core/option.rs
1//! Optional values.
2//!
3//! Type [`Option`] represents an optional value: every [`Option`]
4//! is either [`Some`] and contains a value, or [`None`], and
5//! does not. [`Option`] types are very common in Rust code, as
6//! they have a number of uses:
7//!
8//! * Initial values
9//! * Return values for functions that are not defined
10//! over their entire input range (partial functions)
11//! * Return value for otherwise reporting simple errors, where [`None`] is
12//! returned on error
13//! * Optional struct fields
14//! * Struct fields that can be loaned or "taken"
15//! * Optional function arguments
16//! * Nullable pointers
17//! * Swapping things out of difficult situations
18//!
19//! [`Option`]s are commonly paired with pattern matching to query the presence
20//! of a value and take action, always accounting for the [`None`] case.
21//!
22//! ```
23//! fn divide(numerator: f64, denominator: f64) -> Option<f64> {
24//! if denominator == 0.0 {
25//! None
26//! } else {
27//! Some(numerator / denominator)
28//! }
29//! }
30//!
31//! // The return value of the function is an option
32//! let result = divide(2.0, 3.0);
33//!
34//! // Pattern match to retrieve the value
35//! match result {
36//! // The division was valid
37//! Some(x) => println!("Result: {x}"),
38//! // The division was invalid
39//! None => println!("Cannot divide by 0"),
40//! }
41//! ```
42//!
43//
44// FIXME: Show how `Option` is used in practice, with lots of methods
45//
46//! # Options and pointers ("nullable" pointers)
47//!
48//! Rust's pointer types must always point to a valid location; there are
49//! no "null" references. Instead, Rust has *optional* pointers, like
50//! the optional owned box, <code>[Option]<[Box\<T>]></code>.
51//!
52//! [Box\<T>]: ../../std/boxed/struct.Box.html
53//!
54//! The following example uses [`Option`] to create an optional box of
55//! [`i32`]. Notice that in order to use the inner [`i32`] value, the
56//! `check_optional` function first needs to use pattern matching to
57//! determine whether the box has a value (i.e., it is [`Some(...)`][`Some`]) or
58//! not ([`None`]).
59//!
60//! ```
61//! let optional = None;
62//! check_optional(optional);
63//!
64//! let optional = Some(Box::new(9000));
65//! check_optional(optional);
66//!
67//! fn check_optional(optional: Option<Box<i32>>) {
68//! match optional {
69//! Some(p) => println!("has value {p}"),
70//! None => println!("has no value"),
71//! }
72//! }
73//! ```
74//!
75//! # The question mark operator, `?`
76//!
77//! Similar to the [`Result`] type, when writing code that calls many functions that return the
78//! [`Option`] type, handling `Some`/`None` can be tedious. The question mark
79//! operator, [`?`], hides some of the boilerplate of propagating values
80//! up the call stack.
81//!
82//! It replaces this:
83//!
84//! ```
85//! # #![allow(dead_code)]
86//! fn add_last_numbers(stack: &mut Vec<i32>) -> Option<i32> {
87//! let a = stack.pop();
88//! let b = stack.pop();
89//!
90//! match (a, b) {
91//! (Some(x), Some(y)) => Some(x + y),
92//! _ => None,
93//! }
94//! }
95//!
96//! ```
97//!
98//! With this:
99//!
100//! ```
101//! # #![allow(dead_code)]
102//! fn add_last_numbers(stack: &mut Vec<i32>) -> Option<i32> {
103//! Some(stack.pop()? + stack.pop()?)
104//! }
105//! ```
106//!
107//! *It's much nicer!*
108//!
109//! Ending the expression with [`?`] will result in the [`Some`]'s unwrapped value, unless the
110//! result is [`None`], in which case [`None`] is returned early from the enclosing function.
111//!
112//! [`?`] can be used in functions that return [`Option`] because of the
113//! early return of [`None`] that it provides.
114//!
115//! [`?`]: crate::ops::Try
116//! [`Some`]: Some
117//! [`None`]: None
118//!
119//! # Representation
120//!
121//! Rust guarantees to optimize the following types `T` such that
122//! [`Option<T>`] has the same size, alignment, and [function call ABI] as `T`. In some
123//! of these cases, Rust further guarantees the following:
124//! - `transmute::<_, Option<T>>([0u8; size_of::<T>()])` is sound and produces
125//! `Option::<T>::None`
126//! - `transmute::<_, [u8; size_of::<T>()]>(Option::<T>::None)` is sound and produces
127//! `[0u8; size_of::<T>()]`
128//!
129//! These cases are identified by the second column:
130//!
131//! | `T` | Transmuting between `[0u8; size_of::<T>()]` and `Option::<T>::None` sound? |
132//! |---------------------------------------------------------------------|----------------------------------------------------------------------------|
133//! | [`Box<U>`] (specifically, only `Box<U, Global>`) | when `U: Sized` |
134//! | `&U` | when `U: Sized` |
135//! | `&mut U` | when `U: Sized` |
136//! | `fn`, `extern "C" fn`[^extern_fn] | always |
137//! | [`num::NonZero*`] | always |
138//! | [`ptr::NonNull<U>`] | when `U: Sized` |
139//! | `#[repr(transparent)]` struct around one of the types in this list. | when it holds for the inner type |
140//!
141//! [^extern_fn]: this remains true for `unsafe` variants, any argument/return types, and any other ABI: `[unsafe] extern "abi" fn` (_e.g._, `extern "system" fn`)
142//!
143//! Under some conditions the above types `T` are also null pointer optimized when wrapped in a [`Result`][result_repr].
144//!
145//! [`Box<U>`]: ../../std/boxed/struct.Box.html
146//! [`num::NonZero*`]: crate::num
147//! [`ptr::NonNull<U>`]: crate::ptr::NonNull
148//! [function call ABI]: ../primitive.fn.html#abi-compatibility
149//! [result_repr]: crate::result#representation
150//!
151//! This is called the "null pointer optimization" or NPO.
152//!
153//! It is further guaranteed that, for the cases above, one can
154//! [`mem::transmute`] from all valid values of `T` to `Option<T>` and
155//! from `Some::<T>(_)` to `T` (but transmuting `None::<T>` to `T`
156//! is undefined behavior).
157//!
158//! # Method overview
159//!
160//! In addition to working with pattern matching, [`Option`] provides a wide
161//! variety of different methods.
162//!
163//! ## Querying the variant
164//!
165//! The [`is_some`] and [`is_none`] methods return [`true`] if the [`Option`]
166//! is [`Some`] or [`None`], respectively.
167//!
168//! The [`is_some_and`] and [`is_none_or`] methods apply the provided function
169//! to the contents of the [`Option`] to produce a boolean value.
170//! If this is [`None`] then a default result is returned instead without executing the function.
171//!
172//! [`is_none`]: Option::is_none
173//! [`is_some`]: Option::is_some
174//! [`is_some_and`]: Option::is_some_and
175//! [`is_none_or`]: Option::is_none_or
176//!
177//! ## Adapters for working with references
178//!
179//! * [`as_ref`] converts from <code>[&][][Option]\<T></code> to <code>[Option]<[&]T></code>
180//! * [`as_mut`] converts from <code>[&mut] [Option]\<T></code> to <code>[Option]<[&mut] T></code>
181//! * [`as_deref`] converts from <code>[&][][Option]\<T></code> to
182//! <code>[Option]<[&]T::[Target]></code>
183//! * [`as_deref_mut`] converts from <code>[&mut] [Option]\<T></code> to
184//! <code>[Option]<[&mut] T::[Target]></code>
185//! * [`as_pin_ref`] converts from <code>[Pin]<[&][][Option]\<T>></code> to
186//! <code>[Option]<[Pin]<[&]T>></code>
187//! * [`as_pin_mut`] converts from <code>[Pin]<[&mut] [Option]\<T>></code> to
188//! <code>[Option]<[Pin]<[&mut] T>></code>
189//! * [`as_slice`] returns a one-element slice of the contained value, if any.
190//! If this is [`None`], an empty slice is returned.
191//! * [`as_mut_slice`] returns a mutable one-element slice of the contained value, if any.
192//! If this is [`None`], an empty slice is returned.
193//!
194//! [&]: reference "shared reference"
195//! [&mut]: reference "mutable reference"
196//! [Target]: Deref::Target "ops::Deref::Target"
197//! [`as_deref`]: Option::as_deref
198//! [`as_deref_mut`]: Option::as_deref_mut
199//! [`as_mut`]: Option::as_mut
200//! [`as_pin_mut`]: Option::as_pin_mut
201//! [`as_pin_ref`]: Option::as_pin_ref
202//! [`as_ref`]: Option::as_ref
203//! [`as_slice`]: Option::as_slice
204//! [`as_mut_slice`]: Option::as_mut_slice
205//!
206//! ## Extracting the contained value
207//!
208//! These methods extract the contained value in an [`Option<T>`] when it
209//! is the [`Some`] variant. If the [`Option`] is [`None`]:
210//!
211//! * [`expect`] panics with a provided custom message
212//! * [`unwrap`] panics with a generic message
213//! * [`unwrap_or`] returns the provided default value
214//! * [`unwrap_or_default`] returns the default value of the type `T`
215//! (which must implement the [`Default`] trait)
216//! * [`unwrap_or_else`] returns the result of evaluating the provided
217//! function
218//! * [`unwrap_unchecked`] produces *[undefined behavior]*
219//!
220//! [`expect`]: Option::expect
221//! [`unwrap`]: Option::unwrap
222//! [`unwrap_or`]: Option::unwrap_or
223//! [`unwrap_or_default`]: Option::unwrap_or_default
224//! [`unwrap_or_else`]: Option::unwrap_or_else
225//! [`unwrap_unchecked`]: Option::unwrap_unchecked
226//! [undefined behavior]: https://doc.rust-lang.org/reference/behavior-considered-undefined.html
227//!
228//! ## Transforming contained values
229//!
230//! These methods transform [`Option`] to [`Result`]:
231//!
232//! * [`ok_or`] transforms [`Some(v)`] to [`Ok(v)`], and [`None`] to
233//! [`Err(err)`] using the provided default `err` value
234//! * [`ok_or_else`] transforms [`Some(v)`] to [`Ok(v)`], and [`None`] to
235//! a value of [`Err`] using the provided function
236//! * [`transpose`] transposes an [`Option`] of a [`Result`] into a
237//! [`Result`] of an [`Option`]
238//!
239//! [`Err(err)`]: Err
240//! [`Ok(v)`]: Ok
241//! [`Some(v)`]: Some
242//! [`ok_or`]: Option::ok_or
243//! [`ok_or_else`]: Option::ok_or_else
244//! [`transpose`]: Option::transpose
245//!
246//! These methods transform the [`Some`] variant:
247//!
248//! * [`filter`] calls the provided predicate function on the contained
249//! value `t` if the [`Option`] is [`Some(t)`], and returns [`Some(t)`]
250//! if the function returns `true`; otherwise, returns [`None`]
251//! * [`flatten`] removes one level of nesting from an [`Option<Option<T>>`]
252//! * [`inspect`] method takes ownership of the [`Option`] and applies
253//! the provided function to the contained value by reference if [`Some`]
254//! * [`map`] transforms [`Option<T>`] to [`Option<U>`] by applying the
255//! provided function to the contained value of [`Some`] and leaving
256//! [`None`] values unchanged
257//!
258//! [`Some(t)`]: Some
259//! [`filter`]: Option::filter
260//! [`flatten`]: Option::flatten
261//! [`inspect`]: Option::inspect
262//! [`map`]: Option::map
263//!
264//! These methods transform [`Option<T>`] to a value of a possibly
265//! different type `U`:
266//!
267//! * [`map_or`] applies the provided function to the contained value of
268//! [`Some`], or returns the provided default value if the [`Option`] is
269//! [`None`]
270//! * [`map_or_else`] applies the provided function to the contained value
271//! of [`Some`], or returns the result of evaluating the provided
272//! fallback function if the [`Option`] is [`None`]
273//!
274//! [`map_or`]: Option::map_or
275//! [`map_or_else`]: Option::map_or_else
276//!
277//! These methods combine the [`Some`] variants of two [`Option`] values:
278//!
279//! * [`zip`] returns [`Some((s, o))`] if `self` is [`Some(s)`] and the
280//! provided [`Option`] value is [`Some(o)`]; otherwise, returns [`None`]
281//! * [`zip_with`] calls the provided function `f` and returns
282//! [`Some(f(s, o))`] if `self` is [`Some(s)`] and the provided
283//! [`Option`] value is [`Some(o)`]; otherwise, returns [`None`]
284//!
285//! [`Some(f(s, o))`]: Some
286//! [`Some(o)`]: Some
287//! [`Some(s)`]: Some
288//! [`Some((s, o))`]: Some
289//! [`zip`]: Option::zip
290//! [`zip_with`]: Option::zip_with
291//!
292//! ## Boolean operators
293//!
294//! These methods treat the [`Option`] as a boolean value, where [`Some`]
295//! acts like [`true`] and [`None`] acts like [`false`]. There are two
296//! categories of these methods: ones that take an [`Option`] as input, and
297//! ones that take a function as input (to be lazily evaluated).
298//!
299//! The [`and`], [`or`], and [`xor`] methods take another [`Option`] as
300//! input, and produce an [`Option`] as output. Only the [`and`] method can
301//! produce an [`Option<U>`] value having a different inner type `U` than
302//! [`Option<T>`].
303//!
304//! | method | self | input | output |
305//! |---------|-----------|-----------|-----------|
306//! | [`and`] | `None` | (ignored) | `None` |
307//! | [`and`] | `Some(x)` | `None` | `None` |
308//! | [`and`] | `Some(x)` | `Some(y)` | `Some(y)` |
309//! | [`or`] | `None` | `None` | `None` |
310//! | [`or`] | `None` | `Some(y)` | `Some(y)` |
311//! | [`or`] | `Some(x)` | (ignored) | `Some(x)` |
312//! | [`xor`] | `None` | `None` | `None` |
313//! | [`xor`] | `None` | `Some(y)` | `Some(y)` |
314//! | [`xor`] | `Some(x)` | `None` | `Some(x)` |
315//! | [`xor`] | `Some(x)` | `Some(y)` | `None` |
316//!
