core/
option.rs

1//! Optional values.
2//!
3//! Type [`Option`] represents an optional value: every [`Option`]
4//! is either [`Some`] and contains a value, or [`None`], and
5//! does not. [`Option`] types are very common in Rust code, as
6//! they have a number of uses:
7//!
8//! * Initial values
9//! * Return values for functions that are not defined
10//!   over their entire input range (partial functions)
11//! * Return value for otherwise reporting simple errors, where [`None`] is
12//!   returned on error
13//! * Optional struct fields
14//! * Struct fields that can be loaned or "taken"
15//! * Optional function arguments
16//! * Nullable pointers
17//! * Swapping things out of difficult situations
18//!
19//! [`Option`]s are commonly paired with pattern matching to query the presence
20//! of a value and take action, always accounting for the [`None`] case.
21//!
22//! ```
23//! fn divide(numerator: f64, denominator: f64) -> Option<f64> {
24//!     if denominator == 0.0 {
25//!         None
26//!     } else {
27//!         Some(numerator / denominator)
28//!     }
29//! }
30//!
31//! // The return value of the function is an option
32//! let result = divide(2.0, 3.0);
33//!
34//! // Pattern match to retrieve the value
35//! match result {
36//!     // The division was valid
37//!     Some(x) => println!("Result: {x}"),
38//!     // The division was invalid
39//!     None    => println!("Cannot divide by 0"),
40//! }
41//! ```
42//!
43//
44// FIXME: Show how `Option` is used in practice, with lots of methods
45//
46//! # Options and pointers ("nullable" pointers)
47//!
48//! Rust's pointer types must always point to a valid location; there are
49//! no "null" references. Instead, Rust has *optional* pointers, like
50//! the optional owned box, <code>[Option]<[Box\<T>]></code>.
51//!
52//! [Box\<T>]: ../../std/boxed/struct.Box.html
53//!
54//! The following example uses [`Option`] to create an optional box of
55//! [`i32`]. Notice that in order to use the inner [`i32`] value, the
56//! `check_optional` function first needs to use pattern matching to
57//! determine whether the box has a value (i.e., it is [`Some(...)`][`Some`]) or
58//! not ([`None`]).
59//!
60//! ```
61//! let optional = None;
62//! check_optional(optional);
63//!
64//! let optional = Some(Box::new(9000));
65//! check_optional(optional);
66//!
67//! fn check_optional(optional: Option<Box<i32>>) {
68//!     match optional {
69//!         Some(p) => println!("has value {p}"),
70//!         None => println!("has no value"),
71//!     }
72//! }
73//! ```
74//!
75//! # The question mark operator, `?`
76//!
77//! Similar to the [`Result`] type, when writing code that calls many functions that return the
78//! [`Option`] type, handling `Some`/`None` can be tedious. The question mark
79//! operator, [`?`], hides some of the boilerplate of propagating values
80//! up the call stack.
81//!
82//! It replaces this:
83//!
84//! ```
85//! # #![allow(dead_code)]
86//! fn add_last_numbers(stack: &mut Vec<i32>) -> Option<i32> {
87//!     let a = stack.pop();
88//!     let b = stack.pop();
89//!
90//!     match (a, b) {
91//!         (Some(x), Some(y)) => Some(x + y),
92//!         _ => None,
93//!     }
94//! }
95//!
96//! ```
97//!
98//! With this:
99//!
100//! ```
101//! # #![allow(dead_code)]
102//! fn add_last_numbers(stack: &mut Vec<i32>) -> Option<i32> {
103//!     Some(stack.pop()? + stack.pop()?)
104//! }
105//! ```
106//!
107//! *It's much nicer!*
108//!
109//! Ending the expression with [`?`] will result in the [`Some`]'s unwrapped value, unless the
110//! result is [`None`], in which case [`None`] is returned early from the enclosing function.
111//!
112//! [`?`] can be used in functions that return [`Option`] because of the
113//! early return of [`None`] that it provides.
114//!
115//! [`?`]: crate::ops::Try
116//! [`Some`]: Some
117//! [`None`]: None
118//!
119//! # Representation
120//!
121//! Rust guarantees to optimize the following types `T` such that [`Option<T>`]
122//! has the same size, alignment, and [function call ABI] as `T`. It is
123//! therefore sound, when `T` is one of these types, to transmute a value `t` of
124//! type `T` to type `Option<T>` (producing the value `Some(t)`) and to
125//! transmute a value `Some(t)` of type `Option<T>` to type `T` (producing the
126//! value `t`).
127//!
128//! In some of these cases, Rust further guarantees the following:
129//! - `transmute::<_, Option<T>>([0u8; size_of::<T>()])` is sound and produces
130//!   `Option::<T>::None`
131//! - `transmute::<_, [u8; size_of::<T>()]>(Option::<T>::None)` is sound and produces
132//!   `[0u8; size_of::<T>()]`
133//!
134//! These cases are identified by the second column:
135//!
136//! | `T`                                                                 | Transmuting between `[0u8; size_of::<T>()]` and `Option::<T>::None` sound? |
137//! |---------------------------------------------------------------------|----------------------------------------------------------------------------|
138//! | [`Box<U>`] (specifically, only `Box<U, Global>`)                    | when `U: Sized`                                                            |
139//! | `&U`                                                                | when `U: Sized`                                                            |
140//! | `&mut U`                                                            | when `U: Sized`                                                            |
141//! | `fn`, `extern "C" fn`[^extern_fn]                                   | always                                                                     |
142//! | [`num::NonZero*`]                                                   | always                                                                     |
143//! | [`ptr::NonNull<U>`]                                                 | when `U: Sized`                                                            |
144//! | `#[repr(transparent)]` struct around one of the types in this list. | when it holds for the inner type                                           |
145//!
146//! [^extern_fn]: this remains true for `unsafe` variants, any argument/return types, and any other ABI: `[unsafe] extern "abi" fn` (_e.g._, `extern "system" fn`)
147//!
148//! Under some conditions the above types `T` are also null pointer optimized when wrapped in a [`Result`][result_repr].
149//!
150//! [`Box<U>`]: ../../std/boxed/struct.Box.html
151//! [`num::NonZero*`]: crate::num
152//! [`ptr::NonNull<U>`]: crate::ptr::NonNull
153//! [function call ABI]: ../primitive.fn.html#abi-compatibility
154//! [result_repr]: crate::result#representation
155//!
156//! This is called the "null pointer optimization" or NPO.
157//!
158//! It is further guaranteed that, for the cases above, one can
159//! [`mem::transmute`] from all valid values of `T` to `Option<T>` and
160//! from `Some::<T>(_)` to `T` (but transmuting `None::<T>` to `T`
161//! is undefined behavior).
162//!
163//! # Method overview
164//!
165//! In addition to working with pattern matching, [`Option`] provides a wide
166//! variety of different methods.
167//!
168//! ## Querying the variant
169//!
170//! The [`is_some`] and [`is_none`] methods return [`true`] if the [`Option`]
171//! is [`Some`] or [`None`], respectively.
172//!
173//! The [`is_some_and`] and [`is_none_or`] methods apply the provided function
174//! to the contents of the [`Option`] to produce a boolean value.
175//! If this is [`None`] then a default result is returned instead without executing the function.
176//!
177//! [`is_none`]: Option::is_none
178//! [`is_some`]: Option::is_some
179//! [`is_some_and`]: Option::is_some_and
180//! [`is_none_or`]: Option::is_none_or
181//!
182//! ## Adapters for working with references
183//!
184//! * [`as_ref`] converts from <code>[&][][Option]\<T></code> to <code>[Option]<[&]T></code>
185//! * [`as_mut`] converts from <code>[&mut] [Option]\<T></code> to <code>[Option]<[&mut] T></code>
186//! * [`as_deref`] converts from <code>[&][][Option]\<T></code> to
187//!   <code>[Option]<[&]T::[Target]></code>
188//! * [`as_deref_mut`] converts from <code>[&mut] [Option]\<T></code> to
189//!   <code>[Option]<[&mut] T::[Target]></code>
190//! * [`as_pin_ref`] converts from <code>[Pin]<[&][][Option]\<T>></code> to
191//!   <code>[Option]<[Pin]<[&]T>></code>
192//! * [`as_pin_mut`] converts from <code>[Pin]<[&mut] [Option]\<T>></code> to
193//!   <code>[Option]<[Pin]<[&mut] T>></code>
194//! * [`as_slice`] returns a one-element slice of the contained value, if any.
195//!   If this is [`None`], an empty slice is returned.
196//! * [`as_mut_slice`] returns a mutable one-element slice of the contained value, if any.
197//!   If this is [`None`], an empty slice is returned.
198//!
199//! [&]: reference "shared reference"
200//! [&mut]: reference "mutable reference"
201//! [Target]: Deref::Target "ops::Deref::Target"
202//! [`as_deref`]: Option::as_deref
203//! [`as_deref_mut`]: Option::as_deref_mut
204//! [`as_mut`]: Option::as_mut
205//! [`as_pin_mut`]: Option::as_pin_mut
206//! [`as_pin_ref`]: Option::as_pin_ref
207//! [`as_ref`]: Option::as_ref
208//! [`as_slice`]: Option::as_slice
209//! [`as_mut_slice`]: Option::as_mut_slice
210//!
211//! ## Extracting the contained value
212//!
213//! These methods extract the contained value in an [`Option<T>`] when it
214//! is the [`Some`] variant. If the [`Option`] is [`None`]:
215//!
216//! * [`expect`] panics with a provided custom message
217//! * [`unwrap`] panics with a generic message
218//! * [`unwrap_or`] returns the provided default value
219//! * [`unwrap_or_default`] returns the default value of the type `T`
220//!   (which must implement the [`Default`] trait)
221//! * [`unwrap_or_else`] returns the result of evaluating the provided
222//!   function
223//! * [`unwrap_unchecked`] produces *[undefined behavior]*
224//!
225//! [`expect`]: Option::expect
226//! [`unwrap`]: Option::unwrap
227//! [`unwrap_or`]: Option::unwrap_or
228//! [`unwrap_or_default`]: Option::unwrap_or_default
229//! [`unwrap_or_else`]: Option::unwrap_or_else
230//! [`unwrap_unchecked`]: Option::unwrap_unchecked
231//! [undefined behavior]: https://doc.rust-lang.org/reference/behavior-considered-undefined.html
232//!
233//! ## Transforming contained values
234//!
235//! These methods transform [`Option`] to [`Result`]:
236//!
237//! * [`ok_or`] transforms [`Some(v)`] to [`Ok(v)`], and [`None`] to
238//!   [`Err(err)`] using the provided default `err` value
239//! * [`ok_or_else`] transforms [`Some(v)`] to [`Ok(v)`], and [`None`] to
240//!   a value of [`Err`] using the provided function
241//! * [`transpose`] transposes an [`Option`] of a [`Result`] into a
242//!   [`Result`] of an [`Option`]
243//!
244//! [`Err(err)`]: Err
245//! [`Ok(v)`]: Ok
246//! [`Some(v)`]: Some
247//! [`ok_or`]: Option::ok_or
248//! [`ok_or_else`]: Option::ok_or_else
249//! [`transpose`]: Option::transpose
250//!
251//! These methods transform the [`Some`] variant:
252//!
253//! * [`filter`] calls the provided predicate function on the contained
254//!   value `t` if the [`Option`] is [`Some(t)`], and returns [`Some(t)`]
255//!   if the function returns `true`; otherwise, returns [`None`]
256//! * [`flatten`] removes one level of nesting from an [`Option<Option<T>>`]
257//! * [`inspect`] method takes ownership of the [`Option`] and applies
258//!   the provided function to the contained value by reference if [`Some`]
259//! * [`map`] transforms [`Option<T>`] to [`Option<U>`] by applying the
260//!   provided function to the contained value of [`Some`] and leaving
261//!   [`None`] values unchanged
262//!
263//! [`Some(t)`]: Some
264//! [`filter`]: Option::filter
265//! [`flatten`]: Option::flatten
266//! [`inspect`]: Option::inspect
267//! [`map`]: Option::map
268//!
269//! These methods transform [`Option<T>`] to a value of a possibly
270//! different type `U`:
271//!
272//! * [`map_or`] applies the provided function to the contained value of
273//!   [`Some`], or returns the provided default value if the [`Option`] is
274//!   [`None`]
275//! * [`map_or_else`] applies the provided function to the contained value
276//!   of [`Some`], or returns the result of evaluating the provided
277//!   fallback function if the [`Option`] is [`None`]
278//!
279//! [`map_or`]: Option::map_or
280//! [`map_or_else`]: Option::map_or_else
281//!
282//! These methods combine the [`Some`] variants of two [`Option`] values:
283//!
284//! * [`zip`] returns [`Some((s, o))`] if `self` is [`Some(s)`] and the
285//!   provided [`Option`] value is [`Some(o)`]; otherwise, returns [`None`]
286//! * [`zip_with`] calls the provided function `f` and returns
287//!   [`Some(f(s, o))`] if `self` is [`Some(s)`] and the provided
288//!   [`Option`] value is [`Some(o)`]; otherwise, returns [`None`]
289//!
290//! [`Some(f(s, o))`]: Some
291//! [`Some(o)`]: Some
292//! [`Some(s)`]: Some
293//! [`Some((s, o))`]: Some
294//! [`zip`]: Option::zip
295//! [`zip_with`]: Option::zip_with
296//!
297//! ## Boolean operators
298//!
299//! These methods treat the [`Option`] as a boolean value, where [`Some`]
300//! acts like [`true`] and [`None`] acts like [`false`]. There are two
301//! categories of these methods: ones that take an [`Option`] as input, and
302//! ones that take a function as input (to be lazily evaluated).
303//!
304//! The [`and`], [`or`], and [`xor`] methods take another [`Option`] as
305//! input, and produce an [`Option`] as output. Only the [`and`] method can
306//! produce an [`Option<U>`] value having a different inner type `U` than
307//! [`Option<T>`].
308//!
