core/option.rs
1//! Optional values.
2//!
3//! Type [`Option`] represents an optional value: every [`Option`]
4//! is either [`Some`] and contains a value, or [`None`], and
5//! does not. [`Option`] types are very common in Rust code, as
6//! they have a number of uses:
7//!
8//! * Initial values
9//! * Return values for functions that are not defined
10//! over their entire input range (partial functions)
11//! * Return value for otherwise reporting simple errors, where [`None`] is
12//! returned on error
13//! * Optional struct fields
14//! * Struct fields that can be loaned or "taken"
15//! * Optional function arguments
16//! * Nullable pointers
17//! * Swapping things out of difficult situations
18//!
19//! [`Option`]s are commonly paired with pattern matching to query the presence
20//! of a value and take action, always accounting for the [`None`] case.
21//!
22//! ```
23//! fn divide(numerator: f64, denominator: f64) -> Option<f64> {
24//! if denominator == 0.0 {
25//! None
26//! } else {
27//! Some(numerator / denominator)
28//! }
29//! }
30//!
31//! // The return value of the function is an option
32//! let result = divide(2.0, 3.0);
33//!
34//! // Pattern match to retrieve the value
35//! match result {
36//! // The division was valid
37//! Some(x) => println!("Result: {x}"),
38//! // The division was invalid
39//! None => println!("Cannot divide by 0"),
40//! }
41//! ```
42//!
43//
44// FIXME: Show how `Option` is used in practice, with lots of methods
45//
46//! # Options and pointers ("nullable" pointers)
47//!
48//! Rust's pointer types must always point to a valid location; there are
49//! no "null" references. Instead, Rust has *optional* pointers, like
50//! the optional owned box, <code>[Option]<[Box\<T>]></code>.
51//!
52//! [Box\<T>]: ../../std/boxed/struct.Box.html
53//!
54//! The following example uses [`Option`] to create an optional box of
55//! [`i32`]. Notice that in order to use the inner [`i32`] value, the
56//! `check_optional` function first needs to use pattern matching to
57//! determine whether the box has a value (i.e., it is [`Some(...)`][`Some`]) or
58//! not ([`None`]).
59//!
60//! ```
61//! let optional = None;
62//! check_optional(optional);
63//!
64//! let optional = Some(Box::new(9000));
65//! check_optional(optional);
66//!
67//! fn check_optional(optional: Option<Box<i32>>) {
68//! match optional {
69//! Some(p) => println!("has value {p}"),
70//! None => println!("has no value"),
71//! }
72//! }
73//! ```
74//!
75//! # The question mark operator, `?`
76//!
77//! Similar to the [`Result`] type, when writing code that calls many functions that return the
78//! [`Option`] type, handling `Some`/`None` can be tedious. The question mark
79//! operator, [`?`], hides some of the boilerplate of propagating values
80//! up the call stack.
81//!
82//! It replaces this:
83//!
84//! ```
85//! # #![allow(dead_code)]
86//! fn add_last_numbers(stack: &mut Vec<i32>) -> Option<i32> {
87//! let a = stack.pop();
88//! let b = stack.pop();
89//!
90//! match (a, b) {
91//! (Some(x), Some(y)) => Some(x + y),
92//! _ => None,
93//! }
94//! }
95//!
96//! ```
97//!
98//! With this:
99//!
100//! ```
101//! # #![allow(dead_code)]
102//! fn add_last_numbers(stack: &mut Vec<i32>) -> Option<i32> {
103//! Some(stack.pop()? + stack.pop()?)
104//! }
105//! ```
106//!
107//! *It's much nicer!*
108//!
109//! Ending the expression with [`?`] will result in the [`Some`]'s unwrapped value, unless the
110//! result is [`None`], in which case [`None`] is returned early from the enclosing function.
111//!
112//! [`?`] can be used in functions that return [`Option`] because of the
113//! early return of [`None`] that it provides.
114//!
115//! [`?`]: crate::ops::Try
116//! [`Some`]: Some
117//! [`None`]: None
118//!
119//! # Representation
120//!
121//! Rust guarantees to optimize the following types `T` such that [`Option<T>`]
122//! has the same size, alignment, and [function call ABI] as `T`. It is
123//! therefore sound, when `T` is one of these types, to transmute a value `t` of
124//! type `T` to type `Option<T>` (producing the value `Some(t)`) and to
125//! transmute a value `Some(t)` of type `Option<T>` to type `T` (producing the
126//! value `t`).
127//!
128//! In some of these cases, Rust further guarantees the following:
129//! - `transmute::<_, Option<T>>([0u8; size_of::<T>()])` is sound and produces
130//! `Option::<T>::None`
131//! - `transmute::<_, [u8; size_of::<T>()]>(Option::<T>::None)` is sound and produces
132//! `[0u8; size_of::<T>()]`
133//!
134//! These cases are identified by the second column:
135//!
136//! | `T` | Transmuting between `[0u8; size_of::<T>()]` and `Option::<T>::None` sound? |
137//! |---------------------------------------------------------------------|----------------------------------------------------------------------------|
138//! | [`Box<U>`] (specifically, only `Box<U, Global>`) | when `U: Sized` |
139//! | `&U` | when `U: Sized` |
140//! | `&mut U` | when `U: Sized` |
141//! | `fn`, `extern "C" fn`[^extern_fn] | always |
142//! | [`num::NonZero*`] | always |
143//! | [`ptr::NonNull<U>`] | when `U: Sized` |
144//! | `#[repr(transparent)]` struct around one of the types in this list. | when it holds for the inner type |
145//!
146//! [^extern_fn]: this remains true for `unsafe` variants, any argument/return types, and any other ABI: `[unsafe] extern "abi" fn` (_e.g._, `extern "system" fn`)
147//!
148//! Under some conditions the above types `T` are also null pointer optimized when wrapped in a [`Result`][result_repr].
149//!
150//! [`Box<U>`]: ../../std/boxed/struct.Box.html
151//! [`num::NonZero*`]: crate::num
152//! [`ptr::NonNull<U>`]: crate::ptr::NonNull
153//! [function call ABI]: ../primitive.fn.html#abi-compatibility
154//! [result_repr]: crate::result#representation
155//!
156//! This is called the "null pointer optimization" or NPO.
157//!
158//! It is further guaranteed that, for the cases above, one can
159//! [`mem::transmute`] from all valid values of `T` to `Option<T>` and
160//! from `Some::<T>(_)` to `T` (but transmuting `None::<T>` to `T`
161//! is undefined behavior).
162//!
163//! # Method overview
164//!
165//! In addition to working with pattern matching, [`Option`] provides a wide
166//! variety of different methods.
167//!
168//! ## Querying the variant
169//!
170//! The [`is_some`] and [`is_none`] methods return [`true`] if the [`Option`]
171//! is [`Some`] or [`None`], respectively.
172//!
173//! The [`is_some_and`] and [`is_none_or`] methods apply the provided function
174//! to the contents of the [`Option`] to produce a boolean value.
175//! If this is [`None`] then a default result is returned instead without executing the function.
176//!
177//! [`is_none`]: Option::is_none
178//! [`is_some`]: Option::is_some
179//! [`is_some_and`]: Option::is_some_and
180//! [`is_none_or`]: Option::is_none_or
181//!
182//! ## Adapters for working with references
183//!
184//! * [`as_ref`] converts from <code>[&][][Option]\<T></code> to <code>[Option]<[&]T></code>
185//! * [`as_mut`] converts from <code>[&mut] [Option]\<T></code> to <code>[Option]<[&mut] T></code>
186//! * [`as_deref`] converts from <code>[&][][Option]\<T></code> to
187//! <code>[Option]<[&]T::[Target]></code>
188//! * [`as_deref_mut`] converts from <code>[&mut] [Option]\<T></code> to
189//! <code>[Option]<[&mut] T::[Target]></code>
190//! * [`as_pin_ref`] converts from <code>[Pin]<[&][][Option]\<T>></code> to
191//! <code>[Option]<[Pin]<[&]T>></code>
192//! * [`as_pin_mut`] converts from <code>[Pin]<[&mut] [Option]\<T>></code> to
193//! <code>[Option]<[Pin]<[&mut] T>></code>
194//! * [`as_slice`] returns a one-element slice of the contained value, if any.
195//! If this is [`None`], an empty slice is returned.
196//! * [`as_mut_slice`] returns a mutable one-element slice of the contained value, if any.
197//! If this is [`None`], an empty slice is returned.
198//!
199//! [&]: reference "shared reference"
200//! [&mut]: reference "mutable reference"
201//! [Target]: Deref::Target "ops::Deref::Target"
202//! [`as_deref`]: Option::as_deref
203//! [`as_deref_mut`]: Option::as_deref_mut
204//! [`as_mut`]: Option::as_mut
205//! [`as_pin_mut`]: Option::as_pin_mut
206//! [`as_pin_ref`]: Option::as_pin_ref
207//! [`as_ref`]: Option::as_ref
208//! [`as_slice`]: Option::as_slice
209//! [`as_mut_slice`]: Option::as_mut_slice
210//!
211//! ## Extracting the contained value
212//!
213//! These methods extract the contained value in an [`Option<T>`] when it
214//! is the [`Some`] variant. If the [`Option`] is [`None`]:
215//!
216//! * [`expect`] panics with a provided custom message
217//! * [`unwrap`] panics with a generic message
218//! * [`unwrap_or`] returns the provided default value
219//! * [`unwrap_or_default`] returns the default value of the type `T`
220//! (which must implement the [`Default`] trait)
221//! * [`unwrap_or_else`] returns the result of evaluating the provided
222//! function
223//! * [`unwrap_unchecked`] produces *[undefined behavior]*
224//!
225//! [`expect`]: Option::expect
226//! [`unwrap`]: Option::unwrap
227//! [`unwrap_or`]: Option::unwrap_or
228//! [`unwrap_or_default`]: Option::unwrap_or_default
229//! [`unwrap_or_else`]: Option::unwrap_or_else
230//! [`unwrap_unchecked`]: Option::unwrap_unchecked
231//! [undefined behavior]: https://doc.rust-lang.org/reference/behavior-considered-undefined.html
232//!
233//! ## Transforming contained values
234//!
235//! These methods transform [`Option`] to [`Result`]:
236//!
237//! * [`ok_or`] transforms [`Some(v)`] to [`Ok(v)`], and [`None`] to
238//! [`Err(err)`] using the provided default `err` value
239//! * [`ok_or_else`] transforms [`Some(v)`] to [`Ok(v)`], and [`None`] to
240//! a value of [`Err`] using the provided function
241//! * [`transpose`] transposes an [`Option`] of a [`Result`] into a
242//! [`Result`] of an [`Option`]
243//!
244//! [`Err(err)`]: Err
245//! [`Ok(v)`]: Ok
246//! [`Some(v)`]: Some
247//! [`ok_or`]: Option::ok_or
248//! [`ok_or_else`]: Option::ok_or_else
249//! [`transpose`]: Option::transpose
250//!
251//! These methods transform the [`Some`] variant:
252//!
253//! * [`filter`] calls the provided predicate function on the contained
254//! value `t` if the [`Option`] is [`Some(t)`], and returns [`Some(t)`]
255//! if the function returns `true`; otherwise, returns [`None`]
256//! * [`flatten`] removes one level of nesting from an [`Option<Option<T>>`]
257//! * [`inspect`] method takes ownership of the [`Option`] and applies
258//! the provided function to the contained value by reference if [`Some`]
259//! * [`map`] transforms [`Option<T>`] to [`Option<U>`] by applying the
260//! provided function to the contained value of [`Some`] and leaving
261//! [`None`] values unchanged
262//!
263//! [`Some(t)`]: Some
264//! [`filter`]: Option::filter
265//! [`flatten`]: Option::flatten
266//! [`inspect`]: Option::inspect
267//! [`map`]: Option::map
268//!
269//! These methods transform [`Option<T>`] to a value of a possibly
270//! different type `U`:
271//!
272//! * [`map_or`] applies the provided function to the contained value of
273//! [`Some`], or returns the provided default value if the [`Option`] is
274//! [`None`]
275//! * [`map_or_else`] applies the provided function to the contained value
276//! of [`Some`], or returns the result of evaluating the provided
277//! fallback function if the [`Option`] is [`None`]
278//!
279//! [`map_or`]: Option::map_or
280//! [`map_or_else`]: Option::map_or_else
281//!
282//! These methods combine the [`Some`] variants of two [`Option`] values:
283//!
284//! * [`zip`] returns [`Some((s, o))`] if `self` is [`Some(s)`] and the
285//! provided [`Option`] value is [`Some(o)`]; otherwise, returns [`None`]
286//! * [`zip_with`] calls the provided function `f` and returns
287//! [`Some(f(s, o))`] if `self` is [`Some(s)`] and the provided
288//! [`Option`] value is [`Some(o)`]; otherwise, returns [`None`]
289//!
290//! [`Some(f(s, o))`]: Some
291//! [`Some(o)`]: Some
292//! [`Some(s)`]: Some
293//! [`Some((s, o))`]: Some
294//! [`zip`]: Option::zip
295//! [`zip_with`]: Option::zip_with
296//!
297//! ## Boolean operators
298//!
299//! These methods treat the [`Option`] as a boolean value, where [`Some`]
300//! acts like [`true`] and [`None`] acts like [`false`]. There are two
301//! categories of these methods: ones that take an [`Option`] as input, and
302//! ones that take a function as input (to be lazily evaluated).
303//!
304//! The [`and`], [`or`], and [`xor`] methods take another [`Option`] as
305//! input, and produce an [`Option`] as output. Only the [`and`] method can
306//! produce an [`Option<U>`] value having a different inner type `U` than
307//! [`Option<T>`].
308//!
309//! | method | self | input | output |
310//! |---------|-----------|-----------|-----------|
311//! | [`and`] | `None` | (ignored) | `None` |
312//! | [`and`] | `Some(x)` | `None` | `None` |
313//! | [`and`] | `Some(x)` | `Some(y)` | `Some(y)` |
314//! | [`or`] | `None` | `None` | `None` |
315//! | [`or`] | `None` | `Some(y)` | `Some(y)` |
316//! | [`or`] | `Some(x)` | (ignored) | `Some(x)` |
317//! | [`xor`] | `None` | `None` | `None` |
318//! | [`xor`] | `None` | `Some(y)` | `Some(y)` |
319//! | [`xor`] | `Some(x)` | `None` | `Some(x)` |
320//! | [`xor`] | `Some(x)` | `Some(y)` | `None` |
321//!
