core/ptr/
non_null.rs

1#[cfg(not(feature = "ferrocene_certified"))]
2use crate::cmp::Ordering;
3#[cfg(not(feature = "ferrocene_certified"))]
4use crate::marker::{Destruct, PointeeSized, Unsize};
5#[cfg(not(feature = "ferrocene_certified"))]
6use crate::mem::{MaybeUninit, SizedTypeProperties};
7#[cfg(not(feature = "ferrocene_certified"))]
8use crate::num::NonZero;
9#[cfg(not(feature = "ferrocene_certified"))]
10use crate::ops::{CoerceUnsized, DispatchFromDyn};
11#[cfg(not(feature = "ferrocene_certified"))]
12use crate::pin::PinCoerceUnsized;
13#[cfg(not(feature = "ferrocene_certified"))]
14use crate::ptr::Unique;
15#[cfg(not(feature = "ferrocene_certified"))]
16use crate::slice::{self, SliceIndex};
17#[cfg(not(feature = "ferrocene_certified"))]
18use crate::ub_checks::assert_unsafe_precondition;
19#[cfg(not(feature = "ferrocene_certified"))]
20use crate::{fmt, hash, intrinsics, mem, ptr};
21
22// Ferrocene addition: imports for certified subset
23#[cfg(feature = "ferrocene_certified")]
24#[rustfmt::skip]
25use crate::{intrinsics, marker::PointeeSized, mem};
26
27/// `*mut T` but non-zero and [covariant].
28///
29/// This is often the correct thing to use when building data structures using
30/// raw pointers, but is ultimately more dangerous to use because of its additional
31/// properties. If you're not sure if you should use `NonNull<T>`, just use `*mut T`!
32///
33/// Unlike `*mut T`, the pointer must always be non-null, even if the pointer
34/// is never dereferenced. This is so that enums may use this forbidden value
35/// as a discriminant -- `Option<NonNull<T>>` has the same size as `*mut T`.
36/// However the pointer may still dangle if it isn't dereferenced.
37///
38/// Unlike `*mut T`, `NonNull<T>` is covariant over `T`. This is usually the correct
39/// choice for most data structures and safe abstractions, such as `Box`, `Rc`, `Arc`, `Vec`,
40/// and `LinkedList`.
41///
42/// In rare cases, if your type exposes a way to mutate the value of `T` through a `NonNull<T>`,
43/// and you need to prevent unsoundness from variance (for example, if `T` could be a reference
44/// with a shorter lifetime), you should add a field to make your type invariant, such as
45/// `PhantomData<Cell<T>>` or `PhantomData<&'a mut T>`.
46///
47/// Example of a type that must be invariant:
48/// ```rust
49/// use std::cell::Cell;
50/// use std::marker::PhantomData;
51/// struct Invariant<T> {
52///     ptr: std::ptr::NonNull<T>,
53///     _invariant: PhantomData<Cell<T>>,
54/// }
55/// ```
56///
57/// Notice that `NonNull<T>` has a `From` instance for `&T`. However, this does
58/// not change the fact that mutating through a (pointer derived from a) shared
59/// reference is undefined behavior unless the mutation happens inside an
60/// [`UnsafeCell<T>`]. The same goes for creating a mutable reference from a shared
61/// reference. When using this `From` instance without an `UnsafeCell<T>`,
62/// it is your responsibility to ensure that `as_mut` is never called, and `as_ptr`
63/// is never used for mutation.
64///
65/// # Representation
66///
67/// Thanks to the [null pointer optimization],
68/// `NonNull<T>` and `Option<NonNull<T>>`
69/// are guaranteed to have the same size and alignment:
70///
71/// ```
72/// use std::ptr::NonNull;
73///
74/// assert_eq!(size_of::<NonNull<i16>>(), size_of::<Option<NonNull<i16>>>());
75/// assert_eq!(align_of::<NonNull<i16>>(), align_of::<Option<NonNull<i16>>>());
76///
77/// assert_eq!(size_of::<NonNull<str>>(), size_of::<Option<NonNull<str>>>());
78/// assert_eq!(align_of::<NonNull<str>>(), align_of::<Option<NonNull<str>>>());
79/// ```
80///
81/// [covariant]: https://doc.rust-lang.org/reference/subtyping.html
82/// [`PhantomData`]: crate::marker::PhantomData
83/// [`UnsafeCell<T>`]: crate::cell::UnsafeCell
84/// [null pointer optimization]: crate::option#representation
85#[stable(feature = "nonnull", since = "1.25.0")]
86#[repr(transparent)]
87#[rustc_layout_scalar_valid_range_start(1)]
88#[rustc_nonnull_optimization_guaranteed]
89#[rustc_diagnostic_item = "NonNull"]
90pub struct NonNull<T: PointeeSized> {
91    // Remember to use `.as_ptr()` instead of `.pointer`, as field projecting to
92    // this is banned by <https://github.com/rust-lang/compiler-team/issues/807>.
93    pointer: *const T,
94}
95
96/// `NonNull` pointers are not `Send` because the data they reference may be aliased.
97// N.B., this impl is unnecessary, but should provide better error messages.
98#[stable(feature = "nonnull", since = "1.25.0")]
99impl<T: PointeeSized> !Send for NonNull<T> {}
100
101/// `NonNull` pointers are not `Sync` because the data they reference may be aliased.
102// N.B., this impl is unnecessary, but should provide better error messages.
103#[stable(feature = "nonnull", since = "1.25.0")]
104impl<T: PointeeSized> !Sync for NonNull<T> {}
105
106#[cfg(not(feature = "ferrocene_certified"))]
107impl<T: Sized> NonNull<T> {
108    /// Creates a pointer with the given address and no [provenance][crate::ptr#provenance].
109    ///
110    /// For more details, see the equivalent method on a raw pointer, [`ptr::without_provenance_mut`].
111    ///
112    /// This is a [Strict Provenance][crate::ptr#strict-provenance] API.
113    #[stable(feature = "nonnull_provenance", since = "1.89.0")]
114    #[rustc_const_stable(feature = "nonnull_provenance", since = "1.89.0")]
115    #[must_use]
116    #[inline]
117    pub const fn without_provenance(addr: NonZero<usize>) -> Self {
118        let pointer = crate::ptr::without_provenance(addr.get());
119        // SAFETY: we know `addr` is non-zero.
120        unsafe { NonNull { pointer } }
121    }
122
123    /// Creates a new `NonNull` that is dangling, but well-aligned.
124    ///
125    /// This is useful for initializing types which lazily allocate, like
126    /// `Vec::new` does.
127    ///
128    /// Note that the address of the returned pointer may potentially
129    /// be that of a valid pointer, which means this must not be used
130    /// as a "not yet initialized" sentinel value.
131    /// Types that lazily allocate must track initialization by some other means.
132    ///
133    /// # Examples
134    ///
135    /// ```
136    /// use std::ptr::NonNull;
137    ///
138    /// let ptr = NonNull::<u32>::dangling();
139    /// // Important: don't try to access the value of `ptr` without
140    /// // initializing it first! The pointer is not null but isn't valid either!
141    /// ```
142    #[stable(feature = "nonnull", since = "1.25.0")]
143    #[rustc_const_stable(feature = "const_nonnull_dangling", since = "1.36.0")]
144    #[must_use]
145    #[inline]
146    pub const fn dangling() -> Self {
147        let align = crate::ptr::Alignment::of::<T>();
148        NonNull::without_provenance(align.as_nonzero())
149    }
150
151    /// Converts an address back to a mutable pointer, picking up some previously 'exposed'
152    /// [provenance][crate::ptr#provenance].
153    ///
154    /// For more details, see the equivalent method on a raw pointer, [`ptr::with_exposed_provenance_mut`].
155    ///
156    /// This is an [Exposed Provenance][crate::ptr#exposed-provenance] API.
157    #[stable(feature = "nonnull_provenance", since = "1.89.0")]
158    #[inline]
159    pub fn with_exposed_provenance(addr: NonZero<usize>) -> Self {
160        // SAFETY: we know `addr` is non-zero.
161        unsafe {
162            let ptr = crate::ptr::with_exposed_provenance_mut(addr.get());
163            NonNull::new_unchecked(ptr)
164        }
165    }
166
167    /// Returns a shared references to the value. In contrast to [`as_ref`], this does not require
168    /// that the value has to be initialized.
169    ///
170    /// For the mutable counterpart see [`as_uninit_mut`].
171    ///
172    /// [`as_ref`]: NonNull::as_ref
173    /// [`as_uninit_mut`]: NonNull::as_uninit_mut
174    ///
175    /// # Safety
176    ///
177    /// When calling this method, you have to ensure that
178    /// the pointer is [convertible to a reference](crate::ptr#pointer-to-reference-conversion).
179    /// Note that because the created reference is to `MaybeUninit<T>`, the
180    /// source pointer can point to uninitialized memory.
181    #[inline]
182    #[must_use]
183    #[unstable(feature = "ptr_as_uninit", issue = "75402")]
184    pub const unsafe fn as_uninit_ref<'a>(self) -> &'a MaybeUninit<T> {
185        // SAFETY: the caller must guarantee that `self` meets all the
186        // requirements for a reference.
187        unsafe { &*self.cast().as_ptr() }
188    }
189
190    /// Returns a unique references to the value. In contrast to [`as_mut`], this does not require
191    /// that the value has to be initialized.
192    ///
193    /// For the shared counterpart see [`as_uninit_ref`].
194    ///
195    /// [`as_mut`]: NonNull::as_mut
196    /// [`as_uninit_ref`]: NonNull::as_uninit_ref
197    ///
198    /// # Safety
199    ///
200    /// When calling this method, you have to ensure that
201    /// the pointer is [convertible to a reference](crate::ptr#pointer-to-reference-conversion).
202    /// Note that because the created reference is to `MaybeUninit<T>`, the
203    /// source pointer can point to uninitialized memory.
204    #[inline]
205    #[must_use]
206    #[unstable(feature = "ptr_as_uninit", issue = "75402")]
207    pub const unsafe fn as_uninit_mut<'a>(self) -> &'a mut MaybeUninit<T> {
208        // SAFETY: the caller must guarantee that `self` meets all the
209        // requirements for a reference.
210        unsafe { &mut *self.cast().as_ptr() }
211    }
212
213    /// Casts from a pointer-to-`T` to a pointer-to-`[T; N]`.
