core/slice/
mod.rs

1//! Slice management and manipulation.
2//!
3//! For more details see [`std::slice`].
4//!
5//! [`std::slice`]: ../../std/slice/index.html
6
7#![stable(feature = "rust1", since = "1.0.0")]
8
9#[cfg(not(feature = "ferrocene_certified"))]
10use crate::cmp::Ordering::{self, Equal, Greater, Less};
11#[cfg(not(feature = "ferrocene_certified"))]
12use crate::intrinsics::{exact_div, unchecked_sub};
13#[cfg(not(feature = "ferrocene_certified"))]
14use crate::mem::{self, MaybeUninit, SizedTypeProperties};
15#[cfg(not(feature = "ferrocene_certified"))]
16use crate::num::NonZero;
17#[cfg(not(feature = "ferrocene_certified"))]
18use crate::ops::{OneSidedRange, OneSidedRangeBound, Range, RangeBounds, RangeInclusive};
19use crate::panic::const_panic;
20#[cfg(not(feature = "ferrocene_certified"))]
21use crate::simd::{self, Simd};
22#[cfg(not(feature = "ferrocene_certified"))]
23use crate::ub_checks::assert_unsafe_precondition;
24#[cfg(not(feature = "ferrocene_certified"))]
25use crate::{fmt, hint, ptr, range, slice};
26
27// Ferrocene addition: imports for certified subset
28#[cfg(feature = "ferrocene_certified")]
29#[rustfmt::skip]
30use crate::ptr;
31
32#[unstable(
33    feature = "slice_internals",
34    issue = "none",
35    reason = "exposed from core to be reused in std; use the memchr crate"
36)]
37#[doc(hidden)]
38/// Pure Rust memchr implementation, taken from rust-memchr
39#[cfg(not(feature = "ferrocene_certified"))]
40pub mod memchr;
41
42#[unstable(
43    feature = "slice_internals",
44    issue = "none",
45    reason = "exposed from core to be reused in std;"
46)]
47#[doc(hidden)]
48#[cfg(not(feature = "ferrocene_certified"))]
49pub mod sort;
50
51#[cfg(not(feature = "ferrocene_certified"))]
52mod ascii;
53mod cmp;
54pub(crate) mod index;
55mod iter;
56mod raw;
57#[cfg(not(feature = "ferrocene_certified"))]
58mod rotate;
59#[cfg(not(feature = "ferrocene_certified"))]
60mod specialize;
61
62#[stable(feature = "inherent_ascii_escape", since = "1.60.0")]
63#[cfg(not(feature = "ferrocene_certified"))]
64pub use ascii::EscapeAscii;
65#[unstable(feature = "str_internals", issue = "none")]
66#[doc(hidden)]
67#[cfg(not(feature = "ferrocene_certified"))]
68pub use ascii::is_ascii_simple;
69#[stable(feature = "slice_get_slice", since = "1.28.0")]
70pub use index::SliceIndex;
71#[unstable(feature = "slice_range", issue = "76393")]
72#[cfg(not(feature = "ferrocene_certified"))]
73pub use index::{range, try_range};
74#[unstable(feature = "array_windows", issue = "75027")]
75#[cfg(not(feature = "ferrocene_certified"))]
76pub use iter::ArrayWindows;
77#[stable(feature = "slice_group_by", since = "1.77.0")]
78#[cfg(not(feature = "ferrocene_certified"))]
79pub use iter::{ChunkBy, ChunkByMut};
80#[stable(feature = "rust1", since = "1.0.0")]
81#[cfg(not(feature = "ferrocene_certified"))]
82pub use iter::{Chunks, ChunksMut, Windows};
83#[stable(feature = "chunks_exact", since = "1.31.0")]
84#[cfg(not(feature = "ferrocene_certified"))]
85pub use iter::{ChunksExact, ChunksExactMut};
86#[stable(feature = "rust1", since = "1.0.0")]
87pub use iter::{Iter, IterMut};
88#[stable(feature = "rchunks", since = "1.31.0")]
89#[cfg(not(feature = "ferrocene_certified"))]
90pub use iter::{RChunks, RChunksExact, RChunksExactMut, RChunksMut};
91#[stable(feature = "slice_rsplit", since = "1.27.0")]
92#[cfg(not(feature = "ferrocene_certified"))]
93pub use iter::{RSplit, RSplitMut};
94#[stable(feature = "rust1", since = "1.0.0")]
95#[cfg(not(feature = "ferrocene_certified"))]
96pub use iter::{RSplitN, RSplitNMut, Split, SplitMut, SplitN, SplitNMut};
97#[stable(feature = "split_inclusive", since = "1.51.0")]
98#[cfg(not(feature = "ferrocene_certified"))]
99pub use iter::{SplitInclusive, SplitInclusiveMut};
100#[stable(feature = "from_ref", since = "1.28.0")]
101pub use raw::{from_mut, from_ref};
102#[unstable(feature = "slice_from_ptr_range", issue = "89792")]
103#[cfg(not(feature = "ferrocene_certified"))]
104pub use raw::{from_mut_ptr_range, from_ptr_range};
105#[stable(feature = "rust1", since = "1.0.0")]
106pub use raw::{from_raw_parts, from_raw_parts_mut};
107
108/// Calculates the direction and split point of a one-sided range.
109///
110/// This is a helper function for `split_off` and `split_off_mut` that returns
111/// the direction of the split (front or back) as well as the index at
112/// which to split. Returns `None` if the split index would overflow.
113#[inline]
114#[cfg(not(feature = "ferrocene_certified"))]
115fn split_point_of(range: impl OneSidedRange<usize>) -> Option<(Direction, usize)> {
116    use OneSidedRangeBound::{End, EndInclusive, StartInclusive};
117
118    Some(match range.bound() {
119        (StartInclusive, i) => (Direction::Back, i),
120        (End, i) => (Direction::Front, i),
121        (EndInclusive, i) => (Direction::Front, i.checked_add(1)?),
122    })
123}
124
125#[cfg(not(feature = "ferrocene_certified"))]
126enum Direction {
127    Front,
128    Back,
129}
130
131impl<T> [T] {
132    /// Returns the number of elements in the slice.
133    ///
134    /// # Examples
135    ///
136    /// ```
137    /// let a = [1, 2, 3];
138    /// assert_eq!(a.len(), 3);
139    /// ```
140    #[lang = "slice_len_fn"]
141    #[stable(feature = "rust1", since = "1.0.0")]
142    #[rustc_const_stable(feature = "const_slice_len", since = "1.39.0")]
143    #[rustc_no_implicit_autorefs]
144    #[inline]
145    #[must_use]
146    pub const fn len(&self) -> usize {
147        ptr::metadata(self)
148    }
149
150    /// Returns `true` if the slice has a length of 0.
151    ///
152    /// # Examples
153    ///
154    /// ```
155    /// let a = [1, 2, 3];
156    /// assert!(!a.is_empty());
157    ///
158    /// let b: &[i32] = &[];
159    /// assert!(b.is_empty());
160    /// ```
161    #[stable(feature = "rust1", since = "1.0.0")]
162    #[rustc_const_stable(feature = "const_slice_is_empty", since = "1.39.0")]
163    #[rustc_no_implicit_autorefs]
164    #[inline]
165    #[must_use]
166    pub const fn is_empty(&self) -> bool {
167        self.len() == 0
168    }
169
170    /// Returns the first element of the slice, or `None` if it is empty.
171    ///
172    /// # Examples
173    ///
174    /// ```
175    /// let v = [10, 40, 30];
176    /// assert_eq!(Some(&10), v.first());
177    ///
178    /// let w: &[i32] = &[];
179    /// assert_eq!(None, w.first());
180    /// ```
181    #[stable(feature = "rust1", since = "1.0.0")]
182    #[rustc_const_stable(feature = "const_slice_first_last_not_mut", since = "1.56.0")]
183    #[inline]
184    #[must_use]
185    pub const fn first(&self) -> Option<&T> {
186        if let [first, ..] = self { Some(first) } else { None }
187    }
188
189    /// Returns a mutable reference to the first element of the slice, or `None` if it is empty.
190    ///
191    /// # Examples
192    ///
193    /// ```
194    /// let x = &mut [0, 1, 2];
195    ///
196    /// if let Some(first) = x.first_mut() {
197    ///     *first = 5;
198    /// }
199    /// assert_eq!(x, &[5, 1, 2]);
200    ///
201    /// let y: &mut [i32] = &mut [];
202    /// assert_eq!(None, y.first_mut());
203    /// ```
204    #[stable(feature = "rust1", since = "1.0.0")]
205    #[rustc_const_stable(feature = "const_slice_first_last", since = "1.83.0")]
206    #[inline]
207    #[must_use]
208    pub const fn first_mut(&mut self) -> Option<&mut T> {
209        if let [first, ..] = self { Some(first) } else { None }
210    }
211
212    /// Returns the first and all the rest of the elements of the slice, or `None` if it is empty.
213    ///
214    /// # Examples
215    ///
216    /// ```
217    /// let x = &[0, 1, 2];
218    ///
219    /// if let Some((first, elements)) = x.split_first() {
220    ///     assert_eq!(first, &0);
221    ///     assert_eq!(elements, &[1, 2]);
222    /// }
223    /// ```
224    #[stable(feature = "slice_splits", since = "1.5.0")]
225    #[rustc_const_stable(feature = "const_slice_first_last_not_mut", since = "1.56.0")]
226    #[inline]
227    #[must_use]
228    pub const fn split_first(&self) -> Option<(&T, &[T])> {
229        if let [first, tail @ ..] = self { Some((first, tail)) } else { None }
230    }
231
232    /// Returns the first and all the rest of the elements of the slice, or `None` if it is empty.
233    ///
234    /// # Examples
235    ///
236    /// ```
237    /// let x = &mut [0, 1, 2];
238    ///
239    /// if let Some((first, elements)) = x.split_first_mut() {
240    ///     *first = 3;
241    ///     elements[0] = 4;
242    ///     elements[1] = 5;
243    /// }
244    /// assert_eq!(x, &[3, 4, 5]);
245    /// ```
246    #[stable(feature = "slice_splits", since = "1.5.0")]
247    #[rustc_const_stable(feature = "const_slice_first_last", since = "1.83.0")]
248    #[inline]
249    #[must_use]
250    pub const fn split_first_mut(&mut self) -> Option<(&mut T, &mut [T])> {
251        if let [first, tail @ ..] = self { Some((first, tail)) } else { None }
252    }
253
254    /// Returns the last and all the rest of the elements of the slice, or `None` if it is empty.
255    ///
256    /// # Examples
257    ///
258    /// ```
259    /// let x = &[0, 1, 2];
260    ///
261    /// if let Some((last, elements)) = x.split_last() {
262    ///     assert_eq!(last, &2);
263    ///     assert_eq!(elements, &[0, 1]);
264    /// }
265    /// ```
266    #[stable(feature = "slice_splits", since = "1.5.0")]
267    #[rustc_const_stable(feature = "const_slice_first_last_not_mut", since = "1.56.0")]
268    #[inline]
269    #[must_use]
270    pub const fn split_last(&self) -> Option<(&T, &[T])> {
271        if let [init @ .., last] = self { Some((last, init)) } else { None }
272    }
273
274    /// Returns the last and all the rest of the elements of the slice, or `None` if it is empty.
275    ///
276    /// # Examples
277    ///
278    /// ```
279    /// let x = &mut [0, 1, 2];
280    ///
281    /// if let Some((last, elements)) = x.split_last_mut() {
282    ///     *last = 3;
283    ///     elements[0] = 4;
284    ///     elements[1] = 5;
285    /// }
286    /// assert_eq!(x, &[4, 5, 3]);
287    /// ```
288    #[stable(feature = "slice_splits", since = "1.5.0")]
289    #[rustc_const_stable(feature = "const_slice_first_last", since = "1.83.0")]
290    #[inline]
291    #[must_use]
292    pub const fn split_last_mut(&mut self) -> Option<(&mut T, &mut [T])> {
293        if let [init @ .., last] = self { Some((last, init)) } else { None }
294    }
295
296    /// Returns the last element of the slice, or `None` if it is empty.
297    ///
298    /// # Examples
299    ///
300    /// ```
301    /// let v = [10, 40, 30];
302    /// assert_eq!(Some(&30), v.last());
303    ///
304    /// let w: &[i32] = &[];
305    /// assert_eq!(None, w.last());
306    /// ```
307    #[stable(feature = "rust1", since = "1.0.0")]
308    #[rustc_const_stable(feature = "const_slice_first_last_not_mut", since = "1.56.0")]
309    #[inline]
310    #[must_use]
311    pub const fn last(&self) -> Option<&T> {
312        if let [.., last] = self { Some(last) } else { None }
313    }
314
315    /// Returns a mutable reference to the last item in the slice, or `None` if it is empty.
316    ///
317    /// # Examples
318    ///
319    /// ```
320    /// let x = &mut [0, 1, 2];
321    ///
322    /// if let Some(last) = x.last_mut() {
323    ///     *last = 10;
324    /// }
325    /// assert_eq!(x, &[0, 1, 10]);
326    ///
327    /// let y: &mut [i32] = &mut [];
328    /// assert_eq!(None, y.last_mut());
329    /// ```
330    #[stable(feature = "rust1", since = "1.0.0")]
331    #[rustc_const_stable(feature = "const_slice_first_last", since = "1.83.0")]
332    #[inline]
333    #[must_use]
334    pub const fn last_mut(&mut self) -> Option<&mut T> {
335        if let [.., last] = self { Some(last) } else { None }
336    }
337
338    /// Returns an array reference to the first `N` items in the slice.
339    ///
340    /// If the slice is not at least `N` in length, this will return `None`.
341    ///
342    /// # Examples
343    ///
344    /// ```
345    /// let u = [10, 40, 30];
346    /// assert_eq!(Some(&[10, 40]), u.first_chunk::<2>());
347    ///
348    /// let v: &[i32] = &[10];
349    /// assert_eq!(None, v.first_chunk::<2>());
350    ///
351    /// let w: &[i32] = &[];
352    /// assert_eq!(Some(&[]), w.first_chunk::<0>());
353    /// ```
354    #[inline]
355    #[stable(feature = "slice_first_last_chunk", since = "1.77.0")]
356    #[rustc_const_stable(feature = "slice_first_last_chunk", since = "1.77.0")]
357    pub const fn first_chunk<const N: usize>(&self) -> Option<&[T; N]> {
358        if self.len() < N {
359            None
360        } else {
361            // SAFETY: We explicitly check for the correct number of elements,
362            //   and do not let the reference outlive the slice.
363            Some(unsafe { &*(self.as_ptr().cast_array()) })
364        }
365    }
366
367    /// Returns a mutable array reference to the first `N` items in the slice.
368    ///
369    /// If the slice is not at least `N` in length, this will return `None`.
370    ///
371    /// # Examples
372    ///
373    /// ```
374    /// let x = &mut [0, 1, 2];
375    ///
376    /// if let Some(first) = x.first_chunk_mut::<2>() {
377    ///     first[0] = 5;
378    ///     first[1] = 4;
379    /// }
380    /// assert_eq!(x, &[5, 4, 2]);
381    ///
382    /// assert_eq!(None, x.first_chunk_mut::<4>());
383    /// ```
384    #[inline]
385    #[stable(feature = "slice_first_last_chunk", since = "1.77.0")]
386    #[rustc_const_stable(feature = "const_slice_first_last_chunk", since = "1.83.0")]
387    pub const fn first_chunk_mut<const N: usize>(&mut self) -> Option<&mut [T; N]> {
388        if self.len() < N {
389            None
390        } else {
391            // SAFETY: We explicitly check for the correct number of elements,
392            //   do not let the reference outlive the slice,
393            //   and require exclusive access to the entire slice to mutate the chunk.
394            Some(unsafe { &mut *(self.as_mut_ptr().cast_array()) })
395        }
396    }
397
398    /// Returns an array reference to the first `N` items in the slice and the remaining slice.
399    ///
400    /// If the slice is not at least `N` in length, this will return `None`.
401    ///
402    /// # Examples
403    ///
404    /// ```
405    /// let x = &[0, 1, 2];
406    ///
407    /// if let Some((first, elements)) = x.split_first_chunk::<2>() {
408    ///     assert_eq!(first, &[0, 1]);
409    ///     assert_eq!(elements, &[2]);
410    /// }
411    ///
412    /// assert_eq!(None, x.split_first_chunk::<4>());
413    /// ```
414    #[inline]
415    #[stable(feature = "slice_first_last_chunk", since = "1.77.0")]
416    #[rustc_const_stable(feature = "slice_first_last_chunk", since = "1.77.0")]
417    #[cfg(not(feature = "ferrocene_certified"))]
418    pub const fn split_first_chunk<const N: usize>(&self) -> Option<(&[T; N], &[T])> {
419        let Some((first, tail)) = self.split_at_checked(N) else { return None };
420
421        // SAFETY: We explicitly check for the correct number of elements,
422        //   and do not let the references outlive the slice.
423        Some((unsafe { &*(first.as_ptr().cast_array()) }, tail))
424    }
425
426    /// Returns a mutable array reference to the first `N` items in the slice and the remaining
427    /// slice.
428    ///
429    /// If the slice is not at least `N` in length, this will return `None`.
430    ///
431    /// # Examples
432    ///
433    /// ```
434    /// let x = &mut [0, 1, 2];
435    ///
436    /// if let Some((first, elements)) = x.split_first_chunk_mut::<2>() {
437    ///     first[0] = 3;
438    ///     first[1] = 4;
439    ///     elements[0] = 5;
440    /// }
441    /// assert_eq!(x, &[3, 4, 5]);
442    ///
443    /// assert_eq!(None, x.split_first_chunk_mut::<4>());
444    /// ```
445    #[inline]
446    #[stable(feature = "slice_first_last_chunk", since = "1.77.0")]
447    #[rustc_const_stable(feature = "const_slice_first_last_chunk", since = "1.83.0")]
448    #[cfg(not(feature = "ferrocene_certified"))]
449    pub const fn split_first_chunk_mut<const N: usize>(
450        &mut self,
451    ) -> Option<(&mut [T; N], &mut [T])> {
452        let Some((first, tail)) = self.split_at_mut_checked(N) else { return None };
453
454        // SAFETY: We explicitly check for the correct number of elements,
455        //   do not let the reference outlive the slice,
456        //   and enforce exclusive mutability of the chunk by the split.
457        Some((unsafe { &mut *(first.as_mut_ptr().cast_array()) }, tail))
458    }
459
460    /// Returns an array reference to the last `N` items in the slice and the remaining slice.
461    ///
462    /// If the slice is not at least `N` in length, this will return `None`.
463    ///
464    /// # Examples
465    ///
466    /// ```
467    /// let x = &[0, 1, 2];
468    ///
469    /// if let Some((elements, last)) = x.split_last_chunk::<2>() {
470    ///     assert_eq!(elements, &[0]);
471    ///     assert_eq!(last, &[1, 2]);
472    /// }
473    ///
474    /// assert_eq!(None, x.split_last_chunk::<4>());
475    /// ```
476    #[inline]
477    #[stable(feature = "slice_first_last_chunk", since = "1.77.0")]
478    #[rustc_const_stable(feature = "slice_first_last_chunk", since = "1.77.0")]
479    #[cfg(not(feature = "ferrocene_certified"))]
480    pub const fn split_last_chunk<const N: usize>(&self) -> Option<(&[T], &[T; N])> {
481        let Some(index) = self.len().checked_sub(N) else { return None };
482        let (init, last) = self.split_at(index);
483
484        // SAFETY: We explicitly check for the correct number of elements,
485        //   and do not let the references outlive the slice.
486        Some((init, unsafe { &*(last.as_ptr().cast_array()) }))
487    }
488
489    /// Returns a mutable array reference to the last `N` items in the slice and the remaining
490    /// slice.
491    ///
492    /// If the slice is not at least `N` in length, this will return `None`.
493    ///
494    /// # Examples
495    ///
496    /// ```
497    /// let x = &mut [0, 1, 2];
498    ///
499    /// if let Some((elements, last)) = x.split_last_chunk_mut::<2>() {
500    ///     last[0] = 3;
501    ///     last[1] = 4;
502    ///     elements[0] = 5;
503    /// }
504    /// assert_eq!(x, &[5, 3, 4]);
505    ///
506    /// assert_eq!(None, x.split_last_chunk_mut::<4>());
507    /// ```
508    #[inline]
509    #[stable(feature = "slice_first_last_chunk", since = "1.77.0")]
510    #[rustc_const_stable(feature = "const_slice_first_last_chunk", since = "1.83.0")]
511    #[cfg(not(feature = "ferrocene_certified"))]
512    pub const fn split_last_chunk_mut<const N: usize>(
513        &mut self,
514    ) -> Option<(&mut [T], &mut [T; N])> {
515        let Some(index) = self.len().checked_sub(N) else { return None };
516        let (init, last) = self.split_at_mut(index);
517
518        // SAFETY: We explicitly check for the correct number of elements,
519        //   do not let the reference outlive the slice,
520        //   and enforce exclusive mutability of the chunk by the split.
521        Some((init, unsafe { &mut *(last.as_mut_ptr().cast_array()) }))
522    }
523
524    /// Returns an array reference to the last `N` items in the slice.
525    ///
526    /// If the slice is not at least `N` in length, this will return `None`.
527    ///
528    /// # Examples
529    ///
530    /// ```
531    /// let u = [10, 40, 30];
532    /// assert_eq!(Some(&[40, 30]), u.last_chunk::<2>());
533    ///
534    /// let v: &[i32] = &[10];
535    /// assert_eq!(None, v.last_chunk::<2>());
536    ///
537    /// let w: &[i32] = &[];
538    /// assert_eq!(Some(&[]), w.last_chunk::<0>());
539    /// ```
540    #[inline]
541    #[stable(feature = "slice_first_last_chunk", since = "1.77.0")]
542    #[rustc_const_stable(feature = "const_slice_last_chunk", since = "1.80.0")]
543    #[cfg(not(feature = "ferrocene_certified"))]
544    pub const fn last_chunk<const N: usize>(&self) -> Option<&[T; N]> {
545        // FIXME(const-hack): Without const traits, we need this instead of `get`.
546        let Some(index) = self.len().checked_sub(N) else { return None };
547        let (_, last) = self.split_at(index);
548
549        // SAFETY: We explicitly check for the correct number of elements,
550        //   and do not let the references outlive the slice.
551        Some(unsafe { &*(last.as_ptr().cast_array()) })
552    }
553
554    /// Returns a mutable array reference to the last `N` items in the slice.
555    ///
556    /// If the slice is not at least `N` in length, this will return `None`.
557    ///
558    /// # Examples
559    ///
560    /// ```
561    /// let x = &mut [0, 1, 2];
562    ///
563    /// if let Some(last) = x.last_chunk_mut::<2>() {
564    ///     last[0] = 10;
565    ///     last[1] = 20;
566    /// }
567    /// assert_eq!(x, &[0, 10, 20]);
568    ///
569    /// assert_eq!(None, x.last_chunk_mut::<4>());
570    /// ```
571    #[inline]
572    #[stable(feature = "slice_first_last_chunk", since = "1.77.0")]
573    #[rustc_const_stable(feature = "const_slice_first_last_chunk", since = "1.83.0")]
574    #[cfg(not(feature = "ferrocene_certified"))]
575    pub const fn last_chunk_mut<const N: usize>(&mut self) -> Option<&mut [T; N]> {
576        // FIXME(const-hack): Without const traits, we need this instead of `get`.
577        let Some(index) = self.len().checked_sub(N) else { return None };
578        let (_, last) = self.split_at_mut(index);
579
580        // SAFETY: We explicitly check for the correct number of elements,
581        //   do not let the reference outlive the slice,
582        //   and require exclusive access to the entire slice to mutate the chunk.
583        Some(unsafe { &mut *(last.as_mut_ptr().cast_array()) })
584    }
585
586    /// Returns a reference to an element or subslice depending on the type of
587    /// index.
588    ///
589    /// - If given a position, returns a reference to the element at that
590    ///   position or `None` if out of bounds.
591    /// - If given a range, returns the subslice corresponding to that range,
592    ///   or `None` if out of bounds.
593    ///
594    /// # Examples
595    ///
596    /// ```
597    /// let v = [10, 40, 30];
598    /// assert_eq!(Some(&40), v.get(1));
599    /// assert_eq!(Some(&[10, 40][..]), v.get(0..2));
600    /// assert_eq!(None, v.get(3));
601    /// assert_eq!(None, v.get(0..4));
602    /// ```
603    #[stable(feature = "rust1", since = "1.0.0")]
604    #[rustc_no_implicit_autorefs]
605    #[inline]
606    #[must_use]
607    #[rustc_const_unstable(feature = "const_index", issue = "143775")]
608    pub const fn get<I>(&self, index: I) -> Option<&I::Output>
609    where
610        I: [const] SliceIndex<Self>,
611    {
612        index.get(self)
613    }
614
615    /// Returns a mutable reference to an element or subslice depending on the
616    /// type of index (see [`get`]) or `None` if the index is out of bounds.
617    ///
618    /// [`get`]: slice::get
619    ///
620    /// # Examples
621    ///
622    /// ```
623    /// let x = &mut [0, 1, 2];
624    ///
625    /// if let Some(elem) = x.get_mut(1) {
626    ///     *elem = 42;
627    /// }
628    /// assert_eq!(x, &[0, 42, 2]);
629    /// ```
630    #[stable(feature = "rust1", since = "1.0.0")]
631    #[rustc_no_implicit_autorefs]
632    #[inline]
633    #[must_use]
634    #[rustc_const_unstable(feature = "const_index", issue = "143775")]
635    pub const fn get_mut<I>(&mut self, index: I) -> Option<&mut I::Output>
636    where
637        I: [const] SliceIndex<Self>,
638    {
639        index.get_mut(self)
640    }
641
642    /// Returns a reference to an element or subslice, without doing bounds
643    /// checking.
644    ///
645    /// For a safe alternative see [`get`].
646    ///
647    /// # Safety
648    ///
649    /// Calling this method with an out-of-bounds index is *[undefined behavior]*
650    /// even if the resulting reference is not used.
651    ///
652    /// You can think of this like `.get(index).unwrap_unchecked()`.  It's UB
653    /// to call `.get_unchecked(len)`, even if you immediately convert to a
654    /// pointer.  And it's UB to call `.get_unchecked(..len + 1)`,
655    /// `.get_unchecked(..=len)`, or similar.
656    ///
657    /// [`get`]: slice::get
658    /// [undefined behavior]: https://doc.rust-lang.org/reference/behavior-considered-undefined.html
659    ///
660    /// # Examples
661    ///
662    /// ```
663    /// let x = &[1, 2, 4];
664    ///
665    /// unsafe {
666    ///     assert_eq!(x.get_unchecked(1), &2);
667    /// }
668    /// ```
669    #[stable(feature = "rust1", since = "1.0.0")]
670    #[rustc_no_implicit_autorefs]
671    #[inline]
672    #[must_use]
673    #[track_caller]
674    #[rustc_const_unstable(feature = "const_index", issue = "143775")]
675    pub const unsafe fn get_unchecked<I>(&self, index: I) -> &I::Output
676    where
677        I: [const] SliceIndex<Self>,
678    {
679        // SAFETY: the caller must uphold most of the safety requirements for `get_unchecked`;
680        // the slice is dereferenceable because `self` is a safe reference.
681        // The returned pointer is safe because impls of `SliceIndex` have to guarantee that it is.
682        unsafe { &*index.get_unchecked(self) }
683    }
684
685    /// Returns a mutable reference to an element or subslice, without doing
686    /// bounds checking.
687    ///
688    /// For a safe alternative see [`get_mut`].
689    ///
690    /// # Safety
691    ///
692    /// Calling this method with an out-of-bounds index is *[undefined behavior]*
693    /// even if the resulting reference is not used.
694    ///
695    /// You can think of this like `.get_mut(index).unwrap_unchecked()`.  It's
696    /// UB to call `.get_unchecked_mut(len)`, even if you immediately convert
697    /// to a pointer.  And it's UB to call `.get_unchecked_mut(..len + 1)`,
698    /// `.get_unchecked_mut(..=len)`, or similar.
699    ///
700    /// [`get_mut`]: slice::get_mut
701    /// [undefined behavior]: https://doc.rust-lang.org/reference/behavior-considered-undefined.html
702    ///
703    /// # Examples
704    ///
705    /// ```
706    /// let x = &mut [1, 2, 4];
707    ///
708    /// unsafe {
709    ///     let elem = x.get_unchecked_mut(1);
710    ///     *elem = 13;
711    /// }
712    /// assert_eq!(x, &[1, 13, 4]);
713    /// ```
714    #[stable(feature = "rust1", since = "1.0.0")]
715    #[rustc_no_implicit_autorefs]
716    #[inline]
717    #[must_use]
718    #[track_caller]
719    #[rustc_const_unstable(feature = "const_index", issue = "143775")]
720    pub const unsafe fn get_unchecked_mut<I>(&mut self, index: I) -> &mut I::Output
721    where
722        I: [const] SliceIndex<Self>,
723    {
724        // SAFETY: the caller must uphold the safety requirements for `get_unchecked_mut`;
725        // the slice is dereferenceable because `self` is a safe reference.
726        // The returned pointer is safe because impls of `SliceIndex` have to guarantee that it is.
727        unsafe { &mut *index.get_unchecked_mut(self) }
728    }
729
730    /// Returns a raw pointer to the slice's buffer.
731    ///
732    /// The caller must ensure that the slice outlives the pointer this
733    /// function returns, or else it will end up dangling.
734    ///
735    /// The caller must also ensure that the memory the pointer (non-transitively) points to
736    /// is never written to (except inside an `UnsafeCell`) using this pointer or any pointer
737    /// derived from it. If you need to mutate the contents of the slice, use [`as_mut_ptr`].
738    ///
739    /// Modifying the container referenced by this slice may cause its buffer
740    /// to be reallocated, which would also make any pointers to it invalid.
