core/option.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574
//! Optional values.
//!
//! Type [`Option`] represents an optional value: every [`Option`]
//! is either [`Some`] and contains a value, or [`None`], and
//! does not. [`Option`] types are very common in Rust code, as
//! they have a number of uses:
//!
//! * Initial values
//! * Return values for functions that are not defined
//! over their entire input range (partial functions)
//! * Return value for otherwise reporting simple errors, where [`None`] is
//! returned on error
//! * Optional struct fields
//! * Struct fields that can be loaned or "taken"
//! * Optional function arguments
//! * Nullable pointers
//! * Swapping things out of difficult situations
//!
//! [`Option`]s are commonly paired with pattern matching to query the presence
//! of a value and take action, always accounting for the [`None`] case.
//!
//! ```
//! fn divide(numerator: f64, denominator: f64) -> Option<f64> {
//! if denominator == 0.0 {
//! None
//! } else {
//! Some(numerator / denominator)
//! }
//! }
//!
//! // The return value of the function is an option
//! let result = divide(2.0, 3.0);
//!
//! // Pattern match to retrieve the value
//! match result {
//! // The division was valid
//! Some(x) => println!("Result: {x}"),
//! // The division was invalid
//! None => println!("Cannot divide by 0"),
//! }
//! ```
//!
//
// FIXME: Show how `Option` is used in practice, with lots of methods
//
//! # Options and pointers ("nullable" pointers)
//!
//! Rust's pointer types must always point to a valid location; there are
//! no "null" references. Instead, Rust has *optional* pointers, like
//! the optional owned box, <code>[Option]<[Box\<T>]></code>.
//!
//! [Box\<T>]: ../../std/boxed/struct.Box.html
//!
//! The following example uses [`Option`] to create an optional box of
//! [`i32`]. Notice that in order to use the inner [`i32`] value, the
//! `check_optional` function first needs to use pattern matching to
//! determine whether the box has a value (i.e., it is [`Some(...)`][`Some`]) or
//! not ([`None`]).
//!
//! ```
//! let optional = None;
//! check_optional(optional);
//!
//! let optional = Some(Box::new(9000));
//! check_optional(optional);
//!
//! fn check_optional(optional: Option<Box<i32>>) {
//! match optional {
//! Some(p) => println!("has value {p}"),
//! None => println!("has no value"),
//! }
//! }
//! ```
//!
//! # The question mark operator, `?`
//!
//! Similar to the [`Result`] type, when writing code that calls many functions that return the
//! [`Option`] type, handling `Some`/`None` can be tedious. The question mark
//! operator, [`?`], hides some of the boilerplate of propagating values
//! up the call stack.
//!
//! It replaces this:
//!
//! ```
//! # #![allow(dead_code)]
//! fn add_last_numbers(stack: &mut Vec<i32>) -> Option<i32> {
//! let a = stack.pop();
//! let b = stack.pop();
//!
//! match (a, b) {
//! (Some(x), Some(y)) => Some(x + y),
//! _ => None,
//! }
//! }
//!
//! ```
//!
//! With this:
//!
//! ```
//! # #![allow(dead_code)]
//! fn add_last_numbers(stack: &mut Vec<i32>) -> Option<i32> {
//! Some(stack.pop()? + stack.pop()?)
//! }
//! ```
//!
//! *It's much nicer!*
//!
//! Ending the expression with [`?`] will result in the [`Some`]'s unwrapped value, unless the
//! result is [`None`], in which case [`None`] is returned early from the enclosing function.
//!
//! [`?`] can be used in functions that return [`Option`] because of the
//! early return of [`None`] that it provides.
//!
//! [`?`]: crate::ops::Try
//! [`Some`]: Some
//! [`None`]: None
//!
//! # Representation
//!
//! Rust guarantees to optimize the following types `T` such that
//! [`Option<T>`] has the same size, alignment, and [function call ABI] as `T`. In some
//! of these cases, Rust further guarantees that
//! `transmute::<_, Option<T>>([0u8; size_of::<T>()])` is sound and
//! produces `Option::<T>::None`. These cases are identified by the
//! second column:
//!
//! | `T` | `transmute::<_, Option<T>>([0u8; size_of::<T>()])` sound? |
//! |---------------------------------------------------------------------|----------------------------------------------------------------------|
//! | [`Box<U>`] (specifically, only `Box<U, Global>`) | when `U: Sized` |
//! | `&U` | when `U: Sized` |
//! | `&mut U` | when `U: Sized` |
//! | `fn`, `extern "C" fn`[^extern_fn] | always |
//! | [`num::NonZero*`] | always |
//! | [`ptr::NonNull<U>`] | when `U: Sized` |
//! | `#[repr(transparent)]` struct around one of the types in this list. | when it holds for the inner type |
//!
//! [^extern_fn]: this remains true for any argument/return types and any other ABI: `extern "abi" fn` (_e.g._, `extern "system" fn`)
//!
//! Under some conditions the above types `T` are also null pointer optimized when wrapped in a [`Result`][result_repr].
//!
//! [`Box<U>`]: ../../std/boxed/struct.Box.html
//! [`num::NonZero*`]: crate::num
//! [`ptr::NonNull<U>`]: crate::ptr::NonNull
//! [function call ABI]: ../primitive.fn.html#abi-compatibility
//! [result_repr]: crate::result#representation
//!
//! This is called the "null pointer optimization" or NPO.
//!
//! It is further guaranteed that, for the cases above, one can
//! [`mem::transmute`] from all valid values of `T` to `Option<T>` and
//! from `Some::<T>(_)` to `T` (but transmuting `None::<T>` to `T`
//! is undefined behavior).
//!
//! # Method overview
//!
//! In addition to working with pattern matching, [`Option`] provides a wide
//! variety of different methods.
//!
//! ## Querying the variant
//!
//! The [`is_some`] and [`is_none`] methods return [`true`] if the [`Option`]
//! is [`Some`] or [`None`], respectively.
//!
//! [`is_none`]: Option::is_none
//! [`is_some`]: Option::is_some
//!
//! ## Adapters for working with references
//!
//! * [`as_ref`] converts from <code>[&][][Option]\<T></code> to <code>[Option]<[&]T></code>
//! * [`as_mut`] converts from <code>[&mut] [Option]\<T></code> to <code>[Option]<[&mut] T></code>
//! * [`as_deref`] converts from <code>[&][][Option]\<T></code> to
//! <code>[Option]<[&]T::[Target]></code>
//! * [`as_deref_mut`] converts from <code>[&mut] [Option]\<T></code> to
//! <code>[Option]<[&mut] T::[Target]></code>
//! * [`as_pin_ref`] converts from <code>[Pin]<[&][][Option]\<T>></code> to
//! <code>[Option]<[Pin]<[&]T>></code>
//! * [`as_pin_mut`] converts from <code>[Pin]<[&mut] [Option]\<T>></code> to
//! <code>[Option]<[Pin]<[&mut] T>></code>
//!
//! [&]: reference "shared reference"
//! [&mut]: reference "mutable reference"
//! [Target]: Deref::Target "ops::Deref::Target"
//! [`as_deref`]: Option::as_deref
//! [`as_deref_mut`]: Option::as_deref_mut
//! [`as_mut`]: Option::as_mut
//! [`as_pin_mut`]: Option::as_pin_mut
//! [`as_pin_ref`]: Option::as_pin_ref
//! [`as_ref`]: Option::as_ref
//!
//! ## Extracting the contained value
//!
//! These methods extract the contained value in an [`Option<T>`] when it
//! is the [`Some`] variant. If the [`Option`] is [`None`]:
//!
//! * [`expect`] panics with a provided custom message
//! * [`unwrap`] panics with a generic message
//! * [`unwrap_or`] returns the provided default value
//! * [`unwrap_or_default`] returns the default value of the type `T`
//! (which must implement the [`Default`] trait)
//! * [`unwrap_or_else`] returns the result of evaluating the provided
//! function
//!
//! [`expect`]: Option::expect
//! [`unwrap`]: Option::unwrap
//! [`unwrap_or`]: Option::unwrap_or
//! [`unwrap_or_default`]: Option::unwrap_or_default
//! [`unwrap_or_else`]: Option::unwrap_or_else
//!
//! ## Transforming contained values
//!
//! These methods transform [`Option`] to [`Result`]:
//!
//! * [`ok_or`] transforms [`Some(v)`] to [`Ok(v)`], and [`None`] to
//! [`Err(err)`] using the provided default `err` value
//! * [`ok_or_else`] transforms [`Some(v)`] to [`Ok(v)`], and [`None`] to
//! a value of [`Err`] using the provided function
//! * [`transpose`] transposes an [`Option`] of a [`Result`] into a
//! [`Result`] of an [`Option`]
//!
//! [`Err(err)`]: Err
//! [`Ok(v)`]: Ok
//! [`Some(v)`]: Some
//! [`ok_or`]: Option::ok_or
//! [`ok_or_else`]: Option::ok_or_else
//! [`transpose`]: Option::transpose
//!
//! These methods transform the [`Some`] variant:
//!
//! * [`filter`] calls the provided predicate function on the contained
//! value `t` if the [`Option`] is [`Some(t)`], and returns [`Some(t)`]
//! if the function returns `true`; otherwise, returns [`None`]
//! * [`flatten`] removes one level of nesting from an
//! [`Option<Option<T>>`]
//! * [`map`] transforms [`Option<T>`] to [`Option<U>`] by applying the
//! provided function to the contained value of [`Some`] and leaving
//! [`None`] values unchanged
//!
//! [`Some(t)`]: Some
//! [`filter`]: Option::filter
//! [`flatten`]: Option::flatten
//! [`map`]: Option::map
//!
//! These methods transform [`Option<T>`] to a value of a possibly
//! different type `U`:
//!
//! * [`map_or`] applies the provided function to the contained value of
//! [`Some`], or returns the provided default value if the [`Option`] is
//! [`None`]
//! * [`map_or_else`] applies the provided function to the contained value
//! of [`Some`], or returns the result of evaluating the provided
//! fallback function if the [`Option`] is [`None`]
//!
//! [`map_or`]: Option::map_or
//! [`map_or_else`]: Option::map_or_else
//!
//! These methods combine the [`Some`] variants of two [`Option`] values:
//!
//! * [`zip`] returns [`Some((s, o))`] if `self` is [`Some(s)`] and the
//! provided [`Option`] value is [`Some(o)`]; otherwise, returns [`None`]
//! * [`zip_with`] calls the provided function `f` and returns
//! [`Some(f(s, o))`] if `self` is [`Some(s)`] and the provided
//! [`Option`] value is [`Some(o)`]; otherwise, returns [`None`]
//!