322//! [`and`]: Option::and
323//! [`or`]: Option::or
324//! [`xor`]: Option::xor
325//!
326//! The [`and_then`] and [`or_else`] methods take a function as input, and
327//! only evaluate the function when they need to produce a new value. Only
328//! the [`and_then`] method can produce an [`Option<U>`] value having a
329//! different inner type `U` than [`Option<T>`].
330//!
331//! | method | self | function input | function result | output |
332//! |--------------|-----------|----------------|-----------------|-----------|
333//! | [`and_then`] | `None` | (not provided) | (not evaluated) | `None` |
334//! | [`and_then`] | `Some(x)` | `x` | `None` | `None` |
335//! | [`and_then`] | `Some(x)` | `x` | `Some(y)` | `Some(y)` |
336//! | [`or_else`] | `None` | (not provided) | `None` | `None` |
337//! | [`or_else`] | `None` | (not provided) | `Some(y)` | `Some(y)` |
338//! | [`or_else`] | `Some(x)` | (not provided) | (not evaluated) | `Some(x)` |
339//!
340//! [`and_then`]: Option::and_then
341//! [`or_else`]: Option::or_else
342//!
343//! This is an example of using methods like [`and_then`] and [`or`] in a
344//! pipeline of method calls. Early stages of the pipeline pass failure
345//! values ([`None`]) through unchanged, and continue processing on
346//! success values ([`Some`]). Toward the end, [`or`] substitutes an error
347//! message if it receives [`None`].
348//!
349//! ```
350//! # use std::collections::BTreeMap;
351//! let mut bt = BTreeMap::new();
352//! bt.insert(20u8, "foo");
353//! bt.insert(42u8, "bar");
354//! let res = [0u8, 1, 11, 200, 22]
355//! .into_iter()
356//! .map(|x| {
357//! // `checked_sub()` returns `None` on error
358//! x.checked_sub(1)
359//! // same with `checked_mul()`
360//! .and_then(|x| x.checked_mul(2))
361//! // `BTreeMap::get` returns `None` on error
362//! .and_then(|x| bt.get(&x))
363//! // Substitute an error message if we have `None` so far
364//! .or(Some(&"error!"))
365//! .copied()
366//! // Won't panic because we unconditionally used `Some` above
367//! .unwrap()
368//! })
369//! .collect::<Vec<_>>();
370//! assert_eq!(res, ["error!", "error!", "foo", "error!", "bar"]);
371//! ```
372//!
373//! ## Comparison operators
374//!
375//! If `T` implements [`PartialOrd`] then [`Option<T>`] will derive its
376//! [`PartialOrd`] implementation. With this order, [`None`] compares as
377//! less than any [`Some`], and two [`Some`] compare the same way as their
378//! contained values would in `T`. If `T` also implements
379//! [`Ord`], then so does [`Option<T>`].
380//!
381//! ```
382//! assert!(None < Some(0));
383//! assert!(Some(0) < Some(1));
384//! ```
385//!
386//! ## Iterating over `Option`
387//!
388//! An [`Option`] can be iterated over. This can be helpful if you need an
389//! iterator that is conditionally empty. The iterator will either produce
390//! a single value (when the [`Option`] is [`Some`]), or produce no values
391//! (when the [`Option`] is [`None`]). For example, [`into_iter`] acts like
392//! [`once(v)`] if the [`Option`] is [`Some(v)`], and like [`empty()`] if
393//! the [`Option`] is [`None`].
394//!
395//! [`Some(v)`]: Some
396//! [`empty()`]: crate::iter::empty
397//! [`once(v)`]: crate::iter::once
398//!
399//! Iterators over [`Option<T>`] come in three types:
400//!
401//! * [`into_iter`] consumes the [`Option`] and produces the contained
402//! value
403//! * [`iter`] produces an immutable reference of type `&T` to the
404//! contained value
405//! * [`iter_mut`] produces a mutable reference of type `&mut T` to the
406//! contained value
407//!
408//! [`into_iter`]: Option::into_iter
409//! [`iter`]: Option::iter
410//! [`iter_mut`]: Option::iter_mut
411//!
412//! An iterator over [`Option`] can be useful when chaining iterators, for
413//! example, to conditionally insert items. (It's not always necessary to
414//! explicitly call an iterator constructor: many [`Iterator`] methods that
415//! accept other iterators will also accept iterable types that implement
416//! [`IntoIterator`], which includes [`Option`].)
417//!
418//! ```
419//! let yep = Some(42);
420//! let nope = None;
421//! // chain() already calls into_iter(), so we don't have to do so
422//! let nums: Vec<i32> = (0..4).chain(yep).chain(4..8).collect();
423//! assert_eq!(nums, [0, 1, 2, 3, 42, 4, 5, 6, 7]);
424//! let nums: Vec<i32> = (0..4).chain(nope).chain(4..8).collect();
425//! assert_eq!(nums, [0, 1, 2, 3, 4, 5, 6, 7]);
426//! ```
427//!
428//! One reason to chain iterators in this way is that a function returning
429//! `impl Iterator` must have all possible return values be of the same
430//! concrete type. Chaining an iterated [`Option`] can help with that.
431//!
432//! ```
433//! fn make_iter(do_insert: bool) -> impl Iterator<Item = i32> {
434//! // Explicit returns to illustrate return types matching
435//! match do_insert {
436//! true => return (0..4).chain(Some(42)).chain(4..8),
437//! false => return (0..4).chain(None).chain(4..8),
438//! }
439//! }
440//! println!("{:?}", make_iter(true).collect::<Vec<_>>());
441//! println!("{:?}", make_iter(false).collect::<Vec<_>>());
442//! ```
443//!
444//! If we try to do the same thing, but using [`once()`] and [`empty()`],
445//! we can't return `impl Iterator` anymore because the concrete types of
446//! the return values differ.
447//!
448//! [`empty()`]: crate::iter::empty
449//! [`once()`]: crate::iter::once
450//!
451//! ```compile_fail,E0308
452//! # use std::iter::{empty, once};
453//! // This won't compile because all possible returns from the function
454//! // must have the same concrete type.
455//! fn make_iter(do_insert: bool) -> impl Iterator<Item = i32> {
456//! // Explicit returns to illustrate return types not matching
457//! match do_insert {
458//! true => return (0..4).chain(once(42)).chain(4..8),
459//! false => return (0..4).chain(empty()).chain(4..8),
460//! }
461//! }
462//! ```
463//!
464//! ## Collecting into `Option`
465//!
466//! [`Option`] implements the [`FromIterator`][impl-FromIterator] trait,
467//! which allows an iterator over [`Option`] values to be collected into an
468//! [`Option`] of a collection of each contained value of the original
469//! [`Option`] values, or [`None`] if any of the elements was [`None`].
470//!
471//! [impl-FromIterator]: Option#impl-FromIterator%3COption%3CA%3E%3E-for-Option%3CV%3E
472//!
473//! ```
474//! let v = [Some(2), Some(4), None, Some(8)];
475//! let res: Option<Vec<_>> = v.into_iter().collect();
476//! assert_eq!(res, None);
477//! let v = [Some(2), Some(4), Some(8)];
478//! let res: Option<Vec<_>> = v.into_iter().collect();
479//! assert_eq!(res, Some(vec![2, 4, 8]));
480//! ```
481//!
482//! [`Option`] also implements the [`Product`][impl-Product] and
483//! [`Sum`][impl-Sum] traits, allowing an iterator over [`Option`] values
484//! to provide the [`product`][Iterator::product] and
485//! [`sum`][Iterator::sum] methods.
486//!
487//! [impl-Product]: Option#impl-Product%3COption%3CU%3E%3E-for-Option%3CT%3E
488//! [impl-Sum]: Option#impl-Sum%3COption%3CU%3E%3E-for-Option%3CT%3E
489//!
490//! ```
491//! let v = [None, Some(1), Some(2), Some(3)];
492//! let res: Option<i32> = v.into_iter().sum();
493//! assert_eq!(res, None);
494//! let v = [Some(1), Some(2), Some(21)];
495//! let res: Option<i32> = v.into_iter().product();
496//! assert_eq!(res, Some(42));
497//! ```
498//!
499//! ## Modifying an [`Option`] in-place
500//!
501//! These methods return a mutable reference to the contained value of an
502//! [`Option<T>`]:
503//!
504//! * [`insert`] inserts a value, dropping any old contents
505//! * [`get_or_insert`] gets the current value, inserting a provided
506//! default value if it is [`None`]
507//! * [`get_or_insert_default`] gets the current value, inserting the
508//! default value of type `T` (which must implement [`Default`]) if it is
509//! [`None`]
510//! * [`get_or_insert_with`] gets the current value, inserting a default
511//! computed by the provided function if it is [`None`]
512//!
513//! [`get_or_insert`]: Option::get_or_insert
514//! [`get_or_insert_default`]: Option::get_or_insert_default
515//! [`get_or_insert_with`]: Option::get_or_insert_with
516//! [`insert`]: Option::insert
517//!
518//! These methods transfer ownership of the contained value of an
519//! [`Option`]:
520//!
521//! * [`take`] takes ownership of the contained value of an [`Option`], if
522//! any, replacing the [`Option`] with [`None`]
523//! * [`replace`] takes ownership of the contained value of an [`Option`],
524//! if any, replacing the [`Option`] with a [`Some`] containing the
525//! provided value
526//!
527//! [`replace`]: Option::replace
528//! [`take`]: Option::take
529//!
530//! # Examples
531//!
532//! Basic pattern matching on [`Option`]:
533//!
534//! ```
535//! let msg = Some("howdy");
536//!
537//! // Take a reference to the contained string
538//! if let Some(m) = &msg {
539//! println!("{}", *m);
540//! }
541//!
542//! // Remove the contained string, destroying the Option
543//! let unwrapped_msg = msg.unwrap_or("default message");
544//! ```
545//!
546//! Initialize a result to [`None`] before a loop:
547//!
548//! ```
549//! enum Kingdom { Plant(u32, &'static str), Animal(u32, &'static str) }
550//!
551//! // A list of data to search through.
552//! let all_the_big_things = [
553//! Kingdom::Plant(250, "redwood"),
554//! Kingdom::Plant(230, "noble fir"),
555//! Kingdom::Plant(229, "sugar pine"),
556//! Kingdom::Animal(25, "blue whale"),
557//! Kingdom::Animal(19, "fin whale"),
558//! Kingdom::Animal(15, "north pacific right whale"),
559//! ];
560//!
561//! // We're going to search for the name of the biggest animal,
562//! // but to start with we've just got `None`.
563//! let mut name_of_biggest_animal = None;
564//! let mut size_of_biggest_animal = 0;
565//! for big_thing in &all_the_big_things {
566//! match *big_thing {
567//! Kingdom::Animal(size, name) if size > size_of_biggest_animal => {
568//! // Now we've found the name of some big animal
569//! size_of_biggest_animal = size;
570//! name_of_biggest_animal = Some(name);
571//! }
572//! Kingdom::Animal(..) | Kingdom::Plant(..) => ()
573//! }
574//! }
575//!
576//! match name_of_biggest_animal {
577//! Some(name) => println!("the biggest animal is {name}"),
578//! None => println!("there are no animals :("),
579//! }
580//! ```
581
582#![stable(feature = "rust1", since = "1.0.0")]
583
584#[cfg(not(feature = "ferrocene_certified"))]
585use crate::iter::{self, FusedIterator, TrustedLen};
586use crate::marker::Destruct;
587use crate::ops::{self, ControlFlow, Deref, DerefMut};
588#[cfg(not(feature = "ferrocene_certified"))]
589use crate::panicking::{panic, panic_display};
590#[cfg(not(feature = "ferrocene_certified"))]
591use crate::pin::Pin;
592#[cfg(not(feature = "ferrocene_certified"))]
593use crate::{cmp, convert, hint, mem, slice};
594
595// Ferrocene addition: imports for certified subset
596#[cfg(feature = "ferrocene_certified")]
597#[rustfmt::skip]
598use crate::{convert, hint, mem, panicking::panic};
599
600/// The `Option` type. See [the module level documentation](self) for more.
601#[doc(search_unbox)]
602#[cfg_attr(not(feature = "ferrocene_certified"), derive(Copy, Debug, Hash))]
603#[cfg_attr(not(feature = "ferrocene_certified"), derive_const(Eq))]
604#[rustc_diagnostic_item = "Option"]
605#[lang = "Option"]
606#[stable(feature = "rust1", since = "1.0.0")]
607#[allow(clippy::derived_hash_with_manual_eq)] // PartialEq is manually implemented equivalently
608pub enum Option<T> {
609 /// No value.
610 #[lang = "None"]
611 #[stable(feature = "rust1", since = "1.0.0")]
612 None,
613 /// Some value of type `T`.
614 #[lang = "Some"]
615 #[stable(feature = "rust1", since = "1.0.0")]
616 Some(#[stable(feature = "rust1", since = "1.0.0")] T),
617}
618
619/////////////////////////////////////////////////////////////////////////////
620// Type implementation
621/////////////////////////////////////////////////////////////////////////////
622
623impl<T> Option<T> {
624 /////////////////////////////////////////////////////////////////////////
625 // Querying the contained values
626 /////////////////////////////////////////////////////////////////////////
627
628 /// Returns `true` if the option is a [`Some`] value.
629 ///
630 /// # Examples
631 ///
632 /// ```
633 /// let x: Option<u32> = Some(2);
634 /// assert_eq!(x.is_some(), true);
635 ///
636 /// let x: Option<u32> = None;
637 /// assert_eq!(x.is_some(), false);
638 /// ```
639 #[must_use = "if you intended to assert that this has a value, consider `.unwrap()` instead"]
640 #[inline]
641 #[stable(feature = "rust1", since = "1.0.0")]
642 #[rustc_const_stable(feature = "const_option_basics", since = "1.48.0")]
643 pub const fn is_some(&self) -> bool {
644 matches!(*self, Some(_))
645 }
646
647 /// Returns `true` if the option is a [`Some`] and the value inside of it matches a predicate.
