core/slice/mod.rs
1//! Slice management and manipulation.
2//!
3//! For more details see [`std::slice`].
4//!
5//! [`std::slice`]: ../../std/slice/index.html
6
7#![stable(feature = "rust1", since = "1.0.0")]
8
9#[cfg(not(feature = "ferrocene_subset"))]
10use crate::clone::TrivialClone;
11use crate::cmp::Ordering::{self, Equal, Greater, Less};
12use crate::intrinsics::{exact_div, unchecked_sub};
13#[cfg(not(feature = "ferrocene_subset"))]
14use crate::mem::{self, MaybeUninit, SizedTypeProperties};
15use crate::num::NonZero;
16#[cfg(not(feature = "ferrocene_subset"))]
17use crate::ops::{OneSidedRange, OneSidedRangeBound, Range, RangeBounds, RangeInclusive};
18use crate::panic::const_panic;
19#[cfg(not(feature = "ferrocene_subset"))]
20use crate::simd::{self, Simd};
21use crate::ub_checks::assert_unsafe_precondition;
22#[cfg(not(feature = "ferrocene_subset"))]
23use crate::{fmt, hint, ptr, range, slice};
24
25// Ferrocene addition: imports for certified subset
26#[cfg(feature = "ferrocene_subset")]
27#[rustfmt::skip]
28use crate::{hint, mem::SizedTypeProperties, ptr};
29
30#[unstable(
31 feature = "slice_internals",
32 issue = "none",
33 reason = "exposed from core to be reused in std; use the memchr crate"
34)]
35#[doc(hidden)]
36/// Pure Rust memchr implementation, taken from rust-memchr
37pub mod memchr;
38
39#[unstable(
40 feature = "slice_internals",
41 issue = "none",
42 reason = "exposed from core to be reused in std;"
43)]
44#[doc(hidden)]
45#[cfg(not(feature = "ferrocene_subset"))]
46pub mod sort;
47
48mod ascii;
49mod cmp;
50pub(crate) mod index;
51mod iter;
52mod raw;
53mod rotate;
54mod specialize;
55
56#[stable(feature = "inherent_ascii_escape", since = "1.60.0")]
57#[cfg(not(feature = "ferrocene_subset"))]
58pub use ascii::EscapeAscii;
59#[unstable(feature = "str_internals", issue = "none")]
60#[doc(hidden)]
61pub use ascii::is_ascii_simple;
62#[stable(feature = "slice_get_slice", since = "1.28.0")]
63pub use index::SliceIndex;
64#[unstable(feature = "slice_range", issue = "76393")]
65#[cfg(not(feature = "ferrocene_subset"))]
66pub use index::{range, try_range};
67#[cfg(not(feature = "ferrocene_subset"))]
68#[stable(feature = "array_windows", since = "CURRENT_RUSTC_VERSION")]
69pub use iter::ArrayWindows;
70#[stable(feature = "slice_group_by", since = "1.77.0")]
71#[cfg(not(feature = "ferrocene_subset"))]
72pub use iter::{ChunkBy, ChunkByMut};
73#[stable(feature = "rust1", since = "1.0.0")]
74#[cfg(not(feature = "ferrocene_subset"))]
75pub use iter::{Chunks, ChunksMut, Windows};
76#[stable(feature = "chunks_exact", since = "1.31.0")]
77pub use iter::{ChunksExact, ChunksExactMut};
78#[stable(feature = "rust1", since = "1.0.0")]
79pub use iter::{Iter, IterMut};
80#[stable(feature = "rchunks", since = "1.31.0")]
81#[cfg(not(feature = "ferrocene_subset"))]
82pub use iter::{RChunks, RChunksExact, RChunksExactMut, RChunksMut};
83#[stable(feature = "slice_rsplit", since = "1.27.0")]
84#[cfg(not(feature = "ferrocene_subset"))]
85pub use iter::{RSplit, RSplitMut};
86#[stable(feature = "rust1", since = "1.0.0")]
87#[cfg(not(feature = "ferrocene_subset"))]
88pub use iter::{RSplitN, RSplitNMut, Split, SplitMut, SplitN, SplitNMut};
89#[stable(feature = "split_inclusive", since = "1.51.0")]
90#[cfg(not(feature = "ferrocene_subset"))]
91pub use iter::{SplitInclusive, SplitInclusiveMut};
92#[stable(feature = "from_ref", since = "1.28.0")]
93pub use raw::{from_mut, from_ref};
94#[unstable(feature = "slice_from_ptr_range", issue = "89792")]
95#[cfg(not(feature = "ferrocene_subset"))]
96pub use raw::{from_mut_ptr_range, from_ptr_range};
97#[stable(feature = "rust1", since = "1.0.0")]
98pub use raw::{from_raw_parts, from_raw_parts_mut};
99
100// Ferrocene addition: imports for certified subset
101#[stable(feature = "rust1", since = "1.0.0")]
102#[cfg(feature = "ferrocene_subset")]
103#[rustfmt::skip]
104pub use iter::{Chunks, ChunksMut, Windows};
105
106/// Calculates the direction and split point of a one-sided range.
107///
108/// This is a helper function for `split_off` and `split_off_mut` that returns
109/// the direction of the split (front or back) as well as the index at
110/// which to split. Returns `None` if the split index would overflow.
111#[inline]
112#[cfg(not(feature = "ferrocene_subset"))]
113fn split_point_of(range: impl OneSidedRange<usize>) -> Option<(Direction, usize)> {
114 use OneSidedRangeBound::{End, EndInclusive, StartInclusive};
115
116 Some(match range.bound() {
117 (StartInclusive, i) => (Direction::Back, i),
118 (End, i) => (Direction::Front, i),
119 (EndInclusive, i) => (Direction::Front, i.checked_add(1)?),
120 })
121}
122
123#[cfg(not(feature = "ferrocene_subset"))]
124enum Direction {
125 Front,
126 Back,
127}
128
129impl<T> [T] {
130 /// Returns the number of elements in the slice.
131 ///
132 /// # Examples
133 ///
134 /// ```
135 /// let a = [1, 2, 3];
136 /// assert_eq!(a.len(), 3);
137 /// ```
138 #[lang = "slice_len_fn"]
139 #[stable(feature = "rust1", since = "1.0.0")]
140 #[rustc_const_stable(feature = "const_slice_len", since = "1.39.0")]
141 #[rustc_no_implicit_autorefs]
142 #[inline]
143 #[must_use]
144 #[ferrocene::annotation(
145 "this function is guaranteed to be constant-evaluated as the size of arrays is always available at compilation"
146 )]
147 pub const fn len(&self) -> usize {
148 ptr::metadata(self)
149 }
150
151 /// Returns `true` if the slice has a length of 0.
152 ///
153 /// # Examples
154 ///
155 /// ```
156 /// let a = [1, 2, 3];
157 /// assert!(!a.is_empty());
158 ///
159 /// let b: &[i32] = &[];
160 /// assert!(b.is_empty());
161 /// ```
162 #[stable(feature = "rust1", since = "1.0.0")]
163 #[rustc_const_stable(feature = "const_slice_is_empty", since = "1.39.0")]
164 #[rustc_no_implicit_autorefs]
165 #[inline]
166 #[must_use]
167 pub const fn is_empty(&self) -> bool {
168 self.len() == 0
169 }
170
171 /// Returns the first element of the slice, or `None` if it is empty.
172 ///
173 /// # Examples
174 ///
175 /// ```
176 /// let v = [10, 40, 30];
177 /// assert_eq!(Some(&10), v.first());
178 ///
179 /// let w: &[i32] = &[];
180 /// assert_eq!(None, w.first());
181 /// ```
182 #[stable(feature = "rust1", since = "1.0.0")]
183 #[rustc_const_stable(feature = "const_slice_first_last_not_mut", since = "1.56.0")]
184 #[inline]
185 #[must_use]
186 pub const fn first(&self) -> Option<&T> {
187 if let [first, ..] = self { Some(first) } else { None }
188 }
189
190 /// Returns a mutable reference to the first element of the slice, or `None` if it is empty.
191 ///
192 /// # Examples
193 ///
194 /// ```
195 /// let x = &mut [0, 1, 2];
196 ///
197 /// if let Some(first) = x.first_mut() {
198 /// *first = 5;
199 /// }
200 /// assert_eq!(x, &[5, 1, 2]);
201 ///
202 /// let y: &mut [i32] = &mut [];
203 /// assert_eq!(None, y.first_mut());
204 /// ```
205 #[stable(feature = "rust1", since = "1.0.0")]
206 #[rustc_const_stable(feature = "const_slice_first_last", since = "1.83.0")]
207 #[inline]
208 #[must_use]
209 pub const fn first_mut(&mut self) -> Option<&mut T> {
210 if let [first, ..] = self { Some(first) } else { None }
211 }
212
213 /// Returns the first and all the rest of the elements of the slice, or `None` if it is empty.
214 ///
215 /// # Examples
216 ///
217 /// ```
218 /// let x = &[0, 1, 2];
219 ///
220 /// if let Some((first, elements)) = x.split_first() {
221 /// assert_eq!(first, &0);
222 /// assert_eq!(elements, &[1, 2]);
223 /// }
224 /// ```
225 #[stable(feature = "slice_splits", since = "1.5.0")]
226 #[rustc_const_stable(feature = "const_slice_first_last_not_mut", since = "1.56.0")]
227 #[inline]
228 #[must_use]
229 pub const fn split_first(&self) -> Option<(&T, &[T])> {
230 if let [first, tail @ ..] = self { Some((first, tail)) } else { None }
231 }
232
233 /// Returns the first and all the rest of the elements of the slice, or `None` if it is empty.
234 ///
235 /// # Examples
236 ///
237 /// ```
238 /// let x = &mut [0, 1, 2];
239 ///
240 /// if let Some((first, elements)) = x.split_first_mut() {
241 /// *first = 3;
242 /// elements[0] = 4;
243 /// elements[1] = 5;
244 /// }
245 /// assert_eq!(x, &[3, 4, 5]);
246 /// ```
247 #[stable(feature = "slice_splits", since = "1.5.0")]
248 #[rustc_const_stable(feature = "const_slice_first_last", since = "1.83.0")]
249 #[inline]
250 #[must_use]
251 pub const fn split_first_mut(&mut self) -> Option<(&mut T, &mut [T])> {
252 if let [first, tail @ ..] = self { Some((first, tail)) } else { None }
253 }
254
255 /// Returns the last and all the rest of the elements of the slice, or `None` if it is empty.
256 ///
257 /// # Examples
258 ///
259 /// ```
260 /// let x = &[0, 1, 2];
261 ///
262 /// if let Some((last, elements)) = x.split_last() {
263 /// assert_eq!(last, &2);
264 /// assert_eq!(elements, &[0, 1]);
265 /// }
266 /// ```
267 #[stable(feature = "slice_splits", since = "1.5.0")]
268 #[rustc_const_stable(feature = "const_slice_first_last_not_mut", since = "1.56.0")]
269 #[inline]
270 #[must_use]
271 pub const fn split_last(&self) -> Option<(&T, &[T])> {
272 if let [init @ .., last] = self { Some((last, init)) } else { None }
273 }
274
275 /// Returns the last and all the rest of the elements of the slice, or `None` if it is empty.
276 ///
277 /// # Examples
278 ///
279 /// ```
280 /// let x = &mut [0, 1, 2];
281 ///
282 /// if let Some((last, elements)) = x.split_last_mut() {
283 /// *last = 3;
284 /// elements[0] = 4;
285 /// elements[1] = 5;
286 /// }
287 /// assert_eq!(x, &[4, 5, 3]);
288 /// ```
289 #[stable(feature = "slice_splits", since = "1.5.0")]
290 #[rustc_const_stable(feature = "const_slice_first_last", since = "1.83.0")]
291 #[inline]
292 #[must_use]
293 pub const fn split_last_mut(&mut self) -> Option<(&mut T, &mut [T])> {
294 if let [init @ .., last] = self { Some((last, init)) } else { None }
295 }
296
297 /// Returns the last element of the slice, or `None` if it is empty.
298 ///
299 /// # Examples
300 ///
301 /// ```
302 /// let v = [10, 40, 30];
303 /// assert_eq!(Some(&30), v.last());
304 ///
305 /// let w: &[i32] = &[];
306 /// assert_eq!(None, w.last());
307 /// ```
308 #[stable(feature = "rust1", since = "1.0.0")]
309 #[rustc_const_stable(feature = "const_slice_first_last_not_mut", since = "1.56.0")]
310 #[inline]
311 #[must_use]
312 pub const fn last(&self) -> Option<&T> {
313 if let [.., last] = self { Some(last) } else { None }
314 }
315
316 /// Returns a mutable reference to the last item in the slice, or `None` if it is empty.
317 ///
318 /// # Examples
319 ///
320 /// ```
321 /// let x = &mut [0, 1, 2];
322 ///
323 /// if let Some(last) = x.last_mut() {
324 /// *last = 10;
325 /// }
326 /// assert_eq!(x, &[0, 1, 10]);
327 ///
328 /// let y: &mut [i32] = &mut [];
329 /// assert_eq!(None, y.last_mut());
330 /// ```
331 #[stable(feature = "rust1", since = "1.0.0")]
332 #[rustc_const_stable(feature = "const_slice_first_last", since = "1.83.0")]
333 #[inline]
334 #[must_use]
335 pub const fn last_mut(&mut self) -> Option<&mut T> {
336 if let [.., last] = self { Some(last) } else { None }
337 }
338
339 /// Returns an array reference to the first `N` items in the slice.
340 ///
341 /// If the slice is not at least `N` in length, this will return `None`.
342 ///
343 /// # Examples
344 ///
345 /// ```
346 /// let u = [10, 40, 30];
347 /// assert_eq!(Some(&[10, 40]), u.first_chunk::<2>());
348 ///
349 /// let v: &[i32] = &[10];
350 /// assert_eq!(None, v.first_chunk::<2>());
351 ///
352 /// let w: &[i32] = &[];
353 /// assert_eq!(Some(&[]), w.first_chunk::<0>());
354 /// ```
355 #[inline]
356 #[stable(feature = "slice_first_last_chunk", since = "1.77.0")]
357 #[rustc_const_stable(feature = "slice_first_last_chunk", since = "1.77.0")]
358 pub const fn first_chunk<const N: usize>(&self) -> Option<&[T; N]> {
359 if self.len() < N {
360 None
361 } else {
362 // SAFETY: We explicitly check for the correct number of elements,
363 // and do not let the reference outlive the slice.
364 Some(unsafe { &*(self.as_ptr().cast_array()) })
365 }
366 }
367
368 /// Returns a mutable array reference to the first `N` items in the slice.
369 ///
370 /// If the slice is not at least `N` in length, this will return `None`.
371 ///
372 /// # Examples
373 ///
374 /// ```
375 /// let x = &mut [0, 1, 2];
376 ///
377 /// if let Some(first) = x.first_chunk_mut::<2>() {
378 /// first[0] = 5;
379 /// first[1] = 4;
380 /// }
381 /// assert_eq!(x, &[5, 4, 2]);
382 ///
383 /// assert_eq!(None, x.first_chunk_mut::<4>());
384 /// ```
385 #[inline]
386 #[stable(feature = "slice_first_last_chunk", since = "1.77.0")]
387 #[rustc_const_stable(feature = "const_slice_first_last_chunk", since = "1.83.0")]
388 pub const fn first_chunk_mut<const N: usize>(&mut self) -> Option<&mut [T; N]> {
389 if self.len() < N {
390 None
391 } else {
392 // SAFETY: We explicitly check for the correct number of elements,
393 // do not let the reference outlive the slice,
394 // and require exclusive access to the entire slice to mutate the chunk.
395 Some(unsafe { &mut *(self.as_mut_ptr().cast_array()) })
396 }
397 }
398
399 /// Returns an array reference to the first `N` items in the slice and the remaining slice.
400 ///
401 /// If the slice is not at least `N` in length, this will return `None`.
402 ///
403 /// # Examples
404 ///
405 /// ```
406 /// let x = &[0, 1, 2];
407 ///
408 /// if let Some((first, elements)) = x.split_first_chunk::<2>() {
409 /// assert_eq!(first, &[0, 1]);
410 /// assert_eq!(elements, &[2]);
411 /// }
412 ///
413 /// assert_eq!(None, x.split_first_chunk::<4>());
414 /// ```
415 #[inline]
416 #[stable(feature = "slice_first_last_chunk", since = "1.77.0")]
417 #[rustc_const_stable(feature = "slice_first_last_chunk", since = "1.77.0")]
418 #[cfg(not(feature = "ferrocene_subset"))]
419 pub const fn split_first_chunk<const N: usize>(&self) -> Option<(&[T; N], &[T])> {
420 let Some((first, tail)) = self.split_at_checked(N) else { return None };
421
422 // SAFETY: We explicitly check for the correct number of elements,
423 // and do not let the references outlive the slice.
424 Some((unsafe { &*(first.as_ptr().cast_array()) }, tail))
425 }
426
427 /// Returns a mutable array reference to the first `N` items in the slice and the remaining
428 /// slice.
429 ///
430 /// If the slice is not at least `N` in length, this will return `None`.
431 ///
432 /// # Examples
433 ///
434 /// ```
435 /// let x = &mut [0, 1, 2];
436 ///
437 /// if let Some((first, elements)) = x.split_first_chunk_mut::<2>() {
438 /// first[0] = 3;
439 /// first[1] = 4;
440 /// elements[0] = 5;
441 /// }
442 /// assert_eq!(x, &[3, 4, 5]);
443 ///
444 /// assert_eq!(None, x.split_first_chunk_mut::<4>());
445 /// ```
446 #[inline]
447 #[stable(feature = "slice_first_last_chunk", since = "1.77.0")]
448 #[rustc_const_stable(feature = "const_slice_first_last_chunk", since = "1.83.0")]
449 #[cfg(not(feature = "ferrocene_subset"))]
450 pub const fn split_first_chunk_mut<const N: usize>(
451 &mut self,
452 ) -> Option<(&mut [T; N], &mut [T])> {
453 let Some((first, tail)) = self.split_at_mut_checked(N) else { return None };
454
455 // SAFETY: We explicitly check for the correct number of elements,
456 // do not let the reference outlive the slice,
457 // and enforce exclusive mutability of the chunk by the split.
458 Some((unsafe { &mut *(first.as_mut_ptr().cast_array()) }, tail))
459 }
460
461 /// Returns an array reference to the last `N` items in the slice and the remaining slice.
462 ///
463 /// If the slice is not at least `N` in length, this will return `None`.
464 ///
465 /// # Examples
466 ///
467 /// ```
468 /// let x = &[0, 1, 2];
469 ///
470 /// if let Some((elements, last)) = x.split_last_chunk::<2>() {
471 /// assert_eq!(elements, &[0]);
472 /// assert_eq!(last, &[1, 2]);
473 /// }
474 ///
475 /// assert_eq!(None, x.split_last_chunk::<4>());
476 /// ```
477 #[inline]
478 #[stable(feature = "slice_first_last_chunk", since = "1.77.0")]
479 #[rustc_const_stable(feature = "slice_first_last_chunk", since = "1.77.0")]
480 #[cfg(not(feature = "ferrocene_subset"))]
481 pub const fn split_last_chunk<const N: usize>(&self) -> Option<(&[T], &[T; N])> {
482 let Some(index) = self.len().checked_sub(N) else { return None };
483 let (init, last) = self.split_at(index);
484
485 // SAFETY: We explicitly check for the correct number of elements,
486 // and do not let the references outlive the slice.
487 Some((init, unsafe { &*(last.as_ptr().cast_array()) }))
488 }
489
490 /// Returns a mutable array reference to the last `N` items in the slice and the remaining
491 /// slice.
492 ///
493 /// If the slice is not at least `N` in length, this will return `None`.
494 ///
495 /// # Examples
496 ///
497 /// ```
498 /// let x = &mut [0, 1, 2];
499 ///
500 /// if let Some((elements, last)) = x.split_last_chunk_mut::<2>() {
501 /// last[0] = 3;
502 /// last[1] = 4;
503 /// elements[0] = 5;
504 /// }
505 /// assert_eq!(x, &[5, 3, 4]);
506 ///
507 /// assert_eq!(None, x.split_last_chunk_mut::<4>());
508 /// ```
509 #[inline]
510 #[stable(feature = "slice_first_last_chunk", since = "1.77.0")]
511 #[rustc_const_stable(feature = "const_slice_first_last_chunk", since = "1.83.0")]
512 #[cfg(not(feature = "ferrocene_subset"))]
513 pub const fn split_last_chunk_mut<const N: usize>(
514 &mut self,
515 ) -> Option<(&mut [T], &mut [T; N])> {
516 let Some(index) = self.len().checked_sub(N) else { return None };
517 let (init, last) = self.split_at_mut(index);
518
519 // SAFETY: We explicitly check for the correct number of elements,
520 // do not let the reference outlive the slice,
521 // and enforce exclusive mutability of the chunk by the split.
522 Some((init, unsafe { &mut *(last.as_mut_ptr().cast_array()) }))
523 }
524
525 /// Returns an array reference to the last `N` items in the slice.
526 ///
527 /// If the slice is not at least `N` in length, this will return `None`.
528 ///
529 /// # Examples
530 ///
531 /// ```
532 /// let u = [10, 40, 30];
533 /// assert_eq!(Some(&[40, 30]), u.last_chunk::<2>());
534 ///
535 /// let v: &[i32] = &[10];
536 /// assert_eq!(None, v.last_chunk::<2>());
537 ///
538 /// let w: &[i32] = &[];
539 /// assert_eq!(Some(&[]), w.last_chunk::<0>());
540 /// ```
541 #[inline]
542 #[stable(feature = "slice_first_last_chunk", since = "1.77.0")]
543 #[rustc_const_stable(feature = "const_slice_last_chunk", since = "1.80.0")]
544 #[cfg(not(feature = "ferrocene_subset"))]
545 pub const fn last_chunk<const N: usize>(&self) -> Option<&[T; N]> {
546 // FIXME(const-hack): Without const traits, we need this instead of `get`.
547 let Some(index) = self.len().checked_sub(N) else { return None };
548 let (_, last) = self.split_at(index);
549
550 // SAFETY: We explicitly check for the correct number of elements,
551 // and do not let the references outlive the slice.
552 Some(unsafe { &*(last.as_ptr().cast_array()) })
553 }
554
555 /// Returns a mutable array reference to the last `N` items in the slice.
556 ///
557 /// If the slice is not at least `N` in length, this will return `None`.
558 ///
559 /// # Examples
560 ///
561 /// ```
562 /// let x = &mut [0, 1, 2];
563 ///
564 /// if let Some(last) = x.last_chunk_mut::<2>() {
565 /// last[0] = 10;
566 /// last[1] = 20;
567 /// }
568 /// assert_eq!(x, &[0, 10, 20]);
569 ///
570 /// assert_eq!(None, x.last_chunk_mut::<4>());
571 /// ```
572 #[inline]
573 #[stable(feature = "slice_first_last_chunk", since = "1.77.0")]
574 #[rustc_const_stable(feature = "const_slice_first_last_chunk", since = "1.83.0")]
575 #[cfg(not(feature = "ferrocene_subset"))]
576 pub const fn last_chunk_mut<const N: usize>(&mut self) -> Option<&mut [T; N]> {
577 // FIXME(const-hack): Without const traits, we need this instead of `get`.
578 let Some(index) = self.len().checked_sub(N) else { return None };
579 let (_, last) = self.split_at_mut(index);
580
581 // SAFETY: We explicitly check for the correct number of elements,
582 // do not let the reference outlive the slice,
583 // and require exclusive access to the entire slice to mutate the chunk.
584 Some(unsafe { &mut *(last.as_mut_ptr().cast_array()) })
585 }
586
587 /// Returns a reference to an element or subslice depending on the type of
588 /// index.
589 ///
590 /// - If given a position, returns a reference to the element at that
591 /// position or `None` if out of bounds.
592 /// - If given a range, returns the subslice corresponding to that range,
593 /// or `None` if out of bounds.
594 ///
595 /// # Examples
596 ///
597 /// ```
598 /// let v = [10, 40, 30];
599 /// assert_eq!(Some(&40), v.get(1));
600 /// assert_eq!(Some(&[10, 40][..]), v.get(0..2));
601 /// assert_eq!(None, v.get(3));
602 /// assert_eq!(None, v.get(0..4));
603 /// ```
604 #[stable(feature = "rust1", since = "1.0.0")]
605 #[rustc_no_implicit_autorefs]
606 #[inline]
607 #[must_use]
608 #[rustc_const_unstable(feature = "const_index", issue = "143775")]
609 pub const fn get<I>(&self, index: I) -> Option<&I::Output>
610 where
611 I: [const] SliceIndex<Self>,
612 {
613 index.get(self)
614 }
615
616 /// Returns a mutable reference to an element or subslice depending on the
617 /// type of index (see [`get`]) or `None` if the index is out of bounds.
618 ///
619 /// [`get`]: slice::get
620 ///
621 /// # Examples
622 ///
623 /// ```
624 /// let x = &mut [0, 1, 2];
625 ///
626 /// if let Some(elem) = x.get_mut(1) {
627 /// *elem = 42;
628 /// }
629 /// assert_eq!(x, &[0, 42, 2]);
630 /// ```
631 #[stable(feature = "rust1", since = "1.0.0")]
632 #[rustc_no_implicit_autorefs]
633 #[inline]
634 #[must_use]
635 #[rustc_const_unstable(feature = "const_index", issue = "143775")]
636 pub const fn get_mut<I>(&mut self, index: I) -> Option<&mut I::Output>
637 where
638 I: [const] SliceIndex<Self>,
639 {
640 index.get_mut(self)
641 }
642
643 /// Returns a reference to an element or subslice, without doing bounds
644 /// checking.
645 ///
646 /// For a safe alternative see [`get`].
647 ///
648 /// # Safety
649 ///
650 /// Calling this method with an out-of-bounds index is *[undefined behavior]*
651 /// even if the resulting reference is not used.
652 ///
653 /// You can think of this like `.get(index).unwrap_unchecked()`. It's UB
654 /// to call `.get_unchecked(len)`, even if you immediately convert to a
655 /// pointer. And it's UB to call `.get_unchecked(..len + 1)`,
656 /// `.get_unchecked(..=len)`, or similar.
657 ///
658 /// [`get`]: slice::get
659 /// [undefined behavior]: https://doc.rust-lang.org/reference/behavior-considered-undefined.html
660 ///
661 /// # Examples
662 ///
663 /// ```
664 /// let x = &[1, 2, 4];
665 ///
666 /// unsafe {
667 /// assert_eq!(x.get_unchecked(1), &2);
668 /// }
669 /// ```
670 #[stable(feature = "rust1", since = "1.0.0")]
671 #[rustc_no_implicit_autorefs]
672 #[inline]
673 #[must_use]
674 #[track_caller]
675 #[rustc_const_unstable(feature = "const_index", issue = "143775")]
676 pub const unsafe fn get_unchecked<I>(&self, index: I) -> &I::Output
677 where
678 I: [const] SliceIndex<Self>,
679 {
680 // SAFETY: the caller must uphold most of the safety requirements for `get_unchecked`;
681 // the slice is dereferenceable because `self` is a safe reference.
682 // The returned pointer is safe because impls of `SliceIndex` have to guarantee that it is.
683 unsafe { &*index.get_unchecked(self) }
684 }
685
686 /// Returns a mutable reference to an element or subslice, without doing
687 /// bounds checking.
688 ///
689 /// For a safe alternative see [`get_mut`].
690 ///
691 /// # Safety
692 ///
693 /// Calling this method with an out-of-bounds index is *[undefined behavior]*
694 /// even if the resulting reference is not used.
695 ///
696 /// You can think of this like `.get_mut(index).unwrap_unchecked()`. It's
697 /// UB to call `.get_unchecked_mut(len)`, even if you immediately convert
698 /// to a pointer. And it's UB to call `.get_unchecked_mut(..len + 1)`,
699 /// `.get_unchecked_mut(..=len)`, or similar.
700 ///
701 /// [`get_mut`]: slice::get_mut
702 /// [undefined behavior]: https://doc.rust-lang.org/reference/behavior-considered-undefined.html
703 ///
704 /// # Examples
705 ///
706 /// ```
707 /// let x = &mut [1, 2, 4];
708 ///
709 /// unsafe {
710 /// let elem = x.get_unchecked_mut(1);
711 /// *elem = 13;
712 /// }
713 /// assert_eq!(x, &[1, 13, 4]);
714 /// ```
715 #[stable(feature = "rust1", since = "1.0.0")]
716 #[rustc_no_implicit_autorefs]
717 #[inline]
718 #[must_use]
719 #[track_caller]
720 #[rustc_const_unstable(feature = "const_index", issue = "143775")]
721 pub const unsafe fn get_unchecked_mut<I>(&mut self, index: I) -> &mut I::Output
722 where
723 I: [const] SliceIndex<Self>,
724 {
725 // SAFETY: the caller must uphold the safety requirements for `get_unchecked_mut`;
726 // the slice is dereferenceable because `self` is a safe reference.
727 // The returned pointer is safe because impls of `SliceIndex` have to guarantee that it is.
728 unsafe { &mut *index.get_unchecked_mut(self) }
729 }
730
731 /// Returns a raw pointer to the slice's buffer.
732 ///
733 /// The caller must ensure that the slice outlives the pointer this
734 /// function returns, or else it will end up dangling.
735 ///
736 /// The caller must also ensure that the memory the pointer (non-transitively) points to
737 /// is never written to (except inside an `UnsafeCell`) using this pointer or any pointer
738 /// derived from it. If you need to mutate the contents of the slice, use [`as_mut_ptr`].
739 ///
740 /// Modifying the container referenced by this slice may cause its buffer
741 /// to be reallocated, which would also make any pointers to it invalid.
