core/ptr/
non_null.rs

1#[cfg(not(feature = "ferrocene_certified"))]
2use crate::cmp::Ordering;
3#[cfg(feature = "ferrocene_certified")]
4use crate::marker::PointeeSized;
5#[cfg(not(feature = "ferrocene_certified"))]
6use crate::marker::{PointeeSized, Unsize};
7#[cfg(not(feature = "ferrocene_certified"))]
8use crate::mem::{MaybeUninit, SizedTypeProperties};
9#[cfg(not(feature = "ferrocene_certified"))]
10use crate::num::NonZero;
11#[cfg(not(feature = "ferrocene_certified"))]
12use crate::ops::{CoerceUnsized, DispatchFromDyn};
13#[cfg(not(feature = "ferrocene_certified"))]
14use crate::pin::PinCoerceUnsized;
15#[cfg(not(feature = "ferrocene_certified"))]
16use crate::ptr::Unique;
17#[cfg(not(feature = "ferrocene_certified"))]
18use crate::slice::{self, SliceIndex};
19#[cfg(not(feature = "ferrocene_certified"))]
20use crate::ub_checks::assert_unsafe_precondition;
21#[cfg(not(feature = "ferrocene_certified"))]
22use crate::{fmt, hash, intrinsics, mem, ptr};
23
24/// `*mut T` but non-zero and [covariant].
25///
26/// This is often the correct thing to use when building data structures using
27/// raw pointers, but is ultimately more dangerous to use because of its additional
28/// properties. If you're not sure if you should use `NonNull<T>`, just use `*mut T`!
29///
30/// Unlike `*mut T`, the pointer must always be non-null, even if the pointer
31/// is never dereferenced. This is so that enums may use this forbidden value
32/// as a discriminant -- `Option<NonNull<T>>` has the same size as `*mut T`.
33/// However the pointer may still dangle if it isn't dereferenced.
34///
35/// Unlike `*mut T`, `NonNull<T>` is covariant over `T`. This is usually the correct
36/// choice for most data structures and safe abstractions, such as `Box`, `Rc`, `Arc`, `Vec`,
37/// and `LinkedList`.
38///
39/// In rare cases, if your type exposes a way to mutate the value of `T` through a `NonNull<T>`,
40/// and you need to prevent unsoundness from variance (for example, if `T` could be a reference
41/// with a shorter lifetime), you should add a field to make your type invariant, such as
42/// `PhantomData<Cell<T>>` or `PhantomData<&'a mut T>`.
43///
44/// Example of a type that must be invariant:
45/// ```rust
46/// use std::cell::Cell;
47/// use std::marker::PhantomData;
48/// struct Invariant<T> {
49///     ptr: std::ptr::NonNull<T>,
50///     _invariant: PhantomData<Cell<T>>,
51/// }
52/// ```
53///
54/// Notice that `NonNull<T>` has a `From` instance for `&T`. However, this does
55/// not change the fact that mutating through a (pointer derived from a) shared
56/// reference is undefined behavior unless the mutation happens inside an
57/// [`UnsafeCell<T>`]. The same goes for creating a mutable reference from a shared
58/// reference. When using this `From` instance without an `UnsafeCell<T>`,
59/// it is your responsibility to ensure that `as_mut` is never called, and `as_ptr`
60/// is never used for mutation.
61///
62/// # Representation
63///
64/// Thanks to the [null pointer optimization],
65/// `NonNull<T>` and `Option<NonNull<T>>`
66/// are guaranteed to have the same size and alignment:
67///
68/// ```
69/// use std::ptr::NonNull;
70///
71/// assert_eq!(size_of::<NonNull<i16>>(), size_of::<Option<NonNull<i16>>>());
72/// assert_eq!(align_of::<NonNull<i16>>(), align_of::<Option<NonNull<i16>>>());
73///
74/// assert_eq!(size_of::<NonNull<str>>(), size_of::<Option<NonNull<str>>>());
75/// assert_eq!(align_of::<NonNull<str>>(), align_of::<Option<NonNull<str>>>());
76/// ```
77///
78/// [covariant]: https://doc.rust-lang.org/reference/subtyping.html
79/// [`PhantomData`]: crate::marker::PhantomData
80/// [`UnsafeCell<T>`]: crate::cell::UnsafeCell
81/// [null pointer optimization]: crate::option#representation
82#[stable(feature = "nonnull", since = "1.25.0")]
83#[repr(transparent)]
84#[rustc_layout_scalar_valid_range_start(1)]
85#[rustc_nonnull_optimization_guaranteed]
86#[rustc_diagnostic_item = "NonNull"]
87pub struct NonNull<T: PointeeSized> {
88    // Remember to use `.as_ptr()` instead of `.pointer`, as field projecting to
89    // this is banned by <https://github.com/rust-lang/compiler-team/issues/807>.
90    pointer: *const T,
91}
92
93/// `NonNull` pointers are not `Send` because the data they reference may be aliased.
94// N.B., this impl is unnecessary, but should provide better error messages.
95#[stable(feature = "nonnull", since = "1.25.0")]
96impl<T: PointeeSized> !Send for NonNull<T> {}
97
98/// `NonNull` pointers are not `Sync` because the data they reference may be aliased.
99// N.B., this impl is unnecessary, but should provide better error messages.
100#[stable(feature = "nonnull", since = "1.25.0")]
101impl<T: PointeeSized> !Sync for NonNull<T> {}
102
103#[cfg(not(feature = "ferrocene_certified"))]
104impl<T: Sized> NonNull<T> {
105    /// Creates a pointer with the given address and no [provenance][crate::ptr#provenance].
106    ///
107    /// For more details, see the equivalent method on a raw pointer, [`ptr::without_provenance_mut`].
108    ///
109    /// This is a [Strict Provenance][crate::ptr#strict-provenance] API.
110    #[stable(feature = "nonnull_provenance", since = "1.89.0")]
111    #[rustc_const_stable(feature = "nonnull_provenance", since = "1.89.0")]
112    #[must_use]
113    #[inline]
114    pub const fn without_provenance(addr: NonZero<usize>) -> Self {
115        let pointer = crate::ptr::without_provenance(addr.get());
116        // SAFETY: we know `addr` is non-zero.
117        unsafe { NonNull { pointer } }
118    }
119
120    /// Creates a new `NonNull` that is dangling, but well-aligned.
121    ///
122    /// This is useful for initializing types which lazily allocate, like
123    /// `Vec::new` does.
124    ///
125    /// Note that the address of the returned pointer may potentially
126    /// be that of a valid pointer, which means this must not be used
127    /// as a "not yet initialized" sentinel value.
128    /// Types that lazily allocate must track initialization by some other means.
129    ///
130    /// # Examples
131    ///
132    /// ```
133    /// use std::ptr::NonNull;
134    ///
135    /// let ptr = NonNull::<u32>::dangling();
136    /// // Important: don't try to access the value of `ptr` without
137    /// // initializing it first! The pointer is not null but isn't valid either!
138    /// ```
139    #[stable(feature = "nonnull", since = "1.25.0")]
140    #[rustc_const_stable(feature = "const_nonnull_dangling", since = "1.36.0")]
141    #[must_use]
142    #[inline]
143    pub const fn dangling() -> Self {
144        let align = crate::ptr::Alignment::of::<T>();
145        NonNull::without_provenance(align.as_nonzero())
146    }
147
148    /// Converts an address back to a mutable pointer, picking up some previously 'exposed'
149    /// [provenance][crate::ptr#provenance].
150    ///
151    /// For more details, see the equivalent method on a raw pointer, [`ptr::with_exposed_provenance_mut`].
152    ///
153    /// This is an [Exposed Provenance][crate::ptr#exposed-provenance] API.
154    #[stable(feature = "nonnull_provenance", since = "1.89.0")]
155    #[inline]
156    pub fn with_exposed_provenance(addr: NonZero<usize>) -> Self {
157        // SAFETY: we know `addr` is non-zero.
158        unsafe {
159            let ptr = crate::ptr::with_exposed_provenance_mut(addr.get());
160            NonNull::new_unchecked(ptr)
161        }
162    }
163
164    /// Returns a shared references to the value. In contrast to [`as_ref`], this does not require
165    /// that the value has to be initialized.
166    ///
167    /// For the mutable counterpart see [`as_uninit_mut`].
168    ///
169    /// [`as_ref`]: NonNull::as_ref
170    /// [`as_uninit_mut`]: NonNull::as_uninit_mut
171    ///
172    /// # Safety
173    ///
174    /// When calling this method, you have to ensure that
175    /// the pointer is [convertible to a reference](crate::ptr#pointer-to-reference-conversion).
176    /// Note that because the created reference is to `MaybeUninit<T>`, the
177    /// source pointer can point to uninitialized memory.
178    #[inline]
179    #[must_use]
180    #[unstable(feature = "ptr_as_uninit", issue = "75402")]
181    pub const unsafe fn as_uninit_ref<'a>(self) -> &'a MaybeUninit<T> {
182        // SAFETY: the caller must guarantee that `self` meets all the
183        // requirements for a reference.
184        unsafe { &*self.cast().as_ptr() }
185    }
186
187    /// Returns a unique references to the value. In contrast to [`as_mut`], this does not require
188    /// that the value has to be initialized.
189    ///
190    /// For the shared counterpart see [`as_uninit_ref`].
191    ///
192    /// [`as_mut`]: NonNull::as_mut
193    /// [`as_uninit_ref`]: NonNull::as_uninit_ref
194    ///
195    /// # Safety
196    ///
197    /// When calling this method, you have to ensure that
198    /// the pointer is [convertible to a reference](crate::ptr#pointer-to-reference-conversion).
199    /// Note that because the created reference is to `MaybeUninit<T>`, the
200    /// source pointer can point to uninitialized memory.
201    #[inline]
202    #[must_use]
203    #[unstable(feature = "ptr_as_uninit", issue = "75402")]
204    pub const unsafe fn as_uninit_mut<'a>(self) -> &'a mut MaybeUninit<T> {
205        // SAFETY: the caller must guarantee that `self` meets all the
206        // requirements for a reference.
207        unsafe { &mut *self.cast().as_ptr() }
208    }
209
210    /// Casts from a pointer-to-`T` to a pointer-to-`[T; N]`.