741    ///
742    /// # Examples
743    ///
744    /// ```
745    /// let x = &[1, 2, 4];
746    /// let x_ptr = x.as_ptr();
747    ///
748    /// unsafe {
749    ///     for i in 0..x.len() {
750    ///         assert_eq!(x.get_unchecked(i), &*x_ptr.add(i));
751    ///     }
752    /// }
753    /// ```
754    ///
755    /// [`as_mut_ptr`]: slice::as_mut_ptr
756    #[stable(feature = "rust1", since = "1.0.0")]
757    #[rustc_const_stable(feature = "const_slice_as_ptr", since = "1.32.0")]
758    #[rustc_never_returns_null_ptr]
759    #[rustc_as_ptr]
760    #[inline(always)]
761    #[must_use]
762    pub const fn as_ptr(&self) -> *const T {
763        self as *const [T] as *const T
764    }
765
766    /// Returns an unsafe mutable pointer to the slice's buffer.
767    ///
768    /// The caller must ensure that the slice outlives the pointer this
769    /// function returns, or else it will end up dangling.
770    ///
771    /// Modifying the container referenced by this slice may cause its buffer
772    /// to be reallocated, which would also make any pointers to it invalid.
773    ///
774    /// # Examples
775    ///
776    /// ```
777    /// let x = &mut [1, 2, 4];
778    /// let x_ptr = x.as_mut_ptr();
779    ///
780    /// unsafe {
781    ///     for i in 0..x.len() {
782    ///         *x_ptr.add(i) += 2;
783    ///     }
784    /// }
785    /// assert_eq!(x, &[3, 4, 6]);
786    /// ```
787    #[stable(feature = "rust1", since = "1.0.0")]
788    #[rustc_const_stable(feature = "const_ptr_offset", since = "1.61.0")]
789    #[rustc_never_returns_null_ptr]
790    #[rustc_as_ptr]
791    #[inline(always)]
792    #[must_use]
793    pub const fn as_mut_ptr(&mut self) -> *mut T {
794        self as *mut [T] as *mut T
795    }
796
797    /// Returns the two raw pointers spanning the slice.
798    ///
799    /// The returned range is half-open, which means that the end pointer
800    /// points *one past* the last element of the slice. This way, an empty
801    /// slice is represented by two equal pointers, and the difference between
802    /// the two pointers represents the size of the slice.
803    ///
804    /// See [`as_ptr`] for warnings on using these pointers. The end pointer
805    /// requires extra caution, as it does not point to a valid element in the
806    /// slice.
807    ///
808    /// This function is useful for interacting with foreign interfaces which
809    /// use two pointers to refer to a range of elements in memory, as is
810    /// common in C++.
811    ///
812    /// It can also be useful to check if a pointer to an element refers to an
813    /// element of this slice:
814    ///
815    /// ```
816    /// let a = [1, 2, 3];
817    /// let x = &a[1] as *const _;
818    /// let y = &5 as *const _;
819    ///
820    /// assert!(a.as_ptr_range().contains(&x));
821    /// assert!(!a.as_ptr_range().contains(&y));
822    /// ```
823    ///
824    /// [`as_ptr`]: slice::as_ptr
825    #[stable(feature = "slice_ptr_range", since = "1.48.0")]
826    #[rustc_const_stable(feature = "const_ptr_offset", since = "1.61.0")]
827    #[inline]
828    #[must_use]
829    #[cfg(not(feature = "ferrocene_certified"))]
830    pub const fn as_ptr_range(&self) -> Range<*const T> {
831        let start = self.as_ptr();
832        // SAFETY: The `add` here is safe, because:
833        //
834        //   - Both pointers are part of the same object, as pointing directly
835        //     past the object also counts.
836        //
837        //   - The size of the slice is never larger than `isize::MAX` bytes, as
838        //     noted here:
839        //       - https://github.com/rust-lang/unsafe-code-guidelines/issues/102#issuecomment-473340447
840        //       - https://doc.rust-lang.org/reference/behavior-considered-undefined.html
841        //       - https://doc.rust-lang.org/core/slice/fn.from_raw_parts.html#safety
842        //     (This doesn't seem normative yet, but the very same assumption is
843        //     made in many places, including the Index implementation of slices.)
844        //
845        //   - There is no wrapping around involved, as slices do not wrap past
846        //     the end of the address space.
847        //
848        // See the documentation of [`pointer::add`].
849        let end = unsafe { start.add(self.len()) };
850        start..end
851    }
852
853    /// Returns the two unsafe mutable pointers spanning the slice.
854    ///
855    /// The returned range is half-open, which means that the end pointer
856    /// points *one past* the last element of the slice. This way, an empty
857    /// slice is represented by two equal pointers, and the difference between
858    /// the two pointers represents the size of the slice.
859    ///
860    /// See [`as_mut_ptr`] for warnings on using these pointers. The end
861    /// pointer requires extra caution, as it does not point to a valid element
862    /// in the slice.
863    ///
864    /// This function is useful for interacting with foreign interfaces which
865    /// use two pointers to refer to a range of elements in memory, as is
866    /// common in C++.
867    ///
868    /// [`as_mut_ptr`]: slice::as_mut_ptr
869    #[stable(feature = "slice_ptr_range", since = "1.48.0")]
870    #[rustc_const_stable(feature = "const_ptr_offset", since = "1.61.0")]
871    #[inline]
872    #[must_use]
873    #[cfg(not(feature = "ferrocene_certified"))]
874    pub const fn as_mut_ptr_range(&mut self) -> Range<*mut T> {
875        let start = self.as_mut_ptr();
876        // SAFETY: See as_ptr_range() above for why `add` here is safe.
877        let end = unsafe { start.add(self.len()) };
878        start..end
879    }
880
881    /// Gets a reference to the underlying array.
882    ///
883    /// If `N` is not exactly equal to the length of `self`, then this method returns `None`.
884    #[unstable(feature = "slice_as_array", issue = "133508")]
885    #[inline]
886    #[must_use]
887    pub const fn as_array<const N: usize>(&self) -> Option<&[T; N]> {
888        if self.len() == N {
889            let ptr = self.as_ptr().cast_array();
890
891            // SAFETY: The underlying array of a slice can be reinterpreted as an actual array `[T; N]` if `N` is not greater than the slice's length.
892            let me = unsafe { &*ptr };
893            Some(me)
894        } else {
895            None
896        }
897    }
898
899    /// Gets a mutable reference to the slice's underlying array.
900    ///
901    /// If `N` is not exactly equal to the length of `self`, then this method returns `None`.
902    #[unstable(feature = "slice_as_array", issue = "133508")]
903    #[inline]
904    #[must_use]
905    pub const fn as_mut_array<const N: usize>(&mut self) -> Option<&mut [T; N]> {
906        if self.len() == N {
907            let ptr = self.as_mut_ptr().cast_array();
908
909            // SAFETY: The underlying array of a slice can be reinterpreted as an actual array `[T; N]` if `N` is not greater than the slice's length.
910            let me = unsafe { &mut *ptr };
911            Some(me)
912        } else {
913            None
914        }
915    }
916
917    /// Swaps two elements in the slice.
918    ///
919    /// If `a` equals to `b`, it's guaranteed that elements won't change value.
920    ///
921    /// # Arguments
922    ///
923    /// * a - The index of the first element
924    /// * b - The index of the second element
925    ///
926    /// # Panics
927    ///
928    /// Panics if `a` or `b` are out of bounds.
929    ///
930    /// # Examples
931    ///
932    /// ```
933    /// let mut v = ["a", "b", "c", "d", "e"];
934    /// v.swap(2, 4);
935    /// assert!(v == ["a", "b", "e", "d", "c"]);
936    /// ```
937    #[stable(feature = "rust1", since = "1.0.0")]
938    #[rustc_const_stable(feature = "const_swap", since = "1.85.0")]
939    #[inline]
940    #[track_caller]
941    #[cfg(not(feature = "ferrocene_certified"))]
942    pub const fn swap(&mut self, a: usize, b: usize) {
943        // FIXME: use swap_unchecked here (https://github.com/rust-lang/rust/pull/88540#issuecomment-944344343)
944        // Can't take two mutable loans from one vector, so instead use raw pointers.
945        let pa = &raw mut self[a];
946        let pb = &raw mut self[b];
947        // SAFETY: `pa` and `pb` have been created from safe mutable references and refer
948        // to elements in the slice and therefore are guaranteed to be valid and aligned.
949        // Note that accessing the elements behind `a` and `b` is checked and will
950        // panic when out of bounds.
951        unsafe {
952            ptr::swap(pa, pb);
953        }
954    }
955
956    /// Swaps two elements in the slice, without doing bounds checking.
957    ///
958    /// For a safe alternative see [`swap`].
959    ///
960    /// # Arguments
961    ///
962    /// * a - The index of the first element
963    /// * b - The index of the second element
964    ///
965    /// # Safety
966    ///
967    /// Calling this method with an out-of-bounds index is *[undefined behavior]*.
968    /// The caller has to ensure that `a < self.len()` and `b < self.len()`.
969    ///
970    /// # Examples
971    ///
972    /// ```
973    /// #![feature(slice_swap_unchecked)]
974    ///
975    /// let mut v = ["a", "b", "c", "d"];
976    /// // SAFETY: we know that 1 and 3 are both indices of the slice
977    /// unsafe { v.swap_unchecked(1, 3) };
978    /// assert!(v == ["a", "d", "c", "b"]);
979    /// ```
980    ///
981    /// [`swap`]: slice::swap
982    /// [undefined behavior]: https://doc.rust-lang.org/reference/behavior-considered-undefined.html
983    #[unstable(feature = "slice_swap_unchecked", issue = "88539")]
984    #[track_caller]
985    #[cfg(not(feature = "ferrocene_certified"))]
986    pub const unsafe fn swap_unchecked(&mut self, a: usize, b: usize) {
987        assert_unsafe_precondition!(
988            check_library_ub,
989            "slice::swap_unchecked requires that the indices are within the slice",
990            (
991                len: usize = self.len(),
992                a: usize = a,
993                b: usize = b,
994            ) => a < len && b < len,
995        );
996
997        let ptr = self.as_mut_ptr();
998        // SAFETY: caller has to guarantee that `a < self.len()` and `b < self.len()`
999        unsafe {
1000            ptr::swap(ptr.add(a), ptr.add(b));
1001        }
1002    }
1003
1004    /// Reverses the order of elements in the slice, in place.
1005    ///
1006    /// # Examples
1007    ///
1008    /// ```
1009    /// let mut v = [1, 2, 3];
1010    /// v.reverse();
1011    /// assert!(v == [3, 2, 1]);
1012    /// ```
1013    #[stable(feature = "rust1", since = "1.0.0")]
1014    #[rustc_const_stable(feature = "const_slice_reverse", since = "1.90.0")]
1015    #[inline]
1016    #[cfg(not(feature = "ferrocene_certified"))]
1017    pub const fn reverse(&mut self) {
1018        let half_len = self.len() / 2;
1019        let Range { start, end } = self.as_mut_ptr_range();
1020
1021        // These slices will skip the middle item for an odd length,
1022        // since that one doesn't need to move.
1023        let (front_half, back_half) =
1024            // SAFETY: Both are subparts of the original slice, so the memory
1025            // range is valid, and they don't overlap because they're each only
1026            // half (or less) of the original slice.
1027            unsafe {
1028                (
1029                    slice::from_raw_parts_mut(start, half_len),
1030                    slice::from_raw_parts_mut(end.sub(half_len), half_len),
1031                )
1032            };
1033
1034        // Introducing a function boundary here means that the two halves
1035        // get `noalias` markers, allowing better optimization as LLVM
1036        // knows that they're disjoint, unlike in the original slice.
1037        revswap(front_half, back_half, half_len);
1038
1039        #[inline]
1040        const fn revswap<T>(a: &mut [T], b: &mut [T], n: usize) {
1041            debug_assert!(a.len() == n);
1042            debug_assert!(b.len() == n);
1043
1044            // Because this function is first compiled in isolation,
1045            // this check tells LLVM that the indexing below is
1046            // in-bounds. Then after inlining -- once the actual
1047            // lengths of the slices are known -- it's removed.
1048            // FIXME(const_trait_impl) replace with let (a, b) = (&mut a[..n], &mut b[..n]);
1049            let (a, _) = a.split_at_mut(n);
1050            let (b, _) = b.split_at_mut(n);
1051
1052            let mut i = 0;
1053            while i < n {
1054                mem::swap(&mut a[i], &mut b[n - 1 - i]);
1055                i += 1;
1056            }
1057        }
1058    }
1059
1060    /// Returns an iterator over the slice.
1061    ///
1062    /// The iterator yields all items from start to end.
1063    ///
1064    /// # Examples
1065    ///
1066    /// ```
1067    /// let x = &[1, 2, 4];
1068    /// let mut iterator = x.iter();
1069    ///
1070    /// assert_eq!(iterator.next(), Some(&1));
1071    /// assert_eq!(iterator.next(), Some(&2));
1072    /// assert_eq!(iterator.next(), Some(&4));
1073    /// assert_eq!(iterator.next(), None);
1074    /// ```
1075    #[stable(feature = "rust1", since = "1.0.0")]
1076    #[rustc_const_unstable(feature = "const_slice_make_iter", issue = "137737")]
1077    #[inline]
1078    #[rustc_diagnostic_item = "slice_iter"]
1079    pub const fn iter(&self) -> Iter<'_, T> {
1080        Iter::new(self)
1081    }
1082
1083    /// Returns an iterator that allows modifying each value.
1084    ///
1085    /// The iterator yields all items from start to end.
1086    ///
1087    /// # Examples
1088    ///
1089    /// ```
1090    /// let x = &mut [1, 2, 4];
1091    /// for elem in x.iter_mut() {
1092    ///     *elem += 2;
1093    /// }
1094    /// assert_eq!(x, &[3, 4, 6]);
1095    /// ```
1096    #[rustc_const_unstable(feature = "const_slice_make_iter", issue = "137737")]
1097    #[stable(feature = "rust1", since = "1.0.0")]
1098    #[inline]
1099    pub const fn iter_mut(&mut self) -> IterMut<'_, T> {
1100        IterMut::new(self)
1101    }
1102
1103    /// Returns an iterator over all contiguous windows of length
1104    /// `size`. The windows overlap. If the slice is shorter than
1105    /// `size`, the iterator returns no values.
1106    ///
1107    /// # Panics
1108    ///
1109    /// Panics if `size` is zero.
1110    ///
1111    /// # Examples
1112    ///
1113    /// ```
1114    /// let slice = ['l', 'o', 'r', 'e', 'm'];
1115    /// let mut iter = slice.windows(3);
1116    /// assert_eq!(iter.next().unwrap(), &['l', 'o', 'r']);
1117    /// assert_eq!(iter.next().unwrap(), &['o', 'r', 'e']);
1118    /// assert_eq!(iter.next().unwrap(), &['r', 'e', 'm']);
1119    /// assert!(iter.next().is_none());
1120    /// ```
1121    ///
1122    /// If the slice is shorter than `size`:
1123    ///
1124    /// ```
1125    /// let slice = ['f', 'o', 'o'];
1126    /// let mut iter = slice.windows(4);
1127    /// assert!(iter.next().is_none());
1128    /// ```
1129    ///
1130    /// Because the [Iterator] trait cannot represent the required lifetimes,
1131    /// there is no `windows_mut` analog to `windows`;
1132    /// `[0,1,2].windows_mut(2).collect()` would violate [the rules of references]
1133    /// (though a [LendingIterator] analog is possible). You can sometimes use
1134    /// [`Cell::as_slice_of_cells`](crate::cell::Cell::as_slice_of_cells) in
1135    /// conjunction with `windows` instead:
1136    ///
1137    /// [the rules of references]: https://doc.rust-lang.org/book/ch04-02-references-and-borrowing.html#the-rules-of-references
1138    /// [LendingIterator]: https://blog.rust-lang.org/2022/10/28/gats-stabilization.html
1139    /// ```
1140    /// use std::cell::Cell;
1141    ///
1142    /// let mut array = ['R', 'u', 's', 't', ' ', '2', '0', '1', '5'];
1143    /// let slice = &mut array[..];
1144    /// let slice_of_cells: &[Cell<char>] = Cell::from_mut(slice).as_slice_of_cells();
1145    /// for w in slice_of_cells.windows(3) {
1146    ///     Cell::swap(&w[0], &w[2]);
1147    /// }
1148    /// assert_eq!(array, ['s', 't', ' ', '2', '0', '1', '5', 'u', 'R']);
1149    /// ```
1150    #[stable(feature = "rust1", since = "1.0.0")]
1151    #[rustc_const_unstable(feature = "const_slice_make_iter", issue = "137737")]
1152    #[inline]
1153    #[track_caller]
1154    #[cfg(not(feature = "ferrocene_certified"))]
1155    pub const fn windows(&self, size: usize) -> Windows<'_, T> {
1156        let size = NonZero::new(size).expect("window size must be non-zero");
1157        Windows::new(self, size)
1158    }
1159
1160    /// Returns an iterator over `chunk_size` elements of the slice at a time, starting at the
1161    /// beginning of the slice.
1162    ///
1163    /// The chunks are slices and do not overlap. If `chunk_size` does not divide the length of the
1164    /// slice, then the last chunk will not have length `chunk_size`.
1165    ///
1166    /// See [`chunks_exact`] for a variant of this iterator that returns chunks of always exactly
1167    /// `chunk_size` elements, and [`rchunks`] for the same iterator but starting at the end of the
1168    /// slice.
1169    ///
1170    /// If your `chunk_size` is a constant, consider using [`as_chunks`] instead, which will
1171    /// give references to arrays of exactly that length, rather than slices.
1172    ///
1173    /// # Panics
1174    ///
1175    /// Panics if `chunk_size` is zero.
1176    ///
1177    /// # Examples
1178    ///
1179    /// ```
1180    /// let slice = ['l', 'o', 'r', 'e', 'm'];
1181    /// let mut iter = slice.chunks(2);
1182    /// assert_eq!(iter.next().unwrap(), &['l', 'o']);
1183    /// assert_eq!(iter.next().unwrap(), &['r', 'e']);
1184    /// assert_eq!(iter.next().unwrap(), &['m']);
1185    /// assert!(iter.next().is_none());
1186    /// ```
1187    ///
1188    /// [`chunks_exact`]: slice::chunks_exact
1189    /// [`rchunks`]: slice::rchunks
1190    /// [`as_chunks`]: slice::as_chunks
1191    #[stable(feature = "rust1", since = "1.0.0")]
1192    #[rustc_const_unstable(feature = "const_slice_make_iter", issue = "137737")]
1193    #[inline]
1194    #[track_caller]
1195    #[cfg(not(feature = "ferrocene_certified"))]
1196    pub const fn chunks(&self, chunk_size: usize) -> Chunks<'_, T> {
1197        assert!(chunk_size != 0, "chunk size must be non-zero");
1198        Chunks::new(self, chunk_size)
1199    }
1200
1201    /// Returns an iterator over `chunk_size` elements of the slice at a time, starting at the
1202    /// beginning of the slice.
1203    ///
1204    /// The chunks are mutable slices, and do not overlap. If `chunk_size` does not divide the
1205    /// length of the slice, then the last chunk will not have length `chunk_size`.
1206    ///
1207    /// See [`chunks_exact_mut`] for a variant of this iterator that returns chunks of always
1208    /// exactly `chunk_size` elements, and [`rchunks_mut`] for the same iterator but starting at
1209    /// the end of the slice.
1210    ///
1211    /// If your `chunk_size` is a constant, consider using [`as_chunks_mut`] instead, which will
1212    /// give references to arrays of exactly that length, rather than slices.
1213    ///
1214    /// # Panics
1215    ///
1216    /// Panics if `chunk_size` is zero.
1217    ///
1218    /// # Examples
1219    ///
1220    /// ```
1221    /// let v = &mut [0, 0, 0, 0, 0];
1222    /// let mut count = 1;
1223    ///
1224    /// for chunk in v.chunks_mut(2) {
1225    ///     for elem in chunk.iter_mut() {
1226    ///         *elem += count;
1227    ///     }
1228    ///     count += 1;
1229    /// }
1230    /// assert_eq!(v, &[1, 1, 2, 2, 3]);
1231    /// ```
1232    ///
1233    /// [`chunks_exact_mut`]: slice::chunks_exact_mut
1234    /// [`rchunks_mut`]: slice::rchunks_mut
1235    /// [`as_chunks_mut`]: slice::as_chunks_mut
1236    #[stable(feature = "rust1", since = "1.0.0")]
1237    #[rustc_const_unstable(feature = "const_slice_make_iter", issue = "137737")]
1238    #[inline]
1239    #[track_caller]
1240    #[cfg(not(feature = "ferrocene_certified"))]
1241    pub const fn chunks_mut(&mut self, chunk_size: usize) -> ChunksMut<'_, T> {
1242        assert!(chunk_size != 0, "chunk size must be non-zero");
1243        ChunksMut::new(self, chunk_size)
1244    }
1245
1246    /// Returns an iterator over `chunk_size` elements of the slice at a time, starting at the
1247    /// beginning of the slice.
1248    ///
1249    /// The chunks are slices and do not overlap. If `chunk_size` does not divide the length of the
1250    /// slice, then the last up to `chunk_size-1` elements will be omitted and can be retrieved
1251    /// from the `remainder` function of the iterator.
1252    ///
1253    /// Due to each chunk having exactly `chunk_size` elements, the compiler can often optimize the
1254    /// resulting code better than in the case of [`chunks`].
1255    ///
1256    /// See [`chunks`] for a variant of this iterator that also returns the remainder as a smaller
1257    /// chunk, and [`rchunks_exact`] for the same iterator but starting at the end of the slice.
1258    ///
1259    /// If your `chunk_size` is a constant, consider using [`as_chunks`] instead, which will
1260    /// give references to arrays of exactly that length, rather than slices.
1261    ///
1262    /// # Panics
1263    ///
1264    /// Panics if `chunk_size` is zero.
1265    ///
1266    /// # Examples
1267    ///
1268    /// ```
1269    /// let slice = ['l', 'o', 'r', 'e', 'm'];
1270    /// let mut iter = slice.chunks_exact(2);
1271    /// assert_eq!(iter.next().unwrap(), &['l', 'o']);
1272    /// assert_eq!(iter.next().unwrap(), &['r', 'e']);
1273    /// assert!(iter.next().is_none());
1274    /// assert_eq!(iter.remainder(), &['m']);
1275    /// ```
1276    ///
1277    /// [`chunks`]: slice::chunks
1278    /// [`rchunks_exact`]: slice::rchunks_exact
1279    /// [`as_chunks`]: slice::as_chunks
1280    #[stable(feature = "chunks_exact", since = "1.31.0")]
1281    #[rustc_const_unstable(feature = "const_slice_make_iter", issue = "137737")]
1282    #[inline]
1283    #[track_caller]
1284    #[cfg(not(feature = "ferrocene_certified"))]
1285    pub const fn chunks_exact(&self, chunk_size: usize) -> ChunksExact<'_, T> {
1286        assert!(chunk_size != 0, "chunk size must be non-zero");
1287        ChunksExact::new(self, chunk_size)
1288    }
1289
1290    /// Returns an iterator over `chunk_size` elements of the slice at a time, starting at the
1291    /// beginning of the slice.
1292    ///
1293    /// The chunks are mutable slices, and do not overlap. If `chunk_size` does not divide the
1294    /// length of the slice, then the last up to `chunk_size-1` elements will be omitted and can be
1295    /// retrieved from the `into_remainder` function of the iterator.
1296    ///
1297    /// Due to each chunk having exactly `chunk_size` elements, the compiler can often optimize the
1298    /// resulting code better than in the case of [`chunks_mut`].
1299    ///
1300    /// See [`chunks_mut`] for a variant of this iterator that also returns the remainder as a
1301    /// smaller chunk, and [`rchunks_exact_mut`] for the same iterator but starting at the end of
1302    /// the slice.
1303    ///
1304    /// If your `chunk_size` is a constant, consider using [`as_chunks_mut`] instead, which will
1305    /// give references to arrays of exactly that length, rather than slices.
1306    ///
1307    /// # Panics
1308    ///
1309    /// Panics if `chunk_size` is zero.
1310    ///
1311    /// # Examples
1312    ///
1313    /// ```
1314    /// let v = &mut [0, 0, 0, 0, 0];
1315    /// let mut count = 1;
1316    ///
1317    /// for chunk in v.chunks_exact_mut(2) {
1318    ///     for elem in chunk.iter_mut() {
1319    ///         *elem += count;
1320    ///     }
1321    ///     count += 1;
1322    /// }
1323    /// assert_eq!(v, &[1, 1, 2, 2, 0]);
1324    /// ```
1325    ///
1326    /// [`chunks_mut`]: slice::chunks_mut
1327    /// [`rchunks_exact_mut`]: slice::rchunks_exact_mut
1328    /// [`as_chunks_mut`]: slice::as_chunks_mut
1329    #[stable(feature = "chunks_exact", since = "1.31.0")]
1330    #[rustc_const_unstable(feature = "const_slice_make_iter", issue = "137737")]
1331    #[inline]
1332    #[track_caller]
1333    #[cfg(not(feature = "ferrocene_certified"))]
1334    pub const fn chunks_exact_mut(&mut self, chunk_size: usize) -> ChunksExactMut<'_, T> {
1335        assert!(chunk_size != 0, "chunk size must be non-zero");
1336        ChunksExactMut::new(self, chunk_size)
1337    }
1338
1339    /// Splits the slice into a slice of `N`-element arrays,
1340    /// assuming that there's no remainder.
1341    ///
1342    /// This is the inverse operation to [`as_flattened`].
1343    ///
1344    /// [`as_flattened`]: slice::as_flattened
1345    ///
1346    /// As this is `unsafe`, consider whether you could use [`as_chunks`] or
1347    /// [`as_rchunks`] instead, perhaps via something like
1348    /// `if let (chunks, []) = slice.as_chunks()` or
1349    /// `let (chunks, []) = slice.as_chunks() else { unreachable!() };`.
1350    ///
1351    /// [`as_chunks`]: slice::as_chunks
1352    /// [`as_rchunks`]: slice::as_rchunks
1353    ///
1354    /// # Safety
1355    ///
1356    /// This may only be called when
1357    /// - The slice splits exactly into `N`-element chunks (aka `self.len() % N == 0`).
1358    /// - `N != 0`.
1359    ///
1360    /// # Examples
1361    ///
1362    /// ```
1363    /// let slice: &[char] = &['l', 'o', 'r', 'e', 'm', '!'];
1364    /// let chunks: &[[char; 1]] =
1365    ///     // SAFETY: 1-element chunks never have remainder
1366    ///     unsafe { slice.as_chunks_unchecked() };
1367    /// assert_eq!(chunks, &[['l'], ['o'], ['r'], ['e'], ['m'], ['!']]);
1368    /// let chunks: &[[char; 3]] =
1369    ///     // SAFETY: The slice length (6) is a multiple of 3
1370    ///     unsafe { slice.as_chunks_unchecked() };
1371    /// assert_eq!(chunks, &[['l', 'o', 'r'], ['e', 'm', '!']]);
1372    ///
1373    /// // These would be unsound:
1374    /// // let chunks: &[[_; 5]] = slice.as_chunks_unchecked() // The slice length is not a multiple of 5
1375    /// // let chunks: &[[_; 0]] = slice.as_chunks_unchecked() // Zero-length chunks are never allowed
1376    /// ```
1377    #[stable(feature = "slice_as_chunks", since = "1.88.0")]
1378    #[rustc_const_stable(feature = "slice_as_chunks", since = "1.88.0")]
1379    #[inline]
1380    #[must_use]
1381    #[track_caller]
1382    #[cfg(not(feature = "ferrocene_certified"))]
1383    pub const unsafe fn as_chunks_unchecked<const N: usize>(&self) -> &[[T; N]] {
1384        assert_unsafe_precondition!(
1385            check_language_ub,
1386            "slice::as_chunks_unchecked requires `N != 0` and the slice to split exactly into `N`-element chunks",
1387            (n: usize = N, len: usize = self.len()) => n != 0 && len.is_multiple_of(n),
1388        );
1389        // SAFETY: Caller must guarantee that `N` is nonzero and exactly divides the slice length
1390        let new_len = unsafe { exact_div(self.len(), N) };
1391        // SAFETY: We cast a slice of `new_len * N` elements into
1392        // a slice of `new_len` many `N` elements chunks.
1393        unsafe { from_raw_parts(self.as_ptr().cast(), new_len) }
1394    }
1395
1396    /// Splits the slice into a slice of `N`-element arrays,
1397    /// starting at the beginning of the slice,
1398    /// and a remainder slice with length strictly less than `N`.
1399    ///
1400    /// The remainder is meaningful in the division sense.  Given
1401    /// `let (chunks, remainder) = slice.as_chunks()`, then:
1402    /// - `chunks.len()` equals `slice.len() / N`,
1403    /// - `remainder.len()` equals `slice.len() % N`, and
1404    /// - `slice.len()` equals `chunks.len() * N + remainder.len()`.
1405    ///
1406    /// You can flatten the chunks back into a slice-of-`T` with [`as_flattened`].
1407    ///
1408    /// [`as_flattened`]: slice::as_flattened
1409    ///
1410    /// # Panics
1411    ///
1412    /// Panics if `N` is zero.
1413    ///
1414    /// Note that this check is against a const generic parameter, not a runtime
1415    /// value, and thus a particular monomorphization will either always panic
1416    /// or it will never panic.