742 ///
743 /// # Examples
744 ///
745 /// ```
746 /// let x = &[1, 2, 4];
747 /// let x_ptr = x.as_ptr();
748 ///
749 /// unsafe {
750 /// for i in 0..x.len() {
751 /// assert_eq!(x.get_unchecked(i), &*x_ptr.add(i));
752 /// }
753 /// }
754 /// ```
755 ///
756 /// [`as_mut_ptr`]: slice::as_mut_ptr
757 #[stable(feature = "rust1", since = "1.0.0")]
758 #[rustc_const_stable(feature = "const_slice_as_ptr", since = "1.32.0")]
759 #[rustc_never_returns_null_ptr]
760 #[rustc_as_ptr]
761 #[inline(always)]
762 #[must_use]
763 pub const fn as_ptr(&self) -> *const T {
764 self as *const [T] as *const T
765 }
766
767 /// Returns an unsafe mutable pointer to the slice's buffer.
768 ///
769 /// The caller must ensure that the slice outlives the pointer this
770 /// function returns, or else it will end up dangling.
771 ///
772 /// Modifying the container referenced by this slice may cause its buffer
773 /// to be reallocated, which would also make any pointers to it invalid.
774 ///
775 /// # Examples
776 ///
777 /// ```
778 /// let x = &mut [1, 2, 4];
779 /// let x_ptr = x.as_mut_ptr();
780 ///
781 /// unsafe {
782 /// for i in 0..x.len() {
783 /// *x_ptr.add(i) += 2;
784 /// }
785 /// }
786 /// assert_eq!(x, &[3, 4, 6]);
787 /// ```
788 #[stable(feature = "rust1", since = "1.0.0")]
789 #[rustc_const_stable(feature = "const_ptr_offset", since = "1.61.0")]
790 #[rustc_never_returns_null_ptr]
791 #[rustc_as_ptr]
792 #[inline(always)]
793 #[must_use]
794 pub const fn as_mut_ptr(&mut self) -> *mut T {
795 self as *mut [T] as *mut T
796 }
797
798 /// Returns the two raw pointers spanning the slice.
799 ///
800 /// The returned range is half-open, which means that the end pointer
801 /// points *one past* the last element of the slice. This way, an empty
802 /// slice is represented by two equal pointers, and the difference between
803 /// the two pointers represents the size of the slice.
804 ///
805 /// See [`as_ptr`] for warnings on using these pointers. The end pointer
806 /// requires extra caution, as it does not point to a valid element in the
807 /// slice.
808 ///
809 /// This function is useful for interacting with foreign interfaces which
810 /// use two pointers to refer to a range of elements in memory, as is
811 /// common in C++.
812 ///
813 /// It can also be useful to check if a pointer to an element refers to an
814 /// element of this slice:
815 ///
816 /// ```
817 /// let a = [1, 2, 3];
818 /// let x = &a[1] as *const _;
819 /// let y = &5 as *const _;
820 ///
821 /// assert!(a.as_ptr_range().contains(&x));
822 /// assert!(!a.as_ptr_range().contains(&y));
823 /// ```
824 ///
825 /// [`as_ptr`]: slice::as_ptr
826 #[stable(feature = "slice_ptr_range", since = "1.48.0")]
827 #[rustc_const_stable(feature = "const_ptr_offset", since = "1.61.0")]
828 #[inline]
829 #[must_use]
830 #[cfg(not(feature = "ferrocene_subset"))]
831 pub const fn as_ptr_range(&self) -> Range<*const T> {
832 let start = self.as_ptr();
833 // SAFETY: The `add` here is safe, because:
834 //
835 // - Both pointers are part of the same object, as pointing directly
836 // past the object also counts.
837 //
838 // - The size of the slice is never larger than `isize::MAX` bytes, as
839 // noted here:
840 // - https://github.com/rust-lang/unsafe-code-guidelines/issues/102#issuecomment-473340447
841 // - https://doc.rust-lang.org/reference/behavior-considered-undefined.html
842 // - https://doc.rust-lang.org/core/slice/fn.from_raw_parts.html#safety
843 // (This doesn't seem normative yet, but the very same assumption is
844 // made in many places, including the Index implementation of slices.)
845 //
846 // - There is no wrapping around involved, as slices do not wrap past
847 // the end of the address space.
848 //
849 // See the documentation of [`pointer::add`].
850 let end = unsafe { start.add(self.len()) };
851 start..end
852 }
853
854 /// Returns the two unsafe mutable pointers spanning the slice.
855 ///
856 /// The returned range is half-open, which means that the end pointer
857 /// points *one past* the last element of the slice. This way, an empty
858 /// slice is represented by two equal pointers, and the difference between
859 /// the two pointers represents the size of the slice.
860 ///
861 /// See [`as_mut_ptr`] for warnings on using these pointers. The end
862 /// pointer requires extra caution, as it does not point to a valid element
863 /// in the slice.
864 ///
865 /// This function is useful for interacting with foreign interfaces which
866 /// use two pointers to refer to a range of elements in memory, as is
867 /// common in C++.
868 ///
869 /// [`as_mut_ptr`]: slice::as_mut_ptr
870 #[stable(feature = "slice_ptr_range", since = "1.48.0")]
871 #[rustc_const_stable(feature = "const_ptr_offset", since = "1.61.0")]
872 #[inline]
873 #[must_use]
874 #[cfg(not(feature = "ferrocene_subset"))]
875 pub const fn as_mut_ptr_range(&mut self) -> Range<*mut T> {
876 let start = self.as_mut_ptr();
877 // SAFETY: See as_ptr_range() above for why `add` here is safe.
878 let end = unsafe { start.add(self.len()) };
879 start..end
880 }
881
882 /// Gets a reference to the underlying array.
883 ///
884 /// If `N` is not exactly equal to the length of `self`, then this method returns `None`.
885 #[stable(feature = "core_slice_as_array", since = "1.93.0")]
886 #[rustc_const_stable(feature = "core_slice_as_array", since = "1.93.0")]
887 #[inline]
888 #[must_use]
889 pub const fn as_array<const N: usize>(&self) -> Option<&[T; N]> {
890 if self.len() == N {
891 let ptr = self.as_ptr().cast_array();
892
893 // SAFETY: The underlying array of a slice can be reinterpreted as an actual array `[T; N]` if `N` is not greater than the slice's length.
894 let me = unsafe { &*ptr };
895 Some(me)
896 } else {
897 None
898 }
899 }
900
901 /// Gets a mutable reference to the slice's underlying array.
902 ///
903 /// If `N` is not exactly equal to the length of `self`, then this method returns `None`.
904 #[stable(feature = "core_slice_as_array", since = "1.93.0")]
905 #[rustc_const_stable(feature = "core_slice_as_array", since = "1.93.0")]
906 #[inline]
907 #[must_use]
908 pub const fn as_mut_array<const N: usize>(&mut self) -> Option<&mut [T; N]> {
909 if self.len() == N {
910 let ptr = self.as_mut_ptr().cast_array();
911
912 // SAFETY: The underlying array of a slice can be reinterpreted as an actual array `[T; N]` if `N` is not greater than the slice's length.
913 let me = unsafe { &mut *ptr };
914 Some(me)
915 } else {
916 None
917 }
918 }
919
920 /// Swaps two elements in the slice.
921 ///
922 /// If `a` equals to `b`, it's guaranteed that elements won't change value.
923 ///
924 /// # Arguments
925 ///
926 /// * a - The index of the first element
927 /// * b - The index of the second element
928 ///
929 /// # Panics
930 ///
931 /// Panics if `a` or `b` are out of bounds.
932 ///
933 /// # Examples
934 ///
935 /// ```
936 /// let mut v = ["a", "b", "c", "d", "e"];
937 /// v.swap(2, 4);
938 /// assert!(v == ["a", "b", "e", "d", "c"]);
939 /// ```
940 #[stable(feature = "rust1", since = "1.0.0")]
941 #[rustc_const_stable(feature = "const_swap", since = "1.85.0")]
942 #[inline]
943 #[track_caller]
944 pub const fn swap(&mut self, a: usize, b: usize) {
945 // FIXME: use swap_unchecked here (https://github.com/rust-lang/rust/pull/88540#issuecomment-944344343)
946 // Can't take two mutable loans from one vector, so instead use raw pointers.
947 let pa = &raw mut self[a];
948 let pb = &raw mut self[b];
949 // SAFETY: `pa` and `pb` have been created from safe mutable references and refer
950 // to elements in the slice and therefore are guaranteed to be valid and aligned.
951 // Note that accessing the elements behind `a` and `b` is checked and will
952 // panic when out of bounds.
953 unsafe {
954 ptr::swap(pa, pb);
955 }
956 }
957
958 /// Swaps two elements in the slice, without doing bounds checking.
959 ///
960 /// For a safe alternative see [`swap`].
961 ///
962 /// # Arguments
963 ///
964 /// * a - The index of the first element
965 /// * b - The index of the second element
966 ///
967 /// # Safety
968 ///
969 /// Calling this method with an out-of-bounds index is *[undefined behavior]*.
970 /// The caller has to ensure that `a < self.len()` and `b < self.len()`.
971 ///
972 /// # Examples
973 ///
974 /// ```
975 /// #![feature(slice_swap_unchecked)]
976 ///
977 /// let mut v = ["a", "b", "c", "d"];
978 /// // SAFETY: we know that 1 and 3 are both indices of the slice
979 /// unsafe { v.swap_unchecked(1, 3) };
980 /// assert!(v == ["a", "d", "c", "b"]);
981 /// ```
982 ///
983 /// [`swap`]: slice::swap
984 /// [undefined behavior]: https://doc.rust-lang.org/reference/behavior-considered-undefined.html
985 #[unstable(feature = "slice_swap_unchecked", issue = "88539")]
986 #[track_caller]
987 #[cfg(not(feature = "ferrocene_subset"))]
988 pub const unsafe fn swap_unchecked(&mut self, a: usize, b: usize) {
989 assert_unsafe_precondition!(
990 check_library_ub,
991 "slice::swap_unchecked requires that the indices are within the slice",
992 (
993 len: usize = self.len(),
994 a: usize = a,
995 b: usize = b,
996 ) => a < len && b < len,
997 );
998
999 let ptr = self.as_mut_ptr();
1000 // SAFETY: caller has to guarantee that `a < self.len()` and `b < self.len()`
1001 unsafe {
1002 ptr::swap(ptr.add(a), ptr.add(b));
1003 }
1004 }
1005
1006 /// Reverses the order of elements in the slice, in place.
1007 ///
1008 /// # Examples
1009 ///
1010 /// ```
1011 /// let mut v = [1, 2, 3];
1012 /// v.reverse();
1013 /// assert!(v == [3, 2, 1]);
1014 /// ```
1015 #[stable(feature = "rust1", since = "1.0.0")]
1016 #[rustc_const_stable(feature = "const_slice_reverse", since = "1.90.0")]
1017 #[inline]
1018 #[cfg(not(feature = "ferrocene_subset"))]
1019 pub const fn reverse(&mut self) {
1020 let half_len = self.len() / 2;
1021 let Range { start, end } = self.as_mut_ptr_range();
1022
1023 // These slices will skip the middle item for an odd length,
1024 // since that one doesn't need to move.
1025 let (front_half, back_half) =
1026 // SAFETY: Both are subparts of the original slice, so the memory
1027 // range is valid, and they don't overlap because they're each only
1028 // half (or less) of the original slice.
1029 unsafe {
1030 (
1031 slice::from_raw_parts_mut(start, half_len),
1032 slice::from_raw_parts_mut(end.sub(half_len), half_len),
1033 )
1034 };
1035
1036 // Introducing a function boundary here means that the two halves
1037 // get `noalias` markers, allowing better optimization as LLVM
1038 // knows that they're disjoint, unlike in the original slice.
1039 revswap(front_half, back_half, half_len);
1040
1041 #[inline]
1042 const fn revswap<T>(a: &mut [T], b: &mut [T], n: usize) {
1043 debug_assert!(a.len() == n);
1044 debug_assert!(b.len() == n);
1045
1046 // Because this function is first compiled in isolation,
1047 // this check tells LLVM that the indexing below is
1048 // in-bounds. Then after inlining -- once the actual
1049 // lengths of the slices are known -- it's removed.
1050 // FIXME(const_trait_impl) replace with let (a, b) = (&mut a[..n], &mut b[..n]);
1051 let (a, _) = a.split_at_mut(n);
1052 let (b, _) = b.split_at_mut(n);
1053
1054 let mut i = 0;
1055 while i < n {
1056 mem::swap(&mut a[i], &mut b[n - 1 - i]);
1057 i += 1;
1058 }
1059 }
1060 }
1061
1062 /// Returns an iterator over the slice.
1063 ///
1064 /// The iterator yields all items from start to end.
1065 ///
1066 /// # Examples
1067 ///
1068 /// ```
1069 /// let x = &[1, 2, 4];
1070 /// let mut iterator = x.iter();
1071 ///
1072 /// assert_eq!(iterator.next(), Some(&1));
1073 /// assert_eq!(iterator.next(), Some(&2));
1074 /// assert_eq!(iterator.next(), Some(&4));
1075 /// assert_eq!(iterator.next(), None);
1076 /// ```
1077 #[stable(feature = "rust1", since = "1.0.0")]
1078 #[rustc_const_unstable(feature = "const_slice_make_iter", issue = "137737")]
1079 #[inline]
1080 #[rustc_diagnostic_item = "slice_iter"]
1081 pub const fn iter(&self) -> Iter<'_, T> {
1082 Iter::new(self)
1083 }
1084
1085 /// Returns an iterator that allows modifying each value.
1086 ///
1087 /// The iterator yields all items from start to end.
1088 ///
1089 /// # Examples
1090 ///
1091 /// ```
1092 /// let x = &mut [1, 2, 4];
1093 /// for elem in x.iter_mut() {
1094 /// *elem += 2;
1095 /// }
1096 /// assert_eq!(x, &[3, 4, 6]);
1097 /// ```
1098 #[rustc_const_unstable(feature = "const_slice_make_iter", issue = "137737")]
1099 #[stable(feature = "rust1", since = "1.0.0")]
1100 #[inline]
1101 pub const fn iter_mut(&mut self) -> IterMut<'_, T> {
1102 IterMut::new(self)
1103 }
1104
1105 /// Returns an iterator over all contiguous windows of length
1106 /// `size`. The windows overlap. If the slice is shorter than
1107 /// `size`, the iterator returns no values.
1108 ///
1109 /// # Panics
1110 ///
1111 /// Panics if `size` is zero.
1112 ///
1113 /// # Examples
1114 ///
1115 /// ```
1116 /// let slice = ['l', 'o', 'r', 'e', 'm'];
1117 /// let mut iter = slice.windows(3);
1118 /// assert_eq!(iter.next().unwrap(), &['l', 'o', 'r']);
1119 /// assert_eq!(iter.next().unwrap(), &['o', 'r', 'e']);
1120 /// assert_eq!(iter.next().unwrap(), &['r', 'e', 'm']);
1121 /// assert!(iter.next().is_none());
1122 /// ```
1123 ///
1124 /// If the slice is shorter than `size`:
1125 ///
1126 /// ```
1127 /// let slice = ['f', 'o', 'o'];
1128 /// let mut iter = slice.windows(4);
1129 /// assert!(iter.next().is_none());
1130 /// ```
1131 ///
1132 /// Because the [Iterator] trait cannot represent the required lifetimes,
1133 /// there is no `windows_mut` analog to `windows`;
1134 /// `[0,1,2].windows_mut(2).collect()` would violate [the rules of references]
1135 /// (though a [LendingIterator] analog is possible). You can sometimes use
1136 /// [`Cell::as_slice_of_cells`](crate::cell::Cell::as_slice_of_cells) in
1137 /// conjunction with `windows` instead:
1138 ///
1139 /// [the rules of references]: https://doc.rust-lang.org/book/ch04-02-references-and-borrowing.html#the-rules-of-references
1140 /// [LendingIterator]: https://blog.rust-lang.org/2022/10/28/gats-stabilization.html
1141 /// ```
1142 /// use std::cell::Cell;
1143 ///
1144 /// let mut array = ['R', 'u', 's', 't', ' ', '2', '0', '1', '5'];
1145 /// let slice = &mut array[..];
1146 /// let slice_of_cells: &[Cell<char>] = Cell::from_mut(slice).as_slice_of_cells();
1147 /// for w in slice_of_cells.windows(3) {
1148 /// Cell::swap(&w[0], &w[2]);
1149 /// }
1150 /// assert_eq!(array, ['s', 't', ' ', '2', '0', '1', '5', 'u', 'R']);
1151 /// ```
1152 #[stable(feature = "rust1", since = "1.0.0")]
1153 #[rustc_const_unstable(feature = "const_slice_make_iter", issue = "137737")]
1154 #[inline]
1155 #[track_caller]
1156 pub const fn windows(&self, size: usize) -> Windows<'_, T> {
1157 let size = NonZero::new(size).expect("window size must be non-zero");
1158 Windows::new(self, size)
1159 }
1160
1161 /// Returns an iterator over `chunk_size` elements of the slice at a time, starting at the
1162 /// beginning of the slice.
1163 ///
1164 /// The chunks are slices and do not overlap. If `chunk_size` does not divide the length of the
1165 /// slice, then the last chunk will not have length `chunk_size`.
1166 ///
1167 /// See [`chunks_exact`] for a variant of this iterator that returns chunks of always exactly
1168 /// `chunk_size` elements, and [`rchunks`] for the same iterator but starting at the end of the
1169 /// slice.
1170 ///
1171 /// If your `chunk_size` is a constant, consider using [`as_chunks`] instead, which will
1172 /// give references to arrays of exactly that length, rather than slices.
1173 ///
1174 /// # Panics
1175 ///
1176 /// Panics if `chunk_size` is zero.
1177 ///
1178 /// # Examples
1179 ///
1180 /// ```
1181 /// let slice = ['l', 'o', 'r', 'e', 'm'];
1182 /// let mut iter = slice.chunks(2);
1183 /// assert_eq!(iter.next().unwrap(), &['l', 'o']);
1184 /// assert_eq!(iter.next().unwrap(), &['r', 'e']);
1185 /// assert_eq!(iter.next().unwrap(), &['m']);
1186 /// assert!(iter.next().is_none());
1187 /// ```
1188 ///
1189 /// [`chunks_exact`]: slice::chunks_exact
1190 /// [`rchunks`]: slice::rchunks
1191 /// [`as_chunks`]: slice::as_chunks
1192 #[stable(feature = "rust1", since = "1.0.0")]
1193 #[rustc_const_unstable(feature = "const_slice_make_iter", issue = "137737")]
1194 #[inline]
1195 #[track_caller]
1196 pub const fn chunks(&self, chunk_size: usize) -> Chunks<'_, T> {
1197 assert!(chunk_size != 0, "chunk size must be non-zero");
1198 Chunks::new(self, chunk_size)
1199 }
1200
1201 /// Returns an iterator over `chunk_size` elements of the slice at a time, starting at the
1202 /// beginning of the slice.
1203 ///
1204 /// The chunks are mutable slices, and do not overlap. If `chunk_size` does not divide the
1205 /// length of the slice, then the last chunk will not have length `chunk_size`.
1206 ///
1207 /// See [`chunks_exact_mut`] for a variant of this iterator that returns chunks of always
1208 /// exactly `chunk_size` elements, and [`rchunks_mut`] for the same iterator but starting at
1209 /// the end of the slice.
1210 ///
1211 /// If your `chunk_size` is a constant, consider using [`as_chunks_mut`] instead, which will
1212 /// give references to arrays of exactly that length, rather than slices.
1213 ///
1214 /// # Panics
1215 ///
1216 /// Panics if `chunk_size` is zero.
1217 ///
1218 /// # Examples
1219 ///
1220 /// ```
1221 /// let v = &mut [0, 0, 0, 0, 0];
1222 /// let mut count = 1;
1223 ///
1224 /// for chunk in v.chunks_mut(2) {
1225 /// for elem in chunk.iter_mut() {
1226 /// *elem += count;
1227 /// }
1228 /// count += 1;
1229 /// }
1230 /// assert_eq!(v, &[1, 1, 2, 2, 3]);
1231 /// ```
1232 ///
1233 /// [`chunks_exact_mut`]: slice::chunks_exact_mut
1234 /// [`rchunks_mut`]: slice::rchunks_mut
1235 /// [`as_chunks_mut`]: slice::as_chunks_mut
1236 #[stable(feature = "rust1", since = "1.0.0")]
1237 #[rustc_const_unstable(feature = "const_slice_make_iter", issue = "137737")]
1238 #[inline]
1239 #[track_caller]
1240 pub const fn chunks_mut(&mut self, chunk_size: usize) -> ChunksMut<'_, T> {
1241 assert!(chunk_size != 0, "chunk size must be non-zero");
1242 ChunksMut::new(self, chunk_size)
1243 }
1244
1245 /// Returns an iterator over `chunk_size` elements of the slice at a time, starting at the
1246 /// beginning of the slice.
1247 ///
1248 /// The chunks are slices and do not overlap. If `chunk_size` does not divide the length of the
1249 /// slice, then the last up to `chunk_size-1` elements will be omitted and can be retrieved
1250 /// from the `remainder` function of the iterator.
1251 ///
1252 /// Due to each chunk having exactly `chunk_size` elements, the compiler can often optimize the
1253 /// resulting code better than in the case of [`chunks`].
1254 ///
1255 /// See [`chunks`] for a variant of this iterator that also returns the remainder as a smaller
1256 /// chunk, and [`rchunks_exact`] for the same iterator but starting at the end of the slice.
1257 ///
1258 /// If your `chunk_size` is a constant, consider using [`as_chunks`] instead, which will
1259 /// give references to arrays of exactly that length, rather than slices.
1260 ///
1261 /// # Panics
1262 ///
1263 /// Panics if `chunk_size` is zero.
1264 ///
1265 /// # Examples
1266 ///
1267 /// ```
1268 /// let slice = ['l', 'o', 'r', 'e', 'm'];
1269 /// let mut iter = slice.chunks_exact(2);
1270 /// assert_eq!(iter.next().unwrap(), &['l', 'o']);
1271 /// assert_eq!(iter.next().unwrap(), &['r', 'e']);
1272 /// assert!(iter.next().is_none());
1273 /// assert_eq!(iter.remainder(), &['m']);
1274 /// ```
1275 ///
1276 /// [`chunks`]: slice::chunks
1277 /// [`rchunks_exact`]: slice::rchunks_exact
1278 /// [`as_chunks`]: slice::as_chunks
1279 #[stable(feature = "chunks_exact", since = "1.31.0")]
1280 #[rustc_const_unstable(feature = "const_slice_make_iter", issue = "137737")]
1281 #[inline]
1282 #[track_caller]
1283 pub const fn chunks_exact(&self, chunk_size: usize) -> ChunksExact<'_, T> {
1284 assert!(chunk_size != 0, "chunk size must be non-zero");
1285 ChunksExact::new(self, chunk_size)
1286 }
1287
1288 /// Returns an iterator over `chunk_size` elements of the slice at a time, starting at the
1289 /// beginning of the slice.
1290 ///
1291 /// The chunks are mutable slices, and do not overlap. If `chunk_size` does not divide the
1292 /// length of the slice, then the last up to `chunk_size-1` elements will be omitted and can be
1293 /// retrieved from the `into_remainder` function of the iterator.
1294 ///
1295 /// Due to each chunk having exactly `chunk_size` elements, the compiler can often optimize the
1296 /// resulting code better than in the case of [`chunks_mut`].
1297 ///
1298 /// See [`chunks_mut`] for a variant of this iterator that also returns the remainder as a
1299 /// smaller chunk, and [`rchunks_exact_mut`] for the same iterator but starting at the end of
1300 /// the slice.
1301 ///
1302 /// If your `chunk_size` is a constant, consider using [`as_chunks_mut`] instead, which will
1303 /// give references to arrays of exactly that length, rather than slices.
1304 ///
1305 /// # Panics
1306 ///
1307 /// Panics if `chunk_size` is zero.
1308 ///
1309 /// # Examples
1310 ///
1311 /// ```
1312 /// let v = &mut [0, 0, 0, 0, 0];
1313 /// let mut count = 1;
1314 ///
1315 /// for chunk in v.chunks_exact_mut(2) {
1316 /// for elem in chunk.iter_mut() {
1317 /// *elem += count;
1318 /// }
1319 /// count += 1;
1320 /// }
1321 /// assert_eq!(v, &[1, 1, 2, 2, 0]);
1322 /// ```
1323 ///
1324 /// [`chunks_mut`]: slice::chunks_mut
1325 /// [`rchunks_exact_mut`]: slice::rchunks_exact_mut
1326 /// [`as_chunks_mut`]: slice::as_chunks_mut
1327 #[stable(feature = "chunks_exact", since = "1.31.0")]
1328 #[rustc_const_unstable(feature = "const_slice_make_iter", issue = "137737")]
1329 #[inline]
1330 #[track_caller]
1331 pub const fn chunks_exact_mut(&mut self, chunk_size: usize) -> ChunksExactMut<'_, T> {
1332 assert!(chunk_size != 0, "chunk size must be non-zero");
1333 ChunksExactMut::new(self, chunk_size)
1334 }
1335
1336 /// Splits the slice into a slice of `N`-element arrays,
1337 /// assuming that there's no remainder.
1338 ///
1339 /// This is the inverse operation to [`as_flattened`].
1340 ///
1341 /// [`as_flattened`]: slice::as_flattened
1342 ///
1343 /// As this is `unsafe`, consider whether you could use [`as_chunks`] or
1344 /// [`as_rchunks`] instead, perhaps via something like
1345 /// `if let (chunks, []) = slice.as_chunks()` or
1346 /// `let (chunks, []) = slice.as_chunks() else { unreachable!() };`.
1347 ///
1348 /// [`as_chunks`]: slice::as_chunks
1349 /// [`as_rchunks`]: slice::as_rchunks
1350 ///
1351 /// # Safety
1352 ///
1353 /// This may only be called when
1354 /// - The slice splits exactly into `N`-element chunks (aka `self.len() % N == 0`).
1355 /// - `N != 0`.
1356 ///
1357 /// # Examples
1358 ///
1359 /// ```
1360 /// let slice: &[char] = &['l', 'o', 'r', 'e', 'm', '!'];
1361 /// let chunks: &[[char; 1]] =
1362 /// // SAFETY: 1-element chunks never have remainder
1363 /// unsafe { slice.as_chunks_unchecked() };
1364 /// assert_eq!(chunks, &[['l'], ['o'], ['r'], ['e'], ['m'], ['!']]);
1365 /// let chunks: &[[char; 3]] =
1366 /// // SAFETY: The slice length (6) is a multiple of 3
1367 /// unsafe { slice.as_chunks_unchecked() };
1368 /// assert_eq!(chunks, &[['l', 'o', 'r'], ['e', 'm', '!']]);
1369 ///
1370 /// // These would be unsound:
1371 /// // let chunks: &[[_; 5]] = slice.as_chunks_unchecked() // The slice length is not a multiple of 5
1372 /// // let chunks: &[[_; 0]] = slice.as_chunks_unchecked() // Zero-length chunks are never allowed
1373 /// ```
1374 #[stable(feature = "slice_as_chunks", since = "1.88.0")]
1375 #[rustc_const_stable(feature = "slice_as_chunks", since = "1.88.0")]
1376 #[inline]
1377 #[must_use]
1378 #[track_caller]
1379 pub const unsafe fn as_chunks_unchecked<const N: usize>(&self) -> &[[T; N]] {
1380 assert_unsafe_precondition!(
1381 check_language_ub,
1382 "slice::as_chunks_unchecked requires `N != 0` and the slice to split exactly into `N`-element chunks",
1383 (n: usize = N, len: usize = self.len()) => n != 0 && len.is_multiple_of(n),
1384 );
1385 // SAFETY: Caller must guarantee that `N` is nonzero and exactly divides the slice length
1386 let new_len = unsafe { exact_div(self.len(), N) };
1387 // SAFETY: We cast a slice of `new_len * N` elements into
1388 // a slice of `new_len` many `N` elements chunks.
1389 unsafe { from_raw_parts(self.as_ptr().cast(), new_len) }
1390 }
1391
1392 /// Splits the slice into a slice of `N`-element arrays,
1393 /// starting at the beginning of the slice,
1394 /// and a remainder slice with length strictly less than `N`.
1395 ///
1396 /// The remainder is meaningful in the division sense. Given
1397 /// `let (chunks, remainder) = slice.as_chunks()`, then:
1398 /// - `chunks.len()` equals `slice.len() / N`,
1399 /// - `remainder.len()` equals `slice.len() % N`, and
1400 /// - `slice.len()` equals `chunks.len() * N + remainder.len()`.
1401 ///
1402 /// You can flatten the chunks back into a slice-of-`T` with [`as_flattened`].
1403 ///
1404 /// [`as_flattened`]: slice::as_flattened
1405 ///
1406 /// # Panics
1407 ///
1408 /// Panics if `N` is zero.
1409 ///
1410 /// Note that this check is against a const generic parameter, not a runtime
1411 /// value, and thus a particular monomorphization will either always panic
1412 /// or it will never panic.
1413 ///
1414 /// # Examples
1415 ///
1416 /// ```
1417 /// let slice = ['l', 'o', 'r', 'e', 'm'];
1418 /// let (chunks, remainder) = slice.as_chunks();
1419 /// assert_eq!(chunks, &[['l', 'o'], ['r', 'e']]);
1420 /// assert_eq!(remainder, &['m']);
1421 /// ```
1422 ///
1423 /// If you expect the slice to be an exact multiple, you can combine
1424 /// `let`-`else` with an empty slice pattern:
1425 /// ```
1426 /// let slice = ['R', 'u', 's', 't'];
1427 /// let (chunks, []) = slice.as_chunks::<2>() else {
1428 /// panic!("slice didn't have even length")
1429 /// };
1430 /// assert_eq!(chunks, &[['R', 'u'], ['s', 't']]);
1431 /// ```
1432 #[stable(feature = "slice_as_chunks", since = "1.88.0")]
1433 #[rustc_const_stable(feature = "slice_as_chunks", since = "1.88.0")]
1434 #[inline]
1435 #[track_caller]
1436 #[must_use]
1437 pub const fn as_chunks<const N: usize>(&self) -> (&[[T; N]], &[T]) {
1438 assert!(N != 0, "chunk size must be non-zero");
1439 let len_rounded_down = self.len() / N * N;
1440 // SAFETY: The rounded-down value is always the same or smaller than the
1441 // original length, and thus must be in-bounds of the slice.