//! [`Some(f(s, o))`]: Some
//! [`Some(o)`]: Some
//! [`Some(s)`]: Some
//! [`Some((s, o))`]: Some
//! [`zip`]: Option::zip
//! [`zip_with`]: Option::zip_with
//!
//! ## Boolean operators
//!
//! These methods treat the [`Option`] as a boolean value, where [`Some`]
//! acts like [`true`] and [`None`] acts like [`false`]. There are two
//! categories of these methods: ones that take an [`Option`] as input, and
//! ones that take a function as input (to be lazily evaluated).
//!
//! The [`and`], [`or`], and [`xor`] methods take another [`Option`] as
//! input, and produce an [`Option`] as output. Only the [`and`] method can
//! produce an [`Option<U>`] value having a different inner type `U` than
//! [`Option<T>`].
//!
//! | method | self | input | output |
//! |---------|-----------|-----------|-----------|
//! | [`and`] | `None` | (ignored) | `None` |
//! | [`and`] | `Some(x)` | `None` | `None` |
//! | [`and`] | `Some(x)` | `Some(y)` | `Some(y)` |
//! | [`or`] | `None` | `None` | `None` |
//! | [`or`] | `None` | `Some(y)` | `Some(y)` |
//! | [`or`] | `Some(x)` | (ignored) | `Some(x)` |
//! | [`xor`] | `None` | `None` | `None` |
//! | [`xor`] | `None` | `Some(y)` | `Some(y)` |
//! | [`xor`] | `Some(x)` | `None` | `Some(x)` |
//! | [`xor`] | `Some(x)` | `Some(y)` | `None` |
//!
//! [`and`]: Option::and
//! [`or`]: Option::or
//! [`xor`]: Option::xor
//!
//! The [`and_then`] and [`or_else`] methods take a function as input, and
//! only evaluate the function when they need to produce a new value. Only
//! the [`and_then`] method can produce an [`Option<U>`] value having a
//! different inner type `U` than [`Option<T>`].
//!
//! | method | self | function input | function result | output |
//! |--------------|-----------|----------------|-----------------|-----------|
//! | [`and_then`] | `None` | (not provided) | (not evaluated) | `None` |
//! | [`and_then`] | `Some(x)` | `x` | `None` | `None` |
//! | [`and_then`] | `Some(x)` | `x` | `Some(y)` | `Some(y)` |
//! | [`or_else`] | `None` | (not provided) | `None` | `None` |
//! | [`or_else`] | `None` | (not provided) | `Some(y)` | `Some(y)` |
//! | [`or_else`] | `Some(x)` | (not provided) | (not evaluated) | `Some(x)` |
//!
//! [`and_then`]: Option::and_then
//! [`or_else`]: Option::or_else
//!
//! This is an example of using methods like [`and_then`] and [`or`] in a
//! pipeline of method calls. Early stages of the pipeline pass failure
//! values ([`None`]) through unchanged, and continue processing on
//! success values ([`Some`]). Toward the end, [`or`] substitutes an error
//! message if it receives [`None`].
//!
//! ```
//! # use std::collections::BTreeMap;
//! let mut bt = BTreeMap::new();
//! bt.insert(20u8, "foo");
//! bt.insert(42u8, "bar");
//! let res = [0u8, 1, 11, 200, 22]
//! .into_iter()
//! .map(|x| {
//! // `checked_sub()` returns `None` on error
//! x.checked_sub(1)
//! // same with `checked_mul()`
//! .and_then(|x| x.checked_mul(2))
//! // `BTreeMap::get` returns `None` on error
//! .and_then(|x| bt.get(&x))
//! // Substitute an error message if we have `None` so far
//! .or(Some(&"error!"))
//! .copied()
//! // Won't panic because we unconditionally used `Some` above
//! .unwrap()
//! })
//! .collect::<Vec<_>>();
//! assert_eq!(res, ["error!", "error!", "foo", "error!", "bar"]);
//! ```
//!
//! ## Comparison operators
//!
//! If `T` implements [`PartialOrd`] then [`Option<T>`] will derive its
//! [`PartialOrd`] implementation. With this order, [`None`] compares as
//! less than any [`Some`], and two [`Some`] compare the same way as their
//! contained values would in `T`. If `T` also implements
//! [`Ord`], then so does [`Option<T>`].
//!
//! ```
//! assert!(None < Some(0));
//! assert!(Some(0) < Some(1));
//! ```
//!
//! ## Iterating over `Option`
//!
//! An [`Option`] can be iterated over. This can be helpful if you need an
//! iterator that is conditionally empty. The iterator will either produce
//! a single value (when the [`Option`] is [`Some`]), or produce no values
//! (when the [`Option`] is [`None`]). For example, [`into_iter`] acts like
//! [`once(v)`] if the [`Option`] is [`Some(v)`], and like [`empty()`] if
//! the [`Option`] is [`None`].
//!
//! [`Some(v)`]: Some
//! [`empty()`]: crate::iter::empty
//! [`once(v)`]: crate::iter::once
//!
//! Iterators over [`Option<T>`] come in three types:
//!
//! * [`into_iter`] consumes the [`Option`] and produces the contained
//! value
//! * [`iter`] produces an immutable reference of type `&T` to the
//! contained value
//! * [`iter_mut`] produces a mutable reference of type `&mut T` to the
//! contained value
//!
//! [`into_iter`]: Option::into_iter
//! [`iter`]: Option::iter
//! [`iter_mut`]: Option::iter_mut
//!
//! An iterator over [`Option`] can be useful when chaining iterators, for
//! example, to conditionally insert items. (It's not always necessary to
//! explicitly call an iterator constructor: many [`Iterator`] methods that
//! accept other iterators will also accept iterable types that implement
//! [`IntoIterator`], which includes [`Option`].)
//!
//! ```
//! let yep = Some(42);
//! let nope = None;
//! // chain() already calls into_iter(), so we don't have to do so
//! let nums: Vec<i32> = (0..4).chain(yep).chain(4..8).collect();
//! assert_eq!(nums, [0, 1, 2, 3, 42, 4, 5, 6, 7]);
//! let nums: Vec<i32> = (0..4).chain(nope).chain(4..8).collect();
//! assert_eq!(nums, [0, 1, 2, 3, 4, 5, 6, 7]);
//! ```
//!
//! One reason to chain iterators in this way is that a function returning
//! `impl Iterator` must have all possible return values be of the same
//! concrete type. Chaining an iterated [`Option`] can help with that.
//!
//! ```
//! fn make_iter(do_insert: bool) -> impl Iterator<Item = i32> {
//! // Explicit returns to illustrate return types matching
//! match do_insert {
//! true => return (0..4).chain(Some(42)).chain(4..8),
//! false => return (0..4).chain(None).chain(4..8),
//! }
//! }
//! println!("{:?}", make_iter(true).collect::<Vec<_>>());
//! println!("{:?}", make_iter(false).collect::<Vec<_>>());
//! ```
//!
//! If we try to do the same thing, but using [`once()`] and [`empty()`],
//! we can't return `impl Iterator` anymore because the concrete types of
//! the return values differ.
//!
//! [`empty()`]: crate::iter::empty
//! [`once()`]: crate::iter::once
//!
//! ```compile_fail,E0308
//! # use std::iter::{empty, once};
//! // This won't compile because all possible returns from the function
//! // must have the same concrete type.
//! fn make_iter(do_insert: bool) -> impl Iterator<Item = i32> {
//! // Explicit returns to illustrate return types not matching
//! match do_insert {
//! true => return (0..4).chain(once(42)).chain(4..8),
//! false => return (0..4).chain(empty()).chain(4..8),
//! }
//! }
//! ```
//!
//! ## Collecting into `Option`
//!
//! [`Option`] implements the [`FromIterator`][impl-FromIterator] trait,
//! which allows an iterator over [`Option`] values to be collected into an
//! [`Option`] of a collection of each contained value of the original
//! [`Option`] values, or [`None`] if any of the elements was [`None`].
//!
//! [impl-FromIterator]: Option#impl-FromIterator%3COption%3CA%3E%3E-for-Option%3CV%3E
//!
//! ```
//! let v = [Some(2), Some(4), None, Some(8)];
//! let res: Option<Vec<_>> = v.into_iter().collect();
//! assert_eq!(res, None);
//! let v = [Some(2), Some(4), Some(8)];
//! let res: Option<Vec<_>> = v.into_iter().collect();
//! assert_eq!(res, Some(vec![2, 4, 8]));
//! ```
//!
//! [`Option`] also implements the [`Product`][impl-Product] and
//! [`Sum`][impl-Sum] traits, allowing an iterator over [`Option`] values
//! to provide the [`product`][Iterator::product] and
//! [`sum`][Iterator::sum] methods.
//!
//! [impl-Product]: Option#impl-Product%3COption%3CU%3E%3E-for-Option%3CT%3E
//! [impl-Sum]: Option#impl-Sum%3COption%3CU%3E%3E-for-Option%3CT%3E
//!
//! ```
//! let v = [None, Some(1), Some(2), Some(3)];
//! let res: Option<i32> = v.into_iter().sum();
//! assert_eq!(res, None);
//! let v = [Some(1), Some(2), Some(21)];
//! let res: Option<i32> = v.into_iter().product();
//! assert_eq!(res, Some(42));
//! ```
//!
//! ## Modifying an [`Option`] in-place
//!
//! These methods return a mutable reference to the contained value of an
//! [`Option<T>`]:
//!
//! * [`insert`] inserts a value, dropping any old contents
//! * [`get_or_insert`] gets the current value, inserting a provided
//! default value if it is [`None`]
//! * [`get_or_insert_default`] gets the current value, inserting the
//! default value of type `T` (which must implement [`Default`]) if it is
//! [`None`]
//! * [`get_or_insert_with`] gets the current value, inserting a default
//! computed by the provided function if it is [`None`]
//!
//! [`get_or_insert`]: Option::get_or_insert
//! [`get_or_insert_default`]: Option::get_or_insert_default
//! [`get_or_insert_with`]: Option::get_or_insert_with
//! [`insert`]: Option::insert
//!
//! These methods transfer ownership of the contained value of an
//! [`Option`]:
//!
//! * [`take`] takes ownership of the contained value of an [`Option`], if
//! any, replacing the [`Option`] with [`None`]
//! * [`replace`] takes ownership of the contained value of an [`Option`],
//! if any, replacing the [`Option`] with a [`Some`] containing the
//! provided value
//!