1417    ///
1418    /// # Examples
1419    ///
1420    /// ```
1421    /// let slice = ['l', 'o', 'r', 'e', 'm'];
1422    /// let (chunks, remainder) = slice.as_chunks();
1423    /// assert_eq!(chunks, &[['l', 'o'], ['r', 'e']]);
1424    /// assert_eq!(remainder, &['m']);
1425    /// ```
1426    ///
1427    /// If you expect the slice to be an exact multiple, you can combine
1428    /// `let`-`else` with an empty slice pattern:
1429    /// ```
1430    /// let slice = ['R', 'u', 's', 't'];
1431    /// let (chunks, []) = slice.as_chunks::<2>() else {
1432    ///     panic!("slice didn't have even length")
1433    /// };
1434    /// assert_eq!(chunks, &[['R', 'u'], ['s', 't']]);
1435    /// ```
1436    #[stable(feature = "slice_as_chunks", since = "1.88.0")]
1437    #[rustc_const_stable(feature = "slice_as_chunks", since = "1.88.0")]
1438    #[inline]
1439    #[track_caller]
1440    #[must_use]
1441    #[cfg(not(feature = "ferrocene_certified"))]
1442    pub const fn as_chunks<const N: usize>(&self) -> (&[[T; N]], &[T]) {
1443        assert!(N != 0, "chunk size must be non-zero");
1444        let len_rounded_down = self.len() / N * N;
1445        // SAFETY: The rounded-down value is always the same or smaller than the
1446        // original length, and thus must be in-bounds of the slice.
1447        let (multiple_of_n, remainder) = unsafe { self.split_at_unchecked(len_rounded_down) };
1448        // SAFETY: We already panicked for zero, and ensured by construction
1449        // that the length of the subslice is a multiple of N.
1450        let array_slice = unsafe { multiple_of_n.as_chunks_unchecked() };
1451        (array_slice, remainder)
1452    }
1453
1454    /// Splits the slice into a slice of `N`-element arrays,
1455    /// starting at the end of the slice,
1456    /// and a remainder slice with length strictly less than `N`.
1457    ///
1458    /// The remainder is meaningful in the division sense.  Given
1459    /// `let (remainder, chunks) = slice.as_rchunks()`, then:
1460    /// - `remainder.len()` equals `slice.len() % N`,
1461    /// - `chunks.len()` equals `slice.len() / N`, and
1462    /// - `slice.len()` equals `chunks.len() * N + remainder.len()`.
1463    ///
1464    /// You can flatten the chunks back into a slice-of-`T` with [`as_flattened`].
1465    ///
1466    /// [`as_flattened`]: slice::as_flattened
1467    ///
1468    /// # Panics
1469    ///
1470    /// Panics if `N` is zero.
1471    ///
1472    /// Note that this check is against a const generic parameter, not a runtime
1473    /// value, and thus a particular monomorphization will either always panic
1474    /// or it will never panic.
1475    ///
1476    /// # Examples
1477    ///
1478    /// ```
1479    /// let slice = ['l', 'o', 'r', 'e', 'm'];
1480    /// let (remainder, chunks) = slice.as_rchunks();
1481    /// assert_eq!(remainder, &['l']);
1482    /// assert_eq!(chunks, &[['o', 'r'], ['e', 'm']]);
1483    /// ```
1484    #[stable(feature = "slice_as_chunks", since = "1.88.0")]
1485    #[rustc_const_stable(feature = "slice_as_chunks", since = "1.88.0")]
1486    #[inline]
1487    #[track_caller]
1488    #[must_use]
1489    #[cfg(not(feature = "ferrocene_certified"))]
1490    pub const fn as_rchunks<const N: usize>(&self) -> (&[T], &[[T; N]]) {
1491        assert!(N != 0, "chunk size must be non-zero");
1492        let len = self.len() / N;
1493        let (remainder, multiple_of_n) = self.split_at(self.len() - len * N);
1494        // SAFETY: We already panicked for zero, and ensured by construction
1495        // that the length of the subslice is a multiple of N.
1496        let array_slice = unsafe { multiple_of_n.as_chunks_unchecked() };
1497        (remainder, array_slice)
1498    }
1499
1500    /// Splits the slice into a slice of `N`-element arrays,
1501    /// assuming that there's no remainder.
1502    ///
1503    /// This is the inverse operation to [`as_flattened_mut`].
1504    ///
1505    /// [`as_flattened_mut`]: slice::as_flattened_mut
1506    ///
1507    /// As this is `unsafe`, consider whether you could use [`as_chunks_mut`] or
1508    /// [`as_rchunks_mut`] instead, perhaps via something like
1509    /// `if let (chunks, []) = slice.as_chunks_mut()` or
1510    /// `let (chunks, []) = slice.as_chunks_mut() else { unreachable!() };`.
1511    ///
1512    /// [`as_chunks_mut`]: slice::as_chunks_mut
1513    /// [`as_rchunks_mut`]: slice::as_rchunks_mut
1514    ///
1515    /// # Safety
1516    ///
1517    /// This may only be called when
1518    /// - The slice splits exactly into `N`-element chunks (aka `self.len() % N == 0`).
1519    /// - `N != 0`.
1520    ///
1521    /// # Examples
1522    ///
1523    /// ```
1524    /// let slice: &mut [char] = &mut ['l', 'o', 'r', 'e', 'm', '!'];
1525    /// let chunks: &mut [[char; 1]] =
1526    ///     // SAFETY: 1-element chunks never have remainder
1527    ///     unsafe { slice.as_chunks_unchecked_mut() };
1528    /// chunks[0] = ['L'];
1529    /// assert_eq!(chunks, &[['L'], ['o'], ['r'], ['e'], ['m'], ['!']]);
1530    /// let chunks: &mut [[char; 3]] =
1531    ///     // SAFETY: The slice length (6) is a multiple of 3
1532    ///     unsafe { slice.as_chunks_unchecked_mut() };
1533    /// chunks[1] = ['a', 'x', '?'];
1534    /// assert_eq!(slice, &['L', 'o', 'r', 'a', 'x', '?']);
1535    ///
1536    /// // These would be unsound:
1537    /// // let chunks: &[[_; 5]] = slice.as_chunks_unchecked_mut() // The slice length is not a multiple of 5
1538    /// // let chunks: &[[_; 0]] = slice.as_chunks_unchecked_mut() // Zero-length chunks are never allowed
1539    /// ```
1540    #[stable(feature = "slice_as_chunks", since = "1.88.0")]
1541    #[rustc_const_stable(feature = "slice_as_chunks", since = "1.88.0")]
1542    #[inline]
1543    #[must_use]
1544    #[track_caller]
1545    #[cfg(not(feature = "ferrocene_certified"))]
1546    pub const unsafe fn as_chunks_unchecked_mut<const N: usize>(&mut self) -> &mut [[T; N]] {
1547        assert_unsafe_precondition!(
1548            check_language_ub,
1549            "slice::as_chunks_unchecked requires `N != 0` and the slice to split exactly into `N`-element chunks",
1550            (n: usize = N, len: usize = self.len()) => n != 0 && len.is_multiple_of(n)
1551        );
1552        // SAFETY: Caller must guarantee that `N` is nonzero and exactly divides the slice length
1553        let new_len = unsafe { exact_div(self.len(), N) };
1554        // SAFETY: We cast a slice of `new_len * N` elements into
1555        // a slice of `new_len` many `N` elements chunks.
1556        unsafe { from_raw_parts_mut(self.as_mut_ptr().cast(), new_len) }
1557    }
1558
1559    /// Splits the slice into a slice of `N`-element arrays,
1560    /// starting at the beginning of the slice,
1561    /// and a remainder slice with length strictly less than `N`.
1562    ///
1563    /// The remainder is meaningful in the division sense.  Given
1564    /// `let (chunks, remainder) = slice.as_chunks_mut()`, then:
1565    /// - `chunks.len()` equals `slice.len() / N`,
1566    /// - `remainder.len()` equals `slice.len() % N`, and
1567    /// - `slice.len()` equals `chunks.len() * N + remainder.len()`.
1568    ///
1569    /// You can flatten the chunks back into a slice-of-`T` with [`as_flattened_mut`].
1570    ///
1571    /// [`as_flattened_mut`]: slice::as_flattened_mut
1572    ///
1573    /// # Panics
1574    ///
1575    /// Panics if `N` is zero.
1576    ///
1577    /// Note that this check is against a const generic parameter, not a runtime
1578    /// value, and thus a particular monomorphization will either always panic
1579    /// or it will never panic.
1580    ///
1581    /// # Examples
1582    ///
1583    /// ```
1584    /// let v = &mut [0, 0, 0, 0, 0];
1585    /// let mut count = 1;
1586    ///
1587    /// let (chunks, remainder) = v.as_chunks_mut();
1588    /// remainder[0] = 9;
1589    /// for chunk in chunks {
1590    ///     *chunk = [count; 2];
1591    ///     count += 1;
1592    /// }
1593    /// assert_eq!(v, &[1, 1, 2, 2, 9]);
1594    /// ```
1595    #[stable(feature = "slice_as_chunks", since = "1.88.0")]
1596    #[rustc_const_stable(feature = "slice_as_chunks", since = "1.88.0")]
1597    #[inline]
1598    #[track_caller]
1599    #[must_use]
1600    #[cfg(not(feature = "ferrocene_certified"))]
1601    pub const fn as_chunks_mut<const N: usize>(&mut self) -> (&mut [[T; N]], &mut [T]) {
1602        assert!(N != 0, "chunk size must be non-zero");
1603        let len_rounded_down = self.len() / N * N;
1604        // SAFETY: The rounded-down value is always the same or smaller than the
1605        // original length, and thus must be in-bounds of the slice.
1606        let (multiple_of_n, remainder) = unsafe { self.split_at_mut_unchecked(len_rounded_down) };
1607        // SAFETY: We already panicked for zero, and ensured by construction
1608        // that the length of the subslice is a multiple of N.
1609        let array_slice = unsafe { multiple_of_n.as_chunks_unchecked_mut() };
1610        (array_slice, remainder)
1611    }
1612
1613    /// Splits the slice into a slice of `N`-element arrays,
1614    /// starting at the end of the slice,
1615    /// and a remainder slice with length strictly less than `N`.
1616    ///
1617    /// The remainder is meaningful in the division sense.  Given
1618    /// `let (remainder, chunks) = slice.as_rchunks_mut()`, then:
1619    /// - `remainder.len()` equals `slice.len() % N`,
1620    /// - `chunks.len()` equals `slice.len() / N`, and
1621    /// - `slice.len()` equals `chunks.len() * N + remainder.len()`.
1622    ///
1623    /// You can flatten the chunks back into a slice-of-`T` with [`as_flattened_mut`].
1624    ///
1625    /// [`as_flattened_mut`]: slice::as_flattened_mut
1626    ///
1627    /// # Panics
1628    ///
1629    /// Panics if `N` is zero.
1630    ///
1631    /// Note that this check is against a const generic parameter, not a runtime
1632    /// value, and thus a particular monomorphization will either always panic
1633    /// or it will never panic.
1634    ///
1635    /// # Examples
1636    ///
1637    /// ```
1638    /// let v = &mut [0, 0, 0, 0, 0];
1639    /// let mut count = 1;
1640    ///
1641    /// let (remainder, chunks) = v.as_rchunks_mut();
1642    /// remainder[0] = 9;
1643    /// for chunk in chunks {
1644    ///     *chunk = [count; 2];
1645    ///     count += 1;
1646    /// }
1647    /// assert_eq!(v, &[9, 1, 1, 2, 2]);
1648    /// ```
1649    #[stable(feature = "slice_as_chunks", since = "1.88.0")]
1650    #[rustc_const_stable(feature = "slice_as_chunks", since = "1.88.0")]
1651    #[inline]
1652    #[track_caller]
1653    #[must_use]
1654    #[cfg(not(feature = "ferrocene_certified"))]
1655    pub const fn as_rchunks_mut<const N: usize>(&mut self) -> (&mut [T], &mut [[T; N]]) {
1656        assert!(N != 0, "chunk size must be non-zero");
1657        let len = self.len() / N;
1658        let (remainder, multiple_of_n) = self.split_at_mut(self.len() - len * N);
1659        // SAFETY: We already panicked for zero, and ensured by construction
1660        // that the length of the subslice is a multiple of N.
1661        let array_slice = unsafe { multiple_of_n.as_chunks_unchecked_mut() };
1662        (remainder, array_slice)
1663    }
1664
1665    /// Returns an iterator over overlapping windows of `N` elements of a slice,
1666    /// starting at the beginning of the slice.
1667    ///
1668    /// This is the const generic equivalent of [`windows`].
1669    ///
1670    /// If `N` is greater than the size of the slice, it will return no windows.
1671    ///
1672    /// # Panics
1673    ///
1674    /// Panics if `N` is zero. This check will most probably get changed to a compile time
1675    /// error before this method gets stabilized.
1676    ///
1677    /// # Examples
1678    ///
1679    /// ```
1680    /// #![feature(array_windows)]
1681    /// let slice = [0, 1, 2, 3];
1682    /// let mut iter = slice.array_windows();
1683    /// assert_eq!(iter.next().unwrap(), &[0, 1]);
1684    /// assert_eq!(iter.next().unwrap(), &[1, 2]);
1685    /// assert_eq!(iter.next().unwrap(), &[2, 3]);
1686    /// assert!(iter.next().is_none());
1687    /// ```
1688    ///
1689    /// [`windows`]: slice::windows
1690    #[unstable(feature = "array_windows", issue = "75027")]
1691    #[rustc_const_unstable(feature = "const_slice_make_iter", issue = "137737")]
1692    #[inline]
1693    #[track_caller]
1694    #[cfg(not(feature = "ferrocene_certified"))]
1695    pub const fn array_windows<const N: usize>(&self) -> ArrayWindows<'_, T, N> {
1696        assert!(N != 0, "window size must be non-zero");
1697        ArrayWindows::new(self)
1698    }
1699
1700    /// Returns an iterator over `chunk_size` elements of the slice at a time, starting at the end
1701    /// of the slice.
1702    ///
1703    /// The chunks are slices and do not overlap. If `chunk_size` does not divide the length of the
1704    /// slice, then the last chunk will not have length `chunk_size`.
1705    ///
1706    /// See [`rchunks_exact`] for a variant of this iterator that returns chunks of always exactly
1707    /// `chunk_size` elements, and [`chunks`] for the same iterator but starting at the beginning
1708    /// of the slice.
1709    ///
1710    /// If your `chunk_size` is a constant, consider using [`as_rchunks`] instead, which will
1711    /// give references to arrays of exactly that length, rather than slices.
1712    ///
1713    /// # Panics
1714    ///
1715    /// Panics if `chunk_size` is zero.
1716    ///
1717    /// # Examples
1718    ///
1719    /// ```
1720    /// let slice = ['l', 'o', 'r', 'e', 'm'];
1721    /// let mut iter = slice.rchunks(2);
1722    /// assert_eq!(iter.next().unwrap(), &['e', 'm']);
1723    /// assert_eq!(iter.next().unwrap(), &['o', 'r']);
1724    /// assert_eq!(iter.next().unwrap(), &['l']);
1725    /// assert!(iter.next().is_none());
1726    /// ```
1727    ///
1728    /// [`rchunks_exact`]: slice::rchunks_exact
1729    /// [`chunks`]: slice::chunks
1730    /// [`as_rchunks`]: slice::as_rchunks
1731    #[stable(feature = "rchunks", since = "1.31.0")]
1732    #[rustc_const_unstable(feature = "const_slice_make_iter", issue = "137737")]
1733    #[inline]
1734    #[track_caller]
1735    #[cfg(not(feature = "ferrocene_certified"))]
1736    pub const fn rchunks(&self, chunk_size: usize) -> RChunks<'_, T> {
1737        assert!(chunk_size != 0, "chunk size must be non-zero");
1738        RChunks::new(self, chunk_size)
1739    }
1740
1741    /// Returns an iterator over `chunk_size` elements of the slice at a time, starting at the end
1742    /// of the slice.
1743    ///
1744    /// The chunks are mutable slices, and do not overlap. If `chunk_size` does not divide the
1745    /// length of the slice, then the last chunk will not have length `chunk_size`.
1746    ///
1747    /// See [`rchunks_exact_mut`] for a variant of this iterator that returns chunks of always
1748    /// exactly `chunk_size` elements, and [`chunks_mut`] for the same iterator but starting at the
1749    /// beginning of the slice.
1750    ///
1751    /// If your `chunk_size` is a constant, consider using [`as_rchunks_mut`] instead, which will
1752    /// give references to arrays of exactly that length, rather than slices.
1753    ///
1754    /// # Panics
1755    ///
1756    /// Panics if `chunk_size` is zero.
1757    ///
1758    /// # Examples
1759    ///
1760    /// ```
1761    /// let v = &mut [0, 0, 0, 0, 0];
1762    /// let mut count = 1;
1763    ///
1764    /// for chunk in v.rchunks_mut(2) {
1765    ///     for elem in chunk.iter_mut() {
1766    ///         *elem += count;
1767    ///     }
1768    ///     count += 1;
1769    /// }
1770    /// assert_eq!(v, &[3, 2, 2, 1, 1]);
1771    /// ```
1772    ///
1773    /// [`rchunks_exact_mut`]: slice::rchunks_exact_mut
1774    /// [`chunks_mut`]: slice::chunks_mut
1775    /// [`as_rchunks_mut`]: slice::as_rchunks_mut
1776    #[stable(feature = "rchunks", since = "1.31.0")]
1777    #[rustc_const_unstable(feature = "const_slice_make_iter", issue = "137737")]
1778    #[inline]
1779    #[track_caller]
1780    #[cfg(not(feature = "ferrocene_certified"))]
1781    pub const fn rchunks_mut(&mut self, chunk_size: usize) -> RChunksMut<'_, T> {
1782        assert!(chunk_size != 0, "chunk size must be non-zero");
1783        RChunksMut::new(self, chunk_size)
1784    }
1785
1786    /// Returns an iterator over `chunk_size` elements of the slice at a time, starting at the
1787    /// end of the slice.
1788    ///
1789    /// The chunks are slices and do not overlap. If `chunk_size` does not divide the length of the
1790    /// slice, then the last up to `chunk_size-1` elements will be omitted and can be retrieved
1791    /// from the `remainder` function of the iterator.
1792    ///
1793    /// Due to each chunk having exactly `chunk_size` elements, the compiler can often optimize the
1794    /// resulting code better than in the case of [`rchunks`].
1795    ///
1796    /// See [`rchunks`] for a variant of this iterator that also returns the remainder as a smaller
1797    /// chunk, and [`chunks_exact`] for the same iterator but starting at the beginning of the
1798    /// slice.
1799    ///
1800    /// If your `chunk_size` is a constant, consider using [`as_rchunks`] instead, which will
1801    /// give references to arrays of exactly that length, rather than slices.
1802    ///
1803    /// # Panics
1804    ///
1805    /// Panics if `chunk_size` is zero.
1806    ///
1807    /// # Examples
1808    ///
1809    /// ```
1810    /// let slice = ['l', 'o', 'r', 'e', 'm'];
1811    /// let mut iter = slice.rchunks_exact(2);
1812    /// assert_eq!(iter.next().unwrap(), &['e', 'm']);
1813    /// assert_eq!(iter.next().unwrap(), &['o', 'r']);
1814    /// assert!(iter.next().is_none());
1815    /// assert_eq!(iter.remainder(), &['l']);
1816    /// ```
1817    ///
1818    /// [`chunks`]: slice::chunks
1819    /// [`rchunks`]: slice::rchunks
1820    /// [`chunks_exact`]: slice::chunks_exact
1821    /// [`as_rchunks`]: slice::as_rchunks
1822    #[stable(feature = "rchunks", since = "1.31.0")]
1823    #[rustc_const_unstable(feature = "const_slice_make_iter", issue = "137737")]
1824    #[inline]
1825    #[track_caller]
1826    #[cfg(not(feature = "ferrocene_certified"))]
1827    pub const fn rchunks_exact(&self, chunk_size: usize) -> RChunksExact<'_, T> {
1828        assert!(chunk_size != 0, "chunk size must be non-zero");
1829        RChunksExact::new(self, chunk_size)
1830    }
1831
1832    /// Returns an iterator over `chunk_size` elements of the slice at a time, starting at the end
1833    /// of the slice.
1834    ///
1835    /// The chunks are mutable slices, and do not overlap. If `chunk_size` does not divide the
1836    /// length of the slice, then the last up to `chunk_size-1` elements will be omitted and can be
1837    /// retrieved from the `into_remainder` function of the iterator.
1838    ///
1839    /// Due to each chunk having exactly `chunk_size` elements, the compiler can often optimize the
1840    /// resulting code better than in the case of [`chunks_mut`].
1841    ///
1842    /// See [`rchunks_mut`] for a variant of this iterator that also returns the remainder as a
1843    /// smaller chunk, and [`chunks_exact_mut`] for the same iterator but starting at the beginning
1844    /// of the slice.
1845    ///
1846    /// If your `chunk_size` is a constant, consider using [`as_rchunks_mut`] instead, which will
1847    /// give references to arrays of exactly that length, rather than slices.
1848    ///
1849    /// # Panics
1850    ///
1851    /// Panics if `chunk_size` is zero.
1852    ///
1853    /// # Examples
1854    ///
1855    /// ```
1856    /// let v = &mut [0, 0, 0, 0, 0];
1857    /// let mut count = 1;
1858    ///
1859    /// for chunk in v.rchunks_exact_mut(2) {
1860    ///     for elem in chunk.iter_mut() {
1861    ///         *elem += count;
1862    ///     }
1863    ///     count += 1;
1864    /// }
1865    /// assert_eq!(v, &[0, 2, 2, 1, 1]);
1866    /// ```
1867    ///
1868    /// [`chunks_mut`]: slice::chunks_mut
1869    /// [`rchunks_mut`]: slice::rchunks_mut
1870    /// [`chunks_exact_mut`]: slice::chunks_exact_mut
1871    /// [`as_rchunks_mut`]: slice::as_rchunks_mut
1872    #[stable(feature = "rchunks", since = "1.31.0")]
1873    #[rustc_const_unstable(feature = "const_slice_make_iter", issue = "137737")]
1874    #[inline]
1875    #[track_caller]
1876    #[cfg(not(feature = "ferrocene_certified"))]
1877    pub const fn rchunks_exact_mut(&mut self, chunk_size: usize) -> RChunksExactMut<'_, T> {
1878        assert!(chunk_size != 0, "chunk size must be non-zero");
1879        RChunksExactMut::new(self, chunk_size)
1880    }
1881
1882    /// Returns an iterator over the slice producing non-overlapping runs
1883    /// of elements using the predicate to separate them.
1884    ///
1885    /// The predicate is called for every pair of consecutive elements,
1886    /// meaning that it is called on `slice[0]` and `slice[1]`,
1887    /// followed by `slice[1]` and `slice[2]`, and so on.
1888    ///
1889    /// # Examples
1890    ///
1891    /// ```
1892    /// let slice = &[1, 1, 1, 3, 3, 2, 2, 2];
1893    ///
1894    /// let mut iter = slice.chunk_by(|a, b| a == b);
1895    ///
1896    /// assert_eq!(iter.next(), Some(&[1, 1, 1][..]));
1897    /// assert_eq!(iter.next(), Some(&[3, 3][..]));
1898    /// assert_eq!(iter.next(), Some(&[2, 2, 2][..]));
1899    /// assert_eq!(iter.next(), None);
1900    /// ```
1901    ///
1902    /// This method can be used to extract the sorted subslices:
1903    ///
1904    /// ```
1905    /// let slice = &[1, 1, 2, 3, 2, 3, 2, 3, 4];
1906    ///
1907    /// let mut iter = slice.chunk_by(|a, b| a <= b);
1908    ///
1909    /// assert_eq!(iter.next(), Some(&[1, 1, 2, 3][..]));
1910    /// assert_eq!(iter.next(), Some(&[2, 3][..]));
1911    /// assert_eq!(iter.next(), Some(&[2, 3, 4][..]));
1912    /// assert_eq!(iter.next(), None);
1913    /// ```
1914    #[stable(feature = "slice_group_by", since = "1.77.0")]
1915    #[rustc_const_unstable(feature = "const_slice_make_iter", issue = "137737")]
1916    #[inline]
1917    #[cfg(not(feature = "ferrocene_certified"))]
1918    pub const fn chunk_by<F>(&self, pred: F) -> ChunkBy<'_, T, F>
1919    where
1920        F: FnMut(&T, &T) -> bool,
1921    {
1922        ChunkBy::new(self, pred)
1923    }
1924
1925    /// Returns an iterator over the slice producing non-overlapping mutable
1926    /// runs of elements using the predicate to separate them.
1927    ///
1928    /// The predicate is called for every pair of consecutive elements,
1929    /// meaning that it is called on `slice[0]` and `slice[1]`,
1930    /// followed by `slice[1]` and `slice[2]`, and so on.
1931    ///
1932    /// # Examples
1933    ///
1934    /// ```
1935    /// let slice = &mut [1, 1, 1, 3, 3, 2, 2, 2];
1936    ///
1937    /// let mut iter = slice.chunk_by_mut(|a, b| a == b);
1938    ///
1939    /// assert_eq!(iter.next(), Some(&mut [1, 1, 1][..]));
1940    /// assert_eq!(iter.next(), Some(&mut [3, 3][..]));
1941    /// assert_eq!(iter.next(), Some(&mut [2, 2, 2][..]));
1942    /// assert_eq!(iter.next(), None);
1943    /// ```
1944    ///
1945    /// This method can be used to extract the sorted subslices:
1946    ///
1947    /// ```
1948    /// let slice = &mut [1, 1, 2, 3, 2, 3, 2, 3, 4];
1949    ///
1950    /// let mut iter = slice.chunk_by_mut(|a, b| a <= b);
1951    ///
1952    /// assert_eq!(iter.next(), Some(&mut [1, 1, 2, 3][..]));
1953    /// assert_eq!(iter.next(), Some(&mut [2, 3][..]));
1954    /// assert_eq!(iter.next(), Some(&mut [2, 3, 4][..]));
1955    /// assert_eq!(iter.next(), None);
1956    /// ```
1957    #[stable(feature = "slice_group_by", since = "1.77.0")]
1958    #[rustc_const_unstable(feature = "const_slice_make_iter", issue = "137737")]
1959    #[inline]
1960    #[cfg(not(feature = "ferrocene_certified"))]
1961    pub const fn chunk_by_mut<F>(&mut self, pred: F) -> ChunkByMut<'_, T, F>
1962    where
1963        F: FnMut(&T, &T) -> bool,
1964    {
1965        ChunkByMut::new(self, pred)
1966    }
1967
1968    /// Divides one slice into two at an index.
1969    ///
1970    /// The first will contain all indices from `[0, mid)` (excluding
1971    /// the index `mid` itself) and the second will contain all
1972    /// indices from `[mid, len)` (excluding the index `len` itself).
1973    ///
1974    /// # Panics
1975    ///
1976    /// Panics if `mid > len`.  For a non-panicking alternative see
1977    /// [`split_at_checked`](slice::split_at_checked).
1978    ///
1979    /// # Examples
1980    ///
1981    /// ```
1982    /// let v = ['a', 'b', 'c'];
1983    ///
1984    /// {
1985    ///    let (left, right) = v.split_at(0);
1986    ///    assert_eq!(left, []);
1987    ///    assert_eq!(right, ['a', 'b', 'c']);
1988    /// }
1989    ///
1990    /// {
1991    ///     let (left, right) = v.split_at(2);
1992    ///     assert_eq!(left, ['a', 'b']);
1993    ///     assert_eq!(right, ['c']);
1994    /// }
1995    ///
1996    /// {
1997    ///     let (left, right) = v.split_at(3);
1998    ///     assert_eq!(left, ['a', 'b', 'c']);
1999    ///     assert_eq!(right, []);
2000    /// }
2001    /// ```
2002    #[stable(feature = "rust1", since = "1.0.0")]
2003    #[rustc_const_stable(feature = "const_slice_split_at_not_mut", since = "1.71.0")]
2004    #[inline]
2005    #[track_caller]
2006    #[must_use]
2007    #[cfg(not(feature = "ferrocene_certified"))]
2008    pub const fn split_at(&self, mid: usize) -> (&[T], &[T]) {
2009        match self.split_at_checked(mid) {
2010            Some(pair) => pair,
2011            None => panic!("mid > len"),
2012        }
2013    }
2014
2015    /// Divides one mutable slice into two at an index.
2016    ///
2017    /// The first will contain all indices from `[0, mid)` (excluding
2018    /// the index `mid` itself) and the second will contain all
2019    /// indices from `[mid, len)` (excluding the index `len` itself).
2020    ///
2021    /// # Panics
2022    ///
2023    /// Panics if `mid > len`.  For a non-panicking alternative see
2024    /// [`split_at_mut_checked`](slice::split_at_mut_checked).
2025    ///
2026    /// # Examples
2027    ///
2028    /// ```
2029    /// let mut v = [1, 0, 3, 0, 5, 6];
2030    /// let (left, right) = v.split_at_mut(2);
2031    /// assert_eq!(left, [1, 0]);
2032    /// assert_eq!(right, [3, 0, 5, 6]);
2033    /// left[1] = 2;
2034    /// right[1] = 4;
2035    /// assert_eq!(v, [1, 2, 3, 4, 5, 6]);
2036    /// ```
2037    #[stable(feature = "rust1", since = "1.0.0")]
2038    #[inline]
2039    #[track_caller]
2040    #[must_use]
2041    #[rustc_const_stable(feature = "const_slice_split_at_mut", since = "1.83.0")]
2042    #[cfg(not(feature = "ferrocene_certified"))]
2043    pub const fn split_at_mut(&mut self, mid: usize) -> (&mut [T], &mut [T]) {
2044        match self.split_at_mut_checked(mid) {
2045            Some(pair) => pair,
2046            None => panic!("mid > len"),
2047        }
2048    }
2049
2050    /// Divides one slice into two at an index, without doing bounds checking.
2051    ///
2052    /// The first will contain all indices from `[0, mid)` (excluding
2053    /// the index `mid` itself) and the second will contain all
2054    /// indices from `[mid, len)` (excluding the index `len` itself).
2055    ///
2056    /// For a safe alternative see [`split_at`].
2057    ///
2058    /// # Safety
2059    ///
2060    /// Calling this method with an out-of-bounds index is *[undefined behavior]*
2061    /// even if the resulting reference is not used. The caller has to ensure that
2062    /// `0 <= mid <= self.len()`.