1442 let (multiple_of_n, remainder) = unsafe { self.split_at_unchecked(len_rounded_down) };
1443 // SAFETY: We already panicked for zero, and ensured by construction
1444 // that the length of the subslice is a multiple of N.
1445 let array_slice = unsafe { multiple_of_n.as_chunks_unchecked() };
1446 (array_slice, remainder)
1447 }
1448
1449 /// Splits the slice into a slice of `N`-element arrays,
1450 /// starting at the end of the slice,
1451 /// and a remainder slice with length strictly less than `N`.
1452 ///
1453 /// The remainder is meaningful in the division sense. Given
1454 /// `let (remainder, chunks) = slice.as_rchunks()`, then:
1455 /// - `remainder.len()` equals `slice.len() % N`,
1456 /// - `chunks.len()` equals `slice.len() / N`, and
1457 /// - `slice.len()` equals `chunks.len() * N + remainder.len()`.
1458 ///
1459 /// You can flatten the chunks back into a slice-of-`T` with [`as_flattened`].
1460 ///
1461 /// [`as_flattened`]: slice::as_flattened
1462 ///
1463 /// # Panics
1464 ///
1465 /// Panics if `N` is zero.
1466 ///
1467 /// Note that this check is against a const generic parameter, not a runtime
1468 /// value, and thus a particular monomorphization will either always panic
1469 /// or it will never panic.
1470 ///
1471 /// # Examples
1472 ///
1473 /// ```
1474 /// let slice = ['l', 'o', 'r', 'e', 'm'];
1475 /// let (remainder, chunks) = slice.as_rchunks();
1476 /// assert_eq!(remainder, &['l']);
1477 /// assert_eq!(chunks, &[['o', 'r'], ['e', 'm']]);
1478 /// ```
1479 #[stable(feature = "slice_as_chunks", since = "1.88.0")]
1480 #[rustc_const_stable(feature = "slice_as_chunks", since = "1.88.0")]
1481 #[inline]
1482 #[track_caller]
1483 #[must_use]
1484 #[cfg(not(feature = "ferrocene_subset"))]
1485 pub const fn as_rchunks<const N: usize>(&self) -> (&[T], &[[T; N]]) {
1486 assert!(N != 0, "chunk size must be non-zero");
1487 let len = self.len() / N;
1488 let (remainder, multiple_of_n) = self.split_at(self.len() - len * N);
1489 // SAFETY: We already panicked for zero, and ensured by construction
1490 // that the length of the subslice is a multiple of N.
1491 let array_slice = unsafe { multiple_of_n.as_chunks_unchecked() };
1492 (remainder, array_slice)
1493 }
1494
1495 /// Splits the slice into a slice of `N`-element arrays,
1496 /// assuming that there's no remainder.
1497 ///
1498 /// This is the inverse operation to [`as_flattened_mut`].
1499 ///
1500 /// [`as_flattened_mut`]: slice::as_flattened_mut
1501 ///
1502 /// As this is `unsafe`, consider whether you could use [`as_chunks_mut`] or
1503 /// [`as_rchunks_mut`] instead, perhaps via something like
1504 /// `if let (chunks, []) = slice.as_chunks_mut()` or
1505 /// `let (chunks, []) = slice.as_chunks_mut() else { unreachable!() };`.
1506 ///
1507 /// [`as_chunks_mut`]: slice::as_chunks_mut
1508 /// [`as_rchunks_mut`]: slice::as_rchunks_mut
1509 ///
1510 /// # Safety
1511 ///
1512 /// This may only be called when
1513 /// - The slice splits exactly into `N`-element chunks (aka `self.len() % N == 0`).
1514 /// - `N != 0`.
1515 ///
1516 /// # Examples
1517 ///
1518 /// ```
1519 /// let slice: &mut [char] = &mut ['l', 'o', 'r', 'e', 'm', '!'];
1520 /// let chunks: &mut [[char; 1]] =
1521 /// // SAFETY: 1-element chunks never have remainder
1522 /// unsafe { slice.as_chunks_unchecked_mut() };
1523 /// chunks[0] = ['L'];
1524 /// assert_eq!(chunks, &[['L'], ['o'], ['r'], ['e'], ['m'], ['!']]);
1525 /// let chunks: &mut [[char; 3]] =
1526 /// // SAFETY: The slice length (6) is a multiple of 3
1527 /// unsafe { slice.as_chunks_unchecked_mut() };
1528 /// chunks[1] = ['a', 'x', '?'];
1529 /// assert_eq!(slice, &['L', 'o', 'r', 'a', 'x', '?']);
1530 ///
1531 /// // These would be unsound:
1532 /// // let chunks: &[[_; 5]] = slice.as_chunks_unchecked_mut() // The slice length is not a multiple of 5
1533 /// // let chunks: &[[_; 0]] = slice.as_chunks_unchecked_mut() // Zero-length chunks are never allowed
1534 /// ```
1535 #[stable(feature = "slice_as_chunks", since = "1.88.0")]
1536 #[rustc_const_stable(feature = "slice_as_chunks", since = "1.88.0")]
1537 #[inline]
1538 #[must_use]
1539 #[track_caller]
1540 #[cfg(not(feature = "ferrocene_subset"))]
1541 pub const unsafe fn as_chunks_unchecked_mut<const N: usize>(&mut self) -> &mut [[T; N]] {
1542 assert_unsafe_precondition!(
1543 check_language_ub,
1544 "slice::as_chunks_unchecked requires `N != 0` and the slice to split exactly into `N`-element chunks",
1545 (n: usize = N, len: usize = self.len()) => n != 0 && len.is_multiple_of(n)
1546 );
1547 // SAFETY: Caller must guarantee that `N` is nonzero and exactly divides the slice length
1548 let new_len = unsafe { exact_div(self.len(), N) };
1549 // SAFETY: We cast a slice of `new_len * N` elements into
1550 // a slice of `new_len` many `N` elements chunks.
1551 unsafe { from_raw_parts_mut(self.as_mut_ptr().cast(), new_len) }
1552 }
1553
1554 /// Splits the slice into a slice of `N`-element arrays,
1555 /// starting at the beginning of the slice,
1556 /// and a remainder slice with length strictly less than `N`.
1557 ///
1558 /// The remainder is meaningful in the division sense. Given
1559 /// `let (chunks, remainder) = slice.as_chunks_mut()`, then:
1560 /// - `chunks.len()` equals `slice.len() / N`,
1561 /// - `remainder.len()` equals `slice.len() % N`, and
1562 /// - `slice.len()` equals `chunks.len() * N + remainder.len()`.
1563 ///
1564 /// You can flatten the chunks back into a slice-of-`T` with [`as_flattened_mut`].
1565 ///
1566 /// [`as_flattened_mut`]: slice::as_flattened_mut
1567 ///
1568 /// # Panics
1569 ///
1570 /// Panics if `N` is zero.
1571 ///
1572 /// Note that this check is against a const generic parameter, not a runtime
1573 /// value, and thus a particular monomorphization will either always panic
1574 /// or it will never panic.
1575 ///
1576 /// # Examples
1577 ///
1578 /// ```
1579 /// let v = &mut [0, 0, 0, 0, 0];
1580 /// let mut count = 1;
1581 ///
1582 /// let (chunks, remainder) = v.as_chunks_mut();
1583 /// remainder[0] = 9;
1584 /// for chunk in chunks {
1585 /// *chunk = [count; 2];
1586 /// count += 1;
1587 /// }
1588 /// assert_eq!(v, &[1, 1, 2, 2, 9]);
1589 /// ```
1590 #[stable(feature = "slice_as_chunks", since = "1.88.0")]
1591 #[rustc_const_stable(feature = "slice_as_chunks", since = "1.88.0")]
1592 #[inline]
1593 #[track_caller]
1594 #[must_use]
1595 #[cfg(not(feature = "ferrocene_subset"))]
1596 pub const fn as_chunks_mut<const N: usize>(&mut self) -> (&mut [[T; N]], &mut [T]) {
1597 assert!(N != 0, "chunk size must be non-zero");
1598 let len_rounded_down = self.len() / N * N;
1599 // SAFETY: The rounded-down value is always the same or smaller than the
1600 // original length, and thus must be in-bounds of the slice.
1601 let (multiple_of_n, remainder) = unsafe { self.split_at_mut_unchecked(len_rounded_down) };
1602 // SAFETY: We already panicked for zero, and ensured by construction
1603 // that the length of the subslice is a multiple of N.
1604 let array_slice = unsafe { multiple_of_n.as_chunks_unchecked_mut() };
1605 (array_slice, remainder)
1606 }
1607
1608 /// Splits the slice into a slice of `N`-element arrays,
1609 /// starting at the end of the slice,
1610 /// and a remainder slice with length strictly less than `N`.
1611 ///
1612 /// The remainder is meaningful in the division sense. Given
1613 /// `let (remainder, chunks) = slice.as_rchunks_mut()`, then:
1614 /// - `remainder.len()` equals `slice.len() % N`,
1615 /// - `chunks.len()` equals `slice.len() / N`, and
1616 /// - `slice.len()` equals `chunks.len() * N + remainder.len()`.
1617 ///
1618 /// You can flatten the chunks back into a slice-of-`T` with [`as_flattened_mut`].
1619 ///
1620 /// [`as_flattened_mut`]: slice::as_flattened_mut
1621 ///
1622 /// # Panics
1623 ///
1624 /// Panics if `N` is zero.
1625 ///
1626 /// Note that this check is against a const generic parameter, not a runtime
1627 /// value, and thus a particular monomorphization will either always panic
1628 /// or it will never panic.
1629 ///
1630 /// # Examples
1631 ///
1632 /// ```
1633 /// let v = &mut [0, 0, 0, 0, 0];
1634 /// let mut count = 1;
1635 ///
1636 /// let (remainder, chunks) = v.as_rchunks_mut();
1637 /// remainder[0] = 9;
1638 /// for chunk in chunks {
1639 /// *chunk = [count; 2];
1640 /// count += 1;
1641 /// }
1642 /// assert_eq!(v, &[9, 1, 1, 2, 2]);
1643 /// ```
1644 #[stable(feature = "slice_as_chunks", since = "1.88.0")]
1645 #[rustc_const_stable(feature = "slice_as_chunks", since = "1.88.0")]
1646 #[inline]
1647 #[track_caller]
1648 #[must_use]
1649 #[cfg(not(feature = "ferrocene_subset"))]
1650 pub const fn as_rchunks_mut<const N: usize>(&mut self) -> (&mut [T], &mut [[T; N]]) {
1651 assert!(N != 0, "chunk size must be non-zero");
1652 let len = self.len() / N;
1653 let (remainder, multiple_of_n) = self.split_at_mut(self.len() - len * N);
1654 // SAFETY: We already panicked for zero, and ensured by construction
1655 // that the length of the subslice is a multiple of N.
1656 let array_slice = unsafe { multiple_of_n.as_chunks_unchecked_mut() };
1657 (remainder, array_slice)
1658 }
1659
1660 /// Returns an iterator over overlapping windows of `N` elements of a slice,
1661 /// starting at the beginning of the slice.
1662 ///
1663 /// This is the const generic equivalent of [`windows`].
1664 ///
1665 /// If `N` is greater than the size of the slice, it will return no windows.
1666 ///
1667 /// # Panics
1668 ///
1669 /// Panics if `N` is zero.
1670 ///
1671 /// Note that this check is against a const generic parameter, not a runtime
1672 /// value, and thus a particular monomorphization will either always panic
1673 /// or it will never panic.
1674 ///
1675 /// # Examples
1676 ///
1677 /// ```
1678 /// let slice = [0, 1, 2, 3];
1679 /// let mut iter = slice.array_windows();
1680 /// assert_eq!(iter.next().unwrap(), &[0, 1]);
1681 /// assert_eq!(iter.next().unwrap(), &[1, 2]);
1682 /// assert_eq!(iter.next().unwrap(), &[2, 3]);
1683 /// assert!(iter.next().is_none());
1684 /// ```
1685 ///
1686 /// [`windows`]: slice::windows
1687 #[stable(feature = "array_windows", since = "CURRENT_RUSTC_VERSION")]
1688 #[rustc_const_unstable(feature = "const_slice_make_iter", issue = "137737")]
1689 #[inline]
1690 #[track_caller]
1691 #[cfg(not(feature = "ferrocene_subset"))]
1692 pub const fn array_windows<const N: usize>(&self) -> ArrayWindows<'_, T, N> {
1693 assert!(N != 0, "window size must be non-zero");
1694 ArrayWindows::new(self)
1695 }
1696
1697 /// Returns an iterator over `chunk_size` elements of the slice at a time, starting at the end
1698 /// of the slice.
1699 ///
1700 /// The chunks are slices and do not overlap. If `chunk_size` does not divide the length of the
1701 /// slice, then the last chunk will not have length `chunk_size`.
1702 ///
1703 /// See [`rchunks_exact`] for a variant of this iterator that returns chunks of always exactly
1704 /// `chunk_size` elements, and [`chunks`] for the same iterator but starting at the beginning
1705 /// of the slice.
1706 ///
1707 /// If your `chunk_size` is a constant, consider using [`as_rchunks`] instead, which will
1708 /// give references to arrays of exactly that length, rather than slices.
1709 ///
1710 /// # Panics
1711 ///
1712 /// Panics if `chunk_size` is zero.
1713 ///
1714 /// # Examples
1715 ///
1716 /// ```
1717 /// let slice = ['l', 'o', 'r', 'e', 'm'];
1718 /// let mut iter = slice.rchunks(2);
1719 /// assert_eq!(iter.next().unwrap(), &['e', 'm']);
1720 /// assert_eq!(iter.next().unwrap(), &['o', 'r']);
1721 /// assert_eq!(iter.next().unwrap(), &['l']);
1722 /// assert!(iter.next().is_none());
1723 /// ```
1724 ///
1725 /// [`rchunks_exact`]: slice::rchunks_exact
1726 /// [`chunks`]: slice::chunks
1727 /// [`as_rchunks`]: slice::as_rchunks
1728 #[stable(feature = "rchunks", since = "1.31.0")]
1729 #[rustc_const_unstable(feature = "const_slice_make_iter", issue = "137737")]
1730 #[inline]
1731 #[track_caller]
1732 #[cfg(not(feature = "ferrocene_subset"))]
1733 pub const fn rchunks(&self, chunk_size: usize) -> RChunks<'_, T> {
1734 assert!(chunk_size != 0, "chunk size must be non-zero");
1735 RChunks::new(self, chunk_size)
1736 }
1737
1738 /// Returns an iterator over `chunk_size` elements of the slice at a time, starting at the end
1739 /// of the slice.
1740 ///
1741 /// The chunks are mutable slices, and do not overlap. If `chunk_size` does not divide the
1742 /// length of the slice, then the last chunk will not have length `chunk_size`.
1743 ///
1744 /// See [`rchunks_exact_mut`] for a variant of this iterator that returns chunks of always
1745 /// exactly `chunk_size` elements, and [`chunks_mut`] for the same iterator but starting at the
1746 /// beginning of the slice.
1747 ///
1748 /// If your `chunk_size` is a constant, consider using [`as_rchunks_mut`] instead, which will
1749 /// give references to arrays of exactly that length, rather than slices.
1750 ///
1751 /// # Panics
1752 ///
1753 /// Panics if `chunk_size` is zero.
1754 ///
1755 /// # Examples
1756 ///
1757 /// ```
1758 /// let v = &mut [0, 0, 0, 0, 0];
1759 /// let mut count = 1;
1760 ///
1761 /// for chunk in v.rchunks_mut(2) {
1762 /// for elem in chunk.iter_mut() {
1763 /// *elem += count;
1764 /// }
1765 /// count += 1;
1766 /// }
1767 /// assert_eq!(v, &[3, 2, 2, 1, 1]);
1768 /// ```
1769 ///
1770 /// [`rchunks_exact_mut`]: slice::rchunks_exact_mut
1771 /// [`chunks_mut`]: slice::chunks_mut
1772 /// [`as_rchunks_mut`]: slice::as_rchunks_mut
1773 #[stable(feature = "rchunks", since = "1.31.0")]
1774 #[rustc_const_unstable(feature = "const_slice_make_iter", issue = "137737")]
1775 #[inline]
1776 #[track_caller]
1777 #[cfg(not(feature = "ferrocene_subset"))]
1778 pub const fn rchunks_mut(&mut self, chunk_size: usize) -> RChunksMut<'_, T> {
1779 assert!(chunk_size != 0, "chunk size must be non-zero");
1780 RChunksMut::new(self, chunk_size)
1781 }
1782
1783 /// Returns an iterator over `chunk_size` elements of the slice at a time, starting at the
1784 /// end of the slice.
1785 ///
1786 /// The chunks are slices and do not overlap. If `chunk_size` does not divide the length of the
1787 /// slice, then the last up to `chunk_size-1` elements will be omitted and can be retrieved
1788 /// from the `remainder` function of the iterator.
1789 ///
1790 /// Due to each chunk having exactly `chunk_size` elements, the compiler can often optimize the
1791 /// resulting code better than in the case of [`rchunks`].
1792 ///
1793 /// See [`rchunks`] for a variant of this iterator that also returns the remainder as a smaller
1794 /// chunk, and [`chunks_exact`] for the same iterator but starting at the beginning of the
1795 /// slice.
1796 ///
1797 /// If your `chunk_size` is a constant, consider using [`as_rchunks`] instead, which will
1798 /// give references to arrays of exactly that length, rather than slices.
1799 ///
1800 /// # Panics
1801 ///
1802 /// Panics if `chunk_size` is zero.
1803 ///
1804 /// # Examples
1805 ///
1806 /// ```
1807 /// let slice = ['l', 'o', 'r', 'e', 'm'];
1808 /// let mut iter = slice.rchunks_exact(2);
1809 /// assert_eq!(iter.next().unwrap(), &['e', 'm']);
1810 /// assert_eq!(iter.next().unwrap(), &['o', 'r']);
1811 /// assert!(iter.next().is_none());
1812 /// assert_eq!(iter.remainder(), &['l']);
1813 /// ```
1814 ///
1815 /// [`chunks`]: slice::chunks
1816 /// [`rchunks`]: slice::rchunks
1817 /// [`chunks_exact`]: slice::chunks_exact
1818 /// [`as_rchunks`]: slice::as_rchunks
1819 #[stable(feature = "rchunks", since = "1.31.0")]
1820 #[rustc_const_unstable(feature = "const_slice_make_iter", issue = "137737")]
1821 #[inline]
1822 #[track_caller]
1823 #[cfg(not(feature = "ferrocene_subset"))]
1824 pub const fn rchunks_exact(&self, chunk_size: usize) -> RChunksExact<'_, T> {
1825 assert!(chunk_size != 0, "chunk size must be non-zero");
1826 RChunksExact::new(self, chunk_size)
1827 }
1828
1829 /// Returns an iterator over `chunk_size` elements of the slice at a time, starting at the end
1830 /// of the slice.
1831 ///
1832 /// The chunks are mutable slices, and do not overlap. If `chunk_size` does not divide the
1833 /// length of the slice, then the last up to `chunk_size-1` elements will be omitted and can be
1834 /// retrieved from the `into_remainder` function of the iterator.
1835 ///
1836 /// Due to each chunk having exactly `chunk_size` elements, the compiler can often optimize the
1837 /// resulting code better than in the case of [`chunks_mut`].
1838 ///
1839 /// See [`rchunks_mut`] for a variant of this iterator that also returns the remainder as a
1840 /// smaller chunk, and [`chunks_exact_mut`] for the same iterator but starting at the beginning
1841 /// of the slice.
1842 ///
1843 /// If your `chunk_size` is a constant, consider using [`as_rchunks_mut`] instead, which will
1844 /// give references to arrays of exactly that length, rather than slices.
1845 ///
1846 /// # Panics
1847 ///
1848 /// Panics if `chunk_size` is zero.
1849 ///
1850 /// # Examples
1851 ///
1852 /// ```
1853 /// let v = &mut [0, 0, 0, 0, 0];
1854 /// let mut count = 1;
1855 ///
1856 /// for chunk in v.rchunks_exact_mut(2) {
1857 /// for elem in chunk.iter_mut() {
1858 /// *elem += count;
1859 /// }
1860 /// count += 1;
1861 /// }
1862 /// assert_eq!(v, &[0, 2, 2, 1, 1]);
1863 /// ```
1864 ///
1865 /// [`chunks_mut`]: slice::chunks_mut
1866 /// [`rchunks_mut`]: slice::rchunks_mut
1867 /// [`chunks_exact_mut`]: slice::chunks_exact_mut
1868 /// [`as_rchunks_mut`]: slice::as_rchunks_mut
1869 #[stable(feature = "rchunks", since = "1.31.0")]
1870 #[rustc_const_unstable(feature = "const_slice_make_iter", issue = "137737")]
1871 #[inline]
1872 #[track_caller]
1873 #[cfg(not(feature = "ferrocene_subset"))]
1874 pub const fn rchunks_exact_mut(&mut self, chunk_size: usize) -> RChunksExactMut<'_, T> {
1875 assert!(chunk_size != 0, "chunk size must be non-zero");
1876 RChunksExactMut::new(self, chunk_size)
1877 }
1878
1879 /// Returns an iterator over the slice producing non-overlapping runs
1880 /// of elements using the predicate to separate them.
1881 ///
1882 /// The predicate is called for every pair of consecutive elements,
1883 /// meaning that it is called on `slice[0]` and `slice[1]`,
1884 /// followed by `slice[1]` and `slice[2]`, and so on.
1885 ///
1886 /// # Examples
1887 ///
1888 /// ```
1889 /// let slice = &[1, 1, 1, 3, 3, 2, 2, 2];
1890 ///
1891 /// let mut iter = slice.chunk_by(|a, b| a == b);
1892 ///
1893 /// assert_eq!(iter.next(), Some(&[1, 1, 1][..]));
1894 /// assert_eq!(iter.next(), Some(&[3, 3][..]));
1895 /// assert_eq!(iter.next(), Some(&[2, 2, 2][..]));
1896 /// assert_eq!(iter.next(), None);
1897 /// ```
1898 ///
1899 /// This method can be used to extract the sorted subslices:
1900 ///
1901 /// ```
1902 /// let slice = &[1, 1, 2, 3, 2, 3, 2, 3, 4];
1903 ///
1904 /// let mut iter = slice.chunk_by(|a, b| a <= b);
1905 ///
1906 /// assert_eq!(iter.next(), Some(&[1, 1, 2, 3][..]));
1907 /// assert_eq!(iter.next(), Some(&[2, 3][..]));
1908 /// assert_eq!(iter.next(), Some(&[2, 3, 4][..]));
1909 /// assert_eq!(iter.next(), None);
1910 /// ```
1911 #[stable(feature = "slice_group_by", since = "1.77.0")]
1912 #[rustc_const_unstable(feature = "const_slice_make_iter", issue = "137737")]
1913 #[inline]
1914 #[cfg(not(feature = "ferrocene_subset"))]
1915 pub const fn chunk_by<F>(&self, pred: F) -> ChunkBy<'_, T, F>
1916 where
1917 F: FnMut(&T, &T) -> bool,
1918 {
1919 ChunkBy::new(self, pred)
1920 }
1921
1922 /// Returns an iterator over the slice producing non-overlapping mutable
1923 /// runs of elements using the predicate to separate them.
1924 ///
1925 /// The predicate is called for every pair of consecutive elements,
1926 /// meaning that it is called on `slice[0]` and `slice[1]`,
1927 /// followed by `slice[1]` and `slice[2]`, and so on.
1928 ///
1929 /// # Examples
1930 ///
1931 /// ```
1932 /// let slice = &mut [1, 1, 1, 3, 3, 2, 2, 2];
1933 ///
1934 /// let mut iter = slice.chunk_by_mut(|a, b| a == b);
1935 ///
1936 /// assert_eq!(iter.next(), Some(&mut [1, 1, 1][..]));
1937 /// assert_eq!(iter.next(), Some(&mut [3, 3][..]));
1938 /// assert_eq!(iter.next(), Some(&mut [2, 2, 2][..]));
1939 /// assert_eq!(iter.next(), None);
1940 /// ```
1941 ///
1942 /// This method can be used to extract the sorted subslices:
1943 ///
1944 /// ```
1945 /// let slice = &mut [1, 1, 2, 3, 2, 3, 2, 3, 4];
1946 ///
1947 /// let mut iter = slice.chunk_by_mut(|a, b| a <= b);
1948 ///
1949 /// assert_eq!(iter.next(), Some(&mut [1, 1, 2, 3][..]));
1950 /// assert_eq!(iter.next(), Some(&mut [2, 3][..]));
1951 /// assert_eq!(iter.next(), Some(&mut [2, 3, 4][..]));
1952 /// assert_eq!(iter.next(), None);
1953 /// ```
1954 #[stable(feature = "slice_group_by", since = "1.77.0")]
1955 #[rustc_const_unstable(feature = "const_slice_make_iter", issue = "137737")]
1956 #[inline]
1957 #[cfg(not(feature = "ferrocene_subset"))]
1958 pub const fn chunk_by_mut<F>(&mut self, pred: F) -> ChunkByMut<'_, T, F>
1959 where
1960 F: FnMut(&T, &T) -> bool,
1961 {
1962 ChunkByMut::new(self, pred)
1963 }
1964
1965 /// Divides one slice into two at an index.
1966 ///
1967 /// The first will contain all indices from `[0, mid)` (excluding
1968 /// the index `mid` itself) and the second will contain all
1969 /// indices from `[mid, len)` (excluding the index `len` itself).
1970 ///
1971 /// # Panics
1972 ///
1973 /// Panics if `mid > len`. For a non-panicking alternative see
1974 /// [`split_at_checked`](slice::split_at_checked).
1975 ///
1976 /// # Examples
1977 ///
1978 /// ```
1979 /// let v = ['a', 'b', 'c'];
1980 ///
1981 /// {
1982 /// let (left, right) = v.split_at(0);
1983 /// assert_eq!(left, []);
1984 /// assert_eq!(right, ['a', 'b', 'c']);
1985 /// }
1986 ///
1987 /// {
1988 /// let (left, right) = v.split_at(2);
1989 /// assert_eq!(left, ['a', 'b']);
1990 /// assert_eq!(right, ['c']);
1991 /// }
1992 ///
1993 /// {
1994 /// let (left, right) = v.split_at(3);
1995 /// assert_eq!(left, ['a', 'b', 'c']);
1996 /// assert_eq!(right, []);
1997 /// }
1998 /// ```
1999 #[stable(feature = "rust1", since = "1.0.0")]
2000 #[rustc_const_stable(feature = "const_slice_split_at_not_mut", since = "1.71.0")]
2001 #[inline]
2002 #[track_caller]
2003 #[must_use]
2004 pub const fn split_at(&self, mid: usize) -> (&[T], &[T]) {
2005 match self.split_at_checked(mid) {
2006 Some(pair) => pair,
2007 None => panic!("mid > len"),
2008 }
2009 }
2010
2011 /// Divides one mutable slice into two at an index.
2012 ///
2013 /// The first will contain all indices from `[0, mid)` (excluding
2014 /// the index `mid` itself) and the second will contain all
2015 /// indices from `[mid, len)` (excluding the index `len` itself).
2016 ///
2017 /// # Panics
2018 ///
2019 /// Panics if `mid > len`. For a non-panicking alternative see
2020 /// [`split_at_mut_checked`](slice::split_at_mut_checked).
2021 ///
2022 /// # Examples
2023 ///
2024 /// ```
2025 /// let mut v = [1, 0, 3, 0, 5, 6];
2026 /// let (left, right) = v.split_at_mut(2);
2027 /// assert_eq!(left, [1, 0]);
2028 /// assert_eq!(right, [3, 0, 5, 6]);
2029 /// left[1] = 2;
2030 /// right[1] = 4;
2031 /// assert_eq!(v, [1, 2, 3, 4, 5, 6]);
2032 /// ```
2033 #[stable(feature = "rust1", since = "1.0.0")]
2034 #[inline]
2035 #[track_caller]
2036 #[must_use]
2037 #[rustc_const_stable(feature = "const_slice_split_at_mut", since = "1.83.0")]
2038 pub const fn split_at_mut(&mut self, mid: usize) -> (&mut [T], &mut [T]) {
2039 match self.split_at_mut_checked(mid) {
2040 Some(pair) => pair,
2041 None => panic!("mid > len"),
2042 }
2043 }
2044
2045 /// Divides one slice into two at an index, without doing bounds checking.
2046 ///
2047 /// The first will contain all indices from `[0, mid)` (excluding
2048 /// the index `mid` itself) and the second will contain all
2049 /// indices from `[mid, len)` (excluding the index `len` itself).
2050 ///
2051 /// For a safe alternative see [`split_at`].
2052 ///
2053 /// # Safety
2054 ///
2055 /// Calling this method with an out-of-bounds index is *[undefined behavior]*
2056 /// even if the resulting reference is not used. The caller has to ensure that
2057 /// `0 <= mid <= self.len()`.
2058 ///
2059 /// [`split_at`]: slice::split_at
2060 /// [undefined behavior]: https://doc.rust-lang.org/reference/behavior-considered-undefined.html
2061 ///
2062 /// # Examples
2063 ///
2064 /// ```
2065 /// let v = ['a', 'b', 'c'];
2066 ///
2067 /// unsafe {
2068 /// let (left, right) = v.split_at_unchecked(0);
2069 /// assert_eq!(left, []);
2070 /// assert_eq!(right, ['a', 'b', 'c']);
2071 /// }
2072 ///
2073 /// unsafe {
2074 /// let (left, right) = v.split_at_unchecked(2);
2075 /// assert_eq!(left, ['a', 'b']);
2076 /// assert_eq!(right, ['c']);
2077 /// }
2078 ///
2079 /// unsafe {
2080 /// let (left, right) = v.split_at_unchecked(3);
2081 /// assert_eq!(left, ['a', 'b', 'c']);
2082 /// assert_eq!(right, []);
2083 /// }
2084 /// ```
2085 #[stable(feature = "slice_split_at_unchecked", since = "1.79.0")]
2086 #[rustc_const_stable(feature = "const_slice_split_at_unchecked", since = "1.77.0")]
2087 #[inline]
2088 #[must_use]
2089 #[track_caller]
2090 pub const unsafe fn split_at_unchecked(&self, mid: usize) -> (&[T], &[T]) {
2091 // FIXME(const-hack): the const function `from_raw_parts` is used to make this
2092 // function const; previously the implementation used
2093 // `(self.get_unchecked(..mid), self.get_unchecked(mid..))`
2094
2095 let len = self.len();
2096 let ptr = self.as_ptr();
2097
2098 assert_unsafe_precondition!(
2099 check_library_ub,
2100 "slice::split_at_unchecked requires the index to be within the slice",
2101 (mid: usize = mid, len: usize = len) => mid <= len,
2102 );
2103
2104 // SAFETY: Caller has to check that `0 <= mid <= self.len()`
2105 unsafe { (from_raw_parts(ptr, mid), from_raw_parts(ptr.add(mid), unchecked_sub(len, mid))) }
2106 }
2107
2108 /// Divides one mutable slice into two at an index, without doing bounds checking.
