core/ptr/
non_null.rs

1use crate::clone::TrivialClone;
2#[cfg(not(feature = "ferrocene_subset"))]
3use crate::cmp::Ordering;
4#[cfg(not(feature = "ferrocene_subset"))]
5use crate::marker::{Destruct, PointeeSized, Unsize};
6#[cfg(not(feature = "ferrocene_subset"))]
7use crate::mem::{MaybeUninit, SizedTypeProperties};
8#[cfg(not(feature = "ferrocene_subset"))]
9use crate::num::NonZero;
10#[cfg(not(feature = "ferrocene_subset"))]
11use crate::ops::{CoerceUnsized, DispatchFromDyn};
12#[cfg(not(feature = "ferrocene_subset"))]
13use crate::pin::PinCoerceUnsized;
14#[cfg(not(feature = "ferrocene_subset"))]
15use crate::ptr::Unique;
16#[cfg(not(feature = "ferrocene_subset"))]
17use crate::slice::{self, SliceIndex};
18use crate::ub_checks::assert_unsafe_precondition;
19#[cfg(not(feature = "ferrocene_subset"))]
20use crate::{fmt, hash, intrinsics, mem, ptr};
21
22// Ferrocene addition: imports for certified subset
23#[cfg(feature = "ferrocene_subset")]
24#[rustfmt::skip]
25use crate::{
26    intrinsics,
27    marker::PointeeSized,
28    mem::{self, SizedTypeProperties},
29    ptr,
30};
31
32/// `*mut T` but non-zero and [covariant].
33///
34/// This is often the correct thing to use when building data structures using
35/// raw pointers, but is ultimately more dangerous to use because of its additional
36/// properties. If you're not sure if you should use `NonNull<T>`, just use `*mut T`!
37///
38/// Unlike `*mut T`, the pointer must always be non-null, even if the pointer
39/// is never dereferenced. This is so that enums may use this forbidden value
40/// as a discriminant -- `Option<NonNull<T>>` has the same size as `*mut T`.
41/// However the pointer may still dangle if it isn't dereferenced.
42///
43/// Unlike `*mut T`, `NonNull<T>` is covariant over `T`. This is usually the correct
44/// choice for most data structures and safe abstractions, such as `Box`, `Rc`, `Arc`, `Vec`,
45/// and `LinkedList`.
46///
47/// In rare cases, if your type exposes a way to mutate the value of `T` through a `NonNull<T>`,
48/// and you need to prevent unsoundness from variance (for example, if `T` could be a reference
49/// with a shorter lifetime), you should add a field to make your type invariant, such as
50/// `PhantomData<Cell<T>>` or `PhantomData<&'a mut T>`.
51///
52/// Example of a type that must be invariant:
53/// ```rust
54/// use std::cell::Cell;
55/// use std::marker::PhantomData;
56/// struct Invariant<T> {
57///     ptr: std::ptr::NonNull<T>,
58///     _invariant: PhantomData<Cell<T>>,
59/// }
60/// ```
61///
62/// Notice that `NonNull<T>` has a `From` instance for `&T`. However, this does
63/// not change the fact that mutating through a (pointer derived from a) shared
64/// reference is undefined behavior unless the mutation happens inside an
65/// [`UnsafeCell<T>`]. The same goes for creating a mutable reference from a shared
66/// reference. When using this `From` instance without an `UnsafeCell<T>`,
67/// it is your responsibility to ensure that `as_mut` is never called, and `as_ptr`
68/// is never used for mutation.
69///
70/// # Representation
71///
72/// Thanks to the [null pointer optimization],
73/// `NonNull<T>` and `Option<NonNull<T>>`
74/// are guaranteed to have the same size and alignment:
75///
76/// ```
77/// use std::ptr::NonNull;
78///
79/// assert_eq!(size_of::<NonNull<i16>>(), size_of::<Option<NonNull<i16>>>());
80/// assert_eq!(align_of::<NonNull<i16>>(), align_of::<Option<NonNull<i16>>>());
81///
82/// assert_eq!(size_of::<NonNull<str>>(), size_of::<Option<NonNull<str>>>());
83/// assert_eq!(align_of::<NonNull<str>>(), align_of::<Option<NonNull<str>>>());
84/// ```
85///
86/// [covariant]: https://doc.rust-lang.org/reference/subtyping.html
87/// [`PhantomData`]: crate::marker::PhantomData
88/// [`UnsafeCell<T>`]: crate::cell::UnsafeCell
89/// [null pointer optimization]: crate::option#representation
90#[stable(feature = "nonnull", since = "1.25.0")]
91#[repr(transparent)]
92#[rustc_layout_scalar_valid_range_start(1)]
93#[rustc_nonnull_optimization_guaranteed]
94#[rustc_diagnostic_item = "NonNull"]
95pub struct NonNull<T: PointeeSized> {
96    // Remember to use `.as_ptr()` instead of `.pointer`, as field projecting to
97    // this is banned by <https://github.com/rust-lang/compiler-team/issues/807>.
98    pointer: *const T,
99}
100
101/// `NonNull` pointers are not `Send` because the data they reference may be aliased.
102// N.B., this impl is unnecessary, but should provide better error messages.
103#[stable(feature = "nonnull", since = "1.25.0")]
104impl<T: PointeeSized> !Send for NonNull<T> {}
105
106/// `NonNull` pointers are not `Sync` because the data they reference may be aliased.
107// N.B., this impl is unnecessary, but should provide better error messages.
108#[stable(feature = "nonnull", since = "1.25.0")]
109impl<T: PointeeSized> !Sync for NonNull<T> {}
110
111impl<T: Sized> NonNull<T> {
112    /// Creates a pointer with the given address and no [provenance][crate::ptr#provenance].
113    ///
114    /// For more details, see the equivalent method on a raw pointer, [`ptr::without_provenance_mut`].
115    ///
116    /// This is a [Strict Provenance][crate::ptr#strict-provenance] API.
117    #[stable(feature = "nonnull_provenance", since = "1.89.0")]
118    #[rustc_const_stable(feature = "nonnull_provenance", since = "1.89.0")]
119    #[must_use]
120    #[inline]
121    #[cfg(not(feature = "ferrocene_subset"))]
122    pub const fn without_provenance(addr: NonZero<usize>) -> Self {
123        let pointer = crate::ptr::without_provenance(addr.get());
124        // SAFETY: we know `addr` is non-zero.
125        unsafe { NonNull { pointer } }
126    }
127
128    /// Creates a new `NonNull` that is dangling, but well-aligned.
129    ///
130    /// This is useful for initializing types which lazily allocate, like
131    /// `Vec::new` does.
132    ///
133    /// Note that the address of the returned pointer may potentially
134    /// be that of a valid pointer, which means this must not be used
135    /// as a "not yet initialized" sentinel value.
136    /// Types that lazily allocate must track initialization by some other means.
137    ///
138    /// # Examples
139    ///
140    /// ```
141    /// use std::ptr::NonNull;
142    ///
143    /// let ptr = NonNull::<u32>::dangling();
144    /// // Important: don't try to access the value of `ptr` without
145    /// // initializing it first! The pointer is not null but isn't valid either!
146    /// ```
147    #[stable(feature = "nonnull", since = "1.25.0")]
148    #[rustc_const_stable(feature = "const_nonnull_dangling", since = "1.36.0")]
149    #[must_use]
150    #[inline]
151    #[cfg(not(feature = "ferrocene_subset"))]
152    pub const fn dangling() -> Self {
153        let align = crate::ptr::Alignment::of::<T>();
154        NonNull::without_provenance(align.as_nonzero())
155    }
156
157    /// Converts an address back to a mutable pointer, picking up some previously 'exposed'
158    /// [provenance][crate::ptr#provenance].
159    ///
160    /// For more details, see the equivalent method on a raw pointer, [`ptr::with_exposed_provenance_mut`].
161    ///
162    /// This is an [Exposed Provenance][crate::ptr#exposed-provenance] API.
163    #[stable(feature = "nonnull_provenance", since = "1.89.0")]
164    #[inline]
165    #[cfg(not(feature = "ferrocene_subset"))]
166    pub fn with_exposed_provenance(addr: NonZero<usize>) -> Self {
167        // SAFETY: we know `addr` is non-zero.
168        unsafe {
169            let ptr = crate::ptr::with_exposed_provenance_mut(addr.get());
170            NonNull::new_unchecked(ptr)
171        }
172    }
173
174    /// Returns a shared references to the value. In contrast to [`as_ref`], this does not require
175    /// that the value has to be initialized.
176    ///
177    /// For the mutable counterpart see [`as_uninit_mut`].
178    ///
179    /// [`as_ref`]: NonNull::as_ref
180    /// [`as_uninit_mut`]: NonNull::as_uninit_mut
181    ///
182    /// # Safety
183    ///
184    /// When calling this method, you have to ensure that
185    /// the pointer is [convertible to a reference](crate::ptr#pointer-to-reference-conversion).
186    /// Note that because the created reference is to `MaybeUninit<T>`, the
187    /// source pointer can point to uninitialized memory.
188    #[inline]
189    #[must_use]
190    #[unstable(feature = "ptr_as_uninit", issue = "75402")]
191    #[cfg(not(feature = "ferrocene_subset"))]
192    pub const unsafe fn as_uninit_ref<'a>(self) -> &'a MaybeUninit<T> {
193        // SAFETY: the caller must guarantee that `self` meets all the
194        // requirements for a reference.
195        unsafe { &*self.cast().as_ptr() }
196    }
197
198    /// Returns a unique references to the value. In contrast to [`as_mut`], this does not require
199    /// that the value has to be initialized.
200    ///
201    /// For the shared counterpart see [`as_uninit_ref`].
202    ///
203    /// [`as_mut`]: NonNull::as_mut
204    /// [`as_uninit_ref`]: NonNull::as_uninit_ref
205    ///
206    /// # Safety
207    ///
208    /// When calling this method, you have to ensure that
209    /// the pointer is [convertible to a reference](crate::ptr#pointer-to-reference-conversion).
210    /// Note that because the created reference is to `MaybeUninit<T>`, the
211    /// source pointer can point to uninitialized memory.
212    #[inline]
213    #[must_use]
214    #[unstable(feature = "ptr_as_uninit", issue = "75402")]
215    #[cfg(not(feature = "ferrocene_subset"))]
216    pub const unsafe fn as_uninit_mut<'a>(self) -> &'a mut MaybeUninit<T> {
217        // SAFETY: the caller must guarantee that `self` meets all the
218        // requirements for a reference.