2063    ///
2064    /// [`split_at`]: slice::split_at
2065    /// [undefined behavior]: https://doc.rust-lang.org/reference/behavior-considered-undefined.html
2066    ///
2067    /// # Examples
2068    ///
2069    /// ```
2070    /// let v = ['a', 'b', 'c'];
2071    ///
2072    /// unsafe {
2073    ///    let (left, right) = v.split_at_unchecked(0);
2074    ///    assert_eq!(left, []);
2075    ///    assert_eq!(right, ['a', 'b', 'c']);
2076    /// }
2077    ///
2078    /// unsafe {
2079    ///     let (left, right) = v.split_at_unchecked(2);
2080    ///     assert_eq!(left, ['a', 'b']);
2081    ///     assert_eq!(right, ['c']);
2082    /// }
2083    ///
2084    /// unsafe {
2085    ///     let (left, right) = v.split_at_unchecked(3);
2086    ///     assert_eq!(left, ['a', 'b', 'c']);
2087    ///     assert_eq!(right, []);
2088    /// }
2089    /// ```
2090    #[stable(feature = "slice_split_at_unchecked", since = "1.79.0")]
2091    #[rustc_const_stable(feature = "const_slice_split_at_unchecked", since = "1.77.0")]
2092    #[inline]
2093    #[must_use]
2094    #[track_caller]
2095    #[cfg(not(feature = "ferrocene_certified"))]
2096    pub const unsafe fn split_at_unchecked(&self, mid: usize) -> (&[T], &[T]) {
2097        // FIXME(const-hack): the const function `from_raw_parts` is used to make this
2098        // function const; previously the implementation used
2099        // `(self.get_unchecked(..mid), self.get_unchecked(mid..))`
2100
2101        let len = self.len();
2102        let ptr = self.as_ptr();
2103
2104        assert_unsafe_precondition!(
2105            check_library_ub,
2106            "slice::split_at_unchecked requires the index to be within the slice",
2107            (mid: usize = mid, len: usize = len) => mid <= len,
2108        );
2109
2110        // SAFETY: Caller has to check that `0 <= mid <= self.len()`
2111        unsafe { (from_raw_parts(ptr, mid), from_raw_parts(ptr.add(mid), unchecked_sub(len, mid))) }
2112    }
2113
2114    /// Divides one mutable slice into two at an index, without doing bounds checking.
2115    ///
2116    /// The first will contain all indices from `[0, mid)` (excluding
2117    /// the index `mid` itself) and the second will contain all
2118    /// indices from `[mid, len)` (excluding the index `len` itself).
2119    ///
2120    /// For a safe alternative see [`split_at_mut`].
2121    ///
2122    /// # Safety
2123    ///
2124    /// Calling this method with an out-of-bounds index is *[undefined behavior]*
2125    /// even if the resulting reference is not used. The caller has to ensure that
2126    /// `0 <= mid <= self.len()`.
2127    ///
2128    /// [`split_at_mut`]: slice::split_at_mut
2129    /// [undefined behavior]: https://doc.rust-lang.org/reference/behavior-considered-undefined.html
2130    ///
2131    /// # Examples
2132    ///
2133    /// ```
2134    /// let mut v = [1, 0, 3, 0, 5, 6];
2135    /// // scoped to restrict the lifetime of the borrows
2136    /// unsafe {
2137    ///     let (left, right) = v.split_at_mut_unchecked(2);
2138    ///     assert_eq!(left, [1, 0]);
2139    ///     assert_eq!(right, [3, 0, 5, 6]);
2140    ///     left[1] = 2;
2141    ///     right[1] = 4;
2142    /// }
2143    /// assert_eq!(v, [1, 2, 3, 4, 5, 6]);
2144    /// ```
2145    #[stable(feature = "slice_split_at_unchecked", since = "1.79.0")]
2146    #[rustc_const_stable(feature = "const_slice_split_at_mut", since = "1.83.0")]
2147    #[inline]
2148    #[must_use]
2149    #[track_caller]
2150    #[cfg(not(feature = "ferrocene_certified"))]
2151    pub const unsafe fn split_at_mut_unchecked(&mut self, mid: usize) -> (&mut [T], &mut [T]) {
2152        let len = self.len();
2153        let ptr = self.as_mut_ptr();
2154
2155        assert_unsafe_precondition!(
2156            check_library_ub,
2157            "slice::split_at_mut_unchecked requires the index to be within the slice",
2158            (mid: usize = mid, len: usize = len) => mid <= len,
2159        );
2160
2161        // SAFETY: Caller has to check that `0 <= mid <= self.len()`.
2162        //
2163        // `[ptr; mid]` and `[mid; len]` are not overlapping, so returning a mutable reference
2164        // is fine.
2165        unsafe {
2166            (
2167                from_raw_parts_mut(ptr, mid),
2168                from_raw_parts_mut(ptr.add(mid), unchecked_sub(len, mid)),
2169            )
2170        }
2171    }
2172
2173    /// Divides one slice into two at an index, returning `None` if the slice is
2174    /// too short.
2175    ///
2176    /// If `mid ≤ len` returns a pair of slices where the first will contain all
2177    /// indices from `[0, mid)` (excluding the index `mid` itself) and the
2178    /// second will contain all indices from `[mid, len)` (excluding the index
2179    /// `len` itself).
2180    ///
2181    /// Otherwise, if `mid > len`, returns `None`.
2182    ///
2183    /// # Examples
2184    ///
2185    /// ```
2186    /// let v = [1, -2, 3, -4, 5, -6];
2187    ///
2188    /// {
2189    ///    let (left, right) = v.split_at_checked(0).unwrap();
2190    ///    assert_eq!(left, []);
2191    ///    assert_eq!(right, [1, -2, 3, -4, 5, -6]);
2192    /// }
2193    ///
2194    /// {
2195    ///     let (left, right) = v.split_at_checked(2).unwrap();
2196    ///     assert_eq!(left, [1, -2]);
2197    ///     assert_eq!(right, [3, -4, 5, -6]);
2198    /// }
2199    ///
2200    /// {
2201    ///     let (left, right) = v.split_at_checked(6).unwrap();
2202    ///     assert_eq!(left, [1, -2, 3, -4, 5, -6]);
2203    ///     assert_eq!(right, []);
2204    /// }
2205    ///
2206    /// assert_eq!(None, v.split_at_checked(7));
2207    /// ```
2208    #[stable(feature = "split_at_checked", since = "1.80.0")]
2209    #[rustc_const_stable(feature = "split_at_checked", since = "1.80.0")]
2210    #[inline]
2211    #[must_use]
2212    #[cfg(not(feature = "ferrocene_certified"))]
2213    pub const fn split_at_checked(&self, mid: usize) -> Option<(&[T], &[T])> {
2214        if mid <= self.len() {
2215            // SAFETY: `[ptr; mid]` and `[mid; len]` are inside `self`, which
2216            // fulfills the requirements of `split_at_unchecked`.
2217            Some(unsafe { self.split_at_unchecked(mid) })
2218        } else {
2219            None
2220        }
2221    }
2222
2223    /// Divides one mutable slice into two at an index, returning `None` if the
2224    /// slice is too short.
2225    ///
2226    /// If `mid ≤ len` returns a pair of slices where the first will contain all
2227    /// indices from `[0, mid)` (excluding the index `mid` itself) and the
2228    /// second will contain all indices from `[mid, len)` (excluding the index
2229    /// `len` itself).
2230    ///
2231    /// Otherwise, if `mid > len`, returns `None`.
2232    ///
2233    /// # Examples
2234    ///
2235    /// ```
2236    /// let mut v = [1, 0, 3, 0, 5, 6];
2237    ///
2238    /// if let Some((left, right)) = v.split_at_mut_checked(2) {
2239    ///     assert_eq!(left, [1, 0]);
2240    ///     assert_eq!(right, [3, 0, 5, 6]);
2241    ///     left[1] = 2;
2242    ///     right[1] = 4;
2243    /// }
2244    /// assert_eq!(v, [1, 2, 3, 4, 5, 6]);
2245    ///
2246    /// assert_eq!(None, v.split_at_mut_checked(7));
2247    /// ```
2248    #[stable(feature = "split_at_checked", since = "1.80.0")]
2249    #[rustc_const_stable(feature = "const_slice_split_at_mut", since = "1.83.0")]
2250    #[inline]
2251    #[must_use]
2252    #[cfg(not(feature = "ferrocene_certified"))]
2253    pub const fn split_at_mut_checked(&mut self, mid: usize) -> Option<(&mut [T], &mut [T])> {
2254        if mid <= self.len() {
2255            // SAFETY: `[ptr; mid]` and `[mid; len]` are inside `self`, which
2256            // fulfills the requirements of `split_at_unchecked`.
2257            Some(unsafe { self.split_at_mut_unchecked(mid) })
2258        } else {
2259            None
2260        }
2261    }
2262
2263    /// Returns an iterator over subslices separated by elements that match
2264    /// `pred`. The matched element is not contained in the subslices.
2265    ///
2266    /// # Examples
2267    ///
2268    /// ```
2269    /// let slice = [10, 40, 33, 20];
2270    /// let mut iter = slice.split(|num| num % 3 == 0);
2271    ///
2272    /// assert_eq!(iter.next().unwrap(), &[10, 40]);
2273    /// assert_eq!(iter.next().unwrap(), &[20]);
2274    /// assert!(iter.next().is_none());
2275    /// ```
2276    ///
2277    /// If the first element is matched, an empty slice will be the first item
2278    /// returned by the iterator. Similarly, if the last element in the slice
2279    /// is matched, an empty slice will be the last item returned by the
2280    /// iterator:
2281    ///
2282    /// ```
2283    /// let slice = [10, 40, 33];
2284    /// let mut iter = slice.split(|num| num % 3 == 0);
2285    ///
2286    /// assert_eq!(iter.next().unwrap(), &[10, 40]);
2287    /// assert_eq!(iter.next().unwrap(), &[]);
2288    /// assert!(iter.next().is_none());
2289    /// ```
2290    ///
2291    /// If two matched elements are directly adjacent, an empty slice will be
2292    /// present between them:
2293    ///
2294    /// ```
2295    /// let slice = [10, 6, 33, 20];
2296    /// let mut iter = slice.split(|num| num % 3 == 0);
2297    ///
2298    /// assert_eq!(iter.next().unwrap(), &[10]);
2299    /// assert_eq!(iter.next().unwrap(), &[]);
2300    /// assert_eq!(iter.next().unwrap(), &[20]);
2301    /// assert!(iter.next().is_none());
2302    /// ```
2303    #[stable(feature = "rust1", since = "1.0.0")]
2304    #[inline]
2305    #[cfg(not(feature = "ferrocene_certified"))]
2306    pub fn split<F>(&self, pred: F) -> Split<'_, T, F>
2307    where
2308        F: FnMut(&T) -> bool,
2309    {
2310        Split::new(self, pred)
2311    }
2312
2313    /// Returns an iterator over mutable subslices separated by elements that
2314    /// match `pred`. The matched element is not contained in the subslices.
2315    ///
2316    /// # Examples
2317    ///
2318    /// ```
2319    /// let mut v = [10, 40, 30, 20, 60, 50];
2320    ///
2321    /// for group in v.split_mut(|num| *num % 3 == 0) {
2322    ///     group[0] = 1;
2323    /// }
2324    /// assert_eq!(v, [1, 40, 30, 1, 60, 1]);
2325    /// ```
2326    #[stable(feature = "rust1", since = "1.0.0")]
2327    #[inline]
2328    #[cfg(not(feature = "ferrocene_certified"))]
2329    pub fn split_mut<F>(&mut self, pred: F) -> SplitMut<'_, T, F>
2330    where
2331        F: FnMut(&T) -> bool,
2332    {
2333        SplitMut::new(self, pred)
2334    }
2335
2336    /// Returns an iterator over subslices separated by elements that match
2337    /// `pred`. The matched element is contained in the end of the previous
2338    /// subslice as a terminator.
2339    ///
2340    /// # Examples
2341    ///
2342    /// ```
2343    /// let slice = [10, 40, 33, 20];
2344    /// let mut iter = slice.split_inclusive(|num| num % 3 == 0);
2345    ///
2346    /// assert_eq!(iter.next().unwrap(), &[10, 40, 33]);
2347    /// assert_eq!(iter.next().unwrap(), &[20]);
2348    /// assert!(iter.next().is_none());
2349    /// ```
2350    ///
2351    /// If the last element of the slice is matched,
2352    /// that element will be considered the terminator of the preceding slice.
2353    /// That slice will be the last item returned by the iterator.
2354    ///
2355    /// ```
2356    /// let slice = [3, 10, 40, 33];
2357    /// let mut iter = slice.split_inclusive(|num| num % 3 == 0);
2358    ///
2359    /// assert_eq!(iter.next().unwrap(), &[3]);
2360    /// assert_eq!(iter.next().unwrap(), &[10, 40, 33]);
2361    /// assert!(iter.next().is_none());
2362    /// ```
2363    #[stable(feature = "split_inclusive", since = "1.51.0")]
2364    #[inline]
2365    #[cfg(not(feature = "ferrocene_certified"))]
2366    pub fn split_inclusive<F>(&self, pred: F) -> SplitInclusive<'_, T, F>
2367    where
2368        F: FnMut(&T) -> bool,
2369    {
2370        SplitInclusive::new(self, pred)
2371    }
2372
2373    /// Returns an iterator over mutable subslices separated by elements that
2374    /// match `pred`. The matched element is contained in the previous
2375    /// subslice as a terminator.
2376    ///
2377    /// # Examples
2378    ///
2379    /// ```
2380    /// let mut v = [10, 40, 30, 20, 60, 50];
2381    ///
2382    /// for group in v.split_inclusive_mut(|num| *num % 3 == 0) {
2383    ///     let terminator_idx = group.len()-1;
2384    ///     group[terminator_idx] = 1;
2385    /// }
2386    /// assert_eq!(v, [10, 40, 1, 20, 1, 1]);
2387    /// ```
2388    #[stable(feature = "split_inclusive", since = "1.51.0")]
2389    #[inline]
2390    #[cfg(not(feature = "ferrocene_certified"))]
2391    pub fn split_inclusive_mut<F>(&mut self, pred: F) -> SplitInclusiveMut<'_, T, F>
2392    where
2393        F: FnMut(&T) -> bool,
2394    {
2395        SplitInclusiveMut::new(self, pred)
2396    }
2397
2398    /// Returns an iterator over subslices separated by elements that match
2399    /// `pred`, starting at the end of the slice and working backwards.
2400    /// The matched element is not contained in the subslices.
2401    ///
2402    /// # Examples
2403    ///
2404    /// ```
2405    /// let slice = [11, 22, 33, 0, 44, 55];
2406    /// let mut iter = slice.rsplit(|num| *num == 0);
2407    ///
2408    /// assert_eq!(iter.next().unwrap(), &[44, 55]);
2409    /// assert_eq!(iter.next().unwrap(), &[11, 22, 33]);
2410    /// assert_eq!(iter.next(), None);
2411    /// ```
2412    ///
2413    /// As with `split()`, if the first or last element is matched, an empty
2414    /// slice will be the first (or last) item returned by the iterator.
2415    ///
2416    /// ```
2417    /// let v = &[0, 1, 1, 2, 3, 5, 8];
2418    /// let mut it = v.rsplit(|n| *n % 2 == 0);
2419    /// assert_eq!(it.next().unwrap(), &[]);
2420    /// assert_eq!(it.next().unwrap(), &[3, 5]);
2421    /// assert_eq!(it.next().unwrap(), &[1, 1]);
2422    /// assert_eq!(it.next().unwrap(), &[]);
2423    /// assert_eq!(it.next(), None);
2424    /// ```
2425    #[stable(feature = "slice_rsplit", since = "1.27.0")]
2426    #[inline]
2427    #[cfg(not(feature = "ferrocene_certified"))]
2428    pub fn rsplit<F>(&self, pred: F) -> RSplit<'_, T, F>
2429    where
2430        F: FnMut(&T) -> bool,
2431    {
2432        RSplit::new(self, pred)
2433    }
2434
2435    /// Returns an iterator over mutable subslices separated by elements that
2436    /// match `pred`, starting at the end of the slice and working
2437    /// backwards. The matched element is not contained in the subslices.
2438    ///
2439    /// # Examples
2440    ///
2441    /// ```
2442    /// let mut v = [100, 400, 300, 200, 600, 500];
2443    ///
2444    /// let mut count = 0;
2445    /// for group in v.rsplit_mut(|num| *num % 3 == 0) {
2446    ///     count += 1;
2447    ///     group[0] = count;
2448    /// }
2449    /// assert_eq!(v, [3, 400, 300, 2, 600, 1]);
2450    /// ```
2451    ///
2452    #[stable(feature = "slice_rsplit", since = "1.27.0")]
2453    #[inline]
2454    #[cfg(not(feature = "ferrocene_certified"))]
2455    pub fn rsplit_mut<F>(&mut self, pred: F) -> RSplitMut<'_, T, F>
2456    where
2457        F: FnMut(&T) -> bool,
2458    {
2459        RSplitMut::new(self, pred)
2460    }
2461
2462    /// Returns an iterator over subslices separated by elements that match
2463    /// `pred`, limited to returning at most `n` items. The matched element is
2464    /// not contained in the subslices.
2465    ///
2466    /// The last element returned, if any, will contain the remainder of the
2467    /// slice.
2468    ///
2469    /// # Examples
2470    ///
2471    /// Print the slice split once by numbers divisible by 3 (i.e., `[10, 40]`,
2472    /// `[20, 60, 50]`):
2473    ///
2474    /// ```
2475    /// let v = [10, 40, 30, 20, 60, 50];
2476    ///
2477    /// for group in v.splitn(2, |num| *num % 3 == 0) {
2478    ///     println!("{group:?}");
2479    /// }
2480    /// ```
2481    #[stable(feature = "rust1", since = "1.0.0")]
2482    #[inline]
2483    #[cfg(not(feature = "ferrocene_certified"))]
2484    pub fn splitn<F>(&self, n: usize, pred: F) -> SplitN<'_, T, F>
2485    where
2486        F: FnMut(&T) -> bool,
2487    {
2488        SplitN::new(self.split(pred), n)
2489    }
2490
2491    /// Returns an iterator over mutable subslices separated by elements that match
2492    /// `pred`, limited to returning at most `n` items. The matched element is
2493    /// not contained in the subslices.
2494    ///
2495    /// The last element returned, if any, will contain the remainder of the
2496    /// slice.
2497    ///
2498    /// # Examples
2499    ///
2500    /// ```
2501    /// let mut v = [10, 40, 30, 20, 60, 50];
2502    ///
2503    /// for group in v.splitn_mut(2, |num| *num % 3 == 0) {
2504    ///     group[0] = 1;
2505    /// }
2506    /// assert_eq!(v, [1, 40, 30, 1, 60, 50]);
2507    /// ```
2508    #[stable(feature = "rust1", since = "1.0.0")]
2509    #[inline]
2510    #[cfg(not(feature = "ferrocene_certified"))]
2511    pub fn splitn_mut<F>(&mut self, n: usize, pred: F) -> SplitNMut<'_, T, F>
2512    where
2513        F: FnMut(&T) -> bool,
2514    {
2515        SplitNMut::new(self.split_mut(pred), n)
2516    }
2517
2518    /// Returns an iterator over subslices separated by elements that match
2519    /// `pred` limited to returning at most `n` items. This starts at the end of
2520    /// the slice and works backwards. The matched element is not contained in
2521    /// the subslices.
2522    ///
2523    /// The last element returned, if any, will contain the remainder of the
2524    /// slice.
2525    ///
2526    /// # Examples
2527    ///
2528    /// Print the slice split once, starting from the end, by numbers divisible
2529    /// by 3 (i.e., `[50]`, `[10, 40, 30, 20]`):
2530    ///
2531    /// ```
2532    /// let v = [10, 40, 30, 20, 60, 50];
2533    ///
2534    /// for group in v.rsplitn(2, |num| *num % 3 == 0) {
2535    ///     println!("{group:?}");
2536    /// }
2537    /// ```
2538    #[stable(feature = "rust1", since = "1.0.0")]
2539    #[inline]
2540    #[cfg(not(feature = "ferrocene_certified"))]
2541    pub fn rsplitn<F>(&self, n: usize, pred: F) -> RSplitN<'_, T, F>
2542    where
2543        F: FnMut(&T) -> bool,
2544    {
2545        RSplitN::new(self.rsplit(pred), n)
2546    }
2547
2548    /// Returns an iterator over subslices separated by elements that match
2549    /// `pred` limited to returning at most `n` items. This starts at the end of
2550    /// the slice and works backwards. The matched element is not contained in
2551    /// the subslices.
2552    ///
2553    /// The last element returned, if any, will contain the remainder of the
2554    /// slice.
2555    ///
2556    /// # Examples
2557    ///
2558    /// ```
2559    /// let mut s = [10, 40, 30, 20, 60, 50];
2560    ///
2561    /// for group in s.rsplitn_mut(2, |num| *num % 3 == 0) {
2562    ///     group[0] = 1;
2563    /// }
2564    /// assert_eq!(s, [1, 40, 30, 20, 60, 1]);
2565    /// ```
2566    #[stable(feature = "rust1", since = "1.0.0")]
2567    #[inline]
2568    #[cfg(not(feature = "ferrocene_certified"))]
2569    pub fn rsplitn_mut<F>(&mut self, n: usize, pred: F) -> RSplitNMut<'_, T, F>
2570    where
2571        F: FnMut(&T) -> bool,
2572    {
2573        RSplitNMut::new(self.rsplit_mut(pred), n)
2574    }
2575
2576    /// Splits the slice on the first element that matches the specified
2577    /// predicate.
2578    ///
2579    /// If any matching elements are present in the slice, returns the prefix
2580    /// before the match and suffix after. The matching element itself is not
2581    /// included. If no elements match, returns `None`.
2582    ///
2583    /// # Examples
2584    ///
2585    /// ```
2586    /// #![feature(slice_split_once)]
2587    /// let s = [1, 2, 3, 2, 4];
2588    /// assert_eq!(s.split_once(|&x| x == 2), Some((
2589    ///     &[1][..],
2590    ///     &[3, 2, 4][..]
2591    /// )));
2592    /// assert_eq!(s.split_once(|&x| x == 0), None);
2593    /// ```
2594    #[unstable(feature = "slice_split_once", reason = "newly added", issue = "112811")]
2595    #[inline]
2596    #[cfg(not(feature = "ferrocene_certified"))]
2597    pub fn split_once<F>(&self, pred: F) -> Option<(&[T], &[T])>
2598    where
2599        F: FnMut(&T) -> bool,
2600    {
2601        let index = self.iter().position(pred)?;
2602        Some((&self[..index], &self[index + 1..]))
2603    }
2604
2605    /// Splits the slice on the last element that matches the specified
2606    /// predicate.
2607    ///
2608    /// If any matching elements are present in the slice, returns the prefix
2609    /// before the match and suffix after. The matching element itself is not
2610    /// included. If no elements match, returns `None`.
2611    ///
2612    /// # Examples
2613    ///
2614    /// ```
2615    /// #![feature(slice_split_once)]
2616    /// let s = [1, 2, 3, 2, 4];
2617    /// assert_eq!(s.rsplit_once(|&x| x == 2), Some((
2618    ///     &[1, 2, 3][..],
2619    ///     &[4][..]
2620    /// )));
2621    /// assert_eq!(s.rsplit_once(|&x| x == 0), None);
2622    /// ```
2623    #[unstable(feature = "slice_split_once", reason = "newly added", issue = "112811")]
2624    #[inline]
2625    #[cfg(not(feature = "ferrocene_certified"))]
2626    pub fn rsplit_once<F>(&self, pred: F) -> Option<(&[T], &[T])>
2627    where
2628        F: FnMut(&T) -> bool,
2629    {
2630        let index = self.iter().rposition(pred)?;
2631        Some((&self[..index], &self[index + 1..]))
2632    }
2633
2634    /// Returns `true` if the slice contains an element with the given value.
2635    ///
2636    /// This operation is *O*(*n*).
2637    ///
2638    /// Note that if you have a sorted slice, [`binary_search`] may be faster.
2639    ///
2640    /// [`binary_search`]: slice::binary_search
2641    ///
2642    /// # Examples
2643    ///
2644    /// ```
2645    /// let v = [10, 40, 30];
2646    /// assert!(v.contains(&30));
2647    /// assert!(!v.contains(&50));
2648    /// ```
2649    ///
2650    /// If you do not have a `&T`, but some other value that you can compare
2651    /// with one (for example, `String` implements `PartialEq<str>`), you can
2652    /// use `iter().any`:
2653    ///
2654    /// ```
2655    /// let v = [String::from("hello"), String::from("world")]; // slice of `String`
2656    /// assert!(v.iter().any(|e| e == "hello")); // search with `&str`
2657    /// assert!(!v.iter().any(|e| e == "hi"));
2658    /// ```
2659    #[stable(feature = "rust1", since = "1.0.0")]
2660    #[inline]
2661    #[must_use]
2662    #[cfg(not(feature = "ferrocene_certified"))]
2663    pub fn contains(&self, x: &T) -> bool
2664    where
2665        T: PartialEq,
2666    {
2667        cmp::SliceContains::slice_contains(x, self)
2668    }
2669
2670    /// Returns `true` if `needle` is a prefix of the slice or equal to the slice.
2671    ///
2672    /// # Examples
2673    ///
2674    /// ```
2675    /// let v = [10, 40, 30];
2676    /// assert!(v.starts_with(&[10]));
2677    /// assert!(v.starts_with(&[10, 40]));
2678    /// assert!(v.starts_with(&v));
2679    /// assert!(!v.starts_with(&[50]));
2680    /// assert!(!v.starts_with(&[10, 50]));
2681    /// ```
2682    ///
2683    /// Always returns `true` if `needle` is an empty slice:
2684    ///
2685    /// ```
2686    /// let v = &[10, 40, 30];
2687    /// assert!(v.starts_with(&[]));
2688    /// let v: &[u8] = &[];
2689    /// assert!(v.starts_with(&[]));
2690    /// ```
2691    #[stable(feature = "rust1", since = "1.0.0")]
2692    #[must_use]
2693    #[cfg(not(feature = "ferrocene_certified"))]
2694    pub fn starts_with(&self, needle: &[T]) -> bool
2695    where
2696        T: PartialEq,
2697    {
2698        let n = needle.len();
2699        self.len() >= n && needle == &self[..n]
2700    }
2701
2702    /// Returns `true` if `needle` is a suffix of the slice or equal to the slice.
2703    ///
2704    /// # Examples
2705    ///
2706    /// ```
2707    /// let v = [10, 40, 30];
2708    /// assert!(v.ends_with(&[30]));
2709    /// assert!(v.ends_with(&[40, 30]));
2710    /// assert!(v.ends_with(&v));
2711    /// assert!(!v.ends_with(&[50]));
2712    /// assert!(!v.ends_with(&[50, 30]));
2713    /// ```
2714    ///
2715    /// Always returns `true` if `needle` is an empty slice:
2716    ///
2717    /// ```
2718    /// let v = &[10, 40, 30];
2719    /// assert!(v.ends_with(&[]));
2720    /// let v: &[u8] = &[];
2721    /// assert!(v.ends_with(&[]));
2722    /// ```
2723    #[stable(feature = "rust1", since = "1.0.0")]
2724    #[must_use]
2725    #[cfg(not(feature = "ferrocene_certified"))]
2726    pub fn ends_with(&self, needle: &[T]) -> bool
2727    where
2728        T: PartialEq,
2729    {
2730        let (m, n) = (self.len(), needle.len());
2731        m >= n && needle == &self[m - n..]
2732    }
2733
2734    /// Returns a subslice with the prefix removed.
2735    ///
2736    /// If the slice starts with `prefix`, returns the subslice after the prefix, wrapped in `Some`.
2737    /// If `prefix` is empty, simply returns the original slice. If `prefix` is equal to the
2738    /// original slice, returns an empty slice.
2739    ///
2740    /// If the slice does not start with `prefix`, returns `None`.
2741    ///
2742    /// # Examples
2743    ///
2744    /// ```
2745    /// let v = &[10, 40, 30];
2746    /// assert_eq!(v.strip_prefix(&[10]), Some(&[40, 30][..]));
2747    /// assert_eq!(v.strip_prefix(&[10, 40]), Some(&[30][..]));
2748    /// assert_eq!(v.strip_prefix(&[10, 40, 30]), Some(&[][..]));
2749    /// assert_eq!(v.strip_prefix(&[50]), None);
2750    /// assert_eq!(v.strip_prefix(&[10, 50]), None);
2751    ///
2752    /// let prefix : &str = "he";
2753    /// assert_eq!(b"hello".strip_prefix(prefix.as_bytes()),
2754    ///            Some(b"llo".as_ref()));
2755    /// ```
2756    #[must_use = "returns the subslice without modifying the original"]
2757    #[stable(feature = "slice_strip", since = "1.51.0")]
2758    #[cfg(not(feature = "ferrocene_certified"))]
2759    pub fn strip_prefix<P: SlicePattern<Item = T> + ?Sized>(&self, prefix: &P) -> Option<&[T]>
2760    where
2761        T: PartialEq,
2762    {
2763        // This function will need rewriting if and when SlicePattern becomes more sophisticated.
2764        let prefix = prefix.as_slice();
2765        let n = prefix.len();
2766        if n <= self.len() {
2767            let (head, tail) = self.split_at(n);
2768            if head == prefix {
2769                return Some(tail);
2770            }
2771        }
2772        None
2773    }
2774
2775    /// Returns a subslice with the suffix removed.
2776    ///
2777    /// If the slice ends with `suffix`, returns the subslice before the suffix, wrapped in `Some`.
2778    /// If `suffix` is empty, simply returns the original slice. If `suffix` is equal to the
2779    /// original slice, returns an empty slice.
2780    ///
2781    /// If the slice does not end with `suffix`, returns `None`.
