[inline]
1386    #[stable(feature = "rust1", since = "1.0.0")]
1387    #[rustc_const_unstable(feature = "const_option_ops", issue = "143956")]
1388    pub const fn ok_or_else<E, F>(self, err: F) -> Result<T, E>
1389    where
1390        F: [const] FnOnce() -> E + [const] Destruct,
1391    {
1392        match self {
1393            Some(v) => Ok(v),
1394            None => Err(err()),
1395        }
1396    }
1397
1398    /// Converts from `Option<T>` (or `&Option<T>`) to `Option<&T::Target>`.
1399    ///
1400    /// Leaves the original Option in-place, creating a new one with a reference
1401    /// to the original one, additionally coercing the contents via [`Deref`].
1402    ///
1403    /// # Examples
1404    ///
1405    /// ```
1406    /// let x: Option<String> = Some("hey".to_owned());
1407    /// assert_eq!(x.as_deref(), Some("hey"));
1408    ///
1409    /// let x: Option<String> = None;
1410    /// assert_eq!(x.as_deref(), None);
1411    /// ```
1412    #[inline]
1413    #[stable(feature = "option_deref", since = "1.40.0")]
1414    #[rustc_const_unstable(feature = "const_convert", issue = "143773")]
1415    pub const fn as_deref(&self) -> Option<&T::Target>
1416    where
1417        T: [const] Deref,
1418    {
1419        self.as_ref().map(Deref::deref)
1420    }
1421
1422    /// Converts from `Option<T>` (or `&mut Option<T>`) to `Option<&mut T::Target>`.
1423    ///
1424    /// Leaves the original `Option` in-place, creating a new one containing a mutable reference to
1425    /// the inner type's [`Deref::Target`] type.
1426    ///
1427    /// # Examples
1428    ///
1429    /// ```
1430    /// let mut x: Option<String> = Some("hey".to_owned());
1431    /// assert_eq!(x.as_deref_mut().map(|x| {
1432    ///     x.make_ascii_uppercase();
1433    ///     x
1434    /// }), Some("HEY".to_owned().as_mut_str()));
1435    /// ```
1436    #[inline]
1437    #[stable(feature = "option_deref", since = "1.40.0")]
1438    #[rustc_const_unstable(feature = "const_convert", issue = "143773")]
1439    pub const fn as_deref_mut(&mut self) -> Option<&mut T::Target>
1440    where
1441        T: [const] DerefMut,
1442    {
1443        self.as_mut().map(DerefMut::deref_mut)
1444    }
1445
1446    /////////////////////////////////////////////////////////////////////////
1447    // Iterator constructors
1448    /////////////////////////////////////////////////////////////////////////
1449
1450    /// Returns an iterator over the possibly contained value.
1451    ///
1452    /// # Examples
1453    ///
1454    /// ```
1455    /// let x = Some(4);
1456    /// assert_eq!(x.iter().next(), Some(&4));
1457    ///
1458    /// let x: Option<u32> = None;
1459    /// assert_eq!(x.iter().next(), None);
1460    /// ```
1461    #[inline]
1462    #[stable(feature = "rust1", since = "1.0.0")]
1463    pub fn iter(&self) -> Iter<'_, T> {
1464        Iter { inner: Item { opt: self.as_ref() } }
1465    }
1466
1467    /// Returns a mutable iterator over the possibly contained value.
1468    ///
1469    /// # Examples
1470    ///
1471    /// ```
1472    /// let mut x = Some(4);
1473    /// match x.iter_mut().next() {
1474    ///     Some(v) => *v = 42,
1475    ///     None => {},
1476    /// }
1477    /// assert_eq!(x, Some(42));
1478    ///
1479    /// let mut x: Option<u32> = None;
1480    /// assert_eq!(x.iter_mut().next(), None);
1481    /// ```
1482    #[inline]
1483    #[stable(feature = "rust1", since = "1.0.0")]
1484    pub fn iter_mut(&mut self) -> IterMut<'_, T> {
1485        IterMut { inner: Item { opt: self.as_mut() } }
1486    }
1487
1488    /////////////////////////////////////////////////////////////////////////
1489    // Boolean operations on the values, eager and lazy
1490    /////////////////////////////////////////////////////////////////////////
1491
1492    /// Returns [`None`] if the option is [`None`], otherwise returns `optb`.
1493    ///
1494    /// Arguments passed to `and` are eagerly evaluated; if you are passing the
1495    /// result of a function call, it is recommended to use [`and_then`], which is
1496    /// lazily evaluated.
1497    ///
1498    /// [`and_then`]: Option::and_then
1499    ///
1500    /// # Examples
1501    ///
1502    /// ```
1503    /// let x = Some(2);
1504    /// let y: Option<&str> = None;
1505    /// assert_eq!(x.and(y), None);
1506    ///
1507    /// let x: Option<u32> = None;
1508    /// let y = Some("foo");
1509    /// assert_eq!(x.and(y), None);
1510    ///
1511    /// let x = Some(2);
1512    /// let y = Some("foo");
1513    /// assert_eq!(x.and(y), Some("foo"));
1514    ///
1515    /// let x: Option<u32> = None;
1516    /// let y: Option<&str> = None;
1517    /// assert_eq!(x.and(y), None);
1518    /// ```
1519    #[inline]
1520    #[stable(feature = "rust1", since = "1.0.0")]
1521    #[rustc_const_unstable(feature = "const_option_ops", issue = "143956")]
1522    pub const fn and<U>(self, optb: Option<U>) -> Option<U>
1523    where
1524        T: [const] Destruct,
1525        U: [const] Destruct,
1526    {
1527        match self {
1528            Some(_) => optb,
1529            None => None,
1530        }
1531    }
1532
1533    /// Returns [`None`] if the option is [`None`], otherwise calls `f` with the
1534    /// wrapped value and returns the result.
1535    ///
1536    /// Some languages call this operation flatmap.
1537    ///
1538    /// # Examples
1539    ///
1540    /// ```
1541    /// fn sq_then_to_string(x: u32) -> Option<String> {
1542    ///     x.checked_mul(x).map(|sq| sq.to_string())
1543    /// }
1544    ///
1545    /// assert_eq!(Some(2).and_then(sq_then_to_string), Some(4.to_string()));
1546    /// assert_eq!(Some(1_000_000).and_then(sq_then_to_string), None); // overflowed!
1547    /// assert_eq!(None.and_then(sq_then_to_string), None);
1548    /// ```
1549    ///
1550    /// Often used to chain fallible operations that may return [`None`].
1551    ///
1552    /// ```
1553    /// let arr_2d = [["A0", "A1"], ["B0", "B1"]];
1554    ///
1555    /// let item_0_1 = arr_2d.get(0).and_then(|row| row.get(1));
1556    /// assert_eq!(item_0_1, Some(&"A1"));
1557    ///
1558    /// let item_2_0 = arr_2d.get(2).and_then(|row| row.get(0));
1559    /// assert_eq!(item_2_0, None);
1560    /// ```
1561    #[doc(alias = "flatmap")]
1562    #[inline]
1563    #[stable(feature = "rust1", since = "1.0.0")]
1564    #[rustc_confusables("flat_map", "flatmap")]
1565    #[rustc_const_unstable(feature = "const_option_ops", issue = "143956")]
1566    pub const fn and_then<U, F>(self, f: F) -> Option<U>
1567    where
1568        F: [const] FnOnce(T) -> Option<U> + [const] Destruct,
1569    {
1570        match self {
1571            Some(x) => f(x),
1572            None => None,
1573        }
1574    }
1575
1576    /// Returns [`None`] if the option is [`None`], otherwise calls `predicate`
1577    /// with the wrapped value and returns:
1578    ///
1579    /// - [`Some(t)`] if `predicate` returns `true` (where `t` is the wrapped
1580    ///   value), and
1581    /// - [`None`] if `predicate` returns `false`.