2109 ///
2110 /// The first will contain all indices from `[0, mid)` (excluding
2111 /// the index `mid` itself) and the second will contain all
2112 /// indices from `[mid, len)` (excluding the index `len` itself).
2113 ///
2114 /// For a safe alternative see [`split_at_mut`].
2115 ///
2116 /// # Safety
2117 ///
2118 /// Calling this method with an out-of-bounds index is *[undefined behavior]*
2119 /// even if the resulting reference is not used. The caller has to ensure that
2120 /// `0 <= mid <= self.len()`.
2121 ///
2122 /// [`split_at_mut`]: slice::split_at_mut
2123 /// [undefined behavior]: https://doc.rust-lang.org/reference/behavior-considered-undefined.html
2124 ///
2125 /// # Examples
2126 ///
2127 /// ```
2128 /// let mut v = [1, 0, 3, 0, 5, 6];
2129 /// // scoped to restrict the lifetime of the borrows
2130 /// unsafe {
2131 /// let (left, right) = v.split_at_mut_unchecked(2);
2132 /// assert_eq!(left, [1, 0]);
2133 /// assert_eq!(right, [3, 0, 5, 6]);
2134 /// left[1] = 2;
2135 /// right[1] = 4;
2136 /// }
2137 /// assert_eq!(v, [1, 2, 3, 4, 5, 6]);
2138 /// ```
2139 #[stable(feature = "slice_split_at_unchecked", since = "1.79.0")]
2140 #[rustc_const_stable(feature = "const_slice_split_at_mut", since = "1.83.0")]
2141 #[inline]
2142 #[must_use]
2143 #[track_caller]
2144 pub const unsafe fn split_at_mut_unchecked(&mut self, mid: usize) -> (&mut [T], &mut [T]) {
2145 let len = self.len();
2146 let ptr = self.as_mut_ptr();
2147
2148 assert_unsafe_precondition!(
2149 check_library_ub,
2150 "slice::split_at_mut_unchecked requires the index to be within the slice",
2151 (mid: usize = mid, len: usize = len) => mid <= len,
2152 );
2153
2154 // SAFETY: Caller has to check that `0 <= mid <= self.len()`.
2155 //
2156 // `[ptr; mid]` and `[mid; len]` are not overlapping, so returning a mutable reference
2157 // is fine.
2158 unsafe {
2159 (
2160 from_raw_parts_mut(ptr, mid),
2161 from_raw_parts_mut(ptr.add(mid), unchecked_sub(len, mid)),
2162 )
2163 }
2164 }
2165
2166 /// Divides one slice into two at an index, returning `None` if the slice is
2167 /// too short.
2168 ///
2169 /// If `mid ≤ len` returns a pair of slices where the first will contain all
2170 /// indices from `[0, mid)` (excluding the index `mid` itself) and the
2171 /// second will contain all indices from `[mid, len)` (excluding the index
2172 /// `len` itself).
2173 ///
2174 /// Otherwise, if `mid > len`, returns `None`.
2175 ///
2176 /// # Examples
2177 ///
2178 /// ```
2179 /// let v = [1, -2, 3, -4, 5, -6];
2180 ///
2181 /// {
2182 /// let (left, right) = v.split_at_checked(0).unwrap();
2183 /// assert_eq!(left, []);
2184 /// assert_eq!(right, [1, -2, 3, -4, 5, -6]);
2185 /// }
2186 ///
2187 /// {
2188 /// let (left, right) = v.split_at_checked(2).unwrap();
2189 /// assert_eq!(left, [1, -2]);
2190 /// assert_eq!(right, [3, -4, 5, -6]);
2191 /// }
2192 ///
2193 /// {
2194 /// let (left, right) = v.split_at_checked(6).unwrap();
2195 /// assert_eq!(left, [1, -2, 3, -4, 5, -6]);
2196 /// assert_eq!(right, []);
2197 /// }
2198 ///
2199 /// assert_eq!(None, v.split_at_checked(7));
2200 /// ```
2201 #[stable(feature = "split_at_checked", since = "1.80.0")]
2202 #[rustc_const_stable(feature = "split_at_checked", since = "1.80.0")]
2203 #[inline]
2204 #[must_use]
2205 pub const fn split_at_checked(&self, mid: usize) -> Option<(&[T], &[T])> {
2206 if mid <= self.len() {
2207 // SAFETY: `[ptr; mid]` and `[mid; len]` are inside `self`, which
2208 // fulfills the requirements of `split_at_unchecked`.
2209 Some(unsafe { self.split_at_unchecked(mid) })
2210 } else {
2211 None
2212 }
2213 }
2214
2215 /// Divides one mutable slice into two at an index, returning `None` if the
2216 /// slice is too short.
2217 ///
2218 /// If `mid ≤ len` returns a pair of slices where the first will contain all
2219 /// indices from `[0, mid)` (excluding the index `mid` itself) and the
2220 /// second will contain all indices from `[mid, len)` (excluding the index
2221 /// `len` itself).
2222 ///
2223 /// Otherwise, if `mid > len`, returns `None`.
2224 ///
2225 /// # Examples
2226 ///
2227 /// ```
2228 /// let mut v = [1, 0, 3, 0, 5, 6];
2229 ///
2230 /// if let Some((left, right)) = v.split_at_mut_checked(2) {
2231 /// assert_eq!(left, [1, 0]);
2232 /// assert_eq!(right, [3, 0, 5, 6]);
2233 /// left[1] = 2;
2234 /// right[1] = 4;
2235 /// }
2236 /// assert_eq!(v, [1, 2, 3, 4, 5, 6]);
2237 ///
2238 /// assert_eq!(None, v.split_at_mut_checked(7));
2239 /// ```
2240 #[stable(feature = "split_at_checked", since = "1.80.0")]
2241 #[rustc_const_stable(feature = "const_slice_split_at_mut", since = "1.83.0")]
2242 #[inline]
2243 #[must_use]
2244 pub const fn split_at_mut_checked(&mut self, mid: usize) -> Option<(&mut [T], &mut [T])> {
2245 if mid <= self.len() {
2246 // SAFETY: `[ptr; mid]` and `[mid; len]` are inside `self`, which
2247 // fulfills the requirements of `split_at_unchecked`.
2248 Some(unsafe { self.split_at_mut_unchecked(mid) })
2249 } else {
2250 None
2251 }
2252 }
2253
2254 /// Returns an iterator over subslices separated by elements that match
2255 /// `pred`. The matched element is not contained in the subslices.
2256 ///
2257 /// # Examples
2258 ///
2259 /// ```
2260 /// let slice = [10, 40, 33, 20];
2261 /// let mut iter = slice.split(|num| num % 3 == 0);
2262 ///
2263 /// assert_eq!(iter.next().unwrap(), &[10, 40]);
2264 /// assert_eq!(iter.next().unwrap(), &[20]);
2265 /// assert!(iter.next().is_none());
2266 /// ```
2267 ///
2268 /// If the first element is matched, an empty slice will be the first item
2269 /// returned by the iterator. Similarly, if the last element in the slice
2270 /// is matched, an empty slice will be the last item returned by the
2271 /// iterator:
2272 ///
2273 /// ```
2274 /// let slice = [10, 40, 33];
2275 /// let mut iter = slice.split(|num| num % 3 == 0);
2276 ///
2277 /// assert_eq!(iter.next().unwrap(), &[10, 40]);
2278 /// assert_eq!(iter.next().unwrap(), &[]);
2279 /// assert!(iter.next().is_none());
2280 /// ```
2281 ///
2282 /// If two matched elements are directly adjacent, an empty slice will be
2283 /// present between them:
2284 ///
2285 /// ```
2286 /// let slice = [10, 6, 33, 20];
2287 /// let mut iter = slice.split(|num| num % 3 == 0);
2288 ///
2289 /// assert_eq!(iter.next().unwrap(), &[10]);
2290 /// assert_eq!(iter.next().unwrap(), &[]);
2291 /// assert_eq!(iter.next().unwrap(), &[20]);
2292 /// assert!(iter.next().is_none());
2293 /// ```
2294 #[stable(feature = "rust1", since = "1.0.0")]
2295 #[inline]
2296 #[cfg(not(feature = "ferrocene_subset"))]
2297 pub fn split<F>(&self, pred: F) -> Split<'_, T, F>
2298 where
2299 F: FnMut(&T) -> bool,
2300 {
2301 Split::new(self, pred)
2302 }
2303
2304 /// Returns an iterator over mutable subslices separated by elements that
2305 /// match `pred`. The matched element is not contained in the subslices.
2306 ///
2307 /// # Examples
2308 ///
2309 /// ```
2310 /// let mut v = [10, 40, 30, 20, 60, 50];
2311 ///
2312 /// for group in v.split_mut(|num| *num % 3 == 0) {
2313 /// group[0] = 1;
2314 /// }
2315 /// assert_eq!(v, [1, 40, 30, 1, 60, 1]);
2316 /// ```
2317 #[stable(feature = "rust1", since = "1.0.0")]
2318 #[inline]
2319 #[cfg(not(feature = "ferrocene_subset"))]
2320 pub fn split_mut<F>(&mut self, pred: F) -> SplitMut<'_, T, F>
2321 where
2322 F: FnMut(&T) -> bool,
2323 {
2324 SplitMut::new(self, pred)
2325 }
2326
2327 /// Returns an iterator over subslices separated by elements that match
2328 /// `pred`. The matched element is contained in the end of the previous
2329 /// subslice as a terminator.
2330 ///
2331 /// # Examples
2332 ///
2333 /// ```
2334 /// let slice = [10, 40, 33, 20];
2335 /// let mut iter = slice.split_inclusive(|num| num % 3 == 0);
2336 ///
2337 /// assert_eq!(iter.next().unwrap(), &[10, 40, 33]);
2338 /// assert_eq!(iter.next().unwrap(), &[20]);
2339 /// assert!(iter.next().is_none());
2340 /// ```
2341 ///
2342 /// If the last element of the slice is matched,
2343 /// that element will be considered the terminator of the preceding slice.
2344 /// That slice will be the last item returned by the iterator.
2345 ///
2346 /// ```
2347 /// let slice = [3, 10, 40, 33];
2348 /// let mut iter = slice.split_inclusive(|num| num % 3 == 0);
2349 ///
2350 /// assert_eq!(iter.next().unwrap(), &[3]);
2351 /// assert_eq!(iter.next().unwrap(), &[10, 40, 33]);
2352 /// assert!(iter.next().is_none());
2353 /// ```
2354 #[stable(feature = "split_inclusive", since = "1.51.0")]
2355 #[inline]
2356 #[cfg(not(feature = "ferrocene_subset"))]
2357 pub fn split_inclusive<F>(&self, pred: F) -> SplitInclusive<'_, T, F>
2358 where
2359 F: FnMut(&T) -> bool,
2360 {
2361 SplitInclusive::new(self, pred)
2362 }
2363
2364 /// Returns an iterator over mutable subslices separated by elements that
2365 /// match `pred`. The matched element is contained in the previous
2366 /// subslice as a terminator.
2367 ///
2368 /// # Examples
2369 ///
2370 /// ```
2371 /// let mut v = [10, 40, 30, 20, 60, 50];
2372 ///
2373 /// for group in v.split_inclusive_mut(|num| *num % 3 == 0) {
2374 /// let terminator_idx = group.len()-1;
2375 /// group[terminator_idx] = 1;
2376 /// }
2377 /// assert_eq!(v, [10, 40, 1, 20, 1, 1]);
2378 /// ```
2379 #[stable(feature = "split_inclusive", since = "1.51.0")]
2380 #[inline]
2381 #[cfg(not(feature = "ferrocene_subset"))]
2382 pub fn split_inclusive_mut<F>(&mut self, pred: F) -> SplitInclusiveMut<'_, T, F>
2383 where
2384 F: FnMut(&T) -> bool,
2385 {
2386 SplitInclusiveMut::new(self, pred)
2387 }
2388
2389 /// Returns an iterator over subslices separated by elements that match
2390 /// `pred`, starting at the end of the slice and working backwards.
2391 /// The matched element is not contained in the subslices.
2392 ///
2393 /// # Examples
2394 ///
2395 /// ```
2396 /// let slice = [11, 22, 33, 0, 44, 55];
2397 /// let mut iter = slice.rsplit(|num| *num == 0);
2398 ///
2399 /// assert_eq!(iter.next().unwrap(), &[44, 55]);
2400 /// assert_eq!(iter.next().unwrap(), &[11, 22, 33]);
2401 /// assert_eq!(iter.next(), None);
2402 /// ```
2403 ///
2404 /// As with `split()`, if the first or last element is matched, an empty
2405 /// slice will be the first (or last) item returned by the iterator.
2406 ///
2407 /// ```
2408 /// let v = &[0, 1, 1, 2, 3, 5, 8];
2409 /// let mut it = v.rsplit(|n| *n % 2 == 0);
2410 /// assert_eq!(it.next().unwrap(), &[]);
2411 /// assert_eq!(it.next().unwrap(), &[3, 5]);
2412 /// assert_eq!(it.next().unwrap(), &[1, 1]);
2413 /// assert_eq!(it.next().unwrap(), &[]);
2414 /// assert_eq!(it.next(), None);
2415 /// ```
2416 #[stable(feature = "slice_rsplit", since = "1.27.0")]
2417 #[inline]
2418 #[cfg(not(feature = "ferrocene_subset"))]
2419 pub fn rsplit<F>(&self, pred: F) -> RSplit<'_, T, F>
2420 where
2421 F: FnMut(&T) -> bool,
2422 {
2423 RSplit::new(self, pred)
2424 }
2425
2426 /// Returns an iterator over mutable subslices separated by elements that
2427 /// match `pred`, starting at the end of the slice and working
2428 /// backwards. The matched element is not contained in the subslices.
2429 ///
2430 /// # Examples
2431 ///
2432 /// ```
2433 /// let mut v = [100, 400, 300, 200, 600, 500];
2434 ///
2435 /// let mut count = 0;
2436 /// for group in v.rsplit_mut(|num| *num % 3 == 0) {
2437 /// count += 1;
2438 /// group[0] = count;
2439 /// }
2440 /// assert_eq!(v, [3, 400, 300, 2, 600, 1]);
2441 /// ```
2442 ///
2443 #[stable(feature = "slice_rsplit", since = "1.27.0")]
2444 #[inline]
2445 #[cfg(not(feature = "ferrocene_subset"))]
2446 pub fn rsplit_mut<F>(&mut self, pred: F) -> RSplitMut<'_, T, F>
2447 where
2448 F: FnMut(&T) -> bool,
2449 {
2450 RSplitMut::new(self, pred)
2451 }
2452
2453 /// Returns an iterator over subslices separated by elements that match
2454 /// `pred`, limited to returning at most `n` items. The matched element is
2455 /// not contained in the subslices.
2456 ///
2457 /// The last element returned, if any, will contain the remainder of the
2458 /// slice.
2459 ///
2460 /// # Examples
2461 ///
2462 /// Print the slice split once by numbers divisible by 3 (i.e., `[10, 40]`,
2463 /// `[20, 60, 50]`):
2464 ///
2465 /// ```
2466 /// let v = [10, 40, 30, 20, 60, 50];
2467 ///
2468 /// for group in v.splitn(2, |num| *num % 3 == 0) {
2469 /// println!("{group:?}");
2470 /// }
2471 /// ```
2472 #[stable(feature = "rust1", since = "1.0.0")]
2473 #[inline]
2474 #[cfg(not(feature = "ferrocene_subset"))]
2475 pub fn splitn<F>(&self, n: usize, pred: F) -> SplitN<'_, T, F>
2476 where
2477 F: FnMut(&T) -> bool,
2478 {
2479 SplitN::new(self.split(pred), n)
2480 }
2481
2482 /// Returns an iterator over mutable subslices separated by elements that match
2483 /// `pred`, limited to returning at most `n` items. The matched element is
2484 /// not contained in the subslices.
2485 ///
2486 /// The last element returned, if any, will contain the remainder of the
2487 /// slice.
2488 ///
2489 /// # Examples
2490 ///
2491 /// ```
2492 /// let mut v = [10, 40, 30, 20, 60, 50];
2493 ///
2494 /// for group in v.splitn_mut(2, |num| *num % 3 == 0) {
2495 /// group[0] = 1;
2496 /// }
2497 /// assert_eq!(v, [1, 40, 30, 1, 60, 50]);
2498 /// ```
2499 #[stable(feature = "rust1", since = "1.0.0")]
2500 #[inline]
2501 #[cfg(not(feature = "ferrocene_subset"))]
2502 pub fn splitn_mut<F>(&mut self, n: usize, pred: F) -> SplitNMut<'_, T, F>
2503 where
2504 F: FnMut(&T) -> bool,
2505 {
2506 SplitNMut::new(self.split_mut(pred), n)
2507 }
2508
2509 /// Returns an iterator over subslices separated by elements that match
2510 /// `pred` limited to returning at most `n` items. This starts at the end of
2511 /// the slice and works backwards. The matched element is not contained in
2512 /// the subslices.
2513 ///
2514 /// The last element returned, if any, will contain the remainder of the
2515 /// slice.
2516 ///
2517 /// # Examples
2518 ///
2519 /// Print the slice split once, starting from the end, by numbers divisible
2520 /// by 3 (i.e., `[50]`, `[10, 40, 30, 20]`):
2521 ///
2522 /// ```
2523 /// let v = [10, 40, 30, 20, 60, 50];
2524 ///
2525 /// for group in v.rsplitn(2, |num| *num % 3 == 0) {
2526 /// println!("{group:?}");
2527 /// }
2528 /// ```
2529 #[stable(feature = "rust1", since = "1.0.0")]
2530 #[inline]
2531 #[cfg(not(feature = "ferrocene_subset"))]
2532 pub fn rsplitn<F>(&self, n: usize, pred: F) -> RSplitN<'_, T, F>
2533 where
2534 F: FnMut(&T) -> bool,
2535 {
2536 RSplitN::new(self.rsplit(pred), n)
2537 }
2538
2539 /// Returns an iterator over subslices separated by elements that match
2540 /// `pred` limited to returning at most `n` items. This starts at the end of
2541 /// the slice and works backwards. The matched element is not contained in
2542 /// the subslices.
2543 ///
2544 /// The last element returned, if any, will contain the remainder of the
2545 /// slice.
2546 ///
2547 /// # Examples
2548 ///
2549 /// ```
2550 /// let mut s = [10, 40, 30, 20, 60, 50];
2551 ///
2552 /// for group in s.rsplitn_mut(2, |num| *num % 3 == 0) {
2553 /// group[0] = 1;
2554 /// }
2555 /// assert_eq!(s, [1, 40, 30, 20, 60, 1]);
2556 /// ```
2557 #[stable(feature = "rust1", since = "1.0.0")]
2558 #[inline]
2559 #[cfg(not(feature = "ferrocene_subset"))]
2560 pub fn rsplitn_mut<F>(&mut self, n: usize, pred: F) -> RSplitNMut<'_, T, F>
2561 where
2562 F: FnMut(&T) -> bool,
2563 {
2564 RSplitNMut::new(self.rsplit_mut(pred), n)
2565 }
2566
2567 /// Splits the slice on the first element that matches the specified
2568 /// predicate.
2569 ///
2570 /// If any matching elements are present in the slice, returns the prefix
2571 /// before the match and suffix after. The matching element itself is not
2572 /// included. If no elements match, returns `None`.
2573 ///
2574 /// # Examples
2575 ///
2576 /// ```
2577 /// #![feature(slice_split_once)]
2578 /// let s = [1, 2, 3, 2, 4];
2579 /// assert_eq!(s.split_once(|&x| x == 2), Some((
2580 /// &[1][..],
2581 /// &[3, 2, 4][..]
2582 /// )));
2583 /// assert_eq!(s.split_once(|&x| x == 0), None);
2584 /// ```
2585 #[unstable(feature = "slice_split_once", reason = "newly added", issue = "112811")]
2586 #[inline]
2587 #[cfg(not(feature = "ferrocene_subset"))]
2588 pub fn split_once<F>(&self, pred: F) -> Option<(&[T], &[T])>
2589 where
2590 F: FnMut(&T) -> bool,
2591 {
2592 let index = self.iter().position(pred)?;
2593 Some((&self[..index], &self[index + 1..]))
2594 }
2595
2596 /// Splits the slice on the last element that matches the specified
2597 /// predicate.
2598 ///
2599 /// If any matching elements are present in the slice, returns the prefix
2600 /// before the match and suffix after. The matching element itself is not
2601 /// included. If no elements match, returns `None`.
2602 ///
2603 /// # Examples
2604 ///
2605 /// ```
2606 /// #![feature(slice_split_once)]
2607 /// let s = [1, 2, 3, 2, 4];
2608 /// assert_eq!(s.rsplit_once(|&x| x == 2), Some((
2609 /// &[1, 2, 3][..],
2610 /// &[4][..]
2611 /// )));
2612 /// assert_eq!(s.rsplit_once(|&x| x == 0), None);
2613 /// ```
2614 #[unstable(feature = "slice_split_once", reason = "newly added", issue = "112811")]
2615 #[inline]
2616 #[cfg(not(feature = "ferrocene_subset"))]
2617 pub fn rsplit_once<F>(&self, pred: F) -> Option<(&[T], &[T])>
2618 where
2619 F: FnMut(&T) -> bool,
2620 {
2621 let index = self.iter().rposition(pred)?;
2622 Some((&self[..index], &self[index + 1..]))
2623 }
2624
2625 /// Returns `true` if the slice contains an element with the given value.
2626 ///
2627 /// This operation is *O*(*n*).
2628 ///
2629 /// Note that if you have a sorted slice, [`binary_search`] may be faster.
2630 ///
2631 /// [`binary_search`]: slice::binary_search
2632 ///
2633 /// # Examples
2634 ///
2635 /// ```
2636 /// let v = [10, 40, 30];
2637 /// assert!(v.contains(&30));
2638 /// assert!(!v.contains(&50));
2639 /// ```
2640 ///
2641 /// If you do not have a `&T`, but some other value that you can compare
2642 /// with one (for example, `String` implements `PartialEq<str>`), you can
2643 /// use `iter().any`:
2644 ///
2645 /// ```
2646 /// let v = [String::from("hello"), String::from("world")]; // slice of `String`
2647 /// assert!(v.iter().any(|e| e == "hello")); // search with `&str`
2648 /// assert!(!v.iter().any(|e| e == "hi"));
2649 /// ```
2650 #[stable(feature = "rust1", since = "1.0.0")]
2651 #[inline]
2652 #[must_use]
2653 #[cfg(not(feature = "ferrocene_subset"))]
2654 pub fn contains(&self, x: &T) -> bool
2655 where
2656 T: PartialEq,
2657 {
2658 cmp::SliceContains::slice_contains(x, self)
2659 }
2660
2661 /// Returns `true` if `needle` is a prefix of the slice or equal to the slice.
2662 ///
2663 /// # Examples
2664 ///
2665 /// ```
2666 /// let v = [10, 40, 30];
2667 /// assert!(v.starts_with(&[10]));
2668 /// assert!(v.starts_with(&[10, 40]));
2669 /// assert!(v.starts_with(&v));
2670 /// assert!(!v.starts_with(&[50]));
2671 /// assert!(!v.starts_with(&[10, 50]));
2672 /// ```
2673 ///
2674 /// Always returns `true` if `needle` is an empty slice:
2675 ///
2676 /// ```
2677 /// let v = &[10, 40, 30];
2678 /// assert!(v.starts_with(&[]));
2679 /// let v: &[u8] = &[];
2680 /// assert!(v.starts_with(&[]));
2681 /// ```
2682 #[stable(feature = "rust1", since = "1.0.0")]
2683 #[must_use]
2684 pub fn starts_with(&self, needle: &[T]) -> bool
2685 where
2686 T: PartialEq,
2687 {
2688 let n = needle.len();
2689 self.len() >= n && needle == &self[..n]
2690 }
2691
2692 /// Returns `true` if `needle` is a suffix of the slice or equal to the slice.
2693 ///
2694 /// # Examples
2695 ///
2696 /// ```
2697 /// let v = [10, 40, 30];
2698 /// assert!(v.ends_with(&[30]));
2699 /// assert!(v.ends_with(&[40, 30]));
2700 /// assert!(v.ends_with(&v));
2701 /// assert!(!v.ends_with(&[50]));
2702 /// assert!(!v.ends_with(&[50, 30]));
2703 /// ```
2704 ///
2705 /// Always returns `true` if `needle` is an empty slice:
2706 ///
2707 /// ```
2708 /// let v = &[10, 40, 30];
2709 /// assert!(v.ends_with(&[]));
2710 /// let v: &[u8] = &[];
2711 /// assert!(v.ends_with(&[]));
2712 /// ```
2713 #[stable(feature = "rust1", since = "1.0.0")]
2714 #[must_use]
2715 pub fn ends_with(&self, needle: &[T]) -> bool
2716 where
2717 T: PartialEq,
2718 {
2719 let (m, n) = (self.len(), needle.len());
2720 m >= n && needle == &self[m - n..]
2721 }
2722
2723 /// Returns a subslice with the prefix removed.
2724 ///
2725 /// If the slice starts with `prefix`, returns the subslice after the prefix, wrapped in `Some`.
2726 /// If `prefix` is empty, simply returns the original slice. If `prefix` is equal to the
2727 /// original slice, returns an empty slice.
2728 ///
2729 /// If the slice does not start with `prefix`, returns `None`.
2730 ///
2731 /// # Examples
2732 ///
2733 /// ```
2734 /// let v = &[10, 40, 30];
2735 /// assert_eq!(v.strip_prefix(&[10]), Some(&[40, 30][..]));
2736 /// assert_eq!(v.strip_prefix(&[10, 40]), Some(&[30][..]));
2737 /// assert_eq!(v.strip_prefix(&[10, 40, 30]), Some(&[][..]));
2738 /// assert_eq!(v.strip_prefix(&[50]), None);
2739 /// assert_eq!(v.strip_prefix(&[10, 50]), None);
2740 ///
2741 /// let prefix : &str = "he";
2742 /// assert_eq!(b"hello".strip_prefix(prefix.as_bytes()),
2743 /// Some(b"llo".as_ref()));
2744 /// ```
2745 #[must_use = "returns the subslice without modifying the original"]
2746 #[stable(feature = "slice_strip", since = "1.51.0")]
2747 #[cfg(not(feature = "ferrocene_subset"))]
2748 pub fn strip_prefix<P: SlicePattern<Item = T> + ?Sized>(&self, prefix: &P) -> Option<&[T]>
2749 where
2750 T: PartialEq,
2751 {
2752 // This function will need rewriting if and when SlicePattern becomes more sophisticated.
2753 let prefix = prefix.as_slice();
2754 let n = prefix.len();
2755 if n <= self.len() {
2756 let (head, tail) = self.split_at(n);
2757 if head == prefix {
2758 return Some(tail);
2759 }
2760 }
2761 None
2762 }
2763
2764 /// Returns a subslice with the suffix removed.
2765 ///
2766 /// If the slice ends with `suffix`, returns the subslice before the suffix, wrapped in `Some`.
2767 /// If `suffix` is empty, simply returns the original slice. If `suffix` is equal to the
2768 /// original slice, returns an empty slice.
2769 ///
2770 /// If the slice does not end with `suffix`, returns `None`.
2771 ///
2772 /// # Examples
2773 ///
2774 /// ```
2775 /// let v = &[10, 40, 30];
2776 /// assert_eq!(v.strip_suffix(&[30]), Some(&[10, 40][..]));
2777 /// assert_eq!(v.strip_suffix(&[40, 30]), Some(&[10][..]));
2778 /// assert_eq!(v.strip_suffix(&[10, 40, 30]), Some(&[][..]));
2779 /// assert_eq!(v.strip_suffix(&[50]), None);
2780 /// assert_eq!(v.strip_suffix(&[50, 30]), None);
2781 /// ```
2782 #[must_use = "returns the subslice without modifying the original"]
2783 #[stable(feature = "slice_strip", since = "1.51.0")]
2784 #[cfg(not(feature = "ferrocene_subset"))]
2785 pub fn strip_suffix<P: SlicePattern<Item = T> + ?Sized>(&self, suffix: &P) -> Option<&[T]>
2786 where
2787 T: PartialEq,
2788 {
2789 // This function will need rewriting if and when SlicePattern becomes more sophisticated.
2790 let suffix = suffix.as_slice();
2791 let (len, n) = (self.len(), suffix.len());
2792 if n <= len {
2793 let (head, tail) = self.split_at(len - n);
2794 if tail == suffix {
2795 return Some(head);
2796 }
2797 }
2798 None
2799 }
2800
2801 /// Returns a subslice with the prefix and suffix removed.
2802 ///
2803 /// If the slice starts with `prefix` and ends with `suffix`, returns the subslice after the
2804 /// prefix and before the suffix, wrapped in `Some`.
2805 ///
2806 /// If the slice does not start with `prefix` or does not end with `suffix`, returns `None`.