309//! | method  | self      | input     | output    |
310//! |---------|-----------|-----------|-----------|
311//! | [`and`] | `None`    | (ignored) | `None`    |
312//! | [`and`] | `Some(x)` | `None`    | `None`    |
313//! | [`and`] | `Some(x)` | `Some(y)` | `Some(y)` |
314//! | [`or`]  | `None`    | `None`    | `None`    |
315//! | [`or`]  | `None`    | `Some(y)` | `Some(y)` |
316//! | [`or`]  | `Some(x)` | (ignored) | `Some(x)` |
317//! | [`xor`] | `None`    | `None`    | `None`    |
318//! | [`xor`] | `None`    | `Some(y)` | `Some(y)` |
319//! | [`xor`] | `Some(x)` | `None`    | `Some(x)` |
320//! | [`xor`] | `Some(x)` | `Some(y)` | `None`    |
321//!
322//! [`and`]: Option::and
323//! [`or`]: Option::or
324//! [`xor`]: Option::xor
325//!
326//! The [`and_then`] and [`or_else`] methods take a function as input, and
327//! only evaluate the function when they need to produce a new value. Only
328//! the [`and_then`] method can produce an [`Option<U>`] value having a
329//! different inner type `U` than [`Option<T>`].
330//!
331//! | method       | self      | function input | function result | output    |
332//! |--------------|-----------|----------------|-----------------|-----------|
333//! | [`and_then`] | `None`    | (not provided) | (not evaluated) | `None`    |
334//! | [`and_then`] | `Some(x)` | `x`            | `None`          | `None`    |
335//! | [`and_then`] | `Some(x)` | `x`            | `Some(y)`       | `Some(y)` |
336//! | [`or_else`]  | `None`    | (not provided) | `None`          | `None`    |
337//! | [`or_else`]  | `None`    | (not provided) | `Some(y)`       | `Some(y)` |
338//! | [`or_else`]  | `Some(x)` | (not provided) | (not evaluated) | `Some(x)` |
339//!
340//! [`and_then`]: Option::and_then
341//! [`or_else`]: Option::or_else
342//!
343//! This is an example of using methods like [`and_then`] and [`or`] in a
344//! pipeline of method calls. Early stages of the pipeline pass failure
345//! values ([`None`]) through unchanged, and continue processing on
346//! success values ([`Some`]). Toward the end, [`or`] substitutes an error
347//! message if it receives [`None`].
348//!
349//! ```
350//! # use std::collections::BTreeMap;
351//! let mut bt = BTreeMap::new();
352//! bt.insert(20u8, "foo");
353//! bt.insert(42u8, "bar");
354//! let res = [0u8, 1, 11, 200, 22]
355//!     .into_iter()
356//!     .map(|x| {
357//!         // `checked_sub()` returns `None` on error
358//!         x.checked_sub(1)
359//!             // same with `checked_mul()`
360//!             .and_then(|x| x.checked_mul(2))
361//!             // `BTreeMap::get` returns `None` on error
362//!             .and_then(|x| bt.get(&x))
363//!             // Substitute an error message if we have `None` so far
364//!             .or(Some(&"error!"))
365//!             .copied()
366//!             // Won't panic because we unconditionally used `Some` above
367//!             .unwrap()
368//!     })
369//!     .collect::<Vec<_>>();
370//! assert_eq!(res, ["error!", "error!", "foo", "error!", "bar"]);
371//! ```
372//!
373//! ## Comparison operators
374//!
375//! If `T` implements [`PartialOrd`] then [`Option<T>`] will derive its
376//! [`PartialOrd`] implementation.  With this order, [`None`] compares as
377//! less than any [`Some`], and two [`Some`] compare the same way as their
378//! contained values would in `T`.  If `T` also implements
379//! [`Ord`], then so does [`Option<T>`].
380//!
381//! ```
382//! assert!(None < Some(0));
383//! assert!(Some(0) < Some(1));
384//! ```
385//!
386//! ## Iterating over `Option`
387//!
388//! An [`Option`] can be iterated over. This can be helpful if you need an
389//! iterator that is conditionally empty. The iterator will either produce
390//! a single value (when the [`Option`] is [`Some`]), or produce no values
391//! (when the [`Option`] is [`None`]). For example, [`into_iter`] acts like
392//! [`once(v)`] if the [`Option`] is [`Some(v)`], and like [`empty()`] if
393//! the [`Option`] is [`None`].
394//!
395//! [`Some(v)`]: Some
396//! [`empty()`]: crate::iter::empty
397//! [`once(v)`]: crate::iter::once
398//!
399//! Iterators over [`Option<T>`] come in three types:
400//!
401//! * [`into_iter`] consumes the [`Option`] and produces the contained
402//!   value
403//! * [`iter`] produces an immutable reference of type `&T` to the
404//!   contained value
405//! * [`iter_mut`] produces a mutable reference of type `&mut T` to the
406//!   contained value
407//!
408//! [`into_iter`]: Option::into_iter
409//! [`iter`]: Option::iter
410//! [`iter_mut`]: Option::iter_mut
411//!
412//! An iterator over [`Option`] can be useful when chaining iterators, for
413//! example, to conditionally insert items. (It's not always necessary to
414//! explicitly call an iterator constructor: many [`Iterator`] methods that
415//! accept other iterators will also accept iterable types that implement
416//! [`IntoIterator`], which includes [`Option`].)
417//!
418//! ```
419//! let yep = Some(42);
420//! let nope = None;
421//! // chain() already calls into_iter(), so we don't have to do so
422//! let nums: Vec<i32> = (0..4).chain(yep).chain(4..8).collect();
423//! assert_eq!(nums, [0, 1, 2, 3, 42, 4, 5, 6, 7]);
424//! let nums: Vec<i32> = (0..4).chain(nope).chain(4..8).collect();
425//! assert_eq!(nums, [0, 1, 2, 3, 4, 5, 6, 7]);
426//! ```
427//!
428//! One reason to chain iterators in this way is that a function returning
429//! `impl Iterator` must have all possible return values be of the same
430//! concrete type. Chaining an iterated [`Option`] can help with that.
431//!
432//! ```
433//! fn make_iter(do_insert: bool) -> impl Iterator<Item = i32> {
434//!     // Explicit returns to illustrate return types matching
435//!     match do_insert {
436//!         true => return (0..4).chain(Some(42)).chain(4..8),
437//!         false => return (0..4).chain(None).chain(4..8),
438//!     }
439//! }
440//! println!("{:?}", make_iter(true).collect::<Vec<_>>());
441//! println!("{:?}", make_iter(false).collect::<Vec<_>>());
442//! ```
443//!
444//! If we try to do the same thing, but using [`once()`] and [`empty()`],
445//! we can't return `impl Iterator` anymore because the concrete types of
446//! the return values differ.
447//!
448//! [`empty()`]: crate::iter::empty
449//! [`once()`]: crate::iter::once
450//!
451//! ```compile_fail,E0308
452//! # use std::iter::{empty, once};
453//! // This won't compile because all possible returns from the function
454//! // must have the same concrete type.
455//! fn make_iter(do_insert: bool) -> impl Iterator<Item = i32> {
456//!     // Explicit returns to illustrate return types not matching
457//!     match do_insert {
458//!         true => return (0..4).chain(once(42)).chain(4..8),
459//!         false => return (0..4).chain(empty()).chain(4..8),
460//!     }
461//! }
462//! ```
463//!
464//! ## Collecting into `Option`
465//!
466//! [`Option`] implements the [`FromIterator`][impl-FromIterator] trait,
467//! which allows an iterator over [`Option`] values to be collected into an
468//! [`Option`] of a collection of each contained value of the original
469//! [`Option`] values, or [`None`] if any of the elements was [`None`].
470//!
471//! [impl-FromIterator]: Option#impl-FromIterator%3COption%3CA%3E%3E-for-Option%3CV%3E
472//!
473//! ```
474//! let v = [Some(2), Some(4), None, Some(8)];
475//! let res: Option<Vec<_>> = v.into_iter().collect();
476//! assert_eq!(res, None);
477//! let v = [Some(2), Some(4), Some(8)];
478//! let res: Option<Vec<_>> = v.into_iter().collect();
479//! assert_eq!(res, Some(vec![2, 4, 8]));
480//! ```
481//!
482//! [`Option`] also implements the [`Product`][impl-Product] and
483//! [`Sum`][impl-Sum] traits, allowing an iterator over [`Option`] values
484//! to provide the [`product`][Iterator::product] and
485//! [`sum`][Iterator::sum] methods.
486//!
487//! [impl-Product]: Option#impl-Product%3COption%3CU%3E%3E-for-Option%3CT%3E
488//! [impl-Sum]: Option#impl-Sum%3COption%3CU%3E%3E-for-Option%3CT%3E
489//!
490//! ```
491//! let v = [None, Some(1), Some(2), Some(3)];
492//! let res: Option<i32> = v.into_iter().sum();
493//! assert_eq!(res, None);
494//! let v = [Some(1), Some(2), Some(21)];
495//! let res: Option<i32> = v.into_iter().product();
496//! assert_eq!(res, Some(42));
497//! ```
498//!
499//! ## Modifying an [`Option`] in-place
500//!
501//! These methods return a mutable reference to the contained value of an
502//! [`Option<T>`]:
503//!
504//! * [`insert`] inserts a value, dropping any old contents
505//! * [`get_or_insert`] gets the current value, inserting a provided
506//!   default value if it is [`None`]
507//! * [`get_or_insert_default`] gets the current value, inserting the
508//!   default value of type `T` (which must implement [`Default`]) if it is
509//!   [`None`]
510//! * [`get_or_insert_with`] gets the current value, inserting a default
511//!   computed by the provided function if it is [`None`]
512//!
513//! [`get_or_insert`]: Option::get_or_insert
514//! [`get_or_insert_default`]: Option::get_or_insert_default
515//! [`get_or_insert_with`]: Option::get_or_insert_with
516//! [`insert`]: Option::insert
517//!
518//! These methods transfer ownership of the contained value of an
519//! [`Option`]:
520//!
521//! * [`take`] takes ownership of the contained value of an [`Option`], if
522//!   any, replacing the [`Option`] with [`None`]
523//! * [`replace`] takes ownership of the contained value of an [`Option`],
524//!   if any, replacing the [`Option`] with a [`Some`] containing the
525//!   provided value
526//!
527//! [`replace`]: Option::replace
528//! [`take`]: Option::take
529//!
530//! # Examples
531//!
532//! Basic pattern matching on [`Option`]:
533//!
534//! ```
535//! let msg = Some("howdy");
536//!
537//! // Take a reference to the contained string
538//! if let Some(m) = &msg {
539//!     println!("{}", *m);
540//! }
541//!
542//! // Remove the contained string, destroying the Option
543//! let unwrapped_msg = msg.unwrap_or("default message");
544//! ```
545//!
546//! Initialize a result to [`None`] before a loop:
547//!
548//! ```
549//! enum Kingdom { Plant(u32, &'static str), Animal(u32, &'static str) }
550//!
551//! // A list of data to search through.
552//! let all_the_big_things = [
553//!     Kingdom::Plant(250, "redwood"),
554//!     Kingdom::Plant(230, "noble fir"),
555//!     Kingdom::Plant(229, "sugar pine"),
556//!     Kingdom::Animal(25, "blue whale"),
557//!     Kingdom::Animal(19, "fin whale"),
558//!     Kingdom::Animal(15, "north pacific right whale"),
559//! ];
560//!
561//! // We're going to search for the name of the biggest animal,
562//! // but to start with we've just got `None`.
563//! let mut name_of_biggest_animal = None;
564//! let mut size_of_biggest_animal = 0;
565//! for big_thing in &all_the_big_things {
566//!     match *big_thing {
567//!         Kingdom::Animal(size, name) if size > size_of_biggest_animal => {
568//!             // Now we've found the name of some big animal
569//!             size_of_biggest_animal = size;
570//!             name_of_biggest_animal = Some(name);
571//!         }
572//!         Kingdom::Animal(..) | Kingdom::Plant(..) => ()
573//!     }
574//! }
575//!
576//! match name_of_biggest_animal {
577//!     Some(name) => println!("the biggest animal is {name}"),
578//!     None => println!("there are no animals :("),
579//! }
580//! ```
581
582#![stable(feature = "rust1", since = "1.0.0")]
583
584#[cfg(not(feature = "ferrocene_certified"))]
585use crate::iter::{self, FusedIterator, TrustedLen};
586use crate::marker::Destruct;
587use crate::ops::{self, ControlFlow, Deref, DerefMut};
588#[cfg(not(feature = "ferrocene_certified"))]
589use crate::panicking::{panic, panic_display};
590#[cfg(not(feature = "ferrocene_certified"))]
591use crate::pin::Pin;
592#[cfg(not(feature = "ferrocene_certified"))]
593use crate::{cmp, convert, hint, mem, slice};
594
595// Ferrocene addition: imports for certified subset
596#[cfg(feature = "ferrocene_certified")]
597#[rustfmt::skip]
598use crate::{convert, hint, mem, panicking::panic};
599
600/// The `Option` type. See [the module level documentation](self) for more.
601#[doc(search_unbox)]
602#[cfg_attr(not(feature = "ferrocene_certified"), derive(Copy, Debug, Hash))]
603#[cfg_attr(not(feature = "ferrocene_certified"), derive_const(Eq))]
604#[rustc_diagnostic_item = "Option"]
605#[lang = "Option"]
606#[stable(feature = "rust1", since = "1.0.0")]
607#[allow(clippy::derived_hash_with_manual_eq)] // PartialEq is manually implemented equivalently
608pub enum Option<T> {
609    /// No value.
610    #[lang = "None"]
611    #[stable(feature = "rust1", since = "1.0.0")]
612    None,
613    /// Some value of type `T`.
614    #[lang = "Some"]
615    #[stable(feature = "rust1", since = "1.0.0")]
616    Some(#[stable(feature = "rust1", since = "1.0.0")] T),
617}
618
619/////////////////////////////////////////////////////////////////////////////
620// Type implementation
621/////////////////////////////////////////////////////////////////////////////
622
623impl<T> Option<T> {
624    /////////////////////////////////////////////////////////////////////////
625    // Querying the contained values
626    /////////////////////////////////////////////////////////////////////////
627
628    /// Returns `true` if the option is a [`Some`] value.