1582    ///
1583    /// This function works similar to [`Iterator::filter()`]. You can imagine
1584    /// the `Option<T>` being an iterator over one or zero elements. `filter()`
1585    /// lets you decide which elements to keep.
1586    ///
1587    /// # Examples
1588    ///
1589    /// ```rust
1590    /// fn is_even(n: &i32) -> bool {
1591    ///     n % 2 == 0
1592    /// }
1593    ///
1594    /// assert_eq!(None.filter(is_even), None);
1595    /// assert_eq!(Some(3).filter(is_even), None);
1596    /// assert_eq!(Some(4).filter(is_even), Some(4));
1597    /// ```
1598    ///
1599    /// [`Some(t)`]: Some
1600    #[inline]
1601    #[stable(feature = "option_filter", since = "1.27.0")]
1602    #[rustc_const_unstable(feature = "const_option_ops", issue = "143956")]
1603    pub const fn filter<P>(self, predicate: P) -> Self
1604    where
1605        P: [const] FnOnce(&T) -> bool + [const] Destruct,
1606        T: [const] Destruct,
1607    {
1608        if let Some(x) = self {
1609            if predicate(&x) {
1610                return Some(x);
1611            }
1612        }
1613        None
1614    }
1615
1616    /// Returns the option if it contains a value, otherwise returns `optb`.
1617    ///
1618    /// Arguments passed to `or` are eagerly evaluated; if you are passing the
1619    /// result of a function call, it is recommended to use [`or_else`], which is
1620    /// lazily evaluated.
1621    ///
1622    /// [`or_else`]: Option::or_else
1623    ///
1624    /// # Examples
1625    ///
1626    /// ```
1627    /// let x = Some(2);
1628    /// let y = None;
1629    /// assert_eq!(x.or(y), Some(2));
1630    ///
1631    /// let x = None;
1632    /// let y = Some(100);
1633    /// assert_eq!(x.or(y), Some(100));
1634    ///
1635    /// let x = Some(2);
1636    /// let y = Some(100);
1637    /// assert_eq!(x.or(y), Some(2));
1638    ///
1639    /// let x: Option<u32> = None;
1640    /// let y = None;
1641    /// assert_eq!(x.or(y), None);
1642    /// ```
1643    #[inline]
1644    #[stable(feature = "rust1", since = "1.0.0")]
1645    #[rustc_const_unstable(feature = "const_option_ops", issue = "143956")]
1646    pub const fn or(self, optb: Option<T>) -> Option<T>
1647    where
1648        T: [const] Destruct,
1649    {
1650        match self {
1651            x @ Some(_) => x,
1652            None => optb,
1653        }
1654    }
1655
1656    /// Returns the option if it contains a value, otherwise calls `f` and
1657    /// returns the result.
1658    ///
1659    /// # Examples
1660    ///
1661    /// ```
1662    /// fn nobody() -> Option<&'static str> { None }
1663    /// fn vikings() -> Option<&'static str> { Some("vikings") }
1664    ///
1665    /// assert_eq!(Some("barbarians").or_else(vikings), Some("barbarians"));
1666    /// assert_eq!(None.or_else(vikings), Some("vikings"));
1667    /// assert_eq!(None.or_else(nobody), None);
1668    /// ```
1669    #[inline]
1670    #[stable(feature = "rust1", since = "1.0.0")]
1671    #[rustc_const_unstable(feature = "const_option_ops", issue = "143956")]
1672    pub const fn or_else<F>(self, f: F) -> Option<T>
1673    where
1674        F: [const] FnOnce() -> Option<T> + [const] Destruct,
1675        //FIXME(const_hack): this `T: [const] Destruct` is unnecessary, but even precise live drops can't tell
1676        // no value of type `T` gets dropped here
1677        T: [const] Destruct,
1678    {
1679        match self {
1680            x @ Some(_) => x,
1681            None => f(),
1682        }
1683    }
1684
1685    /// Returns [`Some`] if exactly one of `self`, `optb` is [`Some`], otherwise returns [`None`].
1686    ///
1687    /// # Examples
1688    ///
1689    /// ```
1690    /// let x = Some(2);
1691    /// let y: Option<u32> = None;
1692    /// assert_eq!(x.xor(y), Some(2));
1693    ///
1694    /// let x: Option<u32> = None;
1695    /// let y = Some(2);
1696    /// assert_eq!(x.xor(y), Some(2));
1697    ///
1698    /// let x = Some(2);
1699    /// let y = Some(2);
1700    /// assert_eq!(x.xor(y), None);
1701    ///
1702    /// let x: Option<u32> = None;
1703    /// let y: Option<u32> = None;
1704    /// assert_eq!(x.xor(y), None);
1705    /// ```
1706    #[inline]
1707    #[stable(feature = "option_xor", since = "1.37.0")]
1708    #[rustc_const_unstable(feature = "const_option_ops", issue = "143956")]
1709    pub const fn xor(self, optb: Option<T>) -> Option<T>
1710    where
1711        T: [const] Destruct,
1712    {
1713        match (self, optb) {
1714            (a @ Some(_), None) => a,
1715            (None, b @ Some(_)) => b,
1716            _ => None,
1717        }
1718    }
1719
1720    /////////////////////////////////////////////////////////////////////////
1721    // Entry-like operations to insert a value and return a reference
1722    /////////////////////////////////////////////////////////////////////////
1723
1724    /// Inserts `value` into the option, then returns a mutable reference to it.
1725    ///
1726    /// If the option already contains a value, the old value is dropped.
1727    ///
1728    /// See also [`Option::get_or_insert`], which doesn't update the value if
1729    /// the option already contains [`Some`].
1730    ///
1731    /// # Example
1732    ///
1733    /// ```
1734    /// let mut opt = None;
1735    /// let val = opt.insert(1);
1736    /// assert_eq!(*val, 1);
1737    /// assert_eq!(opt.unwrap(), 1);
1738    /// let val = opt.insert(2);
1739    /// assert_eq!(*val, 2);
1740    /// *val = 3;
1741    /// assert_eq!(opt.unwrap(), 3);
1742    /// ```
1743    #[must_use = "if you intended to set a value, consider assignment instead"]
1744    #[inline]
1745    #[stable(feature = "option_insert", since = "1.53.0")]
1746    #[rustc_const_unstable(feature = "const_option_ops", issue = "143956")]
1747    #[cfg(not(feature = "ferrocene_subset"))]
1748    pub const fn insert(&mut self, value: T) -> &mut T
1749    where
1750        T: [const] Destruct,
1751    {
1752        *self = Some(value);
1753
1754        // SAFETY: the code above just filled the option
1755        unsafe { self.as_mut().unwrap_unchecked() }
1756    }
1757
1758    /// Inserts `value` into the option if it is [`None`], then
1759    /// returns a mutable reference to the contained value.
1760    ///
1761    /// See also [`Option::insert`], which updates the value even if
1762    /// the option already contains [`Some`].