2807 ///
2808 /// # Examples
2809 ///
2810 /// ```
2811 /// #![feature(strip_circumfix)]
2812 ///
2813 /// let v = &[10, 50, 40, 30];
2814 /// assert_eq!(v.strip_circumfix(&[10], &[30]), Some(&[50, 40][..]));
2815 /// assert_eq!(v.strip_circumfix(&[10], &[40, 30]), Some(&[50][..]));
2816 /// assert_eq!(v.strip_circumfix(&[10, 50], &[40, 30]), Some(&[][..]));
2817 /// assert_eq!(v.strip_circumfix(&[50], &[30]), None);
2818 /// assert_eq!(v.strip_circumfix(&[10], &[40]), None);
2819 /// assert_eq!(v.strip_circumfix(&[], &[40, 30]), Some(&[10, 50][..]));
2820 /// assert_eq!(v.strip_circumfix(&[10, 50], &[]), Some(&[40, 30][..]));
2821 /// ```
2822 #[must_use = "returns the subslice without modifying the original"]
2823 #[unstable(feature = "strip_circumfix", issue = "147946")]
2824 #[cfg(not(feature = "ferrocene_subset"))]
2825 pub fn strip_circumfix<S, P>(&self, prefix: &P, suffix: &S) -> Option<&[T]>
2826 where
2827 T: PartialEq,
2828 S: SlicePattern<Item = T> + ?Sized,
2829 P: SlicePattern<Item = T> + ?Sized,
2830 {
2831 self.strip_prefix(prefix)?.strip_suffix(suffix)
2832 }
2833
2834 /// Returns a subslice with the optional prefix removed.
2835 ///
2836 /// If the slice starts with `prefix`, returns the subslice after the prefix. If `prefix`
2837 /// is empty or the slice does not start with `prefix`, simply returns the original slice.
2838 /// If `prefix` is equal to the original slice, returns an empty slice.
2839 ///
2840 /// # Examples
2841 ///
2842 /// ```
2843 /// #![feature(trim_prefix_suffix)]
2844 ///
2845 /// let v = &[10, 40, 30];
2846 ///
2847 /// // Prefix present - removes it
2848 /// assert_eq!(v.trim_prefix(&[10]), &[40, 30][..]);
2849 /// assert_eq!(v.trim_prefix(&[10, 40]), &[30][..]);
2850 /// assert_eq!(v.trim_prefix(&[10, 40, 30]), &[][..]);
2851 ///
2852 /// // Prefix absent - returns original slice
2853 /// assert_eq!(v.trim_prefix(&[50]), &[10, 40, 30][..]);
2854 /// assert_eq!(v.trim_prefix(&[10, 50]), &[10, 40, 30][..]);
2855 ///
2856 /// let prefix : &str = "he";
2857 /// assert_eq!(b"hello".trim_prefix(prefix.as_bytes()), b"llo".as_ref());
2858 /// ```
2859 #[must_use = "returns the subslice without modifying the original"]
2860 #[unstable(feature = "trim_prefix_suffix", issue = "142312")]
2861 #[cfg(not(feature = "ferrocene_subset"))]
2862 pub fn trim_prefix<P: SlicePattern<Item = T> + ?Sized>(&self, prefix: &P) -> &[T]
2863 where
2864 T: PartialEq,
2865 {
2866 // This function will need rewriting if and when SlicePattern becomes more sophisticated.
2867 let prefix = prefix.as_slice();
2868 let n = prefix.len();
2869 if n <= self.len() {
2870 let (head, tail) = self.split_at(n);
2871 if head == prefix {
2872 return tail;
2873 }
2874 }
2875 self
2876 }
2877
2878 /// Returns a subslice with the optional suffix removed.
2879 ///
2880 /// If the slice ends with `suffix`, returns the subslice before the suffix. If `suffix`
2881 /// is empty or the slice does not end with `suffix`, simply returns the original slice.
2882 /// If `suffix` is equal to the original slice, returns an empty slice.
2883 ///
2884 /// # Examples
2885 ///
2886 /// ```
2887 /// #![feature(trim_prefix_suffix)]
2888 ///
2889 /// let v = &[10, 40, 30];
2890 ///
2891 /// // Suffix present - removes it
2892 /// assert_eq!(v.trim_suffix(&[30]), &[10, 40][..]);
2893 /// assert_eq!(v.trim_suffix(&[40, 30]), &[10][..]);
2894 /// assert_eq!(v.trim_suffix(&[10, 40, 30]), &[][..]);
2895 ///
2896 /// // Suffix absent - returns original slice
2897 /// assert_eq!(v.trim_suffix(&[50]), &[10, 40, 30][..]);
2898 /// assert_eq!(v.trim_suffix(&[50, 30]), &[10, 40, 30][..]);
2899 /// ```
2900 #[must_use = "returns the subslice without modifying the original"]
2901 #[unstable(feature = "trim_prefix_suffix", issue = "142312")]
2902 #[cfg(not(feature = "ferrocene_subset"))]
2903 pub fn trim_suffix<P: SlicePattern<Item = T> + ?Sized>(&self, suffix: &P) -> &[T]
2904 where
2905 T: PartialEq,
2906 {
2907 // This function will need rewriting if and when SlicePattern becomes more sophisticated.
2908 let suffix = suffix.as_slice();
2909 let (len, n) = (self.len(), suffix.len());
2910 if n <= len {
2911 let (head, tail) = self.split_at(len - n);
2912 if tail == suffix {
2913 return head;
2914 }
2915 }
2916 self
2917 }
2918
2919 /// Binary searches this slice for a given element.
2920 /// If the slice is not sorted, the returned result is unspecified and
2921 /// meaningless.
2922 ///
2923 /// If the value is found then [`Result::Ok`] is returned, containing the
2924 /// index of the matching element. If there are multiple matches, then any
2925 /// one of the matches could be returned. The index is chosen
2926 /// deterministically, but is subject to change in future versions of Rust.
2927 /// If the value is not found then [`Result::Err`] is returned, containing
2928 /// the index where a matching element could be inserted while maintaining
2929 /// sorted order.
2930 ///
2931 /// See also [`binary_search_by`], [`binary_search_by_key`], and [`partition_point`].
2932 ///
2933 /// [`binary_search_by`]: slice::binary_search_by
2934 /// [`binary_search_by_key`]: slice::binary_search_by_key
2935 /// [`partition_point`]: slice::partition_point
2936 ///
2937 /// # Examples
2938 ///
2939 /// Looks up a series of four elements. The first is found, with a
2940 /// uniquely determined position; the second and third are not
2941 /// found; the fourth could match any position in `[1, 4]`.
2942 ///
2943 /// ```
2944 /// let s = [0, 1, 1, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55];
2945 ///
2946 /// assert_eq!(s.binary_search(&13), Ok(9));
2947 /// assert_eq!(s.binary_search(&4), Err(7));
2948 /// assert_eq!(s.binary_search(&100), Err(13));
2949 /// let r = s.binary_search(&1);
2950 /// assert!(match r { Ok(1..=4) => true, _ => false, });
2951 /// ```
2952 ///
2953 /// If you want to find that whole *range* of matching items, rather than
2954 /// an arbitrary matching one, that can be done using [`partition_point`]:
2955 /// ```
2956 /// let s = [0, 1, 1, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55];
2957 ///
2958 /// let low = s.partition_point(|x| x < &1);
2959 /// assert_eq!(low, 1);
2960 /// let high = s.partition_point(|x| x <= &1);
2961 /// assert_eq!(high, 5);
2962 /// let r = s.binary_search(&1);
2963 /// assert!((low..high).contains(&r.unwrap()));
2964 ///
2965 /// assert!(s[..low].iter().all(|&x| x < 1));
2966 /// assert!(s[low..high].iter().all(|&x| x == 1));
2967 /// assert!(s[high..].iter().all(|&x| x > 1));
2968 ///
2969 /// // For something not found, the "range" of equal items is empty
2970 /// assert_eq!(s.partition_point(|x| x < &11), 9);
2971 /// assert_eq!(s.partition_point(|x| x <= &11), 9);
2972 /// assert_eq!(s.binary_search(&11), Err(9));
2973 /// ```
2974 ///
2975 /// If you want to insert an item to a sorted vector, while maintaining
2976 /// sort order, consider using [`partition_point`]:
2977 ///
2978 /// ```
2979 /// let mut s = vec![0, 1, 1, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55];
2980 /// let num = 42;
2981 /// let idx = s.partition_point(|&x| x <= num);
2982 /// // If `num` is unique, `s.partition_point(|&x| x < num)` (with `<`) is equivalent to
2983 /// // `s.binary_search(&num).unwrap_or_else(|x| x)`, but using `<=` will allow `insert`
2984 /// // to shift less elements.
2985 /// s.insert(idx, num);
2986 /// assert_eq!(s, [0, 1, 1, 1, 1, 2, 3, 5, 8, 13, 21, 34, 42, 55]);
2987 /// ```
2988 #[stable(feature = "rust1", since = "1.0.0")]
2989 #[cfg(not(feature = "ferrocene_subset"))]
2990 pub fn binary_search(&self, x: &T) -> Result<usize, usize>
2991 where
2992 T: Ord,
2993 {
2994 self.binary_search_by(|p| p.cmp(x))
2995 }
2996
2997 /// Binary searches this slice with a comparator function.
2998 ///
2999 /// The comparator function should return an order code that indicates
3000 /// whether its argument is `Less`, `Equal` or `Greater` the desired
3001 /// target.
3002 /// If the slice is not sorted or if the comparator function does not
3003 /// implement an order consistent with the sort order of the underlying
3004 /// slice, the returned result is unspecified and meaningless.
3005 ///
3006 /// If the value is found then [`Result::Ok`] is returned, containing the
3007 /// index of the matching element. If there are multiple matches, then any
3008 /// one of the matches could be returned. The index is chosen
3009 /// deterministically, but is subject to change in future versions of Rust.
3010 /// If the value is not found then [`Result::Err`] is returned, containing
3011 /// the index where a matching element could be inserted while maintaining
3012 /// sorted order.
3013 ///
3014 /// See also [`binary_search`], [`binary_search_by_key`], and [`partition_point`].
3015 ///
3016 /// [`binary_search`]: slice::binary_search
3017 /// [`binary_search_by_key`]: slice::binary_search_by_key
3018 /// [`partition_point`]: slice::partition_point
3019 ///
3020 /// # Examples
3021 ///
3022 /// Looks up a series of four elements. The first is found, with a
3023 /// uniquely determined position; the second and third are not
3024 /// found; the fourth could match any position in `[1, 4]`.
3025 ///
3026 /// ```
3027 /// let s = [0, 1, 1, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55];
3028 ///
3029 /// let seek = 13;
3030 /// assert_eq!(s.binary_search_by(|probe| probe.cmp(&seek)), Ok(9));
3031 /// let seek = 4;
3032 /// assert_eq!(s.binary_search_by(|probe| probe.cmp(&seek)), Err(7));
3033 /// let seek = 100;
3034 /// assert_eq!(s.binary_search_by(|probe| probe.cmp(&seek)), Err(13));
3035 /// let seek = 1;
3036 /// let r = s.binary_search_by(|probe| probe.cmp(&seek));
3037 /// assert!(match r { Ok(1..=4) => true, _ => false, });
3038 /// ```
3039 #[stable(feature = "rust1", since = "1.0.0")]
3040 #[inline]
3041 pub fn binary_search_by<'a, F>(&'a self, mut f: F) -> Result<usize, usize>
3042 where
3043 F: FnMut(&'a T) -> Ordering,
3044 {
3045 let mut size = self.len();
3046 if size == 0 {
3047 return Err(0);
3048 }
3049 let mut base = 0usize;
3050
3051 // This loop intentionally doesn't have an early exit if the comparison
3052 // returns Equal. We want the number of loop iterations to depend *only*
3053 // on the size of the input slice so that the CPU can reliably predict
3054 // the loop count.
3055 while size > 1 {
3056 let half = size / 2;
3057 let mid = base + half;
3058
3059 // SAFETY: the call is made safe by the following invariants:
3060 // - `mid >= 0`: by definition
3061 // - `mid < size`: `mid = size / 2 + size / 4 + size / 8 ...`
3062 let cmp = f(unsafe { self.get_unchecked(mid) });
3063
3064 // Binary search interacts poorly with branch prediction, so force
3065 // the compiler to use conditional moves if supported by the target
3066 // architecture.
3067 base = hint::select_unpredictable(cmp == Greater, base, mid);
3068
3069 // This is imprecise in the case where `size` is odd and the
3070 // comparison returns Greater: the mid element still gets included
3071 // by `size` even though it's known to be larger than the element
3072 // being searched for.
3073 //
3074 // This is fine though: we gain more performance by keeping the
3075 // loop iteration count invariant (and thus predictable) than we
3076 // lose from considering one additional element.
3077 size -= half;
3078 }
3079
3080 // SAFETY: base is always in [0, size) because base <= mid.
3081 let cmp = f(unsafe { self.get_unchecked(base) });
3082 if cmp == Equal {
3083 // SAFETY: same as the `get_unchecked` above.
3084 unsafe { hint::assert_unchecked(base < self.len()) };
3085 Ok(base)
3086 } else {
3087 let result = base + (cmp == Less) as usize;
3088 // SAFETY: same as the `get_unchecked` above.
3089 // Note that this is `<=`, unlike the assume in the `Ok` path.
3090 unsafe { hint::assert_unchecked(result <= self.len()) };
3091 Err(result)
3092 }
3093 }
3094
3095 /// Binary searches this slice with a key extraction function.
3096 ///
3097 /// Assumes that the slice is sorted by the key, for instance with
3098 /// [`sort_by_key`] using the same key extraction function.
3099 /// If the slice is not sorted by the key, the returned result is
3100 /// unspecified and meaningless.
3101 ///
3102 /// If the value is found then [`Result::Ok`] is returned, containing the
3103 /// index of the matching element. If there are multiple matches, then any
3104 /// one of the matches could be returned. The index is chosen
3105 /// deterministically, but is subject to change in future versions of Rust.
3106 /// If the value is not found then [`Result::Err`] is returned, containing
3107 /// the index where a matching element could be inserted while maintaining
3108 /// sorted order.
3109 ///
3110 /// See also [`binary_search`], [`binary_search_by`], and [`partition_point`].
3111 ///
3112 /// [`sort_by_key`]: slice::sort_by_key
3113 /// [`binary_search`]: slice::binary_search
3114 /// [`binary_search_by`]: slice::binary_search_by
3115 /// [`partition_point`]: slice::partition_point
3116 ///
3117 /// # Examples
3118 ///
3119 /// Looks up a series of four elements in a slice of pairs sorted by
3120 /// their second elements. The first is found, with a uniquely
3121 /// determined position; the second and third are not found; the
3122 /// fourth could match any position in `[1, 4]`.
3123 ///
3124 /// ```
3125 /// let s = [(0, 0), (2, 1), (4, 1), (5, 1), (3, 1),
3126 /// (1, 2), (2, 3), (4, 5), (5, 8), (3, 13),
3127 /// (1, 21), (2, 34), (4, 55)];
3128 ///
3129 /// assert_eq!(s.binary_search_by_key(&13, |&(a, b)| b), Ok(9));
3130 /// assert_eq!(s.binary_search_by_key(&4, |&(a, b)| b), Err(7));
3131 /// assert_eq!(s.binary_search_by_key(&100, |&(a, b)| b), Err(13));
3132 /// let r = s.binary_search_by_key(&1, |&(a, b)| b);
3133 /// assert!(match r { Ok(1..=4) => true, _ => false, });
3134 /// ```
3135 // Lint rustdoc::broken_intra_doc_links is allowed as `slice::sort_by_key` is
3136 // in crate `alloc`, and as such doesn't exists yet when building `core`: #74481.
3137 // This breaks links when slice is displayed in core, but changing it to use relative links
3138 // would break when the item is re-exported. So allow the core links to be broken for now.
3139 #[allow(rustdoc::broken_intra_doc_links)]
3140 #[stable(feature = "slice_binary_search_by_key", since = "1.10.0")]
3141 #[inline]
3142 pub fn binary_search_by_key<'a, B, F>(&'a self, b: &B, mut f: F) -> Result<usize, usize>
3143 where
3144 F: FnMut(&'a T) -> B,
3145 B: Ord,
3146 {
3147 self.binary_search_by(|k| f(k).cmp(b))
3148 }
3149
3150 /// Sorts the slice in ascending order **without** preserving the initial order of equal elements.
3151 ///
3152 /// This sort is unstable (i.e., may reorder equal elements), in-place (i.e., does not
3153 /// allocate), and *O*(*n* \* log(*n*)) worst-case.
3154 ///
3155 /// If the implementation of [`Ord`] for `T` does not implement a [total order], the function
3156 /// may panic; even if the function exits normally, the resulting order of elements in the slice
3157 /// is unspecified. See also the note on panicking below.
3158 ///
3159 /// For example `|a, b| (a - b).cmp(a)` is a comparison function that is neither transitive nor
3160 /// reflexive nor total, `a < b < c < a` with `a = 1, b = 2, c = 3`. For more information and
3161 /// examples see the [`Ord`] documentation.
3162 ///
3163 ///
3164 /// All original elements will remain in the slice and any possible modifications via interior
3165 /// mutability are observed in the input. Same is true if the implementation of [`Ord`] for `T` panics.
3166 ///
3167 /// Sorting types that only implement [`PartialOrd`] such as [`f32`] and [`f64`] require
3168 /// additional precautions. For example, `f32::NAN != f32::NAN`, which doesn't fulfill the
3169 /// reflexivity requirement of [`Ord`]. By using an alternative comparison function with
3170 /// `slice::sort_unstable_by` such as [`f32::total_cmp`] or [`f64::total_cmp`] that defines a
3171 /// [total order] users can sort slices containing floating-point values. Alternatively, if all
3172 /// values in the slice are guaranteed to be in a subset for which [`PartialOrd::partial_cmp`]
3173 /// forms a [total order], it's possible to sort the slice with `sort_unstable_by(|a, b|
3174 /// a.partial_cmp(b).unwrap())`.
3175 ///
3176 /// # Current implementation
3177 ///
3178 /// The current implementation is based on [ipnsort] by Lukas Bergdoll and Orson Peters, which
3179 /// combines the fast average case of quicksort with the fast worst case of heapsort, achieving
3180 /// linear time on fully sorted and reversed inputs. On inputs with k distinct elements, the
3181 /// expected time to sort the data is *O*(*n* \* log(*k*)).
3182 ///
3183 /// It is typically faster than stable sorting, except in a few special cases, e.g., when the
3184 /// slice is partially sorted.
3185 ///
3186 /// # Panics
3187 ///
3188 /// May panic if the implementation of [`Ord`] for `T` does not implement a [total order], or if
3189 /// the [`Ord`] implementation panics.
3190 ///
3191 /// # Examples
3192 ///
3193 /// ```
3194 /// let mut v = [4, -5, 1, -3, 2];
3195 ///
3196 /// v.sort_unstable();
3197 /// assert_eq!(v, [-5, -3, 1, 2, 4]);
3198 /// ```
3199 ///
3200 /// [ipnsort]: https://github.com/Voultapher/sort-research-rs/tree/main/ipnsort
3201 /// [total order]: https://en.wikipedia.org/wiki/Total_order
3202 #[stable(feature = "sort_unstable", since = "1.20.0")]
3203 #[inline]
3204 #[cfg(not(feature = "ferrocene_subset"))]
3205 pub fn sort_unstable(&mut self)
3206 where
3207 T: Ord,
3208 {
3209 sort::unstable::sort(self, &mut T::lt);
3210 }
3211
3212 /// Sorts the slice in ascending order with a comparison function, **without** preserving the
3213 /// initial order of equal elements.
3214 ///
3215 /// This sort is unstable (i.e., may reorder equal elements), in-place (i.e., does not
3216 /// allocate), and *O*(*n* \* log(*n*)) worst-case.
3217 ///
3218 /// If the comparison function `compare` does not implement a [total order], the function
3219 /// may panic; even if the function exits normally, the resulting order of elements in the slice
3220 /// is unspecified. See also the note on panicking below.
3221 ///
3222 /// For example `|a, b| (a - b).cmp(a)` is a comparison function that is neither transitive nor
3223 /// reflexive nor total, `a < b < c < a` with `a = 1, b = 2, c = 3`. For more information and
3224 /// examples see the [`Ord`] documentation.
3225 ///
3226 /// All original elements will remain in the slice and any possible modifications via interior
3227 /// mutability are observed in the input. Same is true if `compare` panics.
3228 ///
3229 /// # Current implementation
3230 ///
3231 /// The current implementation is based on [ipnsort] by Lukas Bergdoll and Orson Peters, which
3232 /// combines the fast average case of quicksort with the fast worst case of heapsort, achieving
3233 /// linear time on fully sorted and reversed inputs. On inputs with k distinct elements, the
3234 /// expected time to sort the data is *O*(*n* \* log(*k*)).
3235 ///
3236 /// It is typically faster than stable sorting, except in a few special cases, e.g., when the
3237 /// slice is partially sorted.
3238 ///
3239 /// # Panics
3240 ///
3241 /// May panic if the `compare` does not implement a [total order], or if
3242 /// the `compare` itself panics.
3243 ///
3244 /// # Examples
3245 ///
3246 /// ```
3247 /// let mut v = [4, -5, 1, -3, 2];
3248 /// v.sort_unstable_by(|a, b| a.cmp(b));
3249 /// assert_eq!(v, [-5, -3, 1, 2, 4]);
3250 ///
3251 /// // reverse sorting
3252 /// v.sort_unstable_by(|a, b| b.cmp(a));
3253 /// assert_eq!(v, [4, 2, 1, -3, -5]);
3254 /// ```
3255 ///
3256 /// [ipnsort]: https://github.com/Voultapher/sort-research-rs/tree/main/ipnsort
3257 /// [total order]: https://en.wikipedia.org/wiki/Total_order
3258 #[stable(feature = "sort_unstable", since = "1.20.0")]
3259 #[inline]
3260 #[cfg(not(feature = "ferrocene_subset"))]
3261 pub fn sort_unstable_by<F>(&mut self, mut compare: F)
3262 where
3263 F: FnMut(&T, &T) -> Ordering,
3264 {
3265 sort::unstable::sort(self, &mut |a, b| compare(a, b) == Ordering::Less);
3266 }
3267
3268 /// Sorts the slice in ascending order with a key extraction function, **without** preserving
3269 /// the initial order of equal elements.
3270 ///
3271 /// This sort is unstable (i.e., may reorder equal elements), in-place (i.e., does not
3272 /// allocate), and *O*(*n* \* log(*n*)) worst-case.
3273 ///
3274 /// If the implementation of [`Ord`] for `K` does not implement a [total order], the function
3275 /// may panic; even if the function exits normally, the resulting order of elements in the slice
3276 /// is unspecified. See also the note on panicking below.
3277 ///
3278 /// For example `|a, b| (a - b).cmp(a)` is a comparison function that is neither transitive nor
3279 /// reflexive nor total, `a < b < c < a` with `a = 1, b = 2, c = 3`. For more information and
3280 /// examples see the [`Ord`] documentation.
3281 ///
3282 /// All original elements will remain in the slice and any possible modifications via interior
3283 /// mutability are observed in the input. Same is true if the implementation of [`Ord`] for `K` panics.
3284 ///
3285 /// # Current implementation
3286 ///
3287 /// The current implementation is based on [ipnsort] by Lukas Bergdoll and Orson Peters, which
3288 /// combines the fast average case of quicksort with the fast worst case of heapsort, achieving
3289 /// linear time on fully sorted and reversed inputs. On inputs with k distinct elements, the
3290 /// expected time to sort the data is *O*(*n* \* log(*k*)).
3291 ///
3292 /// It is typically faster than stable sorting, except in a few special cases, e.g., when the
3293 /// slice is partially sorted.
3294 ///
3295 /// # Panics
3296 ///
3297 /// May panic if the implementation of [`Ord`] for `K` does not implement a [total order], or if
3298 /// the [`Ord`] implementation panics.
3299 ///
3300 /// # Examples
3301 ///
3302 /// ```
3303 /// let mut v = [4i32, -5, 1, -3, 2];
3304 ///
3305 /// v.sort_unstable_by_key(|k| k.abs());
3306 /// assert_eq!(v, [1, 2, -3, 4, -5]);
3307 /// ```
3308 ///
3309 /// [ipnsort]: https://github.com/Voultapher/sort-research-rs/tree/main/ipnsort
3310 /// [total order]: https://en.wikipedia.org/wiki/Total_order
3311 #[stable(feature = "sort_unstable", since = "1.20.0")]
3312 #[inline]
3313 #[cfg(not(feature = "ferrocene_subset"))]
3314 pub fn sort_unstable_by_key<K, F>(&mut self, mut f: F)
3315 where
3316 F: FnMut(&T) -> K,
3317 K: Ord,
3318 {
3319 sort::unstable::sort(self, &mut |a, b| f(a).lt(&f(b)));
3320 }
3321
3322 /// Reorders the slice such that the element at `index` is at a sort-order position. All
3323 /// elements before `index` will be `<=` to this value, and all elements after will be `>=` to
3324 /// it.
3325 ///
3326 /// This reordering is unstable (i.e. any element that compares equal to the nth element may end
3327 /// up at that position), in-place (i.e. does not allocate), and runs in *O*(*n*) time. This
3328 /// function is also known as "kth element" in other libraries.
3329 ///
3330 /// Returns a triple that partitions the reordered slice:
3331 ///
3332 /// * The unsorted subslice before `index`, whose elements all satisfy `x <= self[index]`.
3333 ///
3334 /// * The element at `index`.
3335 ///
3336 /// * The unsorted subslice after `index`, whose elements all satisfy `x >= self[index]`.
3337 ///
3338 /// # Current implementation
3339 ///
3340 /// The current algorithm is an introselect implementation based on [ipnsort] by Lukas Bergdoll
3341 /// and Orson Peters, which is also the basis for [`sort_unstable`]. The fallback algorithm is
3342 /// Median of Medians using Tukey's Ninther for pivot selection, which guarantees linear runtime
3343 /// for all inputs.
3344 ///
3345 /// [`sort_unstable`]: slice::sort_unstable
3346 ///
3347 /// # Panics
3348 ///
3349 /// Panics when `index >= len()`, and so always panics on empty slices.
3350 ///
3351 /// May panic if the implementation of [`Ord`] for `T` does not implement a [total order].
3352 ///
3353 /// # Examples
3354 ///
3355 /// ```
3356 /// let mut v = [-5i32, 4, 2, -3, 1];
3357 ///
3358 /// // Find the items `<=` to the median, the median itself, and the items `>=` to it.
3359 /// let (lesser, median, greater) = v.select_nth_unstable(2);
3360 ///
3361 /// assert!(lesser == [-3, -5] || lesser == [-5, -3]);
3362 /// assert_eq!(median, &mut 1);
3363 /// assert!(greater == [4, 2] || greater == [2, 4]);
3364 ///
3365 /// // We are only guaranteed the slice will be one of the following, based on the way we sort
3366 /// // about the specified index.
3367 /// assert!(v == [-3, -5, 1, 2, 4] ||
3368 /// v == [-5, -3, 1, 2, 4] ||
3369 /// v == [-3, -5, 1, 4, 2] ||
3370 /// v == [-5, -3, 1, 4, 2]);
3371 /// ```
3372 ///
3373 /// [ipnsort]: https://github.com/Voultapher/sort-research-rs/tree/main/ipnsort
3374 /// [total order]: https://en.wikipedia.org/wiki/Total_order
3375 #[stable(feature = "slice_select_nth_unstable", since = "1.49.0")]
3376 #[inline]
3377 #[cfg(not(feature = "ferrocene_subset"))]
3378 pub fn select_nth_unstable(&mut self, index: usize) -> (&mut [T], &mut T, &mut [T])
3379 where
3380 T: Ord,
3381 {
3382 sort::select::partition_at_index(self, index, T::lt)
3383 }
3384
3385 /// Reorders the slice with a comparator function such that the element at `index` is at a
3386 /// sort-order position. All elements before `index` will be `<=` to this value, and all
3387 /// elements after will be `>=` to it, according to the comparator function.
3388 ///
3389 /// This reordering is unstable (i.e. any element that compares equal to the nth element may end
3390 /// up at that position), in-place (i.e. does not allocate), and runs in *O*(*n*) time. This
3391 /// function is also known as "kth element" in other libraries.
3392 ///
3393 /// Returns a triple partitioning the reordered slice:
3394 ///
3395 /// * The unsorted subslice before `index`, whose elements all satisfy
3396 /// `compare(x, self[index]).is_le()`.
3397 ///
3398 /// * The element at `index`.
3399 ///
3400 /// * The unsorted subslice after `index`, whose elements all satisfy
3401 /// `compare(x, self[index]).is_ge()`.
3402 ///
3403 /// # Current implementation
3404 ///
3405 /// The current algorithm is an introselect implementation based on [ipnsort] by Lukas Bergdoll
3406 /// and Orson Peters, which is also the basis for [`sort_unstable`]. The fallback algorithm is
3407 /// Median of Medians using Tukey's Ninther for pivot selection, which guarantees linear runtime
3408 /// for all inputs.
3409 ///
3410 /// [`sort_unstable`]: slice::sort_unstable
3411 ///
3412 /// # Panics
3413 ///
3414 /// Panics when `index >= len()`, and so always panics on empty slices.
3415 ///
3416 /// May panic if `compare` does not implement a [total order].
3417 ///
3418 /// # Examples
3419 ///
3420 /// ```
3421 /// let mut v = [-5i32, 4, 2, -3, 1];
3422 ///
3423 /// // Find the items `>=` to the median, the median itself, and the items `<=` to it, by using
3424 /// // a reversed comparator.
3425 /// let (before, median, after) = v.select_nth_unstable_by(2, |a, b| b.cmp(a));
3426 ///
3427 /// assert!(before == [4, 2] || before == [2, 4]);
3428 /// assert_eq!(median, &mut 1);
3429 /// assert!(after == [-3, -5] || after == [-5, -3]);
3430 ///
3431 /// // We are only guaranteed the slice will be one of the following, based on the way we sort
3432 /// // about the specified index.