629    ///
630    /// # Examples
631    ///
632    /// ```
633    /// let x: Option<u32> = Some(2);
634    /// assert_eq!(x.is_some(), true);
635    ///
636    /// let x: Option<u32> = None;
637    /// assert_eq!(x.is_some(), false);
638    /// ```
639    #[must_use = "if you intended to assert that this has a value, consider `.unwrap()` instead"]
640    #[inline]
641    #[stable(feature = "rust1", since = "1.0.0")]
642    #[rustc_const_stable(feature = "const_option_basics", since = "1.48.0")]
643    pub const fn is_some(&self) -> bool {
644        matches!(*self, Some(_))
645    }
646
647    /// Returns `true` if the option is a [`Some`] and the value inside of it matches a predicate.
648    ///
649    /// # Examples
650    ///
651    /// ```
652    /// let x: Option<u32> = Some(2);
653    /// assert_eq!(x.is_some_and(|x| x > 1), true);
654    ///
655    /// let x: Option<u32> = Some(0);
656    /// assert_eq!(x.is_some_and(|x| x > 1), false);
657    ///
658    /// let x: Option<u32> = None;
659    /// assert_eq!(x.is_some_and(|x| x > 1), false);
660    ///
661    /// let x: Option<String> = Some("ownership".to_string());
662    /// assert_eq!(x.as_ref().is_some_and(|x| x.len() > 1), true);
663    /// println!("still alive {:?}", x);
664    /// ```
665    #[must_use]
666    #[inline]
667    #[stable(feature = "is_some_and", since = "1.70.0")]
668    #[rustc_const_unstable(feature = "const_option_ops", issue = "143956")]
669    pub const fn is_some_and(self, f: impl [const] FnOnce(T) -> bool + [const] Destruct) -> bool {
670        match self {
671            None => false,
672            Some(x) => f(x),
673        }
674    }
675
676    /// Returns `true` if the option is a [`None`] value.
677    ///
678    /// # Examples
679    ///
680    /// ```
681    /// let x: Option<u32> = Some(2);
682    /// assert_eq!(x.is_none(), false);
683    ///
684    /// let x: Option<u32> = None;
685    /// assert_eq!(x.is_none(), true);
686    /// ```
687    #[must_use = "if you intended to assert that this doesn't have a value, consider \
688                  wrapping this in an `assert!()` instead"]
689    #[inline]
690    #[stable(feature = "rust1", since = "1.0.0")]
691    #[rustc_const_stable(feature = "const_option_basics", since = "1.48.0")]
692    #[cfg(not(feature = "ferrocene_certified"))]
693    pub const fn is_none(&self) -> bool {
694        !self.is_some()
695    }
696
697    /// Returns `true` if the option is a [`None`] or the value inside of it matches a predicate.
698    ///
699    /// # Examples
700    ///
701    /// ```
702    /// let x: Option<u32> = Some(2);
703    /// assert_eq!(x.is_none_or(|x| x > 1), true);
704    ///
705    /// let x: Option<u32> = Some(0);
706    /// assert_eq!(x.is_none_or(|x| x > 1), false);
707    ///
708    /// let x: Option<u32> = None;
709    /// assert_eq!(x.is_none_or(|x| x > 1), true);
710    ///
711    /// let x: Option<String> = Some("ownership".to_string());
712    /// assert_eq!(x.as_ref().is_none_or(|x| x.len() > 1), true);
713    /// println!("still alive {:?}", x);
714    /// ```
715    #[must_use]
716    #[inline]
717    #[stable(feature = "is_none_or", since = "1.82.0")]
718    #[rustc_const_unstable(feature = "const_option_ops", issue = "143956")]
719    pub const fn is_none_or(self, f: impl [const] FnOnce(T) -> bool + [const] Destruct) -> bool {
720        match self {
721            None => true,
722            Some(x) => f(x),
723        }
724    }
725
726    /////////////////////////////////////////////////////////////////////////
727    // Adapter for working with references
728    /////////////////////////////////////////////////////////////////////////
729
730    /// Converts from `&Option<T>` to `Option<&T>`.
731    ///
732    /// # Examples
733    ///
734    /// Calculates the length of an <code>Option<[String]></code> as an <code>Option<[usize]></code>
735    /// without moving the [`String`]. The [`map`] method takes the `self` argument by value,
736    /// consuming the original, so this technique uses `as_ref` to first take an `Option` to a
737    /// reference to the value inside the original.
738    ///
739    /// [`map`]: Option::map
740    /// [String]: ../../std/string/struct.String.html "String"
741    /// [`String`]: ../../std/string/struct.String.html "String"
742    ///
743    /// ```
744    /// let text: Option<String> = Some("Hello, world!".to_string());
745    /// // First, cast `Option<String>` to `Option<&String>` with `as_ref`,
746    /// // then consume *that* with `map`, leaving `text` on the stack.
747    /// let text_length: Option<usize> = text.as_ref().map(|s| s.len());
748    /// println!("still can print text: {text:?}");
749    /// ```
750    #[inline]
751    #[rustc_const_stable(feature = "const_option_basics", since = "1.48.0")]
752    #[stable(feature = "rust1", since = "1.0.0")]
753    pub const fn as_ref(&self) -> Option<&T> {
754        match *self {
755            Some(ref x) => Some(x),
756            None => None,
757        }
758    }
759
760    /// Converts from `&mut Option<T>` to `Option<&mut T>`.
761    ///
762    /// # Examples
763    ///
764    /// ```
765    /// let mut x = Some(2);
766    /// match x.as_mut() {
767    ///     Some(v) => *v = 42,
768    ///     None => {},
769    /// }
770    /// assert_eq!(x, Some(42));
771    /// ```
772    #[inline]
773    #[stable(feature = "rust1", since = "1.0.0")]
774    #[rustc_const_stable(feature = "const_option", since = "1.83.0")]
775    pub const fn as_mut(&mut self) -> Option<&mut T> {
776        match *self {
777            Some(ref mut x) => Some(x),
778            None => None,
779        }
780    }
781
782    /// Converts from <code>[Pin]<[&]Option\<T>></code> to <code>Option<[Pin]<[&]T>></code>.
783    ///
784    /// [&]: reference "shared reference"
785    #[inline]
786    #[must_use]
787    #[stable(feature = "pin", since = "1.33.0")]
788    #[rustc_const_stable(feature = "const_option_ext", since = "1.84.0")]
789    #[cfg(not(feature = "ferrocene_certified"))]
790    pub const fn as_pin_ref(self: Pin<&Self>) -> Option<Pin<&T>> {
791        // FIXME(const-hack): use `map` once that is possible
792        match Pin::get_ref(self).as_ref() {
793            // SAFETY: `x` is guaranteed to be pinned because it comes from `self`
794            // which is pinned.
795            Some(x) => unsafe { Some(Pin::new_unchecked(x)) },
796            None => None,
797        }
798    }
799
800    /// Converts from <code>[Pin]<[&mut] Option\<T>></code> to <code>Option<[Pin]<[&mut] T>></code>.
801    ///
802    /// [&mut]: reference "mutable reference"
803    #[inline]
804    #[must_use]
805    #[stable(feature = "pin", since = "1.33.0")]
806    #[rustc_const_stable(feature = "const_option_ext", since = "1.84.0")]
807    #[cfg(not(feature = "ferrocene_certified"))]
808    pub const fn as_pin_mut(self: Pin<&mut Self>) -> Option<Pin<&mut T>> {
809        // SAFETY: `get_unchecked_mut` is never used to move the `Option` inside `self`.
810        // `x` is guaranteed to be pinned because it comes from `self` which is pinned.
811        unsafe {
812            // FIXME(const-hack): use `map` once that is possible
813            match Pin::get_unchecked_mut(self).as_mut() {
814                Some(x) => Some(Pin::new_unchecked(x)),
815                None => None,
816            }
817        }
818    }
819
820    #[inline]
821    const fn len(&self) -> usize {
822        // Using the intrinsic avoids emitting a branch to get the 0 or 1.
823        let discriminant: isize = crate::intrinsics::discriminant_value(self);
824        discriminant as usize
825    }
826
827    /// Returns a slice of the contained value, if any. If this is `None`, an
828    /// empty slice is returned. This can be useful to have a single type of
829    /// iterator over an `Option` or slice.
830    ///
831    /// Note: Should you have an `Option<&T>` and wish to get a slice of `T`,
832    /// you can unpack it via `opt.map_or(&[], std::slice::from_ref)`.
833    ///
834    /// # Examples
835    ///
836    /// ```rust
837    /// assert_eq!(
838    ///     [Some(1234).as_slice(), None.as_slice()],
839    ///     [&[1234][..], &[][..]],
840    /// );
841    /// ```
842    ///
843    /// The inverse of this function is (discounting
844    /// borrowing) [`[_]::first`](slice::first):
845    ///
846    /// ```rust
847    /// for i in [Some(1234_u16), None] {
848    ///     assert_eq!(i.as_ref(), i.as_slice().first());
849    /// }
850    /// ```
851    #[inline]
852    #[must_use]
853    #[stable(feature = "option_as_slice", since = "1.75.0")]
854    #[rustc_const_stable(feature = "const_option_ext", since = "1.84.0")]
855    #[cfg(not(feature = "ferrocene_certified"))]
856    pub const fn as_slice(&self) -> &[T] {
857        // SAFETY: When the `Option` is `Some`, we're using the actual pointer
858        // to the payload, with a length of 1, so this is equivalent to
859        // `slice::from_ref`, and thus is safe.
860        // When the `Option` is `None`, the length used is 0, so to be safe it
861        // just needs to be aligned, which it is because `&self` is aligned and
862        // the offset used is a multiple of alignment.
863        //
864        // Here we assume that `offset_of!` always returns an offset to an
865        // in-bounds and correctly aligned position for a `T` (even if in the
866        // `None` case it's just padding).
867        unsafe {
868            slice::from_raw_parts(
869                (self as *const Self).byte_add(core::mem::offset_of!(Self, Some.0)).cast(),
870                self.len(),
871            )
872        }
873    }
874
875    /// Returns a mutable slice of the contained value, if any. If this is
876    /// `None`, an empty slice is returned. This can be useful to have a
877    /// single type of iterator over an `Option` or slice.
878    ///
879    /// Note: Should you have an `Option<&mut T>` instead of a
880    /// `&mut Option<T>`, which this method takes, you can obtain a mutable
881    /// slice via `opt.map_or(&mut [], std::slice::from_mut)`.
882    ///
883    /// # Examples
884    ///
885    /// ```rust
886    /// assert_eq!(
887    ///     [Some(1234).as_mut_slice(), None.as_mut_slice()],
888    ///     [&mut [1234][..], &mut [][..]],
889    /// );
890    /// ```
891    ///
892    /// The result is a mutable slice of zero or one items that points into
893    /// our original `Option`:
894    ///
895    /// ```rust
896    /// let mut x = Some(1234);
897    /// x.as_mut_slice()[0] += 1;
898    /// assert_eq!(x, Some(1235));
899    /// ```
900    ///
901    /// The inverse of this method (discounting borrowing)
902    /// is [`[_]::first_mut`](slice::first_mut):
903    ///
904    /// ```rust
905    /// assert_eq!(Some(123).as_mut_slice().first_mut(), Some(&mut 123))
906    /// ```
907    #[inline]
908    #[must_use]
909    #[stable(feature = "option_as_slice", since = "1.75.0")]
910    #[rustc_const_stable(feature = "const_option_ext", since = "1.84.0")]
911    #[cfg(not(feature = "ferrocene_certified"))]
912    pub const fn as_mut_slice(&mut self) -> &mut [T] {
913        // SAFETY: When the `Option` is `Some`, we're using the actual pointer
914        // to the payload, with a length of 1, so this is equivalent to
915        // `slice::from_mut`, and thus is safe.
916        // When the `Option` is `None`, the length used is 0, so to be safe it
917        // just needs to be aligned, which it is because `&self` is aligned and
918        // the offset used is a multiple of alignment.
919        //
920        // In the new version, the intrinsic creates a `*const T` from a
921        // mutable reference  so it is safe to cast back to a mutable pointer
922        // here. As with `as_slice`, the intrinsic always returns a pointer to
923        // an in-bounds and correctly aligned position for a `T` (even if in
924        // the `None` case it's just padding).
925        unsafe {
926            slice::from_raw_parts_mut(
927                (self as *mut Self).byte_add(core::mem::offset_of!(Self, Some.0)).cast(),
928                self.len(),
929            )
930        }
931    }
932
933    /////////////////////////////////////////////////////////////////////////
934    // Getting to contained values
935    /////////////////////////////////////////////////////////////////////////
936
937    /// Returns the contained [`Some`] value, consuming the `self` value.
938    ///
939    /// # Panics
940    ///
941    /// Panics if the value is a [`None`] with a custom panic message provided by
942    /// `msg`.
943    ///
944    /// # Examples
945    ///
946    /// ```
947    /// let x = Some("value");
948    /// assert_eq!(x.expect("fruits are healthy"), "value");
949    /// ```
950    ///
951    /// ```should_panic
952    /// let x: Option<&str> = None;
953    /// x.expect("fruits are healthy"); // panics with `fruits are healthy`
954    /// ```
955    ///
956    /// # Recommended Message Style
957    ///
958    /// We recommend that `expect` messages are used to describe the reason you
959    /// _expect_ the `Option` should be `Some`.
960    ///
961    /// ```should_panic
962    /// # let slice: &[u8] = &[];
963    /// let item = slice.get(0)
964    ///     .expect("slice should not be empty");
965    /// ```
966    ///
967    /// **Hint**: If you're having trouble remembering how to phrase expect
968    /// error messages remember to focus on the word "should" as in "env
969    /// variable should be set by blah" or "the given binary should be available
970    /// and executable by the current user".
971    ///
972    /// For more detail on expect message styles and the reasoning behind our
973    /// recommendation please refer to the section on ["Common Message
974    /// Styles"](../../std/error/index.html#common-message-styles) in the [`std::error`](../../std/error/index.html) module docs.
975    #[inline]
976    #[track_caller]
977    #[stable(feature = "rust1", since = "1.0.0")]
978    #[rustc_diagnostic_item = "option_expect"]
979    #[rustc_allow_const_fn_unstable(const_precise_live_drops)]
980    #[rustc_const_stable(feature = "const_option", since = "1.83.0")]
981    pub const fn expect(
982        self,
983        #[cfg(not(feature = "ferrocene_certified"))] msg: &str,
984        #[cfg(feature = "ferrocene_certified")] msg: &'static str,
985    ) -> T {
986        match self {
987            Some(val) => val,
988            #[cfg(not(feature = "ferrocene_certified"))]
989            None => expect_failed(msg),
990            #[cfg(feature = "ferrocene_certified")]
991            None => panic(msg),
992        }
993    }
994
995    /// Returns the contained [`Some`] value, consuming the `self` value.