1763    ///
1764    /// # Examples
1765    ///
1766    /// ```
1767    /// let mut x = None;
1768    ///
1769    /// {
1770    ///     let y: &mut u32 = x.get_or_insert(5);
1771    ///     assert_eq!(y, &5);
1772    ///
1773    ///     *y = 7;
1774    /// }
1775    ///
1776    /// assert_eq!(x, Some(7));
1777    /// ```
1778    #[inline]
1779    #[stable(feature = "option_entry", since = "1.20.0")]
1780    #[cfg(not(feature = "ferrocene_subset"))]
1781    pub fn get_or_insert(&mut self, value: T) -> &mut T {
1782        self.get_or_insert_with(|| value)
1783    }
1784
1785    /// Inserts the default value into the option if it is [`None`], then
1786    /// returns a mutable reference to the contained value.
1787    ///
1788    /// # Examples
1789    ///
1790    /// ```
1791    /// let mut x = None;
1792    ///
1793    /// {
1794    ///     let y: &mut u32 = x.get_or_insert_default();
1795    ///     assert_eq!(y, &0);
1796    ///
1797    ///     *y = 7;
1798    /// }
1799    ///
1800    /// assert_eq!(x, Some(7));
1801    /// ```
1802    #[inline]
1803    #[stable(feature = "option_get_or_insert_default", since = "1.83.0")]
1804    #[rustc_const_unstable(feature = "const_option_ops", issue = "143956")]
1805    #[cfg(not(feature = "ferrocene_subset"))]
1806    pub const fn get_or_insert_default(&mut self) -> &mut T
1807    where
1808        T: [const] Default + [const] Destruct,
1809    {
1810        self.get_or_insert_with(T::default)
1811    }
1812
1813    /// Inserts a value computed from `f` into the option if it is [`None`],
1814    /// then returns a mutable reference to the contained value.
1815    ///
1816    /// # Examples
1817    ///
1818    /// ```
1819    /// let mut x = None;
1820    ///
1821    /// {
1822    ///     let y: &mut u32 = x.get_or_insert_with(|| 5);
1823    ///     assert_eq!(y, &5);
1824    ///
1825    ///     *y = 7;
1826    /// }
1827    ///
1828    /// assert_eq!(x, Some(7));
1829    /// ```
1830    #[inline]
1831    #[stable(feature = "option_entry", since = "1.20.0")]
1832    #[rustc_const_unstable(feature = "const_option_ops", issue = "143956")]
1833    #[cfg(not(feature = "ferrocene_subset"))]
1834    pub const fn get_or_insert_with<F>(&mut self, f: F) -> &mut T
1835    where
1836        F: [const] FnOnce() -> T + [const] Destruct,
1837        T: [const] Destruct,
1838    {
1839        if let None = self {
1840            *self = Some(f());
1841        }
1842
1843        // SAFETY: a `None` variant for `self` would have been replaced by a `Some`
1844        // variant in the code above.
1845        unsafe { self.as_mut().unwrap_unchecked() }
1846    }
1847
1848    /////////////////////////////////////////////////////////////////////////
1849    // Misc
1850    /////////////////////////////////////////////////////////////////////////
1851
1852    /// Takes the value out of the option, leaving a [`None`] in its place.
1853    ///
1854    /// # Examples
1855    ///
1856    /// ```
1857    /// let mut x = Some(2);
1858    /// let y = x.take();
1859    /// assert_eq!(x, None);
1860    /// assert_eq!(y, Some(2));
1861    ///
1862    /// let mut x: Option<u32> = None;
1863    /// let y = x.take();
1864    /// assert_eq!(x, None);
1865    /// assert_eq!(y, None);
1866    /// ```
1867    #[inline]
1868    #[stable(feature = "rust1", since = "1.0.0")]
1869    #[rustc_const_stable(feature = "const_option", since = "1.83.0")]
1870    pub const fn take(&mut self) -> Option<T> {
1871        // FIXME(const-hack) replace `mem::replace` by `mem::take` when the latter is const ready
1872        mem::replace(self, None)
1873    }
1874
1875    /// Takes the value out of the option, but only if the predicate evaluates to
1876    /// `true` on a mutable reference to the value.
1877    ///
1878    /// In other words, replaces `self` with `None` if the predicate returns `true`.
1879    /// This method operates similar to [`Option::take`] but conditional.
1880    ///
1881    /// # Examples
1882    ///
1883    /// ```
1884    /// let mut x = Some(42);
1885    ///
1886    /// let prev = x.take_if(|v| if *v == 42 {
1887    ///     *v += 1;
1888    ///     false
1889    /// } else {
1890    ///     false
1891    /// });
1892    /// assert_eq!(x, Some(43));
1893    /// assert_eq!(prev, None);
1894    ///
1895    /// let prev = x.take_if(|v| *v == 43);
1896    /// assert_eq!(x, None);
1897    /// assert_eq!(prev, Some(43));
1898    /// ```
1899    #[inline]
1900    #[stable(feature = "option_take_if", since = "1.80.0")]
1901    #[rustc_const_unstable(feature = "const_option_ops", issue = "143956")]
1902    #[cfg(not(feature = "ferrocene_subset"))]
1903    pub const fn take_if<P>(&mut self, predicate: P) -> Option<T>
1904    where
1905        P: [const] FnOnce(&mut T) -> bool + [const] Destruct,
1906    {
1907        if self.as_mut().map_or(false, predicate) { self.take() } else { None }
1908    }
1909
1910    /// Replaces the actual value in the option by the value given in parameter,
1911    /// returning the old value if present,
1912    /// leaving a [`Some`] in its place without deinitializing either one.
1913    ///
1914    /// # Examples
1915    ///
1916    /// ```
1917    /// let mut x = Some(2);
1918    /// let old = x.replace(5);
1919    /// assert_eq!(x, Some(5));
1920    /// assert_eq!(old, Some(2));
1921    ///
1922    /// let mut x = None;
1923    /// let old = x.replace(3);
1924    /// assert_eq!(x, Some(3));
1925    /// assert_eq!(old, None);
1926    /// ```
1927    #[inline]
1928    #[stable(feature = "option_replace", since = "1.31.0")]
1929    #[rustc_const_stable(feature = "const_option", since = "1.83.0")]
1930    pub const fn replace(&mut self, value: T) -> Option<T> {
1931        mem::replace(self, Some(value))
1932    }
1933
1934    /// Zips `self` with another `Option`.
1935    ///
1936    /// If `self` is `Some(s)` and `other` is `Some(o)`, this method returns `Some((s, o))`.
1937    /// Otherwise, `None` is returned.
1938    ///
1939    /// # Examples
1940    ///
1941    /// ```
1942    /// let x = Some(1);
1943    /// let y = Some("hi");
1944    /// let z = None::<u8>;
1945    ///
1946    /// assert_eq!(x.zip(y), Some((1, "hi")));
1947    /// assert_eq!(x.zip(z), None);
1948    /// ```
1949    #[stable(feature = "option_zip_option", since = "1.46.0")]
1950    #[rustc_const_unstable(feature = "const_option_ops", issue = "143956")]
1951    pub const fn zip<U>(self, other: Option<U>) -> Option<(T, U)>
1952    where
1953        T: [const] Destruct,
1954        U: [const] Destruct,
1955    {
1956        match (self, other) {
1957            (Some(a), Some(b)) => Some((a, b)),
1958            _ => None,
1959        }
1960    }
1961
1962    /// Zips `self` and another `Option` with function `f`.
1963    ///
1964    /// If `self` is `Some(s)` and `other` is `Some(o)`, this method returns `Some(f(s, o))`.
1965    /// Otherwise, `None` is returned.