2782    ///
2783    /// # Examples
2784    ///
2785    /// ```
2786    /// let v = &[10, 40, 30];
2787    /// assert_eq!(v.strip_suffix(&[30]), Some(&[10, 40][..]));
2788    /// assert_eq!(v.strip_suffix(&[40, 30]), Some(&[10][..]));
2789    /// assert_eq!(v.strip_suffix(&[10, 40, 30]), Some(&[][..]));
2790    /// assert_eq!(v.strip_suffix(&[50]), None);
2791    /// assert_eq!(v.strip_suffix(&[50, 30]), None);
2792    /// ```
2793    #[must_use = "returns the subslice without modifying the original"]
2794    #[stable(feature = "slice_strip", since = "1.51.0")]
2795    #[cfg(not(feature = "ferrocene_certified"))]
2796    pub fn strip_suffix<P: SlicePattern<Item = T> + ?Sized>(&self, suffix: &P) -> Option<&[T]>
2797    where
2798        T: PartialEq,
2799    {
2800        // This function will need rewriting if and when SlicePattern becomes more sophisticated.
2801        let suffix = suffix.as_slice();
2802        let (len, n) = (self.len(), suffix.len());
2803        if n <= len {
2804            let (head, tail) = self.split_at(len - n);
2805            if tail == suffix {
2806                return Some(head);
2807            }
2808        }
2809        None
2810    }
2811
2812    /// Returns a subslice with the optional prefix removed.
2813    ///
2814    /// If the slice starts with `prefix`, returns the subslice after the prefix.  If `prefix`
2815    /// is empty or the slice does not start with `prefix`, simply returns the original slice.
2816    /// If `prefix` is equal to the original slice, returns an empty slice.
2817    ///
2818    /// # Examples
2819    ///
2820    /// ```
2821    /// #![feature(trim_prefix_suffix)]
2822    ///
2823    /// let v = &[10, 40, 30];
2824    ///
2825    /// // Prefix present - removes it
2826    /// assert_eq!(v.trim_prefix(&[10]), &[40, 30][..]);
2827    /// assert_eq!(v.trim_prefix(&[10, 40]), &[30][..]);
2828    /// assert_eq!(v.trim_prefix(&[10, 40, 30]), &[][..]);
2829    ///
2830    /// // Prefix absent - returns original slice
2831    /// assert_eq!(v.trim_prefix(&[50]), &[10, 40, 30][..]);
2832    /// assert_eq!(v.trim_prefix(&[10, 50]), &[10, 40, 30][..]);
2833    ///
2834    /// let prefix : &str = "he";
2835    /// assert_eq!(b"hello".trim_prefix(prefix.as_bytes()), b"llo".as_ref());
2836    /// ```
2837    #[must_use = "returns the subslice without modifying the original"]
2838    #[unstable(feature = "trim_prefix_suffix", issue = "142312")]
2839    #[cfg(not(feature = "ferrocene_certified"))]
2840    pub fn trim_prefix<P: SlicePattern<Item = T> + ?Sized>(&self, prefix: &P) -> &[T]
2841    where
2842        T: PartialEq,
2843    {
2844        // This function will need rewriting if and when SlicePattern becomes more sophisticated.
2845        let prefix = prefix.as_slice();
2846        let n = prefix.len();
2847        if n <= self.len() {
2848            let (head, tail) = self.split_at(n);
2849            if head == prefix {
2850                return tail;
2851            }
2852        }
2853        self
2854    }
2855
2856    /// Returns a subslice with the optional suffix removed.
2857    ///
2858    /// If the slice ends with `suffix`, returns the subslice before the suffix.  If `suffix`
2859    /// is empty or the slice does not end with `suffix`, simply returns the original slice.
2860    /// If `suffix` is equal to the original slice, returns an empty slice.
2861    ///
2862    /// # Examples
2863    ///
2864    /// ```
2865    /// #![feature(trim_prefix_suffix)]
2866    ///
2867    /// let v = &[10, 40, 30];
2868    ///
2869    /// // Suffix present - removes it
2870    /// assert_eq!(v.trim_suffix(&[30]), &[10, 40][..]);
2871    /// assert_eq!(v.trim_suffix(&[40, 30]), &[10][..]);
2872    /// assert_eq!(v.trim_suffix(&[10, 40, 30]), &[][..]);
2873    ///
2874    /// // Suffix absent - returns original slice
2875    /// assert_eq!(v.trim_suffix(&[50]), &[10, 40, 30][..]);
2876    /// assert_eq!(v.trim_suffix(&[50, 30]), &[10, 40, 30][..]);
2877    /// ```
2878    #[must_use = "returns the subslice without modifying the original"]
2879    #[unstable(feature = "trim_prefix_suffix", issue = "142312")]
2880    #[cfg(not(feature = "ferrocene_certified"))]
2881    pub fn trim_suffix<P: SlicePattern<Item = T> + ?Sized>(&self, suffix: &P) -> &[T]
2882    where
2883        T: PartialEq,
2884    {
2885        // This function will need rewriting if and when SlicePattern becomes more sophisticated.
2886        let suffix = suffix.as_slice();
2887        let (len, n) = (self.len(), suffix.len());
2888        if n <= len {
2889            let (head, tail) = self.split_at(len - n);
2890            if tail == suffix {
2891                return head;
2892            }
2893        }
2894        self
2895    }
2896
2897    /// Binary searches this slice for a given element.
2898    /// If the slice is not sorted, the returned result is unspecified and
2899    /// meaningless.
2900    ///
2901    /// If the value is found then [`Result::Ok`] is returned, containing the
2902    /// index of the matching element. If there are multiple matches, then any
2903    /// one of the matches could be returned. The index is chosen
2904    /// deterministically, but is subject to change in future versions of Rust.
2905    /// If the value is not found then [`Result::Err`] is returned, containing
2906    /// the index where a matching element could be inserted while maintaining
2907    /// sorted order.
2908    ///
2909    /// See also [`binary_search_by`], [`binary_search_by_key`], and [`partition_point`].
2910    ///
2911    /// [`binary_search_by`]: slice::binary_search_by
2912    /// [`binary_search_by_key`]: slice::binary_search_by_key
2913    /// [`partition_point`]: slice::partition_point
2914    ///
2915    /// # Examples
2916    ///
2917    /// Looks up a series of four elements. The first is found, with a
2918    /// uniquely determined position; the second and third are not
2919    /// found; the fourth could match any position in `[1, 4]`.
2920    ///
2921    /// ```
2922    /// let s = [0, 1, 1, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55];
2923    ///
2924    /// assert_eq!(s.binary_search(&13),  Ok(9));
2925    /// assert_eq!(s.binary_search(&4),   Err(7));
2926    /// assert_eq!(s.binary_search(&100), Err(13));
2927    /// let r = s.binary_search(&1);
2928    /// assert!(match r { Ok(1..=4) => true, _ => false, });
2929    /// ```
2930    ///
2931    /// If you want to find that whole *range* of matching items, rather than
2932    /// an arbitrary matching one, that can be done using [`partition_point`]:
2933    /// ```
2934    /// let s = [0, 1, 1, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55];
2935    ///
2936    /// let low = s.partition_point(|x| x < &1);
2937    /// assert_eq!(low, 1);
2938    /// let high = s.partition_point(|x| x <= &1);
2939    /// assert_eq!(high, 5);
2940    /// let r = s.binary_search(&1);
2941    /// assert!((low..high).contains(&r.unwrap()));
2942    ///
2943    /// assert!(s[..low].iter().all(|&x| x < 1));
2944    /// assert!(s[low..high].iter().all(|&x| x == 1));
2945    /// assert!(s[high..].iter().all(|&x| x > 1));
2946    ///
2947    /// // For something not found, the "range" of equal items is empty
2948    /// assert_eq!(s.partition_point(|x| x < &11), 9);
2949    /// assert_eq!(s.partition_point(|x| x <= &11), 9);
2950    /// assert_eq!(s.binary_search(&11), Err(9));
2951    /// ```
2952    ///
2953    /// If you want to insert an item to a sorted vector, while maintaining
2954    /// sort order, consider using [`partition_point`]:
2955    ///
2956    /// ```
2957    /// let mut s = vec![0, 1, 1, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55];
2958    /// let num = 42;
2959    /// let idx = s.partition_point(|&x| x <= num);
2960    /// // If `num` is unique, `s.partition_point(|&x| x < num)` (with `<`) is equivalent to
2961    /// // `s.binary_search(&num).unwrap_or_else(|x| x)`, but using `<=` will allow `insert`
2962    /// // to shift less elements.
2963    /// s.insert(idx, num);
2964    /// assert_eq!(s, [0, 1, 1, 1, 1, 2, 3, 5, 8, 13, 21, 34, 42, 55]);
2965    /// ```
2966    #[stable(feature = "rust1", since = "1.0.0")]
2967    #[cfg(not(feature = "ferrocene_certified"))]
2968    pub fn binary_search(&self, x: &T) -> Result<usize, usize>
2969    where
2970        T: Ord,
2971    {
2972        self.binary_search_by(|p| p.cmp(x))
2973    }
2974
2975    /// Binary searches this slice with a comparator function.
2976    ///
2977    /// The comparator function should return an order code that indicates
2978    /// whether its argument is `Less`, `Equal` or `Greater` the desired
2979    /// target.
2980    /// If the slice is not sorted or if the comparator function does not
2981    /// implement an order consistent with the sort order of the underlying
2982    /// slice, the returned result is unspecified and meaningless.
2983    ///
2984    /// If the value is found then [`Result::Ok`] is returned, containing the
2985    /// index of the matching element. If there are multiple matches, then any
2986    /// one of the matches could be returned. The index is chosen
2987    /// deterministically, but is subject to change in future versions of Rust.
2988    /// If the value is not found then [`Result::Err`] is returned, containing
2989    /// the index where a matching element could be inserted while maintaining
2990    /// sorted order.
2991    ///
2992    /// See also [`binary_search`], [`binary_search_by_key`], and [`partition_point`].
2993    ///
2994    /// [`binary_search`]: slice::binary_search
2995    /// [`binary_search_by_key`]: slice::binary_search_by_key
2996    /// [`partition_point`]: slice::partition_point
2997    ///
2998    /// # Examples
2999    ///
3000    /// Looks up a series of four elements. The first is found, with a
3001    /// uniquely determined position; the second and third are not
3002    /// found; the fourth could match any position in `[1, 4]`.
3003    ///
3004    /// ```
3005    /// let s = [0, 1, 1, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55];
3006    ///
3007    /// let seek = 13;
3008    /// assert_eq!(s.binary_search_by(|probe| probe.cmp(&seek)), Ok(9));
3009    /// let seek = 4;
3010    /// assert_eq!(s.binary_search_by(|probe| probe.cmp(&seek)), Err(7));
3011    /// let seek = 100;
3012    /// assert_eq!(s.binary_search_by(|probe| probe.cmp(&seek)), Err(13));
3013    /// let seek = 1;
3014    /// let r = s.binary_search_by(|probe| probe.cmp(&seek));
3015    /// assert!(match r { Ok(1..=4) => true, _ => false, });
3016    /// ```
3017    #[stable(feature = "rust1", since = "1.0.0")]
3018    #[inline]
3019    #[cfg(not(feature = "ferrocene_certified"))]
3020    pub fn binary_search_by<'a, F>(&'a self, mut f: F) -> Result<usize, usize>
3021    where
3022        F: FnMut(&'a T) -> Ordering,
3023    {
3024        let mut size = self.len();
3025        if size == 0 {
3026            return Err(0);
3027        }
3028        let mut base = 0usize;
3029
3030        // This loop intentionally doesn't have an early exit if the comparison
3031        // returns Equal. We want the number of loop iterations to depend *only*
3032        // on the size of the input slice so that the CPU can reliably predict
3033        // the loop count.
3034        while size > 1 {
3035            let half = size / 2;
3036            let mid = base + half;
3037
3038            // SAFETY: the call is made safe by the following invariants:
3039            // - `mid >= 0`: by definition
3040            // - `mid < size`: `mid = size / 2 + size / 4 + size / 8 ...`
3041            let cmp = f(unsafe { self.get_unchecked(mid) });
3042
3043            // Binary search interacts poorly with branch prediction, so force
3044            // the compiler to use conditional moves if supported by the target
3045            // architecture.
3046            base = hint::select_unpredictable(cmp == Greater, base, mid);
3047
3048            // This is imprecise in the case where `size` is odd and the
3049            // comparison returns Greater: the mid element still gets included
3050            // by `size` even though it's known to be larger than the element
3051            // being searched for.
3052            //
3053            // This is fine though: we gain more performance by keeping the
3054            // loop iteration count invariant (and thus predictable) than we
3055            // lose from considering one additional element.
3056            size -= half;
3057        }
3058
3059        // SAFETY: base is always in [0, size) because base <= mid.
3060        let cmp = f(unsafe { self.get_unchecked(base) });
3061        if cmp == Equal {
3062            // SAFETY: same as the `get_unchecked` above.
3063            unsafe { hint::assert_unchecked(base < self.len()) };
3064            Ok(base)
3065        } else {
3066            let result = base + (cmp == Less) as usize;
3067            // SAFETY: same as the `get_unchecked` above.
3068            // Note that this is `<=`, unlike the assume in the `Ok` path.
3069            unsafe { hint::assert_unchecked(result <= self.len()) };
3070            Err(result)
3071        }
3072    }
3073
3074    /// Binary searches this slice with a key extraction function.
3075    ///
3076    /// Assumes that the slice is sorted by the key, for instance with
3077    /// [`sort_by_key`] using the same key extraction function.
3078    /// If the slice is not sorted by the key, the returned result is
3079    /// unspecified and meaningless.
3080    ///
3081    /// If the value is found then [`Result::Ok`] is returned, containing the
3082    /// index of the matching element. If there are multiple matches, then any
3083    /// one of the matches could be returned. The index is chosen
3084    /// deterministically, but is subject to change in future versions of Rust.
3085    /// If the value is not found then [`Result::Err`] is returned, containing
3086    /// the index where a matching element could be inserted while maintaining
3087    /// sorted order.
3088    ///
3089    /// See also [`binary_search`], [`binary_search_by`], and [`partition_point`].
3090    ///
3091    /// [`sort_by_key`]: slice::sort_by_key
3092    /// [`binary_search`]: slice::binary_search
3093    /// [`binary_search_by`]: slice::binary_search_by
3094    /// [`partition_point`]: slice::partition_point
3095    ///
3096    /// # Examples
3097    ///
3098    /// Looks up a series of four elements in a slice of pairs sorted by
3099    /// their second elements. The first is found, with a uniquely
3100    /// determined position; the second and third are not found; the
3101    /// fourth could match any position in `[1, 4]`.
3102    ///
3103    /// ```
3104    /// let s = [(0, 0), (2, 1), (4, 1), (5, 1), (3, 1),
3105    ///          (1, 2), (2, 3), (4, 5), (5, 8), (3, 13),
3106    ///          (1, 21), (2, 34), (4, 55)];
3107    ///
3108    /// assert_eq!(s.binary_search_by_key(&13, |&(a, b)| b),  Ok(9));
3109    /// assert_eq!(s.binary_search_by_key(&4, |&(a, b)| b),   Err(7));
3110    /// assert_eq!(s.binary_search_by_key(&100, |&(a, b)| b), Err(13));
3111    /// let r = s.binary_search_by_key(&1, |&(a, b)| b);
3112    /// assert!(match r { Ok(1..=4) => true, _ => false, });
3113    /// ```
3114    // Lint rustdoc::broken_intra_doc_links is allowed as `slice::sort_by_key` is
3115    // in crate `alloc`, and as such doesn't exists yet when building `core`: #74481.
3116    // This breaks links when slice is displayed in core, but changing it to use relative links
3117    // would break when the item is re-exported. So allow the core links to be broken for now.
3118    #[allow(rustdoc::broken_intra_doc_links)]
3119    #[stable(feature = "slice_binary_search_by_key", since = "1.10.0")]
3120    #[inline]
3121    #[cfg(not(feature = "ferrocene_certified"))]
3122    pub fn binary_search_by_key<'a, B, F>(&'a self, b: &B, mut f: F) -> Result<usize, usize>
3123    where
3124        F: FnMut(&'a T) -> B,
3125        B: Ord,
3126    {
3127        self.binary_search_by(|k| f(k).cmp(b))
3128    }
3129
3130    /// Sorts the slice in ascending order **without** preserving the initial order of equal elements.
3131    ///
3132    /// This sort is unstable (i.e., may reorder equal elements), in-place (i.e., does not
3133    /// allocate), and *O*(*n* \* log(*n*)) worst-case.
3134    ///
3135    /// If the implementation of [`Ord`] for `T` does not implement a [total order], the function
3136    /// may panic; even if the function exits normally, the resulting order of elements in the slice
3137    /// is unspecified. See also the note on panicking below.
3138    ///
3139    /// For example `|a, b| (a - b).cmp(a)` is a comparison function that is neither transitive nor
3140    /// reflexive nor total, `a < b < c < a` with `a = 1, b = 2, c = 3`. For more information and
3141    /// examples see the [`Ord`] documentation.
3142    ///
3143    ///
3144    /// All original elements will remain in the slice and any possible modifications via interior
3145    /// mutability are observed in the input. Same is true if the implementation of [`Ord`] for `T` panics.
3146    ///
3147    /// Sorting types that only implement [`PartialOrd`] such as [`f32`] and [`f64`] require
3148    /// additional precautions. For example, `f32::NAN != f32::NAN`, which doesn't fulfill the
3149    /// reflexivity requirement of [`Ord`]. By using an alternative comparison function with
3150    /// `slice::sort_unstable_by` such as [`f32::total_cmp`] or [`f64::total_cmp`] that defines a
3151    /// [total order] users can sort slices containing floating-point values. Alternatively, if all
3152    /// values in the slice are guaranteed to be in a subset for which [`PartialOrd::partial_cmp`]
3153    /// forms a [total order], it's possible to sort the slice with `sort_unstable_by(|a, b|
3154    /// a.partial_cmp(b).unwrap())`.
3155    ///
3156    /// # Current implementation
3157    ///
3158    /// The current implementation is based on [ipnsort] by Lukas Bergdoll and Orson Peters, which
3159    /// combines the fast average case of quicksort with the fast worst case of heapsort, achieving
3160    /// linear time on fully sorted and reversed inputs. On inputs with k distinct elements, the
3161    /// expected time to sort the data is *O*(*n* \* log(*k*)).
3162    ///
3163    /// It is typically faster than stable sorting, except in a few special cases, e.g., when the
3164    /// slice is partially sorted.
3165    ///
3166    /// # Panics
3167    ///
3168    /// May panic if the implementation of [`Ord`] for `T` does not implement a [total order], or if
3169    /// the [`Ord`] implementation panics.
3170    ///
3171    /// # Examples
3172    ///
3173    /// ```
3174    /// let mut v = [4, -5, 1, -3, 2];
3175    ///
3176    /// v.sort_unstable();
3177    /// assert_eq!(v, [-5, -3, 1, 2, 4]);
3178    /// ```
3179    ///
3180    /// [ipnsort]: https://github.com/Voultapher/sort-research-rs/tree/main/ipnsort
3181    /// [total order]: https://en.wikipedia.org/wiki/Total_order
3182    #[stable(feature = "sort_unstable", since = "1.20.0")]
3183    #[inline]
3184    #[cfg(not(feature = "ferrocene_certified"))]
3185    pub fn sort_unstable(&mut self)
3186    where
3187        T: Ord,
3188    {
3189        sort::unstable::sort(self, &mut T::lt);
3190    }
3191
3192    /// Sorts the slice in ascending order with a comparison function, **without** preserving the
3193    /// initial order of equal elements.
3194    ///
3195    /// This sort is unstable (i.e., may reorder equal elements), in-place (i.e., does not
3196    /// allocate), and *O*(*n* \* log(*n*)) worst-case.
3197    ///
3198    /// If the comparison function `compare` does not implement a [total order], the function
3199    /// may panic; even if the function exits normally, the resulting order of elements in the slice
3200    /// is unspecified. See also the note on panicking below.
3201    ///
3202    /// For example `|a, b| (a - b).cmp(a)` is a comparison function that is neither transitive nor
3203    /// reflexive nor total, `a < b < c < a` with `a = 1, b = 2, c = 3`. For more information and
3204    /// examples see the [`Ord`] documentation.
3205    ///
3206    /// All original elements will remain in the slice and any possible modifications via interior
3207    /// mutability are observed in the input. Same is true if `compare` panics.
3208    ///
3209    /// # Current implementation
3210    ///
3211    /// The current implementation is based on [ipnsort] by Lukas Bergdoll and Orson Peters, which
3212    /// combines the fast average case of quicksort with the fast worst case of heapsort, achieving
3213    /// linear time on fully sorted and reversed inputs. On inputs with k distinct elements, the
3214    /// expected time to sort the data is *O*(*n* \* log(*k*)).
3215    ///
3216    /// It is typically faster than stable sorting, except in a few special cases, e.g., when the
3217    /// slice is partially sorted.
3218    ///
3219    /// # Panics
3220    ///
3221    /// May panic if the `compare` does not implement a [total order], or if
3222    /// the `compare` itself panics.
3223    ///
3224    /// # Examples
3225    ///
3226    /// ```
3227    /// let mut v = [4, -5, 1, -3, 2];
3228    /// v.sort_unstable_by(|a, b| a.cmp(b));
3229    /// assert_eq!(v, [-5, -3, 1, 2, 4]);
3230    ///
3231    /// // reverse sorting
3232    /// v.sort_unstable_by(|a, b| b.cmp(a));
3233    /// assert_eq!(v, [4, 2, 1, -3, -5]);
3234    /// ```
3235    ///
3236    /// [ipnsort]: https://github.com/Voultapher/sort-research-rs/tree/main/ipnsort
3237    /// [total order]: https://en.wikipedia.org/wiki/Total_order
3238    #[stable(feature = "sort_unstable", since = "1.20.0")]
3239    #[inline]
3240    #[cfg(not(feature = "ferrocene_certified"))]
3241    pub fn sort_unstable_by<F>(&mut self, mut compare: F)
3242    where
3243        F: FnMut(&T, &T) -> Ordering,
3244    {
3245        sort::unstable::sort(self, &mut |a, b| compare(a, b) == Ordering::Less);
3246    }
3247
3248    /// Sorts the slice in ascending order with a key extraction function, **without** preserving
3249    /// the initial order of equal elements.
3250    ///
3251    /// This sort is unstable (i.e., may reorder equal elements), in-place (i.e., does not
3252    /// allocate), and *O*(*n* \* log(*n*)) worst-case.
3253    ///
3254    /// If the implementation of [`Ord`] for `K` does not implement a [total order], the function
3255    /// may panic; even if the function exits normally, the resulting order of elements in the slice
3256    /// is unspecified. See also the note on panicking below.
3257    ///
3258    /// For example `|a, b| (a - b).cmp(a)` is a comparison function that is neither transitive nor
3259    /// reflexive nor total, `a < b < c < a` with `a = 1, b = 2, c = 3`. For more information and
3260    /// examples see the [`Ord`] documentation.
3261    ///
3262    /// All original elements will remain in the slice and any possible modifications via interior
3263    /// mutability are observed in the input. Same is true if the implementation of [`Ord`] for `K` panics.
3264    ///
3265    /// # Current implementation
3266    ///
3267    /// The current implementation is based on [ipnsort] by Lukas Bergdoll and Orson Peters, which
3268    /// combines the fast average case of quicksort with the fast worst case of heapsort, achieving
3269    /// linear time on fully sorted and reversed inputs. On inputs with k distinct elements, the
3270    /// expected time to sort the data is *O*(*n* \* log(*k*)).
3271    ///
3272    /// It is typically faster than stable sorting, except in a few special cases, e.g., when the
3273    /// slice is partially sorted.
3274    ///
3275    /// # Panics
3276    ///
3277    /// May panic if the implementation of [`Ord`] for `K` does not implement a [total order], or if
3278    /// the [`Ord`] implementation panics.
3279    ///
3280    /// # Examples
3281    ///
3282    /// ```
3283    /// let mut v = [4i32, -5, 1, -3, 2];
3284    ///
3285    /// v.sort_unstable_by_key(|k| k.abs());
3286    /// assert_eq!(v, [1, 2, -3, 4, -5]);
3287    /// ```
3288    ///
3289    /// [ipnsort]: https://github.com/Voultapher/sort-research-rs/tree/main/ipnsort
3290    /// [total order]: https://en.wikipedia.org/wiki/Total_order
3291    #[stable(feature = "sort_unstable", since = "1.20.0")]
3292    #[inline]
3293    #[cfg(not(feature = "ferrocene_certified"))]
3294    pub fn sort_unstable_by_key<K, F>(&mut self, mut f: F)
3295    where
3296        F: FnMut(&T) -> K,
3297        K: Ord,
3298    {
3299        sort::unstable::sort(self, &mut |a, b| f(a).lt(&f(b)));
3300    }
3301
3302    /// Reorders the slice such that the element at `index` is at a sort-order position. All
3303    /// elements before `index` will be `<=` to this value, and all elements after will be `>=` to
3304    /// it.
3305    ///
3306    /// This reordering is unstable (i.e. any element that compares equal to the nth element may end
3307    /// up at that position), in-place (i.e.  does not allocate), and runs in *O*(*n*) time. This
3308    /// function is also known as "kth element" in other libraries.
3309    ///
3310    /// Returns a triple that partitions the reordered slice:
3311    ///
3312    /// * The unsorted subslice before `index`, whose elements all satisfy `x <= self[index]`.
3313    ///
3314    /// * The element at `index`.
3315    ///
3316    /// * The unsorted subslice after `index`, whose elements all satisfy `x >= self[index]`.
3317    ///
3318    /// # Current implementation
3319    ///
3320    /// The current algorithm is an introselect implementation based on [ipnsort] by Lukas Bergdoll
3321    /// and Orson Peters, which is also the basis for [`sort_unstable`]. The fallback algorithm is
3322    /// Median of Medians using Tukey's Ninther for pivot selection, which guarantees linear runtime
3323    /// for all inputs.
3324    ///
3325    /// [`sort_unstable`]: slice::sort_unstable
3326    ///
3327    /// # Panics
3328    ///
3329    /// Panics when `index >= len()`, and so always panics on empty slices.
3330    ///
3331    /// May panic if the implementation of [`Ord`] for `T` does not implement a [total order].
3332    ///
3333    /// # Examples
3334    ///
3335    /// ```
3336    /// let mut v = [-5i32, 4, 2, -3, 1];
3337    ///
3338    /// // Find the items `<=` to the median, the median itself, and the items `>=` to it.
3339    /// let (lesser, median, greater) = v.select_nth_unstable(2);
3340    ///
3341    /// assert!(lesser == [-3, -5] || lesser == [-5, -3]);
3342    /// assert_eq!(median, &mut 1);
3343    /// assert!(greater == [4, 2] || greater == [2, 4]);
3344    ///
3345    /// // We are only guaranteed the slice will be one of the following, based on the way we sort
3346    /// // about the specified index.
3347    /// assert!(v == [-3, -5, 1, 2, 4] ||
3348    ///         v == [-5, -3, 1, 2, 4] ||
3349    ///         v == [-3, -5, 1, 4, 2] ||
3350    ///         v == [-5, -3, 1, 4, 2]);
3351    /// ```
3352    ///
3353    /// [ipnsort]: https://github.com/Voultapher/sort-research-rs/tree/main/ipnsort
3354    /// [total order]: https://en.wikipedia.org/wiki/Total_order
3355    #[stable(feature = "slice_select_nth_unstable", since = "1.49.0")]
3356    #[inline]
3357    #[cfg(not(feature = "ferrocene_certified"))]
3358    pub fn select_nth_unstable(&mut self, index: usize) -> (&mut [T], &mut T, &mut [T])
3359    where
3360        T: Ord,
3361    {
3362        sort::select::partition_at_index(self, index, T::lt)
3363    }
3364
3365    /// Reorders the slice with a comparator function such that the element at `index` is at a
3366    /// sort-order position. All elements before `index` will be `<=` to this value, and all
3367    /// elements after will be `>=` to it, according to the comparator function.
3368    ///
3369    /// This reordering is unstable (i.e. any element that compares equal to the nth element may end
3370    /// up at that position), in-place (i.e.  does not allocate), and runs in *O*(*n*) time. This
3371    /// function is also known as "kth element" in other libraries.
3372    ///
3373    /// Returns a triple partitioning the reordered slice:
3374    ///
3375    /// * The unsorted subslice before `index`, whose elements all satisfy
3376    ///   `compare(x, self[index]).is_le()`.
3377    ///
3378    /// * The element at `index`.
3379    ///
3380    /// * The unsorted subslice after `index`, whose elements all satisfy
3381    ///   `compare(x, self[index]).is_ge()`.
3382    ///
3383    /// # Current implementation
3384    ///
3385    /// The current algorithm is an introselect implementation based on [ipnsort] by Lukas Bergdoll
3386    /// and Orson Peters, which is also the basis for [`sort_unstable`]. The fallback algorithm is
3387    /// Median of Medians using Tukey's Ninther for pivot selection, which guarantees linear runtime
3388    /// for all inputs.
3389    ///
3390    /// [`sort_unstable`]: slice::sort_unstable
3391    ///
3392    /// # Panics
3393    ///
3394    /// Panics when `index >= len()`, and so always panics on empty slices.
3395    ///
3396    /// May panic if `compare` does not implement a [total order].
3397    ///
3398    /// # Examples
3399    ///
3400    /// ```
3401    /// let mut v = [-5i32, 4, 2, -3, 1];
3402    ///
3403    /// // Find the items `>=` to the median, the median itself, and the items `<=` to it, by using
3404    /// // a reversed comparator.
3405    /// let (before, median, after) = v.select_nth_unstable_by(2, |a, b| b.cmp(a));
3406    ///
3407    /// assert!(before == [4, 2] || before == [2, 4]);
3408    /// assert_eq!(median, &mut 1);
3409    /// assert!(after == [-3, -5] || after == [-5, -3]);
3410    ///
3411    /// // We are only guaranteed the slice will be one of the following, based on the way we sort
3412    /// // about the specified index.