214    #[inline]
215    #[unstable(feature = "ptr_cast_array", issue = "144514")]
216    pub const fn cast_array<const N: usize>(self) -> NonNull<[T; N]> {
217        self.cast()
218    }
219}
220
221impl<T: PointeeSized> NonNull<T> {
222    /// Creates a new `NonNull`.
223    ///
224    /// # Safety
225    ///
226    /// `ptr` must be non-null.
227    ///
228    /// # Examples
229    ///
230    /// ```
231    /// use std::ptr::NonNull;
232    ///
233    /// let mut x = 0u32;
234    /// let ptr = unsafe { NonNull::new_unchecked(&mut x as *mut _) };
235    /// ```
236    ///
237    /// *Incorrect* usage of this function:
238    ///
239    /// ```rust,no_run
240    /// use std::ptr::NonNull;
241    ///
242    /// // NEVER DO THAT!!! This is undefined behavior. ⚠️
243    /// let ptr = unsafe { NonNull::<u32>::new_unchecked(std::ptr::null_mut()) };
244    /// ```
245    #[stable(feature = "nonnull", since = "1.25.0")]
246    #[rustc_const_stable(feature = "const_nonnull_new_unchecked", since = "1.25.0")]
247    #[inline]
248    #[track_caller]
249    #[cfg(not(feature = "ferrocene_certified"))]
250    pub const unsafe fn new_unchecked(ptr: *mut T) -> Self {
251        // SAFETY: the caller must guarantee that `ptr` is non-null.
252        unsafe {
253            assert_unsafe_precondition!(
254                check_language_ub,
255                "NonNull::new_unchecked requires that the pointer is non-null",
256                (ptr: *mut () = ptr as *mut ()) => !ptr.is_null()
257            );
258            NonNull { pointer: ptr as _ }
259        }
260    }
261
262    /// Creates a new `NonNull` if `ptr` is non-null.
263    ///
264    /// # Panics during const evaluation
265    ///
266    /// This method will panic during const evaluation if the pointer cannot be
267    /// determined to be null or not. See [`is_null`] for more information.
268    ///
269    /// [`is_null`]: ../primitive.pointer.html#method.is_null-1
270    ///
271    /// # Examples
272    ///
273    /// ```
274    /// use std::ptr::NonNull;
275    ///
276    /// let mut x = 0u32;
277    /// let ptr = NonNull::<u32>::new(&mut x as *mut _).expect("ptr is null!");
278    ///
279    /// if let Some(ptr) = NonNull::<u32>::new(std::ptr::null_mut()) {
280    ///     unreachable!();
281    /// }
282    /// ```
283    #[stable(feature = "nonnull", since = "1.25.0")]
284    #[rustc_const_stable(feature = "const_nonnull_new", since = "1.85.0")]
285    #[inline]
286    #[cfg(not(feature = "ferrocene_certified"))]
287    pub const fn new(ptr: *mut T) -> Option<Self> {
288        if !ptr.is_null() {
289            // SAFETY: The pointer is already checked and is not null
290            Some(unsafe { Self::new_unchecked(ptr) })
291        } else {
292            None
293        }
294    }
295
296    /// Converts a reference to a `NonNull` pointer.
297    #[stable(feature = "non_null_from_ref", since = "1.89.0")]
298    #[rustc_const_stable(feature = "non_null_from_ref", since = "1.89.0")]
299    #[inline]
300    pub const fn from_ref(r: &T) -> Self {
301        // SAFETY: A reference cannot be null.
302        unsafe { NonNull { pointer: r as *const T } }
303    }
304
305    /// Converts a mutable reference to a `NonNull` pointer.
306    #[stable(feature = "non_null_from_ref", since = "1.89.0")]
307    #[rustc_const_stable(feature = "non_null_from_ref", since = "1.89.0")]
308    #[inline]
309    pub const fn from_mut(r: &mut T) -> Self {
310        // SAFETY: A mutable reference cannot be null.
311        unsafe { NonNull { pointer: r as *mut T } }
312    }
313
314    /// Performs the same functionality as [`std::ptr::from_raw_parts`], except that a
315    /// `NonNull` pointer is returned, as opposed to a raw `*const` pointer.
316    ///
317    /// See the documentation of [`std::ptr::from_raw_parts`] for more details.
318    ///
319    /// [`std::ptr::from_raw_parts`]: crate::ptr::from_raw_parts
320    #[unstable(feature = "ptr_metadata", issue = "81513")]
321    #[inline]
322    #[cfg(not(feature = "ferrocene_certified"))]
323    pub const fn from_raw_parts(
324        data_pointer: NonNull<impl super::Thin>,
325        metadata: <T as super::Pointee>::Metadata,
326    ) -> NonNull<T> {
327        // SAFETY: The result of `ptr::from::raw_parts_mut` is non-null because `data_pointer` is.
328        unsafe {
329            NonNull::new_unchecked(super::from_raw_parts_mut(data_pointer.as_ptr(), metadata))
330        }
331    }
332
333    /// Decompose a (possibly wide) pointer into its data pointer and metadata components.
334    ///
335    /// The pointer can be later reconstructed with [`NonNull::from_raw_parts`].
336    #[unstable(feature = "ptr_metadata", issue = "81513")]
337    #[must_use = "this returns the result of the operation, \
338                  without modifying the original"]
339    #[inline]
340    #[cfg(not(feature = "ferrocene_certified"))]
341    pub const fn to_raw_parts(self) -> (NonNull<()>, <T as super::Pointee>::Metadata) {
342        (self.cast(), super::metadata(self.as_ptr()))
343    }
344
345    /// Gets the "address" portion of the pointer.
346    ///
347    /// For more details, see the equivalent method on a raw pointer, [`pointer::addr`].
348    ///
349    /// This is a [Strict Provenance][crate::ptr#strict-provenance] API.
350    #[must_use]
351    #[inline]
352    #[stable(feature = "strict_provenance", since = "1.84.0")]
353    #[cfg(not(feature = "ferrocene_certified"))]
354    pub fn addr(self) -> NonZero<usize> {
355        // SAFETY: The pointer is guaranteed by the type to be non-null,
356        // meaning that the address will be non-zero.
357        unsafe { NonZero::new_unchecked(self.as_ptr().addr()) }
358    }
359
360    /// Exposes the ["provenance"][crate::ptr#provenance] part of the pointer for future use in
361    /// [`with_exposed_provenance`][NonNull::with_exposed_provenance] and returns the "address" portion.
362    ///
363    /// For more details, see the equivalent method on a raw pointer, [`pointer::expose_provenance`].
364    ///
365    /// This is an [Exposed Provenance][crate::ptr#exposed-provenance] API.
366    #[stable(feature = "nonnull_provenance", since = "1.89.0")]
367    #[cfg(not(feature = "ferrocene_certified"))]
368    pub fn expose_provenance(self) -> NonZero<usize> {
369        // SAFETY: The pointer is guaranteed by the type to be non-null,
370        // meaning that the address will be non-zero.
371        unsafe { NonZero::new_unchecked(self.as_ptr().expose_provenance()) }
372    }
373
374    /// Creates a new pointer with the given address and the [provenance][crate::ptr#provenance] of
375    /// `self`.
376    ///
377    /// For more details, see the equivalent method on a raw pointer, [`pointer::with_addr`].
378    ///
379    /// This is a [Strict Provenance][crate::ptr#strict-provenance] API.
380    #[must_use]
381    #[inline]
382    #[stable(feature = "strict_provenance", since = "1.84.0")]
383    #[cfg(not(feature = "ferrocene_certified"))]
384    pub fn with_addr(self, addr: NonZero<usize>) -> Self {
385        // SAFETY: The result of `ptr::from::with_addr` is non-null because `addr` is guaranteed to be non-zero.
386        unsafe { NonNull::new_unchecked(self.as_ptr().with_addr(addr.get()) as *mut _) }
387    }
388
389    /// Creates a new pointer by mapping `self`'s address to a new one, preserving the
390    /// [provenance][crate::ptr#provenance] of `self`.
391    ///
392    /// For more details, see the equivalent method on a raw pointer, [`pointer::map_addr`].
393    ///
394    /// This is a [Strict Provenance][crate::ptr#strict-provenance] API.
395    #[must_use]
396    #[inline]
397    #[stable(feature = "strict_provenance", since = "1.84.0")]
398    #[cfg(not(feature = "ferrocene_certified"))]
399    pub fn map_addr(self, f: impl FnOnce(NonZero<usize>) -> NonZero<usize>) -> Self {
400        self.with_addr(f(self.addr()))
401    }
402
403    /// Acquires the underlying `*mut` pointer.
404    ///
405    /// # Examples
406    ///
407    /// ```
408    /// use std::ptr::NonNull;
409    ///
410    /// let mut x = 0u32;
411    /// let ptr = NonNull::new(&mut x).expect("ptr is null!");
412    ///
413    /// let x_value = unsafe { *ptr.as_ptr() };
414    /// assert_eq!(x_value, 0);
415    ///
416    /// unsafe { *ptr.as_ptr() += 2; }
417    /// let x_value = unsafe { *ptr.as_ptr() };
418    /// assert_eq!(x_value, 2);
419    /// ```
420    #[stable(feature = "nonnull", since = "1.25.0")]
421    #[rustc_const_stable(feature = "const_nonnull_as_ptr", since = "1.32.0")]
422    #[rustc_never_returns_null_ptr]
423    #[must_use]
424    #[inline(always)]
425    pub const fn as_ptr(self) -> *mut T {
426        // This is a transmute for the same reasons as `NonZero::get`.
427
428        // SAFETY: `NonNull` is `transparent` over a `*const T`, and `*const T`
429        // and `*mut T` have the same layout, so transitively we can transmute
430        // our `NonNull` to a `*mut T` directly.
431        unsafe { mem::transmute::<Self, *mut T>(self) }
432    }
433
434    /// Returns a shared reference to the value. If the value may be uninitialized, [`as_uninit_ref`]
435    /// must be used instead.
436    ///
437    /// For the mutable counterpart see [`as_mut`].
438    ///
439    /// [`as_uninit_ref`]: NonNull::as_uninit_ref
440    /// [`as_mut`]: NonNull::as_mut
441    ///
442    /// # Safety
443    ///
444    /// When calling this method, you have to ensure that
445    /// the pointer is [convertible to a reference](crate::ptr#pointer-to-reference-conversion).