1966    ///
1967    /// # Examples
1968    ///
1969    /// ```
1970    /// #![feature(option_zip)]
1971    ///
1972    /// #[derive(Debug, PartialEq)]
1973    /// struct Point {
1974    ///     x: f64,
1975    ///     y: f64,
1976    /// }
1977    ///
1978    /// impl Point {
1979    ///     fn new(x: f64, y: f64) -> Self {
1980    ///         Self { x, y }
1981    ///     }
1982    /// }
1983    ///
1984    /// let x = Some(17.5);
1985    /// let y = Some(42.7);
1986    ///
1987    /// assert_eq!(x.zip_with(y, Point::new), Some(Point { x: 17.5, y: 42.7 }));
1988    /// assert_eq!(x.zip_with(None, Point::new), None);
1989    /// ```
1990    #[unstable(feature = "option_zip", issue = "70086")]
1991    #[rustc_const_unstable(feature = "const_option_ops", issue = "143956")]
1992    #[cfg(not(feature = "ferrocene_subset"))]
1993    pub const fn zip_with<U, F, R>(self, other: Option<U>, f: F) -> Option<R>
1994    where
1995        F: [const] FnOnce(T, U) -> R + [const] Destruct,
1996        T: [const] Destruct,
1997        U: [const] Destruct,
1998    {
1999        match (self, other) {
2000            (Some(a), Some(b)) => Some(f(a, b)),
2001            _ => None,
2002        }
2003    }
2004
2005    /// Reduces two options into one, using the provided function if both are `Some`.
2006    ///
2007    /// If `self` is `Some(s)` and `other` is `Some(o)`, this method returns `Some(f(s, o))`.
2008    /// Otherwise, if only one of `self` and `other` is `Some`, that one is returned.
2009    /// If both `self` and `other` are `None`, `None` is returned.
2010    ///
2011    /// # Examples
2012    ///
2013    /// ```
2014    /// #![feature(option_reduce)]
2015    ///
2016    /// let s12 = Some(12);
2017    /// let s17 = Some(17);
2018    /// let n = None;
2019    /// let f = |a, b| a + b;
2020    ///
2021    /// assert_eq!(s12.reduce(s17, f), Some(29));
2022    /// assert_eq!(s12.reduce(n, f), Some(12));
2023    /// assert_eq!(n.reduce(s17, f), Some(17));
2024    /// assert_eq!(n.reduce(n, f), None);
2025    /// ```
2026    #[unstable(feature = "option_reduce", issue = "144273")]
2027    pub fn reduce<U, R, F>(self, other: Option<U>, f: F) -> Option<R>
2028    where
2029        T: Into<R>,
2030        U: Into<R>,
2031        F: FnOnce(T, U) -> R,
2032    {
2033        match (self, other) {
2034            (Some(a), Some(b)) => Some(f(a, b)),
2035            (Some(a), _) => Some(a.into()),
2036            (_, Some(b)) => Some(b.into()),
2037            _ => None,
2038        }
2039    }
2040}
2041
2042impl<T: IntoIterator> Option<T> {
2043    /// Transforms an optional iterator into an iterator.
2044    ///
2045    /// If `self` is `None`, the resulting iterator is empty.
2046    /// Otherwise, an iterator is made from the `Some` value and returned.
2047    /// # Examples
2048    /// ```
2049    /// #![feature(option_into_flat_iter)]
2050    ///
2051    /// let o1 = Some([1, 2]);
2052    /// let o2 = None::<&[usize]>;
2053    ///
2054    /// assert_eq!(o1.into_flat_iter().collect::<Vec<_>>(), [1, 2]);
2055    /// assert_eq!(o2.into_flat_iter().collect::<Vec<_>>(), Vec::<&usize>::new());
2056    /// ```
2057    #[cfg(not(feature = "ferrocene_subset"))]
2058    #[unstable(feature = "option_into_flat_iter", issue = "148441")]
2059    pub fn into_flat_iter<A>(self) -> OptionFlatten<A>
2060    where
2061        T: IntoIterator<IntoIter = A>,
2062    {
2063        OptionFlatten { iter: self.map(IntoIterator::into_iter) }
2064    }
2065}
2066
2067impl<T, U> Option<(T, U)> {
2068    /// Unzips an option containing a tuple of two options.
2069    ///
2070    /// If `self` is `Some((a, b))` this method returns `(Some(a), Some(b))`.
2071    /// Otherwise, `(None, None)` is returned.
2072    ///
2073    /// # Examples
2074    ///
2075    /// ```
2076    /// let x = Some((1, "hi"));
2077    /// let y = None::<(u8, u32)>;
2078    ///
2079    /// assert_eq!(x.unzip(), (Some(1), Some("hi")));
2080    /// assert_eq!(y.unzip(), (None, None));
2081    /// ```
2082    #[inline]
2083    #[stable(feature = "unzip_option", since = "1.66.0")]
2084    pub fn unzip(self) -> (Option<T>, Option<U>) {
2085        match self {
2086            Some((a, b)) => (Some(a), Some(b)),
2087            None => (None, None),
2088        }
2089    }
2090}
2091
2092impl<T> Option<&T> {
2093    /// Maps an `Option<&T>` to an `Option<T>` by copying the contents of the
2094    /// option.
2095    ///
2096    /// # Examples
2097    ///
2098    /// ```
2099    /// let x = 12;
2100    /// let opt_x = Some(&x);
2101    /// assert_eq!(opt_x, Some(&12));
2102    /// let copied = opt_x.copied();
2103    /// assert_eq!(copied, Some(12));
2104    /// ```
2105    #[must_use = "`self` will be dropped if the result is not used"]
2106    #[stable(feature = "copied", since = "1.35.0")]
2107    #[rustc_const_stable(feature = "const_option", since = "1.83.0")]
2108    pub const fn copied(self) -> Option<T>
2109    where
2110        T: Copy,
2111    {
2112        // FIXME(const-hack): this implementation, which sidesteps using `Option::map` since it's not const
2113        // ready yet, should be reverted when possible to avoid code repetition
2114        match self {
2115            Some(&v) => Some(v),
2116            None => None,
2117        }
2118    }
2119
2120    /// Maps an `Option<&T>` to an `Option<T>` by cloning the contents of the
2121    /// option.
2122    ///
2123    /// # Examples
2124    ///
2125    /// ```
2126    /// let x = 12;
2127    /// let opt_x = Some(&x);
2128    /// assert_eq!(opt_x, Some(&12));
2129    /// let cloned = opt_x.cloned();
2130    /// assert_eq!(cloned, Some(12));
2131    /// ```
2132    #[must_use = "`self` will be dropped if the result is not used"]
2133    #[stable(feature = "rust1", since = "1.0.0")]
2134    pub fn cloned(self) -> Option<T>
2135    where
2136        T: Clone,
2137    {
2138        match self {
2139            Some(t) => Some(t.clone()),
2140            None => None,
2141        }
2142    }
2143}
2144
2145impl<T> Option<&mut T> {
2146    /// Maps an `Option<&mut T>` to an `Option<T>` by copying the contents of the
2147    /// option.
2148    ///
2149    /// # Examples
2150    ///
2151    /// ```
2152    /// let mut x = 12;
2153    /// let opt_x = Some(&mut x);
2154    /// assert_eq!(opt_x, Some(&mut 12));
2155    /// let copied = opt_x.copied();
2156    /// assert_eq!(copied, Some(12));
2157    /// ```
2158    #[must_use = "`self` will be dropped if the result is not used"]
2159    #[stable(feature = "copied", since = "1.35.0")]
2160    #[rustc_const_stable(feature = "const_option", since = "1.83.0")]
2161    pub const fn copied(self) -> Option<T>
2162    where
2163        T: Copy,
2164    {
2165        match self {
2166            Some(&mut t) => Some(t),
2167            None => None,
2168        }
2169    }
2170
2171    /// Maps an `Option<&mut T>` to an `Option<T>` by cloning the contents of the
2172    /// option.