//! [`replace`]: Option::replace
//! [`take`]: Option::take
//!
//! # Examples
//!
//! Basic pattern matching on [`Option`]:
//!
//! ```
//! let msg = Some("howdy");
//!
//! // Take a reference to the contained string
//! if let Some(m) = &msg {
//! println!("{}", *m);
//! }
//!
//! // Remove the contained string, destroying the Option
//! let unwrapped_msg = msg.unwrap_or("default message");
//! ```
//!
//! Initialize a result to [`None`] before a loop:
//!
//! ```
//! enum Kingdom { Plant(u32, &'static str), Animal(u32, &'static str) }
//!
//! // A list of data to search through.
//! let all_the_big_things = [
//! Kingdom::Plant(250, "redwood"),
//! Kingdom::Plant(230, "noble fir"),
//! Kingdom::Plant(229, "sugar pine"),
//! Kingdom::Animal(25, "blue whale"),
//! Kingdom::Animal(19, "fin whale"),
//! Kingdom::Animal(15, "north pacific right whale"),
//! ];
//!
//! // We're going to search for the name of the biggest animal,
//! // but to start with we've just got `None`.
//! let mut name_of_biggest_animal = None;
//! let mut size_of_biggest_animal = 0;
//! for big_thing in &all_the_big_things {
//! match *big_thing {
//! Kingdom::Animal(size, name) if size > size_of_biggest_animal => {
//! // Now we've found the name of some big animal
//! size_of_biggest_animal = size;
//! name_of_biggest_animal = Some(name);
//! }
//! Kingdom::Animal(..) | Kingdom::Plant(..) => ()
//! }
//! }
//!
//! match name_of_biggest_animal {
//! Some(name) => println!("the biggest animal is {name}"),
//! None => println!("there are no animals :("),
//! }
//! ```
#![stable(feature = "rust1", since = "1.0.0")]
use crate::iter::{self, FusedIterator, TrustedLen};
use crate::ops::{self, ControlFlow, Deref, DerefMut};
use crate::panicking::{panic, panic_display};
use crate::pin::Pin;
use crate::{cmp, convert, hint, mem, slice};
/// The `Option` type. See [the module level documentation](self) for more.
#[doc(search_unbox)]
#[derive(Copy, Eq, Debug, Hash)]
#[rustc_diagnostic_item = "Option"]
#[lang = "Option"]
#[stable(feature = "rust1", since = "1.0.0")]
#[allow(clippy::derived_hash_with_manual_eq)] // PartialEq is manually implemented equivalently
pub enum Option<T> {
/// No value.
#[lang = "None"]
#[stable(feature = "rust1", since = "1.0.0")]
None,
/// Some value of type `T`.
#[lang = "Some"]
#[stable(feature = "rust1", since = "1.0.0")]
Some(#[stable(feature = "rust1", since = "1.0.0")] T),
}
/////////////////////////////////////////////////////////////////////////////
// Type implementation
/////////////////////////////////////////////////////////////////////////////
impl<T> Option<T> {
/////////////////////////////////////////////////////////////////////////
// Querying the contained values
/////////////////////////////////////////////////////////////////////////
/// Returns `true` if the option is a [`Some`] value.
///
/// # Examples
///
/// ```
/// let x: Option<u32> = Some(2);
/// assert_eq!(x.is_some(), true);
///
/// let x: Option<u32> = None;
/// assert_eq!(x.is_some(), false);
/// ```
#[must_use = "if you intended to assert that this has a value, consider `.unwrap()` instead"]
#[inline]
#[stable(feature = "rust1", since = "1.0.0")]
#[rustc_const_stable(feature = "const_option_basics", since = "1.48.0")]
pub const fn is_some(&self) -> bool {
matches!(*self, Some(_))
}
/// Returns `true` if the option is a [`Some`] and the value inside of it matches a predicate.
///
/// # Examples
///
/// ```
/// let x: Option<u32> = Some(2);
/// assert_eq!(x.is_some_and(|x| x > 1), true);
///
/// let x: Option<u32> = Some(0);
/// assert_eq!(x.is_some_and(|x| x > 1), false);
///
/// let x: Option<u32> = None;
/// assert_eq!(x.is_some_and(|x| x > 1), false);
/// ```
#[must_use]
#[inline]
#[stable(feature = "is_some_and", since = "1.70.0")]
pub fn is_some_and(self, f: impl FnOnce(T) -> bool) -> bool {
match self {
None => false,
Some(x) => f(x),
}
}
/// Returns `true` if the option is a [`None`] value.
///
/// # Examples
///
/// ```
/// let x: Option<u32> = Some(2);
/// assert_eq!(x.is_none(), false);
///
/// let x: Option<u32> = None;
/// assert_eq!(x.is_none(), true);
/// ```
#[must_use = "if you intended to assert that this doesn't have a value, consider \
wrapping this in an `assert!()` instead"]
#[inline]
#[stable(feature = "rust1", since = "1.0.0")]
#[rustc_const_stable(feature = "const_option_basics", since = "1.48.0")]
pub const fn is_none(&self) -> bool {
!self.is_some()
}
/// Returns `true` if the option is a [`None`] or the value inside of it matches a predicate.
///
/// # Examples
///
/// ```
/// let x: Option<u32> = Some(2);
/// assert_eq!(x.is_none_or(|x| x > 1), true);
///
/// let x: Option<u32> = Some(0);
/// assert_eq!(x.is_none_or(|x| x > 1), false);
///
/// let x: Option<u32> = None;
/// assert_eq!(x.is_none_or(|x| x > 1), true);
/// ```
#[must_use]
#[inline]
#[stable(feature = "is_none_or", since = "1.82.0")]
pub fn is_none_or(self, f: impl FnOnce(T) -> bool) -> bool {
match self {
None => true,
Some(x) => f(x),
}
}
/////////////////////////////////////////////////////////////////////////
// Adapter for working with references
/////////////////////////////////////////////////////////////////////////
/// Converts from `&Option<T>` to `Option<&T>`.
///
/// # Examples
///
/// Calculates the length of an <code>Option<[String]></code> as an <code>Option<[usize]></code>
/// without moving the [`String`]. The [`map`] method takes the `self` argument by value,
/// consuming the original, so this technique uses `as_ref` to first take an `Option` to a
/// reference to the value inside the original.
///
/// [`map`]: Option::map
/// [String]: ../../std/string/struct.String.html "String"
/// [`String`]: ../../std/string/struct.String.html "String"
///
/// ```
/// let text: Option<String> = Some("Hello, world!".to_string());
/// // First, cast `Option<String>` to `Option<&String>` with `as_ref`,
/// // then consume *that* with `map`, leaving `text` on the stack.
/// let text_length: Option<usize> = text.as_ref().map(|s| s.len());
/// println!("still can print text: {text:?}");
/// ```
#[inline]
#[rustc_const_stable(feature = "const_option_basics", since = "1.48.0")]
#[stable(feature = "rust1", since = "1.0.0")]
pub const fn as_ref(&self) -> Option<&T> {
match *self {
Some(ref x) => Some(x),
None => None,
}
}
/// Converts from `&mut Option<T>` to `Option<&mut T>`.
///
/// # Examples
///
/// ```
/// let mut x = Some(2);
/// match x.as_mut() {
/// Some(v) => *v = 42,
/// None => {},
/// }
/// assert_eq!(x, Some(42));
/// ```
#[inline]
#[stable(feature = "rust1", since = "1.0.0")]
#[rustc_const_stable(feature = "const_option", since = "1.83.0")]
pub const fn as_mut(&mut self) -> Option<&mut T> {
match *self {
Some(ref mut x) => Some(x),
None => None,
}
}
/// Converts from <code>[Pin]<[&]Option\<T>></code> to <code>Option<[Pin]<[&]T>></code>.
///
/// [&]: reference "shared reference"
#[inline]
#[must_use]
#[stable(feature = "pin", since = "1.33.0")]
#[rustc_const_stable(feature = "const_option_ext", since = "1.84.0")]
pub const fn as_pin_ref(self: Pin<&Self>) -> Option<Pin<&T>> {
// FIXME(const-hack): use `map` once that is possible
match Pin::get_ref(self).as_ref() {
// SAFETY: `x` is guaranteed to be pinned because it comes from `self`
// which is pinned.
Some(x) => unsafe { Some(Pin::new_unchecked(x)) },
None => None,
}
}
/// Converts from <code>[Pin]<[&mut] Option\<T>></code> to <code>Option<[Pin]<[&mut] T>></code>.
///
/// [&mut]: reference "mutable reference"
#[inline]
#[must_use]
#[stable(feature = "pin", since = "1.33.0")]
#[rustc_const_stable(feature = "const_option_ext", since = "1.84.0")]
pub const fn as_pin_mut(self: Pin<&mut Self>) -> Option<Pin<&mut T>> {
// SAFETY: `get_unchecked_mut` is never used to move the `Option` inside `self`.
// `x` is guaranteed to be pinned because it comes from `self` which is pinned.
unsafe {
// FIXME(const-hack): use `map` once that is possible
match Pin::get_unchecked_mut(self).as_mut() {
Some(x) => Some(Pin::new_unchecked(x)),
None => None,
}
}
}
#[inline]
const fn len(&self) -> usize {
// Using the intrinsic avoids emitting a branch to get the 0 or 1.
let discriminant: isize = crate::intrinsics::discriminant_value(self);
discriminant as usize
}
/// Returns a slice of the contained value, if any. If this is `None`, an
/// empty slice is returned. This can be useful to have a single type of
/// iterator over an `Option` or slice.
///
/// Note: Should you have an `Option<&T>` and wish to get a slice of `T`,
/// you can unpack it via `opt.map_or(&[], std::slice::from_ref)`.
///
/// # Examples
///
/// ```rust
/// assert_eq!(
/// [Some(1234).as_slice(), None.as_slice()],
/// [&[1234][..], &[][..]],
/// );
/// ```
///
/// The inverse of this function is (discounting
/// borrowing) [`[_]::first`](slice::first):
///
/// ```rust
/// for i in [Some(1234_u16), None] {
/// assert_eq!(i.as_ref(), i.as_slice().first());
/// }
/// ```
#[inline]
#[must_use]
#[stable(feature = "option_as_slice", since = "1.75.0")]
#[rustc_const_stable(feature = "const_option_ext", since = "1.84.0")]
pub const fn as_slice(&self) -> &[T] {
// SAFETY: When the `Option` is `Some`, we're using the actual pointer
// to the payload, with a length of 1, so this is equivalent to
// `slice::from_ref`, and thus is safe.