996    ///
997    /// Because this function may panic, its use is generally discouraged.
998    /// Panics are meant for unrecoverable errors, and
999    /// [may abort the entire program][panic-abort].
1000    ///
1001    /// Instead, prefer to use pattern matching and handle the [`None`]
1002    /// case explicitly, or call [`unwrap_or`], [`unwrap_or_else`], or
1003    /// [`unwrap_or_default`]. In functions returning `Option`, you can use
1004    /// [the `?` (try) operator][try-option].
1005    ///
1006    /// [panic-abort]: https://doc.rust-lang.org/book/ch09-01-unrecoverable-errors-with-panic.html
1007    /// [try-option]: https://doc.rust-lang.org/book/ch09-02-recoverable-errors-with-result.html#where-the--operator-can-be-used
1008    /// [`unwrap_or`]: Option::unwrap_or
1009    /// [`unwrap_or_else`]: Option::unwrap_or_else
1010    /// [`unwrap_or_default`]: Option::unwrap_or_default
1011    ///
1012    /// # Panics
1013    ///
1014    /// Panics if the self value equals [`None`].
1015    ///
1016    /// # Examples
1017    ///
1018    /// ```
1019    /// let x = Some("air");
1020    /// assert_eq!(x.unwrap(), "air");
1021    /// ```
1022    ///
1023    /// ```should_panic
1024    /// let x: Option<&str> = None;
1025    /// assert_eq!(x.unwrap(), "air"); // fails
1026    /// ```
1027    #[inline(always)]
1028    #[track_caller]
1029    #[stable(feature = "rust1", since = "1.0.0")]
1030    #[rustc_diagnostic_item = "option_unwrap"]
1031    #[rustc_allow_const_fn_unstable(const_precise_live_drops)]
1032    #[rustc_const_stable(feature = "const_option", since = "1.83.0")]
1033    pub const fn unwrap(self) -> T {
1034        match self {
1035            Some(val) => val,
1036            None => unwrap_failed(),
1037        }
1038    }
1039
1040    /// Returns the contained [`Some`] value or a provided default.
1041    ///
1042    /// Arguments passed to `unwrap_or` are eagerly evaluated; if you are passing
1043    /// the result of a function call, it is recommended to use [`unwrap_or_else`],
1044    /// which is lazily evaluated.
1045    ///
1046    /// [`unwrap_or_else`]: Option::unwrap_or_else
1047    ///
1048    /// # Examples
1049    ///
1050    /// ```
1051    /// assert_eq!(Some("car").unwrap_or("bike"), "car");
1052    /// assert_eq!(None.unwrap_or("bike"), "bike");
1053    /// ```
1054    #[inline]
1055    #[stable(feature = "rust1", since = "1.0.0")]
1056    #[rustc_allow_const_fn_unstable(const_precise_live_drops)]
1057    #[rustc_const_unstable(feature = "const_option_ops", issue = "143956")]
1058    pub const fn unwrap_or(self, default: T) -> T
1059    where
1060        T: [const] Destruct,
1061    {
1062        match self {
1063            Some(x) => x,
1064            None => default,
1065        }
1066    }
1067
1068    /// Returns the contained [`Some`] value or computes it from a closure.
1069    ///
1070    /// # Examples
1071    ///
1072    /// ```
1073    /// let k = 10;
1074    /// assert_eq!(Some(4).unwrap_or_else(|| 2 * k), 4);
1075    /// assert_eq!(None.unwrap_or_else(|| 2 * k), 20);
1076    /// ```
1077    #[inline]
1078    #[track_caller]
1079    #[stable(feature = "rust1", since = "1.0.0")]
1080    #[rustc_const_unstable(feature = "const_option_ops", issue = "143956")]
1081    pub const fn unwrap_or_else<F>(self, f: F) -> T
1082    where
1083        F: [const] FnOnce() -> T + [const] Destruct,
1084    {
1085        match self {
1086            Some(x) => x,
1087            None => f(),
1088        }
1089    }
1090
1091    /// Returns the contained [`Some`] value or a default.
1092    ///
1093    /// Consumes the `self` argument then, if [`Some`], returns the contained
1094    /// value, otherwise if [`None`], returns the [default value] for that
1095    /// type.
1096    ///
1097    /// # Examples
1098    ///
1099    /// ```
1100    /// let x: Option<u32> = None;
1101    /// let y: Option<u32> = Some(12);
1102    ///
1103    /// assert_eq!(x.unwrap_or_default(), 0);
1104    /// assert_eq!(y.unwrap_or_default(), 12);
1105    /// ```
1106    ///
1107    /// [default value]: Default::default
1108    /// [`parse`]: str::parse
1109    /// [`FromStr`]: crate::str::FromStr
1110    #[inline]
1111    #[stable(feature = "rust1", since = "1.0.0")]
1112    #[rustc_const_unstable(feature = "const_option_ops", issue = "143956")]
1113    pub const fn unwrap_or_default(self) -> T
1114    where
1115        T: [const] Default,
1116    {
1117        match self {
1118            Some(x) => x,
1119            None => T::default(),
1120        }
1121    }
1122
1123    /// Returns the contained [`Some`] value, consuming the `self` value,
1124    /// without checking that the value is not [`None`].
1125    ///
1126    /// # Safety
1127    ///
1128    /// Calling this method on [`None`] is *[undefined behavior]*.
1129    ///
1130    /// [undefined behavior]: https://doc.rust-lang.org/reference/behavior-considered-undefined.html
1131    ///
1132    /// # Examples
1133    ///
1134    /// ```
1135    /// let x = Some("air");
1136    /// assert_eq!(unsafe { x.unwrap_unchecked() }, "air");
1137    /// ```
1138    ///
1139    /// ```no_run
1140    /// let x: Option<&str> = None;
1141    /// assert_eq!(unsafe { x.unwrap_unchecked() }, "air"); // Undefined behavior!
1142    /// ```
1143    #[inline]
1144    #[track_caller]
1145    #[stable(feature = "option_result_unwrap_unchecked", since = "1.58.0")]
1146    #[rustc_allow_const_fn_unstable(const_precise_live_drops)]
1147    #[rustc_const_stable(feature = "const_option", since = "1.83.0")]
1148    pub const unsafe fn unwrap_unchecked(self) -> T {
1149        match self {
1150            Some(val) => val,
1151            #[ferrocene::annotation(
1152                "This line cannot be covered as reaching `unreachable_unchecked` is undefined behavior."
1153            )]
1154            // SAFETY: the safety contract must be upheld by the caller.
1155            None => unsafe { hint::unreachable_unchecked() },
1156        }
1157    }
1158
1159    /////////////////////////////////////////////////////////////////////////
1160    // Transforming contained values
1161    /////////////////////////////////////////////////////////////////////////
1162
1163    /// Maps an `Option<T>` to `Option<U>` by applying a function to a contained value (if `Some`) or returns `None` (if `None`).
1164    ///
1165    /// # Examples
1166    ///
1167    /// Calculates the length of an <code>Option<[String]></code> as an
1168    /// <code>Option<[usize]></code>, consuming the original:
1169    ///
1170    /// [String]: ../../std/string/struct.String.html "String"
1171    /// ```
1172    /// let maybe_some_string = Some(String::from("Hello, World!"));
1173    /// // `Option::map` takes self *by value*, consuming `maybe_some_string`
1174    /// let maybe_some_len = maybe_some_string.map(|s| s.len());
1175    /// assert_eq!(maybe_some_len, Some(13));
1176    ///
1177    /// let x: Option<&str> = None;
1178    /// assert_eq!(x.map(|s| s.len()), None);
1179    /// ```
1180    #[inline]
1181    #[stable(feature = "rust1", since = "1.0.0")]
1182    #[rustc_const_unstable(feature = "const_option_ops", issue = "143956")]
1183    pub const fn map<U, F>(self, f: F) -> Option<U>
1184    where
1185        F: [const] FnOnce(T) -> U + [const] Destruct,
1186    {
1187        match self {
1188            Some(x) => Some(f(x)),
1189            None => None,
1190        }
1191    }
1192
1193    /// Calls a function with a reference to the contained value if [`Some`].
1194    ///
1195    /// Returns the original option.
1196    ///
1197    /// # Examples
1198    ///
1199    /// ```
1200    /// let list = vec![1, 2, 3];
1201    ///
1202    /// // prints "got: 2"
1203    /// let x = list
1204    ///     .get(1)
1205    ///     .inspect(|x| println!("got: {x}"))
1206    ///     .expect("list should be long enough");
1207    ///
1208    /// // prints nothing
1209    /// list.get(5).inspect(|x| println!("got: {x}"));
1210    /// ```
1211    #[inline]
1212    #[stable(feature = "result_option_inspect", since = "1.76.0")]
1213    #[rustc_const_unstable(feature = "const_option_ops", issue = "143956")]
1214    pub const fn inspect<F>(self, f: F) -> Self
1215    where
1216        F: [const] FnOnce(&T) + [const] Destruct,
1217    {
1218        if let Some(ref x) = self {
1219            f(x);
1220        }
1221
1222        self
1223    }
1224
1225    /// Returns the provided default result (if none),
1226    /// or applies a function to the contained value (if any).
1227    ///
1228    /// Arguments passed to `map_or` are eagerly evaluated; if you are passing
1229    /// the result of a function call, it is recommended to use [`map_or_else`],
1230    /// which is lazily evaluated.
1231    ///
1232    /// [`map_or_else`]: Option::map_or_else
1233    ///
1234    /// # Examples
1235    ///
1236    /// ```
1237    /// let x = Some("foo");
1238    /// assert_eq!(x.map_or(42, |v| v.len()), 3);
1239    ///
1240    /// let x: Option<&str> = None;
1241    /// assert_eq!(x.map_or(42, |v| v.len()), 42);
1242    /// ```
1243    #[inline]
1244    #[stable(feature = "rust1", since = "1.0.0")]
1245    #[must_use = "if you don't need the returned value, use `if let` instead"]
1246    #[rustc_const_unstable(feature = "const_option_ops", issue = "143956")]
1247    pub const fn map_or<U, F>(self, default: U, f: F) -> U
1248    where
1249        F: [const] FnOnce(T) -> U + [const] Destruct,
1250        U: [const] Destruct,
1251    {
1252        match self {
1253            Some(t) => f(t),
1254            None => default,
1255        }
1256    }
1257
1258    /// Computes a default function result (if none), or
1259    /// applies a different function to the contained value (if any).
1260    ///
1261    /// # Basic examples
1262    ///
1263    /// ```
1264    /// let k = 21;
1265    ///
1266    /// let x = Some("foo");
1267    /// assert_eq!(x.map_or_else(|| 2 * k, |v| v.len()), 3);
1268    ///
1269    /// let x: Option<&str> = None;
1270    /// assert_eq!(x.map_or_else(|| 2 * k, |v| v.len()), 42);
1271    /// ```
1272    ///
1273    /// # Handling a Result-based fallback
1274    ///
1275    /// A somewhat common occurrence when dealing with optional values
1276    /// in combination with [`Result<T, E>`] is the case where one wants to invoke
1277    /// a fallible fallback if the option is not present.  This example
1278    /// parses a command line argument (if present), or the contents of a file to
1279    /// an integer.  However, unlike accessing the command line argument, reading
1280    /// the file is fallible, so it must be wrapped with `Ok`.
1281    ///
1282    /// ```no_run
1283    /// # fn main() -> Result<(), Box<dyn std::error::Error>> {
1284    /// let v: u64 = std::env::args()
1285    ///    .nth(1)
1286    ///    .map_or_else(|| std::fs::read_to_string("/etc/someconfig.conf"), Ok)?
1287    ///    .parse()?;
1288    /// #   Ok(())
1289    /// # }
1290    /// ```
1291    #[inline]
1292    #[stable(feature = "rust1", since = "1.0.0")]
1293    #[rustc_const_unstable(feature = "const_option_ops", issue = "143956")]
1294    pub const fn map_or_else<U, D, F>(self, default: D, f: F) -> U
1295    where
1296        D: [const] FnOnce() -> U + [const] Destruct,
1297        F: [const] FnOnce(T) -> U + [const] Destruct,
1298    {
1299        match self {
1300            Some(t) => f(t),
1301            None => default(),
1302        }
1303    }
1304
1305    /// Maps an `Option<T>` to a `U` by applying function `f` to the contained
1306    /// value if the option is [`Some`], otherwise if [`None`], returns the
1307    /// [default value] for the type `U`.
1308    ///
1309    /// # Examples
1310    ///
1311    /// ```
1312    /// #![feature(result_option_map_or_default)]
1313    ///
1314    /// let x: Option<&str> = Some("hi");
1315    /// let y: Option<&str> = None;
1316    ///
1317    /// assert_eq!(x.map_or_default(|x| x.len()), 2);
1318    /// assert_eq!(y.map_or_default(|y| y.len()), 0);
1319    /// ```
1320    ///
1321    /// [default value]: Default::default
1322    #[inline]
1323    #[unstable(feature = "result_option_map_or_default", issue = "138099")]
1324    #[rustc_const_unstable(feature = "const_option_ops", issue = "143956")]
1325    pub const fn map_or_default<U, F>(self, f: F) -> U
1326    where
1327        U: [const] Default,
1328        F: [const] FnOnce(T) -> U + [const] Destruct,
1329    {
1330        match self {
1331            Some(t) => f(t),
1332            None => U::default(),
1333        }
1334    }
1335
1336    /// Transforms the `Option<T>` into a [`Result<T, E>`], mapping [`Some(v)`] to
1337    /// [`Ok(v)`] and [`None`] to [`Err(err)`].
1338    ///
1339    /// Arguments passed to `ok_or` are eagerly evaluated; if you are passing the
1340    /// result of a function call, it is recommended to use [`ok_or_else`], which is
1341    /// lazily evaluated.