219        unsafe { &mut *self.cast().as_ptr() }
220    }
221
222    /// Casts from a pointer-to-`T` to a pointer-to-`[T; N]`.
223    #[inline]
224    #[unstable(feature = "ptr_cast_array", issue = "144514")]
225    pub const fn cast_array<const N: usize>(self) -> NonNull<[T; N]> {
226        self.cast()
227    }
228}
229
230impl<T: PointeeSized> NonNull<T> {
231    /// Creates a new `NonNull`.
232    ///
233    /// # Safety
234    ///
235    /// `ptr` must be non-null.
236    ///
237    /// # Examples
238    ///
239    /// ```
240    /// use std::ptr::NonNull;
241    ///
242    /// let mut x = 0u32;
243    /// let ptr = unsafe { NonNull::new_unchecked(&mut x as *mut _) };
244    /// ```
245    ///
246    /// *Incorrect* usage of this function:
247    ///
248    /// ```rust,no_run
249    /// use std::ptr::NonNull;
250    ///
251    /// // NEVER DO THAT!!! This is undefined behavior. ⚠️
252    /// let ptr = unsafe { NonNull::<u32>::new_unchecked(std::ptr::null_mut()) };
253    /// ```
254    #[stable(feature = "nonnull", since = "1.25.0")]
255    #[rustc_const_stable(feature = "const_nonnull_new_unchecked", since = "1.25.0")]
256    #[inline]
257    #[track_caller]
258    pub const unsafe fn new_unchecked(ptr: *mut T) -> Self {
259        // SAFETY: the caller must guarantee that `ptr` is non-null.
260        unsafe {
261            assert_unsafe_precondition!(
262                check_language_ub,
263                "NonNull::new_unchecked requires that the pointer is non-null",
264                (ptr: *mut () = ptr as *mut ()) => !ptr.is_null()
265            );
266            NonNull { pointer: ptr as _ }
267        }
268    }
269
270    /// Creates a new `NonNull` if `ptr` is non-null.
271    ///
272    /// # Panics during const evaluation
273    ///
274    /// This method will panic during const evaluation if the pointer cannot be
275    /// determined to be null or not. See [`is_null`] for more information.
276    ///
277    /// [`is_null`]: ../primitive.pointer.html#method.is_null-1
278    ///
279    /// # Examples
280    ///
281    /// ```
282    /// use std::ptr::NonNull;
283    ///
284    /// let mut x = 0u32;
285    /// let ptr = NonNull::<u32>::new(&mut x as *mut _).expect("ptr is null!");
286    ///
287    /// if let Some(ptr) = NonNull::<u32>::new(std::ptr::null_mut()) {
288    ///     unreachable!();
289    /// }
290    /// ```
291    #[stable(feature = "nonnull", since = "1.25.0")]
292    #[rustc_const_stable(feature = "const_nonnull_new", since = "1.85.0")]
293    #[inline]
294    #[cfg(not(feature = "ferrocene_subset"))]
295    pub const fn new(ptr: *mut T) -> Option<Self> {
296        if !ptr.is_null() {
297            // SAFETY: The pointer is already checked and is not null
298            Some(unsafe { Self::new_unchecked(ptr) })
299        } else {
300            None
301        }
302    }
303
304    /// Converts a reference to a `NonNull` pointer.
305    #[stable(feature = "non_null_from_ref", since = "1.89.0")]
306    #[rustc_const_stable(feature = "non_null_from_ref", since = "1.89.0")]
307    #[inline]
308    pub const fn from_ref(r: &T) -> Self {
309        // SAFETY: A reference cannot be null.
310        unsafe { NonNull { pointer: r as *const T } }
311    }
312
313    /// Converts a mutable reference to a `NonNull` pointer.
314    #[stable(feature = "non_null_from_ref", since = "1.89.0")]
315    #[rustc_const_stable(feature = "non_null_from_ref", since = "1.89.0")]
316    #[inline]
317    pub const fn from_mut(r: &mut T) -> Self {
318        // SAFETY: A mutable reference cannot be null.
319        unsafe { NonNull { pointer: r as *mut T } }
320    }
321
322    /// Performs the same functionality as [`std::ptr::from_raw_parts`], except that a
323    /// `NonNull` pointer is returned, as opposed to a raw `*const` pointer.
324    ///
325    /// See the documentation of [`std::ptr::from_raw_parts`] for more details.
326    ///
327    /// [`std::ptr::from_raw_parts`]: crate::ptr::from_raw_parts
328    #[unstable(feature = "ptr_metadata", issue = "81513")]
329    #[inline]
330    #[cfg(not(feature = "ferrocene_subset"))]
331    pub const fn from_raw_parts(
332        data_pointer: NonNull<impl super::Thin>,
333        metadata: <T as super::Pointee>::Metadata,
334    ) -> NonNull<T> {
335        // SAFETY: The result of `ptr::from::raw_parts_mut` is non-null because `data_pointer` is.
336        unsafe {
337            NonNull::new_unchecked(super::from_raw_parts_mut(data_pointer.as_ptr(), metadata))
338        }
339    }
340
341    /// Decompose a (possibly wide) pointer into its data pointer and metadata components.
342    ///
343    /// The pointer can be later reconstructed with [`NonNull::from_raw_parts`].
344    #[unstable(feature = "ptr_metadata", issue = "81513")]
345    #[must_use = "this returns the result of the operation, \
346                  without modifying the original"]
347    #[inline]
348    #[cfg(not(feature = "ferrocene_subset"))]
349    pub const fn to_raw_parts(self) -> (NonNull<()>, <T as super::Pointee>::Metadata) {
350        (self.cast(), super::metadata(self.as_ptr()))
351    }
352
353    /// Gets the "address" portion of the pointer.
354    ///
355    /// For more details, see the equivalent method on a raw pointer, [`pointer::addr`].
356    ///
357    /// This is a [Strict Provenance][crate::ptr#strict-provenance] API.
358    #[must_use]
359    #[inline]
360    #[stable(feature = "strict_provenance", since = "1.84.0")]
361    #[cfg(not(feature = "ferrocene_subset"))]
362    pub fn addr(self) -> NonZero<usize> {
363        // SAFETY: The pointer is guaranteed by the type to be non-null,
364        // meaning that the address will be non-zero.
365        unsafe { NonZero::new_unchecked(self.as_ptr().addr()) }
366    }
367
368    /// Exposes the ["provenance"][crate::ptr#provenance] part of the pointer for future use in
369    /// [`with_exposed_provenance`][NonNull::with_exposed_provenance] and returns the "address" portion.
370    ///
371    /// For more details, see the equivalent method on a raw pointer, [`pointer::expose_provenance`].
372    ///
373    /// This is an [Exposed Provenance][crate::ptr#exposed-provenance] API.
374    #[stable(feature = "nonnull_provenance", since = "1.89.0")]
375    #[cfg(not(feature = "ferrocene_subset"))]
376    pub fn expose_provenance(self) -> NonZero<usize> {
377        // SAFETY: The pointer is guaranteed by the type to be non-null,
378        // meaning that the address will be non-zero.
379        unsafe { NonZero::new_unchecked(self.as_ptr().expose_provenance()) }
380    }
381
382    /// Creates a new pointer with the given address and the [provenance][crate::ptr#provenance] of
383    /// `self`.
384    ///
385    /// For more details, see the equivalent method on a raw pointer, [`pointer::with_addr`].
386    ///
387    /// This is a [Strict Provenance][crate::ptr#strict-provenance] API.
388    #[must_use]
389    #[inline]
390    #[stable(feature = "strict_provenance", since = "1.84.0")]
391    #[cfg(not(feature = "ferrocene_subset"))]
392    pub fn with_addr(self, addr: NonZero<usize>) -> Self {
393        // SAFETY: The result of `ptr::from::with_addr` is non-null because `addr` is guaranteed to be non-zero.
394        unsafe { NonNull::new_unchecked(self.as_ptr().with_addr(addr.get()) as *mut _) }
395    }
396
397    /// Creates a new pointer by mapping `self`'s address to a new one, preserving the
398    /// [provenance][crate::ptr#provenance] of `self`.
399    ///
400    /// For more details, see the equivalent method on a raw pointer, [`pointer::map_addr`].
401    ///
402    /// This is a [Strict Provenance][crate::ptr#strict-provenance] API.
403    #[must_use]
404    #[inline]
405    #[stable(feature = "strict_provenance", since = "1.84.0")]
406    #[cfg(not(feature = "ferrocene_subset"))]
407    pub fn map_addr(self, f: impl FnOnce(NonZero<usize>) -> NonZero<usize>) -> Self {
408        self.with_addr(f(self.addr()))
409    }
410
411    /// Acquires the underlying `*mut` pointer.
412    ///
413    /// # Examples
414    ///
415    /// ```
416    /// use std::ptr::NonNull;
417    ///
418    /// let mut x = 0u32;
419    /// let ptr = NonNull::new(&mut x).expect("ptr is null!");
420    ///
421    /// let x_value = unsafe { *ptr.as_ptr() };
422    /// assert_eq!(x_value, 0);
423    ///
424    /// unsafe { *ptr.as_ptr() += 2; }
425    /// let x_value = unsafe { *ptr.as_ptr() };
426    /// assert_eq!(x_value, 2);
427    /// ```
428    #[stable(feature = "nonnull", since = "1.25.0")]
429    #[rustc_const_stable(feature = "const_nonnull_as_ptr", since = "1.32.0")]
430    #[rustc_never_returns_null_ptr]
431    #[must_use]
432    #[inline(always)]
433    pub const fn as_ptr(self) -> *mut T {
434        // This is a transmute for the same reasons as `NonZero::get`.
435
436        // SAFETY: `NonNull` is `transparent` over a `*const T`, and `*const T`
437        // and `*mut T` have the same layout, so transitively we can transmute
438        // our `NonNull` to a `*mut T` directly.
439        unsafe { mem::transmute::<Self, *mut T>(self) }
440    }
441
442    /// Returns a shared reference to the value. If the value may be uninitialized, [`as_uninit_ref`]
443    /// must be used instead.
444    ///
445    /// For the mutable counterpart see [`as_mut`].
446    ///
447    /// [`as_uninit_ref`]: NonNull::as_uninit_ref
448    /// [`as_mut`]: NonNull::as_mut
449    ///
450    /// # Safety
451    ///
452    /// When calling this method, you have to ensure that
453    /// the pointer is [convertible to a reference](crate::ptr#pointer-to-reference-conversion).