211    #[inline]
212    #[unstable(feature = "ptr_cast_array", issue = "144514")]
213    pub const fn cast_array<const N: usize>(self) -> NonNull<[T; N]> {
214        self.cast()
215    }
216}
217
218#[cfg(not(feature = "ferrocene_certified"))]
219impl<T: PointeeSized> NonNull<T> {
220    /// Creates a new `NonNull`.
221    ///
222    /// # Safety
223    ///
224    /// `ptr` must be non-null.
225    ///
226    /// # Examples
227    ///
228    /// ```
229    /// use std::ptr::NonNull;
230    ///
231    /// let mut x = 0u32;
232    /// let ptr = unsafe { NonNull::new_unchecked(&mut x as *mut _) };
233    /// ```
234    ///
235    /// *Incorrect* usage of this function:
236    ///
237    /// ```rust,no_run
238    /// use std::ptr::NonNull;
239    ///
240    /// // NEVER DO THAT!!! This is undefined behavior. ⚠️
241    /// let ptr = unsafe { NonNull::<u32>::new_unchecked(std::ptr::null_mut()) };
242    /// ```
243    #[stable(feature = "nonnull", since = "1.25.0")]
244    #[rustc_const_stable(feature = "const_nonnull_new_unchecked", since = "1.25.0")]
245    #[inline]
246    #[track_caller]
247    pub const unsafe fn new_unchecked(ptr: *mut T) -> Self {
248        // SAFETY: the caller must guarantee that `ptr` is non-null.
249        unsafe {
250            assert_unsafe_precondition!(
251                check_language_ub,
252                "NonNull::new_unchecked requires that the pointer is non-null",
253                (ptr: *mut () = ptr as *mut ()) => !ptr.is_null()
254            );
255            NonNull { pointer: ptr as _ }
256        }
257    }
258
259    /// Creates a new `NonNull` if `ptr` is non-null.
260    ///
261    /// # Panics during const evaluation
262    ///
263    /// This method will panic during const evaluation if the pointer cannot be
264    /// determined to be null or not. See [`is_null`] for more information.
265    ///
266    /// [`is_null`]: ../primitive.pointer.html#method.is_null-1
267    ///
268    /// # Examples
269    ///
270    /// ```
271    /// use std::ptr::NonNull;
272    ///
273    /// let mut x = 0u32;
274    /// let ptr = NonNull::<u32>::new(&mut x as *mut _).expect("ptr is null!");
275    ///
276    /// if let Some(ptr) = NonNull::<u32>::new(std::ptr::null_mut()) {
277    ///     unreachable!();
278    /// }
279    /// ```
280    #[stable(feature = "nonnull", since = "1.25.0")]
281    #[rustc_const_stable(feature = "const_nonnull_new", since = "1.85.0")]
282    #[inline]
283    pub const fn new(ptr: *mut T) -> Option<Self> {
284        if !ptr.is_null() {
285            // SAFETY: The pointer is already checked and is not null
286            Some(unsafe { Self::new_unchecked(ptr) })
287        } else {
288            None
289        }
290    }
291
292    /// Converts a reference to a `NonNull` pointer.
293    #[stable(feature = "non_null_from_ref", since = "1.89.0")]
294    #[rustc_const_stable(feature = "non_null_from_ref", since = "1.89.0")]
295    #[inline]
296    pub const fn from_ref(r: &T) -> Self {
297        // SAFETY: A reference cannot be null.
298        unsafe { NonNull { pointer: r as *const T } }
299    }
300
301    /// Converts a mutable reference to a `NonNull` pointer.
302    #[stable(feature = "non_null_from_ref", since = "1.89.0")]
303    #[rustc_const_stable(feature = "non_null_from_ref", since = "1.89.0")]
304    #[inline]
305    pub const fn from_mut(r: &mut T) -> Self {
306        // SAFETY: A mutable reference cannot be null.
307        unsafe { NonNull { pointer: r as *mut T } }
308    }
309
310    /// Performs the same functionality as [`std::ptr::from_raw_parts`], except that a
311    /// `NonNull` pointer is returned, as opposed to a raw `*const` pointer.
312    ///
313    /// See the documentation of [`std::ptr::from_raw_parts`] for more details.
314    ///
315    /// [`std::ptr::from_raw_parts`]: crate::ptr::from_raw_parts
316    #[unstable(feature = "ptr_metadata", issue = "81513")]
317    #[inline]
318    pub const fn from_raw_parts(
319        data_pointer: NonNull<impl super::Thin>,
320        metadata: <T as super::Pointee>::Metadata,
321    ) -> NonNull<T> {
322        // SAFETY: The result of `ptr::from::raw_parts_mut` is non-null because `data_pointer` is.
323        unsafe {
324            NonNull::new_unchecked(super::from_raw_parts_mut(data_pointer.as_ptr(), metadata))
325        }
326    }
327
328    /// Decompose a (possibly wide) pointer into its data pointer and metadata components.
329    ///
330    /// The pointer can be later reconstructed with [`NonNull::from_raw_parts`].
331    #[unstable(feature = "ptr_metadata", issue = "81513")]
332    #[must_use = "this returns the result of the operation, \
333                  without modifying the original"]
334    #[inline]
335    pub const fn to_raw_parts(self) -> (NonNull<()>, <T as super::Pointee>::Metadata) {
336        (self.cast(), super::metadata(self.as_ptr()))
337    }
338
339    /// Gets the "address" portion of the pointer.
340    ///
341    /// For more details, see the equivalent method on a raw pointer, [`pointer::addr`].
342    ///
343    /// This is a [Strict Provenance][crate::ptr#strict-provenance] API.
344    #[must_use]
345    #[inline]
346    #[stable(feature = "strict_provenance", since = "1.84.0")]
347    pub fn addr(self) -> NonZero<usize> {
348        // SAFETY: The pointer is guaranteed by the type to be non-null,
349        // meaning that the address will be non-zero.
350        unsafe { NonZero::new_unchecked(self.as_ptr().addr()) }
351    }
352
353    /// Exposes the ["provenance"][crate::ptr#provenance] part of the pointer for future use in
354    /// [`with_exposed_provenance`][NonNull::with_exposed_provenance] and returns the "address" portion.
355    ///
356    /// For more details, see the equivalent method on a raw pointer, [`pointer::expose_provenance`].
357    ///
358    /// This is an [Exposed Provenance][crate::ptr#exposed-provenance] API.
359    #[stable(feature = "nonnull_provenance", since = "1.89.0")]
360    pub fn expose_provenance(self) -> NonZero<usize> {
361        // SAFETY: The pointer is guaranteed by the type to be non-null,
362        // meaning that the address will be non-zero.
363        unsafe { NonZero::new_unchecked(self.as_ptr().expose_provenance()) }
364    }
365
366    /// Creates a new pointer with the given address and the [provenance][crate::ptr#provenance] of
367    /// `self`.
368    ///
369    /// For more details, see the equivalent method on a raw pointer, [`pointer::with_addr`].
370    ///
371    /// This is a [Strict Provenance][crate::ptr#strict-provenance] API.
372    #[must_use]
373    #[inline]
374    #[stable(feature = "strict_provenance", since = "1.84.0")]
375    pub fn with_addr(self, addr: NonZero<usize>) -> Self {
376        // SAFETY: The result of `ptr::from::with_addr` is non-null because `addr` is guaranteed to be non-zero.
377        unsafe { NonNull::new_unchecked(self.as_ptr().with_addr(addr.get()) as *mut _) }
378    }
379
380    /// Creates a new pointer by mapping `self`'s address to a new one, preserving the
381    /// [provenance][crate::ptr#provenance] of `self`.
382    ///
383    /// For more details, see the equivalent method on a raw pointer, [`pointer::map_addr`].
384    ///
385    /// This is a [Strict Provenance][crate::ptr#strict-provenance] API.
386    #[must_use]
387    #[inline]
388    #[stable(feature = "strict_provenance", since = "1.84.0")]
389    pub fn map_addr(self, f: impl FnOnce(NonZero<usize>) -> NonZero<usize>) -> Self {
390        self.with_addr(f(self.addr()))
391    }
392
393    /// Acquires the underlying `*mut` pointer.
394    ///
395    /// # Examples
396    ///
397    /// ```
398    /// use std::ptr::NonNull;
399    ///
400    /// let mut x = 0u32;
401    /// let ptr = NonNull::new(&mut x).expect("ptr is null!");
402    ///
403    /// let x_value = unsafe { *ptr.as_ptr() };
404    /// assert_eq!(x_value, 0);
405    ///
406    /// unsafe { *ptr.as_ptr() += 2; }
407    /// let x_value = unsafe { *ptr.as_ptr() };
408    /// assert_eq!(x_value, 2);
409    /// ```
410    #[stable(feature = "nonnull", since = "1.25.0")]
411    #[rustc_const_stable(feature = "const_nonnull_as_ptr", since = "1.32.0")]
412    #[rustc_never_returns_null_ptr]
413    #[must_use]
414    #[inline(always)]
415    pub const fn as_ptr(self) -> *mut T {
416        // This is a transmute for the same reasons as `NonZero::get`.
417
418        // SAFETY: `NonNull` is `transparent` over a `*const T`, and `*const T`
419        // and `*mut T` have the same layout, so transitively we can transmute
420        // our `NonNull` to a `*mut T` directly.
421        unsafe { mem::transmute::<Self, *mut T>(self) }
422    }
423
424    /// Returns a shared reference to the value. If the value may be uninitialized, [`as_uninit_ref`]
425    /// must be used instead.
426    ///
427    /// For the mutable counterpart see [`as_mut`].
428    ///
429    /// [`as_uninit_ref`]: NonNull::as_uninit_ref
430    /// [`as_mut`]: NonNull::as_mut
431    ///
432    /// # Safety
433    ///
434    /// When calling this method, you have to ensure that
435    /// the pointer is [convertible to a reference](crate::ptr#pointer-to-reference-conversion).