1342    ///
1343    /// [`Ok(v)`]: Ok
1344    /// [`Err(err)`]: Err
1345    /// [`Some(v)`]: Some
1346    /// [`ok_or_else`]: Option::ok_or_else
1347    ///
1348    /// # Examples
1349    ///
1350    /// ```
1351    /// let x = Some("foo");
1352    /// assert_eq!(x.ok_or(0), Ok("foo"));
1353    ///
1354    /// let x: Option<&str> = None;
1355    /// assert_eq!(x.ok_or(0), Err(0));
1356    /// ```
1357    #[inline]
1358    #[stable(feature = "rust1", since = "1.0.0")]
1359    #[rustc_const_unstable(feature = "const_option_ops", issue = "143956")]
1360    pub const fn ok_or<E: [const] Destruct>(self, err: E) -> Result<T, E> {
1361        match self {
1362            Some(v) => Ok(v),
1363            None => Err(err),
1364        }
1365    }
1366
1367    /// Transforms the `Option<T>` into a [`Result<T, E>`], mapping [`Some(v)`] to
1368    /// [`Ok(v)`] and [`None`] to [`Err(err())`].
1369    ///
1370    /// [`Ok(v)`]: Ok
1371    /// [`Err(err())`]: Err
1372    /// [`Some(v)`]: Some
1373    ///
1374    /// # Examples
1375    ///
1376    /// ```
1377    /// let x = Some("foo");
1378    /// assert_eq!(x.ok_or_else(|| 0), Ok("foo"));
1379    ///
1380    /// let x: Option<&str> = None;
1381    /// assert_eq!(x.ok_or_else(|| 0), Err(0));
1382    /// ```
1383    #[inline]
1384    #[stable(feature = "rust1", since = "1.0.0")]
1385    #[rustc_const_unstable(feature = "const_option_ops", issue = "143956")]
1386    pub const fn ok_or_else<E, F>(self, err: F) -> Result<T, E>
1387    where
1388        F: [const] FnOnce() -> E + [const] Destruct,
1389    {
1390        match self {
1391            Some(v) => Ok(v),
1392            None => Err(err()),
1393        }
1394    }
1395
1396    /// Converts from `Option<T>` (or `&Option<T>`) to `Option<&T::Target>`.
1397    ///
1398    /// Leaves the original Option in-place, creating a new one with a reference
1399    /// to the original one, additionally coercing the contents via [`Deref`].
1400    ///
1401    /// # Examples
1402    ///
1403    /// ```
1404    /// let x: Option<String> = Some("hey".to_owned());
1405    /// assert_eq!(x.as_deref(), Some("hey"));
1406    ///
1407    /// let x: Option<String> = None;
1408    /// assert_eq!(x.as_deref(), None);
1409    /// ```
1410    #[inline]
1411    #[stable(feature = "option_deref", since = "1.40.0")]
1412    #[rustc_const_unstable(feature = "const_convert", issue = "143773")]
1413    pub const fn as_deref(&self) -> Option<&T::Target>
1414    where
1415        T: [const] Deref,
1416    {
1417        self.as_ref().map(Deref::deref)
1418    }
1419
1420    /// Converts from `Option<T>` (or `&mut Option<T>`) to `Option<&mut T::Target>`.
1421    ///
1422    /// Leaves the original `Option` in-place, creating a new one containing a mutable reference to
1423    /// the inner type's [`Deref::Target`] type.
1424    ///
1425    /// # Examples
1426    ///
1427    /// ```
1428    /// let mut x: Option<String> = Some("hey".to_owned());
1429    /// assert_eq!(x.as_deref_mut().map(|x| {
1430    ///     x.make_ascii_uppercase();
1431    ///     x
1432    /// }), Some("HEY".to_owned().as_mut_str()));
1433    /// ```
1434    #[inline]
1435    #[stable(feature = "option_deref", since = "1.40.0")]
1436    #[rustc_const_unstable(feature = "const_convert", issue = "143773")]
1437    pub const fn as_deref_mut(&mut self) -> Option<&mut T::Target>
1438    where
1439        T: [const] DerefMut,
1440    {
1441        self.as_mut().map(DerefMut::deref_mut)
1442    }
1443
1444    /////////////////////////////////////////////////////////////////////////
1445    // Iterator constructors
1446    /////////////////////////////////////////////////////////////////////////
1447
1448    /// Returns an iterator over the possibly contained value.
1449    ///
1450    /// # Examples
1451    ///
1452    /// ```
1453    /// let x = Some(4);
1454    /// assert_eq!(x.iter().next(), Some(&4));
1455    ///
1456    /// let x: Option<u32> = None;
1457    /// assert_eq!(x.iter().next(), None);
1458    /// ```
1459    #[inline]
1460    #[stable(feature = "rust1", since = "1.0.0")]
1461    pub fn iter(&self) -> Iter<'_, T> {
1462        Iter { inner: Item { opt: self.as_ref() } }
1463    }
1464
1465    /// Returns a mutable iterator over the possibly contained value.
1466    ///
1467    /// # Examples
1468    ///
1469    /// ```
1470    /// let mut x = Some(4);
1471    /// match x.iter_mut().next() {
1472    ///     Some(v) => *v = 42,
1473    ///     None => {},
1474    /// }
1475    /// assert_eq!(x, Some(42));
1476    ///
1477    /// let mut x: Option<u32> = None;
1478    /// assert_eq!(x.iter_mut().next(), None);
1479    /// ```
1480    #[inline]
1481    #[stable(feature = "rust1", since = "1.0.0")]
1482    pub fn iter_mut(&mut self) -> IterMut<'_, T> {
1483        IterMut { inner: Item { opt: self.as_mut() } }
1484    }
1485
1486    /////////////////////////////////////////////////////////////////////////
1487    // Boolean operations on the values, eager and lazy
1488    /////////////////////////////////////////////////////////////////////////
1489
1490    /// Returns [`None`] if the option is [`None`], otherwise returns `optb`.
1491    ///
1492    /// Arguments passed to `and` are eagerly evaluated; if you are passing the
1493    /// result of a function call, it is recommended to use [`and_then`], which is
1494    /// lazily evaluated.
1495    ///
1496    /// [`and_then`]: Option::and_then
1497    ///
1498    /// # Examples
1499    ///
1500    /// ```
1501    /// let x = Some(2);
1502    /// let y: Option<&str> = None;
1503    /// assert_eq!(x.and(y), None);
1504    ///
1505    /// let x: Option<u32> = None;
1506    /// let y = Some("foo");
1507    /// assert_eq!(x.and(y), None);
1508    ///
1509    /// let x = Some(2);
1510    /// let y = Some("foo");
1511    /// assert_eq!(x.and(y), Some("foo"));
1512    ///
1513    /// let x: Option<u32> = None;
1514    /// let y: Option<&str> = None;
1515    /// assert_eq!(x.and(y), None);
1516    /// ```
1517    #[inline]
1518    #[stable(feature = "rust1", since = "1.0.0")]
1519    #[rustc_const_unstable(feature = "const_option_ops", issue = "143956")]
1520    pub const fn and<U>(self, optb: Option<U>) -> Option<U>
1521    where
1522        T: [const] Destruct,
1523        U: [const] Destruct,
1524    {
1525        match self {
1526            Some(_) => optb,
1527            None => None,
1528        }
1529    }
1530
1531    /// Returns [`None`] if the option is [`None`], otherwise calls `f` with the
1532    /// wrapped value and returns the result.
1533    ///
1534    /// Some languages call this operation flatmap.
1535    ///
1536    /// # Examples
1537    ///
1538    /// ```
1539    /// fn sq_then_to_string(x: u32) -> Option<String> {
1540    ///     x.checked_mul(x).map(|sq| sq.to_string())
1541    /// }
1542    ///
1543    /// assert_eq!(Some(2).and_then(sq_then_to_string), Some(4.to_string()));
1544    /// assert_eq!(Some(1_000_000).and_then(sq_then_to_string), None); // overflowed!
1545    /// assert_eq!(None.and_then(sq_then_to_string), None);
1546    /// ```
1547    ///
1548    /// Often used to chain fallible operations that may return [`None`].
1549    ///
1550    /// ```
1551    /// let arr_2d = [["A0", "A1"], ["B0", "B1"]];
1552    ///
1553    /// let item_0_1 = arr_2d.get(0).and_then(|row| row.get(1));
1554    /// assert_eq!(item_0_1, Some(&"A1"));
1555    ///
1556    /// let item_2_0 = arr_2d.get(2).and_then(|row| row.get(0));
1557    /// assert_eq!(item_2_0, None);
1558    /// ```
1559    #[doc(alias = "flatmap")]
1560    #[inline]
1561    #[stable(feature = "rust1", since = "1.0.0")]
1562    #[rustc_confusables("flat_map", "flatmap")]
1563    #[rustc_const_unstable(feature = "const_option_ops", issue = "143956")]
1564    pub const fn and_then<U, F>(self, f: F) -> Option<U>
1565    where
1566        F: [const] FnOnce(T) -> Option<U> + [const] Destruct,
1567    {
1568        match self {
1569            Some(x) => f(x),
1570            None => None,
1571        }
1572    }
1573
1574    /// Returns [`None`] if the option is [`None`], otherwise calls `predicate`
1575    /// with the wrapped value and returns:
1576    ///
1577    /// - [`Some(t)`] if `predicate` returns `true` (where `t` is the wrapped
1578    ///   value), and
1579    /// - [`None`] if `predicate` returns `false`.
1580    ///
1581    /// This function works similar to [`Iterator::filter()`]. You can imagine
1582    /// the `Option<T>` being an iterator over one or zero elements. `filter()`
1583    /// lets you decide which elements to keep.
1584    ///
1585    /// # Examples
1586    ///
1587    /// ```rust
1588    /// fn is_even(n: &i32) -> bool {
1589    ///     n % 2 == 0
1590    /// }
1591    ///
1592    /// assert_eq!(None.filter(is_even), None);
1593    /// assert_eq!(Some(3).filter(is_even), None);
1594    /// assert_eq!(Some(4).filter(is_even), Some(4));
1595    /// ```
1596    ///
1597    /// [`Some(t)`]: Some
1598    #[inline]
1599    #[stable(feature = "option_filter", since = "1.27.0")]
1600    #[rustc_const_unstable(feature = "const_option_ops", issue = "143956")]
1601    pub const fn filter<P>(self, predicate: P) -> Self
1602    where
1603        P: [const] FnOnce(&T) -> bool + [const] Destruct,
1604        T: [const] Destruct,
1605    {
1606        if let Some(x) = self {
1607            if predicate(&x) {
1608                return Some(x);
1609            }
1610        }
1611        None
1612    }
1613
1614    /// Returns the option if it contains a value, otherwise returns `optb`.
1615    ///
1616    /// Arguments passed to `or` are eagerly evaluated; if you are passing the
1617    /// result of a function call, it is recommended to use [`or_else`], which is
1618    /// lazily evaluated.
1619    ///
1620    /// [`or_else`]: Option::or_else
1621    ///
1622    /// # Examples
1623    ///
1624    /// ```
1625    /// let x = Some(2);
1626    /// let y = None;
1627    /// assert_eq!(x.or(y), Some(2));
1628    ///
1629    /// let x = None;
1630    /// let y = Some(100);
1631    /// assert_eq!(x.or(y), Some(100));
1632    ///
1633    /// let x = Some(2);
1634    /// let y = Some(100);
1635    /// assert_eq!(x.or(y), Some(2));
1636    ///
1637    /// let x: Option<u32> = None;
1638    /// let y = None;
1639    /// assert_eq!(x.or(y), None);
1640    /// ```
1641    #[inline]
1642    #[stable(feature = "rust1", since = "1.0.0")]
1643    #[rustc_const_unstable(feature = "const_option_ops", issue = "143956")]
1644    pub const fn or(self, optb: Option<T>) -> Option<T>
1645    where
1646        T: [const] Destruct,
1647    {
1648        match self {
1649            x @ Some(_) => x,
1650            None => optb,
1651        }
1652    }
1653
1654    /// Returns the option if it contains a value, otherwise calls `f` and
1655    /// returns the result.
1656    ///
1657    /// # Examples
1658    ///
1659    /// ```
1660    /// fn nobody() -> Option<&'static str> { None }
1661    /// fn vikings() -> Option<&'static str> { Some("vikings") }
1662    ///
1663    /// assert_eq!(Some("barbarians").or_else(vikings), Some("barbarians"));
1664    /// assert_eq!(None.or_else(vikings), Some("vikings"));
1665    /// assert_eq!(None.or_else(nobody), None);
1666    /// ```
1667    #[inline]
1668    #[stable(feature = "rust1", since = "1.0.0")]
1669    #[rustc_const_unstable(feature = "const_option_ops", issue = "143956")]
1670    pub const fn or_else<F>(self, f: F) -> Option<T>
1671    where
1672        F: [const] FnOnce() -> Option<T> + [const] Destruct,
1673        //FIXME(const_hack): this `T: [const] Destruct` is unnecessary, but even precise live drops can't tell
1674        // no value of type `T` gets dropped here
1675        T: [const] Destruct,
1676    {
1677        match self {
1678            x @ Some(_) => x,
1679            None => f(),
1680        }
1681    }
1682
1683    /// Returns [`Some`] if exactly one of `self`, `optb` is [`Some`], otherwise returns [`None`].
1684    ///
1685    /// # Examples
1686    ///
1687    /// ```
1688    /// let x = Some(2);
1689    /// let y: Option<u32> = None;
1690    /// assert_eq!(x.xor(y), Some(2));
1691    ///
1692    /// let x: Option<u32> = None;
1693    /// let y = Some(2);
1694    /// assert_eq!(x.xor(y), Some(2));
1695    ///
1696    /// let x = Some(2);
1697    /// let y = Some(2);
1698    /// assert_eq!(x.xor(y), None);
1699    ///
1700    /// let x: Option<u32> = None;
1701    /// let y: Option<u32> = None;
1702    /// assert_eq!(x.xor(y), None);
1703    /// ```
1704    #[inline]
1705    #[stable(feature = "option_xor", since = "1.37.0")]
1706    #[rustc_const_unstable(feature = "const_option_ops", issue = "143956")]
1707    pub const fn xor(self, optb: Option<T>) -> Option<T>
1708    where
1709        T: [const] Destruct,
1710    {
1711        match (self, optb) {
1712            (a @ Some(_), None) => a,
1713            (None, b @ Some(_)) => b,
1714            _ => None,
1715        }
1716    }
1717
1718    /////////////////////////////////////////////////////////////////////////
1719    // Entry-like operations to insert a value and return a reference
1720    /////////////////////////////////////////////////////////////////////////
1721
1722    /// Inserts `value` into the option, then returns a mutable reference to it.