446    ///
447    /// # Examples
448    ///
449    /// ```
450    /// use std::ptr::NonNull;
451    ///
452    /// let mut x = 0u32;
453    /// let ptr = NonNull::new(&mut x as *mut _).expect("ptr is null!");
454    ///
455    /// let ref_x = unsafe { ptr.as_ref() };
456    /// println!("{ref_x}");
457    /// ```
458    ///
459    /// [the module documentation]: crate::ptr#safety
460    #[stable(feature = "nonnull", since = "1.25.0")]
461    #[rustc_const_stable(feature = "const_nonnull_as_ref", since = "1.73.0")]
462    #[must_use]
463    #[inline(always)]
464    pub const unsafe fn as_ref<'a>(&self) -> &'a T {
465        // SAFETY: the caller must guarantee that `self` meets all the
466        // requirements for a reference.
467        // `cast_const` avoids a mutable raw pointer deref.
468        unsafe { &*self.as_ptr().cast_const() }
469    }
470
471    /// Returns a unique reference to the value. If the value may be uninitialized, [`as_uninit_mut`]
472    /// must be used instead.
473    ///
474    /// For the shared counterpart see [`as_ref`].
475    ///
476    /// [`as_uninit_mut`]: NonNull::as_uninit_mut
477    /// [`as_ref`]: NonNull::as_ref
478    ///
479    /// # Safety
480    ///
481    /// When calling this method, you have to ensure that
482    /// the pointer is [convertible to a reference](crate::ptr#pointer-to-reference-conversion).
483    /// # Examples
484    ///
485    /// ```
486    /// use std::ptr::NonNull;
487    ///
488    /// let mut x = 0u32;
489    /// let mut ptr = NonNull::new(&mut x).expect("null pointer");
490    ///
491    /// let x_ref = unsafe { ptr.as_mut() };
492    /// assert_eq!(*x_ref, 0);
493    /// *x_ref += 2;
494    /// assert_eq!(*x_ref, 2);
495    /// ```
496    ///
497    /// [the module documentation]: crate::ptr#safety
498    #[stable(feature = "nonnull", since = "1.25.0")]
499    #[rustc_const_stable(feature = "const_ptr_as_ref", since = "1.83.0")]
500    #[must_use]
501    #[inline(always)]
502    pub const unsafe fn as_mut<'a>(&mut self) -> &'a mut T {
503        // SAFETY: the caller must guarantee that `self` meets all the
504        // requirements for a mutable reference.
505        unsafe { &mut *self.as_ptr() }
506    }
507
508    /// Casts to a pointer of another type.
509    ///
510    /// # Examples
511    ///
512    /// ```
513    /// use std::ptr::NonNull;
514    ///
515    /// let mut x = 0u32;
516    /// let ptr = NonNull::new(&mut x as *mut _).expect("null pointer");
517    ///
518    /// let casted_ptr = ptr.cast::<i8>();
519    /// let raw_ptr: *mut i8 = casted_ptr.as_ptr();
520    /// ```
521    #[stable(feature = "nonnull_cast", since = "1.27.0")]
522    #[rustc_const_stable(feature = "const_nonnull_cast", since = "1.36.0")]
523    #[must_use = "this returns the result of the operation, \
524                  without modifying the original"]
525    #[inline]
526    pub const fn cast<U>(self) -> NonNull<U> {
527        // SAFETY: `self` is a `NonNull` pointer which is necessarily non-null
528        unsafe { NonNull { pointer: self.as_ptr() as *mut U } }
529    }
530
531    /// Try to cast to a pointer of another type by checking alignment.
532    ///
533    /// If the pointer is properly aligned to the target type, it will be
534    /// cast to the target type. Otherwise, `None` is returned.
535    ///
536    /// # Examples
537    ///
538    /// ```rust
539    /// #![feature(pointer_try_cast_aligned)]
540    /// use std::ptr::NonNull;
541    ///
542    /// let mut x = 0u64;
543    ///
544    /// let aligned = NonNull::from_mut(&mut x);
545    /// let unaligned = unsafe { aligned.byte_add(1) };
546    ///
547    /// assert!(aligned.try_cast_aligned::<u32>().is_some());
548    /// assert!(unaligned.try_cast_aligned::<u32>().is_none());
549    /// ```
550    #[unstable(feature = "pointer_try_cast_aligned", issue = "141221")]
551    #[must_use = "this returns the result of the operation, \
552                  without modifying the original"]
553    #[inline]
554    #[cfg(not(feature = "ferrocene_certified"))]
555    pub fn try_cast_aligned<U>(self) -> Option<NonNull<U>> {
556        if self.is_aligned_to(align_of::<U>()) { Some(self.cast()) } else { None }
557    }
558
559    /// Adds an offset to a pointer.
560    ///
561    /// `count` is in units of T; e.g., a `count` of 3 represents a pointer
562    /// offset of `3 * size_of::<T>()` bytes.
563    ///
564    /// # Safety
565    ///
566    /// If any of the following conditions are violated, the result is Undefined Behavior:
567    ///
568    /// * The computed offset, `count * size_of::<T>()` bytes, must not overflow `isize`.
569    ///
570    /// * If the computed offset is non-zero, then `self` must be derived from a pointer to some
571    ///   [allocation], and the entire memory range between `self` and the result must be in
572    ///   bounds of that allocation. In particular, this range must not "wrap around" the edge
573    ///   of the address space.
574    ///
575    /// Allocations can never be larger than `isize::MAX` bytes, so if the computed offset
576    /// stays in bounds of the allocation, it is guaranteed to satisfy the first requirement.
577    /// This implies, for instance, that `vec.as_ptr().add(vec.len())` (for `vec: Vec<T>`) is always
578    /// safe.
579    ///
580    /// [allocation]: crate::ptr#allocation
581    ///
582    /// # Examples
583    ///
584    /// ```
585    /// use std::ptr::NonNull;
586    ///
587    /// let mut s = [1, 2, 3];
588    /// let ptr: NonNull<u32> = NonNull::new(s.as_mut_ptr()).unwrap();
589    ///
590    /// unsafe {
591    ///     println!("{}", ptr.offset(1).read());
592    ///     println!("{}", ptr.offset(2).read());
593    /// }
594    /// ```
595    #[inline(always)]
596    #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
597    #[must_use = "returns a new pointer rather than modifying its argument"]
598    #[stable(feature = "non_null_convenience", since = "1.80.0")]
599    #[rustc_const_stable(feature = "non_null_convenience", since = "1.80.0")]
600    #[cfg(not(feature = "ferrocene_certified"))]
601    pub const unsafe fn offset(self, count: isize) -> Self
602    where
603        T: Sized,
604    {
605        // SAFETY: the caller must uphold the safety contract for `offset`.
606        // Additionally safety contract of `offset` guarantees that the resulting pointer is
607        // pointing to an allocation, there can't be an allocation at null, thus it's safe to
608        // construct `NonNull`.
609        unsafe { NonNull { pointer: intrinsics::offset(self.as_ptr(), count) } }
610    }
611
612    /// Calculates the offset from a pointer in bytes.
613    ///
614    /// `count` is in units of **bytes**.
615    ///
616    /// This is purely a convenience for casting to a `u8` pointer and
617    /// using [offset][pointer::offset] on it. See that method for documentation
618    /// and safety requirements.
619    ///
620    /// For non-`Sized` pointees this operation changes only the data pointer,
621    /// leaving the metadata untouched.
622    #[must_use]
623    #[inline(always)]
624    #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
625    #[stable(feature = "non_null_convenience", since = "1.80.0")]
626    #[rustc_const_stable(feature = "non_null_convenience", since = "1.80.0")]
627    #[cfg(not(feature = "ferrocene_certified"))]
628    pub const unsafe fn byte_offset(self, count: isize) -> Self {
629        // SAFETY: the caller must uphold the safety contract for `offset` and `byte_offset` has
630        // the same safety contract.
631        // Additionally safety contract of `offset` guarantees that the resulting pointer is
632        // pointing to an allocation, there can't be an allocation at null, thus it's safe to
633        // construct `NonNull`.
634        unsafe { NonNull { pointer: self.as_ptr().byte_offset(count) } }
635    }
636
637    /// Adds an offset to a pointer (convenience for `.offset(count as isize)`).
638    ///
639    /// `count` is in units of T; e.g., a `count` of 3 represents a pointer
640    /// offset of `3 * size_of::<T>()` bytes.
641    ///
642    /// # Safety
643    ///
644    /// If any of the following conditions are violated, the result is Undefined Behavior:
645    ///
646    /// * The computed offset, `count * size_of::<T>()` bytes, must not overflow `isize`.
647    ///
648    /// * If the computed offset is non-zero, then `self` must be derived from a pointer to some
649    ///   [allocation], and the entire memory range between `self` and the result must be in
650    ///   bounds of that allocation. In particular, this range must not "wrap around" the edge
651    ///   of the address space.
652    ///
653    /// Allocations can never be larger than `isize::MAX` bytes, so if the computed offset
654    /// stays in bounds of the allocation, it is guaranteed to satisfy the first requirement.
655    /// This implies, for instance, that `vec.as_ptr().add(vec.len())` (for `vec: Vec<T>`) is always
656    /// safe.
657    ///
658    /// [allocation]: crate::ptr#allocation
659    ///
660    /// # Examples
661    ///
662    /// ```
663    /// use std::ptr::NonNull;
664    ///
665    /// let s: &str = "123";
666    /// let ptr: NonNull<u8> = NonNull::new(s.as_ptr().cast_mut()).unwrap();
667    ///
668    /// unsafe {
669    ///     println!("{}", ptr.add(1).read() as char);
670    ///     println!("{}", ptr.add(2).read() as char);
671    /// }
672    /// ```
673    #[inline(always)]
674    #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
675    #[must_use = "returns a new pointer rather than modifying its argument"]
676    #[stable(feature = "non_null_convenience", since = "1.80.0")]
677    #[rustc_const_stable(feature = "non_null_convenience", since = "1.80.0")]
678    pub const unsafe fn add(self, count: usize) -> Self
679    where
680        T: Sized,
681    {
682        // SAFETY: the caller must uphold the safety contract for `offset`.
683        // Additionally safety contract of `offset` guarantees that the resulting pointer is
684        // pointing to an allocation, there can't be an allocation at null, thus it's safe to
685        // construct `NonNull`.
686        unsafe { NonNull { pointer: intrinsics::offset(self.as_ptr(), count) } }
687    }
688
689    /// Calculates the offset from a pointer in bytes (convenience for `.byte_offset(count as isize)`).
690    ///
691    /// `count` is in units of bytes.