436    ///
437    /// # Examples
438    ///
439    /// ```
440    /// use std::ptr::NonNull;
441    ///
442    /// let mut x = 0u32;
443    /// let ptr = NonNull::new(&mut x as *mut _).expect("ptr is null!");
444    ///
445    /// let ref_x = unsafe { ptr.as_ref() };
446    /// println!("{ref_x}");
447    /// ```
448    ///
449    /// [the module documentation]: crate::ptr#safety
450    #[stable(feature = "nonnull", since = "1.25.0")]
451    #[rustc_const_stable(feature = "const_nonnull_as_ref", since = "1.73.0")]
452    #[must_use]
453    #[inline(always)]
454    pub const unsafe fn as_ref<'a>(&self) -> &'a T {
455        // SAFETY: the caller must guarantee that `self` meets all the
456        // requirements for a reference.
457        // `cast_const` avoids a mutable raw pointer deref.
458        unsafe { &*self.as_ptr().cast_const() }
459    }
460
461    /// Returns a unique reference to the value. If the value may be uninitialized, [`as_uninit_mut`]
462    /// must be used instead.
463    ///
464    /// For the shared counterpart see [`as_ref`].
465    ///
466    /// [`as_uninit_mut`]: NonNull::as_uninit_mut
467    /// [`as_ref`]: NonNull::as_ref
468    ///
469    /// # Safety
470    ///
471    /// When calling this method, you have to ensure that
472    /// the pointer is [convertible to a reference](crate::ptr#pointer-to-reference-conversion).
473    /// # Examples
474    ///
475    /// ```
476    /// use std::ptr::NonNull;
477    ///
478    /// let mut x = 0u32;
479    /// let mut ptr = NonNull::new(&mut x).expect("null pointer");
480    ///
481    /// let x_ref = unsafe { ptr.as_mut() };
482    /// assert_eq!(*x_ref, 0);
483    /// *x_ref += 2;
484    /// assert_eq!(*x_ref, 2);
485    /// ```
486    ///
487    /// [the module documentation]: crate::ptr#safety
488    #[stable(feature = "nonnull", since = "1.25.0")]
489    #[rustc_const_stable(feature = "const_ptr_as_ref", since = "1.83.0")]
490    #[must_use]
491    #[inline(always)]
492    pub const unsafe fn as_mut<'a>(&mut self) -> &'a mut T {
493        // SAFETY: the caller must guarantee that `self` meets all the
494        // requirements for a mutable reference.
495        unsafe { &mut *self.as_ptr() }
496    }
497
498    /// Casts to a pointer of another type.
499    ///
500    /// # Examples
501    ///
502    /// ```
503    /// use std::ptr::NonNull;
504    ///
505    /// let mut x = 0u32;
506    /// let ptr = NonNull::new(&mut x as *mut _).expect("null pointer");
507    ///
508    /// let casted_ptr = ptr.cast::<i8>();
509    /// let raw_ptr: *mut i8 = casted_ptr.as_ptr();
510    /// ```
511    #[stable(feature = "nonnull_cast", since = "1.27.0")]
512    #[rustc_const_stable(feature = "const_nonnull_cast", since = "1.36.0")]
513    #[must_use = "this returns the result of the operation, \
514                  without modifying the original"]
515    #[inline]
516    pub const fn cast<U>(self) -> NonNull<U> {
517        // SAFETY: `self` is a `NonNull` pointer which is necessarily non-null
518        unsafe { NonNull { pointer: self.as_ptr() as *mut U } }
519    }
520
521    /// Try to cast to a pointer of another type by checking alignment.
522    ///
523    /// If the pointer is properly aligned to the target type, it will be
524    /// cast to the target type. Otherwise, `None` is returned.
525    ///
526    /// # Examples
527    ///
528    /// ```rust
529    /// #![feature(pointer_try_cast_aligned)]
530    /// use std::ptr::NonNull;
531    ///
532    /// let mut x = 0u64;
533    ///
534    /// let aligned = NonNull::from_mut(&mut x);
535    /// let unaligned = unsafe { aligned.byte_add(1) };
536    ///
537    /// assert!(aligned.try_cast_aligned::<u32>().is_some());
538    /// assert!(unaligned.try_cast_aligned::<u32>().is_none());
539    /// ```
540    #[unstable(feature = "pointer_try_cast_aligned", issue = "141221")]
541    #[must_use = "this returns the result of the operation, \
542                  without modifying the original"]
543    #[inline]
544    pub fn try_cast_aligned<U>(self) -> Option<NonNull<U>> {
545        if self.is_aligned_to(align_of::<U>()) { Some(self.cast()) } else { None }
546    }
547
548    /// Adds an offset to a pointer.
549    ///
550    /// `count` is in units of T; e.g., a `count` of 3 represents a pointer
551    /// offset of `3 * size_of::<T>()` bytes.
552    ///
553    /// # Safety
554    ///
555    /// If any of the following conditions are violated, the result is Undefined Behavior:
556    ///
557    /// * The computed offset, `count * size_of::<T>()` bytes, must not overflow `isize`.
558    ///
559    /// * If the computed offset is non-zero, then `self` must be derived from a pointer to some
560    ///   [allocation], and the entire memory range between `self` and the result must be in
561    ///   bounds of that allocation. In particular, this range must not "wrap around" the edge
562    ///   of the address space.
563    ///
564    /// Allocations can never be larger than `isize::MAX` bytes, so if the computed offset
565    /// stays in bounds of the allocation, it is guaranteed to satisfy the first requirement.
566    /// This implies, for instance, that `vec.as_ptr().add(vec.len())` (for `vec: Vec<T>`) is always
567    /// safe.
568    ///
569    /// [allocation]: crate::ptr#allocation
570    ///
571    /// # Examples
572    ///
573    /// ```
574    /// use std::ptr::NonNull;
575    ///
576    /// let mut s = [1, 2, 3];
577    /// let ptr: NonNull<u32> = NonNull::new(s.as_mut_ptr()).unwrap();
578    ///
579    /// unsafe {
580    ///     println!("{}", ptr.offset(1).read());
581    ///     println!("{}", ptr.offset(2).read());
582    /// }
583    /// ```
584    #[inline(always)]
585    #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
586    #[must_use = "returns a new pointer rather than modifying its argument"]
587    #[stable(feature = "non_null_convenience", since = "1.80.0")]
588    #[rustc_const_stable(feature = "non_null_convenience", since = "1.80.0")]
589    pub const unsafe fn offset(self, count: isize) -> Self
590    where
591        T: Sized,
592    {
593        // SAFETY: the caller must uphold the safety contract for `offset`.
594        // Additionally safety contract of `offset` guarantees that the resulting pointer is
595        // pointing to an allocation, there can't be an allocation at null, thus it's safe to
596        // construct `NonNull`.
597        unsafe { NonNull { pointer: intrinsics::offset(self.as_ptr(), count) } }
598    }
599
600    /// Calculates the offset from a pointer in bytes.
601    ///
602    /// `count` is in units of **bytes**.
603    ///
604    /// This is purely a convenience for casting to a `u8` pointer and
605    /// using [offset][pointer::offset] on it. See that method for documentation
606    /// and safety requirements.
607    ///
608    /// For non-`Sized` pointees this operation changes only the data pointer,
609    /// leaving the metadata untouched.
610    #[must_use]
611    #[inline(always)]
612    #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
613    #[stable(feature = "non_null_convenience", since = "1.80.0")]
614    #[rustc_const_stable(feature = "non_null_convenience", since = "1.80.0")]
615    pub const unsafe fn byte_offset(self, count: isize) -> Self {
616        // SAFETY: the caller must uphold the safety contract for `offset` and `byte_offset` has
617        // the same safety contract.
618        // Additionally safety contract of `offset` guarantees that the resulting pointer is
619        // pointing to an allocation, there can't be an allocation at null, thus it's safe to
620        // construct `NonNull`.
621        unsafe { NonNull { pointer: self.as_ptr().byte_offset(count) } }
622    }
623
624    /// Adds an offset to a pointer (convenience for `.offset(count as isize)`).
625    ///
626    /// `count` is in units of T; e.g., a `count` of 3 represents a pointer
627    /// offset of `3 * size_of::<T>()` bytes.
628    ///
629    /// # Safety
630    ///
631    /// If any of the following conditions are violated, the result is Undefined Behavior:
632    ///
633    /// * The computed offset, `count * size_of::<T>()` bytes, must not overflow `isize`.
634    ///
635    /// * If the computed offset is non-zero, then `self` must be derived from a pointer to some
636    ///   [allocation], and the entire memory range between `self` and the result must be in
637    ///   bounds of that allocation. In particular, this range must not "wrap around" the edge
638    ///   of the address space.
639    ///
640    /// Allocations can never be larger than `isize::MAX` bytes, so if the computed offset
641    /// stays in bounds of the allocation, it is guaranteed to satisfy the first requirement.
642    /// This implies, for instance, that `vec.as_ptr().add(vec.len())` (for `vec: Vec<T>`) is always
643    /// safe.
644    ///
645    /// [allocation]: crate::ptr#allocation
646    ///
647    /// # Examples
648    ///
649    /// ```
650    /// use std::ptr::NonNull;
651    ///
652    /// let s: &str = "123";
653    /// let ptr: NonNull<u8> = NonNull::new(s.as_ptr().cast_mut()).unwrap();
654    ///
655    /// unsafe {
656    ///     println!("{}", ptr.add(1).read() as char);
657    ///     println!("{}", ptr.add(2).read() as char);
658    /// }
659    /// ```
660    #[inline(always)]
661    #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
662    #[must_use = "returns a new pointer rather than modifying its argument"]
663    #[stable(feature = "non_null_convenience", since = "1.80.0")]
664    #[rustc_const_stable(feature = "non_null_convenience", since = "1.80.0")]
665    pub const unsafe fn add(self, count: usize) -> Self
666    where
667        T: Sized,
668    {
669        // SAFETY: the caller must uphold the safety contract for `offset`.
670        // Additionally safety contract of `offset` guarantees that the resulting pointer is
671        // pointing to an allocation, there can't be an allocation at null, thus it's safe to
672        // construct `NonNull`.
673        unsafe { NonNull { pointer: intrinsics::offset(self.as_ptr(), count) } }
674    }
675
676    /// Calculates the offset from a pointer in bytes (convenience for `.byte_offset(count as isize)`).