317//! [`and`]: Option::and
318//! [`or`]: Option::or
319//! [`xor`]: Option::xor
320//!
321//! The [`and_then`] and [`or_else`] methods take a function as input, and
322//! only evaluate the function when they need to produce a new value. Only
323//! the [`and_then`] method can produce an [`Option<U>`] value having a
324//! different inner type `U` than [`Option<T>`].
325//!
326//! | method | self | function input | function result | output |
327//! |--------------|-----------|----------------|-----------------|-----------|
328//! | [`and_then`] | `None` | (not provided) | (not evaluated) | `None` |
329//! | [`and_then`] | `Some(x)` | `x` | `None` | `None` |
330//! | [`and_then`] | `Some(x)` | `x` | `Some(y)` | `Some(y)` |
331//! | [`or_else`] | `None` | (not provided) | `None` | `None` |
332//! | [`or_else`] | `None` | (not provided) | `Some(y)` | `Some(y)` |
333//! | [`or_else`] | `Some(x)` | (not provided) | (not evaluated) | `Some(x)` |
334//!
335//! [`and_then`]: Option::and_then
336//! [`or_else`]: Option::or_else
337//!
338//! This is an example of using methods like [`and_then`] and [`or`] in a
339//! pipeline of method calls. Early stages of the pipeline pass failure
340//! values ([`None`]) through unchanged, and continue processing on
341//! success values ([`Some`]). Toward the end, [`or`] substitutes an error
342//! message if it receives [`None`].
343//!
344//! ```
345//! # use std::collections::BTreeMap;
346//! let mut bt = BTreeMap::new();
347//! bt.insert(20u8, "foo");
348//! bt.insert(42u8, "bar");
349//! let res = [0u8, 1, 11, 200, 22]
350//! .into_iter()
351//! .map(|x| {
352//! // `checked_sub()` returns `None` on error
353//! x.checked_sub(1)
354//! // same with `checked_mul()`
355//! .and_then(|x| x.checked_mul(2))
356//! // `BTreeMap::get` returns `None` on error
357//! .and_then(|x| bt.get(&x))
358//! // Substitute an error message if we have `None` so far
359//! .or(Some(&"error!"))
360//! .copied()
361//! // Won't panic because we unconditionally used `Some` above
362//! .unwrap()
363//! })
364//! .collect::<Vec<_>>();
365//! assert_eq!(res, ["error!", "error!", "foo", "error!", "bar"]);
366//! ```
367//!
368//! ## Comparison operators
369//!
370//! If `T` implements [`PartialOrd`] then [`Option<T>`] will derive its
371//! [`PartialOrd`] implementation. With this order, [`None`] compares as
372//! less than any [`Some`], and two [`Some`] compare the same way as their
373//! contained values would in `T`. If `T` also implements
374//! [`Ord`], then so does [`Option<T>`].
375//!
376//! ```
377//! assert!(None < Some(0));
378//! assert!(Some(0) < Some(1));
379//! ```
380//!
381//! ## Iterating over `Option`
382//!
383//! An [`Option`] can be iterated over. This can be helpful if you need an
384//! iterator that is conditionally empty. The iterator will either produce
385//! a single value (when the [`Option`] is [`Some`]), or produce no values
386//! (when the [`Option`] is [`None`]). For example, [`into_iter`] acts like
387//! [`once(v)`] if the [`Option`] is [`Some(v)`], and like [`empty()`] if
388//! the [`Option`] is [`None`].
389//!
390//! [`Some(v)`]: Some
391//! [`empty()`]: crate::iter::empty
392//! [`once(v)`]: crate::iter::once
393//!
394//! Iterators over [`Option<T>`] come in three types:
395//!
396//! * [`into_iter`] consumes the [`Option`] and produces the contained
397//! value
398//! * [`iter`] produces an immutable reference of type `&T` to the
399//! contained value
400//! * [`iter_mut`] produces a mutable reference of type `&mut T` to the
401//! contained value
402//!
403//! [`into_iter`]: Option::into_iter
404//! [`iter`]: Option::iter
405//! [`iter_mut`]: Option::iter_mut
406//!
407//! An iterator over [`Option`] can be useful when chaining iterators, for
408//! example, to conditionally insert items. (It's not always necessary to
409//! explicitly call an iterator constructor: many [`Iterator`] methods that
410//! accept other iterators will also accept iterable types that implement
411//! [`IntoIterator`], which includes [`Option`].)
412//!
413//! ```
414//! let yep = Some(42);
415//! let nope = None;
416//! // chain() already calls into_iter(), so we don't have to do so
417//! let nums: Vec<i32> = (0..4).chain(yep).chain(4..8).collect();
418//! assert_eq!(nums, [0, 1, 2, 3, 42, 4, 5, 6, 7]);
419//! let nums: Vec<i32> = (0..4).chain(nope).chain(4..8).collect();
420//! assert_eq!(nums, [0, 1, 2, 3, 4, 5, 6, 7]);
421//! ```
422//!
423//! One reason to chain iterators in this way is that a function returning
424//! `impl Iterator` must have all possible return values be of the same
425//! concrete type. Chaining an iterated [`Option`] can help with that.
426//!
427//! ```
428//! fn make_iter(do_insert: bool) -> impl Iterator<Item = i32> {
429//! // Explicit returns to illustrate return types matching
430//! match do_insert {
431//! true => return (0..4).chain(Some(42)).chain(4..8),
432//! false => return (0..4).chain(None).chain(4..8),
433//! }
434//! }
435//! println!("{:?}", make_iter(true).collect::<Vec<_>>());
436//! println!("{:?}", make_iter(false).collect::<Vec<_>>());
437//! ```
438//!
439//! If we try to do the same thing, but using [`once()`] and [`empty()`],
440//! we can't return `impl Iterator` anymore because the concrete types of
441//! the return values differ.
442//!
443//! [`empty()`]: crate::iter::empty
444//! [`once()`]: crate::iter::once
445//!
446//! ```compile_fail,E0308
447//! # use std::iter::{empty, once};
448//! // This won't compile because all possible returns from the function
449//! // must have the same concrete type.
450//! fn make_iter(do_insert: bool) -> impl Iterator<Item = i32> {
451//! // Explicit returns to illustrate return types not matching
452//! match do_insert {
453//! true => return (0..4).chain(once(42)).chain(4..8),
454//! false => return (0..4).chain(empty()).chain(4..8),
455//! }
456//! }
457//! ```
458//!
459//! ## Collecting into `Option`
460//!
461//! [`Option`] implements the [`FromIterator`][impl-FromIterator] trait,
462//! which allows an iterator over [`Option`] values to be collected into an
463//! [`Option`] of a collection of each contained value of the original
464//! [`Option`] values, or [`None`] if any of the elements was [`None`].
465//!
466//! [impl-FromIterator]: Option#impl-FromIterator%3COption%3CA%3E%3E-for-Option%3CV%3E
467//!
468//! ```
469//! let v = [Some(2), Some(4), None, Some(8)];
470//! let res: Option<Vec<_>> = v.into_iter().collect();
471//! assert_eq!(res, None);
472//! let v = [Some(2), Some(4), Some(8)];
473//! let res: Option<Vec<_>> = v.into_iter().collect();
474//! assert_eq!(res, Some(vec![2, 4, 8]));
475//! ```
476//!
477//! [`Option`] also implements the [`Product`][impl-Product] and
478//! [`Sum`][impl-Sum] traits, allowing an iterator over [`Option`] values
479//! to provide the [`product`][Iterator::product] and
480//! [`sum`][Iterator::sum] methods.
481//!
482//! [impl-Product]: Option#impl-Product%3COption%3CU%3E%3E-for-Option%3CT%3E
483//! [impl-Sum]: Option#impl-Sum%3COption%3CU%3E%3E-for-Option%3CT%3E
484//!
485//! ```
486//! let v = [None, Some(1), Some(2), Some(3)];
487//! let res: Option<i32> = v.into_iter().sum();
488//! assert_eq!(res, None);
489//! let v = [Some(1), Some(2), Some(21)];
490//! let res: Option<i32> = v.into_iter().product();
491//! assert_eq!(res, Some(42));
492//! ```
493//!
494//! ## Modifying an [`Option`] in-place
495//!
496//! These methods return a mutable reference to the contained value of an
497//! [`Option<T>`]:
498//!
499//! * [`insert`] inserts a value, dropping any old contents
500//! * [`get_or_insert`] gets the current value, inserting a provided
501//! default value if it is [`None`]
502//! * [`get_or_insert_default`] gets the current value, inserting the
503//! default value of type `T` (which must implement [`Default`]) if it is
504//! [`None`]
505//! * [`get_or_insert_with`] gets the current value, inserting a default
506//! computed by the provided function if it is [`None`]
507//!
508//! [`get_or_insert`]: Option::get_or_insert
509//! [`get_or_insert_default`]: Option::get_or_insert_default
510//! [`get_or_insert_with`]: Option::get_or_insert_with
511//! [`insert`]: Option::insert
512//!
513//! These methods transfer ownership of the contained value of an
514//! [`Option`]:
515//!
516//! * [`take`] takes ownership of the contained value of an [`Option`], if
517//! any, replacing the [`Option`] with [`None`]
518//! * [`replace`] takes ownership of the contained value of an [`Option`],
519//! if any, replacing the [`Option`] with a [`Some`] containing the
520//! provided value
521//!
522//! [`replace`]: Option::replace
523//! [`take`]: Option::take
524//!
525//! # Examples
526//!
527//! Basic pattern matching on [`Option`]:
528//!
529//! ```
530//! let msg = Some("howdy");
531//!
532//! // Take a reference to the contained string
533//! if let Some(m) = &msg {
534//! println!("{}", *m);
535//! }
536//!
537//! // Remove the contained string, destroying the Option
538//! let unwrapped_msg = msg.unwrap_or("default message");
539//! ```
540//!
541//! Initialize a result to [`None`] before a loop:
542//!
543//! ```
544//! enum Kingdom { Plant(u32, &'static str), Animal(u32, &'static str) }
545//!
546//! // A list of data to search through.
547//! let all_the_big_things = [
548//! Kingdom::Plant(250, "redwood"),
549//! Kingdom::Plant(230, "noble fir"),
550//! Kingdom::Plant(229, "sugar pine"),
551//! Kingdom::Animal(25, "blue whale"),
552//! Kingdom::Animal(19, "fin whale"),
553//! Kingdom::Animal(15, "north pacific right whale"),
554//! ];
555//!
556//! // We're going to search for the name of the biggest animal,
557//! // but to start with we've just got `None`.
558//! let mut name_of_biggest_animal = None;
559//! let mut size_of_biggest_animal = 0;
560//! for big_thing in &all_the_big_things {
561//! match *big_thing {
562//! Kingdom::Animal(size, name) if size > size_of_biggest_animal => {
563//! // Now we've found the name of some big animal
564//! size_of_biggest_animal = size;
565//! name_of_biggest_animal = Some(name);
566//! }
567//! Kingdom::Animal(..) | Kingdom::Plant(..) => ()
568//! }
569//! }
570//!
571//! match name_of_biggest_animal {
572//! Some(name) => println!("the biggest animal is {name}"),
573//! None => println!("there are no animals :("),
574//! }
575//! ```
576
577#![stable(feature = "rust1", since = "1.0.0")]
578
579#[cfg(not(feature = "ferrocene_certified"))]
580use crate::iter::{self, FusedIterator, TrustedLen};
581use crate::marker::Destruct;
582#[cfg(not(feature = "ferrocene_certified"))]
583use crate::ops::{self, ControlFlow, Deref, DerefMut};
584#[cfg(feature = "ferrocene_certified")]
585use crate::ops::{Deref, DerefMut};
586#[cfg(not(feature = "ferrocene_certified"))]
587use crate::panicking::{panic, panic_display};
588#[cfg(not(feature = "ferrocene_certified"))]
589use crate::pin::Pin;
590#[cfg(not(feature = "ferrocene_certified"))]
591use crate::{cmp, convert, hint, mem, slice};
592
593/// The `Option` type. See [the module level documentation](self) for more.
594#[doc(search_unbox)]
595#[cfg_attr(not(feature = "ferrocene_certified"), derive(Copy, Eq, Debug, Hash))]
596#[rustc_diagnostic_item = "Option"]
597#[lang = "Option"]
598#[stable(feature = "rust1", since = "1.0.0")]
599#[allow(clippy::derived_hash_with_manual_eq)] // PartialEq is manually implemented equivalently
600pub enum Option<T> {
601 /// No value.
602 #[lang = "None"]
603 #[stable(feature = "rust1", since = "1.0.0")]
604 None,
605 /// Some value of type `T`.
606 #[lang = "Some"]
607 #[stable(feature = "rust1", since = "1.0.0")]
608 Some(#[stable(feature = "rust1", since = "1.0.0")] T),
609}
610
611/////////////////////////////////////////////////////////////////////////////
612// Type implementation
613/////////////////////////////////////////////////////////////////////////////
614
615impl<T> Option<T> {
616 /////////////////////////////////////////////////////////////////////////
617 // Querying the contained values
618 /////////////////////////////////////////////////////////////////////////
619
620 /// Returns `true` if the option is a [`Some`] value.
621 ///
622 /// # Examples
623 ///
624 /// ```
625 /// let x: Option<u32> = Some(2);
626 /// assert_eq!(x.is_some(), true);
627 ///
628 /// let x: Option<u32> = None;
629 /// assert_eq!(x.is_some(), false);
630 /// ```
631 #[must_use = "if you intended to assert that this has a value, consider `.unwrap()` instead"]
632 #[inline]
633 #[stable(feature = "rust1", since = "1.0.0")]
634 #[rustc_const_stable(feature = "const_option_basics", since = "1.48.0")]
635 pub const fn is_some(&self) -> bool {
636 matches!(*self, Some(_))
637 }
638
639 /// Returns `true` if the option is a [`Some`] and the value inside of it matches a predicate.