692    ///
693    /// This is purely a convenience for casting to a `u8` pointer and
694    /// using [`add`][NonNull::add] on it. See that method for documentation
695    /// and safety requirements.
696    ///
697    /// For non-`Sized` pointees this operation changes only the data pointer,
698    /// leaving the metadata untouched.
699    #[must_use]
700    #[inline(always)]
701    #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
702    #[stable(feature = "non_null_convenience", since = "1.80.0")]
703    #[rustc_const_stable(feature = "non_null_convenience", since = "1.80.0")]
704    #[cfg(not(feature = "ferrocene_certified"))]
705    pub const unsafe fn byte_add(self, count: usize) -> Self {
706        // SAFETY: the caller must uphold the safety contract for `add` and `byte_add` has the same
707        // safety contract.
708        // Additionally safety contract of `add` guarantees that the resulting pointer is pointing
709        // to an allocation, there can't be an allocation at null, thus it's safe to construct
710        // `NonNull`.
711        unsafe { NonNull { pointer: self.as_ptr().byte_add(count) } }
712    }
713
714    /// Subtracts an offset from a pointer (convenience for
715    /// `.offset((count as isize).wrapping_neg())`).
716    ///
717    /// `count` is in units of T; e.g., a `count` of 3 represents a pointer
718    /// offset of `3 * size_of::<T>()` bytes.
719    ///
720    /// # Safety
721    ///
722    /// If any of the following conditions are violated, the result is Undefined Behavior:
723    ///
724    /// * The computed offset, `count * size_of::<T>()` bytes, must not overflow `isize`.
725    ///
726    /// * If the computed offset is non-zero, then `self` must be derived from a pointer to some
727    ///   [allocation], and the entire memory range between `self` and the result must be in
728    ///   bounds of that allocation. In particular, this range must not "wrap around" the edge
729    ///   of the address space.
730    ///
731    /// Allocations can never be larger than `isize::MAX` bytes, so if the computed offset
732    /// stays in bounds of the allocation, it is guaranteed to satisfy the first requirement.
733    /// This implies, for instance, that `vec.as_ptr().add(vec.len())` (for `vec: Vec<T>`) is always
734    /// safe.
735    ///
736    /// [allocation]: crate::ptr#allocation
737    ///
738    /// # Examples
739    ///
740    /// ```
741    /// use std::ptr::NonNull;
742    ///
743    /// let s: &str = "123";
744    ///
745    /// unsafe {
746    ///     let end: NonNull<u8> = NonNull::new(s.as_ptr().cast_mut()).unwrap().add(3);
747    ///     println!("{}", end.sub(1).read() as char);
748    ///     println!("{}", end.sub(2).read() as char);
749    /// }
750    /// ```
751    #[inline(always)]
752    #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
753    #[must_use = "returns a new pointer rather than modifying its argument"]
754    #[stable(feature = "non_null_convenience", since = "1.80.0")]
755    #[rustc_const_stable(feature = "non_null_convenience", since = "1.80.0")]
756    #[cfg(not(feature = "ferrocene_certified"))]
757    pub const unsafe fn sub(self, count: usize) -> Self
758    where
759        T: Sized,
760    {
761        if T::IS_ZST {
762            // Pointer arithmetic does nothing when the pointee is a ZST.
763            self
764        } else {
765            // SAFETY: the caller must uphold the safety contract for `offset`.
766            // Because the pointee is *not* a ZST, that means that `count` is
767            // at most `isize::MAX`, and thus the negation cannot overflow.
768            unsafe { self.offset((count as isize).unchecked_neg()) }
769        }
770    }
771
772    /// Calculates the offset from a pointer in bytes (convenience for
773    /// `.byte_offset((count as isize).wrapping_neg())`).
774    ///
775    /// `count` is in units of bytes.
776    ///
777    /// This is purely a convenience for casting to a `u8` pointer and
778    /// using [`sub`][NonNull::sub] on it. See that method for documentation
779    /// and safety requirements.
780    ///
781    /// For non-`Sized` pointees this operation changes only the data pointer,
782    /// leaving the metadata untouched.
783    #[must_use]
784    #[inline(always)]
785    #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
786    #[stable(feature = "non_null_convenience", since = "1.80.0")]
787    #[rustc_const_stable(feature = "non_null_convenience", since = "1.80.0")]
788    #[cfg(not(feature = "ferrocene_certified"))]
789    pub const unsafe fn byte_sub(self, count: usize) -> Self {
790        // SAFETY: the caller must uphold the safety contract for `sub` and `byte_sub` has the same
791        // safety contract.
792        // Additionally safety contract of `sub` guarantees that the resulting pointer is pointing
793        // to an allocation, there can't be an allocation at null, thus it's safe to construct
794        // `NonNull`.
795        unsafe { NonNull { pointer: self.as_ptr().byte_sub(count) } }
796    }
797
798    /// Calculates the distance between two pointers within the same allocation. The returned value is in
799    /// units of T: the distance in bytes divided by `size_of::<T>()`.
800    ///
801    /// This is equivalent to `(self as isize - origin as isize) / (size_of::<T>() as isize)`,
802    /// except that it has a lot more opportunities for UB, in exchange for the compiler
803    /// better understanding what you are doing.
804    ///
805    /// The primary motivation of this method is for computing the `len` of an array/slice
806    /// of `T` that you are currently representing as a "start" and "end" pointer
807    /// (and "end" is "one past the end" of the array).
808    /// In that case, `end.offset_from(start)` gets you the length of the array.
809    ///
810    /// All of the following safety requirements are trivially satisfied for this usecase.
811    ///
812    /// [`offset`]: #method.offset
813    ///
814    /// # Safety
815    ///
816    /// If any of the following conditions are violated, the result is Undefined Behavior:
817    ///
818    /// * `self` and `origin` must either
819    ///
820    ///   * point to the same address, or
821    ///   * both be *derived from* a pointer to the same [allocation], and the memory range between
822    ///     the two pointers must be in bounds of that object. (See below for an example.)
823    ///
824    /// * The distance between the pointers, in bytes, must be an exact multiple
825    ///   of the size of `T`.
826    ///
827    /// As a consequence, the absolute distance between the pointers, in bytes, computed on
828    /// mathematical integers (without "wrapping around"), cannot overflow an `isize`. This is
829    /// implied by the in-bounds requirement, and the fact that no allocation can be larger
830    /// than `isize::MAX` bytes.
831    ///
832    /// The requirement for pointers to be derived from the same allocation is primarily
833    /// needed for `const`-compatibility: the distance between pointers into *different* allocated
834    /// objects is not known at compile-time. However, the requirement also exists at
835    /// runtime and may be exploited by optimizations. If you wish to compute the difference between
836    /// pointers that are not guaranteed to be from the same allocation, use `(self as isize -
837    /// origin as isize) / size_of::<T>()`.
838    // FIXME: recommend `addr()` instead of `as usize` once that is stable.
839    ///
840    /// [`add`]: #method.add
841    /// [allocation]: crate::ptr#allocation
842    ///
843    /// # Panics
844    ///
845    /// This function panics if `T` is a Zero-Sized Type ("ZST").
846    ///
847    /// # Examples
848    ///
849    /// Basic usage:
850    ///
851    /// ```
852    /// use std::ptr::NonNull;
853    ///
854    /// let a = [0; 5];
855    /// let ptr1: NonNull<u32> = NonNull::from(&a[1]);
856    /// let ptr2: NonNull<u32> = NonNull::from(&a[3]);
857    /// unsafe {
858    ///     assert_eq!(ptr2.offset_from(ptr1), 2);
859    ///     assert_eq!(ptr1.offset_from(ptr2), -2);
860    ///     assert_eq!(ptr1.offset(2), ptr2);
861    ///     assert_eq!(ptr2.offset(-2), ptr1);
862    /// }
863    /// ```
864    ///
865    /// *Incorrect* usage:
866    ///
867    /// ```rust,no_run
868    /// use std::ptr::NonNull;
869    ///
870    /// let ptr1 = NonNull::new(Box::into_raw(Box::new(0u8))).unwrap();
871    /// let ptr2 = NonNull::new(Box::into_raw(Box::new(1u8))).unwrap();
872    /// let diff = (ptr2.addr().get() as isize).wrapping_sub(ptr1.addr().get() as isize);
873    /// // Make ptr2_other an "alias" of ptr2.add(1), but derived from ptr1.
874    /// let diff_plus_1 = diff.wrapping_add(1);
875    /// let ptr2_other = NonNull::new(ptr1.as_ptr().wrapping_byte_offset(diff_plus_1)).unwrap();
876    /// assert_eq!(ptr2.addr(), ptr2_other.addr());
877    /// // Since ptr2_other and ptr2 are derived from pointers to different objects,
878    /// // computing their offset is undefined behavior, even though
879    /// // they point to addresses that are in-bounds of the same object!
880    ///
881    /// let one = unsafe { ptr2_other.offset_from(ptr2) }; // Undefined Behavior! ⚠️
882    /// ```
883    #[inline]
884    #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
885    #[stable(feature = "non_null_convenience", since = "1.80.0")]
886    #[rustc_const_stable(feature = "non_null_convenience", since = "1.80.0")]
887    #[cfg(not(feature = "ferrocene_certified"))]
888    pub const unsafe fn offset_from(self, origin: NonNull<T>) -> isize
889    where
890        T: Sized,
891    {
892        // SAFETY: the caller must uphold the safety contract for `offset_from`.
893        unsafe { self.as_ptr().offset_from(origin.as_ptr()) }
894    }
895
896    /// Calculates the distance between two pointers within the same allocation. The returned value is in
897    /// units of **bytes**.
898    ///
899    /// This is purely a convenience for casting to a `u8` pointer and
900    /// using [`offset_from`][NonNull::offset_from] on it. See that method for
901    /// documentation and safety requirements.
902    ///
903    /// For non-`Sized` pointees this operation considers only the data pointers,
904    /// ignoring the metadata.
905    #[inline(always)]
906    #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
907    #[stable(feature = "non_null_convenience", since = "1.80.0")]
908    #[rustc_const_stable(feature = "non_null_convenience", since = "1.80.0")]
909    #[cfg(not(feature = "ferrocene_certified"))]
910    pub const unsafe fn byte_offset_from<U: ?Sized>(self, origin: NonNull<U>) -> isize {
911        // SAFETY: the caller must uphold the safety contract for `byte_offset_from`.