454    ///
455    /// # Examples
456    ///
457    /// ```
458    /// use std::ptr::NonNull;
459    ///
460    /// let mut x = 0u32;
461    /// let ptr = NonNull::new(&mut x as *mut _).expect("ptr is null!");
462    ///
463    /// let ref_x = unsafe { ptr.as_ref() };
464    /// println!("{ref_x}");
465    /// ```
466    ///
467    /// [the module documentation]: crate::ptr#safety
468    #[stable(feature = "nonnull", since = "1.25.0")]
469    #[rustc_const_stable(feature = "const_nonnull_as_ref", since = "1.73.0")]
470    #[must_use]
471    #[inline(always)]
472    pub const unsafe fn as_ref<'a>(&self) -> &'a T {
473        // SAFETY: the caller must guarantee that `self` meets all the
474        // requirements for a reference.
475        // `cast_const` avoids a mutable raw pointer deref.
476        unsafe { &*self.as_ptr().cast_const() }
477    }
478
479    /// Returns a unique reference to the value. If the value may be uninitialized, [`as_uninit_mut`]
480    /// must be used instead.
481    ///
482    /// For the shared counterpart see [`as_ref`].
483    ///
484    /// [`as_uninit_mut`]: NonNull::as_uninit_mut
485    /// [`as_ref`]: NonNull::as_ref
486    ///
487    /// # Safety
488    ///
489    /// When calling this method, you have to ensure that
490    /// the pointer is [convertible to a reference](crate::ptr#pointer-to-reference-conversion).
491    /// # Examples
492    ///
493    /// ```
494    /// use std::ptr::NonNull;
495    ///
496    /// let mut x = 0u32;
497    /// let mut ptr = NonNull::new(&mut x).expect("null pointer");
498    ///
499    /// let x_ref = unsafe { ptr.as_mut() };
500    /// assert_eq!(*x_ref, 0);
501    /// *x_ref += 2;
502    /// assert_eq!(*x_ref, 2);
503    /// ```
504    ///
505    /// [the module documentation]: crate::ptr#safety
506    #[stable(feature = "nonnull", since = "1.25.0")]
507    #[rustc_const_stable(feature = "const_ptr_as_ref", since = "1.83.0")]
508    #[must_use]
509    #[inline(always)]
510    pub const unsafe fn as_mut<'a>(&mut self) -> &'a mut T {
511        // SAFETY: the caller must guarantee that `self` meets all the
512        // requirements for a mutable reference.
513        unsafe { &mut *self.as_ptr() }
514    }
515
516    /// Casts to a pointer of another type.
517    ///
518    /// # Examples
519    ///
520    /// ```
521    /// use std::ptr::NonNull;
522    ///
523    /// let mut x = 0u32;
524    /// let ptr = NonNull::new(&mut x as *mut _).expect("null pointer");
525    ///
526    /// let casted_ptr = ptr.cast::<i8>();
527    /// let raw_ptr: *mut i8 = casted_ptr.as_ptr();
528    /// ```
529    #[stable(feature = "nonnull_cast", since = "1.27.0")]
530    #[rustc_const_stable(feature = "const_nonnull_cast", since = "1.36.0")]
531    #[must_use = "this returns the result of the operation, \
532                  without modifying the original"]
533    #[inline]
534    pub const fn cast<U>(self) -> NonNull<U> {
535        // SAFETY: `self` is a `NonNull` pointer which is necessarily non-null
536        unsafe { NonNull { pointer: self.as_ptr() as *mut U } }
537    }
538
539    /// Try to cast to a pointer of another type by checking alignment.
540    ///
541    /// If the pointer is properly aligned to the target type, it will be
542    /// cast to the target type. Otherwise, `None` is returned.
543    ///
544    /// # Examples
545    ///
546    /// ```rust
547    /// #![feature(pointer_try_cast_aligned)]
548    /// use std::ptr::NonNull;
549    ///
550    /// let mut x = 0u64;
551    ///
552    /// let aligned = NonNull::from_mut(&mut x);
553    /// let unaligned = unsafe { aligned.byte_add(1) };
554    ///
555    /// assert!(aligned.try_cast_aligned::<u32>().is_some());
556    /// assert!(unaligned.try_cast_aligned::<u32>().is_none());
557    /// ```
558    #[unstable(feature = "pointer_try_cast_aligned", issue = "141221")]
559    #[must_use = "this returns the result of the operation, \
560                  without modifying the original"]
561    #[inline]
562    #[cfg(not(feature = "ferrocene_subset"))]
563    pub fn try_cast_aligned<U>(self) -> Option<NonNull<U>> {
564        if self.is_aligned_to(align_of::<U>()) { Some(self.cast()) } else { None }
565    }
566
567    /// Adds an offset to a pointer.
568    ///
569    /// `count` is in units of T; e.g., a `count` of 3 represents a pointer
570    /// offset of `3 * size_of::<T>()` bytes.
571    ///
572    /// # Safety
573    ///
574    /// If any of the following conditions are violated, the result is Undefined Behavior:
575    ///
576    /// * The computed offset, `count * size_of::<T>()` bytes, must not overflow `isize`.
577    ///
578    /// * If the computed offset is non-zero, then `self` must be derived from a pointer to some
579    ///   [allocation], and the entire memory range between `self` and the result must be in
580    ///   bounds of that allocation. In particular, this range must not "wrap around" the edge
581    ///   of the address space.
582    ///
583    /// Allocations can never be larger than `isize::MAX` bytes, so if the computed offset
584    /// stays in bounds of the allocation, it is guaranteed to satisfy the first requirement.
585    /// This implies, for instance, that `vec.as_ptr().add(vec.len())` (for `vec: Vec<T>`) is always
586    /// safe.
587    ///
588    /// [allocation]: crate::ptr#allocation
589    ///
590    /// # Examples
591    ///
592    /// ```
593    /// use std::ptr::NonNull;
594    ///
595    /// let mut s = [1, 2, 3];
596    /// let ptr: NonNull<u32> = NonNull::new(s.as_mut_ptr()).unwrap();
597    ///
598    /// unsafe {
599    ///     println!("{}", ptr.offset(1).read());
600    ///     println!("{}", ptr.offset(2).read());
601    /// }
602    /// ```
603    #[inline(always)]
604    #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
605    #[must_use = "returns a new pointer rather than modifying its argument"]
606    #[stable(feature = "non_null_convenience", since = "1.80.0")]
607    #[rustc_const_stable(feature = "non_null_convenience", since = "1.80.0")]
608    pub const unsafe fn offset(self, count: isize) -> Self
609    where
610        T: Sized,
611    {
612        // SAFETY: the caller must uphold the safety contract for `offset`.
613        // Additionally safety contract of `offset` guarantees that the resulting pointer is
614        // pointing to an allocation, there can't be an allocation at null, thus it's safe to
615        // construct `NonNull`.
616        unsafe { NonNull { pointer: intrinsics::offset(self.as_ptr(), count) } }
617    }
618
619    /// Calculates the offset from a pointer in bytes.
620    ///
621    /// `count` is in units of **bytes**.
622    ///
623    /// This is purely a convenience for casting to a `u8` pointer and
624    /// using [offset][pointer::offset] on it. See that method for documentation
625    /// and safety requirements.
626    ///
627    /// For non-`Sized` pointees this operation changes only the data pointer,
628    /// leaving the metadata untouched.
629    #[must_use]
630    #[inline(always)]
631    #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
632    #[stable(feature = "non_null_convenience", since = "1.80.0")]
633    #[rustc_const_stable(feature = "non_null_convenience", since = "1.80.0")]
634    #[cfg(not(feature = "ferrocene_subset"))]
635    pub const unsafe fn byte_offset(self, count: isize) -> Self {
636        // SAFETY: the caller must uphold the safety contract for `offset` and `byte_offset` has
637        // the same safety contract.
638        // Additionally safety contract of `offset` guarantees that the resulting pointer is
639        // pointing to an allocation, there can't be an allocation at null, thus it's safe to
640        // construct `NonNull`.
641        unsafe { NonNull { pointer: self.as_ptr().byte_offset(count) } }
642    }
643
644    /// Adds an offset to a pointer (convenience for `.offset(count as isize)`).
645    ///
646    /// `count` is in units of T; e.g., a `count` of 3 represents a pointer
647    /// offset of `3 * size_of::<T>()` bytes.
648    ///
649    /// # Safety
650    ///
651    /// If any of the following conditions are violated, the result is Undefined Behavior:
652    ///
653    /// * The computed offset, `count * size_of::<T>()` bytes, must not overflow `isize`.
654    ///
655    /// * If the computed offset is non-zero, then `self` must be derived from a pointer to some
656    ///   [allocation], and the entire memory range between `self` and the result must be in
657    ///   bounds of that allocation. In particular, this range must not "wrap around" the edge
658    ///   of the address space.
659    ///
660    /// Allocations can never be larger than `isize::MAX` bytes, so if the computed offset
661    /// stays in bounds of the allocation, it is guaranteed to satisfy the first requirement.
662    /// This implies, for instance, that `vec.as_ptr().add(vec.len())` (for `vec: Vec<T>`) is always
663    /// safe.
664    ///
665    /// [allocation]: crate::ptr#allocation
666    ///
667    /// # Examples
668    ///
669    /// ```
670    /// use std::ptr::NonNull;
671    ///
672    /// let s: &str = "123";
673    /// let ptr: NonNull<u8> = NonNull::new(s.as_ptr().cast_mut()).unwrap();
674    ///
675    /// unsafe {
676    ///     println!("{}", ptr.add(1).read() as char);
677    ///     println!("{}", ptr.add(2).read() as char);
678    /// }
679    /// ```
680    #[inline(always)]
681    #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
682    #[must_use = "returns a new pointer rather than modifying its argument"]
683    #[stable(feature = "non_null_convenience", since = "1.80.0")]
684    #[rustc_const_stable(feature = "non_null_convenience", since = "1.80.0")]
685    pub const unsafe fn add(self, count: usize) -> Self
686    where
687        T: Sized,
688    {
689        // SAFETY: the caller must uphold the safety contract for `offset`.
690        // Additionally safety contract of `offset` guarantees that the resulting pointer is
691        // pointing to an allocation, there can't be an allocation at null, thus it's safe to
692        // construct `NonNull`.
693        unsafe { NonNull { pointer: intrinsics::offset(self.as_ptr(), count) } }
694    }
695
696    /// Calculates the offset from a pointer in bytes (convenience for `.byte_offset(count as isize)`).