2173    ///
2174    /// # Examples
2175    ///
2176    /// ```
2177    /// let mut x = 12;
2178    /// let opt_x = Some(&mut x);
2179    /// assert_eq!(opt_x, Some(&mut 12));
2180    /// let cloned = opt_x.cloned();
2181    /// assert_eq!(cloned, Some(12));
2182    /// ```
2183    #[must_use = "`self` will be dropped if the result is not used"]
2184    #[stable(since = "1.26.0", feature = "option_ref_mut_cloned")]
2185    pub fn cloned(self) -> Option<T>
2186    where
2187        T: Clone,
2188    {
2189        match self {
2190            Some(t) => Some(t.clone()),
2191            None => None,
2192        }
2193    }
2194}
2195
2196impl<T, E> Option<Result<T, E>> {
2197    /// Transposes an `Option` of a [`Result`] into a [`Result`] of an `Option`.
2198    ///
2199    /// <code>[Some]\([Ok]\(\_))</code> is mapped to <code>[Ok]\([Some]\(\_))</code>,
2200    /// <code>[Some]\([Err]\(\_))</code> is mapped to <code>[Err]\(\_)</code>,
2201    /// and [`None`] will be mapped to <code>[Ok]\([None])</code>.
2202    ///
2203    /// # Examples
2204    ///
2205    /// ```
2206    /// #[derive(Debug, Eq, PartialEq)]
2207    /// struct SomeErr;
2208    ///
2209    /// let x: Option<Result<i32, SomeErr>> = Some(Ok(5));
2210    /// let y: Result<Option<i32>, SomeErr> = Ok(Some(5));
2211    /// assert_eq!(x.transpose(), y);
2212    /// ```
2213    #[inline]
2214    #[stable(feature = "transpose_result", since = "1.33.0")]
2215    #[rustc_allow_const_fn_unstable(const_precise_live_drops)]
2216    #[rustc_const_stable(feature = "const_option", since = "1.83.0")]
2217    pub const fn transpose(self) -> Result<Option<T>, E> {
2218        match self {
2219            Some(Ok(x)) => Ok(Some(x)),
2220            Some(Err(e)) => Err(e),
2221            None => Ok(None),
2222        }
2223    }
2224}
2225
2226#[cfg_attr(not(panic = "immediate-abort"), inline(never))]
2227#[cfg_attr(panic = "immediate-abort", inline)]
2228#[cold]
2229#[track_caller]
2230const fn unwrap_failed() -> ! {
2231    panic("called `Option::unwrap()` on a `None` value")
2232}
2233
2234// This is a separate function to reduce the code size of .expect() itself.
2235#[cfg_attr(not(panic = "immediate-abort"), inline(never))]
2236#[cfg_attr(panic = "immediate-abort", inline)]
2237#[cold]
2238#[track_caller]
2239#[cfg(not(feature = "ferrocene_certified_runtime"))]
2240const fn expect_failed(msg: &str) -> ! {
2241    panic_display(&msg)
2242}
2243
2244/////////////////////////////////////////////////////////////////////////////
2245// Trait implementations
2246/////////////////////////////////////////////////////////////////////////////
2247
2248#[stable(feature = "rust1", since = "1.0.0")]
2249#[rustc_const_unstable(feature = "const_clone", issue = "142757")]
2250impl<T> const Clone for Option<T>
2251where
2252    // FIXME(const_hack): the T: [const] Destruct should be inferred from the Self: [const] Destruct in clone_from.
2253    // See https://github.com/rust-lang/rust/issues/144207
2254    T: [const] Clone + [const] Destruct,
2255{
2256    #[inline]
2257    fn clone(&self) -> Self {
2258        match self {
2259            Some(x) => Some(x.clone()),
2260            None => None,
2261        }
2262    }
2263
2264    #[inline]
2265    fn clone_from(&mut self, source: &Self) {
2266        match (self, source) {
2267            (Some(to), Some(from)) => to.clone_from(from),
2268            (to, from) => *to = from.clone(),
2269        }
2270    }
2271}
2272
2273#[unstable(feature = "ergonomic_clones", issue = "132290")]
2274#[cfg(not(feature = "ferrocene_subset"))]
2275impl<T> crate::clone::UseCloned for Option<T> where T: crate::clone::UseCloned {}
2276
2277#[doc(hidden)]
2278#[unstable(feature = "trivial_clone", issue = "none")]
2279#[rustc_const_unstable(feature = "const_clone", issue = "142757")]
2280unsafe impl<T> const TrivialClone for Option<T> where T: [const] TrivialClone + [const] Destruct {}
2281
2282#[stable(feature = "rust1", since = "1.0.0")]
2283#[rustc_const_unstable(feature = "const_default", issue = "143894")]
2284impl<T> const Default for Option<T> {
2285    /// Returns [`None`][Option::None].
2286    ///
2287    /// # Examples
2288    ///
2289    /// ```
2290    /// let opt: Option<u32> = Option::default();
2291    /// assert!(opt.is_none());
2292    /// ```
2293    #[inline]
2294    fn default() -> Option<T> {
2295        None
2296    }
2297}
2298
2299#[stable(feature = "rust1", since = "1.0.0")]
2300impl<T> IntoIterator for Option<T> {
2301    type Item = T;
2302    type IntoIter = IntoIter<T>;
2303
2304    /// Returns a consuming iterator over the possibly contained value.
2305    ///
2306    /// # Examples
2307    ///
2308    /// ```
2309    /// let x = Some("string");
2310    /// let v: Vec<&str> = x.into_iter().collect();
2311    /// assert_eq!(v, ["string"]);
2312    ///
2313    /// let x = None;
2314    /// let v: Vec<&str> = x.into_iter().collect();
2315    /// assert!(v.is_empty());
2316    /// ```
2317    #[inline]
2318    fn into_iter(self) -> IntoIter<T> {
2319        IntoIter { inner: Item { opt: self } }
2320    }
2321}
2322
2323#[stable(since = "1.4.0", feature = "option_iter")]
2324#[cfg(not(feature = "ferrocene_subset"))]
2325impl<'a, T> IntoIterator for &'a Option<T> {
2326    type Item = &'a T;
2327    type IntoIter = Iter<'a, T>;
2328
2329    fn into_iter(self) -> Iter<'a, T> {
2330        self.iter()
2331    }
2332}
2333
2334#[stable(since = "1.4.0", feature = "option_iter")]
2335#[cfg(not(feature = "ferrocene_subset"))]
2336impl<'a, T> IntoIterator for &'a mut Option<T> {
2337    type Item = &'a mut T;
2338    type IntoIter = IterMut<'a, T>;
2339
2340    fn into_iter(self) -> IterMut<'a, T> {
2341        self.iter_mut()
2342    }
2343}
2344
2345#[stable(since = "1.12.0", feature = "option_from")]
2346#[rustc_const_unstable(feature = "const_convert", issue = "143773")]
2347impl<T> const From<T> for Option<T> {
2348    /// Moves `val` into a new [`Some`].