1723    ///
1724    /// If the option already contains a value, the old value is dropped.
1725    ///
1726    /// See also [`Option::get_or_insert`], which doesn't update the value if
1727    /// the option already contains [`Some`].
1728    ///
1729    /// # Example
1730    ///
1731    /// ```
1732    /// let mut opt = None;
1733    /// let val = opt.insert(1);
1734    /// assert_eq!(*val, 1);
1735    /// assert_eq!(opt.unwrap(), 1);
1736    /// let val = opt.insert(2);
1737    /// assert_eq!(*val, 2);
1738    /// *val = 3;
1739    /// assert_eq!(opt.unwrap(), 3);
1740    /// ```
1741    #[must_use = "if you intended to set a value, consider assignment instead"]
1742    #[inline]
1743    #[stable(feature = "option_insert", since = "1.53.0")]
1744    #[rustc_const_unstable(feature = "const_option_ops", issue = "143956")]
1745    #[cfg(not(feature = "ferrocene_certified"))]
1746    pub const fn insert(&mut self, value: T) -> &mut T
1747    where
1748        T: [const] Destruct,
1749    {
1750        *self = Some(value);
1751
1752        // SAFETY: the code above just filled the option
1753        unsafe { self.as_mut().unwrap_unchecked() }
1754    }
1755
1756    /// Inserts `value` into the option if it is [`None`], then
1757    /// returns a mutable reference to the contained value.
1758    ///
1759    /// See also [`Option::insert`], which updates the value even if
1760    /// the option already contains [`Some`].
1761    ///
1762    /// # Examples
1763    ///
1764    /// ```
1765    /// let mut x = None;
1766    ///
1767    /// {
1768    ///     let y: &mut u32 = x.get_or_insert(5);
1769    ///     assert_eq!(y, &5);
1770    ///
1771    ///     *y = 7;
1772    /// }
1773    ///
1774    /// assert_eq!(x, Some(7));
1775    /// ```
1776    #[inline]
1777    #[stable(feature = "option_entry", since = "1.20.0")]
1778    #[cfg(not(feature = "ferrocene_certified"))]
1779    pub fn get_or_insert(&mut self, value: T) -> &mut T {
1780        self.get_or_insert_with(|| value)
1781    }
1782
1783    /// Inserts the default value into the option if it is [`None`], then
1784    /// returns a mutable reference to the contained value.
1785    ///
1786    /// # Examples
1787    ///
1788    /// ```
1789    /// let mut x = None;
1790    ///
1791    /// {
1792    ///     let y: &mut u32 = x.get_or_insert_default();
1793    ///     assert_eq!(y, &0);
1794    ///
1795    ///     *y = 7;
1796    /// }
1797    ///
1798    /// assert_eq!(x, Some(7));
1799    /// ```
1800    #[inline]
1801    #[stable(feature = "option_get_or_insert_default", since = "1.83.0")]
1802    #[rustc_const_unstable(feature = "const_option_ops", issue = "143956")]
1803    #[cfg(not(feature = "ferrocene_certified"))]
1804    pub const fn get_or_insert_default(&mut self) -> &mut T
1805    where
1806        T: [const] Default + [const] Destruct,
1807    {
1808        self.get_or_insert_with(T::default)
1809    }
1810
1811    /// Inserts a value computed from `f` into the option if it is [`None`],
1812    /// then returns a mutable reference to the contained value.
1813    ///
1814    /// # Examples
1815    ///
1816    /// ```
1817    /// let mut x = None;
1818    ///
1819    /// {
1820    ///     let y: &mut u32 = x.get_or_insert_with(|| 5);
1821    ///     assert_eq!(y, &5);
1822    ///
1823    ///     *y = 7;
1824    /// }
1825    ///
1826    /// assert_eq!(x, Some(7));
1827    /// ```
1828    #[inline]
1829    #[stable(feature = "option_entry", since = "1.20.0")]
1830    #[rustc_const_unstable(feature = "const_option_ops", issue = "143956")]
1831    #[cfg(not(feature = "ferrocene_certified"))]
1832    pub const fn get_or_insert_with<F>(&mut self, f: F) -> &mut T
1833    where
1834        F: [const] FnOnce() -> T + [const] Destruct,
1835        T: [const] Destruct,
1836    {
1837        if let None = self {
1838            *self = Some(f());
1839        }
1840
1841        // SAFETY: a `None` variant for `self` would have been replaced by a `Some`
1842        // variant in the code above.
1843        unsafe { self.as_mut().unwrap_unchecked() }
1844    }
1845
1846    /////////////////////////////////////////////////////////////////////////
1847    // Misc
1848    /////////////////////////////////////////////////////////////////////////
1849
1850    /// Takes the value out of the option, leaving a [`None`] in its place.
1851    ///
1852    /// # Examples
1853    ///
1854    /// ```
1855    /// let mut x = Some(2);
1856    /// let y = x.take();
1857    /// assert_eq!(x, None);
1858    /// assert_eq!(y, Some(2));
1859    ///
1860    /// let mut x: Option<u32> = None;
1861    /// let y = x.take();
1862    /// assert_eq!(x, None);
1863    /// assert_eq!(y, None);
1864    /// ```
1865    #[inline]
1866    #[stable(feature = "rust1", since = "1.0.0")]
1867    #[rustc_const_stable(feature = "const_option", since = "1.83.0")]
1868    pub const fn take(&mut self) -> Option<T> {
1869        // FIXME(const-hack) replace `mem::replace` by `mem::take` when the latter is const ready
1870        mem::replace(self, None)
1871    }
1872
1873    /// Takes the value out of the option, but only if the predicate evaluates to
1874    /// `true` on a mutable reference to the value.
1875    ///
1876    /// In other words, replaces `self` with `None` if the predicate returns `true`.
1877    /// This method operates similar to [`Option::take`] but conditional.
1878    ///
1879    /// # Examples
1880    ///
1881    /// ```
1882    /// let mut x = Some(42);
1883    ///
1884    /// let prev = x.take_if(|v| if *v == 42 {
1885    ///     *v += 1;
1886    ///     false
1887    /// } else {
1888    ///     false
1889    /// });
1890    /// assert_eq!(x, Some(43));
1891    /// assert_eq!(prev, None);
1892    ///
1893    /// let prev = x.take_if(|v| *v == 43);
1894    /// assert_eq!(x, None);
1895    /// assert_eq!(prev, Some(43));
1896    /// ```
1897    #[inline]
1898    #[stable(feature = "option_take_if", since = "1.80.0")]
1899    #[rustc_const_unstable(feature = "const_option_ops", issue = "143956")]
1900    #[cfg(not(feature = "ferrocene_certified"))]
1901    pub const fn take_if<P>(&mut self, predicate: P) -> Option<T>
1902    where
1903        P: [const] FnOnce(&mut T) -> bool + [const] Destruct,
1904    {
1905        if self.as_mut().map_or(false, predicate) { self.take() } else { None }
1906    }
1907
1908    /// Replaces the actual value in the option by the value given in parameter,
1909    /// returning the old value if present,
1910    /// leaving a [`Some`] in its place without deinitializing either one.
1911    ///
1912    /// # Examples
1913    ///
1914    /// ```
1915    /// let mut x = Some(2);
1916    /// let old = x.replace(5);
1917    /// assert_eq!(x, Some(5));
1918    /// assert_eq!(old, Some(2));
1919    ///
1920    /// let mut x = None;
1921    /// let old = x.replace(3);
1922    /// assert_eq!(x, Some(3));
1923    /// assert_eq!(old, None);
1924    /// ```
1925    #[inline]
1926    #[stable(feature = "option_replace", since = "1.31.0")]
1927    #[rustc_const_stable(feature = "const_option", since = "1.83.0")]
1928    #[cfg(not(feature = "ferrocene_certified"))]
1929    pub const fn replace(&mut self, value: T) -> Option<T> {
1930        mem::replace(self, Some(value))
1931    }
1932
1933    /// Zips `self` with another `Option`.
1934    ///
1935    /// If `self` is `Some(s)` and `other` is `Some(o)`, this method returns `Some((s, o))`.
1936    /// Otherwise, `None` is returned.
1937    ///
1938    /// # Examples
1939    ///
1940    /// ```
1941    /// let x = Some(1);
1942    /// let y = Some("hi");
1943    /// let z = None::<u8>;
1944    ///
1945    /// assert_eq!(x.zip(y), Some((1, "hi")));
1946    /// assert_eq!(x.zip(z), None);
1947    /// ```
1948    #[stable(feature = "option_zip_option", since = "1.46.0")]
1949    #[rustc_const_unstable(feature = "const_option_ops", issue = "143956")]
1950    pub const fn zip<U>(self, other: Option<U>) -> Option<(T, U)>
1951    where
1952        T: [const] Destruct,
1953        U: [const] Destruct,
1954    {
1955        match (self, other) {
1956            (Some(a), Some(b)) => Some((a, b)),
1957            _ => None,
1958        }
1959    }
1960
1961    /// Zips `self` and another `Option` with function `f`.
1962    ///
1963    /// If `self` is `Some(s)` and `other` is `Some(o)`, this method returns `Some(f(s, o))`.
1964    /// Otherwise, `None` is returned.
1965    ///
1966    /// # Examples
1967    ///
1968    /// ```
1969    /// #![feature(option_zip)]
1970    ///
1971    /// #[derive(Debug, PartialEq)]
1972    /// struct Point {
1973    ///     x: f64,
1974    ///     y: f64,
1975    /// }
1976    ///
1977    /// impl Point {
1978    ///     fn new(x: f64, y: f64) -> Self {
1979    ///         Self { x, y }
1980    ///     }
1981    /// }
1982    ///
1983    /// let x = Some(17.5);
1984    /// let y = Some(42.7);
1985    ///
1986    /// assert_eq!(x.zip_with(y, Point::new), Some(Point { x: 17.5, y: 42.7 }));
1987    /// assert_eq!(x.zip_with(None, Point::new), None);
1988    /// ```
1989    #[unstable(feature = "option_zip", issue = "70086")]
1990    #[rustc_const_unstable(feature = "const_option_ops", issue = "143956")]
1991    #[cfg(not(feature = "ferrocene_certified"))]
1992    pub const fn zip_with<U, F, R>(self, other: Option<U>, f: F) -> Option<R>
1993    where
1994        F: [const] FnOnce(T, U) -> R + [const] Destruct,
1995        T: [const] Destruct,
1996        U: [const] Destruct,
1997    {
1998        match (self, other) {
1999            (Some(a), Some(b)) => Some(f(a, b)),
2000            _ => None,
2001        }
2002    }
2003
2004    /// Reduces two options into one, using the provided function if both are `Some`.
2005    ///
2006    /// If `self` is `Some(s)` and `other` is `Some(o)`, this method returns `Some(f(s, o))`.
2007    /// Otherwise, if only one of `self` and `other` is `Some`, that one is returned.
2008    /// If both `self` and `other` are `None`, `None` is returned.
2009    ///
2010    /// # Examples
2011    ///
2012    /// ```
2013    /// #![feature(option_reduce)]
2014    ///
2015    /// let s12 = Some(12);
2016    /// let s17 = Some(17);
2017    /// let n = None;
2018    /// let f = |a, b| a + b;
2019    ///
2020    /// assert_eq!(s12.reduce(s17, f), Some(29));
2021    /// assert_eq!(s12.reduce(n, f), Some(12));
2022    /// assert_eq!(n.reduce(s17, f), Some(17));
2023    /// assert_eq!(n.reduce(n, f), None);
2024    /// ```
2025    #[unstable(feature = "option_reduce", issue = "144273")]
2026    pub fn reduce<U, R, F>(self, other: Option<U>, f: F) -> Option<R>
2027    where
2028        T: Into<R>,
2029        U: Into<R>,
2030        F: FnOnce(T, U) -> R,
2031    {
2032        match (self, other) {
2033            (Some(a), Some(b)) => Some(f(a, b)),
2034            (Some(a), _) => Some(a.into()),
2035            (_, Some(b)) => Some(b.into()),
2036            _ => None,
2037        }
2038    }
2039}
2040
2041impl<T, U> Option<(T, U)> {
2042    /// Unzips an option containing a tuple of two options.
2043    ///
2044    /// If `self` is `Some((a, b))` this method returns `(Some(a), Some(b))`.
2045    /// Otherwise, `(None, None)` is returned.
2046    ///
2047    /// # Examples
2048    ///
2049    /// ```
2050    /// let x = Some((1, "hi"));
2051    /// let y = None::<(u8, u32)>;
2052    ///
2053    /// assert_eq!(x.unzip(), (Some(1), Some("hi")));
2054    /// assert_eq!(y.unzip(), (None, None));
2055    /// ```
2056    #[inline]
2057    #[stable(feature = "unzip_option", since = "1.66.0")]
2058    pub fn unzip(self) -> (Option<T>, Option<U>) {
2059        match self {
2060            Some((a, b)) => (Some(a), Some(b)),
2061            None => (None, None),
2062        }
2063    }
2064}
2065
2066impl<T> Option<&T> {
2067    /// Maps an `Option<&T>` to an `Option<T>` by copying the contents of the
2068    /// option.
2069    ///
2070    /// # Examples
2071    ///
2072    /// ```
2073    /// let x = 12;
2074    /// let opt_x = Some(&x);
2075    /// assert_eq!(opt_x, Some(&12));
2076    /// let copied = opt_x.copied();
2077    /// assert_eq!(copied, Some(12));
2078    /// ```
2079    #[must_use = "`self` will be dropped if the result is not used"]
2080    #[stable(feature = "copied", since = "1.35.0")]
2081    #[rustc_const_stable(feature = "const_option", since = "1.83.0")]
2082    pub const fn copied(self) -> Option<T>
2083    where
2084        T: Copy,
2085    {
2086        // FIXME(const-hack): this implementation, which sidesteps using `Option::map` since it's not const
2087        // ready yet, should be reverted when possible to avoid code repetition
2088        match self {
2089            Some(&v) => Some(v),
2090            None => None,
2091        }
2092    }
2093
2094    /// Maps an `Option<&T>` to an `Option<T>` by cloning the contents of the
2095    /// option.