// When the `Option` is `None`, the length used is 0, so to be safe it
// just needs to be aligned, which it is because `&self` is aligned and
// the offset used is a multiple of alignment.
//
// In the new version, the intrinsic always returns a pointer to an
// in-bounds and correctly aligned position for a `T` (even if in the
// `None` case it's just padding).
unsafe {
slice::from_raw_parts(
(self as *const Self).byte_add(core::mem::offset_of!(Self, Some.0)).cast(),
self.len(),
)
}
}
/// Returns a mutable slice of the contained value, if any. If this is
/// `None`, an empty slice is returned. This can be useful to have a
/// single type of iterator over an `Option` or slice.
///
/// Note: Should you have an `Option<&mut T>` instead of a
/// `&mut Option<T>`, which this method takes, you can obtain a mutable
/// slice via `opt.map_or(&mut [], std::slice::from_mut)`.
///
/// # Examples
///
/// ```rust
/// assert_eq!(
/// [Some(1234).as_mut_slice(), None.as_mut_slice()],
/// [&mut [1234][..], &mut [][..]],
/// );
/// ```
///
/// The result is a mutable slice of zero or one items that points into
/// our original `Option`:
///
/// ```rust
/// let mut x = Some(1234);
/// x.as_mut_slice()[0] += 1;
/// assert_eq!(x, Some(1235));
/// ```
///
/// The inverse of this method (discounting borrowing)
/// is [`[_]::first_mut`](slice::first_mut):
///
/// ```rust
/// assert_eq!(Some(123).as_mut_slice().first_mut(), Some(&mut 123))
/// ```
#[inline]
#[must_use]
#[stable(feature = "option_as_slice", since = "1.75.0")]
#[rustc_const_stable(feature = "const_option_ext", since = "1.84.0")]
pub const fn as_mut_slice(&mut self) -> &mut [T] {
// SAFETY: When the `Option` is `Some`, we're using the actual pointer
// to the payload, with a length of 1, so this is equivalent to
// `slice::from_mut`, and thus is safe.
// When the `Option` is `None`, the length used is 0, so to be safe it
// just needs to be aligned, which it is because `&self` is aligned and
// the offset used is a multiple of alignment.
//
// In the new version, the intrinsic creates a `*const T` from a
// mutable reference so it is safe to cast back to a mutable pointer
// here. As with `as_slice`, the intrinsic always returns a pointer to
// an in-bounds and correctly aligned position for a `T` (even if in
// the `None` case it's just padding).
unsafe {
slice::from_raw_parts_mut(
(self as *mut Self).byte_add(core::mem::offset_of!(Self, Some.0)).cast(),
self.len(),
)
}
}
/////////////////////////////////////////////////////////////////////////
// Getting to contained values
/////////////////////////////////////////////////////////////////////////
/// Returns the contained [`Some`] value, consuming the `self` value.
///
/// # Panics
///
/// Panics if the value is a [`None`] with a custom panic message provided by
/// `msg`.
///
/// # Examples
///
/// ```
/// let x = Some("value");
/// assert_eq!(x.expect("fruits are healthy"), "value");
/// ```
///
/// ```should_panic
/// let x: Option<&str> = None;
/// x.expect("fruits are healthy"); // panics with `fruits are healthy`
/// ```
///
/// # Recommended Message Style
///
/// We recommend that `expect` messages are used to describe the reason you
/// _expect_ the `Option` should be `Some`.
///
/// ```should_panic
/// # let slice: &[u8] = &[];
/// let item = slice.get(0)
/// .expect("slice should not be empty");
/// ```
///
/// **Hint**: If you're having trouble remembering how to phrase expect
/// error messages remember to focus on the word "should" as in "env
/// variable should be set by blah" or "the given binary should be available
/// and executable by the current user".
///
/// For more detail on expect message styles and the reasoning behind our
/// recommendation please refer to the section on ["Common Message
/// Styles"](../../std/error/index.html#common-message-styles) in the [`std::error`](../../std/error/index.html) module docs.
#[inline]
#[track_caller]
#[stable(feature = "rust1", since = "1.0.0")]
#[cfg_attr(not(test), rustc_diagnostic_item = "option_expect")]
#[rustc_allow_const_fn_unstable(const_precise_live_drops)]
#[rustc_const_stable(feature = "const_option", since = "1.83.0")]
pub const fn expect(self, msg: &str) -> T {
match self {
Some(val) => val,
None => expect_failed(msg),
}
}
/// Returns the contained [`Some`] value, consuming the `self` value.
///
/// Because this function may panic, its use is generally discouraged.
/// Instead, prefer to use pattern matching and handle the [`None`]
/// case explicitly, or call [`unwrap_or`], [`unwrap_or_else`], or
/// [`unwrap_or_default`].
///
/// [`unwrap_or`]: Option::unwrap_or
/// [`unwrap_or_else`]: Option::unwrap_or_else
/// [`unwrap_or_default`]: Option::unwrap_or_default
///
/// # Panics
///
/// Panics if the self value equals [`None`].
///
/// # Examples
///
/// ```
/// let x = Some("air");
/// assert_eq!(x.unwrap(), "air");
/// ```
///
/// ```should_panic
/// let x: Option<&str> = None;
/// assert_eq!(x.unwrap(), "air"); // fails
/// ```
#[inline(always)]
#[track_caller]
#[stable(feature = "rust1", since = "1.0.0")]
#[cfg_attr(not(test), rustc_diagnostic_item = "option_unwrap")]
#[rustc_allow_const_fn_unstable(const_precise_live_drops)]
#[rustc_const_stable(feature = "const_option", since = "1.83.0")]
pub const fn unwrap(self) -> T {
match self {
Some(val) => val,
None => unwrap_failed(),
}
}
/// Returns the contained [`Some`] value or a provided default.
///
/// Arguments passed to `unwrap_or` are eagerly evaluated; if you are passing
/// the result of a function call, it is recommended to use [`unwrap_or_else`],
/// which is lazily evaluated.
///
/// [`unwrap_or_else`]: Option::unwrap_or_else
///
/// # Examples
///
/// ```
/// assert_eq!(Some("car").unwrap_or("bike"), "car");
/// assert_eq!(None.unwrap_or("bike"), "bike");
/// ```
#[inline]
#[stable(feature = "rust1", since = "1.0.0")]
pub fn unwrap_or(self, default: T) -> T {
match self {
Some(x) => x,
None => default,
}
}
/// Returns the contained [`Some`] value or computes it from a closure.
///
/// # Examples
///
/// ```
/// let k = 10;
/// assert_eq!(Some(4).unwrap_or_else(|| 2 * k), 4);
/// assert_eq!(None.unwrap_or_else(|| 2 * k), 20);
/// ```
#[inline]
#[track_caller]
#[stable(feature = "rust1", since = "1.0.0")]
pub fn unwrap_or_else<F>(self, f: F) -> T
where
F: FnOnce() -> T,
{
match self {
Some(x) => x,
None => f(),
}
}
/// Returns the contained [`Some`] value or a default.
///
/// Consumes the `self` argument then, if [`Some`], returns the contained
/// value, otherwise if [`None`], returns the [default value] for that
/// type.
///
/// # Examples
///
/// ```
/// let x: Option<u32> = None;
/// let y: Option<u32> = Some(12);
///
/// assert_eq!(x.unwrap_or_default(), 0);
/// assert_eq!(y.unwrap_or_default(), 12);
/// ```
///
/// [default value]: Default::default
/// [`parse`]: str::parse
/// [`FromStr`]: crate::str::FromStr
#[inline]
#[stable(feature = "rust1", since = "1.0.0")]
pub fn unwrap_or_default(self) -> T
where
T: Default,
{
match self {
Some(x) => x,
None => T::default(),
}
}
/// Returns the contained [`Some`] value, consuming the `self` value,
/// without checking that the value is not [`None`].
///
/// # Safety
///
/// Calling this method on [`None`] is *[undefined behavior]*.
///
/// [undefined behavior]: https://doc.rust-lang.org/reference/behavior-considered-undefined.html
///
/// # Examples
///
/// ```
/// let x = Some("air");
/// assert_eq!(unsafe { x.unwrap_unchecked() }, "air");
/// ```
///
/// ```no_run
/// let x: Option<&str> = None;
/// assert_eq!(unsafe { x.unwrap_unchecked() }, "air"); // Undefined behavior!
/// ```
#[inline]
#[track_caller]
#[stable(feature = "option_result_unwrap_unchecked", since = "1.58.0")]
#[rustc_allow_const_fn_unstable(const_precise_live_drops)]
#[rustc_const_stable(feature = "const_option", since = "1.83.0")]
pub const unsafe fn unwrap_unchecked(self) -> T {
match self {
Some(val) => val,
// SAFETY: the safety contract must be upheld by the caller.
None => unsafe { hint::unreachable_unchecked() },
}
}
/////////////////////////////////////////////////////////////////////////
// Transforming contained values
/////////////////////////////////////////////////////////////////////////
/// Maps an `Option<T>` to `Option<U>` by applying a function to a contained value (if `Some`) or returns `None` (if `None`).
///
/// # Examples
///
/// Calculates the length of an <code>Option<[String]></code> as an
/// <code>Option<[usize]></code>, consuming the original:
///
/// [String]: ../../std/string/struct.String.html "String"
/// ```
/// let maybe_some_string = Some(String::from("Hello, World!"));
/// // `Option::map` takes self *by value*, consuming `maybe_some_string`
/// let maybe_some_len = maybe_some_string.map(|s| s.len());
/// assert_eq!(maybe_some_len, Some(13));
///
/// let x: Option<&str> = None;
/// assert_eq!(x.map(|s| s.len()), None);
/// ```
#[inline]
#[stable(feature = "rust1", since = "1.0.0")]
pub fn map<U, F>(self, f: F) -> Option<U>
where
F: FnOnce(T) -> U,
{
match self {
Some(x) => Some(f(x)),
None => None,
}
}
/// Calls a function with a reference to the contained value if [`Some`].
///
/// Returns the original option.
///
/// # Examples
///
/// ```
/// let list = vec![1, 2, 3];
///
/// // prints "got: 2"
/// let x = list
/// .get(1)
/// .inspect(|x| println!("got: {x}"))
/// .expect("list should be long enough");
///
/// // prints nothing
/// list.get(5).inspect(|x| println!("got: {x}"));
/// ```
#[inline]
#[stable(feature = "result_option_inspect", since = "1.76.0")]
pub fn inspect<F: FnOnce(&T)>(self, f: F) -> Self {
if let Some(ref x) = self {
f(x);
}
self
}
/// Returns the provided default result (if none),
/// or applies a function to the contained value (if any).