640 ///
641 /// # Examples
642 ///
643 /// ```
644 /// let x: Option<u32> = Some(2);
645 /// assert_eq!(x.is_some_and(|x| x > 1), true);
646 ///
647 /// let x: Option<u32> = Some(0);
648 /// assert_eq!(x.is_some_and(|x| x > 1), false);
649 ///
650 /// let x: Option<u32> = None;
651 /// assert_eq!(x.is_some_and(|x| x > 1), false);
652 ///
653 /// let x: Option<String> = Some("ownership".to_string());
654 /// assert_eq!(x.as_ref().is_some_and(|x| x.len() > 1), true);
655 /// println!("still alive {:?}", x);
656 /// ```
657 #[must_use]
658 #[inline]
659 #[stable(feature = "is_some_and", since = "1.70.0")]
660 #[rustc_const_unstable(feature = "const_option_ops", issue = "143956")]
661 pub const fn is_some_and(self, f: impl ~const FnOnce(T) -> bool + ~const Destruct) -> bool {
662 match self {
663 None => false,
664 Some(x) => f(x),
665 }
666 }
667
668 /// Returns `true` if the option is a [`None`] value.
669 ///
670 /// # Examples
671 ///
672 /// ```
673 /// let x: Option<u32> = Some(2);
674 /// assert_eq!(x.is_none(), false);
675 ///
676 /// let x: Option<u32> = None;
677 /// assert_eq!(x.is_none(), true);
678 /// ```
679 #[must_use = "if you intended to assert that this doesn't have a value, consider \
680 wrapping this in an `assert!()` instead"]
681 #[inline]
682 #[stable(feature = "rust1", since = "1.0.0")]
683 #[rustc_const_stable(feature = "const_option_basics", since = "1.48.0")]
684 #[cfg(not(feature = "ferrocene_certified"))]
685 pub const fn is_none(&self) -> bool {
686 !self.is_some()
687 }
688
689 /// Returns `true` if the option is a [`None`] or the value inside of it matches a predicate.
690 ///
691 /// # Examples
692 ///
693 /// ```
694 /// let x: Option<u32> = Some(2);
695 /// assert_eq!(x.is_none_or(|x| x > 1), true);
696 ///
697 /// let x: Option<u32> = Some(0);
698 /// assert_eq!(x.is_none_or(|x| x > 1), false);
699 ///
700 /// let x: Option<u32> = None;
701 /// assert_eq!(x.is_none_or(|x| x > 1), true);
702 ///
703 /// let x: Option<String> = Some("ownership".to_string());
704 /// assert_eq!(x.as_ref().is_none_or(|x| x.len() > 1), true);
705 /// println!("still alive {:?}", x);
706 /// ```
707 #[must_use]
708 #[inline]
709 #[stable(feature = "is_none_or", since = "1.82.0")]
710 #[rustc_const_unstable(feature = "const_option_ops", issue = "143956")]
711 pub const fn is_none_or(self, f: impl ~const FnOnce(T) -> bool + ~const Destruct) -> bool {
712 match self {
713 None => true,
714 Some(x) => f(x),
715 }
716 }
717
718 /////////////////////////////////////////////////////////////////////////
719 // Adapter for working with references
720 /////////////////////////////////////////////////////////////////////////
721
722 /// Converts from `&Option<T>` to `Option<&T>`.
723 ///
724 /// # Examples
725 ///
726 /// Calculates the length of an <code>Option<[String]></code> as an <code>Option<[usize]></code>
727 /// without moving the [`String`]. The [`map`] method takes the `self` argument by value,
728 /// consuming the original, so this technique uses `as_ref` to first take an `Option` to a
729 /// reference to the value inside the original.
730 ///
731 /// [`map`]: Option::map
732 /// [String]: ../../std/string/struct.String.html "String"
733 /// [`String`]: ../../std/string/struct.String.html "String"
734 ///
735 /// ```
736 /// let text: Option<String> = Some("Hello, world!".to_string());
737 /// // First, cast `Option<String>` to `Option<&String>` with `as_ref`,
738 /// // then consume *that* with `map`, leaving `text` on the stack.
739 /// let text_length: Option<usize> = text.as_ref().map(|s| s.len());
740 /// println!("still can print text: {text:?}");
741 /// ```
742 #[inline]
743 #[rustc_const_stable(feature = "const_option_basics", since = "1.48.0")]
744 #[stable(feature = "rust1", since = "1.0.0")]
745 pub const fn as_ref(&self) -> Option<&T> {
746 match *self {
747 Some(ref x) => Some(x),
748 None => None,
749 }
750 }
751
752 /// Converts from `&mut Option<T>` to `Option<&mut T>`.
753 ///
754 /// # Examples
755 ///
756 /// ```
757 /// let mut x = Some(2);
758 /// match x.as_mut() {
759 /// Some(v) => *v = 42,
760 /// None => {},
761 /// }
762 /// assert_eq!(x, Some(42));
763 /// ```
764 #[inline]
765 #[stable(feature = "rust1", since = "1.0.0")]
766 #[rustc_const_stable(feature = "const_option", since = "1.83.0")]
767 pub const fn as_mut(&mut self) -> Option<&mut T> {
768 match *self {
769 Some(ref mut x) => Some(x),
770 None => None,
771 }
772 }
773
774 /// Converts from <code>[Pin]<[&]Option\<T>></code> to <code>Option<[Pin]<[&]T>></code>.
775 ///
776 /// [&]: reference "shared reference"
777 #[inline]
778 #[must_use]
779 #[stable(feature = "pin", since = "1.33.0")]
780 #[rustc_const_stable(feature = "const_option_ext", since = "1.84.0")]
781 #[cfg(not(feature = "ferrocene_certified"))]
782 pub const fn as_pin_ref(self: Pin<&Self>) -> Option<Pin<&T>> {
783 // FIXME(const-hack): use `map` once that is possible
784 match Pin::get_ref(self).as_ref() {
785 // SAFETY: `x` is guaranteed to be pinned because it comes from `self`
786 // which is pinned.
787 Some(x) => unsafe { Some(Pin::new_unchecked(x)) },
788 None => None,
789 }
790 }
791
792 /// Converts from <code>[Pin]<[&mut] Option\<T>></code> to <code>Option<[Pin]<[&mut] T>></code>.
793 ///
794 /// [&mut]: reference "mutable reference"
795 #[inline]
796 #[must_use]
797 #[stable(feature = "pin", since = "1.33.0")]
798 #[rustc_const_stable(feature = "const_option_ext", since = "1.84.0")]
799 #[cfg(not(feature = "ferrocene_certified"))]
800 pub const fn as_pin_mut(self: Pin<&mut Self>) -> Option<Pin<&mut T>> {
801 // SAFETY: `get_unchecked_mut` is never used to move the `Option` inside `self`.
802 // `x` is guaranteed to be pinned because it comes from `self` which is pinned.
803 unsafe {
804 // FIXME(const-hack): use `map` once that is possible
805 match Pin::get_unchecked_mut(self).as_mut() {
806 Some(x) => Some(Pin::new_unchecked(x)),
807 None => None,
808 }
809 }
810 }
811
812 #[inline]
813 #[cfg(not(feature = "ferrocene_certified"))]
814 const fn len(&self) -> usize {
815 // Using the intrinsic avoids emitting a branch to get the 0 or 1.
816 let discriminant: isize = crate::intrinsics::discriminant_value(self);
817 discriminant as usize
818 }
819
820 /// Returns a slice of the contained value, if any. If this is `None`, an
821 /// empty slice is returned. This can be useful to have a single type of
822 /// iterator over an `Option` or slice.
823 ///
824 /// Note: Should you have an `Option<&T>` and wish to get a slice of `T`,
825 /// you can unpack it via `opt.map_or(&[], std::slice::from_ref)`.
826 ///
827 /// # Examples
828 ///
829 /// ```rust
830 /// assert_eq!(
831 /// [Some(1234).as_slice(), None.as_slice()],
832 /// [&[1234][..], &[][..]],
833 /// );
834 /// ```
835 ///
836 /// The inverse of this function is (discounting
837 /// borrowing) [`[_]::first`](slice::first):
838 ///
839 /// ```rust
840 /// for i in [Some(1234_u16), None] {
841 /// assert_eq!(i.as_ref(), i.as_slice().first());
842 /// }
843 /// ```
844 #[inline]
845 #[must_use]
846 #[stable(feature = "option_as_slice", since = "1.75.0")]
847 #[rustc_const_stable(feature = "const_option_ext", since = "1.84.0")]
848 #[cfg(not(feature = "ferrocene_certified"))]
849 pub const fn as_slice(&self) -> &[T] {
850 // SAFETY: When the `Option` is `Some`, we're using the actual pointer
851 // to the payload, with a length of 1, so this is equivalent to
852 // `slice::from_ref`, and thus is safe.
853 // When the `Option` is `None`, the length used is 0, so to be safe it
854 // just needs to be aligned, which it is because `&self` is aligned and
855 // the offset used is a multiple of alignment.
856 //
857 // Here we assume that `offset_of!` always returns an offset to an
858 // in-bounds and correctly aligned position for a `T` (even if in the
859 // `None` case it's just padding).
860 unsafe {
861 slice::from_raw_parts(
862 (self as *const Self).byte_add(core::mem::offset_of!(Self, Some.0)).cast(),
863 self.len(),
864 )
865 }
866 }
867
868 /// Returns a mutable slice of the contained value, if any. If this is
869 /// `None`, an empty slice is returned. This can be useful to have a
870 /// single type of iterator over an `Option` or slice.
871 ///
872 /// Note: Should you have an `Option<&mut T>` instead of a
873 /// `&mut Option<T>`, which this method takes, you can obtain a mutable
874 /// slice via `opt.map_or(&mut [], std::slice::from_mut)`.
875 ///
876 /// # Examples
877 ///
878 /// ```rust
879 /// assert_eq!(
880 /// [Some(1234).as_mut_slice(), None.as_mut_slice()],
881 /// [&mut [1234][..], &mut [][..]],
882 /// );
883 /// ```
884 ///
885 /// The result is a mutable slice of zero or one items that points into
886 /// our original `Option`:
887 ///
888 /// ```rust
889 /// let mut x = Some(1234);
890 /// x.as_mut_slice()[0] += 1;
891 /// assert_eq!(x, Some(1235));
892 /// ```
893 ///
894 /// The inverse of this method (discounting borrowing)
895 /// is [`[_]::first_mut`](slice::first_mut):
896 ///
897 /// ```rust
898 /// assert_eq!(Some(123).as_mut_slice().first_mut(), Some(&mut 123))
899 /// ```
900 #[inline]
901 #[must_use]
902 #[stable(feature = "option_as_slice", since = "1.75.0")]
903 #[rustc_const_stable(feature = "const_option_ext", since = "1.84.0")]
904 #[cfg(not(feature = "ferrocene_certified"))]
905 pub const fn as_mut_slice(&mut self) -> &mut [T] {
906 // SAFETY: When the `Option` is `Some`, we're using the actual pointer
907 // to the payload, with a length of 1, so this is equivalent to
908 // `slice::from_mut`, and thus is safe.
909 // When the `Option` is `None`, the length used is 0, so to be safe it
910 // just needs to be aligned, which it is because `&self` is aligned and
911 // the offset used is a multiple of alignment.
912 //
913 // In the new version, the intrinsic creates a `*const T` from a
914 // mutable reference so it is safe to cast back to a mutable pointer
915 // here. As with `as_slice`, the intrinsic always returns a pointer to
916 // an in-bounds and correctly aligned position for a `T` (even if in
917 // the `None` case it's just padding).
918 unsafe {
919 slice::from_raw_parts_mut(
920 (self as *mut Self).byte_add(core::mem::offset_of!(Self, Some.0)).cast(),
921 self.len(),
922 )
923 }
924 }
925
926 /////////////////////////////////////////////////////////////////////////
927 // Getting to contained values
928 /////////////////////////////////////////////////////////////////////////
929
930 /// Returns the contained [`Some`] value, consuming the `self` value.
931 ///
932 /// # Panics
933 ///
934 /// Panics if the value is a [`None`] with a custom panic message provided by
935 /// `msg`.
936 ///
937 /// # Examples
938 ///
939 /// ```
940 /// let x = Some("value");
941 /// assert_eq!(x.expect("fruits are healthy"), "value");
942 /// ```
943 ///
944 /// ```should_panic
945 /// let x: Option<&str> = None;
946 /// x.expect("fruits are healthy"); // panics with `fruits are healthy`
947 /// ```
948 ///
949 /// # Recommended Message Style
950 ///
951 /// We recommend that `expect` messages are used to describe the reason you
952 /// _expect_ the `Option` should be `Some`.
953 ///
954 /// ```should_panic
955 /// # let slice: &[u8] = &[];
956 /// let item = slice.get(0)
957 /// .expect("slice should not be empty");
958 /// ```
959 ///
960 /// **Hint**: If you're having trouble remembering how to phrase expect
961 /// error messages remember to focus on the word "should" as in "env
962 /// variable should be set by blah" or "the given binary should be available
963 /// and executable by the current user".
964 ///
965 /// For more detail on expect message styles and the reasoning behind our
966 /// recommendation please refer to the section on ["Common Message
967 /// Styles"](../../std/error/index.html#common-message-styles) in the [`std::error`](../../std/error/index.html) module docs.
968 #[inline]
969 #[track_caller]
970 #[stable(feature = "rust1", since = "1.0.0")]
971 #[rustc_diagnostic_item = "option_expect"]
972 #[rustc_allow_const_fn_unstable(const_precise_live_drops)]
973 #[rustc_const_stable(feature = "const_option", since = "1.83.0")]
974 #[cfg(not(feature = "ferrocene_certified"))]
975 pub const fn expect(self, msg: &str) -> T {
976 match self {
977 Some(val) => val,
978 None => expect_failed(msg),
979 }
980 }
981
982 /// Returns the contained [`Some`] value, consuming the `self` value.