3433 /// assert!(v == [2, 4, 1, -5, -3] ||
3434 /// v == [2, 4, 1, -3, -5] ||
3435 /// v == [4, 2, 1, -5, -3] ||
3436 /// v == [4, 2, 1, -3, -5]);
3437 /// ```
3438 ///
3439 /// [ipnsort]: https://github.com/Voultapher/sort-research-rs/tree/main/ipnsort
3440 /// [total order]: https://en.wikipedia.org/wiki/Total_order
3441 #[stable(feature = "slice_select_nth_unstable", since = "1.49.0")]
3442 #[inline]
3443 #[cfg(not(feature = "ferrocene_subset"))]
3444 pub fn select_nth_unstable_by<F>(
3445 &mut self,
3446 index: usize,
3447 mut compare: F,
3448 ) -> (&mut [T], &mut T, &mut [T])
3449 where
3450 F: FnMut(&T, &T) -> Ordering,
3451 {
3452 sort::select::partition_at_index(self, index, |a: &T, b: &T| compare(a, b) == Less)
3453 }
3454
3455 /// Reorders the slice with a key extraction function such that the element at `index` is at a
3456 /// sort-order position. All elements before `index` will have keys `<=` to the key at `index`,
3457 /// and all elements after will have keys `>=` to it.
3458 ///
3459 /// This reordering is unstable (i.e. any element that compares equal to the nth element may end
3460 /// up at that position), in-place (i.e. does not allocate), and runs in *O*(*n*) time. This
3461 /// function is also known as "kth element" in other libraries.
3462 ///
3463 /// Returns a triple partitioning the reordered slice:
3464 ///
3465 /// * The unsorted subslice before `index`, whose elements all satisfy `f(x) <= f(self[index])`.
3466 ///
3467 /// * The element at `index`.
3468 ///
3469 /// * The unsorted subslice after `index`, whose elements all satisfy `f(x) >= f(self[index])`.
3470 ///
3471 /// # Current implementation
3472 ///
3473 /// The current algorithm is an introselect implementation based on [ipnsort] by Lukas Bergdoll
3474 /// and Orson Peters, which is also the basis for [`sort_unstable`]. The fallback algorithm is
3475 /// Median of Medians using Tukey's Ninther for pivot selection, which guarantees linear runtime
3476 /// for all inputs.
3477 ///
3478 /// [`sort_unstable`]: slice::sort_unstable
3479 ///
3480 /// # Panics
3481 ///
3482 /// Panics when `index >= len()`, meaning it always panics on empty slices.
3483 ///
3484 /// May panic if `K: Ord` does not implement a total order.
3485 ///
3486 /// # Examples
3487 ///
3488 /// ```
3489 /// let mut v = [-5i32, 4, 1, -3, 2];
3490 ///
3491 /// // Find the items `<=` to the absolute median, the absolute median itself, and the items
3492 /// // `>=` to it.
3493 /// let (lesser, median, greater) = v.select_nth_unstable_by_key(2, |a| a.abs());
3494 ///
3495 /// assert!(lesser == [1, 2] || lesser == [2, 1]);
3496 /// assert_eq!(median, &mut -3);
3497 /// assert!(greater == [4, -5] || greater == [-5, 4]);
3498 ///
3499 /// // We are only guaranteed the slice will be one of the following, based on the way we sort
3500 /// // about the specified index.
3501 /// assert!(v == [1, 2, -3, 4, -5] ||
3502 /// v == [1, 2, -3, -5, 4] ||
3503 /// v == [2, 1, -3, 4, -5] ||
3504 /// v == [2, 1, -3, -5, 4]);
3505 /// ```
3506 ///
3507 /// [ipnsort]: https://github.com/Voultapher/sort-research-rs/tree/main/ipnsort
3508 /// [total order]: https://en.wikipedia.org/wiki/Total_order
3509 #[stable(feature = "slice_select_nth_unstable", since = "1.49.0")]
3510 #[inline]
3511 #[cfg(not(feature = "ferrocene_subset"))]
3512 pub fn select_nth_unstable_by_key<K, F>(
3513 &mut self,
3514 index: usize,
3515 mut f: F,
3516 ) -> (&mut [T], &mut T, &mut [T])
3517 where
3518 F: FnMut(&T) -> K,
3519 K: Ord,
3520 {
3521 sort::select::partition_at_index(self, index, |a: &T, b: &T| f(a).lt(&f(b)))
3522 }
3523
3524 /// Moves all consecutive repeated elements to the end of the slice according to the
3525 /// [`PartialEq`] trait implementation.
3526 ///
3527 /// Returns two slices. The first contains no consecutive repeated elements.
3528 /// The second contains all the duplicates in no specified order.
3529 ///
3530 /// If the slice is sorted, the first returned slice contains no duplicates.
3531 ///
3532 /// # Examples
3533 ///
3534 /// ```
3535 /// #![feature(slice_partition_dedup)]
3536 ///
3537 /// let mut slice = [1, 2, 2, 3, 3, 2, 1, 1];
3538 ///
3539 /// let (dedup, duplicates) = slice.partition_dedup();
3540 ///
3541 /// assert_eq!(dedup, [1, 2, 3, 2, 1]);
3542 /// assert_eq!(duplicates, [2, 3, 1]);
3543 /// ```
3544 #[unstable(feature = "slice_partition_dedup", issue = "54279")]
3545 #[inline]
3546 #[cfg(not(feature = "ferrocene_subset"))]
3547 pub fn partition_dedup(&mut self) -> (&mut [T], &mut [T])
3548 where
3549 T: PartialEq,
3550 {
3551 self.partition_dedup_by(|a, b| a == b)
3552 }
3553
3554 /// Moves all but the first of consecutive elements to the end of the slice satisfying
3555 /// a given equality relation.
3556 ///
3557 /// Returns two slices. The first contains no consecutive repeated elements.
3558 /// The second contains all the duplicates in no specified order.
3559 ///
3560 /// The `same_bucket` function is passed references to two elements from the slice and
3561 /// must determine if the elements compare equal. The elements are passed in opposite order
3562 /// from their order in the slice, so if `same_bucket(a, b)` returns `true`, `a` is moved
3563 /// at the end of the slice.
3564 ///
3565 /// If the slice is sorted, the first returned slice contains no duplicates.
3566 ///
3567 /// # Examples
3568 ///
3569 /// ```
3570 /// #![feature(slice_partition_dedup)]
3571 ///
3572 /// let mut slice = ["foo", "Foo", "BAZ", "Bar", "bar", "baz", "BAZ"];
3573 ///
3574 /// let (dedup, duplicates) = slice.partition_dedup_by(|a, b| a.eq_ignore_ascii_case(b));
3575 ///
3576 /// assert_eq!(dedup, ["foo", "BAZ", "Bar", "baz"]);
3577 /// assert_eq!(duplicates, ["bar", "Foo", "BAZ"]);
3578 /// ```
3579 #[unstable(feature = "slice_partition_dedup", issue = "54279")]
3580 #[inline]
3581 #[cfg(not(feature = "ferrocene_subset"))]
3582 pub fn partition_dedup_by<F>(&mut self, mut same_bucket: F) -> (&mut [T], &mut [T])
3583 where
3584 F: FnMut(&mut T, &mut T) -> bool,
3585 {
3586 // Although we have a mutable reference to `self`, we cannot make
3587 // *arbitrary* changes. The `same_bucket` calls could panic, so we
3588 // must ensure that the slice is in a valid state at all times.
3589 //
3590 // The way that we handle this is by using swaps; we iterate
3591 // over all the elements, swapping as we go so that at the end
3592 // the elements we wish to keep are in the front, and those we
3593 // wish to reject are at the back. We can then split the slice.
3594 // This operation is still `O(n)`.
3595 //
3596 // Example: We start in this state, where `r` represents "next
3597 // read" and `w` represents "next_write".
3598 //
3599 // r
3600 // +---+---+---+---+---+---+
3601 // | 0 | 1 | 1 | 2 | 3 | 3 |
3602 // +---+---+---+---+---+---+
3603 // w
3604 //
3605 // Comparing self[r] against self[w-1], this is not a duplicate, so
3606 // we swap self[r] and self[w] (no effect as r==w) and then increment both
3607 // r and w, leaving us with:
3608 //
3609 // r
3610 // +---+---+---+---+---+---+
3611 // | 0 | 1 | 1 | 2 | 3 | 3 |
3612 // +---+---+---+---+---+---+
3613 // w
3614 //
3615 // Comparing self[r] against self[w-1], this value is a duplicate,
3616 // so we increment `r` but leave everything else unchanged:
3617 //
3618 // r
3619 // +---+---+---+---+---+---+
3620 // | 0 | 1 | 1 | 2 | 3 | 3 |
3621 // +---+---+---+---+---+---+
3622 // w
3623 //
3624 // Comparing self[r] against self[w-1], this is not a duplicate,
3625 // so swap self[r] and self[w] and advance r and w:
3626 //
3627 // r
3628 // +---+---+---+---+---+---+
3629 // | 0 | 1 | 2 | 1 | 3 | 3 |
3630 // +---+---+---+---+---+---+
3631 // w
3632 //
3633 // Not a duplicate, repeat:
3634 //
3635 // r
3636 // +---+---+---+---+---+---+
3637 // | 0 | 1 | 2 | 3 | 1 | 3 |
3638 // +---+---+---+---+---+---+
3639 // w
3640 //
3641 // Duplicate, advance r. End of slice. Split at w.
3642
3643 let len = self.len();
3644 if len <= 1 {
3645 return (self, &mut []);
3646 }
3647
3648 let ptr = self.as_mut_ptr();
3649 let mut next_read: usize = 1;
3650 let mut next_write: usize = 1;
3651
3652 // SAFETY: the `while` condition guarantees `next_read` and `next_write`
3653 // are less than `len`, thus are inside `self`. `prev_ptr_write` points to
3654 // one element before `ptr_write`, but `next_write` starts at 1, so
3655 // `prev_ptr_write` is never less than 0 and is inside the slice.
3656 // This fulfils the requirements for dereferencing `ptr_read`, `prev_ptr_write`
3657 // and `ptr_write`, and for using `ptr.add(next_read)`, `ptr.add(next_write - 1)`
3658 // and `prev_ptr_write.offset(1)`.
3659 //
3660 // `next_write` is also incremented at most once per loop at most meaning
3661 // no element is skipped when it may need to be swapped.
3662 //
3663 // `ptr_read` and `prev_ptr_write` never point to the same element. This
3664 // is required for `&mut *ptr_read`, `&mut *prev_ptr_write` to be safe.
3665 // The explanation is simply that `next_read >= next_write` is always true,
3666 // thus `next_read > next_write - 1` is too.
3667 unsafe {
3668 // Avoid bounds checks by using raw pointers.
3669 while next_read < len {
3670 let ptr_read = ptr.add(next_read);
3671 let prev_ptr_write = ptr.add(next_write - 1);
3672 if !same_bucket(&mut *ptr_read, &mut *prev_ptr_write) {
3673 if next_read != next_write {
3674 let ptr_write = prev_ptr_write.add(1);
3675 mem::swap(&mut *ptr_read, &mut *ptr_write);
3676 }
3677 next_write += 1;
3678 }
3679 next_read += 1;
3680 }
3681 }
3682
3683 self.split_at_mut(next_write)
3684 }
3685
3686 /// Moves all but the first of consecutive elements to the end of the slice that resolve
3687 /// to the same key.
3688 ///
3689 /// Returns two slices. The first contains no consecutive repeated elements.
3690 /// The second contains all the duplicates in no specified order.
3691 ///
3692 /// If the slice is sorted, the first returned slice contains no duplicates.
3693 ///
3694 /// # Examples
3695 ///
3696 /// ```
3697 /// #![feature(slice_partition_dedup)]
3698 ///
3699 /// let mut slice = [10, 20, 21, 30, 30, 20, 11, 13];
3700 ///
3701 /// let (dedup, duplicates) = slice.partition_dedup_by_key(|i| *i / 10);
3702 ///
3703 /// assert_eq!(dedup, [10, 20, 30, 20, 11]);
3704 /// assert_eq!(duplicates, [21, 30, 13]);
3705 /// ```
3706 #[unstable(feature = "slice_partition_dedup", issue = "54279")]
3707 #[inline]
3708 #[cfg(not(feature = "ferrocene_subset"))]
3709 pub fn partition_dedup_by_key<K, F>(&mut self, mut key: F) -> (&mut [T], &mut [T])
3710 where
3711 F: FnMut(&mut T) -> K,
3712 K: PartialEq,
3713 {
3714 self.partition_dedup_by(|a, b| key(a) == key(b))
3715 }
3716
3717 /// Rotates the slice in-place such that the first `mid` elements of the
3718 /// slice move to the end while the last `self.len() - mid` elements move to
3719 /// the front.
3720 ///
3721 /// After calling `rotate_left`, the element previously at index `mid` will
3722 /// become the first element in the slice.
3723 ///
3724 /// # Panics
3725 ///
3726 /// This function will panic if `mid` is greater than the length of the
3727 /// slice. Note that `mid == self.len()` does _not_ panic and is a no-op
3728 /// rotation.
3729 ///
3730 /// # Complexity
3731 ///
3732 /// Takes linear (in `self.len()`) time.
3733 ///
3734 /// # Examples
3735 ///
3736 /// ```
3737 /// let mut a = ['a', 'b', 'c', 'd', 'e', 'f'];
3738 /// a.rotate_left(2);
3739 /// assert_eq!(a, ['c', 'd', 'e', 'f', 'a', 'b']);
3740 /// ```
3741 ///
3742 /// Rotating a subslice:
3743 ///
3744 /// ```
3745 /// let mut a = ['a', 'b', 'c', 'd', 'e', 'f'];
3746 /// a[1..5].rotate_left(1);
3747 /// assert_eq!(a, ['a', 'c', 'd', 'e', 'b', 'f']);
3748 /// ```
3749 #[stable(feature = "slice_rotate", since = "1.26.0")]
3750 #[rustc_const_stable(feature = "const_slice_rotate", since = "1.92.0")]
3751 pub const fn rotate_left(&mut self, mid: usize) {
3752 assert!(mid <= self.len());
3753 let k = self.len() - mid;
3754 let p = self.as_mut_ptr();
3755
3756 // SAFETY: The range `[p.add(mid) - mid, p.add(mid) + k)` is trivially
3757 // valid for reading and writing, as required by `ptr_rotate`.
3758 unsafe {
3759 rotate::ptr_rotate(mid, p.add(mid), k);
3760 }
3761 }
3762
3763 /// Rotates the slice in-place such that the first `self.len() - k`
3764 /// elements of the slice move to the end while the last `k` elements move
3765 /// to the front.
3766 ///
3767 /// After calling `rotate_right`, the element previously at index
3768 /// `self.len() - k` will become the first element in the slice.
3769 ///
3770 /// # Panics
3771 ///
3772 /// This function will panic if `k` is greater than the length of the
3773 /// slice. Note that `k == self.len()` does _not_ panic and is a no-op
3774 /// rotation.
3775 ///
3776 /// # Complexity
3777 ///
3778 /// Takes linear (in `self.len()`) time.
3779 ///
3780 /// # Examples
3781 ///
3782 /// ```
3783 /// let mut a = ['a', 'b', 'c', 'd', 'e', 'f'];
3784 /// a.rotate_right(2);
3785 /// assert_eq!(a, ['e', 'f', 'a', 'b', 'c', 'd']);
3786 /// ```
3787 ///
3788 /// Rotating a subslice:
3789 ///
3790 /// ```
3791 /// let mut a = ['a', 'b', 'c', 'd', 'e', 'f'];
3792 /// a[1..5].rotate_right(1);
3793 /// assert_eq!(a, ['a', 'e', 'b', 'c', 'd', 'f']);
3794 /// ```
3795 #[stable(feature = "slice_rotate", since = "1.26.0")]
3796 #[rustc_const_stable(feature = "const_slice_rotate", since = "1.92.0")]
3797 pub const fn rotate_right(&mut self, k: usize) {
3798 assert!(k <= self.len());
3799 let mid = self.len() - k;
3800 let p = self.as_mut_ptr();
3801
3802 // SAFETY: The range `[p.add(mid) - mid, p.add(mid) + k)` is trivially
3803 // valid for reading and writing, as required by `ptr_rotate`.
3804 unsafe {
3805 rotate::ptr_rotate(mid, p.add(mid), k);
3806 }
3807 }
3808
3809 /// Fills `self` with elements by cloning `value`.
3810 ///
3811 /// # Examples
3812 ///
3813 /// ```
3814 /// let mut buf = vec![0; 10];
3815 /// buf.fill(1);
3816 /// assert_eq!(buf, vec![1; 10]);
3817 /// ```
3818 #[doc(alias = "memset")]
3819 #[stable(feature = "slice_fill", since = "1.50.0")]
3820 pub fn fill(&mut self, value: T)
3821 where
3822 T: Clone,
3823 {
3824 specialize::SpecFill::spec_fill(self, value);
3825 }
3826
3827 /// Fills `self` with elements returned by calling a closure repeatedly.
3828 ///
3829 /// This method uses a closure to create new values. If you'd rather
3830 /// [`Clone`] a given value, use [`fill`]. If you want to use the [`Default`]
3831 /// trait to generate values, you can pass [`Default::default`] as the
3832 /// argument.
3833 ///
3834 /// [`fill`]: slice::fill
3835 ///
3836 /// # Examples
3837 ///
3838 /// ```
3839 /// let mut buf = vec![1; 10];
3840 /// buf.fill_with(Default::default);
3841 /// assert_eq!(buf, vec![0; 10]);
3842 /// ```
3843 #[stable(feature = "slice_fill_with", since = "1.51.0")]
3844 #[cfg(not(feature = "ferrocene_subset"))]
3845 pub fn fill_with<F>(&mut self, mut f: F)
3846 where
3847 F: FnMut() -> T,
3848 {
3849 for el in self {
3850 *el = f();
3851 }
3852 }
3853
3854 /// Copies the elements from `src` into `self`.
3855 ///
3856 /// The length of `src` must be the same as `self`.
3857 ///
3858 /// # Panics
3859 ///
3860 /// This function will panic if the two slices have different lengths.
3861 ///
3862 /// # Examples
3863 ///
3864 /// Cloning two elements from a slice into another:
3865 ///
3866 /// ```
3867 /// let src = [1, 2, 3, 4];
3868 /// let mut dst = [0, 0];
3869 ///
3870 /// // Because the slices have to be the same length,
3871 /// // we slice the source slice from four elements
3872 /// // to two. It will panic if we don't do this.
3873 /// dst.clone_from_slice(&src[2..]);
3874 ///
3875 /// assert_eq!(src, [1, 2, 3, 4]);
3876 /// assert_eq!(dst, [3, 4]);
3877 /// ```
3878 ///
3879 /// Rust enforces that there can only be one mutable reference with no
3880 /// immutable references to a particular piece of data in a particular
3881 /// scope. Because of this, attempting to use `clone_from_slice` on a
3882 /// single slice will result in a compile failure:
3883 ///
3884 /// ```compile_fail
3885 /// let mut slice = [1, 2, 3, 4, 5];
3886 ///
3887 /// slice[..2].clone_from_slice(&slice[3..]); // compile fail!
3888 /// ```
3889 ///
3890 /// To work around this, we can use [`split_at_mut`] to create two distinct
3891 /// sub-slices from a slice:
3892 ///
3893 /// ```
3894 /// let mut slice = [1, 2, 3, 4, 5];
3895 ///
3896 /// {
3897 /// let (left, right) = slice.split_at_mut(2);
3898 /// left.clone_from_slice(&right[1..]);
3899 /// }
3900 ///
3901 /// assert_eq!(slice, [4, 5, 3, 4, 5]);
3902 /// ```
3903 ///
3904 /// [`copy_from_slice`]: slice::copy_from_slice
3905 /// [`split_at_mut`]: slice::split_at_mut
3906 #[stable(feature = "clone_from_slice", since = "1.7.0")]
3907 #[track_caller]
3908 pub fn clone_from_slice(&mut self, src: &[T])
3909 where
3910 T: Clone,
3911 {
3912 self.spec_clone_from(src);
3913 }
3914
3915 /// Copies all elements from `src` into `self`, using a memcpy.
3916 ///
3917 /// The length of `src` must be the same as `self`.
3918 ///
3919 /// If `T` does not implement `Copy`, use [`clone_from_slice`].
3920 ///
3921 /// # Panics
3922 ///
3923 /// This function will panic if the two slices have different lengths.
3924 ///
3925 /// # Examples
3926 ///
3927 /// Copying two elements from a slice into another:
3928 ///
3929 /// ```
3930 /// let src = [1, 2, 3, 4];
3931 /// let mut dst = [0, 0];
3932 ///
3933 /// // Because the slices have to be the same length,
3934 /// // we slice the source slice from four elements
3935 /// // to two. It will panic if we don't do this.
3936 /// dst.copy_from_slice(&src[2..]);
3937 ///
3938 /// assert_eq!(src, [1, 2, 3, 4]);
3939 /// assert_eq!(dst, [3, 4]);
3940 /// ```
3941 ///
3942 /// Rust enforces that there can only be one mutable reference with no
3943 /// immutable references to a particular piece of data in a particular
3944 /// scope. Because of this, attempting to use `copy_from_slice` on a
3945 /// single slice will result in a compile failure:
3946 ///
3947 /// ```compile_fail
3948 /// let mut slice = [1, 2, 3, 4, 5];
3949 ///
3950 /// slice[..2].copy_from_slice(&slice[3..]); // compile fail!
3951 /// ```
3952 ///
3953 /// To work around this, we can use [`split_at_mut`] to create two distinct
3954 /// sub-slices from a slice:
3955 ///
3956 /// ```
3957 /// let mut slice = [1, 2, 3, 4, 5];
3958 ///
3959 /// {
3960 /// let (left, right) = slice.split_at_mut(2);
3961 /// left.copy_from_slice(&right[1..]);
3962 /// }
3963 ///
3964 /// assert_eq!(slice, [4, 5, 3, 4, 5]);
3965 /// ```
3966 ///
3967 /// [`clone_from_slice`]: slice::clone_from_slice
3968 /// [`split_at_mut`]: slice::split_at_mut
3969 #[doc(alias = "memcpy")]
3970 #[inline]
3971 #[stable(feature = "copy_from_slice", since = "1.9.0")]
3972 #[rustc_const_stable(feature = "const_copy_from_slice", since = "1.87.0")]
3973 #[track_caller]
3974 pub const fn copy_from_slice(&mut self, src: &[T])
3975 where
3976 T: Copy,
3977 {
3978 // SAFETY: `T` implements `Copy`.
3979 unsafe { copy_from_slice_impl(self, src) }
3980 }
3981
3982 /// Copies elements from one part of the slice to another part of itself,
3983 /// using a memmove.
3984 ///
3985 /// `src` is the range within `self` to copy from. `dest` is the starting
3986 /// index of the range within `self` to copy to, which will have the same
3987 /// length as `src`. The two ranges may overlap. The ends of the two ranges
3988 /// must be less than or equal to `self.len()`.
3989 ///
3990 /// # Panics
3991 ///
3992 /// This function will panic if either range exceeds the end of the slice,
3993 /// or if the end of `src` is before the start.
3994 ///
3995 /// # Examples
3996 ///
3997 /// Copying four bytes within a slice:
3998 ///
3999 /// ```
4000 /// let mut bytes = *b"Hello, World!";
4001 ///
4002 /// bytes.copy_within(1..5, 8);
4003 ///
4004 /// assert_eq!(&bytes, b"Hello, Wello!");
4005 /// ```
4006 #[stable(feature = "copy_within", since = "1.37.0")]
4007 #[track_caller]
4008 #[cfg(not(feature = "ferrocene_subset"))]
4009 pub fn copy_within<R: RangeBounds<usize>>(&mut self, src: R, dest: usize)
4010 where
4011 T: Copy,
4012 {
4013 let Range { start: src_start, end: src_end } = slice::range(src, ..self.len());
4014 let count = src_end - src_start;
4015 assert!(dest <= self.len() - count, "dest is out of bounds");
4016 // SAFETY: the conditions for `ptr::copy` have all been checked above,
4017 // as have those for `ptr::add`.
4018 unsafe {
4019 // Derive both `src_ptr` and `dest_ptr` from the same loan
4020 let ptr = self.as_mut_ptr();
4021 let src_ptr = ptr.add(src_start);
4022 let dest_ptr = ptr.add(dest);
4023 ptr::copy(src_ptr, dest_ptr, count);
4024 }
4025 }
4026
4027 /// Swaps all elements in `self` with those in `other`.
4028 ///
4029 /// The length of `other` must be the same as `self`.
4030 ///
4031 /// # Panics
4032 ///
4033 /// This function will panic if the two slices have different lengths.
4034 ///
4035 /// # Example
4036 ///
4037 /// Swapping two elements across slices:
4038 ///
4039 /// ```
4040 /// let mut slice1 = [0, 0];
4041 /// let mut slice2 = [1, 2, 3, 4];
4042 ///
4043 /// slice1.swap_with_slice(&mut slice2[2..]);
4044 ///
4045 /// assert_eq!(slice1, [3, 4]);
4046 /// assert_eq!(slice2, [1, 2, 0, 0]);
4047 /// ```
4048 ///
4049 /// Rust enforces that there can only be one mutable reference to a
4050 /// particular piece of data in a particular scope. Because of this,
4051 /// attempting to use `swap_with_slice` on a single slice will result in
4052 /// a compile failure:
4053 ///
4054 /// ```compile_fail
4055 /// let mut slice = [1, 2, 3, 4, 5];
4056 /// slice[..2].swap_with_slice(&mut slice[3..]); // compile fail!
4057 /// ```
4058 ///
4059 /// To work around this, we can use [`split_at_mut`] to create two distinct
4060 /// mutable sub-slices from a slice:
4061 ///
4062 /// ```
4063 /// let mut slice = [1, 2, 3, 4, 5];
4064 ///
4065 /// {
4066 /// let (left, right) = slice.split_at_mut(2);
4067 /// left.swap_with_slice(&mut right[1..]);
4068 /// }
4069 ///
4070 /// assert_eq!(slice, [4, 5, 3, 1, 2]);
4071 /// ```
4072 ///
4073 /// [`split_at_mut`]: slice::split_at_mut
4074 #[stable(feature = "swap_with_slice", since = "1.27.0")]
4075 #[rustc_const_unstable(feature = "const_swap_with_slice", issue = "142204")]
4076 #[track_caller]
4077 #[cfg(not(feature = "ferrocene_subset"))]
4078 pub const fn swap_with_slice(&mut self, other: &mut [T]) {
4079 assert!(self.len() == other.len(), "destination and source slices have different lengths");
4080 // SAFETY: `self` is valid for `self.len()` elements by definition, and `src` was
4081 // checked to have the same length. The slices cannot overlap because
4082 // mutable references are exclusive.
4083 unsafe {
4084 ptr::swap_nonoverlapping(self.as_mut_ptr(), other.as_mut_ptr(), self.len());
4085 }
4086 }
4087
4088 /// Function to calculate lengths of the middle and trailing slice for `align_to{,_mut}`.
4089
4090 fn align_to_offsets<U>(&self) -> (usize, usize) {
4091 // What we gonna do about `rest` is figure out what multiple of `U`s we can put in a
4092 // lowest number of `T`s. And how many `T`s we need for each such "multiple".
4093 //
4094 // Consider for example T=u8 U=u16. Then we can put 1 U in 2 Ts. Simple. Now, consider
4095 // for example a case where size_of::<T> = 16, size_of::<U> = 24. We can put 2 Us in
4096 // place of every 3 Ts in the `rest` slice. A bit more complicated.
4097 //
4098 // Formula to calculate this is:
4099 //
4100 // Us = lcm(size_of::<T>, size_of::<U>) / size_of::<U>
4101 // Ts = lcm(size_of::<T>, size_of::<U>) / size_of::<T>
4102 //
4103 // Expanded and simplified:
4104 //
4105 // Us = size_of::<T> / gcd(size_of::<T>, size_of::<U>)
4106 // Ts = size_of::<U> / gcd(size_of::<T>, size_of::<U>)
4107 //
4108 // Luckily since all this is constant-evaluated... performance here matters not!
4109 #[ferrocene::annotation(
4110 "the only use of this function is in a const block, which means it cannot be reached during runtime"
4111 )]
4112 const fn gcd(a: usize, b: usize) -> usize {
4113 if b == 0 { a } else { gcd(b, a % b) }
4114 }
4115
4116 // Explicitly wrap the function call in a const block so it gets
4117 // constant-evaluated even in debug mode.
4118 let gcd: usize = const { gcd(size_of::<T>(), size_of::<U>()) };
4119 let ts: usize = size_of::<U>() / gcd;
4120 let us: usize = size_of::<T>() / gcd;
4121
4122 // Armed with this knowledge, we can find how many `U`s we can fit!
4123 let us_len = self.len() / ts * us;
4124 // And how many `T`s will be in the trailing slice!
4125 let ts_len = self.len() % ts;
4126 (us_len, ts_len)
4127 }
4128
4129 /// Transmutes the slice to a slice of another type, ensuring alignment of the types is
4130 /// maintained.
4131 ///
4132 /// This method splits the slice into three distinct slices: prefix, correctly aligned middle
4133 /// slice of a new type, and the suffix slice. The middle part will be as big as possible under
4134 /// the given alignment constraint and element size.
4135 ///
4136 /// This method has no purpose when either input element `T` or output element `U` are
4137 /// zero-sized and will return the original slice without splitting anything.
4138 ///
4139 /// # Safety
4140 ///
4141 /// This method is essentially a `transmute` with respect to the elements in the returned
4142 /// middle slice, so all the usual caveats pertaining to `transmute::<T, U>` also apply here.
4143 ///
4144 /// # Examples
4145 ///
4146 /// Basic usage:
4147 ///
4148 /// ```
4149 /// unsafe {
4150 /// let bytes: [u8; 7] = [1, 2, 3, 4, 5, 6, 7];
4151 /// let (prefix, shorts, suffix) = bytes.align_to::<u16>();
4152 /// // less_efficient_algorithm_for_bytes(prefix);
4153 /// // more_efficient_algorithm_for_aligned_shorts(shorts);
4154 /// // less_efficient_algorithm_for_bytes(suffix);
4155 /// }
4156 /// ```
4157 #[stable(feature = "slice_align_to", since = "1.30.0")]
4158 #[must_use]
4159 pub unsafe fn align_to<U>(&self) -> (&[T], &[U], &[T]) {
4160 // Note that most of this function will be constant-evaluated,
4161 if U::IS_ZST || T::IS_ZST {
4162 // handle ZSTs specially, which is – don't handle them at all.