912        unsafe { self.as_ptr().byte_offset_from(origin.as_ptr()) }
913    }
914
915    // N.B. `wrapping_offset``, `wrapping_add`, etc are not implemented because they can wrap to null
916
917    /// Calculates the distance between two pointers within the same allocation, *where it's known that
918    /// `self` is equal to or greater than `origin`*. The returned value is in
919    /// units of T: the distance in bytes is divided by `size_of::<T>()`.
920    ///
921    /// This computes the same value that [`offset_from`](#method.offset_from)
922    /// would compute, but with the added precondition that the offset is
923    /// guaranteed to be non-negative.  This method is equivalent to
924    /// `usize::try_from(self.offset_from(origin)).unwrap_unchecked()`,
925    /// but it provides slightly more information to the optimizer, which can
926    /// sometimes allow it to optimize slightly better with some backends.
927    ///
928    /// This method can be though of as recovering the `count` that was passed
929    /// to [`add`](#method.add) (or, with the parameters in the other order,
930    /// to [`sub`](#method.sub)).  The following are all equivalent, assuming
931    /// that their safety preconditions are met:
932    /// ```rust
933    /// # unsafe fn blah(ptr: std::ptr::NonNull<u32>, origin: std::ptr::NonNull<u32>, count: usize) -> bool { unsafe {
934    /// ptr.offset_from_unsigned(origin) == count
935    /// # &&
936    /// origin.add(count) == ptr
937    /// # &&
938    /// ptr.sub(count) == origin
939    /// # } }
940    /// ```
941    ///
942    /// # Safety
943    ///
944    /// - The distance between the pointers must be non-negative (`self >= origin`)
945    ///
946    /// - *All* the safety conditions of [`offset_from`](#method.offset_from)
947    ///   apply to this method as well; see it for the full details.
948    ///
949    /// Importantly, despite the return type of this method being able to represent
950    /// a larger offset, it's still *not permitted* to pass pointers which differ
951    /// by more than `isize::MAX` *bytes*.  As such, the result of this method will
952    /// always be less than or equal to `isize::MAX as usize`.
953    ///
954    /// # Panics
955    ///
956    /// This function panics if `T` is a Zero-Sized Type ("ZST").
957    ///
958    /// # Examples
959    ///
960    /// ```
961    /// use std::ptr::NonNull;
962    ///
963    /// let a = [0; 5];
964    /// let ptr1: NonNull<u32> = NonNull::from(&a[1]);
965    /// let ptr2: NonNull<u32> = NonNull::from(&a[3]);
966    /// unsafe {
967    ///     assert_eq!(ptr2.offset_from_unsigned(ptr1), 2);
968    ///     assert_eq!(ptr1.add(2), ptr2);
969    ///     assert_eq!(ptr2.sub(2), ptr1);
970    ///     assert_eq!(ptr2.offset_from_unsigned(ptr2), 0);
971    /// }
972    ///
973    /// // This would be incorrect, as the pointers are not correctly ordered:
974    /// // ptr1.offset_from_unsigned(ptr2)
975    /// ```
976    #[inline]
977    #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
978    #[stable(feature = "ptr_sub_ptr", since = "1.87.0")]
979    #[rustc_const_stable(feature = "const_ptr_sub_ptr", since = "1.87.0")]
980    #[cfg(not(feature = "ferrocene_certified"))]
981    pub const unsafe fn offset_from_unsigned(self, subtracted: NonNull<T>) -> usize
982    where
983        T: Sized,
984    {
985        // SAFETY: the caller must uphold the safety contract for `offset_from_unsigned`.
986        unsafe { self.as_ptr().offset_from_unsigned(subtracted.as_ptr()) }
987    }
988
989    /// Calculates the distance between two pointers within the same allocation, *where it's known that
990    /// `self` is equal to or greater than `origin`*. The returned value is in
991    /// units of **bytes**.
992    ///
993    /// This is purely a convenience for casting to a `u8` pointer and
994    /// using [`offset_from_unsigned`][NonNull::offset_from_unsigned] on it.
995    /// See that method for documentation and safety requirements.
996    ///
997    /// For non-`Sized` pointees this operation considers only the data pointers,
998    /// ignoring the metadata.
999    #[inline(always)]
1000    #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
1001    #[stable(feature = "ptr_sub_ptr", since = "1.87.0")]
1002    #[rustc_const_stable(feature = "const_ptr_sub_ptr", since = "1.87.0")]
1003    #[cfg(not(feature = "ferrocene_certified"))]
1004    pub const unsafe fn byte_offset_from_unsigned<U: ?Sized>(self, origin: NonNull<U>) -> usize {
1005        // SAFETY: the caller must uphold the safety contract for `byte_offset_from_unsigned`.
1006        unsafe { self.as_ptr().byte_offset_from_unsigned(origin.as_ptr()) }
1007    }
1008
1009    /// Reads the value from `self` without moving it. This leaves the
1010    /// memory in `self` unchanged.
1011    ///
1012    /// See [`ptr::read`] for safety concerns and examples.
1013    ///
1014    /// [`ptr::read`]: crate::ptr::read()
1015    #[inline]
1016    #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
1017    #[stable(feature = "non_null_convenience", since = "1.80.0")]
1018    #[rustc_const_stable(feature = "non_null_convenience", since = "1.80.0")]
1019    #[cfg(not(feature = "ferrocene_certified"))]
1020    pub const unsafe fn read(self) -> T
1021    where
1022        T: Sized,
1023    {
1024        // SAFETY: the caller must uphold the safety contract for `read`.
1025        unsafe { ptr::read(self.as_ptr()) }
1026    }
1027
1028    /// Performs a volatile read of the value from `self` without moving it. This
1029    /// leaves the memory in `self` unchanged.
1030    ///
1031    /// Volatile operations are intended to act on I/O memory, and are guaranteed
1032    /// to not be elided or reordered by the compiler across other volatile
1033    /// operations.
1034    ///
1035    /// See [`ptr::read_volatile`] for safety concerns and examples.
1036    ///
1037    /// [`ptr::read_volatile`]: crate::ptr::read_volatile()
1038    #[inline]
1039    #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
1040    #[stable(feature = "non_null_convenience", since = "1.80.0")]
1041    #[cfg(not(feature = "ferrocene_certified"))]
1042    pub unsafe fn read_volatile(self) -> T
1043    where
1044        T: Sized,
1045    {
1046        // SAFETY: the caller must uphold the safety contract for `read_volatile`.
1047        unsafe { ptr::read_volatile(self.as_ptr()) }
1048    }
1049
1050    /// Reads the value from `self` without moving it. This leaves the
1051    /// memory in `self` unchanged.
1052    ///
1053    /// Unlike `read`, the pointer may be unaligned.
1054    ///
1055    /// See [`ptr::read_unaligned`] for safety concerns and examples.
1056    ///
1057    /// [`ptr::read_unaligned`]: crate::ptr::read_unaligned()
1058    #[inline]
1059    #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
1060    #[stable(feature = "non_null_convenience", since = "1.80.0")]
1061    #[rustc_const_stable(feature = "non_null_convenience", since = "1.80.0")]
1062    #[cfg(not(feature = "ferrocene_certified"))]
1063    pub const unsafe fn read_unaligned(self) -> T
1064    where
1065        T: Sized,
1066    {
1067        // SAFETY: the caller must uphold the safety contract for `read_unaligned`.
1068        unsafe { ptr::read_unaligned(self.as_ptr()) }
1069    }
1070
1071    /// Copies `count * size_of::<T>()` bytes from `self` to `dest`. The source
1072    /// and destination may overlap.
1073    ///
1074    /// NOTE: this has the *same* argument order as [`ptr::copy`].
1075    ///
1076    /// See [`ptr::copy`] for safety concerns and examples.
1077    ///
1078    /// [`ptr::copy`]: crate::ptr::copy()
1079    #[inline(always)]
1080    #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
1081    #[stable(feature = "non_null_convenience", since = "1.80.0")]
1082    #[rustc_const_stable(feature = "const_intrinsic_copy", since = "1.83.0")]
1083    #[cfg(not(feature = "ferrocene_certified"))]
1084    pub const unsafe fn copy_to(self, dest: NonNull<T>, count: usize)
1085    where
1086        T: Sized,
1087    {
1088        // SAFETY: the caller must uphold the safety contract for `copy`.
1089        unsafe { ptr::copy(self.as_ptr(), dest.as_ptr(), count) }
1090    }
1091
1092    /// Copies `count * size_of::<T>()` bytes from `self` to `dest`. The source
1093    /// and destination may *not* overlap.
1094    ///
1095    /// NOTE: this has the *same* argument order as [`ptr::copy_nonoverlapping`].
1096    ///
1097    /// See [`ptr::copy_nonoverlapping`] for safety concerns and examples.
1098    ///
1099    /// [`ptr::copy_nonoverlapping`]: crate::ptr::copy_nonoverlapping()
1100    #[inline(always)]
1101    #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
1102    #[stable(feature = "non_null_convenience", since = "1.80.0")]
1103    #[rustc_const_stable(feature = "const_intrinsic_copy", since = "1.83.0")]
1104    #[cfg(not(feature = "ferrocene_certified"))]
1105    pub const unsafe fn copy_to_nonoverlapping(self, dest: NonNull<T>, count: usize)
1106    where
1107        T: Sized,
1108    {
1109        // SAFETY: the caller must uphold the safety contract for `copy_nonoverlapping`.
1110        unsafe { ptr::copy_nonoverlapping(self.as_ptr(), dest.as_ptr(), count) }
1111    }
1112
1113    /// Copies `count * size_of::<T>()` bytes from `src` to `self`. The source
1114    /// and destination may overlap.
1115    ///
1116    /// NOTE: this has the *opposite* argument order of [`ptr::copy`].
1117    ///
1118    /// See [`ptr::copy`] for safety concerns and examples.
1119    ///
1120    /// [`ptr::copy`]: crate::ptr::copy()
1121    #[inline(always)]
1122    #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
1123    #[stable(feature = "non_null_convenience", since = "1.80.0")]
1124    #[rustc_const_stable(feature = "const_intrinsic_copy", since = "1.83.0")]
1125    #[cfg(not(feature = "ferrocene_certified"))]
1126    pub const unsafe fn copy_from(self, src: NonNull<T>, count: usize)
1127    where
1128        T: Sized,
1129    {
1130        // SAFETY: the caller must uphold the safety contract for `copy`.
1131        unsafe { ptr::copy(src.as_ptr(), self.as_ptr(), count) }
1132    }
1133
1134    /// Copies `count * size_of::<T>()` bytes from `src` to `self`. The source
1135    /// and destination may *not* overlap.