983 ///
984 /// Because this function may panic, its use is generally discouraged.
985 /// Panics are meant for unrecoverable errors, and
986 /// [may abort the entire program][panic-abort].
987 ///
988 /// Instead, prefer to use pattern matching and handle the [`None`]
989 /// case explicitly, or call [`unwrap_or`], [`unwrap_or_else`], or
990 /// [`unwrap_or_default`]. In functions returning `Option`, you can use
991 /// [the `?` (try) operator][try-option].
992 ///
993 /// [panic-abort]: https://doc.rust-lang.org/book/ch09-01-unrecoverable-errors-with-panic.html
994 /// [try-option]: https://doc.rust-lang.org/book/ch09-02-recoverable-errors-with-result.html#where-the--operator-can-be-used
995 /// [`unwrap_or`]: Option::unwrap_or
996 /// [`unwrap_or_else`]: Option::unwrap_or_else
997 /// [`unwrap_or_default`]: Option::unwrap_or_default
998 ///
999 /// # Panics
1000 ///
1001 /// Panics if the self value equals [`None`].
1002 ///
1003 /// # Examples
1004 ///
1005 /// ```
1006 /// let x = Some("air");
1007 /// assert_eq!(x.unwrap(), "air");
1008 /// ```
1009 ///
1010 /// ```should_panic
1011 /// let x: Option<&str> = None;
1012 /// assert_eq!(x.unwrap(), "air"); // fails
1013 /// ```
1014 #[inline(always)]
1015 #[track_caller]
1016 #[stable(feature = "rust1", since = "1.0.0")]
1017 #[rustc_diagnostic_item = "option_unwrap"]
1018 #[rustc_allow_const_fn_unstable(const_precise_live_drops)]
1019 #[rustc_const_stable(feature = "const_option", since = "1.83.0")]
1020 #[cfg(not(feature = "ferrocene_certified"))]
1021 pub const fn unwrap(self) -> T {
1022 match self {
1023 Some(val) => val,
1024 None => unwrap_failed(),
1025 }
1026 }
1027
1028 /// Returns the contained [`Some`] value or a provided default.
1029 ///
1030 /// Arguments passed to `unwrap_or` are eagerly evaluated; if you are passing
1031 /// the result of a function call, it is recommended to use [`unwrap_or_else`],
1032 /// which is lazily evaluated.
1033 ///
1034 /// [`unwrap_or_else`]: Option::unwrap_or_else
1035 ///
1036 /// # Examples
1037 ///
1038 /// ```
1039 /// assert_eq!(Some("car").unwrap_or("bike"), "car");
1040 /// assert_eq!(None.unwrap_or("bike"), "bike");
1041 /// ```
1042 #[inline]
1043 #[stable(feature = "rust1", since = "1.0.0")]
1044 #[rustc_allow_const_fn_unstable(const_precise_live_drops)]
1045 #[rustc_const_unstable(feature = "const_option_ops", issue = "143956")]
1046 pub const fn unwrap_or(self, default: T) -> T
1047 where
1048 T: ~const Destruct,
1049 {
1050 match self {
1051 Some(x) => x,
1052 None => default,
1053 }
1054 }
1055
1056 /// Returns the contained [`Some`] value or computes it from a closure.
1057 ///
1058 /// # Examples
1059 ///
1060 /// ```
1061 /// let k = 10;
1062 /// assert_eq!(Some(4).unwrap_or_else(|| 2 * k), 4);
1063 /// assert_eq!(None.unwrap_or_else(|| 2 * k), 20);
1064 /// ```
1065 #[inline]
1066 #[track_caller]
1067 #[stable(feature = "rust1", since = "1.0.0")]
1068 #[rustc_const_unstable(feature = "const_option_ops", issue = "143956")]
1069 pub const fn unwrap_or_else<F>(self, f: F) -> T
1070 where
1071 F: ~const FnOnce() -> T + ~const Destruct,
1072 {
1073 match self {
1074 Some(x) => x,
1075 None => f(),
1076 }
1077 }
1078
1079 /// Returns the contained [`Some`] value or a default.
1080 ///
1081 /// Consumes the `self` argument then, if [`Some`], returns the contained
1082 /// value, otherwise if [`None`], returns the [default value] for that
1083 /// type.
1084 ///
1085 /// # Examples
1086 ///
1087 /// ```
1088 /// let x: Option<u32> = None;
1089 /// let y: Option<u32> = Some(12);
1090 ///
1091 /// assert_eq!(x.unwrap_or_default(), 0);
1092 /// assert_eq!(y.unwrap_or_default(), 12);
1093 /// ```
1094 ///
1095 /// [default value]: Default::default
1096 /// [`parse`]: str::parse
1097 /// [`FromStr`]: crate::str::FromStr
1098 #[inline]
1099 #[stable(feature = "rust1", since = "1.0.0")]
1100 #[rustc_const_unstable(feature = "const_option_ops", issue = "143956")]
1101 pub const fn unwrap_or_default(self) -> T
1102 where
1103 T: ~const Default,
1104 {
1105 match self {
1106 Some(x) => x,
1107 None => T::default(),
1108 }
1109 }
1110
1111 /// Returns the contained [`Some`] value, consuming the `self` value,
1112 /// without checking that the value is not [`None`].
1113 ///
1114 /// # Safety
1115 ///
1116 /// Calling this method on [`None`] is *[undefined behavior]*.
1117 ///
1118 /// [undefined behavior]: https://doc.rust-lang.org/reference/behavior-considered-undefined.html
1119 ///
1120 /// # Examples
1121 ///
1122 /// ```
1123 /// let x = Some("air");
1124 /// assert_eq!(unsafe { x.unwrap_unchecked() }, "air");
1125 /// ```
1126 ///
1127 /// ```no_run
1128 /// let x: Option<&str> = None;
1129 /// assert_eq!(unsafe { x.unwrap_unchecked() }, "air"); // Undefined behavior!
1130 /// ```
1131 #[inline]
1132 #[track_caller]
1133 #[stable(feature = "option_result_unwrap_unchecked", since = "1.58.0")]
1134 #[rustc_allow_const_fn_unstable(const_precise_live_drops)]
1135 #[rustc_const_stable(feature = "const_option", since = "1.83.0")]
1136 #[cfg(not(feature = "ferrocene_certified"))]
1137 pub const unsafe fn unwrap_unchecked(self) -> T {
1138 match self {
1139 Some(val) => val,
1140 // SAFETY: the safety contract must be upheld by the caller.
1141 None => unsafe { hint::unreachable_unchecked() },
1142 }
1143 }
1144
1145 /////////////////////////////////////////////////////////////////////////
1146 // Transforming contained values
1147 /////////////////////////////////////////////////////////////////////////
1148
1149 /// Maps an `Option<T>` to `Option<U>` by applying a function to a contained value (if `Some`) or returns `None` (if `None`).
1150 ///
1151 /// # Examples
1152 ///
1153 /// Calculates the length of an <code>Option<[String]></code> as an
1154 /// <code>Option<[usize]></code>, consuming the original:
1155 ///
1156 /// [String]: ../../std/string/struct.String.html "String"
1157 /// ```
1158 /// let maybe_some_string = Some(String::from("Hello, World!"));
1159 /// // `Option::map` takes self *by value*, consuming `maybe_some_string`
1160 /// let maybe_some_len = maybe_some_string.map(|s| s.len());
1161 /// assert_eq!(maybe_some_len, Some(13));
1162 ///
1163 /// let x: Option<&str> = None;
1164 /// assert_eq!(x.map(|s| s.len()), None);
1165 /// ```
1166 #[inline]
1167 #[stable(feature = "rust1", since = "1.0.0")]
1168 #[rustc_const_unstable(feature = "const_option_ops", issue = "143956")]
1169 pub const fn map<U, F>(self, f: F) -> Option<U>
1170 where
1171 F: ~const FnOnce(T) -> U + ~const Destruct,
1172 {
1173 match self {
1174 Some(x) => Some(f(x)),
1175 None => None,
1176 }
1177 }
1178
1179 /// Calls a function with a reference to the contained value if [`Some`].
1180 ///
1181 /// Returns the original option.
1182 ///
1183 /// # Examples
1184 ///
1185 /// ```
1186 /// let list = vec![1, 2, 3];
1187 ///
1188 /// // prints "got: 2"
1189 /// let x = list
1190 /// .get(1)
1191 /// .inspect(|x| println!("got: {x}"))
1192 /// .expect("list should be long enough");
1193 ///
1194 /// // prints nothing
1195 /// list.get(5).inspect(|x| println!("got: {x}"));
1196 /// ```
1197 #[inline]
1198 #[stable(feature = "result_option_inspect", since = "1.76.0")]
1199 #[rustc_const_unstable(feature = "const_option_ops", issue = "143956")]
1200 pub const fn inspect<F>(self, f: F) -> Self
1201 where
1202 F: ~const FnOnce(&T) + ~const Destruct,
1203 {
1204 if let Some(ref x) = self {
1205 f(x);
1206 }
1207
1208 self
1209 }
1210
1211 /// Returns the provided default result (if none),
1212 /// or applies a function to the contained value (if any).
1213 ///
1214 /// Arguments passed to `map_or` are eagerly evaluated; if you are passing
1215 /// the result of a function call, it is recommended to use [`map_or_else`],
1216 /// which is lazily evaluated.
1217 ///
1218 /// [`map_or_else`]: Option::map_or_else
1219 ///
1220 /// # Examples
1221 ///
1222 /// ```
1223 /// let x = Some("foo");
1224 /// assert_eq!(x.map_or(42, |v| v.len()), 3);
1225 ///
1226 /// let x: Option<&str> = None;
1227 /// assert_eq!(x.map_or(42, |v| v.len()), 42);
1228 /// ```
1229 #[inline]
1230 #[stable(feature = "rust1", since = "1.0.0")]
1231 #[must_use = "if you don't need the returned value, use `if let` instead"]
1232 #[rustc_const_unstable(feature = "const_option_ops", issue = "143956")]
1233 pub const fn map_or<U, F>(self, default: U, f: F) -> U
1234 where
1235 F: ~const FnOnce(T) -> U + ~const Destruct,
1236 U: ~const Destruct,
1237 {
1238 match self {
1239 Some(t) => f(t),
1240 None => default,
1241 }
1242 }
1243
1244 /// Computes a default function result (if none), or
1245 /// applies a different function to the contained value (if any).
1246 ///
1247 /// # Basic examples
1248 ///
1249 /// ```
1250 /// let k = 21;
1251 ///
1252 /// let x = Some("foo");
1253 /// assert_eq!(x.map_or_else(|| 2 * k, |v| v.len()), 3);
1254 ///
1255 /// let x: Option<&str> = None;
1256 /// assert_eq!(x.map_or_else(|| 2 * k, |v| v.len()), 42);
1257 /// ```
1258 ///
1259 /// # Handling a Result-based fallback
1260 ///
1261 /// A somewhat common occurrence when dealing with optional values
1262 /// in combination with [`Result<T, E>`] is the case where one wants to invoke
1263 /// a fallible fallback if the option is not present. This example
1264 /// parses a command line argument (if present), or the contents of a file to
1265 /// an integer. However, unlike accessing the command line argument, reading
1266 /// the file is fallible, so it must be wrapped with `Ok`.
1267 ///
1268 /// ```no_run
1269 /// # fn main() -> Result<(), Box<dyn std::error::Error>> {
1270 /// let v: u64 = std::env::args()
1271 /// .nth(1)
1272 /// .map_or_else(|| std::fs::read_to_string("/etc/someconfig.conf"), Ok)?
1273 /// .parse()?;
1274 /// # Ok(())
1275 /// # }
1276 /// ```
1277 #[inline]
1278 #[stable(feature = "rust1", since = "1.0.0")]
1279 #[rustc_const_unstable(feature = "const_option_ops", issue = "143956")]
1280 pub const fn map_or_else<U, D, F>(self, default: D, f: F) -> U
1281 where
1282 D: ~const FnOnce() -> U + ~const Destruct,
1283 F: ~const FnOnce(T) -> U + ~const Destruct,
1284 {
1285 match self {
1286 Some(t) => f(t),
1287 None => default(),
1288 }
1289 }
1290
1291 /// Maps an `Option<T>` to a `U` by applying function `f` to the contained
1292 /// value if the option is [`Some`], otherwise if [`None`], returns the
1293 /// [default value] for the type `U`.
1294 ///
1295 /// # Examples
1296 ///
1297 /// ```
1298 /// #![feature(result_option_map_or_default)]
1299 ///
1300 /// let x: Option<&str> = Some("hi");
1301 /// let y: Option<&str> = None;
1302 ///
1303 /// assert_eq!(x.map_or_default(|x| x.len()), 2);
1304 /// assert_eq!(y.map_or_default(|y| y.len()), 0);
1305 /// ```
1306 ///
1307 /// [default value]: Default::default
1308 #[inline]
1309 #[unstable(feature = "result_option_map_or_default", issue = "138099")]
1310 #[rustc_const_unstable(feature = "const_option_ops", issue = "143956")]
1311 pub const fn map_or_default<U, F>(self, f: F) -> U
1312 where
1313 U: ~const Default,
1314 F: ~const FnOnce(T) -> U + ~const Destruct,
1315 {
1316 match self {
1317 Some(t) => f(t),
1318 None => U::default(),
1319 }
1320 }
1321
1322 /// Transforms the `Option<T>` into a [`Result<T, E>`], mapping [`Some(v)`] to
1323 /// [`Ok(v)`] and [`None`] to [`Err(err)`].
1324 ///
1325 /// Arguments passed to `ok_or` are eagerly evaluated; if you are passing the
1326 /// result of a function call, it is recommended to use [`ok_or_else`], which is
1327 /// lazily evaluated.