///
/// Arguments passed to `map_or` are eagerly evaluated; if you are passing
/// the result of a function call, it is recommended to use [`map_or_else`],
/// which is lazily evaluated.
///
/// [`map_or_else`]: Option::map_or_else
///
/// # Examples
///
/// ```
/// let x = Some("foo");
/// assert_eq!(x.map_or(42, |v| v.len()), 3);
///
/// let x: Option<&str> = None;
/// assert_eq!(x.map_or(42, |v| v.len()), 42);
/// ```
#[inline]
#[stable(feature = "rust1", since = "1.0.0")]
#[must_use = "if you don't need the returned value, use `if let` instead"]
pub fn map_or<U, F>(self, default: U, f: F) -> U
where
F: FnOnce(T) -> U,
{
match self {
Some(t) => f(t),
None => default,
}
}
/// Computes a default function result (if none), or
/// applies a different function to the contained value (if any).
///
/// # Basic examples
///
/// ```
/// let k = 21;
///
/// let x = Some("foo");
/// assert_eq!(x.map_or_else(|| 2 * k, |v| v.len()), 3);
///
/// let x: Option<&str> = None;
/// assert_eq!(x.map_or_else(|| 2 * k, |v| v.len()), 42);
/// ```
///
/// # Handling a Result-based fallback
///
/// A somewhat common occurrence when dealing with optional values
/// in combination with [`Result<T, E>`] is the case where one wants to invoke
/// a fallible fallback if the option is not present. This example
/// parses a command line argument (if present), or the contents of a file to
/// an integer. However, unlike accessing the command line argument, reading
/// the file is fallible, so it must be wrapped with `Ok`.
///
/// ```no_run
/// # fn main() -> Result<(), Box<dyn std::error::Error>> {
/// let v: u64 = std::env::args()
/// .nth(1)
/// .map_or_else(|| std::fs::read_to_string("/etc/someconfig.conf"), Ok)?
/// .parse()?;
/// # Ok(())
/// # }
/// ```
#[inline]
#[stable(feature = "rust1", since = "1.0.0")]
pub fn map_or_else<U, D, F>(self, default: D, f: F) -> U
where
D: FnOnce() -> U,
F: FnOnce(T) -> U,
{
match self {
Some(t) => f(t),
None => default(),
}
}
/// Transforms the `Option<T>` into a [`Result<T, E>`], mapping [`Some(v)`] to
/// [`Ok(v)`] and [`None`] to [`Err(err)`].
///
/// Arguments passed to `ok_or` are eagerly evaluated; if you are passing the
/// result of a function call, it is recommended to use [`ok_or_else`], which is
/// lazily evaluated.
///
/// [`Ok(v)`]: Ok
/// [`Err(err)`]: Err
/// [`Some(v)`]: Some
/// [`ok_or_else`]: Option::ok_or_else
///
/// # Examples
///
/// ```
/// let x = Some("foo");
/// assert_eq!(x.ok_or(0), Ok("foo"));
///
/// let x: Option<&str> = None;
/// assert_eq!(x.ok_or(0), Err(0));
/// ```
#[inline]
#[stable(feature = "rust1", since = "1.0.0")]
pub fn ok_or<E>(self, err: E) -> Result<T, E> {
match self {
Some(v) => Ok(v),
None => Err(err),
}
}
/// Transforms the `Option<T>` into a [`Result<T, E>`], mapping [`Some(v)`] to
/// [`Ok(v)`] and [`None`] to [`Err(err())`].
///
/// [`Ok(v)`]: Ok
/// [`Err(err())`]: Err
/// [`Some(v)`]: Some
///
/// # Examples
///
/// ```
/// let x = Some("foo");
/// assert_eq!(x.ok_or_else(|| 0), Ok("foo"));
///
/// let x: Option<&str> = None;
/// assert_eq!(x.ok_or_else(|| 0), Err(0));
/// ```
#[inline]
#[stable(feature = "rust1", since = "1.0.0")]
pub fn ok_or_else<E, F>(self, err: F) -> Result<T, E>
where
F: FnOnce() -> E,
{
match self {
Some(v) => Ok(v),
None => Err(err()),
}
}
/// Converts from `Option<T>` (or `&Option<T>`) to `Option<&T::Target>`.
///
/// Leaves the original Option in-place, creating a new one with a reference
/// to the original one, additionally coercing the contents via [`Deref`].
///
/// # Examples
///
/// ```
/// let x: Option<String> = Some("hey".to_owned());
/// assert_eq!(x.as_deref(), Some("hey"));
///
/// let x: Option<String> = None;
/// assert_eq!(x.as_deref(), None);
/// ```
#[inline]
#[stable(feature = "option_deref", since = "1.40.0")]
pub fn as_deref(&self) -> Option<&T::Target>
where
T: Deref,
{
self.as_ref().map(|t| t.deref())
}
/// Converts from `Option<T>` (or `&mut Option<T>`) to `Option<&mut T::Target>`.
///
/// Leaves the original `Option` in-place, creating a new one containing a mutable reference to
/// the inner type's [`Deref::Target`] type.
///
/// # Examples
///
/// ```
/// let mut x: Option<String> = Some("hey".to_owned());
/// assert_eq!(x.as_deref_mut().map(|x| {
/// x.make_ascii_uppercase();
/// x
/// }), Some("HEY".to_owned().as_mut_str()));
/// ```
#[inline]
#[stable(feature = "option_deref", since = "1.40.0")]
pub fn as_deref_mut(&mut self) -> Option<&mut T::Target>
where
T: DerefMut,
{
self.as_mut().map(|t| t.deref_mut())
}
/////////////////////////////////////////////////////////////////////////
// Iterator constructors
/////////////////////////////////////////////////////////////////////////
/// Returns an iterator over the possibly contained value.
///
/// # Examples
///
/// ```
/// let x = Some(4);
/// assert_eq!(x.iter().next(), Some(&4));
///
/// let x: Option<u32> = None;
/// assert_eq!(x.iter().next(), None);
/// ```
#[inline]
#[stable(feature = "rust1", since = "1.0.0")]
pub fn iter(&self) -> Iter<'_, T> {
Iter { inner: Item { opt: self.as_ref() } }
}
/// Returns a mutable iterator over the possibly contained value.
///
/// # Examples
///
/// ```
/// let mut x = Some(4);
/// match x.iter_mut().next() {
/// Some(v) => *v = 42,
/// None => {},
/// }
/// assert_eq!(x, Some(42));
///
/// let mut x: Option<u32> = None;
/// assert_eq!(x.iter_mut().next(), None);
/// ```
#[inline]
#[stable(feature = "rust1", since = "1.0.0")]
pub fn iter_mut(&mut self) -> IterMut<'_, T> {
IterMut { inner: Item { opt: self.as_mut() } }
}
/////////////////////////////////////////////////////////////////////////
// Boolean operations on the values, eager and lazy
/////////////////////////////////////////////////////////////////////////
/// Returns [`None`] if the option is [`None`], otherwise returns `optb`.
///
/// Arguments passed to `and` are eagerly evaluated; if you are passing the
/// result of a function call, it is recommended to use [`and_then`], which is
/// lazily evaluated.
///
/// [`and_then`]: Option::and_then
///
/// # Examples
///
/// ```
/// let x = Some(2);
/// let y: Option<&str> = None;
/// assert_eq!(x.and(y), None);
///
/// let x: Option<u32> = None;
/// let y = Some("foo");
/// assert_eq!(x.and(y), None);
///
/// let x = Some(2);
/// let y = Some("foo");
/// assert_eq!(x.and(y), Some("foo"));
///
/// let x: Option<u32> = None;
/// let y: Option<&str> = None;
/// assert_eq!(x.and(y), None);
/// ```
#[inline]
#[stable(feature = "rust1", since = "1.0.0")]
pub fn and<U>(self, optb: Option<U>) -> Option<U> {
match self {
Some(_) => optb,
None => None,
}
}
/// Returns [`None`] if the option is [`None`], otherwise calls `f` with the
/// wrapped value and returns the result.
///
/// Some languages call this operation flatmap.
///
/// # Examples
///
/// ```
/// fn sq_then_to_string(x: u32) -> Option<String> {
/// x.checked_mul(x).map(|sq| sq.to_string())
/// }
///
/// assert_eq!(Some(2).and_then(sq_then_to_string), Some(4.to_string()));
/// assert_eq!(Some(1_000_000).and_then(sq_then_to_string), None); // overflowed!
/// assert_eq!(None.and_then(sq_then_to_string), None);
/// ```
///
/// Often used to chain fallible operations that may return [`None`].
///
/// ```
/// let arr_2d = [["A0", "A1"], ["B0", "B1"]];
///
/// let item_0_1 = arr_2d.get(0).and_then(|row| row.get(1));
/// assert_eq!(item_0_1, Some(&"A1"));
///
/// let item_2_0 = arr_2d.get(2).and_then(|row| row.get(0));
/// assert_eq!(item_2_0, None);
/// ```
#[doc(alias = "flatmap")]
#[inline]
#[stable(feature = "rust1", since = "1.0.0")]
#[rustc_confusables("flat_map", "flatmap")]
pub fn and_then<U, F>(self, f: F) -> Option<U>
where
F: FnOnce(T) -> Option<U>,
{
match self {
Some(x) => f(x),
None => None,
}
}
/// Returns [`None`] if the option is [`None`], otherwise calls `predicate`
/// with the wrapped value and returns:
///
/// - [`Some(t)`] if `predicate` returns `true` (where `t` is the wrapped
/// value), and
/// - [`None`] if `predicate` returns `false`.
///
/// This function works similar to [`Iterator::filter()`]. You can imagine
/// the `Option<T>` being an iterator over one or zero elements. `filter()`
/// lets you decide which elements to keep.
///
/// # Examples
///
/// ```rust
/// fn is_even(n: &i32) -> bool {
/// n % 2 == 0
/// }
///
/// assert_eq!(None.filter(is_even), None);
/// assert_eq!(Some(3).filter(is_even), None);
/// assert_eq!(Some(4).filter(is_even), Some(4));
/// ```
///
/// [`Some(t)`]: Some
#[inline]
#[stable(feature = "option_filter", since = "1.27.0")]
pub fn filter<P>(self, predicate: P) -> Self
where
P: FnOnce(&T) -> bool,
{
if let Some(x) = self {
if predicate(&x) {
return Some(x);
}
}
None
}
/// Returns the option if it contains a value, otherwise returns `optb`.