648 ///
649 /// # Examples
650 ///
651 /// ```
652 /// let x: Option<u32> = Some(2);
653 /// assert_eq!(x.is_some_and(|x| x > 1), true);
654 ///
655 /// let x: Option<u32> = Some(0);
656 /// assert_eq!(x.is_some_and(|x| x > 1), false);
657 ///
658 /// let x: Option<u32> = None;
659 /// assert_eq!(x.is_some_and(|x| x > 1), false);
660 ///
661 /// let x: Option<String> = Some("ownership".to_string());
662 /// assert_eq!(x.as_ref().is_some_and(|x| x.len() > 1), true);
663 /// println!("still alive {:?}", x);
664 /// ```
665 #[must_use]
666 #[inline]
667 #[stable(feature = "is_some_and", since = "1.70.0")]
668 #[rustc_const_unstable(feature = "const_option_ops", issue = "143956")]
669 pub const fn is_some_and(self, f: impl [const] FnOnce(T) -> bool + [const] Destruct) -> bool {
670 match self {
671 None => false,
672 Some(x) => f(x),
673 }
674 }
675
676 /// Returns `true` if the option is a [`None`] value.
677 ///
678 /// # Examples
679 ///
680 /// ```
681 /// let x: Option<u32> = Some(2);
682 /// assert_eq!(x.is_none(), false);
683 ///
684 /// let x: Option<u32> = None;
685 /// assert_eq!(x.is_none(), true);
686 /// ```
687 #[must_use = "if you intended to assert that this doesn't have a value, consider \
688 wrapping this in an `assert!()` instead"]
689 #[inline]
690 #[stable(feature = "rust1", since = "1.0.0")]
691 #[rustc_const_stable(feature = "const_option_basics", since = "1.48.0")]
692 #[cfg(not(feature = "ferrocene_certified"))]
693 pub const fn is_none(&self) -> bool {
694 !self.is_some()
695 }
696
697 /// Returns `true` if the option is a [`None`] or the value inside of it matches a predicate.
698 ///
699 /// # Examples
700 ///
701 /// ```
702 /// let x: Option<u32> = Some(2);
703 /// assert_eq!(x.is_none_or(|x| x > 1), true);
704 ///
705 /// let x: Option<u32> = Some(0);
706 /// assert_eq!(x.is_none_or(|x| x > 1), false);
707 ///
708 /// let x: Option<u32> = None;
709 /// assert_eq!(x.is_none_or(|x| x > 1), true);
710 ///
711 /// let x: Option<String> = Some("ownership".to_string());
712 /// assert_eq!(x.as_ref().is_none_or(|x| x.len() > 1), true);
713 /// println!("still alive {:?}", x);
714 /// ```
715 #[must_use]
716 #[inline]
717 #[stable(feature = "is_none_or", since = "1.82.0")]
718 #[rustc_const_unstable(feature = "const_option_ops", issue = "143956")]
719 pub const fn is_none_or(self, f: impl [const] FnOnce(T) -> bool + [const] Destruct) -> bool {
720 match self {
721 None => true,
722 Some(x) => f(x),
723 }
724 }
725
726 /////////////////////////////////////////////////////////////////////////
727 // Adapter for working with references
728 /////////////////////////////////////////////////////////////////////////
729
730 /// Converts from `&Option<T>` to `Option<&T>`.
731 ///
732 /// # Examples
733 ///
734 /// Calculates the length of an <code>Option<[String]></code> as an <code>Option<[usize]></code>
735 /// without moving the [`String`]. The [`map`] method takes the `self` argument by value,
736 /// consuming the original, so this technique uses `as_ref` to first take an `Option` to a
737 /// reference to the value inside the original.
738 ///
739 /// [`map`]: Option::map
740 /// [String]: ../../std/string/struct.String.html "String"
741 /// [`String`]: ../../std/string/struct.String.html "String"
742 ///
743 /// ```
744 /// let text: Option<String> = Some("Hello, world!".to_string());
745 /// // First, cast `Option<String>` to `Option<&String>` with `as_ref`,
746 /// // then consume *that* with `map`, leaving `text` on the stack.
747 /// let text_length: Option<usize> = text.as_ref().map(|s| s.len());
748 /// println!("still can print text: {text:?}");
749 /// ```
750 #[inline]
751 #[rustc_const_stable(feature = "const_option_basics", since = "1.48.0")]
752 #[stable(feature = "rust1", since = "1.0.0")]
753 pub const fn as_ref(&self) -> Option<&T> {
754 match *self {
755 Some(ref x) => Some(x),
756 None => None,
757 }
758 }
759
760 /// Converts from `&mut Option<T>` to `Option<&mut T>`.
761 ///
762 /// # Examples
763 ///
764 /// ```
765 /// let mut x = Some(2);
766 /// match x.as_mut() {
767 /// Some(v) => *v = 42,
768 /// None => {},
769 /// }
770 /// assert_eq!(x, Some(42));
771 /// ```
772 #[inline]
773 #[stable(feature = "rust1", since = "1.0.0")]
774 #[rustc_const_stable(feature = "const_option", since = "1.83.0")]
775 pub const fn as_mut(&mut self) -> Option<&mut T> {
776 match *self {
777 Some(ref mut x) => Some(x),
778 None => None,
779 }
780 }
781
782 /// Converts from <code>[Pin]<[&]Option\<T>></code> to <code>Option<[Pin]<[&]T>></code>.
783 ///
784 /// [&]: reference "shared reference"
785 #[inline]
786 #[must_use]
787 #[stable(feature = "pin", since = "1.33.0")]
788 #[rustc_const_stable(feature = "const_option_ext", since = "1.84.0")]
789 #[cfg(not(feature = "ferrocene_certified"))]
790 pub const fn as_pin_ref(self: Pin<&Self>) -> Option<Pin<&T>> {
791 // FIXME(const-hack): use `map` once that is possible
792 match Pin::get_ref(self).as_ref() {
793 // SAFETY: `x` is guaranteed to be pinned because it comes from `self`
794 // which is pinned.
795 Some(x) => unsafe { Some(Pin::new_unchecked(x)) },
796 None => None,
797 }
798 }
799
800 /// Converts from <code>[Pin]<[&mut] Option\<T>></code> to <code>Option<[Pin]<[&mut] T>></code>.
801 ///
802 /// [&mut]: reference "mutable reference"
803 #[inline]
804 #[must_use]
805 #[stable(feature = "pin", since = "1.33.0")]
806 #[rustc_const_stable(feature = "const_option_ext", since = "1.84.0")]
807 #[cfg(not(feature = "ferrocene_certified"))]
808 pub const fn as_pin_mut(self: Pin<&mut Self>) -> Option<Pin<&mut T>> {
809 // SAFETY: `get_unchecked_mut` is never used to move the `Option` inside `self`.
810 // `x` is guaranteed to be pinned because it comes from `self` which is pinned.
811 unsafe {
812 // FIXME(const-hack): use `map` once that is possible
813 match Pin::get_unchecked_mut(self).as_mut() {
814 Some(x) => Some(Pin::new_unchecked(x)),
815 None => None,
816 }
817 }
818 }
819
820 #[inline]
821 const fn len(&self) -> usize {
822 // Using the intrinsic avoids emitting a branch to get the 0 or 1.
823 let discriminant: isize = crate::intrinsics::discriminant_value(self);
824 discriminant as usize
825 }
826
827 /// Returns a slice of the contained value, if any. If this is `None`, an
828 /// empty slice is returned. This can be useful to have a single type of
829 /// iterator over an `Option` or slice.
830 ///
831 /// Note: Should you have an `Option<&T>` and wish to get a slice of `T`,
832 /// you can unpack it via `opt.map_or(&[], std::slice::from_ref)`.
833 ///
834 /// # Examples
835 ///
836 /// ```rust
837 /// assert_eq!(
838 /// [Some(1234).as_slice(), None.as_slice()],
839 /// [&[1234][..], &[][..]],
840 /// );
841 /// ```
842 ///
843 /// The inverse of this function is (discounting
844 /// borrowing) [`[_]::first`](slice::first):
845 ///
846 /// ```rust
847 /// for i in [Some(1234_u16), None] {
848 /// assert_eq!(i.as_ref(), i.as_slice().first());
849 /// }
850 /// ```
851 #[inline]
852 #[must_use]
853 #[stable(feature = "option_as_slice", since = "1.75.0")]
854 #[rustc_const_stable(feature = "const_option_ext", since = "1.84.0")]
855 #[cfg(not(feature = "ferrocene_certified"))]
856 pub const fn as_slice(&self) -> &[T] {
857 // SAFETY: When the `Option` is `Some`, we're using the actual pointer
858 // to the payload, with a length of 1, so this is equivalent to
859 // `slice::from_ref`, and thus is safe.
860 // When the `Option` is `None`, the length used is 0, so to be safe it
861 // just needs to be aligned, which it is because `&self` is aligned and
862 // the offset used is a multiple of alignment.
863 //
864 // Here we assume that `offset_of!` always returns an offset to an
865 // in-bounds and correctly aligned position for a `T` (even if in the
866 // `None` case it's just padding).
867 unsafe {
868 slice::from_raw_parts(
869 (self as *const Self).byte_add(core::mem::offset_of!(Self, Some.0)).cast(),
870 self.len(),
871 )
872 }
873 }
874
875 /// Returns a mutable slice of the contained value, if any. If this is
876 /// `None`, an empty slice is returned. This can be useful to have a
877 /// single type of iterator over an `Option` or slice.
878 ///
879 /// Note: Should you have an `Option<&mut T>` instead of a
880 /// `&mut Option<T>`, which this method takes, you can obtain a mutable
881 /// slice via `opt.map_or(&mut [], std::slice::from_mut)`.
882 ///
883 /// # Examples
884 ///
885 /// ```rust
886 /// assert_eq!(
887 /// [Some(1234).as_mut_slice(), None.as_mut_slice()],
888 /// [&mut [1234][..], &mut [][..]],
889 /// );
890 /// ```
891 ///
892 /// The result is a mutable slice of zero or one items that points into
893 /// our original `Option`:
894 ///
895 /// ```rust
896 /// let mut x = Some(1234);
897 /// x.as_mut_slice()[0] += 1;
898 /// assert_eq!(x, Some(1235));
899 /// ```
900 ///
901 /// The inverse of this method (discounting borrowing)
902 /// is [`[_]::first_mut`](slice::first_mut):
903 ///
904 /// ```rust
905 /// assert_eq!(Some(123).as_mut_slice().first_mut(), Some(&mut 123))
906 /// ```
907 #[inline]
908 #[must_use]
909 #[stable(feature = "option_as_slice", since = "1.75.0")]
910 #[rustc_const_stable(feature = "const_option_ext", since = "1.84.0")]
911 #[cfg(not(feature = "ferrocene_certified"))]
912 pub const fn as_mut_slice(&mut self) -> &mut [T] {
913 // SAFETY: When the `Option` is `Some`, we're using the actual pointer
914 // to the payload, with a length of 1, so this is equivalent to
915 // `slice::from_mut`, and thus is safe.
916 // When the `Option` is `None`, the length used is 0, so to be safe it
917 // just needs to be aligned, which it is because `&self` is aligned and
918 // the offset used is a multiple of alignment.
919 //
920 // In the new version, the intrinsic creates a `*const T` from a
921 // mutable reference so it is safe to cast back to a mutable pointer
922 // here. As with `as_slice`, the intrinsic always returns a pointer to
923 // an in-bounds and correctly aligned position for a `T` (even if in
924 // the `None` case it's just padding).
925 unsafe {
926 slice::from_raw_parts_mut(
927 (self as *mut Self).byte_add(core::mem::offset_of!(Self, Some.0)).cast(),
928 self.len(),
929 )
930 }
931 }
932
933 /////////////////////////////////////////////////////////////////////////
934 // Getting to contained values
935 /////////////////////////////////////////////////////////////////////////
936
937 /// Returns the contained [`Some`] value, consuming the `self` value.
938 ///
939 /// # Panics
940 ///
941 /// Panics if the value is a [`None`] with a custom panic message provided by
942 /// `msg`.
943 ///
944 /// # Examples
945 ///
946 /// ```
947 /// let x = Some("value");
948 /// assert_eq!(x.expect("fruits are healthy"), "value");
949 /// ```
950 ///
951 /// ```should_panic
952 /// let x: Option<&str> = None;
953 /// x.expect("fruits are healthy"); // panics with `fruits are healthy`
954 /// ```
955 ///
956 /// # Recommended Message Style
957 ///
958 /// We recommend that `expect` messages are used to describe the reason you
959 /// _expect_ the `Option` should be `Some`.
960 ///
961 /// ```should_panic
962 /// # let slice: &[u8] = &[];
963 /// let item = slice.get(0)
964 /// .expect("slice should not be empty");
965 /// ```
966 ///
967 /// **Hint**: If you're having trouble remembering how to phrase expect
968 /// error messages remember to focus on the word "should" as in "env
969 /// variable should be set by blah" or "the given binary should be available
970 /// and executable by the current user".
971 ///
972 /// For more detail on expect message styles and the reasoning behind our
973 /// recommendation please refer to the section on ["Common Message
974 /// Styles"](../../std/error/index.html#common-message-styles) in the [`std::error`](../../std/error/index.html) module docs.
975 #[inline]
976 #[track_caller]
977 #[stable(feature = "rust1", since = "1.0.0")]
978 #[rustc_diagnostic_item = "option_expect"]
979 #[rustc_allow_const_fn_unstable(const_precise_live_drops)]
980 #[rustc_const_stable(feature = "const_option", since = "1.83.0")]
981 pub const fn expect(
982 self,
983 #[cfg(not(feature = "ferrocene_certified"))] msg: &str,
984 #[cfg(feature = "ferrocene_certified")] msg: &'static str,
985 ) -> T {
986 match self {
987 Some(val) => val,
988 #[cfg(not(feature = "ferrocene_certified"))]
989 None => expect_failed(msg),
990 #[cfg(feature = "ferrocene_certified")]
991 None => panic(msg),
992 }
993 }
994
995 /// Returns the contained [`Some`] value, consuming the `self` value.
996 ///
997 /// Because this function may panic, its use is generally discouraged.