697    ///
698    /// `count` is in units of bytes.
699    ///
700    /// This is purely a convenience for casting to a `u8` pointer and
701    /// using [`add`][NonNull::add] on it. See that method for documentation
702    /// and safety requirements.
703    ///
704    /// For non-`Sized` pointees this operation changes only the data pointer,
705    /// leaving the metadata untouched.
706    #[must_use]
707    #[inline(always)]
708    #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
709    #[stable(feature = "non_null_convenience", since = "1.80.0")]
710    #[rustc_const_stable(feature = "non_null_convenience", since = "1.80.0")]
711    #[cfg(not(feature = "ferrocene_subset"))]
712    pub const unsafe fn byte_add(self, count: usize) -> Self {
713        // SAFETY: the caller must uphold the safety contract for `add` and `byte_add` has the same
714        // safety contract.
715        // Additionally safety contract of `add` guarantees that the resulting pointer is pointing
716        // to an allocation, there can't be an allocation at null, thus it's safe to construct
717        // `NonNull`.
718        unsafe { NonNull { pointer: self.as_ptr().byte_add(count) } }
719    }
720
721    /// Subtracts an offset from a pointer (convenience for
722    /// `.offset((count as isize).wrapping_neg())`).
723    ///
724    /// `count` is in units of T; e.g., a `count` of 3 represents a pointer
725    /// offset of `3 * size_of::<T>()` bytes.
726    ///
727    /// # Safety
728    ///
729    /// If any of the following conditions are violated, the result is Undefined Behavior:
730    ///
731    /// * The computed offset, `count * size_of::<T>()` bytes, must not overflow `isize`.
732    ///
733    /// * If the computed offset is non-zero, then `self` must be derived from a pointer to some
734    ///   [allocation], and the entire memory range between `self` and the result must be in
735    ///   bounds of that allocation. In particular, this range must not "wrap around" the edge
736    ///   of the address space.
737    ///
738    /// Allocations can never be larger than `isize::MAX` bytes, so if the computed offset
739    /// stays in bounds of the allocation, it is guaranteed to satisfy the first requirement.
740    /// This implies, for instance, that `vec.as_ptr().add(vec.len())` (for `vec: Vec<T>`) is always
741    /// safe.
742    ///
743    /// [allocation]: crate::ptr#allocation
744    ///
745    /// # Examples
746    ///
747    /// ```
748    /// use std::ptr::NonNull;
749    ///
750    /// let s: &str = "123";
751    ///
752    /// unsafe {
753    ///     let end: NonNull<u8> = NonNull::new(s.as_ptr().cast_mut()).unwrap().add(3);
754    ///     println!("{}", end.sub(1).read() as char);
755    ///     println!("{}", end.sub(2).read() as char);
756    /// }
757    /// ```
758    #[inline(always)]
759    #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
760    #[must_use = "returns a new pointer rather than modifying its argument"]
761    #[stable(feature = "non_null_convenience", since = "1.80.0")]
762    #[rustc_const_stable(feature = "non_null_convenience", since = "1.80.0")]
763    pub const unsafe fn sub(self, count: usize) -> Self
764    where
765        T: Sized,
766    {
767        if T::IS_ZST {
768            // Pointer arithmetic does nothing when the pointee is a ZST.
769            self
770        } else {
771            // SAFETY: the caller must uphold the safety contract for `offset`.
772            // Because the pointee is *not* a ZST, that means that `count` is
773            // at most `isize::MAX`, and thus the negation cannot overflow.
774            unsafe { self.offset((count as isize).unchecked_neg()) }
775        }
776    }
777
778    /// Calculates the offset from a pointer in bytes (convenience for
779    /// `.byte_offset((count as isize).wrapping_neg())`).
780    ///
781    /// `count` is in units of bytes.
782    ///
783    /// This is purely a convenience for casting to a `u8` pointer and
784    /// using [`sub`][NonNull::sub] on it. See that method for documentation
785    /// and safety requirements.
786    ///
787    /// For non-`Sized` pointees this operation changes only the data pointer,
788    /// leaving the metadata untouched.
789    #[must_use]
790    #[inline(always)]
791    #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
792    #[stable(feature = "non_null_convenience", since = "1.80.0")]
793    #[rustc_const_stable(feature = "non_null_convenience", since = "1.80.0")]
794    #[cfg(not(feature = "ferrocene_subset"))]
795    pub const unsafe fn byte_sub(self, count: usize) -> Self {
796        // SAFETY: the caller must uphold the safety contract for `sub` and `byte_sub` has the same
797        // safety contract.
798        // Additionally safety contract of `sub` guarantees that the resulting pointer is pointing
799        // to an allocation, there can't be an allocation at null, thus it's safe to construct
800        // `NonNull`.
801        unsafe { NonNull { pointer: self.as_ptr().byte_sub(count) } }
802    }
803
804    /// Calculates the distance between two pointers within the same allocation. The returned value is in
805    /// units of T: the distance in bytes divided by `size_of::<T>()`.
806    ///
807    /// This is equivalent to `(self as isize - origin as isize) / (size_of::<T>() as isize)`,
808    /// except that it has a lot more opportunities for UB, in exchange for the compiler
809    /// better understanding what you are doing.
810    ///
811    /// The primary motivation of this method is for computing the `len` of an array/slice
812    /// of `T` that you are currently representing as a "start" and "end" pointer
813    /// (and "end" is "one past the end" of the array).
814    /// In that case, `end.offset_from(start)` gets you the length of the array.
815    ///
816    /// All of the following safety requirements are trivially satisfied for this usecase.
817    ///
818    /// [`offset`]: #method.offset
819    ///
820    /// # Safety
821    ///
822    /// If any of the following conditions are violated, the result is Undefined Behavior:
823    ///
824    /// * `self` and `origin` must either
825    ///
826    ///   * point to the same address, or
827    ///   * both be *derived from* a pointer to the same [allocation], and the memory range between
828    ///     the two pointers must be in bounds of that object. (See below for an example.)
829    ///
830    /// * The distance between the pointers, in bytes, must be an exact multiple
831    ///   of the size of `T`.
832    ///
833    /// As a consequence, the absolute distance between the pointers, in bytes, computed on
834    /// mathematical integers (without "wrapping around"), cannot overflow an `isize`. This is
835    /// implied by the in-bounds requirement, and the fact that no allocation can be larger
836    /// than `isize::MAX` bytes.
837    ///
838    /// The requirement for pointers to be derived from the same allocation is primarily
839    /// needed for `const`-compatibility: the distance between pointers into *different* allocated
840    /// objects is not known at compile-time. However, the requirement also exists at
841    /// runtime and may be exploited by optimizations. If you wish to compute the difference between
842    /// pointers that are not guaranteed to be from the same allocation, use `(self as isize -
843    /// origin as isize) / size_of::<T>()`.
844    // FIXME: recommend `addr()` instead of `as usize` once that is stable.
845    ///
846    /// [`add`]: #method.add
847    /// [allocation]: crate::ptr#allocation
848    ///
849    /// # Panics
850    ///
851    /// This function panics if `T` is a Zero-Sized Type ("ZST").
852    ///
853    /// # Examples
854    ///
855    /// Basic usage:
856    ///
857    /// ```
858    /// use std::ptr::NonNull;
859    ///
860    /// let a = [0; 5];
861    /// let ptr1: NonNull<u32> = NonNull::from(&a[1]);
862    /// let ptr2: NonNull<u32> = NonNull::from(&a[3]);
863    /// unsafe {
864    ///     assert_eq!(ptr2.offset_from(ptr1), 2);
865    ///     assert_eq!(ptr1.offset_from(ptr2), -2);
866    ///     assert_eq!(ptr1.offset(2), ptr2);
867    ///     assert_eq!(ptr2.offset(-2), ptr1);
868    /// }
869    /// ```
870    ///
871    /// *Incorrect* usage:
872    ///
873    /// ```rust,no_run
874    /// use std::ptr::NonNull;
875    ///
876    /// let ptr1 = NonNull::new(Box::into_raw(Box::new(0u8))).unwrap();
877    /// let ptr2 = NonNull::new(Box::into_raw(Box::new(1u8))).unwrap();
878    /// let diff = (ptr2.addr().get() as isize).wrapping_sub(ptr1.addr().get() as isize);
879    /// // Make ptr2_other an "alias" of ptr2.add(1), but derived from ptr1.
880    /// let diff_plus_1 = diff.wrapping_add(1);
881    /// let ptr2_other = NonNull::new(ptr1.as_ptr().wrapping_byte_offset(diff_plus_1)).unwrap();
882    /// assert_eq!(ptr2.addr(), ptr2_other.addr());
883    /// // Since ptr2_other and ptr2 are derived from pointers to different objects,
884    /// // computing their offset is undefined behavior, even though
885    /// // they point to addresses that are in-bounds of the same object!
886    ///
887    /// let one = unsafe { ptr2_other.offset_from(ptr2) }; // Undefined Behavior! ⚠️
888    /// ```
889    #[inline]
890    #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
891    #[stable(feature = "non_null_convenience", since = "1.80.0")]
892    #[rustc_const_stable(feature = "non_null_convenience", since = "1.80.0")]
893    #[cfg(not(feature = "ferrocene_subset"))]
894    pub const unsafe fn offset_from(self, origin: NonNull<T>) -> isize
895    where
896        T: Sized,
897    {
898        // SAFETY: the caller must uphold the safety contract for `offset_from`.
899        unsafe { self.as_ptr().offset_from(origin.as_ptr()) }
900    }
901
902    /// Calculates the distance between two pointers within the same allocation. The returned value is in
903    /// units of **bytes**.
904    ///
905    /// This is purely a convenience for casting to a `u8` pointer and
906    /// using [`offset_from`][NonNull::offset_from] on it. See that method for
907    /// documentation and safety requirements.
908    ///
909    /// For non-`Sized` pointees this operation considers only the data pointers,
910    /// ignoring the metadata.
911    #[inline(always)]
912    #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
913    #[stable(feature = "non_null_convenience", since = "1.80.0")]
914    #[rustc_const_stable(feature = "non_null_convenience", since = "1.80.0")]
915    #[cfg(not(feature = "ferrocene_subset"))]
916    pub const unsafe fn byte_offset_from<U: ?Sized>(self, origin: NonNull<U>) -> isize {
917        // SAFETY: the caller must uphold the safety contract for `byte_offset_from`.