677    ///
678    /// `count` is in units of bytes.
679    ///
680    /// This is purely a convenience for casting to a `u8` pointer and
681    /// using [`add`][NonNull::add] on it. See that method for documentation
682    /// and safety requirements.
683    ///
684    /// For non-`Sized` pointees this operation changes only the data pointer,
685    /// leaving the metadata untouched.
686    #[must_use]
687    #[inline(always)]
688    #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
689    #[stable(feature = "non_null_convenience", since = "1.80.0")]
690    #[rustc_const_stable(feature = "non_null_convenience", since = "1.80.0")]
691    pub const unsafe fn byte_add(self, count: usize) -> Self {
692        // SAFETY: the caller must uphold the safety contract for `add` and `byte_add` has the same
693        // safety contract.
694        // Additionally safety contract of `add` guarantees that the resulting pointer is pointing
695        // to an allocation, there can't be an allocation at null, thus it's safe to construct
696        // `NonNull`.
697        unsafe { NonNull { pointer: self.as_ptr().byte_add(count) } }
698    }
699
700    /// Subtracts an offset from a pointer (convenience for
701    /// `.offset((count as isize).wrapping_neg())`).
702    ///
703    /// `count` is in units of T; e.g., a `count` of 3 represents a pointer
704    /// offset of `3 * size_of::<T>()` bytes.
705    ///
706    /// # Safety
707    ///
708    /// If any of the following conditions are violated, the result is Undefined Behavior:
709    ///
710    /// * The computed offset, `count * size_of::<T>()` bytes, must not overflow `isize`.
711    ///
712    /// * If the computed offset is non-zero, then `self` must be derived from a pointer to some
713    ///   [allocation], and the entire memory range between `self` and the result must be in
714    ///   bounds of that allocation. In particular, this range must not "wrap around" the edge
715    ///   of the address space.
716    ///
717    /// Allocations can never be larger than `isize::MAX` bytes, so if the computed offset
718    /// stays in bounds of the allocation, it is guaranteed to satisfy the first requirement.
719    /// This implies, for instance, that `vec.as_ptr().add(vec.len())` (for `vec: Vec<T>`) is always
720    /// safe.
721    ///
722    /// [allocation]: crate::ptr#allocation
723    ///
724    /// # Examples
725    ///
726    /// ```
727    /// use std::ptr::NonNull;
728    ///
729    /// let s: &str = "123";
730    ///
731    /// unsafe {
732    ///     let end: NonNull<u8> = NonNull::new(s.as_ptr().cast_mut()).unwrap().add(3);
733    ///     println!("{}", end.sub(1).read() as char);
734    ///     println!("{}", end.sub(2).read() as char);
735    /// }
736    /// ```
737    #[inline(always)]
738    #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
739    #[must_use = "returns a new pointer rather than modifying its argument"]
740    #[stable(feature = "non_null_convenience", since = "1.80.0")]
741    #[rustc_const_stable(feature = "non_null_convenience", since = "1.80.0")]
742    pub const unsafe fn sub(self, count: usize) -> Self
743    where
744        T: Sized,
745    {
746        if T::IS_ZST {
747            // Pointer arithmetic does nothing when the pointee is a ZST.
748            self
749        } else {
750            // SAFETY: the caller must uphold the safety contract for `offset`.
751            // Because the pointee is *not* a ZST, that means that `count` is
752            // at most `isize::MAX`, and thus the negation cannot overflow.
753            unsafe { self.offset((count as isize).unchecked_neg()) }
754        }
755    }
756
757    /// Calculates the offset from a pointer in bytes (convenience for
758    /// `.byte_offset((count as isize).wrapping_neg())`).
759    ///
760    /// `count` is in units of bytes.
761    ///
762    /// This is purely a convenience for casting to a `u8` pointer and
763    /// using [`sub`][NonNull::sub] on it. See that method for documentation
764    /// and safety requirements.
765    ///
766    /// For non-`Sized` pointees this operation changes only the data pointer,
767    /// leaving the metadata untouched.
768    #[must_use]
769    #[inline(always)]
770    #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
771    #[stable(feature = "non_null_convenience", since = "1.80.0")]
772    #[rustc_const_stable(feature = "non_null_convenience", since = "1.80.0")]
773    pub const unsafe fn byte_sub(self, count: usize) -> Self {
774        // SAFETY: the caller must uphold the safety contract for `sub` and `byte_sub` has the same
775        // safety contract.
776        // Additionally safety contract of `sub` guarantees that the resulting pointer is pointing
777        // to an allocation, there can't be an allocation at null, thus it's safe to construct
778        // `NonNull`.
779        unsafe { NonNull { pointer: self.as_ptr().byte_sub(count) } }
780    }
781
782    /// Calculates the distance between two pointers within the same allocation. The returned value is in
783    /// units of T: the distance in bytes divided by `size_of::<T>()`.
784    ///
785    /// This is equivalent to `(self as isize - origin as isize) / (size_of::<T>() as isize)`,
786    /// except that it has a lot more opportunities for UB, in exchange for the compiler
787    /// better understanding what you are doing.
788    ///
789    /// The primary motivation of this method is for computing the `len` of an array/slice
790    /// of `T` that you are currently representing as a "start" and "end" pointer
791    /// (and "end" is "one past the end" of the array).
792    /// In that case, `end.offset_from(start)` gets you the length of the array.
793    ///
794    /// All of the following safety requirements are trivially satisfied for this usecase.
795    ///
796    /// [`offset`]: #method.offset
797    ///
798    /// # Safety
799    ///
800    /// If any of the following conditions are violated, the result is Undefined Behavior:
801    ///
802    /// * `self` and `origin` must either
803    ///
804    ///   * point to the same address, or
805    ///   * both be *derived from* a pointer to the same [allocation], and the memory range between
806    ///     the two pointers must be in bounds of that object. (See below for an example.)
807    ///
808    /// * The distance between the pointers, in bytes, must be an exact multiple
809    ///   of the size of `T`.
810    ///
811    /// As a consequence, the absolute distance between the pointers, in bytes, computed on
812    /// mathematical integers (without "wrapping around"), cannot overflow an `isize`. This is
813    /// implied by the in-bounds requirement, and the fact that no allocation can be larger
814    /// than `isize::MAX` bytes.
815    ///
816    /// The requirement for pointers to be derived from the same allocation is primarily
817    /// needed for `const`-compatibility: the distance between pointers into *different* allocated
818    /// objects is not known at compile-time. However, the requirement also exists at
819    /// runtime and may be exploited by optimizations. If you wish to compute the difference between
820    /// pointers that are not guaranteed to be from the same allocation, use `(self as isize -
821    /// origin as isize) / size_of::<T>()`.
822    // FIXME: recommend `addr()` instead of `as usize` once that is stable.
823    ///
824    /// [`add`]: #method.add
825    /// [allocation]: crate::ptr#allocation
826    ///
827    /// # Panics
828    ///
829    /// This function panics if `T` is a Zero-Sized Type ("ZST").
830    ///
831    /// # Examples
832    ///
833    /// Basic usage:
834    ///
835    /// ```
836    /// use std::ptr::NonNull;
837    ///
838    /// let a = [0; 5];
839    /// let ptr1: NonNull<u32> = NonNull::from(&a[1]);
840    /// let ptr2: NonNull<u32> = NonNull::from(&a[3]);
841    /// unsafe {
842    ///     assert_eq!(ptr2.offset_from(ptr1), 2);
843    ///     assert_eq!(ptr1.offset_from(ptr2), -2);
844    ///     assert_eq!(ptr1.offset(2), ptr2);
845    ///     assert_eq!(ptr2.offset(-2), ptr1);
846    /// }
847    /// ```
848    ///
849    /// *Incorrect* usage:
850    ///
851    /// ```rust,no_run
852    /// use std::ptr::NonNull;
853    ///
854    /// let ptr1 = NonNull::new(Box::into_raw(Box::new(0u8))).unwrap();
855    /// let ptr2 = NonNull::new(Box::into_raw(Box::new(1u8))).unwrap();
856    /// let diff = (ptr2.addr().get() as isize).wrapping_sub(ptr1.addr().get() as isize);
857    /// // Make ptr2_other an "alias" of ptr2.add(1), but derived from ptr1.
858    /// let diff_plus_1 = diff.wrapping_add(1);
859    /// let ptr2_other = NonNull::new(ptr1.as_ptr().wrapping_byte_offset(diff_plus_1)).unwrap();
860    /// assert_eq!(ptr2.addr(), ptr2_other.addr());
861    /// // Since ptr2_other and ptr2 are derived from pointers to different objects,
862    /// // computing their offset is undefined behavior, even though
863    /// // they point to addresses that are in-bounds of the same object!
864    ///
865    /// let one = unsafe { ptr2_other.offset_from(ptr2) }; // Undefined Behavior! ⚠️
866    /// ```
867    #[inline]
868    #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
869    #[stable(feature = "non_null_convenience", since = "1.80.0")]
870    #[rustc_const_stable(feature = "non_null_convenience", since = "1.80.0")]
871    pub const unsafe fn offset_from(self, origin: NonNull<T>) -> isize
872    where
873        T: Sized,
874    {
875        // SAFETY: the caller must uphold the safety contract for `offset_from`.
876        unsafe { self.as_ptr().offset_from(origin.as_ptr()) }
877    }
878
879    /// Calculates the distance between two pointers within the same allocation. The returned value is in
880    /// units of **bytes**.
881    ///
882    /// This is purely a convenience for casting to a `u8` pointer and
883    /// using [`offset_from`][NonNull::offset_from] on it. See that method for
884    /// documentation and safety requirements.
885    ///
886    /// For non-`Sized` pointees this operation considers only the data pointers,
887    /// ignoring the metadata.
888    #[inline(always)]
889    #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
890    #[stable(feature = "non_null_convenience", since = "1.80.0")]
891    #[rustc_const_stable(feature = "non_null_convenience", since = "1.80.0")]
892    pub const unsafe fn byte_offset_from<U: ?Sized>(self, origin: NonNull<U>) -> isize {
893        // SAFETY: the caller must uphold the safety contract for `byte_offset_from`.