1136    ///
1137    /// NOTE: this has the *opposite* argument order of [`ptr::copy_nonoverlapping`].
1138    ///
1139    /// See [`ptr::copy_nonoverlapping`] for safety concerns and examples.
1140    ///
1141    /// [`ptr::copy_nonoverlapping`]: crate::ptr::copy_nonoverlapping()
1142    #[inline(always)]
1143    #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
1144    #[stable(feature = "non_null_convenience", since = "1.80.0")]
1145    #[rustc_const_stable(feature = "const_intrinsic_copy", since = "1.83.0")]
1146    #[cfg(not(feature = "ferrocene_certified"))]
1147    pub const unsafe fn copy_from_nonoverlapping(self, src: NonNull<T>, count: usize)
1148    where
1149        T: Sized,
1150    {
1151        // SAFETY: the caller must uphold the safety contract for `copy_nonoverlapping`.
1152        unsafe { ptr::copy_nonoverlapping(src.as_ptr(), self.as_ptr(), count) }
1153    }
1154
1155    /// Executes the destructor (if any) of the pointed-to value.
1156    ///
1157    /// See [`ptr::drop_in_place`] for safety concerns and examples.
1158    ///
1159    /// [`ptr::drop_in_place`]: crate::ptr::drop_in_place()
1160    #[inline(always)]
1161    #[stable(feature = "non_null_convenience", since = "1.80.0")]
1162    #[rustc_const_unstable(feature = "const_drop_in_place", issue = "109342")]
1163    #[cfg(not(feature = "ferrocene_certified"))]
1164    pub const unsafe fn drop_in_place(self)
1165    where
1166        T: [const] Destruct,
1167    {
1168        // SAFETY: the caller must uphold the safety contract for `drop_in_place`.
1169        unsafe { ptr::drop_in_place(self.as_ptr()) }
1170    }
1171
1172    /// Overwrites a memory location with the given value without reading or
1173    /// dropping the old value.
1174    ///
1175    /// See [`ptr::write`] for safety concerns and examples.
1176    ///
1177    /// [`ptr::write`]: crate::ptr::write()
1178    #[inline(always)]
1179    #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
1180    #[stable(feature = "non_null_convenience", since = "1.80.0")]
1181    #[rustc_const_stable(feature = "const_ptr_write", since = "1.83.0")]
1182    #[cfg(not(feature = "ferrocene_certified"))]
1183    pub const unsafe fn write(self, val: T)
1184    where
1185        T: Sized,
1186    {
1187        // SAFETY: the caller must uphold the safety contract for `write`.
1188        unsafe { ptr::write(self.as_ptr(), val) }
1189    }
1190
1191    /// Invokes memset on the specified pointer, setting `count * size_of::<T>()`
1192    /// bytes of memory starting at `self` to `val`.
1193    ///
1194    /// See [`ptr::write_bytes`] for safety concerns and examples.
1195    ///
1196    /// [`ptr::write_bytes`]: crate::ptr::write_bytes()
1197    #[inline(always)]
1198    #[doc(alias = "memset")]
1199    #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
1200    #[stable(feature = "non_null_convenience", since = "1.80.0")]
1201    #[rustc_const_stable(feature = "const_ptr_write", since = "1.83.0")]
1202    #[cfg(not(feature = "ferrocene_certified"))]
1203    pub const unsafe fn write_bytes(self, val: u8, count: usize)
1204    where
1205        T: Sized,
1206    {
1207        // SAFETY: the caller must uphold the safety contract for `write_bytes`.
1208        unsafe { ptr::write_bytes(self.as_ptr(), val, count) }
1209    }
1210
1211    /// Performs a volatile write of a memory location with the given value without
1212    /// reading or dropping the old value.
1213    ///
1214    /// Volatile operations are intended to act on I/O memory, and are guaranteed
1215    /// to not be elided or reordered by the compiler across other volatile
1216    /// operations.
1217    ///
1218    /// See [`ptr::write_volatile`] for safety concerns and examples.
1219    ///
1220    /// [`ptr::write_volatile`]: crate::ptr::write_volatile()
1221    #[inline(always)]
1222    #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
1223    #[stable(feature = "non_null_convenience", since = "1.80.0")]
1224    #[cfg(not(feature = "ferrocene_certified"))]
1225    pub unsafe fn write_volatile(self, val: T)
1226    where
1227        T: Sized,
1228    {
1229        // SAFETY: the caller must uphold the safety contract for `write_volatile`.
1230        unsafe { ptr::write_volatile(self.as_ptr(), val) }
1231    }
1232
1233    /// Overwrites a memory location with the given value without reading or
1234    /// dropping the old value.
1235    ///
1236    /// Unlike `write`, the pointer may be unaligned.
1237    ///
1238    /// See [`ptr::write_unaligned`] for safety concerns and examples.
1239    ///
1240    /// [`ptr::write_unaligned`]: crate::ptr::write_unaligned()
1241    #[inline(always)]
1242    #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
1243    #[stable(feature = "non_null_convenience", since = "1.80.0")]
1244    #[rustc_const_stable(feature = "const_ptr_write", since = "1.83.0")]
1245    #[cfg(not(feature = "ferrocene_certified"))]
1246    pub const unsafe fn write_unaligned(self, val: T)
1247    where
1248        T: Sized,
1249    {
1250        // SAFETY: the caller must uphold the safety contract for `write_unaligned`.
1251        unsafe { ptr::write_unaligned(self.as_ptr(), val) }
1252    }
1253
1254    /// Replaces the value at `self` with `src`, returning the old
1255    /// value, without dropping either.
1256    ///
1257    /// See [`ptr::replace`] for safety concerns and examples.
1258    ///
1259    /// [`ptr::replace`]: crate::ptr::replace()
1260    #[inline(always)]
1261    #[stable(feature = "non_null_convenience", since = "1.80.0")]
1262    #[rustc_const_stable(feature = "const_inherent_ptr_replace", since = "1.88.0")]
1263    #[cfg(not(feature = "ferrocene_certified"))]
1264    pub const unsafe fn replace(self, src: T) -> T
1265    where
1266        T: Sized,
1267    {
1268        // SAFETY: the caller must uphold the safety contract for `replace`.
1269        unsafe { ptr::replace(self.as_ptr(), src) }
1270    }
1271
1272    /// Swaps the values at two mutable locations of the same type, without
1273    /// deinitializing either. They may overlap, unlike `mem::swap` which is
1274    /// otherwise equivalent.
1275    ///
1276    /// See [`ptr::swap`] for safety concerns and examples.
1277    ///
1278    /// [`ptr::swap`]: crate::ptr::swap()
1279    #[inline(always)]
1280    #[stable(feature = "non_null_convenience", since = "1.80.0")]
1281    #[rustc_const_stable(feature = "const_swap", since = "1.85.0")]
1282    #[cfg(not(feature = "ferrocene_certified"))]
1283    pub const unsafe fn swap(self, with: NonNull<T>)
1284    where
1285        T: Sized,
1286    {
1287        // SAFETY: the caller must uphold the safety contract for `swap`.
1288        unsafe { ptr::swap(self.as_ptr(), with.as_ptr()) }
1289    }
1290
1291    /// Computes the offset that needs to be applied to the pointer in order to make it aligned to
1292    /// `align`.
1293    ///
1294    /// If it is not possible to align the pointer, the implementation returns
1295    /// `usize::MAX`.
1296    ///
1297    /// The offset is expressed in number of `T` elements, and not bytes.
1298    ///
1299    /// There are no guarantees whatsoever that offsetting the pointer will not overflow or go
1300    /// beyond the allocation that the pointer points into. It is up to the caller to ensure that
1301    /// the returned offset is correct in all terms other than alignment.
1302    ///
1303    /// When this is called during compile-time evaluation (which is unstable), the implementation
1304    /// may return `usize::MAX` in cases where that can never happen at runtime. This is because the
1305    /// actual alignment of pointers is not known yet during compile-time, so an offset with
1306    /// guaranteed alignment can sometimes not be computed. For example, a buffer declared as `[u8;
1307    /// N]` might be allocated at an odd or an even address, but at compile-time this is not yet
1308    /// known, so the execution has to be correct for either choice. It is therefore impossible to
1309    /// find an offset that is guaranteed to be 2-aligned. (This behavior is subject to change, as usual
1310    /// for unstable APIs.)
1311    ///
1312    /// # Panics
1313    ///
1314    /// The function panics if `align` is not a power-of-two.
1315    ///
1316    /// # Examples
1317    ///
1318    /// Accessing adjacent `u8` as `u16`
1319    ///
1320    /// ```
1321    /// use std::ptr::NonNull;
1322    ///
1323    /// # unsafe {
1324    /// let x = [5_u8, 6, 7, 8, 9];
1325    /// let ptr = NonNull::new(x.as_ptr() as *mut u8).unwrap();
1326    /// let offset = ptr.align_offset(align_of::<u16>());
1327    ///
1328    /// if offset < x.len() - 1 {
1329    ///     let u16_ptr = ptr.add(offset).cast::<u16>();
1330    ///     assert!(u16_ptr.read() == u16::from_ne_bytes([5, 6]) || u16_ptr.read() == u16::from_ne_bytes([6, 7]));
1331    /// } else {
1332    ///     // while the pointer can be aligned via `offset`, it would point
1333    ///     // outside the allocation
1334    /// }
1335    /// # }
1336    /// ```
1337    #[inline]
1338    #[must_use]
1339    #[stable(feature = "non_null_convenience", since = "1.80.0")]
1340    #[cfg(not(feature = "ferrocene_certified"))]
1341    pub fn align_offset(self, align: usize) -> usize
1342    where
1343        T: Sized,
1344    {
1345        if !align.is_power_of_two() {
1346            panic!("align_offset: align is not a power-of-two");
1347        }
1348
1349        {
1350            // SAFETY: `align` has been checked to be a power of 2 above.
1351            unsafe { ptr::align_offset(self.as_ptr(), align) }
1352        }
1353    }
1354
1355    /// Returns whether the pointer is properly aligned for `T`.
1356    ///
1357    /// # Examples
1358    ///
1359    /// ```
1360    /// use std::ptr::NonNull;
1361    ///
1362    /// // On some platforms, the alignment of i32 is less than 4.