918        unsafe { self.as_ptr().byte_offset_from(origin.as_ptr()) }
919    }
920
921    // N.B. `wrapping_offset``, `wrapping_add`, etc are not implemented because they can wrap to null
922
923    /// Calculates the distance between two pointers within the same allocation, *where it's known that
924    /// `self` is equal to or greater than `origin`*. The returned value is in
925    /// units of T: the distance in bytes is divided by `size_of::<T>()`.
926    ///
927    /// This computes the same value that [`offset_from`](#method.offset_from)
928    /// would compute, but with the added precondition that the offset is
929    /// guaranteed to be non-negative.  This method is equivalent to
930    /// `usize::try_from(self.offset_from(origin)).unwrap_unchecked()`,
931    /// but it provides slightly more information to the optimizer, which can
932    /// sometimes allow it to optimize slightly better with some backends.
933    ///
934    /// This method can be though of as recovering the `count` that was passed
935    /// to [`add`](#method.add) (or, with the parameters in the other order,
936    /// to [`sub`](#method.sub)).  The following are all equivalent, assuming
937    /// that their safety preconditions are met:
938    /// ```rust
939    /// # unsafe fn blah(ptr: std::ptr::NonNull<u32>, origin: std::ptr::NonNull<u32>, count: usize) -> bool { unsafe {
940    /// ptr.offset_from_unsigned(origin) == count
941    /// # &&
942    /// origin.add(count) == ptr
943    /// # &&
944    /// ptr.sub(count) == origin
945    /// # } }
946    /// ```
947    ///
948    /// # Safety
949    ///
950    /// - The distance between the pointers must be non-negative (`self >= origin`)
951    ///
952    /// - *All* the safety conditions of [`offset_from`](#method.offset_from)
953    ///   apply to this method as well; see it for the full details.
954    ///
955    /// Importantly, despite the return type of this method being able to represent
956    /// a larger offset, it's still *not permitted* to pass pointers which differ
957    /// by more than `isize::MAX` *bytes*.  As such, the result of this method will
958    /// always be less than or equal to `isize::MAX as usize`.
959    ///
960    /// # Panics
961    ///
962    /// This function panics if `T` is a Zero-Sized Type ("ZST").
963    ///
964    /// # Examples
965    ///
966    /// ```
967    /// use std::ptr::NonNull;
968    ///
969    /// let a = [0; 5];
970    /// let ptr1: NonNull<u32> = NonNull::from(&a[1]);
971    /// let ptr2: NonNull<u32> = NonNull::from(&a[3]);
972    /// unsafe {
973    ///     assert_eq!(ptr2.offset_from_unsigned(ptr1), 2);
974    ///     assert_eq!(ptr1.add(2), ptr2);
975    ///     assert_eq!(ptr2.sub(2), ptr1);
976    ///     assert_eq!(ptr2.offset_from_unsigned(ptr2), 0);
977    /// }
978    ///
979    /// // This would be incorrect, as the pointers are not correctly ordered:
980    /// // ptr1.offset_from_unsigned(ptr2)
981    /// ```
982    #[inline]
983    #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
984    #[stable(feature = "ptr_sub_ptr", since = "1.87.0")]
985    #[rustc_const_stable(feature = "const_ptr_sub_ptr", since = "1.87.0")]
986    pub const unsafe fn offset_from_unsigned(self, subtracted: NonNull<T>) -> usize
987    where
988        T: Sized,
989    {
990        // SAFETY: the caller must uphold the safety contract for `offset_from_unsigned`.
991        unsafe { self.as_ptr().offset_from_unsigned(subtracted.as_ptr()) }
992    }
993
994    /// Calculates the distance between two pointers within the same allocation, *where it's known that
995    /// `self` is equal to or greater than `origin`*. The returned value is in
996    /// units of **bytes**.
997    ///
998    /// This is purely a convenience for casting to a `u8` pointer and
999    /// using [`offset_from_unsigned`][NonNull::offset_from_unsigned] on it.
1000    /// See that method for documentation and safety requirements.
1001    ///
1002    /// For non-`Sized` pointees this operation considers only the data pointers,
1003    /// ignoring the metadata.
1004    #[inline(always)]
1005    #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
1006    #[stable(feature = "ptr_sub_ptr", since = "1.87.0")]
1007    #[rustc_const_stable(feature = "const_ptr_sub_ptr", since = "1.87.0")]
1008    #[cfg(not(feature = "ferrocene_subset"))]
1009    pub const unsafe fn byte_offset_from_unsigned<U: ?Sized>(self, origin: NonNull<U>) -> usize {
1010        // SAFETY: the caller must uphold the safety contract for `byte_offset_from_unsigned`.
1011        unsafe { self.as_ptr().byte_offset_from_unsigned(origin.as_ptr()) }
1012    }
1013
1014    /// Reads the value from `self` without moving it. This leaves the
1015    /// memory in `self` unchanged.
1016    ///
1017    /// See [`ptr::read`] for safety concerns and examples.
1018    ///
1019    /// [`ptr::read`]: crate::ptr::read()
1020    #[inline]
1021    #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
1022    #[stable(feature = "non_null_convenience", since = "1.80.0")]
1023    #[rustc_const_stable(feature = "non_null_convenience", since = "1.80.0")]
1024    pub const unsafe fn read(self) -> T
1025    where
1026        T: Sized,
1027    {
1028        // SAFETY: the caller must uphold the safety contract for `read`.
1029        unsafe { ptr::read(self.as_ptr()) }
1030    }
1031
1032    /// Performs a volatile read of the value from `self` without moving it. This
1033    /// leaves the memory in `self` unchanged.
1034    ///
1035    /// Volatile operations are intended to act on I/O memory, and are guaranteed
1036    /// to not be elided or reordered by the compiler across other volatile
1037    /// operations.
1038    ///
1039    /// See [`ptr::read_volatile`] for safety concerns and examples.
1040    ///
1041    /// [`ptr::read_volatile`]: crate::ptr::read_volatile()
1042    #[inline]
1043    #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
1044    #[stable(feature = "non_null_convenience", since = "1.80.0")]
1045    #[cfg(not(feature = "ferrocene_subset"))]
1046    pub unsafe fn read_volatile(self) -> T
1047    where
1048        T: Sized,
1049    {
1050        // SAFETY: the caller must uphold the safety contract for `read_volatile`.
1051        unsafe { ptr::read_volatile(self.as_ptr()) }
1052    }
1053
1054    /// Reads the value from `self` without moving it. This leaves the
1055    /// memory in `self` unchanged.
1056    ///
1057    /// Unlike `read`, the pointer may be unaligned.
1058    ///
1059    /// See [`ptr::read_unaligned`] for safety concerns and examples.
1060    ///
1061    /// [`ptr::read_unaligned`]: crate::ptr::read_unaligned()
1062    #[inline]
1063    #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
1064    #[stable(feature = "non_null_convenience", since = "1.80.0")]
1065    #[rustc_const_stable(feature = "non_null_convenience", since = "1.80.0")]
1066    #[cfg(not(feature = "ferrocene_subset"))]
1067    pub const unsafe fn read_unaligned(self) -> T
1068    where
1069        T: Sized,
1070    {
1071        // SAFETY: the caller must uphold the safety contract for `read_unaligned`.
1072        unsafe { ptr::read_unaligned(self.as_ptr()) }
1073    }
1074
1075    /// Copies `count * size_of::<T>()` bytes from `self` to `dest`. The source
1076    /// and destination may overlap.
1077    ///
1078    /// NOTE: this has the *same* argument order as [`ptr::copy`].
1079    ///
1080    /// See [`ptr::copy`] for safety concerns and examples.
1081    ///
1082    /// [`ptr::copy`]: crate::ptr::copy()
1083    #[inline(always)]
1084    #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
1085    #[stable(feature = "non_null_convenience", since = "1.80.0")]
1086    #[rustc_const_stable(feature = "const_intrinsic_copy", since = "1.83.0")]
1087    #[cfg(not(feature = "ferrocene_subset"))]
1088    pub const unsafe fn copy_to(self, dest: NonNull<T>, count: usize)
1089    where
1090        T: Sized,
1091    {
1092        // SAFETY: the caller must uphold the safety contract for `copy`.
1093        unsafe { ptr::copy(self.as_ptr(), dest.as_ptr(), count) }
1094    }
1095
1096    /// Copies `count * size_of::<T>()` bytes from `self` to `dest`. The source
1097    /// and destination may *not* overlap.
1098    ///
1099    /// NOTE: this has the *same* argument order as [`ptr::copy_nonoverlapping`].
1100    ///
1101    /// See [`ptr::copy_nonoverlapping`] for safety concerns and examples.
1102    ///
1103    /// [`ptr::copy_nonoverlapping`]: crate::ptr::copy_nonoverlapping()
1104    #[inline(always)]
1105    #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
1106    #[stable(feature = "non_null_convenience", since = "1.80.0")]
1107    #[rustc_const_stable(feature = "const_intrinsic_copy", since = "1.83.0")]
1108    #[cfg(not(feature = "ferrocene_subset"))]
1109    pub const unsafe fn copy_to_nonoverlapping(self, dest: NonNull<T>, count: usize)
1110    where
1111        T: Sized,
1112    {
1113        // SAFETY: the caller must uphold the safety contract for `copy_nonoverlapping`.
1114        unsafe { ptr::copy_nonoverlapping(self.as_ptr(), dest.as_ptr(), count) }
1115    }
1116
1117    /// Copies `count * size_of::<T>()` bytes from `src` to `self`. The source
1118    /// and destination may overlap.
1119    ///
1120    /// NOTE: this has the *opposite* argument order of [`ptr::copy`].
1121    ///
1122    /// See [`ptr::copy`] for safety concerns and examples.
1123    ///
1124    /// [`ptr::copy`]: crate::ptr::copy()
1125    #[inline(always)]
1126    #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
1127    #[stable(feature = "non_null_convenience", since = "1.80.0")]
1128    #[rustc_const_stable(feature = "const_intrinsic_copy", since = "1.83.0")]
1129    #[cfg(not(feature = "ferrocene_subset"))]
1130    pub const unsafe fn copy_from(self, src: NonNull<T>, count: usize)
1131    where
1132        T: Sized,
1133    {
1134        // SAFETY: the caller must uphold the safety contract for `copy`.
1135        unsafe { ptr::copy(src.as_ptr(), self.as_ptr(), count) }
1136    }
1137
1138    /// Copies `count * size_of::<T>()` bytes from `src` to `self`. The source
1139    /// and destination may *not* overlap.