894        unsafe { self.as_ptr().byte_offset_from(origin.as_ptr()) }
895    }
896
897    // N.B. `wrapping_offset``, `wrapping_add`, etc are not implemented because they can wrap to null
898
899    /// Calculates the distance between two pointers within the same allocation, *where it's known that
900    /// `self` is equal to or greater than `origin`*. The returned value is in
901    /// units of T: the distance in bytes is divided by `size_of::<T>()`.
902    ///
903    /// This computes the same value that [`offset_from`](#method.offset_from)
904    /// would compute, but with the added precondition that the offset is
905    /// guaranteed to be non-negative.  This method is equivalent to
906    /// `usize::try_from(self.offset_from(origin)).unwrap_unchecked()`,
907    /// but it provides slightly more information to the optimizer, which can
908    /// sometimes allow it to optimize slightly better with some backends.
909    ///
910    /// This method can be though of as recovering the `count` that was passed
911    /// to [`add`](#method.add) (or, with the parameters in the other order,
912    /// to [`sub`](#method.sub)).  The following are all equivalent, assuming
913    /// that their safety preconditions are met:
914    /// ```rust
915    /// # unsafe fn blah(ptr: std::ptr::NonNull<u32>, origin: std::ptr::NonNull<u32>, count: usize) -> bool { unsafe {
916    /// ptr.offset_from_unsigned(origin) == count
917    /// # &&
918    /// origin.add(count) == ptr
919    /// # &&
920    /// ptr.sub(count) == origin
921    /// # } }
922    /// ```
923    ///
924    /// # Safety
925    ///
926    /// - The distance between the pointers must be non-negative (`self >= origin`)
927    ///
928    /// - *All* the safety conditions of [`offset_from`](#method.offset_from)
929    ///   apply to this method as well; see it for the full details.
930    ///
931    /// Importantly, despite the return type of this method being able to represent
932    /// a larger offset, it's still *not permitted* to pass pointers which differ
933    /// by more than `isize::MAX` *bytes*.  As such, the result of this method will
934    /// always be less than or equal to `isize::MAX as usize`.
935    ///
936    /// # Panics
937    ///
938    /// This function panics if `T` is a Zero-Sized Type ("ZST").
939    ///
940    /// # Examples
941    ///
942    /// ```
943    /// use std::ptr::NonNull;
944    ///
945    /// let a = [0; 5];
946    /// let ptr1: NonNull<u32> = NonNull::from(&a[1]);
947    /// let ptr2: NonNull<u32> = NonNull::from(&a[3]);
948    /// unsafe {
949    ///     assert_eq!(ptr2.offset_from_unsigned(ptr1), 2);
950    ///     assert_eq!(ptr1.add(2), ptr2);
951    ///     assert_eq!(ptr2.sub(2), ptr1);
952    ///     assert_eq!(ptr2.offset_from_unsigned(ptr2), 0);
953    /// }
954    ///
955    /// // This would be incorrect, as the pointers are not correctly ordered:
956    /// // ptr1.offset_from_unsigned(ptr2)
957    /// ```
958    #[inline]
959    #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
960    #[stable(feature = "ptr_sub_ptr", since = "1.87.0")]
961    #[rustc_const_stable(feature = "const_ptr_sub_ptr", since = "1.87.0")]
962    pub const unsafe fn offset_from_unsigned(self, subtracted: NonNull<T>) -> usize
963    where
964        T: Sized,
965    {
966        // SAFETY: the caller must uphold the safety contract for `offset_from_unsigned`.
967        unsafe { self.as_ptr().offset_from_unsigned(subtracted.as_ptr()) }
968    }
969
970    /// Calculates the distance between two pointers within the same allocation, *where it's known that
971    /// `self` is equal to or greater than `origin`*. The returned value is in
972    /// units of **bytes**.
973    ///
974    /// This is purely a convenience for casting to a `u8` pointer and
975    /// using [`offset_from_unsigned`][NonNull::offset_from_unsigned] on it.
976    /// See that method for documentation and safety requirements.
977    ///
978    /// For non-`Sized` pointees this operation considers only the data pointers,
979    /// ignoring the metadata.
980    #[inline(always)]
981    #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
982    #[stable(feature = "ptr_sub_ptr", since = "1.87.0")]
983    #[rustc_const_stable(feature = "const_ptr_sub_ptr", since = "1.87.0")]
984    pub const unsafe fn byte_offset_from_unsigned<U: ?Sized>(self, origin: NonNull<U>) -> usize {
985        // SAFETY: the caller must uphold the safety contract for `byte_offset_from_unsigned`.
986        unsafe { self.as_ptr().byte_offset_from_unsigned(origin.as_ptr()) }
987    }
988
989    /// Reads the value from `self` without moving it. This leaves the
990    /// memory in `self` unchanged.
991    ///
992    /// See [`ptr::read`] for safety concerns and examples.
993    ///
994    /// [`ptr::read`]: crate::ptr::read()
995    #[inline]
996    #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
997    #[stable(feature = "non_null_convenience", since = "1.80.0")]
998    #[rustc_const_stable(feature = "non_null_convenience", since = "1.80.0")]
999    pub const unsafe fn read(self) -> T
1000    where
1001        T: Sized,
1002    {
1003        // SAFETY: the caller must uphold the safety contract for `read`.
1004        unsafe { ptr::read(self.as_ptr()) }
1005    }
1006
1007    /// Performs a volatile read of the value from `self` without moving it. This
1008    /// leaves the memory in `self` unchanged.
1009    ///
1010    /// Volatile operations are intended to act on I/O memory, and are guaranteed
1011    /// to not be elided or reordered by the compiler across other volatile
1012    /// operations.
1013    ///
1014    /// See [`ptr::read_volatile`] for safety concerns and examples.
1015    ///
1016    /// [`ptr::read_volatile`]: crate::ptr::read_volatile()
1017    #[inline]
1018    #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
1019    #[stable(feature = "non_null_convenience", since = "1.80.0")]
1020    pub unsafe fn read_volatile(self) -> T
1021    where
1022        T: Sized,
1023    {
1024        // SAFETY: the caller must uphold the safety contract for `read_volatile`.
1025        unsafe { ptr::read_volatile(self.as_ptr()) }
1026    }
1027
1028    /// Reads the value from `self` without moving it. This leaves the
1029    /// memory in `self` unchanged.
1030    ///
1031    /// Unlike `read`, the pointer may be unaligned.
1032    ///
1033    /// See [`ptr::read_unaligned`] for safety concerns and examples.
1034    ///
1035    /// [`ptr::read_unaligned`]: crate::ptr::read_unaligned()
1036    #[inline]
1037    #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
1038    #[stable(feature = "non_null_convenience", since = "1.80.0")]
1039    #[rustc_const_stable(feature = "non_null_convenience", since = "1.80.0")]
1040    pub const unsafe fn read_unaligned(self) -> T
1041    where
1042        T: Sized,
1043    {
1044        // SAFETY: the caller must uphold the safety contract for `read_unaligned`.
1045        unsafe { ptr::read_unaligned(self.as_ptr()) }
1046    }
1047
1048    /// Copies `count * size_of::<T>()` bytes from `self` to `dest`. The source
1049    /// and destination may overlap.
1050    ///
1051    /// NOTE: this has the *same* argument order as [`ptr::copy`].
1052    ///
1053    /// See [`ptr::copy`] for safety concerns and examples.
1054    ///
1055    /// [`ptr::copy`]: crate::ptr::copy()
1056    #[inline(always)]
1057    #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
1058    #[stable(feature = "non_null_convenience", since = "1.80.0")]
1059    #[rustc_const_stable(feature = "const_intrinsic_copy", since = "1.83.0")]
1060    pub const unsafe fn copy_to(self, dest: NonNull<T>, count: usize)
1061    where
1062        T: Sized,
1063    {
1064        // SAFETY: the caller must uphold the safety contract for `copy`.
1065        unsafe { ptr::copy(self.as_ptr(), dest.as_ptr(), count) }
1066    }
1067
1068    /// Copies `count * size_of::<T>()` bytes from `self` to `dest`. The source
1069    /// and destination may *not* overlap.
1070    ///
1071    /// NOTE: this has the *same* argument order as [`ptr::copy_nonoverlapping`].
1072    ///
1073    /// See [`ptr::copy_nonoverlapping`] for safety concerns and examples.
1074    ///
1075    /// [`ptr::copy_nonoverlapping`]: crate::ptr::copy_nonoverlapping()
1076    #[inline(always)]
1077    #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
1078    #[stable(feature = "non_null_convenience", since = "1.80.0")]
1079    #[rustc_const_stable(feature = "const_intrinsic_copy", since = "1.83.0")]
1080    pub const unsafe fn copy_to_nonoverlapping(self, dest: NonNull<T>, count: usize)
1081    where
1082        T: Sized,
1083    {
1084        // SAFETY: the caller must uphold the safety contract for `copy_nonoverlapping`.
1085        unsafe { ptr::copy_nonoverlapping(self.as_ptr(), dest.as_ptr(), count) }
1086    }
1087
1088    /// Copies `count * size_of::<T>()` bytes from `src` to `self`. The source
1089    /// and destination may overlap.
1090    ///
1091    /// NOTE: this has the *opposite* argument order of [`ptr::copy`].
1092    ///
1093    /// See [`ptr::copy`] for safety concerns and examples.
1094    ///
1095    /// [`ptr::copy`]: crate::ptr::copy()
1096    #[inline(always)]
1097    #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
1098    #[stable(feature = "non_null_convenience", since = "1.80.0")]
1099    #[rustc_const_stable(feature = "const_intrinsic_copy", since = "1.83.0")]
1100    pub const unsafe fn copy_from(self, src: NonNull<T>, count: usize)
1101    where
1102        T: Sized,
1103    {
1104        // SAFETY: the caller must uphold the safety contract for `copy`.
1105        unsafe { ptr::copy(src.as_ptr(), self.as_ptr(), count) }
1106    }
1107
1108    /// Copies `count * size_of::<T>()` bytes from `src` to `self`. The source
1109    /// and destination may *not* overlap.
1110    ///
1111    /// NOTE: this has the *opposite* argument order of [`ptr::copy_nonoverlapping`].