1363    /// #[repr(align(4))]
1364    /// struct AlignedI32(i32);
1365    ///
1366    /// let data = AlignedI32(42);
1367    /// let ptr = NonNull::<AlignedI32>::from(&data);
1368    ///
1369    /// assert!(ptr.is_aligned());
1370    /// assert!(!NonNull::new(ptr.as_ptr().wrapping_byte_add(1)).unwrap().is_aligned());
1371    /// ```
1372    #[inline]
1373    #[must_use]
1374    #[stable(feature = "pointer_is_aligned", since = "1.79.0")]
1375    #[cfg(not(feature = "ferrocene_certified"))]
1376    pub fn is_aligned(self) -> bool
1377    where
1378        T: Sized,
1379    {
1380        self.as_ptr().is_aligned()
1381    }
1382
1383    /// Returns whether the pointer is aligned to `align`.
1384    ///
1385    /// For non-`Sized` pointees this operation considers only the data pointer,
1386    /// ignoring the metadata.
1387    ///
1388    /// # Panics
1389    ///
1390    /// The function panics if `align` is not a power-of-two (this includes 0).
1391    ///
1392    /// # Examples
1393    ///
1394    /// ```
1395    /// #![feature(pointer_is_aligned_to)]
1396    ///
1397    /// // On some platforms, the alignment of i32 is less than 4.
1398    /// #[repr(align(4))]
1399    /// struct AlignedI32(i32);
1400    ///
1401    /// let data = AlignedI32(42);
1402    /// let ptr = &data as *const AlignedI32;
1403    ///
1404    /// assert!(ptr.is_aligned_to(1));
1405    /// assert!(ptr.is_aligned_to(2));
1406    /// assert!(ptr.is_aligned_to(4));
1407    ///
1408    /// assert!(ptr.wrapping_byte_add(2).is_aligned_to(2));
1409    /// assert!(!ptr.wrapping_byte_add(2).is_aligned_to(4));
1410    ///
1411    /// assert_ne!(ptr.is_aligned_to(8), ptr.wrapping_add(1).is_aligned_to(8));
1412    /// ```
1413    #[inline]
1414    #[must_use]
1415    #[unstable(feature = "pointer_is_aligned_to", issue = "96284")]
1416    #[cfg(not(feature = "ferrocene_certified"))]
1417    pub fn is_aligned_to(self, align: usize) -> bool {
1418        self.as_ptr().is_aligned_to(align)
1419    }
1420}
1421
1422#[cfg(not(feature = "ferrocene_certified"))]
1423impl<T> NonNull<T> {
1424    /// Casts from a type to its maybe-uninitialized version.
1425    #[must_use]
1426    #[inline(always)]
1427    #[unstable(feature = "cast_maybe_uninit", issue = "145036")]
1428    pub const fn cast_uninit(self) -> NonNull<MaybeUninit<T>> {
1429        self.cast()
1430    }
1431}
1432#[cfg(not(feature = "ferrocene_certified"))]
1433impl<T> NonNull<MaybeUninit<T>> {
1434    /// Casts from a maybe-uninitialized type to its initialized version.
1435    ///
1436    /// This is always safe, since UB can only occur if the pointer is read
1437    /// before being initialized.
1438    #[must_use]
1439    #[inline(always)]
1440    #[unstable(feature = "cast_maybe_uninit", issue = "145036")]
1441    pub const fn cast_init(self) -> NonNull<T> {
1442        self.cast()
1443    }
1444}
1445
1446#[cfg(not(feature = "ferrocene_certified"))]
1447impl<T> NonNull<[T]> {
1448    /// Creates a non-null raw slice from a thin pointer and a length.
1449    ///
1450    /// The `len` argument is the number of **elements**, not the number of bytes.
1451    ///
1452    /// This function is safe, but dereferencing the return value is unsafe.
1453    /// See the documentation of [`slice::from_raw_parts`] for slice safety requirements.
1454    ///
1455    /// # Examples
1456    ///
1457    /// ```rust
1458    /// use std::ptr::NonNull;
1459    ///
1460    /// // create a slice pointer when starting out with a pointer to the first element
1461    /// let mut x = [5, 6, 7];
1462    /// let nonnull_pointer = NonNull::new(x.as_mut_ptr()).unwrap();
1463    /// let slice = NonNull::slice_from_raw_parts(nonnull_pointer, 3);
1464    /// assert_eq!(unsafe { slice.as_ref()[2] }, 7);
1465    /// ```
1466    ///
1467    /// (Note that this example artificially demonstrates a use of this method,
1468    /// but `let slice = NonNull::from(&x[..]);` would be a better way to write code like this.)
1469    #[stable(feature = "nonnull_slice_from_raw_parts", since = "1.70.0")]
1470    #[rustc_const_stable(feature = "const_slice_from_raw_parts_mut", since = "1.83.0")]
1471    #[must_use]
1472    #[inline]
1473    pub const fn slice_from_raw_parts(data: NonNull<T>, len: usize) -> Self {
1474        // SAFETY: `data` is a `NonNull` pointer which is necessarily non-null
1475        unsafe { Self::new_unchecked(super::slice_from_raw_parts_mut(data.as_ptr(), len)) }
1476    }
1477
1478    /// Returns the length of a non-null raw slice.
1479    ///
1480    /// The returned value is the number of **elements**, not the number of bytes.
1481    ///
1482    /// This function is safe, even when the non-null raw slice cannot be dereferenced to a slice
1483    /// because the pointer does not have a valid address.
1484    ///
1485    /// # Examples
1486    ///
1487    /// ```rust
1488    /// use std::ptr::NonNull;
1489    ///
1490    /// let slice: NonNull<[i8]> = NonNull::slice_from_raw_parts(NonNull::dangling(), 3);
1491    /// assert_eq!(slice.len(), 3);
1492    /// ```
1493    #[stable(feature = "slice_ptr_len_nonnull", since = "1.63.0")]
1494    #[rustc_const_stable(feature = "const_slice_ptr_len_nonnull", since = "1.63.0")]
1495    #[must_use]
1496    #[inline]
1497    pub const fn len(self) -> usize {
1498        self.as_ptr().len()
1499    }
1500
1501    /// Returns `true` if the non-null raw slice has a length of 0.
1502    ///
1503    /// # Examples
1504    ///
1505    /// ```rust
1506    /// use std::ptr::NonNull;
1507    ///
1508    /// let slice: NonNull<[i8]> = NonNull::slice_from_raw_parts(NonNull::dangling(), 3);
1509    /// assert!(!slice.is_empty());
1510    /// ```
1511    #[stable(feature = "slice_ptr_is_empty_nonnull", since = "1.79.0")]
1512    #[rustc_const_stable(feature = "const_slice_ptr_is_empty_nonnull", since = "1.79.0")]
1513    #[must_use]
1514    #[inline]
1515    pub const fn is_empty(self) -> bool {
1516        self.len() == 0
1517    }
1518
1519    /// Returns a non-null pointer to the slice's buffer.
1520    ///
1521    /// # Examples
1522    ///
1523    /// ```rust
1524    /// #![feature(slice_ptr_get)]
1525    /// use std::ptr::NonNull;
1526    ///
1527    /// let slice: NonNull<[i8]> = NonNull::slice_from_raw_parts(NonNull::dangling(), 3);
1528    /// assert_eq!(slice.as_non_null_ptr(), NonNull::<i8>::dangling());
1529    /// ```
1530    #[inline]
1531    #[must_use]
1532    #[unstable(feature = "slice_ptr_get", issue = "74265")]
1533    pub const fn as_non_null_ptr(self) -> NonNull<T> {
1534        self.cast()
1535    }
1536
1537    /// Returns a raw pointer to the slice's buffer.
1538    ///
1539    /// # Examples
1540    ///
1541    /// ```rust
1542    /// #![feature(slice_ptr_get)]
1543    /// use std::ptr::NonNull;
1544    ///
1545    /// let slice: NonNull<[i8]> = NonNull::slice_from_raw_parts(NonNull::dangling(), 3);
1546    /// assert_eq!(slice.as_mut_ptr(), NonNull::<i8>::dangling().as_ptr());
1547    /// ```
1548    #[inline]
1549    #[must_use]
1550    #[unstable(feature = "slice_ptr_get", issue = "74265")]
1551    #[rustc_never_returns_null_ptr]
1552    pub const fn as_mut_ptr(self) -> *mut T {
1553        self.as_non_null_ptr().as_ptr()
1554    }
1555
1556    /// Returns a shared reference to a slice of possibly uninitialized values. In contrast to
1557    /// [`as_ref`], this does not require that the value has to be initialized.
1558    ///
1559    /// For the mutable counterpart see [`as_uninit_slice_mut`].
1560    ///
1561    /// [`as_ref`]: NonNull::as_ref
1562    /// [`as_uninit_slice_mut`]: NonNull::as_uninit_slice_mut
1563    ///
1564    /// # Safety
1565    ///
1566    /// When calling this method, you have to ensure that all of the following is true:
1567    ///
1568    /// * The pointer must be [valid] for reads for `ptr.len() * size_of::<T>()` many bytes,
1569    ///   and it must be properly aligned. This means in particular:
1570    ///
1571    ///     * The entire memory range of this slice must be contained within a single allocation!
1572    ///       Slices can never span across multiple allocations.
1573    ///
1574    ///     * The pointer must be aligned even for zero-length slices. One
1575    ///       reason for this is that enum layout optimizations may rely on references
1576    ///       (including slices of any length) being aligned and non-null to distinguish
1577    ///       them from other data. You can obtain a pointer that is usable as `data`
1578    ///       for zero-length slices using [`NonNull::dangling()`].
1579    ///
1580    /// * The total size `ptr.len() * size_of::<T>()` of the slice must be no larger than `isize::MAX`.
1581    ///   See the safety documentation of [`pointer::offset`].
1582    ///
1583    /// * You must enforce Rust's aliasing rules, since the returned lifetime `'a` is
1584    ///   arbitrarily chosen and does not necessarily reflect the actual lifetime of the data.
1585    ///   In particular, while this reference exists, the memory the pointer points to must
1586    ///   not get mutated (except inside `UnsafeCell`).
1587    ///
1588    /// This applies even if the result of this method is unused!
1589    ///
1590    /// See also [`slice::from_raw_parts`].
1591    ///
1592    /// [valid]: crate::ptr#safety
1593    #[inline]
1594    #[must_use]
1595    #[unstable(feature = "ptr_as_uninit", issue = "75402")]
1596    pub const unsafe fn as_uninit_slice<'a>(self) -> &'a [MaybeUninit<T>] {
1597        // SAFETY: the caller must uphold the safety contract for `as_uninit_slice`.