1328 ///
1329 /// [`Ok(v)`]: Ok
1330 /// [`Err(err)`]: Err
1331 /// [`Some(v)`]: Some
1332 /// [`ok_or_else`]: Option::ok_or_else
1333 ///
1334 /// # Examples
1335 ///
1336 /// ```
1337 /// let x = Some("foo");
1338 /// assert_eq!(x.ok_or(0), Ok("foo"));
1339 ///
1340 /// let x: Option<&str> = None;
1341 /// assert_eq!(x.ok_or(0), Err(0));
1342 /// ```
1343 #[inline]
1344 #[stable(feature = "rust1", since = "1.0.0")]
1345 #[rustc_const_unstable(feature = "const_option_ops", issue = "143956")]
1346 pub const fn ok_or<E: ~const Destruct>(self, err: E) -> Result<T, E> {
1347 match self {
1348 Some(v) => Ok(v),
1349 None => Err(err),
1350 }
1351 }
1352
1353 /// Transforms the `Option<T>` into a [`Result<T, E>`], mapping [`Some(v)`] to
1354 /// [`Ok(v)`] and [`None`] to [`Err(err())`].
1355 ///
1356 /// [`Ok(v)`]: Ok
1357 /// [`Err(err())`]: Err
1358 /// [`Some(v)`]: Some
1359 ///
1360 /// # Examples
1361 ///
1362 /// ```
1363 /// let x = Some("foo");
1364 /// assert_eq!(x.ok_or_else(|| 0), Ok("foo"));
1365 ///
1366 /// let x: Option<&str> = None;
1367 /// assert_eq!(x.ok_or_else(|| 0), Err(0));
1368 /// ```
1369 #[inline]
1370 #[stable(feature = "rust1", since = "1.0.0")]
1371 #[rustc_const_unstable(feature = "const_option_ops", issue = "143956")]
1372 pub const fn ok_or_else<E, F>(self, err: F) -> Result<T, E>
1373 where
1374 F: ~const FnOnce() -> E + ~const Destruct,
1375 {
1376 match self {
1377 Some(v) => Ok(v),
1378 None => Err(err()),
1379 }
1380 }
1381
1382 /// Converts from `Option<T>` (or `&Option<T>`) to `Option<&T::Target>`.
1383 ///
1384 /// Leaves the original Option in-place, creating a new one with a reference
1385 /// to the original one, additionally coercing the contents via [`Deref`].
1386 ///
1387 /// # Examples
1388 ///
1389 /// ```
1390 /// let x: Option<String> = Some("hey".to_owned());
1391 /// assert_eq!(x.as_deref(), Some("hey"));
1392 ///
1393 /// let x: Option<String> = None;
1394 /// assert_eq!(x.as_deref(), None);
1395 /// ```
1396 #[inline]
1397 #[stable(feature = "option_deref", since = "1.40.0")]
1398 pub fn as_deref(&self) -> Option<&T::Target>
1399 where
1400 T: Deref,
1401 {
1402 self.as_ref().map(|t| t.deref())
1403 }
1404
1405 /// Converts from `Option<T>` (or `&mut Option<T>`) to `Option<&mut T::Target>`.
1406 ///
1407 /// Leaves the original `Option` in-place, creating a new one containing a mutable reference to
1408 /// the inner type's [`Deref::Target`] type.
1409 ///
1410 /// # Examples
1411 ///
1412 /// ```
1413 /// let mut x: Option<String> = Some("hey".to_owned());
1414 /// assert_eq!(x.as_deref_mut().map(|x| {
1415 /// x.make_ascii_uppercase();
1416 /// x
1417 /// }), Some("HEY".to_owned().as_mut_str()));
1418 /// ```
1419 #[inline]
1420 #[stable(feature = "option_deref", since = "1.40.0")]
1421 pub fn as_deref_mut(&mut self) -> Option<&mut T::Target>
1422 where
1423 T: DerefMut,
1424 {
1425 self.as_mut().map(|t| t.deref_mut())
1426 }
1427
1428 /////////////////////////////////////////////////////////////////////////
1429 // Iterator constructors
1430 /////////////////////////////////////////////////////////////////////////
1431
1432 /// Returns an iterator over the possibly contained value.
1433 ///
1434 /// # Examples
1435 ///
1436 /// ```
1437 /// let x = Some(4);
1438 /// assert_eq!(x.iter().next(), Some(&4));
1439 ///
1440 /// let x: Option<u32> = None;
1441 /// assert_eq!(x.iter().next(), None);
1442 /// ```
1443 #[inline]
1444 #[stable(feature = "rust1", since = "1.0.0")]
1445 pub fn iter(&self) -> Iter<'_, T> {
1446 Iter { inner: Item { opt: self.as_ref() } }
1447 }
1448
1449 /// Returns a mutable iterator over the possibly contained value.
1450 ///
1451 /// # Examples
1452 ///
1453 /// ```
1454 /// let mut x = Some(4);
1455 /// match x.iter_mut().next() {
1456 /// Some(v) => *v = 42,
1457 /// None => {},
1458 /// }
1459 /// assert_eq!(x, Some(42));
1460 ///
1461 /// let mut x: Option<u32> = None;
1462 /// assert_eq!(x.iter_mut().next(), None);
1463 /// ```
1464 #[inline]
1465 #[stable(feature = "rust1", since = "1.0.0")]
1466 pub fn iter_mut(&mut self) -> IterMut<'_, T> {
1467 IterMut { inner: Item { opt: self.as_mut() } }
1468 }
1469
1470 /////////////////////////////////////////////////////////////////////////
1471 // Boolean operations on the values, eager and lazy
1472 /////////////////////////////////////////////////////////////////////////
1473
1474 /// Returns [`None`] if the option is [`None`], otherwise returns `optb`.
1475 ///
1476 /// Arguments passed to `and` are eagerly evaluated; if you are passing the
1477 /// result of a function call, it is recommended to use [`and_then`], which is
1478 /// lazily evaluated.
1479 ///
1480 /// [`and_then`]: Option::and_then
1481 ///
1482 /// # Examples
1483 ///
1484 /// ```
1485 /// let x = Some(2);
1486 /// let y: Option<&str> = None;
1487 /// assert_eq!(x.and(y), None);
1488 ///
1489 /// let x: Option<u32> = None;
1490 /// let y = Some("foo");
1491 /// assert_eq!(x.and(y), None);
1492 ///
1493 /// let x = Some(2);
1494 /// let y = Some("foo");
1495 /// assert_eq!(x.and(y), Some("foo"));
1496 ///
1497 /// let x: Option<u32> = None;
1498 /// let y: Option<&str> = None;
1499 /// assert_eq!(x.and(y), None);
1500 /// ```
1501 #[inline]
1502 #[stable(feature = "rust1", since = "1.0.0")]
1503 #[rustc_const_unstable(feature = "const_option_ops", issue = "143956")]
1504 pub const fn and<U>(self, optb: Option<U>) -> Option<U>
1505 where
1506 T: ~const Destruct,
1507 U: ~const Destruct,
1508 {
1509 match self {
1510 Some(_) => optb,
1511 None => None,
1512 }
1513 }
1514
1515 /// Returns [`None`] if the option is [`None`], otherwise calls `f` with the
1516 /// wrapped value and returns the result.
1517 ///
1518 /// Some languages call this operation flatmap.
1519 ///
1520 /// # Examples
1521 ///
1522 /// ```
1523 /// fn sq_then_to_string(x: u32) -> Option<String> {
1524 /// x.checked_mul(x).map(|sq| sq.to_string())
1525 /// }
1526 ///
1527 /// assert_eq!(Some(2).and_then(sq_then_to_string), Some(4.to_string()));
1528 /// assert_eq!(Some(1_000_000).and_then(sq_then_to_string), None); // overflowed!
1529 /// assert_eq!(None.and_then(sq_then_to_string), None);
1530 /// ```
1531 ///
1532 /// Often used to chain fallible operations that may return [`None`].
1533 ///
1534 /// ```
1535 /// let arr_2d = [["A0", "A1"], ["B0", "B1"]];
1536 ///
1537 /// let item_0_1 = arr_2d.get(0).and_then(|row| row.get(1));
1538 /// assert_eq!(item_0_1, Some(&"A1"));
1539 ///
1540 /// let item_2_0 = arr_2d.get(2).and_then(|row| row.get(0));
1541 /// assert_eq!(item_2_0, None);
1542 /// ```
1543 #[doc(alias = "flatmap")]
1544 #[inline]
1545 #[stable(feature = "rust1", since = "1.0.0")]
1546 #[rustc_confusables("flat_map", "flatmap")]
1547 #[rustc_const_unstable(feature = "const_option_ops", issue = "143956")]
1548 pub const fn and_then<U, F>(self, f: F) -> Option<U>
1549 where
1550 F: ~const FnOnce(T) -> Option<U> + ~const Destruct,
1551 {
1552 match self {
1553 Some(x) => f(x),
1554 None => None,
1555 }
1556 }
1557
1558 /// Returns [`None`] if the option is [`None`], otherwise calls `predicate`
1559 /// with the wrapped value and returns:
1560 ///
1561 /// - [`Some(t)`] if `predicate` returns `true` (where `t` is the wrapped
1562 /// value), and
1563 /// - [`None`] if `predicate` returns `false`.
1564 ///
1565 /// This function works similar to [`Iterator::filter()`]. You can imagine
1566 /// the `Option<T>` being an iterator over one or zero elements. `filter()`
1567 /// lets you decide which elements to keep.
1568 ///
1569 /// # Examples
1570 ///
1571 /// ```rust
1572 /// fn is_even(n: &i32) -> bool {
1573 /// n % 2 == 0
1574 /// }
1575 ///
1576 /// assert_eq!(None.filter(is_even), None);
1577 /// assert_eq!(Some(3).filter(is_even), None);
1578 /// assert_eq!(Some(4).filter(is_even), Some(4));
1579 /// ```
1580 ///
1581 /// [`Some(t)`]: Some
1582 #[inline]
1583 #[stable(feature = "option_filter", since = "1.27.0")]
1584 #[rustc_const_unstable(feature = "const_option_ops", issue = "143956")]
1585 pub const fn filter<P>(self, predicate: P) -> Self
1586 where
1587 P: ~const FnOnce(&T) -> bool + ~const Destruct,
1588 T: ~const Destruct,
1589 {
1590 if let Some(x) = self {
1591 if predicate(&x) {
1592 return Some(x);
1593 }
1594 }
1595 None
1596 }
1597
1598 /// Returns the option if it contains a value, otherwise returns `optb`.
1599 ///
1600 /// Arguments passed to `or` are eagerly evaluated; if you are passing the
1601 /// result of a function call, it is recommended to use [`or_else`], which is
1602 /// lazily evaluated.
1603 ///
1604 /// [`or_else`]: Option::or_else
1605 ///
1606 /// # Examples
1607 ///
1608 /// ```
1609 /// let x = Some(2);
1610 /// let y = None;
1611 /// assert_eq!(x.or(y), Some(2));
1612 ///
1613 /// let x = None;
1614 /// let y = Some(100);
1615 /// assert_eq!(x.or(y), Some(100));
1616 ///
1617 /// let x = Some(2);
1618 /// let y = Some(100);
1619 /// assert_eq!(x.or(y), Some(2));
1620 ///
1621 /// let x: Option<u32> = None;
1622 /// let y = None;
1623 /// assert_eq!(x.or(y), None);
1624 /// ```
1625 #[inline]
1626 #[stable(feature = "rust1", since = "1.0.0")]
1627 #[rustc_const_unstable(feature = "const_option_ops", issue = "143956")]
1628 pub const fn or(self, optb: Option<T>) -> Option<T>
1629 where
1630 T: ~const Destruct,
1631 {
1632 match self {
1633 x @ Some(_) => x,
1634 None => optb,
1635 }
1636 }
1637
1638 /// Returns the option if it contains a value, otherwise calls `f` and
1639 /// returns the result.
1640 ///
1641 /// # Examples
1642 ///
1643 /// ```
1644 /// fn nobody() -> Option<&'static str> { None }
1645 /// fn vikings() -> Option<&'static str> { Some("vikings") }
1646 ///
1647 /// assert_eq!(Some("barbarians").or_else(vikings), Some("barbarians"));
1648 /// assert_eq!(None.or_else(vikings), Some("vikings"));
1649 /// assert_eq!(None.or_else(nobody), None);
1650 /// ```
1651 #[inline]
1652 #[stable(feature = "rust1", since = "1.0.0")]
1653 #[rustc_const_unstable(feature = "const_option_ops", issue = "143956")]
1654 pub const fn or_else<F>(self, f: F) -> Option<T>
1655 where
1656 F: ~const FnOnce() -> Option<T> + ~const Destruct,
1657 //FIXME(const_hack): this `T: ~const Destruct` is unnecessary, but even precise live drops can't tell
1658 // no value of type `T` gets dropped here
1659 T: ~const Destruct,
1660 {
1661 match self {
1662 x @ Some(_) => x,
1663 None => f(),
1664 }
1665 }
1666
1667 /// Returns [`Some`] if exactly one of `self`, `optb` is [`Some`], otherwise returns [`None`].
1668 ///
1669 /// # Examples
1670 ///
1671 /// ```
1672 /// let x = Some(2);
1673 /// let y: Option<u32> = None;
1674 /// assert_eq!(x.xor(y), Some(2));
1675 ///
1676 /// let x: Option<u32> = None;
1677 /// let y = Some(2);
1678 /// assert_eq!(x.xor(y), Some(2));
1679 ///
1680 /// let x = Some(2);
1681 /// let y = Some(2);
1682 /// assert_eq!(x.xor(y), None);
1683 ///
1684 /// let x: Option<u32> = None;
1685 /// let y: Option<u32> = None;
1686 /// assert_eq!(x.xor(y), None);
1687 /// ```
1688 #[inline]
1689 #[stable(feature = "option_xor", since = "1.37.0")]
1690 #[rustc_const_unstable(feature = "const_option_ops", issue = "143956")]
1691 pub const fn xor(self, optb: Option<T>) -> Option<T>
1692 where
1693 T: ~const Destruct,
1694 {
1695 match (self, optb) {
1696 (a @ Some(_), None) => a,
1697 (None, b @ Some(_)) => b,
1698 _ => None,
1699 }
1700 }
1701
1702 /////////////////////////////////////////////////////////////////////////
1703 // Entry-like operations to insert a value and return a reference
1704 /////////////////////////////////////////////////////////////////////////
1705
1706 /// Inserts `value` into the option, then returns a mutable reference to it.