1112    ///
1113    /// See [`ptr::copy_nonoverlapping`] for safety concerns and examples.
1114    ///
1115    /// [`ptr::copy_nonoverlapping`]: crate::ptr::copy_nonoverlapping()
1116    #[inline(always)]
1117    #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
1118    #[stable(feature = "non_null_convenience", since = "1.80.0")]
1119    #[rustc_const_stable(feature = "const_intrinsic_copy", since = "1.83.0")]
1120    pub const unsafe fn copy_from_nonoverlapping(self, src: NonNull<T>, count: usize)
1121    where
1122        T: Sized,
1123    {
1124        // SAFETY: the caller must uphold the safety contract for `copy_nonoverlapping`.
1125        unsafe { ptr::copy_nonoverlapping(src.as_ptr(), self.as_ptr(), count) }
1126    }
1127
1128    /// Executes the destructor (if any) of the pointed-to value.
1129    ///
1130    /// See [`ptr::drop_in_place`] for safety concerns and examples.
1131    ///
1132    /// [`ptr::drop_in_place`]: crate::ptr::drop_in_place()
1133    #[inline(always)]
1134    #[stable(feature = "non_null_convenience", since = "1.80.0")]
1135    pub unsafe fn drop_in_place(self) {
1136        // SAFETY: the caller must uphold the safety contract for `drop_in_place`.
1137        unsafe { ptr::drop_in_place(self.as_ptr()) }
1138    }
1139
1140    /// Overwrites a memory location with the given value without reading or
1141    /// dropping the old value.
1142    ///
1143    /// See [`ptr::write`] for safety concerns and examples.
1144    ///
1145    /// [`ptr::write`]: crate::ptr::write()
1146    #[inline(always)]
1147    #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
1148    #[stable(feature = "non_null_convenience", since = "1.80.0")]
1149    #[rustc_const_stable(feature = "const_ptr_write", since = "1.83.0")]
1150    pub const unsafe fn write(self, val: T)
1151    where
1152        T: Sized,
1153    {
1154        // SAFETY: the caller must uphold the safety contract for `write`.
1155        unsafe { ptr::write(self.as_ptr(), val) }
1156    }
1157
1158    /// Invokes memset on the specified pointer, setting `count * size_of::<T>()`
1159    /// bytes of memory starting at `self` to `val`.
1160    ///
1161    /// See [`ptr::write_bytes`] for safety concerns and examples.
1162    ///
1163    /// [`ptr::write_bytes`]: crate::ptr::write_bytes()
1164    #[inline(always)]
1165    #[doc(alias = "memset")]
1166    #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
1167    #[stable(feature = "non_null_convenience", since = "1.80.0")]
1168    #[rustc_const_stable(feature = "const_ptr_write", since = "1.83.0")]
1169    pub const unsafe fn write_bytes(self, val: u8, count: usize)
1170    where
1171        T: Sized,
1172    {
1173        // SAFETY: the caller must uphold the safety contract for `write_bytes`.
1174        unsafe { ptr::write_bytes(self.as_ptr(), val, count) }
1175    }
1176
1177    /// Performs a volatile write of a memory location with the given value without
1178    /// reading or dropping the old value.
1179    ///
1180    /// Volatile operations are intended to act on I/O memory, and are guaranteed
1181    /// to not be elided or reordered by the compiler across other volatile
1182    /// operations.
1183    ///
1184    /// See [`ptr::write_volatile`] for safety concerns and examples.
1185    ///
1186    /// [`ptr::write_volatile`]: crate::ptr::write_volatile()
1187    #[inline(always)]
1188    #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
1189    #[stable(feature = "non_null_convenience", since = "1.80.0")]
1190    pub unsafe fn write_volatile(self, val: T)
1191    where
1192        T: Sized,
1193    {
1194        // SAFETY: the caller must uphold the safety contract for `write_volatile`.
1195        unsafe { ptr::write_volatile(self.as_ptr(), val) }
1196    }
1197
1198    /// Overwrites a memory location with the given value without reading or
1199    /// dropping the old value.
1200    ///
1201    /// Unlike `write`, the pointer may be unaligned.
1202    ///
1203    /// See [`ptr::write_unaligned`] for safety concerns and examples.
1204    ///
1205    /// [`ptr::write_unaligned`]: crate::ptr::write_unaligned()
1206    #[inline(always)]
1207    #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
1208    #[stable(feature = "non_null_convenience", since = "1.80.0")]
1209    #[rustc_const_stable(feature = "const_ptr_write", since = "1.83.0")]
1210    pub const unsafe fn write_unaligned(self, val: T)
1211    where
1212        T: Sized,
1213    {
1214        // SAFETY: the caller must uphold the safety contract for `write_unaligned`.
1215        unsafe { ptr::write_unaligned(self.as_ptr(), val) }
1216    }
1217
1218    /// Replaces the value at `self` with `src`, returning the old
1219    /// value, without dropping either.
1220    ///
1221    /// See [`ptr::replace`] for safety concerns and examples.
1222    ///
1223    /// [`ptr::replace`]: crate::ptr::replace()
1224    #[inline(always)]
1225    #[stable(feature = "non_null_convenience", since = "1.80.0")]
1226    #[rustc_const_stable(feature = "const_inherent_ptr_replace", since = "1.88.0")]
1227    pub const unsafe fn replace(self, src: T) -> T
1228    where
1229        T: Sized,
1230    {
1231        // SAFETY: the caller must uphold the safety contract for `replace`.
1232        unsafe { ptr::replace(self.as_ptr(), src) }
1233    }
1234
1235    /// Swaps the values at two mutable locations of the same type, without
1236    /// deinitializing either. They may overlap, unlike `mem::swap` which is
1237    /// otherwise equivalent.
1238    ///
1239    /// See [`ptr::swap`] for safety concerns and examples.
1240    ///
1241    /// [`ptr::swap`]: crate::ptr::swap()
1242    #[inline(always)]
1243    #[stable(feature = "non_null_convenience", since = "1.80.0")]
1244    #[rustc_const_stable(feature = "const_swap", since = "1.85.0")]
1245    pub const unsafe fn swap(self, with: NonNull<T>)
1246    where
1247        T: Sized,
1248    {
1249        // SAFETY: the caller must uphold the safety contract for `swap`.
1250        unsafe { ptr::swap(self.as_ptr(), with.as_ptr()) }
1251    }
1252
1253    /// Computes the offset that needs to be applied to the pointer in order to make it aligned to
1254    /// `align`.
1255    ///
1256    /// If it is not possible to align the pointer, the implementation returns
1257    /// `usize::MAX`.
1258    ///
1259    /// The offset is expressed in number of `T` elements, and not bytes.
1260    ///
1261    /// There are no guarantees whatsoever that offsetting the pointer will not overflow or go
1262    /// beyond the allocation that the pointer points into. It is up to the caller to ensure that
1263    /// the returned offset is correct in all terms other than alignment.
1264    ///
1265    /// When this is called during compile-time evaluation (which is unstable), the implementation
1266    /// may return `usize::MAX` in cases where that can never happen at runtime. This is because the
1267    /// actual alignment of pointers is not known yet during compile-time, so an offset with
1268    /// guaranteed alignment can sometimes not be computed. For example, a buffer declared as `[u8;
1269    /// N]` might be allocated at an odd or an even address, but at compile-time this is not yet
1270    /// known, so the execution has to be correct for either choice. It is therefore impossible to
1271    /// find an offset that is guaranteed to be 2-aligned. (This behavior is subject to change, as usual
1272    /// for unstable APIs.)
1273    ///
1274    /// # Panics
1275    ///
1276    /// The function panics if `align` is not a power-of-two.
1277    ///
1278    /// # Examples
1279    ///
1280    /// Accessing adjacent `u8` as `u16`
1281    ///
1282    /// ```
1283    /// use std::ptr::NonNull;
1284    ///
1285    /// # unsafe {
1286    /// let x = [5_u8, 6, 7, 8, 9];
1287    /// let ptr = NonNull::new(x.as_ptr() as *mut u8).unwrap();
1288    /// let offset = ptr.align_offset(align_of::<u16>());
1289    ///
1290    /// if offset < x.len() - 1 {
1291    ///     let u16_ptr = ptr.add(offset).cast::<u16>();
1292    ///     assert!(u16_ptr.read() == u16::from_ne_bytes([5, 6]) || u16_ptr.read() == u16::from_ne_bytes([6, 7]));
1293    /// } else {
1294    ///     // while the pointer can be aligned via `offset`, it would point
1295    ///     // outside the allocation
1296    /// }
1297    /// # }
1298    /// ```
1299    #[inline]
1300    #[must_use]
1301    #[stable(feature = "non_null_convenience", since = "1.80.0")]
1302    pub fn align_offset(self, align: usize) -> usize
1303    where
1304        T: Sized,
1305    {
1306        if !align.is_power_of_two() {
1307            panic!("align_offset: align is not a power-of-two");
1308        }
1309
1310        {
1311            // SAFETY: `align` has been checked to be a power of 2 above.
1312            unsafe { ptr::align_offset(self.as_ptr(), align) }
1313        }
1314    }
1315
1316    /// Returns whether the pointer is properly aligned for `T`.
1317    ///
1318    /// # Examples
1319    ///
1320    /// ```
1321    /// use std::ptr::NonNull;
1322    ///
1323    /// // On some platforms, the alignment of i32 is less than 4.
1324    /// #[repr(align(4))]
1325    /// struct AlignedI32(i32);
1326    ///
1327    /// let data = AlignedI32(42);
1328    /// let ptr = NonNull::<AlignedI32>::from(&data);
1329    ///
1330    /// assert!(ptr.is_aligned());
1331    /// assert!(!NonNull::new(ptr.as_ptr().wrapping_byte_add(1)).unwrap().is_aligned());
1332    /// ```
1333    #[inline]
1334    #[must_use]
1335    #[stable(feature = "pointer_is_aligned", since = "1.79.0")]
1336    pub fn is_aligned(self) -> bool
1337    where
1338        T: Sized,
1339    {
1340        self.as_ptr().is_aligned()
1341    }
1342
1343    /// Returns whether the pointer is aligned to `align`.