1598        unsafe { slice::from_raw_parts(self.cast().as_ptr(), self.len()) }
1599    }
1600
1601    /// Returns a unique reference to a slice of possibly uninitialized values. In contrast to
1602    /// [`as_mut`], this does not require that the value has to be initialized.
1603    ///
1604    /// For the shared counterpart see [`as_uninit_slice`].
1605    ///
1606    /// [`as_mut`]: NonNull::as_mut
1607    /// [`as_uninit_slice`]: NonNull::as_uninit_slice
1608    ///
1609    /// # Safety
1610    ///
1611    /// When calling this method, you have to ensure that all of the following is true:
1612    ///
1613    /// * The pointer must be [valid] for reads and writes for `ptr.len() * size_of::<T>()`
1614    ///   many bytes, and it must be properly aligned. This means in particular:
1615    ///
1616    ///     * The entire memory range of this slice must be contained within a single allocation!
1617    ///       Slices can never span across multiple allocations.
1618    ///
1619    ///     * The pointer must be aligned even for zero-length slices. One
1620    ///       reason for this is that enum layout optimizations may rely on references
1621    ///       (including slices of any length) being aligned and non-null to distinguish
1622    ///       them from other data. You can obtain a pointer that is usable as `data`
1623    ///       for zero-length slices using [`NonNull::dangling()`].
1624    ///
1625    /// * The total size `ptr.len() * size_of::<T>()` of the slice must be no larger than `isize::MAX`.
1626    ///   See the safety documentation of [`pointer::offset`].
1627    ///
1628    /// * You must enforce Rust's aliasing rules, since the returned lifetime `'a` is
1629    ///   arbitrarily chosen and does not necessarily reflect the actual lifetime of the data.
1630    ///   In particular, while this reference exists, the memory the pointer points to must
1631    ///   not get accessed (read or written) through any other pointer.
1632    ///
1633    /// This applies even if the result of this method is unused!
1634    ///
1635    /// See also [`slice::from_raw_parts_mut`].
1636    ///
1637    /// [valid]: crate::ptr#safety
1638    ///
1639    /// # Examples
1640    ///
1641    /// ```rust
1642    /// #![feature(allocator_api, ptr_as_uninit)]
1643    ///
1644    /// use std::alloc::{Allocator, Layout, Global};
1645    /// use std::mem::MaybeUninit;
1646    /// use std::ptr::NonNull;
1647    ///
1648    /// let memory: NonNull<[u8]> = Global.allocate(Layout::new::<[u8; 32]>())?;
1649    /// // This is safe as `memory` is valid for reads and writes for `memory.len()` many bytes.
1650    /// // Note that calling `memory.as_mut()` is not allowed here as the content may be uninitialized.
1651    /// # #[allow(unused_variables)]
1652    /// let slice: &mut [MaybeUninit<u8>] = unsafe { memory.as_uninit_slice_mut() };
1653    /// # // Prevent leaks for Miri.
1654    /// # unsafe { Global.deallocate(memory.cast(), Layout::new::<[u8; 32]>()); }
1655    /// # Ok::<_, std::alloc::AllocError>(())
1656    /// ```
1657    #[inline]
1658    #[must_use]
1659    #[unstable(feature = "ptr_as_uninit", issue = "75402")]
1660    pub const unsafe fn as_uninit_slice_mut<'a>(self) -> &'a mut [MaybeUninit<T>] {
1661        // SAFETY: the caller must uphold the safety contract for `as_uninit_slice_mut`.
1662        unsafe { slice::from_raw_parts_mut(self.cast().as_ptr(), self.len()) }
1663    }
1664
1665    /// Returns a raw pointer to an element or subslice, without doing bounds
1666    /// checking.
1667    ///
1668    /// Calling this method with an out-of-bounds index or when `self` is not dereferenceable
1669    /// is *[undefined behavior]* even if the resulting pointer is not used.
1670    ///
1671    /// [undefined behavior]: https://doc.rust-lang.org/reference/behavior-considered-undefined.html
1672    ///
1673    /// # Examples
1674    ///
1675    /// ```
1676    /// #![feature(slice_ptr_get)]
1677    /// use std::ptr::NonNull;
1678    ///
1679    /// let x = &mut [1, 2, 4];
1680    /// let x = NonNull::slice_from_raw_parts(NonNull::new(x.as_mut_ptr()).unwrap(), x.len());
1681    ///
1682    /// unsafe {
1683    ///     assert_eq!(x.get_unchecked_mut(1).as_ptr(), x.as_non_null_ptr().as_ptr().add(1));
1684    /// }
1685    /// ```
1686    #[unstable(feature = "slice_ptr_get", issue = "74265")]
1687    #[rustc_const_unstable(feature = "const_index", issue = "143775")]
1688    #[inline]
1689    pub const unsafe fn get_unchecked_mut<I>(self, index: I) -> NonNull<I::Output>
1690    where
1691        I: [const] SliceIndex<[T]>,
1692    {
1693        // SAFETY: the caller ensures that `self` is dereferenceable and `index` in-bounds.
1694        // As a consequence, the resulting pointer cannot be null.
1695        unsafe { NonNull::new_unchecked(self.as_ptr().get_unchecked_mut(index)) }
1696    }
1697}
1698
1699#[stable(feature = "nonnull", since = "1.25.0")]
1700impl<T: PointeeSized> Clone for NonNull<T> {
1701    #[inline(always)]
1702    fn clone(&self) -> Self {
1703        *self
1704    }
1705}
1706
1707#[stable(feature = "nonnull", since = "1.25.0")]
1708impl<T: PointeeSized> Copy for NonNull<T> {}
1709
1710#[unstable(feature = "coerce_unsized", issue = "18598")]
1711#[cfg(not(feature = "ferrocene_certified"))]
1712impl<T: PointeeSized, U: PointeeSized> CoerceUnsized<NonNull<U>> for NonNull<T> where T: Unsize<U> {}
1713
1714#[unstable(feature = "dispatch_from_dyn", issue = "none")]
1715#[cfg(not(feature = "ferrocene_certified"))]
1716impl<T: PointeeSized, U: PointeeSized> DispatchFromDyn<NonNull<U>> for NonNull<T> where T: Unsize<U> {}
1717
1718#[stable(feature = "pin", since = "1.33.0")]
1719#[cfg(not(feature = "ferrocene_certified"))]
1720unsafe impl<T: PointeeSized> PinCoerceUnsized for NonNull<T> {}
1721
1722#[stable(feature = "nonnull", since = "1.25.0")]
1723#[cfg(not(feature = "ferrocene_certified"))]
1724impl<T: PointeeSized> fmt::Debug for NonNull<T> {
1725    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
1726        fmt::Pointer::fmt(&self.as_ptr(), f)
1727    }
1728}
1729
1730#[stable(feature = "nonnull", since = "1.25.0")]
1731#[cfg(not(feature = "ferrocene_certified"))]
1732impl<T: PointeeSized> fmt::Pointer for NonNull<T> {
1733    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
1734        fmt::Pointer::fmt(&self.as_ptr(), f)
1735    }
1736}
1737
1738#[stable(feature = "nonnull", since = "1.25.0")]
1739#[cfg(not(feature = "ferrocene_certified"))]
1740impl<T: PointeeSized> Eq for NonNull<T> {}
1741
1742#[stable(feature = "nonnull", since = "1.25.0")]
1743impl<T: PointeeSized> PartialEq for NonNull<T> {
1744    #[inline]
1745    #[allow(ambiguous_wide_pointer_comparisons)]
1746    fn eq(&self, other: &Self) -> bool {
1747        self.as_ptr() == other.as_ptr()
1748    }
1749}
1750
1751#[stable(feature = "nonnull", since = "1.25.0")]
1752#[cfg(not(feature = "ferrocene_certified"))]
1753impl<T: PointeeSized> Ord for NonNull<T> {
1754    #[inline]
1755    #[allow(ambiguous_wide_pointer_comparisons)]
1756    fn cmp(&self, other: &Self) -> Ordering {
1757        self.as_ptr().cmp(&other.as_ptr())
1758    }
1759}
1760
1761#[stable(feature = "nonnull", since = "1.25.0")]
1762#[cfg(not(feature = "ferrocene_certified"))]
1763impl<T: PointeeSized> PartialOrd for NonNull<T> {
1764    #[inline]
1765    #[allow(ambiguous_wide_pointer_comparisons)]
1766    fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
1767        self.as_ptr().partial_cmp(&other.as_ptr())
1768    }
1769}
1770
1771#[stable(feature = "nonnull", since = "1.25.0")]
1772#[cfg(not(feature = "ferrocene_certified"))]
1773impl<T: PointeeSized> hash::Hash for NonNull<T> {
1774    #[inline]
1775    fn hash<H: hash::Hasher>(&self, state: &mut H) {
1776        self.as_ptr().hash(state)
1777    }
1778}
1779
1780#[unstable(feature = "ptr_internals", issue = "none")]
1781#[rustc_const_unstable(feature = "const_convert", issue = "143773")]
1782#[cfg(not(feature = "ferrocene_certified"))]
1783impl<T: PointeeSized> const From<Unique<T>> for NonNull<T> {
1784    #[inline]
1785    fn from(unique: Unique<T>) -> Self {
1786        unique.as_non_null_ptr()
1787    }
1788}
1789
1790#[stable(feature = "nonnull", since = "1.25.0")]
1791#[rustc_const_unstable(feature = "const_convert", issue = "143773")]
1792#[cfg(not(feature = "ferrocene_certified"))]
1793impl<T: PointeeSized> const From<&mut T> for NonNull<T> {
1794    /// Converts a `&mut T` to a `NonNull<T>`.
1795    ///
1796    /// This conversion is safe and infallible since references cannot be null.
1797    #[inline]
1798    fn from(r: &mut T) -> Self {
1799        NonNull::from_mut(r)
1800    }
1801}
1802
1803#[stable(feature = "nonnull", since = "1.25.0")]
1804#[rustc_const_unstable(feature = "const_convert", issue = "143773")]
1805#[cfg(not(feature = "ferrocene_certified"))]
1806impl<T: PointeeSized> const From<&T> for NonNull<T> {
1807    /// Converts a `&T` to a `NonNull<T>`.
1808    ///
1809    /// This conversion is safe and infallible since references cannot be null.
1810    #[inline]
1811    fn from(r: &T) -> Self {
1812        NonNull::from_ref(r)
1813    }
1814}