1707 ///
1708 /// If the option already contains a value, the old value is dropped.
1709 ///
1710 /// See also [`Option::get_or_insert`], which doesn't update the value if
1711 /// the option already contains [`Some`].
1712 ///
1713 /// # Example
1714 ///
1715 /// ```
1716 /// let mut opt = None;
1717 /// let val = opt.insert(1);
1718 /// assert_eq!(*val, 1);
1719 /// assert_eq!(opt.unwrap(), 1);
1720 /// let val = opt.insert(2);
1721 /// assert_eq!(*val, 2);
1722 /// *val = 3;
1723 /// assert_eq!(opt.unwrap(), 3);
1724 /// ```
1725 #[must_use = "if you intended to set a value, consider assignment instead"]
1726 #[inline]
1727 #[stable(feature = "option_insert", since = "1.53.0")]
1728 #[rustc_const_unstable(feature = "const_option_ops", issue = "143956")]
1729 #[cfg(not(feature = "ferrocene_certified"))]
1730 pub const fn insert(&mut self, value: T) -> &mut T
1731 where
1732 T: ~const Destruct,
1733 {
1734 *self = Some(value);
1735
1736 // SAFETY: the code above just filled the option
1737 unsafe { self.as_mut().unwrap_unchecked() }
1738 }
1739
1740 /// Inserts `value` into the option if it is [`None`], then
1741 /// returns a mutable reference to the contained value.
1742 ///
1743 /// See also [`Option::insert`], which updates the value even if
1744 /// the option already contains [`Some`].
1745 ///
1746 /// # Examples
1747 ///
1748 /// ```
1749 /// let mut x = None;
1750 ///
1751 /// {
1752 /// let y: &mut u32 = x.get_or_insert(5);
1753 /// assert_eq!(y, &5);
1754 ///
1755 /// *y = 7;
1756 /// }
1757 ///
1758 /// assert_eq!(x, Some(7));
1759 /// ```
1760 #[inline]
1761 #[stable(feature = "option_entry", since = "1.20.0")]
1762 #[cfg(not(feature = "ferrocene_certified"))]
1763 pub fn get_or_insert(&mut self, value: T) -> &mut T {
1764 self.get_or_insert_with(|| value)
1765 }
1766
1767 /// Inserts the default value into the option if it is [`None`], then
1768 /// returns a mutable reference to the contained value.
1769 ///
1770 /// # Examples
1771 ///
1772 /// ```
1773 /// let mut x = None;
1774 ///
1775 /// {
1776 /// let y: &mut u32 = x.get_or_insert_default();
1777 /// assert_eq!(y, &0);
1778 ///
1779 /// *y = 7;
1780 /// }
1781 ///
1782 /// assert_eq!(x, Some(7));
1783 /// ```
1784 #[inline]
1785 #[stable(feature = "option_get_or_insert_default", since = "1.83.0")]
1786 #[rustc_const_unstable(feature = "const_option_ops", issue = "143956")]
1787 #[cfg(not(feature = "ferrocene_certified"))]
1788 pub const fn get_or_insert_default(&mut self) -> &mut T
1789 where
1790 T: ~const Default + ~const Destruct,
1791 {
1792 self.get_or_insert_with(T::default)
1793 }
1794
1795 /// Inserts a value computed from `f` into the option if it is [`None`],
1796 /// then returns a mutable reference to the contained value.
1797 ///
1798 /// # Examples
1799 ///
1800 /// ```
1801 /// let mut x = None;
1802 ///
1803 /// {
1804 /// let y: &mut u32 = x.get_or_insert_with(|| 5);
1805 /// assert_eq!(y, &5);
1806 ///
1807 /// *y = 7;
1808 /// }
1809 ///
1810 /// assert_eq!(x, Some(7));
1811 /// ```
1812 #[inline]
1813 #[stable(feature = "option_entry", since = "1.20.0")]
1814 #[rustc_const_unstable(feature = "const_option_ops", issue = "143956")]
1815 #[cfg(not(feature = "ferrocene_certified"))]
1816 pub const fn get_or_insert_with<F>(&mut self, f: F) -> &mut T
1817 where
1818 F: ~const FnOnce() -> T + ~const Destruct,
1819 T: ~const Destruct,
1820 {
1821 if let None = self {
1822 *self = Some(f());
1823 }
1824
1825 // SAFETY: a `None` variant for `self` would have been replaced by a `Some`
1826 // variant in the code above.
1827 unsafe { self.as_mut().unwrap_unchecked() }
1828 }
1829
1830 /////////////////////////////////////////////////////////////////////////
1831 // Misc
1832 /////////////////////////////////////////////////////////////////////////
1833
1834 /// Takes the value out of the option, leaving a [`None`] in its place.
1835 ///
1836 /// # Examples
1837 ///
1838 /// ```
1839 /// let mut x = Some(2);
1840 /// let y = x.take();
1841 /// assert_eq!(x, None);
1842 /// assert_eq!(y, Some(2));
1843 ///
1844 /// let mut x: Option<u32> = None;
1845 /// let y = x.take();
1846 /// assert_eq!(x, None);
1847 /// assert_eq!(y, None);
1848 /// ```
1849 #[inline]
1850 #[stable(feature = "rust1", since = "1.0.0")]
1851 #[rustc_const_stable(feature = "const_option", since = "1.83.0")]
1852 #[cfg(not(feature = "ferrocene_certified"))]
1853 pub const fn take(&mut self) -> Option<T> {
1854 // FIXME(const-hack) replace `mem::replace` by `mem::take` when the latter is const ready
1855 mem::replace(self, None)
1856 }
1857
1858 /// Takes the value out of the option, but only if the predicate evaluates to
1859 /// `true` on a mutable reference to the value.
1860 ///
1861 /// In other words, replaces `self` with `None` if the predicate returns `true`.
1862 /// This method operates similar to [`Option::take`] but conditional.
1863 ///
1864 /// # Examples
1865 ///
1866 /// ```
1867 /// let mut x = Some(42);
1868 ///
1869 /// let prev = x.take_if(|v| if *v == 42 {
1870 /// *v += 1;
1871 /// false
1872 /// } else {
1873 /// false
1874 /// });
1875 /// assert_eq!(x, Some(43));
1876 /// assert_eq!(prev, None);
1877 ///
1878 /// let prev = x.take_if(|v| *v == 43);
1879 /// assert_eq!(x, None);
1880 /// assert_eq!(prev, Some(43));
1881 /// ```
1882 #[inline]
1883 #[stable(feature = "option_take_if", since = "1.80.0")]
1884 #[rustc_const_unstable(feature = "const_option_ops", issue = "143956")]
1885 #[cfg(not(feature = "ferrocene_certified"))]
1886 pub const fn take_if<P>(&mut self, predicate: P) -> Option<T>
1887 where
1888 P: ~const FnOnce(&mut T) -> bool + ~const Destruct,
1889 {
1890 if self.as_mut().map_or(false, predicate) { self.take() } else { None }
1891 }
1892
1893 /// Replaces the actual value in the option by the value given in parameter,
1894 /// returning the old value if present,
1895 /// leaving a [`Some`] in its place without deinitializing either one.
1896 ///
1897 /// # Examples
1898 ///
1899 /// ```
1900 /// let mut x = Some(2);
1901 /// let old = x.replace(5);
1902 /// assert_eq!(x, Some(5));
1903 /// assert_eq!(old, Some(2));
1904 ///
1905 /// let mut x = None;
1906 /// let old = x.replace(3);
1907 /// assert_eq!(x, Some(3));
1908 /// assert_eq!(old, None);
1909 /// ```
1910 #[inline]
1911 #[stable(feature = "option_replace", since = "1.31.0")]
1912 #[rustc_const_stable(feature = "const_option", since = "1.83.0")]
1913 #[cfg(not(feature = "ferrocene_certified"))]
1914 pub const fn replace(&mut self, value: T) -> Option<T> {
1915 mem::replace(self, Some(value))
1916 }
1917
1918 /// Zips `self` with another `Option`.
1919 ///
1920 /// If `self` is `Some(s)` and `other` is `Some(o)`, this method returns `Some((s, o))`.
1921 /// Otherwise, `None` is returned.
1922 ///
1923 /// # Examples
1924 ///
1925 /// ```
1926 /// let x = Some(1);
1927 /// let y = Some("hi");
1928 /// let z = None::<u8>;
1929 ///
1930 /// assert_eq!(x.zip(y), Some((1, "hi")));
1931 /// assert_eq!(x.zip(z), None);
1932 /// ```
1933 #[stable(feature = "option_zip_option", since = "1.46.0")]
1934 #[rustc_const_unstable(feature = "const_option_ops", issue = "143956")]
1935 pub const fn zip<U>(self, other: Option<U>) -> Option<(T, U)>
1936 where
1937 T: ~const Destruct,
1938 U: ~const Destruct,
1939 {
1940 match (self, other) {
1941 (Some(a), Some(b)) => Some((a, b)),
1942 _ => None,
1943 }
1944 }
1945
1946 /// Zips `self` and another `Option` with function `f`.
1947 ///
1948 /// If `self` is `Some(s)` and `other` is `Some(o)`, this method returns `Some(f(s, o))`.
1949 /// Otherwise, `None` is returned.
1950 ///
1951 /// # Examples
1952 ///
1953 /// ```
1954 /// #![feature(option_zip)]
1955 ///
1956 /// #[derive(Debug, PartialEq)]
1957 /// struct Point {
1958 /// x: f64,
1959 /// y: f64,
1960 /// }
1961 ///
1962 /// impl Point {
1963 /// fn new(x: f64, y: f64) -> Self {
1964 /// Self { x, y }
1965 /// }
1966 /// }
1967 ///
1968 /// let x = Some(17.5);
1969 /// let y = Some(42.7);
1970 ///
1971 /// assert_eq!(x.zip_with(y, Point::new), Some(Point { x: 17.5, y: 42.7 }));
1972 /// assert_eq!(x.zip_with(None, Point::new), None);
1973 /// ```
1974 #[unstable(feature = "option_zip", issue = "70086")]
1975 #[rustc_const_unstable(feature = "const_option_ops", issue = "143956")]
1976 #[cfg(not(feature = "ferrocene_certified"))]
1977 pub const fn zip_with<U, F, R>(self, other: Option<U>, f: F) -> Option<R>
1978 where
1979 F: ~const FnOnce(T, U) -> R + ~const Destruct,
1980 T: ~const Destruct,
1981 U: ~const Destruct,
1982 {
1983 match (self, other) {
1984 (Some(a), Some(b)) => Some(f(a, b)),
1985 _ => None,
1986 }
1987 }
1988}
1989
1990impl<T, U> Option<(T, U)> {
1991 /// Unzips an option containing a tuple of two options.
1992 ///
1993 /// If `self` is `Some((a, b))` this method returns `(Some(a), Some(b))`.
1994 /// Otherwise, `(None, None)` is returned.
1995 ///
1996 /// # Examples
1997 ///
1998 /// ```
1999 /// let x = Some((1, "hi"));
2000 /// let y = None::<(u8, u32)>;
2001 ///
2002 /// assert_eq!(x.unzip(), (Some(1), Some("hi")));
2003 /// assert_eq!(y.unzip(), (None, None));
2004 /// ```
2005 #[inline]
2006 #[stable(feature = "unzip_option", since = "1.66.0")]
2007 pub fn unzip(self) -> (Option<T>, Option<U>) {
2008 match self {
2009 Some((a, b)) => (Some(a), Some(b)),
2010 None => (None, None),
2011 }
2012 }
2013}
2014
2015impl<T> Option<&T> {
2016 /// Maps an `Option<&T>` to an `Option<T>` by copying the contents of the
2017 /// option.
2018 ///
2019 /// # Examples
2020 ///
2021 /// ```
2022 /// let x = 12;
2023 /// let opt_x = Some(&x);
2024 /// assert_eq!(opt_x, Some(&12));
2025 /// let copied = opt_x.copied();
2026 /// assert_eq!(copied, Some(12));
2027 /// ```
2028 #[must_use = "`self` will be dropped if the result is not used"]
2029 #[stable(feature = "copied", since = "1.35.0")]
2030 #[rustc_const_stable(feature = "const_option", since = "1.83.0")]
2031 pub const fn copied(self) -> Option<T>
2032 where
2033 T: Copy,
2034 {
2035 // FIXME(const-hack): this implementation, which sidesteps using `Option::map` since it's not const
2036 // ready yet, should be reverted when possible to avoid code repetition
2037 match self {
2038 Some(&v) => Some(v),
2039 None => None,
2040 }
2041 }
2042
2043 /// Maps an `Option<&T>` to an `Option<T>` by cloning the contents of the
2044 /// option.
2045 ///
2046 /// # Examples
2047 ///
2048 /// ```
2049 /// let x = 12;
2050 /// let opt_x = Some(&x);
2051 /// assert_eq!(opt_x, Some(&12));
2052 /// let cloned = opt_x.cloned();
2053 /// assert_eq!(cloned, Some(12));
2054 /// ```
2055 #[must_use = "`self` will be dropped if the result is not used"]
2056 #[stable(feature = "rust1", since = "1.0.0")]
2057 pub fn cloned(self) -> Option<T>
2058 where
2059 T: Clone,
2060 {
2061 match self {
2062 Some(t) => Some(t.clone()),
2063 None => None,
2064 }
2065 }
2066}
2067
2068impl<T> Option<&mut T> {
2069 /// Maps an `Option<&mut T>` to an `Option<T>` by copying the contents of the
2070 /// option.