1344    ///
1345    /// For non-`Sized` pointees this operation considers only the data pointer,
1346    /// ignoring the metadata.
1347    ///
1348    /// # Panics
1349    ///
1350    /// The function panics if `align` is not a power-of-two (this includes 0).
1351    ///
1352    /// # Examples
1353    ///
1354    /// ```
1355    /// #![feature(pointer_is_aligned_to)]
1356    ///
1357    /// // On some platforms, the alignment of i32 is less than 4.
1358    /// #[repr(align(4))]
1359    /// struct AlignedI32(i32);
1360    ///
1361    /// let data = AlignedI32(42);
1362    /// let ptr = &data as *const AlignedI32;
1363    ///
1364    /// assert!(ptr.is_aligned_to(1));
1365    /// assert!(ptr.is_aligned_to(2));
1366    /// assert!(ptr.is_aligned_to(4));
1367    ///
1368    /// assert!(ptr.wrapping_byte_add(2).is_aligned_to(2));
1369    /// assert!(!ptr.wrapping_byte_add(2).is_aligned_to(4));
1370    ///
1371    /// assert_ne!(ptr.is_aligned_to(8), ptr.wrapping_add(1).is_aligned_to(8));
1372    /// ```
1373    #[inline]
1374    #[must_use]
1375    #[unstable(feature = "pointer_is_aligned_to", issue = "96284")]
1376    pub fn is_aligned_to(self, align: usize) -> bool {
1377        self.as_ptr().is_aligned_to(align)
1378    }
1379}
1380
1381#[cfg(not(feature = "ferrocene_certified"))]
1382impl<T> NonNull<T> {
1383    /// Casts from a type to its maybe-uninitialized version.
1384    #[must_use]
1385    #[inline(always)]
1386    #[unstable(feature = "cast_maybe_uninit", issue = "145036")]
1387    pub const fn cast_uninit(self) -> NonNull<MaybeUninit<T>> {
1388        self.cast()
1389    }
1390}
1391#[cfg(not(feature = "ferrocene_certified"))]
1392impl<T> NonNull<MaybeUninit<T>> {
1393    /// Casts from a maybe-uninitialized type to its initialized version.
1394    ///
1395    /// This is always safe, since UB can only occur if the pointer is read
1396    /// before being initialized.
1397    #[must_use]
1398    #[inline(always)]
1399    #[unstable(feature = "cast_maybe_uninit", issue = "145036")]
1400    pub const fn cast_init(self) -> NonNull<T> {
1401        self.cast()
1402    }
1403}
1404
1405#[cfg(not(feature = "ferrocene_certified"))]
1406impl<T> NonNull<[T]> {
1407    /// Creates a non-null raw slice from a thin pointer and a length.
1408    ///
1409    /// The `len` argument is the number of **elements**, not the number of bytes.
1410    ///
1411    /// This function is safe, but dereferencing the return value is unsafe.
1412    /// See the documentation of [`slice::from_raw_parts`] for slice safety requirements.
1413    ///
1414    /// # Examples
1415    ///
1416    /// ```rust
1417    /// use std::ptr::NonNull;
1418    ///
1419    /// // create a slice pointer when starting out with a pointer to the first element
1420    /// let mut x = [5, 6, 7];
1421    /// let nonnull_pointer = NonNull::new(x.as_mut_ptr()).unwrap();
1422    /// let slice = NonNull::slice_from_raw_parts(nonnull_pointer, 3);
1423    /// assert_eq!(unsafe { slice.as_ref()[2] }, 7);
1424    /// ```
1425    ///
1426    /// (Note that this example artificially demonstrates a use of this method,
1427    /// but `let slice = NonNull::from(&x[..]);` would be a better way to write code like this.)
1428    #[stable(feature = "nonnull_slice_from_raw_parts", since = "1.70.0")]
1429    #[rustc_const_stable(feature = "const_slice_from_raw_parts_mut", since = "1.83.0")]
1430    #[must_use]
1431    #[inline]
1432    pub const fn slice_from_raw_parts(data: NonNull<T>, len: usize) -> Self {
1433        // SAFETY: `data` is a `NonNull` pointer which is necessarily non-null
1434        unsafe { Self::new_unchecked(super::slice_from_raw_parts_mut(data.as_ptr(), len)) }
1435    }
1436
1437    /// Returns the length of a non-null raw slice.
1438    ///
1439    /// The returned value is the number of **elements**, not the number of bytes.
1440    ///
1441    /// This function is safe, even when the non-null raw slice cannot be dereferenced to a slice
1442    /// because the pointer does not have a valid address.
1443    ///
1444    /// # Examples
1445    ///
1446    /// ```rust
1447    /// use std::ptr::NonNull;
1448    ///
1449    /// let slice: NonNull<[i8]> = NonNull::slice_from_raw_parts(NonNull::dangling(), 3);
1450    /// assert_eq!(slice.len(), 3);
1451    /// ```
1452    #[stable(feature = "slice_ptr_len_nonnull", since = "1.63.0")]
1453    #[rustc_const_stable(feature = "const_slice_ptr_len_nonnull", since = "1.63.0")]
1454    #[must_use]
1455    #[inline]
1456    pub const fn len(self) -> usize {
1457        self.as_ptr().len()
1458    }
1459
1460    /// Returns `true` if the non-null raw slice has a length of 0.
1461    ///
1462    /// # Examples
1463    ///
1464    /// ```rust
1465    /// use std::ptr::NonNull;
1466    ///
1467    /// let slice: NonNull<[i8]> = NonNull::slice_from_raw_parts(NonNull::dangling(), 3);
1468    /// assert!(!slice.is_empty());
1469    /// ```
1470    #[stable(feature = "slice_ptr_is_empty_nonnull", since = "1.79.0")]
1471    #[rustc_const_stable(feature = "const_slice_ptr_is_empty_nonnull", since = "1.79.0")]
1472    #[must_use]
1473    #[inline]
1474    pub const fn is_empty(self) -> bool {
1475        self.len() == 0
1476    }
1477
1478    /// Returns a non-null pointer to the slice's buffer.
1479    ///
1480    /// # Examples
1481    ///
1482    /// ```rust
1483    /// #![feature(slice_ptr_get)]
1484    /// use std::ptr::NonNull;
1485    ///
1486    /// let slice: NonNull<[i8]> = NonNull::slice_from_raw_parts(NonNull::dangling(), 3);
1487    /// assert_eq!(slice.as_non_null_ptr(), NonNull::<i8>::dangling());
1488    /// ```
1489    #[inline]
1490    #[must_use]
1491    #[unstable(feature = "slice_ptr_get", issue = "74265")]
1492    pub const fn as_non_null_ptr(self) -> NonNull<T> {
1493        self.cast()
1494    }
1495
1496    /// Returns a raw pointer to the slice's buffer.
1497    ///
1498    /// # Examples
1499    ///
1500    /// ```rust
1501    /// #![feature(slice_ptr_get)]
1502    /// use std::ptr::NonNull;
1503    ///
1504    /// let slice: NonNull<[i8]> = NonNull::slice_from_raw_parts(NonNull::dangling(), 3);
1505    /// assert_eq!(slice.as_mut_ptr(), NonNull::<i8>::dangling().as_ptr());
1506    /// ```
1507    #[inline]
1508    #[must_use]
1509    #[unstable(feature = "slice_ptr_get", issue = "74265")]
1510    #[rustc_never_returns_null_ptr]
1511    pub const fn as_mut_ptr(self) -> *mut T {
1512        self.as_non_null_ptr().as_ptr()
1513    }
1514
1515    /// Returns a shared reference to a slice of possibly uninitialized values. In contrast to
1516    /// [`as_ref`], this does not require that the value has to be initialized.
1517    ///
1518    /// For the mutable counterpart see [`as_uninit_slice_mut`].
1519    ///
1520    /// [`as_ref`]: NonNull::as_ref
1521    /// [`as_uninit_slice_mut`]: NonNull::as_uninit_slice_mut
1522    ///
1523    /// # Safety
1524    ///
1525    /// When calling this method, you have to ensure that all of the following is true:
1526    ///
1527    /// * The pointer must be [valid] for reads for `ptr.len() * size_of::<T>()` many bytes,
1528    ///   and it must be properly aligned. This means in particular:
1529    ///
1530    ///     * The entire memory range of this slice must be contained within a single allocation!
1531    ///       Slices can never span across multiple allocations.
1532    ///
1533    ///     * The pointer must be aligned even for zero-length slices. One
1534    ///       reason for this is that enum layout optimizations may rely on references
1535    ///       (including slices of any length) being aligned and non-null to distinguish
1536    ///       them from other data. You can obtain a pointer that is usable as `data`
1537    ///       for zero-length slices using [`NonNull::dangling()`].
1538    ///
1539    /// * The total size `ptr.len() * size_of::<T>()` of the slice must be no larger than `isize::MAX`.
1540    ///   See the safety documentation of [`pointer::offset`].
1541    ///
1542    /// * You must enforce Rust's aliasing rules, since the returned lifetime `'a` is
1543    ///   arbitrarily chosen and does not necessarily reflect the actual lifetime of the data.
1544    ///   In particular, while this reference exists, the memory the pointer points to must
1545    ///   not get mutated (except inside `UnsafeCell`).
1546    ///
1547    /// This applies even if the result of this method is unused!
1548    ///
1549    /// See also [`slice::from_raw_parts`].
1550    ///
1551    /// [valid]: crate::ptr#safety
1552    #[inline]
1553    #[must_use]
1554    #[unstable(feature = "ptr_as_uninit", issue = "75402")]
1555    pub const unsafe fn as_uninit_slice<'a>(self) -> &'a [MaybeUninit<T>] {
1556        // SAFETY: the caller must uphold the safety contract for `as_uninit_slice`.
1557        unsafe { slice::from_raw_parts(self.cast().as_ptr(), self.len()) }
1558    }
1559
1560    /// Returns a unique reference to a slice of possibly uninitialized values. In contrast to
1561    /// [`as_mut`], this does not require that the value has to be initialized.
1562    ///
1563    /// For the shared counterpart see [`as_uninit_slice`].