1140    ///
1141    /// NOTE: this has the *opposite* argument order of [`ptr::copy_nonoverlapping`].
1142    ///
1143    /// See [`ptr::copy_nonoverlapping`] for safety concerns and examples.
1144    ///
1145    /// [`ptr::copy_nonoverlapping`]: crate::ptr::copy_nonoverlapping()
1146    #[inline(always)]
1147    #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
1148    #[stable(feature = "non_null_convenience", since = "1.80.0")]
1149    #[rustc_const_stable(feature = "const_intrinsic_copy", since = "1.83.0")]
1150    #[cfg(not(feature = "ferrocene_subset"))]
1151    pub const unsafe fn copy_from_nonoverlapping(self, src: NonNull<T>, count: usize)
1152    where
1153        T: Sized,
1154    {
1155        // SAFETY: the caller must uphold the safety contract for `copy_nonoverlapping`.
1156        unsafe { ptr::copy_nonoverlapping(src.as_ptr(), self.as_ptr(), count) }
1157    }
1158
1159    /// Executes the destructor (if any) of the pointed-to value.
1160    ///
1161    /// See [`ptr::drop_in_place`] for safety concerns and examples.
1162    ///
1163    /// [`ptr::drop_in_place`]: crate::ptr::drop_in_place()
1164    #[inline(always)]
1165    #[stable(feature = "non_null_convenience", since = "1.80.0")]
1166    #[rustc_const_unstable(feature = "const_drop_in_place", issue = "109342")]
1167    #[cfg(not(feature = "ferrocene_subset"))]
1168    pub const unsafe fn drop_in_place(self)
1169    where
1170        T: [const] Destruct,
1171    {
1172        // SAFETY: the caller must uphold the safety contract for `drop_in_place`.
1173        unsafe { ptr::drop_in_place(self.as_ptr()) }
1174    }
1175
1176    /// Overwrites a memory location with the given value without reading or
1177    /// dropping the old value.
1178    ///
1179    /// See [`ptr::write`] for safety concerns and examples.
1180    ///
1181    /// [`ptr::write`]: crate::ptr::write()
1182    #[inline(always)]
1183    #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
1184    #[stable(feature = "non_null_convenience", since = "1.80.0")]
1185    #[rustc_const_stable(feature = "const_ptr_write", since = "1.83.0")]
1186    #[cfg(not(feature = "ferrocene_subset"))]
1187    pub const unsafe fn write(self, val: T)
1188    where
1189        T: Sized,
1190    {
1191        // SAFETY: the caller must uphold the safety contract for `write`.
1192        unsafe { ptr::write(self.as_ptr(), val) }
1193    }
1194
1195    /// Invokes memset on the specified pointer, setting `count * size_of::<T>()`
1196    /// bytes of memory starting at `self` to `val`.
1197    ///
1198    /// See [`ptr::write_bytes`] for safety concerns and examples.
1199    ///
1200    /// [`ptr::write_bytes`]: crate::ptr::write_bytes()
1201    #[inline(always)]
1202    #[doc(alias = "memset")]
1203    #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
1204    #[stable(feature = "non_null_convenience", since = "1.80.0")]
1205    #[rustc_const_stable(feature = "const_ptr_write", since = "1.83.0")]
1206    #[cfg(not(feature = "ferrocene_subset"))]
1207    pub const unsafe fn write_bytes(self, val: u8, count: usize)
1208    where
1209        T: Sized,
1210    {
1211        // SAFETY: the caller must uphold the safety contract for `write_bytes`.
1212        unsafe { ptr::write_bytes(self.as_ptr(), val, count) }
1213    }
1214
1215    /// Performs a volatile write of a memory location with the given value without
1216    /// reading or dropping the old value.
1217    ///
1218    /// Volatile operations are intended to act on I/O memory, and are guaranteed
1219    /// to not be elided or reordered by the compiler across other volatile
1220    /// operations.
1221    ///
1222    /// See [`ptr::write_volatile`] for safety concerns and examples.
1223    ///
1224    /// [`ptr::write_volatile`]: crate::ptr::write_volatile()
1225    #[inline(always)]
1226    #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
1227    #[stable(feature = "non_null_convenience", since = "1.80.0")]
1228    #[cfg(not(feature = "ferrocene_subset"))]
1229    pub unsafe fn write_volatile(self, val: T)
1230    where
1231        T: Sized,
1232    {
1233        // SAFETY: the caller must uphold the safety contract for `write_volatile`.
1234        unsafe { ptr::write_volatile(self.as_ptr(), val) }
1235    }
1236
1237    /// Overwrites a memory location with the given value without reading or
1238    /// dropping the old value.
1239    ///
1240    /// Unlike `write`, the pointer may be unaligned.
1241    ///
1242    /// See [`ptr::write_unaligned`] for safety concerns and examples.
1243    ///
1244    /// [`ptr::write_unaligned`]: crate::ptr::write_unaligned()
1245    #[inline(always)]
1246    #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
1247    #[stable(feature = "non_null_convenience", since = "1.80.0")]
1248    #[rustc_const_stable(feature = "const_ptr_write", since = "1.83.0")]
1249    #[cfg(not(feature = "ferrocene_subset"))]
1250    pub const unsafe fn write_unaligned(self, val: T)
1251    where
1252        T: Sized,
1253    {
1254        // SAFETY: the caller must uphold the safety contract for `write_unaligned`.
1255        unsafe { ptr::write_unaligned(self.as_ptr(), val) }
1256    }
1257
1258    /// Replaces the value at `self` with `src`, returning the old
1259    /// value, without dropping either.
1260    ///
1261    /// See [`ptr::replace`] for safety concerns and examples.
1262    ///
1263    /// [`ptr::replace`]: crate::ptr::replace()
1264    #[inline(always)]
1265    #[stable(feature = "non_null_convenience", since = "1.80.0")]
1266    #[rustc_const_stable(feature = "const_inherent_ptr_replace", since = "1.88.0")]
1267    #[cfg(not(feature = "ferrocene_subset"))]
1268    pub const unsafe fn replace(self, src: T) -> T
1269    where
1270        T: Sized,
1271    {
1272        // SAFETY: the caller must uphold the safety contract for `replace`.
1273        unsafe { ptr::replace(self.as_ptr(), src) }
1274    }
1275
1276    /// Swaps the values at two mutable locations of the same type, without
1277    /// deinitializing either. They may overlap, unlike `mem::swap` which is
1278    /// otherwise equivalent.
1279    ///
1280    /// See [`ptr::swap`] for safety concerns and examples.
1281    ///
1282    /// [`ptr::swap`]: crate::ptr::swap()
1283    #[inline(always)]
1284    #[stable(feature = "non_null_convenience", since = "1.80.0")]
1285    #[rustc_const_stable(feature = "const_swap", since = "1.85.0")]
1286    #[cfg(not(feature = "ferrocene_subset"))]
1287    pub const unsafe fn swap(self, with: NonNull<T>)
1288    where
1289        T: Sized,
1290    {
1291        // SAFETY: the caller must uphold the safety contract for `swap`.
1292        unsafe { ptr::swap(self.as_ptr(), with.as_ptr()) }
1293    }
1294
1295    /// Computes the offset that needs to be applied to the pointer in order to make it aligned to
1296    /// `align`.
1297    ///
1298    /// If it is not possible to align the pointer, the implementation returns
1299    /// `usize::MAX`.
1300    ///
1301    /// The offset is expressed in number of `T` elements, and not bytes.
1302    ///
1303    /// There are no guarantees whatsoever that offsetting the pointer will not overflow or go
1304    /// beyond the allocation that the pointer points into. It is up to the caller to ensure that
1305    /// the returned offset is correct in all terms other than alignment.
1306    ///
1307    /// When this is called during compile-time evaluation (which is unstable), the implementation
1308    /// may return `usize::MAX` in cases where that can never happen at runtime. This is because the
1309    /// actual alignment of pointers is not known yet during compile-time, so an offset with
1310    /// guaranteed alignment can sometimes not be computed. For example, a buffer declared as `[u8;
1311    /// N]` might be allocated at an odd or an even address, but at compile-time this is not yet
1312    /// known, so the execution has to be correct for either choice. It is therefore impossible to
1313    /// find an offset that is guaranteed to be 2-aligned. (This behavior is subject to change, as usual
1314    /// for unstable APIs.)
1315    ///
1316    /// # Panics
1317    ///
1318    /// The function panics if `align` is not a power-of-two.
1319    ///
1320    /// # Examples
1321    ///
1322    /// Accessing adjacent `u8` as `u16`
1323    ///
1324    /// ```
1325    /// use std::ptr::NonNull;
1326    ///
1327    /// # unsafe {
1328    /// let x = [5_u8, 6, 7, 8, 9];
1329    /// let ptr = NonNull::new(x.as_ptr() as *mut u8).unwrap();
1330    /// let offset = ptr.align_offset(align_of::<u16>());
1331    ///
1332    /// if offset < x.len() - 1 {
1333    ///     let u16_ptr = ptr.add(offset).cast::<u16>();
1334    ///     assert!(u16_ptr.read() == u16::from_ne_bytes([5, 6]) || u16_ptr.read() == u16::from_ne_bytes([6, 7]));
1335    /// } else {
1336    ///     // while the pointer can be aligned via `offset`, it would point
1337    ///     // outside the allocation
1338    /// }
1339    /// # }
1340    /// ```
1341    #[inline]
1342    #[must_use]
1343    #[stable(feature = "non_null_convenience", since = "1.80.0")]
1344    #[cfg(not(feature = "ferrocene_subset"))]
1345    pub fn align_offset(self, align: usize) -> usize
1346    where
1347        T: Sized,
1348    {
1349        if !align.is_power_of_two() {
1350            panic!("align_offset: align is not a power-of-two");
1351        }
1352
1353        {
1354            // SAFETY: `align` has been checked to be a power of 2 above.
1355            unsafe { ptr::align_offset(self.as_ptr(), align) }
1356        }
1357    }
1358
1359    /// Returns whether the pointer is properly aligned for `T`.
1360    ///
1361    /// # Examples
1362    ///
1363    /// ```
1364    /// use std::ptr::NonNull;
1365    ///
1366    /// // On some platforms, the alignment of i32 is less than 4.