998 /// Panics are meant for unrecoverable errors, and
999 /// [may abort the entire program][panic-abort].
1000 ///
1001 /// Instead, prefer to use pattern matching and handle the [`None`]
1002 /// case explicitly, or call [`unwrap_or`], [`unwrap_or_else`], or
1003 /// [`unwrap_or_default`]. In functions returning `Option`, you can use
1004 /// [the `?` (try) operator][try-option].
1005 ///
1006 /// [panic-abort]: https://doc.rust-lang.org/book/ch09-01-unrecoverable-errors-with-panic.html
1007 /// [try-option]: https://doc.rust-lang.org/book/ch09-02-recoverable-errors-with-result.html#where-the--operator-can-be-used
1008 /// [`unwrap_or`]: Option::unwrap_or
1009 /// [`unwrap_or_else`]: Option::unwrap_or_else
1010 /// [`unwrap_or_default`]: Option::unwrap_or_default
1011 ///
1012 /// # Panics
1013 ///
1014 /// Panics if the self value equals [`None`].
1015 ///
1016 /// # Examples
1017 ///
1018 /// ```
1019 /// let x = Some("air");
1020 /// assert_eq!(x.unwrap(), "air");
1021 /// ```
1022 ///
1023 /// ```should_panic
1024 /// let x: Option<&str> = None;
1025 /// assert_eq!(x.unwrap(), "air"); // fails
1026 /// ```
1027 #[inline(always)]
1028 #[track_caller]
1029 #[stable(feature = "rust1", since = "1.0.0")]
1030 #[rustc_diagnostic_item = "option_unwrap"]
1031 #[rustc_allow_const_fn_unstable(const_precise_live_drops)]
1032 #[rustc_const_stable(feature = "const_option", since = "1.83.0")]
1033 pub const fn unwrap(self) -> T {
1034 match self {
1035 Some(val) => val,
1036 None => unwrap_failed(),
1037 }
1038 }
1039
1040 /// Returns the contained [`Some`] value or a provided default.
1041 ///
1042 /// Arguments passed to `unwrap_or` are eagerly evaluated; if you are passing
1043 /// the result of a function call, it is recommended to use [`unwrap_or_else`],
1044 /// which is lazily evaluated.
1045 ///
1046 /// [`unwrap_or_else`]: Option::unwrap_or_else
1047 ///
1048 /// # Examples
1049 ///
1050 /// ```
1051 /// assert_eq!(Some("car").unwrap_or("bike"), "car");
1052 /// assert_eq!(None.unwrap_or("bike"), "bike");
1053 /// ```
1054 #[inline]
1055 #[stable(feature = "rust1", since = "1.0.0")]
1056 #[rustc_allow_const_fn_unstable(const_precise_live_drops)]
1057 #[rustc_const_unstable(feature = "const_option_ops", issue = "143956")]
1058 pub const fn unwrap_or(self, default: T) -> T
1059 where
1060 T: [const] Destruct,
1061 {
1062 match self {
1063 Some(x) => x,
1064 None => default,
1065 }
1066 }
1067
1068 /// Returns the contained [`Some`] value or computes it from a closure.
1069 ///
1070 /// # Examples
1071 ///
1072 /// ```
1073 /// let k = 10;
1074 /// assert_eq!(Some(4).unwrap_or_else(|| 2 * k), 4);
1075 /// assert_eq!(None.unwrap_or_else(|| 2 * k), 20);
1076 /// ```
1077 #[inline]
1078 #[track_caller]
1079 #[stable(feature = "rust1", since = "1.0.0")]
1080 #[rustc_const_unstable(feature = "const_option_ops", issue = "143956")]
1081 pub const fn unwrap_or_else<F>(self, f: F) -> T
1082 where
1083 F: [const] FnOnce() -> T + [const] Destruct,
1084 {
1085 match self {
1086 Some(x) => x,
1087 None => f(),
1088 }
1089 }
1090
1091 /// Returns the contained [`Some`] value or a default.
1092 ///
1093 /// Consumes the `self` argument then, if [`Some`], returns the contained
1094 /// value, otherwise if [`None`], returns the [default value] for that
1095 /// type.
1096 ///
1097 /// # Examples
1098 ///
1099 /// ```
1100 /// let x: Option<u32> = None;
1101 /// let y: Option<u32> = Some(12);
1102 ///
1103 /// assert_eq!(x.unwrap_or_default(), 0);
1104 /// assert_eq!(y.unwrap_or_default(), 12);
1105 /// ```
1106 ///
1107 /// [default value]: Default::default
1108 /// [`parse`]: str::parse
1109 /// [`FromStr`]: crate::str::FromStr
1110 #[inline]
1111 #[stable(feature = "rust1", since = "1.0.0")]
1112 #[rustc_const_unstable(feature = "const_option_ops", issue = "143956")]
1113 pub const fn unwrap_or_default(self) -> T
1114 where
1115 T: [const] Default,
1116 {
1117 match self {
1118 Some(x) => x,
1119 None => T::default(),
1120 }
1121 }
1122
1123 /// Returns the contained [`Some`] value, consuming the `self` value,
1124 /// without checking that the value is not [`None`].
1125 ///
1126 /// # Safety
1127 ///
1128 /// Calling this method on [`None`] is *[undefined behavior]*.
1129 ///
1130 /// [undefined behavior]: https://doc.rust-lang.org/reference/behavior-considered-undefined.html
1131 ///
1132 /// # Examples
1133 ///
1134 /// ```
1135 /// let x = Some("air");
1136 /// assert_eq!(unsafe { x.unwrap_unchecked() }, "air");
1137 /// ```
1138 ///
1139 /// ```no_run
1140 /// let x: Option<&str> = None;
1141 /// assert_eq!(unsafe { x.unwrap_unchecked() }, "air"); // Undefined behavior!
1142 /// ```
1143 #[inline]
1144 #[track_caller]
1145 #[stable(feature = "option_result_unwrap_unchecked", since = "1.58.0")]
1146 #[rustc_allow_const_fn_unstable(const_precise_live_drops)]
1147 #[rustc_const_stable(feature = "const_option", since = "1.83.0")]
1148 pub const unsafe fn unwrap_unchecked(self) -> T {
1149 match self {
1150 Some(val) => val,
1151 #[ferrocene::annotation(
1152 "This line cannot be covered as reaching `unreachable_unchecked` is undefined behavior."
1153 )]
1154 // SAFETY: the safety contract must be upheld by the caller.
1155 None => unsafe { hint::unreachable_unchecked() },
1156 }
1157 }
1158
1159 /////////////////////////////////////////////////////////////////////////
1160 // Transforming contained values
1161 /////////////////////////////////////////////////////////////////////////
1162
1163 /// Maps an `Option<T>` to `Option<U>` by applying a function to a contained value (if `Some`) or returns `None` (if `None`).
1164 ///
1165 /// # Examples
1166 ///
1167 /// Calculates the length of an <code>Option<[String]></code> as an
1168 /// <code>Option<[usize]></code>, consuming the original:
1169 ///
1170 /// [String]: ../../std/string/struct.String.html "String"
1171 /// ```
1172 /// let maybe_some_string = Some(String::from("Hello, World!"));
1173 /// // `Option::map` takes self *by value*, consuming `maybe_some_string`
1174 /// let maybe_some_len = maybe_some_string.map(|s| s.len());
1175 /// assert_eq!(maybe_some_len, Some(13));
1176 ///
1177 /// let x: Option<&str> = None;
1178 /// assert_eq!(x.map(|s| s.len()), None);
1179 /// ```
1180 #[inline]
1181 #[stable(feature = "rust1", since = "1.0.0")]
1182 #[rustc_const_unstable(feature = "const_option_ops", issue = "143956")]
1183 pub const fn map<U, F>(self, f: F) -> Option<U>
1184 where
1185 F: [const] FnOnce(T) -> U + [const] Destruct,
1186 {
1187 match self {
1188 Some(x) => Some(f(x)),
1189 None => None,
1190 }
1191 }
1192
1193 /// Calls a function with a reference to the contained value if [`Some`].
1194 ///
1195 /// Returns the original option.
1196 ///
1197 /// # Examples
1198 ///
1199 /// ```
1200 /// let list = vec![1, 2, 3];
1201 ///
1202 /// // prints "got: 2"
1203 /// let x = list
1204 /// .get(1)
1205 /// .inspect(|x| println!("got: {x}"))
1206 /// .expect("list should be long enough");
1207 ///
1208 /// // prints nothing
1209 /// list.get(5).inspect(|x| println!("got: {x}"));
1210 /// ```
1211 #[inline]
1212 #[stable(feature = "result_option_inspect", since = "1.76.0")]
1213 #[rustc_const_unstable(feature = "const_option_ops", issue = "143956")]
1214 pub const fn inspect<F>(self, f: F) -> Self
1215 where
1216 F: [const] FnOnce(&T) + [const] Destruct,
1217 {
1218 if let Some(ref x) = self {
1219 f(x);
1220 }
1221
1222 self
1223 }
1224
1225 /// Returns the provided default result (if none),
1226 /// or applies a function to the contained value (if any).
1227 ///
1228 /// Arguments passed to `map_or` are eagerly evaluated; if you are passing
1229 /// the result of a function call, it is recommended to use [`map_or_else`],
1230 /// which is lazily evaluated.
1231 ///
1232 /// [`map_or_else`]: Option::map_or_else
1233 ///
1234 /// # Examples
1235 ///
1236 /// ```
1237 /// let x = Some("foo");
1238 /// assert_eq!(x.map_or(42, |v| v.len()), 3);
1239 ///
1240 /// let x: Option<&str> = None;
1241 /// assert_eq!(x.map_or(42, |v| v.len()), 42);
1242 /// ```
1243 #[inline]
1244 #[stable(feature = "rust1", since = "1.0.0")]
1245 #[must_use = "if you don't need the returned value, use `if let` instead"]
1246 #[rustc_const_unstable(feature = "const_option_ops", issue = "143956")]
1247 pub const fn map_or<U, F>(self, default: U, f: F) -> U
1248 where
1249 F: [const] FnOnce(T) -> U + [const] Destruct,
1250 U: [const] Destruct,
1251 {
1252 match self {
1253 Some(t) => f(t),
1254 None => default,
1255 }
1256 }
1257
1258 /// Computes a default function result (if none), or
1259 /// applies a different function to the contained value (if any).
1260 ///
1261 /// # Basic examples
1262 ///
1263 /// ```
1264 /// let k = 21;
1265 ///
1266 /// let x = Some("foo");
1267 /// assert_eq!(x.map_or_else(|| 2 * k, |v| v.len()), 3);
1268 ///
1269 /// let x: Option<&str> = None;
1270 /// assert_eq!(x.map_or_else(|| 2 * k, |v| v.len()), 42);
1271 /// ```
1272 ///
1273 /// # Handling a Result-based fallback
1274 ///
1275 /// A somewhat common occurrence when dealing with optional values
1276 /// in combination with [`Result<T, E>`] is the case where one wants to invoke
1277 /// a fallible fallback if the option is not present. This example
1278 /// parses a command line argument (if present), or the contents of a file to
1279 /// an integer. However, unlike accessing the command line argument, reading
1280 /// the file is fallible, so it must be wrapped with `Ok`.
1281 ///
1282 /// ```no_run
1283 /// # fn main() -> Result<(), Box<dyn std::error::Error>> {
1284 /// let v: u64 = std::env::args()
1285 /// .nth(1)
1286 /// .map_or_else(|| std::fs::read_to_string("/etc/someconfig.conf"), Ok)?
1287 /// .parse()?;
1288 /// # Ok(())
1289 /// # }
1290 /// ```
1291 #[inline]
1292 #[stable(feature = "rust1", since = "1.0.0")]
1293 #[rustc_const_unstable(feature = "const_option_ops", issue = "143956")]
1294 pub const fn map_or_else<U, D, F>(self, default: D, f: F) -> U
1295 where
1296 D: [const] FnOnce() -> U + [const] Destruct,
1297 F: [const] FnOnce(T) -> U + [const] Destruct,
1298 {
1299 match self {
1300 Some(t) => f(t),
1301 None => default(),
1302 }
1303 }
1304
1305 /// Maps an `Option<T>` to a `U` by applying function `f` to the contained
1306 /// value if the option is [`Some`], otherwise if [`None`], returns the
1307 /// [default value] for the type `U`.
1308 ///
1309 /// # Examples
1310 ///
1311 /// ```
1312 /// #![feature(result_option_map_or_default)]
1313 ///
1314 /// let x: Option<&str> = Some("hi");
1315 /// let y: Option<&str> = None;
1316 ///
1317 /// assert_eq!(x.map_or_default(|x| x.len()), 2);
1318 /// assert_eq!(y.map_or_default(|y| y.len()), 0);
1319 /// ```
1320 ///
1321 /// [default value]: Default::default
1322 #[inline]
1323 #[unstable(feature = "result_option_map_or_default", issue = "138099")]
1324 #[rustc_const_unstable(feature = "const_option_ops", issue = "143956")]
1325 pub const fn map_or_default<U, F>(self, f: F) -> U
1326 where
1327 U: [const] Default,
1328 F: [const] FnOnce(T) -> U + [const] Destruct,
1329 {
1330 match self {
1331 Some(t) => f(t),
1332 None => U::default(),
1333 }
1334 }
1335
1336 /// Transforms the `Option<T>` into a [`Result<T, E>`], mapping [`Some(v)`] to
1337 /// [`Ok(v)`] and [`None`] to [`Err(err)`].
1338 ///
1339 /// Arguments passed to `ok_or` are eagerly evaluated; if you are passing the
1340 /// result of a function call, it is recommended to use [`ok_or_else`], which is
1341 /// lazily evaluated.