4163 return (self, &[], &[]);
4164 }
4165
4166 // First, find at what point do we split between the first and 2nd slice. Easy with
4167 // ptr.align_offset.
4168 let ptr = self.as_ptr();
4169 // SAFETY: See the `align_to_mut` method for the detailed safety comment.
4170 let offset = unsafe { crate::ptr::align_offset(ptr, align_of::<U>()) };
4171 if offset > self.len() {
4172 (self, &[], &[])
4173 } else {
4174 let (left, rest) = self.split_at(offset);
4175 let (us_len, ts_len) = rest.align_to_offsets::<U>();
4176 // Inform Miri that we want to consider the "middle" pointer to be suitably aligned.
4177 #[cfg(miri)]
4178 crate::intrinsics::miri_promise_symbolic_alignment(
4179 rest.as_ptr().cast(),
4180 align_of::<U>(),
4181 );
4182 // SAFETY: now `rest` is definitely aligned, so `from_raw_parts` below is okay,
4183 // since the caller guarantees that we can transmute `T` to `U` safely.
4184 unsafe {
4185 (
4186 left,
4187 from_raw_parts(rest.as_ptr() as *const U, us_len),
4188 from_raw_parts(rest.as_ptr().add(rest.len() - ts_len), ts_len),
4189 )
4190 }
4191 }
4192 }
4193
4194 /// Transmutes the mutable slice to a mutable slice of another type, ensuring alignment of the
4195 /// types is maintained.
4196 ///
4197 /// This method splits the slice into three distinct slices: prefix, correctly aligned middle
4198 /// slice of a new type, and the suffix slice. The middle part will be as big as possible under
4199 /// the given alignment constraint and element size.
4200 ///
4201 /// This method has no purpose when either input element `T` or output element `U` are
4202 /// zero-sized and will return the original slice without splitting anything.
4203 ///
4204 /// # Safety
4205 ///
4206 /// This method is essentially a `transmute` with respect to the elements in the returned
4207 /// middle slice, so all the usual caveats pertaining to `transmute::<T, U>` also apply here.
4208 ///
4209 /// # Examples
4210 ///
4211 /// Basic usage:
4212 ///
4213 /// ```
4214 /// unsafe {
4215 /// let mut bytes: [u8; 7] = [1, 2, 3, 4, 5, 6, 7];
4216 /// let (prefix, shorts, suffix) = bytes.align_to_mut::<u16>();
4217 /// // less_efficient_algorithm_for_bytes(prefix);
4218 /// // more_efficient_algorithm_for_aligned_shorts(shorts);
4219 /// // less_efficient_algorithm_for_bytes(suffix);
4220 /// }
4221 /// ```
4222 #[stable(feature = "slice_align_to", since = "1.30.0")]
4223 #[must_use]
4224 pub unsafe fn align_to_mut<U>(&mut self) -> (&mut [T], &mut [U], &mut [T]) {
4225 // Note that most of this function will be constant-evaluated,
4226 if U::IS_ZST || T::IS_ZST {
4227 // handle ZSTs specially, which is – don't handle them at all.
4228 return (self, &mut [], &mut []);
4229 }
4230
4231 // First, find at what point do we split between the first and 2nd slice. Easy with
4232 // ptr.align_offset.
4233 let ptr = self.as_ptr();
4234 // SAFETY: Here we are ensuring we will use aligned pointers for U for the
4235 // rest of the method. This is done by passing a pointer to &[T] with an
4236 // alignment targeted for U.
4237 // `crate::ptr::align_offset` is called with a correctly aligned and
4238 // valid pointer `ptr` (it comes from a reference to `self`) and with
4239 // a size that is a power of two (since it comes from the alignment for U),
4240 // satisfying its safety constraints.
4241 let offset = unsafe { crate::ptr::align_offset(ptr, align_of::<U>()) };
4242 if offset > self.len() {
4243 (self, &mut [], &mut [])
4244 } else {
4245 let (left, rest) = self.split_at_mut(offset);
4246 let (us_len, ts_len) = rest.align_to_offsets::<U>();
4247 let rest_len = rest.len();
4248 let mut_ptr = rest.as_mut_ptr();
4249 // Inform Miri that we want to consider the "middle" pointer to be suitably aligned.
4250 #[cfg(miri)]
4251 crate::intrinsics::miri_promise_symbolic_alignment(
4252 mut_ptr.cast() as *const (),
4253 align_of::<U>(),
4254 );
4255 // We can't use `rest` again after this, that would invalidate its alias `mut_ptr`!
4256 // SAFETY: see comments for `align_to`.
4257 unsafe {
4258 (
4259 left,
4260 from_raw_parts_mut(mut_ptr as *mut U, us_len),
4261 from_raw_parts_mut(mut_ptr.add(rest_len - ts_len), ts_len),
4262 )
4263 }
4264 }
4265 }
4266
4267 /// Splits a slice into a prefix, a middle of aligned SIMD types, and a suffix.
4268 ///
4269 /// This is a safe wrapper around [`slice::align_to`], so inherits the same
4270 /// guarantees as that method.
4271 ///
4272 /// # Panics
4273 ///
4274 /// This will panic if the size of the SIMD type is different from
4275 /// `LANES` times that of the scalar.
4276 ///
4277 /// At the time of writing, the trait restrictions on `Simd<T, LANES>` keeps
4278 /// that from ever happening, as only power-of-two numbers of lanes are
4279 /// supported. It's possible that, in the future, those restrictions might
4280 /// be lifted in a way that would make it possible to see panics from this
4281 /// method for something like `LANES == 3`.
4282 ///
4283 /// # Examples
4284 ///
4285 /// ```
4286 /// #![feature(portable_simd)]
4287 /// use core::simd::prelude::*;
4288 ///
4289 /// let short = &[1, 2, 3];
4290 /// let (prefix, middle, suffix) = short.as_simd::<4>();
4291 /// assert_eq!(middle, []); // Not enough elements for anything in the middle
4292 ///
4293 /// // They might be split in any possible way between prefix and suffix
4294 /// let it = prefix.iter().chain(suffix).copied();
4295 /// assert_eq!(it.collect::<Vec<_>>(), vec![1, 2, 3]);
4296 ///
4297 /// fn basic_simd_sum(x: &[f32]) -> f32 {
4298 /// use std::ops::Add;
4299 /// let (prefix, middle, suffix) = x.as_simd();
4300 /// let sums = f32x4::from_array([
4301 /// prefix.iter().copied().sum(),
4302 /// 0.0,
4303 /// 0.0,
4304 /// suffix.iter().copied().sum(),
4305 /// ]);
4306 /// let sums = middle.iter().copied().fold(sums, f32x4::add);
4307 /// sums.reduce_sum()
4308 /// }
4309 ///
4310 /// let numbers: Vec<f32> = (1..101).map(|x| x as _).collect();
4311 /// assert_eq!(basic_simd_sum(&numbers[1..99]), 4949.0);
4312 /// ```
4313 #[unstable(feature = "portable_simd", issue = "86656")]
4314 #[must_use]
4315 #[cfg(not(feature = "ferrocene_subset"))]
4316 pub fn as_simd<const LANES: usize>(&self) -> (&[T], &[Simd<T, LANES>], &[T])
4317 where
4318 Simd<T, LANES>: AsRef<[T; LANES]>,
4319 T: simd::SimdElement,
4320 simd::LaneCount<LANES>: simd::SupportedLaneCount,
4321 {
4322 // These are expected to always match, as vector types are laid out like
4323 // arrays per <https://llvm.org/docs/LangRef.html#vector-type>, but we
4324 // might as well double-check since it'll optimize away anyhow.
4325 assert_eq!(size_of::<Simd<T, LANES>>(), size_of::<[T; LANES]>());
4326
4327 // SAFETY: The simd types have the same layout as arrays, just with
4328 // potentially-higher alignment, so the de-facto transmutes are sound.
4329 unsafe { self.align_to() }
4330 }
4331
4332 /// Splits a mutable slice into a mutable prefix, a middle of aligned SIMD types,
4333 /// and a mutable suffix.
4334 ///
4335 /// This is a safe wrapper around [`slice::align_to_mut`], so inherits the same
4336 /// guarantees as that method.
4337 ///
4338 /// This is the mutable version of [`slice::as_simd`]; see that for examples.
4339 ///
4340 /// # Panics
4341 ///
4342 /// This will panic if the size of the SIMD type is different from
4343 /// `LANES` times that of the scalar.
4344 ///
4345 /// At the time of writing, the trait restrictions on `Simd<T, LANES>` keeps
4346 /// that from ever happening, as only power-of-two numbers of lanes are
4347 /// supported. It's possible that, in the future, those restrictions might
4348 /// be lifted in a way that would make it possible to see panics from this
4349 /// method for something like `LANES == 3`.
4350 #[unstable(feature = "portable_simd", issue = "86656")]
4351 #[must_use]
4352 #[cfg(not(feature = "ferrocene_subset"))]
4353 pub fn as_simd_mut<const LANES: usize>(&mut self) -> (&mut [T], &mut [Simd<T, LANES>], &mut [T])
4354 where
4355 Simd<T, LANES>: AsMut<[T; LANES]>,
4356 T: simd::SimdElement,
4357 simd::LaneCount<LANES>: simd::SupportedLaneCount,
4358 {
4359 // These are expected to always match, as vector types are laid out like
4360 // arrays per <https://llvm.org/docs/LangRef.html#vector-type>, but we
4361 // might as well double-check since it'll optimize away anyhow.
4362 assert_eq!(size_of::<Simd<T, LANES>>(), size_of::<[T; LANES]>());
4363
4364 // SAFETY: The simd types have the same layout as arrays, just with
4365 // potentially-higher alignment, so the de-facto transmutes are sound.
4366 unsafe { self.align_to_mut() }
4367 }
4368
4369 /// Checks if the elements of this slice are sorted.
4370 ///
4371 /// That is, for each element `a` and its following element `b`, `a <= b` must hold. If the
4372 /// slice yields exactly zero or one element, `true` is returned.
4373 ///
4374 /// Note that if `Self::Item` is only `PartialOrd`, but not `Ord`, the above definition
4375 /// implies that this function returns `false` if any two consecutive items are not
4376 /// comparable.
4377 ///
4378 /// # Examples
4379 ///
4380 /// ```
4381 /// let empty: [i32; 0] = [];
4382 ///
4383 /// assert!([1, 2, 2, 9].is_sorted());
4384 /// assert!(![1, 3, 2, 4].is_sorted());
4385 /// assert!([0].is_sorted());
4386 /// assert!(empty.is_sorted());
4387 /// assert!(![0.0, 1.0, f32::NAN].is_sorted());
4388 /// ```
4389 #[inline]
4390 #[stable(feature = "is_sorted", since = "1.82.0")]
4391 #[must_use]
4392 #[cfg(not(feature = "ferrocene_subset"))]
4393 pub fn is_sorted(&self) -> bool
4394 where
4395 T: PartialOrd,
4396 {
4397 // This odd number works the best. 32 + 1 extra due to overlapping chunk boundaries.
4398 const CHUNK_SIZE: usize = 33;
4399 if self.len() < CHUNK_SIZE {
4400 return self.windows(2).all(|w| w[0] <= w[1]);
4401 }
4402 let mut i = 0;
4403 // Check in chunks for autovectorization.
4404 while i < self.len() - CHUNK_SIZE {
4405 let chunk = &self[i..i + CHUNK_SIZE];
4406 if !chunk.windows(2).fold(true, |acc, w| acc & (w[0] <= w[1])) {
4407 return false;
4408 }
4409 // We need to ensure that chunk boundaries are also sorted.
4410 // Overlap the next chunk with the last element of our last chunk.
4411 i += CHUNK_SIZE - 1;
4412 }
4413 self[i..].windows(2).all(|w| w[0] <= w[1])
4414 }
4415
4416 /// Checks if the elements of this slice are sorted using the given comparator function.
4417 ///
4418 /// Instead of using `PartialOrd::partial_cmp`, this function uses the given `compare`
4419 /// function to determine whether two elements are to be considered in sorted order.
4420 ///
4421 /// # Examples
4422 ///
4423 /// ```
4424 /// assert!([1, 2, 2, 9].is_sorted_by(|a, b| a <= b));
4425 /// assert!(![1, 2, 2, 9].is_sorted_by(|a, b| a < b));
4426 ///
4427 /// assert!([0].is_sorted_by(|a, b| true));
4428 /// assert!([0].is_sorted_by(|a, b| false));
4429 ///
4430 /// let empty: [i32; 0] = [];
4431 /// assert!(empty.is_sorted_by(|a, b| false));
4432 /// assert!(empty.is_sorted_by(|a, b| true));
4433 /// ```
4434 #[stable(feature = "is_sorted", since = "1.82.0")]
4435 #[must_use]
4436 #[cfg(not(feature = "ferrocene_subset"))]
4437 pub fn is_sorted_by<'a, F>(&'a self, mut compare: F) -> bool
4438 where
4439 F: FnMut(&'a T, &'a T) -> bool,
4440 {
4441 self.array_windows().all(|[a, b]| compare(a, b))
4442 }
4443
4444 /// Checks if the elements of this slice are sorted using the given key extraction function.
4445 ///
4446 /// Instead of comparing the slice's elements directly, this function compares the keys of the
4447 /// elements, as determined by `f`. Apart from that, it's equivalent to [`is_sorted`]; see its
4448 /// documentation for more information.
4449 ///
4450 /// [`is_sorted`]: slice::is_sorted
4451 ///
4452 /// # Examples
4453 ///
4454 /// ```
4455 /// assert!(["c", "bb", "aaa"].is_sorted_by_key(|s| s.len()));
4456 /// assert!(![-2i32, -1, 0, 3].is_sorted_by_key(|n| n.abs()));
4457 /// ```
4458 #[inline]
4459 #[stable(feature = "is_sorted", since = "1.82.0")]
4460 #[must_use]
4461 #[cfg(not(feature = "ferrocene_subset"))]
4462 pub fn is_sorted_by_key<'a, F, K>(&'a self, f: F) -> bool
4463 where
4464 F: FnMut(&'a T) -> K,
4465 K: PartialOrd,
4466 {
4467 self.iter().is_sorted_by_key(f)
4468 }
4469
4470 /// Returns the index of the partition point according to the given predicate
4471 /// (the index of the first element of the second partition).
4472 ///
4473 /// The slice is assumed to be partitioned according to the given predicate.
4474 /// This means that all elements for which the predicate returns true are at the start of the slice
4475 /// and all elements for which the predicate returns false are at the end.
4476 /// For example, `[7, 15, 3, 5, 4, 12, 6]` is partitioned under the predicate `x % 2 != 0`
4477 /// (all odd numbers are at the start, all even at the end).
4478 ///
4479 /// If this slice is not partitioned, the returned result is unspecified and meaningless,
4480 /// as this method performs a kind of binary search.
4481 ///
4482 /// See also [`binary_search`], [`binary_search_by`], and [`binary_search_by_key`].
4483 ///
4484 /// [`binary_search`]: slice::binary_search
4485 /// [`binary_search_by`]: slice::binary_search_by
4486 /// [`binary_search_by_key`]: slice::binary_search_by_key
4487 ///
4488 /// # Examples
4489 ///
4490 /// ```
4491 /// let v = [1, 2, 3, 3, 5, 6, 7];
4492 /// let i = v.partition_point(|&x| x < 5);
4493 ///
4494 /// assert_eq!(i, 4);
4495 /// assert!(v[..i].iter().all(|&x| x < 5));
4496 /// assert!(v[i..].iter().all(|&x| !(x < 5)));
4497 /// ```
4498 ///
4499 /// If all elements of the slice match the predicate, including if the slice
4500 /// is empty, then the length of the slice will be returned:
4501 ///
4502 /// ```
4503 /// let a = [2, 4, 8];
4504 /// assert_eq!(a.partition_point(|x| x < &100), a.len());
4505 /// let a: [i32; 0] = [];
4506 /// assert_eq!(a.partition_point(|x| x < &100), 0);
4507 /// ```
4508 ///
4509 /// If you want to insert an item to a sorted vector, while maintaining
4510 /// sort order:
4511 ///
4512 /// ```
4513 /// let mut s = vec![0, 1, 1, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55];
4514 /// let num = 42;
4515 /// let idx = s.partition_point(|&x| x <= num);
4516 /// s.insert(idx, num);
4517 /// assert_eq!(s, [0, 1, 1, 1, 1, 2, 3, 5, 8, 13, 21, 34, 42, 55]);
4518 /// ```
4519 #[stable(feature = "partition_point", since = "1.52.0")]
4520 #[must_use]
4521 #[cfg(not(feature = "ferrocene_subset"))]
4522 pub fn partition_point<P>(&self, mut pred: P) -> usize
4523 where
4524 P: FnMut(&T) -> bool,
4525 {
4526 self.binary_search_by(|x| if pred(x) { Less } else { Greater }).unwrap_or_else(|i| i)
4527 }
4528
4529 /// Removes the subslice corresponding to the given range
4530 /// and returns a reference to it.
4531 ///
4532 /// Returns `None` and does not modify the slice if the given
4533 /// range is out of bounds.
4534 ///
4535 /// Note that this method only accepts one-sided ranges such as
4536 /// `2..` or `..6`, but not `2..6`.
4537 ///
4538 /// # Examples
4539 ///
4540 /// Splitting off the first three elements of a slice:
4541 ///
4542 /// ```
4543 /// let mut slice: &[_] = &['a', 'b', 'c', 'd'];
4544 /// let mut first_three = slice.split_off(..3).unwrap();
4545 ///
4546 /// assert_eq!(slice, &['d']);
4547 /// assert_eq!(first_three, &['a', 'b', 'c']);
4548 /// ```
4549 ///
4550 /// Splitting off a slice starting with the third element:
4551 ///
4552 /// ```
4553 /// let mut slice: &[_] = &['a', 'b', 'c', 'd'];
4554 /// let mut tail = slice.split_off(2..).unwrap();
4555 ///
4556 /// assert_eq!(slice, &['a', 'b']);
4557 /// assert_eq!(tail, &['c', 'd']);
4558 /// ```
4559 ///
4560 /// Getting `None` when `range` is out of bounds:
4561 ///
4562 /// ```
4563 /// let mut slice: &[_] = &['a', 'b', 'c', 'd'];
4564 ///
4565 /// assert_eq!(None, slice.split_off(5..));
4566 /// assert_eq!(None, slice.split_off(..5));
4567 /// assert_eq!(None, slice.split_off(..=4));
4568 /// let expected: &[char] = &['a', 'b', 'c', 'd'];
4569 /// assert_eq!(Some(expected), slice.split_off(..4));
4570 /// ```
4571 #[inline]
4572 #[must_use = "method does not modify the slice if the range is out of bounds"]
4573 #[stable(feature = "slice_take", since = "1.87.0")]
4574 #[cfg(not(feature = "ferrocene_subset"))]
4575 pub fn split_off<'a, R: OneSidedRange<usize>>(
4576 self: &mut &'a Self,
4577 range: R,
4578 ) -> Option<&'a Self> {
4579 let (direction, split_index) = split_point_of(range)?;
4580 if split_index > self.len() {
4581 return None;
4582 }
4583 let (front, back) = self.split_at(split_index);
4584 match direction {
4585 Direction::Front => {
4586 *self = back;
4587 Some(front)
4588 }
4589 Direction::Back => {
4590 *self = front;
4591 Some(back)
4592 }
4593 }
4594 }
4595
4596 /// Removes the subslice corresponding to the given range
4597 /// and returns a mutable reference to it.
4598 ///
4599 /// Returns `None` and does not modify the slice if the given
4600 /// range is out of bounds.
4601 ///
4602 /// Note that this method only accepts one-sided ranges such as
4603 /// `2..` or `..6`, but not `2..6`.
4604 ///
4605 /// # Examples
4606 ///
4607 /// Splitting off the first three elements of a slice:
4608 ///
4609 /// ```
4610 /// let mut slice: &mut [_] = &mut ['a', 'b', 'c', 'd'];
4611 /// let mut first_three = slice.split_off_mut(..3).unwrap();
4612 ///
4613 /// assert_eq!(slice, &mut ['d']);
4614 /// assert_eq!(first_three, &mut ['a', 'b', 'c']);
4615 /// ```
4616 ///
4617 /// Splitting off a slice starting with the third element:
4618 ///
4619 /// ```
4620 /// let mut slice: &mut [_] = &mut ['a', 'b', 'c', 'd'];
4621 /// let mut tail = slice.split_off_mut(2..).unwrap();
4622 ///
4623 /// assert_eq!(slice, &mut ['a', 'b']);
4624 /// assert_eq!(tail, &mut ['c', 'd']);
4625 /// ```
4626 ///
4627 /// Getting `None` when `range` is out of bounds:
4628 ///
4629 /// ```
4630 /// let mut slice: &mut [_] = &mut ['a', 'b', 'c', 'd'];
4631 ///
4632 /// assert_eq!(None, slice.split_off_mut(5..));
4633 /// assert_eq!(None, slice.split_off_mut(..5));
4634 /// assert_eq!(None, slice.split_off_mut(..=4));
4635 /// let expected: &mut [_] = &mut ['a', 'b', 'c', 'd'];
4636 /// assert_eq!(Some(expected), slice.split_off_mut(..4));
4637 /// ```
4638 #[inline]
4639 #[must_use = "method does not modify the slice if the range is out of bounds"]
4640 #[stable(feature = "slice_take", since = "1.87.0")]
4641 #[cfg(not(feature = "ferrocene_subset"))]
4642 pub fn split_off_mut<'a, R: OneSidedRange<usize>>(
4643 self: &mut &'a mut Self,
4644 range: R,
4645 ) -> Option<&'a mut Self> {
4646 let (direction, split_index) = split_point_of(range)?;
4647 if split_index > self.len() {
4648 return None;
4649 }
4650 let (front, back) = mem::take(self).split_at_mut(split_index);
4651 match direction {
4652 Direction::Front => {
4653 *self = back;
4654 Some(front)
4655 }
4656 Direction::Back => {
4657 *self = front;
4658 Some(back)
4659 }
4660 }
4661 }
4662
4663 /// Removes the first element of the slice and returns a reference
4664 /// to it.
4665 ///
4666 /// Returns `None` if the slice is empty.
4667 ///
4668 /// # Examples
4669 ///
4670 /// ```
4671 /// let mut slice: &[_] = &['a', 'b', 'c'];
4672 /// let first = slice.split_off_first().unwrap();
4673 ///
4674 /// assert_eq!(slice, &['b', 'c']);
4675 /// assert_eq!(first, &'a');
4676 /// ```
4677 #[inline]
4678 #[stable(feature = "slice_take", since = "1.87.0")]
4679 #[rustc_const_unstable(feature = "const_split_off_first_last", issue = "138539")]
4680 #[cfg(not(feature = "ferrocene_subset"))]
4681 pub const fn split_off_first<'a>(self: &mut &'a Self) -> Option<&'a T> {
4682 // FIXME(const-hack): Use `?` when available in const instead of `let-else`.
4683 let Some((first, rem)) = self.split_first() else { return None };
4684 *self = rem;
4685 Some(first)
4686 }
4687
4688 /// Removes the first element of the slice and returns a mutable
4689 /// reference to it.
4690 ///
4691 /// Returns `None` if the slice is empty.
4692 ///
4693 /// # Examples
4694 ///
4695 /// ```
4696 /// let mut slice: &mut [_] = &mut ['a', 'b', 'c'];
4697 /// let first = slice.split_off_first_mut().unwrap();
4698 /// *first = 'd';
4699 ///
4700 /// assert_eq!(slice, &['b', 'c']);
4701 /// assert_eq!(first, &'d');
4702 /// ```
4703 #[inline]
4704 #[stable(feature = "slice_take", since = "1.87.0")]
4705 #[rustc_const_unstable(feature = "const_split_off_first_last", issue = "138539")]
4706 #[cfg(not(feature = "ferrocene_subset"))]
4707 pub const fn split_off_first_mut<'a>(self: &mut &'a mut Self) -> Option<&'a mut T> {
4708 // FIXME(const-hack): Use `mem::take` and `?` when available in const.
4709 // Original: `mem::take(self).split_first_mut()?`
4710 let Some((first, rem)) = mem::replace(self, &mut []).split_first_mut() else { return None };
4711 *self = rem;
4712 Some(first)
4713 }
4714
4715 /// Removes the last element of the slice and returns a reference
4716 /// to it.
4717 ///
4718 /// Returns `None` if the slice is empty.
4719 ///
4720 /// # Examples
4721 ///
4722 /// ```
4723 /// let mut slice: &[_] = &['a', 'b', 'c'];
4724 /// let last = slice.split_off_last().unwrap();
4725 ///
4726 /// assert_eq!(slice, &['a', 'b']);
4727 /// assert_eq!(last, &'c');
4728 /// ```
4729 #[inline]
4730 #[stable(feature = "slice_take", since = "1.87.0")]
4731 #[rustc_const_unstable(feature = "const_split_off_first_last", issue = "138539")]
4732 #[cfg(not(feature = "ferrocene_subset"))]
4733 pub const fn split_off_last<'a>(self: &mut &'a Self) -> Option<&'a T> {
4734 // FIXME(const-hack): Use `?` when available in const instead of `let-else`.
4735 let Some((last, rem)) = self.split_last() else { return None };
4736 *self = rem;
4737 Some(last)
4738 }
4739
4740 /// Removes the last element of the slice and returns a mutable
4741 /// reference to it.
4742 ///
4743 /// Returns `None` if the slice is empty.
4744 ///
4745 /// # Examples
4746 ///
4747 /// ```
4748 /// let mut slice: &mut [_] = &mut ['a', 'b', 'c'];
4749 /// let last = slice.split_off_last_mut().unwrap();
4750 /// *last = 'd';
4751 ///
4752 /// assert_eq!(slice, &['a', 'b']);
4753 /// assert_eq!(last, &'d');
4754 /// ```
4755 #[inline]
4756 #[stable(feature = "slice_take", since = "1.87.0")]
4757 #[rustc_const_unstable(feature = "const_split_off_first_last", issue = "138539")]
4758 #[cfg(not(feature = "ferrocene_subset"))]
4759 pub const fn split_off_last_mut<'a>(self: &mut &'a mut Self) -> Option<&'a mut T> {
4760 // FIXME(const-hack): Use `mem::take` and `?` when available in const.
4761 // Original: `mem::take(self).split_last_mut()?`
4762 let Some((last, rem)) = mem::replace(self, &mut []).split_last_mut() else { return None };
4763 *self = rem;
4764 Some(last)
4765 }
4766
4767 /// Returns mutable references to many indices at once, without doing any checks.
4768 ///
4769 /// An index can be either a `usize`, a [`Range`] or a [`RangeInclusive`]. Note
4770 /// that this method takes an array, so all indices must be of the same type.
4771 /// If passed an array of `usize`s this method gives back an array of mutable references
4772 /// to single elements, while if passed an array of ranges it gives back an array of
4773 /// mutable references to slices.
4774 ///
4775 /// For a safe alternative see [`get_disjoint_mut`].
4776 ///
4777 /// # Safety
4778 ///
4779 /// Calling this method with overlapping or out-of-bounds indices is *[undefined behavior]*
4780 /// even if the resulting references are not used.
4781 ///
4782 /// # Examples
4783 ///
4784 /// ```
4785 /// let x = &mut [1, 2, 4];
4786 ///
4787 /// unsafe {
4788 /// let [a, b] = x.get_disjoint_unchecked_mut([0, 2]);
4789 /// *a *= 10;
4790 /// *b *= 100;
4791 /// }
4792 /// assert_eq!(x, &[10, 2, 400]);
4793 ///
4794 /// unsafe {
4795 /// let [a, b] = x.get_disjoint_unchecked_mut([0..1, 1..3]);
4796 /// a[0] = 8;
4797 /// b[0] = 88;
4798 /// b[1] = 888;
4799 /// }
4800 /// assert_eq!(x, &[8, 88, 888]);
4801 ///
4802 /// unsafe {
4803 /// let [a, b] = x.get_disjoint_unchecked_mut([1..=2, 0..=0]);
4804 /// a[0] = 11;
4805 /// a[1] = 111;
4806 /// b[0] = 1;
4807 /// }
4808 /// assert_eq!(x, &[1, 11, 111]);
4809 /// ```
4810 ///
4811 /// [`get_disjoint_mut`]: slice::get_disjoint_mut
4812 /// [undefined behavior]: https://doc.rust-lang.org/reference/behavior-considered-undefined.html
4813 #[stable(feature = "get_many_mut", since = "1.86.0")]
4814 #[inline]
4815 #[track_caller]
4816 #[cfg(not(feature = "ferrocene_subset"))]
4817 pub unsafe fn get_disjoint_unchecked_mut<I, const N: usize>(
4818 &mut self,
4819 indices: [I; N],
4820 ) -> [&mut I::Output; N]
4821 where
4822 I: GetDisjointMutIndex + SliceIndex<Self>,
4823 {
4824 // NB: This implementation is written as it is because any variation of
4825 // `indices.map(|i| self.get_unchecked_mut(i))` would make miri unhappy,
4826 // or generate worse code otherwise. This is also why we need to go
4827 // through a raw pointer here.
4828 let slice: *mut [T] = self;
4829 let mut arr: MaybeUninit<[&mut I::Output; N]> = MaybeUninit::uninit();
4830 let arr_ptr = arr.as_mut_ptr();
4831
4832 // SAFETY: We expect `indices` to contain disjunct values that are
4833 // in bounds of `self`.
4834 unsafe {
4835 for i in 0..N {
4836 let idx = indices.get_unchecked(i).clone();
4837 arr_ptr.cast::<&mut I::Output>().add(i).write(&mut *slice.get_unchecked_mut(idx));
4838 }
4839 arr.assume_init()
4840 }
4841 }
4842
4843 /// Returns mutable references to many indices at once.
4844 ///
4845 /// An index can be either a `usize`, a [`Range`] or a [`RangeInclusive`]. Note
4846 /// that this method takes an array, so all indices must be of the same type.
4847 /// If passed an array of `usize`s this method gives back an array of mutable references
4848 /// to single elements, while if passed an array of ranges it gives back an array of
4849 /// mutable references to slices.