///
/// Arguments passed to `or` are eagerly evaluated; if you are passing the
/// result of a function call, it is recommended to use [`or_else`], which is
/// lazily evaluated.
///
/// [`or_else`]: Option::or_else
///
/// # Examples
///
/// ```
/// let x = Some(2);
/// let y = None;
/// assert_eq!(x.or(y), Some(2));
///
/// let x = None;
/// let y = Some(100);
/// assert_eq!(x.or(y), Some(100));
///
/// let x = Some(2);
/// let y = Some(100);
/// assert_eq!(x.or(y), Some(2));
///
/// let x: Option<u32> = None;
/// let y = None;
/// assert_eq!(x.or(y), None);
/// ```
#[inline]
#[stable(feature = "rust1", since = "1.0.0")]
pub fn or(self, optb: Option<T>) -> Option<T> {
match self {
x @ Some(_) => x,
None => optb,
}
}
/// Returns the option if it contains a value, otherwise calls `f` and
/// returns the result.
///
/// # Examples
///
/// ```
/// fn nobody() -> Option<&'static str> { None }
/// fn vikings() -> Option<&'static str> { Some("vikings") }
///
/// assert_eq!(Some("barbarians").or_else(vikings), Some("barbarians"));
/// assert_eq!(None.or_else(vikings), Some("vikings"));
/// assert_eq!(None.or_else(nobody), None);
/// ```
#[inline]
#[stable(feature = "rust1", since = "1.0.0")]
pub fn or_else<F>(self, f: F) -> Option<T>
where
F: FnOnce() -> Option<T>,
{
match self {
x @ Some(_) => x,
None => f(),
}
}
/// Returns [`Some`] if exactly one of `self`, `optb` is [`Some`], otherwise returns [`None`].
///
/// # Examples
///
/// ```
/// let x = Some(2);
/// let y: Option<u32> = None;
/// assert_eq!(x.xor(y), Some(2));
///
/// let x: Option<u32> = None;
/// let y = Some(2);
/// assert_eq!(x.xor(y), Some(2));
///
/// let x = Some(2);
/// let y = Some(2);
/// assert_eq!(x.xor(y), None);
///
/// let x: Option<u32> = None;
/// let y: Option<u32> = None;
/// assert_eq!(x.xor(y), None);
/// ```
#[inline]
#[stable(feature = "option_xor", since = "1.37.0")]
pub fn xor(self, optb: Option<T>) -> Option<T> {
match (self, optb) {
(a @ Some(_), None) => a,
(None, b @ Some(_)) => b,
_ => None,
}
}
/////////////////////////////////////////////////////////////////////////
// Entry-like operations to insert a value and return a reference
/////////////////////////////////////////////////////////////////////////
/// Inserts `value` into the option, then returns a mutable reference to it.
///
/// If the option already contains a value, the old value is dropped.
///
/// See also [`Option::get_or_insert`], which doesn't update the value if
/// the option already contains [`Some`].
///
/// # Example
///
/// ```
/// let mut opt = None;
/// let val = opt.insert(1);
/// assert_eq!(*val, 1);
/// assert_eq!(opt.unwrap(), 1);
/// let val = opt.insert(2);
/// assert_eq!(*val, 2);
/// *val = 3;
/// assert_eq!(opt.unwrap(), 3);
/// ```
#[must_use = "if you intended to set a value, consider assignment instead"]
#[inline]
#[stable(feature = "option_insert", since = "1.53.0")]
pub fn insert(&mut self, value: T) -> &mut T {
*self = Some(value);
// SAFETY: the code above just filled the option
unsafe { self.as_mut().unwrap_unchecked() }
}
/// Inserts `value` into the option if it is [`None`], then
/// returns a mutable reference to the contained value.
///
/// See also [`Option::insert`], which updates the value even if
/// the option already contains [`Some`].
///
/// # Examples
///
/// ```
/// let mut x = None;
///
/// {
/// let y: &mut u32 = x.get_or_insert(5);
/// assert_eq!(y, &5);
///
/// *y = 7;
/// }
///
/// assert_eq!(x, Some(7));
/// ```
#[inline]
#[stable(feature = "option_entry", since = "1.20.0")]
pub fn get_or_insert(&mut self, value: T) -> &mut T {
self.get_or_insert_with(|| value)
}
/// Inserts the default value into the option if it is [`None`], then
/// returns a mutable reference to the contained value.
///
/// # Examples
///
/// ```
/// let mut x = None;
///
/// {
/// let y: &mut u32 = x.get_or_insert_default();
/// assert_eq!(y, &0);
///
/// *y = 7;
/// }
///
/// assert_eq!(x, Some(7));
/// ```
#[inline]
#[stable(feature = "option_get_or_insert_default", since = "1.83.0")]
pub fn get_or_insert_default(&mut self) -> &mut T
where
T: Default,
{
self.get_or_insert_with(T::default)
}
/// Inserts a value computed from `f` into the option if it is [`None`],
/// then returns a mutable reference to the contained value.
///
/// # Examples
///
/// ```
/// let mut x = None;
///
/// {
/// let y: &mut u32 = x.get_or_insert_with(|| 5);
/// assert_eq!(y, &5);
///
/// *y = 7;
/// }
///
/// assert_eq!(x, Some(7));
/// ```
#[inline]
#[stable(feature = "option_entry", since = "1.20.0")]
pub fn get_or_insert_with<F>(&mut self, f: F) -> &mut T
where
F: FnOnce() -> T,
{
if let None = self {
*self = Some(f());
}
// SAFETY: a `None` variant for `self` would have been replaced by a `Some`
// variant in the code above.
unsafe { self.as_mut().unwrap_unchecked() }
}
/////////////////////////////////////////////////////////////////////////
// Misc
/////////////////////////////////////////////////////////////////////////
/// Takes the value out of the option, leaving a [`None`] in its place.
///
/// # Examples
///
/// ```
/// let mut x = Some(2);
/// let y = x.take();
/// assert_eq!(x, None);
/// assert_eq!(y, Some(2));
///
/// let mut x: Option<u32> = None;
/// let y = x.take();
/// assert_eq!(x, None);
/// assert_eq!(y, None);
/// ```
#[inline]
#[stable(feature = "rust1", since = "1.0.0")]
#[rustc_const_stable(feature = "const_option", since = "1.83.0")]
pub const fn take(&mut self) -> Option<T> {
// FIXME(const-hack) replace `mem::replace` by `mem::take` when the latter is const ready
mem::replace(self, None)
}
/// Takes the value out of the option, but only if the predicate evaluates to
/// `true` on a mutable reference to the value.
///
/// In other words, replaces `self` with `None` if the predicate returns `true`.
/// This method operates similar to [`Option::take`] but conditional.
///
/// # Examples
///
/// ```
/// let mut x = Some(42);
///
/// let prev = x.take_if(|v| if *v == 42 {
/// *v += 1;
/// false
/// } else {
/// false
/// });
/// assert_eq!(x, Some(43));
/// assert_eq!(prev, None);
///
/// let prev = x.take_if(|v| *v == 43);
/// assert_eq!(x, None);
/// assert_eq!(prev, Some(43));
/// ```
#[inline]
#[stable(feature = "option_take_if", since = "1.80.0")]
pub fn take_if<P>(&mut self, predicate: P) -> Option<T>
where
P: FnOnce(&mut T) -> bool,
{
if self.as_mut().map_or(false, predicate) { self.take() } else { None }
}
/// Replaces the actual value in the option by the value given in parameter,
/// returning the old value if present,
/// leaving a [`Some`] in its place without deinitializing either one.
///
/// # Examples
///
/// ```
/// let mut x = Some(2);
/// let old = x.replace(5);
/// assert_eq!(x, Some(5));
/// assert_eq!(old, Some(2));
///
/// let mut x = None;
/// let old = x.replace(3);
/// assert_eq!(x, Some(3));
/// assert_eq!(old, None);
/// ```
#[inline]
#[stable(feature = "option_replace", since = "1.31.0")]
#[rustc_const_stable(feature = "const_option", since = "1.83.0")]
pub const fn replace(&mut self, value: T) -> Option<T> {
mem::replace(self, Some(value))
}
/// Zips `self` with another `Option`.
///
/// If `self` is `Some(s)` and `other` is `Some(o)`, this method returns `Some((s, o))`.
/// Otherwise, `None` is returned.
///
/// # Examples
///
/// ```
/// let x = Some(1);
/// let y = Some("hi");
/// let z = None::<u8>;
///
/// assert_eq!(x.zip(y), Some((1, "hi")));
/// assert_eq!(x.zip(z), None);
/// ```
#[stable(feature = "option_zip_option", since = "1.46.0")]
pub fn zip<U>(self, other: Option<U>) -> Option<(T, U)> {
match (self, other) {
(Some(a), Some(b)) => Some((a, b)),
_ => None,
}
}
/// Zips `self` and another `Option` with function `f`.
///
/// If `self` is `Some(s)` and `other` is `Some(o)`, this method returns `Some(f(s, o))`.
/// Otherwise, `None` is returned.
///
/// # Examples
///
/// ```
/// #![feature(option_zip)]
///
/// #[derive(Debug, PartialEq)]
/// struct Point {
/// x: f64,
/// y: f64,
/// }
///
/// impl Point {
/// fn new(x: f64, y: f64) -> Self {
/// Self { x, y }
/// }
/// }
///
/// let x = Some(17.5);
/// let y = Some(42.7);
///
/// assert_eq!(x.zip_with(y, Point::new), Some(Point { x: 17.5, y: 42.7 }));
/// assert_eq!(x.zip_with(None, Point::new), None);
/// ```
#[unstable(feature = "option_zip", issue = "70086")]
pub fn zip_with<U, F, R>(self, other: Option<U>, f: F) -> Option<R>
where
F: FnOnce(T, U) -> R,
{
match (self, other) {
(Some(a), Some(b)) => Some(f(a, b)),
_ => None,
}
}
}
impl<T, U> Option<(T, U)> {
/// Unzips an option containing a tuple of two options.
///
/// If `self` is `Some((a, b))` this method returns `(Some(a), Some(b))`.
/// Otherwise, `(None, None)` is returned.