1342 ///
1343 /// [`Ok(v)`]: Ok
1344 /// [`Err(err)`]: Err
1345 /// [`Some(v)`]: Some
1346 /// [`ok_or_else`]: Option::ok_or_else
1347 ///
1348 /// # Examples
1349 ///
1350 /// ```
1351 /// let x = Some("foo");
1352 /// assert_eq!(x.ok_or(0), Ok("foo"));
1353 ///
1354 /// let x: Option<&str> = None;
1355 /// assert_eq!(x.ok_or(0), Err(0));
1356 /// ```
1357 #[inline]
1358 #[stable(feature = "rust1", since = "1.0.0")]
1359 #[rustc_const_unstable(feature = "const_option_ops", issue = "143956")]
1360 pub const fn ok_or<E: [const] Destruct>(self, err: E) -> Result<T, E> {
1361 match self {
1362 Some(v) => Ok(v),
1363 None => Err(err),
1364 }
1365 }
1366
1367 /// Transforms the `Option<T>` into a [`Result<T, E>`], mapping [`Some(v)`] to
1368 /// [`Ok(v)`] and [`None`] to [`Err(err())`].
1369 ///
1370 /// [`Ok(v)`]: Ok
1371 /// [`Err(err())`]: Err
1372 /// [`Some(v)`]: Some
1373 ///
1374 /// # Examples
1375 ///
1376 /// ```
1377 /// let x = Some("foo");
1378 /// assert_eq!(x.ok_or_else(|| 0), Ok("foo"));
1379 ///
1380 /// let x: Option<&str> = None;
1381 /// assert_eq!(x.ok_or_else(|| 0), Err(0));
1382 /// ```
1383 #[inline]
1384 #[stable(feature = "rust1", since = "1.0.0")]
1385 #[rustc_const_unstable(feature = "const_option_ops", issue = "143956")]
1386 pub const fn ok_or_else<E, F>(self, err: F) -> Result<T, E>
1387 where
1388 F: [const] FnOnce() -> E + [const] Destruct,
1389 {
1390 match self {
1391 Some(v) => Ok(v),
1392 None => Err(err()),
1393 }
1394 }
1395
1396 /// Converts from `Option<T>` (or `&Option<T>`) to `Option<&T::Target>`.
1397 ///
1398 /// Leaves the original Option in-place, creating a new one with a reference
1399 /// to the original one, additionally coercing the contents via [`Deref`].
1400 ///
1401 /// # Examples
1402 ///
1403 /// ```
1404 /// let x: Option<String> = Some("hey".to_owned());
1405 /// assert_eq!(x.as_deref(), Some("hey"));
1406 ///
1407 /// let x: Option<String> = None;
1408 /// assert_eq!(x.as_deref(), None);
1409 /// ```
1410 #[inline]
1411 #[stable(feature = "option_deref", since = "1.40.0")]
1412 #[rustc_const_unstable(feature = "const_convert", issue = "143773")]
1413 pub const fn as_deref(&self) -> Option<&T::Target>
1414 where
1415 T: [const] Deref,
1416 {
1417 self.as_ref().map(Deref::deref)
1418 }
1419
1420 /// Converts from `Option<T>` (or `&mut Option<T>`) to `Option<&mut T::Target>`.
1421 ///
1422 /// Leaves the original `Option` in-place, creating a new one containing a mutable reference to
1423 /// the inner type's [`Deref::Target`] type.
1424 ///
1425 /// # Examples
1426 ///
1427 /// ```
1428 /// let mut x: Option<String> = Some("hey".to_owned());
1429 /// assert_eq!(x.as_deref_mut().map(|x| {
1430 /// x.make_ascii_uppercase();
1431 /// x
1432 /// }), Some("HEY".to_owned().as_mut_str()));
1433 /// ```
1434 #[inline]
1435 #[stable(feature = "option_deref", since = "1.40.0")]
1436 #[rustc_const_unstable(feature = "const_convert", issue = "143773")]
1437 pub const fn as_deref_mut(&mut self) -> Option<&mut T::Target>
1438 where
1439 T: [const] DerefMut,
1440 {
1441 self.as_mut().map(DerefMut::deref_mut)
1442 }
1443
1444 /////////////////////////////////////////////////////////////////////////
1445 // Iterator constructors
1446 /////////////////////////////////////////////////////////////////////////
1447
1448 /// Returns an iterator over the possibly contained value.
1449 ///
1450 /// # Examples
1451 ///
1452 /// ```
1453 /// let x = Some(4);
1454 /// assert_eq!(x.iter().next(), Some(&4));
1455 ///
1456 /// let x: Option<u32> = None;
1457 /// assert_eq!(x.iter().next(), None);
1458 /// ```
1459 #[inline]
1460 #[stable(feature = "rust1", since = "1.0.0")]
1461 pub fn iter(&self) -> Iter<'_, T> {
1462 Iter { inner: Item { opt: self.as_ref() } }
1463 }
1464
1465 /// Returns a mutable iterator over the possibly contained value.
1466 ///
1467 /// # Examples
1468 ///
1469 /// ```
1470 /// let mut x = Some(4);
1471 /// match x.iter_mut().next() {
1472 /// Some(v) => *v = 42,
1473 /// None => {},
1474 /// }
1475 /// assert_eq!(x, Some(42));
1476 ///
1477 /// let mut x: Option<u32> = None;
1478 /// assert_eq!(x.iter_mut().next(), None);
1479 /// ```
1480 #[inline]
1481 #[stable(feature = "rust1", since = "1.0.0")]
1482 pub fn iter_mut(&mut self) -> IterMut<'_, T> {
1483 IterMut { inner: Item { opt: self.as_mut() } }
1484 }
1485
1486 /////////////////////////////////////////////////////////////////////////
1487 // Boolean operations on the values, eager and lazy
1488 /////////////////////////////////////////////////////////////////////////
1489
1490 /// Returns [`None`] if the option is [`None`], otherwise returns `optb`.
1491 ///
1492 /// Arguments passed to `and` are eagerly evaluated; if you are passing the
1493 /// result of a function call, it is recommended to use [`and_then`], which is
1494 /// lazily evaluated.
1495 ///
1496 /// [`and_then`]: Option::and_then
1497 ///
1498 /// # Examples
1499 ///
1500 /// ```
1501 /// let x = Some(2);
1502 /// let y: Option<&str> = None;
1503 /// assert_eq!(x.and(y), None);
1504 ///
1505 /// let x: Option<u32> = None;
1506 /// let y = Some("foo");
1507 /// assert_eq!(x.and(y), None);
1508 ///
1509 /// let x = Some(2);
1510 /// let y = Some("foo");
1511 /// assert_eq!(x.and(y), Some("foo"));
1512 ///
1513 /// let x: Option<u32> = None;
1514 /// let y: Option<&str> = None;
1515 /// assert_eq!(x.and(y), None);
1516 /// ```
1517 #[inline]
1518 #[stable(feature = "rust1", since = "1.0.0")]
1519 #[rustc_const_unstable(feature = "const_option_ops", issue = "143956")]
1520 pub const fn and<U>(self, optb: Option<U>) -> Option<U>
1521 where
1522 T: [const] Destruct,
1523 U: [const] Destruct,
1524 {
1525 match self {
1526 Some(_) => optb,
1527 None => None,
1528 }
1529 }
1530
1531 /// Returns [`None`] if the option is [`None`], otherwise calls `f` with the
1532 /// wrapped value and returns the result.
1533 ///
1534 /// Some languages call this operation flatmap.
1535 ///
1536 /// # Examples
1537 ///
1538 /// ```
1539 /// fn sq_then_to_string(x: u32) -> Option<String> {
1540 /// x.checked_mul(x).map(|sq| sq.to_string())
1541 /// }
1542 ///
1543 /// assert_eq!(Some(2).and_then(sq_then_to_string), Some(4.to_string()));
1544 /// assert_eq!(Some(1_000_000).and_then(sq_then_to_string), None); // overflowed!
1545 /// assert_eq!(None.and_then(sq_then_to_string), None);
1546 /// ```
1547 ///
1548 /// Often used to chain fallible operations that may return [`None`].
1549 ///
1550 /// ```
1551 /// let arr_2d = [["A0", "A1"], ["B0", "B1"]];
1552 ///
1553 /// let item_0_1 = arr_2d.get(0).and_then(|row| row.get(1));
1554 /// assert_eq!(item_0_1, Some(&"A1"));
1555 ///
1556 /// let item_2_0 = arr_2d.get(2).and_then(|row| row.get(0));
1557 /// assert_eq!(item_2_0, None);
1558 /// ```
1559 #[doc(alias = "flatmap")]
1560 #[inline]
1561 #[stable(feature = "rust1", since = "1.0.0")]
1562 #[rustc_confusables("flat_map", "flatmap")]
1563 #[rustc_const_unstable(feature = "const_option_ops", issue = "143956")]
1564 pub const fn and_then<U, F>(self, f: F) -> Option<U>
1565 where
1566 F: [const] FnOnce(T) -> Option<U> + [const] Destruct,
1567 {
1568 match self {
1569 Some(x) => f(x),
1570 None => None,
1571 }
1572 }
1573
1574 /// Returns [`None`] if the option is [`None`], otherwise calls `predicate`
1575 /// with the wrapped value and returns:
1576 ///
1577 /// - [`Some(t)`] if `predicate` returns `true` (where `t` is the wrapped
1578 /// value), and
1579 /// - [`None`] if `predicate` returns `false`.
1580 ///
1581 /// This function works similar to [`Iterator::filter()`]. You can imagine
1582 /// the `Option<T>` being an iterator over one or zero elements. `filter()`
1583 /// lets you decide which elements to keep.
1584 ///
1585 /// # Examples
1586 ///
1587 /// ```rust
1588 /// fn is_even(n: &i32) -> bool {
1589 /// n % 2 == 0
1590 /// }
1591 ///
1592 /// assert_eq!(None.filter(is_even), None);
1593 /// assert_eq!(Some(3).filter(is_even), None);
1594 /// assert_eq!(Some(4).filter(is_even), Some(4));
1595 /// ```
1596 ///
1597 /// [`Some(t)`]: Some
1598 #[inline]
1599 #[stable(feature = "option_filter", since = "1.27.0")]
1600 #[rustc_const_unstable(feature = "const_option_ops", issue = "143956")]
1601 pub const fn filter<P>(self, predicate: P) -> Self
1602 where
1603 P: [const] FnOnce(&T) -> bool + [const] Destruct,
1604 T: [const] Destruct,
1605 {
1606 if let Some(x) = self {
1607 if predicate(&x) {
1608 return Some(x);
1609 }
1610 }
1611 None
1612 }
1613
1614 /// Returns the option if it contains a value, otherwise returns `optb`.
1615 ///
1616 /// Arguments passed to `or` are eagerly evaluated; if you are passing the
1617 /// result of a function call, it is recommended to use [`or_else`], which is
1618 /// lazily evaluated.
1619 ///
1620 /// [`or_else`]: Option::or_else
1621 ///
1622 /// # Examples
1623 ///
1624 /// ```
1625 /// let x = Some(2);
1626 /// let y = None;
1627 /// assert_eq!(x.or(y), Some(2));
1628 ///
1629 /// let x = None;
1630 /// let y = Some(100);
1631 /// assert_eq!(x.or(y), Some(100));
1632 ///
1633 /// let x = Some(2);
1634 /// let y = Some(100);
1635 /// assert_eq!(x.or(y), Some(2));
1636 ///
1637 /// let x: Option<u32> = None;
1638 /// let y = None;
1639 /// assert_eq!(x.or(y), None);
1640 /// ```
1641 #[inline]
1642 #[stable(feature = "rust1", since = "1.0.0")]
1643 #[rustc_const_unstable(feature = "const_option_ops", issue = "143956")]
1644 pub const fn or(self, optb: Option<T>) -> Option<T>
1645 where
1646 T: [const] Destruct,
1647 {
1648 match self {
1649 x @ Some(_) => x,
1650 None => optb,
1651 }
1652 }
1653
1654 /// Returns the option if it contains a value, otherwise calls `f` and
1655 /// returns the result.
1656 ///
1657 /// # Examples
1658 ///
1659 /// ```
1660 /// fn nobody() -> Option<&'static str> { None }
1661 /// fn vikings() -> Option<&'static str> { Some("vikings") }
1662 ///
1663 /// assert_eq!(Some("barbarians").or_else(vikings), Some("barbarians"));
1664 /// assert_eq!(None.or_else(vikings), Some("vikings"));
1665 /// assert_eq!(None.or_else(nobody), None);
1666 /// ```
1667 #[inline]
1668 #[stable(feature = "rust1", since = "1.0.0")]
1669 #[rustc_const_unstable(feature = "const_option_ops", issue = "143956")]
1670 pub const fn or_else<F>(self, f: F) -> Option<T>
1671 where
1672 F: [const] FnOnce() -> Option<T> + [const] Destruct,
1673 //FIXME(const_hack): this `T: [const] Destruct` is unnecessary, but even precise live drops can't tell
1674 // no value of type `T` gets dropped here
1675 T: [const] Destruct,
1676 {
1677 match self {
1678 x @ Some(_) => x,
1679 None => f(),
1680 }
1681 }
1682
1683 /// Returns [`Some`] if exactly one of `self`, `optb` is [`Some`], otherwise returns [`None`].
1684 ///
1685 /// # Examples
1686 ///
1687 /// ```
1688 /// let x = Some(2);
1689 /// let y: Option<u32> = None;
1690 /// assert_eq!(x.xor(y), Some(2));
1691 ///
1692 /// let x: Option<u32> = None;
1693 /// let y = Some(2);
1694 /// assert_eq!(x.xor(y), Some(2));
1695 ///
1696 /// let x = Some(2);
1697 /// let y = Some(2);
1698 /// assert_eq!(x.xor(y), None);
1699 ///
1700 /// let x: Option<u32> = None;
1701 /// let y: Option<u32> = None;
1702 /// assert_eq!(x.xor(y), None);
1703 /// ```
1704 #[inline]
1705 #[stable(feature = "option_xor", since = "1.37.0")]
1706 #[rustc_const_unstable(feature = "const_option_ops", issue = "143956")]
1707 pub const fn xor(self, optb: Option<T>) -> Option<T>
1708 where
1709 T: [const] Destruct,
1710 {
1711 match (self, optb) {
1712 (a @ Some(_), None) => a,
1713 (None, b @ Some(_)) => b,
1714 _ => None,
1715 }
1716 }
1717
1718 /////////////////////////////////////////////////////////////////////////
1719 // Entry-like operations to insert a value and return a reference
1720 /////////////////////////////////////////////////////////////////////////
1721
1722 /// Inserts `value` into the option, then returns a mutable reference to it.
1723 ///
1724 /// If the option already contains a value, the old value is dropped.