3413    /// assert!(v == [2, 4, 1, -5, -3] ||
3414    ///         v == [2, 4, 1, -3, -5] ||
3415    ///         v == [4, 2, 1, -5, -3] ||
3416    ///         v == [4, 2, 1, -3, -5]);
3417    /// ```
3418    ///
3419    /// [ipnsort]: https://github.com/Voultapher/sort-research-rs/tree/main/ipnsort
3420    /// [total order]: https://en.wikipedia.org/wiki/Total_order
3421    #[stable(feature = "slice_select_nth_unstable", since = "1.49.0")]
3422    #[inline]
3423    #[cfg(not(feature = "ferrocene_certified"))]
3424    pub fn select_nth_unstable_by<F>(
3425        &mut self,
3426        index: usize,
3427        mut compare: F,
3428    ) -> (&mut [T], &mut T, &mut [T])
3429    where
3430        F: FnMut(&T, &T) -> Ordering,
3431    {
3432        sort::select::partition_at_index(self, index, |a: &T, b: &T| compare(a, b) == Less)
3433    }
3434
3435    /// Reorders the slice with a key extraction function such that the element at `index` is at a
3436    /// sort-order position. All elements before `index` will have keys `<=` to the key at `index`,
3437    /// and all elements after will have keys `>=` to it.
3438    ///
3439    /// This reordering is unstable (i.e. any element that compares equal to the nth element may end
3440    /// up at that position), in-place (i.e.  does not allocate), and runs in *O*(*n*) time. This
3441    /// function is also known as "kth element" in other libraries.
3442    ///
3443    /// Returns a triple partitioning the reordered slice:
3444    ///
3445    /// * The unsorted subslice before `index`, whose elements all satisfy `f(x) <= f(self[index])`.
3446    ///
3447    /// * The element at `index`.
3448    ///
3449    /// * The unsorted subslice after `index`, whose elements all satisfy `f(x) >= f(self[index])`.
3450    ///
3451    /// # Current implementation
3452    ///
3453    /// The current algorithm is an introselect implementation based on [ipnsort] by Lukas Bergdoll
3454    /// and Orson Peters, which is also the basis for [`sort_unstable`]. The fallback algorithm is
3455    /// Median of Medians using Tukey's Ninther for pivot selection, which guarantees linear runtime
3456    /// for all inputs.
3457    ///
3458    /// [`sort_unstable`]: slice::sort_unstable
3459    ///
3460    /// # Panics
3461    ///
3462    /// Panics when `index >= len()`, meaning it always panics on empty slices.
3463    ///
3464    /// May panic if `K: Ord` does not implement a total order.
3465    ///
3466    /// # Examples
3467    ///
3468    /// ```
3469    /// let mut v = [-5i32, 4, 1, -3, 2];
3470    ///
3471    /// // Find the items `<=` to the absolute median, the absolute median itself, and the items
3472    /// // `>=` to it.
3473    /// let (lesser, median, greater) = v.select_nth_unstable_by_key(2, |a| a.abs());
3474    ///
3475    /// assert!(lesser == [1, 2] || lesser == [2, 1]);
3476    /// assert_eq!(median, &mut -3);
3477    /// assert!(greater == [4, -5] || greater == [-5, 4]);
3478    ///
3479    /// // We are only guaranteed the slice will be one of the following, based on the way we sort
3480    /// // about the specified index.
3481    /// assert!(v == [1, 2, -3, 4, -5] ||
3482    ///         v == [1, 2, -3, -5, 4] ||
3483    ///         v == [2, 1, -3, 4, -5] ||
3484    ///         v == [2, 1, -3, -5, 4]);
3485    /// ```
3486    ///
3487    /// [ipnsort]: https://github.com/Voultapher/sort-research-rs/tree/main/ipnsort
3488    /// [total order]: https://en.wikipedia.org/wiki/Total_order
3489    #[stable(feature = "slice_select_nth_unstable", since = "1.49.0")]
3490    #[inline]
3491    #[cfg(not(feature = "ferrocene_certified"))]
3492    pub fn select_nth_unstable_by_key<K, F>(
3493        &mut self,
3494        index: usize,
3495        mut f: F,
3496    ) -> (&mut [T], &mut T, &mut [T])
3497    where
3498        F: FnMut(&T) -> K,
3499        K: Ord,
3500    {
3501        sort::select::partition_at_index(self, index, |a: &T, b: &T| f(a).lt(&f(b)))
3502    }
3503
3504    /// Moves all consecutive repeated elements to the end of the slice according to the
3505    /// [`PartialEq`] trait implementation.
3506    ///
3507    /// Returns two slices. The first contains no consecutive repeated elements.
3508    /// The second contains all the duplicates in no specified order.
3509    ///
3510    /// If the slice is sorted, the first returned slice contains no duplicates.
3511    ///
3512    /// # Examples
3513    ///
3514    /// ```
3515    /// #![feature(slice_partition_dedup)]
3516    ///
3517    /// let mut slice = [1, 2, 2, 3, 3, 2, 1, 1];
3518    ///
3519    /// let (dedup, duplicates) = slice.partition_dedup();
3520    ///
3521    /// assert_eq!(dedup, [1, 2, 3, 2, 1]);
3522    /// assert_eq!(duplicates, [2, 3, 1]);
3523    /// ```
3524    #[unstable(feature = "slice_partition_dedup", issue = "54279")]
3525    #[inline]
3526    #[cfg(not(feature = "ferrocene_certified"))]
3527    pub fn partition_dedup(&mut self) -> (&mut [T], &mut [T])
3528    where
3529        T: PartialEq,
3530    {
3531        self.partition_dedup_by(|a, b| a == b)
3532    }
3533
3534    /// Moves all but the first of consecutive elements to the end of the slice satisfying
3535    /// a given equality relation.
3536    ///
3537    /// Returns two slices. The first contains no consecutive repeated elements.
3538    /// The second contains all the duplicates in no specified order.
3539    ///
3540    /// The `same_bucket` function is passed references to two elements from the slice and
3541    /// must determine if the elements compare equal. The elements are passed in opposite order
3542    /// from their order in the slice, so if `same_bucket(a, b)` returns `true`, `a` is moved
3543    /// at the end of the slice.
3544    ///
3545    /// If the slice is sorted, the first returned slice contains no duplicates.
3546    ///
3547    /// # Examples
3548    ///
3549    /// ```
3550    /// #![feature(slice_partition_dedup)]
3551    ///
3552    /// let mut slice = ["foo", "Foo", "BAZ", "Bar", "bar", "baz", "BAZ"];
3553    ///
3554    /// let (dedup, duplicates) = slice.partition_dedup_by(|a, b| a.eq_ignore_ascii_case(b));
3555    ///
3556    /// assert_eq!(dedup, ["foo", "BAZ", "Bar", "baz"]);
3557    /// assert_eq!(duplicates, ["bar", "Foo", "BAZ"]);
3558    /// ```
3559    #[unstable(feature = "slice_partition_dedup", issue = "54279")]
3560    #[inline]
3561    #[cfg(not(feature = "ferrocene_certified"))]
3562    pub fn partition_dedup_by<F>(&mut self, mut same_bucket: F) -> (&mut [T], &mut [T])
3563    where
3564        F: FnMut(&mut T, &mut T) -> bool,
3565    {
3566        // Although we have a mutable reference to `self`, we cannot make
3567        // *arbitrary* changes. The `same_bucket` calls could panic, so we
3568        // must ensure that the slice is in a valid state at all times.
3569        //
3570        // The way that we handle this is by using swaps; we iterate
3571        // over all the elements, swapping as we go so that at the end
3572        // the elements we wish to keep are in the front, and those we
3573        // wish to reject are at the back. We can then split the slice.
3574        // This operation is still `O(n)`.
3575        //
3576        // Example: We start in this state, where `r` represents "next
3577        // read" and `w` represents "next_write".
3578        //
3579        //           r
3580        //     +---+---+---+---+---+---+
3581        //     | 0 | 1 | 1 | 2 | 3 | 3 |
3582        //     +---+---+---+---+---+---+
3583        //           w
3584        //
3585        // Comparing self[r] against self[w-1], this is not a duplicate, so
3586        // we swap self[r] and self[w] (no effect as r==w) and then increment both
3587        // r and w, leaving us with:
3588        //
3589        //               r
3590        //     +---+---+---+---+---+---+
3591        //     | 0 | 1 | 1 | 2 | 3 | 3 |
3592        //     +---+---+---+---+---+---+
3593        //               w
3594        //
3595        // Comparing self[r] against self[w-1], this value is a duplicate,
3596        // so we increment `r` but leave everything else unchanged:
3597        //
3598        //                   r
3599        //     +---+---+---+---+---+---+
3600        //     | 0 | 1 | 1 | 2 | 3 | 3 |
3601        //     +---+---+---+---+---+---+
3602        //               w
3603        //
3604        // Comparing self[r] against self[w-1], this is not a duplicate,
3605        // so swap self[r] and self[w] and advance r and w:
3606        //
3607        //                       r
3608        //     +---+---+---+---+---+---+
3609        //     | 0 | 1 | 2 | 1 | 3 | 3 |
3610        //     +---+---+---+---+---+---+
3611        //                   w
3612        //
3613        // Not a duplicate, repeat:
3614        //
3615        //                           r
3616        //     +---+---+---+---+---+---+
3617        //     | 0 | 1 | 2 | 3 | 1 | 3 |
3618        //     +---+---+---+---+---+---+
3619        //                       w
3620        //
3621        // Duplicate, advance r. End of slice. Split at w.
3622
3623        let len = self.len();
3624        if len <= 1 {
3625            return (self, &mut []);
3626        }
3627
3628        let ptr = self.as_mut_ptr();
3629        let mut next_read: usize = 1;
3630        let mut next_write: usize = 1;
3631
3632        // SAFETY: the `while` condition guarantees `next_read` and `next_write`
3633        // are less than `len`, thus are inside `self`. `prev_ptr_write` points to
3634        // one element before `ptr_write`, but `next_write` starts at 1, so
3635        // `prev_ptr_write` is never less than 0 and is inside the slice.
3636        // This fulfils the requirements for dereferencing `ptr_read`, `prev_ptr_write`
3637        // and `ptr_write`, and for using `ptr.add(next_read)`, `ptr.add(next_write - 1)`
3638        // and `prev_ptr_write.offset(1)`.
3639        //
3640        // `next_write` is also incremented at most once per loop at most meaning
3641        // no element is skipped when it may need to be swapped.
3642        //
3643        // `ptr_read` and `prev_ptr_write` never point to the same element. This
3644        // is required for `&mut *ptr_read`, `&mut *prev_ptr_write` to be safe.
3645        // The explanation is simply that `next_read >= next_write` is always true,
3646        // thus `next_read > next_write - 1` is too.
3647        unsafe {
3648            // Avoid bounds checks by using raw pointers.
3649            while next_read < len {
3650                let ptr_read = ptr.add(next_read);
3651                let prev_ptr_write = ptr.add(next_write - 1);
3652                if !same_bucket(&mut *ptr_read, &mut *prev_ptr_write) {
3653                    if next_read != next_write {
3654                        let ptr_write = prev_ptr_write.add(1);
3655                        mem::swap(&mut *ptr_read, &mut *ptr_write);
3656                    }
3657                    next_write += 1;
3658                }
3659                next_read += 1;
3660            }
3661        }
3662
3663        self.split_at_mut(next_write)
3664    }
3665
3666    /// Moves all but the first of consecutive elements to the end of the slice that resolve
3667    /// to the same key.
3668    ///
3669    /// Returns two slices. The first contains no consecutive repeated elements.
3670    /// The second contains all the duplicates in no specified order.
3671    ///
3672    /// If the slice is sorted, the first returned slice contains no duplicates.
3673    ///
3674    /// # Examples
3675    ///
3676    /// ```
3677    /// #![feature(slice_partition_dedup)]
3678    ///
3679    /// let mut slice = [10, 20, 21, 30, 30, 20, 11, 13];
3680    ///
3681    /// let (dedup, duplicates) = slice.partition_dedup_by_key(|i| *i / 10);
3682    ///
3683    /// assert_eq!(dedup, [10, 20, 30, 20, 11]);
3684    /// assert_eq!(duplicates, [21, 30, 13]);
3685    /// ```
3686    #[unstable(feature = "slice_partition_dedup", issue = "54279")]
3687    #[inline]
3688    #[cfg(not(feature = "ferrocene_certified"))]
3689    pub fn partition_dedup_by_key<K, F>(&mut self, mut key: F) -> (&mut [T], &mut [T])
3690    where
3691        F: FnMut(&mut T) -> K,
3692        K: PartialEq,
3693    {
3694        self.partition_dedup_by(|a, b| key(a) == key(b))
3695    }
3696
3697    /// Rotates the slice in-place such that the first `mid` elements of the
3698    /// slice move to the end while the last `self.len() - mid` elements move to
3699    /// the front.
3700    ///
3701    /// After calling `rotate_left`, the element previously at index `mid` will
3702    /// become the first element in the slice.
3703    ///
3704    /// # Panics
3705    ///
3706    /// This function will panic if `mid` is greater than the length of the
3707    /// slice. Note that `mid == self.len()` does _not_ panic and is a no-op
3708    /// rotation.
3709    ///
3710    /// # Complexity
3711    ///
3712    /// Takes linear (in `self.len()`) time.
3713    ///
3714    /// # Examples
3715    ///
3716    /// ```
3717    /// let mut a = ['a', 'b', 'c', 'd', 'e', 'f'];
3718    /// a.rotate_left(2);
3719    /// assert_eq!(a, ['c', 'd', 'e', 'f', 'a', 'b']);
3720    /// ```
3721    ///
3722    /// Rotating a subslice:
3723    ///
3724    /// ```
3725    /// let mut a = ['a', 'b', 'c', 'd', 'e', 'f'];
3726    /// a[1..5].rotate_left(1);
3727    /// assert_eq!(a, ['a', 'c', 'd', 'e', 'b', 'f']);
3728    /// ```
3729    #[stable(feature = "slice_rotate", since = "1.26.0")]
3730    #[rustc_const_stable(feature = "const_slice_rotate", since = "1.92.0")]
3731    #[cfg(not(feature = "ferrocene_certified"))]
3732    pub const fn rotate_left(&mut self, mid: usize) {
3733        assert!(mid <= self.len());
3734        let k = self.len() - mid;
3735        let p = self.as_mut_ptr();
3736
3737        // SAFETY: The range `[p.add(mid) - mid, p.add(mid) + k)` is trivially
3738        // valid for reading and writing, as required by `ptr_rotate`.
3739        unsafe {
3740            rotate::ptr_rotate(mid, p.add(mid), k);
3741        }
3742    }
3743
3744    /// Rotates the slice in-place such that the first `self.len() - k`
3745    /// elements of the slice move to the end while the last `k` elements move
3746    /// to the front.
3747    ///
3748    /// After calling `rotate_right`, the element previously at index
3749    /// `self.len() - k` will become the first element in the slice.
3750    ///
3751    /// # Panics
3752    ///
3753    /// This function will panic if `k` is greater than the length of the
3754    /// slice. Note that `k == self.len()` does _not_ panic and is a no-op
3755    /// rotation.
3756    ///
3757    /// # Complexity
3758    ///
3759    /// Takes linear (in `self.len()`) time.
3760    ///
3761    /// # Examples
3762    ///
3763    /// ```
3764    /// let mut a = ['a', 'b', 'c', 'd', 'e', 'f'];
3765    /// a.rotate_right(2);
3766    /// assert_eq!(a, ['e', 'f', 'a', 'b', 'c', 'd']);
3767    /// ```
3768    ///
3769    /// Rotating a subslice:
3770    ///
3771    /// ```
3772    /// let mut a = ['a', 'b', 'c', 'd', 'e', 'f'];
3773    /// a[1..5].rotate_right(1);
3774    /// assert_eq!(a, ['a', 'e', 'b', 'c', 'd', 'f']);
3775    /// ```
3776    #[stable(feature = "slice_rotate", since = "1.26.0")]
3777    #[rustc_const_stable(feature = "const_slice_rotate", since = "1.92.0")]
3778    #[cfg(not(feature = "ferrocene_certified"))]
3779    pub const fn rotate_right(&mut self, k: usize) {
3780        assert!(k <= self.len());
3781        let mid = self.len() - k;
3782        let p = self.as_mut_ptr();
3783
3784        // SAFETY: The range `[p.add(mid) - mid, p.add(mid) + k)` is trivially
3785        // valid for reading and writing, as required by `ptr_rotate`.
3786        unsafe {
3787            rotate::ptr_rotate(mid, p.add(mid), k);
3788        }
3789    }
3790
3791    /// Fills `self` with elements by cloning `value`.
3792    ///
3793    /// # Examples
3794    ///
3795    /// ```
3796    /// let mut buf = vec![0; 10];
3797    /// buf.fill(1);
3798    /// assert_eq!(buf, vec![1; 10]);
3799    /// ```
3800    #[doc(alias = "memset")]
3801    #[stable(feature = "slice_fill", since = "1.50.0")]
3802    #[cfg(not(feature = "ferrocene_certified"))]
3803    pub fn fill(&mut self, value: T)
3804    where
3805        T: Clone,
3806    {
3807        specialize::SpecFill::spec_fill(self, value);
3808    }
3809
3810    /// Fills `self` with elements returned by calling a closure repeatedly.
3811    ///
3812    /// This method uses a closure to create new values. If you'd rather
3813    /// [`Clone`] a given value, use [`fill`]. If you want to use the [`Default`]
3814    /// trait to generate values, you can pass [`Default::default`] as the
3815    /// argument.
3816    ///
3817    /// [`fill`]: slice::fill
3818    ///
3819    /// # Examples
3820    ///
3821    /// ```
3822    /// let mut buf = vec![1; 10];
3823    /// buf.fill_with(Default::default);
3824    /// assert_eq!(buf, vec![0; 10]);
3825    /// ```
3826    #[stable(feature = "slice_fill_with", since = "1.51.0")]
3827    #[cfg(not(feature = "ferrocene_certified"))]
3828    pub fn fill_with<F>(&mut self, mut f: F)
3829    where
3830        F: FnMut() -> T,
3831    {
3832        for el in self {
3833            *el = f();
3834        }
3835    }
3836
3837    /// Copies the elements from `src` into `self`.
3838    ///
3839    /// The length of `src` must be the same as `self`.
3840    ///
3841    /// # Panics
3842    ///
3843    /// This function will panic if the two slices have different lengths.
3844    ///
3845    /// # Examples
3846    ///
3847    /// Cloning two elements from a slice into another:
3848    ///
3849    /// ```
3850    /// let src = [1, 2, 3, 4];
3851    /// let mut dst = [0, 0];
3852    ///
3853    /// // Because the slices have to be the same length,
3854    /// // we slice the source slice from four elements
3855    /// // to two. It will panic if we don't do this.
3856    /// dst.clone_from_slice(&src[2..]);
3857    ///
3858    /// assert_eq!(src, [1, 2, 3, 4]);
3859    /// assert_eq!(dst, [3, 4]);
3860    /// ```
3861    ///
3862    /// Rust enforces that there can only be one mutable reference with no
3863    /// immutable references to a particular piece of data in a particular
3864    /// scope. Because of this, attempting to use `clone_from_slice` on a
3865    /// single slice will result in a compile failure:
3866    ///
3867    /// ```compile_fail
3868    /// let mut slice = [1, 2, 3, 4, 5];
3869    ///
3870    /// slice[..2].clone_from_slice(&slice[3..]); // compile fail!
3871    /// ```
3872    ///
3873    /// To work around this, we can use [`split_at_mut`] to create two distinct
3874    /// sub-slices from a slice:
3875    ///
3876    /// ```
3877    /// let mut slice = [1, 2, 3, 4, 5];
3878    ///
3879    /// {
3880    ///     let (left, right) = slice.split_at_mut(2);
3881    ///     left.clone_from_slice(&right[1..]);
3882    /// }
3883    ///
3884    /// assert_eq!(slice, [4, 5, 3, 4, 5]);
3885    /// ```
3886    ///
3887    /// [`copy_from_slice`]: slice::copy_from_slice
3888    /// [`split_at_mut`]: slice::split_at_mut
3889    #[stable(feature = "clone_from_slice", since = "1.7.0")]
3890    #[track_caller]
3891    #[cfg(not(feature = "ferrocene_certified"))]
3892    pub fn clone_from_slice(&mut self, src: &[T])
3893    where
3894        T: Clone,
3895    {
3896        self.spec_clone_from(src);
3897    }
3898
3899    /// Copies all elements from `src` into `self`, using a memcpy.
3900    ///
3901    /// The length of `src` must be the same as `self`.
3902    ///
3903    /// If `T` does not implement `Copy`, use [`clone_from_slice`].
3904    ///
3905    /// # Panics
3906    ///
3907    /// This function will panic if the two slices have different lengths.
3908    ///
3909    /// # Examples
3910    ///
3911    /// Copying two elements from a slice into another:
3912    ///
3913    /// ```
3914    /// let src = [1, 2, 3, 4];
3915    /// let mut dst = [0, 0];
3916    ///
3917    /// // Because the slices have to be the same length,
3918    /// // we slice the source slice from four elements
3919    /// // to two. It will panic if we don't do this.
3920    /// dst.copy_from_slice(&src[2..]);
3921    ///
3922    /// assert_eq!(src, [1, 2, 3, 4]);
3923    /// assert_eq!(dst, [3, 4]);
3924    /// ```
3925    ///
3926    /// Rust enforces that there can only be one mutable reference with no
3927    /// immutable references to a particular piece of data in a particular
3928    /// scope. Because of this, attempting to use `copy_from_slice` on a
3929    /// single slice will result in a compile failure:
3930    ///
3931    /// ```compile_fail
3932    /// let mut slice = [1, 2, 3, 4, 5];
3933    ///
3934    /// slice[..2].copy_from_slice(&slice[3..]); // compile fail!
3935    /// ```
3936    ///
3937    /// To work around this, we can use [`split_at_mut`] to create two distinct
3938    /// sub-slices from a slice:
3939    ///
3940    /// ```
3941    /// let mut slice = [1, 2, 3, 4, 5];
3942    ///
3943    /// {
3944    ///     let (left, right) = slice.split_at_mut(2);
3945    ///     left.copy_from_slice(&right[1..]);
3946    /// }
3947    ///
3948    /// assert_eq!(slice, [4, 5, 3, 4, 5]);
3949    /// ```
3950    ///
3951    /// [`clone_from_slice`]: slice::clone_from_slice
3952    /// [`split_at_mut`]: slice::split_at_mut
3953    #[doc(alias = "memcpy")]
3954    #[inline]
3955    #[stable(feature = "copy_from_slice", since = "1.9.0")]
3956    #[rustc_const_stable(feature = "const_copy_from_slice", since = "1.87.0")]
3957    #[track_caller]
3958    pub const fn copy_from_slice(&mut self, src: &[T])
3959    where
3960        T: Copy,
3961    {
3962        // The panic code path was put into a cold function to not bloat the
3963        // call site.
3964        #[cfg_attr(not(panic = "immediate-abort"), inline(never), cold)]
3965        #[cfg_attr(panic = "immediate-abort", inline)]
3966        #[track_caller]
3967        const fn len_mismatch_fail(dst_len: usize, src_len: usize) -> ! {
3968            const_panic!(
3969                "copy_from_slice: source slice length does not match destination slice length",
3970                "copy_from_slice: source slice length ({src_len}) does not match destination slice length ({dst_len})",
3971                src_len: usize,
3972                dst_len: usize,
3973            )
3974        }
3975
3976        if self.len() != src.len() {
3977            len_mismatch_fail(self.len(), src.len());
3978        }
3979
3980        // SAFETY: `self` is valid for `self.len()` elements by definition, and `src` was
3981        // checked to have the same length. The slices cannot overlap because
3982        // mutable references are exclusive.
3983        unsafe {
3984            ptr::copy_nonoverlapping(src.as_ptr(), self.as_mut_ptr(), self.len());
3985        }
3986    }
3987
3988    /// Copies elements from one part of the slice to another part of itself,
3989    /// using a memmove.
3990    ///
3991    /// `src` is the range within `self` to copy from. `dest` is the starting
3992    /// index of the range within `self` to copy to, which will have the same
3993    /// length as `src`. The two ranges may overlap. The ends of the two ranges
3994    /// must be less than or equal to `self.len()`.
3995    ///
3996    /// # Panics
3997    ///
3998    /// This function will panic if either range exceeds the end of the slice,
3999    /// or if the end of `src` is before the start.
4000    ///
4001    /// # Examples
4002    ///
4003    /// Copying four bytes within a slice:
4004    ///
4005    /// ```
4006    /// let mut bytes = *b"Hello, World!";
4007    ///
4008    /// bytes.copy_within(1..5, 8);
4009    ///
4010    /// assert_eq!(&bytes, b"Hello, Wello!");
4011    /// ```
4012    #[stable(feature = "copy_within", since = "1.37.0")]
4013    #[track_caller]
4014    #[cfg(not(feature = "ferrocene_certified"))]
4015    pub fn copy_within<R: RangeBounds<usize>>(&mut self, src: R, dest: usize)
4016    where
4017        T: Copy,
4018    {
4019        let Range { start: src_start, end: src_end } = slice::range(src, ..self.len());
4020        let count = src_end - src_start;
4021        assert!(dest <= self.len() - count, "dest is out of bounds");
4022        // SAFETY: the conditions for `ptr::copy` have all been checked above,
4023        // as have those for `ptr::add`.
4024        unsafe {
4025            // Derive both `src_ptr` and `dest_ptr` from the same loan
4026            let ptr = self.as_mut_ptr();
4027            let src_ptr = ptr.add(src_start);
4028            let dest_ptr = ptr.add(dest);
4029            ptr::copy(src_ptr, dest_ptr, count);
4030        }
4031    }
4032
4033    /// Swaps all elements in `self` with those in `other`.
4034    ///
4035    /// The length of `other` must be the same as `self`.
4036    ///
4037    /// # Panics
4038    ///
4039    /// This function will panic if the two slices have different lengths.
4040    ///
4041    /// # Example
4042    ///
4043    /// Swapping two elements across slices:
4044    ///
4045    /// ```
4046    /// let mut slice1 = [0, 0];
4047    /// let mut slice2 = [1, 2, 3, 4];
4048    ///
4049    /// slice1.swap_with_slice(&mut slice2[2..]);
4050    ///
4051    /// assert_eq!(slice1, [3, 4]);
4052    /// assert_eq!(slice2, [1, 2, 0, 0]);
4053    /// ```
4054    ///
4055    /// Rust enforces that there can only be one mutable reference to a
4056    /// particular piece of data in a particular scope. Because of this,
4057    /// attempting to use `swap_with_slice` on a single slice will result in
4058    /// a compile failure:
4059    ///
4060    /// ```compile_fail
4061    /// let mut slice = [1, 2, 3, 4, 5];
4062    /// slice[..2].swap_with_slice(&mut slice[3..]); // compile fail!
4063    /// ```
4064    ///
4065    /// To work around this, we can use [`split_at_mut`] to create two distinct
4066    /// mutable sub-slices from a slice:
4067    ///
4068    /// ```
4069    /// let mut slice = [1, 2, 3, 4, 5];
4070    ///
4071    /// {
4072    ///     let (left, right) = slice.split_at_mut(2);
4073    ///     left.swap_with_slice(&mut right[1..]);
4074    /// }
4075    ///
4076    /// assert_eq!(slice, [4, 5, 3, 1, 2]);
4077    /// ```
4078    ///
4079    /// [`split_at_mut`]: slice::split_at_mut
4080    #[stable(feature = "swap_with_slice", since = "1.27.0")]
4081    #[rustc_const_unstable(feature = "const_swap_with_slice", issue = "142204")]
4082    #[track_caller]
4083    #[cfg(not(feature = "ferrocene_certified"))]
4084    pub const fn swap_with_slice(&mut self, other: &mut [T]) {
4085        assert!(self.len() == other.len(), "destination and source slices have different lengths");
4086        // SAFETY: `self` is valid for `self.len()` elements by definition, and `src` was
4087        // checked to have the same length. The slices cannot overlap because
4088        // mutable references are exclusive.
4089        unsafe {
4090            ptr::swap_nonoverlapping(self.as_mut_ptr(), other.as_mut_ptr(), self.len());
4091        }
4092    }
4093
4094    /// Function to calculate lengths of the middle and trailing slice for `align_to{,_mut}`.
4095
4096    #[cfg(not(feature = "ferrocene_certified"))]
4097    fn align_to_offsets<U>(&self) -> (usize, usize) {
4098        // What we gonna do about `rest` is figure out what multiple of `U`s we can put in a
4099        // lowest number of `T`s. And how many `T`s we need for each such "multiple".
4100        //
4101        // Consider for example T=u8 U=u16. Then we can put 1 U in 2 Ts. Simple. Now, consider
4102        // for example a case where size_of::<T> = 16, size_of::<U> = 24. We can put 2 Us in
4103        // place of every 3 Ts in the `rest` slice. A bit more complicated.
4104        //
4105        // Formula to calculate this is:
4106        //
4107        // Us = lcm(size_of::<T>, size_of::<U>) / size_of::<U>
4108        // Ts = lcm(size_of::<T>, size_of::<U>) / size_of::<T>
4109        //
4110        // Expanded and simplified:
4111        //
4112        // Us = size_of::<T> / gcd(size_of::<T>, size_of::<U>)
4113        // Ts = size_of::<U> / gcd(size_of::<T>, size_of::<U>)
4114        //
4115        // Luckily since all this is constant-evaluated... performance here matters not!
4116        const fn gcd(a: usize, b: usize) -> usize {
4117            if b == 0 { a } else { gcd(b, a % b) }
4118        }
4119
4120        // Explicitly wrap the function call in a const block so it gets
4121        // constant-evaluated even in debug mode.
4122        let gcd: usize = const { gcd(size_of::<T>(), size_of::<U>()) };
4123        let ts: usize = size_of::<U>() / gcd;
4124        let us: usize = size_of::<T>() / gcd;
4125
4126        // Armed with this knowledge, we can find how many `U`s we can fit!