2071 ///
2072 /// # Examples
2073 ///
2074 /// ```
2075 /// let mut x = 12;
2076 /// let opt_x = Some(&mut x);
2077 /// assert_eq!(opt_x, Some(&mut 12));
2078 /// let copied = opt_x.copied();
2079 /// assert_eq!(copied, Some(12));
2080 /// ```
2081 #[must_use = "`self` will be dropped if the result is not used"]
2082 #[stable(feature = "copied", since = "1.35.0")]
2083 #[rustc_const_stable(feature = "const_option", since = "1.83.0")]
2084 pub const fn copied(self) -> Option<T>
2085 where
2086 T: Copy,
2087 {
2088 match self {
2089 Some(&mut t) => Some(t),
2090 None => None,
2091 }
2092 }
2093
2094 /// Maps an `Option<&mut T>` to an `Option<T>` by cloning the contents of the
2095 /// option.
2096 ///
2097 /// # Examples
2098 ///
2099 /// ```
2100 /// let mut x = 12;
2101 /// let opt_x = Some(&mut x);
2102 /// assert_eq!(opt_x, Some(&mut 12));
2103 /// let cloned = opt_x.cloned();
2104 /// assert_eq!(cloned, Some(12));
2105 /// ```
2106 #[must_use = "`self` will be dropped if the result is not used"]
2107 #[stable(since = "1.26.0", feature = "option_ref_mut_cloned")]
2108 pub fn cloned(self) -> Option<T>
2109 where
2110 T: Clone,
2111 {
2112 match self {
2113 Some(t) => Some(t.clone()),
2114 None => None,
2115 }
2116 }
2117}
2118
2119impl<T, E> Option<Result<T, E>> {
2120 /// Transposes an `Option` of a [`Result`] into a [`Result`] of an `Option`.
2121 ///
2122 /// [`None`] will be mapped to <code>[Ok]\([None])</code>.
2123 /// <code>[Some]\([Ok]\(\_))</code> and <code>[Some]\([Err]\(\_))</code> will be mapped to
2124 /// <code>[Ok]\([Some]\(\_))</code> and <code>[Err]\(\_)</code>.
2125 ///
2126 /// # Examples
2127 ///
2128 /// ```
2129 /// #[derive(Debug, Eq, PartialEq)]
2130 /// struct SomeErr;
2131 ///
2132 /// let x: Result<Option<i32>, SomeErr> = Ok(Some(5));
2133 /// let y: Option<Result<i32, SomeErr>> = Some(Ok(5));
2134 /// assert_eq!(x, y.transpose());
2135 /// ```
2136 #[inline]
2137 #[stable(feature = "transpose_result", since = "1.33.0")]
2138 #[rustc_allow_const_fn_unstable(const_precise_live_drops)]
2139 #[rustc_const_stable(feature = "const_option", since = "1.83.0")]
2140 pub const fn transpose(self) -> Result<Option<T>, E> {
2141 match self {
2142 Some(Ok(x)) => Ok(Some(x)),
2143 Some(Err(e)) => Err(e),
2144 None => Ok(None),
2145 }
2146 }
2147}
2148
2149#[cfg_attr(not(feature = "panic_immediate_abort"), inline(never))]
2150#[cfg_attr(feature = "panic_immediate_abort", inline)]
2151#[cold]
2152#[track_caller]
2153#[cfg(not(feature = "ferrocene_certified"))]
2154const fn unwrap_failed() -> ! {
2155 panic("called `Option::unwrap()` on a `None` value")
2156}
2157
2158// This is a separate function to reduce the code size of .expect() itself.
2159#[cfg_attr(not(feature = "panic_immediate_abort"), inline(never))]
2160#[cfg_attr(feature = "panic_immediate_abort", inline)]
2161#[cold]
2162#[track_caller]
2163#[cfg(not(feature = "ferrocene_certified"))]
2164const fn expect_failed(msg: &str) -> ! {
2165 panic_display(&msg)
2166}
2167
2168/////////////////////////////////////////////////////////////////////////////
2169// Trait implementations
2170/////////////////////////////////////////////////////////////////////////////
2171
2172#[stable(feature = "rust1", since = "1.0.0")]
2173#[rustc_const_unstable(feature = "const_try", issue = "74935")]
2174impl<T> const Clone for Option<T>
2175where
2176 // FIXME(const_hack): the T: ~const Destruct should be inferred from the Self: ~const Destruct in clone_from.
2177 // See https://github.com/rust-lang/rust/issues/144207
2178 T: ~const Clone + ~const Destruct,
2179{
2180 #[inline]
2181 fn clone(&self) -> Self {
2182 match self {
2183 Some(x) => Some(x.clone()),
2184 None => None,
2185 }
2186 }
2187
2188 #[inline]
2189 fn clone_from(&mut self, source: &Self) {
2190 match (self, source) {
2191 (Some(to), Some(from)) => to.clone_from(from),
2192 (to, from) => *to = from.clone(),
2193 }
2194 }
2195}
2196
2197#[unstable(feature = "ergonomic_clones", issue = "132290")]
2198#[cfg(not(feature = "ferrocene_certified"))]
2199impl<T> crate::clone::UseCloned for Option<T> where T: crate::clone::UseCloned {}
2200
2201#[stable(feature = "rust1", since = "1.0.0")]
2202#[rustc_const_unstable(feature = "const_default", issue = "143894")]
2203impl<T> const Default for Option<T> {
2204 /// Returns [`None`][Option::None].
2205 ///
2206 /// # Examples
2207 ///
2208 /// ```
2209 /// let opt: Option<u32> = Option::default();
2210 /// assert!(opt.is_none());
2211 /// ```
2212 #[inline]
2213 fn default() -> Option<T> {
2214 None
2215 }
2216}
2217
2218#[stable(feature = "rust1", since = "1.0.0")]
2219#[cfg(not(feature = "ferrocene_certified"))]
2220impl<T> IntoIterator for Option<T> {
2221 type Item = T;
2222 type IntoIter = IntoIter<T>;
2223
2224 /// Returns a consuming iterator over the possibly contained value.
2225 ///
2226 /// # Examples
2227 ///
2228 /// ```
2229 /// let x = Some("string");
2230 /// let v: Vec<&str> = x.into_iter().collect();
2231 /// assert_eq!(v, ["string"]);
2232 ///
2233 /// let x = None;
2234 /// let v: Vec<&str> = x.into_iter().collect();
2235 /// assert!(v.is_empty());
2236 /// ```
2237 #[inline]
2238 fn into_iter(self) -> IntoIter<T> {
2239 IntoIter { inner: Item { opt: self } }
2240 }
2241}
2242
2243#[stable(since = "1.4.0", feature = "option_iter")]
2244#[cfg(not(feature = "ferrocene_certified"))]
2245impl<'a, T> IntoIterator for &'a Option<T> {
2246 type Item = &'a T;
2247 type IntoIter = Iter<'a, T>;
2248
2249 fn into_iter(self) -> Iter<'a, T> {
2250 self.iter()
2251 }
2252}
2253
2254#[stable(since = "1.4.0", feature = "option_iter")]
2255#[cfg(not(feature = "ferrocene_certified"))]
2256impl<'a, T> IntoIterator for &'a mut Option<T> {
2257 type Item = &'a mut T;
2258 type IntoIter = IterMut<'a, T>;
2259
2260 fn into_iter(self) -> IterMut<'a, T> {
2261 self.iter_mut()
2262 }
2263}
2264
2265#[stable(since = "1.12.0", feature = "option_from")]
2266#[rustc_const_unstable(feature = "const_try", issue = "74935")]
2267impl<T> const From<T> for Option<T> {
2268 /// Moves `val` into a new [`Some`].
2269 ///
2270 /// # Examples
2271 ///
2272 /// ```
2273 /// let o: Option<u8> = Option::from(67);
2274 ///
2275 /// assert_eq!(Some(67), o);
2276 /// ```
2277 fn from(val: T) -> Option<T> {
2278 Some(val)
2279 }
2280}
2281
2282#[stable(feature = "option_ref_from_ref_option", since = "1.30.0")]
2283#[rustc_const_unstable(feature = "const_try", issue = "74935")]
2284impl<'a, T> const From<&'a Option<T>> for Option<&'a T> {
2285 /// Converts from `&Option<T>` to `Option<&T>`.
2286 ///
2287 /// # Examples
2288 ///
2289 /// Converts an <code>[Option]<[String]></code> into an <code>[Option]<[usize]></code>, preserving
2290 /// the original. The [`map`] method takes the `self` argument by value, consuming the original,
2291 /// so this technique uses `from` to first take an [`Option`] to a reference
2292 /// to the value inside the original.
2293 ///
2294 /// [`map`]: Option::map
2295 /// [String]: ../../std/string/struct.String.html "String"
2296 ///
2297 /// ```
2298 /// let s: Option<String> = Some(String::from("Hello, Rustaceans!"));
2299 /// let o: Option<usize> = Option::from(&s).map(|ss: &String| ss.len());
2300 ///
2301 /// println!("Can still print s: {s:?}");
2302 ///
2303 /// assert_eq!(o, Some(18));
2304 /// ```
2305 fn from(o: &'a Option<T>) -> Option<&'a T> {
2306 o.as_ref()
2307 }
2308}
2309
2310#[stable(feature = "option_ref_from_ref_option", since = "1.30.0")]
2311#[rustc_const_unstable(feature = "const_try", issue = "74935")]
2312impl<'a, T> const From<&'a mut Option<T>> for Option<&'a mut T> {
2313 /// Converts from `&mut Option<T>` to `Option<&mut T>`
2314 ///
2315 /// # Examples
2316 ///
2317 /// ```
2318 /// let mut s = Some(String::from("Hello"));
2319 /// let o: Option<&mut String> = Option::from(&mut s);
2320 ///
2321 /// match o {
2322 /// Some(t) => *t = String::from("Hello, Rustaceans!"),
2323 /// None => (),
2324 /// }
2325 ///
2326 /// assert_eq!(s, Some(String::from("Hello, Rustaceans!")));
2327 /// ```
2328 fn from(o: &'a mut Option<T>) -> Option<&'a mut T> {
2329 o.as_mut()
2330 }
2331}
2332
2333// Ideally, LLVM should be able to optimize our derive code to this.
2334// Once https://github.com/llvm/llvm-project/issues/52622 is fixed, we can
2335// go back to deriving `PartialEq`.
2336#[stable(feature = "rust1", since = "1.0.0")]
2337#[cfg(not(feature = "ferrocene_certified"))]
2338impl<T> crate::marker::StructuralPartialEq for Option<T> {}
2339#[stable(feature = "rust1", since = "1.0.0")]
2340#[rustc_const_unstable(feature = "const_cmp", issue = "143800")]
2341#[cfg(not(feature = "ferrocene_certified"))]
2342impl<T: ~const PartialEq> const PartialEq for Option<T> {
2343 #[inline]
2344 fn eq(&self, other: &Self) -> bool {
2345 // Spelling out the cases explicitly optimizes better than
2346 // `_ => false`
2347 match (self, other) {
2348 (Some(l), Some(r)) => *l == *r,
2349 (Some(_), None) => false,
2350 (None, Some(_)) => false,
2351 (None, None) => true,
2352 }
2353 }
2354}
2355
2356// Manually implementing here somewhat improves codegen for
2357// https://github.com/rust-lang/rust/issues/49892, although still
2358// not optimal.
2359#[stable(feature = "rust1", since = "1.0.0")]
2360#[cfg(not(feature = "ferrocene_certified"))]
2361impl<T: PartialOrd> PartialOrd for Option<T> {
2362 #[inline]
2363 fn partial_cmp(&self, other: &Self) -> Option<cmp::Ordering> {
2364 match (self, other) {
2365 (Some(l), Some(r)) => l.partial_cmp(r),
2366 (Some(_), None) => Some(cmp::Ordering::Greater),
2367 (None, Some(_)) => Some(cmp::Ordering::Less),
2368 (None, None) => Some(cmp::Ordering::Equal),
2369 }
2370 }
2371}
2372
2373#[stable(feature = "rust1", since = "1.0.0")]
2374#[cfg(not(feature = "ferrocene_certified"))]
2375impl<T: Ord> Ord for Option<T> {
2376 #[inline]
2377 fn cmp(&self, other: &Self) -> cmp::Ordering {
2378 match (self, other) {
2379 (Some(l), Some(r)) => l.cmp(r),
2380 (Some(_), None) => cmp::Ordering::Greater,
2381 (None, Some(_)) => cmp::Ordering::Less,
2382 (None, None) => cmp::Ordering::Equal,
2383 }
2384 }
2385}
2386
2387/////////////////////////////////////////////////////////////////////////////
2388// The Option Iterators
2389/////////////////////////////////////////////////////////////////////////////
2390
2391#[cfg_attr(not(feature = "ferrocene_certified"), derive(Clone, Debug))]
2392struct Item<A> {
2393 #[allow(dead_code)]
2394 opt: Option<A>,
2395}
2396
2397#[cfg(not(feature = "ferrocene_certified"))]
2398impl<A> Iterator for Item<A> {
2399 type Item = A;
2400
2401 #[inline]
2402 fn next(&mut self) -> Option<A> {
2403 self.opt.take()
2404 }
2405
2406 #[inline]
2407 fn size_hint(&self) -> (usize, Option<usize>) {
2408 let len = self.len();
2409 (len, Some(len))
2410 }
2411}
2412
2413#[cfg(not(feature = "ferrocene_certified"))]
2414impl<A> DoubleEndedIterator for Item<A> {
2415 #[inline]
2416 fn next_back(&mut self) -> Option<A> {
2417 self.opt.take()
2418 }
2419}
2420
2421#[cfg(not(feature = "ferrocene_certified"))]
2422impl<A> ExactSizeIterator for Item<A> {
2423 #[inline]
2424 fn len(&self) -> usize {
2425 self.opt.len()
2426 }
2427}
2428#[cfg(not(feature = "ferrocene_certified"))]
2429impl<A> FusedIterator for Item<A> {}
2430#[cfg(not(feature = "ferrocene_certified"))]
2431unsafe impl<A> TrustedLen for Item<A> {}
2432
2433/// An iterator over a reference to the [`Some`] variant of an [`Option`].