1725 ///
1726 /// See also [`Option::get_or_insert`], which doesn't update the value if
1727 /// the option already contains [`Some`].
1728 ///
1729 /// # Example
1730 ///
1731 /// ```
1732 /// let mut opt = None;
1733 /// let val = opt.insert(1);
1734 /// assert_eq!(*val, 1);
1735 /// assert_eq!(opt.unwrap(), 1);
1736 /// let val = opt.insert(2);
1737 /// assert_eq!(*val, 2);
1738 /// *val = 3;
1739 /// assert_eq!(opt.unwrap(), 3);
1740 /// ```
1741 #[must_use = "if you intended to set a value, consider assignment instead"]
1742 #[inline]
1743 #[stable(feature = "option_insert", since = "1.53.0")]
1744 #[rustc_const_unstable(feature = "const_option_ops", issue = "143956")]
1745 #[cfg(not(feature = "ferrocene_certified"))]
1746 pub const fn insert(&mut self, value: T) -> &mut T
1747 where
1748 T: [const] Destruct,
1749 {
1750 *self = Some(value);
1751
1752 // SAFETY: the code above just filled the option
1753 unsafe { self.as_mut().unwrap_unchecked() }
1754 }
1755
1756 /// Inserts `value` into the option if it is [`None`], then
1757 /// returns a mutable reference to the contained value.
1758 ///
1759 /// See also [`Option::insert`], which updates the value even if
1760 /// the option already contains [`Some`].
1761 ///
1762 /// # Examples
1763 ///
1764 /// ```
1765 /// let mut x = None;
1766 ///
1767 /// {
1768 /// let y: &mut u32 = x.get_or_insert(5);
1769 /// assert_eq!(y, &5);
1770 ///
1771 /// *y = 7;
1772 /// }
1773 ///
1774 /// assert_eq!(x, Some(7));
1775 /// ```
1776 #[inline]
1777 #[stable(feature = "option_entry", since = "1.20.0")]
1778 #[cfg(not(feature = "ferrocene_certified"))]
1779 pub fn get_or_insert(&mut self, value: T) -> &mut T {
1780 self.get_or_insert_with(|| value)
1781 }
1782
1783 /// Inserts the default value into the option if it is [`None`], then
1784 /// returns a mutable reference to the contained value.
1785 ///
1786 /// # Examples
1787 ///
1788 /// ```
1789 /// let mut x = None;
1790 ///
1791 /// {
1792 /// let y: &mut u32 = x.get_or_insert_default();
1793 /// assert_eq!(y, &0);
1794 ///
1795 /// *y = 7;
1796 /// }
1797 ///
1798 /// assert_eq!(x, Some(7));
1799 /// ```
1800 #[inline]
1801 #[stable(feature = "option_get_or_insert_default", since = "1.83.0")]
1802 #[rustc_const_unstable(feature = "const_option_ops", issue = "143956")]
1803 #[cfg(not(feature = "ferrocene_certified"))]
1804 pub const fn get_or_insert_default(&mut self) -> &mut T
1805 where
1806 T: [const] Default + [const] Destruct,
1807 {
1808 self.get_or_insert_with(T::default)
1809 }
1810
1811 /// Inserts a value computed from `f` into the option if it is [`None`],
1812 /// then returns a mutable reference to the contained value.
1813 ///
1814 /// # Examples
1815 ///
1816 /// ```
1817 /// let mut x = None;
1818 ///
1819 /// {
1820 /// let y: &mut u32 = x.get_or_insert_with(|| 5);
1821 /// assert_eq!(y, &5);
1822 ///
1823 /// *y = 7;
1824 /// }
1825 ///
1826 /// assert_eq!(x, Some(7));
1827 /// ```
1828 #[inline]
1829 #[stable(feature = "option_entry", since = "1.20.0")]
1830 #[rustc_const_unstable(feature = "const_option_ops", issue = "143956")]
1831 #[cfg(not(feature = "ferrocene_certified"))]
1832 pub const fn get_or_insert_with<F>(&mut self, f: F) -> &mut T
1833 where
1834 F: [const] FnOnce() -> T + [const] Destruct,
1835 T: [const] Destruct,
1836 {
1837 if let None = self {
1838 *self = Some(f());
1839 }
1840
1841 // SAFETY: a `None` variant for `self` would have been replaced by a `Some`
1842 // variant in the code above.
1843 unsafe { self.as_mut().unwrap_unchecked() }
1844 }
1845
1846 /////////////////////////////////////////////////////////////////////////
1847 // Misc
1848 /////////////////////////////////////////////////////////////////////////
1849
1850 /// Takes the value out of the option, leaving a [`None`] in its place.
1851 ///
1852 /// # Examples
1853 ///
1854 /// ```
1855 /// let mut x = Some(2);
1856 /// let y = x.take();
1857 /// assert_eq!(x, None);
1858 /// assert_eq!(y, Some(2));
1859 ///
1860 /// let mut x: Option<u32> = None;
1861 /// let y = x.take();
1862 /// assert_eq!(x, None);
1863 /// assert_eq!(y, None);
1864 /// ```
1865 #[inline]
1866 #[stable(feature = "rust1", since = "1.0.0")]
1867 #[rustc_const_stable(feature = "const_option", since = "1.83.0")]
1868 pub const fn take(&mut self) -> Option<T> {
1869 // FIXME(const-hack) replace `mem::replace` by `mem::take` when the latter is const ready
1870 mem::replace(self, None)
1871 }
1872
1873 /// Takes the value out of the option, but only if the predicate evaluates to
1874 /// `true` on a mutable reference to the value.
1875 ///
1876 /// In other words, replaces `self` with `None` if the predicate returns `true`.
1877 /// This method operates similar to [`Option::take`] but conditional.
1878 ///
1879 /// # Examples
1880 ///
1881 /// ```
1882 /// let mut x = Some(42);
1883 ///
1884 /// let prev = x.take_if(|v| if *v == 42 {
1885 /// *v += 1;
1886 /// false
1887 /// } else {
1888 /// false
1889 /// });
1890 /// assert_eq!(x, Some(43));
1891 /// assert_eq!(prev, None);
1892 ///
1893 /// let prev = x.take_if(|v| *v == 43);
1894 /// assert_eq!(x, None);
1895 /// assert_eq!(prev, Some(43));
1896 /// ```
1897 #[inline]
1898 #[stable(feature = "option_take_if", since = "1.80.0")]
1899 #[rustc_const_unstable(feature = "const_option_ops", issue = "143956")]
1900 #[cfg(not(feature = "ferrocene_certified"))]
1901 pub const fn take_if<P>(&mut self, predicate: P) -> Option<T>
1902 where
1903 P: [const] FnOnce(&mut T) -> bool + [const] Destruct,
1904 {
1905 if self.as_mut().map_or(false, predicate) { self.take() } else { None }
1906 }
1907
1908 /// Replaces the actual value in the option by the value given in parameter,
1909 /// returning the old value if present,
1910 /// leaving a [`Some`] in its place without deinitializing either one.
1911 ///
1912 /// # Examples
1913 ///
1914 /// ```
1915 /// let mut x = Some(2);
1916 /// let old = x.replace(5);
1917 /// assert_eq!(x, Some(5));
1918 /// assert_eq!(old, Some(2));
1919 ///
1920 /// let mut x = None;
1921 /// let old = x.replace(3);
1922 /// assert_eq!(x, Some(3));
1923 /// assert_eq!(old, None);
1924 /// ```
1925 #[inline]
1926 #[stable(feature = "option_replace", since = "1.31.0")]
1927 #[rustc_const_stable(feature = "const_option", since = "1.83.0")]
1928 #[cfg(not(feature = "ferrocene_certified"))]
1929 pub const fn replace(&mut self, value: T) -> Option<T> {
1930 mem::replace(self, Some(value))
1931 }
1932
1933 /// Zips `self` with another `Option`.
1934 ///
1935 /// If `self` is `Some(s)` and `other` is `Some(o)`, this method returns `Some((s, o))`.
1936 /// Otherwise, `None` is returned.
1937 ///
1938 /// # Examples
1939 ///
1940 /// ```
1941 /// let x = Some(1);
1942 /// let y = Some("hi");
1943 /// let z = None::<u8>;
1944 ///
1945 /// assert_eq!(x.zip(y), Some((1, "hi")));
1946 /// assert_eq!(x.zip(z), None);
1947 /// ```
1948 #[stable(feature = "option_zip_option", since = "1.46.0")]
1949 #[rustc_const_unstable(feature = "const_option_ops", issue = "143956")]
1950 pub const fn zip<U>(self, other: Option<U>) -> Option<(T, U)>
1951 where
1952 T: [const] Destruct,
1953 U: [const] Destruct,
1954 {
1955 match (self, other) {
1956 (Some(a), Some(b)) => Some((a, b)),
1957 _ => None,
1958 }
1959 }
1960
1961 /// Zips `self` and another `Option` with function `f`.
1962 ///
1963 /// If `self` is `Some(s)` and `other` is `Some(o)`, this method returns `Some(f(s, o))`.
1964 /// Otherwise, `None` is returned.
1965 ///
1966 /// # Examples
1967 ///
1968 /// ```
1969 /// #![feature(option_zip)]
1970 ///
1971 /// #[derive(Debug, PartialEq)]
1972 /// struct Point {
1973 /// x: f64,
1974 /// y: f64,
1975 /// }
1976 ///
1977 /// impl Point {
1978 /// fn new(x: f64, y: f64) -> Self {
1979 /// Self { x, y }
1980 /// }
1981 /// }
1982 ///
1983 /// let x = Some(17.5);
1984 /// let y = Some(42.7);
1985 ///
1986 /// assert_eq!(x.zip_with(y, Point::new), Some(Point { x: 17.5, y: 42.7 }));
1987 /// assert_eq!(x.zip_with(None, Point::new), None);
1988 /// ```
1989 #[unstable(feature = "option_zip", issue = "70086")]
1990 #[rustc_const_unstable(feature = "const_option_ops", issue = "143956")]
1991 #[cfg(not(feature = "ferrocene_certified"))]
1992 pub const fn zip_with<U, F, R>(self, other: Option<U>, f: F) -> Option<R>
1993 where
1994 F: [const] FnOnce(T, U) -> R + [const] Destruct,
1995 T: [const] Destruct,
1996 U: [const] Destruct,
1997 {
1998 match (self, other) {
1999 (Some(a), Some(b)) => Some(f(a, b)),
2000 _ => None,
2001 }
2002 }
2003
2004 /// Reduces two options into one, using the provided function if both are `Some`.
2005 ///
2006 /// If `self` is `Some(s)` and `other` is `Some(o)`, this method returns `Some(f(s, o))`.
2007 /// Otherwise, if only one of `self` and `other` is `Some`, that one is returned.
2008 /// If both `self` and `other` are `None`, `None` is returned.
2009 ///
2010 /// # Examples
2011 ///
2012 /// ```
2013 /// #![feature(option_reduce)]
2014 ///
2015 /// let s12 = Some(12);
2016 /// let s17 = Some(17);
2017 /// let n = None;
2018 /// let f = |a, b| a + b;
2019 ///
2020 /// assert_eq!(s12.reduce(s17, f), Some(29));
2021 /// assert_eq!(s12.reduce(n, f), Some(12));
2022 /// assert_eq!(n.reduce(s17, f), Some(17));
2023 /// assert_eq!(n.reduce(n, f), None);
2024 /// ```
2025 #[unstable(feature = "option_reduce", issue = "144273")]
2026 pub fn reduce<U, R, F>(self, other: Option<U>, f: F) -> Option<R>
2027 where
2028 T: Into<R>,
2029 U: Into<R>,
2030 F: FnOnce(T, U) -> R,
2031 {
2032 match (self, other) {
2033 (Some(a), Some(b)) => Some(f(a, b)),
2034 (Some(a), _) => Some(a.into()),
2035 (_, Some(b)) => Some(b.into()),
2036 _ => None,
2037 }
2038 }
2039}
2040
2041impl<T, U> Option<(T, U)> {
2042 /// Unzips an option containing a tuple of two options.
2043 ///
2044 /// If `self` is `Some((a, b))` this method returns `(Some(a), Some(b))`.
2045 /// Otherwise, `(None, None)` is returned.
2046 ///
2047 /// # Examples
2048 ///
2049 /// ```
2050 /// let x = Some((1, "hi"));
2051 /// let y = None::<(u8, u32)>;
2052 ///
2053 /// assert_eq!(x.unzip(), (Some(1), Some("hi")));
2054 /// assert_eq!(y.unzip(), (None, None));
2055 /// ```
2056 #[inline]
2057 #[stable(feature = "unzip_option", since = "1.66.0")]
2058 pub fn unzip(self) -> (Option<T>, Option<U>) {
2059 match self {
2060 Some((a, b)) => (Some(a), Some(b)),
2061 None => (None, None),
2062 }
2063 }
2064}
2065
2066impl<T> Option<&T> {
2067 /// Maps an `Option<&T>` to an `Option<T>` by copying the contents of the
2068 /// option.
2069 ///
2070 /// # Examples
2071 ///
2072 /// ```
2073 /// let x = 12;
2074 /// let opt_x = Some(&x);
2075 /// assert_eq!(opt_x, Some(&12));
2076 /// let copied = opt_x.copied();
2077 /// assert_eq!(copied, Some(12));
2078 /// ```
2079 #[must_use = "`self` will be dropped if the result is not used"]
2080 #[stable(feature = "copied", since = "1.35.0")]
2081 #[rustc_const_stable(feature = "const_option", since = "1.83.0")]
2082 pub const fn copied(self) -> Option<T>
2083 where
2084 T: Copy,
2085 {
2086 // FIXME(const-hack): this implementation, which sidesteps using `Option::map` since it's not const
2087 // ready yet, should be reverted when possible to avoid code repetition
2088 match self {
2089 Some(&v) => Some(v),
2090 None => None,
2091 }
2092 }
2093
2094 /// Maps an `Option<&T>` to an `Option<T>` by cloning the contents of the
2095 /// option.