///
/// # Examples
///
/// ```
/// let x = Some((1, "hi"));
/// let y = None::<(u8, u32)>;
///
/// assert_eq!(x.unzip(), (Some(1), Some("hi")));
/// assert_eq!(y.unzip(), (None, None));
/// ```
#[inline]
#[stable(feature = "unzip_option", since = "1.66.0")]
pub fn unzip(self) -> (Option<T>, Option<U>) {
match self {
Some((a, b)) => (Some(a), Some(b)),
None => (None, None),
}
}
}
impl<T> Option<&T> {
/// Maps an `Option<&T>` to an `Option<T>` by copying the contents of the
/// option.
///
/// # Examples
///
/// ```
/// let x = 12;
/// let opt_x = Some(&x);
/// assert_eq!(opt_x, Some(&12));
/// let copied = opt_x.copied();
/// assert_eq!(copied, Some(12));
/// ```
#[must_use = "`self` will be dropped if the result is not used"]
#[stable(feature = "copied", since = "1.35.0")]
#[rustc_const_stable(feature = "const_option", since = "1.83.0")]
pub const fn copied(self) -> Option<T>
where
T: Copy,
{
// FIXME(const-hack): this implementation, which sidesteps using `Option::map` since it's not const
// ready yet, should be reverted when possible to avoid code repetition
match self {
Some(&v) => Some(v),
None => None,
}
}
/// Maps an `Option<&T>` to an `Option<T>` by cloning the contents of the
/// option.
///
/// # Examples
///
/// ```
/// let x = 12;
/// let opt_x = Some(&x);
/// assert_eq!(opt_x, Some(&12));
/// let cloned = opt_x.cloned();
/// assert_eq!(cloned, Some(12));
/// ```
#[must_use = "`self` will be dropped if the result is not used"]
#[stable(feature = "rust1", since = "1.0.0")]
pub fn cloned(self) -> Option<T>
where
T: Clone,
{
match self {
Some(t) => Some(t.clone()),
None => None,
}
}
}
impl<T> Option<&mut T> {
/// Maps an `Option<&mut T>` to an `Option<T>` by copying the contents of the
/// option.
///
/// # Examples
///
/// ```
/// let mut x = 12;
/// let opt_x = Some(&mut x);
/// assert_eq!(opt_x, Some(&mut 12));
/// let copied = opt_x.copied();
/// assert_eq!(copied, Some(12));
/// ```
#[must_use = "`self` will be dropped if the result is not used"]
#[stable(feature = "copied", since = "1.35.0")]
#[rustc_const_stable(feature = "const_option", since = "1.83.0")]
pub const fn copied(self) -> Option<T>
where
T: Copy,
{
match self {
Some(&mut t) => Some(t),
None => None,
}
}
/// Maps an `Option<&mut T>` to an `Option<T>` by cloning the contents of the
/// option.
///
/// # Examples
///
/// ```
/// let mut x = 12;
/// let opt_x = Some(&mut x);
/// assert_eq!(opt_x, Some(&mut 12));
/// let cloned = opt_x.cloned();
/// assert_eq!(cloned, Some(12));
/// ```
#[must_use = "`self` will be dropped if the result is not used"]
#[stable(since = "1.26.0", feature = "option_ref_mut_cloned")]
pub fn cloned(self) -> Option<T>
where
T: Clone,
{
match self {
Some(t) => Some(t.clone()),
None => None,
}
}
}
impl<T, E> Option<Result<T, E>> {
/// Transposes an `Option` of a [`Result`] into a [`Result`] of an `Option`.
///
/// [`None`] will be mapped to <code>[Ok]\([None])</code>.
/// <code>[Some]\([Ok]\(\_))</code> and <code>[Some]\([Err]\(\_))</code> will be mapped to
/// <code>[Ok]\([Some]\(\_))</code> and <code>[Err]\(\_)</code>.
///
/// # Examples
///
/// ```
/// #[derive(Debug, Eq, PartialEq)]
/// struct SomeErr;
///
/// let x: Result<Option<i32>, SomeErr> = Ok(Some(5));
/// let y: Option<Result<i32, SomeErr>> = Some(Ok(5));
/// assert_eq!(x, y.transpose());
/// ```
#[inline]
#[stable(feature = "transpose_result", since = "1.33.0")]
#[rustc_allow_const_fn_unstable(const_precise_live_drops)]
#[rustc_const_stable(feature = "const_option", since = "1.83.0")]
pub const fn transpose(self) -> Result<Option<T>, E> {
match self {
Some(Ok(x)) => Ok(Some(x)),
Some(Err(e)) => Err(e),
None => Ok(None),
}
}
}
#[cfg_attr(not(feature = "panic_immediate_abort"), inline(never))]
#[cfg_attr(feature = "panic_immediate_abort", inline)]
#[cold]
#[track_caller]
const fn unwrap_failed() -> ! {
panic("called `Option::unwrap()` on a `None` value")
}
// This is a separate function to reduce the code size of .expect() itself.
#[cfg_attr(not(feature = "panic_immediate_abort"), inline(never))]
#[cfg_attr(feature = "panic_immediate_abort", inline)]
#[cold]
#[track_caller]
const fn expect_failed(msg: &str) -> ! {
panic_display(&msg)
}
/////////////////////////////////////////////////////////////////////////////
// Trait implementations
/////////////////////////////////////////////////////////////////////////////
#[stable(feature = "rust1", since = "1.0.0")]
impl<T> Clone for Option<T>
where
T: Clone,
{
#[inline]
fn clone(&self) -> Self {
match self {
Some(x) => Some(x.clone()),
None => None,
}
}
#[inline]
fn clone_from(&mut self, source: &Self) {
match (self, source) {
(Some(to), Some(from)) => to.clone_from(from),
(to, from) => *to = from.clone(),
}
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl<T> Default for Option<T> {
/// Returns [`None`][Option::None].
///
/// # Examples
///
/// ```
/// let opt: Option<u32> = Option::default();
/// assert!(opt.is_none());
/// ```
#[inline]
fn default() -> Option<T> {
None
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl<T> IntoIterator for Option<T> {
type Item = T;
type IntoIter = IntoIter<T>;
/// Returns a consuming iterator over the possibly contained value.
///
/// # Examples
///
/// ```
/// let x = Some("string");
/// let v: Vec<&str> = x.into_iter().collect();
/// assert_eq!(v, ["string"]);
///
/// let x = None;
/// let v: Vec<&str> = x.into_iter().collect();
/// assert!(v.is_empty());
/// ```
#[inline]
fn into_iter(self) -> IntoIter<T> {
IntoIter { inner: Item { opt: self } }
}
}
#[stable(since = "1.4.0", feature = "option_iter")]
impl<'a, T> IntoIterator for &'a Option<T> {
type Item = &'a T;
type IntoIter = Iter<'a, T>;
fn into_iter(self) -> Iter<'a, T> {
self.iter()
}
}
#[stable(since = "1.4.0", feature = "option_iter")]
impl<'a, T> IntoIterator for &'a mut Option<T> {
type Item = &'a mut T;
type IntoIter = IterMut<'a, T>;
fn into_iter(self) -> IterMut<'a, T> {
self.iter_mut()
}
}
#[stable(since = "1.12.0", feature = "option_from")]
impl<T> From<T> for Option<T> {
/// Moves `val` into a new [`Some`].
///
/// # Examples
///
/// ```
/// let o: Option<u8> = Option::from(67);
///
/// assert_eq!(Some(67), o);
/// ```
fn from(val: T) -> Option<T> {
Some(val)
}
}
#[stable(feature = "option_ref_from_ref_option", since = "1.30.0")]
impl<'a, T> From<&'a Option<T>> for Option<&'a T> {
/// Converts from `&Option<T>` to `Option<&T>`.
///
/// # Examples
///
/// Converts an <code>[Option]<[String]></code> into an <code>[Option]<[usize]></code>, preserving
/// the original. The [`map`] method takes the `self` argument by value, consuming the original,
/// so this technique uses `from` to first take an [`Option`] to a reference
/// to the value inside the original.
///
/// [`map`]: Option::map
/// [String]: ../../std/string/struct.String.html "String"
///
/// ```
/// let s: Option<String> = Some(String::from("Hello, Rustaceans!"));
/// let o: Option<usize> = Option::from(&s).map(|ss: &String| ss.len());
///
/// println!("Can still print s: {s:?}");
///
/// assert_eq!(o, Some(18));
/// ```
fn from(o: &'a Option<T>) -> Option<&'a T> {
o.as_ref()
}
}
#[stable(feature = "option_ref_from_ref_option", since = "1.30.0")]
impl<'a, T> From<&'a mut Option<T>> for Option<&'a mut T> {
/// Converts from `&mut Option<T>` to `Option<&mut T>`
///
/// # Examples
///
/// ```
/// let mut s = Some(String::from("Hello"));
/// let o: Option<&mut String> = Option::from(&mut s);
///
/// match o {
/// Some(t) => *t = String::from("Hello, Rustaceans!"),
/// None => (),
/// }
///
/// assert_eq!(s, Some(String::from("Hello, Rustaceans!")));
/// ```
fn from(o: &'a mut Option<T>) -> Option<&'a mut T> {
o.as_mut()
}
}
// Ideally, LLVM should be able to optimize our derive code to this.
// Once https://github.com/llvm/llvm-project/issues/52622 is fixed, we can
// go back to deriving `PartialEq`.
#[stable(feature = "rust1", since = "1.0.0")]
impl<T> crate::marker::StructuralPartialEq for Option<T> {}
#[stable(feature = "rust1", since = "1.0.0")]
impl<T: PartialEq> PartialEq for Option<T> {
#[inline]
fn eq(&self, other: &Self) -> bool {
// Spelling out the cases explicitly optimizes better than
// `_ => false`
match (self, other) {
(Some(l), Some(r)) => *l == *r,
(Some(_), None) => false,
(None, Some(_)) => false,
(None, None) => true,
}
}
}
// Manually implementing here somewhat improves codegen for
// https://github.com/rust-lang/rust/issues/49892, although still
// not optimal.