1367    /// #[repr(align(4))]
1368    /// struct AlignedI32(i32);
1369    ///
1370    /// let data = AlignedI32(42);
1371    /// let ptr = NonNull::<AlignedI32>::from(&data);
1372    ///
1373    /// assert!(ptr.is_aligned());
1374    /// assert!(!NonNull::new(ptr.as_ptr().wrapping_byte_add(1)).unwrap().is_aligned());
1375    /// ```
1376    #[inline]
1377    #[must_use]
1378    #[stable(feature = "pointer_is_aligned", since = "1.79.0")]
1379    #[cfg(not(feature = "ferrocene_subset"))]
1380    pub fn is_aligned(self) -> bool
1381    where
1382        T: Sized,
1383    {
1384        self.as_ptr().is_aligned()
1385    }
1386
1387    /// Returns whether the pointer is aligned to `align`.
1388    ///
1389    /// For non-`Sized` pointees this operation considers only the data pointer,
1390    /// ignoring the metadata.
1391    ///
1392    /// # Panics
1393    ///
1394    /// The function panics if `align` is not a power-of-two (this includes 0).
1395    ///
1396    /// # Examples
1397    ///
1398    /// ```
1399    /// #![feature(pointer_is_aligned_to)]
1400    ///
1401    /// // On some platforms, the alignment of i32 is less than 4.
1402    /// #[repr(align(4))]
1403    /// struct AlignedI32(i32);
1404    ///
1405    /// let data = AlignedI32(42);
1406    /// let ptr = &data as *const AlignedI32;
1407    ///
1408    /// assert!(ptr.is_aligned_to(1));
1409    /// assert!(ptr.is_aligned_to(2));
1410    /// assert!(ptr.is_aligned_to(4));
1411    ///
1412    /// assert!(ptr.wrapping_byte_add(2).is_aligned_to(2));
1413    /// assert!(!ptr.wrapping_byte_add(2).is_aligned_to(4));
1414    ///
1415    /// assert_ne!(ptr.is_aligned_to(8), ptr.wrapping_add(1).is_aligned_to(8));
1416    /// ```
1417    #[inline]
1418    #[must_use]
1419    #[unstable(feature = "pointer_is_aligned_to", issue = "96284")]
1420    #[cfg(not(feature = "ferrocene_subset"))]
1421    pub fn is_aligned_to(self, align: usize) -> bool {
1422        self.as_ptr().is_aligned_to(align)
1423    }
1424}
1425
1426#[cfg(not(feature = "ferrocene_subset"))]
1427impl<T> NonNull<T> {
1428    /// Casts from a type to its maybe-uninitialized version.
1429    #[must_use]
1430    #[inline(always)]
1431    #[unstable(feature = "cast_maybe_uninit", issue = "145036")]
1432    pub const fn cast_uninit(self) -> NonNull<MaybeUninit<T>> {
1433        self.cast()
1434    }
1435}
1436#[cfg(not(feature = "ferrocene_subset"))]
1437impl<T> NonNull<MaybeUninit<T>> {
1438    /// Casts from a maybe-uninitialized type to its initialized version.
1439    ///
1440    /// This is always safe, since UB can only occur if the pointer is read
1441    /// before being initialized.
1442    #[must_use]
1443    #[inline(always)]
1444    #[unstable(feature = "cast_maybe_uninit", issue = "145036")]
1445    pub const fn cast_init(self) -> NonNull<T> {
1446        self.cast()
1447    }
1448}
1449
1450#[cfg(not(feature = "ferrocene_subset"))]
1451impl<T> NonNull<[T]> {
1452    /// Creates a non-null raw slice from a thin pointer and a length.
1453    ///
1454    /// The `len` argument is the number of **elements**, not the number of bytes.
1455    ///
1456    /// This function is safe, but dereferencing the return value is unsafe.
1457    /// See the documentation of [`slice::from_raw_parts`] for slice safety requirements.
1458    ///
1459    /// # Examples
1460    ///
1461    /// ```rust
1462    /// use std::ptr::NonNull;
1463    ///
1464    /// // create a slice pointer when starting out with a pointer to the first element
1465    /// let mut x = [5, 6, 7];
1466    /// let nonnull_pointer = NonNull::new(x.as_mut_ptr()).unwrap();
1467    /// let slice = NonNull::slice_from_raw_parts(nonnull_pointer, 3);
1468    /// assert_eq!(unsafe { slice.as_ref()[2] }, 7);
1469    /// ```
1470    ///
1471    /// (Note that this example artificially demonstrates a use of this method,
1472    /// but `let slice = NonNull::from(&x[..]);` would be a better way to write code like this.)
1473    #[stable(feature = "nonnull_slice_from_raw_parts", since = "1.70.0")]
1474    #[rustc_const_stable(feature = "const_slice_from_raw_parts_mut", since = "1.83.0")]
1475    #[must_use]
1476    #[inline]
1477    pub const fn slice_from_raw_parts(data: NonNull<T>, len: usize) -> Self {
1478        // SAFETY: `data` is a `NonNull` pointer which is necessarily non-null
1479        unsafe { Self::new_unchecked(super::slice_from_raw_parts_mut(data.as_ptr(), len)) }
1480    }
1481
1482    /// Returns the length of a non-null raw slice.
1483    ///
1484    /// The returned value is the number of **elements**, not the number of bytes.
1485    ///
1486    /// This function is safe, even when the non-null raw slice cannot be dereferenced to a slice
1487    /// because the pointer does not have a valid address.
1488    ///
1489    /// # Examples
1490    ///
1491    /// ```rust
1492    /// use std::ptr::NonNull;
1493    ///
1494    /// let slice: NonNull<[i8]> = NonNull::slice_from_raw_parts(NonNull::dangling(), 3);
1495    /// assert_eq!(slice.len(), 3);
1496    /// ```
1497    #[stable(feature = "slice_ptr_len_nonnull", since = "1.63.0")]
1498    #[rustc_const_stable(feature = "const_slice_ptr_len_nonnull", since = "1.63.0")]
1499    #[must_use]
1500    #[inline]
1501    pub const fn len(self) -> usize {
1502        self.as_ptr().len()
1503    }
1504
1505    /// Returns `true` if the non-null raw slice has a length of 0.
1506    ///
1507    /// # Examples
1508    ///
1509    /// ```rust
1510    /// use std::ptr::NonNull;
1511    ///
1512    /// let slice: NonNull<[i8]> = NonNull::slice_from_raw_parts(NonNull::dangling(), 3);
1513    /// assert!(!slice.is_empty());
1514    /// ```
1515    #[stable(feature = "slice_ptr_is_empty_nonnull", since = "1.79.0")]
1516    #[rustc_const_stable(feature = "const_slice_ptr_is_empty_nonnull", since = "1.79.0")]
1517    #[must_use]
1518    #[inline]
1519    pub const fn is_empty(self) -> bool {
1520        self.len() == 0
1521    }
1522
1523    /// Returns a non-null pointer to the slice's buffer.
1524    ///
1525    /// # Examples
1526    ///
1527    /// ```rust
1528    /// #![feature(slice_ptr_get)]
1529    /// use std::ptr::NonNull;
1530    ///
1531    /// let slice: NonNull<[i8]> = NonNull::slice_from_raw_parts(NonNull::dangling(), 3);
1532    /// assert_eq!(slice.as_non_null_ptr(), NonNull::<i8>::dangling());
1533    /// ```
1534    #[inline]
1535    #[must_use]
1536    #[unstable(feature = "slice_ptr_get", issue = "74265")]
1537    pub const fn as_non_null_ptr(self) -> NonNull<T> {
1538        self.cast()
1539    }
1540
1541    /// Returns a raw pointer to the slice's buffer.
1542    ///
1543    /// # Examples
1544    ///
1545    /// ```rust
1546    /// #![feature(slice_ptr_get)]
1547    /// use std::ptr::NonNull;
1548    ///
1549    /// let slice: NonNull<[i8]> = NonNull::slice_from_raw_parts(NonNull::dangling(), 3);
1550    /// assert_eq!(slice.as_mut_ptr(), NonNull::<i8>::dangling().as_ptr());
1551    /// ```
1552    #[inline]
1553    #[must_use]
1554    #[unstable(feature = "slice_ptr_get", issue = "74265")]
1555    #[rustc_never_returns_null_ptr]
1556    pub const fn as_mut_ptr(self) -> *mut T {
1557        self.as_non_null_ptr().as_ptr()
1558    }
1559
1560    /// Returns a shared reference to a slice of possibly uninitialized values. In contrast to
1561    /// [`as_ref`], this does not require that the value has to be initialized.
1562    ///
1563    /// For the mutable counterpart see [`as_uninit_slice_mut`].
1564    ///
1565    /// [`as_ref`]: NonNull::as_ref
1566    /// [`as_uninit_slice_mut`]: NonNull::as_uninit_slice_mut
1567    ///
1568    /// # Safety
1569    ///
1570    /// When calling this method, you have to ensure that all of the following is true:
1571    ///
1572    /// * The pointer must be [valid] for reads for `ptr.len() * size_of::<T>()` many bytes,
1573    ///   and it must be properly aligned. This means in particular:
1574    ///
1575    ///     * The entire memory range of this slice must be contained within a single allocation!
1576    ///       Slices can never span across multiple allocations.
1577    ///
1578    ///     * The pointer must be aligned even for zero-length slices. One
1579    ///       reason for this is that enum layout optimizations may rely on references
1580    ///       (including slices of any length) being aligned and non-null to distinguish
1581    ///       them from other data. You can obtain a pointer that is usable as `data`
1582    ///       for zero-length slices using [`NonNull::dangling()`].
1583    ///
1584    /// * The total size `ptr.len() * size_of::<T>()` of the slice must be no larger than `isize::MAX`.
1585    ///   See the safety documentation of [`pointer::offset`].
1586    ///
1587    /// * You must enforce Rust's aliasing rules, since the returned lifetime `'a` is
1588    ///   arbitrarily chosen and does not necessarily reflect the actual lifetime of the data.
1589    ///   In particular, while this reference exists, the memory the pointer points to must
1590    ///   not get mutated (except inside `UnsafeCell`).
1591    ///
1592    /// This applies even if the result of this method is unused!
1593    ///
1594    /// See also [`slice::from_raw_parts`].
1595    ///
1596    /// [valid]: crate::ptr#safety
1597    #[inline]
1598    #[must_use]
1599    #[unstable(feature = "ptr_as_uninit", issue = "75402")]
1600    pub const unsafe fn as_uninit_slice<'a>(self) -> &'a [MaybeUninit<T>] {
1601        // SAFETY: the caller must uphold the safety contract for `as_uninit_slice`.