2096 ///
2097 /// # Examples
2098 ///
2099 /// ```
2100 /// let x = 12;
2101 /// let opt_x = Some(&x);
2102 /// assert_eq!(opt_x, Some(&12));
2103 /// let cloned = opt_x.cloned();
2104 /// assert_eq!(cloned, Some(12));
2105 /// ```
2106 #[must_use = "`self` will be dropped if the result is not used"]
2107 #[stable(feature = "rust1", since = "1.0.0")]
2108 pub fn cloned(self) -> Option<T>
2109 where
2110 T: Clone,
2111 {
2112 match self {
2113 Some(t) => Some(t.clone()),
2114 None => None,
2115 }
2116 }
2117}
2118
2119impl<T> Option<&mut T> {
2120 /// Maps an `Option<&mut T>` to an `Option<T>` by copying the contents of the
2121 /// option.
2122 ///
2123 /// # Examples
2124 ///
2125 /// ```
2126 /// let mut x = 12;
2127 /// let opt_x = Some(&mut x);
2128 /// assert_eq!(opt_x, Some(&mut 12));
2129 /// let copied = opt_x.copied();
2130 /// assert_eq!(copied, Some(12));
2131 /// ```
2132 #[must_use = "`self` will be dropped if the result is not used"]
2133 #[stable(feature = "copied", since = "1.35.0")]
2134 #[rustc_const_stable(feature = "const_option", since = "1.83.0")]
2135 pub const fn copied(self) -> Option<T>
2136 where
2137 T: Copy,
2138 {
2139 match self {
2140 Some(&mut t) => Some(t),
2141 None => None,
2142 }
2143 }
2144
2145 /// Maps an `Option<&mut T>` to an `Option<T>` by cloning the contents of the
2146 /// option.
2147 ///
2148 /// # Examples
2149 ///
2150 /// ```
2151 /// let mut x = 12;
2152 /// let opt_x = Some(&mut x);
2153 /// assert_eq!(opt_x, Some(&mut 12));
2154 /// let cloned = opt_x.cloned();
2155 /// assert_eq!(cloned, Some(12));
2156 /// ```
2157 #[must_use = "`self` will be dropped if the result is not used"]
2158 #[stable(since = "1.26.0", feature = "option_ref_mut_cloned")]
2159 pub fn cloned(self) -> Option<T>
2160 where
2161 T: Clone,
2162 {
2163 match self {
2164 Some(t) => Some(t.clone()),
2165 None => None,
2166 }
2167 }
2168}
2169
2170impl<T, E> Option<Result<T, E>> {
2171 /// Transposes an `Option` of a [`Result`] into a [`Result`] of an `Option`.
2172 ///
2173 /// <code>[Some]\([Ok]\(\_))</code> is mapped to <code>[Ok]\([Some]\(\_))</code>,
2174 /// <code>[Some]\([Err]\(\_))</code> is mapped to <code>[Err]\(\_)</code>,
2175 /// and [`None`] will be mapped to <code>[Ok]\([None])</code>.
2176 ///
2177 /// # Examples
2178 ///
2179 /// ```
2180 /// #[derive(Debug, Eq, PartialEq)]
2181 /// struct SomeErr;
2182 ///
2183 /// let x: Option<Result<i32, SomeErr>> = Some(Ok(5));
2184 /// let y: Result<Option<i32>, SomeErr> = Ok(Some(5));
2185 /// assert_eq!(x.transpose(), y);
2186 /// ```
2187 #[inline]
2188 #[stable(feature = "transpose_result", since = "1.33.0")]
2189 #[rustc_allow_const_fn_unstable(const_precise_live_drops)]
2190 #[rustc_const_stable(feature = "const_option", since = "1.83.0")]
2191 pub const fn transpose(self) -> Result<Option<T>, E> {
2192 match self {
2193 Some(Ok(x)) => Ok(Some(x)),
2194 Some(Err(e)) => Err(e),
2195 None => Ok(None),
2196 }
2197 }
2198}
2199
2200#[cfg_attr(not(panic = "immediate-abort"), inline(never))]
2201#[cfg_attr(panic = "immediate-abort", inline)]
2202#[cold]
2203#[track_caller]
2204const fn unwrap_failed() -> ! {
2205 panic("called `Option::unwrap()` on a `None` value")
2206}
2207
2208// This is a separate function to reduce the code size of .expect() itself.
2209#[cfg_attr(not(panic = "immediate-abort"), inline(never))]
2210#[cfg_attr(panic = "immediate-abort", inline)]
2211#[cold]
2212#[track_caller]
2213#[cfg(not(feature = "ferrocene_certified"))]
2214const fn expect_failed(msg: &str) -> ! {
2215 panic_display(&msg)
2216}
2217
2218/////////////////////////////////////////////////////////////////////////////
2219// Trait implementations
2220/////////////////////////////////////////////////////////////////////////////
2221
2222#[stable(feature = "rust1", since = "1.0.0")]
2223#[rustc_const_unstable(feature = "const_clone", issue = "142757")]
2224impl<T> const Clone for Option<T>
2225where
2226 // FIXME(const_hack): the T: [const] Destruct should be inferred from the Self: [const] Destruct in clone_from.
2227 // See https://github.com/rust-lang/rust/issues/144207
2228 T: [const] Clone + [const] Destruct,
2229{
2230 #[inline]
2231 fn clone(&self) -> Self {
2232 match self {
2233 Some(x) => Some(x.clone()),
2234 None => None,
2235 }
2236 }
2237
2238 #[inline]
2239 fn clone_from(&mut self, source: &Self) {
2240 match (self, source) {
2241 (Some(to), Some(from)) => to.clone_from(from),
2242 (to, from) => *to = from.clone(),
2243 }
2244 }
2245}
2246
2247#[unstable(feature = "ergonomic_clones", issue = "132290")]
2248#[cfg(not(feature = "ferrocene_certified"))]
2249impl<T> crate::clone::UseCloned for Option<T> where T: crate::clone::UseCloned {}
2250
2251#[stable(feature = "rust1", since = "1.0.0")]
2252#[rustc_const_unstable(feature = "const_default", issue = "143894")]
2253impl<T> const Default for Option<T> {
2254 /// Returns [`None`][Option::None].
2255 ///
2256 /// # Examples
2257 ///
2258 /// ```
2259 /// let opt: Option<u32> = Option::default();
2260 /// assert!(opt.is_none());
2261 /// ```
2262 #[inline]
2263 fn default() -> Option<T> {
2264 None
2265 }
2266}
2267
2268#[stable(feature = "rust1", since = "1.0.0")]
2269impl<T> IntoIterator for Option<T> {
2270 type Item = T;
2271 type IntoIter = IntoIter<T>;
2272
2273 /// Returns a consuming iterator over the possibly contained value.
2274 ///
2275 /// # Examples
2276 ///
2277 /// ```
2278 /// let x = Some("string");
2279 /// let v: Vec<&str> = x.into_iter().collect();
2280 /// assert_eq!(v, ["string"]);
2281 ///
2282 /// let x = None;
2283 /// let v: Vec<&str> = x.into_iter().collect();
2284 /// assert!(v.is_empty());
2285 /// ```
2286 #[inline]
2287 fn into_iter(self) -> IntoIter<T> {
2288 IntoIter { inner: Item { opt: self } }
2289 }
2290}
2291
2292#[stable(since = "1.4.0", feature = "option_iter")]
2293#[cfg(not(feature = "ferrocene_certified"))]
2294impl<'a, T> IntoIterator for &'a Option<T> {
2295 type Item = &'a T;
2296 type IntoIter = Iter<'a, T>;
2297
2298 fn into_iter(self) -> Iter<'a, T> {
2299 self.iter()
2300 }
2301}
2302
2303#[stable(since = "1.4.0", feature = "option_iter")]
2304#[cfg(not(feature = "ferrocene_certified"))]
2305impl<'a, T> IntoIterator for &'a mut Option<T> {
2306 type Item = &'a mut T;
2307 type IntoIter = IterMut<'a, T>;
2308
2309 fn into_iter(self) -> IterMut<'a, T> {
2310 self.iter_mut()
2311 }
2312}
2313
2314#[stable(since = "1.12.0", feature = "option_from")]
2315#[rustc_const_unstable(feature = "const_convert", issue = "143773")]
2316impl<T> const From<T> for Option<T> {
2317 /// Moves `val` into a new [`Some`].
2318 ///
2319 /// # Examples
2320 ///
2321 /// ```
2322 /// let o: Option<u8> = Option::from(67);
2323 ///
2324 /// assert_eq!(Some(67), o);
2325 /// ```
2326 fn from(val: T) -> Option<T> {
2327 Some(val)
2328 }
2329}
2330
2331#[stable(feature = "option_ref_from_ref_option", since = "1.30.0")]
2332#[rustc_const_unstable(feature = "const_convert", issue = "143773")]
2333impl<'a, T> const From<&'a Option<T>> for Option<&'a T> {
2334 /// Converts from `&Option<T>` to `Option<&T>`.
2335 ///
2336 /// # Examples
2337 ///
2338 /// Converts an <code>[Option]<[String]></code> into an <code>[Option]<[usize]></code>, preserving
2339 /// the original. The [`map`] method takes the `self` argument by value, consuming the original,
2340 /// so this technique uses `from` to first take an [`Option`] to a reference
2341 /// to the value inside the original.
2342 ///
2343 /// [`map`]: Option::map
2344 /// [String]: ../../std/string/struct.String.html "String"
2345 ///
2346 /// ```
2347 /// let s: Option<String> = Some(String::from("Hello, Rustaceans!"));
2348 /// let o: Option<usize> = Option::from(&s).map(|ss: &String| ss.len());
2349 ///
2350 /// println!("Can still print s: {s:?}");
2351 ///
2352 /// assert_eq!(o, Some(18));
2353 /// ```
2354 fn from(o: &'a Option<T>) -> Option<&'a T> {
2355 o.as_ref()
2356 }
2357}
2358
2359#[stable(feature = "option_ref_from_ref_option", since = "1.30.0")]
2360#[rustc_const_unstable(feature = "const_convert", issue = "143773")]
2361impl<'a, T> const From<&'a mut Option<T>> for Option<&'a mut T> {
2362 /// Converts from `&mut Option<T>` to `Option<&mut T>`
2363 ///
2364 /// # Examples
2365 ///
2366 /// ```
2367 /// let mut s = Some(String::from("Hello"));
2368 /// let o: Option<&mut String> = Option::from(&mut s);
2369 ///
2370 /// match o {
2371 /// Some(t) => *t = String::from("Hello, Rustaceans!"),
2372 /// None => (),
2373 /// }
2374 ///
2375 /// assert_eq!(s, Some(String::from("Hello, Rustaceans!")));
2376 /// ```
2377 fn from(o: &'a mut Option<T>) -> Option<&'a mut T> {
2378 o.as_mut()
2379 }
2380}
2381
2382// Ideally, LLVM should be able to optimize our derive code to this.
2383// Once https://github.com/llvm/llvm-project/issues/52622 is fixed, we can
2384// go back to deriving `PartialEq`.
2385#[stable(feature = "rust1", since = "1.0.0")]
2386#[cfg(not(feature = "ferrocene_certified"))]
2387impl<T> crate::marker::StructuralPartialEq for Option<T> {}
2388#[stable(feature = "rust1", since = "1.0.0")]
2389#[rustc_const_unstable(feature = "const_cmp", issue = "143800")]
2390#[cfg(not(feature = "ferrocene_certified"))]
2391impl<T: [const] PartialEq> const PartialEq for Option<T> {
2392 #[inline]
2393 fn eq(&self, other: &Self) -> bool {
2394 // Spelling out the cases explicitly optimizes better than
2395 // `_ => false`
2396 match (self, other) {
2397 (Some(l), Some(r)) => *l == *r,
2398 (Some(_), None) => false,
2399 (None, Some(_)) => false,
2400 (None, None) => true,
2401 }
2402 }
2403}
2404
2405// Manually implementing here somewhat improves codegen for
2406// https://github.com/rust-lang/rust/issues/49892, although still
2407// not optimal.
2408#[stable(feature = "rust1", since = "1.0.0")]
2409#[rustc_const_unstable(feature = "const_cmp", issue = "143800")]
2410#[cfg(not(feature = "ferrocene_certified"))]
2411impl<T: [const] PartialOrd> const PartialOrd for Option<T> {
2412 #[inline]
2413 fn partial_cmp(&self, other: &Self) -> Option<cmp::Ordering> {
2414 match (self, other) {
2415 (Some(l), Some(r)) => l.partial_cmp(r),
2416 (Some(_), None) => Some(cmp::Ordering::Greater),
2417 (None, Some(_)) => Some(cmp::Ordering::Less),
2418 (None, None) => Some(cmp::Ordering::Equal),
2419 }
2420 }
2421}
2422
2423#[stable(feature = "rust1", since = "1.0.0")]
2424#[rustc_const_unstable(feature = "const_cmp", issue = "143800")]
2425#[cfg(not(feature = "ferrocene_certified"))]
2426impl<T: [const] Ord> const Ord for Option<T> {
2427 #[inline]
2428 fn cmp(&self, other: &Self) -> cmp::Ordering {
2429 match (self, other) {
2430 (Some(l), Some(r)) => l.cmp(r),
2431 (Some(_), None) => cmp::Ordering::Greater,
2432 (None, Some(_)) => cmp::Ordering::Less,
2433 (None, None) => cmp::Ordering::Equal,
2434 }
2435 }
2436}
2437
2438/////////////////////////////////////////////////////////////////////////////
2439// The Option Iterators
2440/////////////////////////////////////////////////////////////////////////////
2441
2442#[cfg_attr(not(feature = "ferrocene_certified"), derive(Clone, Debug))]
2443struct Item<A> {
2444 #[allow(dead_code)]
2445 opt: Option<A>,
2446}
2447
2448impl<A> Iterator for Item<A> {
2449 type Item = A;
2450
2451 #[inline]
2452 fn next(&mut self) -> Option<A> {
2453 self.opt.take()
2454 }
2455
2456 #[inline]
2457 fn size_hint(&self) -> (usize, Option<usize>) {
2458 let len = self.len();
2459 (len, Some(len))
2460 }
2461}
2462
2463#[cfg(not(feature = "ferrocene_certified"))]
2464impl<A> DoubleEndedIterator for Item<A> {
2465 #[inline]
2466 fn next_back(&mut self) -> Option<A> {
2467 self.opt.take()
2468 }
2469}
2470
2471impl<A> ExactSizeIterator for Item<A> {
2472 #[inline]
2473 fn len(&self) -> usize {
2474 self.opt.len()
2475 }
2476}
2477#[cfg(not(feature = "ferrocene_certified"))]
2478impl<A> FusedIterator for Item<A> {}
2479#[cfg(not(feature = "ferrocene_certified"))]
2480unsafe impl<A> TrustedLen for Item<A> {}
2481
2482/// An iterator over a reference to the [`Some`] variant of an [`Option`].