2096    ///
2097    /// # Examples
2098    ///
2099    /// ```
2100    /// let x = 12;
2101    /// let opt_x = Some(&x);
2102    /// assert_eq!(opt_x, Some(&12));
2103    /// let cloned = opt_x.cloned();
2104    /// assert_eq!(cloned, Some(12));
2105    /// ```
2106    #[must_use = "`self` will be dropped if the result is not used"]
2107    #[stable(feature = "rust1", since = "1.0.0")]
2108    pub fn cloned(self) -> Option<T>
2109    where
2110        T: Clone,
2111    {
2112        match self {
2113            Some(t) => Some(t.clone()),
2114            None => None,
2115        }
2116    }
2117}
2118
2119impl<T> Option<&mut T> {
2120    /// Maps an `Option<&mut T>` to an `Option<T>` by copying the contents of the
2121    /// option.
2122    ///
2123    /// # Examples
2124    ///
2125    /// ```
2126    /// let mut x = 12;
2127    /// let opt_x = Some(&mut x);
2128    /// assert_eq!(opt_x, Some(&mut 12));
2129    /// let copied = opt_x.copied();
2130    /// assert_eq!(copied, Some(12));
2131    /// ```
2132    #[must_use = "`self` will be dropped if the result is not used"]
2133    #[stable(feature = "copied", since = "1.35.0")]
2134    #[rustc_const_stable(feature = "const_option", since = "1.83.0")]
2135    pub const fn copied(self) -> Option<T>
2136    where
2137        T: Copy,
2138    {
2139        match self {
2140            Some(&mut t) => Some(t),
2141            None => None,
2142        }
2143    }
2144
2145    /// Maps an `Option<&mut T>` to an `Option<T>` by cloning the contents of the
2146    /// option.
2147    ///
2148    /// # Examples
2149    ///
2150    /// ```
2151    /// let mut x = 12;
2152    /// let opt_x = Some(&mut x);
2153    /// assert_eq!(opt_x, Some(&mut 12));
2154    /// let cloned = opt_x.cloned();
2155    /// assert_eq!(cloned, Some(12));
2156    /// ```
2157    #[must_use = "`self` will be dropped if the result is not used"]
2158    #[stable(since = "1.26.0", feature = "option_ref_mut_cloned")]
2159    pub fn cloned(self) -> Option<T>
2160    where
2161        T: Clone,
2162    {
2163        match self {
2164            Some(t) => Some(t.clone()),
2165            None => None,
2166        }
2167    }
2168}
2169
2170impl<T, E> Option<Result<T, E>> {
2171    /// Transposes an `Option` of a [`Result`] into a [`Result`] of an `Option`.
2172    ///
2173    /// <code>[Some]\([Ok]\(\_))</code> is mapped to <code>[Ok]\([Some]\(\_))</code>,
2174    /// <code>[Some]\([Err]\(\_))</code> is mapped to <code>[Err]\(\_)</code>,
2175    /// and [`None`] will be mapped to <code>[Ok]\([None])</code>.
2176    ///
2177    /// # Examples
2178    ///
2179    /// ```
2180    /// #[derive(Debug, Eq, PartialEq)]
2181    /// struct SomeErr;
2182    ///
2183    /// let x: Option<Result<i32, SomeErr>> = Some(Ok(5));
2184    /// let y: Result<Option<i32>, SomeErr> = Ok(Some(5));
2185    /// assert_eq!(x.transpose(), y);
2186    /// ```
2187    #[inline]
2188    #[stable(feature = "transpose_result", since = "1.33.0")]
2189    #[rustc_allow_const_fn_unstable(const_precise_live_drops)]
2190    #[rustc_const_stable(feature = "const_option", since = "1.83.0")]
2191    pub const fn transpose(self) -> Result<Option<T>, E> {
2192        match self {
2193            Some(Ok(x)) => Ok(Some(x)),
2194            Some(Err(e)) => Err(e),
2195            None => Ok(None),
2196        }
2197    }
2198}
2199
2200#[cfg_attr(not(panic = "immediate-abort"), inline(never))]
2201#[cfg_attr(panic = "immediate-abort", inline)]
2202#[cold]
2203#[track_caller]
2204const fn unwrap_failed() -> ! {
2205    panic("called `Option::unwrap()` on a `None` value")
2206}
2207
2208// This is a separate function to reduce the code size of .expect() itself.
2209#[cfg_attr(not(panic = "immediate-abort"), inline(never))]
2210#[cfg_attr(panic = "immediate-abort", inline)]
2211#[cold]
2212#[track_caller]
2213#[cfg(not(feature = "ferrocene_certified"))]
2214const fn expect_failed(msg: &str) -> ! {
2215    panic_display(&msg)
2216}
2217
2218/////////////////////////////////////////////////////////////////////////////
2219// Trait implementations
2220/////////////////////////////////////////////////////////////////////////////
2221
2222#[stable(feature = "rust1", since = "1.0.0")]
2223#[rustc_const_unstable(feature = "const_clone", issue = "142757")]
2224impl<T> const Clone for Option<T>
2225where
2226    // FIXME(const_hack): the T: [const] Destruct should be inferred from the Self: [const] Destruct in clone_from.
2227    // See https://github.com/rust-lang/rust/issues/144207
2228    T: [const] Clone + [const] Destruct,
2229{
2230    #[inline]
2231    fn clone(&self) -> Self {
2232        match self {
2233            Some(x) => Some(x.clone()),
2234            None => None,
2235        }
2236    }
2237
2238    #[inline]
2239    fn clone_from(&mut self, source: &Self) {
2240        match (self, source) {
2241            (Some(to), Some(from)) => to.clone_from(from),
2242            (to, from) => *to = from.clone(),
2243        }
2244    }
2245}
2246
2247#[unstable(feature = "ergonomic_clones", issue = "132290")]
2248#[cfg(not(feature = "ferrocene_certified"))]
2249impl<T> crate::clone::UseCloned for Option<T> where T: crate::clone::UseCloned {}
2250
2251#[stable(feature = "rust1", since = "1.0.0")]
2252#[rustc_const_unstable(feature = "const_default", issue = "143894")]
2253impl<T> const Default for Option<T> {
2254    /// Returns [`None`][Option::None].
2255    ///
2256    /// # Examples
2257    ///
2258    /// ```
2259    /// let opt: Option<u32> = Option::default();
2260    /// assert!(opt.is_none());
2261    /// ```
2262    #[inline]
2263    fn default() -> Option<T> {
2264        None
2265    }
2266}
2267
2268#[stable(feature = "rust1", since = "1.0.0")]
2269impl<T> IntoIterator for Option<T> {
2270    type Item = T;
2271    type IntoIter = IntoIter<T>;
2272
2273    /// Returns a consuming iterator over the possibly contained value.
2274    ///
2275    /// # Examples
2276    ///
2277    /// ```
2278    /// let x = Some("string");
2279    /// let v: Vec<&str> = x.into_iter().collect();
2280    /// assert_eq!(v, ["string"]);
2281    ///
2282    /// let x = None;
2283    /// let v: Vec<&str> = x.into_iter().collect();
2284    /// assert!(v.is_empty());
2285    /// ```
2286    #[inline]
2287    fn into_iter(self) -> IntoIter<T> {
2288        IntoIter { inner: Item { opt: self } }
2289    }
2290}
2291
2292#[stable(since = "1.4.0", feature = "option_iter")]
2293#[cfg(not(feature = "ferrocene_certified"))]
2294impl<'a, T> IntoIterator for &'a Option<T> {
2295    type Item = &'a T;
2296    type IntoIter = Iter<'a, T>;
2297
2298    fn into_iter(self) -> Iter<'a, T> {
2299        self.iter()
2300    }
2301}
2302
2303#[stable(since = "1.4.0", feature = "option_iter")]
2304#[cfg(not(feature = "ferrocene_certified"))]
2305impl<'a, T> IntoIterator for &'a mut Option<T> {
2306    type Item = &'a mut T;
2307    type IntoIter = IterMut<'a, T>;
2308
2309    fn into_iter(self) -> IterMut<'a, T> {
2310        self.iter_mut()
2311    }
2312}
2313
2314#[stable(since = "1.12.0", feature = "option_from")]
2315#[rustc_const_unstable(feature = "const_convert", issue = "143773")]
2316impl<T> const From<T> for Option<T> {
2317    /// Moves `val` into a new [`Some`].
2318    ///
2319    /// # Examples
2320    ///
2321    /// ```
2322    /// let o: Option<u8> = Option::from(67);
2323    ///
2324    /// assert_eq!(Some(67), o);
2325    /// ```
2326    fn from(val: T) -> Option<T> {
2327        Some(val)
2328    }
2329}
2330
2331#[stable(feature = "option_ref_from_ref_option", since = "1.30.0")]
2332#[rustc_const_unstable(feature = "const_convert", issue = "143773")]
2333impl<'a, T> const From<&'a Option<T>> for Option<&'a T> {
2334    /// Converts from `&Option<T>` to `Option<&T>`.
2335    ///
2336    /// # Examples
2337    ///
2338    /// Converts an <code>[Option]<[String]></code> into an <code>[Option]<[usize]></code>, preserving
2339    /// the original. The [`map`] method takes the `self` argument by value, consuming the original,
2340    /// so this technique uses `from` to first take an [`Option`] to a reference
2341    /// to the value inside the original.
2342    ///
2343    /// [`map`]: Option::map
2344    /// [String]: ../../std/string/struct.String.html "String"
2345    ///
2346    /// ```
2347    /// let s: Option<String> = Some(String::from("Hello, Rustaceans!"));
2348    /// let o: Option<usize> = Option::from(&s).map(|ss: &String| ss.len());
2349    ///
2350    /// println!("Can still print s: {s:?}");
2351    ///
2352    /// assert_eq!(o, Some(18));
2353    /// ```
2354    fn from(o: &'a Option<T>) -> Option<&'a T> {
2355        o.as_ref()
2356    }
2357}
2358
2359#[stable(feature = "option_ref_from_ref_option", since = "1.30.0")]
2360#[rustc_const_unstable(feature = "const_convert", issue = "143773")]
2361impl<'a, T> const From<&'a mut Option<T>> for Option<&'a mut T> {
2362    /// Converts from `&mut Option<T>` to `Option<&mut T>`
2363    ///
2364    /// # Examples
2365    ///
2366    /// ```
2367    /// let mut s = Some(String::from("Hello"));
2368    /// let o: Option<&mut String> = Option::from(&mut s);
2369    ///
2370    /// match o {
2371    ///     Some(t) => *t = String::from("Hello, Rustaceans!"),
2372    ///     None => (),
2373    /// }
2374    ///
2375    /// assert_eq!(s, Some(String::from("Hello, Rustaceans!")));
2376    /// ```
2377    fn from(o: &'a mut Option<T>) -> Option<&'a mut T> {
2378        o.as_mut()
2379    }
2380}
2381
2382// Ideally, LLVM should be able to optimize our derive code to this.
2383// Once https://github.com/llvm/llvm-project/issues/52622 is fixed, we can
2384// go back to deriving `PartialEq`.
2385#[stable(feature = "rust1", since = "1.0.0")]
2386#[cfg(not(feature = "ferrocene_certified"))]
2387impl<T> crate::marker::StructuralPartialEq for Option<T> {}
2388#[stable(feature = "rust1", since = "1.0.0")]
2389#[rustc_const_unstable(feature = "const_cmp", issue = "143800")]
2390#[cfg(not(feature = "ferrocene_certified"))]
2391impl<T: [const] PartialEq> const PartialEq for Option<T> {
2392    #[inline]
2393    fn eq(&self, other: &Self) -> bool {
2394        // Spelling out the cases explicitly optimizes better than
2395        // `_ => false`
2396        match (self, other) {
2397            (Some(l), Some(r)) => *l == *r,
2398            (Some(_), None) => false,
2399            (None, Some(_)) => false,
2400            (None, None) => true,
2401        }
2402    }
2403}
2404
2405// Manually implementing here somewhat improves codegen for
2406// https://github.com/rust-lang/rust/issues/49892, although still
2407// not optimal.
2408#[stable(feature = "rust1", since = "1.0.0")]
2409#[rustc_const_unstable(feature = "const_cmp", issue = "143800")]
2410#[cfg(not(feature = "ferrocene_certified"))]
2411impl<T: [const] PartialOrd> const PartialOrd for Option<T> {
2412    #[inline]
2413    fn partial_cmp(&self, other: &Self) -> Option<cmp::Ordering> {
2414        match (self, other) {
2415            (Some(l), Some(r)) => l.partial_cmp(r),
2416            (Some(_), None) => Some(cmp::Ordering::Greater),
2417            (None, Some(_)) => Some(cmp::Ordering::Less),
2418            (None, None) => Some(cmp::Ordering::Equal),
2419        }
2420    }
2421}
2422
2423#[stable(feature = "rust1", since = "1.0.0")]
2424#[rustc_const_unstable(feature = "const_cmp", issue = "143800")]
2425#[cfg(not(feature = "ferrocene_certified"))]
2426impl<T: [const] Ord> const Ord for Option<T> {
2427    #[inline]
2428    fn cmp(&self, other: &Self) -> cmp::Ordering {
2429        match (self, other) {
2430            (Some(l), Some(r)) => l.cmp(r),
2431            (Some(_), None) => cmp::Ordering::Greater,
2432            (None, Some(_)) => cmp::Ordering::Less,
2433            (None, None) => cmp::Ordering::Equal,
2434        }
2435    }
2436}
2437
2438/////////////////////////////////////////////////////////////////////////////
2439// The Option Iterators
2440/////////////////////////////////////////////////////////////////////////////
2441
2442#[cfg_attr(not(feature = "ferrocene_certified"), derive(Clone, Debug))]
2443struct Item<A> {
2444    #[allow(dead_code)]
2445    opt: Option<A>,
2446}
2447
2448impl<A> Iterator for Item<A> {
2449    type Item = A;
2450
2451    #[inline]
2452    fn next(&mut self) -> Option<A> {
2453        self.opt.take()
2454    }
2455
2456    #[inline]
2457    fn size_hint(&self) -> (usize, Option<usize>) {
2458        let len = self.len();
2459        (len, Some(len))
2460    }
2461}
2462
2463#[cfg(not(feature = "ferrocene_certified"))]
2464impl<A> DoubleEndedIterator for Item<A> {
2465    #[inline]
2466    fn next_back(&mut self) -> Option<A> {
2467        self.opt.take()
2468    }
2469}
2470
2471impl<A> ExactSizeIterator for Item<A> {
2472    #[inline]
2473    fn len(&self) -> usize {
2474        self.opt.len()
2475    }
2476}
2477#[cfg(not(feature = "ferrocene_certified"))]
2478impl<A> FusedIterator for Item<A> {}
2479#[cfg(not(feature = "ferrocene_certified"))]
2480unsafe impl<A> TrustedLen for Item<A> {}
2481
2482/// An iterator over a reference to the [`Some`] variant of an [`Option`].