4127        let us_len = self.len() / ts * us;
4128        // And how many `T`s will be in the trailing slice!
4129        let ts_len = self.len() % ts;
4130        (us_len, ts_len)
4131    }
4132
4133    /// Transmutes the slice to a slice of another type, ensuring alignment of the types is
4134    /// maintained.
4135    ///
4136    /// This method splits the slice into three distinct slices: prefix, correctly aligned middle
4137    /// slice of a new type, and the suffix slice. The middle part will be as big as possible under
4138    /// the given alignment constraint and element size.
4139    ///
4140    /// This method has no purpose when either input element `T` or output element `U` are
4141    /// zero-sized and will return the original slice without splitting anything.
4142    ///
4143    /// # Safety
4144    ///
4145    /// This method is essentially a `transmute` with respect to the elements in the returned
4146    /// middle slice, so all the usual caveats pertaining to `transmute::<T, U>` also apply here.
4147    ///
4148    /// # Examples
4149    ///
4150    /// Basic usage:
4151    ///
4152    /// ```
4153    /// unsafe {
4154    ///     let bytes: [u8; 7] = [1, 2, 3, 4, 5, 6, 7];
4155    ///     let (prefix, shorts, suffix) = bytes.align_to::<u16>();
4156    ///     // less_efficient_algorithm_for_bytes(prefix);
4157    ///     // more_efficient_algorithm_for_aligned_shorts(shorts);
4158    ///     // less_efficient_algorithm_for_bytes(suffix);
4159    /// }
4160    /// ```
4161    #[stable(feature = "slice_align_to", since = "1.30.0")]
4162    #[must_use]
4163    #[cfg(not(feature = "ferrocene_certified"))]
4164    pub unsafe fn align_to<U>(&self) -> (&[T], &[U], &[T]) {
4165        // Note that most of this function will be constant-evaluated,
4166        if U::IS_ZST || T::IS_ZST {
4167            // handle ZSTs specially, which is – don't handle them at all.
4168            return (self, &[], &[]);
4169        }
4170
4171        // First, find at what point do we split between the first and 2nd slice. Easy with
4172        // ptr.align_offset.
4173        let ptr = self.as_ptr();
4174        // SAFETY: See the `align_to_mut` method for the detailed safety comment.
4175        let offset = unsafe { crate::ptr::align_offset(ptr, align_of::<U>()) };
4176        if offset > self.len() {
4177            (self, &[], &[])
4178        } else {
4179            let (left, rest) = self.split_at(offset);
4180            let (us_len, ts_len) = rest.align_to_offsets::<U>();
4181            // Inform Miri that we want to consider the "middle" pointer to be suitably aligned.
4182            #[cfg(miri)]
4183            crate::intrinsics::miri_promise_symbolic_alignment(
4184                rest.as_ptr().cast(),
4185                align_of::<U>(),
4186            );
4187            // SAFETY: now `rest` is definitely aligned, so `from_raw_parts` below is okay,
4188            // since the caller guarantees that we can transmute `T` to `U` safely.
4189            unsafe {
4190                (
4191                    left,
4192                    from_raw_parts(rest.as_ptr() as *const U, us_len),
4193                    from_raw_parts(rest.as_ptr().add(rest.len() - ts_len), ts_len),
4194                )
4195            }
4196        }
4197    }
4198
4199    /// Transmutes the mutable slice to a mutable slice of another type, ensuring alignment of the
4200    /// types is maintained.
4201    ///
4202    /// This method splits the slice into three distinct slices: prefix, correctly aligned middle
4203    /// slice of a new type, and the suffix slice. The middle part will be as big as possible under
4204    /// the given alignment constraint and element size.
4205    ///
4206    /// This method has no purpose when either input element `T` or output element `U` are
4207    /// zero-sized and will return the original slice without splitting anything.
4208    ///
4209    /// # Safety
4210    ///
4211    /// This method is essentially a `transmute` with respect to the elements in the returned
4212    /// middle slice, so all the usual caveats pertaining to `transmute::<T, U>` also apply here.
4213    ///
4214    /// # Examples
4215    ///
4216    /// Basic usage:
4217    ///
4218    /// ```
4219    /// unsafe {
4220    ///     let mut bytes: [u8; 7] = [1, 2, 3, 4, 5, 6, 7];
4221    ///     let (prefix, shorts, suffix) = bytes.align_to_mut::<u16>();
4222    ///     // less_efficient_algorithm_for_bytes(prefix);
4223    ///     // more_efficient_algorithm_for_aligned_shorts(shorts);
4224    ///     // less_efficient_algorithm_for_bytes(suffix);
4225    /// }
4226    /// ```
4227    #[stable(feature = "slice_align_to", since = "1.30.0")]
4228    #[must_use]
4229    #[cfg(not(feature = "ferrocene_certified"))]
4230    pub unsafe fn align_to_mut<U>(&mut self) -> (&mut [T], &mut [U], &mut [T]) {
4231        // Note that most of this function will be constant-evaluated,
4232        if U::IS_ZST || T::IS_ZST {
4233            // handle ZSTs specially, which is – don't handle them at all.
4234            return (self, &mut [], &mut []);
4235        }
4236
4237        // First, find at what point do we split between the first and 2nd slice. Easy with
4238        // ptr.align_offset.
4239        let ptr = self.as_ptr();
4240        // SAFETY: Here we are ensuring we will use aligned pointers for U for the
4241        // rest of the method. This is done by passing a pointer to &[T] with an
4242        // alignment targeted for U.
4243        // `crate::ptr::align_offset` is called with a correctly aligned and
4244        // valid pointer `ptr` (it comes from a reference to `self`) and with
4245        // a size that is a power of two (since it comes from the alignment for U),
4246        // satisfying its safety constraints.
4247        let offset = unsafe { crate::ptr::align_offset(ptr, align_of::<U>()) };
4248        if offset > self.len() {
4249            (self, &mut [], &mut [])
4250        } else {
4251            let (left, rest) = self.split_at_mut(offset);
4252            let (us_len, ts_len) = rest.align_to_offsets::<U>();
4253            let rest_len = rest.len();
4254            let mut_ptr = rest.as_mut_ptr();
4255            // Inform Miri that we want to consider the "middle" pointer to be suitably aligned.
4256            #[cfg(miri)]
4257            crate::intrinsics::miri_promise_symbolic_alignment(
4258                mut_ptr.cast() as *const (),
4259                align_of::<U>(),
4260            );
4261            // We can't use `rest` again after this, that would invalidate its alias `mut_ptr`!
4262            // SAFETY: see comments for `align_to`.
4263            unsafe {
4264                (
4265                    left,
4266                    from_raw_parts_mut(mut_ptr as *mut U, us_len),
4267                    from_raw_parts_mut(mut_ptr.add(rest_len - ts_len), ts_len),
4268                )
4269            }
4270        }
4271    }
4272
4273    /// Splits a slice into a prefix, a middle of aligned SIMD types, and a suffix.
4274    ///
4275    /// This is a safe wrapper around [`slice::align_to`], so inherits the same
4276    /// guarantees as that method.
4277    ///
4278    /// # Panics
4279    ///
4280    /// This will panic if the size of the SIMD type is different from
4281    /// `LANES` times that of the scalar.
4282    ///
4283    /// At the time of writing, the trait restrictions on `Simd<T, LANES>` keeps
4284    /// that from ever happening, as only power-of-two numbers of lanes are
4285    /// supported.  It's possible that, in the future, those restrictions might
4286    /// be lifted in a way that would make it possible to see panics from this
4287    /// method for something like `LANES == 3`.
4288    ///
4289    /// # Examples
4290    ///
4291    /// ```
4292    /// #![feature(portable_simd)]
4293    /// use core::simd::prelude::*;
4294    ///
4295    /// let short = &[1, 2, 3];
4296    /// let (prefix, middle, suffix) = short.as_simd::<4>();
4297    /// assert_eq!(middle, []); // Not enough elements for anything in the middle
4298    ///
4299    /// // They might be split in any possible way between prefix and suffix
4300    /// let it = prefix.iter().chain(suffix).copied();
4301    /// assert_eq!(it.collect::<Vec<_>>(), vec![1, 2, 3]);
4302    ///
4303    /// fn basic_simd_sum(x: &[f32]) -> f32 {
4304    ///     use std::ops::Add;
4305    ///     let (prefix, middle, suffix) = x.as_simd();
4306    ///     let sums = f32x4::from_array([
4307    ///         prefix.iter().copied().sum(),
4308    ///         0.0,
4309    ///         0.0,
4310    ///         suffix.iter().copied().sum(),
4311    ///     ]);
4312    ///     let sums = middle.iter().copied().fold(sums, f32x4::add);
4313    ///     sums.reduce_sum()
4314    /// }
4315    ///
4316    /// let numbers: Vec<f32> = (1..101).map(|x| x as _).collect();
4317    /// assert_eq!(basic_simd_sum(&numbers[1..99]), 4949.0);
4318    /// ```
4319    #[unstable(feature = "portable_simd", issue = "86656")]
4320    #[must_use]
4321    #[cfg(not(feature = "ferrocene_certified"))]
4322    pub fn as_simd<const LANES: usize>(&self) -> (&[T], &[Simd<T, LANES>], &[T])
4323    where
4324        Simd<T, LANES>: AsRef<[T; LANES]>,
4325        T: simd::SimdElement,
4326        simd::LaneCount<LANES>: simd::SupportedLaneCount,
4327    {
4328        // These are expected to always match, as vector types are laid out like
4329        // arrays per <https://llvm.org/docs/LangRef.html#vector-type>, but we
4330        // might as well double-check since it'll optimize away anyhow.
4331        assert_eq!(size_of::<Simd<T, LANES>>(), size_of::<[T; LANES]>());
4332
4333        // SAFETY: The simd types have the same layout as arrays, just with
4334        // potentially-higher alignment, so the de-facto transmutes are sound.
4335        unsafe { self.align_to() }
4336    }
4337
4338    /// Splits a mutable slice into a mutable prefix, a middle of aligned SIMD types,
4339    /// and a mutable suffix.
4340    ///
4341    /// This is a safe wrapper around [`slice::align_to_mut`], so inherits the same
4342    /// guarantees as that method.
4343    ///
4344    /// This is the mutable version of [`slice::as_simd`]; see that for examples.
4345    ///
4346    /// # Panics
4347    ///
4348    /// This will panic if the size of the SIMD type is different from
4349    /// `LANES` times that of the scalar.
4350    ///
4351    /// At the time of writing, the trait restrictions on `Simd<T, LANES>` keeps
4352    /// that from ever happening, as only power-of-two numbers of lanes are
4353    /// supported.  It's possible that, in the future, those restrictions might
4354    /// be lifted in a way that would make it possible to see panics from this
4355    /// method for something like `LANES == 3`.
4356    #[unstable(feature = "portable_simd", issue = "86656")]
4357    #[must_use]
4358    #[cfg(not(feature = "ferrocene_certified"))]
4359    pub fn as_simd_mut<const LANES: usize>(&mut self) -> (&mut [T], &mut [Simd<T, LANES>], &mut [T])
4360    where
4361        Simd<T, LANES>: AsMut<[T; LANES]>,
4362        T: simd::SimdElement,
4363        simd::LaneCount<LANES>: simd::SupportedLaneCount,
4364    {
4365        // These are expected to always match, as vector types are laid out like
4366        // arrays per <https://llvm.org/docs/LangRef.html#vector-type>, but we
4367        // might as well double-check since it'll optimize away anyhow.
4368        assert_eq!(size_of::<Simd<T, LANES>>(), size_of::<[T; LANES]>());
4369
4370        // SAFETY: The simd types have the same layout as arrays, just with
4371        // potentially-higher alignment, so the de-facto transmutes are sound.
4372        unsafe { self.align_to_mut() }
4373    }
4374
4375    /// Checks if the elements of this slice are sorted.
4376    ///
4377    /// That is, for each element `a` and its following element `b`, `a <= b` must hold. If the
4378    /// slice yields exactly zero or one element, `true` is returned.
4379    ///
4380    /// Note that if `Self::Item` is only `PartialOrd`, but not `Ord`, the above definition
4381    /// implies that this function returns `false` if any two consecutive items are not
4382    /// comparable.
4383    ///
4384    /// # Examples
4385    ///
4386    /// ```
4387    /// let empty: [i32; 0] = [];
4388    ///
4389    /// assert!([1, 2, 2, 9].is_sorted());
4390    /// assert!(![1, 3, 2, 4].is_sorted());
4391    /// assert!([0].is_sorted());
4392    /// assert!(empty.is_sorted());
4393    /// assert!(![0.0, 1.0, f32::NAN].is_sorted());
4394    /// ```
4395    #[inline]
4396    #[stable(feature = "is_sorted", since = "1.82.0")]
4397    #[must_use]
4398    #[cfg(not(feature = "ferrocene_certified"))]
4399    pub fn is_sorted(&self) -> bool
4400    where
4401        T: PartialOrd,
4402    {
4403        // This odd number works the best. 32 + 1 extra due to overlapping chunk boundaries.
4404        const CHUNK_SIZE: usize = 33;
4405        if self.len() < CHUNK_SIZE {
4406            return self.windows(2).all(|w| w[0] <= w[1]);
4407        }
4408        let mut i = 0;
4409        // Check in chunks for autovectorization.
4410        while i < self.len() - CHUNK_SIZE {
4411            let chunk = &self[i..i + CHUNK_SIZE];
4412            if !chunk.windows(2).fold(true, |acc, w| acc & (w[0] <= w[1])) {
4413                return false;
4414            }
4415            // We need to ensure that chunk boundaries are also sorted.
4416            // Overlap the next chunk with the last element of our last chunk.
4417            i += CHUNK_SIZE - 1;
4418        }
4419        self[i..].windows(2).all(|w| w[0] <= w[1])
4420    }
4421
4422    /// Checks if the elements of this slice are sorted using the given comparator function.
4423    ///
4424    /// Instead of using `PartialOrd::partial_cmp`, this function uses the given `compare`
4425    /// function to determine whether two elements are to be considered in sorted order.
4426    ///
4427    /// # Examples
4428    ///
4429    /// ```
4430    /// assert!([1, 2, 2, 9].is_sorted_by(|a, b| a <= b));
4431    /// assert!(![1, 2, 2, 9].is_sorted_by(|a, b| a < b));
4432    ///
4433    /// assert!([0].is_sorted_by(|a, b| true));
4434    /// assert!([0].is_sorted_by(|a, b| false));
4435    ///
4436    /// let empty: [i32; 0] = [];
4437    /// assert!(empty.is_sorted_by(|a, b| false));
4438    /// assert!(empty.is_sorted_by(|a, b| true));
4439    /// ```
4440    #[stable(feature = "is_sorted", since = "1.82.0")]
4441    #[must_use]
4442    #[cfg(not(feature = "ferrocene_certified"))]
4443    pub fn is_sorted_by<'a, F>(&'a self, mut compare: F) -> bool
4444    where
4445        F: FnMut(&'a T, &'a T) -> bool,
4446    {
4447        self.array_windows().all(|[a, b]| compare(a, b))
4448    }
4449
4450    /// Checks if the elements of this slice are sorted using the given key extraction function.
4451    ///
4452    /// Instead of comparing the slice's elements directly, this function compares the keys of the
4453    /// elements, as determined by `f`. Apart from that, it's equivalent to [`is_sorted`]; see its
4454    /// documentation for more information.
4455    ///
4456    /// [`is_sorted`]: slice::is_sorted
4457    ///
4458    /// # Examples
4459    ///
4460    /// ```
4461    /// assert!(["c", "bb", "aaa"].is_sorted_by_key(|s| s.len()));
4462    /// assert!(![-2i32, -1, 0, 3].is_sorted_by_key(|n| n.abs()));
4463    /// ```
4464    #[inline]
4465    #[stable(feature = "is_sorted", since = "1.82.0")]
4466    #[must_use]
4467    #[cfg(not(feature = "ferrocene_certified"))]
4468    pub fn is_sorted_by_key<'a, F, K>(&'a self, f: F) -> bool
4469    where
4470        F: FnMut(&'a T) -> K,
4471        K: PartialOrd,
4472    {
4473        self.iter().is_sorted_by_key(f)
4474    }
4475
4476    /// Returns the index of the partition point according to the given predicate
4477    /// (the index of the first element of the second partition).
4478    ///
4479    /// The slice is assumed to be partitioned according to the given predicate.
4480    /// This means that all elements for which the predicate returns true are at the start of the slice
4481    /// and all elements for which the predicate returns false are at the end.
4482    /// For example, `[7, 15, 3, 5, 4, 12, 6]` is partitioned under the predicate `x % 2 != 0`
4483    /// (all odd numbers are at the start, all even at the end).
4484    ///
4485    /// If this slice is not partitioned, the returned result is unspecified and meaningless,
4486    /// as this method performs a kind of binary search.
4487    ///
4488    /// See also [`binary_search`], [`binary_search_by`], and [`binary_search_by_key`].
4489    ///
4490    /// [`binary_search`]: slice::binary_search
4491    /// [`binary_search_by`]: slice::binary_search_by
4492    /// [`binary_search_by_key`]: slice::binary_search_by_key
4493    ///
4494    /// # Examples
4495    ///
4496    /// ```
4497    /// let v = [1, 2, 3, 3, 5, 6, 7];
4498    /// let i = v.partition_point(|&x| x < 5);
4499    ///
4500    /// assert_eq!(i, 4);
4501    /// assert!(v[..i].iter().all(|&x| x < 5));
4502    /// assert!(v[i..].iter().all(|&x| !(x < 5)));
4503    /// ```
4504    ///
4505    /// If all elements of the slice match the predicate, including if the slice
4506    /// is empty, then the length of the slice will be returned:
4507    ///
4508    /// ```
4509    /// let a = [2, 4, 8];
4510    /// assert_eq!(a.partition_point(|x| x < &100), a.len());
4511    /// let a: [i32; 0] = [];
4512    /// assert_eq!(a.partition_point(|x| x < &100), 0);
4513    /// ```
4514    ///
4515    /// If you want to insert an item to a sorted vector, while maintaining
4516    /// sort order:
4517    ///
4518    /// ```
4519    /// let mut s = vec![0, 1, 1, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55];
4520    /// let num = 42;
4521    /// let idx = s.partition_point(|&x| x <= num);
4522    /// s.insert(idx, num);
4523    /// assert_eq!(s, [0, 1, 1, 1, 1, 2, 3, 5, 8, 13, 21, 34, 42, 55]);
4524    /// ```
4525    #[stable(feature = "partition_point", since = "1.52.0")]
4526    #[must_use]
4527    #[cfg(not(feature = "ferrocene_certified"))]
4528    pub fn partition_point<P>(&self, mut pred: P) -> usize
4529    where
4530        P: FnMut(&T) -> bool,
4531    {
4532        self.binary_search_by(|x| if pred(x) { Less } else { Greater }).unwrap_or_else(|i| i)
4533    }
4534
4535    /// Removes the subslice corresponding to the given range
4536    /// and returns a reference to it.
4537    ///
4538    /// Returns `None` and does not modify the slice if the given
4539    /// range is out of bounds.
4540    ///
4541    /// Note that this method only accepts one-sided ranges such as
4542    /// `2..` or `..6`, but not `2..6`.
4543    ///
4544    /// # Examples
4545    ///
4546    /// Splitting off the first three elements of a slice:
4547    ///
4548    /// ```
4549    /// let mut slice: &[_] = &['a', 'b', 'c', 'd'];
4550    /// let mut first_three = slice.split_off(..3).unwrap();
4551    ///
4552    /// assert_eq!(slice, &['d']);
4553    /// assert_eq!(first_three, &['a', 'b', 'c']);
4554    /// ```
4555    ///
4556    /// Splitting off a slice starting with the third element:
4557    ///
4558    /// ```
4559    /// let mut slice: &[_] = &['a', 'b', 'c', 'd'];
4560    /// let mut tail = slice.split_off(2..).unwrap();
4561    ///
4562    /// assert_eq!(slice, &['a', 'b']);
4563    /// assert_eq!(tail, &['c', 'd']);
4564    /// ```
4565    ///
4566    /// Getting `None` when `range` is out of bounds:
4567    ///
4568    /// ```
4569    /// let mut slice: &[_] = &['a', 'b', 'c', 'd'];
4570    ///
4571    /// assert_eq!(None, slice.split_off(5..));
4572    /// assert_eq!(None, slice.split_off(..5));
4573    /// assert_eq!(None, slice.split_off(..=4));
4574    /// let expected: &[char] = &['a', 'b', 'c', 'd'];
4575    /// assert_eq!(Some(expected), slice.split_off(..4));
4576    /// ```
4577    #[inline]
4578    #[must_use = "method does not modify the slice if the range is out of bounds"]
4579    #[stable(feature = "slice_take", since = "1.87.0")]
4580    #[cfg(not(feature = "ferrocene_certified"))]
4581    pub fn split_off<'a, R: OneSidedRange<usize>>(
4582        self: &mut &'a Self,
4583        range: R,
4584    ) -> Option<&'a Self> {
4585        let (direction, split_index) = split_point_of(range)?;
4586        if split_index > self.len() {
4587            return None;
4588        }
4589        let (front, back) = self.split_at(split_index);
4590        match direction {
4591            Direction::Front => {
4592                *self = back;
4593                Some(front)
4594            }
4595            Direction::Back => {
4596                *self = front;
4597                Some(back)
4598            }
4599        }
4600    }
4601
4602    /// Removes the subslice corresponding to the given range
4603    /// and returns a mutable reference to it.
4604    ///
4605    /// Returns `None` and does not modify the slice if the given
4606    /// range is out of bounds.
4607    ///
4608    /// Note that this method only accepts one-sided ranges such as
4609    /// `2..` or `..6`, but not `2..6`.
4610    ///
4611    /// # Examples
4612    ///
4613    /// Splitting off the first three elements of a slice:
4614    ///
4615    /// ```
4616    /// let mut slice: &mut [_] = &mut ['a', 'b', 'c', 'd'];
4617    /// let mut first_three = slice.split_off_mut(..3).unwrap();
4618    ///
4619    /// assert_eq!(slice, &mut ['d']);
4620    /// assert_eq!(first_three, &mut ['a', 'b', 'c']);
4621    /// ```
4622    ///
4623    /// Splitting off a slice starting with the third element:
4624    ///
4625    /// ```
4626    /// let mut slice: &mut [_] = &mut ['a', 'b', 'c', 'd'];
4627    /// let mut tail = slice.split_off_mut(2..).unwrap();
4628    ///
4629    /// assert_eq!(slice, &mut ['a', 'b']);
4630    /// assert_eq!(tail, &mut ['c', 'd']);
4631    /// ```
4632    ///
4633    /// Getting `None` when `range` is out of bounds:
4634    ///
4635    /// ```
4636    /// let mut slice: &mut [_] = &mut ['a', 'b', 'c', 'd'];
4637    ///
4638    /// assert_eq!(None, slice.split_off_mut(5..));
4639    /// assert_eq!(None, slice.split_off_mut(..5));
4640    /// assert_eq!(None, slice.split_off_mut(..=4));
4641    /// let expected: &mut [_] = &mut ['a', 'b', 'c', 'd'];
4642    /// assert_eq!(Some(expected), slice.split_off_mut(..4));
4643    /// ```
4644    #[inline]
4645    #[must_use = "method does not modify the slice if the range is out of bounds"]
4646    #[stable(feature = "slice_take", since = "1.87.0")]
4647    #[cfg(not(feature = "ferrocene_certified"))]
4648    pub fn split_off_mut<'a, R: OneSidedRange<usize>>(
4649        self: &mut &'a mut Self,
4650        range: R,
4651    ) -> Option<&'a mut Self> {
4652        let (direction, split_index) = split_point_of(range)?;
4653        if split_index > self.len() {
4654            return None;
4655        }
4656        let (front, back) = mem::take(self).split_at_mut(split_index);
4657        match direction {
4658            Direction::Front => {
4659                *self = back;
4660                Some(front)
4661            }
4662            Direction::Back => {
4663                *self = front;
4664                Some(back)
4665            }
4666        }
4667    }
4668
4669    /// Removes the first element of the slice and returns a reference
4670    /// to it.
4671    ///
4672    /// Returns `None` if the slice is empty.
4673    ///
4674    /// # Examples
4675    ///
4676    /// ```
4677    /// let mut slice: &[_] = &['a', 'b', 'c'];
4678    /// let first = slice.split_off_first().unwrap();
4679    ///
4680    /// assert_eq!(slice, &['b', 'c']);
4681    /// assert_eq!(first, &'a');
4682    /// ```
4683    #[inline]
4684    #[stable(feature = "slice_take", since = "1.87.0")]
4685    #[rustc_const_unstable(feature = "const_split_off_first_last", issue = "138539")]
4686    #[cfg(not(feature = "ferrocene_certified"))]
4687    pub const fn split_off_first<'a>(self: &mut &'a Self) -> Option<&'a T> {
4688        // FIXME(const-hack): Use `?` when available in const instead of `let-else`.
4689        let Some((first, rem)) = self.split_first() else { return None };
4690        *self = rem;
4691        Some(first)
4692    }
4693
4694    /// Removes the first element of the slice and returns a mutable
4695    /// reference to it.
4696    ///
4697    /// Returns `None` if the slice is empty.
4698    ///
4699    /// # Examples
4700    ///
4701    /// ```
4702    /// let mut slice: &mut [_] = &mut ['a', 'b', 'c'];
4703    /// let first = slice.split_off_first_mut().unwrap();
4704    /// *first = 'd';
4705    ///
4706    /// assert_eq!(slice, &['b', 'c']);
4707    /// assert_eq!(first, &'d');
4708    /// ```
4709    #[inline]
4710    #[stable(feature = "slice_take", since = "1.87.0")]
4711    #[rustc_const_unstable(feature = "const_split_off_first_last", issue = "138539")]
4712    #[cfg(not(feature = "ferrocene_certified"))]
4713    pub const fn split_off_first_mut<'a>(self: &mut &'a mut Self) -> Option<&'a mut T> {
4714        // FIXME(const-hack): Use `mem::take` and `?` when available in const.
4715        // Original: `mem::take(self).split_first_mut()?`
4716        let Some((first, rem)) = mem::replace(self, &mut []).split_first_mut() else { return None };
4717        *self = rem;
4718        Some(first)
4719    }
4720
4721    /// Removes the last element of the slice and returns a reference
4722    /// to it.
4723    ///
4724    /// Returns `None` if the slice is empty.
4725    ///
4726    /// # Examples
4727    ///
4728    /// ```
4729    /// let mut slice: &[_] = &['a', 'b', 'c'];
4730    /// let last = slice.split_off_last().unwrap();
4731    ///
4732    /// assert_eq!(slice, &['a', 'b']);
4733    /// assert_eq!(last, &'c');
4734    /// ```
4735    #[inline]
4736    #[stable(feature = "slice_take", since = "1.87.0")]
4737    #[rustc_const_unstable(feature = "const_split_off_first_last", issue = "138539")]
4738    #[cfg(not(feature = "ferrocene_certified"))]
4739    pub const fn split_off_last<'a>(self: &mut &'a Self) -> Option<&'a T> {
4740        // FIXME(const-hack): Use `?` when available in const instead of `let-else`.
4741        let Some((last, rem)) = self.split_last() else { return None };
4742        *self = rem;
4743        Some(last)
4744    }
4745
4746    /// Removes the last element of the slice and returns a mutable
4747    /// reference to it.
4748    ///
4749    /// Returns `None` if the slice is empty.
4750    ///
4751    /// # Examples
4752    ///
4753    /// ```
4754    /// let mut slice: &mut [_] = &mut ['a', 'b', 'c'];
4755    /// let last = slice.split_off_last_mut().unwrap();
4756    /// *last = 'd';
4757    ///
4758    /// assert_eq!(slice, &['a', 'b']);
4759    /// assert_eq!(last, &'d');
4760    /// ```
4761    #[inline]
4762    #[stable(feature = "slice_take", since = "1.87.0")]
4763    #[rustc_const_unstable(feature = "const_split_off_first_last", issue = "138539")]
4764    #[cfg(not(feature = "ferrocene_certified"))]
4765    pub const fn split_off_last_mut<'a>(self: &mut &'a mut Self) -> Option<&'a mut T> {
4766        // FIXME(const-hack): Use `mem::take` and `?` when available in const.
4767        // Original: `mem::take(self).split_last_mut()?`
4768        let Some((last, rem)) = mem::replace(self, &mut []).split_last_mut() else { return None };
4769        *self = rem;
4770        Some(last)
4771    }
4772
4773    /// Returns mutable references to many indices at once, without doing any checks.
4774    ///
4775    /// An index can be either a `usize`, a [`Range`] or a [`RangeInclusive`]. Note
4776    /// that this method takes an array, so all indices must be of the same type.
4777    /// If passed an array of `usize`s this method gives back an array of mutable references
4778    /// to single elements, while if passed an array of ranges it gives back an array of
4779    /// mutable references to slices.
4780    ///
4781    /// For a safe alternative see [`get_disjoint_mut`].
4782    ///
4783    /// # Safety
4784    ///
4785    /// Calling this method with overlapping or out-of-bounds indices is *[undefined behavior]*
4786    /// even if the resulting references are not used.