2349    ///
2350    /// # Examples
2351    ///
2352    /// ```
2353    /// let o: Option<u8> = Option::from(67);
2354    ///
2355    /// assert_eq!(Some(67), o);
2356    /// ```
2357    fn from(val: T) -> Option<T> {
2358        Some(val)
2359    }
2360}
2361
2362#[stable(feature = "option_ref_from_ref_option", since = "1.30.0")]
2363#[rustc_const_unstable(feature = "const_convert", issue = "143773")]
2364impl<'a, T> const From<&'a Option<T>> for Option<&'a T> {
2365    /// Converts from `&Option<T>` to `Option<&T>`.
2366    ///
2367    /// # Examples
2368    ///
2369    /// Converts an <code>[Option]<[String]></code> into an <code>[Option]<[usize]></code>, preserving
2370    /// the original. The [`map`] method takes the `self` argument by value, consuming the original,
2371    /// so this technique uses `from` to first take an [`Option`] to a reference
2372    /// to the value inside the original.
2373    ///
2374    /// [`map`]: Option::map
2375    /// [String]: ../../std/string/struct.String.html "String"
2376    ///
2377    /// ```
2378    /// let s: Option<String> = Some(String::from("Hello, Rustaceans!"));
2379    /// let o: Option<usize> = Option::from(&s).map(|ss: &String| ss.len());
2380    ///
2381    /// println!("Can still print s: {s:?}");
2382    ///
2383    /// assert_eq!(o, Some(18));
2384    /// ```
2385    fn from(o: &'a Option<T>) -> Option<&'a T> {
2386        o.as_ref()
2387    }
2388}
2389
2390#[stable(feature = "option_ref_from_ref_option", since = "1.30.0")]
2391#[rustc_const_unstable(feature = "const_convert", issue = "143773")]
2392impl<'a, T> const From<&'a mut Option<T>> for Option<&'a mut T> {
2393    /// Converts from `&mut Option<T>` to `Option<&mut T>`
2394    ///
2395    /// # Examples
2396    ///
2397    /// ```
2398    /// let mut s = Some(String::from("Hello"));
2399    /// let o: Option<&mut String> = Option::from(&mut s);
2400    ///
2401    /// match o {
2402    ///     Some(t) => *t = String::from("Hello, Rustaceans!"),
2403    ///     None => (),
2404    /// }
2405    ///
2406    /// assert_eq!(s, Some(String::from("Hello, Rustaceans!")));
2407    /// ```
2408    fn from(o: &'a mut Option<T>) -> Option<&'a mut T> {
2409        o.as_mut()
2410    }
2411}
2412
2413// Ideally, LLVM should be able to optimize our derive code to this.
2414// Once https://github.com/llvm/llvm-project/issues/52622 is fixed, we can
2415// go back to deriving `PartialEq`.
2416#[stable(feature = "rust1", since = "1.0.0")]
2417#[cfg(not(feature = "ferrocene_subset"))]
2418impl<T> crate::marker::StructuralPartialEq for Option<T> {}
2419#[stable(feature = "rust1", since = "1.0.0")]
2420#[rustc_const_unstable(feature = "const_cmp", issue = "143800")]
2421impl<T: [const] PartialEq> const PartialEq for Option<T> {
2422    #[inline]
2423    fn eq(&self, other: &Self) -> bool {
2424        // Spelling out the cases explicitly optimizes better than
2425        // `_ => false`
2426        match (self, other) {
2427            (Some(l), Some(r)) => *l == *r,
2428            (Some(_), None) => false,
2429            (None, Some(_)) => false,
2430            (None, None) => true,
2431        }
2432    }
2433}
2434
2435// Manually implementing here somewhat improves codegen for
2436// https://github.com/rust-lang/rust/issues/49892, although still
2437// not optimal.
2438#[stable(feature = "rust1", since = "1.0.0")]
2439#[rustc_const_unstable(feature = "const_cmp", issue = "143800")]
2440#[cfg(not(feature = "ferrocene_subset"))]
2441impl<T: [const] PartialOrd> const PartialOrd for Option<T> {
2442    #[inline]
2443    fn partial_cmp(&self, other: &Self) -> Option<cmp::Ordering> {
2444        match (self, other) {
2445            (Some(l), Some(r)) => l.partial_cmp(r),
2446            (Some(_), None) => Some(cmp::Ordering::Greater),
2447            (None, Some(_)) => Some(cmp::Ordering::Less),
2448            (None, None) => Some(cmp::Ordering::Equal),
2449        }
2450    }
2451}
2452
2453#[stable(feature = "rust1", since = "1.0.0")]
2454#[rustc_const_unstable(feature = "const_cmp", issue = "143800")]
2455#[cfg(not(feature = "ferrocene_subset"))]
2456impl<T: [const] Ord> const Ord for Option<T> {
2457    #[inline]
2458    fn cmp(&self, other: &Self) -> cmp::Ordering {
2459        match (self, other) {
2460            (Some(l), Some(r)) => l.cmp(r),
2461            (Some(_), None) => cmp::Ordering::Greater,
2462            (None, Some(_)) => cmp::Ordering::Less,
2463            (None, None) => cmp::Ordering::Equal,
2464        }
2465    }
2466}
2467
2468/////////////////////////////////////////////////////////////////////////////
2469// The Option Iterators
2470/////////////////////////////////////////////////////////////////////////////
2471
2472#[cfg_attr(not(feature = "ferrocene_subset"), derive(Clone, Debug))]
2473struct Item<A> {
2474    #[allow(dead_code)]
2475    opt: Option<A>,
2476}
2477
2478impl<A> Iterator for Item<A> {
2479    type Item = A;
2480
2481    #[inline]
2482    fn next(&mut self) -> Option<A> {
2483        self.opt.take()
2484    }
2485
2486    #[inline]
2487    fn size_hint(&self) -> (usize, Option<usize>) {
2488        let len = self.len();
2489        (len, Some(len))
2490    }
2491}
2492
2493#[cfg(not(feature = "ferrocene_subset"))]
2494impl<A> DoubleEndedIterator for Item<A> {
2495    #[inline]
2496    fn next_back(&mut self) -> Option<A> {
2497        self.opt.take()
2498    }
2499}
2500
2501impl<A> ExactSizeIterator for Item<A> {
2502    #[inline]
2503    fn len(&self) -> usize {
2504        self.opt.len()
2505    }
2506}
2507#[cfg(not(feature = "ferrocene_subset"))]
2508impl<A> FusedIterator for Item<A> {}
2509#[cfg(not(feature = "ferrocene_subset"))]
2510unsafe impl<A> TrustedLen for Item<A> {}
2511
2512/// An iterator over a reference to the [`Some`] variant of an [`Option`].
2513///
2514/// The iterator yields one value if the [`Option`] is a [`Some`], otherwise none.
2515///
2516/// This `struct` is created by the [`Option::iter`] function.