4850 ///
4851 /// Returns an error if any index is out-of-bounds, or if there are overlapping indices.
4852 /// An empty range is not considered to overlap if it is located at the beginning or at
4853 /// the end of another range, but is considered to overlap if it is located in the middle.
4854 ///
4855 /// This method does a O(n^2) check to check that there are no overlapping indices, so be careful
4856 /// when passing many indices.
4857 ///
4858 /// # Examples
4859 ///
4860 /// ```
4861 /// let v = &mut [1, 2, 3];
4862 /// if let Ok([a, b]) = v.get_disjoint_mut([0, 2]) {
4863 /// *a = 413;
4864 /// *b = 612;
4865 /// }
4866 /// assert_eq!(v, &[413, 2, 612]);
4867 ///
4868 /// if let Ok([a, b]) = v.get_disjoint_mut([0..1, 1..3]) {
4869 /// a[0] = 8;
4870 /// b[0] = 88;
4871 /// b[1] = 888;
4872 /// }
4873 /// assert_eq!(v, &[8, 88, 888]);
4874 ///
4875 /// if let Ok([a, b]) = v.get_disjoint_mut([1..=2, 0..=0]) {
4876 /// a[0] = 11;
4877 /// a[1] = 111;
4878 /// b[0] = 1;
4879 /// }
4880 /// assert_eq!(v, &[1, 11, 111]);
4881 /// ```
4882 #[stable(feature = "get_many_mut", since = "1.86.0")]
4883 #[inline]
4884 #[cfg(not(feature = "ferrocene_subset"))]
4885 pub fn get_disjoint_mut<I, const N: usize>(
4886 &mut self,
4887 indices: [I; N],
4888 ) -> Result<[&mut I::Output; N], GetDisjointMutError>
4889 where
4890 I: GetDisjointMutIndex + SliceIndex<Self>,
4891 {
4892 get_disjoint_check_valid(&indices, self.len())?;
4893 // SAFETY: The `get_disjoint_check_valid()` call checked that all indices
4894 // are disjunct and in bounds.
4895 unsafe { Ok(self.get_disjoint_unchecked_mut(indices)) }
4896 }
4897
4898 /// Returns the index that an element reference points to.
4899 ///
4900 /// Returns `None` if `element` does not point to the start of an element within the slice.
4901 ///
4902 /// This method is useful for extending slice iterators like [`slice::split`].
4903 ///
4904 /// Note that this uses pointer arithmetic and **does not compare elements**.
4905 /// To find the index of an element via comparison, use
4906 /// [`.iter().position()`](crate::iter::Iterator::position) instead.
4907 ///
4908 /// # Panics
4909 /// Panics if `T` is zero-sized.
4910 ///
4911 /// # Examples
4912 /// Basic usage:
4913 /// ```
4914 /// #![feature(substr_range)]
4915 ///
4916 /// let nums: &[u32] = &[1, 7, 1, 1];
4917 /// let num = &nums[2];
4918 ///
4919 /// assert_eq!(num, &1);
4920 /// assert_eq!(nums.element_offset(num), Some(2));
4921 /// ```
4922 /// Returning `None` with an unaligned element:
4923 /// ```
4924 /// #![feature(substr_range)]
4925 ///
4926 /// let arr: &[[u32; 2]] = &[[0, 1], [2, 3]];
4927 /// let flat_arr: &[u32] = arr.as_flattened();
4928 ///
4929 /// let ok_elm: &[u32; 2] = flat_arr[0..2].try_into().unwrap();
4930 /// let weird_elm: &[u32; 2] = flat_arr[1..3].try_into().unwrap();
4931 ///
4932 /// assert_eq!(ok_elm, &[0, 1]);
4933 /// assert_eq!(weird_elm, &[1, 2]);
4934 ///
4935 /// assert_eq!(arr.element_offset(ok_elm), Some(0)); // Points to element 0
4936 /// assert_eq!(arr.element_offset(weird_elm), None); // Points between element 0 and 1
4937 /// ```
4938 #[must_use]
4939 #[unstable(feature = "substr_range", issue = "126769")]
4940 #[cfg(not(feature = "ferrocene_subset"))]
4941 pub fn element_offset(&self, element: &T) -> Option<usize> {
4942 if T::IS_ZST {
4943 panic!("elements are zero-sized");
4944 }
4945
4946 let self_start = self.as_ptr().addr();
4947 let elem_start = ptr::from_ref(element).addr();
4948
4949 let byte_offset = elem_start.wrapping_sub(self_start);
4950
4951 if !byte_offset.is_multiple_of(size_of::<T>()) {
4952 return None;
4953 }
4954
4955 let offset = byte_offset / size_of::<T>();
4956
4957 if offset < self.len() { Some(offset) } else { None }
4958 }
4959
4960 /// Returns the range of indices that a subslice points to.
4961 ///
4962 /// Returns `None` if `subslice` does not point within the slice or if it is not aligned with the
4963 /// elements in the slice.
4964 ///
4965 /// This method **does not compare elements**. Instead, this method finds the location in the slice that
4966 /// `subslice` was obtained from. To find the index of a subslice via comparison, instead use
4967 /// [`.windows()`](slice::windows)[`.position()`](crate::iter::Iterator::position).
4968 ///
4969 /// This method is useful for extending slice iterators like [`slice::split`].
4970 ///
4971 /// Note that this may return a false positive (either `Some(0..0)` or `Some(self.len()..self.len())`)
4972 /// if `subslice` has a length of zero and points to the beginning or end of another, separate, slice.
4973 ///
4974 /// # Panics
4975 /// Panics if `T` is zero-sized.
4976 ///
4977 /// # Examples
4978 /// Basic usage:
4979 /// ```
4980 /// #![feature(substr_range)]
4981 ///
4982 /// let nums = &[0, 5, 10, 0, 0, 5];
4983 ///
4984 /// let mut iter = nums
4985 /// .split(|t| *t == 0)
4986 /// .map(|n| nums.subslice_range(n).unwrap());
4987 ///
4988 /// assert_eq!(iter.next(), Some(0..0));
4989 /// assert_eq!(iter.next(), Some(1..3));
4990 /// assert_eq!(iter.next(), Some(4..4));
4991 /// assert_eq!(iter.next(), Some(5..6));
4992 /// ```
4993 #[must_use]
4994 #[unstable(feature = "substr_range", issue = "126769")]
4995 #[cfg(not(feature = "ferrocene_subset"))]
4996 pub fn subslice_range(&self, subslice: &[T]) -> Option<Range<usize>> {
4997 if T::IS_ZST {
4998 panic!("elements are zero-sized");
4999 }
5000
5001 let self_start = self.as_ptr().addr();
5002 let subslice_start = subslice.as_ptr().addr();
5003
5004 let byte_start = subslice_start.wrapping_sub(self_start);
5005
5006 if !byte_start.is_multiple_of(size_of::<T>()) {
5007 return None;
5008 }
5009
5010 let start = byte_start / size_of::<T>();
5011 let end = start.wrapping_add(subslice.len());
5012
5013 if start <= self.len() && end <= self.len() { Some(start..end) } else { None }
5014 }
5015
5016 /// Returns the same slice `&[T]`.
5017 ///
5018 /// This method is redundant when used directly on `&[T]`, but
5019 /// it helps dereferencing other "container" types to slices,
5020 /// for example `Box<[T]>` or `Arc<[T]>`.
5021 #[cfg(not(feature = "ferrocene_subset"))]
5022 #[inline]
5023 #[unstable(feature = "str_as_str", issue = "130366")]
5024 pub const fn as_slice(&self) -> &[T] {
5025 self
5026 }
5027
5028 /// Returns the same slice `&mut [T]`.
5029 ///
5030 /// This method is redundant when used directly on `&mut [T]`, but
5031 /// it helps dereferencing other "container" types to slices,
5032 /// for example `Box<[T]>` or `MutexGuard<[T]>`.
5033 #[cfg(not(feature = "ferrocene_subset"))]
5034 #[inline]
5035 #[unstable(feature = "str_as_str", issue = "130366")]
5036 pub const fn as_mut_slice(&mut self) -> &mut [T] {
5037 self
5038 }
5039}
5040
5041#[cfg(not(feature = "ferrocene_subset"))]
5042impl<T> [MaybeUninit<T>] {
5043 /// Transmutes the mutable uninitialized slice to a mutable uninitialized slice of
5044 /// another type, ensuring alignment of the types is maintained.
5045 ///
5046 /// This is a safe wrapper around [`slice::align_to_mut`], so inherits the same
5047 /// guarantees as that method.
5048 ///
5049 /// # Examples
5050 ///
5051 /// ```
5052 /// #![feature(align_to_uninit_mut)]
5053 /// use std::mem::MaybeUninit;
5054 ///
5055 /// pub struct BumpAllocator<'scope> {
5056 /// memory: &'scope mut [MaybeUninit<u8>],
5057 /// }
5058 ///
5059 /// impl<'scope> BumpAllocator<'scope> {
5060 /// pub fn new(memory: &'scope mut [MaybeUninit<u8>]) -> Self {
5061 /// Self { memory }
5062 /// }
5063 /// pub fn try_alloc_uninit<T>(&mut self) -> Option<&'scope mut MaybeUninit<T>> {
5064 /// let first_end = self.memory.as_ptr().align_offset(align_of::<T>()) + size_of::<T>();
5065 /// let prefix = self.memory.split_off_mut(..first_end)?;
5066 /// Some(&mut prefix.align_to_uninit_mut::<T>().1[0])
5067 /// }
5068 /// pub fn try_alloc_u32(&mut self, value: u32) -> Option<&'scope mut u32> {
5069 /// let uninit = self.try_alloc_uninit()?;
5070 /// Some(uninit.write(value))
5071 /// }
5072 /// }
5073 ///
5074 /// let mut memory = [MaybeUninit::<u8>::uninit(); 10];
5075 /// let mut allocator = BumpAllocator::new(&mut memory);
5076 /// let v = allocator.try_alloc_u32(42);
5077 /// assert_eq!(v, Some(&mut 42));
5078 /// ```
5079 #[unstable(feature = "align_to_uninit_mut", issue = "139062")]
5080 #[inline]
5081 #[must_use]
5082 pub fn align_to_uninit_mut<U>(&mut self) -> (&mut Self, &mut [MaybeUninit<U>], &mut Self) {
5083 // SAFETY: `MaybeUninit` is transparent. Correct size and alignment are guaranteed by
5084 // `align_to_mut` itself. Therefore the only thing that we have to ensure for a safe
5085 // `transmute` is that the values are valid for the types involved. But for `MaybeUninit`
5086 // any values are valid, so this operation is safe.
5087 unsafe { self.align_to_mut() }
5088 }
5089}
5090
5091#[cfg(not(feature = "ferrocene_subset"))]
5092impl<T, const N: usize> [[T; N]] {
5093 /// Takes a `&[[T; N]]`, and flattens it to a `&[T]`.
5094 ///
5095 /// For the opposite operation, see [`as_chunks`] and [`as_rchunks`].
5096 ///
5097 /// [`as_chunks`]: slice::as_chunks
5098 /// [`as_rchunks`]: slice::as_rchunks
5099 ///
5100 /// # Panics
5101 ///
5102 /// This panics if the length of the resulting slice would overflow a `usize`.
5103 ///
5104 /// This is only possible when flattening a slice of arrays of zero-sized
5105 /// types, and thus tends to be irrelevant in practice. If
5106 /// `size_of::<T>() > 0`, this will never panic.
5107 ///
5108 /// # Examples
5109 ///
5110 /// ```
5111 /// assert_eq!([[1, 2, 3], [4, 5, 6]].as_flattened(), &[1, 2, 3, 4, 5, 6]);
5112 ///
5113 /// assert_eq!(
5114 /// [[1, 2, 3], [4, 5, 6]].as_flattened(),
5115 /// [[1, 2], [3, 4], [5, 6]].as_flattened(),
5116 /// );
5117 ///
5118 /// let slice_of_empty_arrays: &[[i32; 0]] = &[[], [], [], [], []];
5119 /// assert!(slice_of_empty_arrays.as_flattened().is_empty());
5120 ///
5121 /// let empty_slice_of_arrays: &[[u32; 10]] = &[];
5122 /// assert!(empty_slice_of_arrays.as_flattened().is_empty());
5123 /// ```
5124 #[stable(feature = "slice_flatten", since = "1.80.0")]
5125 #[rustc_const_stable(feature = "const_slice_flatten", since = "1.87.0")]
5126 pub const fn as_flattened(&self) -> &[T] {
5127 let len = if T::IS_ZST {
5128 self.len().checked_mul(N).expect("slice len overflow")
5129 } else {
5130 // SAFETY: `self.len() * N` cannot overflow because `self` is
5131 // already in the address space.
5132 unsafe { self.len().unchecked_mul(N) }
5133 };
5134 // SAFETY: `[T]` is layout-identical to `[T; N]`
5135 unsafe { from_raw_parts(self.as_ptr().cast(), len) }
5136 }
5137
5138 /// Takes a `&mut [[T; N]]`, and flattens it to a `&mut [T]`.
5139 ///
5140 /// For the opposite operation, see [`as_chunks_mut`] and [`as_rchunks_mut`].
5141 ///
5142 /// [`as_chunks_mut`]: slice::as_chunks_mut
5143 /// [`as_rchunks_mut`]: slice::as_rchunks_mut
5144 ///
5145 /// # Panics
5146 ///
5147 /// This panics if the length of the resulting slice would overflow a `usize`.
5148 ///
5149 /// This is only possible when flattening a slice of arrays of zero-sized
5150 /// types, and thus tends to be irrelevant in practice. If
5151 /// `size_of::<T>() > 0`, this will never panic.
5152 ///
5153 /// # Examples
5154 ///
5155 /// ```
5156 /// fn add_5_to_all(slice: &mut [i32]) {
5157 /// for i in slice {
5158 /// *i += 5;
5159 /// }
5160 /// }
5161 ///
5162 /// let mut array = [[1, 2, 3], [4, 5, 6], [7, 8, 9]];
5163 /// add_5_to_all(array.as_flattened_mut());
5164 /// assert_eq!(array, [[6, 7, 8], [9, 10, 11], [12, 13, 14]]);
5165 /// ```
5166 #[stable(feature = "slice_flatten", since = "1.80.0")]
5167 #[rustc_const_stable(feature = "const_slice_flatten", since = "1.87.0")]
5168 pub const fn as_flattened_mut(&mut self) -> &mut [T] {
5169 let len = if T::IS_ZST {
5170 self.len().checked_mul(N).expect("slice len overflow")
5171 } else {
5172 // SAFETY: `self.len() * N` cannot overflow because `self` is
5173 // already in the address space.
5174 unsafe { self.len().unchecked_mul(N) }
5175 };
5176 // SAFETY: `[T]` is layout-identical to `[T; N]`
5177 unsafe { from_raw_parts_mut(self.as_mut_ptr().cast(), len) }
5178 }
5179}
5180
5181#[cfg(not(feature = "ferrocene_subset"))]
5182impl [f32] {
5183 /// Sorts the slice of floats.
5184 ///
5185 /// This sort is in-place (i.e. does not allocate), *O*(*n* \* log(*n*)) worst-case, and uses
5186 /// the ordering defined by [`f32::total_cmp`].
5187 ///
5188 /// # Current implementation
5189 ///
5190 /// This uses the same sorting algorithm as [`sort_unstable_by`](slice::sort_unstable_by).
5191 ///
5192 /// # Examples
5193 ///
5194 /// ```
5195 /// #![feature(sort_floats)]
5196 /// let mut v = [2.6, -5e-8, f32::NAN, 8.29, f32::INFINITY, -1.0, 0.0, -f32::INFINITY, -0.0];
5197 ///
5198 /// v.sort_floats();
5199 /// let sorted = [-f32::INFINITY, -1.0, -5e-8, -0.0, 0.0, 2.6, 8.29, f32::INFINITY, f32::NAN];
5200 /// assert_eq!(&v[..8], &sorted[..8]);
5201 /// assert!(v[8].is_nan());
5202 /// ```
5203 #[unstable(feature = "sort_floats", issue = "93396")]
5204 #[inline]
5205 pub fn sort_floats(&mut self) {
5206 self.sort_unstable_by(f32::total_cmp);
5207 }
5208}
5209
5210#[cfg(not(feature = "ferrocene_subset"))]
5211impl [f64] {
5212 /// Sorts the slice of floats.
5213 ///
5214 /// This sort is in-place (i.e. does not allocate), *O*(*n* \* log(*n*)) worst-case, and uses
5215 /// the ordering defined by [`f64::total_cmp`].
5216 ///
5217 /// # Current implementation
5218 ///
5219 /// This uses the same sorting algorithm as [`sort_unstable_by`](slice::sort_unstable_by).
5220 ///
5221 /// # Examples
5222 ///
5223 /// ```
5224 /// #![feature(sort_floats)]
5225 /// let mut v = [2.6, -5e-8, f64::NAN, 8.29, f64::INFINITY, -1.0, 0.0, -f64::INFINITY, -0.0];
5226 ///
5227 /// v.sort_floats();
5228 /// let sorted = [-f64::INFINITY, -1.0, -5e-8, -0.0, 0.0, 2.6, 8.29, f64::INFINITY, f64::NAN];
5229 /// assert_eq!(&v[..8], &sorted[..8]);
5230 /// assert!(v[8].is_nan());
5231 /// ```
5232 #[unstable(feature = "sort_floats", issue = "93396")]
5233 #[inline]
5234 pub fn sort_floats(&mut self) {
5235 self.sort_unstable_by(f64::total_cmp);
5236 }
5237}
5238
5239/// Copies `src` to `dest`.
5240///
5241/// # Safety
5242/// `T` must implement one of `Copy` or `TrivialClone`.
5243#[track_caller]
5244const unsafe fn copy_from_slice_impl<T: Clone>(dest: &mut [T], src: &[T]) {
5245 // The panic code path was put into a cold function to not bloat the
5246 // call site.
5247 #[cfg_attr(not(panic = "immediate-abort"), inline(never), cold)]
5248 #[cfg_attr(panic = "immediate-abort", inline)]
5249 #[track_caller]
5250 const fn len_mismatch_fail(dst_len: usize, src_len: usize) -> ! {
5251 const_panic!(
5252 "copy_from_slice: source slice length does not match destination slice length",
5253 "copy_from_slice: source slice length ({src_len}) does not match destination slice length ({dst_len})",
5254 src_len: usize,
5255 dst_len: usize,
5256 )
5257 }
5258
5259 if dest.len() != src.len() {
5260 len_mismatch_fail(dest.len(), src.len());
5261 }
5262
5263 // SAFETY: `self` is valid for `self.len()` elements by definition, and `src` was
5264 // checked to have the same length. The slices cannot overlap because
5265 // mutable references are exclusive.
5266 unsafe {
5267 ptr::copy_nonoverlapping(src.as_ptr(), dest.as_mut_ptr(), dest.len());
5268 }
5269}
5270
5271trait CloneFromSpec<T> {
5272 fn spec_clone_from(&mut self, src: &[T]);
5273}
5274
5275impl<T> CloneFromSpec<T> for [T]
5276where
5277 T: Clone,
5278{
5279 #[track_caller]
5280 default fn spec_clone_from(&mut self, src: &[T]) {
5281 assert!(self.len() == src.len(), "destination and source slices have different lengths");
5282 // NOTE: We need to explicitly slice them to the same length
5283 // to make it easier for the optimizer to elide bounds checking.
5284 // But since it can't be relied on we also have an explicit specialization for T: Copy.
5285 let len = self.len();
5286 let src = &src[..len];
5287 for i in 0..len {
5288 self[i].clone_from(&src[i]);
5289 }
5290 }
5291}
5292
5293#[cfg(not(feature = "ferrocene_subset"))]
5294impl<T> CloneFromSpec<T> for [T]
5295where
5296 T: TrivialClone,
5297{
5298 #[track_caller]
5299 fn spec_clone_from(&mut self, src: &[T]) {
5300 // SAFETY: `T` implements `TrivialClone`.
5301 unsafe {
5302 copy_from_slice_impl(self, src);
5303 }
5304 }
5305}
5306
5307#[stable(feature = "rust1", since = "1.0.0")]
5308#[rustc_const_unstable(feature = "const_default", issue = "143894")]
5309#[cfg(not(feature = "ferrocene_subset"))]
5310impl<T> const Default for &[T] {
5311 /// Creates an empty slice.
5312 fn default() -> Self {
5313 &[]
5314 }
5315}
5316
5317#[stable(feature = "mut_slice_default", since = "1.5.0")]
5318#[rustc_const_unstable(feature = "const_default", issue = "143894")]
5319#[cfg(not(feature = "ferrocene_subset"))]
5320impl<T> const Default for &mut [T] {
5321 /// Creates a mutable empty slice.
5322 fn default() -> Self {
5323 &mut []
5324 }
5325}
5326
5327#[unstable(feature = "slice_pattern", reason = "stopgap trait for slice patterns", issue = "56345")]
5328/// Patterns in slices - currently, only used by `strip_prefix` and `strip_suffix`. At a future
5329/// point, we hope to generalise `core::str::Pattern` (which at the time of writing is limited to
5330/// `str`) to slices, and then this trait will be replaced or abolished.
5331#[cfg(not(feature = "ferrocene_subset"))]
5332pub trait SlicePattern {
5333 /// The element type of the slice being matched on.
5334 type Item;
5335
5336 /// Currently, the consumers of `SlicePattern` need a slice.
5337 fn as_slice(&self) -> &[Self::Item];
5338}
5339
5340#[stable(feature = "slice_strip", since = "1.51.0")]
5341#[cfg(not(feature = "ferrocene_subset"))]
5342impl<T> SlicePattern for [T] {
5343 type Item = T;
5344
5345 #[inline]
5346 fn as_slice(&self) -> &[Self::Item] {
5347 self
5348 }
5349}
5350
5351#[stable(feature = "slice_strip", since = "1.51.0")]
5352#[cfg(not(feature = "ferrocene_subset"))]
5353impl<T, const N: usize> SlicePattern for [T; N] {
5354 type Item = T;
5355
5356 #[inline]
5357 fn as_slice(&self) -> &[Self::Item] {
5358 self
5359 }
5360}
5361
5362/// This checks every index against each other, and against `len`.
5363///
5364/// This will do `binomial(N + 1, 2) = N * (N + 1) / 2 = 0, 1, 3, 6, 10, ..`
5365/// comparison operations.
5366#[inline]
5367#[cfg(not(feature = "ferrocene_subset"))]
5368fn get_disjoint_check_valid<I: GetDisjointMutIndex, const N: usize>(
5369 indices: &[I; N],
5370 len: usize,
5371) -> Result<(), GetDisjointMutError> {
5372 // NB: The optimizer should inline the loops into a sequence
5373 // of instructions without additional branching.
5374 for (i, idx) in indices.iter().enumerate() {
5375 if !idx.is_in_bounds(len) {
5376 return Err(GetDisjointMutError::IndexOutOfBounds);
5377 }
5378 for idx2 in &indices[..i] {
5379 if idx.is_overlapping(idx2) {
5380 return Err(GetDisjointMutError::OverlappingIndices);
5381 }
5382 }
5383 }
5384 Ok(())
5385}
5386
5387/// The error type returned by [`get_disjoint_mut`][`slice::get_disjoint_mut`].
5388///
5389/// It indicates one of two possible errors:
5390/// - An index is out-of-bounds.
5391/// - The same index appeared multiple times in the array
5392/// (or different but overlapping indices when ranges are provided).
5393///
5394/// # Examples
5395///
5396/// ```
5397/// use std::slice::GetDisjointMutError;
5398///
5399/// let v = &mut [1, 2, 3];
5400/// assert_eq!(v.get_disjoint_mut([0, 999]), Err(GetDisjointMutError::IndexOutOfBounds));
5401/// assert_eq!(v.get_disjoint_mut([1, 1]), Err(GetDisjointMutError::OverlappingIndices));
5402/// ```
5403#[stable(feature = "get_many_mut", since = "1.86.0")]
5404#[derive(Debug, Clone, PartialEq, Eq)]
5405#[cfg(not(feature = "ferrocene_subset"))]
5406pub enum GetDisjointMutError {
5407 /// An index provided was out-of-bounds for the slice.
5408 IndexOutOfBounds,
5409 /// Two indices provided were overlapping.
5410 OverlappingIndices,
5411}
5412
5413#[stable(feature = "get_many_mut", since = "1.86.0")]
5414#[cfg(not(feature = "ferrocene_subset"))]
5415impl fmt::Display for GetDisjointMutError {
5416 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
5417 let msg = match self {
5418 GetDisjointMutError::IndexOutOfBounds => "an index is out of bounds",
5419 GetDisjointMutError::OverlappingIndices => "there were overlapping indices",
5420 };
5421 fmt::Display::fmt(msg, f)
5422 }
5423}
5424
5425#[cfg(not(feature = "ferrocene_subset"))]
5426mod private_get_disjoint_mut_index {
5427 use super::{Range, RangeInclusive, range};
5428
5429 #[unstable(feature = "get_disjoint_mut_helpers", issue = "none")]
5430 pub trait Sealed {}
5431
5432 #[unstable(feature = "get_disjoint_mut_helpers", issue = "none")]
5433 impl Sealed for usize {}
5434 #[unstable(feature = "get_disjoint_mut_helpers", issue = "none")]
5435 impl Sealed for Range<usize> {}
5436 #[unstable(feature = "get_disjoint_mut_helpers", issue = "none")]
5437 impl Sealed for RangeInclusive<usize> {}
5438 #[unstable(feature = "get_disjoint_mut_helpers", issue = "none")]
5439 impl Sealed for range::Range<usize> {}
5440 #[unstable(feature = "get_disjoint_mut_helpers", issue = "none")]
5441 impl Sealed for range::RangeInclusive<usize> {}
5442}
5443
5444/// A helper trait for `<[T]>::get_disjoint_mut()`.
5445///
5446/// # Safety
5447///
5448/// If `is_in_bounds()` returns `true` and `is_overlapping()` returns `false`,
5449/// it must be safe to index the slice with the indices.
5450#[unstable(feature = "get_disjoint_mut_helpers", issue = "none")]
5451#[cfg(not(feature = "ferrocene_subset"))]
5452pub unsafe trait GetDisjointMutIndex:
5453 Clone + private_get_disjoint_mut_index::Sealed
5454{
5455 /// Returns `true` if `self` is in bounds for `len` slice elements.
5456 #[unstable(feature = "get_disjoint_mut_helpers", issue = "none")]
5457 fn is_in_bounds(&self, len: usize) -> bool;
5458
5459 /// Returns `true` if `self` overlaps with `other`.
5460 ///
5461 /// Note that we don't consider zero-length ranges to overlap at the beginning or the end,
5462 /// but do consider them to overlap in the middle.
5463 #[unstable(feature = "get_disjoint_mut_helpers", issue = "none")]
5464 fn is_overlapping(&self, other: &Self) -> bool;
5465}
5466
5467#[unstable(feature = "get_disjoint_mut_helpers", issue = "none")]
5468// SAFETY: We implement `is_in_bounds()` and `is_overlapping()` correctly.
5469#[cfg(not(feature = "ferrocene_subset"))]
5470unsafe impl GetDisjointMutIndex for usize {
5471 #[inline]
5472 fn is_in_bounds(&self, len: usize) -> bool {
5473 *self < len
5474 }
5475
5476 #[inline]
5477 fn is_overlapping(&self, other: &Self) -> bool {
5478 *self == *other
5479 }
5480}
5481
5482#[unstable(feature = "get_disjoint_mut_helpers", issue = "none")]
5483// SAFETY: We implement `is_in_bounds()` and `is_overlapping()` correctly.
5484#[cfg(not(feature = "ferrocene_subset"))]
5485unsafe impl GetDisjointMutIndex for Range<usize> {
5486 #[inline]
5487 fn is_in_bounds(&self, len: usize) -> bool {
5488 (self.start <= self.end) & (self.end <= len)
5489 }
5490
5491 #[inline]
5492 fn is_overlapping(&self, other: &Self) -> bool {
5493 (self.start < other.end) & (other.start < self.end)
5494 }
5495}
5496
5497#[unstable(feature = "get_disjoint_mut_helpers", issue = "none")]
5498// SAFETY: We implement `is_in_bounds()` and `is_overlapping()` correctly.
5499#[cfg(not(feature = "ferrocene_subset"))]
5500unsafe impl GetDisjointMutIndex for RangeInclusive<usize> {
5501 #[inline]
5502 fn is_in_bounds(&self, len: usize) -> bool {
5503 (self.start <= self.end) & (self.end < len)
5504 }
5505
5506 #[inline]
5507 fn is_overlapping(&self, other: &Self) -> bool {
5508 (self.start <= other.end) & (other.start <= self.end)
5509 }
5510}
5511
5512#[unstable(feature = "get_disjoint_mut_helpers", issue = "none")]
5513// SAFETY: We implement `is_in_bounds()` and `is_overlapping()` correctly.
5514#[cfg(not(feature = "ferrocene_subset"))]
5515unsafe impl GetDisjointMutIndex for range::Range<usize> {
5516 #[inline]
5517 fn is_in_bounds(&self, len: usize) -> bool {
5518 Range::from(*self).is_in_bounds(len)
5519 }
5520
5521 #[inline]
5522 fn is_overlapping(&self, other: &Self) -> bool {
5523 Range::from(*self).is_overlapping(&Range::from(*other))
5524 }
5525}
5526
5527#[unstable(feature = "get_disjoint_mut_helpers", issue = "none")]
5528// SAFETY: We implement `is_in_bounds()` and `is_overlapping()` correctly.
5529#[cfg(not(feature = "ferrocene_subset"))]
5530unsafe impl GetDisjointMutIndex for range::RangeInclusive<usize> {
5531 #[inline]
5532 fn is_in_bounds(&self, len: usize) -> bool {
5533 RangeInclusive::from(*self).is_in_bounds(len)
5534 }
5535
5536 #[inline]
5537 fn is_overlapping(&self, other: &Self) -> bool {
5538 RangeInclusive::from(*self).is_overlapping(&RangeInclusive::from(*other))
5539 }
5540}