1602        unsafe { slice::from_raw_parts(self.cast().as_ptr(), self.len()) }
1603    }
1604
1605    /// Returns a unique reference to a slice of possibly uninitialized values. In contrast to
1606    /// [`as_mut`], this does not require that the value has to be initialized.
1607    ///
1608    /// For the shared counterpart see [`as_uninit_slice`].
1609    ///
1610    /// [`as_mut`]: NonNull::as_mut
1611    /// [`as_uninit_slice`]: NonNull::as_uninit_slice
1612    ///
1613    /// # Safety
1614    ///
1615    /// When calling this method, you have to ensure that all of the following is true:
1616    ///
1617    /// * The pointer must be [valid] for reads and writes for `ptr.len() * size_of::<T>()`
1618    ///   many bytes, and it must be properly aligned. This means in particular:
1619    ///
1620    ///     * The entire memory range of this slice must be contained within a single allocation!
1621    ///       Slices can never span across multiple allocations.
1622    ///
1623    ///     * The pointer must be aligned even for zero-length slices. One
1624    ///       reason for this is that enum layout optimizations may rely on references
1625    ///       (including slices of any length) being aligned and non-null to distinguish
1626    ///       them from other data. You can obtain a pointer that is usable as `data`
1627    ///       for zero-length slices using [`NonNull::dangling()`].
1628    ///
1629    /// * The total size `ptr.len() * size_of::<T>()` of the slice must be no larger than `isize::MAX`.
1630    ///   See the safety documentation of [`pointer::offset`].
1631    ///
1632    /// * You must enforce Rust's aliasing rules, since the returned lifetime `'a` is
1633    ///   arbitrarily chosen and does not necessarily reflect the actual lifetime of the data.
1634    ///   In particular, while this reference exists, the memory the pointer points to must
1635    ///   not get accessed (read or written) through any other pointer.
1636    ///
1637    /// This applies even if the result of this method is unused!
1638    ///
1639    /// See also [`slice::from_raw_parts_mut`].
1640    ///
1641    /// [valid]: crate::ptr#safety
1642    ///
1643    /// # Examples
1644    ///
1645    /// ```rust
1646    /// #![feature(allocator_api, ptr_as_uninit)]
1647    ///
1648    /// use std::alloc::{Allocator, Layout, Global};
1649    /// use std::mem::MaybeUninit;
1650    /// use std::ptr::NonNull;
1651    ///
1652    /// let memory: NonNull<[u8]> = Global.allocate(Layout::new::<[u8; 32]>())?;
1653    /// // This is safe as `memory` is valid for reads and writes for `memory.len()` many bytes.
1654    /// // Note that calling `memory.as_mut()` is not allowed here as the content may be uninitialized.
1655    /// # #[allow(unused_variables)]
1656    /// let slice: &mut [MaybeUninit<u8>] = unsafe { memory.as_uninit_slice_mut() };
1657    /// # // Prevent leaks for Miri.
1658    /// # unsafe { Global.deallocate(memory.cast(), Layout::new::<[u8; 32]>()); }
1659    /// # Ok::<_, std::alloc::AllocError>(())
1660    /// ```
1661    #[inline]
1662    #[must_use]
1663    #[unstable(feature = "ptr_as_uninit", issue = "75402")]
1664    pub const unsafe fn as_uninit_slice_mut<'a>(self) -> &'a mut [MaybeUninit<T>] {
1665        // SAFETY: the caller must uphold the safety contract for `as_uninit_slice_mut`.
1666        unsafe { slice::from_raw_parts_mut(self.cast().as_ptr(), self.len()) }
1667    }
1668
1669    /// Returns a raw pointer to an element or subslice, without doing bounds
1670    /// checking.
1671    ///
1672    /// Calling this method with an out-of-bounds index or when `self` is not dereferenceable
1673    /// is *[undefined behavior]* even if the resulting pointer is not used.
1674    ///
1675    /// [undefined behavior]: https://doc.rust-lang.org/reference/behavior-considered-undefined.html
1676    ///
1677    /// # Examples
1678    ///
1679    /// ```
1680    /// #![feature(slice_ptr_get)]
1681    /// use std::ptr::NonNull;
1682    ///
1683    /// let x = &mut [1, 2, 4];
1684    /// let x = NonNull::slice_from_raw_parts(NonNull::new(x.as_mut_ptr()).unwrap(), x.len());
1685    ///
1686    /// unsafe {
1687    ///     assert_eq!(x.get_unchecked_mut(1).as_ptr(), x.as_non_null_ptr().as_ptr().add(1));
1688    /// }
1689    /// ```
1690    #[unstable(feature = "slice_ptr_get", issue = "74265")]
1691    #[rustc_const_unstable(feature = "const_index", issue = "143775")]
1692    #[inline]
1693    pub const unsafe fn get_unchecked_mut<I>(self, index: I) -> NonNull<I::Output>
1694    where
1695        I: [const] SliceIndex<[T]>,
1696    {
1697        // SAFETY: the caller ensures that `self` is dereferenceable and `index` in-bounds.
1698        // As a consequence, the resulting pointer cannot be null.
1699        unsafe { NonNull::new_unchecked(self.as_ptr().get_unchecked_mut(index)) }
1700    }
1701}
1702
1703#[stable(feature = "nonnull", since = "1.25.0")]
1704impl<T: PointeeSized> Clone for NonNull<T> {
1705    #[inline(always)]
1706    fn clone(&self) -> Self {
1707        *self
1708    }
1709}
1710
1711#[stable(feature = "nonnull", since = "1.25.0")]
1712impl<T: PointeeSized> Copy for NonNull<T> {}
1713
1714#[doc(hidden)]
1715#[unstable(feature = "trivial_clone", issue = "none")]
1716unsafe impl<T: PointeeSized> TrivialClone for NonNull<T> {}
1717
1718#[unstable(feature = "coerce_unsized", issue = "18598")]
1719#[cfg(not(feature = "ferrocene_subset"))]
1720impl<T: PointeeSized, U: PointeeSized> CoerceUnsized<NonNull<U>> for NonNull<T> where T: Unsize<U> {}
1721
1722#[unstable(feature = "dispatch_from_dyn", issue = "none")]
1723#[cfg(not(feature = "ferrocene_subset"))]
1724impl<T: PointeeSized, U: PointeeSized> DispatchFromDyn<NonNull<U>> for NonNull<T> where T: Unsize<U> {}
1725
1726#[stable(feature = "pin", since = "1.33.0")]
1727#[cfg(not(feature = "ferrocene_subset"))]
1728unsafe impl<T: PointeeSized> PinCoerceUnsized for NonNull<T> {}
1729
1730#[stable(feature = "nonnull", since = "1.25.0")]
1731#[cfg(not(feature = "ferrocene_subset"))]
1732impl<T: PointeeSized> fmt::Debug for NonNull<T> {
1733    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
1734        fmt::Pointer::fmt(&self.as_ptr(), f)
1735    }
1736}
1737
1738#[stable(feature = "nonnull", since = "1.25.0")]
1739#[cfg(not(feature = "ferrocene_subset"))]
1740impl<T: PointeeSized> fmt::Pointer for NonNull<T> {
1741    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
1742        fmt::Pointer::fmt(&self.as_ptr(), f)
1743    }
1744}
1745
1746#[stable(feature = "nonnull", since = "1.25.0")]
1747#[cfg(not(feature = "ferrocene_subset"))]
1748impl<T: PointeeSized> Eq for NonNull<T> {}
1749
1750#[stable(feature = "nonnull", since = "1.25.0")]
1751impl<T: PointeeSized> PartialEq for NonNull<T> {
1752    #[inline]
1753    #[allow(ambiguous_wide_pointer_comparisons)]
1754    fn eq(&self, other: &Self) -> bool {
1755        self.as_ptr() == other.as_ptr()
1756    }
1757}
1758
1759#[stable(feature = "nonnull", since = "1.25.0")]
1760#[cfg(not(feature = "ferrocene_subset"))]
1761impl<T: PointeeSized> Ord for NonNull<T> {
1762    #[inline]
1763    #[allow(ambiguous_wide_pointer_comparisons)]
1764    fn cmp(&self, other: &Self) -> Ordering {
1765        self.as_ptr().cmp(&other.as_ptr())
1766    }
1767}
1768
1769#[stable(feature = "nonnull", since = "1.25.0")]
1770#[cfg(not(feature = "ferrocene_subset"))]
1771impl<T: PointeeSized> PartialOrd for NonNull<T> {
1772    #[inline]
1773    #[allow(ambiguous_wide_pointer_comparisons)]
1774    fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
1775        self.as_ptr().partial_cmp(&other.as_ptr())
1776    }
1777}
1778
1779#[stable(feature = "nonnull", since = "1.25.0")]
1780#[cfg(not(feature = "ferrocene_subset"))]
1781impl<T: PointeeSized> hash::Hash for NonNull<T> {
1782    #[inline]
1783    fn hash<H: hash::Hasher>(&self, state: &mut H) {
1784        self.as_ptr().hash(state)
1785    }
1786}
1787
1788#[unstable(feature = "ptr_internals", issue = "none")]
1789#[rustc_const_unstable(feature = "const_convert", issue = "143773")]
1790#[cfg(not(feature = "ferrocene_subset"))]
1791impl<T: PointeeSized> const From<Unique<T>> for NonNull<T> {
1792    #[inline]
1793    fn from(unique: Unique<T>) -> Self {
1794        unique.as_non_null_ptr()
1795    }
1796}
1797
1798#[stable(feature = "nonnull", since = "1.25.0")]
1799#[rustc_const_unstable(feature = "const_convert", issue = "143773")]
1800impl<T: PointeeSized> const From<&mut T> for NonNull<T> {
1801    /// Converts a `&mut T` to a `NonNull<T>`.
1802    ///
1803    /// This conversion is safe and infallible since references cannot be null.
1804    #[inline]
1805    fn from(r: &mut T) -> Self {
1806        NonNull::from_mut(r)
1807    }
1808}
1809
1810#[stable(feature = "nonnull", since = "1.25.0")]
1811#[rustc_const_unstable(feature = "const_convert", issue = "143773")]
1812#[cfg(not(feature = "ferrocene_subset"))]
1813impl<T: PointeeSized> const From<&T> for NonNull<T> {
1814    /// Converts a `&T` to a `NonNull<T>`.
1815    ///
1816    /// This conversion is safe and infallible since references cannot be null.
1817    #[inline]
1818    fn from(r: &T) -> Self {
1819        NonNull::from_ref(r)
1820    }
1821}