2483///
2484/// The iterator yields one value if the [`Option`] is a [`Some`], otherwise none.
2485///
2486/// This `struct` is created by the [`Option::iter`] function.
2487#[stable(feature = "rust1", since = "1.0.0")]
2488#[cfg_attr(not(feature = "ferrocene_certified"), derive(Debug))]
2489pub struct Iter<'a, A: 'a> {
2490    #[cfg_attr(feature = "ferrocene_certified", expect(dead_code))]
2491    inner: Item<&'a A>,
2492}
2493
2494#[stable(feature = "rust1", since = "1.0.0")]
2495#[cfg(not(feature = "ferrocene_certified"))]
2496impl<'a, A> Iterator for Iter<'a, A> {
2497    type Item = &'a A;
2498
2499    #[inline]
2500    fn next(&mut self) -> Option<&'a A> {
2501        self.inner.next()
2502    }
2503    #[inline]
2504    fn size_hint(&self) -> (usize, Option<usize>) {
2505        self.inner.size_hint()
2506    }
2507}
2508
2509#[stable(feature = "rust1", since = "1.0.0")]
2510#[cfg(not(feature = "ferrocene_certified"))]
2511impl<'a, A> DoubleEndedIterator for Iter<'a, A> {
2512    #[inline]
2513    fn next_back(&mut self) -> Option<&'a A> {
2514        self.inner.next_back()
2515    }
2516}
2517
2518#[stable(feature = "rust1", since = "1.0.0")]
2519#[cfg(not(feature = "ferrocene_certified"))]
2520impl<A> ExactSizeIterator for Iter<'_, A> {}
2521
2522#[stable(feature = "fused", since = "1.26.0")]
2523#[cfg(not(feature = "ferrocene_certified"))]
2524impl<A> FusedIterator for Iter<'_, A> {}
2525
2526#[unstable(feature = "trusted_len", issue = "37572")]
2527#[cfg(not(feature = "ferrocene_certified"))]
2528unsafe impl<A> TrustedLen for Iter<'_, A> {}
2529
2530#[stable(feature = "rust1", since = "1.0.0")]
2531#[cfg(not(feature = "ferrocene_certified"))]
2532impl<A> Clone for Iter<'_, A> {
2533    #[inline]
2534    fn clone(&self) -> Self {
2535        Iter { inner: self.inner.clone() }
2536    }
2537}
2538
2539/// An iterator over a mutable reference to the [`Some`] variant of an [`Option`].
2540///
2541/// The iterator yields one value if the [`Option`] is a [`Some`], otherwise none.
2542///
2543/// This `struct` is created by the [`Option::iter_mut`] function.
2544#[stable(feature = "rust1", since = "1.0.0")]
2545#[cfg_attr(not(feature = "ferrocene_certified"), derive(Debug))]
2546pub struct IterMut<'a, A: 'a> {
2547    #[cfg_attr(feature = "ferrocene_certified", expect(dead_code))]
2548    inner: Item<&'a mut A>,
2549}
2550
2551#[stable(feature = "rust1", since = "1.0.0")]
2552#[cfg(not(feature = "ferrocene_certified"))]
2553impl<'a, A> Iterator for IterMut<'a, A> {
2554    type Item = &'a mut A;
2555
2556    #[inline]
2557    fn next(&mut self) -> Option<&'a mut A> {
2558        self.inner.next()
2559    }
2560    #[inline]
2561    fn size_hint(&self) -> (usize, Option<usize>) {
2562        self.inner.size_hint()
2563    }
2564}
2565
2566#[stable(feature = "rust1", since = "1.0.0")]
2567#[cfg(not(feature = "ferrocene_certified"))]
2568impl<'a, A> DoubleEndedIterator for IterMut<'a, A> {
2569    #[inline]
2570    fn next_back(&mut self) -> Option<&'a mut A> {
2571        self.inner.next_back()
2572    }
2573}
2574
2575#[stable(feature = "rust1", since = "1.0.0")]
2576#[cfg(not(feature = "ferrocene_certified"))]
2577impl<A> ExactSizeIterator for IterMut<'_, A> {}
2578
2579#[stable(feature = "fused", since = "1.26.0")]
2580#[cfg(not(feature = "ferrocene_certified"))]
2581impl<A> FusedIterator for IterMut<'_, A> {}
2582#[unstable(feature = "trusted_len", issue = "37572")]
2583#[cfg(not(feature = "ferrocene_certified"))]
2584unsafe impl<A> TrustedLen for IterMut<'_, A> {}
2585
2586/// An iterator over the value in [`Some`] variant of an [`Option`].
2587///
2588/// The iterator yields one value if the [`Option`] is a [`Some`], otherwise none.
2589///
2590/// This `struct` is created by the [`Option::into_iter`] function.
2591#[cfg_attr(not(feature = "ferrocene_certified"), derive(Clone, Debug))]
2592#[stable(feature = "rust1", since = "1.0.0")]
2593pub struct IntoIter<A> {
2594    inner: Item<A>,
2595}
2596
2597#[stable(feature = "rust1", since = "1.0.0")]
2598impl<A> Iterator for IntoIter<A> {
2599    type Item = A;
2600
2601    #[inline]
2602    fn next(&mut self) -> Option<A> {
2603        self.inner.next()
2604    }
2605    #[inline]
2606    fn size_hint(&self) -> (usize, Option<usize>) {
2607        self.inner.size_hint()
2608    }
2609}
2610
2611#[stable(feature = "rust1", since = "1.0.0")]
2612#[cfg(not(feature = "ferrocene_certified"))]
2613impl<A> DoubleEndedIterator for IntoIter<A> {
2614    #[inline]
2615    fn next_back(&mut self) -> Option<A> {
2616        self.inner.next_back()
2617    }
2618}
2619
2620#[stable(feature = "rust1", since = "1.0.0")]
2621#[cfg(not(feature = "ferrocene_certified"))]
2622impl<A> ExactSizeIterator for IntoIter<A> {}
2623
2624#[stable(feature = "fused", since = "1.26.0")]
2625#[cfg(not(feature = "ferrocene_certified"))]
2626impl<A> FusedIterator for IntoIter<A> {}
2627
2628#[unstable(feature = "trusted_len", issue = "37572")]
2629#[cfg(not(feature = "ferrocene_certified"))]
2630unsafe impl<A> TrustedLen for IntoIter<A> {}
2631
2632/////////////////////////////////////////////////////////////////////////////
2633// FromIterator
2634/////////////////////////////////////////////////////////////////////////////
2635
2636#[stable(feature = "rust1", since = "1.0.0")]
2637#[cfg(not(feature = "ferrocene_certified"))]
2638impl<A, V: FromIterator<A>> FromIterator<Option<A>> for Option<V> {
2639    /// Takes each element in the [`Iterator`]: if it is [`None`][Option::None],
2640    /// no further elements are taken, and the [`None`][Option::None] is
2641    /// returned. Should no [`None`][Option::None] occur, a container of type
2642    /// `V` containing the values of each [`Option`] is returned.
2643    ///
2644    /// # Examples
2645    ///
2646    /// Here is an example which increments every integer in a vector.
2647    /// We use the checked variant of `add` that returns `None` when the
2648    /// calculation would result in an overflow.
2649    ///
2650    /// ```
2651    /// let items = vec![0_u16, 1, 2];
2652    ///
2653    /// let res: Option<Vec<u16>> = items
2654    ///     .iter()
2655    ///     .map(|x| x.checked_add(1))
2656    ///     .collect();
2657    ///
2658    /// assert_eq!(res, Some(vec![1, 2, 3]));
2659    /// ```
2660    ///
2661    /// As you can see, this will return the expected, valid items.
2662    ///
2663    /// Here is another example that tries to subtract one from another list
2664    /// of integers, this time checking for underflow:
2665    ///
2666    /// ```
2667    /// let items = vec![2_u16, 1, 0];
2668    ///
2669    /// let res: Option<Vec<u16>> = items
2670    ///     .iter()
2671    ///     .map(|x| x.checked_sub(1))
2672    ///     .collect();
2673    ///
2674    /// assert_eq!(res, None);
2675    /// ```
2676    ///
2677    /// Since the last element is zero, it would underflow. Thus, the resulting
2678    /// value is `None`.
2679    ///
2680    /// Here is a variation on the previous example, showing that no
2681    /// further elements are taken from `iter` after the first `None`.
2682    ///
2683    /// ```
2684    /// let items = vec![3_u16, 2, 1, 10];
2685    ///
2686    /// let mut shared = 0;
2687    ///
2688    /// let res: Option<Vec<u16>> = items
2689    ///     .iter()
2690    ///     .map(|x| { shared += x; x.checked_sub(2) })
2691    ///     .collect();
2692    ///
2693    /// assert_eq!(res, None);
2694    /// assert_eq!(shared, 6);
2695    /// ```
2696    ///
2697    /// Since the third element caused an underflow, no further elements were taken,
2698    /// so the final value of `shared` is 6 (= `3 + 2 + 1`), not 16.
2699    #[inline]
2700    fn from_iter<I: IntoIterator<Item = Option<A>>>(iter: I) -> Option<V> {
2701        // FIXME(#11084): This could be replaced with Iterator::scan when this
2702        // performance bug is closed.
2703
2704        iter::try_process(iter.into_iter(), |i| i.collect())
2705    }
2706}
2707
2708#[unstable(feature = "try_trait_v2", issue = "84277", old_name = "try_trait")]
2709#[rustc_const_unstable(feature = "const_try", issue = "74935")]
2710impl<T> const ops::Try for Option<T> {
2711    type Output = T;
2712    type Residual = Option<convert::Infallible>;
2713
2714    #[inline]
2715    fn from_output(output: Self::Output) -> Self {
2716        Some(output)
2717    }
2718
2719    #[inline]
2720    fn branch(self) -> ControlFlow<Self::Residual, Self::Output> {
2721        match self {
2722            Some(v) => ControlFlow::Continue(v),
2723            None => ControlFlow::Break(None),
2724        }
2725    }
2726}
2727
2728#[unstable(feature = "try_trait_v2", issue = "84277", old_name = "try_trait")]
2729#[rustc_const_unstable(feature = "const_try", issue = "74935")]
2730// Note: manually specifying the residual type instead of using the default to work around
2731// https://github.com/rust-lang/rust/issues/99940
2732impl<T> const ops::FromResidual<Option<convert::Infallible>> for Option<T> {
2733    #[inline]
2734    fn from_residual(residual: Option<convert::Infallible>) -> Self {
2735        match residual {
2736            None => None,
2737        }
2738    }
2739}
2740
2741#[diagnostic::do_not_recommend]
2742#[unstable(feature = "try_trait_v2_yeet", issue = "96374")]
2743#[rustc_const_unstable(feature = "const_try", issue = "74935")]
2744#[cfg(not(feature = "ferrocene_certified"))]
2745impl<T> const ops::FromResidual<ops::Yeet<()>> for Option<T> {
2746    #[inline]
2747    fn from_residual(ops::Yeet(()): ops::Yeet<()>) -> Self {
2748        None
2749    }
2750}
2751
2752#[unstable(feature = "try_trait_v2_residual", issue = "91285")]
2753#[rustc_const_unstable(feature = "const_try", issue = "74935")]
2754impl<T> const ops::Residual<T> for Option<convert::Infallible> {
2755    type TryType = Option<T>;
2756}
2757
2758impl<T> Option<Option<T>> {
2759    /// Converts from `Option<Option<T>>` to `Option<T>`.
2760    ///
2761    /// # Examples
2762    ///
2763    /// Basic usage:
2764    ///
2765    /// ```
2766    /// let x: Option<Option<u32>> = Some(Some(6));
2767    /// assert_eq!(Some(6), x.flatten());
2768    ///
2769    /// let x: Option<Option<u32>> = Some(None);
2770    /// assert_eq!(None, x.flatten());
2771    ///
2772    /// let x: Option<Option<u32>> = None;
2773    /// assert_eq!(None, x.flatten());
2774    /// ```
2775    ///
2776    /// Flattening only removes one level of nesting at a time:
2777    ///
2778    /// ```
2779    /// let x: Option<Option<Option<u32>>> = Some(Some(Some(6)));
2780    /// assert_eq!(Some(Some(6)), x.flatten());
2781    /// assert_eq!(Some(6), x.flatten().flatten());
2782    /// ```
2783    #[inline]
2784    #[stable(feature = "option_flattening", since = "1.40.0")]
2785    #[rustc_allow_const_fn_unstable(const_precise_live_drops)]
2786    #[rustc_const_stable(feature = "const_option", since = "1.83.0")]
2787    pub const fn flatten(self) -> Option<T> {
2788        // FIXME(const-hack): could be written with `and_then`
2789        match self {
2790            Some(inner) => inner,
2791            None => None,
2792        }
2793    }
2794}
2795
2796#[cfg(not(feature = "ferrocene_certified"))]
2797impl<T, const N: usize> [Option<T>; N] {
2798    /// Transposes a `[Option<T>; N]` into a `Option<[T; N]>`.
2799    ///
2800    /// # Examples
2801    ///
2802    /// ```
2803    /// #![feature(option_array_transpose)]
2804    /// # use std::option::Option;
2805    ///
2806    /// let data = [Some(0); 1000];
2807    /// let data: Option<[u8; 1000]> = data.transpose();
2808    /// assert_eq!(data, Some([0; 1000]));
2809    ///
2810    /// let data = [Some(0), None];
2811    /// let data: Option<[u8; 2]> = data.transpose();
2812    /// assert_eq!(data, None);
2813    /// ```
2814    #[inline]
2815    #[unstable(feature = "option_array_transpose", issue = "130828")]
2816    pub fn transpose(self) -> Option<[T; N]> {
2817        self.try_map(core::convert::identity)
2818    }
2819}