2434///
2435/// The iterator yields one value if the [`Option`] is a [`Some`], otherwise none.
2436///
2437/// This `struct` is created by the [`Option::iter`] function.
2438#[stable(feature = "rust1", since = "1.0.0")]
2439#[cfg_attr(not(feature = "ferrocene_certified"), derive(Debug))]
2440pub struct Iter<'a, A: 'a> {
2441 #[cfg_attr(feature = "ferrocene_certified", allow(dead_code))]
2442 inner: Item<&'a A>,
2443}
2444
2445#[stable(feature = "rust1", since = "1.0.0")]
2446#[cfg(not(feature = "ferrocene_certified"))]
2447impl<'a, A> Iterator for Iter<'a, A> {
2448 type Item = &'a A;
2449
2450 #[inline]
2451 fn next(&mut self) -> Option<&'a A> {
2452 self.inner.next()
2453 }
2454 #[inline]
2455 fn size_hint(&self) -> (usize, Option<usize>) {
2456 self.inner.size_hint()
2457 }
2458}
2459
2460#[stable(feature = "rust1", since = "1.0.0")]
2461#[cfg(not(feature = "ferrocene_certified"))]
2462impl<'a, A> DoubleEndedIterator for Iter<'a, A> {
2463 #[inline]
2464 fn next_back(&mut self) -> Option<&'a A> {
2465 self.inner.next_back()
2466 }
2467}
2468
2469#[stable(feature = "rust1", since = "1.0.0")]
2470#[cfg(not(feature = "ferrocene_certified"))]
2471impl<A> ExactSizeIterator for Iter<'_, A> {}
2472
2473#[stable(feature = "fused", since = "1.26.0")]
2474#[cfg(not(feature = "ferrocene_certified"))]
2475impl<A> FusedIterator for Iter<'_, A> {}
2476
2477#[unstable(feature = "trusted_len", issue = "37572")]
2478#[cfg(not(feature = "ferrocene_certified"))]
2479unsafe impl<A> TrustedLen for Iter<'_, A> {}
2480
2481#[stable(feature = "rust1", since = "1.0.0")]
2482#[cfg(not(feature = "ferrocene_certified"))]
2483impl<A> Clone for Iter<'_, A> {
2484 #[inline]
2485 fn clone(&self) -> Self {
2486 Iter { inner: self.inner.clone() }
2487 }
2488}
2489
2490/// An iterator over a mutable reference to the [`Some`] variant of an [`Option`].
2491///
2492/// The iterator yields one value if the [`Option`] is a [`Some`], otherwise none.
2493///
2494/// This `struct` is created by the [`Option::iter_mut`] function.
2495#[stable(feature = "rust1", since = "1.0.0")]
2496#[cfg_attr(not(feature = "ferrocene_certified"), derive(Debug))]
2497pub struct IterMut<'a, A: 'a> {
2498 #[cfg_attr(feature = "ferrocene_certified", allow(dead_code))]
2499 inner: Item<&'a mut A>,
2500}
2501
2502#[stable(feature = "rust1", since = "1.0.0")]
2503#[cfg(not(feature = "ferrocene_certified"))]
2504impl<'a, A> Iterator for IterMut<'a, A> {
2505 type Item = &'a mut A;
2506
2507 #[inline]
2508 fn next(&mut self) -> Option<&'a mut A> {
2509 self.inner.next()
2510 }
2511 #[inline]
2512 fn size_hint(&self) -> (usize, Option<usize>) {
2513 self.inner.size_hint()
2514 }
2515}
2516
2517#[stable(feature = "rust1", since = "1.0.0")]
2518#[cfg(not(feature = "ferrocene_certified"))]
2519impl<'a, A> DoubleEndedIterator for IterMut<'a, A> {
2520 #[inline]
2521 fn next_back(&mut self) -> Option<&'a mut A> {
2522 self.inner.next_back()
2523 }
2524}
2525
2526#[stable(feature = "rust1", since = "1.0.0")]
2527#[cfg(not(feature = "ferrocene_certified"))]
2528impl<A> ExactSizeIterator for IterMut<'_, A> {}
2529
2530#[stable(feature = "fused", since = "1.26.0")]
2531#[cfg(not(feature = "ferrocene_certified"))]
2532impl<A> FusedIterator for IterMut<'_, A> {}
2533#[unstable(feature = "trusted_len", issue = "37572")]
2534#[cfg(not(feature = "ferrocene_certified"))]
2535unsafe impl<A> TrustedLen for IterMut<'_, A> {}
2536
2537/// An iterator over the value in [`Some`] variant of an [`Option`].
2538///
2539/// The iterator yields one value if the [`Option`] is a [`Some`], otherwise none.
2540///
2541/// This `struct` is created by the [`Option::into_iter`] function.
2542#[derive(Clone, Debug)]
2543#[stable(feature = "rust1", since = "1.0.0")]
2544#[cfg(not(feature = "ferrocene_certified"))]
2545pub struct IntoIter<A> {
2546 inner: Item<A>,
2547}
2548
2549#[stable(feature = "rust1", since = "1.0.0")]
2550#[cfg(not(feature = "ferrocene_certified"))]
2551impl<A> Iterator for IntoIter<A> {
2552 type Item = A;
2553
2554 #[inline]
2555 fn next(&mut self) -> Option<A> {
2556 self.inner.next()
2557 }
2558 #[inline]
2559 fn size_hint(&self) -> (usize, Option<usize>) {
2560 self.inner.size_hint()
2561 }
2562}
2563
2564#[stable(feature = "rust1", since = "1.0.0")]
2565#[cfg(not(feature = "ferrocene_certified"))]
2566impl<A> DoubleEndedIterator for IntoIter<A> {
2567 #[inline]
2568 fn next_back(&mut self) -> Option<A> {
2569 self.inner.next_back()
2570 }
2571}
2572
2573#[stable(feature = "rust1", since = "1.0.0")]
2574#[cfg(not(feature = "ferrocene_certified"))]
2575impl<A> ExactSizeIterator for IntoIter<A> {}
2576
2577#[stable(feature = "fused", since = "1.26.0")]
2578#[cfg(not(feature = "ferrocene_certified"))]
2579impl<A> FusedIterator for IntoIter<A> {}
2580
2581#[unstable(feature = "trusted_len", issue = "37572")]
2582#[cfg(not(feature = "ferrocene_certified"))]
2583unsafe impl<A> TrustedLen for IntoIter<A> {}
2584
2585/////////////////////////////////////////////////////////////////////////////
2586// FromIterator
2587/////////////////////////////////////////////////////////////////////////////
2588
2589#[stable(feature = "rust1", since = "1.0.0")]
2590#[cfg(not(feature = "ferrocene_certified"))]
2591impl<A, V: FromIterator<A>> FromIterator<Option<A>> for Option<V> {
2592 /// Takes each element in the [`Iterator`]: if it is [`None`][Option::None],
2593 /// no further elements are taken, and the [`None`][Option::None] is
2594 /// returned. Should no [`None`][Option::None] occur, a container of type
2595 /// `V` containing the values of each [`Option`] is returned.
2596 ///
2597 /// # Examples
2598 ///
2599 /// Here is an example which increments every integer in a vector.
2600 /// We use the checked variant of `add` that returns `None` when the
2601 /// calculation would result in an overflow.
2602 ///
2603 /// ```
2604 /// let items = vec![0_u16, 1, 2];
2605 ///
2606 /// let res: Option<Vec<u16>> = items
2607 /// .iter()
2608 /// .map(|x| x.checked_add(1))
2609 /// .collect();
2610 ///
2611 /// assert_eq!(res, Some(vec![1, 2, 3]));
2612 /// ```
2613 ///
2614 /// As you can see, this will return the expected, valid items.
2615 ///
2616 /// Here is another example that tries to subtract one from another list
2617 /// of integers, this time checking for underflow:
2618 ///
2619 /// ```
2620 /// let items = vec![2_u16, 1, 0];
2621 ///
2622 /// let res: Option<Vec<u16>> = items
2623 /// .iter()
2624 /// .map(|x| x.checked_sub(1))
2625 /// .collect();
2626 ///
2627 /// assert_eq!(res, None);
2628 /// ```
2629 ///
2630 /// Since the last element is zero, it would underflow. Thus, the resulting
2631 /// value is `None`.
2632 ///
2633 /// Here is a variation on the previous example, showing that no
2634 /// further elements are taken from `iter` after the first `None`.
2635 ///
2636 /// ```
2637 /// let items = vec![3_u16, 2, 1, 10];
2638 ///
2639 /// let mut shared = 0;
2640 ///
2641 /// let res: Option<Vec<u16>> = items
2642 /// .iter()
2643 /// .map(|x| { shared += x; x.checked_sub(2) })
2644 /// .collect();
2645 ///
2646 /// assert_eq!(res, None);
2647 /// assert_eq!(shared, 6);
2648 /// ```
2649 ///
2650 /// Since the third element caused an underflow, no further elements were taken,
2651 /// so the final value of `shared` is 6 (= `3 + 2 + 1`), not 16.
2652 #[inline]
2653 fn from_iter<I: IntoIterator<Item = Option<A>>>(iter: I) -> Option<V> {
2654 // FIXME(#11084): This could be replaced with Iterator::scan when this
2655 // performance bug is closed.
2656
2657 iter::try_process(iter.into_iter(), |i| i.collect())
2658 }
2659}
2660
2661#[unstable(feature = "try_trait_v2", issue = "84277", old_name = "try_trait")]
2662#[rustc_const_unstable(feature = "const_try", issue = "74935")]
2663#[cfg(not(feature = "ferrocene_certified"))]
2664impl<T> const ops::Try for Option<T> {
2665 type Output = T;
2666 type Residual = Option<convert::Infallible>;
2667
2668 #[inline]
2669 fn from_output(output: Self::Output) -> Self {
2670 Some(output)
2671 }
2672
2673 #[inline]
2674 fn branch(self) -> ControlFlow<Self::Residual, Self::Output> {
2675 match self {
2676 Some(v) => ControlFlow::Continue(v),
2677 None => ControlFlow::Break(None),
2678 }
2679 }
2680}
2681
2682#[unstable(feature = "try_trait_v2", issue = "84277", old_name = "try_trait")]
2683#[rustc_const_unstable(feature = "const_try", issue = "74935")]
2684// Note: manually specifying the residual type instead of using the default to work around
2685// https://github.com/rust-lang/rust/issues/99940
2686#[cfg(not(feature = "ferrocene_certified"))]
2687impl<T> const ops::FromResidual<Option<convert::Infallible>> for Option<T> {
2688 #[inline]
2689 fn from_residual(residual: Option<convert::Infallible>) -> Self {
2690 match residual {
2691 None => None,
2692 }
2693 }
2694}
2695
2696#[diagnostic::do_not_recommend]
2697#[unstable(feature = "try_trait_v2_yeet", issue = "96374")]
2698#[rustc_const_unstable(feature = "const_try", issue = "74935")]
2699#[cfg(not(feature = "ferrocene_certified"))]
2700impl<T> const ops::FromResidual<ops::Yeet<()>> for Option<T> {
2701 #[inline]
2702 fn from_residual(ops::Yeet(()): ops::Yeet<()>) -> Self {
2703 None
2704 }
2705}
2706
2707#[unstable(feature = "try_trait_v2_residual", issue = "91285")]
2708#[rustc_const_unstable(feature = "const_try", issue = "74935")]
2709#[cfg(not(feature = "ferrocene_certified"))]
2710impl<T> const ops::Residual<T> for Option<convert::Infallible> {
2711 type TryType = Option<T>;
2712}
2713
2714impl<T> Option<Option<T>> {
2715 /// Converts from `Option<Option<T>>` to `Option<T>`.
2716 ///
2717 /// # Examples
2718 ///
2719 /// Basic usage:
2720 ///
2721 /// ```
2722 /// let x: Option<Option<u32>> = Some(Some(6));
2723 /// assert_eq!(Some(6), x.flatten());
2724 ///
2725 /// let x: Option<Option<u32>> = Some(None);
2726 /// assert_eq!(None, x.flatten());
2727 ///
2728 /// let x: Option<Option<u32>> = None;
2729 /// assert_eq!(None, x.flatten());
2730 /// ```
2731 ///
2732 /// Flattening only removes one level of nesting at a time:
2733 ///
2734 /// ```
2735 /// let x: Option<Option<Option<u32>>> = Some(Some(Some(6)));
2736 /// assert_eq!(Some(Some(6)), x.flatten());
2737 /// assert_eq!(Some(6), x.flatten().flatten());
2738 /// ```
2739 #[inline]
2740 #[stable(feature = "option_flattening", since = "1.40.0")]
2741 #[rustc_allow_const_fn_unstable(const_precise_live_drops)]
2742 #[rustc_const_stable(feature = "const_option", since = "1.83.0")]
2743 pub const fn flatten(self) -> Option<T> {
2744 // FIXME(const-hack): could be written with `and_then`
2745 match self {
2746 Some(inner) => inner,
2747 None => None,
2748 }
2749 }
2750}
2751
2752#[cfg(not(feature = "ferrocene_certified"))]
2753impl<T, const N: usize> [Option<T>; N] {
2754 /// Transposes a `[Option<T>; N]` into a `Option<[T; N]>`.
2755 ///
2756 /// # Examples
2757 ///
2758 /// ```
2759 /// #![feature(option_array_transpose)]
2760 /// # use std::option::Option;
2761 ///
2762 /// let data = [Some(0); 1000];
2763 /// let data: Option<[u8; 1000]> = data.transpose();
2764 /// assert_eq!(data, Some([0; 1000]));
2765 ///
2766 /// let data = [Some(0), None];
2767 /// let data: Option<[u8; 2]> = data.transpose();
2768 /// assert_eq!(data, None);
2769 /// ```
2770 #[inline]
2771 #[unstable(feature = "option_array_transpose", issue = "130828")]
2772 pub fn transpose(self) -> Option<[T; N]> {
2773 self.try_map(core::convert::identity)
2774 }
2775}