#[stable(feature = "rust1", since = "1.0.0")]
impl<T: PartialOrd> PartialOrd for Option<T> {
#[inline]
fn partial_cmp(&self, other: &Self) -> Option<cmp::Ordering> {
match (self, other) {
(Some(l), Some(r)) => l.partial_cmp(r),
(Some(_), None) => Some(cmp::Ordering::Greater),
(None, Some(_)) => Some(cmp::Ordering::Less),
(None, None) => Some(cmp::Ordering::Equal),
}
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl<T: Ord> Ord for Option<T> {
#[inline]
fn cmp(&self, other: &Self) -> cmp::Ordering {
match (self, other) {
(Some(l), Some(r)) => l.cmp(r),
(Some(_), None) => cmp::Ordering::Greater,
(None, Some(_)) => cmp::Ordering::Less,
(None, None) => cmp::Ordering::Equal,
}
}
}
/////////////////////////////////////////////////////////////////////////////
// The Option Iterators
/////////////////////////////////////////////////////////////////////////////
#[derive(Clone, Debug)]
struct Item<A> {
opt: Option<A>,
}
impl<A> Iterator for Item<A> {
type Item = A;
#[inline]
fn next(&mut self) -> Option<A> {
self.opt.take()
}
#[inline]
fn size_hint(&self) -> (usize, Option<usize>) {
let len = self.len();
(len, Some(len))
}
}
impl<A> DoubleEndedIterator for Item<A> {
#[inline]
fn next_back(&mut self) -> Option<A> {
self.opt.take()
}
}
impl<A> ExactSizeIterator for Item<A> {
#[inline]
fn len(&self) -> usize {
self.opt.len()
}
}
impl<A> FusedIterator for Item<A> {}
unsafe impl<A> TrustedLen for Item<A> {}
/// An iterator over a reference to the [`Some`] variant of an [`Option`].
///
/// The iterator yields one value if the [`Option`] is a [`Some`], otherwise none.
///
/// This `struct` is created by the [`Option::iter`] function.
#[stable(feature = "rust1", since = "1.0.0")]
#[derive(Debug)]
pub struct Iter<'a, A: 'a> {
inner: Item<&'a A>,
}
#[stable(feature = "rust1", since = "1.0.0")]
impl<'a, A> Iterator for Iter<'a, A> {
type Item = &'a A;
#[inline]
fn next(&mut self) -> Option<&'a A> {
self.inner.next()
}
#[inline]
fn size_hint(&self) -> (usize, Option<usize>) {
self.inner.size_hint()
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl<'a, A> DoubleEndedIterator for Iter<'a, A> {
#[inline]
fn next_back(&mut self) -> Option<&'a A> {
self.inner.next_back()
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl<A> ExactSizeIterator for Iter<'_, A> {}
#[stable(feature = "fused", since = "1.26.0")]
impl<A> FusedIterator for Iter<'_, A> {}
#[unstable(feature = "trusted_len", issue = "37572")]
unsafe impl<A> TrustedLen for Iter<'_, A> {}
#[stable(feature = "rust1", since = "1.0.0")]
impl<A> Clone for Iter<'_, A> {
#[inline]
fn clone(&self) -> Self {
Iter { inner: self.inner.clone() }
}
}
/// An iterator over a mutable reference to the [`Some`] variant of an [`Option`].
///
/// The iterator yields one value if the [`Option`] is a [`Some`], otherwise none.
///
/// This `struct` is created by the [`Option::iter_mut`] function.
#[stable(feature = "rust1", since = "1.0.0")]
#[derive(Debug)]
pub struct IterMut<'a, A: 'a> {
inner: Item<&'a mut A>,
}
#[stable(feature = "rust1", since = "1.0.0")]
impl<'a, A> Iterator for IterMut<'a, A> {
type Item = &'a mut A;
#[inline]
fn next(&mut self) -> Option<&'a mut A> {
self.inner.next()
}
#[inline]
fn size_hint(&self) -> (usize, Option<usize>) {
self.inner.size_hint()
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl<'a, A> DoubleEndedIterator for IterMut<'a, A> {
#[inline]
fn next_back(&mut self) -> Option<&'a mut A> {
self.inner.next_back()
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl<A> ExactSizeIterator for IterMut<'_, A> {}
#[stable(feature = "fused", since = "1.26.0")]
impl<A> FusedIterator for IterMut<'_, A> {}
#[unstable(feature = "trusted_len", issue = "37572")]
unsafe impl<A> TrustedLen for IterMut<'_, A> {}
/// An iterator over the value in [`Some`] variant of an [`Option`].
///
/// The iterator yields one value if the [`Option`] is a [`Some`], otherwise none.
///
/// This `struct` is created by the [`Option::into_iter`] function.
#[derive(Clone, Debug)]
#[stable(feature = "rust1", since = "1.0.0")]
pub struct IntoIter<A> {
inner: Item<A>,
}
#[stable(feature = "rust1", since = "1.0.0")]
impl<A> Iterator for IntoIter<A> {
type Item = A;
#[inline]
fn next(&mut self) -> Option<A> {
self.inner.next()
}
#[inline]
fn size_hint(&self) -> (usize, Option<usize>) {
self.inner.size_hint()
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl<A> DoubleEndedIterator for IntoIter<A> {
#[inline]
fn next_back(&mut self) -> Option<A> {
self.inner.next_back()
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl<A> ExactSizeIterator for IntoIter<A> {}
#[stable(feature = "fused", since = "1.26.0")]
impl<A> FusedIterator for IntoIter<A> {}
#[unstable(feature = "trusted_len", issue = "37572")]
unsafe impl<A> TrustedLen for IntoIter<A> {}
/////////////////////////////////////////////////////////////////////////////
// FromIterator
/////////////////////////////////////////////////////////////////////////////
#[stable(feature = "rust1", since = "1.0.0")]
impl<A, V: FromIterator<A>> FromIterator<Option<A>> for Option<V> {
/// Takes each element in the [`Iterator`]: if it is [`None`][Option::None],
/// no further elements are taken, and the [`None`][Option::None] is
/// returned. Should no [`None`][Option::None] occur, a container of type
/// `V` containing the values of each [`Option`] is returned.
///
/// # Examples
///
/// Here is an example which increments every integer in a vector.
/// We use the checked variant of `add` that returns `None` when the
/// calculation would result in an overflow.
///
/// ```
/// let items = vec![0_u16, 1, 2];
///
/// let res: Option<Vec<u16>> = items
/// .iter()
/// .map(|x| x.checked_add(1))
/// .collect();
///
/// assert_eq!(res, Some(vec![1, 2, 3]));
/// ```
///
/// As you can see, this will return the expected, valid items.
///
/// Here is another example that tries to subtract one from another list
/// of integers, this time checking for underflow:
///
/// ```
/// let items = vec![2_u16, 1, 0];
///
/// let res: Option<Vec<u16>> = items
/// .iter()
/// .map(|x| x.checked_sub(1))
/// .collect();
///
/// assert_eq!(res, None);
/// ```
///
/// Since the last element is zero, it would underflow. Thus, the resulting
/// value is `None`.
///
/// Here is a variation on the previous example, showing that no
/// further elements are taken from `iter` after the first `None`.
///
/// ```
/// let items = vec![3_u16, 2, 1, 10];
///
/// let mut shared = 0;
///
/// let res: Option<Vec<u16>> = items
/// .iter()
/// .map(|x| { shared += x; x.checked_sub(2) })
/// .collect();
///
/// assert_eq!(res, None);
/// assert_eq!(shared, 6);
/// ```
///
/// Since the third element caused an underflow, no further elements were taken,
/// so the final value of `shared` is 6 (= `3 + 2 + 1`), not 16.
#[inline]
fn from_iter<I: IntoIterator<Item = Option<A>>>(iter: I) -> Option<V> {
// FIXME(#11084): This could be replaced with Iterator::scan when this
// performance bug is closed.
iter::try_process(iter.into_iter(), |i| i.collect())
}
}
#[unstable(feature = "try_trait_v2", issue = "84277")]
impl<T> ops::Try for Option<T> {
type Output = T;
type Residual = Option<convert::Infallible>;
#[inline]
fn from_output(output: Self::Output) -> Self {
Some(output)
}
#[inline]
fn branch(self) -> ControlFlow<Self::Residual, Self::Output> {
match self {
Some(v) => ControlFlow::Continue(v),
None => ControlFlow::Break(None),
}
}
}
#[unstable(feature = "try_trait_v2", issue = "84277")]
// Note: manually specifying the residual type instead of using the default to work around
// https://github.com/rust-lang/rust/issues/99940
impl<T> ops::FromResidual<Option<convert::Infallible>> for Option<T> {
#[inline]
fn from_residual(residual: Option<convert::Infallible>) -> Self {
match residual {
None => None,
}
}
}
#[diagnostic::do_not_recommend]
#[unstable(feature = "try_trait_v2_yeet", issue = "96374")]
impl<T> ops::FromResidual<ops::Yeet<()>> for Option<T> {
#[inline]
fn from_residual(ops::Yeet(()): ops::Yeet<()>) -> Self {
None
}
}
#[unstable(feature = "try_trait_v2_residual", issue = "91285")]
impl<T> ops::Residual<T> for Option<convert::Infallible> {
type TryType = Option<T>;
}
impl<T> Option<Option<T>> {
/// Converts from `Option<Option<T>>` to `Option<T>`.
///
/// # Examples
///
/// Basic usage:
///
/// ```
/// let x: Option<Option<u32>> = Some(Some(6));
/// assert_eq!(Some(6), x.flatten());
///
/// let x: Option<Option<u32>> = Some(None);
/// assert_eq!(None, x.flatten());
///
/// let x: Option<Option<u32>> = None;
/// assert_eq!(None, x.flatten());
/// ```
///
/// Flattening only removes one level of nesting at a time:
///
/// ```
/// let x: Option<Option<Option<u32>>> = Some(Some(Some(6)));
/// assert_eq!(Some(Some(6)), x.flatten());
/// assert_eq!(Some(6), x.flatten().flatten());
/// ```
#[inline]
#[stable(feature = "option_flattening", since = "1.40.0")]
#[rustc_allow_const_fn_unstable(const_precise_live_drops)]
#[rustc_const_stable(feature = "const_option", since = "1.83.0")]
pub const fn flatten(self) -> Option<T> {
// FIXME(const-hack): could be written with `and_then`
match self {
Some(inner) => inner,
None => None,
}
}
}
impl<T, const N: usize> [Option<T>; N] {
/// Transposes a `[Option<T>; N]` into a `Option<[T; N]>`.
///
/// # Examples
///
/// ```
/// #![feature(option_array_transpose)]
/// # use std::option::Option;
///
/// let data = [Some(0); 1000];
/// let data: Option<[u8; 1000]> = data.transpose();
/// assert_eq!(data, Some([0; 1000]));
///
/// let data = [Some(0), None];
/// let data: Option<[u8; 2]> = data.transpose();
/// assert_eq!(data, None);
/// ```
#[inline]
#[unstable(feature = "option_array_transpose", issue = "130828")]
pub fn transpose(self) -> Option<[T; N]> {
self.try_map(core::convert::identity)
}
}