2517#[stable(feature = "rust1", since = "1.0.0")]
2518#[cfg_attr(not(feature = "ferrocene_subset"), derive(Debug))]
2519pub struct Iter<'a, A: 'a> {
2520    #[cfg_attr(feature = "ferrocene_subset", expect(dead_code))]
2521    inner: Item<&'a A>,
2522}
2523
2524#[stable(feature = "rust1", since = "1.0.0")]
2525#[cfg(not(feature = "ferrocene_subset"))]
2526impl<'a, A> Iterator for Iter<'a, A> {
2527    type Item = &'a A;
2528
2529    #[inline]
2530    fn next(&mut self) -> Option<&'a A> {
2531        self.inner.next()
2532    }
2533    #[inline]
2534    fn size_hint(&self) -> (usize, Option<usize>) {
2535        self.inner.size_hint()
2536    }
2537}
2538
2539#[stable(feature = "rust1", since = "1.0.0")]
2540#[cfg(not(feature = "ferrocene_subset"))]
2541impl<'a, A> DoubleEndedIterator for Iter<'a, A> {
2542    #[inline]
2543    fn next_back(&mut self) -> Option<&'a A> {
2544        self.inner.next_back()
2545    }
2546}
2547
2548#[stable(feature = "rust1", since = "1.0.0")]
2549#[cfg(not(feature = "ferrocene_subset"))]
2550impl<A> ExactSizeIterator for Iter<'_, A> {}
2551
2552#[stable(feature = "fused", since = "1.26.0")]
2553#[cfg(not(feature = "ferrocene_subset"))]
2554impl<A> FusedIterator for Iter<'_, A> {}
2555
2556#[unstable(feature = "trusted_len", issue = "37572")]
2557#[cfg(not(feature = "ferrocene_subset"))]
2558unsafe impl<A> TrustedLen for Iter<'_, A> {}
2559
2560#[stable(feature = "rust1", since = "1.0.0")]
2561#[cfg(not(feature = "ferrocene_subset"))]
2562impl<A> Clone for Iter<'_, A> {
2563    #[inline]
2564    fn clone(&self) -> Self {
2565        Iter { inner: self.inner.clone() }
2566    }
2567}
2568
2569/// An iterator over a mutable reference to the [`Some`] variant of an [`Option`].
2570///
2571/// The iterator yields one value if the [`Option`] is a [`Some`], otherwise none.
2572///
2573/// This `struct` is created by the [`Option::iter_mut`] function.
2574#[stable(feature = "rust1", since = "1.0.0")]
2575#[cfg_attr(not(feature = "ferrocene_subset"), derive(Debug))]
2576pub struct IterMut<'a, A: 'a> {
2577    #[cfg_attr(feature = "ferrocene_subset", expect(dead_code))]
2578    inner: Item<&'a mut A>,
2579}
2580
2581#[stable(feature = "rust1", since = "1.0.0")]
2582#[cfg(not(feature = "ferrocene_subset"))]
2583impl<'a, A> Iterator for IterMut<'a, A> {
2584    type Item = &'a mut A;
2585
2586    #[inline]
2587    fn next(&mut self) -> Option<&'a mut A> {
2588        self.inner.next()
2589    }
2590    #[inline]
2591    fn size_hint(&self) -> (usize, Option<usize>) {
2592        self.inner.size_hint()
2593    }
2594}
2595
2596#[stable(feature = "rust1", since = "1.0.0")]
2597#[cfg(not(feature = "ferrocene_subset"))]
2598impl<'a, A> DoubleEndedIterator for IterMut<'a, A> {
2599    #[inline]
2600    fn next_back(&mut self) -> Option<&'a mut A> {
2601        self.inner.next_back()
2602    }
2603}
2604
2605#[stable(feature = "rust1", since = "1.0.0")]
2606#[cfg(not(feature = "ferrocene_subset"))]
2607impl<A> ExactSizeIterator for IterMut<'_, A> {}
2608
2609#[stable(feature = "fused", since = "1.26.0")]
2610#[cfg(not(feature = "ferrocene_subset"))]
2611impl<A> FusedIterator for IterMut<'_, A> {}
2612#[unstable(feature = "trusted_len", issue = "37572")]
2613#[cfg(not(feature = "ferrocene_subset"))]
2614unsafe impl<A> TrustedLen for IterMut<'_, A> {}
2615
2616/// An iterator over the value in [`Some`] variant of an [`Option`].
2617///
2618/// The iterator yields one value if the [`Option`] is a [`Some`], otherwise none.
2619///
2620/// This `struct` is created by the [`Option::into_iter`] function.
2621#[cfg_attr(not(feature = "ferrocene_subset"), derive(Clone, Debug))]
2622#[stable(feature = "rust1", since = "1.0.0")]
2623pub struct IntoIter<A> {
2624    inner: Item<A>,
2625}
2626
2627#[stable(feature = "rust1", since = "1.0.0")]
2628impl<A> Iterator for IntoIter<A> {
2629    type Item = A;
2630
2631    #[inline]
2632    fn next(&mut self) -> Option<A> {
2633        self.inner.next()
2634    }
2635    #[inline]
2636    fn size_hint(&self) -> (usize, Option<usize>) {
2637        self.inner.size_hint()
2638    }
2639}
2640
2641#[stable(feature = "rust1", since = "1.0.0")]
2642#[cfg(not(feature = "ferrocene_subset"))]
2643impl<A> DoubleEndedIterator for IntoIter<A> {
2644    #[inline]
2645    fn next_back(&mut self) -> Option<A> {
2646        self.inner.next_back()
2647    }
2648}
2649
2650#[stable(feature = "rust1", since = "1.0.0")]
2651#[cfg(not(feature = "ferrocene_subset"))]
2652impl<A> ExactSizeIterator for IntoIter<A> {}
2653
2654#[stable(feature = "fused", since = "1.26.0")]
2655#[cfg(not(feature = "ferrocene_subset"))]
2656impl<A> FusedIterator for IntoIter<A> {}
2657
2658#[unstable(feature = "trusted_len", issue = "37572")]
2659#[cfg(not(feature = "ferrocene_subset"))]
2660unsafe impl<A> TrustedLen for IntoIter<A> {}
2661
2662/// The iterator produced by [`Option::into_flat_iter`]. See its documentation for more.
2663#[cfg(not(feature = "ferrocene_subset"))]
2664#[derive(Clone, Debug)]
2665#[unstable(feature = "option_into_flat_iter", issue = "148441")]
2666pub struct OptionFlatten<A> {
2667    iter: Option<A>,
2668}
2669
2670#[cfg(not(feature = "ferrocene_subset"))]
2671#[unstable(feature = "option_into_flat_iter", issue = "148441")]
2672impl<A: Iterator> Iterator for OptionFlatten<A> {
2673    type Item = A::Item;
2674
2675    fn next(&mut self) -> Option<Self::Item> {
2676        self.iter.as_mut()?.next()
2677    }
2678
2679    fn size_hint(&self) -> (usize, Option<usize>) {
2680        self.iter.as_ref().map(|i| i.size_hint()).unwrap_or((0, Some(0)))
2681    }
2682}
2683
2684#[cfg(not(feature = "ferrocene_subset"))]
2685#[unstable(feature = "option_into_flat_iter", issue = "148441")]
2686impl<A: DoubleEndedIterator> DoubleEndedIterator for OptionFlatten<A> {
2687    fn next_back(&mut self) -> Option<Self::Item> {
2688        self.iter.as_mut()?.next_back()
2689    }
2690}
2691
2692#[cfg(not(feature = "ferrocene_subset"))]
2693#[unstable(feature = "option_into_flat_iter", issue = "148441")]
2694impl<A: ExactSizeIterator> ExactSizeIterator for OptionFlatten<A> {}
2695
2696#[cfg(not(feature = "ferrocene_subset"))]
2697#[unstable(feature = "option_into_flat_iter", issue = "148441")]
2698impl<A: FusedIterator> FusedIterator for OptionFlatten<A> {}
2699
2700#[cfg(not(feature = "ferrocene_subset"))]
2701#[unstable(feature = "option_into_flat_iter", issue = "148441")]
2702unsafe impl<A: TrustedLen> TrustedLen for OptionFlatten<A> {}
2703
2704/////////////////////////////////////////////////////////////////////////////
2705// FromIterator
2706/////////////////////////////////////////////////////////////////////////////
2707
2708#[stable(feature = "rust1", since = "1.0.0")]
2709#[cfg(not(feature = "ferrocene_subset"))]
2710impl<A, V: FromIterator<A>> FromIterator<Option<A>> for Option<V> {
2711    /// Takes each element in the [`Iterator`]: if it is [`None`][Option::None],
2712    /// no further elements are taken, and the [`None`][Option::None] is
2713    /// returned. Should no [`None`][Option::None] occur, a container of type
2714    /// `V` containing the values of each [`Option`] is returned.