1564    ///
1565    /// [`as_mut`]: NonNull::as_mut
1566    /// [`as_uninit_slice`]: NonNull::as_uninit_slice
1567    ///
1568    /// # Safety
1569    ///
1570    /// When calling this method, you have to ensure that all of the following is true:
1571    ///
1572    /// * The pointer must be [valid] for reads and writes for `ptr.len() * size_of::<T>()`
1573    ///   many bytes, and it must be properly aligned. This means in particular:
1574    ///
1575    ///     * The entire memory range of this slice must be contained within a single allocation!
1576    ///       Slices can never span across multiple allocations.
1577    ///
1578    ///     * The pointer must be aligned even for zero-length slices. One
1579    ///       reason for this is that enum layout optimizations may rely on references
1580    ///       (including slices of any length) being aligned and non-null to distinguish
1581    ///       them from other data. You can obtain a pointer that is usable as `data`
1582    ///       for zero-length slices using [`NonNull::dangling()`].
1583    ///
1584    /// * The total size `ptr.len() * size_of::<T>()` of the slice must be no larger than `isize::MAX`.
1585    ///   See the safety documentation of [`pointer::offset`].
1586    ///
1587    /// * You must enforce Rust's aliasing rules, since the returned lifetime `'a` is
1588    ///   arbitrarily chosen and does not necessarily reflect the actual lifetime of the data.
1589    ///   In particular, while this reference exists, the memory the pointer points to must
1590    ///   not get accessed (read or written) through any other pointer.
1591    ///
1592    /// This applies even if the result of this method is unused!
1593    ///
1594    /// See also [`slice::from_raw_parts_mut`].
1595    ///
1596    /// [valid]: crate::ptr#safety
1597    ///
1598    /// # Examples
1599    ///
1600    /// ```rust
1601    /// #![feature(allocator_api, ptr_as_uninit)]
1602    ///
1603    /// use std::alloc::{Allocator, Layout, Global};
1604    /// use std::mem::MaybeUninit;
1605    /// use std::ptr::NonNull;
1606    ///
1607    /// let memory: NonNull<[u8]> = Global.allocate(Layout::new::<[u8; 32]>())?;
1608    /// // This is safe as `memory` is valid for reads and writes for `memory.len()` many bytes.
1609    /// // Note that calling `memory.as_mut()` is not allowed here as the content may be uninitialized.
1610    /// # #[allow(unused_variables)]
1611    /// let slice: &mut [MaybeUninit<u8>] = unsafe { memory.as_uninit_slice_mut() };
1612    /// # // Prevent leaks for Miri.
1613    /// # unsafe { Global.deallocate(memory.cast(), Layout::new::<[u8; 32]>()); }
1614    /// # Ok::<_, std::alloc::AllocError>(())
1615    /// ```
1616    #[inline]
1617    #[must_use]
1618    #[unstable(feature = "ptr_as_uninit", issue = "75402")]
1619    pub const unsafe fn as_uninit_slice_mut<'a>(self) -> &'a mut [MaybeUninit<T>] {
1620        // SAFETY: the caller must uphold the safety contract for `as_uninit_slice_mut`.
1621        unsafe { slice::from_raw_parts_mut(self.cast().as_ptr(), self.len()) }
1622    }
1623
1624    /// Returns a raw pointer to an element or subslice, without doing bounds
1625    /// checking.
1626    ///
1627    /// Calling this method with an out-of-bounds index or when `self` is not dereferenceable
1628    /// is *[undefined behavior]* even if the resulting pointer is not used.
1629    ///
1630    /// [undefined behavior]: https://doc.rust-lang.org/reference/behavior-considered-undefined.html
1631    ///
1632    /// # Examples
1633    ///
1634    /// ```
1635    /// #![feature(slice_ptr_get)]
1636    /// use std::ptr::NonNull;
1637    ///
1638    /// let x = &mut [1, 2, 4];
1639    /// let x = NonNull::slice_from_raw_parts(NonNull::new(x.as_mut_ptr()).unwrap(), x.len());
1640    ///
1641    /// unsafe {
1642    ///     assert_eq!(x.get_unchecked_mut(1).as_ptr(), x.as_non_null_ptr().as_ptr().add(1));
1643    /// }
1644    /// ```
1645    #[unstable(feature = "slice_ptr_get", issue = "74265")]
1646    #[rustc_const_unstable(feature = "const_index", issue = "143775")]
1647    #[inline]
1648    pub const unsafe fn get_unchecked_mut<I>(self, index: I) -> NonNull<I::Output>
1649    where
1650        I: [const] SliceIndex<[T]>,
1651    {
1652        // SAFETY: the caller ensures that `self` is dereferenceable and `index` in-bounds.
1653        // As a consequence, the resulting pointer cannot be null.
1654        unsafe { NonNull::new_unchecked(self.as_ptr().get_unchecked_mut(index)) }
1655    }
1656}
1657
1658#[stable(feature = "nonnull", since = "1.25.0")]
1659#[cfg(not(feature = "ferrocene_certified"))]
1660impl<T: PointeeSized> Clone for NonNull<T> {
1661    #[inline(always)]
1662    fn clone(&self) -> Self {
1663        *self
1664    }
1665}
1666
1667#[stable(feature = "nonnull", since = "1.25.0")]
1668#[cfg(not(feature = "ferrocene_certified"))]
1669impl<T: PointeeSized> Copy for NonNull<T> {}
1670
1671#[unstable(feature = "coerce_unsized", issue = "18598")]
1672#[cfg(not(feature = "ferrocene_certified"))]
1673impl<T: PointeeSized, U: PointeeSized> CoerceUnsized<NonNull<U>> for NonNull<T> where T: Unsize<U> {}
1674
1675#[unstable(feature = "dispatch_from_dyn", issue = "none")]
1676#[cfg(not(feature = "ferrocene_certified"))]
1677impl<T: PointeeSized, U: PointeeSized> DispatchFromDyn<NonNull<U>> for NonNull<T> where T: Unsize<U> {}
1678
1679#[stable(feature = "pin", since = "1.33.0")]
1680#[cfg(not(feature = "ferrocene_certified"))]
1681unsafe impl<T: PointeeSized> PinCoerceUnsized for NonNull<T> {}
1682
1683#[stable(feature = "nonnull", since = "1.25.0")]
1684#[cfg(not(feature = "ferrocene_certified"))]
1685impl<T: PointeeSized> fmt::Debug for NonNull<T> {
1686    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
1687        fmt::Pointer::fmt(&self.as_ptr(), f)
1688    }
1689}
1690
1691#[stable(feature = "nonnull", since = "1.25.0")]
1692#[cfg(not(feature = "ferrocene_certified"))]
1693impl<T: PointeeSized> fmt::Pointer for NonNull<T> {
1694    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
1695        fmt::Pointer::fmt(&self.as_ptr(), f)
1696    }
1697}
1698
1699#[stable(feature = "nonnull", since = "1.25.0")]
1700#[cfg(not(feature = "ferrocene_certified"))]
1701impl<T: PointeeSized> Eq for NonNull<T> {}
1702
1703#[stable(feature = "nonnull", since = "1.25.0")]
1704#[cfg(not(feature = "ferrocene_certified"))]
1705impl<T: PointeeSized> PartialEq for NonNull<T> {
1706    #[inline]
1707    #[allow(ambiguous_wide_pointer_comparisons)]
1708    fn eq(&self, other: &Self) -> bool {
1709        self.as_ptr() == other.as_ptr()
1710    }
1711}
1712
1713#[stable(feature = "nonnull", since = "1.25.0")]
1714#[cfg(not(feature = "ferrocene_certified"))]
1715impl<T: PointeeSized> Ord for NonNull<T> {
1716    #[inline]
1717    #[allow(ambiguous_wide_pointer_comparisons)]
1718    fn cmp(&self, other: &Self) -> Ordering {
1719        self.as_ptr().cmp(&other.as_ptr())
1720    }
1721}
1722
1723#[stable(feature = "nonnull", since = "1.25.0")]
1724#[cfg(not(feature = "ferrocene_certified"))]
1725impl<T: PointeeSized> PartialOrd for NonNull<T> {
1726    #[inline]
1727    #[allow(ambiguous_wide_pointer_comparisons)]
1728    fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
1729        self.as_ptr().partial_cmp(&other.as_ptr())
1730    }
1731}
1732
1733#[stable(feature = "nonnull", since = "1.25.0")]
1734#[cfg(not(feature = "ferrocene_certified"))]
1735impl<T: PointeeSized> hash::Hash for NonNull<T> {
1736    #[inline]
1737    fn hash<H: hash::Hasher>(&self, state: &mut H) {
1738        self.as_ptr().hash(state)
1739    }
1740}
1741
1742#[unstable(feature = "ptr_internals", issue = "none")]
1743#[rustc_const_unstable(feature = "const_convert", issue = "143773")]
1744#[cfg(not(feature = "ferrocene_certified"))]
1745impl<T: PointeeSized> const From<Unique<T>> for NonNull<T> {
1746    #[inline]
1747    fn from(unique: Unique<T>) -> Self {
1748        unique.as_non_null_ptr()
1749    }
1750}
1751
1752#[stable(feature = "nonnull", since = "1.25.0")]
1753#[rustc_const_unstable(feature = "const_convert", issue = "143773")]
1754#[cfg(not(feature = "ferrocene_certified"))]
1755impl<T: PointeeSized> const From<&mut T> for NonNull<T> {
1756    /// Converts a `&mut T` to a `NonNull<T>`.
1757    ///
1758    /// This conversion is safe and infallible since references cannot be null.
1759    #[inline]
1760    fn from(r: &mut T) -> Self {
1761        NonNull::from_mut(r)
1762    }
1763}
1764
1765#[stable(feature = "nonnull", since = "1.25.0")]
1766#[rustc_const_unstable(feature = "const_convert", issue = "143773")]
1767#[cfg(not(feature = "ferrocene_certified"))]
1768impl<T: PointeeSized> const From<&T> for NonNull<T> {
1769    /// Converts a `&T` to a `NonNull<T>`.
1770    ///
1771    /// This conversion is safe and infallible since references cannot be null.
1772    #[inline]
1773    fn from(r: &T) -> Self {
1774        NonNull::from_ref(r)
1775    }
1776}