4787    ///
4788    /// # Examples
4789    ///
4790    /// ```
4791    /// let x = &mut [1, 2, 4];
4792    ///
4793    /// unsafe {
4794    ///     let [a, b] = x.get_disjoint_unchecked_mut([0, 2]);
4795    ///     *a *= 10;
4796    ///     *b *= 100;
4797    /// }
4798    /// assert_eq!(x, &[10, 2, 400]);
4799    ///
4800    /// unsafe {
4801    ///     let [a, b] = x.get_disjoint_unchecked_mut([0..1, 1..3]);
4802    ///     a[0] = 8;
4803    ///     b[0] = 88;
4804    ///     b[1] = 888;
4805    /// }
4806    /// assert_eq!(x, &[8, 88, 888]);
4807    ///
4808    /// unsafe {
4809    ///     let [a, b] = x.get_disjoint_unchecked_mut([1..=2, 0..=0]);
4810    ///     a[0] = 11;
4811    ///     a[1] = 111;
4812    ///     b[0] = 1;
4813    /// }
4814    /// assert_eq!(x, &[1, 11, 111]);
4815    /// ```
4816    ///
4817    /// [`get_disjoint_mut`]: slice::get_disjoint_mut
4818    /// [undefined behavior]: https://doc.rust-lang.org/reference/behavior-considered-undefined.html
4819    #[stable(feature = "get_many_mut", since = "1.86.0")]
4820    #[inline]
4821    #[track_caller]
4822    #[cfg(not(feature = "ferrocene_certified"))]
4823    pub unsafe fn get_disjoint_unchecked_mut<I, const N: usize>(
4824        &mut self,
4825        indices: [I; N],
4826    ) -> [&mut I::Output; N]
4827    where
4828        I: GetDisjointMutIndex + SliceIndex<Self>,
4829    {
4830        // NB: This implementation is written as it is because any variation of
4831        // `indices.map(|i| self.get_unchecked_mut(i))` would make miri unhappy,
4832        // or generate worse code otherwise. This is also why we need to go
4833        // through a raw pointer here.
4834        let slice: *mut [T] = self;
4835        let mut arr: MaybeUninit<[&mut I::Output; N]> = MaybeUninit::uninit();
4836        let arr_ptr = arr.as_mut_ptr();
4837
4838        // SAFETY: We expect `indices` to contain disjunct values that are
4839        // in bounds of `self`.
4840        unsafe {
4841            for i in 0..N {
4842                let idx = indices.get_unchecked(i).clone();
4843                arr_ptr.cast::<&mut I::Output>().add(i).write(&mut *slice.get_unchecked_mut(idx));
4844            }
4845            arr.assume_init()
4846        }
4847    }
4848
4849    /// Returns mutable references to many indices at once.
4850    ///
4851    /// An index can be either a `usize`, a [`Range`] or a [`RangeInclusive`]. Note
4852    /// that this method takes an array, so all indices must be of the same type.
4853    /// If passed an array of `usize`s this method gives back an array of mutable references
4854    /// to single elements, while if passed an array of ranges it gives back an array of
4855    /// mutable references to slices.
4856    ///
4857    /// Returns an error if any index is out-of-bounds, or if there are overlapping indices.
4858    /// An empty range is not considered to overlap if it is located at the beginning or at
4859    /// the end of another range, but is considered to overlap if it is located in the middle.
4860    ///
4861    /// This method does a O(n^2) check to check that there are no overlapping indices, so be careful
4862    /// when passing many indices.
4863    ///
4864    /// # Examples
4865    ///
4866    /// ```
4867    /// let v = &mut [1, 2, 3];
4868    /// if let Ok([a, b]) = v.get_disjoint_mut([0, 2]) {
4869    ///     *a = 413;
4870    ///     *b = 612;
4871    /// }
4872    /// assert_eq!(v, &[413, 2, 612]);
4873    ///
4874    /// if let Ok([a, b]) = v.get_disjoint_mut([0..1, 1..3]) {
4875    ///     a[0] = 8;
4876    ///     b[0] = 88;
4877    ///     b[1] = 888;
4878    /// }
4879    /// assert_eq!(v, &[8, 88, 888]);
4880    ///
4881    /// if let Ok([a, b]) = v.get_disjoint_mut([1..=2, 0..=0]) {
4882    ///     a[0] = 11;
4883    ///     a[1] = 111;
4884    ///     b[0] = 1;
4885    /// }
4886    /// assert_eq!(v, &[1, 11, 111]);
4887    /// ```
4888    #[stable(feature = "get_many_mut", since = "1.86.0")]
4889    #[inline]
4890    #[cfg(not(feature = "ferrocene_certified"))]
4891    pub fn get_disjoint_mut<I, const N: usize>(
4892        &mut self,
4893        indices: [I; N],
4894    ) -> Result<[&mut I::Output; N], GetDisjointMutError>
4895    where
4896        I: GetDisjointMutIndex + SliceIndex<Self>,
4897    {
4898        get_disjoint_check_valid(&indices, self.len())?;
4899        // SAFETY: The `get_disjoint_check_valid()` call checked that all indices
4900        // are disjunct and in bounds.
4901        unsafe { Ok(self.get_disjoint_unchecked_mut(indices)) }
4902    }
4903
4904    /// Returns the index that an element reference points to.
4905    ///
4906    /// Returns `None` if `element` does not point to the start of an element within the slice.
4907    ///
4908    /// This method is useful for extending slice iterators like [`slice::split`].
4909    ///
4910    /// Note that this uses pointer arithmetic and **does not compare elements**.
4911    /// To find the index of an element via comparison, use
4912    /// [`.iter().position()`](crate::iter::Iterator::position) instead.
4913    ///
4914    /// # Panics
4915    /// Panics if `T` is zero-sized.
4916    ///
4917    /// # Examples
4918    /// Basic usage:
4919    /// ```
4920    /// #![feature(substr_range)]
4921    ///
4922    /// let nums: &[u32] = &[1, 7, 1, 1];
4923    /// let num = &nums[2];
4924    ///
4925    /// assert_eq!(num, &1);
4926    /// assert_eq!(nums.element_offset(num), Some(2));
4927    /// ```
4928    /// Returning `None` with an unaligned element:
4929    /// ```
4930    /// #![feature(substr_range)]
4931    ///
4932    /// let arr: &[[u32; 2]] = &[[0, 1], [2, 3]];
4933    /// let flat_arr: &[u32] = arr.as_flattened();
4934    ///
4935    /// let ok_elm: &[u32; 2] = flat_arr[0..2].try_into().unwrap();
4936    /// let weird_elm: &[u32; 2] = flat_arr[1..3].try_into().unwrap();
4937    ///
4938    /// assert_eq!(ok_elm, &[0, 1]);
4939    /// assert_eq!(weird_elm, &[1, 2]);
4940    ///
4941    /// assert_eq!(arr.element_offset(ok_elm), Some(0)); // Points to element 0
4942    /// assert_eq!(arr.element_offset(weird_elm), None); // Points between element 0 and 1
4943    /// ```
4944    #[must_use]
4945    #[unstable(feature = "substr_range", issue = "126769")]
4946    #[cfg(not(feature = "ferrocene_certified"))]
4947    pub fn element_offset(&self, element: &T) -> Option<usize> {
4948        if T::IS_ZST {
4949            panic!("elements are zero-sized");
4950        }
4951
4952        let self_start = self.as_ptr().addr();
4953        let elem_start = ptr::from_ref(element).addr();
4954
4955        let byte_offset = elem_start.wrapping_sub(self_start);
4956
4957        if !byte_offset.is_multiple_of(size_of::<T>()) {
4958            return None;
4959        }
4960
4961        let offset = byte_offset / size_of::<T>();
4962
4963        if offset < self.len() { Some(offset) } else { None }
4964    }
4965
4966    /// Returns the range of indices that a subslice points to.
4967    ///
4968    /// Returns `None` if `subslice` does not point within the slice or if it is not aligned with the
4969    /// elements in the slice.
4970    ///
4971    /// This method **does not compare elements**. Instead, this method finds the location in the slice that
4972    /// `subslice` was obtained from. To find the index of a subslice via comparison, instead use
4973    /// [`.windows()`](slice::windows)[`.position()`](crate::iter::Iterator::position).
4974    ///
4975    /// This method is useful for extending slice iterators like [`slice::split`].
4976    ///
4977    /// Note that this may return a false positive (either `Some(0..0)` or `Some(self.len()..self.len())`)
4978    /// if `subslice` has a length of zero and points to the beginning or end of another, separate, slice.
4979    ///
4980    /// # Panics
4981    /// Panics if `T` is zero-sized.
4982    ///
4983    /// # Examples
4984    /// Basic usage:
4985    /// ```
4986    /// #![feature(substr_range)]
4987    ///
4988    /// let nums = &[0, 5, 10, 0, 0, 5];
4989    ///
4990    /// let mut iter = nums
4991    ///     .split(|t| *t == 0)
4992    ///     .map(|n| nums.subslice_range(n).unwrap());
4993    ///
4994    /// assert_eq!(iter.next(), Some(0..0));
4995    /// assert_eq!(iter.next(), Some(1..3));
4996    /// assert_eq!(iter.next(), Some(4..4));
4997    /// assert_eq!(iter.next(), Some(5..6));
4998    /// ```
4999    #[must_use]
5000    #[unstable(feature = "substr_range", issue = "126769")]
5001    #[cfg(not(feature = "ferrocene_certified"))]
5002    pub fn subslice_range(&self, subslice: &[T]) -> Option<Range<usize>> {
5003        if T::IS_ZST {
5004            panic!("elements are zero-sized");
5005        }
5006
5007        let self_start = self.as_ptr().addr();
5008        let subslice_start = subslice.as_ptr().addr();
5009
5010        let byte_start = subslice_start.wrapping_sub(self_start);
5011
5012        if !byte_start.is_multiple_of(size_of::<T>()) {
5013            return None;
5014        }
5015
5016        let start = byte_start / size_of::<T>();
5017        let end = start.wrapping_add(subslice.len());
5018
5019        if start <= self.len() && end <= self.len() { Some(start..end) } else { None }
5020    }
5021}
5022
5023#[cfg(not(feature = "ferrocene_certified"))]
5024impl<T> [MaybeUninit<T>] {
5025    /// Transmutes the mutable uninitialized slice to a mutable uninitialized slice of
5026    /// another type, ensuring alignment of the types is maintained.
5027    ///
5028    /// This is a safe wrapper around [`slice::align_to_mut`], so inherits the same
5029    /// guarantees as that method.
5030    ///
5031    /// # Examples
5032    ///
5033    /// ```
5034    /// #![feature(align_to_uninit_mut)]
5035    /// use std::mem::MaybeUninit;
5036    ///
5037    /// pub struct BumpAllocator<'scope> {
5038    ///     memory: &'scope mut [MaybeUninit<u8>],
5039    /// }
5040    ///
5041    /// impl<'scope> BumpAllocator<'scope> {
5042    ///     pub fn new(memory: &'scope mut [MaybeUninit<u8>]) -> Self {
5043    ///         Self { memory }
5044    ///     }
5045    ///     pub fn try_alloc_uninit<T>(&mut self) -> Option<&'scope mut MaybeUninit<T>> {
5046    ///         let first_end = self.memory.as_ptr().align_offset(align_of::<T>()) + size_of::<T>();
5047    ///         let prefix = self.memory.split_off_mut(..first_end)?;
5048    ///         Some(&mut prefix.align_to_uninit_mut::<T>().1[0])
5049    ///     }
5050    ///     pub fn try_alloc_u32(&mut self, value: u32) -> Option<&'scope mut u32> {
5051    ///         let uninit = self.try_alloc_uninit()?;
5052    ///         Some(uninit.write(value))
5053    ///     }
5054    /// }
5055    ///
5056    /// let mut memory = [MaybeUninit::<u8>::uninit(); 10];
5057    /// let mut allocator = BumpAllocator::new(&mut memory);
5058    /// let v = allocator.try_alloc_u32(42);
5059    /// assert_eq!(v, Some(&mut 42));
5060    /// ```
5061    #[unstable(feature = "align_to_uninit_mut", issue = "139062")]
5062    #[inline]
5063    #[must_use]
5064    pub fn align_to_uninit_mut<U>(&mut self) -> (&mut Self, &mut [MaybeUninit<U>], &mut Self) {
5065        // SAFETY: `MaybeUninit` is transparent. Correct size and alignment are guaranteed by
5066        // `align_to_mut` itself. Therefore the only thing that we have to ensure for a safe
5067        // `transmute` is that the values are valid for the types involved. But for `MaybeUninit`
5068        // any values are valid, so this operation is safe.
5069        unsafe { self.align_to_mut() }
5070    }
5071}
5072
5073#[cfg(not(feature = "ferrocene_certified"))]
5074impl<T, const N: usize> [[T; N]] {
5075    /// Takes a `&[[T; N]]`, and flattens it to a `&[T]`.
5076    ///
5077    /// For the opposite operation, see [`as_chunks`] and [`as_rchunks`].
5078    ///
5079    /// [`as_chunks`]: slice::as_chunks
5080    /// [`as_rchunks`]: slice::as_rchunks
5081    ///
5082    /// # Panics
5083    ///
5084    /// This panics if the length of the resulting slice would overflow a `usize`.
5085    ///
5086    /// This is only possible when flattening a slice of arrays of zero-sized
5087    /// types, and thus tends to be irrelevant in practice. If
5088    /// `size_of::<T>() > 0`, this will never panic.
5089    ///
5090    /// # Examples
5091    ///
5092    /// ```
5093    /// assert_eq!([[1, 2, 3], [4, 5, 6]].as_flattened(), &[1, 2, 3, 4, 5, 6]);
5094    ///
5095    /// assert_eq!(
5096    ///     [[1, 2, 3], [4, 5, 6]].as_flattened(),
5097    ///     [[1, 2], [3, 4], [5, 6]].as_flattened(),
5098    /// );
5099    ///
5100    /// let slice_of_empty_arrays: &[[i32; 0]] = &[[], [], [], [], []];
5101    /// assert!(slice_of_empty_arrays.as_flattened().is_empty());
5102    ///
5103    /// let empty_slice_of_arrays: &[[u32; 10]] = &[];
5104    /// assert!(empty_slice_of_arrays.as_flattened().is_empty());
5105    /// ```
5106    #[stable(feature = "slice_flatten", since = "1.80.0")]
5107    #[rustc_const_stable(feature = "const_slice_flatten", since = "1.87.0")]
5108    pub const fn as_flattened(&self) -> &[T] {
5109        let len = if T::IS_ZST {
5110            self.len().checked_mul(N).expect("slice len overflow")
5111        } else {
5112            // SAFETY: `self.len() * N` cannot overflow because `self` is
5113            // already in the address space.
5114            unsafe { self.len().unchecked_mul(N) }
5115        };
5116        // SAFETY: `[T]` is layout-identical to `[T; N]`
5117        unsafe { from_raw_parts(self.as_ptr().cast(), len) }
5118    }
5119
5120    /// Takes a `&mut [[T; N]]`, and flattens it to a `&mut [T]`.
5121    ///
5122    /// For the opposite operation, see [`as_chunks_mut`] and [`as_rchunks_mut`].
5123    ///
5124    /// [`as_chunks_mut`]: slice::as_chunks_mut
5125    /// [`as_rchunks_mut`]: slice::as_rchunks_mut
5126    ///
5127    /// # Panics
5128    ///
5129    /// This panics if the length of the resulting slice would overflow a `usize`.
5130    ///
5131    /// This is only possible when flattening a slice of arrays of zero-sized
5132    /// types, and thus tends to be irrelevant in practice. If
5133    /// `size_of::<T>() > 0`, this will never panic.
5134    ///
5135    /// # Examples
5136    ///
5137    /// ```
5138    /// fn add_5_to_all(slice: &mut [i32]) {
5139    ///     for i in slice {
5140    ///         *i += 5;
5141    ///     }
5142    /// }
5143    ///
5144    /// let mut array = [[1, 2, 3], [4, 5, 6], [7, 8, 9]];
5145    /// add_5_to_all(array.as_flattened_mut());
5146    /// assert_eq!(array, [[6, 7, 8], [9, 10, 11], [12, 13, 14]]);
5147    /// ```
5148    #[stable(feature = "slice_flatten", since = "1.80.0")]
5149    #[rustc_const_stable(feature = "const_slice_flatten", since = "1.87.0")]
5150    pub const fn as_flattened_mut(&mut self) -> &mut [T] {
5151        let len = if T::IS_ZST {
5152            self.len().checked_mul(N).expect("slice len overflow")
5153        } else {
5154            // SAFETY: `self.len() * N` cannot overflow because `self` is
5155            // already in the address space.
5156            unsafe { self.len().unchecked_mul(N) }
5157        };
5158        // SAFETY: `[T]` is layout-identical to `[T; N]`
5159        unsafe { from_raw_parts_mut(self.as_mut_ptr().cast(), len) }
5160    }
5161}
5162
5163#[cfg(not(feature = "ferrocene_certified"))]
5164impl [f32] {
5165    /// Sorts the slice of floats.
5166    ///
5167    /// This sort is in-place (i.e. does not allocate), *O*(*n* \* log(*n*)) worst-case, and uses
5168    /// the ordering defined by [`f32::total_cmp`].
5169    ///
5170    /// # Current implementation
5171    ///
5172    /// This uses the same sorting algorithm as [`sort_unstable_by`](slice::sort_unstable_by).
5173    ///
5174    /// # Examples
5175    ///
5176    /// ```
5177    /// #![feature(sort_floats)]
5178    /// let mut v = [2.6, -5e-8, f32::NAN, 8.29, f32::INFINITY, -1.0, 0.0, -f32::INFINITY, -0.0];
5179    ///
5180    /// v.sort_floats();
5181    /// let sorted = [-f32::INFINITY, -1.0, -5e-8, -0.0, 0.0, 2.6, 8.29, f32::INFINITY, f32::NAN];
5182    /// assert_eq!(&v[..8], &sorted[..8]);
5183    /// assert!(v[8].is_nan());
5184    /// ```
5185    #[unstable(feature = "sort_floats", issue = "93396")]
5186    #[inline]
5187    pub fn sort_floats(&mut self) {
5188        self.sort_unstable_by(f32::total_cmp);
5189    }
5190}
5191
5192#[cfg(not(feature = "ferrocene_certified"))]
5193impl [f64] {
5194    /// Sorts the slice of floats.
5195    ///
5196    /// This sort is in-place (i.e. does not allocate), *O*(*n* \* log(*n*)) worst-case, and uses
5197    /// the ordering defined by [`f64::total_cmp`].
5198    ///
5199    /// # Current implementation
5200    ///
5201    /// This uses the same sorting algorithm as [`sort_unstable_by`](slice::sort_unstable_by).
5202    ///
5203    /// # Examples
5204    ///
5205    /// ```
5206    /// #![feature(sort_floats)]
5207    /// let mut v = [2.6, -5e-8, f64::NAN, 8.29, f64::INFINITY, -1.0, 0.0, -f64::INFINITY, -0.0];
5208    ///
5209    /// v.sort_floats();
5210    /// let sorted = [-f64::INFINITY, -1.0, -5e-8, -0.0, 0.0, 2.6, 8.29, f64::INFINITY, f64::NAN];
5211    /// assert_eq!(&v[..8], &sorted[..8]);
5212    /// assert!(v[8].is_nan());
5213    /// ```
5214    #[unstable(feature = "sort_floats", issue = "93396")]
5215    #[inline]
5216    pub fn sort_floats(&mut self) {
5217        self.sort_unstable_by(f64::total_cmp);
5218    }
5219}
5220
5221#[cfg(not(feature = "ferrocene_certified"))]
5222trait CloneFromSpec<T> {
5223    fn spec_clone_from(&mut self, src: &[T]);
5224}
5225
5226#[cfg(not(feature = "ferrocene_certified"))]
5227impl<T> CloneFromSpec<T> for [T]
5228where
5229    T: Clone,
5230{
5231    #[track_caller]
5232    default fn spec_clone_from(&mut self, src: &[T]) {
5233        assert!(self.len() == src.len(), "destination and source slices have different lengths");
5234        // NOTE: We need to explicitly slice them to the same length
5235        // to make it easier for the optimizer to elide bounds checking.
5236        // But since it can't be relied on we also have an explicit specialization for T: Copy.
5237        let len = self.len();
5238        let src = &src[..len];
5239        for i in 0..len {
5240            self[i].clone_from(&src[i]);
5241        }
5242    }
5243}
5244
5245#[cfg(not(feature = "ferrocene_certified"))]
5246impl<T> CloneFromSpec<T> for [T]
5247where
5248    T: Copy,
5249{
5250    #[track_caller]
5251    fn spec_clone_from(&mut self, src: &[T]) {
5252        self.copy_from_slice(src);
5253    }
5254}
5255
5256#[stable(feature = "rust1", since = "1.0.0")]
5257#[rustc_const_unstable(feature = "const_default", issue = "143894")]
5258#[cfg(not(feature = "ferrocene_certified"))]
5259impl<T> const Default for &[T] {
5260    /// Creates an empty slice.
5261    fn default() -> Self {
5262        &[]
5263    }
5264}
5265
5266#[stable(feature = "mut_slice_default", since = "1.5.0")]
5267#[rustc_const_unstable(feature = "const_default", issue = "143894")]
5268#[cfg(not(feature = "ferrocene_certified"))]
5269impl<T> const Default for &mut [T] {
5270    /// Creates a mutable empty slice.
5271    fn default() -> Self {
5272        &mut []
5273    }
5274}
5275
5276#[unstable(feature = "slice_pattern", reason = "stopgap trait for slice patterns", issue = "56345")]
5277/// Patterns in slices - currently, only used by `strip_prefix` and `strip_suffix`.  At a future
5278/// point, we hope to generalise `core::str::Pattern` (which at the time of writing is limited to
5279/// `str`) to slices, and then this trait will be replaced or abolished.
5280#[cfg(not(feature = "ferrocene_certified"))]
5281pub trait SlicePattern {
5282    /// The element type of the slice being matched on.
5283    type Item;
5284
5285    /// Currently, the consumers of `SlicePattern` need a slice.
5286    fn as_slice(&self) -> &[Self::Item];
5287}
5288
5289#[stable(feature = "slice_strip", since = "1.51.0")]
5290#[cfg(not(feature = "ferrocene_certified"))]
5291impl<T> SlicePattern for [T] {
5292    type Item = T;
5293
5294    #[inline]
5295    fn as_slice(&self) -> &[Self::Item] {
5296        self
5297    }
5298}
5299
5300#[stable(feature = "slice_strip", since = "1.51.0")]
5301#[cfg(not(feature = "ferrocene_certified"))]
5302impl<T, const N: usize> SlicePattern for [T; N] {
5303    type Item = T;
5304
5305    #[inline]
5306    fn as_slice(&self) -> &[Self::Item] {
5307        self
5308    }
5309}
5310
5311/// This checks every index against each other, and against `len`.
5312///
5313/// This will do `binomial(N + 1, 2) = N * (N + 1) / 2 = 0, 1, 3, 6, 10, ..`
5314/// comparison operations.
5315#[inline]
5316#[cfg(not(feature = "ferrocene_certified"))]
5317fn get_disjoint_check_valid<I: GetDisjointMutIndex, const N: usize>(
5318    indices: &[I; N],
5319    len: usize,
5320) -> Result<(), GetDisjointMutError> {
5321    // NB: The optimizer should inline the loops into a sequence
5322    // of instructions without additional branching.
5323    for (i, idx) in indices.iter().enumerate() {
5324        if !idx.is_in_bounds(len) {
5325            return Err(GetDisjointMutError::IndexOutOfBounds);
5326        }
5327        for idx2 in &indices[..i] {
5328            if idx.is_overlapping(idx2) {
5329                return Err(GetDisjointMutError::OverlappingIndices);
5330            }
5331        }
5332    }
5333    Ok(())
5334}
5335
5336/// The error type returned by [`get_disjoint_mut`][`slice::get_disjoint_mut`].
5337///
5338/// It indicates one of two possible errors:
5339/// - An index is out-of-bounds.
5340/// - The same index appeared multiple times in the array
5341///   (or different but overlapping indices when ranges are provided).
5342///
5343/// # Examples
5344///
5345/// ```
5346/// use std::slice::GetDisjointMutError;
5347///
5348/// let v = &mut [1, 2, 3];
5349/// assert_eq!(v.get_disjoint_mut([0, 999]), Err(GetDisjointMutError::IndexOutOfBounds));
5350/// assert_eq!(v.get_disjoint_mut([1, 1]), Err(GetDisjointMutError::OverlappingIndices));
5351/// ```
5352#[stable(feature = "get_many_mut", since = "1.86.0")]
5353#[derive(Debug, Clone, PartialEq, Eq)]
5354#[cfg(not(feature = "ferrocene_certified"))]
5355pub enum GetDisjointMutError {
5356    /// An index provided was out-of-bounds for the slice.
5357    IndexOutOfBounds,
5358    /// Two indices provided were overlapping.
5359    OverlappingIndices,
5360}
5361
5362#[stable(feature = "get_many_mut", since = "1.86.0")]
5363#[cfg(not(feature = "ferrocene_certified"))]
5364impl fmt::Display for GetDisjointMutError {
5365    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
5366        let msg = match self {
5367            GetDisjointMutError::IndexOutOfBounds => "an index is out of bounds",
5368            GetDisjointMutError::OverlappingIndices => "there were overlapping indices",
5369        };
5370        fmt::Display::fmt(msg, f)
5371    }
5372}
5373
5374#[cfg(not(feature = "ferrocene_certified"))]
5375mod private_get_disjoint_mut_index {
5376    use super::{Range, RangeInclusive, range};
5377
5378    #[unstable(feature = "get_disjoint_mut_helpers", issue = "none")]
5379    pub trait Sealed {}
5380
5381    #[unstable(feature = "get_disjoint_mut_helpers", issue = "none")]
5382    impl Sealed for usize {}
5383    #[unstable(feature = "get_disjoint_mut_helpers", issue = "none")]
5384    impl Sealed for Range<usize> {}
5385    #[unstable(feature = "get_disjoint_mut_helpers", issue = "none")]
5386    impl Sealed for RangeInclusive<usize> {}
5387    #[unstable(feature = "get_disjoint_mut_helpers", issue = "none")]
5388    impl Sealed for range::Range<usize> {}
5389    #[unstable(feature = "get_disjoint_mut_helpers", issue = "none")]
5390    impl Sealed for range::RangeInclusive<usize> {}
5391}
5392
5393/// A helper trait for `<[T]>::get_disjoint_mut()`.
5394///
5395/// # Safety
5396///
5397/// If `is_in_bounds()` returns `true` and `is_overlapping()` returns `false`,
5398/// it must be safe to index the slice with the indices.
5399#[unstable(feature = "get_disjoint_mut_helpers", issue = "none")]
5400#[cfg(not(feature = "ferrocene_certified"))]
5401pub unsafe trait GetDisjointMutIndex:
5402    Clone + private_get_disjoint_mut_index::Sealed
5403{
5404    /// Returns `true` if `self` is in bounds for `len` slice elements.
5405    #[unstable(feature = "get_disjoint_mut_helpers", issue = "none")]
5406    fn is_in_bounds(&self, len: usize) -> bool;
5407
5408    /// Returns `true` if `self` overlaps with `other`.
5409    ///
5410    /// Note that we don't consider zero-length ranges to overlap at the beginning or the end,
5411    /// but do consider them to overlap in the middle.
5412    #[unstable(feature = "get_disjoint_mut_helpers", issue = "none")]
5413    fn is_overlapping(&self, other: &Self) -> bool;
5414}
5415
5416#[unstable(feature = "get_disjoint_mut_helpers", issue = "none")]
5417// SAFETY: We implement `is_in_bounds()` and `is_overlapping()` correctly.
5418#[cfg(not(feature = "ferrocene_certified"))]
5419unsafe impl GetDisjointMutIndex for usize {
5420    #[inline]
5421    fn is_in_bounds(&self, len: usize) -> bool {
5422        *self < len
5423    }
5424
5425    #[inline]
5426    fn is_overlapping(&self, other: &Self) -> bool {
5427        *self == *other
5428    }
5429}
5430
5431#[unstable(feature = "get_disjoint_mut_helpers", issue = "none")]
5432// SAFETY: We implement `is_in_bounds()` and `is_overlapping()` correctly.
5433#[cfg(not(feature = "ferrocene_certified"))]
5434unsafe impl GetDisjointMutIndex for Range<usize> {
5435    #[inline]
5436    fn is_in_bounds(&self, len: usize) -> bool {
5437        (self.start <= self.end) & (self.end <= len)
5438    }
5439
5440    #[inline]
5441    fn is_overlapping(&self, other: &Self) -> bool {
5442        (self.start < other.end) & (other.start < self.end)
5443    }
5444}
5445
5446#[unstable(feature = "get_disjoint_mut_helpers", issue = "none")]
5447// SAFETY: We implement `is_in_bounds()` and `is_overlapping()` correctly.
5448#[cfg(not(feature = "ferrocene_certified"))]
5449unsafe impl GetDisjointMutIndex for RangeInclusive<usize> {
5450    #[inline]
5451    fn is_in_bounds(&self, len: usize) -> bool {
5452        (self.start <= self.end) & (self.end < len)
5453    }
5454
5455    #[inline]
5456    fn is_overlapping(&self, other: &Self) -> bool {
5457        (self.start <= other.end) & (other.start <= self.end)
5458    }
5459}
5460
5461#[unstable(feature = "get_disjoint_mut_helpers", issue = "none")]
5462// SAFETY: We implement `is_in_bounds()` and `is_overlapping()` correctly.
5463#[cfg(not(feature = "ferrocene_certified"))]
5464unsafe impl GetDisjointMutIndex for range::Range<usize> {
5465    #[inline]
5466    fn is_in_bounds(&self, len: usize) -> bool {
5467        Range::from(*self).is_in_bounds(len)
5468    }
5469
5470    #[inline]
5471    fn is_overlapping(&self, other: &Self) -> bool {
5472        Range::from(*self).is_overlapping(&Range::from(*other))
5473    }
5474}
5475
5476#[unstable(feature = "get_disjoint_mut_helpers", issue = "none")]
5477// SAFETY: We implement `is_in_bounds()` and `is_overlapping()` correctly.
5478#[cfg(not(feature = "ferrocene_certified"))]
5479unsafe impl GetDisjointMutIndex for range::RangeInclusive<usize> {
5480    #[inline]
5481    fn is_in_bounds(&self, len: usize) -> bool {
5482        RangeInclusive::from(*self).is_in_bounds(len)
5483    }
5484
5485    #[inline]
5486    fn is_overlapping(&self, other: &Self) -> bool {
5487        RangeInclusive::from(*self).is_overlapping(&RangeInclusive::from(*other))
5488    }
5489}