2715    ///
2716    /// # Examples
2717    ///
2718    /// Here is an example which increments every integer in a vector.
2719    /// We use the checked variant of `add` that returns `None` when the
2720    /// calculation would result in an overflow.
2721    ///
2722    /// ```
2723    /// let items = vec![0_u16, 1, 2];
2724    ///
2725    /// let res: Option<Vec<u16>> = items
2726    ///     .iter()
2727    ///     .map(|x| x.checked_add(1))
2728    ///     .collect();
2729    ///
2730    /// assert_eq!(res, Some(vec![1, 2, 3]));
2731    /// ```
2732    ///
2733    /// As you can see, this will return the expected, valid items.
2734    ///
2735    /// Here is another example that tries to subtract one from another list
2736    /// of integers, this time checking for underflow:
2737    ///
2738    /// ```
2739    /// let items = vec![2_u16, 1, 0];
2740    ///
2741    /// let res: Option<Vec<u16>> = items
2742    ///     .iter()
2743    ///     .map(|x| x.checked_sub(1))
2744    ///     .collect();
2745    ///
2746    /// assert_eq!(res, None);
2747    /// ```
2748    ///
2749    /// Since the last element is zero, it would underflow. Thus, the resulting
2750    /// value is `None`.
2751    ///
2752    /// Here is a variation on the previous example, showing that no
2753    /// further elements are taken from `iter` after the first `None`.
2754    ///
2755    /// ```
2756    /// let items = vec![3_u16, 2, 1, 10];
2757    ///
2758    /// let mut shared = 0;
2759    ///
2760    /// let res: Option<Vec<u16>> = items
2761    ///     .iter()
2762    ///     .map(|x| { shared += x; x.checked_sub(2) })
2763    ///     .collect();
2764    ///
2765    /// assert_eq!(res, None);
2766    /// assert_eq!(shared, 6);
2767    /// ```
2768    ///
2769    /// Since the third element caused an underflow, no further elements were taken,
2770    /// so the final value of `shared` is 6 (= `3 + 2 + 1`), not 16.
2771    #[inline]
2772    fn from_iter<I: IntoIterator<Item = Option<A>>>(iter: I) -> Option<V> {
2773        // FIXME(#11084): This could be replaced with Iterator::scan when this
2774        // performance bug is closed.
2775
2776        iter::try_process(iter.into_iter(), |i| i.collect())
2777    }
2778}
2779
2780#[unstable(feature = "try_trait_v2", issue = "84277", old_name = "try_trait")]
2781#[rustc_const_unstable(feature = "const_try", issue = "74935")]
2782impl<T> const ops::Try for Option<T> {
2783    type Output = T;
2784    type Residual = Option<convert::Infallible>;
2785
2786    #[inline]
2787    fn from_output(output: Self::Output) -> Self {
2788        Some(output)
2789    }
2790
2791    #[inline]
2792    fn branch(self) -> ControlFlow<Self::Residual, Self::Output> {
2793        match self {
2794            Some(v) => ControlFlow::Continue(v),
2795            None => ControlFlow::Break(None),
2796        }
2797    }
2798}
2799
2800#[unstable(feature = "try_trait_v2", issue = "84277", old_name = "try_trait")]
2801#[rustc_const_unstable(feature = "const_try", issue = "74935")]
2802// Note: manually specifying the residual type instead of using the default to work around
2803// https://github.com/rust-lang/rust/issues/99940
2804impl<T> const ops::FromResidual<Option<convert::Infallible>> for Option<T> {
2805    #[inline]
2806    fn from_residual(residual: Option<convert::Infallible>) -> Self {
2807        match residual {
2808            None => None,
2809        }
2810    }
2811}
2812
2813#[diagnostic::do_not_recommend]
2814#[unstable(feature = "try_trait_v2_yeet", issue = "96374")]
2815#[rustc_const_unstable(feature = "const_try", issue = "74935")]
2816#[cfg(not(feature = "ferrocene_subset"))]
2817impl<T> const ops::FromResidual<ops::Yeet<()>> for Option<T> {
2818    #[inline]
2819    fn from_residual(ops::Yeet(()): ops::Yeet<()>) -> Self {
2820        None
2821    }
2822}
2823
2824#[unstable(feature = "try_trait_v2_residual", issue = "91285")]
2825#[rustc_const_unstable(feature = "const_try", issue = "74935")]
2826impl<T> const ops::Residual<T> for Option<convert::Infallible> {
2827    type TryType = Option<T>;
2828}
2829
2830impl<T> Option<Option<T>> {
2831    /// Converts from `Option<Option<T>>` to `Option<T>`.
2832    ///
2833    /// # Examples
2834    ///
2835    /// Basic usage:
2836    ///
2837    /// ```
2838    /// let x: Option<Option<u32>> = Some(Some(6));
2839    /// assert_eq!(Some(6), x.flatten());
2840    ///
2841    /// let x: Option<Option<u32>> = Some(None);
2842    /// assert_eq!(None, x.flatten());
2843    ///
2844    /// let x: Option<Option<u32>> = None;
2845    /// assert_eq!(None, x.flatten());
2846    /// ```
2847    ///
2848    /// Flattening only removes one level of nesting at a time:
2849    ///
2850    /// ```
2851    /// let x: Option<Option<Option<u32>>> = Some(Some(Some(6)));
2852    /// assert_eq!(Some(Some(6)), x.flatten());
2853    /// assert_eq!(Some(6), x.flatten().flatten());
2854    /// ```
2855    #[inline]
2856    #[stable(feature = "option_flattening", since = "1.40.0")]
2857    #[rustc_allow_const_fn_unstable(const_precise_live_drops)]
2858    #[rustc_const_stable(feature = "const_option", since = "1.83.0")]
2859    pub const fn flatten(self) -> Option<T> {
2860        // FIXME(const-hack): could be written with `and_then`
2861        match self {
2862            Some(inner) => inner,
2863            None => None,
2864        }
2865    }
2866}
2867
2868#[cfg(not(feature = "ferrocene_subset"))]
2869impl<T, const N: usize> [Option<T>; N] {
2870    /// Transposes a `[Option<T>; N]` into a `Option<[T; N]>`.
2871    ///
2872    /// # Examples
2873    ///
2874    /// ```
2875    /// #![feature(option_array_transpose)]
2876    /// # use std::option::Option;
2877    ///
2878    /// let data = [Some(0); 1000];
2879    /// let data: Option<[u8; 1000]> = data.transpose();
2880    /// assert_eq!(data, Some([0; 1000]));
2881    ///
2882    /// let data = [Some(0), None];
2883    /// let data: Option<[u8; 2]> = data.transpose();
2884    /// assert_eq!(data, None);
2885    /// ```
2886    #[inline]
2887    #[unstable(feature = "option_array_transpose", issue = "130828")]
2888    pub fn transpose(self) -> Option<[T; N]> {
2889        self.try_map(core::convert::identity)
2890    }
2891}