2483///
2484/// The iterator yields one value if the [`Option`] is a [`Some`], otherwise none.
2485///
2486/// This `struct` is created by the [`Option::iter`] function.
2487#[stable(feature = "rust1", since = "1.0.0")]
2488#[cfg_attr(not(feature = "ferrocene_certified"), derive(Debug))]
2489pub struct Iter<'a, A: 'a> {
2490 #[cfg_attr(feature = "ferrocene_certified", expect(dead_code))]
2491 inner: Item<&'a A>,
2492}
2493
2494#[stable(feature = "rust1", since = "1.0.0")]
2495#[cfg(not(feature = "ferrocene_certified"))]
2496impl<'a, A> Iterator for Iter<'a, A> {
2497 type Item = &'a A;
2498
2499 #[inline]
2500 fn next(&mut self) -> Option<&'a A> {
2501 self.inner.next()
2502 }
2503 #[inline]
2504 fn size_hint(&self) -> (usize, Option<usize>) {
2505 self.inner.size_hint()
2506 }
2507}
2508
2509#[stable(feature = "rust1", since = "1.0.0")]
2510#[cfg(not(feature = "ferrocene_certified"))]
2511impl<'a, A> DoubleEndedIterator for Iter<'a, A> {
2512 #[inline]
2513 fn next_back(&mut self) -> Option<&'a A> {
2514 self.inner.next_back()
2515 }
2516}
2517
2518#[stable(feature = "rust1", since = "1.0.0")]
2519#[cfg(not(feature = "ferrocene_certified"))]
2520impl<A> ExactSizeIterator for Iter<'_, A> {}
2521
2522#[stable(feature = "fused", since = "1.26.0")]
2523#[cfg(not(feature = "ferrocene_certified"))]
2524impl<A> FusedIterator for Iter<'_, A> {}
2525
2526#[unstable(feature = "trusted_len", issue = "37572")]
2527#[cfg(not(feature = "ferrocene_certified"))]
2528unsafe impl<A> TrustedLen for Iter<'_, A> {}
2529
2530#[stable(feature = "rust1", since = "1.0.0")]
2531#[cfg(not(feature = "ferrocene_certified"))]
2532impl<A> Clone for Iter<'_, A> {
2533 #[inline]
2534 fn clone(&self) -> Self {
2535 Iter { inner: self.inner.clone() }
2536 }
2537}
2538
2539/// An iterator over a mutable reference to the [`Some`] variant of an [`Option`].
2540///
2541/// The iterator yields one value if the [`Option`] is a [`Some`], otherwise none.
2542///
2543/// This `struct` is created by the [`Option::iter_mut`] function.
2544#[stable(feature = "rust1", since = "1.0.0")]
2545#[cfg_attr(not(feature = "ferrocene_certified"), derive(Debug))]
2546pub struct IterMut<'a, A: 'a> {
2547 #[cfg_attr(feature = "ferrocene_certified", expect(dead_code))]
2548 inner: Item<&'a mut A>,
2549}
2550
2551#[stable(feature = "rust1", since = "1.0.0")]
2552#[cfg(not(feature = "ferrocene_certified"))]
2553impl<'a, A> Iterator for IterMut<'a, A> {
2554 type Item = &'a mut A;
2555
2556 #[inline]
2557 fn next(&mut self) -> Option<&'a mut A> {
2558 self.inner.next()
2559 }
2560 #[inline]
2561 fn size_hint(&self) -> (usize, Option<usize>) {
2562 self.inner.size_hint()
2563 }
2564}
2565
2566#[stable(feature = "rust1", since = "1.0.0")]
2567#[cfg(not(feature = "ferrocene_certified"))]
2568impl<'a, A> DoubleEndedIterator for IterMut<'a, A> {
2569 #[inline]
2570 fn next_back(&mut self) -> Option<&'a mut A> {
2571 self.inner.next_back()
2572 }
2573}
2574
2575#[stable(feature = "rust1", since = "1.0.0")]
2576#[cfg(not(feature = "ferrocene_certified"))]
2577impl<A> ExactSizeIterator for IterMut<'_, A> {}
2578
2579#[stable(feature = "fused", since = "1.26.0")]
2580#[cfg(not(feature = "ferrocene_certified"))]
2581impl<A> FusedIterator for IterMut<'_, A> {}
2582#[unstable(feature = "trusted_len", issue = "37572")]
2583#[cfg(not(feature = "ferrocene_certified"))]
2584unsafe impl<A> TrustedLen for IterMut<'_, A> {}
2585
2586/// An iterator over the value in [`Some`] variant of an [`Option`].
2587///
2588/// The iterator yields one value if the [`Option`] is a [`Some`], otherwise none.
2589///
2590/// This `struct` is created by the [`Option::into_iter`] function.
2591#[cfg_attr(not(feature = "ferrocene_certified"), derive(Clone, Debug))]
2592#[stable(feature = "rust1", since = "1.0.0")]
2593pub struct IntoIter<A> {
2594 inner: Item<A>,
2595}
2596
2597#[stable(feature = "rust1", since = "1.0.0")]
2598impl<A> Iterator for IntoIter<A> {
2599 type Item = A;
2600
2601 #[inline]
2602 fn next(&mut self) -> Option<A> {
2603 self.inner.next()
2604 }
2605 #[inline]
2606 fn size_hint(&self) -> (usize, Option<usize>) {
2607 self.inner.size_hint()
2608 }
2609}
2610
2611#[stable(feature = "rust1", since = "1.0.0")]
2612#[cfg(not(feature = "ferrocene_certified"))]
2613impl<A> DoubleEndedIterator for IntoIter<A> {
2614 #[inline]
2615 fn next_back(&mut self) -> Option<A> {
2616 self.inner.next_back()
2617 }
2618}
2619
2620#[stable(feature = "rust1", since = "1.0.0")]
2621#[cfg(not(feature = "ferrocene_certified"))]
2622impl<A> ExactSizeIterator for IntoIter<A> {}
2623
2624#[stable(feature = "fused", since = "1.26.0")]
2625#[cfg(not(feature = "ferrocene_certified"))]
2626impl<A> FusedIterator for IntoIter<A> {}
2627
2628#[unstable(feature = "trusted_len", issue = "37572")]
2629#[cfg(not(feature = "ferrocene_certified"))]
2630unsafe impl<A> TrustedLen for IntoIter<A> {}
2631
2632/////////////////////////////////////////////////////////////////////////////
2633// FromIterator
2634/////////////////////////////////////////////////////////////////////////////
2635
2636#[stable(feature = "rust1", since = "1.0.0")]
2637#[cfg(not(feature = "ferrocene_certified"))]
2638impl<A, V: FromIterator<A>> FromIterator<Option<A>> for Option<V> {
2639 /// Takes each element in the [`Iterator`]: if it is [`None`][Option::None],
2640 /// no further elements are taken, and the [`None`][Option::None] is
2641 /// returned. Should no [`None`][Option::None] occur, a container of type
2642 /// `V` containing the values of each [`Option`] is returned.
2643 ///
2644 /// # Examples
2645 ///
2646 /// Here is an example which increments every integer in a vector.
2647 /// We use the checked variant of `add` that returns `None` when the
2648 /// calculation would result in an overflow.
2649 ///
2650 /// ```
2651 /// let items = vec![0_u16, 1, 2];
2652 ///
2653 /// let res: Option<Vec<u16>> = items
2654 /// .iter()
2655 /// .map(|x| x.checked_add(1))
2656 /// .collect();
2657 ///
2658 /// assert_eq!(res, Some(vec![1, 2, 3]));
2659 /// ```
2660 ///
2661 /// As you can see, this will return the expected, valid items.
2662 ///
2663 /// Here is another example that tries to subtract one from another list
2664 /// of integers, this time checking for underflow:
2665 ///
2666 /// ```
2667 /// let items = vec![2_u16, 1, 0];
2668 ///
2669 /// let res: Option<Vec<u16>> = items
2670 /// .iter()
2671 /// .map(|x| x.checked_sub(1))
2672 /// .collect();
2673 ///
2674 /// assert_eq!(res, None);
2675 /// ```
2676 ///
2677 /// Since the last element is zero, it would underflow. Thus, the resulting
2678 /// value is `None`.
2679 ///
2680 /// Here is a variation on the previous example, showing that no
2681 /// further elements are taken from `iter` after the first `None`.
2682 ///
2683 /// ```
2684 /// let items = vec![3_u16, 2, 1, 10];
2685 ///
2686 /// let mut shared = 0;
2687 ///
2688 /// let res: Option<Vec<u16>> = items
2689 /// .iter()
2690 /// .map(|x| { shared += x; x.checked_sub(2) })
2691 /// .collect();
2692 ///
2693 /// assert_eq!(res, None);
2694 /// assert_eq!(shared, 6);
2695 /// ```
2696 ///
2697 /// Since the third element caused an underflow, no further elements were taken,
2698 /// so the final value of `shared` is 6 (= `3 + 2 + 1`), not 16.
2699 #[inline]
2700 fn from_iter<I: IntoIterator<Item = Option<A>>>(iter: I) -> Option<V> {
2701 // FIXME(#11084): This could be replaced with Iterator::scan when this
2702 // performance bug is closed.
2703
2704 iter::try_process(iter.into_iter(), |i| i.collect())
2705 }
2706}
2707
2708#[unstable(feature = "try_trait_v2", issue = "84277", old_name = "try_trait")]
2709#[rustc_const_unstable(feature = "const_try", issue = "74935")]
2710impl<T> const ops::Try for Option<T> {
2711 type Output = T;
2712 type Residual = Option<convert::Infallible>;
2713
2714 #[inline]
2715 fn from_output(output: Self::Output) -> Self {
2716 Some(output)
2717 }
2718
2719 #[inline]
2720 fn branch(self) -> ControlFlow<Self::Residual, Self::Output> {
2721 match self {
2722 Some(v) => ControlFlow::Continue(v),
2723 None => ControlFlow::Break(None),
2724 }
2725 }
2726}
2727
2728#[unstable(feature = "try_trait_v2", issue = "84277", old_name = "try_trait")]
2729#[rustc_const_unstable(feature = "const_try", issue = "74935")]
2730// Note: manually specifying the residual type instead of using the default to work around
2731// https://github.com/rust-lang/rust/issues/99940
2732impl<T> const ops::FromResidual<Option<convert::Infallible>> for Option<T> {
2733 #[inline]
2734 fn from_residual(residual: Option<convert::Infallible>) -> Self {
2735 match residual {
2736 None => None,
2737 }
2738 }
2739}
2740
2741#[diagnostic::do_not_recommend]
2742#[unstable(feature = "try_trait_v2_yeet", issue = "96374")]
2743#[rustc_const_unstable(feature = "const_try", issue = "74935")]
2744#[cfg(not(feature = "ferrocene_certified"))]
2745impl<T> const ops::FromResidual<ops::Yeet<()>> for Option<T> {
2746 #[inline]
2747 fn from_residual(ops::Yeet(()): ops::Yeet<()>) -> Self {
2748 None
2749 }
2750}
2751
2752#[unstable(feature = "try_trait_v2_residual", issue = "91285")]
2753#[rustc_const_unstable(feature = "const_try", issue = "74935")]
2754impl<T> const ops::Residual<T> for Option<convert::Infallible> {
2755 type TryType = Option<T>;
2756}
2757
2758impl<T> Option<Option<T>> {
2759 /// Converts from `Option<Option<T>>` to `Option<T>`.
2760 ///
2761 /// # Examples
2762 ///
2763 /// Basic usage:
2764 ///
2765 /// ```
2766 /// let x: Option<Option<u32>> = Some(Some(6));
2767 /// assert_eq!(Some(6), x.flatten());
2768 ///
2769 /// let x: Option<Option<u32>> = Some(None);
2770 /// assert_eq!(None, x.flatten());
2771 ///
2772 /// let x: Option<Option<u32>> = None;
2773 /// assert_eq!(None, x.flatten());
2774 /// ```
2775 ///
2776 /// Flattening only removes one level of nesting at a time:
2777 ///
2778 /// ```
2779 /// let x: Option<Option<Option<u32>>> = Some(Some(Some(6)));
2780 /// assert_eq!(Some(Some(6)), x.flatten());
2781 /// assert_eq!(Some(6), x.flatten().flatten());
2782 /// ```
2783 #[inline]
2784 #[stable(feature = "option_flattening", since = "1.40.0")]
2785 #[rustc_allow_const_fn_unstable(const_precise_live_drops)]
2786 #[rustc_const_stable(feature = "const_option", since = "1.83.0")]
2787 pub const fn flatten(self) -> Option<T> {
2788 // FIXME(const-hack): could be written with `and_then`
2789 match self {
2790 Some(inner) => inner,
2791 None => None,
2792 }
2793 }
2794}
2795
2796#[cfg(not(feature = "ferrocene_certified"))]
2797impl<T, const N: usize> [Option<T>; N] {
2798 /// Transposes a `[Option<T>; N]` into a `Option<[T; N]>`.
2799 ///
2800 /// # Examples
2801 ///
2802 /// ```
2803 /// #![feature(option_array_transpose)]
2804 /// # use std::option::Option;
2805 ///
2806 /// let data = [Some(0); 1000];
2807 /// let data: Option<[u8; 1000]> = data.transpose();
2808 /// assert_eq!(data, Some([0; 1000]));
2809 ///
2810 /// let data = [Some(0), None];
2811 /// let data: Option<[u8; 2]> = data.transpose();
2812 /// assert_eq!(data, None);
2813 /// ```
2814 #[inline]
2815 #[unstable(feature = "option_array_transpose", issue = "130828")]
2816 pub fn transpose(self) -> Option<[T; N]> {
2817 self.try_map(core::convert::identity)
2818 }
2819}